
VSI OpenVMS

VAX RTL Mathematics (MTH$) Manual

Operating System and Version: OpenVMS VAX Version 7.3

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VAX RTL Mathematics (MTH$) Manual

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

The following are third-party trademarks:

BASIC is a registered trademark of the Trustees of Dartmouth College, D.B.A. Dartmouth College.

All other product names mentioned herein may be the trademarks or registered trademarks of their respective companies.

ii

VAX RTL Mathematics (MTH$) Manual

Table of Contents
Preface ... vii

1. About VSI .. vii
2. Intended Audience ... vii
3. Document Structure ... vii
4. Related Documents .. vii
5. OpenVMS Documentation .. viii
6. VSI Encourages Your Comments ... viii
7. Conventions ... viii

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility 1
1.1. Entry Point Names ... 1
1.2. Calling Conventions .. 2
1.3. Algorithms ... 3
1.4. Condition Handling ... 3
1.5. Complex Numbers .. 3
1.6. Mathematics Routines Not Documented in the MTH$ Reference Section 4
1.7. Examples of Calls to Run-Time Library Mathematics Routines ... 7

1.7.1. BASIC Example ... 7
1.7.2. COBOL Example ... 8
1.7.3. Fortran Examples ... 8
1.7.4. MACRO Examples ... 10
1.7.5. Pascal Examples ... 12
1.7.6. PL/I Examples ... 13
1.7.7. Ada Example ... 14

Chapter 2. Vector Routines in MTH$.. 17
2.1. BLAS — Basic Linear Algebra Subroutines Level 1 ... 17

2.1.1. Using BLAS Level 1 .. 20
2.1.1.1. Memory Overlap ... 20
2.1.1.2. Round-Off Effects ... 20
2.1.1.3. Underflow and Overflow ... 20
2.1.1.4. Notational Definitions .. 20

2.2. FOLR — First Order Linear Recurrence Routines ... 21
2.2.1. FOLR Routine Name Format .. 22
2.2.2. Calling a FOLR Routine ... 22

2.3. Vector Versions of Existing Scalar Routines .. 22
2.3.1. Exceptions ... 23
2.3.2. Underflow Detection .. 23
2.3.3. Vector Routine Name Format .. 23
2.3.4. Calling a Vector Math Routine .. 24

2.4. Fast-Vector Math Routines .. 27
2.4.1. Exception Handling .. 28
2.4.2. Special Restrictions On Input Arguments ... 28
2.4.3. Accuracy ... 29
2.4.4. Performance ... 29

Chapter 3. Scalar MTH$ Reference Section .. 31
MTH$xACOS ... 31
MTH$xACOSD ... 33
MTH$xASIN .. 35
MTH$xASIND .. 37

iii

VAX RTL Mathematics (MTH$) Manual

MTH$xATAN ... 39
MTH$xATAND ... 40
MTH$xATAN2 ... 42
MTH$xATAND2 ... 44
MTH$xATANH ... 45
MTH$CxABS ... 46
MTH$CCOS ... 49
MTH$CxCOS ... 51
MTH$CEXP ... 53
MTH$CxEXP ... 55
MTH$CLOG ... 57
MTH$CxLOG ... 58
MTH$CMPLX .. 60
MTH$xCMPLX .. 62
MTH$CONJG ... 64
MTH$xCONJG ... 65
MTH$xCOS .. 67
MTH$xCOSD ... 69
MTH$xCOSH ... 70
MTH$CSIN .. 72
MTH$CxSIN .. 73
MTH$CSQRT ... 75
MTH$CxSQRT ... 76
MTH$CVT_x_x .. 78
MTH$CVT_xA_xA ... 79
MTH$xEXP .. 81
MTH$HACOS .. 83
MTH$HACOSD .. 85
MTH$HASIN .. 86
MTH$HASIND ... 88
MTH$HATAN .. 89
MTH$HATAND .. 91
MTH$HATAN2 ... 92
MTH$HATAND2 .. 94
MTH$HATANH .. 95
MTH$HCOS ... 96
MTH$HCOSD ... 98
MTH$HCOSH ... 99
MTH$HEXP ... 100
MTH$HLOG ... 102
MTH$HLOG2 ... 104
MTH$HLOG10 ... 105
MTH$HSIN .. 106
MTH$HSIND .. 107
MTH$HSINH .. 108
MTH$HSQRT ... 110
MTH$HTAN ... 112
MTH$HTAND .. 114
MTH$HTANH .. 115
MTH$xIMAG ... 116
MTH$xLOG ... 118
MTH$xLOG2 .. 120

iv

VAX RTL Mathematics (MTH$) Manual

MTH$xLOG10 .. 121
MTH$RANDOM .. 123
MTH$xREAL ... 125
MTH$xSIN ... 126
MTH$xSINCOS .. 128
MTH$xSINCOSD .. 131
MTH$xSIND .. 134
MTH$xSINH .. 135
MTH$xSQRT .. 137
MTH$xTAN .. 140
MTH$TAND ... 141
MTH$xTANH ... 143
MTH$UMAX ... 144
MTH$UMIN ... 145

Chapter 4. Vector MTH$ Reference Section .. 147
BLAS1$VIxAMAX ... 147
BLAS1$VxASUM ... 150
BLAS1$VxAXPY .. 153
BLAS1$VxCOPY .. 157
BLAS1$VxDOTx ... 162
BLAS1$VxNRM2 .. 166
BLAS1$VxROT ... 169
BLAS1$VxROTG .. 175
BLAS1$VxSCAL ... 179
BLAS1$VxSWAP .. 182
MTH$VxFOLRy_MA_V15 .. 187
MTH$VxFOLRy_z_V8 .. 191
MTH$VxFOLRLy_MA_V5 ... 195
MTH$VxFOLRLy_MA_V5 ... 199

Appendix A. Additional MTH$ Routines ... 205
Appendix B. Vector MTH$ Routine Entry Points ... 219

v

VAX RTL Mathematics (MTH$) Manual

vi

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is intended for system and application programmers who write programs that call MTH$
Run-Time Library routines.

3. Document Structure
This manual contains two tutorial chapters, two reference sections, and two appendixes:

● Chapter 1 is an introductory chapter that provides guidelines on using the MTH$ scalar routines.

● Chapter 2 provides guidelines on using the MTH$ vector routines.

● The Chapter 3 provides detailed reference information on each scalar mathematics routine contained
in the MTH$ facility of the Run-Time Library.

● The Chapter 4 provides detailed reference information on the BLAS Level 1 (Basic Linear Algebra
Subroutines) and FOLR (First Order Linear Recurrence) routines.

Reference information is presented using the documentation format described in the VSI OpenVMS
Programming Concepts Manual Volume I [https://docs.vmssoftware.com/vsi-openvms-programming-
concepts-manual-volume-i/] and Volume II [https://docs.vmssoftware.com/vsi-openvms-programming-
concepts-manual-volume-ii/].

. Routine descriptions are in alphabetical order by routine name.

● Appendix A lists supported MTH$ routines not included with the routines in the Chapter 3, because
they are rarely used.

● Appendix B contains a table of the vector MTH$ routines that you can call from VAX MACRO.

4. Related Documents
The Run-Time Library routines are documented in a series of reference manuals. A description of
how the Run-Time Library routines are accessed and of how OpenVMS features and functionality are
available through calls to the MTH$ Run-Time Library appears in VSI OpenVMS Programming Concepts
Manual Volume I [https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/]
and Volume II [https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-ii/].

.

Descriptions of the other RTL facilities and their corresponding routines are presented in the following
books:

vii

https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-ii/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-ii/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-ii/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-ii/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-ii/

Preface

● VSI Portable Mathematics Library [https://docs.vmssoftware.com/portable-mathematics-library]

● OpenVMS RTL DECtalk (DTK$) Manual

● VSI OpenVMS RTL Library (LIB$) Manual [https://docs.vmssoftware.com/vsi-openvms-rtl-library-
lib-manual/]

● VSI OpenVMS RTL General Purpose (OTS$) Manual [https://docs.vmssoftware.com/vsi-c-user-s-
guide-for-openvms-systems/]

● OpenVMS RTL Parallel Processing (PPL$) Manual

● OpenVMS RTL Screen Management (SMG$) Manual

● OpenVMS RTL String Manipulation (STR$) Manual

Application programmers using any language can refer to the Guide to Creating OpenVMS Modular
Procedures for writing modular and reentrant code.

High-level language programmers will find additional information on calling Run-Time Library routines
in their language reference manuals. Additional information may also be found in the language user’s
guide provided with your OpenVMS language software.

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Conventions
The following conventions may be used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

... A horizontal ellipsis in examples indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.

viii

https://docs.vmssoftware.com/portable-mathematics-library
https://docs.vmssoftware.com/portable-mathematics-library
https://docs.vmssoftware.com/vsi-openvms-rtl-library-lib-manual/
https://docs.vmssoftware.com/vsi-openvms-rtl-library-lib-manual/
https://docs.vmssoftware.com/vsi-openvms-rtl-library-lib-manual/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com

Preface

Convention Meaning
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for VSI OpenVMS
directory specifications and for a substring specification in an assignment
statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

ix

Preface

x

Chapter 1. OpenVMS Run-Time
Library Mathematics (MTH$)
Facility
The OpenVMS Run-Time Library Mathematics (MTH$) facility contains routines to perform a wide
variety of computations including the following:

● Floating-point trigonometric function evaluation

● Exponentiation

● Complex function evaluation

● Complex exponentiation

● Miscellaneous function evaluation

● Vector operations (VAX only)

The OTS$ facility provides additional language-independent arithmetic support routines (see the
OpenVMS RTL General Purpose (OTS$) Manual [https://docs.vmssoftware.com/vsi-c-user-s-guide-for-
openvms-systems/]).

This chapter contains an introduction to the MTH$ facility and includes examples of how to call
mathematics routines from BASIC, COBOL, Fortran, MACRO, Pascal, PL/I, and Ada.

Chapter 2 contains an overview of the vector routines available on VAX processors.

The Chapter 3 describes the MTH$ scalar routines. The Chapter 4 describes the MTH$ vector routines.

1.1. Entry Point Names
The names of the mathematics routines are formed by adding the MTH$ prefix to the function names.

When function arguments and returned values are of the same data type, the first letter of the name
indicates this data type. When function arguments and returned values are of different data types, the
first letter indicates the data type of the returned value, and the second letter indicates the data type of
the arguments.

The letters used as data type prefixes are listed below.

Letter Data Type

I Word
J Longword
D D_floating
G G_floating
H H_floating
C F_floating complex
CD D_floating complex

1

https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/
https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

Letter Data Type

CG G_floating complex

Generally, F-floating data types have no letter designation. For example, MTH$SIN returns an F-floating
value of the sine of an F-floating argument and MTH$DSIN returns a D-floating value of the sine of
a D-floating argument. However, in some of the miscellaneous functions, F-floating data types are
referenced by the letter designation A.

1.2. Calling Conventions
For calling conventions specific to the MTH$ vector routines, refer to Chapter 2.

All calls to mathematics routines, as described in the Format section of each routine, accept arguments
passed by reference. JSB entry points accept arguments passed by value.

All mathematics routines return values in R0 or R0/R1 except those routines for which the values cannot
fit in 64 bits. D-floating complex, G-floating complex, and H-floating values are data structures which
are larger than 64 bits. Routines returning values that cannot fit in registers R0/R1 return their function
values into the first argument in the argument list.

The notation JSB MTH$NAME_Rn, where n is the highest register number referenced, indicates that
an equivalent JSB entry point is available. Registers R0:Rn are not preserved.

Routines with JSB entry points accept a single argument in R0:Rm, where m , which is defined in the
following table, is dependent on the data type.

Data Type m

F_floating 0
D_floating 1
G_floating 2
H_floating 3

A routine returning one value returns it to registers R0:Rm.

When a routine returns two values (for example, MTH$SINCOS), the first value is returned in R0:Rm
and the second value is returned in (R<m+1>:R<2*m+1>).

Note that for routines returning a single value, n>=m. For routines returning two values, n>=2*m + 1.

In general, CALL entry points for mathematics routines do the following:

● Disable floating-point underflow

● Enable integer overflow

● Cause no floating-point overflow or other arithmetic traps or faults

● Preserve all other enabled operations across the CALL

JSB entry points execute in the context of the caller with the enable operations as set by the caller. Since
the routines do not cause arithmetic traps or faults, their operation is not affected by the setting of the
arithmetic trap enables, except as noted.

For more detailed information on CALL and JSB entry points, refer to the VSI OpenVMS Programming
Concepts Manual Volume I [https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-

2

https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

volume-i/] and Volume II [https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-
volume-ii/].

1.3. Algorithms
For those mathematics routines having corresponding algorithms, the complete algorithm can be found
in the Description section of the routine description appearing in the Scalar MTH$ Reference Section of
this manual.

1.4. Condition Handling
Error conditions are indicated by using the VAX signaling mechanism. The VAX signaling mechanism
signals all conditions in mathematics routines as SEVERE by calling LIB$SIGNAL. When a SEVERE
error is signaled, the default handler causes the image to exit after printing an error message. A user-
established condition handler can be written to cause execution to continue at the point of the error
by returning SS$_CONTINUE. A mathematics routine returns to its caller after the contents of R0/
R1 have been restored from the mechanism argument vector CHF$L_MCH_SAVR0/R1. Thus, the
user-established handler should correct CHF$L_MCH_SAVR0/R1 to the desired function value to be
returned to the caller of the mathematics routine.

D-floating complex, G-floating complex, and H-floating values cannot be corrected with a user-
established condition handler, because R2/R3 is not available in the mechanism argument vector.

Note that it is more reliable to correct R0 and R1 to resemble R0 and R1 of a double-precision floating-
point value. A double-precision floating-point value correction works for both single- and double-
precision values.

If the correction is not performed, the floating-point reserved operand –0.0 is returned. A floating-point
reserved operand is a floating-point datum with a sign bit of 1 and a biased exponent of 0. Accessing
the floating-point reserved operand will cause a reserved operand fault. See the OpenVMS RTL Library
(LIB$) Manual [https://docs.vmssoftware.com/vsi-openvms-rtl-library-lib-manual/] for a complete
description of how to write user condition handlers for SEVERE errors.

A few mathematics routines signal floating underflow if the calling program (JSB or CALL) has enabled
floating underflow faults or traps.

All mathematics routines access input arguments and the real and imaginary parts of complex numbers
using floating-point instructions. Therefore, a reserved operand fault can occur in any mathematics
routine.

1.5. Complex Numbers
A complex number y is defined as an ordered pair of real numbers r and i, where r is the real part and i
is the imaginary part of the complex number.

y=(r,i)

OpenVMS supports three floating-point complex types: F-floating complex,

D-floating complex, and G-floating complex. There is no H-floating complex data type.

Run-Time Library mathematics routines that use complex arguments require a pointer to a structure
containing two x-floating values to be passed by reference for each argument. The first x-floating value
contains r, the real part of the complex number. The second x-floating value contains i, the imaginary
part of the complex number. Similarly, Run-Time Library mathematics routines that return complex

3

https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-i/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-ii/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-ii/
https://docs.vmssoftware.com/vsi-openvms-programming-concepts-manual-volume-ii/
https://docs.vmssoftware.com/vsi-openvms-rtl-library-lib-manual/
https://docs.vmssoftware.com/vsi-openvms-rtl-library-lib-manual/
https://docs.vmssoftware.com/vsi-openvms-rtl-library-lib-manual/

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

function values return two x-floating values. Some Language Independent Support (OTS$) routines also
calculate complex functions.

Note that complex functions have no JSB entry points.

1.6. Mathematics Routines Not Documented in
the MTH$ Reference Section
The mathematics routines in Table 1.1 are not found in the reference section of this manual. Instead,
their entry points and argument information are listed in Appendix A.

A reserved operand fault can occur for any floating-point input argument in any mathematics routine.
Other condition values signaled by each mathematics routine are indicated in the footnotes.

Table 1.1. Additional Mathematics Routines

Entry Point Function

Absolute Value Routines

MTH$ABS F-floating absolute value
MTH$DABS D-floating absolute value
MTH$GABS G-floating absolute value
MTH$HABS H-floating absolute value1

MTH$IIABS Word absolute valueb

MTH$JIABS Longword absolute valueb

Bitwise AND Operator Routines

MTH$IIAND Bitwise AND of two word parameters
MTH$JIAND Bitwise AND of two longword parameters

F-Floating Conversion Routines

MTH$DBLE Convert F-floating to D-floating (exact)
MTH$GDBLE Convert F-floating to G-floating (exact)
MTH$IIFIX Convert F-floating to word (truncated)b

MTH$JIFIX Convert F-floating to longword (truncated)b

Floating-Point Positive Difference Routines

MTH$DIM Positive difference of two F-floating parametersc

MTH$DDIM Positive difference of two D-floating parametersc

MTH$GDIM Positive difference of two G-floating parametersc

MTH$HDIM Positive difference of two H-floating parameters1,c

MTH$IIDIM Positive difference of two word parametersb

MTH$JIDIM Positive difference of two longword parametersb

Bitwise Exclusive OR Operator Routines

MTH$IIEOR Bitwise exclusive OR of two word parameters
MTH$JIEOR Bitwise exclusive OR of two longword parameters

Integer to Floating-Point Conversion Routines

4

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

Entry Point Function

MTH$FLOATI Convert word to F-floating (exact)
MTH$DFLOTI Convert word to D-floating (exact)
MTH$GFLOTI Convert word to G-floating (exact)
MTH$FLOATJ Convert longword to F-floating (rounded)
MTH$DFLOTJ Convert longword to D-floating (exact)
MTH$GFLOTJ Convert longword to G-floating (exact)

Conversion to Greatest Floating-Point Integer Routines

MTH$FLOOR Convert F-floating to greatest F-floating integer
MTH$DFLOOR Convert D-floating to greatest D-floating integer
MTH$GFLOOR Convert G-floating to greatest G-floating integer
MTH$HFLOOR Convert H-floating to greatest H-floating integer1

Floating-Point Truncation Routines

MTH$AINT Convert F-floating to truncated F-floating
MTH$IINT Convert F-floating to truncated wordb

MTH$JINT Convert F-floating to truncated longwordb

MTH$DINT Convert D-floating to truncated D-floating
MTH$IIDINT Convert D-floating to truncated wordb

MTH$JIDINT Convert D-floating to truncated longwordb

MTH$GINT Convert G-floating to truncated G-floating
MTH$IIGINT Convert G-floating to truncated wordb

MTH$JIGINT Convert G-floating to truncated longwordb

MTH$HINT Convert H-floating to truncated H-floating1

MTH$IIHINT Convert H-floating to truncated wordb

MTH$JIHINT Convert H-floating to truncated longwordb

Bitwise Inclusive OR Operator Routines

MTH$IIOR Bitwise inclusive OR of two word parameters
MTH$JIOR Bitwise inclusive OR of two longword parameters

Maximum Value Routines

MTH$AIMAX0 F-floating maximum of n word parameters
MTH$AJMAX0 F-floating maximum of n longword parameters
MTH$IMAX0 Word maximum of n word parameters
MTH$JMAX0 Longword maximum of n longword parameters
MTH$AMAX1 F-floating maximum of n F-floating parameters
MTH$DMAX1 D-floating maximum of n D-floating parameters
MTH$GMAX1 G-floating maximum of n G-floating parameters
MTH$HMAX1 H-floating maximum of n H-floating parameters1

MTH$IMAX1 Word maximum of n F-floating parametersb

MTH$JMAX1 Longword maximum of n F-floating parametersb

5

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

Entry Point Function

Minimum Value Routines

MTH$AIMIN0 F-floating minimum of n word parameters
MTH$AJMIN0 F-floating minimum of n longword parameters
MTH$IMIN0 Word minimum of n word parameters
MTH$JMIN0 Longword minimum of n longword parameters
MTH$AMIN1 F-floating minimum of n F-floating parameters
MTH$DMIN1 D-floating minimum of n D-floating parameters
MTH$GMIN1 G-floating minimum of n G-floating parameters
MTH$HMIN1 H-floating minimum of n H-floating parameters1

MTH$IMIN1 Word minimum of n F-floating parametersb

MTH$JMIN1 Longword minimum of n F-floating parametersb

Remainder Routines

MTH$AMOD Remainder of two F-floating parameters, arg1/arg2c,d

MTH$DMOD Remainder of two D-floating parameters, arg1/arg2c,d

MTH$GMOD Remainder of two G-floating parameters, arg1/arg2c

MTH$HMOD Remainder of two H-floating parameters, arg1/arg21,c

MTH$IMOD Remainder of two word parameters, arg1/arg2e

MTH$JMOD Remainder of two longword parameters, arg1/arg2e

Floating-Point Conversion to Nearest Value Routines

MTH$ANINT Convert F-floating to nearest F-floating integer
MTH$ININT Convert F-floating to nearest word integerb

MTH$JNINT Convert F-floating to nearest longword integerb

MTH$DNINT Convert D-floating to nearest D-floating integer
MTH$IIDNNT Convert D-floating to nearest word integerb

MTH$JIDNNT Convert D-floating to nearest longword integerb

MTH$GNINT Convert G-floating to nearest G-floating integer
MTH$IIGNNT Convert G-floating to nearest word integerb

MTH$JIGNNT Convert G-floating to nearest longword integerb

MTH$HNINT Convert H-floating to nearest H-floating integer1

MTH$IIHNNT Convert H-floating to nearest word integerb

MTH$JIHNNT Convert H-floating to nearest longword integerb

Bitwise Complement Operator Routines

MTH$INOT Bitwise complement of word parameter
MTH$JNOT Bitwise complement of longword parameter

Floating-Point Multiplication Routines

MTH$DPROD D-floating product of two F-floating parametersc

MTH$GPROD G-floating product of two F-floating parameters
Bitwise Shift Operator Routines

6

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

Entry Point Function

MTH$IISHFT Bitwise shift of word
MTH$JISHFT Bitwise shift of longword

Floating-Point Sign Function Routines

MTH$SGN F- or D-floating sign function
MTH$SIGN F-floating transfer of sign of y to sign of x
MTH$DSIGN D-floating transfer of sign of y to sign of x
MTH$GSIGN G-floating transfer of sign of y to sign of x
MTH$HSIGN H-floating transfer of sign of y to sign of x1

MTH$IISIGN Word transfer of sign of y to sign of x
MTH$JISIGN Longword transfer of sign of y to sign of x

Conversion of Double to Single Floating-Point Routines

MTH$SNGL Convert D-floating to F-floating (rounded)c

MTH$SNGLG Convert G-floating to F-floating (rounded)c,f

1Returns value to the first argument; value exceeds 64 bits.
bInteger overflow exceptions can occur.
cFloating-point overflow exceptions can occur.
dFloating-point underflow exceptions are signaled.
eDivide-by-zero exceptions can occur.
fFloating-point underflow exceptions can occur.

1.7. Examples of Calls to Run-Time Library
Mathematics Routines
1.7.1. BASIC Example
The following BASIC program uses the H-floating data type. BASIC also supports the D-floating, F-
floating, and G-floating data types, but does not support the complex data types.

10 !+
 ! Sample program to demonstrate a call to MTH$HEXP from BASIC.
 !-

 EXTERNAL SUB MTH$HEXP (HFLOAT, HFLOAT)

 DECLARE HFLOAT X,Y ! X and Y are H-floating
 DIGITS$ = ’###.#################################’
 X = ’1.2345678901234567891234567892’H
 CALL MTH$HEXP (Y,X)
 A$ = ’MTH$HEXP of ’ + DIGITS$ + ’ is ’ + DIGITS$
 PRINT USING A$, X, Y
 END

The output from this program is as follows:

MTH$HEXP of 1.234567890123456789123456789200000
is 3.436893084346008004973301321342110

7

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

1.7.2. COBOL Example
The following COBOL program uses the F-floating and D-floating data types. COBOL does not support
the G-floating and H-floating data types or the complex data types.

This COBOL program calls MTH$EXP and MTH$DEXP.

IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING_POINT.

Calls MTH$EXP using a Floating Point data type.
Calls MTH$DEXP using a Double Floating Point data type.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT_PT COMP-1.
01 ANSWER_F COMP-1.
01 DOUBLE_PT COMP-2.
01 ANSWER_D COMP-2.
PROCEDURE DIVISION.
P0.
 MOVE 12.34 TO FLOAT_PT.
 MOVE 3.456 TO DOUBLE_PT.

 CALL "MTH$EXP" USING BY REFERENCE FLOAT_PT GIVING ANSWER_F.
 DISPLAY " MTH$EXP of ", FLOAT_PT CONVERSION, " is ",
 ANSWER_F CONVERSION.

 CALL "MTH$DEXP" USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D.
 DISPLAY " MTH$DEXP of ", DOUBLE_PT CONVERSION, " is ",
 ANSWER_D CONVERSION.
 STOP RUN.

The output from this example program is as follows:

MTH$EXP of 1.234000E+01 is 2.286620E+05
MTH$DEXP of 3.456000000000000E+00 is
3.168996280537917E+01

1.7.3. Fortran Examples
The first Fortran program below uses the G-floating data type. The second Fortran program below uses
the H-floating data type. The third Fortran program below uses the F-floating complex data type. Fortran
supports the four floating data types and the three complex data types.

1. C+
C This Fortran program computes the log base 2 of x, log2(x) in
C G-floating double precision by using the RTL routine MTH$GLOG2.
C
C Declare X and Y and MTH$GLOG2 as double precision values.
C
C MTH$GLOG2 will return a double precision value to variable Y.
C-
 REAL*8 X, Y, MTH$GLOG2
 X = 16.0
 Y = MTH$GLOG2(X)

8

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

 WRITE (6,1) X, Y
1 FORMAT (’ MTH$GLOG2(’,F4.1,’) is ’,F4.1)
END

The output generated by the preceding program is as follows:

MTH$GLOG2(16.0) is 4.0

2. C+
C This Fortran program computes the log base 2 of x, log2(x) in
C H-floating precision by using the RTL routine MTH$HLOG2.
C
C Declare X and Y and MTH$GLOG2 as REAL*16 values.
C
C MTH$HLOG2 will return a REAL*16 value to variable Y.
C-
 REAL*16 X, Y
 X = 16.12345678901234567890123456789
 CALL MTH$HLOG2(Y, X)
 WRITE (6,1) X, Y
1 FORMAT (’ MTH$HLOG2(’,F30.27,’) is ’,F30.28)
END

The output generated by the preceding program is as follows:

MTH$HLOG2(16.123456789012345678901234568) is
 4.0110891785623860194931388310

3. C+
C This Fortran example raises a complex base to
C a NONNEGATIVE integer power using OTS$POWCJ.
C
C Declare Z1, Z2, Z3, and OTS$POWCJ as complex values.
C Then OTS$POWCJ returns the complex result of
C Z1**Z2: Z3 = OTS$POWCJ(Z1,Z2),
C where Z1 and Z2 are passed by value.
C-
 COMPLEX Z1,Z3,OTS$POWCJ
 INTEGER Z2
C+
C Generate a complex base.
C-
 Z1 = (2.0,3.0)
C+
C Generate an integer power.
C-
 Z2=2
C+
C Compute the complex value of Z1**Z2.
C-
 Z3 = OTS$POWCJ(%VAL(REAL(Z1)), %VAL(AIMAG(Z1)), %VAL(Z2))
 TYPE 1,Z1,Z2,Z3
 1 FORMAT(’ The value of (’,F10.8,’,’,F11.8,’)**’,I1,’ is
 + (’,F11.8,’,’,F12.8,’).’)
 END

The output generated by the preceding Fortran program is as follows:

The value of (2.00000000, 3.00000000)**2 is

9

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

(-5.00000000, 12.00000000).

1.7.4. MACRO Examples
MACRO and BLISS support JSB entry points as well as CALLS and CALLG entry points. Both
MACRO and BLISS support the four floating data types and the three complex data types.

The following MACRO programs show the use of the CALLS and CALLG instructions, as well as JSB
entry points.

1. .TITLE EXAMPLE_JSB
;+
; This example calls MTH$DEXP by using a MACRO JSB command.
; The JSB command expects R0/R1 to contain the quadword input value X.
; The result of the JSB will be located in R0/R1.
;-
 .EXTRN MTH$DEXP_R6 ;MTH$DEXP is an external routine.
 .PSECT DATA, PIC, EXE, NOWRT
X: .DOUBLE 2.0 ; X is 2.0
 .ENTRY EXAMPLE_JSB, ^M<>
 MOVQ X, R0 ; X is in registers R0 and R1
 JSB G^MTH$DEXP_R6 ; The result is returned in R0/R1.
 RET
 .END EXAMPLE_JSB

This MACRO program generates the following output:

R0 <-- 732541EC
R1 <-- ED6EC6A6
That is, MTH$DEXP(2) is 7.3890560989306502

2. .TITLE EXAMPLE_CALLG
;+
; This example calls MTH$HEXP by using a MACRO CALLG command.
; The CALLG command expects that the address of the return value
; Y, the address of the input value X, and the argument count 2 be
; stored in memory; this program stores this information in ARGUMENTS.
; The result of the CALLG will be located in R0/R1.
;-
 .EXTRN MTH$HEXP ; MTH$HEXP is an external routine.
 .PSECT DATA, PIC, EXE, WRT
ARGUMENTS:
 .LONG 2 ; The CALLG will use two arguments.
 .ADDRESS Y, X ; The first argument must be the
 address
 ; receiving the computed value, while
 ; the second argument is used to
 ; compute exp(X).
X: .H_FLOATING 2 ; X = 2.0
Y: .H_FLOATING 0 ; Y is the result, initially set to 0.
 .ENTRY EXAMPLE_G, ^M<>
 CALLG ARGUMENTS, G^MTH$HEXP ; CALLG returns the value to Y.
 RET
 .END EXAMPLE_G

The output generated by this MACRO program is as follows:

address of Y <-- D8E64003

10

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

 <-- 4DDA4B8D
 <-- 3A3BDCC3
 <-- B68BA206
That is, MTH$HEXP of 2.0 returns
7.38905609893065022723042746057501

3. .TITLE EXAMPLE_CALLS
;+
; This example calls MTH$HEXP by using the MACRO CALLS command.
; The CALLS command expects the SP to contain the H-floating address
 of
; the return value, the address of the input argument X, and the
 argument
; count 2. The result of the CALLS will be located in registers R0-R3.
;-
 .EXTRN MTH$HEXP ; MTH$HEXP is an external routine.
 .PSECT DATA, PIC, EXE, WRT
Y: .H_FLOATING 0 ; Y is the result, initially set to 0.
X: .H_FLOATING 2 ; X = 2
 .ENTRY EXAMPLE_S, ^M<>
 MOVAL X, -(SP) ; The address of X is in the SP.
 MOVAL Y, -(SP) ; The address of Y is in the SP
 CALLS Y, G^MTH$HEXP ; The value is returned to the address of
 Y.
 RET
 .END EXAMPLE_S

The output generated by this program is as follows:

address of Y <-- D8E64003
 <-- 4DDA4B8D
 <-- 3A3BDCC3
 <-- B68BA206
That is, MTH$HEXP of 2.0 returns
7.38905609893065022723042746057501

4. .TITLE COMPLEX_EX1
;+
; This example calls MTH$CLOG by using a MACRO CALLG command.
; To compute the complex natural logarithm of Z = (2.0,1.0) register
; R0 is loaded with 2.0, the real part of Z, and register R1 is loaded
; with 1.0, the imaginary part of Z. The CALLG to MTH$CLOG
; returns the value of the natural logarithm of Z in
; registers R0 and R1. R0 gets the real part of Z and R1
; gets the imaginary part.
;-
 .EXTRN MTH$CLOG
 .PSECT DATA, PIC, EXE, NOWRT
ARGS: .LONG 1 ; The CALLG will use one argument.
 .ADDRESS REAL ; The one argument that the CALLG
 ; uses is the address of the argument
 ; of MTH$CLOG.
REAL: .FLOAT 2 ; real part of Z is 2.0
IMAG: .FLOAT 1 ; imaginary part Z is 1.0
 .ENTRY COMPLEX_EX1, ^M<>
 CALLG ARGS, G^MTH$CLOG; MTH$CLOG returns the real part of the
 ; complex natural logarithm in R0 and
 ; the imaginary part in R1.

11

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

 RET
 .END COMPLEX_EX1

This program generates the following output:

R0 <--- 0210404E
R1 <--- 63383FED
That is, MTH$CLOG(2.0,1.0) is
(0.8047190,0.4636476)

5. .TITLE COMPLEX_EX2
;+
; This example calls MTH$CLOG by using a MACRO CALLS command.
; To compute the complex natural logarithm of Z = (2.0,1.0) register
; R0 is loaded with 2.0, the real part of Z, and register R1 is loaded
; with 1.0, the imaginary part of Z. The CALLS to MTH$CLOG
; returns the value of the natural logarithm of Z in registers R0
; and R1. R0 gets the real part of Z and R1 gets the imaginary
; part.
;-
 .EXTRN MTH$CLOG
 .PSECT DATA, PIC, EXE, NOWRT
REAL: .FLOAT 2 ; real part of Z is 2.0
IMAG: .FLOAT 1 ; imaginary part Z is 1.0
 .ENTRY COMPLEX_EX2, ^M<>
 MOVAL REAL, -(SP) ; SP <-- address of Z. Real part of Z is
 ; in @(SP) and imaginary part is in
 CALLS #1, G^MTH$CLOG ; @(SP)+4.
 ; MTH$CLOG return the real part of the
 ; complex natural logarithm in R0 and
 ; the imaginary part in R1.
 RET
 .END COMPLEX_EX2

This MACRO example program generates the following output:

R0 <--- 0210404E
R1 <--- 63383FED
That is, MTH$CLOG(2.0,1.0) is
(0.8047190,0.4636476)

1.7.5. Pascal Examples
The following Pascal programs use the D-floating and H-floating data types. Pascal also supports the F-
floating and G-floating data types. Pascal does not support the complex data types.

1. {+}
{ Sample program to demonstrate a call to MTH$DEXP from PASCAL.
{-}
PROGRAM CALL_MTH$DEXP (OUTPUT);
{+}
{ Declare variables used by this program.
{-}
VAR
 X : DOUBLE := 3.456; { X,Y are D-floating unless overridden }
 Y : DOUBLE; { with /DOUBLE qualifier on
 compilation }

12

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

{+}
{ Declare the RTL routine used by this program.
{-}
[EXTERNAL,ASYNCHRONOUS]
 FUNCTION MTH$DEXP (VAR value : DOUBLE) : DOUBLE;
 EXTERN;
BEGIN
 Y := MTH$DEXP (x);
 WRITELN (’MTH$DEXP of ’, X:5:3, ’ is ’, Y:20:16);
END.

The output generated by this Pascal program is as follows:

MTH$DEXP of 3.456 is 31.6899656462382318

2.
{+}
{ Sample program to demonstrate a call to MTH$HEXP from PASCAL.
{-}
PROGRAM CALL_MTH$HEXP (OUTPUT);
{+}
{ Declare variables used by this program.
{-}
VAR
 X : QUADRUPLE := 1.2345678901234567891234567892; { X is H-
floating }
 Y : QUADRUPLE; { Y is H-
floating }
{+}
{ Declare the RTL routine used by this program.
{-}
[EXTERNAL,ASYNCHRONOUS] PROCEDURE MTH$HEXP (VAR h_exp : QUADRUPLE;
value : QUADRUPLE); EXTERN;
BEGIN
 MTH$HEXP (Y,X);
 WRITELN (’MTH$HEXP of ’, X:30:28, ’ is ’, Y:35:33);
END.

This Pascal program generates the following output:

MTH$DEXP of 3.456 is 31.6899656462382318

1.7.6. PL/I Examples
The following PL/I programs use the D-floating and H-floating data types to test entry points. PL/I also
supports the F-floating and G-floating data types. PL/I does not support the complex data types.

1. /*
* *
* This program tests a MTH$D entry point *
* *
*/
TEST: PROC OPTIONS (MAIN) ;
 DCL (MTH$DEXP)
 ENTRY (FLOAT(53)) RETURNS (FLOAT(53));
 DCL OPERAND FLOAT(53);
 DCL RESULT FLOAT(53);
/*** Begin test ***/

13

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

 OPERAND = 3.456;
 RESULT = MTH$DEXP(OPERAND);
 PUT EDIT (’MTH$DEXP of ’, OPERAND, ’ is ’,
 RESULT)(A(12),F(5,3),A(4),F(20,15));
END TEST;

The output generated by this PL/I program is as follows:

MTH$DEXP of 3.456 is 31.689962805379165

2. /*
* *
* This program tests a MTH$H entry point. *
* Note that in the PL/I statement below, the /G-float switch *
* is needed to compile both G- and H-floating point MTH$ routines.*/
TEST: PROC OPTIONS (MAIN) ;
 DCL (MTH$HEXP)
 ENTRY (FLOAT (113), FLOAT (113)) ;
 DCL OPERAND FLOAT (113);
 DCL RESULT FLOAT (113);
/*** Begin test ***/
 OPERAND = 1.234578901234567891234567892;
 CALL MTH$HEXP(RESULT,OPERAND);
 PUT EDIT (’MTH$HEXP of ’, OPERAND, ’ is ’,
 RESULT) (A(12),F(29,27),A(4),F(29,27));
END TEST;

To run this program, use the following DCL commands:

$ PLI/G_FLOAT EXAMPLE
$ LINK EXAMPLE
$ RUN EXAMPLE

This program generates the following output:

MTH$HEXP of 1.234578901234567891234567892 is
3.436930928565989790506225633

1.7.7. Ada Example
The following Ada program demonstrates the use of MTH$ routines in a manner that an actual program
might use. The program performs the following steps:

1. Reads a floating-point number from the terminal

2. Calls MTH$SQRT to obtain the square root of the value read

3. Calls MTH$JNINT to find the nearest integer of the square root

4. Displays the result

This example runs on VSI Ada for OpenVMS VAX.

