
VSI BASIC
User Manual

Operating System and Version: VSI OpenVMS Alpha Version 8.4-2L1 or higher
VSI OpenVMS IA-64 Version 8.4-1H1 or higher

Software Version: VSI BASIC Version 1.8-4 for OpenVMS I64
VSI BASIC Version 1.8-5 for OpenVMS Alpha

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI BASIC User Manual

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Oracle is a registered trademark of Oracle and/or its affiliates.

ii

VSI BASIC User Manual

Table of Contents
Preface .. xiii

1. About VSI ... xiii
2. Intended Audience .. xiii
3. Document Structure .. xiii
4. Related Documents ... xiv
5. OpenVMS Documentation .. xiv
6. VSI Encourages Your Comments .. xv
7. Conventions ... xv

Part I. Developing BASIC Programs on OpenVMS Systems

Chapter 1. Overview of VSI BASIC .. 3
1.1. Language Constructs Supported ... 3
1.2. Advantages on OpenVMS ... 3

Chapter 2. Developing VSI BASIC Programs .. 5
2.1. Compiling a VSI BASIC Program .. 5

2.1.1. BASIC Command .. 5
2.1.2. BASIC Command Qualifiers ... 6
2.1.3. Declining Qualifiers and Their Recommended Replacements 18
2.1.4. Compiler Listings ... 19

2.2. Linking a VSI BASIC Program .. 20
2.2.1. LINK Command .. 20
2.2.2. LINK Command Qualifiers ... 21
2.2.3. Linker Input Files ... 22
2.2.4. Linker Output Files .. 22
2.2.5. Using an Object Module Library ... 23
2.2.6. Linker Error Messages .. 23

2.3. Running a VSI BASIC Program ... 24
2.3.1. Improving Run-Time Performance of VSI BASIC Programs 25

2.3.1.1. Data Items .. 25
2.3.1.2. Qualifiers .. 25
2.3.1.3. Statements .. 26

Chapter 3. Using the OpenVMS Debugger with BASIC ... 27
3.1. Overview of the Debugger ... 27
3.2. Compiling and Linking to Prepare for Debugging .. 27
3.3. Viewing Your Source Code ... 27

3.3.1. Noscreen Mode .. 27
3.3.2. Screen Mode ... 28

3.4. Controlling and Monitoring Program Execution ... 29
3.4.1. Starting and Resuming Program Execution ... 29
3.4.2. Determining the Current Location of the Program Counter 31
3.4.3. Suspending Program Execution ... 31
3.4.4. Tracing Program Execution ... 33
3.4.5. Monitoring Changes in Variables ... 34

3.5. Examining and Manipulating Data .. 34
3.5.1. Displaying the Values of Variables ... 34
3.5.2. Changing the Values of Variables .. 35
3.5.3. Evaluating Expressions .. 36

3.6. Stepping Into BASIC Routines ... 36

iii

VSI BASIC User Manual

3.6.1. Controlling Symbol References .. 37
3.7. Sample Debugging Session .. 38
3.8. Hints for Using the OpenVMS Debugger .. 40

Part II. BASIC Programming Concepts

Chapter 4. BASIC Concepts and Elements .. 43
4.1. Line Numbers ... 43

4.1.1. Programs with Line Numbers .. 43
4.1.2. Programs Without Line Numbers .. 43
4.1.3. Labels ... 44
4.1.4. Continuation of Long Program Statements ... 45

4.2. Identifying Program Units .. 45
4.3. BASIC Character Set ... 46
4.4. Program Documentation .. 46
4.5. Declarations and Data Types ... 47

4.5.1. Implicit Data Typing ... 48
4.5.2. Explicit Data Typing ... 48

4.6. Constants .. 49
4.7. Variables .. 50

4.7.1. Floating-Point Variables .. 50
4.7.2. Integer Variables .. 50
4.7.3. Packed Decimal Variables ... 51
4.7.4. String Variables .. 51
4.7.5. Subscripted Variables .. 51
4.7.6. Initialization of Variables .. 52

4.8. Keywords and Reserved Words .. 52
4.9. Operands, Operators, and Expressions .. 53
4.10. Assignment Statements .. 53

Chapter 5. Simple Input and Output ... 55
5.1. Program Input .. 55

5.1.1. Providing Input Interactively ... 55
5.1.1.1. INPUT Statement .. 55
5.1.1.2. INPUT LINE and LINPUT Statements ... 57
5.1.1.3. Enabling and Disabling the Question Mark Prompt 57

5.1.2. Providing Input from the Source Program .. 58
5.1.2.1. READ and DATA Statements ... 58
5.1.2.2. RESTORE Statement ... 60

5.2. Program Output .. 60
5.2.1. Print Zones—The Comma and the Semicolon .. 61
5.2.2. Output Format for Numbers and Strings ... 64

5.3. Terminal-Format Files ... 65
5.3.1. Opening and Closing a Terminal-Format File .. 65
5.3.2. Writing Records to a Terminal-Format File .. 65

Chapter 6. Arrays ... 67
6.1. Overview of Arrays ... 67
6.2. Creating Arrays Explicitly .. 68

6.2.1. Creating Arrays with the DECLARE Statement .. 68
6.2.2. Creating Arrays with the DIM Statement .. 69

6.2.2.1. Declarative DIM Statements ... 69
6.2.2.2. Executable DIM Statements .. 70

iv

VSI BASIC User Manual

6.2.3. Creating Arrays with the COMMON Statement .. 70
6.2.4. Creating Arrays with the MAP Statement ... 71

6.3. Creating Arrays Implicitly .. 71
6.4. Determining the Bounds of an Array .. 72
6.5. Assigning and Displaying Array Values ... 72

6.5.1. Assigning Values with the LET Statement .. 72
6.5.2. Listing Array Elements with the PRINT Statement .. 73

6.6. Using MAT Statements ... 73
6.6.1. MAT Statement .. 75
6.6.2. MAT READ Statement ... 76
6.6.3. MAT INPUT [#] Statement .. 77
6.6.4. MAT LINPUT [#] Statement .. 78
6.6.5. MAT PRINT [#] Statement ... 79
6.6.6. Matrix I/O Functions (NUM and NUM2) .. 80

6.7. Matrix Operators .. 80
6.7.1. Arithmetic Matrix Operations .. 80

6.7.1.1. Assignment ... 81
6.7.1.2. Addition and Subtraction .. 81
6.7.1.3. Multiplication .. 81

6.7.2. Matrix Functions .. 82
6.7.2.1. TRN Function ... 82
6.7.2.2. INV Function .. 83
6.7.2.3. DET Function ... 83

Chapter 7. Data Definition .. 85
7.1. Declarative Statements ... 85
7.2. Data Types ... 85
7.3. Setting the Default Data Type and Size ... 85
7.4. Declaring Variables ... 86
7.5. Declaring Named Constants ... 87
7.6. Operations with Multiple Data Types .. 87
7.7. Allocating Dynamic and Static Storage ... 87

7.7.1. COMMON Statement ... 88
7.7.2. MAP Statement ... 88

7.7.2.1. Single Maps .. 89
7.7.2.2. Multiple Maps ... 90

7.7.3. FILL Items .. 91
7.7.4. Using COMMON and MAP Statements in Subprograms 92
7.7.5. Dynamic Mapping .. 94

Chapter 8. Creating and Using Data Structures .. 97
8.1. RECORD Statement .. 97

8.1.1. Grouping RECORD Components ... 100
8.1.2. RECORD Variants ... 100
8.1.3. Accessing RECORD Components .. 103

Chapter 9. Program Control ... 109
9.1. Statement Modifiers .. 109

9.1.1. IF Modifier .. 109
9.1.2. UNLESS Modifier .. 109
9.1.3. FOR Modifier .. 110
9.1.4. UNTIL Modifier .. 110
9.1.5. WHILE Modifier .. 110
9.1.6. Nesting Modifiers ... 110

v

VSI BASIC User Manual

9.2. Loops ... 110
9.2.1. FOR...NEXT Loops .. 111
9.2.2. WHILE...NEXT Loops ... 113
9.2.3. UNTIL...NEXT Loops .. 113
9.2.4. Nesting Loops .. 114

9.3. Unconditional Branching (GOTO Statement) ... 114
9.4. Conditional Branching ... 115

9.4.1. ON...GOTO...OTHERWISE Statement ... 115
9.4.2. IF...THEN...ELSE Statement ... 115
9.4.3. SELECT...CASE Statement ... 117

9.5. EXIT and ITERATE Statements .. 119
9.6. Executing Local Subroutines .. 121

9.6.1. GOSUB and RETURN Statements .. 121
9.6.2. ON...GOSUB...OTHERWISE Statement ... 122

9.7. Suspending and Halting Program Execution ... 122
9.7.1. SLEEP Statement ... 123
9.7.2. WAIT Statement .. 123
9.7.3. STOP Statement ... 123
9.7.4. END Statement .. 124

Chapter 10. Functions .. 125
10.1. Built-In Functions .. 125

10.1.1. Numeric Functions .. 125
10.1.1.1. ABS Function .. 125
10.1.1.2. INT and FIX Functions .. 126
10.1.1.3. SIN, COS, and TAN Functions ... 126
10.1.1.4. SQR Function .. 127
10.1.1.5. LOG10 Function .. 127
10.1.1.6. EXP Function .. 128
10.1.1.7. RND Function ... 128

10.1.2. Data Conversion Functions .. 129
10.1.2.1. ASCII Function ... 129
10.1.2.2. CHR$ Function ... 129

10.1.3. String Numeric Functions .. 130
10.1.3.1. FORMAT$ Function .. 130
10.1.3.2. NUM$ and NUM1$ Functions ... 130
10.1.3.3. VAL% and VAL Functions .. 131

10.1.4. String Arithmetic Functions ... 132
10.1.4.1. SUM$ and DIF$ Functions ... 133
10.1.4.2. QUO$, PLACE$, and PROD$ Functions ... 133

10.1.5. Date and Time Functions .. 135
10.1.5.1. DATE$ Function .. 135
10.1.5.2. DATE4$ Function .. 135
10.1.5.3. TIME$ Function .. 136
10.1.5.4. TIME Function .. 136

10.1.6. Terminal Control Functions ... 136
10.1.6.1. CTRLC and RCTRLC Functions .. 136
10.1.6.2. ECHO and NOECHO Functions .. 137
10.1.6.3. INKEY$ Function ... 137

10.2. User-Defined Functions ... 138
10.2.1. Single-Line DEF Functions .. 139
10.2.2. Multiline DEF Functions ... 140

vi

VSI BASIC User Manual

Chapter 11. String Handling ... 145
11.1. Overview of Strings ... 145
11.2. Using Dynamic Strings .. 145
11.3. Using Fixed-Length Strings .. 146
11.4. Using String Virtual Arrays .. 147
11.5. Assigning String Data .. 148

11.5.1. LET Statement ... 148
11.5.2. LSET Statement ... 148
11.5.3. RSET Statement ... 149
11.5.4. MID$ Assignment Statement ... 150

11.6. Manipulating String Data with String Functions ... 151
11.6.1. LEN Function .. 151
11.6.2. POS Function ... 151
11.6.3. SEG$ Function ... 153
11.6.4. MID$ Function .. 155
11.6.5. STRING$ Function ... 156
11.6.6. SPACE$ Function ... 156
11.6.7. TRM$ Function .. 156
11.6.8. EDIT$ Function ... 157

11.7. Manipulating String Data with Multiple Maps .. 158
Chapter 12. Program Segmentation ... 161

12.1. VSI BASIC Subprograms ... 161
12.1.1. SUB Subprograms .. 162
12.1.2. FUNCTION Subprograms ... 162

12.2. Declaring Subprograms and Parameters ... 163
12.3. Compiling Subprograms ... 165
12.4. Invoking Subprograms ... 166

12.4.1. Invoking SUB Subprograms .. 166
12.4.2. Invoking FUNCTION Subprograms ... 167

12.5. Returning Program Status .. 167
Chapter 13. File Input and Output .. 169

13.1. Record Formats ... 169
13.1.1. Fixed-Length Records ... 169
13.1.2. Variable-Length Records ... 169
13.1.3. Stream Records .. 169

13.2. File Organizations ... 170
13.2.1. Terminal-Format Files ... 170
13.2.2. Sequential Files .. 170
13.2.3. Relative Files .. 170
13.2.4. Indexed Files .. 171
13.2.5. Virtual Files ... 171

13.3. Record Access and Record Context .. 171
13.4. I/O and Record Buffers ... 172
13.5. Accessing the Contents of a Record .. 173

13.5.1. MAP Statement .. 173
13.5.2. MAP DYNAMIC and REMAP Statements .. 173
13.5.3. MOVE Statement ... 175

13.6. File and Record Operations .. 176
13.6.1. Opening Files ... 177
13.6.2. Creating Virtual Array Files .. 178
13.6.3. Locating Records .. 179

vii

VSI BASIC User Manual

13.6.4. Reading Records ... 180
13.6.5. Writing Records ... 182
13.6.6. Deleting Records .. 183
13.6.7. Updating Records ... 184
13.6.8. Controlling Record Access ... 185
13.6.9. Gaining Access to Locked Records .. 186
13.6.10. Accessing Records by Record File Address ... 188
13.6.11. Transferring Data to Terminal-Format Files ... 189
13.6.12. Resetting the File Position ... 190
13.6.13. Truncating Files .. 190
13.6.14. Renaming Files ... 190
13.6.15. Closing Files and Ending I/O ... 191
13.6.16. Deleting Files ... 191

13.7. File-Related Functions ... 191
13.7.1. FSP$ Function .. 192
13.7.2. RECOUNT Function .. 192
13.7.3. STATUS, VMSSTATUS, and RMSSTATUS Functions 193

13.8. OPEN Statement Options ... 193
13.8.1. BUCKETSIZE Clause ... 194
13.8.2. BUFFER Clause ... 195
13.8.3. CONNECT Clause .. 195
13.8.4. CONTIGUOUS Clause .. 196
13.8.5. DEFAULTNAME Clause .. 196
13.8.6. EXTENDSIZE Clause ... 196
13.8.7. FILESIZE Clause ... 197
13.8.8. NOSPAN Clause .. 197
13.8.9. RECORDTYPE Clause ... 197
13.8.10. TEMPORARY Clause .. 198
13.8.11. USEROPEN Clause ... 198
13.8.12. WINDOWSIZE Clause ... 200

Chapter 14. Formatting Output with the PRINT USING Statement 201
14.1. Overview of the PRINT USING Statement ... 201
14.2. Using Format Strings ... 201
14.3. Printing Numbers .. 203

14.3.1. Specifying the Number of Digits .. 203
14.3.2. Specifying Decimal Point Location ... 204
14.3.3. Printing Numbers with Special Symbols ... 205

14.3.3.1. Commas .. 206
14.3.3.2. Asterisk-Fill Fields ... 206
14.3.3.3. Currency Symbols .. 207
14.3.3.4. Negative Fields .. 207
14.3.3.5. E (Exponential) Format .. 208
14.3.3.6. Leading Zeros .. 209
14.3.3.7. Blank-If-Zero Fields ... 209
14.3.3.8. Debits and Credits ... 209

14.4. Printing Strings ... 210
14.4.1. Left-Justified Format ... 211
14.4.2. Right-Justified Format ... 211
14.4.3. Centered Fields .. 212
14.4.4. Extended Fields .. 212

14.5. PRINT USING Statement Error Conditions ... 213

viii

VSI BASIC User Manual

Chapter 15. Handling Run-Time Errors .. 215
15.1. Default Error Handling .. 215
15.2. User-Supplied Error Handlers ... 215

15.2.1. Protected Regions ... 216
15.2.2. Handlers .. 217
15.2.3. Exiting from Handlers ... 219

15.2.3.1. RETRY Statement ... 220
15.2.3.2. CONTINUE Statement ... 220
15.2.3.3. EXIT HANDLER Statement .. 221

15.2.4. Selecting the Severity of Errors to Handle .. 222
15.2.5. Identifying Errors ... 222

15.2.5.1. Determining the Error Number (ERR) ... 223
15.2.5.2. Determining the Error Line Number (ERL) .. 223
15.2.5.3. Determining Where the Error Occurred (ERN$) 224
15.2.5.4. Determining the Error Message Text (ERT$) .. 225
15.2.5.5. Determining OpenVMS Error Information ... 225
15.2.5.6. Determining RMS Error Information ... 226

15.2.6. Ctrl/C Trapping .. 226
15.2.7. Handling Errors in Multiple-Unit Programs ... 227
15.2.8. Forcing Errors .. 229

15.3. Using the ON ERROR Statements .. 230
Chapter 16. Compiler Directives ... 233

16.1. Overview of Compiler Directives .. 233
16.2. Controlling the Compilation Listing .. 233

16.2.1. %TITLE and %SBTTL Directives ... 234
16.2.2. %IDENT Directive ... 235
16.2.3. %PAGE Directive ... 235
16.2.4. %LIST and %NOLIST Directives .. 236
16.2.5. %CROSS and %NOCROSS Directives ... 236

16.3. Accessing External Source Files ... 237
16.4. Controlling Compilation ... 238

16.4.1. %LET Directive ... 239
16.4.2. %VARIANT Directive .. 239
16.4.3. %ABORT Directive .. 239
16.4.4. %PRINT Directive ... 240
16.4.5. %IF-%THEN-%ELSE-%END %IF Directive .. 240
16.4.6. %DEFINE and %UNDEFINE Directives ... 241

16.5. Record Dependency Relationships in CDD/Repository .. 241
Chapter 17. Data Representation .. 243

17.1. Integer Format .. 243
17.1.1. Byte-Length Integer Format .. 243
17.1.2. Word-Length Integer Format ... 243
17.1.3. Longword Integer Format .. 243
17.1.4. Quadword Integer Format ... 244

17.2. Real Number Format ... 244
17.2.1. SINGLE Floating-Point Number Format (F_floating) 245
17.2.2. DOUBLE Floating-Point Number Format (D_floating) 245
17.2.3. GFLOAT Floating-Point Number Format (G_floating) 246
17.2.4. SFLOAT Floating-Point Number Format (S_floating) 247
17.2.5. TFLOAT Floating-Point Number Format (T_floating) 247
17.2.6. XFLOAT Floating-Point Number Format (X_floating) 248

ix

VSI BASIC User Manual

17.3. Packed Decimal Number Format .. 248
17.4. String and Array Descriptor Format .. 249

17.4.1. Fixed-Length String Descriptor Format .. 249
17.4.2. Dynamic String Descriptor Format ... 249

17.5. Array Descriptors .. 250
17.6. Decimal Scalar String Descriptor (Packed Decimal String Descriptor) 250

Part III. Using VSI BASIC for OpenVMS Features on
OpenVMS Systems

Chapter 18. Advanced File Input and Output ... 253
18.1. RMS I/O to Magnetic Tape ... 253

18.1.1. Allocating and Mounting a Tape .. 253
18.1.2. Opening a Tape File for Output ... 254
18.1.3. Opening a Tape File for Input ... 254
18.1.4. Positioning a Tape .. 254
18.1.5. Writing Records to a File .. 255
18.1.6. Reading Records from a File ... 255
18.1.7. Controlling Tape Output Format .. 256
18.1.8. Rewinding a Tape ... 256
18.1.9. Closing a File ... 257

18.2. Device-Specific I/O ... 257
18.2.1. Device-Specific I/O to Unit Record Devices ... 257
18.2.2. Device-Specific I/O to Magnetic Tape Devices .. 257

18.2.2.1. Allocating and Mounting a Tape ... 258
18.2.2.2. Opening a Tape File for Output .. 258
18.2.2.3. Opening a Tape File for Input ... 258
18.2.2.4. Writing Records to a File ... 258
18.2.2.5. Reading Records from a File ... 259
18.2.2.6. Rewinding a Tape .. 259
18.2.2.7. Closing a Tape ... 260

18.2.3. Device-Specific I/O to Disks ... 260
18.2.3.1. Assigning and Mounting a Disk .. 260
18.2.3.2. Opening a Disk File for Output ... 260
18.2.3.3. Opening a Disk File for Input ... 260
18.2.3.4. Writing Records to a Disk File .. 261
18.2.3.5. Reading Records from a Disk File ... 261

18.3. I/O to Mailboxes ... 262
18.4. Network I/O ... 263

18.4.1. Remote File Access .. 263
18.4.2. Task-to-Task Communication ... 264
18.4.3. Accessing a VAX Rdb/VMS Database .. 265

Chapter 19. Using BASIC in the Common Language Environment 267
19.1. Specifying Parameter-Passing Mechanisms .. 267

19.1.1. Passing Parameters by Reference ... 267
19.1.2. Passing Parameters by Descriptor ... 267
19.1.3. Passing Parameters by Value ... 268
19.1.4. VSI BASIC for OpenVMS Default Parameter-Passing Mechanisms 268
19.1.5. Creating Local Copies ... 269
19.1.6. Passing Arrays .. 270

19.2. Calling External Routines ... 270

x

VSI BASIC User Manual

19.2.1. Determining the Type of Call .. 270
19.2.2. Declaring an External Routine and Its Arguments .. 270
19.2.3. Calling the Routine ... 271

19.3. Calling VSI BASIC for OpenVMS Subprograms from Other Languages 272
19.4. Calling System Routines .. 273

19.4.1. OpenVMS Run-Time Library Routines ... 273
19.4.2. System Service Routines ... 274
19.4.3. System Routine Arguments ... 275
19.4.4. Including Symbolic Definitions .. 277
19.4.5. Condition Values .. 278

19.5. Examples of Calling System Routines ... 279
19.6. OpenVMS Calling Standard ... 281
19.7. Additional Information .. 281

Chapter 20. Libraries and Shareable Images .. 283
20.1. Overview of Libraries .. 283
20.2. System-Supplied Libraries .. 283
20.3. Creating User-Supplied Object Module Libraries .. 284

20.3.1. Accessing User-Supplied Object Module Libraries ... 284
20.4. Shareable Images ... 285

20.4.1. Accessing Shareable Images ... 286
Chapter 21. Using CDD/Repository with BASIC ... 289

21.1. Overview of CDD/Repository ... 289
21.2. CDD/Repository Concepts .. 289

21.2.1. Dictionary Formats ... 289
21.2.2. Dictionary Path Names ... 290
21.2.3. Dictionary Entities .. 291
21.2.4. Dictionary Relationships .. 291
21.2.5. Extracting CDD/Repository Data Definitions ... 291

21.3. Using CDD/Repository with BASIC .. 293
21.3.1. /DEPENDENCY_DATA Qualifier .. 293
21.3.2. Creating Relationships with Included Record Definitions 293

21.4. Creating Relationships for Referenced Dictionary Entities ... 295
21.5. Specifying a CDD History List Entry .. 296
21.6. CDD/Repository Arrays ... 297
21.7. CDD/Repository Variants ... 299
21.8. NAME FOR BASIC Clause ... 300
21.9. CDD/Repository Data Types .. 301

21.9.1. Character String Data Types .. 305
21.9.2. Integer Data Types ... 306
21.9.3. Floating-Point Data Types ... 308
21.9.4. Decimal String Data Types .. 310
21.9.5. Other Data Types ... 312

Chapter 22. Using DECwindows Motif Bindings with BASIC .. 313
22.1. Overview of DECwindows Motif Concepts .. 313
22.2. Using DECwindows Motif Bindings with BASIC ... 313
22.3. DECwindows Motif Programming Examples Using BASIC ... 314
22.4. Special Considerations for Handling Strings with DECwindows Motif 315

Appendix A. Compile-Time Error Messages ... 317
A.1. Compile-Time Errors .. 317

Appendix B. Run-Time Messages .. 397

xi

VSI BASIC User Manual

B.1. VSI BASIC for OpenVMS Run-Time Errors by Mnemonic .. 397
B.2. VSI BASIC for OpenVMS Run-Time Errors by Number .. 423
B.3. Errors Not Generated by VSI BASIC for OpenVMS .. 428

Appendix C. Optional Programming Productivity Tools .. 431
C.1. Language Sensitive Editor (LSE) and Source Code Analyzer (SCA) 431

C.1.1. Preparing an SCA Library .. 431
C.1.2. Compiling From Within LSE .. 432
C.1.3. VSI BASIC Support for LSE and SCA Features .. 432

C.2. CDD/Repository ... 433
C.3. Database Management System (DBMS) .. 433
C.4. Digital Test Manager for OpenVMS ... 433
C.5. Code Management System for OpenVMS (CMS) .. 433

xii

Preface
This manual describes how to develop and use VSI BASIC programs on OpenVMS systems and
describes BASIC language features.

Note

In this manual, the term OpenVMS refers to both OpenVMS I64 and OpenVMS Alpha systems. If
there are differences in the behavior of the VSI BASIC compiler on the two operating systems, those
differences are noted.

The term I64 BASIC refers to VSI BASIC on OpenVMS I64 systems.

Alpha BASIC refers to VSI BASIC on OpenVMS Alpha systems.

VAX BASIC refers to VAX BASIC on OpenVMS VAX systems.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is intended for programmers who compile, link, and execute VSI BASIC programs
on OpenVMS systems. Users should have a working knowledge of BASIC or another high-level
programming language, the Digital Command Language (DCL), and DCL command procedures.

3. Document Structure
This manual contains the following chapters and appendixes:

Part I, “Developing BASIC Programs on OpenVMS Systems”

● Chapter 1, "Overview of VSI BASIC " provides a brief overview of VSI BASIC for OpenVMS.

● Chapter 2, "Developing VSI BASIC Programs" describes how to develop programs at DCL command
level and how to generate a compiler listing.

● Chapter 3, "Using the OpenVMS Debugger with BASIC" describes how to use the OpenVMS
Debugger to debug VSI BASIC for OpenVMS programs.

Part II, “BASIC Programming Concepts”

● Chapter 4, "BASIC Concepts and Elements" explains how to get started with VSI BASIC for
OpenVMS.

● Chapter 5, "Simple Input and Output" explains simple input and output procedures.

● Chapter 6, "Arrays" shows how to use arrays.

● Chapter 7, "Data Definition" explains data definitions.

xiii

Preface

● Chapter 8, "Creating and Using Data Structures" explains how to create user-defined data structures
with the RECORD statement.

● Chapter 9, "Program Control" shows how to control the flow of program execution.

● Chapter 10, "Functions" explains how to use functions.

● Chapter 11, "String Handling" explains how to handle strings.

● Chapter 12, "Program Segmentation" describes structured programming techniques.

● Chapter 13, "File Input and Output" explains how to manage files.

● Chapter 14, "Formatting Output with the PRINT USING Statement" describes how to format output
with the PRINT USING statement.

● Chapter 15, "Handling Run-Time Errors" explains error-handling techniques.

● Chapter 16, "Compiler Directives" shows how to use compiler directives.

● Chapter 17, "Data Representation" describes how BASIC represents data.

Part III, “Using VSI BASIC for OpenVMS Features on OpenVMS Systems”

● Chapter 18, "Advanced File Input and Output" describes additional I/O considerations on OpenVMS
systems.

● Chapter 19, "Using BASIC in the Common Language Environment" describes OpenVMS System
Services and Run-Time Library routines.

● Chapter 20, "Libraries and Shareable Images" describes the use of user-supplied libraries and
shareable images.

● Chapter 21, "Using CDD/Repository with BASIC" describes how to use CDD/Repository capabilities.

● Chapter 22, "Using DECwindows Motif Bindings with BASIC" describes using standard Motif
Bindings with BASIC.

Appendixes

● Appendix A, "Compile-Time Error Messages" lists compile-time error messages.

● Appendix B, "Run-Time Messages" lists run-time error messages.

● Appendix C, "Optional Programming Productivity Tools" provides an overview of the optional
productivity tools.

4. Related Documents
For more information about language elements, syntax, and reference information, see the VSI BASIC
Reference Manual.

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

xiv

https://docs.vmssoftware.com

Preface

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Conventions
The following product names may appear in this manual:

● OpenVMS Industry Standard 64 for Integrity Servers

● OpenVMS I64

● I64

All three names—the longer form and the two abbreviated forms—refer to the version of the OpenVMS
operating system that runs on the Intel ® Itanium ® architecture.

The following typographic conventions might be used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key or a pointing device
button.

... A horizontal ellipsis in examples indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose
choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However,you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

xv

Preface

Convention Meaning

{ } In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type Bold type represents the name of an argument, an attribute, or a reason.
italic type Italic type indicates important information, complete titles of manuals, or

variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the following
line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes – binary, octal, or hexadecimal – are explicitly indicated.

xvi

Part I. Developing BASIC
Programs on OpenVMS Systems

Part I, “Developing BASIC Programs on OpenVMS Systems” provides an overview of BASIC and
describes how to develop and debug BASIC programs. It shows you how to get started on the OpenVMS
system and how to develop programs both at DCL command level and within the VAX BASIC
Environment.

1

2

Chapter 1. Overview of VSI BASIC
BASIC is a powerful structured programming language designed for novice and application programmers
alike.

BASIC was originally developed for students with little or no programming experience. Since then,
BASIC has become one of the most widely used programming languages and is available on almost
every computer system.

The OpenVMS implementations of BASIC have evolved beyond the original design but still support all
of the traditional features of the original language in addition to more recent programming techniques.
VSI BASIC has become much more than a teaching tool and is used in a wide variety of sophisticated
applications.

1.1. Language Constructs Supported
VSI BASIC supports the following language constructs:

● Code without line numbers (traditional line numbers are optional)

● Control structures, such as SELECT CASE

● Explicit variable declarations

● Capabilities for handling dynamic strings

● Adaptable file-handling capabilities for terminal-format files, and the full range of RMS facilities

● Global and local run-time error handling with WHEN ERROR blocks

● Compile-time directives

● A variety of data types, including packed-decimal, user-defined records, and VAX and IEEE
floating-point data types.

● Extensive error checking with meaningful error messages

● Thirty-one character names for variables, labels, functions, and subprograms

1.2. Advantages on OpenVMS
VSI BASIC uses the OpenVMS operating system to its full advantage and is integrated with many other
VSI products. In particular, VSI BASIC supports:

● The OpenVMS systems standard calling procedures

● Record definitions included from the OpenVMS Common Data Dictionary

● Code analysis with the Performance and Coverage Analyzer (PCA)

● Creation of code with the Language-Sensitive Editor (LSE)

● Extensive online language help

3

Chapter 1. Overview of VSI BASIC

● Exchange of data with other systems using DECnet

VSI BASIC supports features of other versions of BASIC, including PDP-11 BASIC-PLUS-2.
The /FLAG qualifier allows you to check whether programs contain declining features that should be
replaced with newer ones.

When you write programs in VSI BASIC, you develop programs at the DCL command level. You write
your source program with a text editor, then compile, link, and run the program with commands to the
OpenVMS operating system.

4

Chapter 2. Developing VSI BASIC
Programs
This chapter describes how to compile, link, and run a VSI BASIC program.

For information about using a text editor to create and edit files, see the VSI OpenVMS User's Manual.

2.1. Compiling a VSI BASIC Program
The VSI BASIC compiler performs the following functions:

● Detects errors in your source program

● Generates any appropriate error messages

● Generates machine language instructions from the source statements

● Groups these language instructions into an object module for the linker

To invoke the compiler, you use the DCL command BASIC. With the BASIC command, you can specify
command qualifiers. The next sections discuss the BASIC command in detail as well as the command
qualifiers available.

2.1.1. BASIC Command
When you compile your source program, use the BASIC command, which has the following format:

BASIC [/qualifier...][file-spec [/qualifier...]],...

/qualifier

Indicates a specific action to be performed by the compiler on all files or specific files listed. When a
qualifier appears directly after the BASIC command, it affects all files listed.

file-spec

Indicates the name of the input source file that contains the program or module to be compiled. You are
not required to specify a file extension; the VSI BASIC compiler assumes the default file type .BAS.

Most of the command qualifiers to the BASIC command affect all files specified in the command line,
no matter where the qualifiers are placed; these are called global qualifiers. However, the qualifiers /
LISTING, /OBJECT, /DIAGNOSTICS, and /ANALYSIS_DATA are positional qualifiers; that is,
depending on their position in the command line, they can affect all or only some of the specified files.
The rules for positional qualifiers are as follows:

● If the positional qualifier is located directly following the command name, it affects all the specified
files.

● If the file specifications are separated by commas, then any positional qualifier directly following a
file specification affects only that file.

● If the file specifications are separated by plus signs, then any positional qualifier directly following a
list of file specifications affects only the resulting appended file.

● The rightmost qualifier overrides any conflicting qualifier previously specified in the command line.

5

Chapter 2. Developing VSI BASIC Programs

The placement of these positional qualifiers causes BASIC to produce or not produce listing files, object
files, and diagnostics files. For example:

$ BASIC/LIST/OBJ PROG1/NOOBJ/DIAG,PROG2+PROG3/NOLIST

This command does the following:

● Compiles PROG1 and produces a listing file called PROG1.LIS

● Produces no object file for PROG1

● Produces a diagnostics file for PROG1 called PROG1.DIA

● Appends PROG2 and PROG3 for compilation, producing a temporary source file called PROG2

● Compiles the new PROG2 and produces an object file called PROG2.OBJ

● Produces no listing file for the new PROG2

VSI BASIC does not require line numbers in either of the source files. The "+" operator is treated as an
OpenVMS append operator. VSI BASIC appends and compiles the separate files as if they were a single
source file.

2.1.2. BASIC Command Qualifiers
The following list shows the BASIC command qualifiers and their defaults. A description of each
qualifier follows the list.

The qualifiers that are "declining features" and no longer recommended are separately described in
Section 2.1.3, "Declining Qualifiers and Their Recommended Replacements".

Table 2.1. BASIC Command Qualifiers

Command Qualifier Default

/[NO]ANALYSIS_DATA [= file specification] /NOANALYSIS_DATA
/ARCHITECTURE = arch-type /ARCHITECTURE = GENERIC
/[NO]AUDIT [= text-entry] /NOAUDIT
/[NO]CHECK [= (check-clause,...)] /CHECK=(BOUNDS,OVERFLOW)
/[NO]CROSS_REF [= [NO]KEYWORDS] /NOCROSS_REF
/[NO]DEBUG [= (debug-clause,...)] /DEBUG = (TRACEBACK,SYMBOLS)
/DECIMAL_SIZE = (d,s) /DECIMAL_SIZE = (15,2)
/[NO]DEPENDENCY_DATA /NODEPENDENCY_DATA
/[NO]DIAGNOSTICS [= file specification] /NODIAGNOSTICS
/[NO]FLAG [= (flag-clause,...)] /FLAG = NODECLINING
/INTEGER_SIZE = data-type /INTEGER_SIZE = LONG
/[NO]LINES /LINES (VAX) /NOLINES (DEC)
/[NO]LISTING [= file specification] /NOLISTING (from terminal) /LISTING (batch)
/[NO]MACHINE_CODE /NOMACHINE_CODE
/[NO]OBJECT [= file-specification] /OBJECT
/[NO]OLD_VERSION [= CDD_ARRAYS] /NOOLD_VERSION

6

Chapter 2. Developing VSI BASIC Programs

Command Qualifier Default

/[NO]OPTIMIZE [= LEVEL = n] /OPTIMIZE = LEVEL = 4
/REAL_SIZE = data-type /REAL_SIZE = SFLOAT (I64) or SINGLE

(Alpha)
/[NO]ROUND_DECIMAL /NOROUND_DECIMAL
/SCALE = n /SCALE = 0
/[NO]SEPARATE_COMPILATION /NOSEPARATE_COMPILATION
/[NO]SHOW [= (show-item,...)] /SHOW
/[NO]SYNCHRONOUS_EXCEPTIONS /NOSYNCHRONOUS_EXCEPTIONS
/TYPE_DEFAULT = default-clause /TYPE_DEFAULT = REAL
/VARIANT = int-const /VARIANT = 0
/[NO]WARNINGS [= (warn-clause,...)] /WARNINGS = (INFORMATIONALS,

WARNINGS, NOALIGNMENT)

/[NO]ANALYSIS_DATA [= file-specification]
/NOANALYSIS_DATA (default)

The /ANALYSIS_DATA qualifier generates a file containing data analysis information. This file
has the file type .ANA. The Source Code Analyzer (SCA) library uses these files to display cross-
reference information and to analyze source code.

Remarks
● SCA must be installed.

/ARCHITECTURE [= {GENERIC | HOST | EV4 (Alpha only) | EV5 (Alpha only) | EV56 (Alpha
only) | PCA56 (Alpha only) | EV6 (Alpha only) | EV67 (Alpha only) | ITANIUM2 (I64 only) |
MERCED (I64 only)}]
/ARCHITECTURE = GENERIC (default)

The /ARCHITECTURE qualifier specifies which version of the Itanium or Alpha architecture to
generate instructions for.

All Itanium and Alpha processors implement a core set of instructions and, in some cases, the
following extensions: BWX (byte- and word-manipulation instructions) and MAX (multimedia
instructions).

OpenVMS Version 7.1 and subsequent releases include an instruction emulator. This capability
allows any Itanium or Alpha chip to execute and produce correct results from Itanium or Alpha
instructions, respectively, even if some of the instructions are not implemented on the chip.
Applications using emulated instructions will run correctly, but might incur significant emulation
overhead at run time.

Remarks
● /ARCHITECTURE = GENERIC (default) generates instructions that are appropriate for all

Itanium or Alpha processors.

● /ARCHITECTURE = HOST generates instructions for the Itanium or Alpha processor that
the compiler is running on (for example, EV56 instructions on an EV56 processor, and EV4
instructions on an EV4 processor).

7

Chapter 2. Developing VSI BASIC Programs

● /ARCHITECTURE = EV4 generates instructions for the EV4 processor (21064, 21064A,
21066, and 21068 Alpha chips).

Programs compiled with this option will not incur any emulation overhead on any Alpha
processor.

● /ARCHITECTURE = EV5 generates instructions for the EV5 processor (some 21164 Alpha
chips).

Programs compiled with this option will not incur any emulation overhead on any Alpha
processor.

● /ARCHITECTURE = EV56 generates instructions for the EV56 processor (some 21164 Alpha
chips). This option permits the compiler to generate any EV4 instruction, plus any instructions
contained in the BWX extension.

Programs compiled with this option might incur emulation overhead on EV4 and EV5
processors.

Note that the EV5 and EV56 processor both have the same chip number: 21164.

● /ARCHITECTURE = PCA56 generates instructions for the PCA56 processor (21164PC Alpha
chip). This option permits the compiler to generate any EV4 instruction, plus any instructions
contained in the BWX extension. Note that currently VSI BASIC does not generate any of the
instructions in the MAX extension to the Alpha architecture.

Programs compiled with this option might incur emulation overhead on EV4 and EV5
processors.

● /ARCHITECTURE = EV6 generates instructions for the EV6 processor (21264 Alpha chip).
This option permits the compiler to generate any EV4 instruction, any instructions contained in
the BWX and MAX extensions, plus any instructions added for the EV6 chip. These instructions
include a floating-point square root instruction (SQRT), integer/floating-point register transfer
instructions, and additional instructions to identify extensions and processor groups.

Programs compiled with this option might incur emulation overhead on EV4, EV5, EV56, and
PCA56 processors.

● /ARCHITECTURE = EV67 generates instructions for the EV67 processor (21264A Alpha
chip). This option permits the compiler to generate any EV6 instruction, plus bit count
instructions (CTLZ, CTPOP, and CTTZ). However, VSI BASIC does not generate any of the bit
count instructions, so EV67 is essentially identical to EV6.

Programs compiled with this option might incur emulation overhead on EV4, EV5, EV56, and
PCA56 processors.

● /ARCHITECTURE = ITANIUM2 generates instructions for the Itanium 2 processor. This
option permits the compiler to generate any Itanium 2 instructions.

● /ARCHITECTURE = MERCED generates instructions for the Merced processor. This option
permits the compiler to generate any Merced instructions.

/[NO]AUDIT [= {str-lit | file-specification}]
/NOAUDIT (default)

The /AUDIT qualifier causes the compiler to include a history entry in CDD/Repository when
extracting a CDD/Repository definition. You can specify either a string literal or a file specification

8

Chapter 2. Developing VSI BASIC Programs

with the /AUDIT qualifier. If you specify a string literal, BASIC includes it as part of the history
entry. If you specify a file specification, BASIC includes up to the first 64 lines of the specified
file. When you specify /AUDIT, BASIC also includes the following information about the CDD/
Repository record extraction in the history entry:

● The name of the program module making the extraction

● The time and date of the extraction

● A note that access was made by way of a BASIC program

● A note that the access was an extraction

● The username and UIC of the process accessing CDD/Repository

Remarks
● /NOAUDIT causes the compiler not to include a history entry in CDD/Repository when

extracting a CDD/Repository definition.

/[NO]CHECK [= ({[NO]BOUNDS | [NO]OVERFLOW [NO]OVERFLOW [= ([NO]INTEGER,
[NO]DECIMAL)] | ALL | NONE}, ...)]
/CHECK = (BOUNDS,OVERFLOW) (default)

The /CHECK qualifier causes the compiler to test for arithmetic overflow and for array references
outside array boundaries when the program executes.

Remarks
● In Alpha BASIC, specifying /CHECK = NOBOUNDS causes bounds checking not to be

performed on array parameters received by descriptor.

● /CHECK = NOBOUNDS should only be used for thoroughly debugged programs and when
execution time is critical. The program is smaller and runs faster, but no error is signaled for an
array reference outside the array boundaries. The program might get a memory management or
access violation error at run time.

● /CHECK = OVERFLOW enables checking for integers and packed decimal numbers.

● /CHECK = NOOVERFLOW disables overflow checking.

● /NOCHECK causes the compiler not to test for arithmetic overflow or for array references
outside array boundaries when the program executes.

● /CHECK = ALL is the same as /CHECK = (BOUNDS, OVERFLOW).

● /CHECK = NONE is the same as /NOCHECK.

/[NO]CROSS_REFERENCE [= [NO]KEYWORDS]
/NOCROSS_REFERENCE (default)

The /CROSS_REFERENCE qualifier causes the compiler to generate a cross-reference listing.
The cross-reference list shows program symbols, classes, and the program lines in which they are
referenced.

9

Chapter 2. Developing VSI BASIC Programs

Remarks
● /CROSS_REFERENCE = KEYWORDS specifies that the cross-reference listing includes all

references to BASIC keywords. In Alpha BASIC, if the /LIST qualifier is not specified as well, /
CROSS_REFERENCE is ignored.

● The default for /CROSS_REFERENCE is NOKEYWORDS. See Chapter 16, "Compiler
Directives" for more information about cross-reference listings.

● /NOCROSS_REFERENCE specifies that no cross-reference listing be produced.

/[NO]DEBUG [= ({[NO]SYMBOLS | [NO]TRACEBACK | ALL | NONE}, ...)]
/DEBUG = (TRACEBACK,SYMBOLS) (default)

The /DEBUG qualifier causes the compiler to provide information for the OpenVMS Debugger
and the system run-time error traceback mechanism. Neither TRACEBACK nor SYMBOLS affects
a program's executable code. For more information about debugging, see Chapter 3, "Using the
OpenVMS Debugger with BASIC".

Remarks
● /NODEBUG causes the compiler to suppress information for the OpenVMS Debugger and the

system run-time error traceback mechanism.

● /DEBUG = ALL is the same as /DEBUG = (TRACEBACK,SYMBOLS).

● /DEBUG = NONE is the same as /NODEBUG.

/DECIMAL_SIZE = (d,s)
/DECIMAL_SIZE = (15,2) (default)

The /DECIMAL_SIZE qualifier lets you specify the default size for packed decimal data. You
specify the total number of digits in the number and the number of digits to the right of the decimal
point.

/DECIMAL_SIZE = (15,2) is the default. This default decimal size applies to all decimal variables
for which the total number of digits and digits to the right of the decimal point are not explicitly
declared. See the VSI BASIC Reference Manual for more information about packed decimal numbers.

/[NO]DEPENDENCY_DATA
/NODEPENDENCY_DATA (default)

The /DEPENDENCY_DATA qualifier generates a compiled module entity in the CDD$DEFAULT
for each compilation unit.

Remarks
● A compiled module entity is generated only if CDD/Plus Version 4.0 or higher or CDD/

Repository Version 5.0 or higher is installed on your system and if your current CDD
$DEFAULT is a CDO-format dictionary.

● You must specify this qualifier if you want %INCLUDE %FROM %CDD and %REPORT
%DEPENDENCY directives to establish dependency relationships.

● /NODEPENDENCY_DATA causes the compiler not to generate a compiled module entity.

10

Chapter 2. Developing VSI BASIC Programs

/[NO]DIAGNOSTICS [= file-spec]
/NODIAGNOSTICS (default)

The /DIAGNOSTICS qualifier creates a diagnostics file containing compiler messages and
diagnostic information. The diagnostics file is used by LSE to display diagnostic error messages and
to position the cursor on the line and column where a source error exists.

Remarks
● The Language-Sensitive Editor (LSE) must be installed.

● If you do not supply a file specification with the /DIAGNOSTICS qualifier, the diagnostics
file has the same name as its corresponding source file and the file type .DIA. All other file
specification attributes depend on the placement of the qualifier in the command. See the
OpenVMS documentation set for more information.

● /NODIAGNOSTICS specifies that no diagnostics file is created.

/[NO]FLAG [= {[NO]DECLINING | ALL | NONE}]
/FLAG = NODECLINING (default)

The /FLAG qualifier lets you specify whether BASIC warns you about declining features.

Remarks
● /NOFLAG causes the compiler to issue no warnings about declining features.

● /FLAG = ALL is the same as /FLAG = DECLINING.

● /FLAG = NONE is the same as /NOFLAG.

/INTEGER_SIZE = {BYTE | WORD | LONG | QUAD}
/INTEGER_SIZE = (LONG) (default)

The /INTEGER_SIZE qualifier lets you specify the default size for integer data.

Remarks
● The default integer size (LONG) applies to all integer variables whose data type is not explicitly

declared. See the VSI BASIC Reference Manual for more information about integer data types.

/[NO]LINES
/NOLINES (default)

The /LINES qualifier makes line number information available for the ERL function and the BASIC
error reporter.

Remarks
● /NOLINES causes line number information to be unavailable for the ERL function and the

VSI BASIC error reporter. Specifying /NOLINES makes your program run faster and reduces
program size. However, specifying /NOLINES causes the following restrictions to be in effect:

• You cannot use the ERL function.

• No BASIC line number is given in run-time error messages.

11

Chapter 2. Developing VSI BASIC Programs

/[NO]LISTING [= file-spec]
/LISTING (default in batch mode)
/NOLISTING (default in interactive mode)

The /LISTING qualifier causes BASIC to produce a source listing file.

Remarks
● /LISTING = file-spec produces a file with an explicit file specification. Omitting the file-spec

produces a listing file with the same name as its corresponding source file and a file type of .LIS.

● All other file specification attributes depend on the placement of the qualifier in the command.
See the VSI OpenVMS User's Manual for more information.

● /LISTING only controls whether or not the compiler produces a listing file and is the default in
batch mode.

● /SHOW controls which parts of the listing are produced.

● /NOLISTING specifies that no source listing file be produced and is the default at a terminal.

/[NO]MACHINE_CODE
/NOMACHINE_CODE (default)

The /MACHINE_CODE qualifier specifies that the listing file includes the compiler-generated
object code.

Remarks
● /MACHINE_CODE specifies that the compiler include a listing of the compiler-generated object

code in the listing file. If the /LISTING qualifier is not specified as well, /MACHINE is ignored.

● /NOMACHINE_CODE specifies that the listing file not include compiler-generated object code.

/[NO]OBJECT [= file-spec]
/OBJECT (default)

The /OBJECT qualifier causes the compiler to produce an object module and optionally specifies its
file name. By default, the compiler generates object files as follows:

● If you specify one source file, BASIC generates one object file.

● If you specify multiple source files separated by plus signs (+), BASIC appends the files and
generates one object file.

● If you specify multiple source files separated by commas (,), BASIC compiles and generates a
separate object file for each source file.

● You can use both plus signs and commas in the same command line to produce different
combinations of appended and separated object files.

Remarks
● /OBJECT = file-spec produces an object file with an explicit file specification. Omitting file-spec

causes the compiler to produce an object file having the same name as its corresponding source

12

Chapter 2. Developing VSI BASIC Programs

file and the file type .OBJ. All other file specification attributes depend on the placement of the
qualifier in the command. See the VSI OpenVMS User's Manual for more information.

● /NOOBJECT suppresses the creation of an object file. During the early stages of program
development, you might find it helpful to suppress the production of object files until your
source program compiles without errors.

/[NO]OLD_VERSION [= CDD_ARRAYS]
/NOOLD_VERSION (default)

The /OLD_VERSION qualifier causes the compiler to change the lower bound to zero and adjusts
the upper bound of the array. For example, Array 2:5 in CDD/Repository is translated by the
compiler to be an array with a lower bound of 0 and an upper bound of 3. The compiler issues an
informational message to confirm the array bounds.

The /NOOLD_VERSION qualifier causes the compiler to extract an array from the CDD/Repository
with the bounds as specified in the data definition. For example, Array 2:5 in CDD/Repository is
translated by the compiler to be an array with a lower bound of 2 and an upper bound of 5.

Remarks
● /OLD_VERSION [= CDD_ARRAYS] is provided for compatibility with previous versions of

BASIC.

● CDD/Repository assumes a default lower bound of 1, if none is specified. Therefore, if no lower
bound is specified, the compiler translates the CDD/Repository array to have a lower bound of 1.
For example, Array 5 in CDD/Repository is translated by VSI BASIC to be an array with a lower
bound of 1 and an upper bound of 5.

/[NO]OPTIMIZE [= {LEVEL [= {0 | 1 | 2 | 3 | 4 (default)}] TUNE [= {GENERIC (default) |
HOST | EV4 | EV5 | EV56 | PCA56 | EV6 | EV67 | ITANIUM2 | MERCED }]}]
/OPTIMIZE = LEVEL = 4 (default)
/OPTIMIZE = TUNE = GENERIC (default)

The /OPTIMIZE qualifier causes the compiler to optimize the program to generate more efficient
code for optimum run-time performance. Specifying /NOOPTIMIZE causes the compiler to perform
minimal optimizations.

The following list describes the /OPTIMIZE = LEVEL options:

● 0 has the same effect as /NOOPTIMIZE. Most optimizations are turned off.

● 1 has some optimizations (such as instruction scheduling).

● 2 adds more optimizations (such as loop unrolling and split lifetime analysis) to those in level 1.

● 3 adds more optimizations.

● 4 is the default level.

/OPTIMIZE = LEVEL = 4 is equivalent to /OPTIMIZE or not specifying the qualifier. Level 4 is
the maximum optimization level.

The /OPTIMIZE = TUNE qualifier selects processor-specific instruction tuning for a specific
implementation of the Itanium or Alpha architecture. Tuning for a specific implementation can
provide improvements in run-time performance.

13

Chapter 2. Developing VSI BASIC Programs

Regardless of the setting of the /OPTIMIZE = TUNE qualifier, the generated code will run correctly
on all implementations of the Itanium or Alpha architecture as appropriate. Note that code tuned for
a specific target might run more slowly on another target than generically-tuned code.

The following list describes the /OPTIMIZE = TUNE options:

● GENERIC (default) selects instruction tuning that is appropriate for all implementations of the
Itanium or Alpha architecture.

● HOST selects instruction tuning that is appropriate for the Itanium or Alpha machine on which
the code is being compiled.

● EV4 selects instruction tuning for the 21064, 21064A, 21066, and 21068 implementation of the
Alpha architecture.

● EV5 selects instruction tuning for the 21164 implementation of the Alpha architecture.

● EV56 selects instruction tuning for the 21164 implementation of the Alpha architecture.

● PCA56 selects instruction tuning for the 21164PC implementation of the Alpha architecture.

● EV6 selects instruction tuning for the 21264 implementation of the Alpha architecture.

● EV67 selects instruction tuning for the 21264A implementation of the Alpha architecture.

● ITANIUM2 selects instruction tuning for the Itanium 2 implementation of the Itanium
architecture.

● MERCED selects instruction tuning for the Merced implementation of the Itanium architecture.

Remarks
● Specify /NOOPTIMIZE if you specify /DEBUG when compiling a program. /NOOPTIMIZE

expedites and simplifies the debugging session by putting the machine code in the same order as
the lines in the source program. Optimizations can cause unexpected and confusing behavior in a
debugging session.

● Specifying /OPTIMIZE, the default, usually makes programs run faster. However, using /
OPTIMIZE produces extra instructions to perform the optimization, which might result in larger
object modules and longer compile times than the /NOOPTIMIZE qualifier.

● To speed compilations during program development, compile with /NOOBJECT qualifier to
check syntax, with /NOOPTIMIZE to check for correct execution, and finally with /OPTIMIZE
for the final check.

/REAL_SIZE = {SINGLE | DOUBLE | GFLOAT | SFLOAT | TFLOAT | XFLOAT}
/REAL_SIZE = SFLOAT (I64 default); SINGLE (Alpha default)

The /REAL_SIZE qualifier specifies the default size for floating-point data.

Remarks
● The default floating-point size applies to all floating-point variables whose size is not explicitly

declared.

See the VSI BASIC Reference Manual for more information about floating-point data types.

14

Chapter 2. Developing VSI BASIC Programs

/[NO]ROUND_DECIMAL
/NOROUND_DECIMAL (default)

The /ROUND_DECIMAL qualifier causes the compiler to round packed decimal numbers rather
than truncate them.

The /NOROUND_DECIMAL qualifier causes the compiler to truncate packed decimal numbers
rather than round them.

The /ROUND_DECIMAL qualifier causes the INTEGER function to round rather than truncate the
decimal part.

/SCALE = n
/SCALE = 0 (default)

The /SCALE qualifier specifies a scale factor from zero to six, inclusive. The scale factor affects
only double-precision numbers. The SCALE qualifier helps to control accumulated round-off errors
by multiplying floating-point values by 10 raised to the scale factor before storing them in variables.
It is ignored for all but VAX double-precision (DOUBLE) floating-point numbers.

Remarks
The /SCALE qualifier is provided for compatibility with existing programs and with other
implementations of BASIC. It is recommended that you do not use this feature for new program
development. Accumulated round-off errors can be better controlled with packed decimal numbers.
See the VSI BASIC Reference Manual for more information about packed decimal numbers.

/[NO]SEPARATE_COMPILATION
/NOSEPARATE_COMPILATION (default)

The /SEPARATE_COMPILATION qualifier causes the compiler to place individual compilation
units in separate modules in the object file. /NOSEPARATE_COMPILATION, the default, groups
individual compilation units in a source file as a single module in the object file.

When creating modules for use in an object library, consider using /SEPARATE_COMPILATION
to minimize the size of the routines included by the linker as it creates the executable image. /
SEPARATE_COMPILATION also reduces the compiler virtual memory requirements when a
source contains several compilation units.

Remarks
● /SEPARATE_COMPILATION causes the compiler to place each routine in a separate module

within the output object.

● /NOSEPARATE_COMPILATION, in most cases, allows more interprocedural optimizations.

/[NO]SHOW [= ({[NO]CDD_DEFINITIONS |[NO]ENVIRONMENT | [NO]INCLUDE |
[NO]MAP | [NO]OVERRIDE | ALL}, ...)]
/SHOW = (CDD_DEFINITIONS, ENVIRONMENT, INCLUDE, MAP, NOOVERRIDE) (default)

The /SHOW qualifier determines which parts of the compilation listing are created.

Remarks
● The size value for dynamically mapped arrays is the size of the actual array.

15

Chapter 2. Developing VSI BASIC Programs

● /LISTING must be specified for /SHOW to be effective.

● CDD_DEFINITIONS controls whether the translation of a CDD/Repository record is displayed
in the listing.

● ENVIRONMENT lets you display all defaults that were in effect when the program was
compiled. This is the compilation listing equivalent of the SHOW command in the environment.

● INCLUDE controls whether files accessed with the %INCLUDE directive are displayed in the
listing.

● MAP determines whether the listing contains an allocation map. The allocation map lists all
program variables, their size, and their data type.

● OVERRIDE helps you debug code by disabling the effect of the %NOLIST directive.

● /NOSHOW causes the compiler to display only the source listing.

● /SHOW = ALL is the same as /SHOW = (CDD_DEFINITIONS, ENVIRONMENT,
INCLUDE,MAP, OVERRIDE).

● /SHOW = NONE is the same as /NOSHOW.

/[NO]SYNCHRONOUS_EXCEPTIONS
/NOSYNCHRONOUS_EXCEPTIONS (default)

The default /NOSYNCHRONOUS_EXCEPTIONS qualifier allows the compiler to reorder the
execution of certain arithmetic instructions to improve performance on the hardware. If a program
generates an arithmetic exception, such as an overflow or divide by zero, certain statements
surrounding the offending statement may or may not be executed as a result of this reordering.
Consider this example:

 A = B C = D / E G = F

If the value of E is zero, the second statement will generate a divide by zero error. As a result of
instruction reordering, it is possible that the assignment A = B will not take place. Further, it is
possible that the assignment G = F will take place even though the previous statement generated an
error.

The /SYNCHRONOUS_EXCEPTIONS qualifier disables reordering. Use this qualifier for programs
that rely on arithmetic exceptions to occur at precise times during program execution.

The /SYNCHRONOUS_EXCEPTIONS qualifier impacts only arithmetic exceptions and variable
assignments in the immediate area of the excepting statement.

Very few programs should require the /SYNCHRONOUS_EXCEPTIONS qualifier to produce
correct results.

/TYPE_DEFAULT = {INTEGER | REAL | DECIMAL | EXPLICIT}
/TYPE_DEFAULT = REAL (default)

The /TYPE_DEFAULT qualifier lets you specify the default data type for numeric variables.

Remarks
● EXPLICIT specifies that all program variables must be explicitly declared in DECLARE,

EXTERNAL, COMMON, MAP, or DIM statements.

16

Chapter 2. Developing VSI BASIC Programs

● INTEGER, REAL, or DECIMAL specify that only variables and data which are not explicitly
declared default to integer, real, or packed decimal.

● INTEGER_SIZE, REAL_SIZE, and DECIMAL_SIZE cause the compiler to specify the actual
size of variables and data.

/VARIANT = int-const

The /VARIANT qualifier lets you specify the value associated with the lexical function
%VARIANT. See Chapter 16, "Compiler Directives" for more information about VARIANT and the
%VARIANT lexical function.

Remarks
● If /VARIANT is not specified, the default value is 0.

● If /VARIANT is specified without a value, the default is 1.

/[NO]WARNINGS [= ({[NO]WARNINGS | [NO]INFORMATIONALS | [NO]ALIGNMENT |
ALL NONE}, ...)]
/WARNINGS = (INFORMATIONAL,WARNINGS,NOALIGNMENT) (default)

The /WARNINGS qualifier lets you specify whether BASIC displays informational and warning
messages.

Remarks
● /WARNINGS = NOWARNINGS causes the compiler to display informational messages but not

warning messages.

● /WARNINGS = NOINFORMATIONALS causes the compiler to display warning messages but
not informational messages.

● /NOWARNINGS causes the compiler to suppress any informational or warning messages.

● /WARNINGS = ALIGNMENT causes the compiler to flag all occurrences of non-naturally
aligned RECORD fields, variables within COMMONs and MAPs, and RECORD arrays.

An aligned data item starts on an address that is natural for that data type. Unaligned data
accesses on Alpha can significantly reduce performance. Table 2.2, "Natural Boundaries For
Supported Data Types" lists the natural boundaries for the supported data types.

Table 2.2. Natural Boundaries For Supported Data Types

Data Type Natural Boundary

BYTE BYTE
DECIMAL BYTE
DOUBLE QUADWORD
DYNAMIC
STRING

BYTE

GFLOAT QUADWORD
LONG LONGWORD
QUAD QUADWORD

17

Chapter 2. Developing VSI BASIC Programs

Data Type Natural Boundary

RECORD Depends on contents
RFA BYTE
SFLOAT LONGWORD
SINGLE LONGWORD
STATIC STRING BYTE
TFLOAT QUADWORD
WORD WORD
XFLOAT OCTAWORD

/WARNINGS = NOALIGNMENT, the default, causes the compiler not to issue any warning
messages about unaligned data.

The compiler naturally aligns all local variables and arrays, but it is the responsibility of the
BASIC programmer to naturally align COMMONs, MAPS, and RECORDs. The /WARNINGS
= ALIGNMENT qualifier flags all occurrences of non-naturally aligned items. This helps the
programmer identify and correct unaligned entities.

An entity can be unaligned in the following ways:

○ The entity does not start on a natural boundary for its data type. There are several actions a
programmer can take to resolve this:

▪ Rearrange the RECORD, MAP, or COMMON so that all entities start on natural
boundaries.

▪ Force proper alignment with fill items, as needed.

Note that the natural alignment for a RECORD is equal to the largest alignment required
by any of its fields. As an example, if a RECORD has a byte, long, and double field, the
alignment of the RECORD would be quadword.

○ For arrays of RECORDs and GROUPs, items can be unaligned if the size of a RECORD or
GROUP is not a multiple of the alignment requirements of that RECORD or GROUP. For
example, if a RECORD has a natural alignment of quadword, the size of the RECORD must
be a multiple of eight. Otherwise, all array elements after the first might start on an unaligned
boundary. Avoid unaligned accesses by padding the end of the RECORD with fill items.

● /WARNINGS = ALL is the same as /WARNINGS = (INFORMATIONAL, WARNINGS,
ALIGNMENT).

● /WARNINGS = NONE is the same as /NOWARNINGS.

2.1.3. Declining Qualifiers and Their Recommended
Replacements
The following qualifiers are declining features:

/BYTE
/DOUBLE
/GFLOAT

18

Chapter 2. Developing VSI BASIC Programs

/LONG
/SINGLE
/TIE
/WORD

It is recommended that you replace them with newer qualifiers, as follows:

Old Qualifier Recommended Replacement

/BYTE /INTEGER_SIZE = BYTE
/DOUBLE /REAL_SIZE = DOUBLE
/GFLOAT /REAL_SIZE = GFLOAT
/LONG /INTEGER_SIZE = LONG
/SINGLE /REAL_SIZE = SINGLE
/TIE Move to using entirely native code
/WORD /INTEGER_SIZE = WORD

See the description of the /[NO]FLAG = [NO]DECLINING qualifier in this chapter. Also see the
descriptions of the /INTEGER_SIZE and /REAL_SIZE qualifiers in this chapter. The old qualifiers are
described in the VSI BASIC Reference Manual.

2.1.4. Compiler Listings
A compiler listing provides information that can help you debug your VSI BASIC program. To generate
a listing file, specify the /LISTING qualifier when you compile your VSI BASIC program interactively.
For example:

$ BASIC/LISTING prog-name

If the program is compiled as a batch job, the listing file is created by default; specify the /NOLISTING
qualifier to suppress creation of the listing file. By default, the name of the listing file is the name of the
source program followed by the file type .LIS. You can include a file specification with the /LISTING
qualifier to override this default.

A compiler listing generated by the /LISTING qualifier has the following major sections:

● Source Program Listing

The source program section contains the source code and line numbers generated by the compiler.

● Cross Reference

The cross reference section is present if the /CROSS_REFERENCE qualifier was specified. It
contains cross references of variables, symbols, and so forth.

● Allocation Map

The allocation map section contains summary information about program sections, variables, and
arrays.

● Qualifier Summary

The qualifier summary section lists the qualifiers used with the BASIC command and the
compilation statistics.

19

Chapter 2. Developing VSI BASIC Programs

● Machine Code

The machine code section is present if the /MACHINE_CODE qualifier was specified. It contains a
symbolic representation of the machine instructions generated for the program section.

2.2. Linking a VSI BASIC Program
On OpenVMS systems, the OpenVMS Linker (linker) simplifies the job of each language compiler
because the logic needed to resolve symbolic references need not be duplicated. The main advantage
to a system that has a linker, however, is that individual program modules can be separately written
and compiled, and then linked together. This includes object modules produced by different language
compilers.