-- This Ada program calls the MTH$SQRT and MTH$JNINT routines.
--
with FLOAT_MATH_LIB;
 -- Package FLOAT_MATH_LIB is an instantiation of the generic package
 -- MATH_LIB for the FLOAT datatype. This package provides the most

14

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

 -- common mathematical functions (SQRT, SIN, COS, etc.) in an easy
 -- to use fashion. An added benefit is that the Compaq Ada compiler
 -- will use the faster JSB interface for these routines.
with MTH;
 -- Package MTH defines all the MTH$ routines. It should be used when
 -- package MATH_LIB is not sufficient. All functions are defined here
 -- as "valued procedures" for consistency.
with FLOAT_TEXT_IO, INTEGER_TEXT_IO, TEXT_IO;
procedure ADA_EXAMPLE is
 FLOAT_VAL: FLOAT;
 INT_VAL: INTEGER;
begin
 -- Prompt for initial value.
 TEXT_IO.PUT ("Enter value: ");
 FLOAT_TEXT_IO.GET (FLOAT_VAL);
 TEXT_IO.NEW_LINE;
 -- Take the square root by using the SQRT routine from package
 -- FLOAT_MATH_LIB. The compiler will use the JSB interface
 -- to MTH$SQRT.
 FLOAT_VAL := FLOAT_MATH_LIB.SQRT (FLOAT_VAL);
 -- Find the nearest integer using MTH$JNINT. Argument names are
 -- the same as those listed for MTH$JNINT in the reference
 -- section of this manual.
 MTH.JNINT (F_FLOATING => FLOAT_VAL, RESULT => INT_VAL);
 -- Write the result.
 TEXT_IO.PUT ("Result is: ");
 INTEGER_TEXT_IO.PUT (INT_VAL);
 TEXT_IO.NEW_LINE;
end ADA_EXAMPLE;

To run this example program, use the following DCL commands:

$ CREATE/DIR [.ADALIB]
$ ACS CREATE LIB [.ADALIB]
$ ACS SET LIB [.ADALIB]
$ ADA ADA_EXAMPLE
$ ACS LINK ADA_EXAMPLE
$ RUN ADA_EXAMPLE

The preceding Ada example generates the following output:

Enter value: 42.0
Result is: 6

15

Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility

16

Chapter 2. Vector Routines in
MTH$
This chapter discusses four sets of routines provided by the RTL MTH$ facility that support vector
processing. These routines are as follows:

● Basic Linear Algebra Subroutines (BLAS) Level 1

● First Order Linear Recurrence (FOLR) routines

● Vector versions of existing scalar routines

● Fast-Vector math routines

2.1. BLAS — Basic Linear Algebra
Subroutines Level 1
BLAS Level 1 routines perform vector operations, such as copying one vector to another, swapping
vectors, and so on. These routines help you take advantage of vector processing speed. BLAS Level
1 routines form an integral part of many mathematical libraries, such as LINPACK and EISPACK.1
Because these routines usually occur in the innermost loops of user code, the Run-Time Library provides
versions of the BLAS Level 1 that are tuned to take best advantage of the VAX vector processors.

Two versions of BLAS Level 1 are provided. To use either of these libraries, link in the appropriate
shareable image. The libraries are:

● Scalar BLAS — contained in the shareable image BLAS1RTL

● Vector BLAS (routines that take advantage of vectorization) — contained in the shareable image
VBLAS1RTL

Note

To call the scalar BLAS from a program that runs on scalar hardware, specify the routine name preceded
by BLAS1$ (for example, BLAS1$xCOPY). To call the vector BLAS from a program that runs on
vector hardware, specify the routine name preceded by BLAS1$V (for example, BLAS1$VxCOPY).

This manual describes both the scalar and vector versions of BLAS Level 1, but for simplicity the vector
prefix (BLAS1$V) is used exclusively. Remember to remove the letter V from the routine prefix when
you want to call the scalar version.

If you are a VSI Fortran programmer, do not specify BLAS vector routines explicitly. Specify the
Fortran intrinsic function name only. The VSI Fortran 77 for OpenVMS VAX Systems compiler
determines whether the vector or scalar version of a BLAS routine should be used. The Fortran /
BLAS=([NO]INLINE,[NO]MAPPED) qualifier controls how the compiler processes calls to BLAS
Level 1. If /NOBLAS is specified, then all BLAS calls are treated as ordinary external routines. The
default of INLINE means that calls to BLAS Level 1 routines will be treated as known language
constructs, and VAX object code will be generated to compute the corresponding operations at the call
site, rather than call a user-supplied routine. If the Fortran qualifier /VECTOR or /PARALLEL=AUTO

1For more information, see Basic Linear Algebra Subprograms for FORTRAN Usage in ACM Transactions on Mathematical Software , Vol. 5,
No. 3, September 1979.

17

Chapter 2. Vector Routines in MTH$

is in effect, the generated code for the loops may use vector instructions or be decomposed to run
on multiple processors. If MAPPED is specified, these calls will be treated as calls to the optimized
implementations of these routines in the BLAS1$ and BLAS1$V portions of the MTH$ facility. For
more information on the Fortran /BLAS qualifier, refer to the DEC Fortran Performance Guide for
OpenVMS VAX Systems .

Ten families of routines form BLAS Level 1. (BLAS1$VxCOPY is one family of routines, for example.)
These routines operate at the vector-vector operation level. This means that BLAS Level 1 performs
operations on one or two vectors. The level of complexity of the computations (in other words, the
number of operations being performed in a BLAS Level 1 routine) is of the order n (the length of the
vector).

Each family of routines in BLAS Level 1 contains routines coded in single precision, double precision (D
and G formats), single precision complex, and double precision complex (D and G formats). BLAS Level
1 can be broadly classified into three groups:

● BLAS1$VxCOPY, BLAS1$VxSWAP, BLAS1$VxSCAL and BLAS1$VxAXPY:

These routines return vector outputs for vector inputs. The results of all these routines are
independent of the order in which the elements of the vector are processed. The scalar and vector
versions of these routines return the same results.

● BLAS1$VxDOT, BLAS1$VIxAMAX, BLAS1$VxASUM, and BLAS1$VxNRM2:

These routines are all reduction operations that return a scalar value. The results of these routines
(except BLAS1$VIxAMAX) are dependent upon the order in which the elements of the vector
are processed. The scalar and vector versions of BLAS1$VxDOT, BLAS1$VxASUM, and
BLAS1$VxNRM2 can return different results. The scalar and vector versions of BLAS1$VIxAMAX
return the same results.

● BLAS1$VxROTG and BLAS1$VxROT: These routines are used for a particular application (plane
rotations), unlike the routines in the previous two categories. The results of BLAS1$VxROTG and
BLAS1$VxROT are independent of the order in which the elements of the vector are processed. The
scalar and vector versions of these routines return the same results.

Table 2.1 lists the functions and corresponding routines of BLAS Level 1.

Table 2.1. Functions of BLAS Level 1

Function Routine Data Type

Copy a vector to another
vector

BLAS1$VSCOPY
BLAS1$VDCOPY
BLAS1$VCCOPY
BLAS1$VZCOPY

Single
Double (D-floating or G-floating)
Single complex
Double complex (D-floating or G-
floating)

Swap the elements of two
vectors

BLAS1$VSSWAP
BLAS1$VDSWAP
BLAS1$VCSWAP
BLAS1$VZSWAP

Single
Double (D-floating or G-floating)
Single complex
Double complex (D-floating or G-
floating)

Scale the elements of a vector BLAS1$VSSCAL
BLAS1$VDSCAL
BLAS1$VGSCAL
BLAS1$VCSCAL

Single
Double (D-floating)
Double (G-floating)
Single complex with complex scale

18

Chapter 2. Vector Routines in MTH$

Function Routine Data Type
BLAS1$VCSSCAL
BLAS1$VZSCAL
BLAS1$VWSCAL
BLAS1$VZDSCAL
BLAS1$VWGSCAL

Single complex with real scale
Double complex with complex scale (D-
floating)
Double complex with complex scale (G-
floating)
Double complex with real scale (D-
floating)
Double complex with real scale (G-
floating)

Multiply a vector by a scalar
and add a vector

BLAS1$VSAXPY
BLAS1$VDAXPY
BLAS1$VGAXPY
BLAS1$VCAXPY
BLAS1$VZAXPY
BLAS1$VWAXPY

Single
Double (D-floating)
Double (G-floating)
Single complex
Double complex (D-floating)
Double complex (G-floating)

Obtain the index of the first
element of a vector having the
largest absolute value

BLAS1$VISAMAX
BLAS1$VIDAMAX
BLAS1$VIGAMAX
BLAS1$VICAMAX
BLAS1$VIZAMAX
BLAS1$VIWAMAX

Single
Double (D-floating)
Double (G-floating)
Single complex
Double complex (D-floating)
Double complex (G-floating)

Obtain the sum of the
absolute values of the
elements of a vector

BLAS1$VSASUM
BLAS1$VDASUM
BLAS1$VGASUM
BLAS1$VSCASUM
BLAS1$VDZASUM
BLAS1$VGWASUM

Single
Double (D-floating)
Double (G-floating)
Single complex
Double complex (D-floating)
Double complex (G-floating)

Obtain the inner product of
two vectors

BLAS1$VSDOT
BLAS1$VDDOT
BLAS1$VGDOT
BLAS1$VCDOTU
BLAS1$VCDOTC
BLAS1$VZDOTU
BLAS1$VWDOTU
BLAS1$VZDOTC
BLAS1$VWDOTC

Single
Double (D-floating)
Double (G-floating)
Single complex unconjugated
Single complex conjugated
Double complex unconjugated (D-
floating)
Double complex unconjugated (G-
floating)
Double complex conjugated (D-
floating)
Double complex conjugated (G-
floating)

Obtain the Euclidean norm of
the vector

BLAS1$VSNRM2
BLAS1$VDNRM2
BLAS1$VGNRM2
BLAS1$VSCNRM2
BLAS1$VDZNRM2
BLAS1$VGWNRM2

Single
Double (D-floating)
Double (G-floating)
Single complex
Double complex (D-floating)
Double complex (G-floating)

Generate the elements for a
Givens plane rotation

BLAS1$VSROTG

BLAS1$VDROTG

Single
Double (D-floating)
Double (G-floating)

19

Chapter 2. Vector Routines in MTH$

Function Routine Data Type
BLAS1$VGROTG

BLAS1$VCROTG

BLAS1$VZROTG

BLAS1$VWROTG

Single complex
Double complex (D-floating)
Double complex (G-floating)

Apply a Givens plane rotation BLAS1$VSROT
BLAS1$VDROT
BLAS1$VGROT
BLAS1$VCSROT
BLAS1$VZDROT
BLAS1$VWGROT

Single
Double (D-floating)
Double (G-floating)
Single complex
Double complex (D-floating)
Double complex (G-floating)

For a detailed description of these routines, refer to Chapter 4.

2.1.1. Using BLAS Level 1
The following sections provide some guidelines for using BLAS Level 1.

2.1.1.1. Memory Overlap
The vector BLAS produces unpredictable results when any element of the input argument shares a
memory location with an element of the output argument. (An exception is a special case found in the
BLAS1$VxCOPY routines.)

The vector BLAS and the scalar BLAS can yield different results when the input argument overlaps the
output array.

2.1.1.2. Round-Off Effects
For some of the routines in BLAS Level 1, the final result is independent of the order in which the
operations are performed. However, in other cases (for example, some of the reduction operations),
efficiency dictates that the order of operations on a vector machine be different from the natural order
of operations. Because round-off errors are dependent upon the order in which the operations are
performed, some of the routines will not return results that are bit-for-bit identical to the results obtained
by performing the operations in natural order.

Where performance can be increased by the use of a backup data type, this has been done. This is the
case for BLAS1$VSNRM2, BLAS1$VSCNRM2, BLAS1$VSROTG, and BLAS1$VCROTG. The use
of a backup data type can also yield a gain in accuracy over the scalar BLAS.

2.1.1.3. Underflow and Overflow
In accordance with LINPACK convention, underflow, when it occurs, is replaced by a zero. A system
message informs you of overflow. Because the order of operations for some routines is different from
the natural order, overflow might not occur at the same array element in both the scalar and vector
versions of the routines.

2.1.1.4. Notational Definitions
The vector BLAS (except the BLAS1$VxROTG routines) perform operations on vectors. These vectors
are defined in terms of three quantities:

20

Chapter 2. Vector Routines in MTH$

● A vector length, specified as n

● An array or a starting element in an array, specified as x

● An increment or spacing parameter to indicate the distance in number of array elements to skip
between successive vector elements, specified as incx

Suppose x is a real array of dimension ndim , n is its vector length, and incx is the increment used
to access the elements of a vector X. The elements of vector X, Xi,i = l, ..., n, are stored in x. If incx is
greater than or equal to 0, then Xi is stored in the following location:

x(l + (i - l) * incx)

However, if incx is less than 0, then Xi is stored in the following location:

x(l + (n - i) * |incx|)

It therefore follows that the following condition must be satisfied:

ndim≥l+ (n - l) * |incx|

A positive value for incx is referred to as forward indexing, and a negative value is referred to as
backward indexing. A value of zero implies that all of the elements of the vector are at the same location,
x1.

Suppose ndim = 20 and n = 5. In this case, incx = 2 implies that X1, X2, X3, X4, and X5 are located in
array elements x1, x3, x5, x7, and x9.

If, however, incx is negative, then X1, X2, X3, X4, and X5 are located in array elements x9, x7, x5, x3, and
x1. In other words, when incx is negative, the subscript of x decreases as i increases.

For some of the routines in BLAS Level 1, incx = 0 is not permitted. In the cases where a zero value for
incx is permitted, it means that x1 is broadcast into each element of the vector X of length n.

You can operate on vectors that are embedded in other vectors or matrices by choosing a suitable
starting point of the vector. For example, if A is an n1 by n2 matrix, column j is referenced with a
length of n1 , starting point A (1,j), and increment 1. Similarly, row i is referenced with a length of n2 ,
starting point A (i,1), and increment n1.

2.2. FOLR — First Order Linear Recurrence
Routines
The MTH$ FOLR routines provide a vectorized algorithm for the linear recurrence relation. A linear
recurrence uses the result of a previous pass through a loop as an operand for subsequent passes through
the loop and prevents the vectorization of a loop.

The only error checking performed by the FOLR routines is for a reserved operand.

There are four families of FOLR routines in the MTH$ facility. Each family accepts each of four data
types (longword integer, F-floating, D-floating, and G-floating). However, all of the arrays you specify in
a single FOLR call must be of the same data type.

For a detailed description of these routines, see Chapter 4.

21

Chapter 2. Vector Routines in MTH$

2.2.1. FOLR Routine Name Format
The four families of FOLR routines are as follows:

● MTH$VxFOLRy_MA_V15

● MTH$VxFOLRy_z_V8

● MTH$VxFOLRLy_MA_V5

● MTH$VxFOLRLy_z_V2

where:

x = J for longword integer, F for F-floating, D for D-floating, or G for G-floating

y = P for a positive recursion element, or N for a negative recursion element

z = M for multiplication, or A for addition

The FOLR entry points end with _Vn, where n is an integer between 0 and 15 that denotes the vector
registers that the FOLR routine uses. For example, MTH$VxFOLRy_z_V8 uses vector registers V0
through V8.

To determine which group of routines you should use, match the task in the left column in Table 2–2 that
you need the routine to perform with the method of storage that you need the routine to employ. The
point where these two tasks meet shows the FOLR routine you should call.

Table 2.2. Determining the FOLR Routine You Need

Tasks Save each iteration in an array Save only last result in a
variable

Multiplication AND addition MTH$VxFOLRy_MA_V15 MTH$VxFOLRLy_MA_V5
Multiplication OR addition MTH$VxFOLRy_z_V8 MTH$VxFOLRLy_z_V2

2.2.2. Calling a FOLR Routine
Save the contents of V0 through Vn before calling a FOLR routine if you need it after the call. The
variable n can be 2, 5, 8, or 15, depending on the FOLR routine entry point. (The OpenVMS Calling
Standard specifies that a called procedure may modify all of the vector registers. The FOLR routines
modify only the vector registers V0 through Vn.)

The MTH$ FOLR routines assume that all of the arrays are of the same data type.

2.3. Vector Versions of Existing Scalar
Routines
Vector forms of many MTH$ routines are provided to support vectorized compiled applications. Vector
versions of key F-floating, D-floating, and G-floating scalar routines employ vector hardware, while
maintaining identical results with their scalar counterparts. Many of the scalar algorithms have been
redesigned to ensure identical results and good performance for both the vector and scalar versions of
each routine. All vectorized routines return bit-for-bit identical results as the scalar versions.

22

Chapter 2. Vector Routines in MTH$

You can call the vector MTH$ routines directly if your program is written in VAX MACRO. If you are
a Fortran programmer, specify the Fortran intrinsic function name only. The Fortran compiler will then
determine whether the vector or scalar version of a routine should be used.

2.3.1. Exceptions
You should not attempt to recover from an MTH$ vector exception. After an MTH$ vector exception,
the vector routines cannot continue execution, and nonexceptional values might not have been computed.

2.3.2. Underflow Detection
In general, if a vector instruction results in the detection of both a floating overflow and a floating
underflow, only the overflow will be signaled.

Some scalar routines check to see if a user has enabled underflow detection. For each of those scalar
routines, there are two corresponding vector routines: one that always enables underflow checking and
one that never enables underflow checking. (In the latter case, underflows produce a result of zero.)
The Fortran compiler always chooses the vector version that does not signal underflows, unless the user
specifies the /CHECK=UNDERFLOW qualifier. This ensures that the check is performed but does not
impair vector performance for those not interested in underflow detection.

2.3.3. Vector Routine Name Format
Use one of the formats in Table 2–3 to call (from VAX MACRO) a vector math routine that enables
underflow signaling. (The E in the routine name means enabled underflow signaling.)

Table 2.3. Vector Routine Format — Underflow Signaling Enabled

Format Type of Routine

MTH$VxSAMPLE _E_Ry_Vz Real valued math routine
MTH$VCxSAMPLE _E_Ry_Vz Complex valued math routine
OTS$SAMPLE q_E_Ry_Vz Power routine or complex multiply and divide

Use one of the formats in Table 2–4 to call (from VAX MACRO) a vector math routine that does not
enable underflow signaling.

Table 2.4. Vector Routine Format — Underflow Signaling Disabled

Format Type of Routine

MTH$VxSAMPLE _Ry_Vz Real valued math routine
MTH$VCxSAMPLE _Ry_Vz Complex valued math routine
OTS$SAMPLE q_Ry_Vz Power routine or complex multiply and divide

In the preceding formats, the following conventions are used:

x

The letter A (or blank) for F-floating, D for D-floating, G for G-floating.

y

A number between 0 and 11 (inclusive). Ry means that the scalar registers R0 through Ry will be
used by the routine SAMPLE. You must save these registers.

23

Chapter 2. Vector Routines in MTH$

z

A number between 0 and 15 (inclusive). Vz means that the vector registers V0 through Vz will be
used by the routine SAMPLE. You must save these registers.

q

Two letters denoting the base and power data type, as follows:

RR F-floating base raised to an F-floating power
RJ F-floating base raised to a longword power
DD D-floating base raised to a D-floating power
DJ D-floating base raised to a longword power
GG G-floating base raised to a G-floating power
GJ G-floating base raised to a longword power
JJ Longword base raised to a longword power

2.3.4. Calling a Vector Math Routine
You can call the vector MTH$ routines directly if your program is written in VAX MACRO.

Note

If you are a VSI Fortran programmer, do not specify the MTH$ vector routines explicitly. Specify the
Fortran intrinsic function name only. The Fortran compiler determines whether the vector or scalar
version of a routine should be used.

In the following examples, keep in mind that vector real arguments are passed in V0, V1, and so on, and
vector real results are returned in V0. On the other hand, vector complex arguments are passed in V0
and V1, V2, and V3, and so on. Vector complex results are returned in V0 and V1.

Argument Argument Passed Register Results Returned Register

Vector real arguments V0, V1,... V0
Vector complex arguments V0 and V1, V2 and V3,... V0 and V1

Example 1

The following example shows how to call the vector version of MTH$EXP. Assume that you do not
want underflows to be signaled, and you need to use the current contents of all vector and scalar
registers after the invocation. Before you can call the vector routine from VAX MACRO, perform the
following steps.

1. Find EXP in the column of scalar names in Appendix B to determine:

● The full vector routine name: MTH$VEXP_R3_V6

● How the routine is invoked (CALL or JSB): JSB

● The scalar registers that must be saved: R0 through R3 (as specified by R3 in MTH
$VEXP_R3_V6)

24

Chapter 2. Vector Routines in MTH$

● The vector registers that must be saved: V0 through V6 (as specified by V6 in MTH
$VEXP_R3_V6)

● The vector registers used to hold the input arguments: V0

● The vector registers used to hold the output arguments: V0

● If there is a vector version that signals underflow (not needed in this example)

2. Save the scalar registers R0, R1, R2, and R3.

3. Save the vector registers V0, V1, V2, V3, V4, V5, and V6.

4. Save the vector mask register VMR.

5. Save the vector count register VCR.

6. Load the vector length register VLR.

7. Load the vector register V0 with the argument for MTH$EXP.

8. JSB to MTH$VEXP_R3_V6.

9. Store result in memory.

10. Restore all scalar and vector registers except for V0. (The results of the call to MTH$VEXP_R3_V6
are stored in V0.)

The following MACRO program fragment shows this example. Assume that:

● V0 through V6 and R0 through R3 have been saved.

● R4 points to a vector of 60 input values.

● R6 points to the location where the results of MTH$VEXP_R3_V6 will be stored.

● R5 contains the stride in bytes.

Note that MTH$VEXP_R3_V6 denotes an F-floating data type because there is no letter between V and
E in the routine name. (For further explanation, refer to Section 2.3.3.) The stride (the number of array
elements that are skipped) must be a multiple of 4 because each F-floating value requires 4 bytes.

MTVLR #60 ; Load VLR
MOVL #4, R5 ; Stride
VLDL (R4), R5, V0 ; Load V0 with the actual arguments
JSB G^MTH$VEXP_R3_V6 ; JSB to MTH$VEXP
VSTL V0, (R6), R5 ; Store the results

Example 2

The following example demonstrates how to call the vector version of OTS$POWDD with a vector
base raised to a scalar power. Before you can call the vector routine from VAX MACRO, perform the
following steps.

1. Find POWDD (V S) in the column of scalar names in Appendix B to determine:

● The full vector routine name: OTS$VPOWDD_R1_V8

25

Chapter 2. Vector Routines in MTH$

● How the routine is invoked (CALL or JSB): CALL

● The scalar registers that must be saved: R0 through R1 (as specified by R1 in OTS
$VPOWDD_R1_V8)

● The vector registers that must be saved: V0 through V8 (as specified by V8 in OTS
$VPOWDD_R1_V8)

● The vector registers used to hold the input arguments: V0, R0

● The vector registers used to hold the output arguments: V0

● If there is a vector version that signals underflow (not needed in this example)

2. Save the scalar registers R0 and R1.

3. Save the vector registers V0, V1, V2, V3, V4, V5, V6, V7, and V8.

4. Save the vector mask register VMR.

5. Save the vector count register VCR.

6. Load the vector length register VLR.

7. Load the vector register V0 and the scalar register R0 with the arguments for OTS$POWDD.

8. Call OTS$VPOWDD_R1_V8.

9. Store result in memory.

10. Restore all scalar and vector registers except for V0. (The results of the call to OTS
$VPOWDD_R1_V8 are stored in V0.)

The following MACRO program fragment shows how to call OTS$VPOWDD_R1_ V8 to compute the
result of raising 60 values to the power P. Assume that:

● V0 through V8 and R0 and R1 have been saved.

● R4 points to the vector of 60 input base values.

● R0 and R1 contain the D-floating value P.

● R6 points to the location where the results will be stored.

● R5 contains the stride.

Note that OTS$VPOWDD_R1_V8 raises a D-floating base to a D-floating power, which you determine
from the DD in the routine name. (For further explanation, refer to Section 2.3.3.) The stride (the
number of array elements that are skipped) must be a multiple of 8 because each D-floating value
requires 8 bytes.

 ; R0/R1 already contains the power
MTVLR #60 ; Load VLR
MOVL #8, R5 ; Stride
VLDQ (R4), R5, V0 ; Load V0 with the actual arguments
CALLS #0,G^OTS$VPOWDD_R1_V8 ; CALL OTS$VPOWDD
VSTQ V0, (R6), R5 ; Store the results

26

Chapter 2. Vector Routines in MTH$

2.4. Fast-Vector Math Routines
This section describes the fast-vector math routines that offer significantly higher performance at the
cost of slightly reduced accuracy when compared with corresponding standard vector math routines.
Also note that some fast-vector math routines have restricted argument domains.

When you specify the compile command qualifiers /VECTOR and /MATH_ LIBRARY=FAST,
the VSI Fortran compiler selects the appropriate fast-vector math routine, if one exists. The default
is /MATH_LIBRARY=ACCURATE. You must specify the /G_FLOATING compile qualifier in
conjunction with the /MATH_ LIBRARY=FAST and /VECTOR qualifiers to access the G_floating
routines.

You can call these routines from VAX MACRO using the standard calling method. The math function
names, together with corresponding entry points of the fast-vector math routines, are listed in Table 2–5.

Table 2.5. Fast-Vector Math Routines

Function Name Data Type Call or JSB Vector
Input
Registers

Vector
Output
Registers

Vector Name
(Underflows Not
Signaled)

ATAN F_floating JSB V0 V0 MTH
$VYATAN_R0_V3

DATAN D_floating JSB V0 V0 MTH
$VYDATAN_R0_V5

GATAN G_floating JSB V0 V0 MTH
$VYGATAN_R0_V5

ATAN2 F_floating JSB V0, V1 V0 MTH
$VVYATAN2_R0_V5

DATAN2 D_floating JSB V0, V1 V0 MTH
$VVYDATAN2_R0_V5

GATAN2 G_floating JSB V0, V1 V0 MTH
$VVYGATAN2_R0_V5

COS F_floating JSB V0 V0 MTH
$VYCOS_R0_V3

DCOS D_floating JSB V0 V0 MTH
$VYDCOS_R0_V3

GCOS G_floating JSB V0 V0 MTH
$VYGCOS_R0_V3

EXP F_floating JSB V0 V0 MTH
$VYEXP_R0_V4

DEXP D_floating JSB V0 V0 MTH
$VYDEXP_R0_V6

GEXP G_floating JSB V0 V0 MTH
$VYGEXP_R0_V6

LOG F_floating JSB V0 V0 MTH
$VYALOG_R0_V5

DLOG D_floating JSB V0 V0 MTH
$VYDLOG_R0_V5

27

Chapter 2. Vector Routines in MTH$

Function Name Data Type Call or JSB Vector
Input
Registers

Vector
Output
Registers

Vector Name
(Underflows Not
Signaled)

GLOG G_floating JSB V0 V0 MTH
$VYGLOG_R0_V5

LOG10 F_floating JSB V0 V0 MTH
$VYALOG10_R0_V5

DLOG10 D_floating JSB V0 V0 MTH
$VYDLOG10_R0_V5

GLOG10 G_floating JSB V0 V0 MTH
$VYGLOG10_R0_V5

SIN F_floating JSB V0 V0 MTH
$VYSIN_R0_V3

DSIN D_floating JSB V0 V0 MTH
$VYDSIN_R0_V3

GSIN G_floating JSB V0 V0 MTH
$VYGSIN_R0_V3

SQRT F_floating JSB V0 V0 MTH
$VYSQRT_R0_V4

DSQRT D_floating JSB V0 V0 MTH
$VYDSQRT_R0_V4

GSQRT G_floating JSB V0 V0 MTH
$VYGSQRT_R0_V4

TAN F_floating JSB V0 V0 MTH
$VYTAN_R0_V3

DTAN D_floating JSB V0 V0 MTH
$VYDTAN_R0_V3

GTAN G_floating JSB V0 V0 MTH
$VYGTAN_R0_V3

POWRR(X**Y) F_floating CALL V0, R0 V0 OTS
$VYPOWRR_R1_V4

POWDD(X**Y) D_floating CALL V0, R0 V0 OTS
$VYPOWDD_R1_V8

POWGG(X**Y) G_floating CALL V0, R0 V0 OTS
$VYPOWGG_R1_V9

2.4.1. Exception Handling
The fast-vector math routines signal all errors except floating underflow. No intermediate calculations
result in exceptions. To optimize performance, the following message signals all errors:

%SYSTEM-F-VARITH, vector arithmetic fault

2.4.2. Special Restrictions On Input Arguments
The special restrictions listed in Table 2–6 apply only to fast-vector routines SIN, COS, and TAN. The
standard vector routines handle the full range of VAX floating-point numbers.

28

Chapter 2. Vector Routines in MTH$

Table 2.6. Input Argument Restrictions

Function Name Input Argument Domain (in Radians)

SIN ~(-6746518783.0, 6746518783.0)
COS ~(-6746518783.0, 6746518783.0)
TAN ~(-3373259391.5, 3373259391.5)

If the application program uses arguments outside of the listed domain, the routine returns the following
error message:

%SYSTEM-F-VARITH, vector arithmetic fault

If the application requires argument values beyond the listed limits, use the corresponding standard
vector math routine.

2.4.3. Accuracy
The fast-vector math routines do not guarantee the same results as those obtained with the
corresponding standard vector math routines. Calls to the fast-vector routines generally yield results that
are different from the scalar and original vector MTH$ library routines. The typical maximum error is a
2-LSB (Least Significant Bit) error for the F_floating routines and a 4-LSB error for the D_ floating and
G_floating routines. This generally corresponds to a difference in the 6th significant decimal digit for the
F_floating routines, the 15th digit for D_floating, and the 14th digit for G_floating.

2.4.4. Performance
The fast-vector math routines generally provide performance improvements over the standard vector
routines ranging from 15 to 300 percent, depending on the routines called and input arguments to
the routines. The overall performance improvement using fast-vector math routines in a typical
user application will increase, but not at the same level as the routines themselves. You should do
performance and correctness testing of your application using both the fast-vector and the standard
vector math routines before deciding which to use for your application.

29

Chapter 2. Vector Routines in MTH$

30

Chapter 3. Scalar MTH$ Reference
Section
The Scalar MTH$ Reference Section provides detailed descriptions of the scalar routines provided by
the OpenVMS RTL Mathematics (MTH$) facility.

MTH$xACOS
MTH$xACOS — Arc Cosine of Angle Expressed in Radians. Given the cosine of an angle, the Arc
Cosine of Angle Expressed in Radians routine returns that angle (in radians).

Format
MTH$ACOS cosine

MTH$DACOS cosine

MTH$GACOS cosine

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$ACOS_R4

MTH$DACOS_R7

MTH$GACOS_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in radians. The angle returned will have a value in the range:

0 ≤ angle ≤ π

MTH$ACOS returns an F-floating number. MTH$DACOS returns a D-floating number. MTH$GACOS
returns a G-floating number.

Argument
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating

31

Chapter 3. Scalar MTH$ Reference Section

access: read only
mechanism: by reference

The cosine of the angle whose value (in radians) is to be returned. The cosine argument is the address
of a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to
1. For MTH$ACOS, cosine specifies an F-floating number. For MTH$DACOS, cosine specifies a D-
floating number. For MTH$GACOS, cosine specifies a G-floating number.

Description
The angle in radians whose cosine is X is computed as:

Value of Cosine Value Returned

0 π/2
1 0
-1 π
0 < X < 1 zAT AN(zSQRT (l - X2)/X), where zATAN

and zSQRT are the Math Library arc tangent
and square root routines, respectively, of the
appropriate data type

-1 < X < 0 zAT AN(zSQRT (l - X2)/X)+ π
1 < |X| The error MTH$_INVARGMAT is signaled

See MTH$HACOS for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xACOS routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument. The absolute value of cosine is
greater than 1. LIB$SIGNAL copies the floating-
point reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

Examples
1. 100 !+

 ! This BASIC program demonstrates the use of
 ! MTH$ACOS.
 !-

 EXTERNAL REAL FUNCTION MTH$ACOS

32

Chapter 3. Scalar MTH$ Reference Section

 DECLARE REAL COS_VALUE, ANGLE
300 INPUT "Cosine value between -1 and +1 "; COS_VALUE
400 IF (COS_VALUE < -1) OR (COS_VALUE > 1)
 THEN PRINT "Invalid cosine value"
 GOTO 300
500 ANGLE = MTH$ACOS(COS_VALUE)
 PRINT "The angle with that cosine is "; ANGLE; "radians"
32767 END

This BASIC program prompts for a cosine value and determines the angle that has that cosine. The
output generated by this program is as follows:

$ RUN ACOS
Cosine value between -1 and +1 ? .5
The angle with that cosine is 1.0472 radians

2. PROGRAM GETANGLE(INPUT,OUTPUT);

{+}
{ This Pascal program uses MTH$ACOS to determine
{ the angle which has the cosine given as input.
{-}

VAR
 COS : REAL;

FUNCTION MTH$ACOS(COS : REAL) : REAL;
 EXTERN;

BEGIN
 WRITE('Cosine value between -1 and +1: ');
 READ (COS);
 WRITELN('The angle with that cosine is ', MTH$ACOS(COS),
 ' radians');
END.

This Pascal program prompts for a cosine value and determines the angle that has that cosine. The
output generated by this program is as follows:

$ RUN ACOS
Cosine value between -1 and +1: .5
The angle with that cosine is 1.04720E+00 radians

MTH$xACOSD
MTH$xACOSD — Arc Cosine of Angle Expressed in Degrees. Given the cosine of an angle, the Arc
Cosine of Angle Expressed in Degrees routine returns that angle (in degrees).

Format
MTH$ACOSD cosine

MTH$DACOSD cosine

MTH$GACOSD cosine

Each of the above formats accepts one of the floating-point types as input.

33

Chapter 3. Scalar MTH$ Reference Section

Corresponding JSB Entry Points
MTH$ACOSD_R4

MTH$DACOSD_R7

MTH$GACOSD_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in degrees. The angle returned will have a value in the range:

0 ≤ angle ≤ 180

MTH$ACOSD returns an F-floating number. MTH$DACOSD returns a D-floating number. MTH
$GACOSD returns a G-floating number.

Argument
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

Cosine of the angle whose value (in degrees) is to be returned. The cosine argument is the address of a
floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1.
For MTH$ACOSD, cosine specifies an F-floating number. For MTH$DACOSD, cosine specifies a D-
floating number. For MTH$GACOSD, cosine specifies a G-floating number.

Description
The angle in degrees whose cosine is X is computed as:

Value of Cosine Angle Returned

0 90
1 0
-1 180
0 < X < 1 zATAND(zSQRT(1-X 2)/X) , where zATAND

and zSQRT are the Math Library arc tangent
and square root routines, respectively, of the
appropriate data type

-1 < X < 0 zATAND(zSQRT(1-X 2)/X) + 180
1 < |X| The error MTH$_INVARGMAT is signaled

34

Chapter 3. Scalar MTH$ Reference Section

See MTH$HACOSD for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xACOSD routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument. The absolute value of cosine is
greater than 1. LIB$SIGNAL copies the floating-
point reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

Example

PROGRAM ACOSD(INPUT,OUTPUT);
{+}
{ This Pascal program demonstrates the use of MTH$ACOSD.
{-}
FUNCTION MTH$ACOSD(COS : REAL): REAL; EXTERN;

VAR
 COSINE : REAL;
 RET_STATUS : REAL;

BEGIN
 COSINE := 0.5;
 RET_STATUS := MTH$ACOSD(COSINE);
 WRITELN('The angle, in degrees, is: ', RET_STATUS);
END.

The output generated by this Pascal example program is as follows:

The angle, expressed in degrees, is: 6.00000E+01

MTH$xASIN
MTH$xASIN — Arc Sine in Radians. Given the sine of an angle, the Arc Sine in Radians routine
returns that angle (in radians).

Format
MTH$ASIN sine

MTH$DASIN sine

MTH$GASIN sine

35

Chapter 3. Scalar MTH$ Reference Section

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$ASIN_R4

MTH$DASIN_R7

MTH$GASIN_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in radians. The angle returned will have a value in the range:

-π/2 ≤ angle ≤ π/2

MTH$ASIN returns an F-floating number. MTH$DASIN returns a D-floating number. MTH$GASIN
returns a G-floating number.

Argument
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

The sine of the angle whose value (in radians) is to be returned. The sine argument is the address of
a floating-point number that is this sine. The absolute value of sine must be less than or equal to 1.
For MTH$ASIN, sine specifies an F-floating number. For MTH$DASIN, sine specifies a D-floating
number. For MTH$GASIN, sine specifies a G-floating number.

Description
The angle in radians whose sine is X is computed as:

Value of Sine Angle Returned

0 0
1 π/2
-1 -π/2
0 < |X| < 1 zATAN(X/zSQRT(1-X 2)) , where zATAN

and zSQRT are the Math Library arc tangent
and square root routines, respectively, of the
appropriate data type

36

Chapter 3. Scalar MTH$ Reference Section

Value of Sine Angle Returned

1 < |X| The error MTH$_INVARGMAT is signaled

See MTH$HASIN for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xASIN routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument. The absolute value of sine is
greater than 1. LIB$SIGNAL copies the floating-
point reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$xASIND
MTH$xASIND — Arc Sine in Degrees. Given the sine of an angle, the Arc Sine in Degrees routine
returns that angle (in degrees).

Format
MTH$ASIND sine

MTH$DASIND sine

MTH$GASIND sine

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$ASIND_R4

MTH$DASIND_R7

MTH$GASIND_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating

37

Chapter 3. Scalar MTH$ Reference Section

access: write only
mechanism: by value

Angle in degrees. The angle returned will have a value in the range:

-90 ≤ angle ≤ 90

MTH$ASIND returns an F-floating number. MTH$DASIND returns a D-floating number. MTH
$GASIND returns a G-floating number.

Argument
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

Sine of the angle whose value (in degrees) is to be returned. The sine argument is the address of a
floating-point number that is this sine. The absolute value of sine must be less than or equal to 1. For
MTH$ASIND, sine specifies an F-floating number. For MTH$DASIND, sine specifies a D-floating
number. For MTH$GASIND, sine specifies a G-floating number.

Description
The angle in degrees whose sine is X is computed as:

Value of Cosine Value Returned

0 0
1 90
-1 -90
0 < |X| < 1 zATAND(X/zSQRT(1-X 2)) , where zATAND

and zSQRT are the Math Library arc tangent
and square root routines, respectively, of the
appropriate data type

1 < |X| The error MTH$_INVARGMAT is signaled

See MTH$HASIND for the description of the H-floating version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xASIND routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument. The absolute value of sine is
greater than 1. LIB$SIGNAL copies the floating-

38

Chapter 3. Scalar MTH$ Reference Section

point reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$xATAN
MTH$xATAN — Arc Tangent in Radians. Given the tangent of an angle, the Arc Tangent in Radians
routine returns that angle (in radians).

Format
MTH$ATAN tangent

MTH$DATAN tangent

MTH$GATAN tangent

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$ATAN_R4

MTH$DATAN_R7

MTH$GATAN_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in radians. The angle returned will have a value in the range:

-π/2 ≤ angle ≤ π/2

MTH$ATAN returns an F-floating number. MTH$DATAN returns a D-floating number. MTH$GATAN
returns a G-floating number.

Argument
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

39

Chapter 3. Scalar MTH$ Reference Section

The tangent of the angle whose value (in radians) is to be returned. The tangent argument is the address
of a floating-point number that is this tangent. For MTH$ATAN, tangent specifies an F-floating
number. For MTH$DATAN, tangent specifies a D-floating number. For MTH$GATAN, tangent
specifies a G-floating number.

Description
In radians, the computation of the arc tangent function is based on the following identities:

arctan(X) = X - X 3/3 + X 5/5 - X 7/7 + ...
arctan(X) = X + X*Q(X 2),
where Q(Y) = - Y/3 + Y 2/5 - Y 3/7 + ...
arctan(X) = X*P(X 2),
where P(Y) = 1 - Y/3 + Y 2/5 - Y 3/7 + ...
arctan(X) = π/2 - arctan(1/X)
arctan(X) = arctan(A) + arctan((X-A)/(1+A*X))
for any real A

The angle in radians whose tangent is X is computed as:

Value of Cosine Angle Returned

0 ≤ X ≤ 3/32 X + X * Q(X 2)
3/32 < X ≤ 11 ATAN(A) + V* (P(V 2)), where A and ATAN(A)

are chosen by table lookup and V = (X - A)/(1 +
A*X)

11 < X π/2 - W* (P(W 2)) where W = 1/X
X < 0 -zATAN(|X|)

See MTH$HATAN for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xATAN routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$xATAND
MTH$xATAND — Arc Tangent in Degrees. Given the tangent of an angle, the Arc Tangent in Degrees
routine returns that angle (in degrees).

Format
MTH$ATAND tangent

MTH$DATAND tangent

40

Chapter 3. Scalar MTH$ Reference Section

MTH$GATAND tangent

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$ATAND_R4

MTH$DATAND_R7

MTH$GATAND_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in degrees. The angle returned will have a value in the range:

-90 ≤ angle ≤ 90

MTH$ATAND returns an F-floating number. MTH$DATAND returns a D-floating number. MTH
$GATAND returns a G-floating number.

Argument
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

The tangent of the angle whose value (in degrees) is to be returned. The tangent argument is the
address of a floating-point number that is this tangent. For MTH$ATAND, tangent specifies an F-
floating number. For MTH$DATAND, tangent specifies a D-floating number. For MTH$GATAND,
tangent specifies a G-floating number.

Description
The computation of the arc tangent function is based on the following identities:

arctan(X) = (180/π)* (X - X 3/3 + X 5/5 - X 7/7 + ...)
arctan(X) = 64*X + X*Q(X 2),
where Q(Y) = 180/π*[(1- 64*π/180)] - Y/3 + Y 2/5 - Y 3/7 + Y 4/9
arctan(X) = X*P(X 2),
where P(Y) = 180/π*[1 - Y/3 + Y 2/5 - Y 3/7 + Y 4/9 ...]
arctan(X) = 90 - arctan(1/X)
arctan(X) = arctan(A) + arctan((X - A)/(1 + A*X))

The angle in degrees whose tangent is X is computed as:

41

Chapter 3. Scalar MTH$ Reference Section

Value of Cosine Angle Returned

X ≤ 3/32 64*X + X*Q(X 2)
3/32 < X ≤ 11 ATAND(A) + V*P(V 2) , where A and ATAND(A)

are chosen by table lookup and V =(X - A)/(1 +
A*X)

11 < X 90 - W * (P(W 2)), where W = 1/X
X < 0 -zATAND(|X|)

See MTH$HATAND for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xATAND routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$xATAN2
MTH$xATAN2 — Arc Tangent in Radians with Two Arguments. Given sine and cosine , the Arc
Tangent in Radians with Two Arguments routine returns the angle (in radians) whose tangent is given by
the quotient of sine and cosine (sine /cosine).

Format
MTH$ATAN2 sine ,cosine

MTH$DATAN2 sine ,cosine

MTH$GATAN2 sine ,cosine

Each of the above formats accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in radians. MTH$ATAN2 returns an F-floating number. MTH$DATAN2 returns a D-floating
number. MTH$GATAN2 returns a G-floating number.

Argument
sine

42

Chapter 3. Scalar MTH$ Reference Section

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH
$ATAN2, sine specifies an F-floating number. For MTH$DATAN2, sine specifies a D-floating number.
For MTH$GATAN2, sine specifies a G-floating number.

cosine

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH
$ATAN2, cosine specifies an F-floating number. For MTH$DATAN2, cosine specifies a D-floating
number. For MTH$GATAN2, cosine specifies a G-floating number.

Description
The angle in radians whose tangent is Y /X is computed as follows, where f is defined in the description
of MTH$zCOSH.

Value of Cosine Angle Returned

X = 0 or Y/X > 2 (f+1) π/2* (signY)

X > 0 and Y/X ≤ 2 (f+1) zATAN(Y/X)

X < 0 and Y/X ≤ 2 (f+1) π* (signY) + zATAN(Y/X)

See MTH$HATAN2 for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xATAN2 routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument. Both cosine and sine are
zero. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

43

Chapter 3. Scalar MTH$ Reference Section

MTH$xATAND2
MTH$xATAND2 — Arc Tangent in Degrees with Two Arguments. Given sine and cosine , the Arc
Tangent in Degrees with Two Arguments routine returns the angle (in degrees) whose tangent is given by
the quotient of sine and cosine (sine /cosine).

Format
MTH$ATAND2 sine ,cosine

MTH$DATAND2 sine ,cosine

MTH$GATAND2 sine ,cosine

Each of the above formats accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Angle in degrees. MTH$ATAND2 returns an F-floating number. MTH$DATAND2 returns a D-floating
number. MTH$GATAND2 returns a G-floating number.

Argument
sine

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH
$ATAND2, sine specifies an F-floating number. For MTH$DATAND2, sine specifies a D-floating
number. For MTH$GATAND2, sine specifies a G-floating number.

cosine

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH
$ATAND2, cosine specifies an F-floating number. For MTH$DATAND2, cosine specifies a D-floating
number. For MTH$GATAND2, cosine specifies a G-floating number.

44

Chapter 3. Scalar MTH$ Reference Section

Description
The angle in degrees whose tangent is Y /X is computed below and where f is defined in the description
of MTH$zCOSH.

Value of Cosine Angle Returned

X = 0 or Y/X > 2 (f+1) 90* (signY)

X > 0 and Y/X ≤ 2 (f+1) zATAND(Y/X)

X < 0 and Y/X ≤ 2 (f+1) 180 * (signY) + zATAND(Y/X)

See MTH$HATAND2 for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xATAND2 routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument. Both cosine and sine are
zero. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$xATANH
MTH$xATANH — Hyperbolic Arc Tangent. Given the hyperbolic tangent of an angle, the Hyperbolic
Arc Tangent routine returns the hyperbolic arc tangent of that angle.

Format
MTH$ATANH hyperbolic-tangent

MTH$DATANH hyperbolic-tangent

MTH$GATANH hyperbolic-tangent

Each of the above formats accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only

45

Chapter 3. Scalar MTH$ Reference Section

mechanism: by value

The hyperbolic arc tangent of hyperbolic-tangent. MTH$ATANH returns an F-floating number. MTH
$DATANH returns a D-floating number. MTH$GATANH returns a G-floating number.

Argument
hyperbolic-tangent

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the address of a floating-point
number that is this hyperbolic tangent. For MTH$ATANH, hyperbolic-tangent specifies an F-floating
number. For MTH$DATANH, hyperbolic-tangent specifies a D-floating number. For MTH$GATANH,
hyperbolic-tangent specifies a G-floating number.

Description
The hyperbolic arc tangent function is computed as follows:

Value of Cosine Value Returned

|X| < 1 zATANH(X) = zLOG((1+X)/(1-X))/2
|X| ≥ 1 An invalid argument is signaled

See MTH$HATANH for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xATANH routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument: |X| ≥ 1. LIB$SIGNAL
copies the floating-point reserved operand
to the mechanism argument vector CHF
$L_MCH_SAVR0/R1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$CxABS
MTH$CxABS — Complex Absolute Value. The Complex Absolute Value routine returns the absolute
value of a complex number (r,i).

46

Chapter 3. Scalar MTH$ Reference Section

Format
MTH$CABS complex-number

MTH$CDABS complex-number

MTH$CGABS complex-number

Each of the above formats accepts one of the floating-point complex types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

The absolute value of a complex number. MTH$CABS returns an F-floating number. MTH$CDABS
returns a D-floating number. MTH$CGABS returns a G-floating number.

Argument
complex-number

OpenVMS usage: complex_number
type: F_floating complex, D_floating complex,

G_floating complex
access: read only
mechanism: by reference

A complex number (r,i), where r and i are both floating-point complex values. The complex-number
argument is the address of this complex number. For MTH$CABS, complex-number specifies an
F-floating complex number. For MTH$CDABS, complex-number specifies a D-floating complex
number. For MTH$CGABS, complex-number specifies a G-floating complex number.

Description
The complex absolute value is computed as follows, where MAX is the larger of | r | and | i | , and MIN
is the smaller of | r | and | i | :

result = MAX * SQRT((MIN/MAX)2 + 1)

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$CxABS routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

47

Chapter 3. Scalar MTH$ Reference Section

MTH$_FLOOVEMAT Floating-point overflow in Math Library when
both r and i are large.

Examples
1. C+

C This Fortran example forms the absolute value of an
C F-floating complex number using MTH$CABS and the
C Fortran random number generator RAN.
C
C Declare Z as a complex value and MTH$CABS as a REAL*4 value.
C MTH$CABS will return the absolute value of Z: Z_NEW = MTH
$CABS(Z).
C-

 COMPLEX Z
 COMPLEX CMPLX
 REAL*4 Z_NEW,MTH$CABS
 INTEGER M
 M = 1234567

C+
C Generate a random complex number with the Fortran generic CMPLX.
C-

 Z = CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-

 TYPE *, ' The complex number z is',z
 TYPE *, ' It has real part',REAL(Z),'and imaginary
 part',AIMAG(Z)
 TYPE *, ' '

C+
C Compute the complex absolute value of Z.
C-

 Z_NEW = MTH$CABS(Z)
 TYPE *, ' The complex absolute value of',z,' is',Z_NEW
 END

This example uses an F-floating complex number for complex-number. The output of this Fortran
example is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402

The complex absolute value of (0.8535407,0.2043402) is 0.8776597

2. C+
C This Fortran example forms the absolute
C value of a G-floating complex number using
C MTH$CGABS and the Fortran random number

48

Chapter 3. Scalar MTH$ Reference Section

C generator RAN.
C
C Declare Z as a complex value and MTH$CGABS as a
C REAL*8 value. MTH$CGABS will return the absolute
C value of Z: Z_NEW = MTH$CGABS(Z).
C-

 COMPLEX*16 Z
 REAL*8 Z_NEW,MTH$CGABS

C+
C Generate a random complex number with the Fortran
C generic CMPLX.
C-

 Z = (12.34567890123,45.536376385345)
 TYPE *, ' The complex number z is',z
 TYPE *, ' '

C+
C Compute the complex absolute value of Z.
C-

 Z_NEW = MTH$CGABS(Z)
 TYPE *, ' The complex absolute value of',z,' is',Z_NEW
 END

This Fortran example uses a G-floating complex number for complex-number. Because this
example uses a G-floating number, it must be compiled as follows:

$ Fortran/G MTHEX.FOR

Notice the difference in the precision of the output generated:

The complex number z is (12.3456789012300,45.5363763853450)
The complex absolute value of (12.3456789012300,45.5363763853450) is
 47.1802645376230

MTH$CCOS
MTH$CCOS — Cosine of a Complex Number (F-Floating Value). The Cosine of a Complex Number
(F-Floating Value) routine returns the cosine of a complex number as an F-floating value.

Format
MTH$CCOS complex-number

Returns
OpenVMS usage: complex_number
type: F_floating complex
access: write only
mechanism: by value

49

Chapter 3. Scalar MTH$ Reference Section

The complex cosine of the complex input number. MTH$CCOS returns an F-floating complex number.

Argument
complex-number

OpenVMS usage: complex_number
type: F_floating complex
access: read only
mechanism: by reference

A complex number (r,i) where r and i are floating-point numbers. The complex- number argument
is the address of this complex number. For MTH$CCOS, complex-number specifies an F-floating
complex number.

Description
The complex cosine is calculated as follows:

result = (COS(r) * COSH(i), -SIN(r) * SINH(i))

See MTH$CxCOS for the descriptions of the D- and G-floating point versions of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$CCOS routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of i is greater than about 88.029 for
F-floating values.

Example
C+
C This Fortran example forms the complex
C cosine of an F-floating complex number using
C MTH$CCOS and the Fortran random number
C generator RAN.
C
C Declare Z and MTH$CCOS as complex values.
C MTH$CCOS will return the cosine value of
C Z: Z_NEW = MTH$CCOS(Z)
C-

 COMPLEX Z,Z_NEW,MTH$CCOS

50

Chapter 3. Scalar MTH$ Reference Section

 COMPLEX CMPLX
 INTEGER M
 M = 1234567

C+
C Generate a random complex number with the
C Fortran generic CMPLX.
C-

 Z = CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-

 TYPE *, ' The complex number z is',z
 TYPE *, ' It has real part',REAL(Z),'and imaginary part',AIMAG(Z)
 TYPE *, ' '

C+
C Compute the complex cosine value of Z.
C-

 Z_NEW = MTH$CCOS(Z)
 TYPE *, ' The complex cosine value of',z,' is',Z_NEW
 END

This Fortran example demonstrates the use of MTH$CCOS, using the MTH$CCOS entry point. The
output of this program is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex cosine value of (0.8535407,0.2043402) is (0.6710899,-0.1550672)

MTH$CxCOS
MTH$CxCOS — Cosine of a Complex Number. The Cosine of a Complex Number routine returns the
cosine of a complex number.

Format
MTH$CDCOS complex-cosine ,complex-number

MTH$CGCOS complex-cosine ,complex-number

Each of the above formats accepts one of the floating-point complex types as input.

Returns
None.

Argument
complex-cosine

51

Chapter 3. Scalar MTH$ Reference Section

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference

Complex cosine of the complex-number. The complex cosine routines that have D-floating and
G-floating complex input values write the address of the complex cosine into the complex-cosine
argument. For MTH$CDCOS, the complex- cosine argument specifies a D-floating complex number.
For MTH$CGCOS, the complex-cosine argument specifies a G-floating complex number.

complex-number

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference

A complex number (r,i) where r and i are floating-point numbers. The complex- number argument
is the address of this complex number. For MTH$CDCOS, complex-number specifies a D-floating
complex number. For MTH$CGCOS, complex-number specifies a G-floating complex number.

Description
The complex cosine is calculated as follows:

result = (COS(r) * COSH(i), -SIN(r) * SINH(i))

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$CxCOS routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of i is greater than about 88.029 for
F-floating and D-floating values, or greater than
709.089 for G-floating values.

Example
C+
C This Fortran example forms the complex
C cosine of a D-floating complex number using
C MTH$CDCOS and the Fortran random number
C generator RAN.
C
C Declare Z and MTH$CDCOS as complex values.
C MTH$CDCOS will return the cosine value of

52

Chapter 3. Scalar MTH$ Reference Section

C Z: Z_NEW = MTH$CDCOS(Z)
C-

 COMPLEX*16 Z,Z_NEW,MTH$CDCOS
 COMPLEX*16 DCMPLX
 INTEGER M
 M = 1234567

C+
C Generate a random complex number with the
C Fortran generic DCMPLX.
C-

 Z = DCMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-

 TYPE *, ' The complex number z is',z
 TYPE *, ' '

C+
C Compute the complex cosine value of Z.
C-

 Z_NEW = MTH$CDCOS(Z)
 TYPE *, ' The complex cosine value of',z,' is',Z_NEW
 END

This Fortran example program demonstrates the use of MTH$CxCOS, using the MTH$CDCOS entry
point. Notice the high precision of the output generated:

The complex number z is (0.8535407185554504,0.2043401598930359)
The complex cosine value of (0.8535407185554504,0.2043401598930359) is
 (0.6710899028500762,-0.1550672019621661)

MTH$CEXP
MTH$CEXP — Complex Exponential (F-Floating Value). The Complex Exponential (F-Floating Value)
routine returns the complex exponential of a complex number as an F-floating value.

Format
MTH$CEXP complex-number

Returns
OpenVMS usage: complex_number
type: F_floating complex
access: write only
mechanism: by value

53

Chapter 3. Scalar MTH$ Reference Section

Complex exponential of the complex input number. MTH$CEXP returns an F-floating complex number.

Argument
complex-number

OpenVMS usage: complex_number
type: F_floating complex
access: read only
mechanism: by reference

Complex number whose complex exponential is to be returned. This complex number has the form (r,i),
where r is the real part and i is the imaginary part. The complex-number argument is the address of
this complex number. For MTH$CEXP, complex-number specifies an F-floating number.

Description
The complex exponential is computed as follows:

complex-exponent = (EXP(r)*COS(i), EXP(r)*SIN(i))

See MTH$CxEXP for the descriptions of the D- and G-floating point versions of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$CEXP routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of r is greater than about 88.029 for
F-floating values.

Example
C+
C This Fortran example forms the complex exponential
C of an F-floating complex number using MTH$CEXP
C and the Fortran random number generator RAN.
C
C Declare Z and MTH$CEXP as complex values. MTH$CEXP
C will return the exponential value of Z: Z_NEW = MTH$CEXP(Z)
C-

 COMPLEX Z,Z_NEW,MTH$CEXP
 COMPLEX CMPLX
 INTEGER M
 M = 1234567

C+

54

Chapter 3. Scalar MTH$ Reference Section

C Generate a random complex number with the
C Fortran generic CMPLX.
C-

 Z = CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r"
C and imaginary part "i".
C-

 TYPE *, ' The complex number z is',z
 TYPE *, ' It has real part',REAL(Z),'and imaginary part',AIMAG(Z)
 TYPE *, ' '

C+
C Compute the complex exponential value of Z.
C-

 Z_NEW = MTH$CEXP(Z)
 TYPE *, ' The complex exponential value of',z,' is',Z_NEW
 END

This Fortran program demonstrates the use of MTH$CEXP as a function call. The output generated by
this example is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407 and imaginary part 0.2043402
The complex exponential value of (0.8535407,0.2043402) is
 (2.299097,0.4764476)

MTH$CxEXP
MTH$CxEXP — Complex Exponential. The Complex Exponential routine returns the complex
exponential of a complex number.

Format
MTH$CDEXP complex-exponent ,complex-number

MTH$CGEXP complex-exponent ,complex-number

Each of the above formats accepts one of the floating-point complex types as input.

Returns
None.

Argument
complex-exponent

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex

55

Chapter 3. Scalar MTH$ Reference Section

access: write only
mechanism: by reference

Complex exponential of complex-number. The complex exponential routines that have D-floating
complex and G-floating complex input values write the complex-exponent into this argument. For MTH
$CDEXP, complex-exponent argument specifies a D-floating complex number. For MTH$CGEXP,
complex-exponent specifies a G-floating complex number.

complex-number

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference

Complex number whose complex exponential is to be returned. This complex number has the form (r,i),
where r is the real part and i is the imaginary part. The complex-number argument is the address of
this complex number. For MTH$CDEXP, complex-number specifies a D-floating number. For MTH
$CGEXP, complex-number specifies a G-floating number.

Description
The complex exponential is computed as follows:

complex-exponent = (EXP(r)*COS(i), EXP(r)*SIN(i))

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$CxEXP routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of r is greater than about 88.029 for
D-floating values, or greater than about 709.089
for G-floating values.

Example
C+
C This Fortran example forms the complex exponential
C of a G-floating complex number using MTH$CGEXP
C and the Fortran random number generator RAN.
C
C Declare Z and MTH$CGEXP as complex values.
C MTH$CGEXP will return the exponential value
C of Z: CALL MTH$CGEXP(Z_NEW,Z)
C-

56

Chapter 3. Scalar MTH$ Reference Section

 COMPLEX*16 Z,Z_NEW
 COMPLEX*16 MTH$GCMPLX
 REAL*8 R,I
 INTEGER M
 M = 1234567

C+
C Generate a random complex number with the Fortran
C- generic CMPLX.
C-

 R = RAN(M)
 I = RAN(M)
 Z = MTH$GCMPLX(R,I)
 TYPE *, ' The complex number z is',z
 TYPE *, ' '

C+
C Compute the complex exponential value of Z.
C-

 CALL MTH$CGEXP(Z_NEW,Z)
 TYPE *, ' The complex exponential value of',z,' is',Z_NEW
 END

This Fortran example demonstrates how to access MTH$CGEXP as a procedure call. Because G-
floating numbers are used, this program must be compiled using the command "Fortran/G filename".

Notice the high precision of the output generated:

 The complex number z is (0.853540718555450,0.204340159893036)
 The complex exponential value of (0.853540718555450,0.204340159893036) is
(2.29909677719458,0.476447678044977)

MTH$CLOG
MTH$CLOG — Complex Natural Logarithm (F-Floating Value). The Complex Natural Logarithm (F-
Floating Value) routine returns the complex natural logarithm of a complex number as an F-floating
value.

Format
MTH$CLOG complex-number

Returns
OpenVMS usage: complex_number
type: F_floating complex
access: write only
mechanism: by value

The complex natural logarithm of a complex number. MTH$CLOG returns an F-floating complex
number.

57

Chapter 3. Scalar MTH$ Reference Section

Argument
complex-number

OpenVMS usage: complex_number
type: F_floating complex
access: read only
mechanism: by reference

Complex number whose complex natural logarithm is to be returned. This complex number has the form
(r,i), where r is the real part and i is the imaginary part. The complex-number argument is the address
of this complex number. For MTH$CLOG, complex-number specifies an F-floating number.

Description
The complex natural logarithm is computed as follows:

CLOG(x) = (LOG(CABS(x)), ATAN2(i,r))

See MTH$CxLOG for the D- and G-floating point versions of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$CLOG routine

encountered a floating-point reserved operand
(a floating-point datum with a sign bit of 1 and a
biased exponent of 0) due to incorrect user input.
Floating-point reserved operands are reserved for
use by VSI.

Example
See Section 1.7.4 for examples of using MTH$CLOG from VAX MACRO.

MTH$CxLOG
MTH$CxLOG — Complex Natural Logarithm. The Complex Natural Logarithm routine returns the
complex natural logarithm of a complex number.

Format
MTH$CDLOG complex-natural-log ,complex-number

MTH$CGLOG complex-natural-log ,complex-number

Each of the above formats accepts one of the floating-point complex types as input.

Returns
None.

58

Chapter 3. Scalar MTH$ Reference Section

Argument
complex-natural-log

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference

Natural logarithm of the complex number specified by complex-number. The complex natural
logarithm routines that have D-floating complex and G-floating complex input values write the address
of the complex natural logarithm into complex-natural-log. For MTH$CDLOG, the complex-natural-
log argument specifies a D-floating complex number. For MTH$CGLOG, the complex-natural-log
argument specifies a G-floating complex number.

complex-number

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference

Complex number whose complex natural logarithm is to be returned. This complex number has the form
(r,i), where r is the real part and i is the imaginary part. The complex-number argument is the address
of this complex number. For MTH$CDLOG, complex-number specifies a D-floating number. For MTH
$CGLOG, complex-number specifies a G-floating number.

Description
The complex natural logarithm is computed as follows:

CLOG(x) = (LOG(CABS(x)), ATAN2(i,r))

Condition Values Signaled
SS$_FLTOVF_F Floating point overflow can occur. This condition

value is signaled from MTH$CxABS when MTH
$CxABS overflows.

SS$_ROPRAND Reserved operand. The MTH$CxLOG routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument: r = i = 0. LIB$SIGNAL
copies the floating-point reserved operand
to the mechanism argument vector CHF
$L_MCH_SAVR0/R1. The result is the

59

Chapter 3. Scalar MTH$ Reference Section

floating-point reserved operand unless you have
written a condition handler to change CHF
$L_MCH_SAVR0/R1.

Example
C+
C This Fortran example forms the complex logarithm of a D-floating
 complex
C number by using MTH$CDLOG and the Fortran random number generator RAN.
C
C Declare Z and MTH$CDLOG as complex values. Then MTH$CDLOG
c returns the logarithm of Z: CALL MTH$CDLOG(Z_NEW,Z).
C
C Declare Z, Z_LOG, MTH$DCMPLX as complex values, and R, I as real
 values.
C MTH$DCMPLX takes two real arguments and returns one complex number.
C
C Given complex number Z, MTH$CDLOG(Z) returns the complex natural
C logarithm of Z.
C-
 COMPLEX*16 Z,Z_NEW,MTH$DCMPLX
 REAL*8 R,I
 R = 3.1425637846746565
 I = 7.43678469887
 Z = MTH$DCMPLX(R,I)
C+
C Z is a complex number (r,i) with real part "r" and imaginary part "i".
C-
 TYPE *, ' The complex number z is',z
 TYPE *, ' '
 CALL MTH$CDLOG(Z_NEW,Z)
 TYPE *,' The complex logarithm of',z,' is',Z_NEW
 END

This Fortran example program uses MTH$CDLOG by calling it as a procedure. The output generated by
this program is as follows:

The complex number z is (3.142563784674657,7.436784698870000)
The complex logarithm of (3.142563784674657,7.436784698870000) is
 (2.088587642177504,1.170985519274141)

MTH$CMPLX
MTH$CMPLX — Complex Number Made from F-Floating Point. The Complex Number Made from F-
Floating Point routine returns a complex number from two floating-point input values.

Format
MTH$CMPLX real-part ,imaginary-part

Returns
OpenVMS usage: complex_number

60

Chapter 3. Scalar MTH$ Reference Section

type: F_floating complex
access: write only
mechanism: by value

A complex number. MTH$CMPLX returns an F-floating complex number.

Argument
real-part

OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

Real part of a complex number. The real-part argument is the address of a floating-point number that
contains this real part, r, of (r,i). For MTH$CMPLX, real-part specifies an F-floating number.

imaginary-part

OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

Imaginary part of a complex number. The imaginary-part argument is the address of a floating-point
number that contains this imaginary part, i, of (r,i). For MTH$CMPLX, imaginary-part specifies an F-
floating number.

Description
The MTH$CMPLX routine returns a complex number from two F-floating input values. See MTH
$xCMPLX for the D- and G-floating point versions of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$CMPLX routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

Example
C+
C This Fortran example forms two F-floating

61

Chapter 3. Scalar MTH$ Reference Section

C point complex numbers using MTH$CMPLX
C and the Fortran random number generator RAN.
C
C Declare Z and MTH$CMPLX as complex values, and R
C and I as real values. MTH$CMPLX takes two real
C F-floating point values and returns one COMPLEX*8 number.
C
C Note, since CMPLX is a generic name in Fortran, it would be
C sufficient to use CMPLX.
C CMPLX must be declared to be of type COMPLEX*8.
C
C Z = CMPLX(R,I)
C-

 COMPLEX Z,MTH$CMPLX,CMPLX
 REAL*4 R,I
 INTEGER M
 M = 1234567
 R = RAN(M)
 I = RAN(M)
 Z = MTH$CMPLX(R,I)

C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-

 TYPE *, ' The two input values are:',R,I
 TYPE *, ' The complex number z is',z
 z = CMPLX(RAN(M),RAN(M))
 TYPE *, ' '
 TYPE *, ' Using the Fortran generic CMPLX with random R and I:'
 TYPE *, ' The complex number z is',z
 END

This Fortran example program demonstrates the use of MTH$CMPLX. The output generated by this
program is as follows:

The two input values are: 0.8535407 0.2043402
The complex number z is (0.8535407,0.2043402)
Using the Fortran generic CMPLX with random R and I:
The complex number z is (0.5722565,0.1857677)

MTH$xCMPLX
MTH$xCMPLX — Complex Number Made from D- or G-Floating Point. The Complex Number Made
from D- or G-Floating Point routines return a complex number from two D- or G-floating input values.

Format
MTH$DCMPLX complx ,real-part ,imaginary-part

MTH$GCMPLX complx ,real-part ,imaginary-part

Each of the above formats accepts one of floating-point complex types as input.

62

Chapter 3. Scalar MTH$ Reference Section

Returns
None.

Argument
complx

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference

The floating-point complex value of a complex number. The complex exponential functions that have D-
floating complex and G-floating complex input values write the address of this floating-point complex
value into complx. For MTH$DCMPLX, complx specifies a D-floating complex number. For MTH
$GCMPLX, complx specifies a G-floating complex number. For MTH$CMPLX, complx is not used.

real-part

OpenVMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference

Real part of a complex number. The real-part argument is the address of a floating-point number that
contains this real part, r, of (r,i). For MTH$DCMPLX, real-part specifies a D-floating number. For
MTH$GCMPLX, real-part specifies a G-floating number.

imaginary-part

OpenVMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference

Imaginary part of a complex number. The imaginary-part argument is the address of a floating-point
number that contains this imaginary part, i, of (r,i). For MTH$DCMPLX, imaginary-part specifies a D-
floating number. For MTH$GCMPLX, imaginary-part specifies a G-floating number.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$xCMPLX routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point

63

Chapter 3. Scalar MTH$ Reference Section

reserved operands are reserved for future use by
VSI.

Example
C+
C This Fortran example forms two D-floating
C point complex numbers using MTH$CMPLX
C and the Fortran random number generator RAN.
C
C Declare Z and MTH$DCMPLX as complex values, and R
C and I as real values. MTH$DCMPLX takes two real
C D-floating point values and returns one
C COMPLEX*16 number.
C
C-

 COMPLEX*16 Z
 REAL*8 R,I
 INTEGER M
 M = 1234567
 R = RAN(M)
 I = RAN(M)
 CALL MTH$DCMPLX(Z,R,I)

C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-

 TYPE *, ' The two input values are:',R,I
 TYPE *, ' The complex number z is',Z
 END

This Fortran example demonstrates how to make a procedure call to MTH$DCMPLX. Notice the
difference in the precision of the output generated.

The two input values are: 0.8535407185554504 0.2043401598930359
The complex number z is (0.8535407185554504,0.2043401598930359)

MTH$CONJG
MTH$CONJG — Conjugate of a Complex Number (F-Floating Value). The Conjugate of a Complex
Number (F-Floating Value) routine returns the complex conjugate (r,-i) of a complex number (r,i) as an
F-floating value.

Format
MTH$CONJG complex-number

Returns

OpenVMS usage: complex_number

64

Chapter 3. Scalar MTH$ Reference Section

type: F_floating complex
access: write only
mechanism: by value

Complex conjugate of a complex number. MTH$CONJG returns an F-floating complex number.

Argument
complex-number

OpenVMS usage: complex_number
type: F_floating complex
access: read only
mechanism: by reference

A complex number (r,i), where r and i are floating-point numbers. The complex-number argument is
the address of this floating-point complex number. For MTH$CONJG, complex-number specifies an F-
floating number.

Description
The MTH$CONJG routine returns the complex conjugate (r,-i) of a complex number (r,i) as an F-
floating value.

See MTH$xCONJG for the descriptions of the D- and G-floating point versions of this routine.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$CONJG routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$xCONJG
MTH$xCONJG — Conjugate of a Complex Number. The Conjugate of a Complex Number routine
returns the complex conjugate (r,-i) of a complex number (r,i).

Format
MTH$DCONJG complex-conjugate ,complex-number

MTH$GCONJG complex-conjugate ,complex-number

Each of the above formats accepts one of the floating-point complex types as input.

65

Chapter 3. Scalar MTH$ Reference Section

Returns
None.

Argument
complex-conjugate

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference

The complex conjugate (r,-i) of the complex number specified by complex-number. MTH$DCONJG
and MTH$GCONJG write the address of this complex conjugate into complex-conjugate. For MTH
$DCONJG, the complex-conjugate argument specifies the address of a D-floating complex number.
For MTH$GCONJG, the complex-conjugate argument specifies the address of a G-floating complex
number.

complex-number

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference

A complex number (r,i), where r and i are floating-point numbers. The complex-number argument is
the address of this floating-point complex number. For MTH$DCONJG, complex-number specifies a
D-floating number. For MTH$GCONJG, complex-number specifies a G-floating number.

Description
The MTH$xCONJG routines return the complex conjugate (r,-i) of a complex number (r,i).

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xCONJG routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

Example
C+
C This Fortran example forms the complex conjugate
C of a G-floating complex number using MTH$GCONJG

66

Chapter 3. Scalar MTH$ Reference Section

C and the Fortran random number generator RAN.
C
C Declare Z, Z_NEW, and MTH$GCONJG as a complex values.
C MTH$GCONJG will return the complex conjugate
C value of Z: Z_NEW = MTH$GCONJG(Z).
C-
 COMPLEX*16 Z,Z_NEW,MTH$GCONJG
 COMPLEX*16 MTH$GCMPLX
 REAL*8 R,I,MTH$GREAL,MTH$GIMAG
 INTEGER M
 M = 1234567
C+
C Generate a random complex number with the Fortran generic CMPLX.
C-
 R = RAN(M)
 I = RAN(M)
 Z = MTH$GCMPLX(R,I)
 TYPE *, ' The complex number z is',z
 TYPE 1,MTH$GREAL(Z),MTH$GIMAG(Z)
 1 FORMAT(' with real part ',F20.16,' and imaginary part',F20.16)
 TYPE *, ' '
C+
C Compute the complex absolute value of Z.
C-
 Z_NEW = MTH$GCONJG(Z)
 TYPE *, ' The complex conjugate value of',z,' is',Z_NEW
 TYPE 1,MTH$GREAL(Z_NEW),MTH$GIMAG(Z_NEW)
 END

This Fortran example demonstrates how to make a function call to MTH$GCONJG. Because G-floating
numbers are used, the examples must be compiled with the statement "Fortran/G filename".

The output generated by this program is as follows:

The complex number z is (0.853540718555450,0.204340159893036)
 with real part 0.8535407185554504
 and imaginary part 0.2043401598930359

The complex conjugate value of
 (0.853540718555450,0.204340159893036) is
 (0.853540718555450,-0.204340159893036)
 with real part 0.8535407185554504
 and imaginary part -0.2043401598930359

MTH$xCOS
MTH$xCOS — Cosine of Angle Expressed in Radians. The Cosine of Angle Expressed in Radians
routine returns the cosine of a given angle (in radians).

Format
MTH$COS angle-in-radians

MTH$DCOS angle-in-radians

MTH$GCOS angle-in-radians

67

Chapter 3. Scalar MTH$ Reference Section

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$COS_R4

MTH$DCOS_R7

MTH$GCOS_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Cosine of the angle. MTH$COS returns an F-floating number. MTH$DCOS returns a D-floating
number. MTH$GCOS returns a G-floating number.

Argument
angle-in-radians

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

The angle in radians. The angle-in-radians argument is the address of a floating-point number. For
MTH$COS, angle-in-radians is an F-floating number. For MTH$DCOS, angle-in-radians specifies a
D-floating number. For MTH$GCOS, angle-in-radians specifies a G-floating number.

Description
See MTH$xSINCOS for the algorithm used to compute the cosine.

See MTH$HCOS for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xCOS routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

68

Chapter 3. Scalar MTH$ Reference Section

MTH$xCOSD
MTH$xCOSD — Cosine of Angle Expressed in Degrees. The Cosine of Angle Expressed in Degrees
routine returns the cosine of a given angle (in degrees).

Format
MTH$COSD angle-in-degrees

MTH$DCOSD angle-in-degrees

MTH$GCOSD angle-in-degrees

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$COSD_R4

MTH$DCOSD_R7

MTH$GCOSD_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Cosine of the angle. MTH$COSD returns an F-floating number. MTH$DCOSD returns a D-floating
number. MTH$GCOSD returns a G-floating number.

Argument
angle-in-degrees

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

Angle (in degrees). The angle-in-degrees argument is the address of a floating-point number. For
MTH$COSD, angle-in-degrees specifies an F-floating number. For MTH$DCOSD, angle-in-degrees
specifies a D-floating number. For MTH$GCOSD, angle-in-degrees specifies a G-floating number.

Description
See MTH$xSINCOS for the algorithm used to compute the cosine.

69

Chapter 3. Scalar MTH$ Reference Section

See MTH$HCOSD for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xCOSD routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$xCOSH
MTH$xCOSH — Hyperbolic Cosine. The Hyperbolic Cosine routine returns the hyperbolic cosine of
the input value.

Format
MTH$COSH floating-point-input-value

MTH$DCOSH floating-point-input-value

MTH$GCOSH floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

The hyperbolic cosine of the input value floating-point-input-value. MTH$COSH returns an F-floating
number. MTH$DCOSH returns a D-floating number. MTH$GCOSH returns a G-floating number.

Argument
floating-point-input-value

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of this input value. For MTH
$COSH, floating-point-input-value specifies an F-floating number. For MTH$DCOSH, floating-

70

Chapter 3. Scalar MTH$ Reference Section

point-input-value specifies a D-floating number. For MTH$GCOSH, floating-point-input-value
specifies a G-floating number.

Description
Computation of the hyperbolic cosine depends on the magnitude of the input argument. The range of
the function is partitioned using four data-type- dependent constants: a(z), b(z), and c(z). The subscript
z indicates the data type. The constants depend on the number of exponent bits (e) and the number of
fraction bits (f) associated with the data type (z).

The values of e and f are:

z e f

F 8 24
D 8 56
G 11 53

The values of the constants in terms of e and f are:

Variable Value

a(z) 2 (-f/2)

b(z) CEILING[(f+1)/2*ln(2)]
c(z) (2 e-1)*ln(2)

Based on the above definitions, zCOSH(X) is computed as follows:

Value of X Value Returned

|X| < a(z) 1
a(z) ≤ |X| < .25 Computed using a power series expansion in |X| 2

.25 ≤ |X| < b(z) (zEXP(|X|) + 1/zEXP(|X|))/2
b(z) ≤ |X| < c(z) zEXP(|X|)/2
c(z) ≤ |x| Overflow occurs

See MTH$HCOSH for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xCOSH routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of floating-point-input-value
is greater than about yyy; LIB$SIGNAL copies
the reserved operand to the signal mechanism

71

Chapter 3. Scalar MTH$ Reference Section

vector. The result is the reserved operand -0.0
unless a condition handler changes the signal
mechanism vector. The values of yyy are: MTH
$COSH---88.722MTH$DCOSH---88.722MTH
$GCOSH---709.782

MTH$CSIN
MTH$CSIN — Sine of a Complex Number (F-Floating Value). The Sine of a Complex Number (F-
Floating Value) routine returns the sine of a complex number (r,i) as an F-floating value.

Format
MTH$CSIN complex-number

Returns
OpenVMS usage: complex_number
type: F_floating complex
access: write only
mechanism: by value

Complex sine of the complex number. MTH$CSIN returns an F-floating complex number.

Argument
complex-number

OpenVMS usage: complex_number
type: F_floating complex
access: read only
mechanism: by reference

A complex number (r,i), where r and i are floating-point numbers. The complex-number argument is
the address of this complex number. For MTH$CSIN, complex-number specifies an F-floating complex
number.

Description
The complex sine is computed as follows:

complex-sine = (SIN(r) * COSH(i), COS(r) * SINH(i))

See MTH$CxSIN for the descriptions of the D- and G-floating point versions of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$CSIN routine

encountered a floating-point reserved operand due

72

Chapter 3. Scalar MTH$ Reference Section

to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of i is greater than about 88.029 for
F-floating values.

MTH$CxSIN
MTH$CxSIN — Sine of a Complex Number. The Sine of a Complex Number routine returns the sine of
a complex number (r,i).

Format
MTH$CDSIN complex-sine ,complex-number

MTH$CGSIN complex-sine ,complex-number

Each of the above formats accepts one of the floating-point complex types as input.

Returns
None.

Argument
complex-sine

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference

Complex sine of the complex number. The complex sine routines with D-floating complex and G-
floating complex input values write the complex sine into this complex-sine argument. For MTH
$CDSIN, complex-sine specifies a D-floating complex number. For MTH$CGSIN, complex-sine
specifies a G-floating complex number.

complex-number

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference

A complex number (r,i), where r and i are floating-point numbers. The complex-number argument
is the address of this complex number. For MTH$CDSIN, complex-number specifies a D-floating
complex number. For MTH$CGSIN, complex-number specifies a G-floating complex number.