The linker performs the following functions:

● Resolves local and global symbolic references in the object code

● Assigns values to the global symbolic references

● Signals an error message for any unresolved symbolic reference

● Produces an executable image

When you link a program in development, in order to enable debugging, use the /DEBUG qualifier
with the LINK command. The /DEBUG qualifier appends to the image all the symbol and line number
information appended to the object modules plus information about global symbols, and forces the image
to run under debugger control when you execute it (unless you then specify /NODEBUG).

The LINK command produces an executable image by default; however, you can also use the LINK
command to obtain shareable images and system images. The /SHAREABLE qualifier directs the linker
to produce a shareable image; the /SYSTEM qualifier directs the linker to produce a system image.
See Section 2.2.2, "LINK Command Qualifiers" for a complete description of these and other LINK
command qualifiers.

For a complete discussion of the OpenVMS Linker, see the VSI OpenVMS Linker Utility Manual.

2.2.1. LINK Command
Once you have compiled your source program or module, you link it by using the DCL command LINK.
The LINK command combines your object modules into one executable image, which can then be
executed by the OpenVMS system. A source program or module cannot run on the OpenVMS system
until it is linked. The format of the LINK command is as follows:

LINK[/command-qualifier]... {file-spec [/file-qualifier...]},...

/command-qualifier

Specifies one or more output file options.

file-spec

Specifies the input file or files to be linked.

/file-qualifier

Specifies one or more input file options.

20

Chapter 2. Developing VSI BASIC Programs

If you specify more than one input file, you must separate the input file specifications with plus signs (+)
or commas (,). By default, the linker creates an output file with the name of the first input file specified
and the file type .EXE. When you link more than one file, list the file containing the main program first.
This way, the name of your output file will have the same name as that of your main program module.

The following command line links the object files DANCE.OBJ, CHACHA.OBJ, and SWING.OBJ to
produce one executable image called DANCE.EXE:

$ LINK DANCE.OBJ, CHACHA.OBJ, SWING.OBJ

2.2.2. LINK Command Qualifiers
The LINK command qualifiers can be used to modify linker output, as well as to invoke the debugging
and traceback facilities. Linker output consists of an image file and an optional map file. Image file
qualifiers, map file qualifiers, and debugging and traceback qualifiers are described in this section.

This section summarizes some of the most commonly used LINK command qualifiers. For a complete
list and description of LINK qualifiers, see the VSI OpenVMS Linker Utility Manual.

/BRIEF

The /BRIEF qualifier causes the linker to produce a summary of the image's characteristics and a list
of contributing modules. This qualifier is used with /MAP.

/[NO]CROSS_REFERENCE
/NOCROSS_REFERENCE (default)

The /CROSS_REFERENCE qualifier causes the linker to produce cross-reference information
for global symbols; the /NOCROSS_REFERENCE qualifier causes the linker to suppress cross-
reference information.

/[NO]DEBUG
/NODEBUG (default)

The /DEBUG qualifier causes the linker to include the OpenVMS Debugger information in the
executable image and generates a symbol table; the /NODEBUG qualifier causes the linker to
prevent debugger control of the program. The default is /NODEBUG.

/[NO]EXECUTABLE [= file-spec]
/EXECUTABLE (default)

The /EXECUTABLE qualifier causes the linker to produce an executable image;
the /NOEXECUTABLE qualifier suppresses production of an image file. If a file-spec is given, the
resulting image is given the name of the file-spec.

/FULL

The /FULL qualifier causes the linker to produce a summary of the image's characteristics, a
list of contributing modules, listings of global symbols by name and by value, and a summary of
characteristics of image sections in the linked image. This qualifier is used with /MAP.

/[NO]MAP [= file-spec]
/NOMAP (default interactive mode)
/MAP (default batch mode)

The /MAP qualifier causes the linker to generate a map file; the /NOMAP qualifier suppresses the
map. If a file-spec is given, the map file is given the name of the file-spec.

21

Chapter 2. Developing VSI BASIC Programs

/[NO]SHAREABLE
/NOSHAREABLE (default)

The /SHAREABLE qualifier causes the linker to create a shareable image; the /NOSHAREABLE
qualifier generates an executable image.

/[NO]TRACEBACK
/TRACEBACK (default)

The /TRACEBACK qualifier causes the linker to generate symbolic traceback information when
error messages are produced; the /NOTRACEBACK qualifier suppresses traceback information.

2.2.3. Linker Input Files
You can specify the object modules to be included in an executable image in any of the following ways:

● Specify input file specifications for the object modules.

If no file type is specified, the linker assumes that an input file is an object file with the file
type .OBJ.

● Specify one or more object module library files.

You can either specify the name of an object module library with the /LIBRARY qualifier, or
specify the names of object modules contained in an object module library with the /INCLUDE
qualifier. The uses of object module libraries are described in Section 2.2.5, "Using an Object Module
Library".

● Specify an options file.

An options file can contain additional file specifications for the LINK command as well as special
linker options. You must use the /OPTIONS qualifier to specify an options file. For more information
about options files, see the VSI OpenVMS Linker Utility Manual.

The linker uses the following default file types for input files:

File File Type

Object module .OBJ
Object library .OLB
Options file .OPT

2.2.4. Linker Output Files
When you enter the LINK command interactively and do not specify any qualifiers, the linker creates
only an executable image file. By default, the resulting image file has the same file name as the first
object module specified, and the file type .EXE.

In a batch job, the linker creates both an executable image file and a storage map file by default. The
default file type for map files is .MAP.

To specify an alternative name for a map file or image file, or to specify an alternative output directory
or device, you can include a file specification on the /MAP or /EXECUTABLE qualifier. For example:

22

Chapter 2. Developing VSI BASIC Programs

$ LINK UPDATE/MAP=TEST

2.2.5. Using an Object Module Library
In a large development effort, the object modules for subprograms are often stored in an object module
library. By using an object module library, you can make program modules contained in the library
available to other programmers. To link modules contained in an object module library, use the /
INCLUDE qualifier and specify the specific modules you want to link. For example:

$ LINK GARDEN, VEGGIES/INCLUDE = (EGGPLANT,TOMATO,BROCCOLI,ONION)

This example directs the linker to link the object modules EGGPLANT, TOMATO, BROCCOLI, and
ONION with the main object module GARDEN.

Besides program modules, an object module library can also contain a symbol table with the names of
each global symbol in the library, and the name of the module in which they are defined. You specify
the name of the object module library containing symbol definitions with the /LIBRARY qualifier.
When you use the /LIBRARY qualifier during a link operation, the linker searches the specified library
for all unresolved references found in the included modules during compilation.

In the following example, the linker uses the library RACQUETS to resolve undefined symbols in
BADMINTON, TENNIS, and RACQUETBALL:

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library, such as LNK$LIBRARY, to be your default library by using
the DCL command DEFINE. The linker searches default user libraries for unresolved references after it
searches modules and libraries specified in the LINK command. See the VSI OpenVMS DCL Dictionary
for more information about the DEFINE command.

For more information about object module libraries, see the VSI OpenVMS Linker Utility Manual.

2.2.6. Linker Error Messages
If the linker detects any errors while linking object modules, it displays messages indicating the cause
and severity of the error. If any error or fatal error conditions occur (errors with severities of E or F), the
linker does not produce an image file.

The messages produced by the linker are descriptive, and you do not usually need additional information
to determine the specific error. Some common errors that occur during linking are as follows:

● An object module has compilation errors.

This error occurs when you attempt to link a module that has warnings or errors during compilation.
You can usually link compiled modules for which the compiler generated messages, but you should
verify that the modules will actually produce the output you expect.

● The input file has a file type other than .OBJ and no file type was specified on the command line.

If you do not specify a file type, the linker assumes the file has a file type of .OBJ by default. If the
file is not an object file and you do not identify it with the appropriate file type, the linker signals an
error message and does not produce an image file.

● You tried to link a nonexistent module.

23

Chapter 2. Developing VSI BASIC Programs

The linker signals an error message if you misspell a module name on the command line or if the
compilation contains fatal diagnostics.

● A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names from the command line and
the linker cannot locate the definition for a specified global symbol reference. For example, a
main program module OCEAN.OBJ calls the subprograms located in object modules REEF.OBJ,
SHELLS.OBJ, and SEAWEED.OBJ. However, the following LINK command does not reference the
object module SEAWEED.OBJ:

$ LINK OCEAN, REEF, SHELLS

This example produces the following error messages:

%LINK-W-NUDFSYMS, 1 undefined symbol
%LINK-I-UDFSYMS, SEAWEED
%LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
%LINK-W-DIAGISUED, completed but with diagnostics

If an error occurs when you link modules, you can often correct the error by reentering the command
string and specifying the correct modules or libraries.

See the OpenVMS System Messages and Recovery Procedures Reference Manual for a complete list of
linker messages.

2.3. Running a VSI BASIC Program
After you link your program, use the DCL command RUN to execute it. The RUN command has the
following format:

RUN [/[NO]DEBUG] file-spec [/[NO]DEBUG]

/[NO]DEBUG

The /[NO]DEBUG qualifier is optional. Specify the /DEBUG qualifier to request the debugger if the
image is not linked with it. You cannot use /DEBUG on images linked with the /NOTRACEBACK
qualifier. If the image is linked with the /DEBUG qualifier, and you do not want the debugger to prompt,
use the /NODEBUG qualifier. The default action depends on whether the file is linked with the /DEBUG
qualifier.

file-spec

The name of the file you want to execute.

The following example executes the image SAMPLE.EXE without invoking the debugger:

$ RUN SAMPLE/NODEBUG

See Chapter 3, "Using the OpenVMS Debugger with BASIC" for more information about debugging
programs.

During program execution, an image can generate a fatal error called an exception condition. When an
exception condition occurs, VSI BASIC displays an error message. Run-time errors can also be issued by
other facilities, such as the OpenVMS operating system. For more information about run-time errors, see
Appendix B, "Run-Time Messages".

24

Chapter 2. Developing VSI BASIC Programs

2.3.1. Improving Run-Time Performance of VSI BASIC
Programs
Even with fast hardware and an optimizing compiler, you can still tune your code for run-time
performance. This section provides recommendations to consider if further performance improvements
are desirable.

To achieve the best performance for your application, it is important to let both the hardware and
the optimizer/code generator take advantage of their full capabilities. This can be accomplished by
minimizing, and in some cases avoiding, the use of language features and qualifiers that block optimal
program execution.

2.3.1.1. Data Items
Choose data types and align data items with the following in mind:

● Align data items in MAP, COMMON, and RECORD statements. This is the recommended first step
to improve performance. For more information on alignment, see Section 2.1.2, "BASIC Command
Qualifiers" under /WARNING = ALIGNMENT.

● Use LONG or QUAD data items instead of BYTE and WORD; accessing LONG or QUAD items is
faster than BYTE and WORD, which may require multiple hardware instructions.

● On Alpha, use GFLOAT or TFLOAT data items instead of DOUBLE; operations are faster on
GFLOAT and TFLOAT items. Operations on DOUBLE operands are performed by converting to
GFLOAT, performing the operation in GFLOAT, and converting back to DOUBLE.

● On Itanium, use IEEE data items instead of VAX floating-point data items. VAX data type operands
are converted to appropriate IEEE types before being operated on.

● Choose packed decimal lengths that are the most efficient while still meeting the needs of the
application. The most efficient sizes are the default size of 15 digits (which fits exactly in a
quadword) and 7 digits (which fits exactly in a longword). If you use one of these preferred sizes, it
should be aligned on a quadword or longword boundary.

● Use packed decimal only when it is the appropriate data type. For example, do not use packed
decimal to specify array subscripts, which are integers.

● Minimize mixed data type expressions, especially when you use packed decimal.

2.3.1.2. Qualifiers
On your BASIC command line, consider the following when you specify qualifiers:

● Use overflow and bounds checking only if they are needed. (See Section 2.1.2, "BASIC Command
Qualifiers"; bounds checking is needed if your program is not thoroughly debugged.) Both of these /
CHECK options are on by default and will hinder performance.

● The use of the /LINES qualifier can impede optimization. /LINES is needed in Alpha BASIC only
for the ERL function and to print BASIC line numbers in run-time error messages. /NOLINES is the
default in Alpha BASIC.

● The default optimization level, /OPTIMIZATION = LEVEL = 4, provides the highest level of
optimization.

25

Chapter 2. Developing VSI BASIC Programs

● The /SYNCHRONOUS_EXCEPTIONS qualifier inhibits many optimizations. For more information
on /SYNCHRONOUS_EXCEPTIONS, see Section 2.1.2, "BASIC Command Qualifiers".

2.3.1.3. Statements
The statements used in a program can affect performance, as follows:

● If you use error handling, the default ON ERROR GO BACK has the least impact on performance.
ON ERROR GOTO {target} and WHEN blocks have a greater impact. If the application spends a
large percentage of time in one routine, consider writing the routine with default error handling, if
possible.

● RESUME without a target impedes optimization. (This applies only to RESUME statements that do
not specify a target.)

● A MOVE TO or FIELD statement limits optimizations in the entire routine (SUB, FUNCTION, or
main) where the statement is found. There is no additional cost for any statement after the first.

● OPTION INACTIVE = SETUP can dramatically minimize routine startup times by omitting RTL
calls that initialize and close down routines. For small BASIC routines, the overhead of these RTL
calls can be significant. Use this option for routines that are frequently called.

If your routine contains any of the following elements, the compiler provides an informational
diagnostic and emits calls to the RTL initialization and close-down routines:

CHANGE statements
DEF statements
Dynamic string variables
Executable DIM statements
EXTERNAL string functions
MAT statements
MOVE statements for an entire array
ON ERROR statements
READ statements
REMAP statements
RESUME statements
WHEN blocks
String concatenation
Built-in string functions
Virtual arrays

Routines using OPTION INACTIVE = SETUP cannot perform I/O and have no error-handling
capabilities. If an error occurs in such a routine, the error is resignalled to the calling routine.

Using OPTION INACTIVE = SETUP instructs the compiler not to emit code to initialize local
variables. This also improves run-time performance, but impacts routines that rely upon the
automatic initialization of local variables.

● CONTINUE without a target and RETRY can limit optimizations within the scope of the WHEN
blocks associated with the handler that contains these statements. This impact can be significant if
the handler is associated with a large WHEN block. The code within the associated WHEN blocks
will be minimally optimized.

26

Chapter 3. Using the OpenVMS
Debugger with BASIC
This chapter discusses OpenVMS Debugger information that is specific to the BASIC language. For
more information about the OpenVMS Debugger, see the VSI OpenVMS Debugger Manual. Online help
is available during debugging sessions.

3.1. Overview of the Debugger
A debugger is a tool to help you locate run-time errors quickly. It is used with a program that has
already been compiled and linked successfully, with no errors reported, but that does not run correctly.
For example, the output might be obviously wrong, the program goes into an infinite loop, or the
program terminates prematurely. The debugger enables you to observe and manipulate the program's
execution interactively, step by step, until you locate the point at which the program stopped working
correctly.

The OpenVMS Debugger is a symbolic debugger, which means that you can refer to program locations
by the symbols (names) you used for those locations in your program—the names of variables, routines,
labels, and so on. You do not have to use virtual addresses to refer to memory locations.

The debugger recognizes the syntax, expressions, data typing, and other constructs of BASIC.

3.2. Compiling and Linking to Prepare for
Debugging
The following example shows how to compile and link a BASIC program (consisting of a single
compilation unit named INVENTORY) so that subsequently you will be able to use the debugger:

$ BASIC/DEBUG INVENTORY
$ LINK/DEBUG INVENTORY

The /DEBUG qualifier with the BASIC command instructs the compiler to write the debug symbol
records associated with INVENTORY into the object module, INVENTORY.OBJ. These records allow
you to use the names of variables and other symbols declared in INVENTORY in debugger commands.
(If your program has several compilation units, you must compile each unit that you want to debug with
the /DEBUG qualifier).

The /DEBUG qualifier with the LINK command instructs the linker to include all symbol information
that is contained in INVENTORY.OBJ in the executable image. The qualifier also causes the OpenVMS
image activator to start the debugger at run time. (If your program has several object modules, you might
need to specify other modules in the LINK command).

3.3. Viewing Your Source Code
The debugger provides two methods for viewing source code: noscreen mode and screen mode. By
default when you invoke the debugger, you are in noscreen mode, but you might find that it is easier to
view your source code with screen mode. Both modes are described in the following sections.

3.3.1. Noscreen Mode

27

Chapter 3. Using the OpenVMS Debugger with BASIC

Noscreen mode is the default, line-oriented mode of displaying input and output. To get into noscreen
mode from screen mode, enter SET MODE NOSCREEN. See the sample debugging session in Section
3.7, "Sample Debugging Session" for a demonstration of noscreen mode.

In noscreen mode, you can use the TYPE command to display one or more source lines. For example,
the following command displays line 3 of the module that is currently executing:

DBG> TYPE 3
3: EXTERNAL SUB TRIPLE &
DBG>

The display of source lines is independent of program execution. You can use the TYPE command to
display source code from a module other than the one currently executing. In that case, you need to use
a directory specification to specify the module. For example, the following command displays lines 16 to
21 of module TEST:

DBG> TYPE TEST\16:21

3.3.2. Screen Mode
To invoke screen mode, press PF3. In screen mode, by default the debugger splits the screen into three
displays called SRC, OUT, and PROMPT.

--SRC: module SAMPLE$MAIN -scroll-source--------------------------
 1: 10 !SAMPLE
 2:
 3: EXTERNAL SUB TRIPLE &
 4: ,PRINT_SUB
 5:
 6: WHEN ERROR USE HANDLER_1
 -> 7: CALL TRIPLE
 8: CALL PRINT_SUB
 9:
- OUT -output---
stepped to SAMPLE$MAIN\%LINE 7

- PROMPT -error-program-prompt----------------------------
DBG> STEP
DBG>

The SRC display, at the top of the screen, shows the source code of the module (compilation unit)
that is currently executing. An arrow in the left column points to the next line to be executed, which
corresponds to the current location of the program counter (PC). The line numbers, which are assigned
by the compiler, match those in a listing file.

Note

BASIC line numbers are treated as text by the debugger. In this chapter, line numbers refer to the
sequential line numbers generated by the compiler. When a program includes or appends code from
another file, the included lines of code are also numbered in sequence by the compiler. These line
numbers are on the extreme left of a listing file. An explanation of the listing file format is in Chapter 2,
"Developing VSI BASIC Programs".

28

Chapter 3. Using the OpenVMS Debugger with BASIC

The PROMPT display, at the bottom of the screen, shows the debugger prompt (DBG>), your input,
debugger diagnostic messages, and program output. In the example, the debugger commands that have
been issued are shown.

The OUT display, in the center of the screen, captures the debugger's output in response to the
commands that you issue.

The SRC and OUT displays are scrollable so that you can see whatever information scrolls beyond the
display window's edge. Press KP8 to scroll up and KP2 to scroll down. Press KP3 to change the display
to be scrolled (by default, the SRC display is scrolled). Scrolling a display does not affect program
execution.

If the debugger cannot locate source lines for the currently executing module, it tries to display source
lines in the next module down on the call stack for which source lines are available and issues the
following message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
 Displaying source in a caller of the current routine.

Source lines might not be available for the following reasons:

● The PC is within a system routine, or a shareable image routine for which no source code is
available.

● The PC is within a routine that was compiled without the /DEBUG compiler command qualifier (or
with /NODEBUG).

● The source file was moved to a different directory after it was compiled (the location of source files
is embedded in the object modules). Use the SET SOURCE command to direct the debugger to the
new location.

3.4. Controlling and Monitoring Program
Execution
This section discusses the following:

● Starting and resuming program execution with the GO command

● Stepping through the program's code with the STEP command

● Determining the current location of the program counter (PC) with the SHOW CALLS command

● Suspending program execution with breakpoints

● Tracing program execution with tracepoints

● Monitoring changes in variables with watchpoints

3.4.1. Starting and Resuming Program Execution
There are two commands for starting or resuming program execution: GO and STEP. The GO command
starts execution. The STEP command lets you execute a specified number of source lines or instructions.

29

Chapter 3. Using the OpenVMS Debugger with BASIC

GO Command
The GO command starts program execution, which continues until forced to stop. You will probably use
the GO command most often in conjunction with breakpoints, tracepoints, and watchpoints. If you set
a breakpoint in the path of execution and then enter the GO command (or press the keypad comma key
that executes the GO command), execution will be suspended when the program reaches that breakpoint.
If you set a tracepoint, the path of execution through that tracepoint will be monitored. If you set a
watchpoint, execution will be suspended when the value of the watched variable changes.

You can also use the GO command to test for an exception condition or an infinite loop. If an exception
condition that is not handled by your program occurs, the debugger will take over and display the DBG>
prompt so that you can issue commands. If you are using screen mode, the pointer in the source display
will indicate where execution stopped. You can then use the SHOW CALLS command (see Section
3.4.2, "Determining the Current Location of the Program Counter") to identify the currently active
routine calls (the call stack).

In the case of an infinite loop, the program will not terminate, so the debugger prompt will not reappear.
To obtain the prompt, interrupt the program by pressing Ctrl/Y and then issue the DCL command
DEBUG. You can then look at the source display and a SHOW CALLS display to locate the PC.

STEP Command
The STEP command (which you can use either by entering STEP or by pressing KP0) allows you
to execute a specified number of source lines or instructions, or to execute the program to the next
instruction of a particular kind, for example, to the next CALL instruction.

By default, the STEP command executes a single source line at a time. In the following example, the
STEP command executes one line, reports the action (“stepped to ...”), and displays the line number (27)
and source code of the next line to be executed:

DBG> STEP
stepped to TEST\COUNTER\%LINE 27
 27: X = X + 1
DBG>

The PC is now at the first machine code instruction for line 27 of the module TEST; line 27 is
in COUNTER, a routine within the module TEST. TEST\COUNTER\%LINE 27 is a directory
specification. The debugger uses directory specifications to refer to symbols. (However, you do not
need to use a path name in referring to a symbol, unless the symbol is not unique; in that case, the
debugger will issue an error message). See the VSI OpenVMS Debugger Manual or online help for more
information about resolving multiply-defined symbols.

You can specify a number of lines for the STEP command to execute. In the following example, the
STEP command executes three lines:

DBG> STEP 3

Note that only those source lines for which code instructions were generated by the compiler are
recognized as executable lines by the debugger. The debugger skips over any other lines—for example,
comment lines.

Also, if a line has more than one statement on it, the debugger will execute all the statements on that line
as part of the single step.

Using the STEP/OVER command to step over a GOSUB statement will still proceed to the target of the
GOSUB since this statement is just a special kind of GOTO statement and not a routine call.

30

Chapter 3. Using the OpenVMS Debugger with BASIC

You can specify different stepping modes, such as stepping by instruction rather than by line (SET STEP
INSTRUCTION). To resume to the default behavior, enter the SET STEP LINE command. Also by
default, the debugger steps over called routines—execution is not suspended within a called routine,
although the routine is executed. By entering the SET STEP INTO command, you tell the debugger to
suspend execution within called routines as well as within the currently executing module. To resume the
default behavior, enter the SET STEP OVER command.

3.4.2. Determining the Current Location of the Program
Counter
The SHOW CALLS command lets you determine the current location of the program counter (PC) (for
example, after returning to the debugger following a Ctrl/Y interrupt). The command shows a traceback
that lists the sequence of calls leading to the currently executing routine. For example:

DBG> SHOW CALLS
 module name routine name line rel PC abs PC

*TEST PRODUCT 18 00000009 0000063C
*TEST COUNTER 47 00000009 00000647
*MY_PROG MY_PROG 21 0000000D 00000653
DBG>

For each routine (beginning with the currently executing routine), the debugger displays the following
information:

● Name of the module that contains the routine

● Name of the routine

● Line number at which the call was made (or at which execution is suspended, in the case of the
current routine)

● Corresponding PC addresses (the relative PC address from the start of the routine and the absolute
PC address of the program)

This example indicates that execution is currently at line 18 of routine PRODUCT (in module TEST),
which was called from line 47 of routine COUNTER (in module TEST), which was called from line 21
of routine MY_PROG (in module MY_PROG).

3.4.3. Suspending Program Execution
The SET BREAK command lets you select breakpoints, which are locations at which the program will
stop running. When you reach a breakpoint, you can enter commands to check the call stack, examine
the current values of variables, and so on.

A typical use of the SET BREAK command is shown in the following example:

DBG> SET BREAK COUNTER
DBG> GO
 .
 .
 .
 break at TEST\COUNTER
 34: SUB COUNTER(LONG X,Y)

31

Chapter 3. Using the OpenVMS Debugger with BASIC

DBG>

In this example, the SET BREAK command sets a breakpoint on the subprogram COUNTER; the GO
command starts execution. When the subprogram COUNTER is encountered, execution is suspended,
the debugger announces that the breakpoint at COUNTER has been reached (break at ...), displays
the source line (34) where execution is suspended, and prompts you for another command. At this
breakpoint, you can step through the subprogram COUNTER, using the STEP command, and use the
EXAMINE command (see Section 3.5.1, "Displaying the Values of Variables") to check on the current
values of X and Y.

When using the SET BREAK command, you can specify program locations using various kinds of
address expressions (for example, line numbers, routine names, instructions, virtual memory addresses).
With high-level languages, you typically use routine names, labels, or line numbers, possibly with
directory specifications to ensure uniqueness.

Routine names and labels should be specified as they appear in the source code. Line numbers may be
derived from either a source code display or a listing file. When specifying a line number, use the prefix
%LINE. (Otherwise, the debugger will interpret the line number as a memory location.) For example,
the next command sets a breakpoint at line 41 of the currently executing module; the debugger will
suspend execution when the PC is at the start of line 41:

DBG> SET BREAK %LINE 41

Note that you can set breakpoints only on lines that resulted in machine code instructions. The debugger
warns you if you try to do otherwise (for example, on a comment line). If you want to pick a line
number in a module other than the one currently executing, you need to specify the module's name in a
directory specification. For example:

DBG> SET BREAK SCREEN_IO\%LINE 58

You do not always have to specify a particular program location, such as line 58 or COUNTER, to set
a breakpoint. You can set breakpoints on events, such as exceptions. You can use the SET BREAK
command with a qualifier, but no parameter, to break on every line, or on every CALL instruction, and
so on. For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

You can conditionalize a breakpoint (with a WHEN clause) or specify that a list of commands be
executed at the breakpoint (with a DO clause on the debugger command). For example, the next
command sets a breakpoint on the label LOOP3. The DO (EXAMINE TEMP) clause causes the value
of the variable TEMP to be displayed whenever the breakpoint is triggered.

DBG> SET BREAK LOOP3 DO (EXAMINE TEMP)
DBG> GO
 .
 .
 .
break at COUNTER\LOOP3
 37: LOOP3: FOR I = 1 TO 10
COUNTER\TEMP: 284.19
DBG>

To display the currently active breakpoints, enter the SHOW BREAK command:

DBG> SHOW BREAK

32

Chapter 3. Using the OpenVMS Debugger with BASIC

breakpoint at SCREEN_IO\%LINE 58
breakpoint at COUNTER\LOOP3
 do (EXAMINE TEMP)
 .
 .
 .
DBG>

To cancel a breakpoint, enter the CANCEL BREAK command, specifying the program location exactly
as you did when setting the breakpoint. The CANCEL BREAK/ALL command cancels all breakpoints.

3.4.4. Tracing Program Execution
The SET TRACE command lets you select tracepoints, which are locations for tracing the execution of
your program without stopping its execution. After setting a tracepoint, you can start execution with the
GO command and then monitor the PC's path, checking for unexpected behavior. By setting a tracepoint
on a routine, you can also monitor the number of times the routine is called.

As with breakpoints, every time a tracepoint is reached, the debugger issues a message and displays the
source line. It can also display other information that you have specified (as shown in the last example
in this section, in which the value of a specified variable is displayed). However, at tracepoints, unlike
breakpoints, the program continues executing, and the debugger prompt is not displayed. For example:

DBG> SET TRACE COUNTER
DBG> GO
 .
 .
 .
trace at TEST\COUNTER
 34: SUB COUNTER(LONG X,Y)
 .
 .
 .

When using the SET TRACE command, you specify address expressions, qualifiers, and optional clauses
exactly as with the SET BREAK command.

The /LINE qualifier instructs the SET TRACE command to trace every line and is a convenient means
of checking the execution path. By default, lines are traced within all called routines as well as the
currently executing routine. If you do not want to trace system routines or routines in shareable images,
use the /NOSYSTEM or /NOSHARE qualifiers. For example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

The /SILENT qualifier suppresses the trace message and source code display. This is useful when you
want to use the SET TRACE command to execute a debugger command at the tracepoint. For example:

DBG> SET TRACE\SILENT %LINE 83 DO (EXAMINE STATUS)
DBG> GO
 .
 .
 .
SCREEN_IO\CLEAR\STATUS: 'OFF'
 .
 .
 .

33

Chapter 3. Using the OpenVMS Debugger with BASIC

3.4.5. Monitoring Changes in Variables
The SET WATCH command lets you set watchpoints that will be monitored continuously as your
program executes.

If the program modifies the value of a watched variable, the debugger suspends execution and displays
the old and new values.

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the watchpoint is triggered. The
debugger monitors watchpoints continuously during program execution.

The next example shows what happens when your program modifies the contents of a watched variable:

DBG> SET WATCH TOTAL
DBG> GO
 .
 .
 .
watch of SCREEN_IO\TOTAL\%LINE 13
 13: TOTAL = TOTAL + 1
 old value: 16
 new value: 17
break at SCREEN_IO.%LINE 14
 14: CALL Pop_rtn(TOTAL)
DBG>

In this example, a watchpoint is set on the variable TOTAL and the GO command starts execution.
When the value of TOTAL changes, execution is suspended. The debugger announces the event (watch
of …), identifying where TOTAL changed (line 13) and the associated source line. The debugger then
displays the old and new values and announces that execution has been suspended at the start of the
next line (14). (The debugger reports break at … , but this is not a breakpoint; it is still the effect of the
watchpoint.) Finally, the debugger prompts for another command.

When a change in a variable occurs at a point other than the start of a source line, the debugger gives the
line number plus the byte offset from the start of the line.

3.5. Examining and Manipulating Data
This section explains how to use the EXAMINE, DEPOSIT, and EVALUATE commands to display and
modify the contents of variables, and evaluate expressions in BASIC programs.

3.5.1. Displaying the Values of Variables
To display the current value of a variable, use the EXAMINE command as follows:

DBG> EXAMINE variable_name

The debugger recognizes the compiler-generated data type of the specified variable and retrieves and
formats the data accordingly. The following examples show some uses of the EXAMINE command:

Examine a string variable:

DBG> EXAMINE EMPLOYEE_NAME
PAYROLL\EMPLOYEE_NAME: "Peter C. Lombardi"

34

Chapter 3. Using the OpenVMS Debugger with BASIC

DBG>

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine a two-dimensional array of integers (two rows and three columns):

DBG> EXAMINE INTEGER_ARRAY
PROG2\INTEGER_ARRAY
 (0,0): 27
 (0,1): 31
 (0,2): 12
 (1,0): 15
 (1,1): 22
 (1,2): 18
DBG>

Examine element 4 of a one-dimensional string array:

DBG> EXAMINE CHAR_ARRAY(4)
PROG2\CHAR_ARRAY(4): 'm'
DBG>

Note that the EXAMINE command can be used with any kind of address expression (not just a variable
name) to display the contents of a program location. The debugger associates certain default data types
with untyped locations. You can override the defaults for typed and untyped locations if you want the
data to be interpreted and displayed in some other data format. The debugger supports the data types and
operators of BASIC including RECORDs and RFAs.

See Section 3.5.3, "Evaluating Expressions" for an explanation of how the EXAMINE and the
EVALUATE commands differ.

3.5.2. Changing the Values of Variables
To change the value of a variable, use the DEPOSIT command as follows:

DBG> DEPOSIT variable_name = value

The DEPOSIT command is like an assignment statement in BASIC.

In the following examples, the DEPOSIT command assigns new values to different variables. The
debugger checks that the value assigned, which may be a language expression, is consistent with the data
type and dimensional constraints of the variable.

Deposit a string value (it must be enclosed in quotation marks or apostrophes):

DBG> DEPOSIT PARTNUMBER = "WG-7619.3-84"

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENT_WIDTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire array aggregate with a single
DEPOSIT command, only an element):

35

Chapter 3. Using the OpenVMS Debugger with BASIC

DBG> DEPOSIT C_ARRAY(12) = 'K'

You can specify any kind of address expression, not just a variable name, with the DEPOSIT command
(as with the EXAMINE command). You can override the defaults for typed and untyped locations if you
want the data to be interpreted in some other data format.

3.5.3. Evaluating Expressions
To evaluate a language expression, use the EVALUATE command as follows:

DBG> EVALUATE lang_exp

The debugger recognizes the operators and expression syntax of the currently set language. In the
following example, the value 45 is assigned to the integer variable WIDTH; the EVALUATE command
then obtains the sum of the current value of WIDTH plus 7:

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH + 7
52
DBG>

Following is an example of how the EVALUATE and the EXAMINE commands are similar. When the
expression following the command is a variable name, the value reported by the debugger is the same for
either command.

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH
45
DBG> EXAMINE WIDTH
SIZE\WIDTH: 45

Following is an example of how the EVALUATE and EXAMINE commands are different:

DBG> EVALUATE WIDTH + 7
52
DBG> EXAMINE WIDTH + 7
SIZE\WIDTH: 131584

With the EVALUATE command, WIDTH + 7 is interpreted as a language expression, which evaluates
to 45 + 7, or 52. With the EXAMINE command, WIDTH + 7 is interpreted as an address expression: 7
bytes are added to the address of WIDTH, and whatever value is in the resulting address is reported (in
this example, 131584).

3.6. Stepping Into BASIC Routines
This section provides details of the STEP/INTO command that are specific to BASIC.

In the following example, the debugger is waiting to proceed at source line 63. If you enter a STEP
command at this point, the debugger will proceed to source line 64 without stopping during the
execution of the function call. To step through the source code in the DEF function deffun, you must use
the STEP/INTO command. A STEP/INTO command entered while the debugger has stopped at source
line 63 causes the debugger to display the source code for deffun and stop execution at source code line
3.

 1 DECLARE LONG FUNCTION deffun (LONG)
 2 DECLARE LONG A

36

Chapter 3. Using the OpenVMS Debugger with BASIC

 3 DEF LONG deffun (LONG x)
 4 deffun = x
 5 END DEF
 .
 .
 .
->63 A = deffun (6%)
 64 Print "The value of A is: "; A

The STEP/INTO command is useful for stepping into external functions and DEF functions in VSI
BASIC for OpenVMS. If you use this command to step into GOSUB blocks, the debugger steps into
Run-Time Library (RTL) routines, providing you with no useful information.

In the following program, the debugger has suspended execution at source line 8. If you now enter a
STEP/INTO command, the debugger steps into the relevant RTL code and informs you that no source
lines are available.

 1 10 RANDOMIZE
 .
 .
 .
->8 GOSUB Print_routine
 9 STOP
 .
 .
 .
 20 Print_routine:
 21 IF Competition = Done
 22 THEN PRINT "The winning ticket is #";Winning_ticket
 23 ELSE PRINT "The game goes on."
 24 END IF
 25 RETURN

As in the previous example, a STEP command alone will cause the debugger to proceed directly to
source line 9.

Table 3.1, "Resultant Behavior of the STEP/INTO Command" summarizes the resultant behavior of the
STEP/INTO command when used to step into external functions, DEF functions, and GOSUB blocks.

Table 3.1. Resultant Behavior of the STEP/INTO Command

Action Results

STEP/INTO DEF function Steps into function
STEP/INTO DEF* function Steps into RTL
STEP/INTO external function or
SUB routine1

Steps into function

STEP/INTO GOSUB block Steps into RTL
1Unless the subroutine is compiled with the /NOSETUP qualifier or equivalent, it will appear to step into RTL code, because an environment
setup RTL routine is normally called as the very first thing of the subroutine.

3.6.1. Controlling Symbol References
When using the OpenVMS Debugger, all VSI BASIC for OpenVMS variable and label names within a
single program unit must be unique; otherwise, the debugger will be unable to determine the symbol to
which you are referring.

37

Chapter 3. Using the OpenVMS Debugger with BASIC

3.7. Sample Debugging Session
This section shows a sample debugging session using a BASIC program that contains a logic error.

The following program compiles and links without diagnostic messages from either the compiler or the
linker. However, after printing the headers, the program is caught in a loop printing the same figures
indefinitely.

 1 10 !SAMPLE program for DEBUG illustration
 2 DECLARE INTEGER Number
 3 Print_headers:
 4 PRINT "NUMBER", "SQUARE", "SQUARE ROOT"
 5 PRINT
 6 Print_loop:
 7 FOR Number = 10 TO 1 STEP -1
 8 PRINT Number, Number^2, SQR(Number)
 9 Number = Number + 1
10 NEXT Number
11 PRINT
12 END

The following text shows the terminal dialogue for a debugging session, which helps locate the error in
the program SAMPLE. The callouts are keyed to explanatory notes that follow the dialogue.

$ BASIC/LIST/DEBUG SAMPLE
$ LINK/DEBUG SAMPLE
$ RUN SAMPLE
 VAX DEBUG Version n.n
%DEBUG-I-INITIAL, language is BASIC module set to 'SAMPLE$MAIN'
DBG> STEP 2
NUMBER SQUARE SQUARE ROOT
stepped to SAMPLE$MAIN\%line 7
 7: FOR Number = 10 TO 1 STEP -1
DBG> STEP 4
10 100 3.16228
stepped to SAMPLE$MAIN\%LINE 7
 7: FOR Number = 10 TO 1 STEP -1
DBG> EXAMINE Number
SAMPLE$MAIN\NUMBER: 10
DBG> STEP 4
10 100 3.16228
stepped to SAMPLE$MAIN\%LINE 7
 7: FOR Number = 10 TO 1 STEP -1
DBG> EXAMINE Number
SAMPLE$MAIN\NUMBER: 10
DBG> DEPOSIT Number = 9
DBG> STEP 4
9 81 3
stepped to SAMPLE$MAIN\%LINE 7
 7: FOR Number = 10 TO 1 STEP -1
DBG> EXAMINE Number
SAMPLE$MAIN\NUMBER: 9
DBG> STEP
9 81 3
stepped to SAMPLE$MAIN\%LINE 8
 8: PRINT Number, Number^2, SQR(Number)
DBG> STEP

38

Chapter 3. Using the OpenVMS Debugger with BASIC

stepped to SAMPLE$MAIN\%LINE 9
 9: Number = Number + 1
DBG> EXIT

The following explains the terminal dialogue in the above example:

Compile SAMPLE.BAS with the /LIST and /DEBUG qualifiers. The listing file can be useful while
you are in the debugging session.

Link SAMPLE.BAS with the /DEBUG qualifier.

The debugger identifies itself and displays the debugger prompt after you invoke the debugger with
the RUN command.

Step through 2 executable statements to the FOR statement.

The headers print successfully and the program reaches the FOR statement.

Step through one iteration of the loop.

Request the contents of the variable Number.

The debugger shows the contents of the loop index to be 10.

Step through another iteration of the loop.

Examine the value of the loop index again.

The debugger shows that the loop index is still 10. The loop index has not changed from its initial
setting in the FOR statement.

Deposit the correct value into Number.

Step through another iteration of the loop.

Examine the contents of Number again.

Observe that the number has not been changed yet.

Step through just one statement to discover what is interfering with the value of Number during
execution of the loop.

Observe that this statement does not affect the value of Number.

Step through another statement in the loop.

Observe that this statement counteracts the change in the loop index.

Exit from the debugger. You can now edit the program to delete line 9 and reprocess the program.
Alternatively, you could use the EDIT command while in the debugger environment.

This debugging session shows that the FOR...NEXT loop index (Number) is not being changed
correctly. An examination of the statements in the loop shows that the variable Number is being
decreased by one during each execution of the FOR statement, but incremented by one with each
execution of the loop statements. From this you can determine that the loop index will not change at all
and the program will loop indefinitely. To correct the problem, you must delete the incorrect statement
and recompile the source program.

39

Chapter 3. Using the OpenVMS Debugger with BASIC

3.8. Hints for Using the OpenVMS Debugger
A STEP at a statement that causes an exception might never return control to the debugger. The
debugger cannot determine what statement in the BASIC source code will execute after the exception
occurs. Therefore, set explicit breaks if STEP is used on statements that cause exceptions.

The following hints should help when you use the STEP command to debug programs that handle errors:

● When you STEP at a statement that takes an error, the debugger will not regain control unless the
program reaches an explicit breakpoint or the next statement that would have executed if no error
had occurred. Set explicit breaks if you want the program to stop in any other place.

● Use of the STEP command at a statement that takes an error does not return control to the debugger
when the program reaches the error handler code. If you want the program to break when program
execution enters an error handler, explicitly set a breakpoint at the error handler. This applies to both
ON ERROR handlers and WHEN handlers.

● If you are within a WHEN handler, a STEP at a statement that terminates execution within the
WHEN handler (CONTINUE, RETRY, END WHEN, END HANDLER, EXIT HANDLER) will
not stop unless program flow reaches a point where an explicit breakpoint is set.

● STEP at a RESUME statement in an ON ERROR handler results in the program execution stopping
at the first line of non-error-handler code.

● Use SET BREAK/EXCEPTION at the beginning of the debugging session to prevent unexpected
errors from occurring. This breakpoint is not necessary if you have set explicit breakpoints at all error
handlers. However, use of this command will break at all exceptions, allowing you to check that you
have the proper breakpoints to stop program execution following the exception.

40

Part II. BASIC Programming Concepts
Part II, “BASIC Programming Concepts” explains BASIC programming concepts including input and
output, arrays, data definition, program control, and functions.

41

42

Chapter 4. BASIC Concepts and
Elements
A BASIC program is a series of instructions for the compiler. These instructions are built using the
fundamental elements of BASIC. This chapter describes these elements or building blocks.

4.1. Line Numbers
BASIC gives you the option of developing programs with line numbers or without line numbers.

4.1.1. Programs with Line Numbers
If you use line numbers in your program, you must follow these rules:

● A line number must be a unique integer from 1 to 32767. VSI BASIC for OpenVMS does not allow
programs to have duplicate line numbers.

● A line number can contain leading zeros; however, embedded spaces, tabs, and commas are invalid in
line numbers.

● There must be a line number on the first line of the program.

● If a source file contains subprograms, then each subprogram must begin on a numbered line.

In a multiple-unit program with line numbers, any comments following an END, END SUB, or END
FUNCTION statement become a part of the previous subprogram during compilation unless they begin
on a numbered line. This is not the case in multiple-unit programs without line numbers.

Although line numbers are not required, you might want to use them on every line that can cause a
run-time error, depending on the type of error handling you use. See Chapter 15, "Handling Run-Time
Errors" for more information about handling run-time errors.

4.1.2. Programs Without Line Numbers
If you do not use line numbers in your program, follow these rules:

● Use a text editor to enter and edit the program.

● No line numbers are allowed anywhere in the program module.

● The ERL function is not allowed.

● REM statements are not allowed.

In a multiple-unit program without line numbers, any comments following an END, END SUB, or END
FUNCTION statement become a part of the next subprogram during compilation (unless there is no next
subprogram). This is not the case in multiple-unit programs with line numbers.

You can avoid all of these restrictions by placing a line number on the first line of your program; no
additional line numbers are required. The line number on the first program line causes the compiler to
compile your program as a program with line numbers.

43

Chapter 4. BASIC Concepts and Elements

When you write a program with or without line numbers, you can begin your program statements in the
first character position on a line.

To develop the following program, use a text editor, and observe the restrictions previously listed:

!This is a short program that does not contain any
!BASIC line numbers.
!This program must be entered using a text editor;
!it cannot be entered directly into the environment.
!
PRINT "This program converts kilogram weight to pounds"
INPUT "How many kilograms";A
!This is the conversion factor
B = A / 2.2
PRINT "For ";A;" kilograms, the pound weight is ";B
END

Output
This program converts kilogram weight to pounds
How many kilograms? 11
For 11 kilograms, the pound weight is 5

You can use exclamation comment fields instead of REM statements to insert comments into programs
without line numbers. An exclamation point in column 1 causes the VSI BASIC compiler to ignore the
rest of the line. You can also identify program statements in programs without line numbers by using
labels.

4.1.3. Labels
A label is a 1- to 31-character identifier that you use to identify a block of statements. All label names
must begin with a letter; the remaining characters, if any, can be any combination of letters, digits, dollar
signs ($), underscores (_), or periods (.), but the final character cannot be a dollar sign.

Labels have the following advantages over line numbers:

● Meaningful label names provide documentation.

● You can use labels in programs with or without line numbers.

When you use a label to mark a program location, you must end the label with a colon (:). The colon is
used to show that the label name is being defined instead of referenced. When you reference the label,
do not include the colon.

In the following example, the label names end with colons when they mark a location, but the colons are
not present when the labels are referenced:

OPTION TYPE = EXPLICIT ! Require declarations
DECLARE INTEGER A
 .
 .
 .
Outer_loop:
 IF A <> B
 THEN
Inner_loop:

44

Chapter 4. BASIC Concepts and Elements

 IF B = C
 THEN
 A = A + 1
 GOTO Outer_loop
 ELSE
 B = B + 1
 GOTO Inner_loop
 END IF
 END IF

Labels have no effect on the order in which program lines are executed; they are used to identify a
statement or block of statements.

4.1.4. Continuation of Long Program Statements
If a program line is too long for one line of text, you can continue the program line by placing an
ampersand (&) at the end of the line. Note that only spaces and tabs are valid between the ampersand
and the carriage return.

A single statement that spans several text lines requires an ampersand at the end of each continued line.
For example:

OPEN "SAMPLE.DAT" AS FILE #2%, &
 SEQUENTIAL VARIABLE, &
 RECORDSIZE 80%

In an IF...THEN...ELSE construction, ampersands (&) are not necessary. If a continuation line begins
with THEN or ELSE, then no ampersand is necessary. Similarly, in a line following a THEN or an
ELSE, there is no ampersand.

IF (A$ = B$)
THEN
 PRINT "The two values are equal"
ELSE
 PRINT "The two values are different"
END IF

Several statements can be associated with a single program line. If there are several statements on one
line, they must be separated by backslashes (\). For example:

PRINT A \ PRINT V \ PRINT G

Because all statements are on the same program line, any reference to this program line refers to all three
statements.

4.2. Identifying Program Units
You can delimit a main program compilation unit with the PROGRAM and END PROGRAM
statements. This allows you to identify a program with a name other than the file name. The program
name must not duplicate the name of a SUB, FUNCTION, or PICTURE subprogram. For example:

PROGRAM Sort_out
 .
 .
 .
END PROGRAM

45

Chapter 4. BASIC Concepts and Elements

If you include the PROGRAM statement in your program, the name you specify becomes the module
name of the compiled source. This feature is useful when you use object libraries because the librarian
stores modules by their module name rather than the file name. Similarly, module names are used by the
OpenVMS Debugger and the OpenVMS Linker.

For more information about PROGRAM units, see Chapter 12, "Program Segmentation".

4.3. BASIC Character Set
BASIC uses the full ASCII character set, which includes the following:

● The letters A to Z, both uppercase and lowercase

● The digits 0 to 9

● Special characters

See the VSI BASIC Reference Manual for a complete list of the ASCII character set and character values.

The compiler does not distinguish between uppercase and lowercase letters, except for letters inside
quotation marks (called string literals) or letters in a DATA statement. The compiler also does not
process characters in a REM statement or comment field.

You can use nonprinting characters in your program—for example, in string literals and constants—but
to do so you must do one of the following:

● Use a predefined constant such as ESC or DEL

● Use the CHR$ function to specify an ASCII value

See Section 4.6, "Constants" for more information about predefined constants. See Chapter 10,
"Functions" for more information about the CHR$ function.

4.4. Program Documentation
Documenting a program is the process of putting explanatory text (comments) into your code to make
the program more understandable. Program documentation does not affect the way a program executes.
You can add comments throughout a program; however, programs that are neatly structured need fewer
comments. You can clarify your code by doing the following:

● Using meaningful variable names

● Including sufficient white space

● Indenting your program lines according to the structure of your code

A comment field starts with an exclamation point (!) and ends with another exclamation point or a
carriage return. The following example contains both comments and program statements. Any text that
follows an exclamation point is ignored.

PROGRAM sample
!+
! Require that all variables be declared
!-

46

Chapter 4. BASIC Concepts and Elements

OPTION TYPE = EXPLICIT
!+
! Set up error handler
!-
WHEN ERROR USE Error_routine
!+
! Declarations
!-
 .
 .
 .
END PROGRAM

You can also mix comments and code on the same line. For example:

DECLARE &
 INTEGER &
 Print_page, ! Current page number &
 Print_line, ! Current line number &
 Print_column ! Current column number

All text between the exclamation point and the carriage return is ignored, with one exception: the
ampersand is still recognized. This is a continuation character that specifies that a single statement is
being continued on the next line. Only spaces and tabs are valid between the ampersand and the carriage
return.

Note

Although you can also terminate a comment field with an exclamation point, this practice is not
recommended. Any text that follows the second exclamation point is treated as part of your program
code.

4.5. Declarations and Data Types
Following are methods for creating variables and specifying data types:

● Implicit data typing

● Explicit data typing

With implicit data typing, BASIC creates and specifies a data type for a variable the first time you
reference it in your program. With explicit data typing, you must use one of four declarative statements
(see Section 4.5.2, "Explicit Data Typing") to name and type your program values.

Following are the data types you can specify:

● Integer (INTEGER)

● Floating-point (REAL)

● String (STRING)

● Packed Decimal (DECIMAL)

● Record File Address (RFA)

47

Chapter 4. BASIC Concepts and Elements

Within the INTEGER and REAL data types there are further subdivisions: BYTE, WORD, LONG, or
QUAD for INTEGER and SINGLE, DOUBLE, GFLOAT, SFLOAT, TFLOAT, or XFLOAT for REAL.
Choosing one of these subtypes lets you control the following:

● The amount of storage required for the value; its container size

● The range and precision that the value can accept

For more information about data types, see Chapter 8, "Creating and Using Data Structures".

4.5.1. Implicit Data Typing
With implicit data typing, a data type for a variable is created and specified the first time you reference it.
You specify the data type of the variable by a suffix on the variable name as follows:

● A percent sign suffix (%) specifies the INTEGER data type.

● A dollar sign suffix ($) specifies the STRING data type.

● Any other ending character specifies a variable of the default data type.

The default data type is SINGLE on Alpha BASIC and SFLOAT on I64 BASIC. However, you can
specify your own default at DCL command level or with the OPTION statement in your program.
For more information about establishing default data types, see Chapter 2, "Developing VSI BASIC
Programs", as well as the OPTION statement in the VSI BASIC Reference Manual.

The first time the variable is referenced, it creates a variable with that name and data type and allocates
storage for that variable.

In the following example, two INTEGER variables are created, A% and B%. Even though the values
assigned to these variables are REAL, the values are converted to INTEGER to match the data type
specified for the variables. The sum of these two values is therefore 30, not 30.6, as it would be if the
variables were named A and B.

A% = 10.1
B% = 20.5
PRINT A% + B%

30

4.5.2. Explicit Data Typing
With explicit data typing, you use a declarative statement to name and specify a data type for your
program values.

BASIC provides the following declarative statements. These statements create variables and allocate
storage:

DECLARE
DIMENSION
COMMON
MAP

The statement you choose depends on the way in which you will use the variables:

48

Chapter 4. BASIC Concepts and Elements

● DECLARE and DIMENSION allocate dynamic storage for variables; storage is allocated when the
program executes.

● COMMON and MAP statements allocate storage for variables statically; storage is allocated when
the program is compiled.

All declarative statements associate a data type with a variable. For more information, see Chapter 7,
"Data Definition".

4.6. Constants
A constant is a value that does not change during program execution. Constants can be either literals
or named constants and can be of any data type except RFA. You can use the DECLARE CONSTANT
statement to create named constants. Constants can be of the following types:

● Integer

● Floating-point

● Packed decimal

● String

In addition, predefined constants are provided and are useful for the following:

● Formatting program output to improve clarity

● Making source code easier to understand

● Using nonprinting characters without having to look up their ASCII values

Table 4.1, "Predefined Constants" lists the predefined constants.

Table 4.1. Predefined Constants

Constant Decimal ASCII
Value

Description

BEL (Bell) 7 Sounds the terminal bell
BS (Backspace) 8 Moves cursor one position to the left
HT (Horizontal Tab) 9 Moves cursor to the next horizontal tab stop
LF (Line Feed) 10 Moves cursor to the next line
VT (Vertical Tab) 11 Moves cursor to the next vertical tab stop
FF (Form Feed) 12 Moves cursor to the start of the next page
CR (Carriage Return) 13 Moves cursor to the beginning of the current line
SO (Shift Out) 14 Shifts out for communications networking, screen

formatting, and alternate graphics
SI (Shift In) 15 Shifts in for communications networking, screen

formatting, and alternate graphics
ESC (Escape) 27 Marks the beginning of an escape sequence
SP (Space) 32 Inserts one blank space in program output
DEL (Delete) 127 Deletes the last character entered

49

Chapter 4. BASIC Concepts and Elements

Constant Decimal ASCII
Value

Description

PI None Represents the number PI with the precision of the
default floating-point data type

These predefined constants simplify the task of using nonprinting characters in your programs. For
example, the following statement causes a bell to sound on your terminal:

PRINT BEL

You can also create your own predefined constants with the DECLARE CONSTANT statement.

For more information about constants, see Chapter 7, "Data Definition" and the VSI BASIC Reference
Manual.

4.7. Variables
A variable is a storage location that is referred to by a variable name. Variable values can change during
program execution. Each named location can hold only one value at a time.

A variable name can have up to 31 characters. The name must begin with a letter; the remaining
characters, if any, can be any combination of letters, digits, dollar signs ($), underscores (_), and periods
(.).

Variables can be grouped in an orderly series (such as a list or table) under a single name, called an
array. You refer to a single variable in an array by using one or more subscripts that specify the
variable's position in the array. (See Section 4.7.5, "Subscripted Variables" for more information on
arrays).

4.7.1. Floating-Point Variables
A floating-point variable is a named location that stores a floating-point value. The storage space
required to hold the value depends on the variable's REAL subtype. For example, each SINGLE floating-
point variable requires 32 bits (4 bytes) of storage, while each DOUBLE floating-point variable requires
64 bits (8 bytes) of storage.

Note that if any integer value is assigned to a floating-point variable, the value is converted to a floating-
point number.

4.7.2. Integer Variables
An integer variable is a named location that stores a whole number. The storage space required to
hold the value depends on the variable's INTEGER subtype. For example, each BYTE integer variable
requires 8 bits (1 byte) of storage, while each LONG integer variable requires 32 bits (4 bytes) of storage.

If you assign a floating-point value to an integer variable, the fractional portion of the value is trunctated;
it does not round to the nearest integer. In the following example, the value -5, not -6, is assigned to the
integer variable.

B% = -5.7

Although the integer data types QUAD, LONG, WORD, and BYTE allow the minimum values
-9223372036854775808, -2147483648, 32768, and -128, respectively, you cannot use these constants

50

Chapter 4. BASIC Concepts and Elements

explicitly, because VSI BASIC for OpenVMS reports an integer overflow error while attempting to parse
the literal constant. To use these values, you must use either radix notation, such as -- “32768”L, or a
constant expression. For example:

DECLARE WORD CONSTANT Word_const = -32767 - 1

4.7.3. Packed Decimal Variables
A packed decimal (DECIMAL data type) variable is made up of several storage locations, the number
of which depends on the declared size of the variable. However, a packed decimal variable is still referred
to by a single variable name.

When you declare a packed decimal variable, you specify the total number of digits and the number of
digits to the right of the decimal place that you want.

The following statement creates a packed decimal variable named My_decimal, which can contain up to
8 digits: 6 digits to the left of the decimal point and 2 digits to the right of the decimal point.

OPTION TYPE = EXPLICIT
DECLARE DECIMAL (8,2) My_decimal

Packed decimal numbers are most useful for dollars-and-cents calculations.

4.7.4. String Variables
Unlike some of the numeric variables described so far, a string variable does not correspond to a single
location in memory because a string variable is more likely to exceed a single location in memory.
Therefore, the value of a string variable can be contained in any number of memory locations. However,
a string variable is still referred to by a single name. For example:

DECLARE STRING Employee_name

4.7.5. Subscripted Variables
A subscripted variable is a floating-point, integer, packed decimal, RFA, or string variable that is part
of an array. Chapter 6, "Arrays" describes arrays in more detail.

An array is a set of data organized in one or more dimensions. A one-dimensional array is called a list or
vector. A two-dimensional array is called a matrix. Arrays can have up to 32 dimensions.

When you create an array, its size is determined by the number of dimensions and the maximum size,
called the bound, of each dimension. Subscripts begin by default with 0, not 1. That is, when calculating
the number of elements in a dimension, you count from zero to the bound specified.

The following DECLARE statement creates an 11 by 11 array of integers. Therefore, the array contains
a total of 121 array elements.

DECLARE INTEGER My_array (10, 10)

There are many applications where you need to reference data for a particular range of values. You
can specify a lower bound other than zero for your arrays. The following example declares an array
containing the birth rates for the years from 1945 to 1985:

OPTION TYPE = EXPLICIT, &

51

Chapter 4. BASIC Concepts and Elements

 SIZE = REAL SINGLE

DECLARE REAL Birth_rates(1945 TO 1985)

Subscripts define the position of an element in an array; the expression Birth_rates(1970) refers to the
26th value of the array Birth_rates. For more information about arrays, see Chapter 6, "Arrays".

Note

By default, the compiler signals an error if a subscript is larger than the allowable range. Also, the
amount of storage that the system can allocate depends on available memory. Therefore, very large
arrays can cause an internal allocation error.

4.7.6. Initialization of Variables
BASIC sets variables to zero or null values at the start of program execution. Variables initialized include
the following:

● Numeric variables and array elements (except those in MAP or COMMON statements).

● String variables and array elements (except those in MAP or COMMON statements).

● Variables in subprograms. Subprogram variables (except those in MAP or COMMON statements)
are initialized to zero or the null string each time the subprogram is called.

● Arrays created with an executable DIMENSION statement. The array is reinitialized each time the
array is redimensioned.

4.8. Keywords and Reserved Words
Keywords are elements of the BASIC language. Keywords that are not reserved can be used as user
identifiers such as labels, variable or constant names, or names of MAP or COMMON areas. Depending
upon the location of the keyword in your program statement, the compiler will treat it as either a
keyword or a user identifier. Your programs use keywords and reserved words to:

● Define data

● Perform operations

● Invoke functions

See the VSI BASIC Reference Manual for a list of keywords and reserved words.

Keywords determine whether the statement is executable or nonexecutable. Executable statements
such as PRINT, GOTO, and READ perform operations. Nonexecutable statements such as DATA,
DECLARE, and REM describe the characteristics and arrangement of data, usage information, and
comments.

Every statement except LET must begin with a keyword. A keyword cannot have embedded spaces or be
split across lines of text. There must be a space or tab between the keyword and any other variables or
operators.

There are also phrases of keywords. In this case, the spacing requirements vary.

52

Chapter 4. BASIC Concepts and Elements

4.9. Operands, Operators, and Expressions
An operand contains a value. An operand can be a scalar, subscripted variable, named constant, literal,
and so on. An operator specifies a procedure to be carried out by one or more operands. An expression
consists of operands separated by operators.

The following are types of operators:

Arithmetic
String
Relational
Logical

When combined with operands, these operators can produce:

● Numeric expressions

● String expressions

● Conditional expressions

For more information about operands, operators, and expressions, see the VSI BASIC Reference Manual.

4.10. Assignment Statements
The following statements assign values to variables:

● LET

● INPUT

● LINPUT

● INPUT LINE

LET and INPUT statements allow you to assign values to any type of variable, while LINPUT and
INPUT LINE allow you to assign values to string variables. For example:

LET A = 1.25

LET is an optional keyword. You can assign a value to more than one variable at a time, although this
is not recommended. Instead, use a separate assignment statement each time you assign a value to a
variable.

Whenever you assign a value to a numeric variable, BASIC converts the value to the data type of the
variable. If you assign a floating-point value to an integer variable, BASIC truncates the value at the
decimal point. If you assign an integer value to a floating-point variable, BASIC converts the value to
floating-point format.

You can also assign values to variables with the DATA and READ statements; however, this method
requires that you know all input data values while you are coding your program.

The INPUT, LINPUT, and INPUT LINE statements all assign values in the context of data being read
into the program. These statements are discussed in Chapter 5, "Simple Input and Output".

53

Chapter 4. BASIC Concepts and Elements

54

Chapter 5. Simple Input and
Output
This chapter explains how to use BASIC statements to move data to and from your program.

5.1. Program Input
BASIC programs receive data in the following ways:

● You can enter data interactively while the program runs. You do this with the INPUT, INPUT LINE,
and LINPUT statements.

● If you know all the information your program will require, you can enter it as you write the program.
You do this with the READ, DATA, and RESTORE statements, or you can name constants with the
known values.

● You can read data from files outside the program. You do this with the INPUT #, INPUT LINE #,
and LINPUT # statements.

The following sections describe how to use these statements in detail.

5.1.1. Providing Input Interactively
The INPUT, INPUT LINE, and LINPUT statements prompt a user for data while the program runs.

5.1.1.1. INPUT Statement
The INPUT statement interactively prompts the user for data. You can use the optional prompt string to
clarify the input request by specifying the type and number of data elements required by the program.
This is especially useful when the program contains many variables, or when someone else is running
your program. For example:

INPUT "PLEASE TYPE 3 INTEGERS" ;B% ,C% ,D%
A% = B% + C% + D%
PRINT "THEIR SUM IS"; A%
END

Output

PLEASE TYPE 3 INTEGERS? 25,50,75 Return
THEIR SUM IS 150

When your program runs, BASIC stops at each INPUT, LINPUT, or INPUT LINE statement, prints a
string prompt, if specified, and an optional question mark (?)1 followed by a space; it then waits for your
input. By using either a comma or semicolon, you can affect the format of your string prompt as follows:

● If you have a semicolon separating the input prompt string from the variable, BASIC prints the
question mark and space immediately after the input prompt string.

1The SET NO PROMPT statement turns off the optional question mark; see Section 5.1.1.3, "Enabling and Disabling the Question Mark
Prompt".

55

Chapter 5. Simple Input and Output

● If you have a comma separating the input prompt string from the variable, BASIC prints the input
prompt string, skips to the next print zone, and then prints the question mark and space.

See Section 5.2.1, "Print Zones—The Comma and the Semicolon" for more information about print
zones. For more information about formatting string prompts, see Section 5.1.1.3, "Enabling and
Disabling the Question Mark Prompt".

You must provide one value for each variable in the INPUT request. If you do not provide enough
values, BASIC prompts you again. For example:

INPUT A,B
END

Output

? 5 Return
? 6 Return

BASIC interprets a carriage return (null input) as a zero value for numeric variables and as a null string
for string variables. For example:

? 5 Return
? Return

These responses assign the value 5 to variable A and zero to variable B. In contrast, if you provide more
values than there are variables, BASIC ignores the excess.

In the following example, BASIC ignores the extra value (8). You can type multiple values if you
separate them with commas. Because commas separate variables in the PRINT statement, BASIC prints
each variable at the start of a print zone.

INPUT A,B,C
PRINT A,B,C
END

Output

? 5,6,7,8 Return
 5 6 7

If you name a numeric variable in an INPUT statement, you must supply numeric data. If you supply
string data to a numeric variable, BASIC signals “Illegal number” (ERR=52). If you supply a floating-
point number for an integer variable, BASIC signals “Data format error” (ERR=50).

If you name a string variable in an INPUT statement, you can supply either numbers or letters, but
BASIC treats the data you supply as a string. Because digits and a decimal point are valid text characters,
numbers can be interpreted as strings. For example:

INPUT "Please type a number"; A$
PRINT A$

Output

Please type a number? 25.5
25.5

BASIC interprets the response as a 4-character string instead of as a numeric value.