73

Chapter 3. Scalar MTH$ Reference Section

Description
The complex sine is computed as follows:

complex-sine = (SIN(r) * COSH(i), COS(r) * SINH(i))

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$CxSIN routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of i is greater than about 88.029 for
D-floating values, or greater than about 709.089
for G-floating values.

Example
C+
C This Fortran example forms the complex sine of a G-floating
C complex number using MTH$CGSIN and the Fortran random number
C generator RAN.
C
C Declare Z and MTH$CGSIN as complex values. MTH$CGSIN returns
C the sine value of Z: CALL MTH$CGSIN(Z_NEW,Z)
C-
 COMPLEX*16 Z,Z_NEW
 COMPLEX*16 DCMPLX
 REAL*8 R,I
 INTEGER M
 M = 1234567
C+
C Generate a random complex number with the
C Fortran generic DCMPLX.
C-
 R = RAN(M)
 I = RAN(M)
 Z = DCMPLX(R,I)
C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-
 TYPE *, ' The complex number z is',z
 TYPE *, ' '
C+
C Compute the complex sine value of Z.
C-
 CALL MTH$CGSIN(Z_NEW,Z)
 TYPE *, ' The complex sine value of',z,' is',Z_NEW
 END

74

Chapter 3. Scalar MTH$ Reference Section

This Fortran example demonstrates a procedure call to MTH$CGSIN. Because this program uses G-
floating numbers, it must be compiled with the statement "Fortran/G filename".

The output generated by this program is as follows:

The complex number z is (0.853540718555450,0.204340159893036)
The complex sine value of (0.853540718555450,0.204340159893036) is
 (0.769400835484975,0.135253340912255)

MTH$CSQRT
MTH$CSQRT — Complex Square Root (F-Floating Value). The Complex Square Root (F-Floating
Value) routine returns the complex square root of a complex number (r,i).

Format
MTH$CSQRT complex-number

Returns
OpenVMS usage: complex_number

type: F_floating complex

access: write only

mechanism: by value

The complex square root of the complex-number argument. MTH$CSQRT returns an F-floating
number.

Argument
complex-number

OpenVMS usage: complex_number

type: F_floating complex

access: read only

mechanism: by reference

Complex number (r,i). The complex-number argument contains the address of this complex number.
For MTH$CSQRT, complex-number specifies an F-floating number.

Description
The complex square root is computed as follows.

First, calculate ROOT and Q using the following equations:

ROOT = SQRT((ABS(r) + CABS(r,i))/2) Q = i/(2 * ROOT)

Then, the complex result is given as follows:

75

Chapter 3. Scalar MTH$ Reference Section

r i CSQRT((r,i))

≥0 Any (ROOT,Q)
<0 ≥0 (Q,ROOT)
<0 <0 (-Q,-ROOT)

See MTH$CxSQRT for the descriptions of the D- and G-floating point versions of this routine.

Condition Values Signaled
SS$_FLTOVF_F Floating point overflow can occur.
SS$_ROPRAND Reserved operand. The MTH$CSQRT routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$CxSQRT
MTH$CxSQRT — Complex Square Root. The Complex Square Root routine returns the complex
square root of a complex number (r,i).

Format
MTH$CDSQRT complex-square-root ,complex-number

MTH$CGSQRT complex-square-root ,complex-number

Each of the above formats accepts one of the floating-point complex types as input.

Returns
None.

Argument
complex-square-root

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: write only
mechanism: by reference

Complex square root of the complex number specified by complex-number. The complex square root
routines that have D-floating complex and G-floating complex input values write the complex square
root into complex-square-root. For MTH$CDSQRT, complex-square-root specifies a D-floating
complex number. For MTH$CGSQRT, complex-square-root specifies a G-floating complex number.

76

Chapter 3. Scalar MTH$ Reference Section

complex-number

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex
access: read only
mechanism: by reference

Complex number (r,i). The complex-number argument contains the address of this complex number.
For MTH$CDSQRT, complex-number specifies a D-floating number. For MTH$CGSQRT, complex-
number specifies a G-floating number.

Description
The complex square root is computed as follows.

First, calculate ROOT and Q using the following equations:

ROOT = SQRT((ABS(r) + CABS(r,i))/2) Q = i/(2 * ROOT)

Then, the complex result is given as follows:

r i CSQRT((r,i))

≥0 any (ROOT,Q)
<0 ≥0 (Q,ROOT)
<0 <0 (-Q,-ROOT)

Condition Values Signaled
SS$_FLTOVF_F Floating point overflow can occur.
SS$_ROPRAND Reserved operand. The MTH$CxSQRT routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

Example
C+
C This Fortran example forms the complex square root of a D-floating
C complex number using MTH$CDSQRT and the Fortran random number
C generator RAN.
C
C Declare Z and Z_NEW as complex values. MTH$CDSQRT returns the
C complex square root of Z: CALL MTH$CDSQRT(Z_NEW,Z).
C-
 COMPLEX*16 Z,Z_NEW
 COMPLEX*16 DCMPLX
 INTEGER M

77

Chapter 3. Scalar MTH$ Reference Section

 M = 1234567
C+
C Generate a random complex number with the
C Fortran generic CMPLX.
C-
 Z = DCMPLX(RAN(M),RAN(M))
C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-
 TYPE *, ' The complex number z is',z
 TYPE *, ' '
C+
C Compute the complex complex square root of Z.
C-
 CALL MTH$CDSQRT(Z_NEW,Z)
 TYPE *, ' The complex square root of',z,' is',Z_NEW
 END

This Fortran example program demonstrates a procedure call to MTH$CDSQRT. The output generated
by this program is as follows:

 The complex number z is (0.8535407185554504,0.2043401598930359)
 The complex square root of (0.8535407185554504,0.2043401598930359) is
(0.9303763973040062,0.1098158554350485)

MTH$CVT_x_x
MTH$CVT_x_x — Convert One Double-Precision Value. The Convert One Double-Precision Value
routines convert one double-precision value to the destination data type and return the result as a
function value. MTH$CVT_D_G converts a D-floating value to G-floating and MTH$CVT_G_D
converts a G-floating value to a D-floating value.

Format
MTH$CVT_D_G floating-point-input-val

MTH$CVT_G_D floating-point-input-val

Returns
OpenVMS usage: floating_point
type: G_floating, D_floating
access: write only
mechanism: by value

The converted value. MTH$CVT_D_G returns a G-floating value. MTH$CVT_G_D returns a D-
floating value.

Argument
floating-point-input-val

78

Chapter 3. Scalar MTH$ Reference Section

OpenVMS usage: floating_point
type: D_floating, G_floating
access: read only
mechanism: by reference

The input value to be converted. The floating-point-input-val argument is the address of this input
value. For MTH$CVT_D_G, the floating-point- input-val argument specifies a D-floating number.
For MTH$CVT_G_D, the floating-point-input-val argument specifies a G-floating number.

Description
These routines are designed to function as hardware conversion instructions. They fault on reserved
operands. If floating-point overflow is detected, an error is signaled. If floating-point underflow is
detected and floating-point underflow is enabled, an error is signaled.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$CVT_x_x routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library.
MTH$_FLOUNDMAT Floating-point underflow in Math Library.

MTH$CVT_xA_xA
MTH$CVT_xA_xA — Convert an Array of Double-Precision Values. The Convert an Array of Double-
Precision Values routines convert a contiguous array of double-precision values to the destination data
type and return the results as an array. MTH$CVT_DA_GA converts D-floating values to G-floating
and MTH$CVT_GA_DA converts G-floating values to D-floating.

Format
MTH$CVT_DA_GA floating-point-input-array ,floating-point-dest-array [,array-size] MTH
$CVT_GA_DA floating-point-input-array ,floating-point-dest-array [,array-size]

Returns
MTH$CVT_DA_GA and MTH$CVT_GA_DA return the address of the output array to the floating-
point-dest-array argument.

Argument
floating-point-input-array

OpenVMS usage: floating_point

79

Chapter 3. Scalar MTH$ Reference Section

type: D_floating, G_floating
access: read only
mechanism: by reference, array reference

Input array of values to be converted. The floating-point-input-array argument is the address of an
array of floating-point numbers. For MTH$CVT_DA_GA, floating-point-input-array specifies an
array of D-floating numbers. For MTH$CVT_GA_DA, floating-point-input-array specifies an array
of G-floating numbers.

floating-point-dest-array

OpenVMS usage: floating_point
type: G_floating, D_floating
access: write only
mechanism: by reference, array reference

Output array of converted values. The floating-point-dest-array argument is the address of an array of
floating-point numbers. For MTH$CVT_DA_GA, floating-point-dest-array specifies an array of G-
floating numbers. For MTH$CVT_GA_DA, floating-point-dest-array specifies an array of D-floating
numbers.

array-size

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Number of array elements to be converted. The default value is 1. The array-size argument is the
address of a longword containing this number of elements.

Description
These routines are designed to function as hardware conversion instructions. They fault on reserved
operands. If floating-point overflow is detected, an error is signaled. If floating-point underflow is
detected and floating-point underflow is enabled, an error is signaled.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$CVT_xA_xA

routine encountered a floating-point reserved
operand due to incorrect user input. A floating-
point reserved operand is a floating-point datum
with a sign bit of 1 and a biased exponent of 0.
Floating-point reserved operands are reserved for
future use by VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library.
MTH$_FLOUNDMAT Floating-point underflow in Math Library.

80

Chapter 3. Scalar MTH$ Reference Section

MTH$xEXP
MTH$xEXP — Exponential. The Exponential routine returns the exponential of the input value.

Format
MTH$EXP floating-point-input-value

MTH$DEXP floating-point-input-value

MTH$GEXP floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$EXP_R4

MTH$DEXP_R6

MTH$GEXP_R6

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

The exponential of floating-point-input-value. MTH$EXP returns an F-floating number. MTH$DEXP
returns a D-floating number. MTH$GEXP returns a G-floating number.

Argument
floating-point-input-value

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number.
For MTH$EXP, floating-point-input-value specifies an F-floating number. For MTH$DEXP, floating-
point-input-value specifies a D-floating number. For MTH$GEXP, floating-point-input-value
specifies a G-floating number.

Description
The exponential of x is computed as:

81

Chapter 3. Scalar MTH$ Reference Section

Value of x Value Returned

X > c(z) Overflow occurs
X ≤ -c(z) 0

|X| < 2 -(f+1) 1

Otherwise 2 Y * 2 U * 2 W

where: Y = INTEGER(x*ln2(E)) V = FRAC(x*ln2(E)) * 16 U = INTEGER(V)/16 W = FRAC(V)/16 2W =
polynomial approximation of degree 4, 8, or 8 for z = F, D, or G.

See also MTH$xCOSH for definitions of f and c(z).

See MTH$HEXP for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xEXP routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: floating-
point-input-value is greater than yyy; LIB
$SIGNAL copies the reserved operand to the
signal mechanism vector. The result is the reserved
operand -0.0 unless a condition handler changes
the signal mechanism vector.

The values of yyy are approximately:

● MTH$EXP---88.029

● MTH$DEXP---88.029

● MTH$GEXP---709.089
MTH$_FLOUNDMAT Floating-point underflow in Math Library:

floating-point-input-value is less than or equal to
yyy and the caller (CALL or JSB) has set hardware
floating-point underflow enable. The result is set
to 0.0. If the caller has not enabled floating-point
underflow (the default), a result of 0.0 is returned
but no error is signaled.

The values of yyy are approximately:

● MTH$EXP--- -- 88.722

● MTH$DEXP--- -- 88.722

● MTH$GEXP--- -- 709.774

82

Chapter 3. Scalar MTH$ Reference Section

Example
IDENTIFICATION DIVISION.
PROGRAM-ID. FLOATING_POINT.
*
* Calls MTH$EXP using a Floating Point data type.
* Calls MTH$DEXP using a Double Floating Point data type.
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 FLOAT_PT COMP-1.
01 ANSWER_F COMP-1.
01 DOUBLE_PT COMP-2.
01 ANSWER_D COMP-2.
PROCEDURE DIVISION.
P0.
 MOVE 12.34 TO FLOAT_PT.
 MOVE 3.456 TO DOUBLE_PT.

 CALL "MTH$EXP" USING BY REFERENCE FLOAT_PT GIVING ANSWER_F.
 DISPLAY " MTH$EXP of ", FLOAT_PT CONVERSION, " is ",
 ANSWER_F CONVERSION.

 CALL "MTH$DEXP" USING BY REFERENCE DOUBLE_PT GIVING ANSWER_D.
 DISPLAY " MTH$DEXP of ", DOUBLE_PT CONVERSION, " is ",
 ANSWER_D CONVERSION .
 STOP RUN.

This sample program demonstrates calls to MTH$EXP and MTH$DEXP from COBOL.

The output generated by this program is as follows:

MTH$EXP of 1.234000E+01 is 2.286620E+05
MTH$DEXP of 3.456000000000000E+00 is
3.168996280537917E+01

MTH$HACOS
MTH$HACOS — Arc Cosine of Angle Expressed in Radians (H-Floating Value). Given the cosine of
an angle, the Arc Cosine of Angle Expressed in Radians (H-Floating Value) routine returns that angle (in
radians) in H-floating-point precision.

Format
MTH$HACOS h-radians ,cosine

Corresponding JSB Entry Points
MTH$HACOS_R8

Returns
None.

83

Chapter 3. Scalar MTH$ Reference Section

Argument
h-radians

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in radians) whose cosine is specified by cosine. The h-radians argument is the address of an H-
floating number that is this angle. MTH$HACOS writes the address of the angle into h-radians.

cosine

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The cosine of the angle whose value (in radians) is to be returned. The cosine argument is the address of
a floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1.
For MTH$HACOS, cosine specifies an H-floating number.

Description
The angle in radians whose cosine is X is computed as:

Value of Cosine Value Returned

0 π/2
1 0
-1 π
0 < X < 1 zATAN(zSQRT(1-X 2)/X) , where zATAN

and zSQRT are the Math Library arc tangent
and square root routines, respectively, of the
appropriate data type

-1 < X < 0 zATAN(zSQRT(1-X 2)/X) + π
1 < |X| The error MTH$_INVARGMAT is signaled

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HACOS routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

84

Chapter 3. Scalar MTH$ Reference Section

MTH$_INVARGMAT Invalid argument. The absolute value of cosine is
greater than 1. LIB$SIGNAL copies the floating-
point reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$HACOSD
MTH$HACOSD — Arc Cosine of Angle Expressed in Degrees (H-Floating Value). Given the cosine of
an angle, the Arc Cosine of Angle Expressed in Degrees (H-Floating Value) routine returns that angle (in
degrees) as an H-floating value.

Format
MTH$HACOSD h-degrees ,cosine

Corresponding JSB Entry Points
MTH$HACOSD_R8

Returns
None.

Argument
h-degrees

OpenVMS usage: floating_point

type: H_floating

access: write only

mechanism: by reference

Angle (in degrees) whose cosine is specified by cosine. The h-degrees argument is the address of an H-
floating number that is this angle. MTH$HACOSD writes the address of the angle into h-degrees.

cosine

OpenVMS usage: floating_point

type: H_floating

access: read only

mechanism: by reference

Cosine of the angle whose value (in degrees) is to be returned. The cosine argument is the address of a
floating-point number that is this cosine. The absolute value of cosine must be less than or equal to 1.
For MTH$HACOSD, cosine specifies an H-floating number.

85

Chapter 3. Scalar MTH$ Reference Section

Description
The angle in degrees whose cosine is X is computed as:

Value of Cosine Angle Returned

0 90
1 0
-1 180
0 < X < 1 zATAND(zSQRT(1-X 2)/X) , where zATAND

and zSQRT are the Math Library arc tangent
and square root routines, respectively, of the
appropriate data type

-1 < X < 0 zATAND(zSQRT(1-X 2)/X) + 180
1 < |X| The error MTH$_INVARGMAT is signaled

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HACOSD routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument. The absolute value of cosine is
greater than 1. LIB$SIGNAL copies the floating-
point reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$HASIN
MTH$HASIN — Arc Sine in Radians (H-Floating Value). Given the sine of an angle, the Arc Sine in
Radians (H-Floating Value) routine returns that angle (in radians) as an H-floating value.

Format
MTH$HASIN h-radians ,sine

Corresponding JSB Entry Points
MTH$HASIN_R8

Returns
None.

86

Chapter 3. Scalar MTH$ Reference Section

Argument
h-radians

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in radians) whose sine is specified by sine. The h-radians argument is the address of an H-
floating number that is this angle. MTH$HASIN writes the address of the angle into h-radians.

sine

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The sine of the angle whose value (in radians) is to be returned. The sine argument is the address of a
floating-point number that is this sine. The absolute value of sine must be less than or equal to 1. For
MTH$HASIN, sine specifies an H-floating number.

Description
The angle in radians whose sine is X is computed as:

Value of Sine Angle Returned

0 0
1 π/2
-1 -π/2
0 < |X| < 1 zATAN(X/zSQRT(1-X 2)) , where zATAN

and zSQRT are the Math Library arc tangent
and square root routines, respectively, of the
appropriate data type

1 < |X| The error MTH$_INVARGMAT is signaled

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HASIN routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument. The absolute value of sine is
greater than 1. LIB$SIGNAL copies the floating-

87

Chapter 3. Scalar MTH$ Reference Section

point reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$HASIND
MTH$HASIND — Arc Sine in Degrees (H-Floating Value). Given the sine of an angle, the Arc Sine in
Degrees (H-Floating Value) routine returns that angle (in degrees) as an H-floating value.

Format
MTH$HASIND h-degrees ,sine

Corresponding JSB Entry Points
MTH$HASIND_R8

Returns
None.

Argument
h-degrees

OpenVMS usage: floating_point

type: H_floating

access: write only

mechanism: by reference

Angle (in degrees) whose sine is specified by sine. The h-degrees argument is the address of an H-
floating number that is this angle. MTH$HASIND writes the address of the angle into h-degrees.

sine

OpenVMS usage: floating_point

type: H_floating

access: read only

mechanism: by reference

Sine of the angle whose value (in degrees) is to be returned. The sine argument is the address of a
floating-point number that is this sine. The absolute value of sine must be less than or equal to 1. For
MTH$HASIND, sine specifies an H-floating number.

Description
The angle in degrees whose sine is X is computed as:

88

Chapter 3. Scalar MTH$ Reference Section

Value of Sine Value Returned

0 0
1 90
-1 -90
0 < |X| < 1 zATAND(X/zSQRT(1-X 2)) , where zATAND

and zSQRT are the Math Library arc tangent
and square root routines, respectively, of the
appropriate data type

1 < |X| The error MTH$_INVARGMAT is signaled

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$HASIND routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument. The absolute value of sine is
greater than 1. LIB$SIGNAL copies the floating-
point reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$HATAN
MTH$HATAN — Arc Tangent in Radians (H-Floating Value). Given the tangent of an angle, the Arc
Tangent in Radians (H-Floating Value) routine returns that angle (in radians) as an H-floating value.

Format
MTH$HATAN h-radians ,tangent

Corresponding JSB Entry Points
MTH$HATAN_R8

Returns
None.

Argument
h-radians

89

Chapter 3. Scalar MTH$ Reference Section

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in radians) whose tangent is specified by tangent. The h-radians argument is the address of an
H-floating number that is this angle. MTH$HATAN writes the address of the angle into h-radians.

tangent

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The tangent of the angle whose value (in radians) is to be returned. The tangent argument is the address
of a floating-point number that is this tangent. For MTH$HATAN, tangent specifies an H-floating
number.

Description
In radians, the computation of the arc tangent function is based on the following identities:

arctan(X) = X - X 3/3 + X 5/5 - X 7/7 + ...
arctan(X) = X + X*Q(X 2),
where Q(Y) = - Y/3 + Y 2/5 - Y 3/7 + ...
arctan(X) = X*P(X 2),
where P(Y) = 1 - Y/3 + Y 2/5 - Y 3/7 + ...
arctan(X) = π/2 - arctan(1/X)
arctan(X) = arctan(A) + arctan((X-A)/(1+A*X))
for any real A

The angle in radians whose tangent is X is computed as:

Value of X Angle Returned

0 ≤ X ≤ 3/32 X + X * Q(X 2)
3/32 < X ≤ 11 ATAN(A) + V* (P(V 2)) , where A and ATAN(A)

are chosen by table lookup and V = (X - A)/(1 +
A*X)

11 < X π/2 - W* (P(W 2)) where W = 1/X
X < 0 -zATAN(|X|)

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HATAN routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point

90

Chapter 3. Scalar MTH$ Reference Section

reserved operands are reserved for future use by
VSI.

MTH$HATAND
MTH$HATAND — Arc Tangent in Degrees (H-Floating Value). Given the tangent of an angle, the Arc
Tangent in Degrees (H-Floating Value) routine returns that angle (in degrees) as an H-floating value.

Format
MTH$HATAND h-degrees ,tangent

Corresponding JSB Entry Points
MTH$HATAND_R8

Returns
None.

Argument
h-degrees

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in degrees) whose tangent is specified by tangent. The h-degrees argument is the address of an
H-floating number that is this angle. MTH$HATAND writes the address of the angle into h-degrees.

tangent

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The tangent of the angle whose value (in degrees) is to be returned. The tangent argument is the address
of a floating-point number that is this tangent. For MTH$HATAND, tangent specifies an H-floating
number.

Description
The computation of the arc tangent function is based on the following identities:

arctan(X) = 180/π* (X - X 3/3 + X 5/5 - X 7/7 + ...)
arctan(X) = 64*X + X*Q(X 2),

91

Chapter 3. Scalar MTH$ Reference Section

where Q(Y) = 180/π*[(1- 64*π/180) - Y/3 +Y 2/5 - Y 3/7 + Y 4/9 ...]
arctan(X) = X*P(X 2),
where P(Y) = 180/π*[1 - Y/3 + Y 2/5 - Y 3/7 +Y 4/9 ...]
arctan(X) = 90 - arctan>(1/X)
arctan(X) = arctan(A) + arctan((X - A)/(1 + A*X))

The angle in degrees whose tangent is X is computed as:

Tangent Angle Returned

X ≤ 3/32 64*X + X*Q(X 2)
3/32 < X ≤ 11 ATAND(A) + V*P(V 2) , where A and ATAND(A)

are chosen by table lookup and V = (X - A)/(1 +
A*X)

11 < X 90 - W * (P(W 2)) , where W = 1/X
X < 0 -zATAND(|X|)

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HATAND routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$HATAN2
MTH$HATAN2 — Arc Tangent in Radians (H-Floating Value) with Two Arguments. Given sine and
cosine , the Arc Tangent in Radians (H-Floating Value) with Two Arguments routine returns the angle
(in radians) as an H-floating value whose tangent is given by the quotient of sine and cosine (sine
/cosine).

Format
MTH$HATAN2 h-radians ,sine ,cosine

Returns
None.

Argument
h-radians

OpenVMS usage: floating_point
type: H_floating
access: write only

92

Chapter 3. Scalar MTH$ Reference Section

mechanism: by reference

Angle (in radians) whose tangent is specified by (sine/cosine). The h-radians argument is the address of
an H-floating number that is this angle. MTH$HATAN2 writes the address of the angle into h-radians.

sine

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH
$HATAN2, sine specifies an H-floating number.

cosine

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH
$HATAN2, cosine specifies an H-floating number.

Description
The angle in radians whose tangent is Y/X is computed as follows, where f is defined in the description of
MTH$zCOSH:

Value of Input Arguments Angle Returned

X = 0 or Y/X > 2 (f+1) π/2* (signY)

X > 0 and Y/X ≤ 2 (f+1) zATAN(Y/X)

X < 0 and Y/X ≤ 2 (f+1) π* (signY) + zATAN(Y/X)

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HATAN2 routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument. Both cosine and sine are
zero. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you

93

Chapter 3. Scalar MTH$ Reference Section

have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$HATAND2
MTH$HATAND2 — Arc Tangent in Degrees (H-Floating Value) with Two Arguments. Given sine and
cosine , the Arc Tangent in Degrees (H-Floating Value) with Two Arguments routine returns the angle
(in degrees) whose tangent is given by the quotient of sine and cosine (sine /cosine).

Format
MTH$HATAND2 h-degrees ,sine ,cosine

Returns
None.

Argument
h-degrees

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Angle (in degrees) whose tangent is specified by (sine/cosine). The h-degrees argument is the address
of an H-floating number that is this angle. MTH$HATAND2 writes the address of the angle into h-
degrees.

sine

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Dividend. The sine argument is the address of a floating-point number that is this dividend. For MTH
$HATAND2, sine specifies an H-floating number.

cosine

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Divisor. The cosine argument is the address of a floating-point number that is this divisor. For MTH
$HATAND2, cosine specifies an H-floating number.

94

Chapter 3. Scalar MTH$ Reference Section

Description
The angle in degrees whose tangent is Y/X is computed below. The value of f is defined in the
description of MTH$zCOSH.

Value of Input Arguments Angle Returned

X = 0 or Y/X > 2 (f+1) 90* (signY)

X > 0 and Y/X ≤ 2 (f+1) zATAND(Y/X)

X < 0 and Y/X ≤ 2 (f+1) 180 * (signY) + zATAND(Y/X)

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HATAND2 routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument. Both cosine and sine are
zero. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$HATANH
MTH$HATANH — Hyperbolic Arc Tangent (H-Floating Value). Given the hyperbolic tangent of an
angle, the Hyperbolic Arc Tangent (H-Floating Value) routine returns the hyperbolic arc tangent (as an
H-floating value) of that angle.

Format
MTH$HATANH h-atanh ,hyperbolic-tangent

Returns
None.

Argument
h-atanh

OpenVMS usage: floating_point
type: H_floating

95

Chapter 3. Scalar MTH$ Reference Section

access: write only
mechanism: by reference

Hyperbolic arc tangent of the hyperbolic tangent specified by hyperbolic-tangent. The h-atanh
argument is the address of an H-floating number that is this hyperbolic arc tangent. MTH$HATANH
writes the address of the hyperbolic arc tangent into h-atanh.

hyperbolic-tangent

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Hyperbolic tangent of an angle. The hyperbolic-tangent argument is the address of a floating-point
number that is this hyperbolic tangent. For MTH$HATANH, hyperbolic-tangent specifies an H-floating
number.

Description
The hyperbolic arc tangent function is computed as follows:

Value of X Value Returned

|X| < 1 zATANH(X) = zLOG((X+1)/(X-1))/2
|X| ≥ 1 An invalid argument is signaled

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HATANH routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_INVARGMAT Invalid argument: |X| = ≥ 1. LIB$SIGNAL
copies the floating-point reserved operand
to the mechanism argument vector CHF
$L_MCH_SAVR0/R1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$HCOS
MTH$HCOS — Cosine of Angle Expressed in Radians (H-Floating Value). The Cosine of Angle
Expressed in Radians (H-Floating Value) routine returns the cosine of a given angle (in radians) as an H-
floating value.

96

Chapter 3. Scalar MTH$ Reference Section

Format
MTH$HCOS h-cosine ,angle-in-radians

Corresponding JSB Entry Points
MTH$HCOS_R5

Returns
None.

Argument
h-cosine

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Cosine of the angle specified by angle-in-radians. The h-cosine argument is the address of an H-
floating number that is this cosine. MTH$HCOS writes the address of the cosine into h-cosine.

angle-in-radians

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Angle (in radians). The angle-in-radians argument is the address of a floating-point number. For MTH
$HCOS, angle-in-radians specifies an H-floating number.

Description
See MTH$xSINCOS for the algorithm used to compute the cosine.

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$HCOS routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

97

Chapter 3. Scalar MTH$ Reference Section

MTH$HCOSD
MTH$HCOSD — Cosine of Angle Expressed in Degrees (H-Floating Value). The Cosine of Angle
Expressed in Degrees (H-Floating Value) routine returns the cosine of a given angle (in degrees) as an H-
floating value.

Format
MTH$HCOSD h-cosine ,angle-in-degrees

Corresponding JSB Entry Points
MTH$HCOSD_R5

Returns
None.

Argument
h-cosine

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Cosine of the angle specified by angle-in-degrees. The h-cosine argument is the address of an H-
floating number that is this cosine. MTH$HCOSD writes this cosine into h-cosine.

angle-in-degrees

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Angle (in degrees). The angle-in-degrees argument is the address of a floating-point number. For MTH
$HCOSD, angle-in-degrees specifies an H-floating number.

Description
See the MTH$SINCOSD routine for the algorithm used to compute the cosine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HCOSD routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved

98

Chapter 3. Scalar MTH$ Reference Section

operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$HCOSH
MTH$HCOSH — Hyperbolic Cosine (H-Floating Value). The Hyperbolic Cosine (H-Floating Value)
routine returns the hyperbolic cosine of the input value as an H-floating value.

Format
MTH$HCOSH h-cosh ,floating-point-input-value

Returns
None.

Argument
h-cosh

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Hyperbolic cosine of the input value specified by floating-point-input-value. The h-cosh argument is
the address of an H-floating number that is this hyperbolic cosine. MTH$HCOSH writes the address of
the hyperbolic cosine into h-cosh.

floating-point-input-value

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of this input value. For MTH
$HCOSH, floating-point-input-value specifies an H-floating number.

Description
Computation of the hyperbolic cosine depends on the magnitude of the input argument. The range of
the function is partitioned using four data-type-dependent constants: a(z), b(z), and c(z). The subscript
z indicates the data type. The constants depend on the number of exponent bits (e) and the number of
fraction bits (f) associated with the data type (z).

The values of e and f are as follows:

99

Chapter 3. Scalar MTH$ Reference Section

e = 15 f = 113

The values of the constants in terms of e and f are:

Variable Value

a(z) 2 -f/2

b(z) (f+1)/2*ln(2)
c(z) 2 e-1*ln(2)

Based on the above definitions, zCOSH(X) is computed as follows:

Value of X Value Returned

|X| < a(z) 1
a(z) ≤ |X| < .25 Computed using a power series expansion in |X| 2

.25 ≤ |X| < b(z) (zEXP(|X|) + 1/zEXP(|X|))/2
b(z) ≤ |X| < c(z) zEXP(|X|)/2
c(z) ≤ |X| Overflow occurs

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HCOSH routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of floating-point-input-value is
greater than about yyy; LIB$SIGNAL copies the
reserved operand to the signal mechanism vector.
The result is the reserved operand -0.0 unless a
condition handler changes the signal mechanism
vector. The value of yyy is 11356.523.

MTH$HEXP
MTH$HEXP — Exponential (H-Floating Value). The Exponential (H-Floating Value) routine returns
the exponential of the input value as an H-floating value.

Format
MTH$HEXP h-exp ,floating-point-input-value

Corresponding JSB Entry Points
MTH$HEXP_R6

100

Chapter 3. Scalar MTH$ Reference Section

Returns
None.

Argument
h-exp

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Exponential of the input value specified by floating-point-input-value. The h-exp argument is the
address of an H-floating number that is this exponential. MTH$HEXP writes the address of the
exponential into h-exp.

floating-point-input-value

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number. For
MTH$HEXP, floating-point-input-value specifies an H-floating number.

Description
The exponential of x is computed as:

Value of x Value Returned

x > c(z) Overflow occurs
x ≤ -c(z) 0

|x| < 2 -(f+1) 1

Otherwise 2 Y * 2 U * 2 W

where: Y = INTEGER(x*ln2(E)) V = FRAC(x*ln2(E)) * 16 U = INTEGER(V)/16 W = FRAC(V)/16 2W =
polynomial approximation of degree 14 for z = H.

See also MTH$HCOS for definitions of f and c(z).

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HEXP routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved

101

Chapter 3. Scalar MTH$ Reference Section

operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: floating-
point-input-value is greater than yyy; LIB
$SIGNAL copies the reserved operand to the
signal mechanism vector. The result is the reserved
operand -0.0 unless a condition handler changes
the signal mechanism vector. The value of yyy is
approximately 11355.830 for MTH$HEXP.

MTH$_FLOUNDMAT Floating-point underflow in Math Library:
floating-point-input-value is less than or equal to
yyy and the caller (CALL or JSB) has set hardware
floating-point underflow enable. The result is
set to 0.0. If the caller has not enabled floating-
point underflow (the default), a result of 0.0 is
returned but no error is signaled. The value of yyy
is approximately --11356.523 for MTH$HEXP.

MTH$HLOG
MTH$HLOG — Natural Logarithm (H-Floating Value). The Natural Logarithm (H-Floating Value)
routine returns the natural (base e) logarithm of the input argument as an H-floating value.

Format
MTH$HLOG h-natlog ,floating-point-input-value

Corresponding JSB Entry Points
MTH$HLOG_R8

Returns
None.

Argument
h-natlog

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Natural logarithm of floating-point-input-value. The h-natlog argument is the address of an H-floating
number that is this natural logarithm. MTH$HLOG writes the address of this natural logarithm into h-
natlog.

102

Chapter 3. Scalar MTH$ Reference Section

floating-point-input-value

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number that
is this value. For MTH$HLOG, floating-point-input-value specifies an H-floating number.

Description
Computation of the natural logarithm routine is based on the following:

1. ln(X*Y) = ln(X) + ln(Y)

2. ln(1+X) = X - X2/2 + X3/3 - X4/4 ...
for |X| < 1

3. ln(X) = ln(A) + 2* (V + V3/3 + V5/5 + V7/7 ...)
where V = (X-A)/(X+A), A > 0,
and p(y) = 2 * (1 + y/3 + y2/5 ...)

For x = 2n*f, where n is an integer and f is in the interval of 0.5 to 1, define the following quantities:

If n ≥ 1, then N = n-1 and F = 2f

If n ≤ 0, then N = n and F = f

From (1) it follows that:

4. ln(X) = N*ln(2) + ln(F)

Based on the previous relationships, zLOG is computed as follows:

1. If |F-1| < 2-5,
zLOG(X) = N*zLOG(2) + W + W*p(W),
where W = F-1.

2. Otherwise,
zLOG(X) = N*zLOG(2) + zLOG(A) + V*p(V2),
where V = (F-A)/(F+A) and A and zLOG(A)
are obtained by table lookup.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HLOG routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

103

Chapter 3. Scalar MTH$ Reference Section

MTH$_LOGZERNEG Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$HLOG2
MTH$HLOG2 — Base 2 Logarithm (H-Floating Value). The Base 2 Logarithm (H-Floating Value)
routine returns the base 2 logarithm of the input value specified by floating-point-input-value as an H-
floating value.

Format
MTH$HLOG2 h-log2 ,floating-point-input-value

Returns
None.

Argument
h-log2

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Base 2 logarithm of floating-point-input-value. The h-log2 argument is the address of an H-floating
number that is this base 2 logarithm. MTH$HLOG2 writes the address of this logarithm into h-log2.

floating-point-input-value

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number that
is this input value. For MTH$HLOG2, floating-point-input-value specifies an H-floating number.

Description
The base 2 logarithm function is computed as follows:

104

Chapter 3. Scalar MTH$ Reference Section

zLOG2(X) = zLOG2(E) * zLOG(X)

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HLOG2 routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_LOGZERNEG Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$HLOG10
MTH$HLOG10 — Common Logarithm (H-Floating Value). The Common Logarithm (H-Floating
Value) routine returns the common (base 10) logarithm of the input argument as an H-floating value.

Format
MTH$HLOG10 h-log10 ,floating-point-input-value

Corresponding JSB Entry Points
MTH$HLOG10_R8

Returns
None.

Argument
h-log10

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Common logarithm of the input value specified by floating-point-input-value. The h-log10 argument is
the address of an H-floating number that is this common logarithm. MTH$HLOG10 writes the address
of the common logarithm into h-log10.

105

Chapter 3. Scalar MTH$ Reference Section

floating-point-input-value

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number. For
MTH$HLOG10, floating-point-input-value specifies an H-floating number.

Description
The common logarithm function is computed as follows:

zLOG10(X) = zLOG10(E) * zLOG(X)

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HLOG10 routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_LOGZERNEG Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$HSIN
MTH$HSIN — Sine of Angle Expressed in Radians (H-Floating Value). The Sine of Angle Expressed in
Radians (H-Floating Value) routine returns the sine of a given angle (in radians) as an H-floating value.

Format
MTH$HSIN h-sine ,angle-in-radians

Corresponding JSB Entry Points
MTH$HSIN_R5

Returns
None.

106

Chapter 3. Scalar MTH$ Reference Section

Argument
h-sine

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

The sine of the angle specified by angle-in-radians. The h-sine argument is the address of an H-floating
number that is this sine. MTH$HSIN writes the address of the sine into h-sine.

angle-in-radians

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Angle (in radians). The angle-in-radians argument is the address of a floating-point number that is this
angle. For MTH$HSIN, angle-in-radians specifies an H-floating number.

Description
See MTH$xSINCOS for the algorithm used to compute this sine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HSIN routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$HSIND
MTH$HSIND — Sine of Angle Expressed in Degrees (H-Floating Value). The Sine of Angle Expressed
in Degrees (H-Floating Value) routine returns the sine of a given angle (in degrees) as an H-floating
value.

Format
MTH$HSIND h-sine ,angle-in-degrees

Corresponding JSB Entry Points
MTH$HSIND_R5

107

Chapter 3. Scalar MTH$ Reference Section

Returns
None.

Argument
h-sine

OpenVMS usage: floating_point

type: H_floating

access: write only

mechanism: by reference

Sine of the angle specified by angle-in-degrees. MTH$HSIND writes into h-sine the address of an H-
floating number that is this sine.

angle-in-degrees

OpenVMS usage: floating_point

type: H_floating

access: read only

mechanism: by reference

Angle (in degrees). The angle-in-degrees argument is the address of an H-floating number that is this
angle.

Description
See MTH$xSINCOSD for the algorithm used to compute the sine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HSIND routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOUNDMAT Floating-point underflow in Math Library. The
absolute value of the input angle is less than 180/
π*2 -m (where m = 16,384 for H-floating).

MTH$HSINH
MTH$HSINH — Hyperbolic Sine (H-Floating Value). The Hyperbolic Sine (H-Floating Value) routine
returns the hyperbolic sine of the input value specified by floating-point-input-value as an H-floating
value.

108

Chapter 3. Scalar MTH$ Reference Section

Format
MTH$HSINH h-sinh ,floating-point-input-value

Returns
None.

Argument
h-sinh

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Hyperbolic sine of the input value specified by floating-point-input-value. The h-sinh argument is the
address of an H-floating number that is this hyperbolic sine. MTH$HSINH writes the address of the
hyperbolic sine into h-sinh.

floating-point-input-value

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number that
is this value. For MTH$HSINH, floating-point-input-value specifies an H-floating number.

Description
Computation of the hyperbolic sine function depends on the magnitude of the input argument. The
range of the function is partitioned using three data type dependent constants: a(z), b(z), and c(z). The
subscript z indicates the data type. The constants depend on the number of exponent bits (e) and the
number of fraction bits (f) associated with the data type (z).

The values of e and f are as follows:

e = 15

f = 113

The values of the constants in terms of e and f are:

Variable Value

a(z) 2 (-f/2)

b(z) (f+1)/2*ln(2)

109

Chapter 3. Scalar MTH$ Reference Section

Variable Value

c(z) 2 e-1*ln(2)

Based on the above definitions, zSINH(X) is computed as follows:

Value of X Value Returned

|X| < a(z) X
a(z) ≤ |X| < 1.0 zSINH(X) is computed using a power series

expansion in |X| 2

1.0 ≤ |X| < b(z) (zEXP(X) - zEXP(-X))/2
b(z) ≤ |X| < c(z) SIGN(X)*zEXP(|X|)/2
c(z) ≤ |X| Overflow occurs

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HSINH routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of floating-point-input-value
is greater than yyy. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVR0/R1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVR0/R1. The value of yyy is
approximately 11356.523.

MTH$HSQRT
MTH$HSQRT — Square Root (H-Floating Value). The Square Root (H-Floating Value) routine returns
the square root of the input value floating-point-input-value as an H-floating value.

Format
MTH$HSQRT h-sqrt ,floating-point-input-value

Corresponding JSB Entry Points
MTH$HSQRT_R8

Returns
None.

110

Chapter 3. Scalar MTH$ Reference Section

Argument
h-sqrt

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Square root of the input value specified by floating-point-input-value. The h-sqrt argument is the
address of an H-floating number that is this square root. MTH$HSQRT writes the address of the square
root into h-sqrt.

floating-point-input-value

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Input value. The floating-point-input-value argument is the address of a floating-point number that
contains this input value. For MTH$HSQRT, floating-point-input-value specifies an H-floating
number.

Description
The square root of X is computed as follows:

If X < 0 , an error is signaled.

Let X = 2 K * F

where:

K is the exponential part of the floating-point data

F is the fractional part of the floating-point data

If K is even:

X = 2 (2*P) * F,zSQRT(X) = 2 P * zSQRT(F),1/2 ≤ F < 1 , where P = K/2

If K is odd:

X = 2 (2*P+1) * F = 2 (2*P+2) * (F/2) ,zSQRT(X) = 2 (P+1) * zSQRT(F/2),1/4 ≤ F/2 < 1/2 , where p =
(K-1)/2

Let F' = A * F + B, when K is even:

A = 0.95F6198 (hex)

111

Chapter 3. Scalar MTH$ Reference Section

B = 0.6BA5918 (hex)

Let F' = A* (F/2) + B, when K is odd:

A = 0.D413CCC (hex)

B = 0.4C1E248 (hex)

Let K' = P, when K is even

Let K' = P+1, when K is odd

Let Y[0] = 2K' * F' be a straight line approximation within the given interval using coefficients A and B,
which minimize the absolute error at the midpoint and endpoint.

Starting with Y[0], n Newton-Raphson iterations are performed:

Y[n+1] = 1/2 * (Y[n] + X/Y[n])

where n = 5 for H-floating.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HSQRT routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_SQUROONEG Square root of negative number. Argument
floating-point-input-value is less than 0.0. LIB
$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector
CHF$L_MCH_SAVR0/R1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$HTAN
MTH$HTAN — Tangent of Angle Expressed in Radians (H-Floating Value). The Tangent of Angle
Expressed in Radians (H-Floating Value) routine returns the tangent of a given angle (in radians) as an
H-floating value.

Format
MTH$HTAN h-tan ,angle-in-radians

Corresponding JSB Entry Points
MTH$HTAN_R5

112

Chapter 3. Scalar MTH$ Reference Section

Returns
None.

Argument
h-tan

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Tangent of the angle specified by angle-in-radians. The h-tan argument is the address of an H-floating
number that is this tangent. MTH$HTAN writes the address of the tangent into h-tan.

angle-in-radians

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input angle (in radians). The angle-in-radians argument is the address of a floating-point number
that is this angle. For MTH$HTAN, angle-in-radians specifies an H-floating number.

Description
When the input argument is expressed in radians, the tangent function is computed as follows:

1. If |X| < 2(-f/2), then zTAN(X) = X (see the section on MTH$zCOSH for the definition of f)

2. Otherwise, call MTH$zSINCOS to obtain zSIN(X) and zCOS(X); then

● If zCOS(X) = 0 , signal overflow

● Otherwise, zTAN(X) = zSIN(X)/zCOS(X)

Condition Values Signaled

SS$_ROPRAND Reserved operand. The MTH$HTAN routine
encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library.

113

Chapter 3. Scalar MTH$ Reference Section

MTH$HTAND
MTH$HTAND — Tangent of Angle Expressed in Degrees (H-Floating Value). The Tangent of Angle
Expressed in Degrees (H-Floating Value) routine returns the tangent of a given angle (in degrees) as an
H-floating value.

Format
MTH$HTAND h-tan ,angle-in-degrees

Corresponding JSB Entry Points
MTH$HTAND_R5

Returns
None.

Argument
h-tan

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Tangent of the angle specified by angle-in-degrees. The h-tan argument is the address of an H-floating
number that is this tangent. MTH$HTAND writes the address of the tangent into h-tan.

angle-in-degrees

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The input angle (in degrees). The angle-in-degrees argument is the address of a floating-point number
that is this angle. For MTH$HTAND, angle-in-degrees specifies an H-floating number.

Description
When the input argument is expressed in degrees, the tangent function is computed as follows:

1. If |X| < (180/π)*2(-2/(e-1)) and underflow signaling is enabled, underflow is signaled (see the section
on MTH$zCOSH for the definition of e).

2. Otherwise, if |X| < (180/π)*2(-f/2)

114

Chapter 3. Scalar MTH$ Reference Section

, then zTAND(X) = (π/180)*X. See the description of MTH$zCOSH for the definition of f.

3. Otherwise, call MTH$zSINCOSD to obtain zSIND(X) and zCOSD(X).

● Then, if zCOSD(X) = 0 , signal overflow

● Else, zTAND(X) = zSIND(X)/zCOSD(X)

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HTAND routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library.

MTH$HTANH
MTH$HTANH — Compute the Hyperbolic Tangent (H-Floating Value). The Compute the Hyperbolic
Tangent (H-Floating Value) routine returns the hyperbolic tangent of the input value as an H-floating
value.

Format
MTH$HTANH h-tanh ,floating-point-input-value

Returns
None.

Argument
h-tanh

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Hyperbolic tangent of the value specified by floating-point-input-value. The h-tanh argument is the
address of an H-floating number that is this hyperbolic tangent. MTH$HTANH writes the address of the
hyperbolic tangent into h-tanh.

floating-point-input-value

OpenVMS usage: floating_point

115

Chapter 3. Scalar MTH$ Reference Section

type: H_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of an H-floating number that
contains this input value.

Description
For MTH$HTANH, the hyperbolic tangent of X is computed using a value of 56 for g and a value of 40
for h. The hyperbolic tangent of X is computed as follows:

Value of x Hyperbolic Tangent Returned

|X| ≤ 2 -g X

2 -g < |X| ≤ 0.25 zSINH(X)/zCOSH(X)

0.25 < |X| < h (zEXP(2*X) - 1)/(zEXP(2*X) + 1)
h ≤ |X| sign(X) * 1

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HTANH routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$xIMAG
MTH$xIMAG — Imaginary Part of a Complex Number. The Imaginary Part of a Complex Number
routine returns the imaginary part of a complex number.

Format
MTH$AIMAG complex-number

MTH$DIMAG complex-number

MTH$GIMAG complex-number

Each of the above formats corresponds to one of the floating-point complex types.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only

116

Chapter 3. Scalar MTH$ Reference Section

mechanism: by value

Imaginary part of the input complex-number. MTH$AIMAG returns an F-floating number. MTH
$DIMAG returns a D-floating number. MTH$GIMAG returns a G-floating number.

Argument
complex-number

OpenVMS usage: complex_number
type: F_floating complex, D_floating complex,

G_floating complex
access: read only
mechanism: by reference

The input complex number. The complex-number argument is the address of this floating-point
complex number. For MTH$AIMAG, complex-number specifies an F-floating number. For MTH
$DIMAG, complex-number specifies a D-floating number. For MTH$GIMAG, complex-number
specifies a G-floating number.

Description
The MTH$xIMAG routines return the imaginary part of a complex number.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xIMAG routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

Example
C+
C This Fortran example forms the imaginary part of
C a G-floating complex number using MTH$GIMAG
C and the Fortran random number generator
C RAN.
C
C Declare Z as a complex value and MTH$GIMAG as
C a REAL*8 value. MTH$GIMAG will return the imaginary
C part of Z: Z_NEW = MTH$GIMAG(Z).
C-

 COMPLEX*16 Z
 COMPLEX*16 DCMPLX
 REAL*8 R,I,MTH$GIMAG
 INTEGER M
 M = 1234567

117

Chapter 3. Scalar MTH$ Reference Section

C+
C Generate a random complex number with the
C Fortran generic CMPLX.
C-

 R = RAN(M)
 I = RAN(M)
 Z = DCMPLX(R,I)

C+
C Z is a complex number (r,i) with real part "r" and
C imaginary part "i".
C-

 TYPE *, ' The complex number z is',z
 TYPE *, ' It has imaginary part',MTH$GIMAG(Z)
 END

This Fortran example demonstrates a procedure call to MTH$GIMAG. Because this example uses G-
floating numbers, it must be compiled with the statement "FORTRAN/G filename".

The output generated by this program is as follows:

The complex number z is (0.8535407185554504,0.2043401598930359)
It has imaginary part 0.2043401598930359

MTH$xLOG
MTH$xLOG — Natural Logarithm. The Natural Logarithm routine returns the natural (base e)
logarithm of the input argument.

Format
MTH$ALOG floating-point-input-value

MTH$DLOG floating-point-input-value

MTH$GLOG floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$ALOG_R5

MTH$DLOG_R8

MTH$GLOG_R8

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point

118

Chapter 3. Scalar MTH$ Reference Section

type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

The natural logarithm of floating-point-input-value. MTH$ALOG returns an F-floating number. MTH
$DLOG returns a D-floating number. MTH$GLOG returns a G-floating number.

Argument
floating-point-input-value

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number that
is this value. For MTH$ALOG, floating-point-input-value specifies an F-floating number. For MTH
$DLOG, floating-point-input-value specifies a D-floating number. For MTH$GLOG, floating-point-
input-value specifies a G-floating number.

Description
Computation of the natural logarithm routine is based on the following:

1. ln(X*Y) = ln(X) + ln(Y)

2. ln(1+X) = X - X2/2 + X3/3 - X4/4 ...

for |X| < 1

3. ln(X) = ln(A) + 2* (V + V3/3 + V5/5 + V7/7 ...)

=ln(A) + V*p(V2), where V = (X-A)/(X+A),

A > 0, and p(y) = 2 * (1 + y/3 + y2/5 ...)

For x = 2n*f , where n is an integer and f is in the interval of 0.5 to 1, define the following quantities:

If n ≥ 1, then N = n-1 and F = 2f

If n ≤ 0, then N = n and F = f

From (1) above it follows that:

4. ln(X) = N*ln(2) + ln(F)

Based on the above relationships, zLOG is computed as follows:

1. If |F-1| < 2-5, zLOG(X) = N*zLOG(2) + W + W*p(W),

where W = F-1.

119

Chapter 3. Scalar MTH$ Reference Section

2. Otherwise, zLOG(X) = N*zLOG(2) + zLOG(A) + V*p(V2),

where V = (F-A)/(F+A) and A and zLOG(A)

are obtained by table lookup.

See MTH$HLOG for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xLOG routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_LOGZERNEG Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$xLOG2
MTH$xLOG2 — Base 2 Logarithm. The Base 2 Logarithm routine returns the base 2 logarithm of the
input value specified by floating-point-input-value.

Format
MTH$ALOG2 floating-point-input-value

MTH$DLOG2 floating-point-input-value

MTH$GLOG2 floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

The base 2 logarithm of floating-point-input-value. MTH$ALOG2 returns an F-floating number. MTH
$DLOG2 returns a D-floating number. MTH$GLOG2 returns a G-floating number.

120

Chapter 3. Scalar MTH$ Reference Section

Argument
floating-point-input-value

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number
that is this input value. For MTH$ALOG2, floating-point-input-value specifies an F-floating number.
For MTH$DLOG2, floating-point-input-value specifies a D-floating number. For MTH$GLOG2,
floating-point-input-value specifies a G-floating number.

Description
The base 2 logarithm function is computed as follows:

zLOG2(X) = zLOG2(E) * zLOG(X)

See MTH$HLOG2 for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xLOG2 routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_LOGZERNEG Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$xLOG10
MTH$xLOG10 — Common Logarithm. The Common Logarithm routine returns the common (base
10) logarithm of the input argument.

Format
MTH$ALOG10 floating-point-input-value

MTH$DLOG10 floating-point-input-value

121

Chapter 3. Scalar MTH$ Reference Section

MTH$GLOG10 floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$ALOG10_R5

MTH$DLOG10_R8

MTH$GLOG10_R8

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

The common logarithm of floating-point-input-value. MTH$ALOG10 returns an F-floating number.
MTH$DLOG10 returns a D-floating number. MTH$GLOG10 returns a G-floating number.

Argument
floating-point-input-value

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number.
For MTH$ALOG10, floating-point-input-value specifies an F-floating number. For MTH$DLOG10,
floating-point-input-value specifies a D-floating number. For MTH$GLOG10, floating-point-input-
value specifies a G-floating number.

Description
The common logarithm function is computed as follows:

zLOG10(X) = zLOG10(E) * zLOG(X)

See MTH$HLOG10 for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xLOG10 routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved

122

Chapter 3. Scalar MTH$ Reference Section

operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_LOGZERNEG Logarithm of zero or negative value. Argument
floating-point-input-value is less than or equal
to 0.0. LIB$SIGNAL copies the floating-point
reserved operand to the mechanism argument
vector CHF$L_MCH_SAVR0/R1. The result is
the floating-point reserved operand unless you
have written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$RANDOM
MTH$RANDOM — Random Number Generator, Uniformly Distributed. The Random Number
Generator, Uniformly Distributed routine is a general random number generator.

Format
MTH$RANDOM seed

Returns
OpenVMS usage: floating_point
type: F_floating
access: write only
mechanism: by value

MTH$RANDOM returns an F-floating random number.

Argument
seed

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

The integer seed, a 32-bit number whose high-order 24 bits are converted by MTH$RANDOM to an F-
floating random number. The seed argument is the address of an unsigned longword that contains this
integer seed. The seed is modified by each call to MTH$RANDOM.

Description
This routine must be called again to obtain the next pseudorandom number. The seed is updated
automatically.

123

Chapter 3. Scalar MTH$ Reference Section

The result is a floating-point number that is uniformly distributed between 0.0 inclusively and 1.0
exclusively.

There are no restrictions on the seed, although it should be initialized to different values on separate runs
in order to obtain different random sequences. MTH$RANDOM uses the following method to update
the seed passed as the argument:

SEED = (69069 * SEED + 1) (modulo 232)

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$RANDOM routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

Example
RAND: PROCEDURE OPTIONS (MAIN);
DECLARE FOR$SECNDS ENTRY (FLOAT BINARY (24))
 RETURNS (FLOAT BINARY (24));
DECLARE MTH$RANDOM ENTRY (FIXED BINARY (31))
 RETURNS (FLOAT BINARY (24));
DECLARE TIME FLOAT BINARY (24);
DECLARE SEED FIXED BINARY (31);
DECLARE I FIXED BINARY (7);
DECLARE RESULT FIXED DECIMAL (2);
 /* Get floating random time value */
TIME = FOR$SECNDS (0E0);
 /* Convert to fixed */
SEED = TIME;
 /* Generate 100 random numbers between 1 and 10 */
DO I = 1 TO 100;
 RESULT = 1 + FIXED ((10E0 * MTH$RANDOM (SEED)),31);
 PUT LIST (RESULT);
 END;
END RAND;

This PL/I program demonstrates the use of MTH$RANDOM. The value returned by FOR$SECNDS is
used as the seed for the random-number generator to ensure a different sequence each time the program
is run. The random value returned is scaled so as to represent values between 1 and 10.

Because this program generates random numbers, the output generated will be different each time the
program is executed. One example of the outut generated by this program is as follows:

7 4 6 5 9 10 5 5 3 8 8 1 3 1 3
 2
4 4 2 4 4 8 3 8 9 1 7 1 8 6 9
 10
1 10 10 6 7 3 2 2 1 2 6 6 3 9 5
 8
6 2 3 6 10 8 5 5 4 2 8 5 9 6 4
 2

124

Chapter 3. Scalar MTH$ Reference Section

8 5 4 9 8 7 6 6 8 10 9 5 9 4 5
 7
1 2 2 3 6 5 2 3 4 4 8 9 2 8 5
 5
3 8 1 5

MTH$xREAL
MTH$xREAL — Real Part of a Complex Number. The Real Part of a Complex Number routine returns
the real part of a complex number.

Format
MTH$REAL complex-number

MTH$DREAL complex-number

MTH$GREAL complex-number

Each of the above formats accepts one of the floating-point complex types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Real part of the complex number. MTH$REAL returns an F-floating number. MTH$DREAL returns a
D-floating number. MTH$GREAL returns a G-floating number.

Argument
complex-number

OpenVMS usage: complex_number
type: F_floating complex, D_floating complex,

G_floating complex
access: read only
mechanism: by reference

The complex number whose real part is returned by MTH$xREAL. The complex-number argument is
the address of this floating-point complex number. For MTH$REAL, complex-number is an F-floating
complex number. For MTH$DREAL, complex-number is a D-floating complex number. For MTH
$GREAL, complex-number is a G-floating complex number.

Description
The MTH$xREAL routines return the real part of a complex number.

125

Chapter 3. Scalar MTH$ Reference Section

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xREAL routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

Example
C+
C This Fortran example forms the real
C part of an F-floating complex number using
C MTH$REAL and the Fortran random number
C generator RAN.
C
C Declare Z as a complex value and MTH$REAL as a
C REAL*4 value. MTH$REAL will return the real
C part of Z: Z_NEW = MTH$REAL(Z).
C-

 COMPLEX Z
 COMPLEX CMPLX
 REAL*4 MTH$REAL
 INTEGER M
 M = 1234567

C+
C Generate a random complex number with the Fortran
C generic CMPLX.
C-

 Z = CMPLX(RAN(M),RAN(M))

C+
C Z is a complex number (r,i) with real part "r" and imaginary
C part "i".
C-

 TYPE *, ' The complex number z is',z
 TYPE *, ' It has real part',MTH$REAL(Z)
 END

This Fortran example demonstrates the use of MTH$REAL. The output of this program is as follows:

The complex number z is (0.8535407,0.2043402)
It has real part 0.8535407

MTH$xSIN
MTH$xSIN — Sine of Angle Expressed in Radians. The Sine of Angle Expressed in Radians routine
returns the sine of a given angle (in radians).

126

Chapter 3. Scalar MTH$ Reference Section

Format
MTH$SIN angle-in-radians

MTH$DSIN angle-in-radians

MTH$GSIN angle-in-radians

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$SIN_R4

MTH$DSIN_R7

MTH$GSIN_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Sine of the angle specified by angle-in-radians. MTH$SIN returns an F-floating number. MTH$DSIN
returns a D-floating number. MTH$GSIN returns a G-floating number.

Argument
angle-in-radians

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

Angle (in radians). The angle-in-radians argument is the address of a floating-point number that is
this angle. For MTH$SIN, angle-in-radians specifies an F-floating number. For MTH$DSIN, angle-
in-radians specifies a D-floating number. For MTH$GSIN, angle-in-radians specifies a G-floating
number.

Description
See MTH$xSINCOS for the algorithm used to compute this sine.

See MTH$HSIN for the description of the H-floating point version of this routine.

127

Chapter 3. Scalar MTH$ Reference Section

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xSIN routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$xSINCOS
MTH$xSINCOS — Sine and Cosine of Angle Expressed in Radians. The Sine and Cosine of Angle
Expressed in Radians routine returns the sine and cosine of a given angle (in radians).

Format
MTH$SINCOS angle-in-radians ,sine ,cosine

MTH$DSINCOS angle-in-radians ,sine ,cosine

MTH$GSINCOS angle-in-radians ,sine ,cosine

MTH$HSINCOS angle-in-radians ,sine ,cosine

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$SINCOS_R5

MTH$DSINCOS_R7

MTH$GSINCOS_R7

MTH$HSINCOS_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
MTH$SINCOS, MTH$DSINCOS, MTH$GSINCOS, and MTH$HSINCOS return the sine and cosine of
the input angle by reference in the sine and cosine arguments.

Argument
angle-in-radians

OpenVMS usage: floating_point

type: F_floating, D_floating, G_floating, H_floating

access: read only

128

Chapter 3. Scalar MTH$ Reference Section

mechanism: by reference

Angle (in radians) whose sine and cosine are to be returned. The angle-in-radians argument is the
address of a floating-point number that is this angle. For MTH$SINCOS, angle-in-radians is an F-
floating number. For MTH$DSINCOS, angle-in-radians is a D-floating number. For MTH$GSINCOS,
angle-in-radians is a G-floating number. For MTH$HSINCOS, angle-in-radians is an H-floating
number.

sine

OpenVMS usage: floating_point

type: F_floating, D_floating, G_floating, H_floating

access: write only

mechanism: by reference

Sine of the angle specified by angle-in-radians. The sine argument is the address of a floating-point
number. MTH$SINCOS writes an F-floating number into sine. MTH$DSINCOS writes a D-floating
number into sine. MTH$GSINCOS writes a G-floating number into sine. MTH$HSINCOS writes an H-
floating number into sine.

cosine

OpenVMS usage: floating_point

type: F_floating, D_floating, G_floating, H_floating

access: write only

mechanism: by reference

Cosine of the angle specified by angle-in-radians. The cosine argument is the address of a floating-
point number. MTH$SINCOS writes an F-floating number into cosine. MTH$DSINCOS writes a D-
floating number into cosine. MTH$GSINCOS writes a G-floating number into cosine. MTH$HSINCOS
writes an H-floating number into cosine.

Description
All routines with JSB entry points accept a single argument in R0:Rm, where m, which is defined below,
is dependent on the data type.

Data Type m

F_floating 0
D_floating 1
G_floating 1
H_floating 3

In general, Run-Time Library routines with JSB entry points return one value in R0:Rm. The
MTHxSINCOS routine returns two values, however. The sine of angle-in-radians is returned in R0:Rm
and the cosine of angle-in-radians is returned in (R<m+1>:R<2*m+1>).

In radians, the computation of zSIN(X) and zCOS(X) is based on the following polynomial expansions:

● sin(X) = X - X3/(3!) + X5/(5!) - X7/(7!) ...

129

Chapter 3. Scalar MTH$ Reference Section

=X + X*P(X2), where
P(y) = y/(3!) + y2/(5!) + y3/(7!) ...

● cos(X) = 1 - X2/(2!) + x4/(4!) -X6/(6!) ...
=Q(X2), where
Q(y) = (1 - y/(2!) + y2/(4!) + y3/(6!) ...)

1. If |X| < 2 (-f/2),

then zSIN(X) = X and zCOS(X) = 1

(see the section on MTH$zCOSH for

the definition of f)

2. If 2-f/2 ≤ |X| < π/4,

then zSIN(X) = X + P(X2)

and zCOS(X) = Q(X2)

3. If π/4 ≤ |X| and X > 0,

a. Let J = INT(X/(π/4))

and I = J modulo 8

b. If J is even, let Y = X - J* (π/4)

otherwise, let Y = (J+1)* (π/4) - X

With the above definitions, the following table relates zSIN(X) and zCOS(X) to zSIN(Y) and
zCOS(Y):

Value of I zSIN(X) zCOS(X)

0 zSIN(Y) zCOS(Y)
1 zCOS(Y) zSIN(Y)
2 zCOS(Y) -zSIN(Y)
3 zSIN(Y) -zCOS(Y)
4 -zSIN(Y) -zCOS(Y)
5 -zCOS(Y) -zSIN(Y)
6 -zCOS(Y) zSIN(Y)
7 -zSIN(Y) zCOS(Y)

c. i. zSIN(Y) and zCOS(Y) are computed as follows:

zSIN(Y) = Y + P(Y2),

and zCOS(Y) = Q(Y2)

4. If π/4 ≤ |X| and X < 0,

then zSIN(X) = -zSIN(|X|)

130

Chapter 3. Scalar MTH$ Reference Section

and zCOS(X) = zCOS(|X|)

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xSINCOS routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$xSINCOSD
MTH$xSINCOSD — Sine and Cosine of Angle Expressed in Degrees. The Sine and Cosine of Angle
Expressed in Degrees routine returns the sine and cosine of a given angle (in degrees).

Format
MTH$SINCOSD angle-in-degrees ,sine ,cosine

MTH$DSINCOSD angle-in-degrees ,sine ,cosine

MTH$GSINCOSD angle-in-degrees ,sine ,cosine

MTH$HSINCOSD angle-in-degrees ,sine ,cosine

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$SINCOSD_R5

MTH$DSINCOSD_R7

MTH$GSINCOSD_R7

MTH$HSINCOSD_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
MTH$SINCOSD, MTH$DSINCOSD, MTH$GSINCOSD, and MTH$HSINCOSD return the sine and
cosine of the input angle by reference in the sine and cosine arguments.

Argument
angle-in-degrees

OpenVMS usage: floating_point

type: F_floating, D_floating, G_floating, H_floating

131

Chapter 3. Scalar MTH$ Reference Section

access: read only

mechanism: by reference

Angle (in degrees) whose sine and cosine are returned by MTH$xSINCOSD. The angle-in-degrees
argument is the address of a floating-point number that is this angle. For MTH$SINCOSD, angle-in-
degrees is an F-floating number. For MTH$DSINCOSD, angle-in-degrees is a D-floating number. For
MTH$GSINCOSD, angle-in-degrees is a G-floating number. For MTH$HSINCOSD, angle-in-degrees
is an H-floating number.

sine

OpenVMS usage: floating_point

type: F_floating, D_floating, G_floating, H_floating

access: write only

mechanism: by reference

Sine of the angle specified by angle-in-degrees. The sine argument is the address of a floating-point
number. MTH$SINCOSD writes an F-floating number into sine. MTH$DSINCOSD writes a D-floating
number into sine. MTH$GSINCOSD writes a G-floating number into sine. MTH$HSINCOSD writes an
H-floating number into sine.

cosine

OpenVMS usage: floating_point

type: F_floating, D_floating, G_floating, H_floating

access: write only

mechanism: by reference

Cosine of the angle specified by angle-in-degrees. The cosine argument is the address of a floating-
point number. MTH$SINCOSD writes an F-floating number into cosine. MTH$DSINCOSD writes
a D-floating number into cosine. MTH$GSINCOSD writes a G-floating number into cosine. MTH
$HSINCOSD writes an H-floating number into cosine.

Description
All routines with JSB entry points accept a single argument in R0:Rm, where m, which is defined below,
is dependent on the data type.

Data Type m

F_floating 0
D_floating 1
G_floating 1
H_floating 3

In general, Run-Time Library routines with JSB entry points return one value in R0:Rm. The MTH
$xSINCOSD routine returns two values, however. The sine of angle-in-degrees is returned in R0:Rm
and the cosine of angle-in-degrees is returned in (R<m+1>:R<2*m+1>).

In degrees, the computation of zSIND(X) and zCOSD(X) is based on the following polynomial
expansions:

132

Chapter 3. Scalar MTH$ Reference Section

● SIND(X) = (C*X) - (C*X)3/(3!) +
(C*X)5/(5!) - (C*X)7/(7!) ...
= X/26 + X*P(X2), where
P(y) = -y/(3!) + y2/(5!) - y3/(7!) ...

● COSD(X) = 1 - (C*X)2/(2!) +
(C*X)4/(4!) - (C*X)6/(6!) ...
=Q(X2), where
Q(y) = 1 - y/(2!) + y2/(4!) - y3/(6!) ...
and C = π/180

1. If |X| <(180/π)*2-2^e-1 and underflow signaling is enabled,

underflow is signaled for zSIND(X) and zSINCOSD(X).

(See MTH$zCOSH for the definition of e.)

otherwise:

2. If |X| < (180/π)*2(-f/2),

then zSIND(X)= (π/180)*X and zCOSD(X) = 1.

(See MTH$zCOSH for the definition of f.)

3. If (180/π)*2(-f/2) ≤ |X| < 45

then zSIND(X) = X/26 + P(X2)

and zCOSD(X) = Q(X2)

4. If 45 ≤ |X| and X > 0,

a. Let J = INT(X/(45)) and

I = J modulo 8

b. If J is even, let Y = X - J*45 ;

otherwise, let Y = (J+1)*45 - X.

With the above definitions, the following table relates

zSIND(X) and zCOSD(X) to zSIND(Y) and zCOSD(Y):

Value of I zSIND(X) zCOSD(X)

0 zSIND(Y) zCOSD(Y)
1 zCOSD(Y) zSIND(Y)
2 zCOSD(Y) -zSIND(Y)
3 zSIND(Y) -zCOSD(Y)
4 -zSIND(Y) -zCOSD(Y)
5 -zCOSD(Y) -zSIND(Y)
6 -zCOSD(Y) zSIND(Y)

133

Chapter 3. Scalar MTH$ Reference Section

Value of I zSIND(X) zCOSD(X)

7 -zSIND(Y) zCOSD(Y)

c. zSIND(Y) and zCOSD(Y) are computed as follows:

zSIND(Y) = Y/26 + P(Y2)

zCOSD(Y) = Q(Y2)

d. If 45 ≤ |X| and X < 0,

then zSIND(X) = -zSIND(|X|)

and zCOSD(X) = zCOSD(|X|)

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xSINCOSD routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOUNDMAT Floating-point underflow in Math Library. The
absolute value of the input angle is less than 180/
π*2 -m (where m = 128 for F-floating and D-
floating, 1,024 for G-floating, and 16,384 for H-
floating).

MTH$xSIND
MTH$xSIND — Sine of Angle Expressed in Degrees. The Sine of Angle Expressed in Degrees routine
returns the sine of a given angle (in degrees).

Format
MTH$SIND angle-in-degrees

MTH$DSIND angle-in-degrees

MTH$GSIND angle-in-degrees

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$SIND_R4

MTH$DSIND_R7

MTH$GSIND_R7

134

Chapter 3. Scalar MTH$ Reference Section

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

The sine of the angle. MTH$SIND returns an F-floating number. MTH$DSIND returns a D-floating
number. MTH$GSIND returns a G-floating number.

Argument
angle-in-degrees

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

Angle (in degrees). The angle-in-degrees argument is the address of a floating-point number that is this
angle. For MTH$SIND, angle-in-degrees specifies an F-floating number. For MTH$DSIND, angle-
in-degrees specifies a D-floating number. For MTH$GSIND, angle-in-degrees specifies a G-floating
number.

Description
See MTH$xSINCOSD for the algorithm that is used to compute the sine.

See MTH$HSIND for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xSIND routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOUNDMAT Floating-point underflow in Math Library. The
absolute value of the input angle is less than 180/
π*2 -m (where m = 128 for F-floating and D-
floating, and 1,024 for G-floating).

MTH$xSINH
MTH$xSINH — Hyperbolic Sine. The Hyperbolic Sine routine returns the hyperbolic sine of the input
value specified by floating-point-input-value.

135

Chapter 3. Scalar MTH$ Reference Section

Format
MTH$SINH floating-point-input-value

MTH$DSINH floating-point-input-value

MTH$GSINH floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

Returns

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

The hyperbolic sine of floating-point-input-value. MTH$SINH returns an F-floating number. MTH
$DSINH returns a D-floating number. MTH$GSINH returns a G-floating number.

Argument
floating-point-input-value

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number that
is this value. For MTH$SINH, floating-point-input-value specifies an F-floating number. For MTH
$DSINH, floating-point-input-value specifies a D-floating number. For MTH$GSINH, floating-point-
input-value specifies a G-floating number.

Description
Computation of the hyperbolic sine function depends on the magnitude of the input argument. The range
of the function is partitioned using four data type dependent constants: a(z), b(z), and c(z). The subscript
z indicates the data type. The constants depend on the number of exponent bits (e) and the number of
fraction bits (f) associated with the data type (z).

The values of e and f are:

z e f

F 8 24
D 8 56
G 11 53

136

Chapter 3. Scalar MTH$ Reference Section

The values of the constants in terms of e and f are:

Variable Value

a(z) 2 (-f/2)

b(z) CEILING[(f+1)/2*ln(2)]
c(z) (2 (e-1)*ln(2))

Based on the above definitions, zSINH(X) is computed as follows:

Value of X Value Returned

|X| < a(z) X
a(z) ≤ |X| < 1.0 zSINH(X) is computed using apower series

expansion in |X| 2

1.0 ≤ |X| < b(z) (zEXP(X) - zEXP(-X))/2
b(z) ≤ |X| < c(z) SIGN(X)*zEXP(|X|)/2
c(z) ≤ |X| Overflow occurs

See MTH$HSINH for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$HTANH routine

encountered a floating-point reserved operand
(a floating-point datum with a sign bit of 1 and a
biased exponent of 0) due to incorrect user input.
Floating-point reserved operands are reserved for
use by VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library: the
absolute value of floating-point-input-value
is greater than yyy. LIB$SIGNAL copies the
floating-point reserved operand to the mechanism
argument vector CHF$L_MCH_SAVR0/R1. The
result is the floating-point reserved operand unless
you have written a condition handler to change
CHF$L_MCH_SAVR0/R1.

The values of yyy are approximately:

● MTH$SINH---88.722

● MTH$DSINH---88.722

● MTH$GSINH---709.782

MTH$xSQRT
MTH$xSQRT — Square Root. The Square Root routine returns the square root of the input value
floating- point-input-value.

137

Chapter 3. Scalar MTH$ Reference Section

Format
MTH$SQRT floating-point-input-value

MTH$DSQRT floating-point-input-value

MTH$GSQRT floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$SQRT_R3

MTH$DSQRT_R5

MTH$GSQRT_R5

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

The square root of floating-point-input-value. MTH$SQRT returns an F-floating number. MTH
$DSQRT returns a D-floating number. MTH$GSQRT returns a G-floating number.

Argument
floating-point-input-value

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

Input value. The floating-point-input-value argument is the address of a floating-point number that
contains this input value. For MTH$SQRT, floating-point-input-value specifies an F-floating number.
For MTH$DSQRT, floating-point-input-value specifies a D-floating number. For MTH$GSQRT,
floating-point-input-value specifies a G-floating number.

Description
The square root of X is computed as follows:

If X < 0 , an error is signaled.

Let X = 2 K * F

138

Chapter 3. Scalar MTH$ Reference Section

where:

K is the exponential part of the floating-point data

F is the fractional part of the floating-point data

If K is even:

X = 2 (2*P) * F,
zSQRT(X) = 2 P * zSQRT(F),
1/2 ≤ F < 1 , where P = K/2

If K is odd:

X = 2 (2*P+1) * F = 2 (2*P+2) * (F/2),
zSQRT(X) = 2 (P+1) * zSQRT(F/2),
1/4 ≤ F/2 < 1/2 , where p = (K-1)/2

Let F' = A*F + B, when K is even:

A = 0.95F6198 (hex)

B = 0.6BA5918 (hex)

Let F' = A* (F/2) + B, when K is odd:

A = 0.D413CCC (hex)

B = 0.4C1E248 (hex)

Let K' = P, when K is even

Let K' = P+1, when K is odd

Let Y[0] = 2K' * F' be a straight line approximation within the given interval using coefficients A and B
which minimize the absolute error at the midpoint and endpoint.

Starting with Y[0], n Newton-Raphson iterations are performed:

Y[n+1] = 1/2 * (Y[n] + X/Y[n])

where n = 2, 3, or 3 for z = F-floating, D-floating, or G-floating, respectively.

See MTH$HSQRT for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xSQRT routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_SQUROONEG Square root of negative number. Argument
floating-point-input-value is less than 0.0. LIB

139

Chapter 3. Scalar MTH$ Reference Section

$SIGNAL copies the floating-point reserved
operand to the mechanism argument vector
CHF$L_MCH_SAVR0/R1. The result is the
floating-point reserved operand unless you have
written a condition handler to change CHF
$L_MCH_SAVR0/R1.

MTH$xTAN
MTH$xTAN — Tangent of Angle Expressed in Radians. The Tangent of Angle Expressed in Radians
routine returns the tangent of a given angle (in radians).

Format
MTH$TAN angle-in-radians

MTH$DTAN angle-in-radians

MTH$GTAN angle-in-radians

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$TAN_R4

MTH$DTAN_R7

MTH$GTAN_R7

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

The tangent of the angle specified by angle-in-radians. MTH$TAN returns an F-floating number. MTH
$DTAN returns a D-floating number. MTH$GTAN returns a G-floating number.

Argument
angle-in-radians

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

140

Chapter 3. Scalar MTH$ Reference Section

The input angle (in radians). The angle-in-radians argument is the address of a floating-point number
that is this angle. For MTH$TAN, angle-in-radians specifies an F-floating number. For MTH$DTAN,
angle-in-radians specifies a D-floating number. For MTH$GTAN, angle-in-radians specifies a G-
floating number.

Description
When the input argument is expressed in radians, the tangent function is computed as follows:

1. If |X| < 2(-f/2) , then zTAN(X) = X (see the section on MTH$zCOSH for the definition of f)

2. Otherwise, call MTH$zSINCOS to obtain zSIN(X) and zCOS(X); then

a. If zCOS(X) = 0 , signal overflow

b. Otherwise, zTAN(X) = zSIN(X)/zCOS(X)

See MTH$HTAN for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xTAN routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library.

MTH$TAND
MTH$TAND — Tangent of Angle Expressed in Degrees. The Tangent of Angle Expressed in Degrees
routine returns the tangent of a given angle (in degrees).

Format
MTH$TAND angle-in-degrees

MTH$DTAND angle-in-degrees

MTH$GTAND angle-in-degrees

Each of the above formats accepts one of the floating-point types as input.

Corresponding JSB Entry Points
MTH$TAND_R4

MTH$DTAND_R7

MTH$GTAND_R7

141

Chapter 3. Scalar MTH$ Reference Section

Each of the above JSB entry points accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

Tangent of the angle specified by angle-in-degrees. MTH$TAND returns an F-floating number. MTH
$DTAND returns a D-floating number. MTH$GTAND returns a G-floating number.

Argument
angle-in-degrees

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

The input angle (in degrees). The angle-in-degrees argument is the address of a floating-point number
which is this angle. For MTH$TAND, angle-in-degrees specifies an F-floating number. For MTH
$DTAND, angle-in-degrees specifies a D-floating number. For MTH$GTAND, angle-in-degrees
specifies a G-floating number.

Description
When the input argument is expressed in degrees, the tangent function is computed as follows:

1. If |X| < (180/π)*2(-2/(e-1)) and underflow signaling is enabled, underflow is signaled. (See the section
on MTH$zCOSH for the definition of e.)

2. Otherwise, if |X| < (180/π)*2(-f/2), then zTAND(X) = (π/180)*X. (See the description of MTH
$zCOSH for the definition of f.)

3. Otherwise, call MTH$zSINCOSD to obtain zSIND(X) and zCOSD(X).

a. Then, if zCOSD(X) = 0 , signal overflow

b. Else, zTAND(X) = zSIND(X)/zCOSD(X)

See MTH$HTAND for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xTAND routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit

142

Chapter 3. Scalar MTH$ Reference Section

of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$_FLOOVEMAT Floating-point overflow in Math Library.
MTH$_FLOUNDMAT Floating-point underflow in Math Library.

MTH$xTANH
MTH$xTANH — Compute the Hyperbolic Tangent. The Compute the Hyperbolic Tangent routine
returns the hyperbolic tangent of the input value.