56

Chapter 5. Simple Input and Output

You can type strings with or without quotation marks. However, if you want to input a string containing
a comma, you should enclose the string in quotation marks or use the INPUT LINE or LINPUT
statement. If you do not, BASIC treats the comma as a delimiter and assigns only part of the string to the
variable. If you use quotation marks, be sure to type both beginning and ending marks. If you leave out
the end quotation mark, BASIC signals “Data format error” (ERR=50).

5.1.1.2. INPUT LINE and LINPUT Statements
The INPUT LINE and LINPUT statements prompt you for string data while your program runs. You
can respond with strings that contain commas, semicolons, and quotation marks, which are characters
that the INPUT statement interprets as delimiters.

The INPUT LINE statement accepts and stores all characters, including quotation marks, semicolons,
and commas, up to and including the line terminator or terminators. LINPUT accepts all characters up
to, but not including, the line terminator or terminators.

In the following example, because both INPUT LINE and LINPUT treat your input as a string literal,
BASIC interprets quotation marks, commas, and semicolons as characters, not as string delimiters. When
A$ is input with the INPUT LINE statement, the carriage return line terminator is stored as part of the
string. The first PRINT statement tells BASIC to print all three variables on one line, starting each one in
a new print zone. However, when BASIC prints the three strings, it prints the carriage return character at
the end of string A$; this terminates the current line and causes B$ to begin on a new line.

INPUT LINE A$
LINPUT B$
LINPUT C$
PRINT A$, B$, C$
PRINT "DONE"
END

Output

? SINGLE, DOUBLE Return
? "GFLOAT" Return
? HFLOAT; REAL Data Types Return

SINGLE, DOUBLE
"GFLOAT" HFLOAT; REAL Data Types
DONE

The INPUT, INPUT LINE, and LINPUT statements can accept data from a terminal or a terminal-
format file. See Section 5.3, "Terminal-Format Files" for information about I/O to terminal-format files.

5.1.1.3. Enabling and Disabling the Question Mark Prompt
With the SET PROMPT statement, VSI BASIC for OpenVMS allows you to enable and disable the
question mark prompt.

By default, VSI BASIC for OpenVMS displays the question mark prompt. The following example
displays the default prompt string:

INPUT "Please input 3 integer values";A%, B%, C%

Output

Please input 3 integer values?

57

Chapter 5. Simple Input and Output

You can, however, disable the question mark prompt by specifying the SET NO PROMPT statement.

SET NO PROMPT
INPUT "Please input 3 integer values";A%, B%, C%

Output

Please input 3 integer values

When you disable the question mark prompt, you can specify your own prompt at the end of each
prompt string. The following example inserts a colon at the end of the prompt string:

SET NO PROMPT
INPUT "Please enter your name: ";Employee_name$

Output

Please enter your name:

Now, if the SET PROMPT statement is specified, BASIC displays both the colon and a question mark.

SET PROMPT
INPUT "Please enter your name: ";Employee_name$

Output

Please enter your name: ?

The SET [NO] PROMPT statement is valid for INPUT, LINPUT, INPUT LINE, and MAT INPUT
statements. If the prompt is disabled, any one of the following commands reenables it:

● The SET PROMPT statement

● The CHAIN statement

● The NEW, OLD, RUN, or SCRATCH compiler command

5.1.2. Providing Input from the Source Program
The following sections describe the READ, DATA, and RESTORE statements. To use READ and
DATA statements, you must know what data is required when writing the program. These statements
do not stop to request data while the program runs; therefore, your program runs faster than with the
INPUT statements.

The RESTORE statement lets you use the same data items more than once.

5.1.2.1. READ and DATA Statements
The READ statement reads values from a data block. A data pointer keeps track of the data read.
Each time the READ statement requests data, BASIC retrieves the next available constant from a
DATA statement. The DATA statement contains the values that the READ statement reads. In a DATA
statement, integer constants are whole numbers; they cannot be followed by a percent sign. In the
following example, BASIC signals an error because the integer constants in the DATA statement contain
percent signs:

10 WHEN ERROR USE catch_it
 DATA 1%, 2%, 3%

58

Chapter 5. Simple Input and Output

20 READ A%, B%, C%
 END WHEN
400 HANDLER catch_it
 PRINT "ERROR NUMBER IS "; ERR
 PRINT "ERROR AT LINE "; ERL
 PRINT "ERROR MESSAGE IS "; ERT$(ERR)
 END HANDLER
500 END

Output

ERROR NUMBER IS 50
ERROR AT LINE 20
ERROR MESSAGE IS %Data format error

A READ statement is not valid without at least one DATA statement. If your program contains a READ
statement but no DATA statement, BASIC signals the compile-time error “READ without DATA”.

READ statements can appear either before or after their corresponding DATA statements. The only
restriction is that the DATA statements must be in the same order as their corresponding READ
statements.

You can have more than one DATA statement in a program. DATA statements are ignored without at
least one READ statement. You can use an ampersand to continue a DATA statement. For example:

10 DATA "ABRAMS", BAKER, CHRISTENSON, &
 DOBSON, "EISENSTADT", FOLEY

Comment fields are not allowed in DATA statements. For example, the following statements cause A$ to
contain the string “ABC !COMMENT”:

READ A$
DATA ABC !COMMENT

When you compile a program, BASIC creates one data block for each program unit. Each data block is
local to the program or subprogram containing it; this means that you cannot share DATA statements
between program modules.

The data block contains the values in all DATA statements in that program unit. These values are stored
in line number order. Each time BASIC executes a READ statement, it retrieves the next value in the
data block.

BASIC signals an error if you do one of the following:

● Assign alphabetic characters to a numeric variable. BASIC signals “Data format error” (ERR=50).

● Have more variables in the READ statements than there are values in the DATA statements. BASIC
signals “Out of data” (ERR=57).

BASIC ignores excess data in DATA statements.

The following example of READ and DATA mixes string and floating-point data types. The first READ
statement reads the first data item in the program: “The circumference is”. The second READ statement
reads the second data item: 40.5.

DATA "The circumference is"
DATA 40.5
READ text$

59

Chapter 5. Simple Input and Output

READ radius
CIRCUMFERENCE = PI * radius * 2
PRINT text$; CIRCUMFERENCE
END

Output

 The circumference is 254.469

5.1.2.2. RESTORE Statement
The RESTORE statement lets you read the same data more than once. It has no effect without READ
and DATA statements.

RESTORE resets the data pointer to the beginning of the first DATA statement in the program unit. You
can then read data values again. Consider the following program:

10 READ B,C,D
20 RESTORE
30 READ E,F,G
40 DATA 6,3,4,7,9,2
50 END

The READ statement in line 10 reads the first three values in the DATA statement:

B=6
C=3
D=4

The RESTORE statement resets the pointer to the beginning of line 40. During the second READ
statement (line 30), the first three values are read again:

E=6
F=3
G=4

Without the RESTORE statement, line 30 would assign the following values:

E=7
F=9
G=2

5.2. Program Output
The PRINT statement displays data on your terminal during program execution. BASIC evaluates
expressions before displaying results. You can also print and format data with the PRINT USING
statement. For information about the PRINT USING statement, see Chapter 14, "Formatting Output
with the PRINT USING Statement".

When you use the PRINT statement, VSI BASIC for OpenVMS does the following:

● Precedes positive numbers with a space and negative numbers with a minus sign

● Prints a space after every number

● Prints strings without leading or trailing spaces

60

Chapter 5. Simple Input and Output

When an element in a list is not a simple variable or constant, BASIC evaluates the expression before
printing the value. For example:

A = 45
B = 55
PRINT A + B
END

Output
100

However, BASIC interprets text inside quotation marks as a string literal.

A = 45
B = 55
PRINT "A + B"
END

Output
A + B

The PRINT statement without an expression prints a blank line.

PRINT "This example leaves a blank line"
PRINT
PRINT "between two lines."
END

Output
This example leaves a blank line

between two lines.

5.2.1. Print Zones—The Comma and the Semicolon
A terminal line contains zones that are 14 character positions wide. The number of zones in a line
depends on the width of your terminal: a 72-character line contains 5 zones, which start in columns 1,
15, 29, 43, and 57. A 132-character line has additional print zones starting at columns 71, 85, 99, and
113.

The PRINT statement formats program output into these zones in different ways, depending on the
character that separates the elements to be printed. If a comma precedes the PRINT item, BASIC prints
the item at the beginning of the next print zone. If the last print zone on a line is filled, BASIC continues
output at the first print zone on the next line. For example:

INPUT A ,B ,C ,D ,E ,F
PRINT A ,B ,C ,D ,E ,F
END

Output
? 5,10,15,20,25,30 Return
 5 10 15 20 25

61

Chapter 5. Simple Input and Output

 30

BASIC skips one print zone for each extra comma between list elements. For example, the following
program prints the value of A in the first zone and the value of B in the third zone:

A = 5
B = 10
PRINT "first zone",,"third zone"
PRINT A,,B
END

Output
first zone third zone
 5 10

If you separate print elements with a semicolon, BASIC does not move to the next print zone. In the
following example, the first PRINT statement prints two numbers. (Printed numbers are preceded by a
space or a minus sign and followed by one space.) The second PRINT statement prints two strings.

PRINT 10; 20
PRINT "ABC"; "XYZ"
END

Output
 10 20
ABCXYZ

Whether you use a comma or a semicolon at the end of the PRINT statement, the cursor remains at its
current position until BASIC encounters another PRINT or INPUT statement. In the following example,
BASIC prints the current values of X, Y, and Z on one line because a comma follows the last item in the
line PRINT X, Y:

INPUT X,Y,Z
PRINT X,Y,
PRINT Z
END

Output
? 5,10,15
 5 10 15

The following example shows PRINT statements using a comma, a semicolon, and no formatting
character after the last print item:

!No comma after I%, so each element
!Prints on its own line
!
PRINT I% FOR I% = 1% TO 10%
PRINT
!
!A comma follows J%, so each
!element prints in a separate zone
!
MARGIN 80%

62

Chapter 5. Simple Input and Output

PRINT J%, FOR J% = 1% TO 10%
PRINT
!
!A semicolon follows K%, so print
!elements are packed together
!
PRINT K%; FOR K% = 1% TO 10%
END

Output
1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Commas and semicolons also let you control the placement of string output. For example:

PRINT "first zone",,"third zone",,"fifth zone"
END

Output
first zone third zone fifth zone

The extra comma between strings causes BASIC to skip another print zone. In the following example, the
first string is longer than the print zone. When the two strings are printed, the second string begins in the
third print zone because that is the next available print zone after the first string is printed.

PRINT "abcdefghijklmnopqrstuvwxyz","pizza"
PRINT "first zone","second zone","third zone"

Output
abcdefghijklmnopqrstuvwxyz pizza
first zone second zone third zone

63

Chapter 5. Simple Input and Output

5.2.2. Output Format for Numbers and Strings
BASIC prints strings exactly as you type them, with no leading or trailing spaces. It does not print
quotation marks unless they are delimited by another matching pair. For example:

PRINT 'PRINTING "QUOTATION" MARKS'
END

Output
PRINTING "QUOTATION" MARKS

BASIC follows these rules for printing numbers:

● When you print numeric fields, BASIC precedes each number with a space or a minus sign and
follows it with a space.

● BASIC does not print trailing zeros to the right of the decimal point. If all digits to the right of the
decimal point are zeros, BASIC omits the decimal point as well.

● When you print LONG integers, BASIC prints up to 10 significant digits.

● When you print DECIMAL values, VSI BASIC for OpenVMS prints up to 31 digits.

VSI BASIC for OpenVMS follows these rules for printing floating-point numbers:

● If a floating-point number can be represented exactly by 6 decimal digits (or fewer) and, optionally, a
decimal point, BASIC prints it that way.

● When you print a floating-point number whose integer portion is 6 decimal digits or less (for
example, 1234.567), BASIC rounds the number to 6 digits (1234.57). If the integer portion of the
number is 7 decimal digits or larger, BASIC rounds the number to 6 digits and prints it in E format.
See the VSI BASIC Reference Manual for more information about E format.

● When you print a floating-point number with magnitude from 0.1 to 1, BASIC rounds it to 6 digits.
When you print a floating-point number with more than 6 digits, and with magnitude smaller than
0.1, BASIC rounds it to 6 digits and prints it in E format.

The PRINT statement displays only up to 6 digits of precision for floating-point numbers. This
corresponds to the precision of the SINGLE or SFLOAT data types. To display the extra digits in
DOUBLE, GFLOAT, TFLOAT, or XFLOAT numbers, you must use the PRINT USING statement.
See Chapter 14, "Formatting Output with the PRINT USING Statement" for more information about the
PRINT USING statement.

The following example shows how BASIC prints various numbers with single precision:

FOR I = 1 TO 20
 PRINT 2^(-I),I,2^I
NEXT I
END

Output
 .5 1 2
 .25 2 4
 .125 3 8

64

Chapter 5. Simple Input and Output

 .0625 4 16
 .03125 5 32
 .015625 6 64
 .78125E-02 7 128
 .390625E-02 8 256
 .195313E-02 9 512
 .976563E-03 10 1024
 .488281E-03 11 2048
 .244141E-03 12 4096
 .12207E-03 13 8192
 .610352E-04 14 16384
 .305176E-04 15 32768
 .152588E-04 16 65536
 .767939E-05 17 131072
 .38147E-05 18 262144
 .190735E-05 19 524288
 .953674E-06 20 .104858E+07

5.3. Terminal-Format Files
Terminal-format files let you perform simple I/O to disk files. The records in a terminal-format file must
be accessed sequentially. That is, you must access the records in the file one by one, from the first to the
last. You can add new records only at the end of the file.

Just as the INPUT, LINPUT, and INPUT LINE statements receive information from a terminal, the
INPUT #, LINPUT #, and INPUT LINE # statements receive information from a terminal-format
file. And, as the PRINT statement sends information to the terminal, the PRINT # statement sends
information to a terminal-format file.

Terminal-format files are useful for creating files to be printed on a line printer, or for supplying a
program with moderate amounts of input. However, if you want to use the same file for both input and
output, you should not use terminal-format files. Instead, use sequential, relative, or indexed files. For
more information, see Chapter 13, "File Input and Output".

You do not have to use a program to create a terminal-format file. You can use a text editor to create a
file and insert data, then use a BASIC program to open the file and retrieve the data.

5.3.1. Opening and Closing a Terminal-Format File
You use the OPEN statement to create a file, or to gain access to an existing file. If you do not specify
either FOR INPUT or FOR OUTPUT in the OPEN statement, BASIC tries to open an existing file. If
the file does not exist, BASIC creates a new one.

The channel specification lets you associate a number with the file for as long as the file is open. All I/O
operations to or from the file use this number.

When you are finished accessing a file, you close it with the CLOSE statement.

5.3.2. Writing Records to a Terminal-Format File
The following example receives information from a terminal, then writes the information to a terminal-
format file as a report:

PRINT "This program creates a daily sales report file named SALES.DAT"

65

Chapter 5. Simple Input and Output

OPEN "SALES.DAT" FOR OUTPUT AS FILE #4%
PRINT #4%, "Salesperson","Sales Area","Items Sold"
PRINT #4%
INPUT "How many salespersons for today's report"; sales_persons%
FOR I% = 1% TO sales_persons%
 INPUT "Salesperson's name"; s_name$
 INPUT "Sales area"; area$
 INPUT "Number of items sold"; items_sold%
 PRINT #4%, s_name$, area$, items_sold%
NEXT I%
CLOSE #4%
END

Output
This program creates a daily sales report file named SALES.DAT
How many salespersons for today's report? 3
Salesperson's name? JONES
Sales area? NJ
Items sold? 5
Salesperson's name? SMITH
Sales area? NH
Items sold? 6
Salesperson's name? BAINES
Sales area? VT
Items sold? 8

This program first prints a header explaining its purpose, then opens a terminal-format file on channel 4.
After this file is opened, the two PRINT # statements place an explanatory header followed by a blank
line into the file.

The program then prompts you for the number of salespersons for which data is to be entered.
The FOR...NEXT loop prompts for the name, sales area, and items sold for each salesperson. The
FOR...NEXT loop executes only as many times as there are salespersons. See Chapter 9, "Program
Control" for more information about FOR...NEXT loops.

After the data has been entered for each salesperson, the program writes this information to the terminal-
format file. Because the response to the first question was 3, the FOR...NEXT loop executes three times.

After the last item has been printed to the file, the program closes the file and ends. When you display
the file with the DCL command TYPE, you see that the information is printed under the proper headers.
You can also print the file on a line printer. The PRINT # statement formats the output in print zones as
the PRINT statement does.

$ TYPE SALES.DAT

Salesperson Sales Area Items Sold

JONES NJ 5
SMITH NH 6
BAINES VT 8

66

Chapter 6. Arrays
An array is a set of data that is ordered in any number of dimensions. This chapter describes how to
create and use VSI BASIC for OpenVMS arrays.

6.1. Overview of Arrays
A one-dimensional array is called a list or vector. A two-dimensional array is called a matrix. VSI BASIC
for OpenVMS arrays can have up to 32 dimensions, and a specific type of VSI BASIC for OpenVMS
arrays can be redimensioned at run time. In addition, you can specify the data type of the values in an
array by using data type keywords or suffixes.

The subscript of an element in an array defines that element's position in the array. When you create an
array, you specify:

● The number of dimensions that the array contains

● The range of values for the subscripts in each dimension of the array

BASIC arrays are zero-based by default; that is, when calculating the number of elements in a dimension,
you count from zero to the number of elements specified. For example, an array with an upper bound of
10 and no specified lower bound has 11 elements: 0 to 10, inclusive. The array My_array(3,3) has 16
elements: 0 to 3 in each dimension, or 42.

BASIC also lets you specify a lower bound for any or all dimensions in an array, unless the array is
a virtual array. By specifying lower and upper bounds for arrays, you can make your array subscripts
meaningful. For example, the following array contains sales information for the years 1990 to 1999:

DECLARE REAL Sales_data(1990 TO 1999)

To refer to an element in the array Sales_data, you need only specify the year you are interested in. For
example, to print the information for the year 1999, you would enter:

PRINT Sales_data(1999)

You can create arrays either implicitly or explicitly. You implicitly create arrays having any number of
dimensions by referencing an element of the array. If you implicitly create an array, BASIC sets the upper
bound to 10 and the lower bound to zero. Therefore, any array that you create implicitly contains 11
elements in each dimension.

The following example refers to the array Student_grades. If the array has not been previously declared,
BASIC will create a one-dimensional array with that name. The array contains 11 elements.

Student_grades(8) = "B"

You create arrays explicitly by declaring them in a DIM, DECLARE, COMMON, or MAP statement,
or record declaration. Note that if you want to specify lower bounds for your array subscripts, you must
declare the array explicitly.

When you declare an array explicitly, the value that you give for the upper bound determines the
maximum subscript value in that dimension. If you specify a lower bound, then that is the minimum
subscript value in that dimension. If you do not specify a lower bound, BASIC sets the lower bound in
that dimension to zero. You can specify bounds as either positive or negative values. However, the lower
bound of each dimension must always be less than or equal to the upper bound for that dimension.

67

Chapter 6. Arrays

You can use MAT statements to create and manipulate arrays; however, MAT statements are valid
only on arrays of one or two dimensions. In addition, the lower bounds of all dimensions in an array
referenced in a MAT statement must be zero.

6.2. Creating Arrays Explicitly
You can create arrays explicitly with four BASIC statements: DECLARE, DIMENSION, COMMON,
and MAP.

In addition, you can declare arrays as components of a record data type. See Chapter 8, "Creating and
Using Data Structures" for more information about records.

Normally, you use the DECLARE statement to create arrays. However, you might want to create the
array with another BASIC statement as follows:

● Use the DIM statement to create virtual arrays and arrays that can be redimensioned at run time.

● Use the COMMON statement to create arrays that can be shared among program modules or to
create arrays of fixed-length strings.

● Use the MAP statement to create an array and associate it with a record buffer, or to overlay the
storage for an array, thus accessing the same storage in different ways.

When you create an array, the bounds you specify determine the array's size. The maximum value
allowed for a bound can be as large as 2147483467; however, this number is actually limited by the
amount of virtual storage available to you. Very large arrays and arrays with many dimensions can cause
fatal errors at both compile time and run time.

The following restrictions apply to arrays:

● When referencing an array, you must use the same number of subscripts as was specified when the
array was created.

● You can use identical names for a simple variable and an array; for example, A% and A%(5,5).
However, this is not a recommended programming practice. If you use identical names for arrays
with a different number of subscripts, for example, A(5), and A(10,10), BASIC prints the error
“Inconsistent subscript usage” at compile time.

● If subscript checking is enabled, VSI BASIC for OpenVMS signals the error “Subscript out of range”
(ERR=55) if you reference an array element whose subscripts are one of the following:

○ Greater than the current upper bound of the array

○ Less than the current lower bound of the array

○ Less than zero where no lower bound was specified

6.2.1. Creating Arrays with the DECLARE Statement
The DECLARE statement creates and names variables and arrays. All elements of arrays created with
the DECLARE statement are initialized to zero or the null string. The following statement creates a
longword integer array with 11 elements:

DECLARE LONG FIRST_ARRAY(1980 TO 1990)

68

Chapter 6. Arrays

Note that the STRING data type with the DECLARE statement causes the creation of an array of
dynamic strings. To create an array of fixed-length strings, declare the array in a COMMON or MAP
statement or as part of a RECORD structure.

6.2.2. Creating Arrays with the DIM Statement
The DIM statement creates and names one or more arrays. Use the DIM statement to create an array
when you want to:

● Redimension the array at run time

● Create a virtual array

When creating arrays with the DIM statement, you specify the data type of the array elements with a
data type keyword, a special suffix on the array name, or both. The array name can be any valid variable
name. If you do not supply a data type keyword, the data type is determined by the suffix of the array
name:

● If the array name ends with a dollar sign ($), the array stores string data.

● If the array name ends with a percent sign (%), the array stores integer data.

● If the array name does not end with either a percent sign or a dollar sign, the array stores data of the
default type. The default type is single-precision, floating-point unless you change the default. See
Chapter 4, "BASIC Concepts and Elements" for more information about default data types.

Even if the DIM statement contains a data type keyword, the array name can still end in the appropriate
data type suffix. This makes the data type of the array immediately obvious.

The DIM statement can be either executable or declarative. If the specified bounds are constants, the
DIM statement is declarative. This means that the storage is allocated at compile time, and the array
cannot appear in any other DIM statement.

However, if any of the specified bounds are variables (simple or subscripted), the DIM statement is
executable. This means that the storage for the array is allocated at run time, and the array can be
redimensioned with a DIM statement any number of times.

Note

In the DIM statement, bounds can be either constants or variables (simple or subscripted), but not
expressions.

When an array is redimensioned with the executable DIM statement, the array can become larger or
smaller than it was. However, redimensioning an array in this way causes it to be reinitialized, and all
data in the array is lost.

In contrast, MAT statements let you redimension an array to be the same size or smaller than it was.
However, MAT statements redimension arrays only when assigning values or performing matrix I/O;
therefore, the fact that MAT statements reinitialize the array does not matter. See Section 6.6, "Using
MAT Statements" for more information about MAT statements.

6.2.2.1. Declarative DIM Statements
Declarative DIM statements have integer constants as bounds. The percent sign is optional for bounds;
however, BASIC signals the error “Integer constant required” if a constant bound contains a decimal

69

Chapter 6. Arrays

point. The following statement creates a 101-element virtual array containing string data. The elements
of this array can each have a maximum length of 256 characters.

DIM #1%, STRING VIRT_ARRAY(100) = 256%

The following restrictions apply to the use of declarative DIM statements:

● A declarative DIM statement must lexically precede any reference to the array it dimensions.

● The lower bounds of all virtual array dimensions must be zero.

● You must open a VIRTUAL file on the specified channel before you can access elements of the
virtual array.

6.2.2.2. Executable DIM Statements
Executable DIM statements have at least one variable bound. Bounds can be constants or simple
variables, but at least one bound must be a variable. Executable DIM statements let you redimension an
array at run time. The bounds of the array can become larger or smaller, but the number of dimensions
cannot change. For example, you cannot redimension a four-dimensional array to be five-dimensional.

The executable DIM statement cannot be used on arrays in COMMON, MAP, DECLARE, or declarative
DIM statements, nor on virtual arrays or arrays received as formal parameters.

Whenever an executable DIM statement executes, it reinitializes the array. If you change the values of an
executable DIM statement, the initial values are reset each time the DIM statement is executed.

In the following example, the second DIM statement reinitializes the array real_array; therefore,
real_array(1%) equals zero in the second PRINT statement:

X% = 10%
Y% = 20%
DIM real_array(X%)
real_array(1%) = 100
PRINT real_array(1%)
DIM real_array(Y%)
PRINT real_array(1%)
END

Output
100
0

You cannot reference an array named in an executable DIM statement until after the DIM statement
executes. If you reference an array element declared in an executable DIM statement whose subscripts
are larger than the bounds specified in the last execution of the DIM statement, BASIC signals the run-
time error “Subscript out of range” (ERR = 55), provided subscript checking is enabled.

6.2.3. Creating Arrays with the COMMON Statement
Create arrays with the COMMON statement when you need an array of fixed-length strings, or when
you want to share an array among program modules. Program modules can share arrays in COMMON
statements by defining a common block with the same name.

The COMMON statements in the following programs create a 100-element array of fixed-length strings,
each element 10 characters long. Because the main program and subprograms use the same common

70

Chapter 6. Arrays

name, the storage for these arrays is overlaid when the programs are linked; therefore, both programs
can read and write data to the array.

!Main Program
COMMON (ABC) STRING access_list(1 TO 100) = 10

!Subprogram
SUB SUB1
COMMON (ABC) STRING new_list(1 TO 100) = 10

6.2.4. Creating Arrays with the MAP Statement
Create arrays with the MAP statement only when you want the array to be part of a record buffer, or
when you want to overlay the storage containing the array. Note that string arrays in maps are always
fixed-length.

You associate the array with a record buffer by naming the map in the MAP clause of the OPEN
statement.

In the following example, the MAP statement creates two arrays: an 11-element fixed-length string array
named team and a 33-element array of WORD integers named bowling_scores. Because the OPEN
statement specifies MAP ABC, the storage for these arrays is used as the record buffer for the open file.

MAP (ABC) STRING team(10) = 20, WORD bowling_scores(0 TO 32)
OPEN "BOWLING.DAT" AS FILE #1%, SEQUENTIAL VARIABLE, MAP ABC

6.3. Creating Arrays Implicitly
Create arrays implicitly as follows:

● By referencing an element of an array that has not been explicitly declared

● By using MAT statements

When you first create an implicit array, the lower bound is zero and the upper bound is 10. An array
created by referencing an element can have up to 32 dimensions in BASIC. An array created with a MAT
statement can have only one or two dimensions.

Note

The ability to create arrays implicitly exists for compatibility with previous implementations of BASIC.
However, it is better programming practice to declare all arrays explicitly before using them.

If you reference an element of an array that has not been explicitly declared, BASIC creates a new array
with the name you specify. Arrays created by reference have default subscripts of (0 TO 10), (0 TO 10,
0 TO 10), (0 TO 10, 0 TO 10, 0 TO 10), and so on, depending on the number of dimensions specified
in the array reference. For example, the following program implicitly creates three arrays and assigns a
value to one element of each:

LET A(5,5,5) = 3.14159
LET B%(3) = 33
LET C$(2,2) = "Russell Scott"
END

The first LET statement creates an 11-by-11-by-11 array that stores floating-point numbers and assigns
the value 3.14159 to element (5,5,5). The second LET statement creates an 11-element list that stores

71

Chapter 6. Arrays

integers and assigns the value 33 to element (3), and the third LET statement creates an 11-by-11 string
array and assigns the value “Russell Scott” to element (2,2).

When you create an implicit numeric array by referring to an element, BASIC initializes all elements
(except the one assigned a value) to zero. For implicit string arrays, BASIC initializes all elements (except
the one assigned a value) to a null string. When you implicitly create an array, you cannot specify a
subscript greater than 10. An attempt to do so causes BASIC to signal “Subscript out of range” (ERR =
55), provided that subscript checking is enabled.

Note that you cannot create an array implicitly, then redimension the array with an executable DIM
statement. The DIM statement must execute before any reference to the array.

An array name cannot appear in a declarative statement after the array has been implicitly declared by a
reference. The following DECLARE statement is therefore illegal and causes VSI BASIC for OpenVMS
to signal the compile-time error “illegal multiple definition of name NEW_ARRAY.”

new_array (5,5,5) = 1
DECLARE LONG new_array (15,10,5)

6.4. Determining the Bounds of an Array
BASIC provides two built-in functions, LBOUND and UBOUND, that allow you to determine the lower
and upper bounds, respectively, for any dimension in an array.

The following example sets up four variables that contain the lower and upper bounds of both
dimensions of the array Sales_data. These variables represent the years and months for which there is
sales data available. The two FOR...NEXT loops print all the sales information in the array, starting with
the first year and month, and ending with the last year and month.

DECLARE Sales_data(1900 TO 1999, 1 TO 12)

Month_start% = LBOUND (Sales_data, 2)
Year_start% = LBOUND (Sales_data, 1)
Month_end% = UBOUND (Sales_data, 2)
Year_end% = UBOUND (Sales_data, 1)
FOR Year% = Year_start% TO Year_end%
 FOR Month% = Month_start% TO Month_end%
 PRINT Sales_data(Year%, Month%)
 NEXT Month%
NEXT Year%

Note

You cannot implicitly declare arrays with the LBOUND and UBOUND functions. These functions can
be used only with arrays that have been previously declared.

6.5. Assigning and Displaying Array Values
The following sections explain how to access and write to BASIC arrays with the LET and PRINT
statements.

6.5.1. Assigning Values with the LET Statement
The LET statement assigns values to individual array elements. For example:

72

Chapter 6. Arrays

DIM voucher_num%(100)
 .
 .
 .
LET voucher_num%(20) = 3253%
 .
 .
 .
END

You can also assign values to a portion of an array with the LET statement and a FOR...NEXT loop.
In the following example, the FOR...NEXT loop assigns zero to array elements (1,5) to (1,10), (2,5) to
(2,10), and (3,5) to (3,10):

DIM po_number%(100,100)
 .
 .
 .
FOR I% = 1% TO 3%
 FOR J% = 5% TO 10%
 LET po_number%(I%,J%) = 0%
 NEXT J%
NEXT I%
 .
 .
 .
END

6.5.2. Listing Array Elements with the PRINT Statement
You print individual array elements by naming those elements in the PRINT statement. For example:

PRINT parts_list$(35%)

With a FOR...NEXT loop, you can print all or part of an array. For example:

DIM capture_ratio(10,10)
 .
 .
 .
FOR Y% = 7% TO 10%
 FOR X% = 7% TO 10%
 PRINT capture_ratio(X%,Y%)
 NEXT X%
NEXT Y%

6.6. Using MAT Statements
Note

The MAT statements discussed in this section are not related to the MAT GRAPH and MAT PLOT
graphics statements. For more information about these statements, see Programming with VAX BASIC
Graphics.

MAT statements let you assign values to or display entire arrays with a single statement. They also let
you do the following:

73

Chapter 6. Arrays

● Implicitly create arrays

● Assign names to arrays

● Specify array dimensions

● Redimension existing arrays (to equal or smaller sizes)

● Assign element values

● Print the contents of arrays

● Perform matrix arithmetic

MAT statements are valid only on arrays of one or two dimensions. When MAT statements execute,
they use row and column zero to store intermediate calculations. This means that MAT statements can
overwrite data stored in row and column zero of your arrays, and you should not depend on data in these
elements if your program uses MAT statements.

Note

MAT statements cannot be used with arrays that have lower bounds other than zero. An attempt to
specify a lower bound other than zero for an array in a MAT statement results in a compile-time error.

The default subscripts for arrays created implicitly with MAT statements are (10) or (10,10). The default
is two dimensions. This means that if you create an array with a MAT statement and do not specify any
subscripts, BASIC creates a two-dimensional, 11-by-11 array. If you specify a single subscript, BASIC
creates a one-dimensional array with 11 elements.

Table 6.1, "MAT Statements" lists MAT statements and explains their functions.

Table 6.1. MAT Statements

Statement Function

MAT Assigns values of zero, 1, or a null string to array elements. Also copies the values
of one array to another and performs matrix arithmetic.

MAT READ Assigns DATA statement values to array elements.
MAT INPUT [#] Assigns values to array elements from your terminal or a terminal-format file.
MAT LINPUT [#] Assigns string values to string array elements from your terminal or from a

terminal-format file.
MAT PRINT [#] Displays the contents of an array on your terminal, or writes array element values

to a terminal-format file.

In the following example, the first MAT statement creates the string array z_array$ with eight rows
and eight columns and assigns a null string to all elements. The second MAT statement redimensions
the array to six rows and six columns. The third MAT statement adds the values in each corresponding
element of arrays B and C and stores the values in the corresponding elements of array A.

MAT z_array$ = NUL$(7,7)
MAT z_array$ = NUL$(5,5)
MAT A = B + C
END

74

Chapter 6. Arrays

6.6.1. MAT Statement
The MAT statement can create an array and optionally assign values to all elements in that array. By
specifying one of the MAT statement keywords, you can initialize arrays in one of four ways. Table 6.2,
"MAT Statement Keywords" lists the MAT statement keywords and their functions.

Table 6.2. MAT Statement Keywords

MAT Keyword Function

ZER Sets the value of all elements in a numeric array to zero.
CON Sets the value of all elements in a numeric array to 1, except those in row and

column zero.
IDN Sets the array to the identity matrix, that is, it sets the value of all elements in real

or integer arrays to zero, except for those elements on the diagonal from element
(1,1) to element (n,n), where n is the largest subscript in the array. The elements
on the diagonal are set to 1. IDN applies to square arrays only.

NUL$ Sets the value of all elements in a string array to the null string, except those in
row and column zero.

The array name can specify an existing array. MAT statements do not assign values to row and column
zero.

Note that the MAT statement does not require subscripts. In the case of existing arrays:

● If you do not specify subscripts, BASIC does not change the current subscripts.

● If you specify subscripts, BASIC redimensions the array to the specified subscripts. When
redimensioning arrays with MAT, you cannot increase the total number of array elements (including
those in row and column zero).

When you are creating arrays with MAT:

● If you do not supply subscripts, BASIC assigns two subscripts, each with a value of 10.

● If you specify subscripts, they define the dimensions of the array being implicitly created. Subscript
values cannot exceed 10. Consider the following example:

DIM A(10,10), B(15), C(20,20)
MAT A = ZER !Sets all elements of A to 0
MAT B = CON(10) !Sets elements of B to 1; redimensions B
MAT C = IDN(10,10) !Redimensions C to 10x10 identity matrix
PRINT "ARRAY A:"
MAT PRINT A;
PRINT
PRINT "ARRAY B:"
MAT PRINT B;
PRINT
PRINT "ARRAY C:"
MAT PRINT C;

Output
ARRAY A:

75

Chapter 6. Arrays

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

ARRAY B:
1 1 1 1 1 1 1 1 1 1

ARRAY C:
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

6.6.2. MAT READ Statement
The MAT READ statement assigns values from DATA statements to array elements. Subscripts define
either the dimensions of the array being created or the new dimensions of an existing array; subscripts
are optional in MAT READ statements.

If you do not provide enough data in DATA statements to fill the specified array, BASIC leaves the
remaining array elements unchanged. If you provide more data values than there are array elements,
BASIC assigns enough values to fill the array and leaves the DATA pointer at the next value.

In the following example, BASIC fills matrix B with the first four DATA items, fills matrix C with the
next four DATA values, and leaves the DATA pointer at the ninth value in the DATA list:

MAT READ B(2,2)
MAT READ C(2,2)
PRINT
PRINT "MATRIX B"
PRINT
PRINT
MAT PRINT B;
PRINT
PRINT "MATRIX C"
PRINT
PRINT
MAT PRINT C;
DATA 1,2,3,4,5,6,7,8,9,10
END

Output
MATRIX B

76

Chapter 6. Arrays

 1 2
 3 4
MATRIX C

 5 6
 7 8

6.6.3. MAT INPUT [#] Statement
The MAT INPUT statement assigns values from your terminal to array elements. The MAT INPUT
statement reads data from a terminal-format file and writes it to an array. The optional subscripts in a
MAT INPUT statement define either the dimensions of the array being created implicitly or the new
dimensions of an existing array. If you are implicitly creating the array, the value of a subscript cannot
exceed 10.

The MAT INPUT statement requests data from your terminal, as does the INPUT statement; it prints
a question mark (?) prompt that you can disable with the SET NO PROMPT statement and then enable
with the SET PROMPT statement. However, you cannot include a string prompt with the MAT INPUT
statement.

When you enter a series of values separated by commas, BASIC enters the values you supply into
successive array elements by row, starting with element (1,1) and filling row 1 before starting row 2.
If you provide fewer data items than there are elements, the remaining elements are unchanged. If you
provide more items than there are elements, BASIC ignores the excess.

The MAT INPUT statement takes values from an open file and assigns them to the matrix elements by
rows, starting with element (1,1). It fills the elements in row 1 before starting row 2. The file can have
one or more values in each record; however, multiple values must be separated with commas.

In the following example, the open file on channel 3 contains the following data: 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13. The MAT INPUT statement reads this data and uses it to fill the array A, filling in row 1
before beginning row 2. The MAT INPUT B(2,2) statement dimensions array B to 9 elements (0 to 2 in
each dimension) and provides values for all the elements except those in row and column zero.

MAT INPUT #3, A
PRINT
MAT PRINT A;
MAT INPUT B(2,2)
PRINT
MAT PRINT B;

Output
 1 2 3 4 5 6 7 8 9 10
 11 12 13 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0

77

Chapter 6. Arrays

? 1,2,3,4

 1 2
 3 4

Note that the MAT PRINT statement does not print row and column zero. For more information about
the MAT PRINT statement, see Section 6.6.5, "MAT PRINT [#] Statement".

The MAT INPUT statement can also redimension an existing array.

DIM new_array%(5,5)
MAT INPUT new_array%(2,4)
MAT PRINT new_array%;
END

Output
 ? 1,2,3,4,5,6,7,8

 1 2 3 4
 5 6 7 8

When entering values in response to MAT INPUT, you can enter an ampersand (&) as the last character
on the line and continue on the next line.

6.6.4. MAT LINPUT [#] Statement
The MAT LINPUT statement assigns string values to string array elements. The MAT LINPUT
statement reads string values from a terminal-format file and writes them to a string array.

The MAT LINPUT statement prompts for individual array elements. It fills the array by rows, starting
with element (1,1). It assigns the line you supply (including commas, semicolons, and quotation marks,
but excluding the line terminator) to an array element.

DIM emp_nam$(5,5)
MAT LINPUT emp_nam$(2,2)
PRINT emp_nam$(1,1)
PRINT emp_nam$(1,2)
PRINT emp_nam$(2,1)
PRINT emp_nam$(2,2)
END

Output
? SMITH
? JONES
? WHITE
? BLACK
SMITH
JONES
WHITE
BLACK

By specifying the subscripts (2,2), MAT LINPUT redimensions the array to nine elements and
overwrites the old values (assigning the values in the same manner as MAT INPUT; see Section 6.6.3,
"MAT INPUT [#] Statement"). BASIC then prompts for these elements.

78

Chapter 6. Arrays

MAT LINPUT also excludes line terminators when assigning values to string array elements. MAT
LINPUT places the values from the open file into the specified array, filling the array by rows, starting
with element (1,1). If there are more values in the file than there are array elements, BASIC ignores the
excess records. If there are fewer, BASIC assigns a null string to the remaining elements.

The following program reads 50 records from the open disk file and assigns them to the array named
part_name$. If there are more than 50 records in the file, BASIC ignores the excess records. If there are
fewer than 50 records, then BASIC fills the remaining elements of the array with the null string.

DIM part_name$(50)
MAT LINPUT #1%, part_name$

6.6.5. MAT PRINT [#] Statement
The MAT PRINT statement prints some or all of an array's elements, excluding row and column zero.
The MAT PRINT # statement takes values from an array by row, starting with element (1,1), and writes
each element to a sequential record in the terminal-format file.

Subscripts are optional in MAT PRINT statements. If you do not specify subscripts, MAT PRINT
displays the entire array, excluding row and column zero. If you specify subscripts, MAT PRINT displays
the specified subset of the array. In the case of the MAT PRINT # statement, the subscripts determine
how many array elements are written to the file. The MAT PRINT [#] statement does not redimension
an existing array.

If the last character in the MAT PRINT [#] array list is a semicolon, BASIC begins each array row on a
separate line. Data values on each line are packed together with no intermediate spaces. However, if the
last character in the MAT PRINT [#] array list is a comma, BASIC begins each array row on a separate
line and each data value in a separate print zone.

If there is neither a comma nor a semicolon after the array name, BASIC prints each array element on
a separate line. In the following example, the first MAT PRINT statement does not end in a comma or
semicolon, so each element is printed on a separate line. The second MAT PRINT statement prints the
elements twice, the first time starting each element in a new print zone, and the second time leaving a
space before and after each value. The MAT PRINT # statement sends the last two lines of output to a
terminal-format file.

MAT INPUT A(5)
PRINT
MAT PRINT A
PRINT
MAT PRINT A, A;
MAT PRINT #3, A, A;
END

Output
? 5

 5
 0
 0
 0
 0

 5 0 0 0 0

79

Chapter 6. Arrays

 5 0 0 0 0

6.6.6. Matrix I/O Functions (NUM and NUM2)
MAT statements do not signal error messages when there are more data items than array elements to
contain them or when there are fewer data items than array elements to contain them.

BASIC provides two functions that let you determine how much data the MAT statements transfer:
NUM and NUM2.

For two-dimensional arrays, the NUM function returns an integer value specifying the row number of the
last data item transferred, and the NUM2 function returns an integer value specifying the column number
of the last data item transferred. For one-dimensional arrays, the NUM function returns the number of
items entered, and the NUM2 function returns a zero.

With these functions, you can determine the number of items transferred from a terminal-format file.
Note, however, that you cannot use the NUM and NUM2 functions to implicitly declare an array. In the
following example, the terminal-format file EMP.DAT contains the values 1 to 17, inclusive. When these
values are read with the MAT INPUT # statement, NUM and NUM2 represent the row and column
number, respectively, of the last value read.

OPEN "EMP.DAT" FOR INPUT AS FILE #3%
DIM emp_name$(5,5)
MAT INPUT #3%, emp_name$
PRINT NUM, NUM2
END

Output
 4 2

6.7. Matrix Operators
BASIC provides a special set of MAT statements for array computations. These statements enable you to
add, subtract, and multiply matrices, and to assign values to elements. Note that if you specify an array
without subscripts (for example, MAT A), the default is two dimensions.

BASIC also provides matrix functions to transpose and invert matrices and to find the determinant of a
matrix you invert.

Note

MAT operators do not operate on elements in row or column zero.

6.7.1. Arithmetic Matrix Operations
MAT operators perform matrix assignment, addition, subtraction, and multiplication.

All of these operations use the keyword MAT, followed by an expression. If the array has not been
previously dimensioned, these operations create an array. The created output array's dimensions depend
on the operation performed but must be (10,10) or smaller.

80

Chapter 6. Arrays

Note

You can use the MAT operators on arrays larger than (10,10) if the input and output arrays are explicitly
created or received as a formal parameter.

6.7.1.1. Assignment
You can assign all values in one array to another array with the MAT statement. In the following
example, each element of new_array is set to the corresponding element in old_array. The dimensions of
new_array are also redimensioned to the dimensions of old_array.

MAT new_array = old_array

6.7.1.2. Addition and Subtraction
You can add the elements of two arrays. In the following statement, the two input lists, first_list% and
second_list%, must have identical dimensions. The elements of the new list, sum_list%, equal the sum of
the corresponding elements in the input lists.

MAT sum_list% = first_list% + second_list%

You can also subtract the elements of two arrays. The following program subtracts one array from
another:

DIM first_array(30,30)
DIM second_array(30,30)
DIM difference_array(30,30)
 .
 .
 .
MAT difference_array = first_array - second_array

Each element of difference_array is the arithmetic difference of the corresponding elements of the input
arrays.

6.7.1.3. Multiplication
You can multiply the elements of two arrays, provided that the number of columns in the first array
equals the number of rows in the second array. The resulting array contains the dot product of the two
input arrays.

DIM A(2,2), B(2,2), C(2,2)
A(1,1) = 1
A(1,2) = 2
A(2,1) = 3
A(2,2) = 4
B(1,1) = 5
B(1,2) = 6
B(2,1) = 7
B(2,2) = 8
MAT C = A * B
MAT PRINT C

 19
 22
 43

81

Chapter 6. Arrays

 50

You can also multiply a matrix by a scalar quantity. BASIC multiplies each element of the input array by
the scalar quantity you supply. The output array has the same dimensions as the input array. Enclose the
scalar quantity in parentheses. The following example multiplies the elements of inch_array by the inch-
to-centimeter conversion factor and places these values in cm_array:

DIM inch_array(5), cm_array(5)
MAT READ inch_array
DATA 1,12,36,100,39.37
MAT cm_array = (2.54) * inch_array
MAT PRINT cm_array,
END

Output

 2.54 30.48 91.44 254 99.9998

6.7.2. Matrix Functions
BASIC provides the following matrix functions:

TRN
INV
DET

With these functions, you can transpose and invert matrices and find the determinant of an inverted
matrix.

6.7.2.1. TRN Function
The TRN function transposes a matrix. When you transpose a matrix, BASIC interchanges the array's
dimensions. For example, a matrix with n rows and m columns is transposed to a matrix with m rows and
n columns. The elements in the first row of the input matrix become the elements in the first column of
the output matrix. You cannot transpose a matrix to itself; MAT A = TRN(A) is invalid.

The following example creates a 3-by-5 matrix, transposes it, and prints the results:

DIM B(3,5)
MAT READ B
MAT A = TRN(B)
DATA 1,2,3,4,5
DATA 6,7,8,9,10
DATA 11,12,13,14,15
MAT PRINT B;
MAT PRINT A;
END

Output

 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15

 1 6 11
 2 7 12
 3 8 13

82

Chapter 6. Arrays

 4 9 14
 5 10 15

6.7.2.2. INV Function
The INV function inverts a matrix. BASIC can invert a matrix only if its subscripts are identical and it
can be reduced to the identity matrix by elementary row operations. The input matrix multiplied by the
output matrix (its inverse) always gives the identity matrix as a result.

MAT INPUT first_array(3,3)
MAT PRINT first_array;
PRINT
MAT inv_array = INV (first_array)
MAT PRINT inv_array;
PRINT
MAT mult_array = first_array * inv_array
MAT PRINT mult_array;
PRINT
D = DET
PRINT D

Output

? 4,0,0,0,0,2,0,8,0
 4 0 0
 0 0 2
 0 8 0

 .25 0 0
 0 0 .125
 0 .5 0

 1 0 0
 0 1 0
 0 0 1

 -64

6.7.2.3. DET Function
The DET function returns the determinant of a matrix. The DET function returns a floating-point
number that is the determinant of the last matrix inverted. If you use the DET function before inverting a
matrix, the value of DET is zero.

83

Chapter 6. Arrays

84

Chapter 7. Data Definition
This chapter briefly describes how to define program objects, explicitly assign data types, and allocate
and use data storage.

7.1. Declarative Statements
You use declarative statements to define objects in a VSI BASIC for OpenVMS program. Objects
can be variables, arrays, constants, and user-defined functions within a program module. They can also
be routines, variables, and constants external to the program module. Declarative statements always
assign names to the objects declared and usually assign other attributes, such as a data type, to them.
Declarative statements can also be used to define user-defined data types (RECORD statements). See
Chapter 8, "Creating and Using Data Structures" for more information about the RECORD statement.

You use declarative statements to assign data types to:

● Variables

● Arrays

● Named constants

● Values returned by functions

By declaring the objects used in your program, you make the program easier to understand, modify, and
debug.

7.2. Data Types
At its most fundamental level, a data type is a format for information storage. All information is stored
in the computer as bit patterns (groups of ones and zeros). Data types specify how the computer should
interpret these patterns.

VSI BASIC for OpenVMS programs allow five general data types: integer, floating-point, string,
packed decimal, and record. Each data type is suited for a particular type of task. For example, integers
are useful for numeric computations involving whole numbers, strings provide a way to manipulate
alphanumeric characters, and packed decimal data is useful for manipulating numeric values that require
precise representation.

For more information about VSI BASIC for OpenVMS data types, see the VSI BASIC Reference Manual.

7.3. Setting the Default Data Type and Size
There are two ways to set the default data type and size for your program:

● With the OPTION statement

● With the following qualifiers:

○ /TYPE_DEFAULT

○ /INTEGER_SIZE

85

Chapter 7. Data Definition

○ /REAL_SIZE

○ /DECIMAL_SIZE

The OPTION statement can override the defaults set with qualifiers. For example, the following
statement sets the default integer type to be LONG:

OPTION SIZE = INTEGER LONG

You can have more than one OPTION statement in a program module; however, OPTION statements
can be preceded only by a SUB, FUNCTION, REM, or another OPTION statement.

Note that the OPTION statement can also specify the following:

● Integer and packed decimal overflow checking

● Program optimization

● Rounding or truncation of packed decimal numbers

● Subscript checking

See the VSI BASIC Reference Manual for more information about the OPTION statement.

The OPTION statement in the following example specifies that all program variables must be explicitly
typed and that all implicitly typed constants are INTEGER. In addition, any variable typed as INTEGER
is a LONG integer and any variable typed as REAL is a DOUBLE floating-point number.

OPTION TYPE = EXPLICIT, ! Variables must be declared &
 CONSTANT TYPE = INTEGER, ! All implicit constants be integers &
 SIZE = INTEGER LONG, ! 32-bit integers by default &
 SIZE = REAL DOUBLE ! 64-bit floating-point
 ! numbers by default

You can create variables of other data types by explicitly declaring them with the DECLARE,
COMMON, or MAP statement.

7.4. Declaring Variables
A variable is a named quantity whose value can change during program execution. Variables may be
implicitly or explicitly declared. VSI BASIC for OpenVMS accepts the following types of variables:

● Floating-point

● Integer

● String

● RFA

● Packed decimal

● Record

For more information about declaring variables, see the VSI BASIC Reference Manual.

86

Chapter 7. Data Definition

7.5. Declaring Named Constants
A constant is a value that does not change during program execution. You can declare named constants
within a program unit with the DECLARE statement. You can also refer to constants outside the
program unit with the EXTERNAL statement. In addition, BASIC provides notation for binary, octal,
decimal, and hexadecimal constants.

For more information about named constants, see the VSI BASIC Reference Manual.

7.6. Operations with Multiple Data Types
When an expression contains operands of different data types, it is called a mixed-mode expression.
Before a mixed-mode expression can be evaluated, the operands must be converted, or promoted, to a
common data type. The result of the evaluation can also be converted depending on the data type of the
variable to which it is assigned.

When assigning values to variables, VSI BASIC for OpenVMS converts the result of the expression
to the data type of the variable. If the value of the expression is outside the allowable range of the
variable's data type, VSI BASIC for OpenVMS signals “Integer error or overflow,” “Floating-point error
or overflow,” or “DECIMAL error or overflow.”

In general, VSI BASIC for OpenVMS promotes operands with different data types to the lowest data
type that can hold the largest and most precise possible value of either operand's data type. VSI BASIC
for OpenVMS then performs the operation in that data type, and yields a result of that data type. If the
result of the expression is assigned to a variable, VSI BASIC for OpenVMS converts the result to the
data type of the variable. For more information about multiple data types, see the VSI BASIC Reference
Manual.

7.7. Allocating Dynamic and Static Storage
VSI BASIC for OpenVMS programs allocate both dynamic and static storage. Dynamic storage is
allocated when the program executes, whereas the size of static storage does not change during program
execution.

Variables and arrays declared by the following means use dynamic storage:

● DECLARE statements

● DIMENSION statements

● Implicitly declared variables

Normally, string variables and arrays declared in these ways are dynamic strings, and their length can
change during program execution. However, if you declare or dimension an array of a user-defined data
type (a RECORD name), then all string variables and arrays are fixed-length strings. See Chapter 8,
"Creating and Using Data Structures" for more information about the RECORD statement.

Variables and arrays appearing in MAP or COMMON statements use static storage. Hence all string
variables appearing in MAP or COMMON statements are fixed-length strings. MAP and COMMON
statements create a named storage area called a program section, or PSECT. MAP statements require a
map name, but in COMMON statements the name is optional. The PSECT name is the same as the map
or common name. If you do not specify a common name, VSI BASIC for OpenVMS supplies a default
PSECT name of $BLANK.

87

Chapter 7. Data Definition

The remainder of this section explains how to use COMMON and MAP statements for static storage.

7.7.1. COMMON Statement
The COMMON statement defines a named area of storage (called a PSECT). Any VSI BASIC for
OpenVMS subprogram can access the values in a common area by specifying a common with the same
name. An item in a COMMON statement can be any one of the following:

● A numeric variable

● A numeric array

● A fixed-length string variable

● An array of fixed-length strings

● A RECORD instance

● A FILL item

● An RFA item

The amount of storage reserved for a variable depends on its data type. You can specify a length for
string variables and string array elements that appear in a COMMON statement. If you do not specify a
length, the default is 16. The following statement specifies 2 bytes for emp.code, 3 bytes for wage.code,
and 22 bytes for dep.code:

COMMON (code) STRING emp.code=2, wage.code=3, dep.code=22

In a single program module, multiple common areas with the same name allocate storage end-to-end in a
single PSECT. That is, VSI BASIC for OpenVMS concatenates all common areas with the same name in
the same program module, in order of appearance. For example, the following statements allocate storage
for five LONG integers in a single PSECT named into:

COMMON (into) LONG call_count, sub1_count, sub2_count
COMMON (into) LONG sub3_count, sub4_count

When you explicitly declare an array, VSI BASIC for OpenVMS allows you to specify both upper and
lower bound values. The value you supply as the upper bound determines the maximum subscript value
for a given dimension, and the value you supply for the lower bound determines the minimum subscript
value for a given dimension.

For more information about specifying bounds with the COMMON statement, see Chapter 6, "Arrays"
and the VSI BASIC Reference Manual.

7.7.2. MAP Statement
 The MAP statement, like the COMMON statement, creates a named area of static storage. However, if a
program module contains multiple maps with the same name, the maps are overlaid on the same area of
storage, rather than being concatenated.

When used with the MAP clause of the OPEN statement, the storage allocated by the MAP statement
becomes the record buffer for that file. Variables in the MAP statement correspond to fields in the file's
records.

A map item can be one of the following:

88

Chapter 7. Data Definition

● A numeric variable

● A numeric array

● A fixed-length string variable

● An array of fixed-length strings

● A RECORD instance

● A FILL item

When you explicitly declare an array, VSI BASIC for OpenVMS allows you to specify both upper and
lower bound values. The value you supply as the upper bound determines the maximum subscript value
for a given dimension, and the value you supply for the lower bound determines the minimum subscript
value for a given dimension.

For more information about specifying bounds with the MAP statement, see Chapter 6, "Arrays" and the
VSI BASIC Reference Manual.

7.7.2.1. Single Maps
You associate a map with a record buffer by referencing the map in the OPEN statement.

The MAP statement must appear before any reference to map variables. Changes to map variables do
not change the actual records in the file. To transfer the changed variables to the file, you must use the
PUT or UPDATE statement. For more information, see Chapter 13, "File Input and Output".

The following program example uses map variables to access fields in payroll records:

WHEN ERROR USE eof_handler
DECLARE INTEGER CONSTANT EOF = 11

MAP (PAYROL) STRING emp_name, LONG wage_class, &
 STRING sal_rev_date, SINGLE tax_ytd

OPEN "payroll.dat" FOR INPUT AS FILE #4% &
 ,ORGANIZATION SEQUENTIAL &
 ,ACCESS READ &
 ,MAP PAYROL

OPEN "payrol.new" FOR OUTPUT AS FILE #5% &
 ,ORGANIZATION SEQUENTIAL &
 ,ACCESS WRITE &
 ,MAP payrol

PRINT "PAYROLL VERIFICATION"

 get_loop:
 WHILE 1% = 1%
 GET #4
 PRINT emp_name, wage_class, sal_rev_date, tax_ytd
 PRINT "YOU CAN CHANGE:"
 PRINT "1. EMPLOYEE NAME"
 PRINT "2. WAGE CLASS"
 PRINT "3. REVIEW DATE"
 PRINT "4. TAX YEAR-TO-DATE"

89

Chapter 7. Data Definition

 PRINT "5. DONE"

 read_loop:
 WHILE 1% = 1%
 INPUT "CHANGES? ANSWER WITH YES OR NO" ; chng$
 IF chng$ = "NO" THEN ITERATE get_loop
 ELSE INPUT "NUMBER" ;number%

 END IF

 SELECT number%
 CASE 1
 INPUT "EMPLOYEE NAME"; emp_name
 CASE 2
 INPUT "WAGE CLASS"; wage_class
 CASE 3
 INPUT "REVIEW DATE";sal_rev_date
 CASE 4
 INPUT "TAX YEAR-TO-DATE"; tax_ytd
 CASE 5
 EXIT read_loop
 CASE ELSE
 PRINT "Invalid response -- please try again"
 END SELECT
 NEXT
 PUT #5
 NEXT
END WHEN
HANDLER eof_handler
 IF ERR = EOF
 THEN
 PRINT "End of file"
 ELSE
 EXIT HANDLER
 END IF
END HANDLER
END

7.7.2.2. Multiple Maps
When a program contains more than one map with the same name, the storage allocated by these MAP
statements is overlaid. This technique is useful for manipulating strings. Figure 7.1, "Multiple Maps"
shows multiple maps and maps in use.

Figure 7.1. Multiple Maps

90

Chapter 7. Data Definition

When you use more than one map to access a record buffer, VSI BASIC for OpenVMS uses the size of
the largest map to determine the size of the record. (The RECORDSIZE clause of the OPEN statement
can override this map-defined record size. For more information, see Chapter 13, "File Input and
Output".)

You can also use multiple maps to interpret numeric data in more than one way. The following example
creates a map area named barray. The first MAP statement allocates 26 bytes of storage in the form of
an integer BYTE array. The second MAP statement defines this same storage as a 26-byte string named
ABC. When the FOR...NEXT loop executes, it assigns values corresponding to the ASCII values for the
uppercase letters A to Z.

MAP (barray) BYTE alphabet(25)
MAP (barray) STRING ABC = 26
FOR I% = 0% TO 25%
 alphabet(I%) = I% + 65%
NEXT I%
PRINT ABC
END

Output
ABCDEFGHIJKLMNOPQRSTUVWXYZ

7.7.3. FILL Items
FILL items reserve space in map and common blocks and in record buffers accessed by MOVE or
REMAP statements. Thus, FILL items mask parts of the record buffer and let you skip over fields and
reserve space in or between data elements.

FILL formats are available for all data types. Table 7.1, "FILL Item Formats, Representations, and Default
Allocations" summarizes the FILL formats and their default allocations if no data type is specified.

Table 7.1. FILL Item Formats, Representations, and Default Allocations

FILL Format Representation Bytes Used

FILL Floating-point 4, 8, 16, or 32
FILL(n) n floating-point elements 4 n, 8 n, 16 n, or 32 n
FILL% Integer (BYTE, WORD, LONG,

or QUAD)
1, 2, 4, or 8

FILL%(n) n integer elements 1 n, 2 n, 4 n, or 8 n
FILL$ String 16
FILL$(n) n string elements 16 n
FILL$ = m String m
FILL$(n) = m n string elements, m bytes each m * n

Note

In the applicable formats of FILL, n represents a repeat count, not an array subscript. FILL(n), for
example, represents n real elements, not n+1.

You can also use data-type keywords with FILL and optional data type- suffixes. The data-type and
storage requirements are those of the last data type specified. For example:

91

Chapter 7. Data Definition

MAP (QED) STRING A, FILL$=24, LONG SSN, FILL%, REAL SAL, FILL(5)

This MAP statement uses data-type keywords to reserve space for:

● A 16-character string variable A

● 24 bytes of padding

● One LONG variable, SSN

● 4 bytes of padding

● One REAL variable, SAL

● Space for five floating-point numbers (10, 20, or 80 bytes of padding, depending on the default size
for floating-point numbers)

You can specify user-defined data types (RECORD names) for FILL items. In the following example,
the first line defines a RECORD of data type X. The MAP statement contains a fill item of this data
type, thus reserving space in the buffer for one RECORD of type X.

RECORD X
 REAL Y1, Y2(10)
END RECORD X
MAP (QED) X FILL

See Chapter 8, "Creating and Using Data Structures" for more information about the RECORD
statement.

7.7.4. Using COMMON and MAP Statements in
Subprograms
The COMMON and MAP statements create a block of storage called a PSECT. This common or
map storage block is accessible to any subprogram. A VSI BASIC for OpenVMS main program and
subprogram can share such an area by referencing the same common or map name.

The following example contains common blocks that define:

● A 16-character string field called A by the main program and X by the subprogram

● A 10-character string field called B by the main program and Z by the subprogram

● A 4-byte integer field called C by the main program and Y by the subprogram

!In a main program
COMMON (A1) STRING A, B = 10, LONG C
 .
 .
 .
!In a subprogram
COMMON (A1) STRING X, Z = 10, LONG Y

If a subprogram defines a common or map area with the same name as a common or map area in the
main program, it overlays the common or map defined in the main program.

Multiple COMMON statements with the same name behave differently depending on whether these
statements are in the same program module. If they are in the same program module, then the storage

92

Chapter 7. Data Definition

for each common area is concatenated. However, if they are in different program units, then the common
areas overlay the same storage. The following COMMON statements are in the same program module;
therefore, they are concatenated in a single PSECT. The PSECT contains two 32-byte strings.

COMMON (XYZ) STRING A = 32
COMMON (XYZ) STRING B = 32

In contrast, the following COMMON statements are in different program modules, and thus overlay the
same storage. Therefore, the PSECT contains one 32-byte string, called A in the main program and B in
the subprogram.

!In the main program
COMMON (XYZ) STRING A = 32
 .
 .
 .
!In the subprogram
COMMON (XYZ) STRING B = 32

Although you can redefine the storage in a common section when you access it from a subprogram,
you should generally not do so. Common areas should contain exactly the same variables in all program
modules. To make sure of this, you should use the %INCLUDE directive, as shown in the following
example:

COMMON (SHARE) WORD emp_num, &
 DECIMAL (8,0) salary, &
 STRING wage_class = 2
 .
 .
 .
!In the main program
%INCLUDE "COMMON.BAS"
 .
 .
 .
!In the subprogram
%INCLUDE "COMMON.BAS"

If you use the %INCLUDE directive, you can lessen the risk of a typographical error. For more
information about using the %INCLUDE directive, see Chapter 16, "Compiler Directives".

If you must redefine the variables in a PSECT, you should use the MAP statement or a record with
variants for each overlay. When you use the MAP statement, use the %INCLUDE directive to create
identical maps before redefining them, as shown in the following example. The map defined in
MAP.BAS is included in both program modules as a 40-byte string. This map is redefined in the
subprogram, allowing the subprogram to access parts of this string.

MAP (REDEF) STRING full_name = 40
 .
 .
 .
!In the main program
%INCLUDE "MAP.BAS"
 .
 .
 .
!In the subprogram
%INCLUDE "MAP.BAS"

93

Chapter 7. Data Definition

MAP (REDEF) STRING first_name=15, MI=1, last_name=24

7.7.5. Dynamic Mapping
Dynamic mapping lets you redefine the position of variables in a static storage area. This storage area
can be either a map name or a previously declared static string variable. Dynamic mapping requires the
following VSI BASIC for OpenVMS statements:

● A declarative statement, such as a MAP statement, allocating a fixed-length storage area

● A MAP DYNAMIC statement, naming the variables whose positions can change at run time

● A REMAP statement, specifying the new positions of the variables named in the MAP DYNAMIC
statement

The MAP DYNAMIC statement does not affect the amount of storage allocated. The MAP DYNAMIC
statement causes VSI BASIC for OpenVMS to create internal pointers to the variables and array
elements. Until your program executes the REMAP statement, the storage for each variable and each
array element named in the MAP DYNAMIC statement starts at the beginning of the map storage area.

The MAP DYNAMIC statement is nonexecutable. With this statement, you cannot specify a string
length. All string items have a length of zero until the program executes a REMAP statement.

The REMAP statement specifies the new positions of variables named in the MAP DYNAMIC
statement. That is, it causes VSI BASIC for OpenVMS to change the internal pointers to the data.
Because the REMAP statement is executable, it can redefine the pointer for a variable or array element
each time the REMAP statement is executed.

With the MAP DYNAMIC statement, you can specify either a map name or a previously declared
static string variable. When you specify a map name, a MAP statement with the same map name must
lexically precede the MAP DYNAMIC statement.

In the following example, the MAP statement creates a storage area named emp_buffer. The MAP
DYNAMIC statement specifies that the positions of variables emp_name and emp_address within the
map area can be dynamically defined with the REMAP statement.

DECLARE LONG CONSTANT emp_fixed_info = 4 + 9 + 2
MAP (emp_buffer) LONG badge, &
 STRING social_sec_num = 9, &
 BYTE name_length, &
 address_length, &
 FILL (60)

MAP DYNAMIC (emp_buffer) STRING emp_name, &
 emp_address

WHILE 1%
GET #1
REMAP (emp_buffer) STRING FILL = emp_fixed_info, &
 emp_name = name_length, &
 emp_address = address_length

NEXT

At the start of program execution, the storage for badge is the first 4 bytes of emp_buffer, the storage for
social_sec_num is equal to 9 bytes, and together name_length and address_length are equal to 2 bytes.

94

Chapter 7. Data Definition

The FILL keyword reserves 60 additional bytes of storage. The MAP DYNAMIC statement defines
the variables emp_name and emp_address whose positions and lengths will change at run time. When
executed, the REMAP statement defines the FILL area to be equal to emp_fixed_info and defines the
positions and lengths of emp_name and emp_address.

When you specify a static string variable, it must be either a variable declared in a MAP or COMMON
statement or a parameter declared in a SUB, FUNCTION, PICTURE, or DEF. The actual parameter
passed to the procedure must be a static string variable defined in a COMMON, MAP, or RECORD
statement.

The following example shows the use of a static string variable as a parameter declared in a SUB. The
MAP DYNAMIC statement specifies the input parameter, input_rec, as the string to be dynamically
defined with the REMAP statement. In addition, the MAP DYNAMIC statement specifies a string
array A whose elements will point to positions in input_rec after the REMAP statement is executed.
The REMAP statement defines the length and position of each element contained in array A. The
FOR...NEXT loop then assigns each element contained in array A into array item, the target array.

SUB deblock (STRING input_rec, STRING item())
 MAP DYNAMIC (input_rec) STRING A(1 TO 3)
 REMAP (input_rec) &
 A(1) = 5, &
 A(2) = 3, &
 A(3) = 4
 FOR I = LBOUND(A) TO UBOUND(A)
 item(I) = A(I)
 NEXT I
END SUB

Note that dynamic map variables are local to the program module in which they reside; therefore,
REMAP only affects how that module views the buffer.

For more information about using the MAP DYNAMIC and REMAP statements, see the VSI BASIC
Reference Manual.

95

Chapter 7. Data Definition

96

Chapter 8. Creating and Using
Data Structures
A data structure is a collection of data items that can contain elements or components of different data
types.

The RECORD statement lets you create your own data structures. You use the RECORD statement to
create a pattern of a data structure, called the RECORD template. Once you have created a template,
you use it to declare an instance of the RECORD, that is, a RECORD variable. You declare a
RECORD variable just as you declare a variable of any other type: with the DECLARE statement or
another declarative statement. A RECORD instance is a variable whose structure matches that of the
RECORD template.

The RECORD statement does not create any variables. It only creates a template, or user-defined data
type, that you can then use to create variables.

This chapter describes how to create and use data structures.

8.1. RECORD Statement
The RECORD statement names and defines a data structure. Once a data structure (or RECORD) has
been named and defined, you can use that RECORD name anywhere that you can use a BASIC data
type keyword. You build the data structure using:

● Variables of any valid BASIC data type

● RECORD variables of previously defined RECORD data types

● Any combination of the two

The following example creates a RECORD called Employee. Employee is a data structure that contains
one LONG integer, one 10-character string, one 20-character string, and one 11-character string.

RECORD Employee
 LONG Emp_number
 STRING First_name = 10
 STRING Last_name = 20
 STRING Soc_sec_number = 11
END RECORD Empolyee

To create instances of this data structure, you use declarative statements. In the following example,
the first DECLARE statement creates a variable called Emp_rec of data type Employee. The second
DECLARE statement creates a one-dimensional array called Emp_array that contains 1001 instances of
the Employee data type.

DECLARE Employee Emp_rec
DECLARE Employee Emp_array (1000)

Any reference to a RECORD component must contain the name of the RECORD instance (that is, the
name of the declared variable) and the name of the elementary RECORD component you are accessing,
separated by two colons (::). For example, the following program assigns values to an instance of the
Employee RECORD template:

97

Chapter 8. Creating and Using Data Structures

! Record Template

RECORD Employee

 LONG Emp_number
 STRING First_name = 10
 STRING Last_name = 20
 STRING Soc_sec_number = 11

END RECORD Employee
! Declarations

DECLARE Employee Emp_rec

DECLARE STRING Social_security

! Program logic starts here.

INPUT 'Employee number'; Emp_rec::Emp_number
INPUT 'First name'; Emp_rec::First_name
INPUT 'Last name'; Emp_rec::Last_name
INPUT 'Social security'; Social_security
IF Social_security <> ""
THEN
 Emp_rec::Soc_sec_number = Social_security
END IF
PRINT
PRINT "Employee number is: "; Emp_rec::Emp_number
PRINT "First name is: "; Emp_rec::First_name
PRINT "Last name is: "; Emp_rec::Last_name
PRINT "Social security is: "; Emp_rec::Soc_sec_number
END

When you access an array of RECORD instances, the array subscript should immediately follow the
name of the RECORD variable. The following example shows an array of RECORD instances:

! Record Template

RECORD Employee

 LONG Emp_number
 STRING First_name = 10
 STRING Last_name = 20
 STRING Soc_sec_number = 11

END RECORD
! Declarations

DECLARE Employee Emp_array (10)

DECLARE INTEGER Index

DECLARE STRING Social_security

! Program logic starts here.

FOR Index = 0 TO 10

98

Chapter 8. Creating and Using Data Structures

 PRINT
 INPUT 'Employee number'; Emp_array(Index)::Emp_number
 INPUT 'First name'; Emp_array(Index)::First_name
 INPUT 'Last name'; Emp_array(Index)::Last_name
 INPUT 'Social security'; Social_security
 IF Social_security <> ""
 THEN
 Emp_array(Index)::Soc_sec_number = Social_security
 END IF
NEXT Index

FOR Index = 0 TO 10

PRINT
PRINT "Employee number is: "; Emp_array(Index)::Emp_number
PRINT "First name is: "; Emp_array(Index)::First_name
PRINT "Last name is: "; Emp_array(Index)::Last_name
PRINT "Social security is: "; Emp_array(Index)::Soc_sec_number

NEXT Index

END

You can have a RECORD that contains an array. When you declare arrays, VSI BASIC for OpenVMS
allows you to specify both lower and upper bounds.

RECORD Grade_record

 STRING Student_name = 30
 INTEGER Quiz_scores (1 TO 10) ! Array to hold ten quiz grades.

END RECORD
! Declarations

DECLARE Grade_record Student_grades (5)

!The Student_grades array holds information on six students
!(0 through 5), each of whom has ten quiz grades (1 through 10).

DECLARE INTEGER I,J
!Program logic starts here.

FOR I = 0 TO 5 !This loop executes once for each student.

 PRINT
 INPUT 'Student name'; Student_grades(I)::Student_name

 FOR J = 1 TO 10 !This loop executes ten times for each student.

 PRINT 'Score for quiz number'; J
 INPUT Student_grades(I)::Quiz_scores(J)

 NEXT J
NEXT I

FOR I = 0 TO 5

 PRINT

99

Chapter 8. Creating and Using Data Structures

 PRINT 'Student name: '; Student_grades(I)::Student_name

 FOR J = 1 TO 10

 PRINT 'Score for quiz number'; J; ": ";
 PRINT Student_grades(I)::Quiz_scores(J)

 NEXT J

NEXT I

END

Because any reference to a component of a RECORD instance must begin with the name of the
RECORD instance, RECORD component names need not be unique in your program. For example, you
can have a RECORD component called First_name in any number of different RECORD statements.
References to this component are unambiguous because every RECORD component reference must
specify the record instance in which it resides.

8.1.1. Grouping RECORD Components
A RECORD component can consist of a named group of instances, identified with the keyword GROUP.
You use GROUP to refer to a collection of RECORD components, or to create an array of components
that have different data types. The GROUP name can be followed by a list of upper and lower bounds,
which define an array of the GROUP components. GROUP is valid only within a RECORD block.

The declarations between the GROUP statement and the END GROUP statement are called a GROUP
block.

The following example declares a RECORD template of data type Yacht. Yacht is made up of two
groups: Type_of_yacht and Specifications. Each of these groups is composed of elementary RECORD
components. BASIC also allows groups within other groups.

RECORD Yacht

 GROUP Type_of_yacht
 STRING Manufacturer = 10
 STRING Model = 10
 END GROUP Type_of_yacht
 GROUP Specifications
 STRING Rig = 6
 STRING Length_over_all = 3
 DECIMAL(5,0) Displacement
 DECIMAL(2,0) Beam
 DECIMAL(7,2) Price
 END GROUP Specifications

END RECORD Yacht

8.1.2. RECORD Variants
Sometimes it is useful to have different record components overlay the same record field, in much
the same way that multiple maps can overlay the same storage. Such an overlay is called a RECORD
variant. You use the keywords VARIANT and CASE to set up RECORD variants.

The following example creates a RECORD template for any three kinds of boats:

100

Chapter 8. Creating and Using Data Structures

RECORD Boat

 STRING Make = 10
 STRING Model = 10
 STRING Type_of_boat = 1 ! This field contains the value S, P, or C.
 ! Value S causes the record instance to be
 ! interpreted as describing a sailboat, value
 ! P as describing a powerboat, and value C as
 ! describing a canoe.
 VARIANT

 CASE ! Sailboats

 STRING Rig = 20
 CASE ! Powerboats

 WORD Horsepower

 CASE ! Canoes

 WORD Length
 WORD Weight

 END VARIANT

END RECORD

The SELECT...CASE statement allows you to access one of several possible RECORD variants in a
particular RECORD instance. A RECORD component outside the overlaid fields usually determines
which RECORD variant is being used in a particular reference; in this case, the determining RECORD
component is Type_of_boat. You can use this component in the SELECT expression.

! Declarations

DECLARE Boat My_boat

! Main program logic starts here

 .
 .
 .
Input_boat_information:

 INPUT 'Make of boat'; My_boat::Make
 INPUT 'Model'; My_boat::Model
 PRINT 'Type of boat (S = Sailboat, P = Powerboat, C = Canoe)';
 INPUT My_boat::Type_of_boat
 SELECT My_boat::Type_of_boat

 CASE "S"

 INPUT 'Sail rig'; My_boat::Rig

 CASE "P"

 INPUT 'Horsepower'; My_boat::Horsepower
 CASE "C"

101

Chapter 8. Creating and Using Data Structures

 INPUT 'Length'; My_boat::Length
 INPUT 'Weight'; My_boat::Weight

 CASE ELSE

 PRINT "Invalid type of boat, please try again."

 END SELECT

The value of the Type_of_boat component determines the format of the variant part of the record.

The following example is a more complex version of the same type of procedure. This program prompts
for the RECORD instance components in each variant. When the user responds to the “Wage Class”
prompt, the program branches to one of three CASE blocks depending on the value of Wage_class.

!Record templates

RECORD Emp_wage_class

 STRING Emp_name = 30 ! Employee name string.

 STRING Street = 15 !
 STRING City = 20 ! These components make up the
 STRING State = 2 ! employee address field.
 DECIMAL(5,0) Zip !

 STRING Wage_class = 1
 VARIANT

 CASE

 GROUP Hourly ! Hourly workers.

 DECIMAL(4,2) Hourly_wage ! Hourly wage rate.
 SINGLE Regular_pay_ytd ! Regular pay year-to-date.
 SINGLE Overtime_pay_ytd ! Overtime pay year-to-date.

 END GROUP Hourly
 CASE

 GROUP Salaried ! Salaried workers.

 DECIMAL(7,2) Yearly_salary ! Yearly salary.
 SINGLE Pay_ytd ! Pay year-to-date.

 END GROUP Salaried
 CASE

 GROUP Executive ! Executives.

 DECIMAL(8,2) Yearly_salary ! Yearly salary.
 SINGLE Pay_ytd ! Pay year-to-date.
 SINGLE Expenses_ytd ! Expenses year-to-date.

 END GROUP Executive

 END VARIANT

102

Chapter 8. Creating and Using Data Structures

END RECORD
! Declarations:

 DECLARE Emp_wage_class Emp

! Main Program logic starts here.

LINPUT "Name"; Emp::Emp_name ! Use LINPUT statements for
LINPUT "Street"; Emp::Street ! string fields so the entire
 ! string is assigned to the
LINPUT "State"; Emp::State ! variable.
INPUT "Zip Code"; Emp::Zip
LINPUT "Wage Class"; Emp::Wage_class
SELECT Emp::Wage_class

CASE "A"
 INPUT 'Rate';Emp::Hourly_wage
 INPUT 'Regular pay';Emp::Regular_pay_ytd
 INPUT 'Overtime pay';Emp::Overtime_pay_ytd

CASE "B"
 INPUT 'Salary';Emp::Salaried::yearly_salary
 INPUT 'Pay YTD';Emp::Salaried::pay_ytd

CASE "C"
 INPUT 'Salary';Emp::Executive::yearly_salary
 INPUT 'Pay YTD';Emp::Executive::pay_ytd
 INPUT 'Expenses';Emp::Expenses_ytd

END SELECT

Variant fields can appear anywhere within the RECORD instance. When you use RECORD variants,
you imply that any RECORD instance can contain any one of the listed variants. Therefore, if each
variant requires a different amount of space, BASIC uses the case that requires the most storage to
determine the space allocated for each RECORD instance.

8.1.3. Accessing RECORD Components
To access a particular elementary component within a RECORD that contains other groups, you use the
name of the declared RECORD instance, the group name (or group names, if groups are nested), and the
elementary component name, each separated by double colons (::).

In the following example, the PRINT statement displays the Rig component in the Specifications group
in the variable named My_yacht. The RECORD instance name qualifies the group name and the group
name qualifies the elementary RECORD component. The elementary component name, qualified by all
intermediate group names and by the RECORD instance name, is called a fully qualified component.
The full qualification of a component is called a component path name.

DECLARE Yacht My_yacht

 .
 .
 .

PRINT My_yacht::Specifications::Rig

103

Chapter 8. Creating and Using Data Structures

Because it is cumbersome to specify the entire component path name, BASIC allows elliptical
references to RECORD components. GROUP names are optional in the component path name unless:

● A RECORD contains more than one component with the same name

● The GROUP is an array

The rules for using elliptical references are as follows:

● You must always specify the RECORD instance, that is, the name of the declared variable.

● You must always specify any dimensioned group.

● You may omit any other intermediate component names.

● You must specify the final component name.

The following example shows that using the complete component path name is valid but not required.
The assignment statement uses the fully qualified component name; the PRINT statement uses an
elliptical reference to the same component, omitting Extended_family and Nuclear_family GROUP
names. Note that the Children GROUP name is required because the GROUP is an array; the elliptical
reference to this component must include the desired array element, in this case the second element of
the Children array.

! RECORD templates:

RECORD Family

 GROUP Extended_family

 STRING Grandfather(1) = 30 ! Two-element fixed-length string
 STRING Grandmother(1) = 30 ! arrays for the names of maternal
 ! and paternal grandparents.
 GROUP Nuclear_family

 STRING Father = 30 ! Fixed-length strings for the names
 STRING Mother = 30 ! of parents.
 GROUP Children (10) ! An 11-element array for the names and
 ! gender of children.
 STRING Kid = 10
 STRING Gender = 1

 END GROUP Children

 END GROUP Nuclear_family

 END GROUP Extended_family

END RECORD
! Declarations

DECLARE Family My_family
! Program logic starts here.

My_family::Extended_family::Nuclear_family::Children(1)::Kid = "Johnny"

PRINT My_family::Children(1)::Kid

104

Chapter 8. Creating and Using Data Structures

END

Output
Johnny

! RECORD Templates.

RECORD Test

 INTEGER Test_integers(2) ! 3-element array of integers.

 GROUP Group_1 ! Single GROUP containing:

 REAL My_number ! a real number and
 STRING Group_1_string ! a 16-character (default) string

 END GROUP
 GROUP Group_2(5) ! A 6-element GROUP, each element
 containing:

 INTEGER My_number ! an integer and
 DECIMAL Group_2_decimal ! a DECIMAL number.

 END GROUP

END RECORD
! Declarations

DECLARE Test Array_of_test(10) ! Create an 11-element array of type
 Test...
DECLARE Test Single_test ! ...and a separate single instance of type
 ! Test.

The minimal reference to the string Group_1_string in RECORD instance Array_of_test is as follows:

Array_of_test(i)::Group_1_string

In this case, i is the subscript for array Array_of_test. Because the RECORD instance is itself an array,
the reference must include a specific array element.

Because Single_test is not an array, the minimal reference to string Group_1_string in RECORD instance
Single_test is as follows:

Single_test::Group_1_string

The minimal reference for the REAL variable My_number in GROUP Group_1 in RECORD instance
Array_of_test is as follows:

Array_of_test(i)::Group_1::My_number

Here, i is the subscript for array Array_of_test. The minimal reference to the REAL variable My_number
in RECORD instance Single_test is as follows:

Single_test::Group_1::My_number

Because there is a variable named My_number in groups Group_1 and Group_2, you must specify either
Group_1::My_number or Group_2(i)::My_number. In this case, extra component names are required to
resolve an otherwise ambiguous reference.

105

Chapter 8. Creating and Using Data Structures

The minimal reference to the DECIMAL variable Group_2_decimal in RECORD instances
Array_of_test and Single_test are the fully qualified references. In the following examples, i is the
subscript for array Array_of_test and j is an index into the group array Group_2. Even though
Group_2_decimal is a unique component name within RECORD instance Single_test, the element of
array Group_2 must be specified. In this case, the extra components must be specified because each
element of GROUP Group_2 contains a component named Group_2_decimal.

Array_of_test(i)::Group_2(j)::Group_2_decimal

Single_test::Group_2(j)::Group_2_decimal

You can assign all the values from one RECORD instance to another RECORD instance, as long as the
RECORD instances are identical except for names.

In the following example, RECORD instances First_test1, Second_test1, and the individual elements
of array Array_of_test1 have the same form: an array of four groups, each of which contains a 10-
byte string variable, followed by a REAL variable, followed by an INTEGER variable. Any of these
RECORD instances can be assigned to one another.

!RECORD Templates

RECORD Test1

 GROUP Group_1(4)

 STRING My_string_1 = 10
 REAL My_real_1
 INTEGER My_integer_1

 END GROUP

END RECORD

RECORD Test2

 GROUP Group_2

 STRING My_string_2 = 10
 REAL My_real_2
 INTEGER My_integer_2

 END GROUP

END RECORD
RECORD Test3

 STRING My_string_3 = 10
 REAL My_real_3
 INTEGER My_integer_3

END RECORD
!Declarations

DECLARE Test1 First_test1, &
 Second_test1, &
 Array_of_test1(3)

106

Chapter 8. Creating and Using Data Structures

DECLARE Test2 First_test2

DECLARE Test3 First_test3, &
 Array_of_test3(10)
!Program logic starts here

! A single RECORD instance is assigned to another single instance

First_test1 = Second_test1

! An array element is assigned to a single instance

Second_test1 = Array_of_test1(2)

! And vice versa

Array_of_test1(2) = Second_test1

Further, you can assign values from single RECORD instances to groups contained in other instances.

In the following example, Array_of_test1 and First_test1 do not have the same form because
Array_of_test1 is an array of RECORD Test1 and First_test1 is a single instance of RECORD Test1.
Therefore, First_test1 and Array_of_test1 cannot be assigned to one another.

! A single instance is assigned to one group

Array_of_test1(3)::Group_1(2) = First_test1

! An array element is assigned a value from
! a group contained in another array instance
Array_of_test3(5) = Array_of_test1(3)::Group_1(3)

The examples shown in this chapter explain the mechanics of using data structures. See Chapter 12,
"Program Segmentation" for more information about using data structures as parameters. See Chapter
13, "File Input and Output" for more information about using data structures for file input and output.

107

Chapter 8. Creating and Using Data Structures

108

Chapter 9. Program Control
This chapter describes the VSI BASIC for OpenVMS control statements.

VSI BASIC for OpenVMS normally executes statements sequentially. Control statements let you change
this sequence of execution. VSI BASIC for OpenVMS control statements can alter the sequence of
program execution at several levels:

● Statement modifiers control the execution of a single statement.

● Loops or decision blocks control the execution of a block of statements.

● Branching statements such as GOTO and ON GOTO pass control to statements or local subroutines.

● The EXIT and ITERATE statements explicitly control loops or decision blocks.

● The SLEEP, WAIT, STOP and END control statements suspend or halt the execution of your entire
program.

9.1. Statement Modifiers
Statement modifiers are control structures that operate on a single statement. Statement modifiers let
you execute a statement conditionally or create a loop. The following are BASIC statement modifiers:

IF
UNLESS
FOR
UNTIL
WHILE

A statement modifier affects only the statement immediately preceding it. You can modify only
executable statements; declarative statements cannot be modified.

9.1.1. IF Modifier
The IF modifier tests a conditional expression. If the conditional expression is true, VSI BASIC for
OpenVMS executes the statement. If it is false, VSI BASIC for OpenVMS does not execute the modified
statement but continues execution at the next program statement. The following is an example of a
statement using the IF modifier:

PRINT A IF (A < 5)

9.1.2. UNLESS Modifier
The UNLESS modifier tests a conditional expression. VSI BASIC for OpenVMS executes the modified
statement only if the conditional expression is false.

PRINT A UNLESS (A < 5)

This is equivalent to the following:

PRINT A IF A >= 5

109

Chapter 9. Program Control

9.1.3. FOR Modifier
The FOR modifier creates a loop on a single line. The following is an example of a loop created using
the FOR modifier:

A = A + 1 FOR I% = 1% TO 10%

9.1.4. UNTIL Modifier
The UNTIL modifier, like the FOR modifier, creates a single-line loop. However, instead of using a
formal loop variable, you specify the terminating condition with a conditional expression. The modified
statement executes repeatedly as long as the condition is false. For example:

B = B + 1 UNTIL (A - B) < 0.0001

9.1.5. WHILE Modifier
The WHILE modifier repeats a statement as long as a conditional expression is true. Like the UNTIL
and FOR modifiers, the WHILE modifier lets you create single-line loops. In the following example, VSI
BASIC for OpenVMS replaces the value of A with A/2, as long as the absolute value of A is greater than
one-tenth. Note that you can inadvertently create an infinite loop if the terminating condition is never
reached.

A = A / 2 WHILE ABS(A) > 0.1

9.1.6. Nesting Modifiers
If you append more than one modifier to a statement, you are nesting modifiers. VSI BASIC for
OpenVMS evaluates nested modifiers from right to left. If the test of the rightmost modifier fails, control
passes to the next statement, not to the preceding modifier on the same line.

In the following example, VSI BASIC for OpenVMS first tests the rightmost modifier of the first PRINT
statement. Because this condition is false, VSI BASIC for OpenVMS executes the following PRINT
statement and tests the rightmost modifier. Because this condition is met, VSI BASIC for OpenVMS
tests the leftmost modifier of the same PRINT statement. This condition, however, is not met. Therefore,
VSI BASIC for OpenVMS executes the following PRINT statement. Because both conditions are met in
the third PRINT statement, VSI BASIC for OpenVMS prints the value of C.

A = 5
B = 10
C = 15

PRINT "A =";A IF A = 5 UNLESS C = 15
PRINT "B =";B UNLESS C = 15 IF B = 10
PRINT "C =";C IF B = 10 UNLESS C = 5
END

Output
C = 15

9.2. Loops
Loops allow you to repeat the execution of a set of statements. This set of statements is called a loop
block. There are three types of VSI BASIC for OpenVMS program loops:

110

Chapter 9. Program Control

FOR...NEXT
WHILE...NEXT
UNTIL...NEXT

Note that these types of loops can be nested, that is, lexically located one inside another.

9.2.1. FOR...NEXT Loops
In a FOR...NEXT loop, you specify a loop control variable (the loop index) that determines the
number of loop iterations. This number must be a scalar (unsubscripted) variable. When VSI BASIC for
OpenVMS begins execution of a FOR...NEXT loop, the starting and ending values of the loop control
variable are known.

The FOR statement assigns the control variable a starting value and an ending value. You can use the
optional STEP clause to specify the amount to be added to the loop control variable after each loop
iteration.

When a FOR loop block executes, the VSI BASIC for OpenVMS compiler performs the following steps:

1. Evaluates the starting value and assigns it to the control variable.

2. Evaluates the ending value and the step value and assigns these results to temporary storage
locations.

3. Tests whether the ending value has been exceeded. If the ending value has already been exceeded,
VSI BASIC for OpenVMS executes the statement following the NEXT statement. If the ending value
has not been exceeded, VSI BASIC for OpenVMS executes the statements in the loop.

4. Adds the step value to the control variable and transfers control to the FOR statement, which tests
whether the ending value has been exceeded. Steps 3 and 4 are repeated until the ending value is
exceeded.

Note that VSI BASIC for OpenVMS performs the test before the loop executes. When the control
variable exceeds the ending value, VSI BASIC for OpenVMS exits the loop, and then subtracts the step
value from the control variable. This means that after loop execution, the value of the control variable is
the value last used in the loop, not the value that caused loop termination.

Example 9.1, "Assigning Values to Consecutive Array Elements" assigns the values 1 to 10 to consecutive
array elements 1 to 10 of New_array, and Example 9.2, "Assigning Consecutive Multiples to Odd-
Numbered Elements of Array" assigns consecutive multiples of 2 to the odd-numbered elements of
New_array.

Example 9.1. Assigning Values to Consecutive Array Elements

FOR I% = 1% TO 10%
 New_array(I%) = I%
NEXT I%

Example 9.2. Assigning Consecutive Multiples to Odd-Numbered Elements of Array

FOR I% = 1% TO 10% STEP 2
 New_array(I%) = I% + 1%
NEXT I%

Note that the starting, ending, and step values can be run-time expressions. You can have VSI BASIC
for OpenVMS calculate these values when the program runs, as opposed to using a constant value. For

111

Chapter 9. Program Control

instance, the following example assigns sales information to array Sales_data. The number of iterations
depends on the value of the variable Days_in_month, which represents the number of days in that
particular month.

FOR I% = 1% TO Days_in_month
 Sales_data(I%) = Quantity_sold
NEXT I%

Because the starting, ending, and step values can be numeric expressions, they are not evaluated until the
program runs. This means that you can have a FOR...NEXT loop that does not execute. The following
example prompts the user for the starting, ending, and step values for a loop, and then tries to execute
that loop. The loop executes zero times because it is impossible to go from 0 to 5 using a step value of
-1.

counter% = 0%

INPUT "Start"; start%
INPUT "Finish"; finish%
INPUT "Step value"; step_val%

FOR I% = start% TO finish% STEP step_val%
 counter% = counter% + 1%
NEXT I%

PRINT "This loop executed"; counter%; "times."

Output
Start? 0
Finish? 5
Step value? -1
This loop executed 0 times.

Whenever possible, you should use integer variables to control the execution of FOR...NEXT loops
because some decimal fractions cannot be represented exactly in a binary computer, and the calculation
of floating-point control variables is subject to this inherent imprecision.

In the following example, the first loop uses an integer control variable while the second uses a floating-
point control variable. The first loop executes 100 times and the second 99 times. After the ninety-ninth
iteration of the second loop, the internal representation of the value of Floating_point_variable exceeds
10 and BASIC exits the loop. Because the first loop uses integer values to control execution, VSI BASIC
for OpenVMS does not exit the loop until Integer_variable equals 100.

Loop_count_1 = 0%
Loop_count_2 = 0%

FOR Integer_variable = 1% to 100% STEP 1%
 Loop_count_1 = Loop_count_1 + 1%
NEXT Integer_variable

FOR Floating_point_variable = 0.1 to 10 STEP 0.1
 Loop_count_2 = Loop_count_2 + 1%
NEXT Floating_point_variable

PRINT "Integer loop count:"; Loop_count_1
PRINT "Integer loop end :"; Integer_variable
PRINT "Real loop count: "; Loop_count_2

112

Chapter 9. Program Control

PRINT "Real loop end: "; Floating_point_variable

Output
Integer loop count: 100
Integer loop end: 100
Real loop count: 99
Real loop end: 9.9

Although it is not recommended programming practice, you can assign a value to a FOR...NEXT
loop's control variable while in the loop. This affects the number of times a loop executes. For example,
assigning a value that exceeds the ending value of a loop will cause the loop's execution to end as soon
as VSI BASIC for OpenVMS performs the termination test in the FOR statement. Assigning values to
ending or step variables, however, has no effect at all on the loop's execution.

9.2.2. WHILE...NEXT Loops
A WHILE...NEXT statement uses a conditional expression to control loop execution; the loop is
executed as long as a given condition is true. A WHILE...NEXT loop is useful when you do not know
how many loop iterations are required.

In the following example, the first statement instructs the user to input data and then type DONE
when finished. After the user enters the first piece of input, VSI BASIC for OpenVMS executes the
WHILE...NEXT loop. If the first input value is not “DONE”, the loop executes and prompts the user for
another input value. Once the user enters this input value, the WHILE...NEXT loop once again checks to
see if this value corresponds to “DONE”. The loop will continue executing until the user types “DONE”
in response to the prompt.

INPUT 'Type "DONE" when finished'; Answer

WHILE (Answer <> "DONE")
 .
 .
 .
 INPUT "More data"; Answer
NEXT

Note that the NEXT statement in the WHILE...NEXT and UNTIL...NEXT loops does not increment
a control variable; your program must change a variable in the conditional expression or the loop will
execute indefinitely.

The evaluation of the conditional expression determines whether the loop executes. The test is performed
(that is, the conditional expression is evaluated) before the first iteration; if the value is false (0), the loop
does not execute.

It can be useful to intentionally create an infinite loop by coding a WHILE...NEXT loop whose
conditional expression is always true. When doing this you must take care to provide a way out of
the loop. You can do this with an EXIT statement or by trapping a run-time error. See Chapter 15,
"Handling Run-Time Errors" for more information about trapping run-time errors.

9.2.3. UNTIL...NEXT Loops
The UNTIL...NEXT loop performs like a WHILE...NEXT loop, except that the logical sense of the
conditional expression is reversed; that is, the UNTIL...NEXT loop executes until a given condition is
true.

113

Chapter 9. Program Control

An UNTIL...NEXT loop executes repeatedly for as long as the conditional expression is false. Note that
in UNTIL...NEXT loops, the NEXT statement does not increment a control variable. You must explicitly
change a variable in the conditional expression or the loop will execute indefinitely.

It is possible to code the WHILE...NEXT loop with a UNTIL...NEXT loop, as shown in the following
example. These loops are equivalent except for the logical sense of the termination test (WHILE Answer
<> “DONE” as opposed to UNTIL Answer = “DONE”).

INPUT 'Type "DONE" when finished.'; Answer

UNTIL (Answer = "DONE")
 .
 .
 .
 INPUT "More data"; Answer
NEXT

9.2.4. Nesting Loops
When a loop block is entirely contained in another loop block, it is called a nested loop.

The following example declares a two-dimensional array and uses nested FOR...NEXT loops to fill the
array elements with sales information. The inner loop executes 16 times for each iteration of the outer
loop. This example assigns a value to each of the 256 elements of the array.

DECLARE
 INTEGER
 Column_number,
 Row_number
 REAL
 Sales_info,
 Two_dim_array (15%, 15%)

FOR Row_number = 0% TO 15%
 FOR Column_number = 0% to 15%
 INPUT "Please enter the sales information";Sales_info
 Two_dim_array (Row_number, Column_number) = Sales_info
 NEXT Column_number
NEXT Row_number

Note that in nested loops the inner loop is entirely contained in the outer loop; nested loops cannot
overlap.

9.3. Unconditional Branching (GOTO
Statement)
The GOTO statement specifies which program line the VSI BASIC for OpenVMS compiler is to execute
next, regardless of that line's position in the program. If the statement at the target line number or label
is nonexecutable (such as an REM statement), VSI BASIC for OpenVMS transfers control to the next
executable statement following the target line number.

You can use a GOTO statement to exit from a loop; however, it is better programming practice to use
the EXIT statement.

114

Chapter 9. Program Control

9.4. Conditional Branching
Conditional branching is the transfer of program control only when specified conditions are met. There
are three VSI BASIC for OpenVMS statements that let you conditionally transfer control to a target
statement in your program:

● ON...GOTO...OTHERWISE

● IF...THEN...ELSE

● SELECT...CASE

9.4.1. ON...GOTO...OTHERWISE Statement
The ON...GOTO...OTHERWISE statement tests the value specified after the ON keyword. If the value
is 1, VSI BASIC for OpenVMS transfers control to the first target in the list; if the value is 2, control
passes to the second target, and so on. If the value is less than 1 or greater than the number of targets in
the list, VSI BASIC for OpenVMS transfers control to the target specified in the OTHERWISE clause.
For example:

Menu:
 PRINT "Would you like to change:"
 PRINT "1. First name"
 PRINT "2. Last name"

INPUT CHOICE%

ON CHOICE% GOTO First_name, Last_name OTHERWISE Other_choice

First_name:
 INPUT "First name"; firstname$
 GOTO Done

Last_name:
 INPUT "Last name"; lastname$
 GOTO Done

Other_choice:
 PRINT "Invalid choice"
 PRINT "Let's try again"
 GOTO Menu

Done:
 END

Note that if you do not supply an OTHERWISE clause and the control variable is less than 1 or greater
than the number of targets, BASIC signals “ON statement out of range (ERR = 58)”.

9.4.2. IF...THEN...ELSE Statement
The IF...THEN...ELSE statement evaluates a conditional expression and uses the result to determine
which block of statements to execute next. If the conditional expression is true, VSI BASIC for
OpenVMS executes the statements in the THEN clause. If the conditional expression is false, VSI BASIC
for OpenVMS executes the statements in the ELSE clause, if one is present. If the conditional expression

115

Chapter 9. Program Control

is false and there is no ELSE clause, VSI BASIC for OpenVMS executes the statement immediately
following the END IF statement.

In the following example, VSI BASIC for OpenVMS evaluates the conditional expression number < 0. If
the input value of number is less than zero, the conditional expression is true. VSI BASIC for OpenVMS
then executes the statements in the THEN clause, skips the statement in the ELSE clause, and transfers
control to the statement following the END IF. If the value of number is greater than or equal to zero, the
conditional expression is false. VSI BASIC for OpenVMS then skips the statements in the THEN clause
and executes the statement in the ELSE clause.

INPUT "Input number"; number

IF (number < 0)
THEN
 number = - number
 PRINT "That square root is imaginary"
 PRINT "The square root of its absolute value is";
 PRINT SQR(number)
ELSE
 PRINT "The square root is"; SQR(number)
END IF
END

Output
Input number? -9
That square root is imaginary
The square root of its absolute value is 3

Do not neglect to end an IF...THEN...ELSE statement. After an IF block is executed, control is
transferred to the statement immediately following the END IF. If there is no END IF, VSI BASIC for
OpenVMS transfers control to the next line number. Code between the keyword ELSE and the next line
number becomes part of the ELSE clause. If there are no line numbers, the VSI BASIC for OpenVMS
compiler ignores the remaining program code from the keyword ELSE to the end of the program.
Therefore, it is important to end IF statements.

IF...THEN...ELSE statements can be nested. In an inner nesting level, if an END IF is not present, the
BASIC compiler treats the presence of an ELSE clause for an IF statement in an outer nesting level
as an implicit END IF for all unterminated IF statements at that point. For example, in the following
construction, the third ELSE terminates both inner IFs:

IF expression
THEN
 IF expression
 THEN
 statement-list
 ELSE
 IF expression
 THEN
 statement-list
 ELSE
 statement-list
ELSE

In the following example, the first IF...THEN...ELSE statement is ended by END IF, and works as
expected. Because the second IF...THEN...ELSE statement is not terminated by END IF, the VSI BASIC

116

Chapter 9. Program Control

for OpenVMS compiler assumes that the last PRINT statement in the program is part of the second
ELSE clause.

10 DECLARE INTEGER light_bulb
 DECLARE INTEGER circuit_switch
 DECLARE INTEGER CONSTANT Opened = 0
 DECLARE INTEGER CONSTANT Closed = 1

 PRINT "Please enter zero or one, corresponding to the circuit"
 PRINT "switch being open or closed"
 INPUT On_off_val
 IF On_off_val = Opened

 THEN
 PRINT "The light bulb is off."
 ELSE
 PRINT "The light bulb is on."
 END IF
 IF On_off_val = Closed
 THEN
 PRINT "The light bulb is on."
 ELSE
 PRINT "The light bulb is off."
 PRINT "That's all for now."

20 END

When you run the program, the first IF...THEN...ELSE statement will always execute correctly.

The final PRINT statement will execute only when the value of On_off_val is 1 (that is, closed),
because the compiler considers this PRINT statement to be part of the second ELSE clause.

Output 1
Please enter zero or one, corresponding to the circuit
switch being open or closed
? 0
The light bulb is off.
The light bulb is off.
That's all for now.

Output 2
Please enter zero or one, corresponding to the circuit
Switch being open or closed
? 1
The light bulb is on.
The light bulb is on.

Note that a statement in a THEN or ELSE clause can be followed by a modifier. In this case, the
modifying IF applies only to the statement that immediately precedes it.

IF A = B
THEN
 PRINT A IF A = 3
ELSE
 PRINT B IF B > 0
END IF

9.4.3. SELECT...CASE Statement

117

Chapter 9. Program Control

The SELECT...CASE statement lets you specify an expression (the SELECT expression), any number of
possible values (cases) for the SELECT expression, and a list of statements (a CASE block) for each case.
The SELECT expression can be a numeric or string value. CASE values can be single or multiple values,
one or more ranges of values, or relationships. When a match is found between the SELECT expression
and a CASE value, the statements in the following CASE block are executed. Control is then transferred
to the statement following the END SELECT statement.

In the following example, the CASE values appear to overlap; that is, the CASE value that tests for values
greater than or equal to 0.5 also includes the values greater than or equal to 1.0. However, VSI BASIC
for OpenVMS executes the statements associated with the first matching CASE statement and then
transfers control to the statement following END SELECT. In this program, each range of values is tested
before it overlaps in the next range. Because the compiler executes the first matching CASE statement,
the overlapping values do not matter.

DECLARE REAL Stock_change

INPUT "Please enter stock price change";Stock_change

SELECT Stock_change

CASE <= 0.5
 PRINT "Don't sell yet."

CASE <= 1.0
 PRINT "Sell today."

CASE ELSE
 PRINT "Sell NOW!"

END SELECT
END

Output
Please enter stock price change? 2.1
Sell NOW!

If no match is found for any of the specified cases and there is no CASE ELSE block, VSI BASIC for
OpenVMS transfers control to the statement following END SELECT without executing any of the
statements in the SELECT block.

SELECT...CASE lets you use run-time expressions for both SELECT expressions and CASE values. The
following example uses VSI BASIC for OpenVMS built-in string functions to examine command input:

! This program is a skeleton command processor.
! It recognizes three VAX BASIC Environment commands:
!
! SAVE
! SCRATCH
! OLD

DECLARE INTEGER CONSTANT True = -1
DECLARE INTEGER CONSTANT False = 0

DECLARE STRING CONSTANT Null_input = "" !This is the null string.

118

Chapter 9. Program Control

DECLARE STRING Command

! Main program logic starts here.

Command_loop:

WHILE True ! This loop executes until the user types only a
 ! carriage return in response to the prompt.

 PRINT
 PRINT "Please enter a command (uppercase only)."
 PRINT "Type a carriage return when finished."
 INPUT Command
 PRINT

 SELECT Command

 CASE Null_input ! If user types RETURN,
 ! exit from the loop
 GOTO Done ! and end the program.

 ! The next three cases use the SEG$ and LEN string functions.
 ! LEN returns the length of the typed string, and SEG$ searches
 ! the string literals ("SAVE", "SCRATCH", and "OLD") for a
 ! match up to that length. Note that if the user types an "S",
 ! it is interpreted as a SAVE command only because SAVE is the
 ! first case tested.

 CASE SEG$ ("SAVE", 1%, LEN (Command))
 PRINT "That was a SAVE command."

 CASE SEG$ ("SCRATCH", 1%, LEN (Command))
 PRINT "That was a SCRATCH command."

 CASE SEG$("OLD", 1%, LEN (Command))
 PRINT "That was an OLD command."

 CASE ELSE
 PRINT "Invalid command, please try again."

 END SELECT
 NEXT

Done:
 END

9.5. EXIT and ITERATE Statements
This section describes the EXIT and ITERATE statements and shows their use with nested control
structures.

The ITERATE and EXIT statements let you explicitly control loop execution. These statements can be
used to transfer control to the top or bottom of a control structure.

You can use EXIT to transfer control out of any of these structures:

119

Chapter 9. Program Control

● FOR...NEXT loops

● WHILE...NEXT loops

● UNTIL...NEXT loops

● IF...THEN...ELSE blocks

● SELECT...CASE blocks

● SUB, FUNCTION, and PICTURE subprograms

● DEF functions, and programs

In the case of control structures, EXIT passes control to the first statement following the end of the
control structure.

You can use ITERATE to explicitly reexecute a FOR...NEXT, WHILE...NEXT, or UNTIL...NEXT loop.
EXIT and ITERATE statements can appear only within the code blocks you want to leave or reexecute.

Executing the ITERATE statement is equivalent to transferring control to the loop's NEXT statement.
The termination test is still performed when the NEXT statement transfers control to the top of the loop.
In addition, transferring control to the NEXT statement means that a FOR loop's control variable is
incremented by the STEP value.

Supplying a label for every loop lets you state explicitly which loop to leave or reexecute. If you do not
supply a label for the ITERATE statement, VSI BASIC for OpenVMS reexecutes the innermost active
loop. For example, if an ITERATE statement (that does not specify a label) is executed in the innermost
of three nested loops, only the innermost loop is reexecuted.

In contrast, labeling each loop and supplying a label argument to the ITERATE statement lets you
reexecute any of the loops. A label name also helps document your code. Because you must use a label
with EXIT and it is sometimes necessary to use a label with ITERATE, you should always label the
structures you want to control with these statements.

The following example shows the use of both the EXIT and ITERATE statements. This program
explicitly exits the loop if you type a carriage return in response to the prompt. If you type a string, the
program prints the length of the string and explicitly reexecutes the loop.

DECLARE STRING User_string

Read_loop:
WHILE 1% = 1%
 LINPUT "Please type a string"; User_string

 IF User_string == ""
 THEN
 EXIT Read_loop
 ELSE
 PRINT "Length is ";LEN(User_string)
 ITERATE Read_loop
 END IF
NEXT
END

120

Chapter 9. Program Control

9.6. Executing Local Subroutines
In VSI BASIC for OpenVMS, a subroutine is a block of code accessed by a GOSUB or ON GOSUB
statement. It must be in the same program unit as the statement that calls it. The RETURN statement in
the subroutine returns control to the statement immediately following the GOSUB.

The first line of a subroutine can be any valid VSI BASIC for OpenVMS statement, including a REM
statement. You do not have to transfer control to the first line of the subroutine. Instead, you can include
several entry points into the same subroutine. You can also reference subroutines by using a GOSUB or
ON GOSUB statement to another subroutine.

Variables and data in a subroutine are global to the program unit in which the subroutine resides.

9.6.1. GOSUB and RETURN Statements
The GOSUB statement unconditionally transfers control to a line in a subroutine. The last statement
in a subroutine is a RETURN statement, which returns control to the first statement after the calling
GOSUB. A subroutine can contain more than one RETURN statement so you can return control
conditionally, depending on a specified condition.

The following example first assigns a value of 5 to the variable A, then transfers control to the subroutine
labeled Times_two. This subroutine replaces the value of A with A multiplied by 2. The subroutine's
RETURN statement transfers control to the first PRINT statement, which displays the changed value.
The program calls the subroutine two more times, with different values for A. Each time, the RETURN
transfers control to the statement immediately following the corresponding GOSUB.

A = 5
GOSUB Times_two
PRINT A

A = 15
GOSUB Times_two
PRINT A

A = 25
GOSUB Times_two
PRINT A

GOTO Done

Times_two:
 !This is the subroutine entry point
 A = A * 2
 RETURN

Done:
 END

Output
10
30
50

Note that VSI BASIC for OpenVMS signals “RETURN without GOSUB” if it encounters a RETURN
statement without first having encountered a GOSUB or ON GOSUB statement.

121

Chapter 9. Program Control

9.6.2. ON...GOSUB...OTHERWISE Statement
The ON...GOSUB...OTHERWISE statement transfers control to one of several target subroutines
depending on the value of a numeric expression. A RETURN statement returns control to the first
statement after the calling ON GOSUB. A subroutine can contain more than one RETURN statement so
that you can return control conditionally, depending on a specified condition.

VSI BASIC for OpenVMS tests the value of the integer expression. If the value is 1, control transfers
to the first line number or label in the list; if the value is 2, control passes to the second line number
or label, and so on. If the control variable's value is less than 1 or greater than the number of targets
in the list, VSI BASIC for OpenVMS transfers control to the line number or label specified in the
OTHERWISE clause. If you do not supply an OTHERWISE clause and the control variable's value is
less than 1 or greater than the number of targets, BASIC signals “ON statement out of range (ERR=58)”.
For example:

INPUT "Please enter first integer value"; First_value%
INPUT "Please enter second integer value"; Second_value%

Choice:
 PRINT "Do you want to perform:"
 PRINT "1. Multiplication"
 PRINT "2. Division"
 PRINT "3. Exponentiation"

INPUT Selection%

ON Selection% GOSUB Mult, Div, Expon OTHERWISE Wrong
GOTO Done

Mult:
 Result% = First_value% * Second_value%
 PRINT Result%
 RETURN

Div:
 Result% = First_value / Second_value%
 PRINT Result%
 RETURN

Expon:
 Result% = First_value% ** Second_value%
 PRINT Result%
 RETURN

Wrong:
 PRINT "Invalid selection"
 RETURN

Done:
 END

9.7. Suspending and Halting Program
Execution
The following VSI BASIC for OpenVMS statements suspend program execution:

122

Chapter 9. Program Control

SLEEP
WAIT

These statements cause VSI BASIC for OpenVMS either to suspend program execution for a specified
time or to wait a certain period of time for user input.

After execution of the last statement, a VSI BASIC for OpenVMS program automatically halts and
closes all files. However, you can explicitly halt program execution by using one of the following
statements:

STOP
END

The STOP statement does not close files. It can appear anywhere in a program. The END statement
closes files and must be the last statement in a main program.

9.7.1. SLEEP Statement
The SLEEP statement suspends program execution for a specified number of seconds. The following
program waits two minutes (120 seconds) after receiving the input string, and then prints it:

INPUT "Type a string of characters"; C$
SLEEP 120%
PRINT C$
END

The SLEEP statement is useful if you have a program that depends on another program for data. Instead
of constantly checking for a condition, the SLEEP statement lets you check the condition at specified
intervals.

9.7.2. WAIT Statement
You use the WAIT statement only with terminal input statements such as INPUT, INPUT LINE,
and LINPUT. For example, the following program prompts for input, then waits 30 seconds for your
response. If the program does not receive input in the specified time, VSI BASIC for OpenVMS signals
“Keyboard wait exhausted (ERR=15)” and exits the program.

WAIT 30%
INPUT "You have 30 seconds to type your password"; PSW$
END

The WAIT statement affects all subsequent INPUT, INPUT LINE, LINPUT, MAT INPUT, and MAT
LINPUT statements. To disable a previously specified WAIT statement, use WAIT 0%.

In the following example, the first WAIT statement causes the first INPUT statement to wait 30 seconds
for a response. The WAIT 0% statement disables this 30-second requirement for all subsequent INPUT
statements.

WAIT 30%
INPUT "You have 30 seconds to type your password"; PSW$
WAIT 0%
INPUT "What directory do you want to go to"; DIR$

9.7.3. STOP Statement
The STOP statement is a debugging tool that lets you check the flow of program logic. STOP suspends
program execution but does not close files.

123

Chapter 9. Program Control

When VSI BASIC for OpenVMS executes a STOP statement, it signals “STOP at line <line-num>.”

If you compile, link, and execute a program containing a STOP statement, VSI BASIC for OpenVMS
displays a number sign (#) prompt when the STOP statement is encountered. At this point, you can enter:

● CONTINUE (to continue program execution)

● EXIT (to return to DCL command level)

9.7.4. END Statement
The END statement marks the end of a main program. When VSI BASIC for OpenVMS executes an
END statement, it closes all files and halts program execution.

The END statement is optional in VSI BASIC for OpenVMS programs. However, it is good
programming practice to include it. The END statement must be the last statement in the main program.

The END statement returns you to DCL command level.

124

Chapter 10. Functions
 A function is a single statement or group of statements that perform operations on operands and return
the result to your program. VSI BASIC for OpenVMS has built-in functions that perform numeric and
string operations, conversions, and date and time operations. This chapter describes only a selected group
of built-in functions. For a complete description of all VSI BASIC for OpenVMS built-in functions, see
the VSI BASIC Reference Manual.

This chapter also describes user-defined functions. VSI BASIC for OpenVMS lets you define your own
functions in two ways:

● With the DEF statement

● As separately compiled subprograms (external functions)

DEF function definitions are local to a program module, while external functions can be accessed by any
program module. You create local functions with the DEF statement and optionally declare them with
the DECLARE statement. You create external functions with the FUNCTION statement and declare
them with the EXTERNAL statement. For more information about creating external functions with the
FUNCTION statement, see Chapter 12, "Program Segmentation".

Once you create and declare a function, you can invoke it like a built-in function.

10.1. Built-In Functions
The functions described in this section let you perform sophisticated manipulations of string and
numeric data. VSI BASIC for OpenVMS also provides algebraic, exponential, trigonometric, and
randomizing mathematical functions.

10.1.1. Numeric Functions
Numeric functions generally return a result of the same data type as the function's parameter. For
example, if you pass a DOUBLE argument to any of the trigonometric functions, they return a DOUBLE
result.

If the format of a VSI BASIC for OpenVMS function specifies an argument of a particular data type,
VSI BASIC for OpenVMS converts the actual argument supplied to the specified data type. For example,
if you supply an integer argument to a function that expects a floating-point number, VSI BASIC for
OpenVMS converts the argument to a floating-point number. Floating-point arguments that are passed to
integer functions are truncated, not rounded.

The following sections discuss the VSI BASIC for OpenVMS built-in numeric functions.

10.1.1.1. ABS Function
The ABS function returns a floating-point number that equals the absolute value of a specified numeric
expression. For example:

READ A,B
DATA 10,-35.3
NEW_A = ABS(A)
PRINT NEW_A; ABS(B)
END

125

Chapter 10. Functions

Output

 10 35.3

The ABS function always returns a number of the default floating-point data type.

10.1.1.2. INT and FIX Functions
The INT function returns the floating-point value of the largest integer less than or equal to a specified
expression. The INT function always returns a number of the default floating-point type.

The FIX function truncates the value of a floating-point number at the decimal point. FIX always returns
a number of the default floating-point type.

The following example shows the differences between the INT and FIX functions. Note that the value
returned by FIX(-45.3) differs from the value returned by INT(-45.3).

PRINT INT(23.553); FIX(23.553)
PRINT INT(3.1); FIX(3.1)
PRINT INT(-45.3); FIX(-45.3)
PRINT INT(-11); FIX(-11)
END

Output

 23 23
 3 3
-46 -45
-11 -11

10.1.1.3. SIN, COS, and TAN Functions
The SIN, COS, and TAN functions return the sine, cosine, and tangents of an angle in radians or degrees,
depending on which angle clause you choose with the OPTION statement. If you supply a floating-point
argument to the SIN, COS, and TAN functions, they return a number of the same floating-point type.
If you supply an integer argument, they convert the argument to the default floating-point data type and
return a floating-point number of that type.

The following example accepts an angle in degrees, converts the angle to radians, and prints the angle's
sine, cosine, and tangent:

!CONVERT ANGLE (X) TO RADIANS, AND
!FIND SIN, COS AND TAN
PRINT "DEGREES", "RADIANS", "SINE", "COSINE","TANGENT"
FOR I% = 0% TO 5%
 READ X
 LET Y = X * 2 * PI / 360
 PRINT
 PRINT X ,Y ,SIN(Y) ,COS(Y) ,TAN(Y)
NEXT I%

DATA 0,10,20,30,360,45
END

Output

DEGREES RADIANS SINE COSINE TANGENT

126

Chapter 10. Functions

 0 0 0 1 0

 10 .174533 .173648 .984808 .176327

 20 .349066 .34202 .939693 .36397

 30 .523599 .5 .866025 .57735

 360 6.28319 .174846E-06 1 .174846E-06

 45 .785398 .707107 .707107 1

Note

As an angle approaches 90 degrees (PI/2 radians), 270 degrees (3*PI/2 radians), 450 degrees (5*PI/2
radians), and so on, the tangent of that angle approaches infinity. If your program tries to find the
tangent of such an angle, VSI BASIC for OpenVMS signals “Division by 0” (ERR=61).

10.1.1.4. SQR Function

The SQR function returns the square root of a number. For example:

PRINT SQR (2)

Output

1.41421

10.1.1.5. LOG10 Function

A logarithm is the exponent of some number (called a base). Common logarithms use the base 10. The
common logarithm of a number n, for example, is the power to which 10 must be raised to equal n. For
example, the common logarithm of 100 is 2, because 10 raised to the power 2 equals 100.

The LOG10 function returns a number's common logarithm. The following example calculates the
common logarithms of all multiples of 10 from 10 to 100, inclusively:

FOR I% = 10% TO 100% STEP 10%
 PRINT LOG10(I%)
NEXT I%
END

Output

 1
 1.30103
 1.47712
 1.60206
 1.69897
 1.77815
 1.8451
 1.90309
 1.95424
 2

127

Chapter 10. Functions

If you supply a floating-point argument to LOG10, the function returns a floating-point number of the
same data type. If you supply an integer argument, LOG10 converts it to the default floating-point data
type and returns a value of that type.

10.1.1.6. EXP Function
The EXP function returns the value of e raised to a specified power. The following example prints the
value of e and e raised to the second power:

READ A,B
DATA 1,2
PRINT 'e RAISED TO THE POWER'; A; " EQUALS"; EXP(A)
PRINT 'e RAISED TO THE POWER'; B; " EQUALS"; EXP(B)
END

Output
e RAISED TO THE POWER 1 EQUALS 2.71828
e RAISED TO THE POWER 2 EQUALS 7.38906

If you supply a floating-point argument to EXP, the function returns a floating-point number of the same
data type. If you supply an integer argument, EXP converts it to the default floating-point data type and
returns a value of that type.

10.1.1.7. RND Function
The RND function returns a number greater than or equal to zero and less than 1. The RND function
always returns a floating-point number of the default floating-point data type. The RND function
generates seemingly unrelated numbers. However, given the same starting conditions, a computer always
gives the same results. Each time you execute a program with the RND function, you receive the same
results.

PRINT RND,RND,RND,RND
END

Output 1
 .76308 .179978 .902878 .88984

Output 2
 .76308 .179978 .902878 .88984

With the RANDOMIZE statement, you can change the RND function's starting condition and generate
random numbers. To do this, place a RANDOMIZE statement before the line invoking the RND
function. Note that the RANDOMIZE statement should be used only once in a program. With the
RANDOMIZE statement, each invocation of RND returns a new and unpredictable number.

RANDOMIZE
PRINT RND,RND,RND,RND
END

Output 1
.403732 .34971 .15302 .92462

Output 2
.404165 .272398 .261667 .10209

128

Chapter 10. Functions

The RND function can generate a series of random numbers over any open range. To produce random
numbers in the open range A to B, use the following formula:

(B-A)*RND + A

The following program produces 10 numbers in the open range 4 to 6:

FOR I% = 1% TO 10%
 PRINT (6%-4%) * RND + 4
NEXT I%
END

Output

 5.52616
 4.35996
 5.80576
 5.77968
 4.77402
 4.95189
 5.76439
 4.37156
 5.2776
 4.53843

10.1.2. Data Conversion Functions
VSI BASIC for OpenVMS provides built-in functions that can perform the following:

● Convert a 1-character string to the character's ASCII value and vice versa

● Translate strings from one data format to another, for example, EBCDIC to ASCII

The following sections describe some of these functions.

10.1.2.1. ASCII Function
The ASCII function returns the numeric ASCII value of a string's first character. The ASCII function
returns an integer value from 0 to 255, inclusive. For instance, in the following example, the PRINT
statement prints the integer value 66 because this is the ASCII value equivalent of an uppercase B, the
first character in the string:

test_string$ = "BAT"
PRINT ASCII(test_string$)
END

Output

 66

Note that the ASCII value of a null string is zero.

10.1.2.2. CHR$ Function
The CHR$ function returns the character whose ASCII value you supply. If the ASCII integer expression
that you supply is less than zero or greater than 255, VSI BASIC for OpenVMS treats it as a modulo 256

129

Chapter 10. Functions

value. VSI BASIC for OpenVMS treats the integer expression as the remainder of the actual supplied
integer divided by 256. Therefore, CHR$(325) is equivalent to CHR$(69) and CHR$(-1) is equivalent to
CHR$(255).

The following program outputs the character whose ASCII value corresponds to the input value modulo
256:

PRINT "THIS PROGRAM FINDS THE CHARACTER WHOSE"
PRINT "VALUE (MODULO 256) YOU TYPE"
INPUT value%
PRINT CHR$(value%)
END

Output 1

THIS PROGRAM FINDS THE CHARACTER WHOSE
VALUE (MODULO 256) YOU TYPE
 ? 69
E

Output 2

THIS PROGRAM FINDS THE CHARACTER WHOSE
VALUE (MODULO 256) YOU TYPE
 ? 1093
E

10.1.3. String Numeric Functions
Numeric strings are numbers represented by ASCII characters. A numeric string consists of an optional
sign, a string of digits, and an optional decimal point. You can use E notation in a numeric string for
floating-point constants.

The following sections describe some of the VSI BASIC for OpenVMS numeric string functions.

10.1.3.1. FORMAT$ Function
The FORMAT$ function converts a numeric value to a string. The output string is formatted according
to a string you provide. The expression you give this function can be any string or numeric expression.
The format string must contain at least one PRINT USING format field. The formatting rules are the
same as those for printing numbers with PRINT USING. See Chapter 14, "Formatting Output with the
PRINT USING Statement" for more information about the PRINT USING statement and formatting
rules.

A = 5
B$ = "##.##"
Z$ = FORMAT$(A, B$)
PRINT Z$
END

Output

 5.00

10.1.3.2. NUM$ and NUM1$ Functions

130

Chapter 10. Functions

The NUM$ function evaluates a numeric expression and returns a string of characters formatted as the
PRINT statement would format it. The returned numeric string is preceded by one space for positive
numbers and by a minus sign (-) for negative numbers. The numeric string is always followed by a space.
For example:

PRINT NUM$(7465097802134)
PRINT NUM$(-50)
END

Output

 .74651E+13
-50

 The NUM1$ function translates a number into a string of numeric characters. NUM1$ does not return
leading or trailing spaces or E format. The following example shows the use of the NUM1$ function:

PRINT NUM1$(PI)
PRINT NUM1$(97.5 * 30456.23 + 30385.1)
PRINT NUM1$(1E-38)
END

Output

3.14159
2999870
.00000000000000000000000000000000000001

NUM1$ returns up to 6 digits of accuracy for SINGLE and SFLOAT real numbers, up to 16 digits of
accuracy for DOUBLE numbers, up to 10 digits of accuracy for LONG integers, and up to 19 digits of
accuracy for QUAD integers. NUM1$ returns up to 15 digits of accuracy for GFLOAT and TFLOAT
numbers and up to 33 digits of accuracy for XFLOAT numbers.

The following example shows the difference between NUM$ and NUM1$:

A$ = NUM$(1000000)
B$ = NUM1$(1000000)
PRINT LEN(A$); "/"; A$; "/"
PRINT LEN(B$); "/"; B$; "/"
END

Output

 8 / .1E+07 /
 7 /1000000/

Note that A$ has a leading and trailing space.

10.1.3.3. VAL% and VAL Functions
The VAL% function returns the integer value of a numeric string. This numeric string expression must
be the string representation of an integer. It can contain the ASCII characters 0 to 9, a plus sign (+), or a
minus sign (-).

The VAL function returns the floating-point value of a numeric string. The numeric string expression
must be the string representation of some number. It can contain the ASCII characters 0 to 9, a plus sign
(+), a minus sign (-), or an uppercase E.

131

Chapter 10. Functions

The VAL function returns a number of the default floating-point data type. VSI BASIC for OpenVMS
signals “Illegal number” (ERR=52) if the argument is outside the range of the default floating-point data
type.

The following is an example of VAL and VAL%:

A = VAL("922")
B$ = "100"
C% = VAL%(B$)
PRINT A
PRINT C%
END

Output

 922
 100

10.1.4. String Arithmetic Functions
In BASIC, string arithmetic functions process numeric strings as arithmetic operands. This lets you add
(SUM$), subtract (DIF$), multiply (PROD$), and divide (QUO$) numeric strings, and express them at a
specified level of precision (PLACE$).

String arithmetic offers greater precision than floating-point arithmetic or longword integers and
eliminates the need for scaling. However, string arithmetic executes more slowly than the corresponding
integer or floating-point operations.

The operands for the functions can be numeric strings representing any integer or floating-point value (E
notation is not valid). Table 10.1, "String Arithmetic Functions" shows the string arithmetic functions and
their formats, and gives brief descriptions of what they do.

Table 10.1. String Arithmetic Functions

Function Format Description

SUM$ SUM$(A$,B$) B$ is added to A$.
DIF$ DIF$(A$,B$) B$ is subtracted from A$.
PROD$ PROD$(A$,B$,P%) A$ is multiplied by B$. The product is

expressed with precision P%.
QUO$ QUO$(A$,B$,P%) A$ is divided by B$. The quotient is

expressed with precision P%.
PLACE$ PLACE$(A$,P%) A$ is expressed with precision P%.

String arithmetic computations permit 56 significant digits. The functions QUO$, PLACE$, and PROD
$, however, permit up to 60 significant digits. Table 10.2, "Precision of String Arithmetic Functions"
shows how VSI BASIC for OpenVMS determines the precision permitted by each function and if that
precision is implicit or explicit.

Table 10.2. Precision of String Arithmetic Functions

Function How Determined How Stated

SUM$ Precision of argument Implicitly
DIF$ Precision of argument Implicitly

132

Chapter 10. Functions

Function How Determined How Stated

PROD$ Value of argument Explicitly
QUO$ Value of argument Explicitly
PLACE$ Value of argument Explicitly

10.1.4.1. SUM$ and DIF$ Functions
The SUM$ and DIF$ functions take the precision of the more precise argument in the function unless
padded zeros generate that precision. SUM$ and DIF$ omit trailing zeros to the right of the decimal
point.

The size and precision of results returned by the SUM$ and DIF$ functions depend on the size and
precision of the arguments involved:

● The sum or difference of two integers takes the precision of the larger integer.

● The sum or difference of two decimal fractions takes the precision of the more precise fraction.