Format
MTH$TANH floating-point-input-value

MTH$DTANH floating-point-input-value

MTH$GTANH floating-point-input-value

Each of the above formats accepts one of the floating-point types as input.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: write only
mechanism: by value

The hyperbolic tangent of floating-point-input-value. MTH$TANH returns an F-floating number.
MTH$DTANH returns a D-floating number. MTH$GTANH returns a G-floating number.

Argument
floating-point-input-value

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating
access: read only
mechanism: by reference

The input value. The floating-point-input-value argument is the address of a floating-point number that
contains this input value. For MTH$TANH, floating-point-input-value specifies an F-floating number.
For MTH$DTANH, floating-point-input-value specifies a D-floating number. For MTH$GTANH,
floating-point-input-value specifies a G-floating number.

Description
In calculating the hyperbolic tangent of x, the values of g and h are:

143

Chapter 3. Scalar MTH$ Reference Section

z g h

F 12 10
D 28 21
G 26 20

For MTH$TANH, MTH$DTANH, and MTH$GTANH the hyperbolic tangent of x is then computed as
follows:

Value of x Hyperbolic Tangent Returned

|x| ≤ 2 -g X

2 -g < |X| < 0.5 xTANH(X) = X + X 3 * R(X 2), where R(X 2) is a
rational function of X 2.

0.5 ≤ |X| < 1.0 xTANH(X) = xTANH(xHI) + xTANH(xLO)*C/B
where C = 1 - xTANH(xHI)*xTANH(xHI),
B = 1 + xTANH(xHI)*xTANH(xLO),
xHI = 1/2 + N/16 + 1/32 for N=0,1,...,7,
and xLO = X - xHI.

1.0 < |X| < h xTANH(X) = (xEXP(2*X) - 1)/(xEXP(2*X) + 1)
h ≤ |X| xTANH(X) = sign(X) *1

See MTH$HTANH for the description of the H-floating point version of this routine.

Condition Values Signaled
SS$_ROPRAND Reserved operand. The MTH$xTANH routine

encountered a floating-point reserved operand due
to incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of 0. Floating-point
reserved operands are reserved for future use by
VSI.

MTH$UMAX
MTH$UMAX — Compute Unsigned Maximum. The Compute Unsigned Maximum routine computes
the unsigned longword maximum of n unsigned longword arguments, where n is greater than or equal
to 1.

Format
MTH$UMAX argument [argument,...]

Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)

144

Chapter 3. Scalar MTH$ Reference Section

access: write only
mechanism: by value

Maximum value returned by MTH$UMAX.

Argument
argument

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Argument whose maximum MTH$UMAX computes. Each argument argument is an unsigned
longword that contains one of these values.

argument

OpenVMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by reference

Additional arguments whose maximum MTH$UMAX computes. Each argument argument is an
unsigned longword that contains one of these values.

Description
MTH$UMAX is the unsigned version of MTH$JMAX0, and computes the unsigned longword
maximum of n unsigned longword arguments, where n is greater than or equal to 1.

Condition Values Signaled
None.

MTH$UMIN
MTH$UMIN — Compute Unsigned Minimum. The Compute Unsigned Minimum routine computes the
unsigned longword minimum of n unsigned longword arguments, where n is greater than or equal to 1.

Format
MTH$UMIN argument [argument,...]

Returns
OpenVMS usage: longword_unsigned

145

Chapter 3. Scalar MTH$ Reference Section

type: longword (unsigned)
access: write only
mechanism: by value

Minimum value returned by MTH$UMIN.

Argument
argument

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Argument whose minimum MTH$UMIN computes. Each argument argument is an unsigned longword
that contains one of these values.

argument

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Additional arguments whose minimum MTH$UMIN computes. Each argument argument is an
unsigned longword that contains one of these values.

Description
MTH$UMIN is the unsigned version of MTH$JMIN0, and computes the unsigned longword minimum
of n unsigned longword arguments, where n is greater than or equal to 1.

Condition Values Signaled
None.

146

Chapter 4. Vector MTH$
Reference Section
The Vector MTH$ Reference Section provides detailed descriptions of two sets of vector routines
provided by the OpenVMS RTL Mathematics (MTH$) Facility, BLAS Level 1 and FOLR. The BLAS
Level 1 are the Basic Linear Algebraic Subroutines designed by Lawson, Hanson, Kincaid, and Krogh
(1978). The FOLR (First Order Linear Recurrence) routines provide a vectorized algorithm for the linear
recurrence relation.

BLAS1$VIxAMAX
BLAS1$VIxAMAX — Obtain the Index of the First Element of a Vector Having the Largest Absolute
Value. The Obtain the Index of the First Element of a Vector Having the Largest Absolute Value routine
finds the index of the first occurrence of a vector element having the maximum absolute value.

Format
BLAS1$VISAMAX n ,x ,incx

BLAS1$VIDAMAX n ,x ,incx

BLAS1$VIGAMAX n ,x ,incx

BLAS1$VICAMAX n ,x ,incx

BLAS1$VIZAMAX n ,x ,incx

BLAS1$VIWAMAX n ,x ,incx

Use BLAS1$VISAMAX for single-precision real operations.

Use BLAS1$VIDAMAX for double-precision real (D-floating) operations.

Use BLAS1$VIGAMAX for double-precision real (G-floating) operations.

Use BLAS1$VICAMAX for single-precision complex operations.

Use BLAS1$VIZAMAX for double-precision complex (D-floating) operations.

Use BLAS1$VIWAMAX for double-precision complex (G-floating) operations.

Returns
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

For the real versions of this routine, the function value is the index of the first occurrence of a vector
element having the maximum absolute value, as follows:

147

Chapter 4. Vector MTH$ Reference Section

|x[i]| = max {|x[j]| for j=1,2,...,n}

For the complex versions of this routine, the function value is the index of the first occurrence of a
vector element having the largest sum of the absolute values of the real and imaginary parts of the vector
elements, as follows:

|Re(x[i])| + |Im(x[i])|= max {|Re(x[j])| + |Im(x[j])| for j=1,2,...,n}

Argument
n

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of elements in vector x. The n argument is the address of a signed longword integer containing
the number of elements. If you specify a negative value or 0 for n, 0 is returned.

x

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array x are accessed only if the increment
argument of x, called incx, is 1. The x argument is the address of a floating-point or floating-point
complex number that is this array. This argument is an array of length at least:

1+(n-1)*|incx|

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS1$VISAMAX F-floating real
BLAS1$VIDAMAX D-floating real
BLAS1$VIGAMAX G-floating real
BLAS1$VICAMAX F-floating complex
BLAS1$VIZAMAX D-floating complex
BLAS1$VIWAMAX G-floating complex

If n is less than or equal to 0, then imax is 0.

148

Chapter 4. Vector MTH$ Reference Section

incx

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array x. The incx argument is the address of a signed longword integer
containing the increment argument. If incx is greater than or equal to 0, then x is referenced forward in
array x; that is, x_i is referenced as:

x(1+(i-1)*incx)

where:

x = array specified in x

i = element of the vector x

incx = increment argument for the array x specified in incx

Description
BLAS1$VISAMAX, BLAS1$VIDAMAX, and BLAS1$VIGAMAX find the index, i , of the
first occurrence of a vector element having the maximum absolute value. BLAS1$VICAMAX,
BLAS1$VIZAMAX, and BLAS1$VIWAMAX find the index, i , of the first occurrence of a vector
element having the largest sum of the absolute values of the real and imaginary parts of the vector
elements.

Vector x contains n elements that are accessed from array x by stepping incx elements at a time. The
vector x is a real or complex single-precision or double- precision (D and G) n -element vector. The
vector can be a row or a column of a matrix. Both forward and backward indexing are permitted.

BLAS1$VISAMAX, BLAS1$VIDAMAX, and BLAS1$VIGAMAX determine the smallest integer i of
the n -element vector x such that:

|x[i]| = max {|x[j]| for j=1,2,...,n}

BLAS1$VICAMAX, BLAS1$VIZAMAX, and BLAS1$VIWAMAX determine the smallest integer i of
the n-element vector x such that:

|Re(x[i])| + |Im(x[i])|= max {|Re(x[j])| + |Im(x[j])| for j=1,2,...,n}

You can use the BLAS1$VIxAMAX routines to obtain the pivots in Gaussian elimination.

The public-domain BLAS Level 1 IxAMAX routines require a positive value for incx. The Run-Time
Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for incx = 0. Therefore, specifying 0 for incx has the
effect of setting imax equal to 1 using vector operations.

Example
C

149

Chapter 4. Vector MTH$ Reference Section

C To obtain the index of the element with the maximum
C absolute value.
C
 INTEGER IMAX,N,INCX
 REAL X(40)
 INCX = 2
 N = 20
 IMAX = BLAS1$VISAMAX(N,X,INCX)

BLAS1$VxASUM
BLAS1$VxASUM — Obtain the Sum of the Absolute Values of the Elements of a Vector. The Obtain
the Sum of the Absolute Values of the Elements of a Vector routine determines the sum of the absolute
values of the elements of the n -element vector x.

Format
BLAS1$VSASUM n ,x ,incx

BLAS1$VDASUM n ,x ,incx

BLAS1$VGASUM n ,x ,incx

BLAS1$VSCASUM n ,x ,incx

BLAS1$VDZASUM n ,x ,incx

BLAS1$VGWASUM n ,x ,incx

Use BLAS1$VSASUM for single-precision real operations.

Use BLAS1$VDASUM for double-precision real (D-floating) operations.

Use BLAS1$VGASUM for double-precision real (G-floating) operations.

Use BLAS1$VSCASUM for single-precision complex operations.

Use BLAS1$VDZASUM for double-precision complex (D-floating) operations.

Use BLAS1$VGWASUM for double-precision complex (G-floating) operations.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, or G_floating real
access: write only
mechanism: by value

The function value, called sum, is the sum of the absolute values of the elements of the vector x. The
data type of the function value is a real number; for the BLAS1$VSCASUM, BLAS1$VDZASUM, and
BLAS1$VGWASUM routines, the data type of the function value is the real data type corresponding to
the complex argument data type.

150

Chapter 4. Vector MTH$ Reference Section

Argument
n

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of elements in vector x to be added. The n argument is the address of a signed longword integer
containing the number of elements.

x

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array x are accessed only if the increment
argument of x, called incx, is 1. The x argument is the address of a floating-point or floating-point
complex number that is this array. This argument is an array of length at least:

1+(n-1)*|incx|

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS1$VSASUM F-floating real
BLAS1$VDASUM D-floating real
BLAS1$VGASUM G-floating real
BLAS1$VSCASUM F-floating complex
BLAS1$VDZASUM D-floating complex
BLAS1$VGWASUM G-floating complex

If n is less than or equal to 0, then sum is 0.0.

incx

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only

151

Chapter 4. Vector MTH$ Reference Section

mechanism: by reference

Increment argument for the array x. The incx argument is the address of a signed longword integer
containing the increment argument. If incx is greater than or equal to 0, then x is referenced forward in
array x; that is, x_i is referenced in:

x(1+(i-1)*incx)

where:

x = array specified in x

i = element of the vector x

incx = increment argument for the array x specified in incx

If you specify a negative value for incx , it is interpreted as the absolute value of incx.

Description
BLAS1$VSASUM, BLAS1$VDASUM, and BLAS1$VGASUM obtain the sum of the absolute
values of the elements of the n -element vector x. BLAS1$VSCASUM, BLAS1$VDZASUM, and
BLAS1$VGWASUM obtain the sum of the absolute values of the real and imaginary parts of the
elements of the n -element vector x.

Vector x contains n elements that are accessed from array x by stepping incx elements at a time. The
vector x is a real or complex single-precision or double- precision (D and G) n -element vector. The
vector can be a row or a column of a matrix. Both forward and backward indexing are permitted.

BLAS1$VSASUM, BLAS1$VDASUM, and BLAS1$VGASUM compute the sum of the absolute values
of the elements of x, which is expressed as follows:

BLAS1$VSCASUM, BLAS1$VDZASUM, and BLAS1$VGWASUM compute the sum of the absolute
values of the real and imaginary parts of the elements of x , which is expressed as follows:

where | xi | = (ai, bi)

and | ai | + | bi | = | real | + | imaginary |

The public-domain BLAS Level 1 xASUM routines require a positive value for incx. The Run-Time
Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for incx = 0. Therefore, specifying 0 for incx has the
effect of computing n*|x1| using vector operations.

Rounding in the summation occurs in a different order than in a sequential evaluation of the sum, so the
final result may differ from the result of a sequential evaluation.

152

Chapter 4. Vector MTH$ Reference Section

Example
C
C To obtain the sum of the absolute values of the
C elements of vector x:
C
 INTEGER N,INCX
 REAL X(20),SUM
 INCX = 1
 N = 20
 SUM = BLAS1$VSASUM(N,X,INCX)

BLAS1$VxAXPY
BLAS1$VxAXPY — Multiply a Vector by a Scalar and Add a Vector. The Multiply a Vector by a
Scalar and Add a Vector routine computes ax + y, where a is a scalar number and x and y are n -
element vectors.

Format
BLAS1$VSAXPY n ,a ,x ,incx ,y ,incy

BLAS1$VDAXPY n ,a ,x ,incx ,y ,incy

BLAS1$VGAXPY n ,a ,x ,incx ,y ,incy

BLAS1$VCAXPY n ,a ,x ,incx ,y ,incy

BLAS1$VZAXPY n ,a ,x ,incx ,y ,incy

BLAS1$VWAXPY n ,a ,x ,incx ,y ,incy

Use BLAS1$VSAXPY for single-precision real operations.

Use BLAS1$VDAXPY for double-precision real (D-floating) operations.

Use BLAS1$VGAXPY for double-precision real (G-floating) operations.

Use BLAS1$VCAXPY for single-precision complex operations.

Use BLAS1$VZAXPY for double-precision complex (D-floating) operations.

Use BLAS1$VWAXPY for double-precision complex (G-floating) operations.

Returns
None.

Argument
n

OpenVMS usage: longword_signed

153

Chapter 4. Vector MTH$ Reference Section

type: longword integer (signed)
access: read only
mechanism: by reference

Number of elements in vectors x and y. The n argument is the address of a signed longword integer
containing the number of elements. If n is less than or equal to 0, then y is unchanged.

a

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference

Scalar multiplier for the array x. The a argument is the address of a floating-point or floating-point
complex number that is this multiplier. If a equals 0, then y is unchanged. If a shares a memory location
with any element of the vector y , results are unpredictable. Specify the same data type for arguments a,
x, and y.

x

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array x are accessed only if the increment
argument of x, called incx, is 1. The x argument is the address of a floating-point or floating-point
complex number that is this array. The length of this array is at least:

1+(n-1)*|incx|

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS1$VSAXPY F-floating real
BLAS1$VDAXPY D-floating real
BLAS1$VGAXPY G-floating real
BLAS1$VCAXPY F-floating complex
BLAS1$VZAXPY D-floating complex
BLAS1$VWAXPY G-floating complex

154

Chapter 4. Vector MTH$ Reference Section

If any element of x shares a memory location with an element of y, the results are unpredictable.

incx

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array x. The incx argument is the address of a signed longword integer
containing the increment argument. If incx is greater than or equal to 0, then x is referenced forward in
array x; that is, xi is referenced in:

x(1+(i-1)*incx)

where:

x = array specified in x

i = element of the vector x

incx = increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x;) that is, xi is referenced in:

x(1+(n-i)*|incx|)

where:

x = array specified in x

n = number of vector elements specified in n

i = element of the vector x

incx = increment argument for the array x specified in incx

y

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference, array reference

On entry, array containing the elements to be accessed. All elements of array y are accessed only if the
increment argument of y, called incy, is 1. The y argument is the address of a floating-point or floating-
point complex number that is this array. The length of this array is at least:

1+(n-1)*|incy|

where:

n = number of vector elements specified in n

155

Chapter 4. Vector MTH$ Reference Section

incy = increment argument for the array y specified in incy

Specify the data type as follows:

Routine Data Type for y

BLAS1$VSAXPY F-floating real
BLAS1$VDAXPY D-floating real
BLAS1$VGAXPY G-floating real
BLAS1$VCAXPY F-floating complex
BLAS1$VZAXPY D-floating complex
BLAS1$VWAXPY G-floating complex

If n is less than or equal to 0, then y is unchanged. If any element of x shares a memory location with
an element of y, the results are unpredictable.

On exit, y contains an array of length at least:

1+(n-1)*|incy|

where:

n = number of vector elements specified in n

incy = increment argument for the array y specified in incy

After the call to BLAS1$VxAXPY, ui is set equal to:

yi+a*xi

where:

y = the vector y

i = element of the vector x or y

a = scalar multiplier for the vector x specified in a

x = the vector x

incy

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array y. The incy argument is the address of a signed longword integer
containing the increment argument. If incy is greater than or equal to 0, then y is referenced forward in
array y; that is, yi is referenced in:

y(1+(i-1)*incy)

where:

156

Chapter 4. Vector MTH$ Reference Section

y = array specified in y

i = element of the vector y

incy = increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y ; that is, yi is is referenced in:

y(1+(n-i)*|incy|)

where:

y = array specified in y

n = number of vector elements specified in n

i = element of the vector y

incy = increment argument for the array y specified in incy

Description
BLAS1$VxAXPY multiplies a vector x by a scalar, adds to a vector y, and stores the result in the vector
y. This is expressed as follows:

y ← ax + y

where a is a scalar number and x and y are real or complex single-precision or double-precision (D and
G) n -element vectors. The vectors can be rows or columns of a matrix. Both forward and backward
indexing are permitted. Vectors x and y contain n elements that are accessed from arrays x and y by
stepping incx and incy elements at a time.

The routine name determines the data type you should specify for arguments a , x , and y. Specify the
same data type for each of these arguments.

The algorithm does not provide a special case for incx = 0. Therefore, specifying 0 for incx has the
effect of adding the constant a * x1 to all elements of the vector y using vector operations.

Example
C
C To compute y=y+2.0*x using SAXPY:
C
 INTEGER N,INCX,INCY
 REAL X(20), Y(20),A
 INCX = 1
 INCY = 1
 A = 2.0
 N = 20
 CALL BLAS1$VSAXPY(N,A,X,INCX,Y,INCY)

BLAS1$VxCOPY
BLAS1$VxCOPY — Copy a Vector. The Copy a Vector routine copies n elements of the vector x to the
vector y.

157

Chapter 4. Vector MTH$ Reference Section

Format
BLAS1$VSCOPY n ,x ,incx ,y ,incy

BLAS1$VDCOPY n ,x ,incx ,y ,incy

BLAS1$VCCOPY n ,x ,incx ,y ,incy

BLAS1$VZCOPY n ,x ,incx ,y ,incy

Use BLAS1$VSCOPY for single-precision real operations.

Use BLAS1$VDCOPY for double-precision real (D or G) operations.

Use BLAS1$VCCOPY for single-precision complex operations.

Use BLAS1$VZCOPY for double-precision complex (D or G) operations.

Returns
None.

Argument
n

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of elements in vector x to be copied. The n argument is the address of a signed longword
integer containing the number of elements in vector x. If n is less than or equal to 0, then y is
unchanged.

x

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array x are accessed only if the increment
argument of x, called incx, is 1. The x argument is the address of a floating-point or floating-point
complex number that is this array. The length of this array is at least:

1+(n-1)*|incx|

where:

n = number of vector elements specified in n

158

Chapter 4. Vector MTH$ Reference Section

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS1$VSCOPY F-floating real
BLAS1$VDCOPY D-floating or G-floating real
BLAS1$VCCOPY F-floating complex
BLAS1$VZCOPY D-floating or G-floating complex

incx

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array x. The incx argument is the address of a signed longword integer
containing the increment argument. If incx is greater than or equal to 0, then x is referenced forward in
array x; that is, xi is referenced in:

x(1+(i-1)*incx)

where:

x = array specified in x

i = element of the vector x

incx = increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, xi is referenced in:

x(1+(n-i)*|incx|)

where:

x = array specified in x

n = number of vector elements specified in n

i = element of the vector x

incx = increment argument for the array x specified in incx

y

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference, array reference

159

Chapter 4. Vector MTH$ Reference Section

Array that receives the copied elements. All elements of array y receive the copied elements only if the
increment argument of y, called incy, is 1. The y argument is the address of a floating-point or floating-
point complex number that is this array. This argument is an array of length at least:

1+(n-1)*|incy|

where:

n = number of vector elements specified in n

incy = increment argument for the array y specified in incy

Specify the data type as follows:

Routine Data Type for y

BLAS1$VSCOPY F-floating real
BLAS1$VDCOPY D-floating or G-floating real
BLAS1$VCCOPY F-floating complex
BLAS1$VZCOPY D-floating or G-floating complex

If n is less than or equal to 0, then y is unchanged. If incx is equal to 0, then each yi is set to x1. If incy is
equal to 0, then yi is set to the last referenced element of x. If any element of x shares a memory location
with an element of y, the results are unpredictable. (See the Description section for a special case that
does not cause unpredictable results when the same memory location is shared by input and output.)

incy

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array y. The incy argument is the address of a signed longword integer
containing the increment argument. If incy is greater than or equal to 0, then y is referenced forward in
array y; that is, yi is referenced in:

y(1+(i-1)*incy)

where:

y = array specified in y

i = element of the vector y

If incy is less than 0, then y is referenced backward in array y; that is, yi is referenced in:

y(1+(n-i)*|incy|)

where:

y = array specified in y

n = number of vector elements specified in n

160

Chapter 4. Vector MTH$ Reference Section

i = element of the vector y

incy = increment argument for the array y specified in incy

Description
BLAS1$VSCOPY, BLAS1$VDCOPY, BLAS1$VCCOPY, and BLAS1$VZCOPY copy n elements of
the vector x to the vector y. Vector x contains n elements that are accessed from array x by stepping
incx elements at a time. Both x and y are real or complex single-precision or double-precision (D and
G) n-element vectors. The vectors can be rows or columns of a matrix. Both forward and backward
indexing are permitted.

If you specify 0 for incx , BLAS1$VxCOPY initializes all elements of y to a constant.

If you specify –incx for incy, the vector x is stored in reverse order in y. In this case, the call format is
as follows:

CALL BLAS1$VxCOPY (N,X,INCX,Y,-INCX)

It is possible to move the contents of a vector up or down within itself and not cause unpredictable
results even though the same memory location is shared between input and output. To do this when i is
greater than j , call the routine BLAS1$VxCOPY with incx = incy > 0 as follows:

CALL BLAS1$VxCOPY (N,X(I),INCX,X(J),INCX)

The preceding call to BLAS1$VxCOPY moves:

x(i),x(i+1*incx),...x(i+(n-1)*incx)

to

x(j),x(j+1*incx),...x(j+(n-1)*incx)

If i is less than j , specify a negative value for incx and incy in the call to BLAS1$VxCOPY, as follows.
The parts that do not overlap are unchanged.

CALL BLAS1$VxCOPY (N,X(I),-INCX,X(J),-INCX)

Note

BLAS1$VxCOPY does not perform floating operations on the input data. Therefore, floating reserved
operands are not detected by BLAS1$VxCOPY.

Example
C
C To copy a vector x to a vector y using BLAS1$VSCOPY:
C
 INTEGER N,INCX,INCY
 REAL X(20),Y(20)
 INCX = 1
 INCY = 1
 N = 20
 CALL BLAS1$VSCOPY(N,X,INCX,Y,INCY)
C

161

Chapter 4. Vector MTH$ Reference Section

C To move the contents of X(1),X(3),X(5),...,X(2N-1)
C to X(3),X(5),...,X(2N+1) and leave x unchanged:
C
 CALL BLAS1$VSCOPY(N,X,-2,X(3),-2))
C
C To move the contents of X(2),X(3),...,X(100) to
C X(1),X(2),...,X(99)and leave x(100) unchanged:
C
 CALL BLAS1$VSCOPY(99,X(2),1,X,1))
C
C To move the contents of X(1),X(2),X(3),...,X(N) to
C Y(N),Y(N-1),...,Y
C
 CALL BLAS1$VSCOPY(N,X,1,Y,-1))

BLAS1$VxDOTx
BLAS1$VxDOTx — Obtain the Inner Product of Two Vectors. The Obtain the Inner Product of Two
Vectors routine returns the dot product of two n -element vectors, x and y.

Format
BLAS1$VSDOT n ,x ,incx ,y ,incy

BLAS1$VDDOT n ,x ,incx ,y ,incy

BLAS1$VGDOT n ,x ,incx ,y ,incy

BLAS1$VCDOTU n ,x ,incx ,y ,incy

BLAS1$VCDOTC n ,x ,incx ,y ,incy

BLAS1$VZDOTU n ,x ,incx ,y ,incy

BLAS1$VWDOTU n ,x ,incx ,y ,incy

BLAS1$VZDOTC n ,x ,incx ,y ,incy

BLAS1$VWDOTC n ,x ,incx ,y ,incy

Use BLAS1$VSDOT to obtain the inner product of two single-precision real vectors.

Use BLAS1$VDDOT to obtain the inner product of two double-precision (D- floating) real vectors.

Use BLAS1$VGDOT to obtain the inner product of two double-precision (G-floating) real vectors.

Use BLAS1$VCDOTU to obtain the inner product of two single-precision complex vectors
(unconjugated).

Use BLAS1$VCDOTC to obtain the inner product of two single-precision complex vectors (conjugated).

Use BLAS1$VZDOTU to obtain the inner product of two double-precision (D- floating) complex
vectors (unconjugated).

Use BLAS1$VWDOTU to obtain the inner product of two double-precision (G-floating) complex
vectors (unconjugated).

162

Chapter 4. Vector MTH$ Reference Section

Use BLAS1$VZDOTC to obtain the inner product of two double-precision (D- floating) complex
vectors (conjugated).

Use BLAS1$VWDOTC to obtain the inner product of two double-precision (G-floating) complex
vectors (conjugated).

Returns
OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: write only
mechanism: by value

The function value, called dotpr, is the dot product of two n-element vectors, x and y. Specify the same
data type for dotpr and the argument x.

Argument
n

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of elements in vector x to be copied. The n argument is the address of a signed longword
integer containing the number of elements. If you specify a value for n that is less than or equal to 0,
then the value for dotpr is 0.0.

x

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array x are accessed only if the increment
argument of x, called incx, is 1. The x argument is the address of a floating-point or floating-point
complex number that is this array. The length of this array is at least:

1+(n-1)*|incx|

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

163

Chapter 4. Vector MTH$ Reference Section

Specify the data type as follows:

Routine Data Type for x

BLAS1$VSDOT F-floating real
BLAS1$VDDOT D-floating real
BLAS1$VGDOT G-floating real
BLAS1$VCDOTU and BLAS1$VCDOTC F-floating complex
BLAS1$VZDOTU and BLAS1$VZDOTC D-floating complex
BLAS1$VWDOTU and BLAS1$VWDOTC G-floating complex

incx

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array x. The incx argument is the address of a signed longword integer
containing the increment argument. If incx is greater than or equal to 0, then x is referenced forward in
array x; that is, xi is referenced in:

x(1+(i-1)*incx)

where:

x = array specified in x

i = element of the vector x

incx = increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, xi is referenced in:

x(1+(n-i)*|incx|)

where:

x = array specified in x

n = number of vector elements specified in n

i = element of the vector x

incx = increment argument for the array x specified in incx

y

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: modify

164

Chapter 4. Vector MTH$ Reference Section

mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array y are accessed only if the increment
argument of y, called incy, is 1. The y argument is the address of a floating-point or floating-point
complex number that is this array. This argument is an array of length at least:

1+(n-1)*|incy|

where:

n = number of vector elements specified in n

incy = increment argument for the array y specified in incy

Specify the data type as follows:

Routine Data Type for y

BLAS1$VSDOT F-floating real
BLAS1$VDDOT D-floating real
BLAS1$VGDOT G-floating real
BLAS1$VCDOTU and BLAS1$VCDOTC F-floating complex
BLAS1$VZDOTU and BLAS1$VZDOTC D-floating complex
BLAS1$VWDOTU and BLAS1$VWDOTC G-floating complex

incy

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array y. The incy argument is the address of a signed longword integer
containing the increment argument. If incy is greater than or equal to 0, then y is referenced forward in
array y; that is, yi is referenced in:

y(1+(i-1)*incy)

where:

y = array specified in y

i = element of the vector y

incy = increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y; that is, yi is referenced in:

y(1+(n-i)*|incy|)

where:

y = array specified in y

165

Chapter 4. Vector MTH$ Reference Section

n = number of vector elements specified in n

i = element of the vector y

incy = increment argument for the array y specified in incy

Description
The unconjugated versions of this routine, BLAS1$VSDOT, BLAS1$VDDOT, BLAS1$VGDOT,
BLAS1$VCDOTU, BLAS1$VZDOTU, and BLAS1$VWDOTU return the dot product of two n -
element vectors, x and y, expressed as follows:

x· y = x1y1 + x2y2 + ... + xnyn

The conjugated versions of this routine, BLAS1$VCDOTC, BLAS1$VZDOTC, and BLAS1$VWDOTC
return the dot product of the conjugate of the first n -element vector with a second n -element vector, as
follows:

x̄· y = x̄1y1 + x̄2y2 + ... + x̄nyn

Vectors x and y contain n elements that are accessed from arrays x and y by stepping incx and incy
elements at a time. The vectors x and y can be rows or columns of a matrix. Both forward and backward
indexing are permitted.

The routine name determines the data type you should specify for arguments x and y. Specify the same
data type for these arguments.

Rounding in BLAS1$VxDOTx occurs in a different order than in a sequential evaluation of the dot
product. The final result may differ from the result of a sequential evaluation.

Example
C
C To compute the dot product of two vectors, x and y,
C and return the result in DOTPR:
C
 INTEGER INCX,INCY
 REAL X(20),Y(20),DOTPR
 INCX = 1
 INCY = 1
 N = 20
 DOTPR = BLAS1$VSDOT(N,X,INCX,Y,INCY)

BLAS1$VxNRM2
BLAS1$VxNRM2 — Obtain the Euclidean Norm of a Vector. The Obtain the Euclidean Norm of a
Vector routine obtains the Euclidean norm of an n -element vector x, expressed in the following figure.

Figure

166

Chapter 4. Vector MTH$ Reference Section

Format
BLAS1$VSNRM2 n ,x ,incx

BLAS1$VDNRM2 n ,x ,incx

BLAS1$VGNRM2 n ,x ,incx

BLAS1$VSCNRM2 n ,x ,incx

BLAS1$VDZNRM2 n ,x ,incx

BLAS1$VGWNRM2 n ,x ,incx

Use BLAS1$VSNRM2 for single-precision real operations.

Use BLAS1$VDNRM2 for double-precision real (D-floating) operations.

Use BLAS1$VGNRM2 for double-precision real (G-floating) operations.

Use BLAS1$VSCNRM2 for single-precision complex operations.

Use BLAS1$VDZNRM2 for double-precision complex (D-floating) operations.

Use BLAS1$VGWNRM2 for double-precision complex (G-floating) operations.

Returns
OpenVMS usage: floating_point
type: F_floating, D_floating, or G_floating real
access: write only
mechanism: by value

The function value, called e_norm, is the Euclidean norm of the vector x. The data type of the function
value is a real number; for the BLAS1$VSCNRM2, BLAS1$VDZNRM2, and BLAS1$VGWNRM2
routines, the data type of the function value is the real data type corresponding to the complex argument
data type.

Argument
n

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of elements in vector x to be processed. The n argument is the address of a signed longword
integer containing the number of elements.

x

167

Chapter 4. Vector MTH$ Reference Section

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array x are accessed only if the increment
argument of x, called incx, is 1. The x argument is the address of a floating-point or floating-point
complex number that is this array. The length of this array is at least:

1+(n-1)*|incx|

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS1$VSNRM2 F-floating real
BLAS1$VDNRM2 D-floating real
BLAS1$VGNRM2 G-floating real
BLAS1$VSCNRM2 F-floating complex
BLAS1$VDZNRM2 D-floating complex
BLAS1$VGWNRM2 G-floating complex

If n is less than or equal to 0, then e_norm is 0.0.

incx

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array x. The incx argument is the address of a signed longword integer
containing the increment argument. If incx is greater than or equal to 0, then x is referenced forward in
array x; that is, xi is referenced in:

x(1+(i-1)*incx)

where:

x = array specified in x

i = element of the vector x

incx = increment argument for the array x specified in incx

168

Chapter 4. Vector MTH$ Reference Section

If you specify a negative value for incx, it is interpreted as the absolute value of incx.

Description
BLAS1$VxNRM2 obtains the Euclidean norm of an n-element vector x, expressed as follows:

Vector x contains n elements that are accessed from array x by stepping incx elements at a time. The
vector x is a real or complex single-precision or double-precision (D and G) n-element vector. The vector
can be a row or a column of a matrix. Both forward and backward indexing are permitted.

The public-domain BLAS Level 1 xNRM2 routines require a positive value for incx. The Run-Time
Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for incx = 0. Therefore, specifying 0 for incx has the
effect of using vector operations to set e_norm as follows:

e_norm = n0.5 * |x1|

For BLAS1$VDNRM2, BLAS1$VGNRM2, BLAS1$VDZNRM2, and BLAS1$VGWNRM2 (the
double-precision routines), the elements of the vector x are scaled to avoid intermediate overflow or
underflow. BLAS1$VSNRM2 and BLAS1$VSCNRM2 (the single-precision routines) use a backup data
type to avoid intermediate overflow or underflow.

Rounding in BLAS1$VxNRM2 occurs in a different order than in a sequential evaluation of the
Euclidean norm. The final result may differ from the result of a sequential evaluation.

Example
C
C To obtain the Euclidean norm of the vector x:
C
 INTEGER INCX,N
 REAL X(20),E_NORM
 INCX = 1
 N = 20
 E_NORM = BLAS1$VSNRM2(N,X,INCX)

BLAS1$VxROT
BLAS1$VxROT — Apply a Givens Plane Rotation. The Apply a Givens Plane Rotation routine applies
a Givens plane rotation to a pair of n -element vectors x and y.

Format
BLAS1$VSROT n ,x ,incx ,y ,incy ,c ,s

BLAS1$VDROT n ,x ,incx ,y ,incy ,c ,s

BLAS1$VGROT n ,x ,incx ,y ,incy ,c ,s

169

Chapter 4. Vector MTH$ Reference Section

BLAS1$VCSROT n ,x ,incx ,y ,incy ,c ,s

BLAS1$VZDROT n ,x ,incx ,y ,incy ,c ,s

BLAS1$VWGROT n ,x ,incx ,y ,incy ,c ,s

Use BLAS1$VSROT for single-precision real operations.

Use BLAS1$VDROT for double-precision real (D-floating) operations.

Use BLAS1$VGROT for double-precision real (G-floating) operations.

Use BLAS1$VCSROT for single-precision complex operations.

Use BLAS1$VZDROT for double-precision complex (D-floating) operations.

Use BLAS1$VWGROT for double-precision complex (G-floating) operations.

BLAS1$VCSROT, BLAS1$VZDROT, and BLAS1$VWGROT are real rotations applied to a complex
vector.

Returns
None.

Argument
n

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of elements in vectors x and y to be rotated. The n argument is the address of a signed longword
integer containing the number of elements to be rotated. If n is less than or equal to 0, then x and y are
unchanged.

x

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array x are accessed only if the increment
argument of x, called incx, is 1. The x argument is the address of a floating-point or floating-point
complex number that is this array. On entry, this argument is an array of length at least:

1+(n-1)*|incx|

where:

170

Chapter 4. Vector MTH$ Reference Section

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS1$VSROT F-floating real
BLAS1$VDROT D-floating real
BLAS1$VGROT G-floating real
BLAS1$VCSROT F-floating complex
BLAS1$VZDROT D-floating complex
BLAS1$VWGROT G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If c equals 1.0 and s equals 0, then x and y
are unchanged. If any element of x shares a memory location with an element of y, then the results are
unpredictable.

On exit, x contains the rotated vector x , as follows:

xi ← c * xi + s * yi

where:

x = array x specified in x

y = array y specified in y

i = i = 1,2,…,n

c = rotation element generated by the BLAS1$VxROTG routines

s = rotation element generated by the BLAS1$VxROTG routines

incx

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array x. The incx argument is the address of a signed longword integer
containing the increment argument. If incx is greater than or equal to 0, then x is referenced forward in
array x; that is, xi is referenced in:

x(1+(i-1)*incx)

where:

x = array specified in x

i = element of the vector x

171

Chapter 4. Vector MTH$ Reference Section

incx = increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, xi is referenced in:

x(1+(n-i)*|incx|)

where:

x = array specified in x

n = number of vector elements specified in n

i = element of the vector x

incx = increment argument for the array x specified in incx

y

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array y are accessed only if the increment
argument of y, called incy, is 1. The y argument is the address of a floating-point or floating-point
complex number that is this array. This argument is an array of length at least:

1+(n-1)*|incx|

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for y

BLAS1$VSROT F-floating real
BLAS1$VDROT D-floating real
BLAS1$VGROT G-floating real
BLAS1$VCSROT F-floating complex
BLAS1$VZDROT D-floating complex
BLAS1$VWGROT G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If c equals 1.0 and s equals 0, then x and y
are unchanged. If any element of x shares a memory location with an element of y, then the results are
unpredictable.

On exit, y contains the rotated vector y , as follows:

yi ← - s * xi + c * yi

172

Chapter 4. Vector MTH$ Reference Section

where:

x = array x specified in x

y = array y specified in y

i = i = 1,2,…,n

c = real rotation element (can be generated by the BLAS1$VxROTG routines)

s = complex rotation element (can be generated by the BLAS1$VxROTG routines)

incy

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array y. The incy argument is the address of a signed longword integer
containing the increment argument. If incy is greater than or equal to 0, then y is referenced forward in
array y; that is, yi is referenced in:

y(1+(i-1)*incy)

where:

y = array specified in y

i = element of the vector y

incy = increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y; that is, yi is referenced in:

y(1+(n-i)*|incy|)

where:

y = array specified in y

n = number of vector elements specified in n

i = element of the vector y

incy = increment argument for the array y specified in incy

c

OpenVMS usage: floating_point
type: F_floating, D_floating, or G_floating real
access: read only
mechanism: by reference

173

Chapter 4. Vector MTH$ Reference Section

First rotation element, which can be interpreted as the cosine of the angle of rotation. The c argument
is the address of a floating-point or floating-point complex number that is this vector element. The c
argument is the first rotation element generated by the BLAS1$VxROTG routines.

Specify the data type (which is always real) as follows:

Routine Data Type for c

BLAS1$VSROT and BLAS1$VCSROT F-floating real
BLAS1$VDROT and BLAS1$VZDROT D-floating real
BLAS1$VGROT and BLAS1$VWGROT G-floating real

s

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference

Second rotation element, which can be interpreted as the sine of the angle of rotation. The s argument
is the address of a floating-point or floating-point complex number that is this vector element. The s
argument is the second rotation element generated by the BLAS1$VxROTG routines.