● The sum or difference of two real numbers takes precision as follows:

○ The sum or difference of the integer parts takes the precision of the larger part.

○ The sum or difference of the decimal fraction parts takes the precision of the more precise part.

● Trailing zeros are trunctated.

10.1.4.2. QUO$, PLACE$, and PROD$ Functions
In the QUO$, PLACE$, and PROD$ functions, the value of the integer expression argument explicitly
determines numeric precision. That is, the integer expression parameter determines the point at which
the number is rounded or truncated.

If the integer expression is between -5000 and 5000, rounding occurs according to the following rules:

● For positive integer expressions, rounding occurs to the right of the decimal point. For example, if
the integer expression is 1, rounding occurs one digit to the right of the decimal point (the number is
rounded to the nearest tenth). If the integer expression is 2, rounding occurs two digits to the right of
the decimal point (the number is rounded to the nearest hundredth), and so on.

● For zero, rounding occurs to the nearest unit.

● For negative integer expressions, rounding occurs to the left of the decimal point. For example, if
the integer expression is -1, rounding occurs one place to the left of the decimal point. In this case,
VSI BASIC for OpenVMS moves the decimal point one place to the left, then rounds to units. If the
integer expression is -2, rounding occurs two places to the left of the decimal point; VSI BASIC for
OpenVMS moves the decimal point two places to the left, then rounds to units.

Note that when rounding numeric strings, VSI BASIC for OpenVMS returns only part of the number.

If the integer expression is between 5001 and 15,000, the following rules apply:

● If the integer expression is 10,000, VSI BASIC for OpenVMS truncates the number at the decimal
point.

133

Chapter 10. Functions

● If the integer expression is greater than 10,000 (10,000 plus n), VSI BASIC for OpenVMS truncates
the numeric string n places to the right of the decimal point. For example, if the integer expression
is 10,001 (10,000 plus 1), VSI BASIC for OpenVMS truncates the number starting one place to
the right of the decimal point. If the integer expression is 10,002 (10,000 plus 2), VSI BASIC for
OpenVMS truncates the number starting two places to the right of the decimal point, and so on.

● If the integer expression is less than 10,000 (10,000 minus n) VSI BASIC for OpenVMS truncates
the numeric string n places to the left of the decimal point. For example, if the integer expression is
9999 (10,000 minus 1), VSI BASIC for OpenVMS truncates the number starting one place to the left
of the decimal point. If the integer expression is 9998 (10,000 minus 2), VSI BASIC for OpenVMS
truncates starting two places to the left of the decimal point, and so on.

The PLACE$ function returns a numeric string, truncated or rounded according to an integer argument
you supply.

The following example displays the use of the PLACE$ function with several different integer expression
arguments:

number$ = "123456.654321"
FOR I% = -5% TO 5%
 PRINT PLACE$(number$, I%)
NEXT I%
PRINT
FOR I% = 9995 TO 10005
 PRINT PLACE$(number$, I%)
NEXT I%

Output

1
12
123
1235
12346
123457
123456.7
123456.65
123456.654
123456.6543
123456.65432

1
12
123
1234
12345
123456
123456.6
123456.65
123456.654
123456.6543
123456.65432

The PROD$ function returns the product of two numeric strings. The returned string's precision depends
on the value you specify for the integer precision expression.

A$ = "-4.333"

134

Chapter 10. Functions

B$ = "7.23326"
s_product$ = PROD$(A$, B$, 10005%)
PRINT s_product$
END

Output

-31.34171

10.1.5. Date and Time Functions
VSI BASIC for OpenVMS supplies functions to return the date and time in numeric or string format.
The following sections discuss these functions.

Note that you can also use certain system services and Run-Time Library routines for more sophisticated
date and time functions. See the VSI OpenVMS System Services Reference Manual and the VMS Run-
Time Library Routines Volume for more information.

10.1.5.1. DATE$ Function
The DATE$ function returns a string containing a day, month, and year in the form dd-Mmm-yy. The
date integer argument to the DATE$ function can have up to six digits in the form yyyddd, where yyy
specifies the number of years since 1970 and ddd specifies the day of that year. If the numeric expression
is zero, DATE$ returns the current date.

PRINT DATE$(0)
PRINT DATE$(126)
PRINT DATE$(6168)
END

Output

15-Jun-85
06-May-70
16-Jun-76

If you supply an invalid date (for example, day 370 of the year 1973), the results are undefined.

See Section 10.1.5.2, "DATE4$ Function" for the recommended replacement for DATE$, which has a
two-digit year field in the result string.

10.1.5.2. DATE4$ Function

The DATE4$ function is strongly recommended as replacement for the DATE$ function to avoid
problems in the year 2000 and beyond. It functions the same as the DATE$ function except that the year
portion of the result string contains two more digits indicating the century. For example:

PRINT 32150, DATE$ (32150), DATE4$ (32150)

Produces the following output:

32150 30-May-02 30-May-2002

See the description of the DATE$ function for more information.

135

Chapter 10. Functions

10.1.5.3. TIME$ Function
The TIME$ function returns a string displaying the time of day in the form hh:mm AM or hh:mm PM.
TIME$ returns the time of day at a specified number of minutes before midnight. If you specify zero in
the numeric expression, TIME$ returns the current time of day. For example:

PRINT TIME$(0)
PRINT TIME$(1)
PRINT TIME$(1440)
PRINT TIME$(721)
END

Output

03:53 PM
11:59 PM
12:00 AM
11:59 AM

10.1.5.4. TIME Function
The TIME function requests time and usage information from the operating system and returns it to your
program. The information returned by the TIME function depends on the value of the argument passed
to it. The values and the information they return are as follows:

Value Information Returned

0 Returns the number of seconds elapsed since midnight
1 Returns the current job's CPU time in tenths of a second
2 Returns the current job's connect time in minutes
3 Returns zero
4 Returns zero

All other arguments to TIME are undefined and cause VSI BASIC for OpenVMS to signal “Not
implemented” (ERR=250).

10.1.6. Terminal Control Functions
VSI BASIC for OpenVMS provides several terminal control functions. These functions let you:

● Enable and disable Ctrl/C trapping

● Enable and disable terminal echoing

● Read a single keystroke from a terminal

10.1.6.1. CTRLC and RCTRLC Functions
The CTRLC function enables Ctrl/C trapping, and the RCTRLC function disables Ctrl/C trapping. When
Ctrl/C trapping is enabled, control is transferred to the program's error handler when Ctrl/C is detected
at the controlling terminal.

Ctrl/C trapping is asynchronous. The trap can occur in the middle of an executing statement, and a
statement so interrupted leaves variables in an undefined state. For example, the statement A$ = “ABC”,

136

Chapter 10. Functions

if interrupted by Ctrl/C, could leave the variable A$ partially set to “ABC” and partially left with its
previous contents.

For example, if you type Ctrl/C to the following program when Ctrl/C trapping is enabled, an “ABORT”
message prints to the file open on channel #1. This lets you know that the program did not end correctly.

WHEN ERROR USE error_handler
 Y% = CTRLC
 .
 .
 .
END WHEN
HANDLER error_handler
 IF ERR = 28 THEN PRINT #1%, "Abort"
 .
 .
 .
END HANDLER

Note

When you trap Ctrl/C with an error handler, your program might be in an inconsistent state; therefore,
you should handle the Ctrl/C error and exit the program as quickly as possible.

10.1.6.2. ECHO and NOECHO Functions
The NOECHO function disables echoing on a specified channel. Echoing is the process by which
characters typed at the terminal keyboard appear on the screen.

If you specify channel #0 (your terminal) as the argument, the characters typed on the keyboard are still
accepted as input; however, they do not appear on the screen.

The ECHO function enables echoing on a specified channel and cancels the effect of the NOECHO
function on that channel.

If you do not use these functions, ECHO is the default. The following program shows a password routine
in which the password does not echo:

Y% = NOECHO(0%)
INPUT "PASSWORD"; pword$
IF pword$=="PLUGH" THEN PRINT "THAT IS CORRECT"
END IF
Y% = ECHO(0%)
END

Note that the Y% = ECHO(0%) statement is necessary to turn the echo back on. If this statement were
not included, then all subsequent user inputs would not echo to the terminal screen.

10.1.6.3. INKEY$ Function
The INKEY$ function reads a single keystroke from a terminal opened on a specified channel and
returns the typed character.

If you specify a channel that is not open, VSI BASIC for OpenVMS signals the error “I/O channel
not open” (ERR=9). If a file or a device other than a terminal is open on the channel, VSI BASIC for
OpenVMS signals the error “Illegal operation” (ERR=141).

137

Chapter 10. Functions

Once you have specified a channel, VSI BASIC for OpenVMS allows you to specify an optional WAIT
clause. A WAIT clause followed by no value tells VSI BASIC for OpenVMS to wait indefinitely for input
to become available. A WAIT clause followed by a value from 1 to 255 tells VSI BASIC for OpenVMS
to wait the specified number of seconds for input.

DECLARE STRING
KEYSTROKE Inkey_Loop: WHILE 1% KEYSTROKE = INKEY$(1%,WAIT)

 SELECT KEYSTROKE
 CASE '26'C
 PRINT "Ctrl/Z to exit"
 EXIT Inkey_Loop
 CASE CR,LF,VT,FF,ESC
 PRINT "Line terminator"
 CASE "PF1" TO "PF4"
 PRINT "P key"
 CASE "E1" TO "E6"
 PRINT "VT200 Function key"
 CASE "KP0" TO "KP9"
 PRINT "Application keypad key"
 CASE < SP
 PRINT "Control character"
 CASE '127'C
 PRINT ""
 CASE ELSE
 PRINT "Character is "; KEYSTROKE
 END SELECT
NEXT

10.2. User-Defined Functions
The DEF statement lets you create your own single-line or multiline functions.

In VSI BASIC for OpenVMS, a function name consists of the following:

● The letters FN

● From 1 to 28 letters, digits, underscores, or periods

● An optional percent sign or dollar sign

Integer function names must end with a percent sign (%), and string function names must end with a
dollar sign ($); therefore, the function name can have up to 31 characters. If the function name ends with
neither a percent sign nor a dollar sign, the function returns a real number.

You can create user-defined functions using these function naming rules; however, it is recommended
that you use explicit data typing when defining functions for new program development. See Chapter
12, "Program Segmentation" for an example of an explicitly declared function. Note that the function
name must start with FN only if the function is not explicitly declared, and a function reference lexically
precedes the function definition.

DEF functions can be either single-line or multiline. Whether you use the single-line or multiline format
for function definitions depends on the complexity of the function you create. In general, multiline DEF
functions perform more complex functions than single-line DEF functions and are suitable for recursive
operations.

138

Chapter 10. Functions

If you want to pass values to a function, the function definition requires a formal parameter list. These
formal parameters are the variables used to calculate the value returned by the function. When you
invoke a function, you supply an actual parameter list; the values in the actual parameter list are copied
into the formal parameter at this time. DEF functions allow up to 255 formal parameters. You can
specify variables, constants, or array elements as formal parameters, but you cannot specify an entire
array as a parameter to a DEF function.

10.2.1. Single-Line DEF Functions
In a single-line DEF, the function name, the formal parameter list, and the defining expression all appear
on the same line. The defining expression specifies the calculations that the function performs. You
can pass up to 255 arguments to this function through the formal parameter list. These parameters are
variables local to the function definition, and each formal parameter can be preceded by a data type
keyword.

The following example creates a function named fnratio. This function has two formal parameters:
numer and denomin, whose ratio is returned as a REAL value.

When the function is invoked, VSI BASIC for OpenVMS does the following:

● Copies the values 5.6 and 7.8 into the formal parameters numer and denomin

● Evaluates the expression to the right of the equal sign

● Returns the value to the statement that invoked the function (the PRINT statement)

The PRINT statement then prints the returned value.

DEF REAL fnratio (numer, denomin) = numer / denomin
PRINT fnratio(5.6, 7.8)
END

Output
 .717949

Note that the actual parameters you supply must agree in number and data type with those in the formal
parameter list; you must supply numeric values for numeric variables, and string values for string
variables.

The defining expression for a single-line function definition can contain any constant, variable, VSI
BASIC for OpenVMS built-in function, or any user-defined function except the function being defined.
The following examples are valid function definitions:

DEF FN_A(X) = X^2 + 3 * X + 4
DEF FN_B(X) = FN_A(X) / 2 + FN_A(X)
DEF FN_C(X) = SQR(X+4) + 1
DEF CUBE(X) = X ^ 3

Note that the name of the last function defined does not begin with FN. This is valid as long as no
reference to the function lexically precedes the function definition.

You can also define a function that has no formal parameters. The following function definition uses
three VSI BASIC for OpenVMS built-in functions to return an integer corresponding to the day of the
month:

139

Chapter 10. Functions

● DATE$ (0) returns a date string in the form dd-Mmm-yy.

● The SEG$ function strips out of this value the characters starting at character position 1 up to and
including the character at position 2 (the day number).

● The VAL% function converts this resulting numeric string to an integer. In this way, fnday_number
returns the day of the month as an integer.

DEF INTEGER fnday_number = VAL% (SEG$(DATE$(0%), 1%, 2%))

10.2.2. Multiline DEF Functions
 The DEF statement can also define multiline functions. Multiline DEF functions are useful for
expressing complicated functions. Note that multiline DEF functions do not have the equal sign and
defining expression on the first line. Instead, this expression appears in the function block, assigned to
the function name.

Note

If a multiline DEF function contains DATA statements, they are global to the program unit.

Multiline function definitions can contain any constant, variable, VSI BASIC for OpenVMS built-in
function, or user-defined function. In VSI BASIC for OpenVMS, the function definition can contain
a reference to the function you are defining. Therefore, a multiline DEF function can be recursive, or
invoke itself; however, VSI BASIC for OpenVMS does not detect infinitely recursive DEF functions
during compilation. If your program invokes an infinitely recursive DEF function, VSI BASIC for
OpenVMS will eventually signal a fatal run-time error, typically the error “Access violation.”

You can use either the END DEF or EXIT DEF statements to exit from a user-defined function. The
EXIT DEF statement is equivalent to an unconditional transfer to the END DEF statement.

The following example shows a multiline DEF function that uses both the EXIT and END DEF
statements. The defining expression of the function is in the ELSE clause. This assigns a value to the
function if A is less than 10. The second set of output shows what happens when A is greater than 10;
VSI BASIC for OpenVMS prints “OUT OF RANGE” and executes the EXIT DEF statement. The
function returns zero because control is transferred to the END DEF statement before a value was
assigned. In this way, this example tests the arguments before the function is evaluated.

DEF fn_discount(A)
 IF A > 10
 THEN
 PRINT "OUT OF RANGE"
 EXIT DEF
 ELSE
 fn_discount = A^A
 END IF
END DEF

INPUT Z
PRINT fn_discount(Z)
END

Output 1
? 4

140

Chapter 10. Functions

 256

Output 2
? 12
OUT OF RANGE
 0

If you do not explicitly declare the function with the DECLARE statement, the restrictions for naming
a multiline DEF function are the same as those for the single-line DEF function; however, explicitly
declaring a DEF function can make a program easier to read and understand. For instance, Example 1
concatenates two strings and Example 2 returns a number in a specified modulus.

DECLARE STRING FUNCTION concat (STRING, STRING) !Declare the function
 .
 .
 .
DEF STRING concat (STRING Y, STRING Z)
concat = Y + Z !Define the function
FNEND
 .
 .
 .
new_string$ = concat(A$, B$) !Invoke the function
 .
 .
 .
END

DECLARE REAL FUNCTION mdlo (REAL, INTEGER)
DEF mdlo(REAL argument, INTEGER modulus)
 !Check for argument equal to zero

 EXIT DEF IF argument = 0
 !Check for modulus equal to zero, modulus equal to absolute
 !value of argument, and modulus greater than absolute
 !value of argument.

 SELECT modulus
 CASE = 0%
 EXIT DEF
 CASE > ABS(argument)
 EXIT DEF
 CASE = ABS(argument)
 mdlo = argument
 EXIT DEF
 END SELECT

 !If argument is negative, set flag negative% and set argument
 !to its absolute value.
 IF argument < 0
 THEN argument = ABS(argument)
 negative% = -1%
 END IF
 UNTIL argument < modulus
 argument = argument - modulus

 !If this calculation ever results in zero, mdlo returns zero

141

Chapter 10. Functions

 IF argument = modulus
 THEN mdlo = 0
 EXIT DEF
 END IF
 NEXT

 !Argument now contains the right number, but the sign might be wrong.
 !If the negative argument flag was set, make the result negative.

 IF negative%
 THEN mdlo = - argument
 ELSE mdlo = argument
 END IF

END DEF

INPUT "PLEASE INPUT THE VALUE AND THE MODULUS"; X,Y
PRINT mdlo(X,Y)
END

Output
PLEASE INPUT THE VALUE AND THE MODULUS? 7, 5
 2

Because these functions are declared in DECLARE statements, the function names do not have to
conform to the traditional VSI BASIC for OpenVMS rules for naming functions.

Recursion occurs when a function calls itself. The following example defines a recursive function that
returns a number's factorial value:

DECLARE INTEGER FUNCTION factor (INTEGER)
DEF INTEGER factor (INTEGER F)
 IF F <= 0%
 THEN factor = 1%
 ELSE factor = factor(F - 1%) * F
 END IF
END DEF
INPUT "INPUT N TO FIND N FACTORIAL"; N%
PRINT "N! IS"; factor(N%)
END

Output
INPUT N TO FIND N FACTORIAL? 5
N! IS 120

Any variable accessed or declared in the DEF function and not in the formal parameter list is global to
the program unit. When VSI BASIC for OpenVMS evaluates the user-defined function, these global
variables contain the values last assigned to them in the surrounding program module.

To prevent confusion, variables declared in the formal parameter list should not appear elsewhere in
the program. Note that if your function definition actually uses global variables, these variables cannot
appear in the formal parameter list.

You cannot transfer control into a multiline DEF function except by invoking it. You should not transfer
control out of a DEF function except by way of an EXIT DEF or END DEF statement. This means that:

142

Chapter 10. Functions

● If the DEF function contains an ON ERROR GOTO, GOTO, ON GOTO, GOSUB, ON GOSUB, or
RESUME statement, that statement's target line number must also be in that DEF function.

● An ON ERROR GO BACK statement can transfer control out of a DEF function; however, a
RESUME statement in an error handler outside the DEF function cannot transfer control back into
the DEF function.

● If the DEF function contains a handler, and was invoked from a protected region, an EXIT
HANDLER statement causes control to be transferred to the specified handler for that protected
region. However, if the DEF function contains a handler but was not invoked from a protected
region, an EXIT HANDLER statement causes control to be transferred to the default error handler.

● A subroutine cannot be shared by more than one DEF function; however, if you rewrite the
subroutine as a DEF function with no parameters, other function definitions can share it.

A DEF function never changes the value of a parameter passed to it. Also, because formal parameters
are local to the function definition, you cannot access the values of these variables from outside the DEF
statement. These variable names are known only inside the DEF statement.

In the following example, the variable first is declared only in the function fn_sum. When VSI BASIC for
OpenVMS sees the second PRINT statement, it assumes that first is a new variable that is not declared
in the main program. If you try to run this example, VSI BASIC for OpenVMS signals the error “Explicit
declaration of first required.” If you do not specify the OPTION TYPE = EXPLICIT statement, VSI
BASIC for OpenVMS assumes that first is a new variable and initializes it to zero.

OPTION TYPE = EXPLICIT
DECLARE INTEGER A, B
DEF fn_sum(INTEGER first, INTEGER second) = first + second
A = 50
B = 25
PRINT fn_sum(A, B)
PRINT first
END

143

Chapter 10. Functions

144

Chapter 11. String Handling
This chapter defines dynamic and fixed-length strings and string virtual arrays, explains which you
should choose for your application, and shows you how to use them.

11.1. Overview of Strings
A string is a sequence of ASCII characters. BASIC allows you to use the following types of strings:

● Dynamic strings

● Fixed-length strings

● String virtual arrays

Dynamic strings are strings whose length can change during program execution. The length of a
dynamic string variable can change or not, depending on the statement used to modify it.

Fixed-length strings are strings whose length never changes. In other words, their length remains static.
String constants are always fixed-length. String variables can be either fixed-length or dynamic. A string
variable is fixed-length if it is named in a COMMON, MAP, or RECORD statement. If a string variable
is not part of a map or common block, RECORD, or virtual array, it is a dynamic string. When a string
variable is fixed-length, its length does not change, regardless of the statement you use to modify it.
Table 11.1, "String Modification" provides more information about string modification.

Strings in virtual arrays have both fixed-length and dynamic attributes. String virtual arrays have a
specified maximum length from 0 to 512 characters. During program execution, the length of an element
in a string virtual array can change; however, the length is always from 0 to the maximum string size
specified when the array was created. See Section 11.4, "Using String Virtual Arrays" and Chapter 13,
"File Input and Output" for more information about virtual arrays.

Table 11.1. String Modification

Statement Changes Made to Fixed-Length
Strings

Changes Made to Dynamic Strings

LET Value Value and length
LSET Value Value
RSET Value Value
Terminal I/O
Statements 1

Value Value and length

1Terminal I/O statements include INPUT, INPUT LINE, LINPUT, MAT INPUT, and so on.

11.2. Using Dynamic Strings
Although dynamic strings are less efficient than fixed-length strings, they are often more flexible. For
example, to concatenate strings, you can use the LET statement to assign the concatenated value to a
dynamic string variable, without having to be concerned about VSI BASIC for OpenVMS truncating the
string or adding trailing spaces to it. However, if the destination variable is fixed-length, you must make
sure that it is long enough to receive the concatenated string, or VSI BASIC for OpenVMS truncates the
new value to fit the destination string. Similarly, if you use LSET or RSET to concatenate strings, you
must ensure that the destination variable is long enough to receive the data.

145

Chapter 11. String Handling

The LET, LSET, and RSET statements all operate on dynamic strings as well as fixed-length strings. The
LET statement can change the length of a dynamic string; LSET and RSET do not. LSET and RSET
are more efficient than LET when changing the value of a dynamic string. For more information about
LSET and RSET, see Section 11.5.2, "LSET Statement" and Section 11.5.3, "RSET Statement".

In the following example, the first line assigns the value “ABC” to A$, the second line assigns “XYZ” to
B$, and the third line assigns six spaces to C$. These variables are dynamic strings. In the fourth line,
LSET assigns A$ the value of A$ concatenated with B$. Because the LSET statement does not change
the length of the destination string variable, only the first three characters of the expression A$ + B$ are
assigned to A$. The fifth line uses LSET to assign C$ the value of A$ concatenated with B$. Because C$
already has a length of 6, this statement assigns the value “ABCXYZ” to it.

LET A$ = "ABC"
LET B$ = "XYZ"
LET C$ = " "
LSET A$ = A$ + B$
LSET C$ = A$ + B$
PRINT A$
PRINT C$
END

Output
ABC
ABCXYZ

Like the LET statement, the INPUT, INPUT LINE, and LINPUT statements can change the length of a
dynamic string, but they cannot change the length of a fixed-length string.

In this example, the first line assigns the null string to variable A$. The second line uses the LEN
function to show that the null string has a length of zero. The third line uses the INPUT statement to
assign a new value to A$, and the fourth and fifth lines print the new value and its length.

!Declare a dynamic string
LET A$ = ""
PRINT LEN(A$)
INPUT A$
PRINT A$
PRINT LEN(A$)
END

Output
 0
? THIS IS A TEST
THIS IS A TEST
 14

You should not confuse the null string with a null character. A null character is one whose ASCII
numeric code is zero. The null string is a string whose length is zero.

11.3. Using Fixed-Length Strings
It is generally more efficient to manipulate a fixed-length string than a dynamic string. Creating or
modifying a dynamic string often causes VSI BASIC to create new storage, and this increases processor
overhead.

146

Chapter 11. String Handling

If a string variable is part of a map or common block, or virtual array, a LET, INPUT, LINPUT, or
INPUT LINE statement changes its value, but not its length. In the following example, the MAP
statement in the first line explicitly assigns a length to each string variable. Because the LINPUT
statements cannot change this length, VSI BASIC for OpenVMS truncates values to fit the address and
city_state variables. Because the zip variable is longer than the assigned value, VSI BASIC for OpenVMS
left-justifies the assigned value and pads it with spaces. The sixth line uses the compile-time constant HT
(horizontal tab) to separate fields in the employee record.

MAP (FIELDS) STRING full_name = 10, &
 address = 10, &
 city_state = 10, &
 zip = 10
LINPUT "NAME"; full_name
LINPUT "ADDRESS"; address
LINPUT "CITY AND STATE"; city_state
LINPUT "ZIP CODE"; zip
EMPLOYEE_RECORD$ = full_name + HT + address + HT &
 + city_state + HT + zip
PRINT EMPLOYEE_RECORD$
END

Output
NAME? JOE SMITH
ADDRESS? 66 GRANT AVENUE
CITY AND STATE? NEW YORK NY
ZIP? 01001

JOE SMITH 66 GRANT A NEW YORK N 01001

11.4. Using String Virtual Arrays
Virtual arrays are stored on disk. You create a virtual array by opening a disk file and then using the
DIM # statement to dimension the array on the open channel. This section describes only string virtual
arrays. See Chapter 13, "File Input and Output" for more information about virtual arrays.

Elements of string virtual arrays behave much like dynamic strings, with the following exceptions:

● When you create the virtual string array, you specify a maximum length for the array's elements. The
length of an array element can never exceed this maximum. If you do not supply a length, the default
is 16 characters.

● A string virtual array element cannot contain trailing nulls.

When you assign a value to a string virtual array element, VSI BASIC for OpenVMS pads the value with
nulls, if necessary, to fit the length of the virtual array element; however, when you retrieve the virtual
array element, VSI BASIC for OpenVMS strips all trailing nulls from the string. Therefore, when you
access an element in a string virtual array, the string never has trailing nulls.

In the following example, the first two lines dimension a string virtual array and open a file on channel
#1. The third line assigns a 10-character string to the first element of this string array, and to the variable
A$. This 10-character string consists of “ABCDE” plus five null characters. The PRINT statements show
that the length of A$ is 10, while the length of test(1) is only 5 because VSI BASIC for OpenVMS strips
trailing nulls from string array elements.

DIM #1%, STRING test(5)

147

Chapter 11. String Handling

OPEN "TEST" AS FILE #1%, ORGANIZATION VIRTUAL
A$, test(1%) = "ABCDE" + STRING$(5%, 0%)
PRINT "LENGTH OF A$ IS: "; LEN(A$)
PRINT "LENGTH OF TEST(1) IS: "; LEN(test(1%))
END

Output
LENGTH OF A$ IS: 10
LENGTH OF TEST(1) IS: 5

Although the storage for string virtual array elements is fixed, the length of a string array element can
change because VSI BASIC for OpenVMS strips the trailing nulls whenever it retrieves a value from the
array.

11.5. Assigning String Data
To assign string data, you use the LET, LSET, RSET, and MID$ statements. The following sections
describe how to use these statements.

11.5.1. LET Statement
The LET statement assigns string data to a string variable. The keyword LET is optional. Again, LSET is
more efficient than LET when changing a dynamic string variable. In the following example, B is a string
variable and “ret_status” is a quoted string expression:

LET B = "ret_status"

The LET statement changes the length of dynamic strings but does not change the length of fixed-length
strings. The following example first creates a fixed-length string named ABC by declaring the string in a
MAP statement. The program then creates a dynamic string named XYZ by declaring it in a DECLARE
statement. The third line assigns a 3-character value to both variable ABC and XYZ, then prints the value
and the length of the string variables. Variable ABC continues to have a length of 10: the three characters
assigned, plus seven spaces for padding. The length of the dynamic variable changes with the values
assigned to it.

MAP (TEST) STRING ABC = 10
DECLARE STRING XYZ
ABC = "ABC"
XYZ = "XYZ"
PRINT ABC, LEN(ABC)
PRINT XYZ, LEN(XYZ)
ABC = "A"
XYZ = "X"
PRINT ABC, LEN(ABC)
PRINT XYZ, LEN(XYZ)

Output
ABC 10
XYZ 3
A 10
X 1

11.5.2. LSET Statement

148

Chapter 11. String Handling

The LSET statement left-justifies data and assigns it to a string variable, without changing the variable's
length. In the following example, ABC is a string variable and “ABC” is a string constant:

LSET ABC = "ABC"

If the string expression's value is shorter than the string variable's current length, LSET left-justifies the
expression and pads the string variable with spaces. In the following example, the LET statement creates
the 5-character string variable test$. The LSET statement in the second line assigns the string XYZ to
the variable test$ but does not change the length of test$. Because test$ has a length of 5, the LSET
statement pads the string XYZ with two spaces when assigning the value. The PRINT statement shows
that test$ includes these two spaces.

LET test$ = "ABCDE"
LSET test$ = "XYZ"
PRINT "'"; test$; "'"
END

Output
'XYZ '

LSET left-justifies a string expression longer than the string variable and truncates it on the right as
shown in the following example:

LET test$ = "ABCDE"
LSET test$ = "12345678"
PRINT test$
END

Output
12345

The LET statement creates the 5-character string variable test$. The LSET statement in the second line
assigns the characters “12345” to test$. Because LSET does not change the string variable's length, it
truncates the last three characters (678).

11.5.3. RSET Statement
The RSET statement right-justifies data and assigns it to a string variable without changing the variable's
length. In the following example, C_R is a string variable and “cust_rec” is a string constant:

RSET C_R = "cust_rec"

RSET right-justifies a string expression shorter than the string variable and pads it with spaces on the
left. In the following example, the LET statement creates the 5-character string variable test$. The RSET
statement in the second line assigns the string XYZ to test$ but does not change the length of test$.
Because test$ is five characters long, the RSET statement pads XYZ with two spaces when assigning the
value. The PRINT statement shows that test$ includes these two spaces.

LET test$ = "ABCDE"
RSET test$ = "XYZ"
PRINT "'" ; test$; "'"
END

Output
' XYZ'

149

Chapter 11. String Handling

If the string expression's value is longer than the string variable, RSET right-justifies the string expression
and truncates characters on the left to fit the string variable as shown in the following example:

LET test$ = "ABCDE"
RSET test$ = "987654321"
PRINT test$
END

Output
54321

The LET statement creates a 5-character string variable, test$. The RSET statement assigns “54321”
to test$. RSET, which does not change the variable's length, truncates “9876” from the left side of the
string expression.

Note that, when using LSET and RSET, padding can become part of the data.

LET A$ = '12345'
LSET A$ = 'ABC'
LET B$ = '12345678'
RSET B$ = A$
PRINT "'";B$;"'"

Output
' ABC '

11.5.4. MID$ Assignment Statement
You can replace a portion of a string with another string using the MID$ assignment statement. You
specify a starting character position that indicates where to begin the substitution. If you specify a
starting character position that is less than 1, VSI BASIC for OpenVMS assumes a starting character
position of 1. In addition, you can optionally specify the number of characters to substitute from the
source string expression. If you do not specify the number of characters to substitute, VSI BASIC for
OpenVMS attempts to insert the entire source expression. However, the MID$ statement never changes
the length of the target string variable; therefore, the entire source expression might not fit into the
available space.

The following example shows the use of MID$ as an assignment statement. In this example, “ABCD”
is the input string, the starting character position is 1, and the length of the segment to be replaced is 3
characters. Note that when you use MID$ as an assignment statement, the length of the input string does
not change; therefore, the length of the result (“123D”) is equal to the length of the input string.

DECLARE STRING old_string, replace_string
old_string = "ABCD"
replace_string = "123"
PRINT old_string
MID$(old_string,1,3) = replace_string
PRINT old_string

Output
ABCD
123D

150

Chapter 11. String Handling

Keep these considerations in mind when you use the MID$ assignment statement:

● The length argument is optional. If not specified, the number of characters replaced will be the
minimum of the length of the replacement string and the length of the input string minus the starting
position value.

● If the length of the segment is less than or equal to zero, VSI BASIC for OpenVMS assumes a length
of zero.

● The length of the input string does not change regardless of the value of the length of the segment.

11.6. Manipulating String Data with String
Functions
When used with the LET statement, VSI BASIC for OpenVMS string functions let you manipulate and
modify strings. These functions let you:

● Determine the length of a string (LEN)

● Search for the position of a set of characters in a string (POS)

● Extract segments from a string (SEG$, MID$)

● Create a string of any length, made up of any single character (STRING$)

● Create a string of spaces (SPACE$)

● Remove trailing spaces and tabs from a string (TRM$)

● Edit a string (EDIT$)

These functions are discussed in the following sections. See the VSI BASIC Reference Manual for more
information about each string's function.

11.6.1. LEN Function
The LEN function returns the number of characters in a string as an integer value. For example:

LEN(spec)

Spec is a string expression. The length of the string expression includes leading and trailing blanks. In the
following example, the variable Z$ is set equal to "ABC XYZ",, which has a length of eight:

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
PRINT LEN(alpha$)
Z$ = "ABC" + " " + ""XYZ"
PRINT LEN(Z$)
END

Output
 26
 8

11.6.2. POS Function

151

Chapter 11. String Handling

The POS function searches a string for a group of characters (a substring). In the following example,
spec is the string to be searched, test is the substring for which you are searching and 15 is the character
position where VSI BASIC for OpenVMS starts the search:

POS(spec,test,15)

The position returned by POS is relative to the beginning of the string, not the starting position of the
search. For example, if you search the string “ABCDE” for the substring “E”, it does not matter whether
you specify a starting position of 1, 2, 3, 4, or 5, VSI BASIC for OpenVMS still returns the value 5 as
the position where the substring was found.

If the function finds the substring, it returns the position of the substring's first character. Otherwise, it
returns zero as in the following example:

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Z$ = "DEFG"
X% = POS(ALPHA$,Z$,1%)
PRINT X%
Q$ = "TEST"
Y% = POS(ALPHA$, Q$, 1%)
PRINT Y%
END

Output
 4
 0

If you specify a starting position other than 1, VSI BASIC for OpenVMS still returns the position of the
substring relative to the beginning of the string as shown in the following example:

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
Z$ = "HIJ"
PRINT POS(ALPHA$, Z$, 7%)
END

Output
 8

If you know that the substring is not near the string's beginning, specifying a starting position greater
than one speeds program execution by reducing the number of characters VSI BASIC for OpenVMS
must search.

You can use the POS function to associate a character string with an integer that you can then use in
calculations. This technique is called a table look-up. The following example prompts for a 3-character
string, changes the string to uppercase letters, and searches the table string to find a match. The WHILE
loop executes indefinitely until a carriage return is typed in response to the prompt.

DECLARE STRING CONSTANT table = &
 "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"
DECLARE STRING month, UPPER_CASE_MONTH, message
DECLARE INTEGER month_length
DECLARE REAL month_pos
PRINT "Please type the first three letters of a month"
PRINT "To end the program, type only Return";

152

Chapter 11. String Handling

Loop_1:
 WHILE 1% = 1%
 INPUT month
 UPPER_CASE_MONTH = EDIT$(month, 32%)
 month_length = LEN(UPPER_CASE_MONTH)
 EXIT Loop_1 IF month_length = 0%
 IF month_length = 3%
 THEN month_pos = (POS(table, UPPER_CASE_MONTH, 1) + 2) / 3
 IF (month_pos = 0%) OR (month_pos <> FIX(month_pos))
 THEN MESSAGE = " Invalid abbreviation, try again"
 ELSE MESSAGE = " is month number" + NUM$(MONTH_POS)
 END IF
 ELSE MESSAGE = " Abbreviation not three characters, try again"
 END IF
 PRINT month; message
 NEXT
END

Output
Please type the first three letters of a month
To end the program, type only Return? Nov
Nov is month number 11

Keep these considerations in mind when you use POS:

● If you specify a starting position less than 1, POS assumes a starting position of one.

● If you specify a starting position greater than the searched string's length, POS returns a zero (unless
the substring is null).

● When searching for a null string:

○ If you specify a starting position greater than the string's length, POS returns the string's length
plus one.

○ If the string to be searched is also null, POS returns a value of one.

○ If the specified starting position is less than or equal to 1, POS returns a value of one.

○ If the specified starting position is greater than one and less than or equal to the string's length
plus 1, POS returns the specified starting position.

Note that searching for a null string is not the same as searching for the null character. A null string has
a length of zero, while the null character has a length of one. The null character is an ASCII character
whose value is zero.

11.6.3. SEG$ Function
The SEG$ function extracts a segment (substring) from a string. The original string remains unchanged.
In the following example, time is the input string, 13 is the position of the first character extracted, and
16 is the position of the last character extracted:

SEG$(time,13,16)

SEG$ extracts from the input string the substring that starts at the first character position, up to and
including the last character position. It returns the extracted segment.

153

Chapter 11. String Handling

PRINT SEG$("ABCDEFG", 3%, 5%)
END

Output
CDE

If you specify character positions that exist in the string, the length of the returned substring always
equals (int-exp2 – int-exp1 + 1).

Keep these considerations in mind when you use SEG$:

● If the starting character position is less than 1, VSI BASIC for OpenVMS assumes a value of 1.

● If the starting character position is greater than the ending character position, or the length of the
string, SEG$ returns a null string.

● If the ending character position is greater than the length of the string, SEG$ returns all characters
from the starting character position to the end of the string.

● If the starting character position is equal to the ending character position, SEG$ returns the character
at the starting position.

You can replace part of a string by using the SEG$ function with the string concatenation operator (+).
In the following example, when VSI BASIC for OpenVMS creates C$, it concatenates the first two
characters of A$, the 3-letter string XYZ, and the last two characters of A$. The original contents of A$
do not change.

A$ = "ABCDEFG"
C$ = SEG$(A$, 1%, 2%) + "XYZ" + SEG$(A$, 6%, 7%)
PRINT C$
PRINT A$
END

Output
ABXYZFG

ABCDEFG

You can use similar string expressions to replace characters in any string. If you do not change the
length of the target string, use the MID$ assignment statement to perform string replacement. A general
formula to replace characters in positions n through m of string A$ with characters in B$ is as follows:

C$ = SEG$(A$,1%,n-1) + B$ + SEG$(A$,m+1,LEN(A$))

The following example replaces the sixth to ninth characters of the string “ABCDEFGHIJK” with
“123456”:

A$ = "ABCDEFGHIJK"
B$ = "123456"
C$ = SEG$(A$,1%,5%) + B$ + SEG$(A$,10%,LEN(A$))
PRINT C$
PRINT A$
PRINT B$
END

154

Chapter 11. String Handling

Output
ABCDE123456JK
ABCDEFGHIJK
123456

The following formulas are more specific applications of the general formula:

● To replace the first n characters of A$ with B$ use:

 C$ = B$ + SEG$(A$,n+1,LEN(A$))

● To replace all but the first n characters of A$ with B$ use:

 C$ = SEG$(A$,1,n) + B$

● To replace all but the last n characters of A$ with B$ use:

 C$ = B$ + SEG$(A$,(LEN(A$)--n) + 1, LEN(A$))

● To replace the last n characters of A$ with B$ use:

 C$ = SEG$(A$,1,LEN(A$)--n) + B$

● To insert B$ in A$ after the nth character in A$ use:

 C$ = SEG$(A$,1,n) + B$ + SEG$(A$,n+1,LEN(A$))

11.6.4. MID$ Function
The MID$ function extracts a specified substring, beginning at a specified character position and ending
at a specified length. If you specify a starting character position that is less than 1, VSI BASIC for
OpenVMS automatically assumes a starting character position of 1.

In the following example, the MID$ function uses the input string “ABCD”, and extracts a segment
consisting of 3 characters. Because VSI BASIC for OpenVMS automatically assumes a starting character
position of 1 when the specified starting character position is less than 1, the string that is extracted
begins with the first character of the input string.

DECLARE STRING old_string, new_string
old_string = "ABCD"
new_string = MID$(old_string, 0, 3)
PRINT new_string

Output
ABC

Keep these considerations in mind when you use MID$:

● If the position of the segment's first character is greater than the input string, MID$ returns a null
string.

● If the length of the segment is greater than the length of the input string, VSI BASIC for OpenVMS
returns the string that begins at the specified starting character position and includes all characters
remaining in the string.

● If the length of the segment is less than or equal to zero, MID$ returns a null string.

155

Chapter 11. String Handling

● If you specify a floating-point expression for the position of the segment's first character or for the
length of the segment, VSI BASIC for OpenVMS truncates it to a long integer.

11.6.5. STRING$ Function
The STRING$ function creates a character string containing multiple occurrences of a single character.
In the following example, 23 is the length of the returned string, and 30 is the ASCII value of the
character that makes up the string. This value is treated modulo 256.

STRING$(23,30)

The following example creates a 10-character string containing uppercase As, which have ASCII value
65:

out$ = STRING$(10%, 65%)
PRINT out$
END

Output
AAAAAAAAAA

Keep these considerations in mind when you use STRING$:

● If the length of the returned string is less than or equal to zero, STRING$ returns a null string.

● If the length of the returned string is greater than 65535, VSI BASIC for OpenVMS signals an error.

11.6.6. SPACE$ Function
The SPACE$ function creates a character string containing spaces. In this example, 5 is the number of
spaces in the string:

SPACE$(5)

The following example creates a 9-character string which contains 3 spaces:

A$ = "ABC"
B$ = "XYZ"
PRINT A$ + SPACE$(3%) + B$
END

Output
ABC XYZ

11.6.7. TRM$ Function
The TRM$ function removes trailing blanks and tabs from a string. The input string remains unchanged.
In the following example, all trailing blanks that appear in the string expression “ABCDE ” are removed
once the TRM$ function is invoked:

A$ = "ABCDE "
B$ = "XYZ"
first$ = A$ + B$

156

Chapter 11. String Handling

second$ = TRM$(A$) + B$
PRINT first$
PRINT second$
END

Output
ABCDE XYZ
ABCDEXYZ

The TRM$ function is especially useful for extracting the nonblank characters from a fixed-length string
(for example, a COMMON or MAP, or a parameter passed from a program written in another language).

11.6.8. EDIT$ Function
The EDIT$ function performs one or more string editing functions, depending on the value of an
argument you supply. The input string remains unchanged. In the following example, stu_rec is a string
expression and 32 determines the editing function performed:

EDIT$(stu_rec,32)

Table 11.2, "EDIT$ Options" shows the action VSI BASIC for OpenVMS takes for a given value of the
integer expression.

Table 11.2. EDIT$ Options

Value of
Expression

Effect

1 Discards each character's parity bit (bit 7). Note that you should not use this value for
characters in the DEC Multinational character set.

2 Discards all spaces and tabs.
4 Discards all carriage returns, line feeds, form feeds, deletes, escapes, and nulls.
8 Discards leading spaces and tabs.
16 Converts multiple spaces and tabs to a single space.
32 Converts lowercase letters to uppercase.
64 Converts left brackets ([) to left parentheses [(], and right brackets (]) to right parentheses

[)].
128 Discards trailing spaces and tabs. (Same as TRM$ function.)
256 Suppresses all editing for characters within quotation marks. If the string has only one

quotation mark, VSI BASIC for OpenVMS suppresses all editing for the characters
following the quotation mark.

All values are additive; for example, by specifying 168, you can perform the following:

● Discard leading spaces and tabs (value 8)

● Convert lowercase letters to uppercase (value 32)

● Discard trailing spaces and tabs (value 128)

The following example requests an input string, discards all spaces and tabs, converts lowercase letters to
uppercase, and converts brackets to parentheses:

157

Chapter 11. String Handling

LINPUT "PLEASE TYPE A STRING";input_string$
new_string$ = EDIT$(input_string$, 2% + 32% + 64%)
PRINT new_string$
END

Output
PLEASE TYPE A STRING? 88 abc TAB[5,5]
88ABC(5,5)

11.7. Manipulating String Data with Multiple
Maps
Mapping a string storage area in more than one way lets you extract a substring from a string or
concatenate strings. In the following example, the three MAP statements reference the same 108 bytes of
data:

MAP (emprec) first_name$ = 10, &
 last_name$ = 20, &
 street_number$ = 6, &
 street$ = 15, &
 city$ = 20, &
 state$ = 2, &
 zip$ = 5, &
 wage_class$ = 2, &
 date_of_review$ = 8, &
 salary_ytd$ = 10, &
 tax_ytd$ = 10
MAP (emprec) full_name$ = 30, &
 address$ = 48, &
 salary_info$ = 30
MAP (emprec) employee_record$ = 108

You can move data into a map in different ways. For instance, you can use terminal input, arrays, and
files. In the following example, the READ and DATA statements are used to move data into a map:

READ EMPLOYEE_RECORD$
DATA "WILLIAM DAVIDSON 2241 MADISON BLVD " &
"SCRANTON PA14225A912/10/78$13,325.77$925.31"

Because all the MAP statements in the previous example reference the same storage area (emprec), you
can access parts of this area through the mapped variables as shown in the following examples:

Example 1
PRINT full_name$
PRINT wage_class$
PRINT salary_ytd$

Output 1
WILLIAM DAVIDSON
A9
$13,325.77

158

Chapter 11. String Handling

Example 2
PRINT last_name$
PRINT tax_ytd$

Output 2
DAVIDSON
$925.31

You can assign a new value to any of the mapped variables. The following example prompts the user for
changed information by displaying a menu of topics. The user can then choose which topics need to be
changed and then separately assign new values to each variable.

Loop_1:
WHILE 1% = 1%
 INPUT "Changes? (please type YES or NO)"; CH$
 EXIT Loop_1 IF CH$ = "NO"
 PRINT "1. FIRST NAME"
 PRINT "2. LAST NAME"
 PRINT "3. STREET NUMBER"
 PRINT "4. STREET"
 PRINT "5. CITY"
 PRINT "6. STATE"
 PRINT "7. ZIP"
 PRINT "8. WAGE CLASS"
 PRINT "9. DATE OF REVIEW"
 PRINT "10. SALARY YTD"
 PRINT "11. TAX YTD"
 INPUT "CHANGE NUMBER"; NUMBER%
 SELECT NUMBER%
 CASE 1%
 INPUT "FIRST NAME"; first_name$
 CASE 2%
 INPUT "LAST NAME"; last_name$
 CASE 3%
 INPUT "STREET NUMBER"; street_number$
 CASE 4%
 INPUT "STREET"; street$
 CASE 5%
 INPUT "CITY"; city$
 CASE 6%
 INPUT "STATE"; state$
 CASE 7%
 INPUT "ZIP CODE"; zip$
 CASE 8%
 INPUT "WAGE CLASS"; wage_class$
 CASE 9%
 INPUT "DATE OF REVIEW"; date_of_review$
 CASE 10%
 INPUT "SALARY YTD"; salary_ytd$
 CASE 11%
 INPUT "TAX YTD"; tax_ytd$
 CASE ELSE
 PRINT "Invalid choice"
 END SELECT
NEXT

159

Chapter 11. String Handling

END

Output
Changes? (please type YES or NO)? YES
1. FIRST NAME
2. LAST NAME
3. STREET NUMBER
4. STREET
5. CITY
6. STATE
7. ZIP
8. WAGE CLASS
9. DATE OF REVIEW
10. SALARY YTD
11. TAX YTD

CHANGE NUMBER? 10
SALARY YTD? 14,277.08
Changes? (please type YES or NO)? YES
CHANGE NUMBER? 11
TAX YTD? 998.32
Changes? (please type YES or NO)? NO

See Chapter 7, "Data Definition" and the VSI BASIC Reference Manual for more information about the
MAP statement.

160

Chapter 12. Program
Segmentation
This chapter describes how to:

● Declare VSI BASIC subprograms

● Write VSI BASIC subprograms

Program segmentation is the process of dividing a program into small, manageable routines and
modules. In a segmented or modular program, each routine or module usually performs only one logical
function. You can, therefore, design and implement a modular program faster than a nonsegmented
program. Program modularity also simplifies debugging and testing, as well as program maintenance and
transportability.

Subprograms processed by the VSI BASIC compiler conform to the OpenVMS Procedure Calling
Standard. This standard prescribes how arguments are passed, how values are returned, and how
procedures receive and return control. Because VSI BASIC conforms to the OpenVMS Procedure
Calling Standard, a VSI BASIC subprogram or main program can call or be called by any procedure
written in a language that also conforms to this standard. For information about calling non-BASIC
procedures, see Chapter 19, "Using BASIC in the Common Language Environment".

12.1. VSI BASIC Subprograms
VSI BASIC has SUB and FUNCTION subprograms. Each of these subprograms receives parameters
and can modify parameters passed by reference or by descriptor. The differences between SUB and
FUNCTION subprograms are as follows:

● FUNCTION subprograms must be declared with an EXTERNAL statement in the calling program.
Declaring SUB subprograms is optional.

● FUNCTION subprograms return a value; SUB subprograms do not return a value.

All subprograms invoked by a VSI BASIC program must have unique names. A VSI BASIC program
cannot have different subprograms with the same identifiers.

Subprograms can return a value to the calling program with parameters. You can use subprograms to
separate routines that you commonly use. For example, you can use subprograms to perform file I/O
operations, to sort data, or for table lookups.

You can also use subprograms to separate large programs into smaller, more manageable routines, or you
can separate modules that are modified often. If all references to system-specific features are isolated,
it is easier to transport the program to a different system. OpenVMS System Services and OpenVMS
Run-Time Library routines are specific to OpenVMS systems; therefore, you should consider isolating
references to them in subprograms. Chapter 19, "Using BASIC in the Common Language Environment"
describes how to access Run-Time Library routines and system services from VSI BASIC.

You should also consider isolating complex processing algorithms that are used commonly. If complex
processing routines are isolated, they can be shared by many programs while the complexity remains
hidden from the main program logic. However, they can share data only if the following is true:

161

Chapter 12. Program Segmentation

● Data is passed as a parameter from the CALL statement or function invocation to the subprogram—
see Section 12.2, "Declaring Subprograms and Parameters" for more information.

● Data is part of a MAP or COMMON block—see Chapter 6, "Arrays" for information about using
MAP and COMMON statements.

● Data is in a file—see Chapter 13, "File Input and Output" for more information about accessing data
from a file.

All DATA statements are local to a subprogram. Each time you call a subprogram, VSI BASIC positions
the data pointer at the beginning of the subprogram's data.

The data pointer in the main program is not affected by READ or RESTORE statements in the
subprogram (in contrast with the RESTORE # statement, which resets record pointers to the first
record in the file no matter where it is executed). Chapter 5, "Simple Input and Output" contains more
information about the READ and RESTORE statements. For more information about the RESTORE #
statement, see Chapter 13, "File Input and Output".

12.1.1. SUB Subprograms
A SUB subprogram is a program module that can be separately compiled and that cannot return a value.
A SUB subprogram is delimited by the SUB and END SUB statements. You may use the EXTERNAL
statement to explicitly declare the SUB subprogram.

The END SUB statement does the following:

● Marks the end of the SUB subprogram

● Does not affect I/O operations or files

● Releases the storage allocated to local variables

● Returns control to the calling program

The EXIT SUB statement transfers control to the statement lexically following the statement that
invoked the subprogram. It is equivalent to an unconditional branch to an END SUB statement.

The following SUB subprogram sorts two integers. If this SUB statement is invoked with actual
parameter values that are already in sorted order, the EXIT SUB statement is executed and control
returns to the calling program.

SUB sort_out (INTEGER X, INTEGER Y)
DECLARE INTEGER temp
 IF X > Y
 THEN
 temp = X
 X = Y
 Y = temp
 ELSE
 EXIT SUB
 END IF
END SUB

12.1.2. FUNCTION Subprograms

162

Chapter 12. Program Segmentation

A FUNCTION subprogram is a program module that returns a value and can be separately compiled.
It must be delimited by the FUNCTION and END FUNCTION statements. You use the EXTERNAL
statement to name and explicitly declare the data type of an external function.

The END FUNCTION statement does the following:

● Marks the end of a function subprogram

● Does not affect I/O operations or files

● Releases the storage allocated to local variables

● Optionally specifies a return value for the function

● Returns control to the calling program

The EXIT FUNCTION statement immediately returns program control to the statement that invoked the
function and optionally returns the function's return value. It is equivalent to an unconditional transfer to
the END FUNCTION statement.

You can specify an expression with both the END FUNCTION and EXIT FUNCTION statements,
which is another way of returning a function value. This expression must match the function data type,
and it supersedes any function assignment. For more information, see the VSI BASIC Reference Manual.

The following function returns the volume of a sphere of radius R. If this function is invoked with an
actual parameter value less than or equal to zero, the function returns zero.

FUNCTION REAL Sphere_volume (REAL R)
 IF R <= 0
 THEN
 Sphere_volume = 0.0
 ELSE
 Sphere_volume = 4/3 * PI * R ** 3
 END IF
END FUNCTION

The following example declares the FUNCTION subprogram and invokes it:

PROGRAM call_sphere
 EXTERNAL REAL FUNCTION SPHERE_VOLUME(REAL)
 PRINT SPHERE_VOLUME(5.925)
END PROGRAM

Note that this module is compiled separately from the FUNCTION subprogram. You can link these
modules together to run the program from DCL level.

12.2. Declaring Subprograms and Parameters
You declare a subprogram by naming it in an EXTERNAL statement in the calling program. You may
also declare the data type of each parameter. If the subprogram is a function, the EXTERNAL statement
also lets you specify the data type of the returned value.

The following statements are subprogram declarations using the EXTERNAL statement:

EXTERNAL SUB my_sub (LONG, STRING)

163

Chapter 12. Program Segmentation

EXTERNAL GFLOAT FUNCTION my_func (GFLOAT, LONG, GFLOAT)
EXTERNAL REAL FUNCTION determinant (LONG DIM(,))

Note that the parameter lists contain only data type and dimension information; they cannot contain
any format or actual parameters. When the external procedure is invoked, VSI BASIC ensures that the
actual parameter data type matches the data type specified in the EXTERNAL declaration. However,
VSI BASIC does not check to make sure that the parameters declared in the EXTERNAL statement
match those in the external routine. You must ensure that these parameters match.

You can pass data of any VSI BASIC data type to a VSI BASIC subprogram, including RFAs and
RECORDs. VSI BASIC allows you to pass up to 255 parameters, separated by commas. The data can be
any one of the following:

● Constants

● Variables

● Expressions

● Functions

● Array elements

● Entire arrays (but not virtual arrays)

For passing constants, variables, functions, and array elements, name them in the argument list. For
example:

CALL SUB01(var1, var2)

CALL SUB02(Po_num%, Vouch, 66.67, Cust_list(5), FNA(B%))

However, when passing an entire array, you must use a special format. You specify the array name
followed by commas enclosed in parentheses. The number of commas must be the number of array
dimensions minus one. For example, array_name() is a one-dimensional array, array_name(,) is a two-
dimensional array, array_name(,,) is a three-dimensional array, and so on.

The following example creates a three-dimensional array, loads the array with values, and passes the
array to a subprogram as a parameter. The subprogram can access and change values in array elements,
and these changes remain in effect when control returns to the main program.

PROGRAM fill_array
OPTION TYPE = EXPLICIT
DECLARE LONG I,J,K, three_d(10,10,10)
EXTERNAL SUB example_sub (LONG DIM(,,))
FOR I = 0 TO 10
 FOR J = 0 TO 10
 FOR K = 0 TO 10
 three_d(I,J,K) = I + J + K
 NEXT K
 NEXT J
NEXT I

CALL example_sub(three_d(,,))
END PROGRAM

SUB example_sub(LONG X(, ,))

164

Chapter 12. Program Segmentation

 .
 .
 .
END SUB

If you do not specify data types for parameters, the default data type is determined by:

● The last specified parameter data type

● An OPTION statement

● A VSI BASIC compilation qualifier (for example, /REAL_SIZE=DOUBLE)

● The system default

The last specified parameter data type overrides all the other default data types, the defaults specified in
the OPTION statement override any compilation qualifiers and system defaults, and so on. When you
know the length of a string or the dimensions of an array at compile time, you can achieve optimum
performance by passing them BY REF. When you call programs written in other languages, the practice
of declaring subprograms and specifying the data types of parameters becomes more important because
other languages might not use the VSI BASIC default parameter-passing mechanisms. For more
information about calling subprograms written in other languages, see Chapter 19, "Using BASIC in the
Common Language Environment".

12.3. Compiling Subprograms
A VSI BASIC source file can contain multiple program units. When you compile such a file, VSI BASIC
produces a single object file containing the code from all the program units. You can then link this object
file to create an executable image.

If the main program and subprograms are in separate source files, you can compile them separately
from the DCL level. The following command causes VSI BASIC to create MAIN.OBJ, SUB1.OBJ, and
SUB2.OBJ by separating the file names with commas:

$ BASIC main,sub1,sub2

To link these programs, you must specify all object files as input to the OpenVMS Linker.

Alternatively, you can compile multiple modules into a single object file at the DCL command level by
separating the file names with a plus sign (+) as follows:

$ BASIC main+sub1+sub2

The plus signs used to separate the file names instruct VSI BASIC to create a single object file called
MAIN.OBJ from the three source modules. To link this program, you specify only one input file to the
linker.

When creating a multiple-unit program, follow these rules:

● If the source file contains line numbers, then the line numbers for each subprogram must be
numerically greater than the highest line number of all preceding subprograms.

● Line numbers must be unique and no greater than 32767.

● Each subprogram must end with an END SUB or END FUNCTION statement before the next
subprogram begins.

165

Chapter 12. Program Segmentation

● If the source file contains line numbers, then text following an END SUB or END FUNCTION
statement must begin on a numbered line.

● If the source file does not contain line numbers, then text following an END SUB or END
FUNCTION statement must begin on a new physical line.

Note that in a multiple-unit program that contains line numbers, any comments or statements following
an END, END SUB, or END FUNCTION statement become part of the preceding subprogram unless
they begin on a numbered line. In a multiple-unit program that does not contain line numbers, however,
any comments following an END, END SUB, or END FUNCTION statement become part of the
following subprogram if one exists.

In the following example, the function Strip changes all brackets to parentheses in the string A$ or alpha,
and strips all trailing spaces and tabs:

PROGRAM scan
 EXTERNAL STRING FUNCTION Strip (STRING)
 A$ = "USER$DISK:[BASIC.TRYOUTS]"
 B$ = Strip(A$)
 PRINT B$
END PROGRAM

FUNCTION STRING Strip(STRING alpha)
IF (POS(alpha, "[", 1%)) > 0%
 THEN Strip = EDIT$(alpha, 128% +64%)
 ELSE Strip = EDIT$(alpha, 128%)
END IF
END FUNCTION

12.4. Invoking Subprograms
The following sections describe how to invoke subprograms and pass parameters to subprograms.

12.4.1. Invoking SUB Subprograms
The CALL statement transfers control to a subprogram, and optionally passes arguments to it. The
parameters in the CALL statement specify variables, constants, expressions, array elements, or entire
arrays to be passed to the subprogram. You can also specify a function in the argument list. VSI BASIC
passes the value returned by the function to the subprogram. If possible, VSI BASIC converts the actual
arguments to the data type specified in the EXTERNAL statement. VSI BASIC signals an error when
the conversion is not possible.

The following example shows a VSI BASIC main program calling a BASIC subprogram. The main
program prompts for three integers: A, B, and C. It then passes these variables as parameters to the
SUB subprogram. The subprogram prints the sum of these variables and returns control to the calling
program.

PROGRAM get_input
 OPTION TYPE = EXPLICIT
 EXTERNAL SUB SUB01(LONG, LONG, LONG)
 DECLARE LONG A, B, C
 INPUT "Please type three integers"; A, B, C
 CALL SUB01 (A, B, C)
END PROGRAM

166

Chapter 12. Program Segmentation

SUB SUB01 (LONG X, LONG Y, LONG Z)
 PRINT "The sum is"; X + Y + Z
END SUB

12.4.2. Invoking FUNCTION Subprograms
The following example performs the same task as the SUB program; however, this example uses a
FUNCTION subprogram that returns the value to the main program and the main program prints the
result:

PROGRAM invoke_funct
 EXTERNAL LONG FUNCTION FUN01(LONG, LONG, LONG)
 DECLARE LONG A, B, C
 INPUT "Please type three integers"; A, B, C
 PRINT "The sum is"; FUN01(A, B, C)
END PROGRAM

FUNCTION LONG FUN01 (LONG X, LONG Y, LONG Z)
 FUN01 = X + Y + Z
END FUNCTION

If you do not assign a value to the function name and you do not specify a return value on an EXIT
FUNCTION or END FUNCTION statement, the function returns zero or the null string.

Note that when writing FUNCTION subprograms, you must specify a data type for the function in both
the main program EXTERNAL statement and the subprogram FUNCTION statement. This data type
keyword specifies the data type of the value returned by the function subprogram. You should ensure
that the data type specified in an EXTERNAL FUNCTION statement matches the data type specified in
the FUNCTION statement.

If you declare a FUNCTION subprogram with an EXTERNAL statement and use the CALL statement
to invoke the function, it executes correctly but the function value is not available. Note that BASIC still
performs parameter validation when you invoke a function with the CALL statement.

Note that you cannot use the CALL statement to invoke a string or packed decimal function.

12.5. Returning Program Status
A PROGRAM unit lets you return a status from a VSI BASIC image by optionally including an integer
expression with the END PROGRAM and EXIT PROGRAM statements. After executing a program,
you can examine this status by checking the DCL symbol $STATUS. By default, VSI BASIC returns a
status of 1, indicating success. Success is signaled with an odd numbered status value, while an error
is signaled with an even numbered value. $STATUS contains the same value as the integer expression
for the exit status in the EXIT and END PROGRAM statements. Note that if a program is terminated
with an EXIT PROGRAM statement, the expression on the EXIT PROGRAM statement overrides any
expression on the END PROGRAM statement.

In the following example, exit_status contains the status value returned by the program. After program
execution, $STATUS has the value of exit_status. You can examine the value of $STATUS and display
the corresponding message text with the lexical function F$MESSAGE at DCL level, as shown in the
following example:

PROGRAM Venture
 DECLARE INTEGER exit_status, &

167

Chapter 12. Program Segmentation

 REAL capital
 EXTERNAL LONG CONSTANT SS$_BADPARAM
 EXTERNAL SUB play_safe(INTEGER), &
 minor_risk(INTEGER),major_risk(INTEGER)
 Exit_status = 1%
 SET NO PROMPT
 How_much:
 INPUT "Enter the amount of your free capital $";capital
 SELECT capital
 CASE = 0
 exit_status = SS$_BADPARAM
 EXIT PROGRAM exit_status
 CASE < 5000
 CALL play_safe(capital)
 CASE < 15000
 CALL minor_risk(capital)
 CASE < 50000
 CALL major_risk(capital)
 CASE ELSE
 PRINT "I can't cope with that amount, try again."
 END SELECT
 GOTO How_much
 .
 .
 .
END PROGRAM exit_status

After program execution, you can examine the status of the program at DCL level:

$ SHOW SYMBOL $STATUS
$ STATUS = "%X10"
$ error_text = F$MESSAGE(%X10)
$ SHOW SYMBOL error_text
ERROR_TEXT = "SYSTEM-W-BADPARAM, bad parameter value"

The PROGRAM statement is always optional; EXIT PROGRAM and END PROGRAM are legal
without a matching PROGRAM statement. Without a PROGRAM statement, these statements still exit
the main compilation unit. The EXIT PROGRAM and END PROGRAM statements are not valid within
SUB, FUNCTION, or PICTURE subprograms.

168

Chapter 13. File Input and Output
This chapter explains BASIC file organizations and record operations that are implemented through
OpenVMS Record Management Services (RMS). For a more thorough understanding of file
organization and file and record operations, see the VSI OpenVMS Record Management Services
Reference Manual.

RMS stores data in physical blocks. A block is the smallest number of bytes BASIC transfers in a read or
write operation. On disk, a block is 512 bytes. On magnetic tape, it is 18 to 8192 bytes.

RMS stores one or more data records in each block. A data record can also be divided into smaller
units, called fields. A data record can be smaller than, equal to, or larger than a disk block.