Specify the data type (which can be either real or complex) as follows:

Routine Data Type for s

BLAS1$VSROT and BLAS1$VCSROT F-floating real or F-floating complex
BLAS1$VDROT and BLAS1$VZDROT D-floating real or D-floating complex
BLAS1$VGROT and BLAS1$VWGROT G-floating real or G-floating complex

Description
BLAS1$VSROT, BLAS1$VDROT, and BLAS1$VGROT apply a real Givens plane rotation to a pair
of real vectors. BLAS1$VCSROT, BLAS1$VZDROT, and BLAS1$VWGROT apply a real Givens
plane rotation to a pair of complex vectors. The vectors x and y are real or complex single-precision or
double-precision (D and G) vectors. The vectors can be rows or columns of a matrix. Both forward and
backward indexing are permitted. The routine name determines the data type you should specify for
arguments x and y. Specify the same data type for each of these arguments.

The Givens plane rotation is applied to n elements, where the elements to be rotated are contained in
vectors x and y (i equals 1,2,...,n). These elements are accessed from arrays x and y by stepping incx
and incy elements at a time. The cosine and sine of the angle of rotation are c and s, respectively. The
arguments c and s are usually generated by the BLAS Level 1 routine BLAS1$VxROTG, using a=x and
b=y:

The BLAS1$VxROT routines can be used to introduce zeros selectively into a matrix.

174

Chapter 4. Vector MTH$ Reference Section

Example
C
C To rotate the first two rows of a matrix and zero
C out the element in the first column of the second row:
C
 INTEGER INCX,N
 REAL X(20,20),A,B,C,S
 INCX = 20
 N = 20
 A = X(1,1)
 B = X(2,1)
 CALL BLAS1$VSROTG(A,B,C,S)
 CALL BLAS1$VSROT(N,X,INCX,X(2,1),INCX,C,S)

BLAS1$VxROTG
BLAS1$VxROTG — Generate the Elements for a Givens Plane. The Generate the Elements for a
Givens Plane Rotation routine constructs a Givens plane rotation that eliminates the second element of a
two-element vector.

Format
BLAS1$VSROTG a ,b ,c ,s

BLAS1$VDROTG a ,b ,c ,s

BLAS1$VGROTG a ,b ,c ,s

BLAS1$VCROTG a ,b ,c ,s

BLAS1$VZROTG a ,b ,c ,s

BLAS1$VWROTG a ,b ,c ,s

Use BLAS1$VSROTG for single-precision real operations.

Use BLAS1$VDROTG for double-precision real (D-floating) operations.

Use BLAS1$VGROTG for double-precision real (G-floating) operations.

Use BLAS1$VCROTG for single-precision complex operations.

Use BLAS1$VZROTG for double-precision complex (D-floating) operations.

Use BLAS1$VWROTG for double-precision complex (G-floating) operations.

Returns
None.

Argument
a

175

Chapter 4. Vector MTH$ Reference Section

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference

On entry, first element of the input vector. On exit, rotated element r. The a argument is the address of a
floating-point or floating-point complex number that is this vector element.

Specify the data type as follows:

Routine Data Type for a

BLAS1$VSROTG F-floating real
BLAS1$VDROTG D-floating real
BLAS1$VGROTG G-floating real
BLAS1$VCROTG F-floating complex
BLAS1$VZROTG D-floating complex
BLAS1$VWROTG G-floating complex

b

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference

On entry, second element of the input vector. On exit from BLAS1$VSROTG, BLAS1$VDROTG, and
BLAS1$VGROTG, reconstruction element z. (See the Description section for more information about
z.) The b argument is the address of a floating-point or floating-point complex number that is this vector
element.

Specify the data type as follows:

Routine Data Type for b

BLAS1$VSROTG F-floating real
BLAS1$VDROTG D-floating real
BLAS1$VGROTG G-floating real
BLAS1$VCROTG F-floating complex
BLAS1$VZROTG D-floating complex
BLAS1$VWROTG G-floating complex

c

OpenVMS usage: floating_point
type: F_floating, D_floating, or G_floating real

176

Chapter 4. Vector MTH$ Reference Section

access: write only
mechanism: by reference

First rotation element, which can be interpreted as the cosine of the angle of rotation. The c argument is
the address of a floating-point or floating-point complex number that is this vector element.

Specify the data type (which is always real) as follows:

Routine Data Type for c

BLAS1$VSROTG and BLAS1$VCROTG F-floating real
BLAS1$VDROTG and BLAS1$VZROTG D-floating real
BLAS1$VGROTG and BLAS1$VWROTG G-floating real

s

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: write only
mechanism: by reference

Second rotation element, which can be interpreted as the sine of the angle of rotation. The s argument is
the address of a floating-point or floating-point complex number that is this vector element.

Specify the data type as follows:

Routine Data Type for s

BLAS1$VSROTG F-floating real
BLAS1$VDROTG D-floating real
BLAS1$VGROTG G-floating real
BLAS1$VCROTG F-floating complex
BLAS1$VZROTG D-floating complex
BLAS1$VWROTG G-floating complex

Description
BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG construct a real Givens plane rotation.
BLAS1$VCROTG, BLAS1$VZROTG, and BLAS1$VWROTG construct a complex Givens plane
rotation. The Givens plane rotation eliminates the second element of a two-element vector. The elements
of the vector are real or complex single-precision or double-precision (D and G) numbers. The routine
name determines the data type you should specify for arguments a, b, and s. Specify the same data type
for each of these arguments.

BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG can use the reconstruction element z to
store the rotation elements for future use. There is no counterpart to the term z for BLAS1$VCROTG,
BLAS1$VZROTG, and BLAS1$VWROTG.

The BLAS1$VxROTG routines can be used to introduce zeros selectively into a matrix.

177

Chapter 4. Vector MTH$ Reference Section

For BLAS1$VDROTG, BLAS1$VGROTG, BLAS1$VZROTG, and BLAS1$VWROTG (the double-
precision routines), the elements of the vector are scaled to avoid intermediate overflow or underflow.
BLAS1$VSROTG and BLAS1$VCROTG (the single-precision routines) use a backup data type to avoid
intermediate underflow or overflow, which may cause the final result to differ from the original Fortran
routine.

BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG --- Real Givens Plane Rotation

Given the elements a and b of an input vector, BLAS1$VSROTG, and BLAS1$VDROTG,
BLAS1$VGROTG calculate the elements c and s of an orthogonal matrix such that:

A real Givens plane rotation is constructed for values a and b by computing values for r, c, s, and z, as
follows:

where:
p =SIGN(a) if |a| > |b|
p =SIGN(b) if |a|≤|b|
c = a/r if r ≠ 0
c = 1 if r = 0
s = b/r if r ≠ 0
s = 0 if r = 0
z = s if |a| > |b|
z = 1/c if |a|≤|b| and c ≠ 0 and r ≠ 0
z = 1 if |a|≤|b| and c = 0 and r ≠ 0
z = 0 if r = 0

BLAS1$VSROTG, BLAS1$VDROTG, and BLAS1$VGROTG can use the reconstruction element z to
store the rotation elements for future use. The quantities c and s are reconstructed from z as follows:

The arguments c and s can be passed to the BLAS1$VxROT routines.

BLAS1$VCROTG, BLAS1$VZROTG, and BLAS1$VWROTG --- Complex Givens Plane Rotation

Given the elements a and b of an input vector, BLAS1$VCROTG, BLAS1$VZROTG, and
BLAS1$VWROTG calculate the elements c and s of an orthogonal matrix such that:

There are no BLAS Level 1 routines with which you can use complex c and s arguments.

178

Chapter 4. Vector MTH$ Reference Section

Example
C
C To generate the rotation elements for a vector of
C elements a and b:
C
 REAL A,B,C,S
 CALL SROTG(A,B,C,S)

BLAS1$VxSCAL
BLAS1$VxSCAL — Scale the Elements of a Vector. The Scale the Elements of a Vector routine
computes a * x where a is a scalar number and x is an n -element vector.

Format
BLAS1$VSSCAL n ,a ,x ,incx

BLAS1$VDSCAL n ,a ,x ,incx

BLAS1$VGSCAL n ,a ,x ,incx

BLAS1$VCSCAL n ,a ,x ,incx

BLAS1$VCSSCAL n ,a ,x ,incx

BLAS1$VZSCAL n ,a ,x ,incx

BLAS1$VWSCAL n ,a ,x ,incx

BLAS1$VZDSCAL n ,a ,x ,incx

BLAS1$VWGSCAL n ,a ,x ,incx

Use BLAS1$VSSCAL to scale a real single-precision vector by a real single- precision scalar.

Use BLAS1$VDSCAL to scale a real double-precision (D-floating) vector by a real double-precision (D-
floating) scalar.

Use BLAS1$VGSCAL to scale a real double-precision (G-floating) vector by a real double-precision (G-
floating) scalar.

Use BLAS1$VCSCAL to scale a complex single-precision vector by a complex single-precision scalar.

Use BLAS1$VCSSCAL to scale a complex single-precision vector by a real single- precision scalar.

Use BLAS1$VZSCAL to scale a complex double-precision (D-floating) vector by a complex double-
precision (D-floating) scalar.

Use BLAS1$VWSCAL to scale a complex double-precision (G-floating) vector by a complex double-
precision (G-floating) scalar.

Use BLAS1$VZDSCAL to scale a complex double-precision (D-floating) vector by a real double-
precision (D-floating) scalar.

179

Chapter 4. Vector MTH$ Reference Section

Use BLAS1$VWGSCAL to scale a complex double-precision (G-floating) vector by a real double-
precision (G-floating) scalar.

Returns
None.

Argument
n

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of elements in vector x to be scaled. The n argument is the address of a signed longword integer
containing the number of elements to be scaled. If you specify a value for n that is less than or equal to
0, then x is unchanged.

a

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: read only
mechanism: by reference

Scalar multiplier for the elements of vector x. The a argument is the address of a floating-point or
floating-point complex number that is this multiplier.

Specify the data type as follows:

Routine Data Type for a

BLAS1$VSSCAL and BLAS1$VCSSCAL F-floating real
BLAS1$VDSCAL and BLAS1$VZDSCAL D-floating real
BLAS1$VGSCAL and BLAS1$VWGSCAL G-floating real
BLAS1$VCSCAL F-floating complex
BLAS1$VZSCAL D-floating complex
BLAS1$VWSCAL G-floating complex

If you specify 1.0 for a, then x is unchanged.

x

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex

180

Chapter 4. Vector MTH$ Reference Section

access: modify
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array x are accessed only if the increment
argument of x, called incx, is 1. The x argument is the address of a floating-point or floating-point
complex number that is this array. On entry, this argument is an array of length at least:

1+(n-1)*|incx|

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS1$VSSCAL F-floating real
BLAS1$VDSCAL D-floating real
BLAS1$VGSCAL G-floating real
BLAS1$VCSCAL and BLAS1$VCSSCAL F-floating complex
BLAS1$VZSCAL and BLAS1$VZDSCAL D-floating complex
BLAS1$VWSCAL and BLAS1$VWGSCAL G-floating complex

On exit, x is an array of length at least:

1+(n-1)*|incx|

where:

n = number of vector elements specified in n

y = increment argument for the array x specified in incx

After the call to BLAS1$VxSCAL, xi is replaced by a * xi If a shares a memory location with any
element of the vector x, results are unpredictable.

incx

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array x. The incx argument is the address of a signed longword integer
containing the increment argument. If incx is greater than or equal to 0, then x is referenced forward in
array x; that is, xi is referenced in:

x(1+(i-1)*incx)

181

Chapter 4. Vector MTH$ Reference Section

where:

x = array specified in x

i = element of the vector x

incx = increment argument for the array x specified in incx

If you specify a negative value for incx, it is interpreted as the absolute value of incx. If incx equals 0,
the results are unpredictable.

Description
BLAS1$VxSCAL computes a * x where a is a scalar number and x is an n-element vector. The
computation is expressed as follows:

Vector x contains n elements that are accessed from array x by stepping incx elements at a time. The
vector x can be a row or a column of a matrix. Both forward and backward indexing are permitted.

The public-domain BLAS Level 1 xSCAL routines require a positive value for incx. The Run-Time
Library BLAS Level 1 routines interpret a negative value for incx as the absolute value of incx.

The algorithm does not provide a special case for a = 0. Therefore, specifying 0 for a has the effect of
setting to zero all elements of the vector x using vector operations.

Example
C
C To scale a vector x by 2.0 using SSCAL:
C
 INTEGER INCX,N
 REAL X(20),A
 INCX = 1
 A = 2
 N = 20
 CALL BLAS1$VSSCAL(N,A,X,INCX)

BLAS1$VxSWAP
BLAS1$VxSWAP — Swap the Elements of Two Vectors. The Swap the Elements of Two Vectors
routine swaps n elements of the vector x with the vector y.

Format
BLAS1$VSSWAP n ,x ,incx ,y ,incy

BLAS1$VDSWAP n ,x ,incx ,y ,incy

BLAS1$VCSWAP n ,x ,incx ,y ,incy

182

Chapter 4. Vector MTH$ Reference Section

BLAS1$VZSWAP n ,x ,incx ,y ,incy

Use BLAS1$VSSWAP for single-precision real operations.

Use BLAS1$VDSWAP for double-precision real (D or G) operations.

Use BLAS1$VCSWAP for single-precision complex operations.

Use BLAS1$VZSWAP for double-precision complex (D or G) operations.

Returns
None.

Argument
n

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of elements in vector x to be swapped. The n argument is the address of a signed longword
integer containing the number of elements to be swapped.

x

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array x are accessed only if the increment
argument of x, called incx, is 1. The x argument is the address of a floating-point or floating-point
complex number that is this array. On entry, this argument is an array of length at least:

1+(n-1)*|incx|

where:

n = number of vector elements specified in n

incx = increment argument for the array x specified in incx

Specify the data type as follows:

Routine Data Type for x

BLAS1$VSSWAP F-floating real
BLAS1$VDSWAP D-floating or G-floating real

183

Chapter 4. Vector MTH$ Reference Section

Routine Data Type for x

BLAS1$VCSWAP F-floating complex
BLAS1$VZSWAP D-floating or G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If any element of x shares a memory location
with an element of y, the results are unpredictable.

On exit, x is an array of length at least:

1+(n-1)*|incx|

where:

n = number of vector elements specified in n

y = increment argument for the array x specified in incx

After the call to BLAS1$VxSWAP, n elements of the array specified by x are interchanged with n
elements of the array specified by y.

incx

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array x. The incx argument is the address of a signed longword integer
containing the increment argument. If incx is greater than or equal to 0, then x is referenced forward in
array x; that is, xi is referenced in:

x(1+(i-1)*incx)

where:

x = array specified in x

i = element of the vector x

incx = increment argument for the array x specified in incx

If incx is less than 0, then x is referenced backward in array x; that is, xi is referenced in:

x(1+(n-i)*|incx|)

where:

x = array specified in x

n = number of vector elements specified in n

i = element of the vector x

incx = increment argument for the array x specified in incx

184

Chapter 4. Vector MTH$ Reference Section

y

OpenVMS usage: floating_point or complex_number
type: F_floating, D_floating, G_floating real or

F_floating, D_floating, G_floating complex
access: modify
mechanism: by reference, array reference

Array containing the elements to be accessed. All elements of array y are accessed only if the increment
argument of y, called incy, is 1. The y argument is the address of a floating-point or floating-point
complex number that is this array. On entry, this argument is an array of length at least:

1+(n-1)*|incy|

where:

n = number of vector elements specified in n

incy = increment argument for the array y specified in incy

Specify the data type as follows:

Routine Data Type for y

BLAS1$VSSWAP F-floating real
BLAS1$VDSWAP D-floating or G-floating real
BLAS1$VCSWAP F-floating complex
BLAS1$VZSWAP D-floating or G-floating complex

If n is less than or equal to 0, then x and y are unchanged. If any element of x shares a memory location
with an element of y, the results are unpredictable.

On exit, y is an array of length at least:

1+(n-1)*|incy|

where:

where:

n = number of vector elements specified in n

incy = increment argument for the array y specified in incy

After the call to BLAS1$VxSWAP, n elements of the array specified by x are interchanged with n
elements of the array specified by y.

incy

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

185

Chapter 4. Vector MTH$ Reference Section

Increment argument for the array y. The incy argument is the address of a signed longword integer
containing the increment argument. If incy is greater than or equal to 0, then y is referenced forward in
array y; that is, yi is referenced in:

y(1+(i-1)*incy)

where:

y = array specified in y

i = element of the vector y

incy = increment argument for the array y specified in incy

If incy is less than 0, then y is referenced backward in array y; that is, yi is referenced in:

y(1+(n-i)*|incy|)

where:

y = array specified in y

n = number of vector elements specified in n

i = element of the vector y

incy = increment argument for the array y specified in incy

Description
BLAS1$VSSWAP, BLAS1$VDSWAP, BLAS1$VCSWAP, and BLAS1$VZSWAP swap n elements of
the vector x with the vector y. Vectors x and y contain n elements that are accessed from arrays x and
y by stepping incx and incy elements at a time. Both x and y are real or complex single-precision or
double-precision (D and G) n-element vectors. The vectors can be rows or columns of a matrix. Both
forward and backward indexing are permitted.

You can use the routine BLAS1$VxSWAP to invert the storage of elements of a vector within itself. If
incx is greater than 0, then xi can be moved from location

x(1+(i-1)*incx) to x(1+(n-i)*incx)

The following code fragment inverts the storage of elements of a vector within itself:

NN = N/2
LHALF = 1+(N-NN)*INCX
CALL BLAS1$VxSWAP(NN,X,INCX,X(LHALF),-INCX)

BLAS1$VxSWAP does not check for a reserved operand.

Example
C
C To swap the contents of vectors x and y:
C
 INTEGER INCX,INCY,N
 REAL X(20),Y(20)

186

Chapter 4. Vector MTH$ Reference Section

 INCX = 1
 INCY = 1
 N = 20
 CALL BLAS1$VSSWAP(N,X,INCX,Y,INCY)
C
C To invert the order of storage of the elements of x within
C itself; that is, to move x(1),...,x(100) to x(100),...,x(1):
C
 INCX = 1
 INCY = -1
 N = 50
 CALL BLAS1$VSSWAP(N,X,INCX,X(51),INCY)

MTH$VxFOLRy_MA_V15
MTH$VxFOLRy_MA_V15 — First Order Linear Recurrence — Multiplication and Addition. The First
Order Linear Recurrence — Multiplication and Addition routine provides a vectorized algorithm for the
linear recurrence relation that includes both multiplication and addition operations.

Format
MTH$VJFOLRP_MA_V15 n,a,inca,b,incb,c,incc

MTH$VFFOLRP_MA_V15 n,a,inca,b,incb,c,incc

MTH$VDFOLRP_MA_V15 n,a,inca,b,incb,c,incc

MTH$VGFOLRP_MA_V15 n,a,inca,b,incb,c,incc

MTH$VJFOLRN_MA_V15 n,a,inca,b,incb,c,incc

MTH$VFFOLRN_MA_V15 n,a,inca,b,incb,c,incc

MTH$VDFOLRN_MA_V15 n,a,inca,b,incb,c,incc

MTH$VGFOLRN_MA_V15 n,a,inca,b,incb,c,incc

To obtain one of the preceding formats, substitute the following for x and y in MTH
$VxFOLRy_MA_V15:

x = J for longword integer, F for F-floating, D for D-floating, G for G-floating

y = P for a positive recursion element, N for a negative recursion element

Returns
None.

Argument
n

OpenVMS usage: longword_signed
type: longword integer (signed)

187

Chapter 4. Vector MTH$ Reference Section

access: read only
mechanism: by reference

Length of the linear recurrence. The n argument is the address of a signed longword integer containing
the length.

a

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating,

or G_floating
access: read only
mechanism: by reference, array reference

Array of length at least:

1+(n-1)*|inca|

where:

n = length of the linear recurrence specified in n

inca = increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that is this array.

inca

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array a. The inca argument is the address of a signed longword integer
containing the increment argument. For contiguous elements, specify 1 for inca.

b

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating,

or G_floating
access: read only
mechanism: by reference, array reference

Array of length at least:

1+(n-1)*|incb|

where:

n = length of the linear recurrence specified in n

188

Chapter 4. Vector MTH$ Reference Section

incb = increment argument for the array b specified in incb

The b argument is the address of a longword integer or floating-point number that is this array.

incb

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array b. The incb argument is the address of a signed longword integer
containing the increment argument. For contiguous elements, specify 1 for incb.

c

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating,

or G_floating
access: modify
mechanism: by reference, array reference

Array of length at least:

1+(n-1)*|incc|

where:

n = length of the linear recurrence specified in n

incc = increment argument for the array b specified in incc

The c argument is the address of a longword integer or floating-point number that is this array.

incc

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array c. The incc argument is the address of a signed longword integer
containing the increment argument. For contiguous elements, specify 1 for incc. Do not specify 0 for
incc.

Description
MTH$VxFOLRy_MA_V15 is a group of routines that provides a vectorized algorithm for computing
the following linear recurrence relation:

C(I+1) = +/-C(I) * A(I) + B(I)

189

Chapter 4. Vector MTH$ Reference Section

Note

Save the contents of vector registers V0 through V15 before you call this routine.

Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from
VSI Fortran is as follows:

K1 =
K2 =
K3 =
CALL MTH$VxFOLRy_MA_V15(N,A(K1),INCA,B(K2),INCB,C(K3),INCC)

The preceding Fortran call replaces the following loop:

K1 =
K2 =
K3 =
DO I = 1, N
C(K3+I*INCC) = {+/-}C(K3+(I-1)*INCC) * A(K1+(I-1)*INCA)
 + B(K2+(I-1)*INCB)
ENDDO

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user
callable. The MTH$ FOLR routines assume that all of the arrays are of the same data type.

This group of routines, MTH$VxFOLRy_MA_V15 (and also MTH$VxFOLRy_z_V8) save the result
of each iteration of the linear recurrence relation in an array. This is different from the behavior of MTH
$VxFOLRLy_MA_V5 and MTH$VxFOLRLy_z_V2, which return only the result of the last iteration of
the linear recurrence relation.

For the output array (c), the increment argument (incc) cannot be 0. However, you can specify 0 for the
input increment arguments (inca and incb). In that case, the input will be treated as a scalar value and
broadcast to a vector input with all vector elements equal to the scalar value.

In MTH$VxFOLRy_MA_V15, array c can overlap array a and array b, or both, as long as the address
of array element cx is not also the address of an element of a or b that will be referenced at a future time
in the recurrence relation. For example, in the following code fragment you must ensure that the address
of c(1+i*incc) does not equal the address of either a(j*inca) or b(k*incb) for:

1≤i≤n and j≥i+1.

DO I = 1,N
C(1+I*INCC) = C(1+(I-1)*INCC) * A(1+(I-1)*INCA) + B(1+(I-1)*INCB)
ENDDO

Example
1. C

C The following Fortran loop computes a linear recurrence.
C
 INTEGER I
 DIMENSION A(200), B(50), C(50)
 EQUIVALENCE (B,C)
 :
 C(4) =
 DO I = 5, 50

190

Chapter 4. Vector MTH$ Reference Section

 C(I) = C((I-1)) * A(I*3) + B(I)
 ENDDO
C
C This call from Fortran to a FOLR routine replaces the preceding
 loop.
C
 DIMENSION A(200), B(50), C(50)
 EQUIVALENCE (B,C)
 :
 C(4) =
 CALL MTH$VFFOLRP_MA_V15(46, A(15), 3, B(5), 1, C(4), 1)

2. C
C The following Fortran loop computes a linear recurrence.
C
 INTEGER K,N,INCA,INCB,INCC,I
 DIMENSION A(30), B(6), C(50)
 K = 44
 N = 6
 INCA = 5
 INCB = 1
 INCC = 1
 DO I = 1, N
 C(K+I*INCC) = -C(K+(I-1)*INCC) * A(I*INCA) + B(I*INCB)
 ENDDO
C
C This call from Fortran to a FOLR routine replaces the preceding
 loop.
C
 INTEGER K,N,INCA,INCB,INCC
 DIMENSION A(30), B(6), C(50)
 K = 44
 N = 6
 INCA = 5
 INCB = 1
 INCC = 1
 CALL MTH$VFFOLRN_MA_V15(N, A(INCA), INCA, B(INCB), INCB, C(K),
 INCC)

MTH$VxFOLRy_z_V8
MTH$VxFOLRy_z_V8 — First Order Linear Recurrence — Multiplication or Addition. The First
Order Linear Recurrence — Multiplication or Addition routine provides a vectorized algorithm for the
linear recurrence relation that includes either a multiplication or an addition operation, but not both.

Format
MTH$VJFOLRP_M_V8 n,a,inca,b,incb

MTH$VFFOLRP_M_V8 n,a,inca,b,incb

MTH$VDFOLRP_M_V8 n,a,inca,b,incb

MTH$VGFOLRP_M_V8 n,a,inca,b,incb

MTH$VJFOLRN_M_V8 n,a,inca,b,incb

191

Chapter 4. Vector MTH$ Reference Section

MTH$VFFOLRN_M_V8 n,a,inca,b,incb

MTH$VDFOLRN_M_V8 n,a,inca,b,incb

MTH$VGFOLRN_M_V8 n,a,inca,b,incb

MTH$VJFOLRP_A_V8 n,a,inca,b,incb

MTH$VFFOLRP_A_V8 n,a,inca,b,incb

MTH$VDFOLRP_A_V8 n,a,inca,b,incb

MTH$VGFOLRP_A_V8 n,a,inca,b,incb

MTH$VJFOLRN_A_V8 n,a,inca,b,incb

MTH$VFFOLRN_A_V8 n,a,inca,b,incb

MTH$VDFOLRN_A_V8 n,a,inca,b,incb

MTH$VGFOLRN_A_V8 n,a,inca,b,incb

To obtain one of the preceding formats, substitute the following for x, y, and z in MTH
$VxFOLRy_z_V8:

x = J for longword integer, F for F-floating, D for D-floating, G for G-floating

y = P for a positive recursion element, N for a negative recursion element

z = M for multiplication, A for addition

Returns
None.

Argument
n

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Length of the linear recurrence. The n argument is the address of a signed longword integer containing
the length.

a

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating,

or G_floating
access: read only

192

Chapter 4. Vector MTH$ Reference Section

mechanism: by reference, array reference

Array of length at least:

1+(n-1)*|inca|

where:

n = length of the linear recurrence specified in n

inca = increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that is this array.

inca

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array a. The inca argument is the address of a signed longword integer
containing the increment argument. For contiguous elements, specify 1 for inca.

b

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating,

or G_floating
access: read only
mechanism: by reference, array reference

Array of length at least:

1+(n-1)*|incb|

where:

n = length of the linear recurrence specified in n

incb = increment argument for the array b specified in incb

The b argument is the address of a longword integer or floating-point number that is this array.

incb

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array b. The incb argument is the address of a signed longword integer
containing the increment argument. For contiguous elements, specify 1 for incb.

193

Chapter 4. Vector MTH$ Reference Section

Description
MTH$VxFOLRy_z_V8 is a group of routines that provide a vectorized algorithm for computing one of
the following linear recurrence relations:

B(I) = +/-B(I-1) * A(I)

or

B(I) = +/-B(I-1) + A(I)

Note

Save the contents of vector registers V0 through V8 before you call this routine.

Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from
VSI Fortran is as follows:

CALL MTH$VxFOLRy_z_V8(N,A(K1),INCA,B(K2),INCB)

The preceding Fortran call replaces the following loop:

K1 =
K2 =
DO I = 1, N
B(K2+I*INCB) = {+/-}B(K2+(I-1)*INCB) {+/*} A(K1+(I-1)*INCA)
ENDDO

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user
callable. The MTH$ FOLR routines assume that all of the arrays are of the same data type.

This group of routines, MTH$VxFOLRy_z_V8 (and also MTH$VxFOLRy_MA_ V15) save the result
of each iteration of the linear recurrence relation in an array. This is different from the behavior of MTH
$VxFOLRLy_MA_V5 and MTH$VxFOLRLy_z_V2, which return only the result of the last iteration of
the linear recurrence relation.

For the output array (b), the increment argument (incb) cannot be 0. However, you can specify 0 for
the input increment argument (inca). In that case, the input will be treated as a scalar and broadcast to a
vector input with all vector elements equal to the scalar value.

Example
1. C

C The following Fortran loop computes
C a linear recurrence.
C
C D_FLOAT
 INTEGER N,INCA,INCB,I
 DIMENSION A(30), B(13)
 N = 6
 INCA = 5
 INCB = 2
 DO I = 1, N
 B(1+I*INCB) = -B(1+(I-1)*INCB) * A(I*INCA)
 ENDDO

194

Chapter 4. Vector MTH$ Reference Section

C
C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C D_FLOAT
 INTEGER N,INCA,INCB
 REAL*8 A(30), B(13)
 N = 6
 INCA = 5
 INCB = 2
 CALL MTH$VDFOLRN_M_V8(N, A(INCA), INCA, B(1), INCB)

2. C
C The following Fortran loop computes
C a linear recurrence.
C
C G_FLOAT
 INTEGER N,INCA,INCB
 DIMENSION A(30), B(13)
 N = 5
 INCA = 5
 INCB = 2
 DO I = 2, N
 B(1+I*INCB) = B((I-1)*INCB) + A(I*INCA)
 ENDDO

C
C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C G_FLOAT
 INTEGER N,INCA,INCB
 REAL*8 A(30), B(13)
 N = 5
 INCA = 5
 INCB = 2
 CALL MTH$VGFOLRP_A_V8(N, A(INCA), INCA, B(INCB), INCB)

MTH$VxFOLRLy_MA_V5
MTH$VxFOLRLy_MA_V5 — First Order Linear Recurrence — Multiplication and Addition — Last
Value. The First Order Linear Recurrence — Multiplication and Addition — Last Value routine provides
a vectorized algorithm for the linear recurrence relation that includes both multiplication and addition
operations. Only the last value computed is stored.

Format
MTH$VJFOLRLP_MA_V5 n,a,inca,b,incb,t

MTH$VFFOLRLP_MA_V5 n,a,inca,b,incb,t

MTH$VDFOLRLP_MA_V5 n,a,inca,b,incb,t

MTH$VGFOLRLP_MA_V5 n,a,inca,b,incb,t

MTH$VJFOLRLN_MA_V5 n,a,inca,b,incb,t

195

Chapter 4. Vector MTH$ Reference Section

MTH$VFFOLRLN_MA_V5 n,a,inca,b,incb,t

MTH$VDFOLRLN_MA_V5 n,a,inca,b,incb,t

MTH$VGFOLRLN_MA_V5 n,a,inca,b,incb,t

To obtain one of the preceding formats, substitute the following for x and y in MTH
$VxFOLRLy_MA_V5:

x = J for longword integer, F for F-floating, D for D-floating, G for G-floating

y = P for a positive recursion element, N for a negative recursion element

Returns
OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating

or G_floating
access: write only
mechanism: by value

The function value is the result of the last iteration of the linear recurrence relation. The function value is
returned in R0 or R0 and R1.

Argument
n

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Length of the linear recurrence. The n argument is the address of a signed longword integer containing
the length.

a

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating,

or G_floating
access: read only
mechanism: by reference, array reference

Array of length at least:

1+(n-1)*|inca|

where:

n = length of the linear recurrence specified in n

196

Chapter 4. Vector MTH$ Reference Section

inca = increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that is this array.

inca

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array a. The inca argument is the address of a signed longword integer
containing the increment argument. For contiguous elements, specify 1 for inca.

b

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating,

or G_floating
access: read only
mechanism: by reference, array reference

Array of length at least:

1+(n-1)*|incb|

where:

n = length of the linear recurrence specified in n

incb = increment argument for the array b specified in incb

The b argument is the address of a longword integer or floating-point number that is this array.

incb

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array b. The incb argument is the address of a signed longword integer
containing the increment argument. For contiguous elements, specify 1 for incb.

t

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating,

or G_floating
access: modify

197

Chapter 4. Vector MTH$ Reference Section

mechanism: by reference

Variable containing the starting value for the recurrence; overwritten with the value computed by the
last iteration of the linear recurrence relation. The t argument is the address of a longword integer or
floating-point number that is this value.

Description
MTH$VxFOLRLy_MA_V5 is a group of routines that provide a vectorized algorithm for computing the
following linear recurrence relation. (The T on the right side of the equation is the result of the previous
iteration of the loop.)

T = +/-T * A(I) + B(I)

Note

Save the contents of vector registers V0 through V5 before you call this routine.

Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from
VSI Fortran is as follows:

CALL MTH$VxFOLRy_MA_V5(N,A(K1),INCA,B(K2),INCB,T)

The preceding Fortran call replaces the following loop:

K1 = ...
K2 = ...
DO I = 1, N
T = {+/-}T * A(K1+(I-1)*INCA) + B(K1+(I-1)*INCB)
ENDDO

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user
callable. The MTH$ FOLR routines assume that all of the arrays are of the same data type.

This group of routines, MTH$VxFOLRLy_MA_V5 (and also MTH$VxFOLRLy_z_V2) returns only
the result of the last iteration of the linear recurrence relation. This is different from the behavior of
MTH$VxFOLRy_MA_V15 (and also MTH$VxFOLRy_z_V8), which save the result of each iteration
of the linear recurrence relation in an array.

If you specify 0 for the input increment arguments (inca and incb), the input will be treated as a scalar
and broadcast to a vector input with all vector elements equal to the scalar value.

Example
1. C

C The following Fortran loop computes
C a linear recurrence.
C
C G_FLOAT
 INTEGER N,INCA,INCB,I
 REAL*8 A(30), B(6), T
 N = 6
 INCA = 5
 INCB = 1

198

Chapter 4. Vector MTH$ Reference Section

 T = 78.9847562
 DO I = 1, N
 T = -T * A(I*INCA) + B(I*INCB)
 ENDDO

C
C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C G_FLOAT
 INTEGER N,INCA,INCB
 DIMENSION A(30), B(6), T
 N = 6
 INCA = 5
 INCB = 1
 T = 78.9847562
 T = MTH$VGFOLRLN_MA_V5(N, A(INCA), INCA, B(INCB), INCB, T)

2. C
C The following Fortran loop computes
C a linear recurrence.
C
C G_FLOAT
 INTEGER N,INCA,INCB,I
 REAL*8 A(30), B(6), T
 N = 6
 INCA = 5
 INCB = 1
 T = 78.9847562
 DO I = 1, N
 T = T * A(I*INCA) + B(I*INCB)
 ENDDO

C
C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C G_FLOAT
 INTEGER N,INCA,INCB
 DIMENSION A(30), B(6), T
 N = 6
 INCA = 5
 INCB = 1
 T = 78.9847562
 T = MTH$VGFOLRLP_MA_V5(N, A(INCA), INCA, B(INCB), INCB, T)

MTH$VxFOLRLy_MA_V5
MTH$VxFOLRLy_MA_V5 — First Order Linear Recurrence — Multiplication or Addition — Last
Value. The First Order Linear Recurrence — Multiplication or Addition — Last Value routine provides a
vectorized algorithm for the linear recurrence relation that includes either a multiplication or an addition
operation. Only the last value computed is stored.

Format
MTH$VJFOLRLP_M_V2 n,a,inca,t

199

Chapter 4. Vector MTH$ Reference Section

MTH$VFFOLRLP_M_V2 n,a,inca,t

MTH$VDFOLRLP_M_V2 n,a,inca,t

MTH$VGFOLRLP_M_V2 n,a,inca,t

MTH$VJFOLRLN_M_V2 n,a,inca,t

MTH$VFFOLRLN_M_V2 n,a,inca,t

MTH$VDFOLRLN_M_V2 n,a,inca,t

MTH$VGFOLRLN_M_V2 n,a,inca,t

MTH$VJFOLRLP_A_V2 n,a,inca,t

MTH$VFFOLRLP_A_V2 n,a,inca,t

MTH$VDFOLRLP_A_V2 n,a,inca,t

MTH$VGFOLRLP_A_V2 n,a,inca,t

MTH$VJFOLRLN_A_V2 n,a,inca,t

MTH$VFFOLRLN_A_V2 n,a,inca,t

MTH$VDFOLRLN_A_V2 n,a,inca,t

MTH$VGFOLRLN_A_V2 n,a,inca,t

To obtain one of the preceding formats, substitute the following for x , y , and z in MTH
$VxFOLRLy_z_V2:

x = J for longword integer, F for F-floating, D for D-floating, G for G-floating

y = P for a positive recursion element, N for a negative recursion element

z = M for multiplication, A for addition

Returns
OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating

or G_floating
access: write only
mechanism: by value

The function value is the result of the last iteration of the linear recurrence relation. The function value is
returned in R0 or R0 and R1.

Argument
n

200

Chapter 4. Vector MTH$ Reference Section

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Length of the linear recurrence. The n argument is the address of a signed longword integer containing
the length.

a

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating,

or G_floating
access: read only
mechanism: by reference, array reference

Array of length at least:

1+(n-1)*|inca|

where:

n = length of the linear recurrence specified in n

inca = increment argument for the array a specified in inca

The a argument is the address of a longword integer or floating-point that is this array.

inca

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Increment argument for the array a. The inca argument is the address of a signed longword integer
containing the increment argument. For contiguous elements, specify 1 for inca.

t

OpenVMS usage: longword_signed or floating_point
type: longword integer (signed), F_floating, D_floating,

or G_floating
access: modify
mechanism: by reference

Variable containing the starting value for the recurrence; overwritten with the value computed by the
last iteration of the linear recurrence relation. The t argument is the address of a longword integer or
floating-point number that is this value.

201

Chapter 4. Vector MTH$ Reference Section

Description
MTH$VxFOLRLy_z_V2 is a group of routines that provide a vectorized algorithm for computing one
of the following linear recurrence relations. (The T on the right side of the following equations is the
result of the previous iteration of the loop.)

T = +/-T * A(I)

or

T = +/-T + A(I)

Note

Save the contents of vector registers V0, V1, and V2 before you call this routine.

Call this routine to utilize vector hardware when computing the recurrence. As an example, the call from
VSI Fortran is as follows:

CALL MTH$VxFOLRLy_z_V2(N,A(K1),INCA,T)

The preceding Fortran call replaces the following loop:

K1 =
DO I = 1, N
T = {+/-}T {+/*} A(K1+(I-1)*INCA)
ENDDO

The arrays used in a FOLR expression must be of the same data type in order to be vectorized and user
callable. The MTH$ FOLR routines assume that all of the arrays are of the same data type.

This group of routines, MTH$VxFOLRLy_z_V2 (and also MTH$VxFOLRLy_MA_V5) return only the
result of the last iteration of the linear recurrence relation. This is different from the behavior of MTH
$VxFOLRy_MA_V15 (and also MTH$VxFOLRy_z_V8), which save the result of each iteration of the
linear recurrence relation in an array.

If you specify 0 for the input increment argument (inca), the input will be treated as a scalar and
broadcast to a vector input with all vector elements equal to the scalar value.