13.1. Record Formats
The format of a record determines how RMS stores the record in a block. You specify the record format
in an OPEN statement. The following are valid BASIC record formats:

● Fixed-length records

● Variable-length records

● Stream records

13.1.1. Fixed-Length Records
Fixed-length records are all the same length. RMS stores fixed-length records as they appear in the
record buffer, including any spaces or null characters following the data; this process is called padding.
Processing these records involves less overhead than other record formats; however, this format can use
disk storage space less efficiently than variable-length or stream records.

13.1.2. Variable-Length Records
Variable-length records can have different lengths, but no record can exceed a maximum size set for the
file. When the record is written to a file, RMS adds a record length header that contains the length of the
record (excluding the header) in bytes. When your program retrieves a record, this header is not included
in the record buffer. While variable-length records usually make more efficient use of storage space than
fixed-length records, manipulation of the record length headers generates processor overhead.

13.1.3. Stream Records
BASIC interprets stream records as a continuous sequence, or stream, of bytes. Unlike the fixed- and
variable-length formats, stream records do not contain control information such as record counts,
segment flags, or other system-supplied boundaries. Stream records are delimited by special characters
or character sequences called terminators. Note that stream record formats are valid only in sequential
files.

RMS defines the following types of stream record formats:

● STREAM records can be delimited by any special character (usually a carriage return/line-feed pair).

169

Chapter 13. File Input and Output

● STREAM_LF records must be delimited by a line-feed character.

● STREAM_CR records must be delimited by a carriage return.

While you can access existing files of any one of these stream record formats, BASIC creates new
stream files only in the STREAM format; you can create files of the other two stream record formats
by modifying the RMS FAB control structure in a USEROPEN routine. For more information about
USEROPEN routines, see Section 13.8.11, "USEROPEN Clause".

13.2. File Organizations
VSI BASIC for OpenVMS provides the following file organizations:

● Terminal-format

● Sequential

● Relative

● Indexed

● Virtual

If you do not specify a file organization when creating a file, the default is a terminal-format file
(a sequential file with variable-length records). The following sections describe each type of file
organization.

13.2.1. Terminal-Format Files
A terminal-format file is a sequential file of variable-length records. Terminal-format files are the
default; that is, you create a terminal-format file when you do not specify a file organization when you
open a file. You can then use the PRINT, INPUT, INPUT LINE, and LINPUT statements to access
a terminal-format file. See Chapter 5, "Simple Input and Output" and Chapter 6, "Arrays" for more
information about terminal-format files.

13.2.2. Sequential Files
A sequential file contains records that are stored in the order they are written. Sequential files can
contain records of any valid BASIC record format: fixed-length, variable-length, or stream. You usually
read a sequential file from the beginning; therefore, a sequential file is most useful when you access the
data sequentially each time you use it. You can also access sequential fixed-length records randomly by
specifying a record number if the file resides on disk. In either case, sequential files can reside on both
disk and magnetic tape devices, and those stored on disk support shared access.

13.2.3. Relative Files
A relative file contains a series of cells that are numbered consecutively from 1 to n, where n represents
the relative record number. Each cell can contain only a single record. For fixed-length records, the
length of each cell equals the record length plus 1 byte. For variable-length records, the length of the cell
equals the maximum record size plus 3 bytes.

You can access records in a relative file either sequentially or randomly. The relative record number is
the key value in random access mode; that is, to access a record in a relative file in random access mode,

170

Chapter 13. File Input and Output

you must know the relative record number of that record. You can add records to a relative file either at
the end of the file or into any empty cell.

Relative files are most useful when randomly accessed and when the record can be identified by its cell
number (for example, when inventory numbers correspond to cell numbers). Relative files support shared
access. You can delete records from relative files, but not sequential files.

13.2.4. Indexed Files
An indexed file contains data records that are sorted in ascending or descending order according to a
primary index key value. The index key is a record field (or set of fields) that determines the order in
which the records are logically accessed. Keys must be variables declared in a MAP statement. Keys can
be any one of the following:

● Strings

● WORD integers

● LONG integers

● Quadword integers

● Packed decimal numbers

String keys can also be segmented; the key can be composed of up to eight string variables in a map.
Quadword keys must be referenced using a record or group exactly 8 bytes long.

Along with the primary index key value, you can also specify up to 254 alternate keys; RMS creates
one index for each key you specify. For each of these keys you can also specify either an ascending
or descending collating sequence. Each index is stored as part of the file, and each entry in the index
contains a pointer to a record. Therefore, each key you specify corresponds to a sorted list of record
pointers.

An indexed file of library books, for example, might be ordered by book title; that is, the title of the
book is the primary key for the file. The keys for alternate indexes might include the author's name and
the book's Library of Congress number. Neither of these alternate indexes contains the actual records;
instead, they contain sorted pointers to the appropriate records.

Indexed files are most useful when randomly accessed or when you want to access the records in more
than one way.

13.2.5. Virtual Files
A virtual file is a random access file that stores one or more data records or virtual array elements in
each physical 512-byte disk block. You create a virtual file by specifying ORGANIZATION VIRTUAL
as part of the OPEN statement. Apart from virtual arrays and compatibility with BASIC and BASIC-
PLUS-2, you should use sequential fixed-length instead of virtual files, as they provide the same
capabilities. See Section 13.5, "Accessing the Contents of a Record" for more information about accessing
the individual records in a disk block.

13.3. Record Access and Record Context
Record access modes determine the order in which your program retrieves or stores records in a file.
They determine the record context: the current record and the next record to be processed. When your

171

Chapter 13. File Input and Output

program successfully executes any record operation, the current record and next record pointers can
change. If a record operation is unsuccessful, these pointers do not change.

The record access modes valid for RMS are:

● Sequential access—valid on any file organization

● Random-by-record number access—valid on sequential fixed and all relative files

● Random-by-key access—valid on indexed files

● Random-by-RFA (Record File Address) access—valid on any RMS file located on disk

With sequential access, the next record is the next logical record in the file. In the case of relative files,
the next logical record is the next existing record (deleted or never-written records are skipped). In the
case of indexed files, the next logical record is the record with the next ascending or descending value in
the current key of reference depending on that key's collating sequence. You can therefore access relative
or indexed files sequentially by not specifying a relative record number or key value.

You can also access sequential fixed-length and relative files randomly by record number; that is,
you can specify the record number of the record to be retrieved. For relative files, this record number
corresponds to the cell number of the desired record.

You can access indexed files randomly by key. The key specification includes a primary or alternate key
and its value. BASIC retrieves the record corresponding to that value in the particular key chosen.

You can access disk files of any organization by Record File Address (RFA); this means that you specify
an RFA variable whose value uniquely identifies a particular record. The RFA requires six bytes of
information. For more information about RFAs, see Section 13.6.10, "Accessing Records by Record File
Address".

13.4. I/O and Record Buffers
An I/O buffer is a storage area in your program that RMS uses to store data for I/O operations. You do
not have direct access to I/O buffers; they are controlled entirely by RMS. The I/O buffer holds blocks of
data transferred from the device, and its size is always greater than or equal to that of the record buffer.
For more information about the amount of storage allocated for I/O buffers, see the VSI OpenVMS
Record Management Services Reference Manual.

A record buffer is another storage area in your program. You have direct access to and control of the
record buffer. When your program reads a record from a file, the information is transferred from the file
to the I/O buffer in one large chunk of data, and then the requested record is transferred to the record
buffer. When your program writes a record, data is transferred from the record buffer to the I/O buffer,
and then to the file either when the I/O buffer is full or when other blocks need to be read in.

You can use MAP statements to create static record buffers and associate program variables with
areas (fields) of the buffer. Static record buffers are buffers whose size does not change during program
execution and whose program variables are always associated with the same fields in the buffer.

You can create dynamic record buffers with either a MAP DYNAMIC or a REMAP statement. These
statements, when used after a MAP statement, associate or reassociate a particular program variable with
a different area (field) of the record buffer; however, the total size of a record buffer does not change
during program execution.

172

Chapter 13. File Input and Output

Note

If you do not specify a map, you must use MOVE TO and MOVE FROM statements to transfer data
back and forth from the record buffer to program variables; however, MOVE statements do not transfer
data to or from a file.

13.5. Accessing the Contents of a Record
VSI BASIC for OpenVMS provides the following methods for accessing the contents of a record:

● MAP statement

● MAP DYNAMIC and REMAP statements (dynamic mapping)

● MOVE statements

● FIELD statements

The FIELD statement is a declining feature and is not recommended for new program development. It
is recommended that you use either MAP statements, dynamic mapping, or MOVE statements to access
record contents.

13.5.1. MAP Statement
Normally, a record is divided into predetermined fields, the sizes of which are known at compile time.
The MAP statement creates the storage area for this record and determines its total size. The following
examples show how the MAP statement creates the record storage area:

Example 1
RECORD name_addr
 STRING last_name = 15, &
 street_name = 30, &
 INTEGER house_num
END RECORD
MAP (student_buffer) name_addr student_info

Example 2
MAP (Emp_rec)
 STRING Emp_name = 25, &
 LONG Badge, &
 STRING Address = 25, &
 STRING Department = 4

13.5.2. MAP DYNAMIC and REMAP Statements
There are situations where predetermined fields are not applicable or possible. In these situations, you
must perform record defielding in your program at run time. Using the MAP DYNAMIC statement, you
can specify the variables in the map whose positions can change at run time. The REMAP statement
then specifies the new positions of the variables named in the MAP DYNAMIC statement.

The following example shows how you can use MAP, MAP DYNAMIC, and REMAP to deblock your
record fields. The MAP statement allocates a storage area of 2048 bytes and names it Emp_rec. The
MAP DYNAMIC statement specifies that the variables Emp_name, Badge, Address, and Department are

173

Chapter 13. File Input and Output

all located in Emp_rec, and that their positions can be changed at run time with the REMAP statement.
The REMAP statement then redefines these variables to their appropriate sizes.

MAP (Emp_rec) FILL$ = 2048

MAP DYNAMIC (Emp_rec) &
 STRING Emp_name, &
 LONG Badge, &
 STRING Address, &
 STRING Department

REMAP (Emp_rec) FILL$ = Record_offset, &
 Emp_name = 25, &
 Badge, &
 Address = 25, &
 Department = 4

Note that when accessing virtual or sequential files, you can specify a RECORD clause for the GET
statement. The following example opens a virtual file with each block containing 512 bytes. However,
each block contains 4 logical records that are 128 bytes long. Each of these logical records consists of a
20-character first name field, a 44-character last name field, and a 64-character company name field.

DECLARE WORD Record_number
MAP (Virt) STRING FILL = 512
MAP DYNAMIC (Virt) STRING First_name, &
 Last_name, &
 Company
OPEN "VIRT.DAT" FOR INPUT AS FILE #5, &
 VIRTUAL, MAP Virt
Record_number = 1%
WHEN ERROR IN
 WHILE -1%
 GET #5, RECORD Record_number
 FOR I% = 0% TO 3%
 REMAP (Virt) STRING FILL = (I% * 128%), &
 First_name = 20, &
 Last_name = 44, &
 Company = 64
 PRINT First_name, Last_name, Company
 NEXT I%
 Record_number = Record_number + 1%
 NEXT
USE
 IF ERR = 11%
 THEN
 PRINT "Finished"
 CONTINUE 32767
 ELSE EXIT HANDLER
 END IF
END WHEN
END

After the first 512-byte block is brought into memory, the FOR...NEXT loop deblocks the data into 128-
byte logical records. At each iteration of the FOR...NEXT loop, the REMAP statement uses the loop
variable to mask off 128-byte sections of the block.

For more information about the MAP DYNAMIC and REMAP statements, see Chapter 7, "Data
Definition" and the VSI BASIC Reference Manual.

174

Chapter 13. File Input and Output

13.5.3. MOVE Statement
The MOVE statement defines data fields and moves them to and from the record buffer created by VSI
BASIC for OpenVMS. For example:

MOVE FROM #9%, A$, Cost, Name$ = 30%, ID_num%

This statement moves a record with four data fields from the record buffer to the variables in the list as
follows:

● A string field A$ with a default length of 16 characters

● A number field Cost of the default data type

● A second 30-character string field Name$

● An integer field ID_num%

Valid variables in the MOVE list are:

● Scalar variables

● Arrays

● Array elements

● FILL items

Because BASIC dynamically assigns space for string variables, the default string length during a MOVE
TO operation is the length of the string. The default for MOVE FROM is 16 characters. An entire array
specified in a MOVE statement must include the array name, followed by n – 1 commas, where n is
the number of dimensions in the array. Note that these commas must be enclosed in parentheses. You
specify a single array element by naming the array and the subscripts of that element. The following
statement moves three arrays from the program to the record buffer. A$ specifies a 1-dimensional string
array, C specifies a 2-dimensional array of the default data type, and D% specifies a 3-dimensional
integer array. B(3,2) specifies the element of array B that appears in row 3, column 2.

MOVE TO #5%, A$(), C(,), D%(,,), B(3,2)

Successive MOVE statements to or from the buffer start at the beginning of the record buffer. If a
MOVE TO operation only partially fills the buffer, the rest of the buffer is unchanged. You use the
GET statement to read a record from a file, and then you move the data from the buffer to variables and
reference the variables in your program. A MOVE TO operation moves data from the variables into the
buffer created by VSI BASIC for OpenVMS. A PUT or UPDATE statement then moves the data from
the buffer to the file.

The following program opens file MOV.DAT, reads the first record into the buffer, and moves the data
from the buffer into the variables specified in the MOVE FROM statement:

DECLARE STRING Emp_name, Address, Department
DECLARE LONG Badge

OPEN "MOV.DAT" AS FILE #1%, &
 RELATIVE VARIABLE, &
 ACCESS MODIFY, ALLOW NONE, &

175

Chapter 13. File Input and Output

 RECORDSIZE 512%
GET #1%
MOVE FROM #1%, &
 Emp_name = 25, &
 Badge, &
 Address = 25, &
 Department = 4

 .
 .
 .
MOVE TO #1%, &
 Emp_name = 25, &
 Badge, &
 Address = 25, &
 Department = 4

UPDATE #1%
CLOSE #1%
END

The MOVE TO statement moves the data from the named variables into the buffer. The UPDATE
statement writes the record back into file MOV.DAT. The CLOSE statement closes the file.

13.6. File and Record Operations
You can perform a variety of operations on files and on the records within a file. The following is a list
of all the file and record operations supported by BASIC:

● Open a file for processing with the OPEN statement.

● Locate a record in a file with the FIND statement.

● Read a record from a file with the GET statement.

● Write a record to a file with the PUT statement.

● Delete a record from a file with the DELETE statement.

● Change the contents of a record field with the UPDATE statement.

● Unlock the last record accessed with the UNLOCK statement.

● Unlock all previously locked records with the FREE statement.

● Write data to a terminal-format file with the PRINT # statement.

● Reset the current record pointer to the beginning of a file with the RESTORE # and RESET #
statements.

● Delete all the records after a certain point; that is, truncate the records, with the SCRATCH
statement.

● Rename a file with the NAME AS statement.

● Close an open file with the CLOSE statement.

176

Chapter 13. File Input and Output

● Delete an entire file with the KILL statement.

Note that before you can perform any operations on the records in a file, you must first open the file for
processing.

13.6.1. Opening Files
The OPEN statement opens a file for processing, specifies the characteristics of the file to RMS, and
verifies the result. Opening a file with the specification FOR INPUT specifies that you want to use an
existing file. Opening a file with the specification FOR OUTPUT indicates that you want to create a new
file. If you do not specify FOR INPUT or FOR OUTPUT, BASIC tries to open an existing file. If no
such file exists, a new file is created.

Clauses to the OPEN statement allow you to specify the characteristics of a file. All OPEN statement
clauses concerning file or record format are optional when you open an existing file; those attributes
that are not specified default to the attributes of the existing file. When you open an existing file,
you must specify the file name, channel number, and unless the file is a terminal-format file, an
organization clause. If you do not know the organization of the file you want to open, you can specify
ORGANIZATION UNDEFINED. If you specify ORGANIZATION UNDEFINED, also specify
RECORDTYPE ANY.

If you do not specify a map in the OPEN statement, the size of your program's record buffer is
determined by the OPEN statement RECORDSIZE clause, or by the record size associated with the file.
If you specify both a MAP clause and a RECORDSIZE clause in the OPEN statement, the specified
record size overrides the size specified by the MAP clause.

The following statement opens a new sequential file of stream format records:

OPEN "TEST.DAT" FOR OUTPUT AS FILE #1%, &
 SEQUENTIAL STREAM

The following example creates a relative file and associates it with a static record buffer. The MAP
statement defines the record buffer's total size and the data types of its variables. When the program is
compiled, BASIC allocates space in the record buffer for one integer, one 16-byte string, and one double-
precision, floating-point number. The record size is the total of these fields, or 28 bytes. All subsequent
record operations use this static buffer for I/O to the file.

MAP (Inv_item) LONG Part_number, &
 STRING Inv_name = 16, &
 DOUBLE Unit_price
OPEN "INVENTORY.DAT" FOR OUTPUT AS FILE #1% &
 ,ORGANIZATION RELATIVE FIXED, ACCESS MODIFY &
 ,ALLOW READ, MAP Inv_item

The following OPEN statement opens a sequential file for reading only (ACCESS READ). Because the
OPEN statement does not contain a MAP clause, a record buffer is created. This record buffer is 100
bytes long.

OPEN "CASE.DAT" AS FILE #1% &
 ,ORGANIZATION SEQUENTIAL VARIABLE &
 ,ACCESS READ &
 ,RECORDSIZE 100%

When you do not specify a MAP statement, your program must use MOVE TO and MOVE FROM
statements to move data between the record buffer and a list of variables.

177

Chapter 13. File Input and Output

The OPEN statement for indexed files must have a MAP clause. Moreover, if you are creating an
indexed file, a PRIMARY KEY clause is required. You can create a segmented index key containing
more than one string variable by separating the variables with commas and enclosing them in
parentheses. All the string variables must be part of the associated map.

In the following example, the primary key is made up of three string variables. This key causes the
records to be sorted in alphabetical order according to the user's last name, first name, and middle initial.

MAP (Segkey) STRING First_name = 15, MI = 1, Last_name = 15
OPEN "NAMES.IND" FOR OUTPUT AS FILE #1%, &
 ORGANIZATION INDEXED, &
 PRIMARY KEY (Last_name, First_name, MI), &
 MAP Segkey

Note that there are restrictions on the maximum record size allowed for various file and record formats.
See the VSI OpenVMS Record Management Services Reference Manual for more information.

You can use logical names to assign a mnemonic name to all or part of a complete file specification,
including node, device, and directory. The advantage in using logical names is that programs do not
depend on literal file specifications. You can define logical names from the following:

● From DCL command level with the ASSIGN or DEFINE command

● From within a program with the SYS$CRELMN system service

BASIC supports any valid logical name as part of a file specification.

A logical name specifies a 1- to 255-character name to be associated with the specified device or file
specification. If the logical name specifies a device, you must end the logical name with a colon. The
following example defines a logical name for a file specification:

$ ASSIGN DUA1:[SENDER]PAYROL.DAT PAYROLL_DATA

This example defines a logical name for a physical device:

$ ASSIGN DUA2: DISK2:

Once you define the logical name, you can reference that name in your program. For example:

OPEN "PAYROLL_DATA" FOR INPUT AS FILE #1%, &
 ORGANIZATION SEQUENTIAL
OPEN "DISK2:[SORT_DATA] SORT.LIS" FOR OUTPUT AS FILE #2%, &
 SEQUENTIAL VARIABLE

These OPEN statements do not depend on the availability of DUA1: or DUA2: in order to work. If these
devices are not available, you can redefine the logical names so that they specify other disk drives before
running the program. In addition, you can redirect the entire file specification for PAYROLL_DATA to
point to the test or production version of the data.

13.6.2. Creating Virtual Array Files
BASIC virtual arrays let you define arrays that reside on disk. You use them just as you would an
ordinary array. You create a virtual array by dimensioning an array with the DIM # statement, then
opening a VIRTUAL file on that channel. You access virtual arrays just as you do normal arrays.

The following DIM # statement dimensions a virtual array on channel #1. The OPEN statement opens a
virtual file that contains the array. The last program line assigns a value to one array element.

178

Chapter 13. File Input and Output

DIM #1%, LONG Int_array(10,10,10)
 .
 .
 .
OPEN "VIRT.DAT" FOR OUTPUT AS FILE #1%, VIRTUAL
 .
 .
 .
Int_array(5,5,5) = 100%

Note that you cannot redimension virtual arrays with an executable DIM statement. See Chapter 6,
"Arrays" for more information about virtual arrays.

13.6.3. Locating Records
The FIND statement locates a specified record and makes it the current record. Using the FIND
statement to locate records can be faster than using a GET statement because the FIND statement does
not transfer any data to the record buffer; therefore, it executes faster than a GET statement. However, if
you are interested in the contents of a record, you must retrieve it with a GET operation.

The FIND statement sets the current record pointer to the record just found, making it the target for
a GET, UPDATE, or DELETE statement. (Note that you must have write access to a record before
issuing a PUT, UPDATE, or DELETE operation.) A sequential FIND operation searches records in the
following order:

● Sequential files from beginning to end

● Relative files in ascending relative record or cell number order

● Indexed files in ascending or descending order, based on the current key of reference and the key's
collating sequence

For sequential fixed-length and relative files, you can find a particular record by specifying a RECORD
clause. This is called a random access FIND. You can also perform a random access FIND for indexed
files by specifying a key of reference, a relational test, and a key value.

In the following example, the first FIND statement finds the first record whose key value either equals or
follows SMITH in the key's collating sequence. The second FIND statement finds the first record whose
key value follows JONES in the key's collating sequence. Each record found by the FIND statement
becomes the current record. (Note that you can only have one current record at a time).

MAP (Emp) STRING Emp_name, LONG Emp_number, SSN
OPEN "EMP.DAT" AS FILE #1%, INDEXED, &
 ACCESS READ, &
 MAP Emp, &
 PRIMARY KEY Emp_name
FIND #1%, KEY #0% NXEQ "SMITH"
FIND #1%, KEY #0% NX "JONES"

The string expression can contain fewer characters than the key of the record you want to find. However,
if you want to locate a record whose string key field exactly matches the string expression you provide,
you must pad the string expression with spaces to the exact length of the key of reference. For example:

FIND #5%, KEY #0% EQ "TOM "
FIND #5%, KEY #0% EQ "TOM"

179

Chapter 13. File Input and Output

The first FIND statement locates a record whose primary key field equals "TOM ". The second FIND
statement locates the first record whose primary key field begins with "TOM".

Table 13.1, "Record Context After a FIND Operation" displays the status of the current record and next
record pointers after both a sequential and a random access FIND.

Table 13.1. Record Context After a FIND Operation

Record Access Mode File Type Current Record Next Record

Sequential Record found Current record + 1
Relative Record found Next existing record

Sequential FIND

Indexed Record found Next record in current
key order

Random access FIND All Record found Unchanged

Note that a random access FIND operation locates the specified record and makes it the current record,
but the next record pointer does not change.

You can specify an ALLOW clause to the FIND statement if you have opened the file with ACCESS
MODIFY or ACCESS WRITE and have specified UNLOCK EXPLICIT. The ALLOW clause lets you
control the type of lock that RMS puts on the records you access. ALLOW NONE specifies that no
other users can access this record (this is the default). ALLOW READ lets other users read the record;
however, they cannot perform UPDATE or DELETE operations to this record. ALLOW MODIFY
specifies that other users can both read and write to this record. This means that other access streams can
perform GET, DELETE, or UPDATE operations to the specified record.

You can also specify a WAIT clause to the FIND statement; this clause allows you to wait for a record to
become available in the event that it is currently locked by another process. In addition, you can specify
a REGARDLESS clause; this clause allows you to read a locked record. For more information about the
WAIT and REGARDLESS clauses, see Section 13.6.9, "Gaining Access to Locked Records".

13.6.4. Reading Records
The GET statement moves a record from a file to a record buffer and makes the data available for
processing. GET statements are valid on sequential, relative, and indexed files. You should not use GET
statements on terminal-format files or virtual array files.

For sequential files, a sequential GET retrieves the next record in the file. For relative files, a sequential
GET retrieves the next existing record. For indexed files, a sequential GET retrieves the record with the
next ascending or descending value in the current key of reference, depending on that key's collating
sequence.

Table 13.2, "Record Context After a GET Operation" shows the current record and next record pointers
after a GET operation. Note that the values of these pointers vary, depending on whether or not the
previous operation was a FIND.

Table 13.2. Record Context After a GET Operation

Record Access Mode File Type Current Record Next Record

Sequential Record found Current record + 1Sequential GET with
FIND Relative Record found Next existing record

180

Chapter 13. File Input and Output

Record Access Mode File Type Current Record Next Record

Indexed Record found Next record in current
key

Sequential Next record Next record + 1
Relative Next existing record Next existing record + 1

Sequential GET without
FIND

Indexed Next record in current
key

Record following next
record in current key

Random GET All Record specified Next record in
succession

If you precede a sequential GET operation with a FIND operation, the current record is the one located
by FIND. If you do not perform a FIND operation before a sequential GET operation, the current record
is the next sequential record.

The following example shows the use of the GET operation to sequentially access records in an indexed
file. The example opens an indexed file and displays the first 25 records with serial numbers greater than
AB2721 in ascending primary key value order.

MAP (Bec) STRING Owner = 30%, LONG Vehicle_number, &
 STRING Serial_number = 22%
OPEN "VEH.IDN" FOR INPUT AS FILE #2%, &
 ORGANIZATION INDEXED, PRIMARY KEY Serial_number, &
 MAP Bec, ACCESS READ
GET #2%, KEY #0% EQ "AB2721"
FOR I% = 1% TO 25%
 GET #2%
 PRINT "Vehicle Number = ";Vehicle_number
 PRINT "Owner is: ";Owner
 PRINT
NEXT I%

The following example performs random GET operations by specifying a record number:

MAP (Bec) STRING Owner = 30%, LONG Vehicle_number, &
 STRING Serial_number = 22%
OPEN "VEH.IDN" FOR INPUT AS FILE #2%, &
 ORGANIZATION SEQUENTIAL FIXED, &
 MAP Bec, ACCESS READ
INPUT "Which record do you want";A%
WHILE (A% <> 0%)
 GET #2%, RECORD A%
 PRINT "The vehicle number is", Vehicle_number
 PRINT "The serial number is", Serial_number
 PRINT "The owner of vehicle";Vehicle_number; "is", Owner
 INPUT "Next Record";A%
NEXT
CLOSE #2%
END

You can specify an ALLOW clause in a GET statement if you have opened the file with ACCESS
MODIFY or ACCESS WRITE and UNLOCK EXPLICIT. The ALLOW clause lets you control the type
of lock RMS places on the retrieved record. ALLOW NONE specifies that no other users can access this
record (this is the default). ALLOW READ lets other access streams have read access to the record. That
is, other users can retrieve the record, but cannot perform DELETE, PUT, or UPDATE operations on

181

Chapter 13. File Input and Output

it. ALLOW MODIFY lets other access streams perform GET, DELETE, or UPDATE operations on the
record.

If you are trying to access a locked record, BASIC signals “Record/bucket locked” (ERR=154).
However, if you only need to read this record, you can override the lock with the REGARDLESS
clause. The REGARDLESS clause allows you to read a locked record. Use caution when using the
REGARDLESS clause because a record accessed in this way might be in the process of being changed
by another program.

Alternatively, you can also specify the WAIT clause on a GET statement; the WAIT clause allows you
to handle record locked conditions by waiting for the record to become available. Note that if a WAIT
clause is specified on a GET operation to a unit-record device such as a terminal, the integer expression
indicates how long to wait for the I/O to complete, rather than how long to wait on a record locked
condition. For more information, see Section 13.6.9, "Gaining Access to Locked Records".

13.6.5. Writing Records
For a file opened with ACCESS WRITE or ACCESS MODIFY, the PUT statement moves data from the
record buffer to a file using the I/O buffer. PUT statements are valid on RMS sequential, relative, and
indexed files. You cannot use PUT statements on terminal-format files or virtual array files.

Sequential access is valid on RMS sequential, relative, and indexed files. For sequential, variable, and
stream files, a sequential PUT operation adds a record at the end of the file. For sequential fixed and
relative files, PUT writes records sequentially or randomly depending on the presence of a RECORD
clause. For indexed files, RMS stores records in order of the primary key's collating sequence; therefore,
you do not need to specify a random or sequential PUT. Table 13.3, "Record Context After a PUT
Operation" shows the record context after both random and sequential PUT operations.

Table 13.3. Record Context After a PUT Operation

Record Access Mode File Type Current Record Next Record

Sequential PUT Sequential None End of file
Sequential PUT Relative None Next record
Sequential PUT Indexed None Undefined
Random PUT Relative None Unchanged

After a PUT operation, the current record pointer has no value. However, the value of the next record
pointer changes depending on the file type and the record access mode used with the PUT operation. In
a sequential, stream, or variable file, records can only be added at the end of the file; therefore, the next
record after PUT is the end of the file. In a relative, sequential, or fixed file, the next record after a PUT
operation is the next logical record.

The following example opens a sequential file with ACCESS APPEND specified. For sequential files,
this is almost identical to ACCESS WRITE. The only difference is that, with ACCESS APPEND,
BASIC positions the file pointer after the last record in the file when it opens the file for processing. All
subsequent PUT operations append the new record to the end of the existing file.

MAP (Buff) STRING Code = 4%, Exp_date = 9%, Type_desig = 32%
OPEN "INV.DAT"FOR INPUT AS FILE #2%, &
 ORGANIZATION SEQUENTIAL FIXED, ACCESS APPEND, &
 MAP Buff
WHILE -1%
 INPUT "What is the specification code";Code

182

Chapter 13. File Input and Output

 INPUT "What is the expiration date";Exp_date
 INPUT "What is the designator";Type_desig
 PUT #2%
NEXT

If the current record pointer is not at the end of the file when you attempt a sequential PUT operation to
a sequential file, BASIC signals “Not at end of file” (ERR=149).

In the following example, the PUT statement writes records to an indexed file. In this case, the error
message “Duplicate key detected” (ERR=134) indicates that a record with a matching key field already
exists, and you did not allow duplicates on that key.

10 MAP (Purchase_rec) STRING R_num = 5, &
 Dept_name = 10, &
 Pur_dat = 9
20 OPEN "INFO.DAT"FOR OUTPUT AS FILE #2, &
 ORGANIZATION INDEXED FIXED, ACCESS WRITE, &
 PRIMARY KEY R_num, MAP Purchase_rec
30 WHILE -1%
 INPUT "Requisition number";R_num
 INPUT "Department name";Dept_name
 INPUT "Date of purchase";Pur_dat
 PRINT
 PUT #2%
 NEXT

Requisition number? 2522A
Department name? COSMETICS
Date of purchase? 15-JUNE-1985

Requisition number? 2678D
Department name? AUTOMOTIVE
Date of purchase? 15-JUNE-1985

Requisition number? 4167C
Department name? AUTOMOTIVE
Date of purchase? 6-JANUARY-1985

Requisition number? 2522A
Department name? SPORTING GOODS
Date of purchase? 25-FEBRUARY-1985

%BAS-F-DUPKEYDET, Duplicate key detected
-BAS-I-ON_CHAFIL, on channel 2 for file USER$$DISK:[MAGNUS]INFO.DAT;8 at
user PC 0017E593
-BAS-O-FROLINMOD, from line 30 in module DUPLICATES
-RMS-F-DUP, duplicate key detected (DUP not set)

13.6.6. Deleting Records
The DELETE statement removes a record from a file that was opened with ACCESS MODIFY. After
you have deleted a record you cannot retrieve it. DELETE works with relative and indexed files only.

A successful FIND or GET operation must precede the DELETE operation. These operations make the
target record available for deletion. In the following example, the FIND statement locates record 67 in a
relative file and the DELETE statement removes this record from the file. Because the cell itself is not
deleted, you can use the PUT statement to write a record into that cell after deleting its contents.

183

Chapter 13. File Input and Output

FIND #1%, RECORD 67%
DELETE #1%

Note

There is no current record after a deletion. The next record pointer is unchanged.

13.6.7. Updating Records
The UPDATE statement writes a new record at the location indicated by the current record pointer.
UPDATE is valid on RMS sequential, relative, and indexed files.

UPDATE operates on the current record, provided that you have write access to that record. In order
to successfully update a variable-length record, you must know the exact size of the record you want
to update. BASIC has access to this information after a successful GET operation. If you have not
performed a successful GET operation on the variable-length record, then you must specify a COUNT
clause in the UPDATE statement that contains the record size information.

If you are updating a variable length record, and the record that you want to write out is of different size
than the record you retrieved, you must use a COUNT clause.

An UPDATE will fail with the exception “No current record” (ERR=131) if you have not previously
established a current record with a successful GET or FIND. Therefore, when updating records you
should include error trapping in your program to make sure all GET operations execute successfully.

An UPDATE operation on a sequential file is valid only when:

● The file containing the record is on disk.

● The new record is the same size as the one it is replacing.

● You have established a current record through a GET or FIND operation. Note that COUNT defaults
to the size of the current record if a GET was performed. If a FIND operation was used to locate the
current record, then you must supply a COUNT value.

The following program searches to find a record in which the L_name field matches the specified
Search_name$. Once this record is found and retrieved, the Rm_num field of that record is updated; the
program then prompts for another Search_name$. If a match is not found, BASIC prints the message
“No such record” and prompts the user for another Search_name$. The program ends when the user
enters a null string for the Search_name$ value.

20 MAP (AAA) STRING L_name = 60%, F_name = 20%, Rm_num = 8%
30 OPEN "STU.DAT"FOR INPUT AS FILE #9%, &
 ORGANIZATION SEQUENTIAL FIXED, MAP AAA
50 INPUT "Last name";Search_name$
55 Search_name$ = EDIT$(Search_name$, -1%)
60 IF Search_name$ = ""
 THEN GOTO 32010
 END IF
65 RESTORE #9%
70 WHEN ERROR IN
75 GET #9% WHILE Search_name$ <> L_name
 USE
 IF ERR=11
 THEN

184

Chapter 13. File Input and Output

 PRINT "No such record"
 CONTINUE 50
 ELSE
 EXIT HANDLER
 END IF
 END WHEN
80 INPUT "Room number";Rm_num
90 UPDATE #9%
100 GOTO 50
32010 CLOSE #9%
32030 PRINT "Update complete"
32767 END

Note

An UPDATE operation invalidates the value of the current record pointer. The next record pointer is
unchanged.

When you update a record in a relative variable file, the new record can be larger or smaller than the
record it replaces, provided that it is smaller than the maximum record size set for the file. When you
update a record in an indexed variable file, the new record can also be larger or smaller than the record it
replaces. The updated record:

● Can be no longer than the maximum record size, if specified

● Must include at least the primary key field

The following program updates a specified record on an indexed file:

MAP (UPD) STRING Enrdat = 8%, LONG Part_num, Sh_num, REAL Cost
OPEN "REC.ING"FOR INPUT AS FILE #8%, &
 INDEXED, MAP UPD, PRIMARY KEY Part_num
INPUT "Part number to update";A%
Loop1:
WHILE -1%
 GET #8%, KEY #0%, EQ A%
 INPUT "Revised Cost is";Cost
 UPDATE #8%
 INPUT "Next Record";A%
 IF A% = 0%
 THEN
 EXIT Loop1
 END IF
NEXT
CLOSE #8%
END

If the new record either omits one of the old record's alternate key fields or changes one of them, the
OPEN statement must specify a CHANGES clause for that key field when the file is created. Otherwise,
BASIC signals the error “Key not changeable” (ERR=130).

13.6.8. Controlling Record Access
When you open a file, BASIC allows you to specify how you will access the file and what types of access
you will allow other running programs while you have the file open.

185

Chapter 13. File Input and Output

If you open a file for read access only (ACCESS READ), BASIC by default allows other programs to
have unrestricted access to the file. You can restrict access with an ALLOW clause only if the file's
security constraints allow you write access to the file.

BASIC by default prevents access by other programs to any file you open with ACCESS WRITE,
ACCESS MODIFY, or ACCESS SCRATCH (sequential files only). This default action is equivalent to
specifying the OPEN statement ALLOW NONE clause. To allow less restrictive access to the open file,
specify ALLOW READ or ALLOW MODIFY.

When a file is open for read access only and you have not restricted access to other programs with
ALLOW NONE, BASIC allows other programs to read any record in the file including records that your
program is concurrently accessing. However, when you retrieve a record with the GET statement from a
file you have opened with the intent to modify, BASIC normally restricts other programs from accessing
that record. This restriction is called locking.

To allow other programs to access a record you have locked, you must release the lock on the record in
one of the following ways:

● Retrieve another record on the same channel. Unless you have opened the file with the UNLOCK
EXPLICIT clause (see the following discussion), this action will unlock the previous record.

● Explicitly unlock the record with the UNLOCK or FREE statement. The UNLOCK statement
releases the current record. The FREE statement releases all records locked on a given channel.

● Perform an UPDATE operation on the record. An UPDATE statement causes the current record to
be unlocked.

● Close the file.

In addition to the capability of restricting access through the OPEN statement ALLOW clause, BASIC
allows programs to explicitly control record locking on each record that is retrieved. To use explicit
record locking on a file, the OPEN statement must include an UNLOCK EXPLICIT clause. You may
then optionally specify an ALLOW clause on the GET and FIND statements. The ALLOW clause on
a GET or FIND statement specifies the type of access allowed by other programs to the record while
you are accessing it. The following statement specifies that other programs may read but not modify the
records you have locked:

GET #1, ALLOW READ

If you specify UNLOCK EXPLICIT when opening a file, all records that you retrieve remain locked
until you explicitly unlock them with a FREE, UNLOCK, or CLOSE statement.

13.6.9. Gaining Access to Locked Records
If you are trying to access a record that is currently locked, one possible solution is to use the
REGARDLESS clause on the GET or FIND statement. The REGARDLESS clause is useful when
you are interested in having only read access to the specified record. Be aware, however, that using the
REGARDLESS clause to read a locked record can lead to unexpected results because the record you
read can be in the process of being changed by another program.

Another solution is to include a WAIT clause on the GET or FIND statement. Note that you cannot
specify a WAIT clause and a REGARDLESS clause on the same statement line. By specifying the
WAIT clause, you can tell RMS to wait for a locked record to become available. You can optionally
specify an integer expression from 0 to 255 with the WAIT clause. This integer expression indicates
the number of seconds RMS should wait for a locked record to become available. If the record does

186

Chapter 13. File Input and Output

not become available within the specified number of seconds, RMS signals the error “Keyboard wait
exhausted” (ERR=15).

If you do not specify an integer expression with the WAIT clause, RMS waits indefinitely for the record
to become available. Once the record becomes available, RMS delivers the record to the program.

Note that a deadlock condition can occur when you cause RMS to wait indefinitely for a locked record.
A deadlock condition occurs when two users simultaneously try to access locked records in each other's
possession. When a deadlock occurs, RMS signals the error, “RMS$_DEADLOCK”. In turn, VSI
BASIC for OpenVMS signals the error, “Detected deadlock error while waiting for GET or FIND”
(ERR=193). To handle this error, you can either stop trying to access the particular record, or, if you
must access the record, free all locked records (regardless of the channel) and then attempt the GET or
FIND again. You need to unlock all records because you cannot know which record the other process
wants.

Note

If the timeout value specified in the WAIT clause is less than the SYSGEN parameter
DEADLOCK_WAIT, then a “Keyboard wait exhausted” (ERR=15) message can indicate that either
the record did not become available during the specified time, or there is an actual deadlock situation.
However, if the timeout value is greater than the SYSGEN parameter DEADLOCK_WAIT, the system
correctly specifies that a deadlock situation has occurred.

The following example uses the WAIT clause to overcome a record locked condition and traps the
resulting error condition:

MAP (worker) STRING first_name = 10, &
 last_name = 20, &
 badge_number = 6, &
 LONG dept_number

MAP (departments) STRING dept_name = 10, &
 LONG dept_code
OPEN "Employee_data.dat" FOR INPUT AS FILE #1%, &
 INDEXED FIXED, MAP worker, ACCESS MODIFY, &
 PRIMARY badge_number

OPEN "departments.dat" FOR INPUT AS FILE #2, &
 INDEXED FIXED, MAP departments, ACCESS MODIFY, &
 PRIMARY dept_code

WHEN ERROR IN
 WHILE -1%
 GET #1, WAIT
 WHEN ERROR USE time_expired_handler
 GET #2%, KEY #0 EQ dept_number, &
 WAIT 10%
 END WHEN
 PRINT badge_number, dept_name
 NEXT
USE
 SELECT ERR
 CASE = 11%
 PRINT "End of file reached"
 CLOSE 1%, 2%
 CASE = 193%

187

Chapter 13. File Input and Output

 PRINT "Deadlock detected"
 UNLOCK #2%
 RETRY
 CASE ELSE
 EXIT HANDLER
 END SELECT
END WHEN

HANDLER time_expired_handler
 IF ERR = 15% OR ERR = 193%
 THEN
 PRINT "Department info not available for:"
 PRINT "Employee ";badge_number
 PRINT "Going on to next record."
 CONTINUE
 ELSE
 EXIT HANDLER
 END IF
END HANDLER
END PROGRAM

The first WHEN ERROR block traps any deadlock conditions. The WHEN ERROR handler unlocks the
current record on channel #2 in case another program is trying to access it and then retries the operation.
The detached handler for the second WHEN ERROR block traps timeout errors and deadlock errors.
If the desired information does not become available in the specified amount of time, or a deadlock
condition occurs, the employee's badge number is printed out with an appropriate message, and the GET
statement tries to retrieve the next record in the sequence.

13.6.10. Accessing Records by Record File Address
A Record File Address (RFA) uniquely specifies a record in a file. Accessing records by RFA is
therefore more efficient and faster than other forms of random record access.1

Because an RFA requires six bytes of storage, BASIC has a special data type, RFA, that denotes variables
that contain RFA information. Variables of data type RFA can be used only with the I/O statements and
functions that use RFA information, and in comparison and assignment statements. You cannot print
these variables or use them in any arithmetic operation. However, you can compare RFA variables using
the equal to (=) and not equal to (<>) relational operators.

You cannot create named constants of the RFA data type. However, you can assign values from one RFA
variable to another, and you can use RFA variables as parameters.

Accessing a record by RFA requires the following steps:

1. Explicitly declare the variable or array of data type RFA to hold the address.

2. Assign the address to the variable or array element. You can do this either with the GETRFA
function, or by reading a file of RFAs generated by previous GETRFA functions or by the VMS Sort
Utility.

3. Specify the variable in the RFA clause of a GET or FIND statement.

The GETRFA function returns the RFA of the last record accessed on a channel. Therefore, you must
access a record in the file with a GET, FIND, or PUT statement before using the GETRFA function.
Otherwise, GETRFA returns a zero, which is an invalid RFA.

1Record File Addresses do not exist for terminal-format files.

188

Chapter 13. File Input and Output

The following example declares an array of type RFA containing 100 elements. After each PUT
operation, the RFA of the record is assigned to an element of the array. Once the RFA information
is assigned to a program variable or array element, you can use the RFA clause on a GET or FIND
statement to retrieve the record.

DECLARE RFA R_array(1 TO 100)
DECLARE LONG I
MAP (XYZ) STRING A = 80
OPEN "TEST.DAT" FOR OUTPUT AS FILE #1, &
 SEQUENTIAL, MAP XYZ
FOR I = 1% TO 100%
 .
 .
 .
 PUT #1
 R_array(I) = GETRFA(1%)
NEXT I

You can use the RFA clause on GET or FIND statements for any file organization; the only restriction
is that the file must reside on a disk that is accessible to the node that is executing the program. An
RFA value is only valid for the life of a specific version of a file. If a new version of a file is created, the
RFA values might change. If you attempt to access a record with an invalid RFA value, VSI BASIC for
OpenVMS signals a run-time error.

The following example continues the previous one. It randomly retrieves the records in a sequential file
by using RFAs stored in the array.

DECLARE RFA R_array(1% TO 100%)
DECLARE LONG I
MAP (XYZ) STRING A = 80
OPEN "TEST.DAT" FOR OUTPUT AS FILE #1, &
 SEQUENTIAL, MAP XYZ
FOR I = 1% TO 100%
 .
 .
 .
 PUT #1
 R_array(I) = GETRFA(1%)
NEXT I
WHILE -1%
 PRINT "Which record would you like to see";
 INPUT "(type a carriage return to exit)";Rec_num%
 EXIT PROGRAM IF Rec_num% = 0%
 GET #1, RFA R_array(Rec_num%)
 PRINT A
NEXT

13.6.11. Transferring Data to Terminal-Format Files
The PRINT # statement transfers program data to a terminal-format file. In the following example, the
INPUT statements prompt the user for three values: S_name$, Area$, and Quantity%. Once these values
are entered, the PRINT # statement writes these values to a terminal-format file that is open on channel
#4.

FOR I% = 1% TO 10%
 INPUT "Name of salesperson":S_name$

189

Chapter 13. File Input and Output

 INPUT "Sales district";Area$
 INPUT "Quantity sold";Quantity%
 PRINT #4%, S_name$, Area$, Quantity%
NEXT I%

If you do not specify an output list in the PRINT # statement, a blank line is written to the terminal-
format file. A PRINT statement without a channel number transfers program data to a terminal. See
Chapter 5, "Simple Input and Output" for more information.

13.6.12. Resetting the File Position
The RESTORE # statement resets the current record pointer to the beginning of the file; it does not
change the file. RESET # is a synonym for RESTORE. For example:

RESTORE #3%, KEY #2%
RESET #3%

The RESTORE # statement restores the file in terms of the second alternate key. The RESET #
statement restores the file in terms of the primary key.

The RESTORE # statement can be used by all RMS file organizations. RESTORE without a channel
number resets the data pointer for READ and DATA statements but does not affect any files.

13.6.13. Truncating Files
The SCRATCH statement is valid only on sequential files. Although you cannot delete individual records
from a sequential file, you can delete all records starting with the current record through to the end of the
file. In order to do this, you must first specify ACCESS SCRATCH when you open the file.

To truncate the file, locate the first record to be deleted. Once the current record pointer points to this
record, execute the SCRATCH statement. The following program locates the thirty-third record and
truncates the file beginning with that record.

OPEN "MMM.DAT" AS FILE #2%, &
 SEQUENTIAL FIXED, ACCESS SCRATCH

first_bad_record = 33%

FIND #2%, RECORD first_bad_record
SCRATCH #2%
CLOSE #2%
END

SCRATCH does not change the physical size of the file; it reduces the amount of information contained
in the file. (You can use the DCL command SET FILE/TRUNCATE to truncate the excess file space.)
Therefore, you can write records with the PUT statement immediately after a SCRATCH operation.

13.6.14. Renaming Files
If the security constraints permit, you can change the name or directory of a file with the NAME...AS
statement. For example:

NAME "MONEY.DAT" AS "ACCOUNTS.DAT"

This statement changes the name of the file MONEY.DAT to ACCOUNTS.DAT.

190

Chapter 13. File Input and Output

Note

The NAME...AS statement can change only the name and directory of a file; it cannot be used to change
the device name.

You must always include an output file type because there is no default. If you use the NAME...AS
statement on an open file, the new name does not take effect until you close the file.

13.6.15. Closing Files and Ending I/O
All programs should close files before the program terminates. However, files are automatically closed in
the following situations:

● At an END, END PROGRAM, or EXIT PROGRAM statement

● When it completes the last statement in the program if no END statement exists

● While executing a CHAIN statement

Files are not closed after executing a STOP, END SUB, END FUNCTION, or END PICTURE
statement.

The CLOSE statement closes files and disassociates these files and their buffers from the channel
numbers. If the file is a magnetic tape device and the data is written to a tape, CLOSE writes trailer
labels at the end of the file. The following is an example of the CLOSE statement:

CLOSE #1%
B% = 4%
CLOSE #2%, B%, 7%
CLOSE I% FOR I% = 1% TO 20%

13.6.16. Deleting Files
If the security constraints permit, you can delete a file with the KILL statement. For example:

KILL "TEST.DAT"

This statement deletes the file named TEST.DAT. Note that this statement deletes only the most current
version of the file. Do not omit the file type, because there is no default. You can delete only one file at a
time; to delete all versions of a file matching a file specification, use the Run-Time Library routine LIB
$DELETE_FILE.

You can delete a file that is currently being accessed by other users; however, the file is not deleted until
all users have closed it. You cannot open or access a file once you have deleted it.

13.7. File-Related Functions
The following built-in functions are provided for finding:

● The characteristics of the last file opened (FSP$)

● The number of bytes moved in the last I/O operation (RECOUNT)

● The file status (STATUS, VMSSTATUS, and RMSSTATUS)

191

Chapter 13. File Input and Output

These functions are discussed in the following sections.

13.7.1. FSP$ Function
If you do not know the organization of a file, you can find out by opening the file for input with the
ORGANIZATION UNDEFINED and RECORDTYPE ANY clauses. Your program can then use the
FSP$ function to determine the characteristics of that file. Your program must execute FSP$ immediately
after the OPEN FOR INPUT statement. For example:

RECORD FSP_data
 VARIANT
 CASE
 BYTE Org
 BYTE Rat
 WORD Max_record_size
 LONG File_size
 WORD Bucketsize_blocksize
 WORD Num_keys
 LONG Max_record_number
 CASE
 STRING Ret_string = 16
 END VARIANT
END RECORD

DECLARE FSP_data File_chars

OPEN "FIL.DAT" FOR INPUT AS FILE #1%, &
 ORGANIZATION UNDEFINED, &
 RECORDTYPE ANY, ACCESS READ
File_chars::Ret_string = FSP$(1%)

The following list explains the above example:

● Rat returns the low byte that is the RMS record attributes (RAT) field.

● Org returns the high byte that is the RMS organization (ORG) field.

● Max_record_size returns the RMS maximum record size (MRS) field.

● File_size returns the RMS allocation quantity (ALQ) field.

● Bucketsize_blocksize returns the RMS bucket size (BKS) field for disk files or the RMS block size
(BLS) field for magnetic tape files.

● Num_keys returns the number of keys.

● Max_record_number returns the RMS maximum record number (MRN) field if the file is a relative
file.

Note that FSP$ returns zeros in bytes 9 to 12. For more information, see the VSI OpenVMS Record
Management Services Reference Manual.

13.7.2. RECOUNT Function
Read operations can transfer varying amounts of data. The system variable RECOUNT contains the
number of characters (bytes) read after each read operation.

192

Chapter 13. File Input and Output

After a read operation from your terminal, RECOUNT contains the number of characters transferred,
including the line terminator. After accessing a record, RECOUNT contains the number of characters in
the record.

RECOUNT is reset by every read operation on any channel, including the controlling terminal.
Therefore, if you need to use the value of RECOUNT, copy it to another variable before executing
another read operation. RECOUNT is undefined if an error occurs during a read operation.

RECOUNT is often used as the argument to the COUNT clause in the UPDATE or PUT statement for
variable-length files. The following sequence of statements ensures that the output record on channel #5
is the same length as the input record on channel #4:

GET #4%
bytes_read% = RECOUNT
 .
 .
 .
PUT #5%, COUNT bytes_read%

13.7.3. STATUS, VMSSTATUS, and RMSSTATUS
Functions
The STATUS function accesses the status longword that contains characteristics of the last opened file. If
an error occurs during an input operation, the value of STATUS is undefined. If an error does not occur,
the six low-order bits of the returned value contain information about the type of device accessed by the
last input operation. These bits correspond to the following devices:

● If bit 0 is set, the device type is a record-oriented device.

● If bit 1 is set, the device type is a carriage control device.

● If bit 2 is set, the device type is a terminal.

● If bit 3 is set, the device type is a directory oriented device.

● If bit 4 is set, the device type is a single directory device.

● If bit 5 is set, the device type is a sequential block-oriented device (magnetic tape or TK50).

Both the VMSSTATUS and RMSSTATUS functions are used to determine which non-BASIC error
caused a resulting BASIC error. In particular, VMSSTATUS can be used for any non-BASIC errors,
while RMSSTATUS is used specifically for RMS errors. For more information about these functions, see
Chapter 15, "Handling Run-Time Errors" and the VSI BASIC Reference Manual.

13.8. OPEN Statement Options
This section explains the OPEN statement keywords that enable you to control how a file is created or
opened. These keywords are:

BUCKETSIZE
BUFFER
CONNECT
CONTIGUOUS
DEFAULTNAME

193

Chapter 13. File Input and Output

EXTENDSIZE
FILESIZE
NOSPAN
RECORDTYPE
TEMPORARY
USEROPEN
WINDOWSIZE

13.8.1. BUCKETSIZE Clause
The BUCKETSIZE clause applies only to relative and indexed files. A bucket is a logical storage
structure that RMS uses to build and maintain relative and indexed files on disk devices. A bucket
consists of one or more disk blocks. The default bucket size is the record size rounded up to a block
boundary. Although RMS defines the bucket size in terms of disk blocks, the BUCKETSIZE clause
specifies the number of records a bucket contains. For example:

OPEN "STOCK_DATA.DAT" FOR OUTPUT AS FILE #1%, &
 ORGANIZATION RELATIVE FIXED, BUCKETSIZE 12%

This example specifies a bucket containing approximately 12 records. RMS reads in entire buckets into
the I/O buffer at once, and a GET statement transfers one record from the I/O buffer to your program's
record buffer.

When you open an existing relative or indexed file and specify a bucket size other than that originally
assigned to the file, BASIC signals the error, “File attributes not matched” (ERR=160).

Records cannot span bucket boundaries. Therefore, when you specify a bucket size in your program,
you must consider the size of the largest record in the file. Note that a bucket must contain at least one
record. Buckets in both relative and indexed files contain information in addition to the records stored in
the bucket. You should take this into consideration.

There are two ways to establish the number of blocks in a bucket. The first is to use the default. The
second is to specify the approximate number of records you want in each bucket. A bucket size based on
that number is then calculated.

 The default bucket size assigned to relative and indexed files is as small as possible. A small bucket size,
however, is rarely desirable.

A default bucket size is selected depending on the:

● Record length

● File organization (relative or indexed)

● Record format

If you do not define the BUCKETSIZE clause in the OPEN statement, BASIC does the following:

● Assumes that there is a minimum of one record in the bucket

● Calculates a size

● Assigns the appropriate number of blocks

Note that when you specify a bucket size for files in your program, you must keep in mind the space
versus speed tradeoffs. A large bucket size increases file processing speed because a greater amount

194

Chapter 13. File Input and Output

of data is available in memory at one time; however, it also increases the memory space needed for
buffer allocation and the processing time required to search the bucket. Conversely, a small bucket size
minimizes buffer requirements, but increases the number of accesses to the storage device, thereby
decreasing the speed of operations.

It is recommended that you use the DCL command EDIT/FDL to design files used in production
applications where performance is a concern.

13.8.2. BUFFER Clause
The BUFFER clause applies to disk files of any organization. In the case of sequential files, the
BUFFER clause sets the number of blocks read in on each disk access. For relative and indexed files,
the BUFFER clause determines the number of I/O buffers that are allocated. In general, the OpenVMS
operating system supplies adequate defaults for all file types; therefore, the BUFFER clause is rarely
necessary.

You can specify up to 127 buffers as either a positive or a negative number:

● If (0 < BUFFER < 127), RMS allocates enough space for the specified number of buckets.

● If (-128 < BUFFER < 0), BASIC allocates the absolute value of the specified number of buffers.

● If (BUFFER=0), BASIC allocates the process default for the particular file organization and device
—this value is usually adequate.

13.8.3. CONNECT Clause
The CONNECT clause can be used only on indexed files. CONNECT lets you process different groups
of records on different indexed keys or on the same key without incurring all of the RMS overhead
of opening the same file more than once. For example, a program can read records in an indexed file
sequentially by one key and randomly by another. Each stream is an independent, active series of record
operations.

MAP (Indmap) WORD Emp_num, &
 STRING Emp_last_name = 20, &
 SINGLE Salary, &
 STRING Wage_code = 2
OPEN "IND.DAT" FOR INPUT AS FILE #1%, &
 ORGANIZATION INDEXED, &
 MAP Indmap, &
 PRIMARY KEY Emp_num, &
 ALTERNATE KEY Emp_last_name
 .
 .
 .
OPEN "IND.DAT" FOR INPUT AS FILE #2% &
 ORGANIZATION INDEXED, &
 MAP Indmap, &
 CONNECT 1

The channel on which you open the file for the first time is called the parent. The CONNECT clause
specifies another channel on which you access the same file; connected channels are called children.
More than one OPEN statement can connect to the parent channel; however, you cannot connect to a
channel that has already been connected to another channel.

Do not use the CONNECT clause when accessing files on remote DECnet nodes.

195

Chapter 13. File Input and Output

13.8.4. CONTIGUOUS Clause
A contiguous file with physically adjoining blocks minimizes disk searching and decreases file access
time. Once the system knows where a contiguous file starts on the disk, it does not need to use as
many retrieval pointers to locate the pieces of that file. Rather, it can access data by calculating the
distance from the beginning of the file to the desired data. If there is not enough contiguous disk space,
BASIC allocates as much contiguous space as possible. (For truly contiguous records, you must use
the USEROPEN clause and set the CTG bit in the FAB FOP field—see the VSI OpenVMS Record
Management Services Reference Manual).

Opening a file with both the FILESIZE and CONTIGUOUS clauses pre-extends the file contiguously or
in as few disk extents as possible.

13.8.5. DEFAULTNAME Clause
The DEFAULTNAME clause in the OPEN statement lets you specify a default file specification for the
file to be opened. It is valid with all file organizations. BASIC uses the DEFAULTNAME clause for any
part of the file specification that is not explicitly supplied.

LINPUT "Next data file";Fil$
OPEN Fil$ FOR INPUT AS FILE #5%, &
 ORGANIZATION SEQUENTIAL, &
 DEFAULTNAME "USER$DEVICE:.DAT"

The DEFAULTNAME clause supplies default values for the device, directory, and file type portions of
the file specification. Typing ABC in response to the Next data file? prompt causes BASIC to try to open
USER$DEVICE:ABC.DAT.

BASIC uses the DEFAULTNAME values only if you do not supply those parts of the file specification
appearing in the DEFAULTNAME clause. For example, if you type SYS$DEVICE:ABC in response to
the prompt, BASIC tries to open SYS$DEVICE:ABC.DAT. In this case, SYS$DEVICE: overrides the
device default in the DEFAULTNAME clause. Any part of the file specification still missing is filled in
from the current default device and directory of the process.

13.8.6. EXTENDSIZE Clause
The EXTENDSIZE attribute determines how many disk blocks RMS adds to the file when the current
allocation is exhausted. The EXTENDSIZE clause only has an effect when creating a file. You specify
EXTENDSIZE as a number of blocks. For example:

OPEN "TSK.ORN" FOR OUTPUT AS FILE #2%, &
 ORGANIZATION RELATIVE, EXTENDSIZE 128%

The EXTENDSIZE clause causes RMS to add 128 disk blocks whenever the current space allocation is
exhausted and the file must be extended.

The value you specify must conform to the following requirements:

● It must be specified when you create the file

● It cannot exceed 65,535 disk blocks

If you specify zero, the extension size equals the RMS default value. The EXTENDSIZE value can be
overridden for single OPEN operations.

196

Chapter 13. File Input and Output

13.8.7. FILESIZE Clause
With the FILESIZE attribute, you can allocate disk space for a file when you create it. The following
statement allocates 50 blocks of disk space for the file VALUES.DAT:

OPEN "VALUES.DAT" FOR OUTPUT AS FILE #3%, FILESIZE 50%

Pre-extending a file has several advantages:

● The system can create a complete directory structure for the file, instead of allocating and mapping
additional disk blocks when needed.

● You reserve the needed disk space for your application. This ensures that you do not run out of space
when the program is running.

● Pre-extension can make some of the file's disk blocks contiguous, especially when used with the
CONTIGUOUS keyword.

Note that pre-extension can be a disadvantage if it allocates disk space needed by other users. The
FILESIZE clause is ignored when VSI BASIC for OpenVMS opens an existing file.

13.8.8. NOSPAN Clause
By default, sequential files allow records to cross or span block boundaries. If records cross block
boundaries, RMS packs records into the file end-to-end throughout the file, leaving space for control
information and padding.

The NOSPAN clause overrides this default, forcing records to fit into individual blocks (with space
provided for control information and padding). When block boundaries restrict records, fixed-length
records must be less than 512 bytes, and variable-length records less than 510 bytes. This can waste extra
bytes at the end of each block. However, when records span block boundaries, RMS writes records end-
to-end without regard for block boundaries. For example, if you specify NOSPAN, only four 120-byte
records fit into a disk block. If you do not specify NOSPAN, BASIC begins writing the fifth record in
the block, and continues writing that record in the next block. This minimizes wasted disk space and
improves the file's capacity, at the minimal expense of increased processing overhead.

13.8.9. RECORDTYPE Clause
The RECORDTYPE clause lets you specify record formats that are compatible with files created by
other language processors. You can choose one of four qualifiers: LIST, FORTRAN, ANY, and NONE.
The default for BASIC is LIST, which specifies carriage return format. This is standard for ASCII text
files and means that carriage control is performed by RMS when writing the file to a unit-record device.

If your program accesses a file created with a Fortran language processor, use the FORTRAN qualifier.
In the following example, the FORTRAN qualifier sets the FORTRAN carriage control attribute in
the RAT field in the FAB. For more information about the FAB control structure, see Section 13.8.11,
"USEROPEN Clause". The first byte of the record is assumed to be the carriage control information. For
example:

OPEN "FIL.DAT" FOR INPUT AS FILE #1%, &
 ORGANIZATION SEQUENTIAL, RECORDTYPE FORTRAN

If your program accesses a file created by an unknown language processor or by DCL, use the ANY
qualifier; this qualifier causes BASIC to handle any record attribute type. If you create a file with the
ANY qualifier, BASIC uses the default of LIST. For example:

197

Chapter 13. File Input and Output

OPEN "FIL.DAT" FOR INPUT AS FILE #1%, &
 ORGANIZATION INDEXED, RECORDTYPE ANY

13.8.10. TEMPORARY Clause
If you specify the TEMPORARY clause in the OPEN statement, BASIC deletes that file in any one of
the following cases:

● When you close the file

● When the program aborts or exits

● When your process terminates

No entry for this file is made in any directory.

13.8.11. USEROPEN Clause
The USEROPEN clause specifies an external long function that BASIC executes when you open or
create a file. (You do not need to declare the USEROPEN routine with an EXTERNAL FUNCTION
statement.) This procedure can then specify additional OPEN parameters for the file. For example:

OPEN "FILE.DAT" FOR INPUT AS FILE #2%, &
 ORGANIZATION INDEXED, USEROPEN Myopen, MAP ABC

The code in Myopen determines how the file FILE.DAT is opened. The Run-Time Library sets up six
RMS control structures before calling the USEROPEN procedure. Table 13.4, "RMS Control Structures
Set for the USEROPEN Clause" defines these structures and their meanings.

Table 13.4. RMS Control Structures Set for the USEROPEN Clause

Structure Definition

FAB File Access Block
RAB Record Access Block
NAM Name Block
XAB FHC Extended Attributes Block
ESA Expanded Name String
RSA Resultant Name String

A USEROPEN procedure should not alter the allocation of these structures, although it can modify the
contents of many of the fields. You should not modify fields set by other OPEN statement keywords. For
example, you should use the RECORDSIZE clause, not a USEROPEN routine, to set the record length.

The allocation of the RMS control structures (except for the RAB) lasts only for the duration of the
OPEN statement. Therefore, your USEROPEN can retain only the RAB address for use after the OPEN
operation is complete. Note that any additional structures that you allocate and link into the RMS
structures must be unlinked before exiting the USEROPEN.

Note

Future releases of the OpenVMS Run-Time Library might alter the use of some RMS fields. Therefore,
you might have to alter your USEROPEN procedures accordingly.

198

Chapter 13. File Input and Output

The following steps describe the execution of the USEROPEN routine:

1. BASIC performs normal OPEN statement processing up to the point where it would call the RMS
OPEN/CREATE and CONNECT routines. BASIC then passes control to the USEROPEN routine.