Example
1. C

C The following Fortran loop computes
C a linear recurrence.
C
C D_FLOAT
 INTEGER I,N
 REAL*8 A(200), T
 T = 78.9847562
 N = 20
 DO I = 4, N
 T = -T * A(I*10)
 ENDDO

C

202

Chapter 4. Vector MTH$ Reference Section

C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C D_FLOAT
 INTEGER N
 REAL*8 A(200), T
 T = 78.9847562
 N = 20
 T = MTH$VDFOLRLN_M_V2(N-3, A(40), 10, T)

2. C
C The following Fortran loop computes
C a linear recurrence.
C
C D_FLOAT
 INTEGER I,N
 REAL*8 A(200), T
 T = 78.9847562
 N = 20
 DO I = 4, N
 T = T + A(I*10)
 ENDDO

C
C The following call from Fortran to a FOLR
C routine replaces the preceding loop.
C
C D_FLOAT
 INTEGER N
 REAL*8 A(200), T
 T = 78.9847562
 N = 20
 T = MTH$VDFOLRLP_A_V2(N-3, A(40), 10, T)

203

Chapter 4. Vector MTH$ Reference Section

204

Appendix A. Additional MTH$
Routines
The following supported MTH$ routines are not included with the routines in the Scalar MTH$
Reference Section because they are rarely used. The majority of these routines serve to satisfy external
references when intrinsic functions in Fortran and other languages are passed as parameters. Otherwise,
the functions are performed by inline code.

Table A–1 lists all of the entry point and argument information for the MTH$ routines not documented
in the Scalar MTH$ Reference Section of this manual.

Table A.1. Additional MTH$ Routines

Routine Name Entry Point Information

MTH$ABS F-floating Absolute Value Routine
 Format: MTH$ABS f-floating
 Returns: floating_point, F_floating, write only, by value
 f-floating: floating_point, F_floating, read only, by reference

MTH$DABS D-floating Absolute Value Routine
 Format: MTH$DABS d-floating
 Returns: floating_point, D_floating, write only, by value
 d-floating: floating_point, D_floating, read only, by reference

MTH$GABS G-floating Absolute Value Routine
 Format: MTH$GABS g-floating
 Returns: floating_point, G_floating, write only, by value
 g-floating: floating_point, G_floating, read only, by reference

MTH$HABS H-floating Absolute Value Routine
 Format: MTH$HABS h-abs-val, h-floating
 Returns: None
 h-abs-val: floating_point, H_floating, write only, by reference
 h-floating: floating_point, H_floating, read only, by reference

MTH$IIABS Word Absolute Value Routine

Format: MTH$IIABS word
Returns: word_signed, word (signed), write only, by value
word: word_signed, word (signed), read only, by reference

MTH$JIABS Longword Absolute Value Routine

205

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

Format: MTH$JIABS longword
Returns: longword_signed, longword (signed), write only, by value
longword: longword_signed, longword (signed), read only, by

reference

MTH$IIAND Bitwise AND of Two Word Parameters Routine

Format: MTH$IIAND word1, word2
Returns: word_unsigned, word (unsigned), write only, by value
word1: word_unsigned, word (unsigned), read only, by reference
word2: word_unsigned, word (unsigned), read only, by reference

MTH$JIAND Bitwise AND of Two Longword Parameters Routine

Format: MTH$JIAND longword1, longword2
Returns: longword_unsigned, longword (unsigned), write only, by

value
longword1: longword_unsigned, longword (unsigned), read only, by

reference
longword2: longword_unsigned, longword (unsigned), read only, by

reference

MTH$DBLE Convert F-floating to D-floating (Exact) Routine
Format: MTH$DBLE f-floating
Returns: floating_point, D_floating, write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$GDBLE Convert F-floating to G-floating (Exact) Routine
Format: MTH$GDBLE f-floating
Returns: floating_point, G_floating, write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$DIM Positive Difference of Two F-floating Parameters Routine
Format: MTH$DIM f-floating1, f-floating2
Returns: floating_point, F_floating, write only, by value
f-floating1: floating_point, F_floating, read only, by reference
f-floating2: floating_point, F_floating, read only, by reference

MTH$DDIM Positive Difference of Two D-floating Parameters Routine

Format: MTH$DDIM d-floating1, d-floating2
Returns: floating_point, D_floating, write only, by value
d-floating1: floating_point, D_floating, read only, by reference
d-floating2: floating_point, D_floating, read only, by reference

206

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

MTH$GDIM Positive Difference of Two G-floating Parameters Routine
Format: MTH$GDIM g-floating1, g-floating2
Returns: floating_point, G_floating, write only, by value
g-floating1: floating_point, G_floating, read only, by reference
g-floating2: floating_point, G_floating, read only, by reference

MTH$HDIM Positive Difference of Two H-floating Parameters Routine
Format: MTH$HDIM h-floating, h-floating1, h-floating2
Returns: None
h-floating: floating_point, H_floating, write only, by reference
h-floating1: floating_point, H_floating, read only, by reference
h-floating2: floating_point, H_floating, read only, by reference

MTH$IIDIM Positive Difference of Two Word Parameters Routine
Format: MTH$IIDIM word1, word2
Returns: word_signed, word (signed), write only, by value
word1: word_signed, word (signed), read only, by reference
word2: word_signed, word (signed), read only, by reference

MTH$JIDIM Positive Difference of Two Longword Parameters Routine
Format: MTH$JIDIM longword1, longword2
Returns: longword_signed, longword (signed), write only, by value
longword1: longword_signed, longword (signed), read only, by

reference
longword2: longword_signed, longword (signed), read only, by

reference

MTH$IIEOR Bitwise Exclusive OR of Two Word Parameters Routine
Format: MTH$IIEOR word1, word2
Returns: word_unsigned, word (unsigned), write only, by value
word1: word_unsigned, word (unsigned), read only, by reference
word2: word_unsigned, word (unsigned), read only, by reference

MTH$JIEOR Bitwise Exclusive OR of Two Longword Parameters
Routine

Format: MTH$JIEOR longword1, longword2
Returns: longword_unsigned, longword (unsigned), write only, by

value
longword1: longword_unsigned, longword (unsigned), read only, by

reference
longword2: longword_unsigned, longword (unsigned), read only, by

reference

MTH$IIFIX Convert F-floating to Word (Truncated) Routine

207

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

Format: MTH$IIFIX f-floating
Returns: word_signed, word (signed), write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$JIFIX Convert F-floating to Longword (Truncated) Routine
Format: MTH$JIFIX f-floating
Returns: longword_signed, longword (signed), write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$FLOATI Convert Word to F-floating (Exact) Routine
Format: MTH$FLOATI word
Returns: floating_point, F_floating, write only, by value
word: word_signed, word (signed), read only, by reference

MTH$DFLOTI Convert Word to D-floating (Exact) Routine
Format: MTH$DFLOTI word
Returns: floating_point, D_floating, write only, by value
word: word_signed, word (signed), read only, by reference

MTH$GFLOTI Convert Word to G-floating (Exact) Routine
Format: MTH$GFLOTI word
Returns: floating_point, G_floating, write only, by value
word: word_signed, word (signed), read only, by reference

MTH$FLOATJ Convert Longword to F-floating (Rounded) Routine
Format: MTH$FLOATJ longword
Returns: floating_point, F_floating, write only, by value
longword: longword_signed, longword (signed), read only, by

reference

MTH$DFLOTJ Convert Longword to D-floating (Exact) Routine
Format: MTH$DFLOTJ longword
Returns: floating_point, D_floating, write only, by value
longword: longword_signed, longword (signed), read only, by

reference

MTH$GFLOTJ Convert Longword to G-floating (Exact) Routine
Format: MTH$GFLOTJ longword
Returns: floating_point, G_floating, write only, by value
longword: longword_signed, longword (signed), read only, by

reference

MTH$FLOOR Convert F-floating to Greatest F-floating Integer Routine
Format: MTH$FLOOR f-floating
JSB: MTH$FLOOR_R1 f-floating

208

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

Returns: floating_point, F_floating, write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$DFLOOR Convert D-floating to Greatest D-floating Integer Routine
Format: MTH$DFLOOR d-floating
JSB: MTH$DFLOOR_R3 d-floating
Returns: floating_point, D_floating, write only, by value
d-floating: floating_point, D_floating, read only, by reference

MTH$GFLOOR Convert G-floating to Greatest G-floating Integer Routine
Format: MTH$GFLOOR g-floating
JSB: MTH$GFLOOR_R3 g-floating
Returns: floating_point, G_floating, write only, by value
g-floating: floating_point, G_floating, read only, by reference

MTH$HFLOOR Convert H-floating to Greatest H-floating Integer Routine
Format: MTH$HFLOOR max-h-float, h-floating
JSB: MTH$HFLOOR_R7 h-floating
Returns: None
max-h-float: floating_point, H_floating, write only, by reference
h-floating: floating_point, H_floating, read only, by reference

MTH$AINT Convert F-floating to Truncated F-floating Routine
Format: MTH$AINT f-floating
JSB: MTH$AINT_R2 f-floating
Returns: floating_point, F_floating, write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$DINT Convert D-floating to Truncated D-floating Routine
Format: MTH$DINT d-floating
JSB: MTH$DINT_R4 d-floating
Returns: floating_point, D_floating, write only, by value
d-floating: floating_point, D_floating, read only, by reference

MTH$IIDINT Convert D-floating to Word (Truncated) Routine
Format: MTH$IIDINT d-floating
Returns: word_signed, word (signed), write only, by value
d-floating: floating_point, D_floating, read only, by reference

MTH$JIDINT Convert D-floating to Longword (Truncated) Routine
Format: MTH$JIDINT d-floating
Returns: longword_signed, longword (signed), write only, by value
d-floating: floating_point, D_floating, read only, by reference

209

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

MTH$GINT Convert G-floating to Truncated G-floating Routine
Format: MTH$GINT g-floating
JSB: MTH$GINT_R4 g-floating
Returns: floating_point, G_floating, write only, by value
g-floating: floating_point, G_floating, read only, by reference

MTH$IIGINT Convert G-floating to Word (Truncated) Routine
Format: MTH$IIGINT g-floating
Returns: word_signed, word (signed), write only, by value
g-floating: floating_point, G_floating, read only, by reference

MTH$JIGINT Convert G-floating to Longword (Truncated) Routine
Format: MTH$JIGINT g-floating
Returns: longword_signed, longword (signed), write only, by value
g-floating: floating_point, G_floating, read only, by reference

MTH$HINT Convert H-floating to Truncated H-floating Routine
Format: MTH$HINT trunc-h-flt, h-floating
JSB: MTH$HINT_R8 h-floating
Returns: None
trunc-h-flt: floating_point, H_floating, write only, by reference
h-floating: floating_point, H_floating, read only, by reference

MTH$IIHINT Convert H-floating to Word (Truncated) Routine
Format: MTH$IIHINT h-floating
Returns: word_signed, word (signed), write only, by value
h-floating: floating_point, H_floating, read only, by reference

MTH$JIHINT Convert H-floating to Longword (Truncated) Routine
Format: MTH$JIHINT h-floating
Returns: longword_signed, longword (signed), write only, by value
h-floating: floating_point, H_floating, read only, by reference

MTH$IINT Convert F-floating to Word (Truncated) Routine
Format: MTH$IINT f-floating
Returns: word_signed, word (signed), write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$JINT Convert F-floating to Longword (Truncated) Routine
Format: MTH$JINT f-floating
Returns: longword_signed, longword (signed), write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$IIOR Bitwise Inclusive OR of Two Word Parameters Routine

210

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

Format: MTH$IIOR word1, word2
Returns: word_unsigned, word (unsigned), write only, by value
word1: word_unsigned, word (unsigned), read only, by reference
word2: word_unsigned, word (unsigned), read only, by reference

MTH$JIOR Bitwise Inclusive OR of Two Longword Parameters Routine
Format: MTH$JIOR longword1, longword2
Returns: longword_unsigned, longword (unsigned), write only, by

value
longword1: longword_unsigned, longword (unsigned), read only, by

reference
longword2: longword_unsigned, longword (unsigned), read only, by

reference

MTH$AIMAX0 F-floating Maximum of N Word Parameters Routine
Format: MTH$AIMAX0 word, ...
Returns: floating_point, F_floating, write only, by value
word: word_signed, word (signed), read only, by reference

MTH$AJMAX0 F-floating Maximum of N Longword Parameters Routine
Format: MTH$AJMAX0 longword, ...
Returns: floating_point, F_floating, write only, by value
longword: longword_signed, longword (signed), read only, by

reference

MTH$IMAX0 Word Maximum of N Word Parameters Routine
Format: MTH$IMAX0 word, ...
Returns: word_signed, word (signed), write only, by value
word: word_signed, word (signed), read only, by reference

MTH$JMAX0 Longword Maximum of N Longword Parameters Routine
Format: MTH$JMAX0 longword, ...
Returns: longword_signed, longword (signed), write only, by value
longword: longword_signed, longword (signed), read only, by

reference

MTH$AMAX1 F-floating Maximum of N F-floating Parameters Routine
Format: MTH$AMAX1 f-floating, ...
Returns: floating_point, F_floating, write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$DMAX1 D-floating Maximum of N D-floating Parameters Routine
Format: MTH$DMAX1 d-floating, ...
Returns: floating_point, D_floating, write only, by value

211

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

d-floating: floating_point, D_floating, read only, by reference

MTH$GMAX1 G-floating Maximum of N G-floating Parameters Routine
Format: MTH$GMAX1 g-floating, ...
Returns: floating_point, G_floating, write only, by value
g-floating: floating_point, G_floating, read only, by reference

MTH$HMAX1 H-floating Maximum of N H-floating Parameters Routine
Format: MTH$HMAX1 h-float-max, h-floating, ...
Returns: None
h-float-max: floating_point, H_floating, write only, by reference
h-floating: floating_point, H_floating, read only, by reference

MTH$IMAX1 Word Maximum of N F-floating Parameters Routine
Format: MTH$IMAX1 f-floating, ...
Returns: word_signed, word (signed), write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$JMAX1 Longword Maximum of N F-floating Parameters Routine
Format: MTH$JMAX1 f-floating, ...
Returns: longword_signed, longword (signed), write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$AIMIN0 F-floating Minimum of N Word Parameters Routine
Format: MTH$AIMIN0 word, ...
Returns: floating_point, F_floating, write only, by value
word: word_signed, word (signed), read only, by reference

MTH$AJMIN0 F-floating Minimum of N Longword Parameters Routine
Format: MTH$AJMIN0 longword, ...
Returns: floating_point, F_floating, write only, by value
longword: longword_signed, longword (signed), read only, by

reference

MTH$IMIN0 Word Minimum of N Word Parameters Routine
Format: MTH$IMIN0 word, ...
Returns: word_signed, word (signed), write only, by value
word: word_signed, word (signed), read only, by reference

MTH$JMIN0 Longword Minimum of N Longword Parameters Routine
Format: MTH$JMIN0 longword, ...
Returns: longword_signed, longword (signed), write only, by value
longword: longword_signed, longword (signed), read only, by

reference

212

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

MTH$AMIN1 F-floating Minimum of N F-floating Parameters Routine
Format: MTH$AMIN1 f-floating, ...
Returns: floating_point, F_floating, write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$DMIN1 D-floating Minimum of N D-floating Parameters Routine
Format: MTH$DMIN1 d-floating, ...
Returns: floating_point, D_floating, write only, by value
d-floating: floating_point, D_floating, read only, by reference

MTH$GMIN1 G-floating Minimum of N G-floating Parameters Routine
Format: MTH$GMIN1 g-floating, ...
Returns: floating_point, G_floating, write only, by value
g-floating: floating_point, G_floating, read only, by reference

MTH$HMIN1 H-floating Minimum of N H-floating Parameters Routine
Format: MTH$HMIN1 h-float-max, h-floating, ...
Returns: None
h-float-max: floating_point, H_floating, write only, by reference
h-floating: floating_point, H_floating, read only, by reference

MTH$IMIN1 Word Minimum of N F-floating Parameters Routine
Format: MTH$IMIN1 f-floating, ...
Returns: word_signed, word (signed), write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$JMIN1 Longword Minimum of N F-floating Parameters Routine
Format: MTH$JMIN1 f-floating, ...
Returns: longword_signed, longword (signed), write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$AMOD Remainder from Division of Two F-floating Parameters
Routine

Format: MTH$AMOD dividend, divisor
Returns: floating_point, F_floating, write only, by value
dividend: floating_point, F_floating, read only, by reference
divisor: floating_point, F_floating, read only, by reference

MTH$DMOD Remainder from Division of Two D-floating Parameters
Routine

Format: MTH$DMOD dividend, divisor
Returns: floating_point, D_floating, write only, by value
dividend: floating_point, D_floating, read only, by reference
divisor: floating_point, D_floating, read only, by reference

213

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

MTH$GMOD Remainder from Division of Two G-floating Parameters
Routine

Format: MTH$GMOD dividend, divisor
Returns: floating_point, G_floating, write only, by value
dividend: floating_point, G_floating, read only, by reference
divisor: floating_point, G_floating, read only, by reference

MTH$HMOD Remainder from Division of Two H-floating Parameters
Routine

Format: MTH$HMOD h-mod, dividend, divisor
Returns: None
h-mod: floating_point, H_floating, write only, by reference
dividend: floating_point, H_floating, read only, by reference
divisor: floating_point, H_floating, read only, by reference

MTH$IMOD Remainder from Division of Two Word Parameters Routine
Format: MTH$IMOD dividend, divisor
Returns: word_signed, word (signed), write only, by value
dividend: word_signed, word (signed), read only, by reference
divisor: word_signed, word (signed), read only, by reference

MTH$JMOD Remainder of Two Longword Parameters Routine
Format: MTH$JMOD dividend, divisor
Returns: longword_signed, longword (signed), write only, by value
dividend: longword_signed, longword (signed), read only, by

reference
divisor: longword_signed, longword (signed), read only, by

reference

MTH$ANINT Convert F-floating to Nearest F-floating Integer Routine
Format: MTH$ANINT f-floating
Returns: floating_point, F_floating, write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$DNINT Convert D-floating to Nearest D-floating Integer Routine
Format: MTH$DNINT d-floating
Returns: floating_point, D_floating, write only, by value
d-floating: floating_point, D_floating, read only, by reference

MTH$IIDNNT Convert D-floating to Nearest Word Integer Routine
Format: MTH$IIDNNT d-floating
Returns: word_signed, word (signed), write only, by value
d-floating: floating_point, D_floating, read only, by reference

214

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

MTH$JIDNNT Convert D-floating to Nearest Longword Integer Routine
Format: MTH$JIDNNT d-floating
Returns: longword_signed, longword (signed), write only, by value
d-floating: floating_point, D_floating, read only, by reference

MTH$GNINT Convert G-floating to Nearest G-floating Integer Routine
Format: MTH$GNINT g-floating
Returns: floating_point, G_floating, write only, by value
g-floating: floating_point, G_floating, read only, by reference

MTH$IIGNNT Convert G-floating to Nearest Word Integer Routine
Format: MTH$IIGNNT g-floating
Returns: word_signed, word (signed), write only, by value
g-floating: floating_point, G_floating, read only, by reference

MTH$JIGNNT Convert G-floating to Nearest Longword Integer Routine
Format: MTH$JIGNNT g-floating
Returns: longword_signed, longword (signed), write only, by value
g-floating: floating_point, G_floating, read only, by reference

MTH$HNINT Convert H-floating to Nearest H-floating Integer Routine
Format: MTH$HNINT nearst-h-flt, h-floating
Returns: None
nearst-h-flt: floating_point, H_floating, write only, by reference
h-floating: floating_point, H_floating, read only, by reference

MTH$IIHNNT Convert H-floating to Nearest Word Integer Routine
Format: MTH$IIHNNT h-floating
Returns: word_signed, word (signed), write only, by value
h-floating: floating_point, H_floating, read only, by reference

MTH$JIHNNT Convert H-floating to Nearest Longword Integer Routine
Format: MTH$JIHNNT h-floating
Returns: longword_signed, longword (signed), write only, by value
h-floating: floating_point, H_floating, read only, by reference

MTH$ININT Convert F-floating to Nearest Word Integer Routine
Format: MTH$ININT f-floating
Returns: word_signed, word (signed), write only, by value
f-floating: floating_point, F_floating, read only, by reference

MTH$JNINT Convert F-floating to Nearest Longword Integer Routine
Format: MTH$JNINT f-floating
Returns: longword_signed, longword (signed), write only, by value

215

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

f-floating: floating_point, F_floating, read only, by reference

MTH$INOT Bitwise Complement of Word Parameter Routine
Format: MTH$INOT word
Returns: word_unsigned, word (unsigned), write only, by value
word: word_unsigned, word (unsigned), read only, by reference

MTH$JNOT Bitwise Complement of Longword Parameter Routine
Format: MTH$JNOT longword
Returns: longword_unsigned, longword (unsigned), write only, by

value
longword: longword_unsigned, longword (unsigned), read only, by

reference

MTH$DPROD D-floating Product of Two F-floating Parameters Routine
Format: MTH$DPROD f-floating1, f-floating2
Returns: floating_point, D_floating, write only, by value
f-floating1: floating_point, F_floating, read only, by reference
f-floating2: floating_point, F_floating, read only, by reference

MTH$GPROD G-floating Product of Two F-floating Parameters Routine
Format: MTH$GPROD f-floating1, f-floating2
Returns: floating_point, G_floating, write only, by value
f-floating1: floating_point, F_floating, read only, by reference
f-floating2: floating_point, F_floating, read only, by reference

MTH$SGN F-floating Sign Function
Format: MTH$SGN f-floating
Returns: longword_signed, longword (signed), write only, by

reference
f-floating: floating_point, F_floating, read only, by reference

MTH$SGN D-floating Sign Function
Format: MTH$SGN d-floating
Returns: longword_signed, longword (signed), write only, by

reference
d-floating: floating_point, D_floating, read only, by reference

MTH$IISHFT Bitwise Shift of Word Routine
Format: MTH$IISHFT word, shift-cnt
Returns: word_unsigned, word (unsigned), write only, by value
word: word_unsigned, word (unsigned), read only, by reference
shift-cnt: word_signed, word (signed), read only, by reference

MTH$JISHFT Bitwise Shift of Longword Routine

216

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

Format: MTH$JISHFT longword, shift-cnt
Returns: longword_unsigned, longword (unsigned), write only, by

value
longword: longword_unsigned, longword (unsigned), read only, by

reference
shift-cnt: longword_signed, longword (signed), read only, by

reference

MTH$SIGN F-floating Transfer of Sign of Y to Sign of X Routine
Format: MTH$SIGN f-float-x, f-float-y
Returns: floating_point, F_floating, write only, by value
f-float-x: floating_point, F_floating, read only, by reference
f-float-y: floating_point, F_floating, read only, by reference

MTH$DSIGN D-floating Transfer of Sign of Y to Sign of X Routine
Format: MTH$DSIGN d-float-x, d-float-y
Returns: floating_point, D_floating, write only, by value
d-float-x: floating_point, D_floating, read only, by reference
d-float-y: floating_point, D_floating, read only, by reference

MTH$GSIGN G-floating Transfer of Sign of Y to Sign of X Routine
Format: MTH$GSIGN g-float-x, g-float-y
Returns: floating_point, G_floating, write only, by value
g-float-x: floating_point, G_floating, read only, by reference
g-float-y: floating_point, G_floating, read only, by reference

MTH$HSIGN H-floating Transfer of Sign of Y to Sign of X Routine
Format: MTH$HSIGN h-result, h-float-x, h-float-y
Returns: None
h-result: floating_point, H_floating, write only, by reference
h-float-x: floating_point, H_floating, read only, by reference
h-float-y: floating_point, H_floating, read only, by reference

MTH$IISIGN Word Transfer of Sign of Y to Sign of X Routine
Format: MTH$IISIGN word-x, word-y
Returns: word_signed, word (signed), write only, by value
word-x: word_signed, word (signed), read only, by reference
word-y: word_signed, word (signed), read only, by reference

MTH$JISIGN Longword Transfer of Sign of Y to Sign of X Routine
Format: MTH$JISIGN longwrd-x, longwrd-y
Returns: longword_signed, longword (signed), write only, by

reference

217

Appendix A. Additional MTH$ Routines

Routine Name Entry Point Information

longwrd-x: longword_signed, longword (signed), read only, by
reference

longwrd-y: longword_signed, longword (signed), read only, by
reference

MTH$SNGL Convert D-floating to F-floating (Rounded) Routine
Format: MTH$SNGL d-floating
Returns: floating_point, F_floating, write only, by value
d-floating: floating_point, D_floating, read only, by reference

MTH$SNGLG Convert G-floating to F-floating (Rounded) Routine
Format: MTH$SNGLG g-floating
Returns: floating_point, F_floating, write only, by value
g-floating: floating_point, G_floating, read only, by reference

218

Appendix B. Vector MTH$ Routine
Entry Points
Table B–1 contains all of the vector MTH$ routines that you can call from VAX MACRO. Be sure to
read Section 2.3.3 and Section 2.3.4 before using the information in this table.

Table B.1. Vector MTH$ Routines

Scalar
Name

Call
or
JSB

Vector
Input
Registers

Vector
Output
Registers

Vector Name (Underflows
Not Signaled)

Vector Name (Underflows
Signaled)

AINT JSB V0 V0 MTH$VAINT_R0_V1
DINT JSB V0 V0 MTH$VDINT_R3_V3
GINT JSB V0 V0 MTH$VGINT_R3_V3
DPROD Call V0,V1 V0 MTH$VVDPROD_R1_V1
GPROD Call V0,V1 V0 MTH$VVGPROD_R1_V1
ACOS JSB V0 V0 MTH$VACOS_R6_V7
DACOS JSB V0 V0 MTH$VDACOS_R2_V7
GACOS JSB V0 V0 MTH$VGACOS_R2_V7
ACOSD JSB V0 V0 MTH$VACOSD_R6_V7
DACOSD JSB V0 V0 MTH$VDACOSD_R2_V7
GACOSD JSB V0 V0 MTH$VGACOS_R2_V7
ASIN JSB V0 V0 MTH$VASIN_R2_V6
DASIN JSB V0 V0 MTH$VDASIN_R2_V6
GASIN JSB V0 V0 MTH$VGASIN_R2_V6
ASIND JSB V0 V0 MTH$VASIND_R2_V6
DASIND JSB V0 V0 MTH$VDASIND_R2_V6
GASIND JSB V0 V0 MTH$VGASIND_R2_V6
ATAN JSB V0 V0 MTH$VATAN_R0_V4
DATAN JSB V0 V0 MTH$VDATAN_R0_V6
GATAN JSB V0 V0 MTH$VGATAN_R0_V6
ATAND JSB V0 V0 MTH$VATAND_R0_V4
DATAND JSB V0 V0 MTH$VDATAND_R0_V6
GATAND JSB V0 V0 MTH$VGATAND_R0_V6
ATAN2 JSB V0,V1 V0 MTH$VVATAN2_R4_V7
DATAN2 JSB V0,V1 V0 MTH$VVDATAN2_R4_V9
GATAN2 JSB V0,V1 V0 MTH$VVGATAN2_R4_V9
ATAND2 JSB V0,V1 V0 MTH$VVATAND2_R4_V7
DATAND2 JSB V0,V1 V0 MTH

$VVDATAND2_R4_V9

219

Appendix B. Vector MTH$ Routine Entry Points

Scalar
Name

Call
or
JSB

Vector
Input
Registers

Vector
Output
Registers

Vector Name (Underflows
Not Signaled)

Vector Name (Underflows
Signaled)

GATAND2 JSB V0,V1 V0 MTH
$VVGATAND2_R4_V9

CABS Call V0,V1 V0 MTH$VCABS_R1_V5
CDABS Call V0,V1 V0 MTH$VCDABS_R1_V6
CGABS Call V0,V1 V0 MTH$VCGABS_R1_V6
CCOS Call V0,V1 V0,V1 MTH$VCCOS_R1_V11
CDCOS Call V0,V1 V0,V1 MTH$VCDCOS_R1_V11
CGCOS Call V0,V1 V0,V1 MTH$VCGCOS_R1_V11
COS JSB V0 V0 MTH$VCOS_R4_V7
DCOS JSB V0 V0 MTH$VDCOS_R4_V8
GCOS JSB V0 V0 MTH$VGCOS_R4_V8
COSD JSB V0 V0 MTH$VCOSD_R4_V6
DCOSD JSB V0 V0 MTH$VDCOSD_R4_V6
GCOSD JSB V0 V0 MTH$VGCOSD_R4_V6
CEXP Call V0,V1 V0,V1 MTH$VCEXP_R1_V8
CDEXP Call V0,V1 V0,V1 MTH$VCDEXP_R1_V10
CGEXP Call V0,V1 V0,V1 MTH$VCGEXP_R1_V10
CLOG Call V0,V1 V0,V1 MTH$VCLOG_R1_V8
CDLOG Call V0,V1 V0,V1 MTH$VCDLOG_R1_V10
CGLOG Call V0,V1 V0,V1 MTH$VCGLOG_R1_V10
AMOD JSB V0,R0 V0 MTH$VAMOD_R4_V5 MTH$VAMOD_E_R4_V5
DMOD JSB V0,R0 V0 MTH$VDMOD_R7_V6 MTH$VDMOD_E_R7_V6
GMOD JSB V0,R0 V0 MTH$VGMOD_R7_V6 MTH$VGMOD_E_R7_V6
CSIN Call V0,V1 V0,V1 MTH$VCSIN_R1_V11
CDSIN Call V0,V1 V0,V1 MTH$VCDSIN_R1_V11
CGSIN Call V0,V1 V0,V1 MTH$VCGSIN_R1_V11
CSQRT Call V0,V1 V0,V1 MTH$VCSQRT_R1_V7
CDSQRT Call V0,V1 V0,V1 MTH$VCDSQRT_R1_V8
CGSQRT Call V0,V1 V0,V1 MTH$VCGSQRT_R1_V8
COSH JSB V0 V0 MTH$VCOSH_R5_V8
DCOSH JSB V0 V0 MTH$VDCOSH_R5_V8
GCOSH JSB V0 V0 MTH$VGCOSH_R5_V8
EXP JSB V0 V0 MTH$VEXP_R3_V6 MTH$VEXP_E_R3_V6
DEXP JSB V0 V0 MTH$VDEXP_R3_V6 MTH$VDEXP_E_R3_V6
GEXP JSB V0 V0 MTH$VGEXP_R3_V6 MTH$VGEXP_E_R3_V6
ALOG JSB V0 V0 MTH$VALOG_R3_V5
DLOG JSB V0 V0 MTH$VDLOG_R3_V7

220

Appendix B. Vector MTH$ Routine Entry Points

Scalar
Name

Call
or
JSB

Vector
Input
Registers

Vector
Output
Registers

Vector Name (Underflows
Not Signaled)

Vector Name (Underflows
Signaled)

GLOG JSB V0 V0 MTH$VGLOG_R3_V7
ALOG10 JSB V0 V0 MTH$VALOG10_R3_V5
DLOG10 JSB V0 V0 MTH$VDLOG10_R3_V7
GLOG10 JSB V0 V0 MTH$VGLOG10_R3_V7
ALOG2 JSB V0 V0 MTH$VALOG2_R3_V5
DLOG2 JSB V0 V0 MTH$VDLOG2_R3_V7
GLOG2 JSB V0 V0 MTH$VGLOG2_R3_V7
RANDOM JSB V0 V0 MTH$VRANDOM_R2_V0
SIN JSB V0 V0 MTH$VSIN_R4_V6
DSIN JSB V0 V0 MTH$VDSIN_R4_V8
GSIN JSB V0 V0 MTH$VGSIN_R4_V8
SIND JSB V0 V0 MTH$VSIND_R4_V6 MTH$VSIND_E_R6_V6
DSIND JSB V0 V0 MTH$VDSIND_R4_V6 MTH$VDSIND_E_R6_V6
GSIND JSB V0 V0 MTH$VGSIND_R4_V6 MTH$VGSIND_E_R6_V6
SINCOS JSB V0 V0,V1 MTH$VSINCOS_R4_V7
DSINCOS JSB V0 V0,V1 MTH$VDSINCOS_R4_V8
GSINCOS JSB V0 V0,V1 MTH$VGSINCOS_R4_V8
SINCOSD JSB V0 V0,V1 MTH$VSINCOSD_R4_V6 MTH

$VSINCOSD_E_R6_V6
DSINCOSD JSB V0 V0,V1 MTH$VDSINCOSD_R4_V7 MTH

$VDSINCOSD_E_R6_V7
GSINCOSD JSB V0 V0,V1 MTH$VGSINCOSD_R4_V7 MTH

$VGSINCOSD_E_R6_V7
SINH JSB V0 V0 MTH$VSINH_R5_V9
DSINH JSB V0 V0 MTH$VDSINH_R5_V9
GSINH JSB V0 V0 MTH$VGSINH_R5_V9
SQRT JSB V0 V0 MTH$VSQRT_R2_V4
DSQRT JSB V0 V0 MTH$VDSQRT_R2_V5
GSQRT JSB V0 V0 MTH$VGSQRT_R2_V5
TAN JSB V0 V0 MTH$VTAN_R4_V5
DTAN JSB V0 V0 MTH$VDTAN_R4_V5
GTAN JSB V0 V0 MTH$VGTAN_R4_V5
TAND JSB V0 V0 MTH$VTAND_R4_V5 MTH$VTAND_E_R4_V5
DTAND JSB V0 V0 MTH$VDTAND_R4_V5 MTH$VDTAND_E_R4_V5
GTAND JSB V0 V0 MTH$VGTAND_R4_V5 MTH$VGTAND_E_R4_V5
TANH JSB V0 V0 MTH$VTANH_R3_V10
DTANH JSB V0 V0 MTH$VDTANH_R3_V10

221

Appendix B. Vector MTH$ Routine Entry Points

Scalar
Name

Call
or
JSB

Vector
Input
Registers

Vector
Output
Registers

Vector Name (Underflows
Not Signaled)

Vector Name (Underflows
Signaled)

GTANH JSB V0 V0 MTH$VGTANH_R3_V10
DIVC Call V0,V1,

V2,V3
V0,V1 OTS$VVDIVC_R1_V6

DIVCD Call V0,V1,
V2,V3

V0,V1 OTS$VVDIVCD_R1_V7

DIVCG Call V0,V1,
V2,V3

V0,V1 OTS$VVDIVCG_R1_V7

MULC Call V0,V1,
V2,V3

V0,V1 OTS$VVMULC_R1_V4

MULCD Call V0,V1,
V2,V3

V0,V1 OTS$VVMULCD_R1_V4

MULCG Call V0,V1,
V2,V3

V0,V1 OTS$VVMULCG_R1_V4

POWJJ Call V0,R0 V0 OTS$VPOWJJ_R1_V1
POWRJ Call V0,R0 V0 OTS$VPOWRJ_R1_V2 OTS$VPOWRJ_E_R1_V2
POWDJ Call V0,R0 V0 OTS$VPOWDJ_R1_V2 OTS$VPOWDJ_E_R1_V2
POWGJ Call V0,R0 V0 OTS$VPOWGJ_R1_V2 OTS$VPOWGJ_E_R1_V2
POWRR Call V0,R0 V0 OTS$VPOWRR_R1_V4 OTS$VPOWRR_E_R1_V4
POWDD Call V0,R0 V0 OTS$VPOWDD_R1_V8 OTS$VPOWDD_E_R1_V8
POWGG Call V0,R0 V0 OTS$VPOWGG_R1_V9 OTS$VPOWGG_E_R1_V9

222

	VAX RTL Mathematics (MTH$) Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. OpenVMS Documentation
	6. VSI Encourages Your Comments
	7. Conventions

	Chapter 1. OpenVMS Run-Time Library Mathematics (MTH$) Facility
	1.1. Entry Point Names
	1.2. Calling Conventions
	1.3. Algorithms
	1.4. Condition Handling
	1.5. Complex Numbers
	1.6. Mathematics Routines Not Documented in the MTH$ Reference Section
	1.7. Examples of Calls to Run-Time Library Mathematics Routines
	1.7.1. BASIC Example
	1.7.2. COBOL Example
	1.7.3. Fortran Examples
	1.7.4. MACRO Examples
	1.7.5. Pascal Examples
	1.7.6. PL/I Examples
	1.7.7. Ada Example

	Chapter 2. Vector Routines in MTH$
	2.1. BLAS — Basic Linear Algebra Subroutines Level 1
	2.1.1. Using BLAS Level 1
	2.1.1.1. Memory Overlap
	2.1.1.2. Round-Off Effects
	2.1.1.3. Underflow and Overflow
	2.1.1.4. Notational Definitions

	2.2. FOLR — First Order Linear Recurrence Routines
	2.2.1. FOLR Routine Name Format
	2.2.2. Calling a FOLR Routine

	2.3. Vector Versions of Existing Scalar Routines
	2.3.1. Exceptions
	2.3.2. Underflow Detection
	2.3.3. Vector Routine Name Format
	2.3.4. Calling a Vector Math Routine

	2.4. Fast-Vector Math Routines
	2.4.1. Exception Handling
	2.4.2. Special Restrictions On Input Arguments
	2.4.3. Accuracy
	2.4.4. Performance

	Chapter 3. Scalar MTH$ Reference Section
	MTH$xACOS
	MTH$xACOSD
	MTH$xASIN
	MTH$xASIND
	MTH$xATAN
	MTH$xATAND
	MTH$xATAN2
	MTH$xATAND2
	MTH$xATANH
	MTH$CxABS
	MTH$CCOS
	MTH$CxCOS
	MTH$CEXP
	MTH$CxEXP
	MTH$CLOG
	MTH$CxLOG
	MTH$CMPLX
	MTH$xCMPLX
	MTH$CONJG
	MTH$xCONJG
	MTH$xCOS
	MTH$xCOSD
	MTH$xCOSH
	MTH$CSIN
	MTH$CxSIN
	MTH$CSQRT
	MTH$CxSQRT
	MTH$CVT_x_x
	MTH$CVT_xA_xA
	MTH$xEXP
	MTH$HACOS
	MTH$HACOSD
	MTH$HASIN
	MTH$HASIND
	MTH$HATAN
	MTH$HATAND
	MTH$HATAN2
	MTH$HATAND2
	MTH$HATANH
	MTH$HCOS
	MTH$HCOSD
	MTH$HCOSH
	MTH$HEXP
	MTH$HLOG
	MTH$HLOG2
	MTH$HLOG10
	MTH$HSIN
	MTH$HSIND
	MTH$HSINH
	MTH$HSQRT
	MTH$HTAN
	MTH$HTAND
	MTH$HTANH
	MTH$xIMAG
	MTH$xLOG
	MTH$xLOG2
	MTH$xLOG10
	MTH$RANDOM
	MTH$xREAL
	MTH$xSIN
	MTH$xSINCOS
	MTH$xSINCOSD
	MTH$xSIND
	MTH$xSINH
	MTH$xSQRT
	MTH$xTAN
	MTH$TAND
	MTH$xTANH
	MTH$UMAX
	MTH$UMIN

	Chapter 4. Vector MTH$ Reference Section
	BLAS1$VIxAMAX
	BLAS1$VxASUM
	BLAS1$VxAXPY
	BLAS1$VxCOPY
	BLAS1$VxDOTx
	BLAS1$VxNRM2
	BLAS1$VxROT
	BLAS1$VxROTG
	BLAS1$VxSCAL
	BLAS1$VxSWAP
	MTH$VxFOLRy_MA_V15
	MTH$VxFOLRy_z_V8
	MTH$VxFOLRLy_MA_V5
	MTH$VxFOLRLy_MA_V5

	Appendix A. Additional MTH$ Routines
	Appendix B. Vector MTH$ Routine Entry Points