2. BASIC passes the address of the FAB as the first parameter, the address of the RAB as the second
parameter, and the address of the user-specified channel number as the third parameter to the
routine.

3. The USEROPEN routine can modify the contents of the RMS control structures, and it must call the
RMS OPEN or RMS CREATE routine and the RMS CONNECT routine and return the status in R0.

Example 13.1, "Creating a USEROPEN Routine" shows how to create a USEROPEN routine to obtain a
RAB address.

Example 13.1. Creating a USEROPEN Routine

%TITLE "Example USEROPEN"
%SBTTL "Useropen Routine to obtain RAB address"
%IDENT "Version 1.1"

FUNCTION LONG Get_rab_address (Fabdef User_fab, Rabdef User_rab,
 LONG Channel)
!++
! FUNCTIONAL DESCRIPTION:
!
! Save the address of the RMS Record Access Block allocated by the caller
! in a global symbol. Open the file and return the status from RMS.
!
! FORMAL PARAMETERS (Standard for all BASIC USEROPEN procedures)
!
! User_fab Address of RMS File Access Block
! User_rab Address of RMS Record Access Block
! Channel Logical Unit assigned to file by caller.
!
! RETURN VALUE: RMS Status value
!
! GLOBAL COMMON USAGE
!
! RAB_ptr Single longword PSECT used to pass RAB address to caller.
!
!--
 OPTION INACTIVE = SETUP, &
 CONSTANT TYPE = INTEGER, &
 TYPE = EXPLICIT

 %NOLIST
 %INCLUDE "$FABDEF" %FROM %LIBRARY "SYS$LIBRARY:BASIC$STARLET"
 %INCLUDE "$RABDEF" %FROM %LIBRARY "SYS$LIBRARY:BASIC$STARLET"
 %INCLUDE "$RMSDEF" %FROM %LIBRARY "SYS$LIBRARY:BASIC$STARLET"
 %INCLUDE "STARLET" %FROM %LIBRARY "SYS$LIBRARY:BASIC$STARLET"
 %LIST
 !+
 ! Common area used to pass RAB address to caller.
 !-
 COMMON (RAB_ptr) LONG rab_address

199

Chapter 13. File Input and Output

 DECLARE LONG Rms_status
 !+
 ! Save RAB address in global symbol known to caller.
 ! Perform standard RMS open sequence
 !-
 Rab_address = LOC(User_rab::rab$b_bid)

 Rms_status = Sys$open(User_fab)

 IF Rms_status = Rms$_normal
 THEN
 Rms_status = Sys$connect(User_rab)
 END IF

END FUNCTION Rms_status

Note

You cannot use a USEROPEN routine to fill the RBF, UBF, BKS, or CTX fields in the RAB. These
fields are filled in after the USEROPEN routine returns; any values placed there by the USEROPEN
routine are overwritten. Also, you must not set RMS Locate mode when using a USEROPEN routine on
sequential files.

13.8.12. WINDOWSIZE Clause
The WINDOWSIZE clause specifies the number of block retrieval pointers in memory for the file.
WINDOWSIZE is not a file attribute, and therefore can be changed any time you open a file.

Retrieval pointers are associated with the file header and point to contiguous blocks on disk. By keeping
retrieval pointers in memory, you can reduce the I/O associated with locating a record because the
operating system does not have to access the file header for pointers as frequently. The number of
retrieval pointers in memory at any one time is determined by the system default or by the value you
supply in the WINDOWSIZE clause. The usual default number of retrieval pointers is 7.

A value of zero specifies the default number of retrieval pointers. A value of –1 specifies mapping the
entire file, if possible. Values from –128 to –2 are reserved.

200

Chapter 14. Formatting Output
with the PRINT USING Statement
The PRINT USING statement controls the appearance and location of data on a line of output. With it,
you can create formatted lists, tables, reports, and forms. This chapter describes how to format data with
the PRINT USING statement.

14.1. Overview of the PRINT USING Statement
The ability to format data with the PRINT USING statement is useful because the way in which VSI
BASIC for OpenVMS displays data with the PRINT statement is often limited. For example, a program
might use floating-point numbers to represent dollars and cents. The PRINT statement displays floating-
point numbers with up to six digits of accuracy, and places the decimal point anywhere in that 6-digit
field. In contrast, PRINT USING lets you display floating-point numbers in the following ways:

● Rounded to a number of specified decimal places

● Vertically aligned on the decimal point

● Preceded by a dollar sign

● With commas every third digit to the left of the decimal point

Formatting monetary values in this way provides a more readable report. Another use for formatted
numeric values might be to print checks on a printer. PRINT USING lets you print numbers with a dollar
sign and an asterisk-filled field preceding the first digit.

PRINT USING also formats string data. With it you can left- and right-justify string expressions, or
center a string expression over a specified column position. Further, the PRINT USING statement can
contain string literals. These are strings that do not control the format of a print item, but instead are
printed exactly as they appear in the format string.

It is recommended that you declare all format expressions as string constants. When you do this the VSI
BASIC for OpenVMS compiler instructs the Run-Time Library to compile the string at compile time
rather than at run time, thus improving the performance of your code.

14.2. Using Format Strings
Format strings determine the way in which items are to be printed in the output file. Format strings can
be any of the following:

● String variables

● String literals

● Named string constants

● A combination of the previous strings

The PRINT USING statement must contain one or more format strings. Each format string is made up
of one format field. Each format field controls the output of one print item and can contain only certain
characters, as described throughout the chapter.

201

Chapter 14. Formatting Output with the PRINT USING Statement

The PRINT USING statement must also contain a list of items you want printed. To format print items,
you must separate them with commas or semicolons. Separators between print items do not affect output
format as they do with the PRINT statement. However, if a comma or semicolon follows the last print
item, VSI BASIC for OpenVMS does not return the cursor or print head to the beginning of the next line
after it prints the last item in the list.

When VSI BASIC for OpenVMS encounters an invalid character within the current format field, it
automatically ends the format field; therefore, you do not need to delimit format fields. The character
that terminates the previous field can be either a new format field or a string literal.

In the following example, the first three characters in the format string (###) make up a valid numeric
format field. The fourth character (A) is invalid in a numeric format field; therefore, VSI BASIC for
OpenVMS ends the first format field after the third character. VSI BASIC for OpenVMS continues to
scan the format string, searching for a character that begins a format field. The first such character is
the number sign at character position 7. Therefore, the characters at positions 4, 5, and 6 are treated as a
string literal. The characters at positions 7, 8, and 9 make up a second valid numeric format field.

PRINT USING "###ABC###", 123, 345

Output
123ABC345

When the statement executes, VSI BASIC for OpenVMS prints the first number in the list using the first
format field, then prints the string literal ABC, and finally prints the second number in the list using the
second format field. If you were to supply a third number in the list, VSI BASIC for OpenVMS would
reuse the first format string. This is called reversion.

PRINT USING "###ABC###", 123, 345,
564

Output
123ABC345
564ABC

Because any character not part of a format field is printed just as it appears in the format field, you can
use a space or multiple spaces to separate format fields in the format string as shown in the following
example:

DECLARE STRING CONSTANT format_string = "###.## ###.##"
DECLARE SINGLE A,B
A = 2.565
B = 100.350
PRINT USING format_string, A, B, A, B

Output
 2.57 100.35
 2.57 100.35

When the VSI BASIC for OpenVMS compiler encounters the PRINT USING statement, VSI BASIC
for OpenVMS prints the value of A (rounded according to PRINT USING rules), three spaces, then the
value of B. VSI BASIC for OpenVMS prints the three spaces because they are treated as a string literal
in the format string. Notice that when VSI BASIC for OpenVMS reuses a format string, it begins on a
new line.

202

Chapter 14. Formatting Output with the PRINT USING Statement

14.3. Printing Numbers
With the PRINT USING statement, you can specify:

● The number of digits to print, thus rounding the number to a given place

● The decimal point location, thus vertically aligning numbers at the decimal point

● Special symbols, including trailing minus signs (-), asterisk-filled number fields, floating currency
symbols, embedded commas, and E notation

● Debits and credits

● Leading zeros or leading spaces

● Blank-if-zero fields

● A special character that is to be printed as a literal

Unlike the PRINT statement, PRINT USING does not automatically print a space before and after a
number. Unless you reserve enough digit positions to contain the integer portion of the number (and a
minus sign, if necessary), VSI BASIC for OpenVMS prints a percent sign (%) to signal this condition
and displays the number in PRINT format.

14.3.1. Specifying the Number of Digits
You reserve places for digits by including a number sign (#) for each digit position. If you print negative
numbers, you must also reserve a place for the minus sign.

PRINT USING "###",123 !Three places reserved
PRINT USING "#####",12345 !Five places reserved
PRINT USING "####",-678 !Four places reserved
END

Output
123
12345
-678

If there are not enough digits to fill the field, VSI BASIC for OpenVMS prints spaces before the first
digit.

format_string$ = "#####"
PRINT USING format_string$, 1
PRINT USING format_string$, 10
PRINT USING format_string$, -1709
PRINT USING format_string$, 12345
END

Output
 1
 10
 -1709
 12345

203

Chapter 14. Formatting Output with the PRINT USING Statement

If you have not reserved enough digits to print the fractional part of a number, VSI BASIC for
OpenVMS rounds the number to fit the field.

PRINT USING "###",126.7
PRINT USING "#",5.9
PRINT USING "#",5.4
END

Output
127
6
5

If you have not reserved enough places to print a number's integer portion, VSI BASIC for OpenVMS
prints a percent sign as a warning followed by the number in PRINT statement format. After VSI BASIC
for OpenVMS prints the number, it completes the rest of the list in PRINT USING format.

In the following example, PRINT USING displays the first number. Because there are not enough places
to the left of the decimal point to display a 3-digit number, BASIC prints the second number in PRINT
statement format, with a space before and after, but includes a percent sign warning.

PRINT USING "###", 256
PRINT USING "##", 256
END

Output
256
% 256

14.3.2. Specifying Decimal Point Location
The decimal point's position in the format string determines the number of reserved places on either side
of it. If the print item's fractional part does not use all of the reserved places to the right of the decimal
point, BASIC fills the remaining spaces with zeros.

DECLARE STRING CONSTANT FM = "##.###"
PRINT USING FM, 15.72
PRINT USING FM, 39.3758
PRINT USING FM, 26

Output
15.720
39.376
26.000

If there are more fractional digits than reserved places to the right of the decimal point, BASIC rounds
the number to fit the reserved places. Note that there must be enough places reserved to the left of the
decimal point for the integer portion of the number. Otherwise, BASIC prints the number in PRINT
format preceded by a percent sign. The following example shows how PRINT USING rounds numbers
when you specify decimal point location:

PRINT USING "##.##", 25.789
PRINT USING "##.###", 100.2
PRINT USING "#.##",.999

204

Chapter 14. Formatting Output with the PRINT USING Statement

END

Output
25.79
% 100.2
1.00

BASIC fills all reserved spaces to the left of the decimal point with specified digits, spaces, or the minus
sign.

PRINT USING "##.##", 5.25
PRINT USING "##.##", -5.25
PRINT USING "###.##,-5.25
END

Output
 5.25
-5.25
 -5.25

14.3.3. Printing Numbers with Special Symbols
Special symbols let you print numbers with trailing minus signs, asterisk-fill fields, floating currency
symbols, commas, or E notation. You can also specify debits, credits, leading zeros, leading blanks,
and blank-if-zero fields. Table 14.1, "Format Characters for Numeric Fields" summarizes these special
characters.

Table 14.1. Format Characters for Numeric Fields

Character Effect on Format

Number sign (#) Reserves a place for one digit.
Decimal point (period) (.) Determines decimal point location and reserves a place for the radix

point.
Comma (,) Prints a comma before every third digit to the left of the decimal

point and reserves a place for one digit or digit separator.
Two asterisks (**) Print leading asterisks before the first digit and reserve places for

two digits.
Two dollar signs ($$) Print a currency symbol before the first digit. They also reserve

places for the currency symbol and one digit. By default, the
currency symbol is a dollar sign. To change the currency symbol, see
Section 14.3.3.3, "Currency Symbols"

Four carets (^^^^) Print a number in E (exponential) format and reserve four places for
E notation.

Minus sign (-) Prints a trailing minus sign for negative numbers. Printing a negative
number in an asterisk-fill or a currency field requires that the field
also have a trailing minus sign or credit/debit character.

Zero in angle brackets (<0>) Prints leading zeros instead of leading spaces.
Percent sign in angle brackets (<
%>)

Prints all spaces in the field if the value of the print item, when
rounded to fit the numeric field, is zero.

205

Chapter 14. Formatting Output with the PRINT USING Statement

Character Effect on Format

CD in angle brackets (<CD>) Prints credit and debit characters immediately following the number.
BASIC prints CR for negative numbers and zero, and DR for
positive numbers.

Underscore (_) Specifies that the next character is a literal, not a formatting
character.

14.3.3.1. Commas
You can place a comma anywhere in a number field to the left of the decimal point or to the right of the
field's first character. A comma cannot start a format field. BASIC prints a comma to the left of every
third digit from the decimal point. If there are fewer than four digits to the left of the decimal point,
BASIC omits the comma.

PRINT USING "##,###",10000
PRINT USING "##,###",759
PRINT USING "$$#,###.##",25694.3
PRINT USING "**#,###",7259
PRINT USING "####,#.##",25239
END

Output

 10,000
 759
 $25,694.30
 **7,259
 25,239.00

14.3.3.2. Asterisk-Fill Fields
To print an asterisk (*) before the first digit of a number, you must start the field with two asterisks.

DECLARE STRING CONSTANT FM = "**##.##"
PRINT USING FM, 1.2
PRINT USING FM, 27.95
PRINT USING FM, 107
PRINT USING FM, 1007.5
END

Output

***1.20
**27.95
*107.00
1007.50

Note that the asterisks reserve two places as well as cause asterisk fill.

To specify a negative number in an asterisk-fill field, you must place a trailing minus sign in the field.
The trailing minus sign must be the last character in the format string.

DECLARE STRING CONSTANT FM = "**##.##-"
PRINT USING FM, 27.95
PRINT USING FM, -107
PRINT USING FM, -1007.5

206

Chapter 14. Formatting Output with the PRINT USING Statement

END

Output

**27.95
*107.00-
1007.50-

If you try to print a negative number in an asterisk-fill field that does not include a trailing minus sign,
BASIC signals “PRINT USING format error” (ERR=116).

You cannot specify both asterisk-fill and zero-fill for the same numeric field.

14.3.3.3. Currency Symbols
To print a currency symbol before the first digit of a number, you must start the field with two dollar
signs. If the data contains both positive and negative numbers, you must include a trailing minus sign.

DECLARE STRING CONSTANT FM = "$$##.##-"
PRINT USING FM, 77.44
PRINT USING FM, 304.55
PRINT USING FM, 2211.42
PRINT USING FM, -125.6
PRINT USING FM, 127.82
END

Output

 $77.44
$304.55
% 2211.42
$125.60-
$127.82

Note that the dollar signs reserve places for the currency symbol and only one digit; the dollar sign is
always printed. (Hence the warning indicator (%) when the third PRINT USING statement executes.)
Contrast this with the asterisk-fill field, where BASIC prints asterisks only when there are leading spaces.

By default, the currency symbol is a dollar sign. On OpenVMS systems, you can change the currency
symbol, radix point, and digit separator by assigning the characters you want to the logical names SYS
$CURRENCY, SYS$RADIX_POINT, and SYS$DIGIT_SEP, respectively.

If you try to print a negative number in a dollar sign field that does not include either a trailing minus
sign or the CR and DR formatting character, BASIC signals “PRINT USING Format error” (ERR=116).

14.3.3.4. Negative Fields
To allow for a field containing negative values, you must place a trailing minus sign in the format
field. A negative format field causes the value to be printed with a trailing minus sign. You can also
denote negative fields with CR and DR. See Section Section 14.3.3.8, "Debits and Credits" for more
information.

You must use a trailing minus or the CR/DR formatting character to indicate a negative number in an
asterisk-fill or floating dollar sign field.

For fields with trailing minus signs, BASIC prints a minus sign after negative numbers as shown in
Example 1, and a space after positive numbers as shown in Example 2.

207

Chapter 14. Formatting Output with the PRINT USING Statement

Example 1

!Standard field
PRINT USING "###.##",-10.54
PRINT USING "###.##",10.54
END

Output 1

!Standard field
PRINT USING "###.##",-10.54
PRINT USING "###.##",10.54
END

Example 2

!Fields with Trailing Minus Signs
PRINT USING "##.##-",-10.54
PRINT USING "##.##-",10.54
END

Output 2

10.54-
10.54

14.3.3.5. E (Exponential) Format
To print a number in E format, you must place four carets (^^^^) at the end of the field. The carets
reserve space for:

● The capital letter E

● A plus or minus sign (which indicates a positive or negative exponent)

● An exponent (the exponent is 2 digits for single, double, and s_floating, 3 digits for g_floating and
t_floating, and 4 digits for h_floating and x_floating)

In exponential format, BASIC does not pad the digits to the left of the decimal point. Instead, the most
significant digit shifts to the leftmost place of the format field, and the exponent compensates for this
adjustment.

PRINT USING "###.##^^^^",5
PRINT USING "###.##^^^^",1000
PRINT USING ".##^^^^",5
END

Output

 500.00E-02
 100.00E+01
.50E+01

If you use fewer than four carets, the number does not print in E format; the carets print as literal
characters. If you use more than four carets, BASIC prints the number in E format and includes the extra
carets as a string literal.

PRINT USING "###.##^^^",5

208

Chapter 14. Formatting Output with the PRINT USING Statement

PRINT USING "###.##^^^^^",5
END

Output

 5.00^^^
 500.00E-02^

You must reserve a place for a minus sign to the left of the decimal point to display negative numbers in
exponential format. If you do not, BASIC prints a percent sign (%) as a warning.

You cannot use exponential format with asterisk-fill, floating-dollar sign, or trailing minus formats.

14.3.3.6. Leading Zeros
To print leading zeros in a numeric field, you must start the format field with a zero enclosed in angle
brackets (<0>). These characters also reserve one place for a digit.

DECLARE STRING CONSTANT FM = "<0>####.##"
PRINT USING FM, 1.23, 12.34, 123.45, 1234.56, 12345.67

Output

00001.23
00012.34
00123.45
01234.56
12345.67

When you specify zero-fill, you cannot specify asterisk-fill or floating-dollar sign format for the same
field.

14.3.3.7. Blank-If-Zero Fields
To print a blank field for values which round to zero, you must start the numeric field with a percent sign
enclosed in angle brackets (<%>).

In the following example, PRINT USING displays spaces in each reserved position for the second and
third items in the list. The value of the second item is zero, while the value of the third item becomes
zero when rounded to fit the numeric field.

 DECLARE STRING CONSTANT FM = "
<%>####.##" PRINT USING FM, 1000, 0, .001, -5000

Output

 1000.00

 -5000.00

14.3.3.8. Debits and Credits
You can have BASIC use credit and debit notation to differentiate positive and negative numbers. To
do this, you place the characters <CD> (Credit/Debit) at the end of the numeric format string. This
causes BASIC to print CR (Credit Record) after negative numbers, and DR (Debit Record) after positive
numbers and zero.

209

Chapter 14. Formatting Output with the PRINT USING Statement

DECLARE STRING CONSTANT FM = "$$####.##<cd>"
PRINT USING FM, -552.35, 200, -5

Output

 $552.35CR
 $200.00DR
 $5.00CR

You cannot use a trailing minus sign and Credit/Debit formatting in the same numeric field. Using the
Credit/Debit formatting character causes the value to be printed with a leading space.

14.4. Printing Strings
 With the PRINT USING statement, you can specify the following aspects of string format:

● The number of characters

● Left-justified format

● Right-justified format

● Centered format

● Extended field format

Table 14.2, "Format Characters for String Fields" summarizes the format characters and their effects.

Table 14.2. Format Characters for String Fields

Character Effect on Format

Single quotation mark (’) Starts the string field and reserves a place for one character.
L (upper- or lowercase) Left-justifies the string and reserves a place for one character.
R (upper- or lowercase) Right-justifies the string and reserves a place for one character.
C (upper- or lowercase) Centers the string in the field and reserves a place for one character.
E (upper- or lowercase) Left-justifies the string; expands the field, as necessary, to print the

entire string; and reserves a place for one character.
Two backslashes (\ \) Reserves n+2 character positions, where n is the number of spaces

between the two backslashes. PRINT USING left-justifies the string
in this field. This formatting character is included for compatibility
with BASIC-PLUS. It is recommended that you not use this type of
field for new program development.

Exclamation point (!) Creates a 1-character field. The exclamation point both starts and
ends the field. This formatting character is included for compatibility
with BASIC-PLUS. It is recommended that you not use this type of
field for new program development. Instead, use a single quotation
mark to create a 1-character field.

You must start string format fields with a single quotation mark (’) that reserves a space in the print
field, followed by:

● A contiguous series of upper- or lowercase Ls for left-justified output

210

Chapter 14. Formatting Output with the PRINT USING Statement

● A contiguous series of upper- or lowercase Rs for right-justified output

● A contiguous series of upper- or lowercase Cs for centered output

● A contiguous series of upper- or lowercase Es for extended field output

BASIC ignores the overflow of strings larger than the string format field except for extended fields. For
extended fields, BASIC extends the field to print the entire string. If a string to be printed is shorter than
the format field, BASIC pads the string field with spaces. For more information about extended fields,
see Section 14.4.4, "Extended Fields".

A string field containing only a single quotation mark is a 1-character string field. BASIC prints the first
character of the string expression corresponding to a 1-character string field and ignores all following
characters.

PRINT USING "'","ABCDE"
END

Output
A

See Section 14.4.4, "Extended Fields" for an example of different types of fields used together.

14.4.1. Left-Justified Format
BASIC prints strings in a left-justified field starting with the leftmost character. BASIC pads shorter
strings with spaces and truncates longer strings on the right to fit the field.

A left-justified field contains a single quotation mark followed by a series of Ls.

PRINT USING "'LLLLLL","ABCDE"
PRINT USING "'LLLL","ABC"
PRINT USING "'LLLLL","12345678"
END

Output
ABCDE
ABC
123456

14.4.2. Right-Justified Format
BASIC prints strings in a right-justified field starting with the rightmost character. BASIC pads the left
side of shorter strings with spaces. If a string is longer than the field, BASIC left-justifies and truncates
the right side of the string.

A right-justified field contains a single quotation mark (’) followed by a series of Rs.

DECLARE STRING CONSTANT right_justify = "'RRRRR"
PRINT USING right_justify,"ABCD"
PRINT USING right_justify,"A"
PRINT USING right_justify,"STUVWXYZ"
END

211

Chapter 14. Formatting Output with the PRINT USING Statement

Output
 ABCD
 A
STUVWX

14.4.3. Centered Fields
BASIC prints strings in a centered field by aligning the center of the string with the center of the field. If
BASIC cannot exactly center the string—as is the case for a 2-character string in a 5-character field, for
example—BASIC prints the string one character off center to the left.

A centered field contains a single quotation mark followed by a series of Cs.

DECLARE STRING CONSTANT center = "'CCCC"
PRINT USING center, "A"
PRINT USING center, "AB"
PRINT USING center, "ABC"
PRINT USING center, "ABCD"
PRINT USING center, "ABCDE"

Output
 A
 AB
 ABC
 ABCD
 ABCDE

If there are more characters than places in the field, BASIC left-justifies and truncates the string on the
right.

14.4.4. Extended Fields
An extended field contains a single quotation mark followed by one or more Es. The extended field is
the only field that automatically prints the entire string. In addition:

● If the string is smaller than the format field, BASIC left-justifies the string as in a left-justified field.

● If the string is longer than the format field, BASIC extends the field and prints the entire string.

PRINT USING "'E", "THE QUICK BROWN"
PRINT USING "'EEEEEEE', "FOX"
END

Output
THE QUICK BROWN
FOX

The following example uses left-justified, right-justified, centered, and extended fields:

PRINT USING "'LLLLLLLLL","THIS TEXT"
PRINT USING "'LLLLLLLLLLLLLL","SHOULD PRINT"
PRINT USING "'LLLLLLLLLLLLLL",'AT LEFT MARGIN'
PRINT USING "'RRRR","1,2,3,4"

212

Chapter 14. Formatting Output with the PRINT USING Statement

PRINT USING "'RRRR",'1,2,3'
PRINT USING "'RRRR',"1,2"
PRINT USING "'RRRR","1"
PRINT USING "'CCCCCCCCC","A"
PRINT USING "'CCCCCCCCC","ABC"
PRINT USING "'CCCCCCCCC","ABCDE"
PRINT USING "'CCCCCCCCC","ABCDEFG"
PRINT USING "'CCCCCCCCC","ABCDEFGHI"
PRINT USING "'LLLLLLLLLLLLLLLLL',"YOU ONLY SEE PART OF THIS"
PRINT USING "'E","YOU CAN SEE ALL OF THE LINE WHEN IT IS EXTENDED"
END

Output
THIS TEXT
SHOULD PRINT
AT LEFT MARGIN
1,2,3
1,2,3
 1,2
 1
 A
 ABC
 ABCDE
 ABCDEFG
ABCDEFGHI
YOU ONLY SEE PART
YOU CAN SEE ALL OF THE LINE WHEN IT IS EXTENDED

14.5. PRINT USING Statement Error
Conditions
There are two types of PRINT USING error conditions: fatal and warning. BASIC signals a fatal error if:

● The format string is not a valid string expression

● There are no valid fields in the format string

● You specify a string for a numeric field

● You specify a number for a string field

● You separate the items to be printed with characters other than commas or semicolons

● A format field contains an invalid combination of characters

● You print a negative number in a floating-dollar sign or asterisk-fill field without a trailing minus
sign

BASIC issues a warning if a number does not fit in the field. If a number is larger than the field allows,
BASIC prints a percent sign (%) followed by the number in the standard PRINT format and continues
execution.

If a string is larger than any field other than an extended field, BASIC truncates the string and does not
print the excess characters.

213

Chapter 14. Formatting Output with the PRINT USING Statement

If a field contains an invalid combination of characters, BASIC does not recognize the first invalid
character or any character to its right as part of the field. These characters might form another valid field
or be considered text. If the invalid characters form a new valid field, a fatal error condition might arise
if the item to be printed does not match the field.

The following examples demonstrate invalid character combinations in numeric fields:

Example 1
PRINT USING "$$**##.##",5.41,16.30

The dollar signs form a complete field and the rest forms a second valid field. The first number (5.41) is
formatted by the first valid field ($$). It prints as “$5”. The second number (16.30) is formatted by the
second field (**##.##) and prints as “**16.30”.

Output 1
$5**16.30

Example 2
PRINT USING "##.#^^^",5.43E09

Because the field has only three carets instead of four, BASIC prints a percent sign and the number,
followed by three carets.

Output 2
% .543E+10^^^

Example 3
PRINT USING "'LLEEE","VWXYZ"

You cannot combine two letters in one field. BASIC interprets EEE as a string literal.

Output 3
VWXEEE

214

Chapter 15. Handling Run-Time
Errors
The process of detecting and correcting errors that occur when your program is running is called error
handling. This chapter describes default error handling and how to handle VSI BASIC for OpenVMS
run-time errors with your own error handlers.

Throughout this chapter, the term “error” is used to imply any OpenVMS exception, not only an
exception of ERROR severity.

15.1. Default Error Handling
VSI BASIC for OpenVMS provides default run-time error handling for all programs. If you do not
provide your own error handlers, the default error handling procedures remain in effect throughout
program execution time.

When an error occurs in your program, VSI BASIC for OpenVMS diagnoses the error and displays a
message telling you the nature and severity of the error. There are four severity levels of VSI BASIC
for OpenVMS errors: SEVERE, ERROR, WARNING, and INFORMATIONAL. The severity of an
error determines whether or not the program aborts if the error occurs when default error handling is in
effect. When default error handling is in effect, ERROR and SEVERE errors always terminate program
execution, but program execution continues when WARNING and INFORMATIONAL errors occur.

To override the default error handling procedures, you can provide your own error handlers, as described
in the following sections. (Note that you should not call LIB$ESTABLISH from a VSI BASIC for
OpenVMS program as this RTL routine overrides the default error handling procedures and might
adversely affect program behavior).

Only one error can be handled at a time. If an error has occurred but has not yet been handled
completely, that error is said to be pending. When an error is pending and a second error occurs,
program execution always terminates immediately. Therefore, one of the most important functions of an
error handler is to clear the error so that subsequent errors can also be handled.

If you do not supply your own error handler, program control passes to the VSI BASIC for OpenVMS
error handler when an error occurs. For example, when VSI BASIC for OpenVMS default error handling
is in effect, a program will abort when division by zero is attempted because division by zero is an error
of SEVERE severity. With an error handler, you can include an alternative set of instructions for the
program to follow; if the zero was input at a terminal, a user-written error handler could display a “Try
again” message and execute the program lines again requesting input.

15.2. User-Supplied Error Handlers
It is good programming practice to anticipate certain errors and provide your own error handlers for
them. User-written error handlers allow you to handle errors for a specified block of program statements
as well as complete program units. Any program module can contain one or more error handlers. These
error handlers test the error condition and include statements to be executed if an error occurs.

To provide your own error handlers, you use WHEN ERROR constructs. A WHEN ERROR construct
consists of two blocks of code: a protected region and a handler. A protected region is a block of code
that is monitored by the compiler for the occurrence of an error. A handler is the block of code that

215

Chapter 15. Handling Run-Time Errors

receives program control when an error occurs during the execution of the statements in the protected
region.

There are two forms of WHEN ERROR constructs; in both cases the protected region begins
immediately after a WHEN ERROR statement. The following partial programs illustrate each form.
In Example 1, the handler is attached to the protected region, while in Example 2, the handler
catch_handler is detached and must be provided elsewhere in the program unit.

Example 1

WHEN ERROR IN
 protected_statement_1
 protected_statement_2
 .
 .
 .
 USE
 handler_statement_1
 handler_statement_2
 .
 .
 .
END WHEN

Example 2

WHEN ERROR USE catch_handler
 protected_statement_1
 protected_statement_2
 .
 .
 .
END WHEN

HANDLER catch_handler
 handler_statement_1
 handler_statement_2
 .
 .
 .
END HANDLER

The following sections further explain the concepts of protected regions and handlers.

15.2.1. Protected Regions
A protected region is a block of code that is monitored by the compiler for the occurrence of an error.
The bounds of this region are determined by the actual ordering of the source code. Statements that are
lexically between a WHEN ERROR statement and a USE or END WHEN statement are in the protected
region.

If an error occurs inside the protected region, control passes to the error handler associated with the
WHEN ERROR statement. When an error occurs beyond the limits of a protected region, default error
handling is in effect unless other error handlers are provided. For more details about handler priorities,
see Section Section 15.2.3, "Exiting from Handlers" and Section Section 15.3, "Using the ON ERROR
Statements".

216

Chapter 15. Handling Run-Time Errors

The WHEN ERROR statement signals the start of a block of protected statements. The WHEN ERROR
statement also specifies the handler to be used for any errors that occur inside the protected region. The
keyword USE either explicitly names the associated handler for the protected region, or marks the start
of the actual handler statements. The statements in the actual error handler receive control only if an
error occurs in the protected region.

The following example prompts the user for two integer values and displays their sum. The WHEN
ERROR block traps any invalid input values, displays a message telling the user that the input was
invalid, and reprompts the user for input.

DECLARE INTEGER value_1, value_2

WHEN ERROR IN
 INPUT "PLEASE INPUT 2 INTEGERS"; value_1, value_2 !protected statement
USE
 PRINT "INVALID INPUT - PLEASE TRY AGAIN" !handler statement
 RETRY !handler statement
END WHEN
PRINT "THEIR SUM IS"; value_1 + value_2

Protected regions can be nested; a protected region can be within the bounds of another protected region.
However, WHEN ERROR statements cannot appear inside an error handler, and protected regions
cannot cross over into other block structures. If you are using a WHEN ERROR block with a detached
handler, that handler cannot exist within a protected region.

15.2.2. Handlers
A handler is the block of code containing instructions to be executed only when an error occurs during
the execution of statements in the protected region. When an error occurs during the execution of a
protected region, VSI BASIC for OpenVMS branches to the handler you have supplied. In turn, the
handler processes the error. An error handler typically performs the following functions:

● Determines which error occurred

● Takes appropriate action based on the nature of the error

● Clears the error condition with a RETRY, CONTINUE, END WHEN, or END HANDLER
statement

● Continues program execution when possible

● Possibly identifies which program unit or statement caused the error

● Resignals errors with EXIT HANDLER (when an error cannot be handled for some reason)

Handlers can be attached to, or detached from, the statements in the WHEN ERROR protected region.

An attached handler is delimited by a USE and an END WHEN statement. The attached handler
immediately follows the protected region of a WHEN ERROR IN block. The following example shows
an attached handler that traps errors on I/O statements, division by zero, and illegal numbers:

PROGRAM accident_prone
 DECLARE REAL age, accidents, rating
 WHEN ERROR IN
 Get_age:
 INPUT "Enter your age";age

217

Chapter 15. Handling Run-Time Errors

 INPUT "How many serious accidents have you had";accidents
 rating = accidents/age
 PRINT "That's ";rating;" serious accidents per year!"
 USE
 SELECT ERR
 !Trap division by zero
 CASE = 61
 PRINT "Please enter an age greater than 0"
 CONTINUE Get_age
 !Trap illegal number
 CASE = 52
 PRINT "Please enter a positive number"
 RETRY
 CASE ELSE
 !Revert to default error handling
 EXIT HANDLER
 END SELECT
 END WHEN
END PROGRAM

A detached handler is defined separately in your program unit. It requires an identifier and must be
delimited by a HANDLER and an END HANDLER statement. Handler names must be valid VSI
BASIC for OpenVMS identifiers and cannot be the same as the identifier for any label, PROGRAM
name, DEF or DEF* function, SUB, FUNCTION, or PICTURE subprogram. The main advantage of
using a detached handler is that it can be referenced by more than one WHEN ERROR USE statement.
The following example shows a simple detached handler:

 WHEN ERROR USE catcher
 KILL "INPUT.DAT"

 END WHEN
 .
 .
 .
 HANDLER catcher
 !Catch if file does not exist
 IF ERR = 5
 THEN CONTINUE
 END IF
 END HANDLER

The statements within a handler are never executed if an error does not occur or if no protected region
exists for the statement that caused the exception.

When your program generates an error, control transfers to the specified handler. If the code in an error
handler generates a second error, control returns to the default VSI BASIC for OpenVMS error handler
and program execution ends, usually with the first error only partly processed. To avoid the possibility
of your error handler causing a second error, you should keep handlers as simple as possible and keep
operations that might cause errors outside the handler.

Your handler can include conditional expressions to test the error and branch accordingly, as shown in
the following example:

PROGRAM Check_records
WHEN ERROR USE Global_handler
 .
 .

218

Chapter 15. Handling Run-Time Errors

 .
END WHEN
HANDLER Global_handler
 SELECT ERR
 !Trap buffer overflow
 CASE = 161
 PRINT "Record too long"
 CONTINUE
 !Trap end of file on device
 CASE = 11
 PRINT "End of file"
 CONTINUE
 CASE ELSE
 EXIT HANDLER
 END SELECT
END HANDLER
CLOSE #1%
END PROGRAM

Note that ON ERROR statements are not allowed within protected regions or handlers. For compatibility
issues related to ON ERROR statements, see Section 15.3, "Using the ON ERROR Statements".

15.2.3. Exiting from Handlers
After processing an error, a handler typically clears the error so that program execution can continue.
VSI BASIC for OpenVMS provides the following statements that clear the error condition and exit from
the handler:

RETRY
CONTINUE
END HANDLER
END WHEN

These statements differ from each other in that they revert control of program execution to different
points in the program. Examples of these statements are included in the following sections.

An additional statement, EXIT HANDLER, is provided to allow you to exit from a handler with the
error still pending.

The END HANDLER statement identifies the end of the block of statements in the handler. The END
WHEN statement marks the end of the protected region when a detached handler is used; it marks the
end of the handler when an attached handler is used. If the handler does not process an error with an
EXIT HANDLER, RETRY, or CONTINUE statement, the error is cleared by the END HANDLER
or END WHEN statement; however, processing continues with the statement immediately after the
protected region (and the attached handler, if one exists) where the error occurred. These statements do
not return control to the protected region. This is known as “falling out of the bottom of a handler.” Be
careful not to fall out of the bottom of a handler unintentionally.

Note that you cannot exit from a handler with the following statements:

● EXIT PROGRAM

● EXIT FUNCTION

● EXIT SUB

219

Chapter 15. Handling Run-Time Errors

● EXIT DEF

● GOSUB (with a target outside the handler)

● GOTO (with a target outside the handler)

Also, you cannot exit from a handler with a RESUME statement. The RESUME statement is valid
only in blocks of code referred to by ON ERROR statements. Section 15.3, "Using the ON ERROR
Statements" describes the ON ERROR statements.

15.2.3.1. RETRY Statement
You use the RETRY statement to clear the error and to execute the statement again that caused the error
again. Be sure to take corrective action before trying the protected statement again. For example:

DECLARE REAL radius

WHEN ERROR USE fix_it
 INPUT "Please supply the radius of the circle"; radius
END WHEN
HANDLER fix_it
 !trap overflow error
 IF ERR = 48
 PRINT "Please supply a smaller radius"
 RETRY
END HANDLER
PRINT "The circumference of the circle is "; 2*PI*radius

In FOR...NEXT loops, if the error occurs while VSI BASIC for OpenVMS is evaluating the limit or
increment values, RETRY reexecutes the FOR statement; if the error occurs while VSI BASIC for
OpenVMS is evaluating the index variable, RETRY reexecutes the NEXT statement. In UNTIL...NEXT
and WHILE...NEXT loops, if the error occurs while VSI BASIC for OpenVMS is evaluating the
relational expression, RETRY reexecutes the NEXT statement.

15.2.3.2. CONTINUE Statement
You can use the CONTINUE statement to clear the error and cause execution to continue at the
statement immediately following the propagated error.

When the CONTINUE statement is within an attached handler, you can specify a target. The target
can be a line number or label within the bounds of the associated protected region, in a surrounding
protected region, or within an unprotected region; however, you must specify a target within the current
program module. You cannot specify a target for the CONTINUE statement when it is in a detached
handler. For example:

DIM LONG her_attributes(10),his_attributes(10)
DECLARE INTEGER counter
WHEN ERROR USE fix_it
 DATA 12,2,35,21,25.5,32,32,30,15,4
 FOR counter = 0 TO 12
 READ her_attributes(counter)
 NEXT counter
 MAT his_attributes = her_attributes
END WHEN
 .
 .

220

Chapter 15. Handling Run-Time Errors

 .
HANDLER fix_it
 !Trap out of data
 IF ERR = 57
 THEN RESTORE
 CONTINUE
 ELSE EXIT HANDLER
 END IF
END HANDLER

When a DEF function is invoked from a protected region and an error occurs that has not been handled,
a CONTINUE statement with no target causes execution to resume at the statement following the one
that invoked the function.

Note that if an error occurs in a loop control statement or SELECT or CASE statement, the CONTINUE
statement causes VSI BASIC for OpenVMS to resume execution at the statement following the end of
the loop structure (the NEXT, END CASE, or END SELECT statements).

Note

When you use the RETRY or the CONTINUE statement without a target, the compiler builds read
only tables in the generated object file with information about statements in the associated protected
regions. Therefore, when space is extremely critical, do not protect large regions with handlers containing
RETRY or CONTINUE without a specified target.

15.2.3.3. EXIT HANDLER Statement
Unlike RETRY and CONTINUE, the EXIT HANDLER statement does not clear the error; rather,
it allows you to exit from the handler with the error pending. This allows you to pass an error to the
handler associated with the next outer protected region, or back to VSI BASIC for OpenVMS default
error handling, or to the calling procedure.

When an error occurs within a nested protected region, control passes to the handler associated with the
innermost protected region in which the error occurred. If the innermost handler does not handle the
error, the error is passed to the next outer handler with the EXIT HANDLER statement. All handlers for
any outer WHEN ERROR blocks are processed before reverting to default error handling or resignalling
the calling procedure.

The following example shows two nested protected regions. Neither handler traps division by zero. If
division by zero occurs, the handler associated with the innermost protected region, inner_handler,
does not clear the error; therefore, the error is passed to the handler associated with the next outer
protected region. Outer_handler does not clear this error either, and so the error is passed to the default
error handler. This error is fatal and the program ends abnormally. Output is specific to VSI BASIC for
OpenVMS.

PROGRAM nesting
 OPTION TYPE = EXPLICIT
 DECLARE LONG divisor
 DECLARE REAL dividend, quotient
 WHEN ERROR USE outer_handler
 INPUT "Enter divisor";Divisor
 INPUT "Enter dividend";Dividend

 WHEN ERROR USE inner_handler
 Quotient = Dividend/Divisor

221

Chapter 15. Handling Run-Time Errors

 PRINT "The quotient is ";Quotient
 END WHEN

 END WHEN
 HANDLER outer_handler
 !Trap data format error
 IF ERR = 50
 THEN
 PRINT "Illegal input...try again"
 RETRY
 ELSE PRINT "In outer_handler"
 PRINT "Reverting to default handling now"
 EXIT HANDLER
 END IF
 END HANDLER
 HANDLER inner_handler
 !Trap overflow/decimal error
 IF ERR = 181
 THEN CONTINUE
 ELSE PRINT "Inside inner_handler"
 PRINT "Reverting to outer handler now"
 EXIT HANDLER
 END IF
 END HANDLER
END PROGRAM

For more information about exiting program units while an error is pending, see Section 15.2.6, "Ctrl/C
Trapping".

15.2.4. Selecting the Severity of Errors to Handle
The OPTION HANDLE statement lets you specify the severity level of errors that are to be handled
by an error handler in addition to the BASIC errors that can normally be handled or trapped. You can
specify any one of the following error severity levels: BASIC, SEVERE, ERROR, WARNING, or
INFORMATIONAL.

OPTION HANDLE = BASIC is the default, which is in effect if you do not specify an alternative in
the OPTION HANDLE statement. Only VSI BASIC for OpenVMS errors that can be trapped transfer
control to the current error handler when this option is in effect. Refer to Appendix B, "Run-Time
Messages" to determine which BASIC errors cannot be trapped.

When you specify an error severity level other than BASIC in the OPTION HANDLE statement, the
following errors will transfer control to the error handler:

● All BASIC errors that can be trapped of this or lesser severity

● All non-BASIC errors of this or lesser severity

● BASIC errors of this or lesser severity that normally cannot be trapped

For example, if you specify OPTION HANDLE = ERROR, you can handle all BASIC and non-BASIC
errors of ERROR severity (both those that can and those that cannot be trapped), and all WARNING
and INFORMATIONAL errors, but no SEVERE errors.

15.2.5. Identifying Errors

222

Chapter 15. Handling Run-Time Errors

VSI BASIC for OpenVMS provides several built-in functions that return information about an error. You
can use these functions inside your error handlers to determine details about the error and conditionally
handle these errors. These functions include:

ERR
ERL
ERN$
ERT$
VMSSTATUS
RMSSTATUS

Note that if an error occurs in your program that is not a VSI BASIC for OpenVMS error or does
not map onto a VSI BASIC for OpenVMS error, it is signaled as NOTBASIC (“Not a BASIC error”
(ERR=194). In this case, you can use the built-in function VMSSTATUS to determine what caused the
error.

15.2.5.1. Determining the Error Number (ERR)
You use the ERR function to return the number of the last error that occurred. Appendix B, "Run-Time
Messages" lists the number of each VSI BASIC for OpenVMS run-time error—for example, ERR 153 is
“RECALREXI, Record already exists.”

OPTION HANDLE = ERROR
WHEN ERROR USE find_error
 .
 .
 .
END WHEN

HANDLER find_error
 SELECT ERR
 !Record already exists
 CASE = 153
 PRINT "Choose new record"
 CONTINUE
 CASE ELSE
 EXIT HANDLER
 END SELECT

END HANDLER

The results of ERR remain undefined until an error occurs. Although ERR remains defined as the
number of the last error after control leaves the error handler, it is poor programming practice to refer to
this variable outside the scope of an error handler.

15.2.5.2. Determining the Error Line Number (ERL)
After your program generates an error, the ERL function returns the BASIC line number of the signaled
error. This function is valid only in line-numbered programs. The ERL function, like ERR, lets you set
up branching to one of several paths in the code.

In the following example, the handler continues execution at different points in the program, depending
on the value of ERL:

10 DECLARE INTEGER CONSTANT TRUE = -1
20 WHEN ERROR USE err_handler
 .

223

Chapter 15. Handling Run-Time Errors

 .
 .
900 END WHEN
1000 HANDLER err_handler
 SELECT TRUE
 CASE (ERR = 11) AND (ERL = 790)
 !Is error end of file at line 790?
 PRINT "Completed"
 CONTINUE
 CASE (ERR = 149) AND (ERL = 80)
 !Is error not at end of file on line 80?
 PRINT "CHECK ACCESS MODE"
 CONTINUE
 CASE ELSE
 !Let BASIC handle any other errors
 EXIT HANDLER
1500 END SELECT
2000 END HANDLER
32000 CLOSE #5
32767 END

The results of ERL are undefined until an error occurs, or if the error occurs in a subprogram not written
in VSI BASIC for OpenVMS. Although ERL remains defined as the line number of the last error even
after control leaves the error handler, it is poor programming practice to refer to this variable outside the
scope of an error handler.

If you reference ERL in a compilation unit with line numbers, code and data are included in your
program to allow VSI BASIC for OpenVMS to determine ERL when an exception occurs. If you do
not need to reference ERL, you can save program size and reduce execution time by compiling your
program with the /NOLINE qualifier. Alpha BASIC uses the /NOLINE qualifier by default to compile
programs. Even if you do not use any line numbers, you can reduce execution time by compiling with
the /NOLINE qualifier.

If an error occurs in a subprogram containing line numbers, VSI BASIC for OpenVMS sets the ERL
variable to the subprogram line number where the error was detected. If the subprogram also executes an
EXIT HANDLER statement, control passes back to the outer procedure's handler. The error is assumed
to occur on the statement where the call or invocation occurs.

15.2.5.3. Determining Where the Error Occurred (ERN$)
You use the ERN$ function to return the name of the program unit in which the error was detected.
ERN$ returns the name of a main program, SUB, FUNCTION, or PICTURE subprogram, or DEF
function. If the PROGRAM statement is used with a user-supplied identifier, the ERN$ value is
the specified identifier for the main program. The results of ERN$ are undefined until the program
generates an error.

In the following example, control passes to the main program for error handling if the error occurs in the
module SUBARC:

HANDLER locat_ern
 IF ERN$ = "SUBARC"
 THEN PRINT "ERROR IS ";ERR
 PRINT "RETURNING TO MAIN PROGRAM FOR ERROR HANDLING"
 EXIT HANDLER
 ELSE PRINT "PROGRAM MODULE GENERATING ERROR IS ";ERN$
 END IF
END HANDLER

224

Chapter 15. Handling Run-Time Errors

Note that ERN$ is invalid when an error occurs in a subprogram compiled with the /NOSETUP
qualifier.

15.2.5.4. Determining the Error Message Text (ERT$)
 You use the ERT$ function to access the message text associated with a specified error number. Use of
the ERT$ function is not limited to the scope of the error handler; you can access ERT$ at any time. The
following detached handler tests whether the error occurred in a DEF module named TSLFE, and, if so,
prints the text of the signaled error and resumes execution:

HANDLER catch_it
 IF ERN$ = "TSLFE"
 THEN PRINT ERT$(ERR)
 CONTINUE
 ELSE EXIT HANDLER
 END IF
END HANDLER

15.2.5.5. Determining OpenVMS Error Information
VSI BASIC for OpenVMS provides a built-in function, VMSSTATUS, that returns the originally signaled
error before it is translated to a BASIC error. For example, for the BASIC error “End of file on device”
(ERR=11), the VMSSTATUS function returns “RMS$_EOF” (RMS end of file). This function is useful
when the error is NOTBASIC (ERR=194).

When there is no error pending, VMSSTATUS is undefined. The value returned by this function is the
actual signaled error value. If non-BASIC errors are being handled, the VMSSTATUS function might be
the only way to find out which error caused the exception.

The following example shows a program that performs file I/O. The first WHEN ERROR block traps
any errors that occur while the program is opening the file or requesting user input. The detached
handler for this block checks the value of VMSSTATUS to determine the exception that occurred. The
inner error handler handles two special errors, BAS$K_RECNOTFOU and BAS$K_RECBUCLOC,
separately. If the error signaled does not correspond to one of these, the inner error handler passes
control to the outer handler with the EXIT HANDLER statement. The outer handler sets the program
status to VMSSTATUS. When the program exits, the operating system displays any status that is of
warning severity or greater.

PROGRAM Tester

 OPTION HANDLE = ERROR
 EXTERNAL LONG CONSTANT BAS$K_RECNOTFOU, BAS$K_RECBUCLOC
 DECLARE LONG Final_status
 MAP (Rec_buffer) &
 STRING Rec_key = 5, &
 STRING Rest_of_record = 20
 Final_status = 1
 WHEN ERROR USE Global_handler
 OPEN "My_database" FOR INPUT AS FILE #1 &
 ,INDEXED FIXED &
 ,ACCESS READ &
 ,MAP Rec_buffer &
 ,PRIMARY Rec_key
 Get_key:
 INPUT "Record to retrieve"; Rec_key
 WHEN ERROR IN

225

Chapter 15. Handling Run-Time Errors

 GET #1%, KEY #0 EQ Rec_key
 PRINT Rest_of_record
 USE
 SELECT ERR
 CASE = BAS$K_RECNOTFOU
 PRINT "Record not found"
 CONTINUE Get_key
 CASE = BAS$K_RECBUCLOC
 SLEEP 2%
 RETRY
 CASE ELSE
 EXIT HANDLER
 END SELECT
 END WHEN
 END WHEN
 HANDLER Global_handler
 Final_status = VMSSTATUS
 END HANDLER

END PROGRAM Final_status

15.2.5.6. Determining RMS Error Information
The RMSSTATUS function lets you determine which RMS error caused a resulting VSI BASIC for
OpenVMS error. You must specify an open channel as the first parameter to RMSSTATUS. If this
channel is not open, the error “I/O channel not open” (ERR=9) is signaled. The second parameter to the
function lets you specify either STATUS or VALUE; this parameter is optional. If you do not specify the
second parameter, RMSSTATUS returns the STATUS value by default. STATUS represents the RMS
STS field and VALUE corresponds to the RMS STV field.

The following example shows an error handler that prints both the status and the value of any RMS
error:

WHEN ERROR IN
 OPEN "file.txt" FOR OUTPUT AS FILE 1%
 PRINT #1%, TIME$(0%)
USE
 !Error 12 is fatal system I/O failure
 IF ERR = 12
 THEN
 PRINT "An unexpected RMS error has occurred:"
 PRINT "Status = "; RMSSTATUS(1%)
 PRINT "Value = "; RMSSTATUS(1%, VALUE)
 EXIT HANDLER
 END IF
END WHEN

CLOSE #1%
GOTO done

done:
 END

If you want to find an RMS status without knowing which particular channel to check, you can use
VMSSTATUS to get the STATUS value (STS) if an error has occurred.

15.2.6. Ctrl/C Trapping

226

Chapter 15. Handling Run-Time Errors

Error handling procedures are commonly used to trap user Ctrl/C responses. With Ctrl/C trapping
enabled, control is transferred to an error handler if a user presses Ctrl/C during program execution. You
enable Ctrl/C trapping in your program by invoking the built-in CTRLC function. For example:

Y% = CTRLC

After you invoke the CTRLC function, a Ctrl/C entered at the terminal transfers control to the error
handler. Once the Ctrl/C is trapped, you can include routines to interact with the program, as shown in
the following example:

WHEN ERROR IN
 Y% = CTRLC
 OPEN 'FIL_DAT' FOR INPUT AS FILE #1%
 INPUT "HOW MANY RECORDS"; Rec_read%
 FOR I% = 1% TO Rec_read%
 GET #1%
 PRINT Name$, Address$, Emp_code%
 PRINT
 NEXT I%

USE
 !Trap ^C
 IF (ERR = 28%)
 THEN PRINT "CURRENT RECORD IS "; I%
 ELSE EXIT HANDLER
 END IF
 CONTINUE Clean_up
END WHEN
 .
 .
 .
Clean_up:
 CLOSE #1%
 PRINT "END OF PROCESSING"
END

Output
SMITH, DEXTER 231 COLUMBUS ST 09341

TRAVIS, JOHN PO BOX 80 64119

^C

THE CURRENT RECORD IS 3

END PROCESSING

Note that the error condition is still pending until the error handler executes the CONTINUE statement.
Therefore, if you press Ctrl/C a second time while the error handler is executing, control returns to the
VSI BASIC for OpenVMS error handler, which terminates the program.

To disable Ctrl/C trapping, use the RCTRLC function. The RCTRLC function disables only Ctrl/C
trapping, not the Ctrl/C interrupts themselves.

15.2.7. Handling Errors in Multiple-Unit Programs

227

Chapter 15. Handling Run-Time Errors

You can use WHEN ERROR constructs anywhere in your main program or program modules.
Procedure and function invocations, such as invocations of DEF and DEF* functions and SUB,
FUNCTION, and PICTURE subroutines, as well as non-BASIC programs, are valid within protected
regions. GOTO and GOSUB statements are valid within handlers provided that the target is within the
handler, an outer handler, or an unprotected region. Note, however, that a detached handler cannot appear
within DEF or DEF* functions without the associated protected region.

When an error occurs within nested protected regions, VSI BASIC for OpenVMS maintains the same
priorities for handler use; control always passes to the handler associated with the innermost protected
region in which the error occurred. When an exception occurs, all handlers for any outer WHEN
ERROR blocks are processed before the program reverts to default error handling. Outer handlers are
invoked when an inner handler executes an EXIT HANDLER statement. When there are no more outer
handlers, and the outermost handler executes an EXIT HANDLER statement, program control reverts to
the handler associated with the calling routine. For example:

SUB LIST(A$)
 WHEN ERROR USE sub_handler

 OPEN A$ FOR INPUT AS FILE #12%
 Get_data:
 LINPUT #12%, B$
 PRINT B$
 GOTO Get_data
 END WHEN
 HANDLER sub_handler
 !Trap end of file
 IF ERR <> 11%
 THEN EXIT HANDLER
 END IF
END HANDLER
CLose_up:
 CLOSE #12%
END SUB

You can call a subprogram while an error is pending; however, if you do, the subprogram cannot
resignal an error back to the calling program. If the subprogram tries to resignal an error, VSI BASIC for
OpenVMS signals “Improper error handling” and program execution terminates.

The following rules apply to error handling in function definitions:

● DEF and DEF* function definitions cannot appear within a protected region. However, protected
regions can be contained within the function definitions.

● To trap errors while a DEF function is active, include protected regions inside the DEF function. If
you do this, the associated handler remains in effect until your program leaves the protected region,
or the DEF function.

For example:

 WHEN ERROR IN
 .
 .
 .
 Invoke_def:
 A% = FNIN_PUT%("PROMPT")

 USE

228

Chapter 15. Handling Run-Time Errors

 PRINT "ERROR"; ERT$(ERR%);
 IF ERN$ = "FNIN_PUT"
 THEN PRINT "IN FUNCTION"
 CONTINUE
 ELSE PRINT "IN MAIN"
 CONTINUE Invoke_def
 END IF
 END WHEN

 Main_code:
 DEF FNIN_PUT%(P$)
 WHEN ERROR IN
 PRINT P$
 INPUT LINE_IN$
 FNIN_PUT% = INTEGER(LINE_IN$)
 USE
 IF ERR = 50
 THEN RETRY
 ELSE EXIT HANDLER
 END IF
 END WHEN
 END DEF

Note

If you invoke a GOSUB statement or a DEF* function from within a protected region and the invoked
procedure is outside of any protected region, all pending errors are handled by the WHEN ERROR
handler unless a previously executed ON ERROR statement specifies otherwise.

15.2.8. Forcing Errors
The CAUSE ERROR statement allows a program to artificially generate an error when the program
would not otherwise do so. You can force any VSI BASIC for OpenVMS run-time error. You must
specify the number of the error the compiler should force; the error numbers are listed in Appendix B,
"Run-Time Messages". The following statement forces an end-of-file error (ERR=11) to occur:

CAUSE ERROR 11%

You can use this feature to debug an error handler during program development, as shown in the
following example:

WHEN ERROR IN
 .
 .
 .
 CAUSE ERROR 11%
 .
 .
 .
USE
 SELECT ERR
 CASE = 11%
 PRINT "Trapped an end of file on device"
 CONTINUE
 CASE ELSE
 EXIT HANDLER

229

Chapter 15. Handling Run-Time Errors

END WHEN

15.3. Using the ON ERROR Statements
VSI BASIC for OpenVMS supports ON ERROR statements as an alternative to WHEN blocks primarily
for compatibility with existing programs. WHEN ERROR blocks are similar to declarative statements in
that they do not depend on run-time flow of control. The ON ERROR statements, however, affect error
handling only if the statements execute at run time. For example, if a GOTO statement precedes an ON
ERROR statement, the ON ERROR statement will not have any effect because it does not execute.

WHEN ERROR blocks let you handle errors that occur in a specific range of statements. ON ERROR
statements let you specify a general error handler that is in effect until you specify another ON ERROR
statement or until you pass control to the VSI BASIC for OpenVMS error handler.

Note

For all current program development, it is recommended that you use WHEN ERROR constructs for
user-written error handlers. Mixing WHEN ERROR constructs and ON ERROR statements within the
same program is not recommended. The ON ERROR statements are supported for compatibility with
other versions of BASIC available from VSI. It is important to note that all of these statements are illegal
within a protected region, or an attached or detached handler.

The ON ERROR statements are documented in the VSI BASIC Reference Manual. This section briefly
describes the main features of the ON ERROR statements.

The ON ERROR statements can be used to transfer control to a labeled block of error handling
code. If you have executed an ON ERROR statement and an error occurs, the ON ERROR statement
immediately transfers control to the label or line number that starts the error handling code. Otherwise,
the ON ERROR statement specifies the branch to be taken in the event of an error.

There are three forms of the ON ERROR statement:

● ON ERROR GOTO 0

The ON ERROR GOTO 0 statement reverts control to VSI BASIC for OpenVMS default error
handling in one of two ways:

○ If an error is pending, execution of the ON ERROR GOTO 0 statement returns control to the
VSI BASIC for OpenVMS error handler immediately.

○ If no error is pending, an ON ERROR GOTO 0 statement disables your current error handler.
The VSI BASIC for OpenVMS error handler handles all subsequent errors until another ON
ERROR statement is executed, unless an error occurs in a WHEN ERROR protected region.

● ON ERROR GOTO target

The ON ERROR GOTO target statement reverts control to the target when subsequent errors occur
that are not handled by WHEN block handlers.

● ON ERROR GO BACK

The ON ERROR GO BACK statement transfers control to the calling program's error handler
if an error occurs in the subprogram or DEF function. If you use ON ERROR GO BACK in a

230

Chapter 15. Handling Run-Time Errors

PROGRAM unit (outside of a DEF function) and no other outer protected region exists, it is
equivalent to ON ERROR GOTO 0 and VSI BASIC for OpenVMS default error handling is in effect.
With ON ERROR GO BACK, if an error occurs in the execution of a function or subprogram,
the error is passed to either the error handler of the surrounding program module (in the case of a
DEF function definition) or to the error handler of the calling program (in the case of a separately
compiled subprogram).

An error handler in the DEF function does not permanently override an error handler in the main
program. VSI BASIC for OpenVMS saves the error handler in the main program when you transfer
into a DEF, and restores it when you return.

The ON ERROR GOTO statement is usually placed before any other executable statements. The
following example clears end-of-file errors and passes all other errors back to the VSI BASIC for
OpenVMS default error handling procedures:

5 ON ERROR GOTO Error_handler
 .
 .
 .
Error_handler:
 !Trap end of file on device
 IF ERR = 11
 THEN
 RESUME 1000
 ELSE
 ON ERROR GO BACK
 END IF

The ON ERROR GOTO statement remains in effect after your program successfully handles an error.
When the system signals another error, control once again transfers to the specified error handler.

Every ON ERROR error handler must end with one of the following statements:

● RESUME [target]

● ON ERROR GOTO 0

● ON ERROR GO BACK

If none of these statements is present, the VSI BASIC for OpenVMS error handler aborts your program
with the fatal error “Error trap needs RESUME” as soon as an END, END SUB, END DEF, END
FUNCTION, END PROGRAM, or END PICTURE statement is encountered. The RESUME statement,
like the RETRY and CONTINUE statements, clears the error condition.

You can resume execution at any line number or label that is in the same module as the RESUME
statement, unless that line or target is inside a DEF function, a WHEN ERROR protected region, or a
handler. In general, RESUME without a target transfers control to the beginning of the program block
where the error occurred.

● If you resume execution at a multistatement line, execution begins at the first statement after the line
number or label—not necessarily at the statement that generated the error.

● If an entire loop block is associated with a single line number or label and an error occurs within the
loop, RESUME with no target transfers control to the statement immediately after the FOR, WHILE,
or UNTIL statement, not to the line number or label.

For more information about the RESUME statement, see the VSI BASIC Reference Manual.

231

Chapter 15. Handling Run-Time Errors

Using both ON ERROR statements and WHEN ERROR constructs in the same program is not
recommended. However, when this is the case, the order of handler priorities is as follows:

1. Control passes to the handler associated with the innermost WHEN ERROR block.

2. If protected regions are nested, the pending error is handled by the handler associated with the next
outer WHEN ERROR block.

3. When no outer protected regions can handle the error, and if an ON ERROR statement is in effect,
control transfers to the target of the next outer ON ERROR statement (if one is present).

4. If no outer handler is available or can handle the error, the error is passed to VSI BASIC for
OpenVMS default error handling. Default error handling is equivalent to ON ERROR GOTO 0 for
main procedures, and ON ERROR GO BACK for SUBs, FUNCTIONs, and DEFs.

For information about specific run-time errors, see Appendix B, "Run-Time Messages".

232

Chapter 16. Compiler Directives
Compiler directives are instructions that tell VSI BASIC for OpenVMS to perform certain operations
as it translates a source program. This chapter describes how to control program compilation using
compiler directives.

16.1. Overview of Compiler Directives
With compiler directives, you can do the following:

● Place program titles and subtitles in the header that appears on each page of the listing file.

● Place a program version identification string in both the listing file and the object module.

● Start or stop the inclusion of listing information for selected parts of a program.

● Start or stop the inclusion of cross-reference information for selected parts of a program.

● Include VSI BASIC for OpenVMS code from another source file or a text library.

● Include CDD/Repository record definitions in a VSI BASIC for OpenVMS program.

● Record dependency relationships in CDD/Repository.

● Display a message at compile time.

● Conditionally compile parts of a program.

● Terminate compilation.

When using compiler directives, follow these rules:

● Directives must begin with a percent sign (%).

● Directives can be preceded by an optional line number.

● Directives must be the only text on the line (except for %IF-%THEN-%ELSE-%END %IF).

● Directives cannot appear within a quoted string.

● Directives cannot follow an END, END SUB, or END FUNCTION statement.

16.2. Controlling the Compilation Listing
The following compiler listing directives let you control the content and appearance of the compilation
listing:

● %TITLE places a title string on the first line of the listing header.

● %SBTTL places a subtitle string on the second line of the listing header.

● %IDENT places an identification string on the second line of the listing header and within the object
module.

233

Chapter 16. Compiler Directives

● %PAGE causes BASIC to skip to top-of-form in the output listing.

● %NOLIST causes BASIC to stop accumulating information for the output listing.

● %LIST causes BASIC to resume accumulating information for the output listing.

● %NOCROSS causes BASIC to stop accumulating cross-reference information for the output listing.

● %CROSS causes BASIC to resume accumulating cross-reference information for the output listing.

These directives are described in the following sections.

The listing control directives have no effect if no source program listing is being produced. Similarly,
the %CROSS and %NOCROSS directives have no effect if no cross-reference listing is being produced.
However, the %IDENT directive places the specified text in the object module whether or not a listing is
produced.

16.2.1. %TITLE and %SBTTL Directives
The %TITLE directive lets you specify a line of text that appears on the first line of every page in the
compilation listing. This text line is a quoted string of up to 31 characters and normally contains the
source program title and other information.

If the %TITLE directive is the first source text in a module, then the quoted string appears in the first
line of every page of the compilation listing; otherwise, the quoted string appears in the first line of every
subsequent page in the compilation listing. That is, if BASIC encounters a %TITLE directive after it has
begun creating a page in the output listing, the title information will not appear on that page. Rather, it
appears on all of the following pages until it encounters another %TITLE directive.

%TITLE must appear on its own line. For example:

%TITLE "File OPEN Subprogram -- Author Hugh Ristics"
SUB FILSUB (STRING F_NAME)

The %SBTTL directive lets you specify a line of text that appears on the second line of every page in
the compilation listing (beneath the title). If BASIC encounters a %SBTTL directive after it has begun
creating a page in the output listing, the subtitle information will not appear on that page. Rather, it
appears on all following pages until it encounters another %SBTTL or %TITLE directive. If you want
the subtitle to appear on the first page, the %SBTTL directive must appear directly after the %TITLE
directive.

Any number of %SBTTL directives can appear in a source file; thus, you can use subtitle text to identify
parts of the source program. As in %TITLE, the text you use in %SBTTL must be a quoted string not
exceeding 31 characters. Note, however, that subtitle information appears on listing pages that contain
the actual source code.

The following example shows the use of both %TITLE and %SBTTL directives. The first line of the
listing's first page contains “Payroll Program” and the second line contains “Constant Declarations.”
When BASIC encounters the %SBTTL directive, the second line on each subsequent page becomes
“Subroutines.” When BASIC encounters the %SBTTL directive, the second line on each subsequent page
becomes “Error Handler.”

%TITLE "Payroll Program"
%SBTTL "Constant Declarations"
 .
 .

234

Chapter 16. Compiler Directives

 .
%SBTTL "Subroutines"
 .
 .
 .
%SBTTL "Error Handler"
 .
 .
 .

You can use multiple %TITLE directives in a single source file; however, whenever BASIC encounters
a %TITLE directive, the %SBTTL information is set to the null string. Therefore, if you want to display
subtitle information, each new %TITLE directive should be accompanied by a new %SBTTL directive.

16.2.2. %IDENT Directive
The %IDENT directive identifies the version of a program module. The identification text must be a
quoted string of up to 31 characters. The information contained within the identification text appears in
the listing file and the object module. Thus, the map file created by the OpenVMS Linker also contains
this information.

The identification text appears in the first 31 character positions of the second line on each subsequent
listing page. In the following example, the %IDENT information appears as the first entry on the second
line of the listing. The information is also included in the object module if the compilation produces one.
If the linker generates a map listing, this information also appears there.

%IDENT "V5.3"
SUB PAY
 .
 .
 .

If your source module contains multiple %IDENT directives, BASIC signals a warning and uses the
version specified in the first %IDENT directive.

16.2.3. %PAGE Directive
The %PAGE directive causes BASIC to begin a new page in the listing file. In the following example,
the %PAGE directives cause BASIC to skip to a new page in the listing file just before each new subtitle.
Note that, to have title and subtitle information appear in the heading of each page, you cannot place a
line number between the %PAGE, %TITLE, and %SBTTL directives.

%TITLE "Payroll Program"
%SBTTL "Constant Declarations"
 .
 .
 .
%PAGE
%SBTTL "Subroutines"
 .
 .
 .
%PAGE
%SBTTL "Error Handler"
 .
 .

235

Chapter 16. Compiler Directives

 .

16.2.4. %LIST and %NOLIST Directives
%LIST and %NOLIST are complementary directives. The %LIST directive causes BASIC to resume
adding information to the listing file, while the %NOLIST directive causes BASIC to stop adding
information to the listing file. Therefore, you can control which parts of the source program are to be
listed.

In the following example, when BASIC encounters the %LIST directive, it resumes adding new
information to the listing file:

%TITLE "Payroll Program"
%SBTTL "Constant Declarations"
 .
 .
 .
%NOLIST
 .
 .
 .
%LIST
 .
 .
 .
%PAGE
%SBTTL "Subroutines"
 .
 .
 .
%PAGE
%SBTTL "Error Handler"
 .
 .
 .

If you have not requested the creation of a compilation listing, the %LIST and %NOLIST directives have
no effect.

If a program line contains a syntax error, BASIC overrides the %NOLIST directive for that line and
produces the normal error diagnostics in the listing file.

16.2.5. %CROSS and %NOCROSS Directives
The %CROSS and %NOCROSS directives are complementary. The %CROSS directive causes BASIC
to resume adding cross-reference information, while the %NOCROSS directive causes BASIC to stop
adding cross-reference information to the listing file. Therefore, you can specify that only certain parts of
the source program are to be cross-referenced.

In the following example, as soon as BASIC encounters the %CROSS directive, it resumes adding new
cross-reference information to the listing file:

%TITLE "Payroll Program"
%SBTTL "Constant Declarations"
 .
 .

236

Chapter 16. Compiler Directives

 .
%NOCROSS
 .
 .
 .
%CROSS
 .
 .
 .
%PAGE
%SBTTL "Subroutines"
 .
 .
 .
%PAGE
%SBTTL "Error Handler"
 .
 .
 .

If you have not requested the creation of a cross-reference listing, the %CROSS and %NOCROSS
directives have no effect.

16.3. Accessing External Source Files
The %INCLUDE directive lets you access BASIC source text from a file into the source program. The
%INCLUDE directive also lets you access record definitions in CDD/Repository as well as access source
text from a text library. The line on which a %INCLUDE directive resides can be continued, but cannot
contain any other directives or statements.

If you are including a source text file, you must supply a file specification. If you do not provide a file
type, BASIC uses the default type .BAS. For example:

%INCLUDE "KEN.BAS"

If you are including a CDD/Repository definition, you must supply a valid CDD/Plus path specification
to extract a RECORD definition from CDD/Repository. For example:

%INCLUDE %FROM %CDD "CDD$TOP.EMPLOYEE"

See the CDD/Repository CDO Reference Manual for more information about CDD/Repository.

If you are including source text from a text library, you must supply the name of the text module you
wish to include as well as the name of the library where the module resides. If you do not specify a
library name, BASIC uses the default library, BASIC$LIBRARY. Moreover, if you do not specify
a directory name or file type, BASIC uses the default device and the file type .TLB. If the BASIC
$LIBRARY logical name is undefined, SYS$LIBRARY:BASIC$STARLET.TLB is used. The default
file specification is BASIC.TLB.

In the following example, when BASIC encounters the %INCLUDE directive, the compiler searches
through the library SYS$LIBRARY:BASIC_LIB.TLB for the specified module DMB_TEST and
compiles the text as if it were placed in the position of the %INCLUDE directive:

%INCLUDE "DMB_TEST" %FROM %LIBRARY "SYS$LIBRARY:BASIC_LIB.TLB"

BASIC supplies the text library BASIC$STARLET located in SYS$LIBRARY. This text library contains
condition codes and other symbols defined in the system object and shareable image libraries. Using the

237

Chapter 16. Compiler Directives

definitions from BASIC$STARLET allows you to reference condition codes and other system-defined
symbols as local, rather than global symbols.

To create your own text libraries using the OpenVMS Librarian utility, see the VSI OpenVMS Librarian
Utility Manual.

All file specifications, CDD/Repository path specifications, text modules, and library specifications must
be string literals enclosed in quotation marks.

The source files accessed with %INCLUDE cannot contain line numbers. This requirement means
that all statements in the accessed file are associated with the BASIC line containing the %INCLUDE
directive if line numbers are being used. Therefore, if you are using line numbers, a %INCLUDE
directive cannot appear before the first line number in a source program. A file accessed by %INCLUDE
can itself contain a %INCLUDE directive.

When a program is compiled, BASIC inserts the included text at the point at which it encounters the
%INCLUDE directive. The compilation listing identifies any text obtained from an included file by
placing a mnemonic in the first character position of the line in which the text appears. “I n” specifies
text that was either accessed from a source file or from a text library, and “C n” specifies a record
definition that was accessed from CDD/Repository. Both the I and the C tell you that the text was
accessed with the %INCLUDE directive, and n tells you the nesting level of the included text.

The %INCLUDE directive is useful when you want to share code among multiple program modules.
To do this, you must first create a file that contains the shareable code, then include that file in all the
modules that require it. Thus, you reduce the chance of a typographical error.

You can prevent the %INCLUDE file code from appearing in the compilation listing by using the BASIC
command qualifier /SHOW=NOINCLUDE or /SHOW=NOCDD_DEFINITIONS. For text files and
text library modules, use the qualifier /SHOW=NOINCLUDE. For CDD/Repository definitions, use the
qualifier /SHOW=NOCDD_DEFINITIONS.

16.4. Controlling Compilation
BASIC lets you control the compilation of a program by creating and testing lexical constants. You
create and assign values to lexical constants with the %LET directive. These constants are always LONG
integers.

You control the compilation by using the %IF-%THEN-%ELSE-%END %IF directive to test these
lexical constants. Thus, you can conditionally:

● Supply different values for program variables and constants.

● Skip over part of a program.

● Abort a compilation.

● Include BASIC source code from another file.

● Display informational messages during the compilation.

BASIC also supplies the lexical built-in function %VARIANT that can be used to conditionally control
compilation.

%IF-%THEN-%ELSE-%END %IF uses lexical expressions to determine whether to execute directives
in the %THEN clause or the %ELSE clause. The following sections describe the use of:

238

Chapter 16. Compiler Directives

● Lexical constants and expressions (%LET directive)

● %VARIANT

● %ABORT

● %PRINT

● %IF-%THEN-%ELSE-%END %IF

16.4.1. %LET Directive
The %LET directive creates and assigns values to lexical constants. Lexical constants are always LONG
integers. These constants control the execution of the %IF-%THEN-%ELSE-%END %IF directive.

All lexical constants must be created with %LET before they can be used in a %IF-%THEN-%ELSE-
%END %IF directive, and each lexical constant must be created with a separate %LET directive. All
lexical constant names must also be preceded by a percent sign and cannot end with a dollar sign or
percent sign.

A lexical expression can be any of the following:

● A lexical constant

● An integer literal

● A lexical built-in function (%VARIANT)

● Any combination of these, separated by logical, relational, or arithmetic operators

The %LET directive lets you create constants that control conditional compilation. For example:

%LET %debug_on = 0%

See Section 16.4.5, "%IF-%THEN-%ELSE-%END %IF Directive" for an example of using %LET with
%IF-%THEN-%ELSE.

16.4.2. %VARIANT Directive
The %VARIANT directive is a built-in lexical function that returns an integer. The value of this returned
integer is determined by:

● The SET VARIANT command when a program is compiled in the VAX BASIC Environment

● The /VARIANT qualifier when a program is compiled from the system command level or from
within the VAX BASIC Environment

The %VARIANT function returns the variant value set with either of these methods.

The default value for the %VARIANT function is zero. See Section 16.4.5, "%IF-%THEN-%ELSE-
%END %IF Directive" for an example of controlling compilation with %VARIANT.

16.4.3. %ABORT Directive
The %ABORT directive terminates the compilation and displays a message you provide.

239

Chapter 16. Compiler Directives

The text must be a quoted string literal. This information is displayed to SYS$ERROR and in the
compilation listing if one is being created. BASIC stops the compilation and terminates the listing file
as soon as it encounters a %ABORT directive, and so BASIC does not perform syntax checking on the
remainder of the program. See Section 16.4.5, "%IF-%THEN-%ELSE-%END %IF Directive" for an
example of using %ABORT.

16.4.4. %PRINT Directive
The %PRINT directive allows you to insert a message into your source code that the BASIC compiler
displays at compile time.

The text must be a quoted string literal. This information is displayed to SYS$ERROR and in the
compilation listing if one is being created. BASIC prints the message specified as soon as it encounters a
%PRINT directive. See Section 16.4.5, "%IF-%THEN-%ELSE-%END %IF Directive" for an example of
using %PRINT.

16.4.5. %IF-%THEN-%ELSE-%END %IF Directive
The %IF-%THEN-%ELSE-%END %IF directive lets you do the following things conditionally:

● Compile source text

● Execute another compiler directive

This directive differs from all others in that it can appear anywhere in a program where a space is
allowed, except within a quoted string.

You must include %END %IF. Otherwise, the rest of the source program becomes part of the %THEN
or %ELSE clause. You must also include a lexical expression and some BASIC source code.

The truth or falsity of the lexical expression determines whether BASIC compiles the source code in
the %THEN clause or the %ELSE clause. If the lexical expression is true, BASIC does not compile the
source code in the %ELSE clause. If the lexical expression is false, BASIC does not compile the source
code in the %THEN clause. However, VSI BASIC for OpenVMS does check for lexical errors (such as
illegally formed numeric constants) in the uncompiled block of code. If an uncompiled block of code
contains a lexical error, VSI BASIC for OpenVMS signals an error.

Even though VSI BASIC for OpenVMS compiles only one block of code in an %IF-%THEN-%ELSE-
%END-%IF directive, you cannot use the same line number in both a %THEN block and an %ELSE
block. If you specify the same line number, the first occurrence of the line number is replaced by the
second when the program is compiled.

The following example uses the %VARIANT directive, which returns the value set by the SET
VARIANT command or /VARIANT qualifier:

%IF (%VARIANT = 2%)
%THEN DECLARE LONG int_array(100)
%ELSE DECLARE WORD int_array(100)
%END %IF

This directive allows for two possibilities. If you compile this program with a /VARIANT=2 qualifier,
then BASIC creates an array of longword integers. If you compile this program with any other variant
value, BASIC creates an array of word integers.

Because %IF can appear within a program line, you can express the same directive this way:

240

Chapter 16. Compiler Directives

DECLARE %IF (%VARIANT=2%) %THEN LONG %ELSE WORD %END %IF int_array(100)

A %THEN or %ELSE clause can also contain other compiler directives. For example, the following
program creates the lexical constant %my_constant and assigns it a value of 8. The %IF directive
evaluates the conditional expression ((%my_constant + %VARIANT) >= 10%). If this expression is
true, BASIC executes the %THEN clause, aborting the compilation and issuing an error message. If the
expression is false, BASIC prints the specified message and continues to compile your program without
aborting the compilation.

%LET %my_constant = 8%
%IF ((%my_constant + %VARIANT) >= 10%)%THEN
 %ABORT "Cannot compile with VARIANT >= 2"
 %ELSE
 %PRINT "Successful Compilation"
%END %IF

The compilation listing shows you which clause was actually compiled.

16.4.6. %DEFINE and %UNDEFINE Directives
The %DEFINE directive allows you to assign a value to an identifier. The %UNDEFINE directive will
remove the value.

The representation of this value stays in force until a corresponding %UNDEFINE directive or the end
of the source module is encountered.

16.5. Record Dependency Relationships in
CDD/Repository
By using the %INCLUDE %FROM %CDD or the %REPORT %DEPENDENCY directives in
conjunction with the /DEPENDENCY_DATA qualifier in the BASIC command, you can record
dependency relationships in a CDO dictionary between a compiled module entity and included records
or other referenced dictionary entities.

See Chapter 21, "Using CDD/Repository with BASIC" for more information about record dependency
relationships.

241

Chapter 16. Compiler Directives

242

Chapter 17. Data Representation
This chapter describes how VSI BASIC represents data stored in memory.

The following sections discuss four types of data representation: integer, float, decimal, and string.

17.1. Integer Format
There are four ways in which integer data can be represented, depending on the size of the data to be
stored: byte, word, longword, and quadword. Negative integer values are stored in two's complement
format. The following sections describe each of these formats.

17.1.1. Byte-Length Integer Format
Byte-length integers are in the range -128 to 127 and are stored as 1 byte (8 bits), starting on an
arbitrary byte boundary. Bits are labeled from the right, 0 to 7, as in Figure 17.1, "Byte-Length Integer
Format".

Figure 17.1. Byte-Length Integer Format

17.1.2. Word-Length Integer Format
Word-length integers are in the range -32768 to 32767 and are stored as two contiguous bytes, starting
on an arbitrary byte boundary. Bits are labeled from the right, 0 to 15, as in Figure 17.2, "Word-Length
Integer Format".

Figure 17.2. Word-Length Integer Format

17.1.3. Longword Integer Format

243

Chapter 17. Data Representation

Longword integers are stored as four contiguous bytes, starting on an arbitrary byte boundary. Values are
in the range -2147483648 to 2147483647. See Figure 17.3, "Longword Integer Format".

Figure 17.3. Longword Integer Format

17.1.4. Quadword Integer Format
Quadword integers are stored as eight contiguous bytes, starting on an arbitrary byte boundary. Values
are in the range -9223372036854775808 to 9223372036854775807. See Figure 17.4, "Quadword
Integer Format".

Figure 17.4. Quadword Integer Format

The compiler incorrectly gives an integer overflow message when the most negative integer constants are
used, as follows:

BYTE -128%
WORD -32768%
LONG -2147483648%
QUAD -9223372036854775808%

The workaround is to use the appropriate expression from the following:

BYTE -127% - 1%
WORD -32767% - 1%
LONG -2147483647% - 1%
QUAD -9223372036854775807% - 1%

17.2. Real Number Format
Real numbers, like integers, can be represented in varying formats, depending on the size of the data to
be stored. These formats include SINGLE floating-point, DOUBLE floating-point, GFLOAT floating-
point, SFLOAT floating-point, TFLOAT floating-point, XFLOAT floating-point, and packed DECIMAL
format. The following sections describe each of these formats.

244

Chapter 17. Data Representation

17.2.1. SINGLE Floating-Point Number Format
(F_floating)
F_floating (single-precision) floating-point numbers are stored as four contiguous bytes, starting on an
arbitrary byte boundary. Bits are labeled from the right, 0 to 31.

The format for single-precision is sign magnitude, with bit 15 the sign bit, bits 14 to 7 an excess-128
binary exponent, and bits 6 to 0 and 31 to 16 a normalized 24-bit fraction with the redundant, most
significant fraction bit not represented. See Figure 17.5, "Single-Precision Real Number Format" for the
format. The 8-bit exponent field encodes the values from 0 to 255, inclusively.

An exponent value of 0 together with a sign bit of 0 indicates that the F_floating number has a value of
0. Exponent values from 1 to 255 indicate true binary exponents of -127 to 127. An exponent value of
0, together with a sign bit of 1, is taken as reserved. (Floating-point instructions processing a reserved
operand take a reserved operand fault.) The magnitude of an F_floating number is in the approximate
range .29 * 10-38 to 1.7 * 1038. The precision of an F_floating number is approximately one part in 223

(approximately 7 decimal digits).

Figure 17.5. Single-Precision Real Number Format

17.2.2. DOUBLE Floating-Point Number Format
(D_floating)
Double-precision real number format consists of eight contiguous bytes, starting on an arbitrary byte
boundary. Bits are labeled from the right, 0 to 63, as in Figure 17.6, "Double-Precision Real Number
Format". The form of a D_floating number is identical to the F_floating form, except for an additional
32 low-significance fraction bits. Within the fraction, bits increase in significance from 48 to 63, 32 to
47, 16 to 31, and 0 to 6. The exponent conventions and approximate range of values are the same for
both D_floating and F_floating numbers. The precision of a D_floating number is approximately one
part in 255 (approximately 16 decimal digits).

245

Chapter 17. Data Representation

Figure 17.6. Double-Precision Real Number Format

In Alpha BASIC, it is possible to lose three binary digits of precision in arithmetic operations when
performing operations on D_floating double-precision floating-point data. For each arithmetic operation,
the data is converted to G_floating first, the operation is performed in G_floating, and the result is
converted back to D_floating when the operation is complete.

Note

Because most floating-point values cannot be represented exactly in binary, they are susceptible to
rounding. I64 BASIC and the Itanium hardware use T_floating representation in place of D_floating
representation. Alpha BASIC and the Alpha system hardware use G_floating representation in place of
the D_floating representation. Thus, the behavior of floating-point computations and comparisons can be
different from what you expect.

17.2.3. GFLOAT Floating-Point Number Format
(G_floating)
The G_floating floating-point number format consists of eight contiguous bytes, starting on an arbitrary
byte boundary, as shown in Figure 17.7, "SGFLOAT Floating-Point Number Format". Bits are labeled
from the right, 0 to 63. The form of a G_floating number is sign magnitude with bit 15 the sign bit, bits
14 to 4 an excess-1024 binary exponent, and bits 3 to 0 and 63 to 16 a normalized 53-bit fraction with
the redundant most significant fraction bit not represented.

Within the fraction, bits increase in significance from 48 to 63, 32 to 47, 16 to 31, and 0 to 3. The 11-bit
exponent field encodes the values 0 to 2047.

An exponent value of 0 together with a sign bit of 0 indicates that the G_floating number value is 0.
Exponent values from 1 to 2047 indicate true binary exponents from -1023 to 1023. The value of a
G_floating number is in the approximate range .56 * 10-308 to .9 * 10308; the precision is approximately
one part in 252 (approximately 15 decimal digits). Note that both double and G_floating formats require
8 bytes. The G_floating format provides a greater range, but less precision than double-precision format.

246

Chapter 17. Data Representation

Figure 17.7. SGFLOAT Floating-Point Number Format

17.2.4. SFLOAT Floating-Point Number Format
(S_floating)
The S_floating floating-point number format consists of four contiguous bytes, starting on an arbitrary
byte boundary, as shown in Figure 17.8, "SFLOAT Floating-Point Number Format". Bits are labeled from
the right, 0 to 31. The form of an S_floating number is sign magnitude with bit 31 the sign bit, bits 30 to
23 an excess-127 binary exponent, and bits 22 to 0 a normalized 24-bit fraction with the redundant most
significant fraction bit not represented unless the exponent is 0. If the exponent is 0, a nonzero fraction
represents an unnormalized 23-bit fraction.

An exponent value of 0 together with a fraction value of 0 and a sign bit of 0 indicates that the
S_floating number value is 0. Exponent values from 1 to 254 indicate true binary exponents from -127
to 127. The value of an S_floating number is in the approximate range 1.175 * 10-38 to 3.402 * 1038;
the precision is approximately one part in 223 (approximately 7 decimal digits). Note that S_floating
format provides approximately the same range and precision as F_floating format.

Figure 17.8. SFLOAT Floating-Point Number Format

17.2.5. TFLOAT Floating-Point Number Format
(T_floating)
The T_floating floating-point number format consists of eight contiguous bytes, starting on an arbitrary
byte boundary, as shown in Figure 17.9, "TFLOAT Floating-Point Number Format". Bits are labeled
from the right, 0 to 63. The form of a T_floating number is sign magnitude with bit 63 the sign bit,
bits 62 to 52 an excess-1023 binary exponent, and bits 51 to 0 a normalized 53-bit fraction with the
redundant most significant fraction bit not represented unless the exponent is 0. If the exponent is 0, a
nonzero fraction represents an unnormalized 52-bit fraction.

An exponent value of 0 together with a fraction value of 0 and a sign bit of 0 indicates that the
T_floating number value is 0. Exponent values from 1 to 2046 indicate true binary exponents from
-1023 to 1023. The value of a T_floating number is in the approximate range 2.225 * 10-308 to 1.797
* 10308; the precision is approximately one part in 252 (approximately 15 decimal digits). Note that
T_floating format provides approximately the same range and precision as G_floating format.

247

Chapter 17. Data Representation

Figure 17.9. TFLOAT Floating-Point Number Format

17.2.6. XFLOAT Floating-Point Number Format
(X_floating)
The X_floating floating-point number format consists of sixteen contiguous bytes, starting on an
arbitrary byte boundary, as shown in Figure 17.10, "XFLOAT Floating-Point Number Format". Bits
are labeled from the right, 0 to 127. The form of an X_floating number is sign magnitude with bit 127
the sign bit, bits 126 to 112 an excess-16383 binary exponent, and bits 111 to 0 a normalized 113-bit
fraction with the redundant most significant fraction bit not represented unless the exponent is 0. If the
exponent is 0, a nonzero fraction represents an unnormalized 112-bit fraction.

An exponent value of 0 together with a fraction value of 0 and a sign bit of 0 indicates that the
X_floating number value is 0. Exponent values from 1 to 32766 indicate true binary exponents from
-16383 to 16383. The value of an X_floating number is in the approximate range 3.362 * 10-4932 to
1.189 * 104932; the precision is approximately one part in 2112 (approximately 33 decimal digits). Note
that X_floating format provides approximately the same range and precision as H_floating format.

Figure 17.10. XFLOAT Floating-Point Number Format

17.3. Packed Decimal Number Format
The DECIMAL data type is useful for storing numbers with a fixed decimal point. DECIMAL numbers
are stored as a precise representation of the value stored within the constraints of the specified number
of fractional digits. A packed decimal string is a contiguous sequence of bytes in memory. The address A
and length L are sufficient to specify a packed decimal string, but note that L is the number of digits, not
bytes, in the string. Each byte of a packed decimal string is divided into two 4-bit fields (nibbles), each of
which must contain decimal digits, except the low nibble of the last byte, which must contain a sign. The
representation for the digits or signs is shown in the following table:

Digit or Sign Decimal Hexadecimal

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5

248

Chapter 17. Data Representation

Digit or Sign Decimal Hexadecimal

6 6 6
7 7 7
8 8 8
9 9 9
+ 10,12,14, or 15 A,C,E, or F
– 11 or 13 B or D

Despite the options, the preferred sign representation is 12 for positive and 13 for negative. The length L
is the number of digits in the packed decimal string (not counting the sign) and must be in the range 1 to
31. If the number of digits is odd, the digits and the sign fit into ((L/2) + 1) bytes; when the number of
digits is even, an extra 0 digit must appear in the high nibble (bits 7 to 4) of the first byte.

The address A of the string specifies the byte of the string containing the most significant digit in its high
nibble. Digits of decreasing significance are assigned to increasing byte addresses and from high nibble to
low nibble within a byte.

Note that the decimal point is specified by the descriptor for the packed decimal string. See Section 17.6,
"Decimal Scalar String Descriptor (Packed Decimal String Descriptor)" for more information about
packed decimal string descriptions.

17.4. String and Array Descriptor Format
A descriptor is an OpenVMS data structure that describes how to access data in memory. A descriptor
can also pass information about a parameter with that parameter. The following sections describe the
formats for fixed-length and dynamic string descriptors.

17.4.1. Fixed-Length String Descriptor Format
A fixed-length string descriptor consists of two longwords.

The first word of the first longword contains a value equal to the string's length. The third byte contains
14 (0E hexadecimal—the OpenVMS code describing an ASCII character string). The fourth byte
contains 1.

The second longword is a pointer containing the address of the string's first byte. See Figure 17.11,
"Fixed-Length String Descriptor Format". For more information, see the OpenVMS Calling Standard.

Figure 17.11. Fixed-Length String Descriptor Format

17.4.2. Dynamic String Descriptor Format
A dynamic string descriptor consists of two longwords.

249

Chapter 17. Data Representation

The first word of the first longword contains a value equal to the string's length. The third byte contains
14 (0E hexadecimal—the OpenVMS code describing an ASCII character string). The fourth byte
contains 2.

The second longword is a pointer containing the address of the string's first character. See Figure 17.12,
"Dynamic String Descriptor Format". For more information, see the OpenVMS Calling Standard.

Figure 17.12. Dynamic String Descriptor Format

17.5. Array Descriptors
VSI BASIC for OpenVMS creates DSC$K_CLASS_NCA, a noncontiguous class array descriptor. For
more information, see the OpenVMS Calling Standard.

17.6. Decimal Scalar String Descriptor
(Packed Decimal String Descriptor)
A single descriptor form gives decimal size and scaling information for both scalar data and simple
strings. See Figure 17.13, "Decimal Scalar String Descriptor" for more information.

Figure 17.13. Decimal Scalar String Descriptor

For packed decimal strings, the length field contains the number of 4-bit digits (not including the sign).
The pointer field contains the address of the first byte in the packed decimal string. The scale field
contains a signed power-of-ten multiplier to convert the internal form to the external form. For example,
if the internal number is 123 and the scale field is +1, then the external number is 1230.

250

Part III. Using VSI BASIC for OpenVMS
Features on OpenVMS Systems

Part III, “Using VSI BASIC for OpenVMS Features on OpenVMS Systems” describes BASIC features
available on OpenVMS systems including advanced file input and output, libraries and shareable images,
and error messages.

251

252

Chapter 18. Advanced File Input
and Output
This chapter describes the more advanced I/O features available in VSI BASIC for OpenVMS. The
following topics are presented:

● RMS I/O to ANSI magnetic tapes

● Device-specific I/O to magnetic tapes (including TK50 devices), disks, and unit record devices

● I/O to mailboxes

● Network I/O

When you do not specify a file name in the OPEN statement, the I/O you perform is said to be device-
specific. This means that read and write operations (GET and PUT statements) are performed directly to
or from the device. For example:

OPEN "MTA2:" FOR OUTPUT AS FILE #1
OPEN "MTA1:PARTS.DAT" FOR INPUT AS FILE #2, SEQUENTIAL

Because the file specification in the first line does not contain a file name, the OPEN statement opens
the tape drive for device-specific I/O. The second line opens an ANSI-format tape file using RMS
because a file name is part of the file specification.

The following sections describe both I/O to ANSI-format magnetic tapes and device-specific I/O to
magnetic tape, unit record, and disk devices.

For more information about I/O to RMS disk files, see Chapter 13, "File Input and Output".

18.1. RMS I/O to Magnetic Tape
VSI BASIC for OpenVMS supports I/O to ANSI-formatted magnetic tapes. When performing I/O to
ANSI-formatted magnetic tapes, you can read or write to only one file on a magnetic tape at a time, and
the files are not available to other users. ANSI tape files are RMS sequential files.

18.1.1. Allocating and Mounting a Tape
You should allocate the tape unit to your process before starting file operations. For example:

$ ALLOCATE MT1:

This command assigns tape drive MT1: to your process. You must also set the tape density and label
with the MOUNT command. Optionally, you can specify a logical name to assign to the device, in this
case, TAPE.

$ MOUNT/DENSITY=1600 MT1: VOL001 TAPE

When mounting a TK50, you cannot specify a density.

If the records do not specify the size of the block (no value in HDR 2), specify the BLOCKSIZE as part
of the MOUNT command. For example:

$ MOUNT/DENSITY=1600/BLOCKSIZE=128 MT1: VOL020 TAPE

253

Chapter 18. Advanced File Input and Output

Alternatively, you can use the $MOUNT system service to mount tapes.

18.1.2. Opening a Tape File for Output
To create and open a magnetic tape file for output, use the OPEN statement. The following statement
opens the file PARTS.DAT and writes 256-byte records that are blocked four to a physical tape block of
1024 bytes:

OPEN "MT1:PARTS.DAT" FOR OUTPUT AS FILE #2%, SEQUENTIAL FIXED, &
 RECORDSIZE 256%, BLOCKSIZE 4%

Specifying FIXED record format creates ANSI F format records. Specifying VARIABLE creates ANSI
D format records. If you do not specify a record format, the default is VARIABLE.

Note

Every record in an ANSI D formatted file is prefixed by a 4-byte header giving the record length in
decimal ASCII digits. The length includes the 4-byte header. VSI BASIC for OpenVMS adds the 4-byte
header to the record size when calculating block size. The header is transparent to your program.

If you do not specify a block size, VSI BASIC for OpenVMS defaults to one record per block. For small
records, this can be inefficient; the tape will contain many interrecord gaps.

18.1.3. Opening a Tape File for Input
To open an existing magnetic tape file, you also use the OPEN statement. For example, the following
statement opens the file PAYROLL.DAT. If you do not specify a record size or a block size, VSI BASIC
for OpenVMS defaults to the values in the header block. If you do not specify a record format, VSI
BASIC for OpenVMS defaults to the format present in the header block (ANSI F or ANSI D). You must
specify ACCESS READ if the tape is not write-enabled. For example:

100 OPEN "TAPE:PAYROLL.DAT" FOR INPUT AS FILE #4%
 ,ACCESS READ

18.1.4. Positioning a Tape
The NOREWIND statement positions the tape for reading and writing as follows:

● Specifying NOREWIND when you create a file positions the tape at the logical end-of-tape and
leaves the unit open for writing. If you omit NOREWIND, you start writing at the beginning of the
tape (BOT), logically deleting all subsequent files.

● Specifying NOREWIND when you open an existing file starts a search for the file at the current
position. The search continues to the logical end-of-tape. If the record is not found, VSI BASIC for
OpenVMS rewinds and continues the search until reaching the logical end-of-tape again. Omitting
NOREWIND tells VSI BASIC for OpenVMS to rewind the tape and search for the file name until
reaching the end-of-tape. In either case, you receive an error message if the file does not exist.

For example, the following statement opens PAYROL.DAT after advancing the tape to the logical end-
of-tape. If you omit NOREWIND, the file opens at the beginning of the tape, logically deleting all
subsequent files.

OPEN "MT1:PAYROL.DAT" FOR OUTPUT AS FILE #1% &
 ,ORGANIZATION SEQUENTIAL, NOREWIND

254

Chapter 18. Advanced File Input and Output

Note that you cannot specify REWIND; to avoid rewinding the tape, omit the NOREWIND keyword.

18.1.5. Writing Records to a File
The PUT statement writes sequential records to the file. The following program writes a record to the
file. Successive PUT operations write successive records.

OPEN "MT0:TEST.DAT" FOR OUTPUT AS FILE #2, &
 SEQUENTIAL FIXED, RECORDSIZE 20%
B$ = ""
WHILE B$ <> "NO"
 LINPUT "Name"; A$
 MOVE TO #2, A$ = 20
 PUT #2
 LINPUT "Write another record"; B$
NEXT
CLOSE #2
END

Each PUT writes one record to the file. If your OPEN statement specifies a RECORDSIZE clause, the
record buffer length equals RECORDSIZE or the map size. For example:

RECORDSIZE 60%

This clause specifies a record length and a record buffer size of 60 bytes. You can specify a record length
from 18 to 8192 bytes. The default is 132 bytes.

If you specify a MAP clause and no RECORDSIZE clause, then the record size is the size of the map.

If you also specify BLOCKSIZE, the size of the buffer equals the value in BLOCKSIZE multiplied by
the record size. For example:

RECORDSIZE 60%, BLOCKSIZE 4%

These clauses specify a logical record length of 60 bytes and a physical tape record size of 240 bytes (60
* 4). You specify BLOCKSIZE as an integer number of records. RMS rounds the resulting value to the
next multiple of four. The total I/O buffer length cannot exceed 8192 bytes. The default is a buffer (tape
block) containing one record.

To write true variable-length records, use the COUNT clause with the PUT statement to specify the
number of bytes of data written to the file. Without COUNT, all records equal the length specified by the
RECORDSIZE clause when you opened the file.

18.1.6. Reading Records from a File
The GET statement reads one logical record into the buffer. In the following example, the first GET
reads a group of four records (a total of 80 bytes) from the file on channel #5 and transfers the first
20 bytes to the record buffers. Successive GET operations read 20 byte records to the record buffer
performing an I/O to the tape every 4 records.

OPEN "MT0:TEST.DAT" FOR INPUT AS FILE #5%, &
 ORGANIZATION SEQUENTIAL FIXED, RECORDSIZE 20%, &
 BLOCKSIZE 4%, ACCESS READ
B$ = ""
WHILE B$ <> "NO"
 GET #5

255

Chapter 18. Advanced File Input and Output

 MOVE FROM #5, A$ = 20
 PRINT A$
 LINPUT "Do you want another record"; B$
NEXT
CLOSE #5
END

18.1.7. Controlling Tape Output Format
Magnetic tape physical records range from 18 to 8192 bytes. With RMS tapes, you can optionally
specify this size in the BLOCKSIZE clause as a positive integer indicating the number of records in each
block. VSI BASIC for OpenVMS then calculates the actual size in bytes. Thus, a fixed-length file on tape
with 126 byte records can have a block size from 1 to 64, inclusive. The default is 126 bytes (one record
per block).

In the following example of an OPEN statement, the RECORDSIZE clause defines the size of the
records in the file as 90 bytes, and BLOCKSIZE defines the size of a block as 12 records (1080 bytes).
Thus, your program contains an I/O buffer of 1080 bytes. Each physical read or write operation moves
1080 bytes of data between the tape and this buffer. Every twelfth GET or PUT operation causes a
physical read or write. The next eleven GET or PUT operations only move data into or out of the I/O
buffer. Specifying a block size larger than the default can reduce overhead by eliminating some physical
reading and writing to the tape. In addition, specifying a large block size conserves space on the tape
by reducing the number of interrecord gaps (IRGs). In the example, a block size of 12 saves time by
accessing the tape only after every twelfth record operation.

OPEN "MT0:[SMITH]TEST.SEQ" FOR OUTPUT AS FILE #12% &
 ,ORGANIZATION SEQUENTIAL FIXED, RECORDSIZE 90% &
 ,BLOCKSIZE 12%

Through RMS, VSI BASIC for OpenVMS controls the blocking and deblocking of records. RMS checks
each PUT operation to see if the specified record fits in the tape block. If it does not, RMS fills the rest
of the block with circumflexes (blanks) and starts the record in a new block. Records cannot span blocks
in magnetic tape files.

When you read blocks of records, your program can issue successive GET statements until it locates the
fields of the record you want. The following program finds and displays a record on the terminal. You
can invoke the RECOUNT function to determine how many bytes were read in the GET operation.

MAP (XXX) NA.ME$ = 5%, address$ = 20%

OPEN "MTO:FILE.DAT" FOR INPUT AS FILE #4%, &
 SEQUENTIAL FIXED, MAP XXX, ACCESS READ

NA.ME$ = ""
GET #4 UNTIL NA.ME$ - "JONES"
PRINT NA.ME$; "LIVES AT "; address$

CLOSE #4

END

18.1.8. Rewinding a Tape
With the RESTORE # statement, you can rewind the tape to the start of the currently open file. For
example:

256

Chapter 18. Advanced File Input and Output

OPEN "MTO:FTF.DAT" FOR INPUT AS FILE #2%, ACCESS READ
GET #2%
 .
 .
 .
RESTORE #2%
GET #2%

You cannot rewind past the beginning of the currently open file.

18.1.9. Closing a File
The CLOSE statement ends I/O to the file. The following statement ends input and output to the file
open on channel #6:

CLOSE #6%

If you opened the file with ACCESS READ, CLOSE has no further effect. If you opened the file
without specifying ACCESS READ and the tape is not write-locked (that is, if the plastic write ring is in
place), VSI BASIC for OpenVMS does the following:

● Writes the file trailer labels and two end-of-file marks following the last record

● Backspaces over the last end-of-file mark

VSI BASIC for OpenVMS does not rewind the tape.

18.2. Device-Specific I/O
Device-specific I/O lets you perform I/O directly to a device. The following sections describe device-
specific I/O to unit record devices, tapes, and disks.

18.2.1. Device-Specific I/O to Unit Record Devices
You perform device-specific I/O to unit record devices by using only the device name in the OPEN
statement file specification. You should allocate the device at DCL command level before reading or
writing to the device. For example, this command allocates a card reader:

$ ALLOCATE CR1:

Once the device is allocated, you can read records from it. For example:

MAP (DNG) A% = 80%
OPEN "CR1:" FOR INPUT AS FILE #1%, ACCESS READ, MAP DNG
GET #1%

VSI BASIC for OpenVMS treats the device as a file, and data is read from the card reader as a series of
fixed-length records.

18.2.2. Device-Specific I/O to Magnetic Tape Devices
When performing device-specific I/O to a tape drive, you open the physical device and transfer data
between the tape and your program. GET and PUT statements perform read and write operations.
UPDATE and DELETE statements are invalid when you perform device-specific I/O.

257

Chapter 18. Advanced File Input and Output

18.2.2.1. Allocating and Mounting a Tape
You must allocate the tape unit to your process before starting file operations. The following command
line assigns tape drive MT1: to your process:

$ ALLOCATE MT1:

Use the DCL command MOUNT and the /FOREIGN qualifier to mount the tape. For example:

$ MOUNT/FOREIGN MT1:

If your program needs a blocksize other than 512 bytes, or a particular tape density, specify these
characteristics with the MOUNT command as well. For example:

$ MOUNT/FOREIGN/BLOCKSIZE=1024/DENSITY=1600 MT1:

When reading a foreign tape, you must make sure the /BLOCKSIZE qualifier has a value at least as large
as the largest record on the tape.

18.2.2.2. Opening a Tape File for Output
To create and open the magnetic tape for output, you use the OPEN statement. The following statement
opens tape drive MT1: for writing. It is important to use the SEQUENTIAL VARIABLE clause unless
the records are fixed. In contrast to ANSI tape processing, RMS does not write record length headers
or variable-length records to foreign tapes. If you specify SEQUENTIAL VARIABLE, you should have
some way to determine where records begin and end.

PEN "MT1:" FOR OUTPUT AS FILE #1%, &
 ORGANIZATION SEQUENTIAL VARIABLE

18.2.2.3. Opening a Tape File for Input
To access a tape with existing data, you also use the OPEN statement. For example, the following
statement opens the tape unit MT2:

OPEN "MT2:" AS FILE #2%

Depending on how you access records, there are two ways to open a foreign magnetic tape. If your
program uses dynamic buffering and MOVE statements, open the file with no RECORDSIZE clause.
RMS will provide the correct buffer size for VSI BASIC for OpenVMS. Do not specify a BLOCKSIZE
value or ORGANIZATION clause with the OPEN statement.

If your program uses MAP and REMAP statements, but you do not know how long the records are,
specify a MAP that is as large as the value you specified for the BLOCKSIZE qualifier when mounting
the tape. Do not specify a BLOCKSIZE value or ORGANIZATION clause with the OPEN statement.

When processing records, each GET operation will read one physical record whose size is returned in
RECOUNT. If you are using a map only, the first n bytes (n is the value returned in RECOUNT) are
valid.

18.2.2.4. Writing Records to a File
The PUT statement writes records to the file in sequential order. For example:

OPEN "MT0:" FOR OUTPUT AS FILE #9%, &

258

Chapter 18. Advanced File Input and Output

 SEQUENTIAL VARIABLE
INPUT "NAME";NA.ME$
MOVE TO #9%, NA.ME$
PUT #9%

The last line writes the contents of the record buffer to the device. Successive PUT operations write
successive records.

The default record length (and, therefore, the size of the buffer) is 132 bytes. The RECORDSIZE
attribute causes VSI BASIC for OpenVMS to read or write records of a specified length. For example,
the following statement opens tape unit MT0: and specifies records of 900 characters. You must specify
an even integer larger than or equal to 18. If you specify a buffer length less than 18, VSI BASIC for
OpenVMS signals an error. If you try to write a record longer than the buffer, VSI BASIC for OpenVMS
signals the error “Size of record invalid” (ERR=156).

OPEN "MT0:" FOR INPUT AS FILE #1%, RECORDSIZE 900%

To write records shorter than the buffer, include the COUNT clause with the PUT statement. The
following statement writes a 56-character record to the file open on channel #6. If you do not specify
COUNT, VSI BASIC for OpenVMS writes a full buffer. You can specify a minimum count of 18, and a
maximum count equal to the buffer size. When writing records to a foreign magnetic tape, neither VSI
BASIC for OpenVMS nor RMS prefixes the records with any count bytes.

PUT #6%, COUNT 56%

18.2.2.5. Reading Records from a File
The GET statement reads records into the buffer. The following program reads a record into the buffer,
prints a string field, and rewinds the file before closing. Successive GET operations read successive
records. VSI BASIC for OpenVMS signals the error “End of file on device” (ERR=11) if you encounter
a tape mark during a GET operation. If you trap this error and continue, you can skip over any tape
marks. The system variable RECOUNT is set to the number of bytes transferred after each GET
operation.

OPEN "MT1:" FOR INPUT AS FILE #1%, ACCESS READ
GET #1%
MOVE FROM #1%, A$ = RECOUNT
PRINT A$
RESTORE #1%
CLOSE #1%

18.2.2.6. Rewinding a Tape
When you mount a magnetic tape, the system will position the tape at the load point (BOT). Your
program can rewind the tape during program execution with the RESTORE statement. For example:

OPEN "MT1:" FOR OUTPUT AS FILE #2%, ACCESS READ
 .
 .
 .
PUT #2%
RESTORE #2%
INPUT "NEXT RECORD"; NXTRECBB%

If you rewind a tape opened without ACCESS READ before closing it, you erase all data written before
the RESTORE operation.

259

Chapter 18. Advanced File Input and Output

18.2.2.7. Closing a Tape
The CLOSE statement ends I/O to the tape. For example, the following statement ends input and output
to the tape open on channel #12.

CLOSE #12%

If you opened the file with ACCESS READ, CLOSE has no further effect. If you opened the file
without specifying ACCESS READ and the tape is not write-locked (that is, if the plastic write ring is in
place), VSI BASIC for OpenVMS does the following:

● Writes file trailer labels and two end-of-file marks following the last record

● Backspaces over the last end-of-file mark

The tape is not rewound unless you specified RESTORE in your program.

18.2.3. Device-Specific I/O to Disks
When performing device-specific I/O to disks, you write and read data with PUT and GET statements.
The data must fit in 512-byte blocks, and you must do your own blocking and deblocking with MAP/
REMAP or MOVE statements. Note that, when accessing disks with device-specific I/O operations, you
are performing logical I/O. Because of this, you should be careful not to overwrite block number zero,
which is often the disk's boot block. You must have LOG_IO privileges to perform these operations.

The following sections describe device-specific I/O to disks.

18.2.3.1. Assigning and Mounting a Disk
You must allocate a disk unit to your process before starting operations. The following command line
assigns disk DUA3: to your process:

$ ALLOCATE DUA3:

When you perform I/O directly to a disk, you must mount the disk with the MOUNT command before
accessing it. For example:

$ MOUNT/FOREIGN DUA3:

You can then open the disk for input or output.

18.2.3.2. Opening a Disk File for Output
To create and open the disk file, you use the OPEN statement. For example:

OPEN "DUA3:" FOR OUTPUT AS FILE #2%, SEQUENTIAL FIXED, &
 RECORDSIZE=512

You can then write data to the disk.

The record size determined by the MAP or RECORDSIZE clause must be an integer multiple of 512
bytes.

18.2.3.3. Opening a Disk File for Input
To open an existing disk file, you also use the OPEN statement. For example:

260

Chapter 18. Advanced File Input and Output

OPEN "DUA1:" FOR INPUT AS FILE #4%, SEQUENTIAL FIXED, &
 RECORDSIZE=512

You can then read data from the disk.

The record size determined by the MAP or RECORDSIZE clause must be an integer multiple of 512
bytes. The default is 512.

Specify ACCESS READ in the OPEN statement if you only plan to read from the disk.

18.2.3.4. Writing Records to a Disk File
You write data by defining a record buffer and writing the data to the file with PUT statements. The
following program writes eight 64 byte records into each 512-byte block on the disk. When your
program fills one block, writing continues in the next. The FILL field in the MOVE statement positions
the data in the block.

INPUT "HOW MANY RECORDS TO WRITE"; J%
OPEN "DBB2: FOR OUTPUT AS FILE #2%, SEQUENTIAL FIXED, &
 RECORDSIZE=512
FOR K% = 1% TO J%
 FOR I% = 0% TO 7%
 INPUT "NAME OF BOOK"; BOOK_NAME$
 INPUT "RETRIEVAL NUMBER"; RET_NUM%
 INPUT "SUBJECT AREA"; SUBJ$
 MOVE TO #2%, FILL$ = I% * 64%, BOOK_NAME$, RET_NUM%, SUBJ$
 NEXT I%
PUT #2%
NEXT K%
CLOSE #2

When you write records, VSI BASIC for OpenVMS does not prefix the records with any count bytes.

18.2.3.5. Reading Records from a Disk File
You read data by defining a record buffer and reading the data from the device with GET statements.
After the data has been retrieved with a GET statement you can deblock the data with MOVE or
REMAP statements.

In the following example, each disk block contains twelve 40-byte records. Each record contains a 32-
byte string, a 4-byte SINGLE number, and a 4-byte LONG integer. After each GET operation, the
FOR...NEXT loop uses the REMAP statement to redefine the position of the variables in the record.
At the end of the file, the program closes the file. See Chapter 7, "Data Definition" and the VSI BASIC
Reference Manual for more information about the MAP, MAP DYNAMIC, and REMAP statements.

MAP (SAM) FILL$ = 512
MAP DYNAMIC (SAM) STRING PRT_ID, SINGLE MAFLD, LONG ADIR_OLDN
OPEN "DUA1:" FOR INPUT AS FILE #2%, SEQUENTIAL FIXED, &
 ACCESS READ, MAP SAM
WHEN ERROR USE err_hand
WHILE 1% = 1%
 GET #2%
 FOR I% = 0% TO 11%
 REMAP (SAM) STRING FILL(I% * 40%), PRT_ID = 32, MAFLD, ADIR_OLDN
 PRINT PRT_ID, MAFLD, ADIR_OLDN
 NEXT I%
NEXT

261

Chapter 18. Advanced File Input and Output

END WHEN
HANDLER err_hand
 IF ERR <> 11%
 THEN
 EXIT HANDLER
 END IF
END HANDLER
CLOSE #2%
END

18.3. I/O to Mailboxes
A mailbox is a record I/O device that passes data from one process to another. You can use a valid
mailbox name as a file name, and treat that mailbox as a normal record file. You must have TMPMBX
or PRMMBX privilege to create mailboxes. Mailboxes are created and deleted by system services. For
more information about using system services in VSI BASIC for OpenVMS programs, see Chapter 19,
"Using BASIC in the Common Language Environment".

Use the EXTERNAL statement to define the SYS$CREMBX system service that creates the mailbox.
In VSI BASIC for OpenVMS programs, you create mailboxes by invoking SYS$CREMBX as a function
passing either a channel argument and a string literal or a logical name for the mailbox. For example:

EXTERNAL INTEGER FUNCTION SYS$CREMBX
SYS$STATUS% = SYS$CREMBX(,CHAN%,,,,,"CONFIRMATION_MBX")

If you supply a logical name for the mailbox, be sure that it is in uppercase letters. Once you create the
mailbox, you can use it as a logical file name.

The following two examples, when executed on two separate processes, allow you to send and receive
data from one process to another.

Example 1

DECLARE STRING passenger_name, Confirm_msg
OPEN "CONFIRMATION_MBX" AS FILE #1%
INPUT "WHAT IS THE PASSENGER NAME"; passenger_name
PRINT #1%, passenger_name
LINPUT #1%, confirm_msg
PRINT confirm_msg
END

Example 2

MAP (res) STRING passenger_name = 32%
DECLARE WORD mbx_chan, LONG sys_status
EXTERNAL LONG FUNCTION sys$crembx (LONG, WORD, LONG, LONG, &
 LONG, LONG, STRING)
WHEN ERROR USE err_trap
sys_status = sys$crembx (,mbx_chan,,,,,"CONFIRMATION_MBX")
OPEN "CONFIRMATION_MBX" FOR INPUT AS FILE #1%
LINPUT #1%, passenger_name
OPEN "RESER.LST" FOR INPUT AS FILE #2%, &
 ORGANIZATION INDEXED, MAP RES, ACCESS READ &
 PRIMARY passenger_name
FIND #2%, KEY #0% EQ passenger_name
RECEIVING.MSG$ = "Passenger reservation confirmed"
PRINT #1%, RECEIVING.MSG$

262

Chapter 18. Advanced File Input and Output

END WHEN
HANDLER err_trap
 IF (ERR = 155)
 THEN
 RECEIVING.MSG$ = "Reservation does not exist"
 ELSE
 EXIT HANDLER
 END IF
END HANDLER
CLOSE #2%, #1%
END PROGRAM

Example 1 requests a passenger name and sends it to the mailbox.

Example 2 looks up the name in an indexed file. If the passenger name exists, Example 2 writes the
confirmation message to the mailbox. If the passenger name does not exist, the error handler writes an
alternate message. Example 1 then reads the mailbox and returns the result.

VSI BASIC for OpenVMS treats the mailbox as a sequential file. You write to the file with the PRINT #
or PUT statement, and read it with the INPUT #, LINPUT #, or GET statement.

When either program closes the mailbox, the other program receives an end-of-file error message when
it attempts to read the mailbox.

Note

All mailbox operations are synchronous. Control does not pass back from a mailbox operation, such as a
PUT, to your program until the other program completes the corresponding operation, such as a GET.

18.4. Network I/O
If your system supports DECnet for OpenVMS VAX facilities, and your computer is one of the nodes in
a DECnet for OpenVMS VAX, you can communicate with other nodes in the network with VSI BASIC
for OpenVMS program statements. VSI BASIC for OpenVMS lets you do the following:

● Read and write files on a remote node as you do files on your own system (remote file access)

● Exchange data with a process executing at a remote location (task-to-task communication)

18.4.1. Remote File Access
To write or read files at a remote site, include the node name as part of the file specification. For
example:

OPEN "WESTON::DUA1:[HOLT]TEST.DAT;2" FOR INPUT AS FILE #2%

You can also assign a logical name to the file specification, and use that logical name in all file I/O.

Note

You need NETMBX privileges to access files at a remote node.

If the account at the remote site requires a username and password, include this access string in the file
specification. You do this by enclosing the access string in quotation marks and placing it between the

263

Chapter 18. Advanced File Input and Output

node name and the double colon. The following file specification accesses the account [HOLT.TMP]
on node WESTON by giving the username HOLT and the password PASWRD. After accessing the file,
your VSI BASIC for OpenVMS program can read and write records as if the file were in your account.

OPEN 'WESTON"HOLT PASWRD"::DUA0:[HOLT.TMP]INDEXU.DAT;4' &
 FOR INPUT AS FILE #1%, INDEXED, PRIMARY TEXT$

Do not use the CONNECT clause when opening a file on a remote node or VSI BASIC for OpenVMS
will signal the error “Cannot open file” (ERR=162).

18.4.2. Task-to-Task Communication
VSI BASIC for OpenVMS supports task-to-task communication if your account has NETMBX
privileges.

Follow these steps for task-to-task communication:

1. Establish a command file at the remote site to execute the program you want. The program must be
in executable image format. For example, you can create the file MARG.COM at the remote site.
MARG.COM contains a line to run an image (in this case, COPYT.EXE).

$ RUN COPYT

The OPEN statements in the programs at both nodes must specify the same file attributes.

2. Start task-to-task communication by accessing the command file at the remote site. For example, a
program at the local node could contain the following line:

OPEN 'WESTON::"TASK = MARG"' AS FILE #1%, SEQUENTIAL

3. The system then assigns the logical name SYS$NET to the program at the local node. At the remote
node, the program (COPYT.EXE) must use this logical for all operations. For example:

OPEN 'SYS$NET' FOR INPUT AS FILE #1%, SEQUENTIAL

4. The two programs can then exchange messages. The programs must have a complementary series of
send/receive statements.

!Local Program
MAP (SJK) MSG$ = 32%
OPEN 'WESTON"DAVIS PSWRD"::"TASK = MARG"' &
 FOR OUTPUT AS FILE #1%, SEQUENTIAL, MAP SJK
LINPUT "WHAT IS THE CUSTOMER NAME"; MSG$
PUT #1%
GET #1%
PRINT MSG$
CLOSE #1%
END

!Remote Node Program
 .
 .
 .
10 MAP (SJK) MSG$ = 32%
 MAP (FIL) NAME$ = 32%, RESERVATION$ = 64%
 OPEN 'SYS$NET' FOR INPUT AS FILE #1%, SEQUENTIAL, &
 MAP SJK

264

Chapter 18. Advanced File Input and Output

 OPEN 'RESER.DAT'FOR INPUT AS FILE #2%, &
 INDEXED FIXED, PRIMARY NAME$, MAP FIL
 GET #1%
 MSG$ = "NAME CONFIRMED"
 WHEN ERROR IN
100 FIND #2%, KEY 0% EQ MSG$
 USE
 IF ERR = 153
 THEN
 MSG$ = "ERROR IN NAME"
 ELSE
 EXIT HANDLER
 END IF
 END WHEN

 PUT #1%
 .
 .
 .
 CLOSE #2%, 1%
 END

The task-to-task communication ends when the files are closed.

See the VSI OpenVMS DECnet Networking Manual and the VSI OpenVMS System Manager's Manual for
more information.

18.4.3. Accessing a VAX Rdb/VMS Database
If you have purchased a VAX Rdb/VMS development license, you can store and access data in a VAX
Rdb/VMS database from a VSI BASIC for OpenVMS program. To do this, you embed RDO statements
in your VSI BASIC for OpenVMS program. Each line of an RDO statement must be preceded by the
Rdb/VMS statement flag (&RDB&). VSI BASIC for OpenVMS line numbers cannot be included in
any RDO statement line. You then precompile your program with the Rdb/VMS precompiler. The
precompiler translates the RDO statements into BASIC statements that make direct calls to Rdb/VMS.

265

Chapter 18. Advanced File Input and Output

266

Chapter 19. Using BASIC in the
Common Language Environment
This chapter shows you how to call the following:

● External routines written in other OpenVMS languages

● OpenVMS Run-Time Library routines

● OpenVMS system services

The terms routine, procedure, and function are used throughout this chapter. A routine is a closed,
ordered set of instructions that performs one or more specific tasks. Every routine has an entry point (the
routine name), and may or may not have an argument list. Procedures and functions are specific types of
routines: a procedure is a routine that does not return a value, while a function is a routine that returns
a value by assigning that value to the function's identifier.

System routines are prewritten OpenVMS routines that perform common tasks such as finding the
square root of a number or allocating virtual memory. You can call any system routine from VSI
BASIC for OpenVMS provided that the data structures necessary for that routine are supported. The
system routines used most often are OpenVMS Run-Time Library routines and system services. System
routines, which are discussed later in this chapter, are documented in detail in the OpenVMS Run-Time
Library Routines Volume and the VSI OpenVMS System Services Reference Manual.

19.1. Specifying Parameter-Passing
Mechanisms
When you pass data between routines that are not written in the same language, you have to specify
how you want that data to be represented and interpreted. You do this by specifying a parameter-
passing mechanism. The general parameter-passing mechanisms and their keywords in VSI BASIC for
OpenVMS are as follows:

● By reference—BY REF

● By descriptor—BY DESC

● By value—BY VALUE

The following sections outline each of these parameter-passing mechanisms in more detail.

19.1.1. Passing Parameters by Reference
When you pass a parameter by reference, VSI BASIC for OpenVMS passes the address at which the
actual parameter value is stored. In other words, your routine has access to the parameter's storage
address; therefore, you can manipulate and change the value of this parameter. Any changes that you
make to the value of the parameter in your routine are reflected in the calling routine as well.

19.1.2. Passing Parameters by Descriptor
A descriptor is a data structure that contains the address of a parameter, along with other information
such as the parameter's data type and size. When you pass a parameter by descriptor, the VSI BASIC for

267

Chapter 19. Using BASIC in the Common Language Environment

OpenVMS compiler passes the address of a descriptor to the called routine. You usually use descriptors
to pass parameters that have unknown lengths, such as the following:

● Character strings

● Arrays

● Compound data structures

Like parameters passed by reference, any change made to the value of a parameter passed by descriptor
is reflected in the calling routine.

19.1.3. Passing Parameters by Value
When you pass a parameter by value, you pass a copy of the parameter value to the routine instead of
passing its address. Because the actual value of the parameter is passed, the routine does not have access
to the storage location of the parameter; therefore, any changes that you make to the parameter value in
the routine do not affect the value of that parameter in the calling routine.

VSI BASIC allows actual and formal parameters to be passed by value.

19.1.4. VSI BASIC for OpenVMS Default Parameter-
Passing Mechanisms
There are default parameter-passing mechanisms established for every data type you can use with VSI
BASIC for OpenVMS. Table 19.1, "Valid Parameter-Passing Mechanisms" shows which VSI BASIC for
OpenVMS data types you can use with each parameter-passing mechanism.

Table 19.1. Valid Parameter-Passing Mechanisms

Parameter BY VALUE BY REF BY DESC

Integer and Real Data

Variables Yes Yes1 Yes
Constants Yes Local copy1 Local copy
Expressions Yes Local copy1 Local copy
Elements of a nonvirtual
array

Yes Yes1 Yes

Virtual array elements Yes Local copy1 Local copy
Nonvirtual entire array No Yes Yes1

Virtual entire array No No No
Packed Decimal Data

Variables No Yes1 Yes
Constants No Local copy1 Local copy
Expressions No Local copy1 Local copy
Nonvirtual array
elements

No Yes1 Yes

Virtual array elements No Local copy1 Local copy
Nonvirtual entire arrays No Yes Yes1

268

Chapter 19. Using BASIC in the Common Language Environment

Parameter BY VALUE BY REF BY DESC

Virtual entire arrays No No No
String Data

Variables No Yes Yes1

Constants No Local copy Local copy1

Expressions No Local copy Local copy1

Nonvirtual array
elements

No Yes Yes1

Virtual array elements No Local copy Local copy1

Nonvirtual entire arrays No Yes Yes1

Virtual entire arrays No No No
Other Parameters

RECORD variables No Yes1 No
RFA variables No Yes1 No

1Specifies the default parameter-passing mechanism.

19.1.5. Creating Local Copies
If a parameter is an expression, function, or virtual array element, then it is not possible to pass the
parameter's address. In these cases, VSI BASIC for OpenVMS makes a local copy of the parameter's
value and passes this local copy by reference.

You can force VSI BASIC for OpenVMS to make a local copy of any parameter by enclosing the
parameter in parentheses. Forcing VSI BASIC for OpenVMS to make a local copy is a useful technique
because you make it impossible for the subprogram to modify the actual parameter. In the following
example, when variable A is printed in the main program, the value is zero because the variable A is not
modifiable by the subprogram:

DECLARE LONG A
CALL SUB1 ((A))
PRINT A
END

SUB SUB1 (LONG B)
B = 3
END SUB

Output
0

By removing the extra parentheses from A, you allow the subprogram to modify the parameter.

DECLARE LONG A
CALL SUB1 (A)
PRINT A
END

SUB SUB1 (LONG B)
B = 3
END SUB

269

Chapter 19. Using BASIC in the Common Language Environment

Output
3

19.1.6. Passing Arrays
In VSI BASIC, if a subprogram or function declares an array in its parameter list, the calling program
must pass an array. Passing a null parameter instead would cause the program to fail with a memory
access violation.

19.2. Calling External Routines
Most of the steps of calling external routines are the same whether you are calling an external routine
written in VSI BASIC for OpenVMS, an external routine written in some other language, a system
service, or a OpenVMS Run-Time Library routine. The following sections outline the procedure for
calling non-BASIC external routines. For information about calling BASIC routines, see Chapter 12,
"Program Segmentation".

19.2.1. Determining the Type of Call
Before you call an external routine, you must determine whether the call to the routine should be a
function call or a procedure call. You should call a routine as a function if it returns any type of value. If
the routine does not return a value, you should call it as a procedure.

19.2.2. Declaring an External Routine and Its
Arguments
To call an external routine or system routine you need to declare it as an external procedure or function
and to declare the names, data types, and passing mechanisms for the arguments. Arguments can be
either required or optional.

You should include the following information in a routine declaration:

● The name of the external routine

● The data types of all the routine parameters

● The passing mechanisms for all the routine parameters, provided that the routine is not written in
VSI BASIC for OpenVMS

When you declare an external routine, use the EXTERNAL statement. This allows you to specify the
data types and parameter-passing mechanisms only once.

In the following example, the EXTERNAL statement declares cobsub as an external subprogram with
two parameters – a LONG integer and a string both passed by reference:

EXTERNAL SUB cobsub (LONG BY REF, STRING BY REF)

With the EXTERNAL statement, VSI BASIC for OpenVMS allows you to specify that particular
parameters do not have to conform to specific data types and that all parameters past a certain point
are optional. A parameter declared as ANY indicates that any data type can appear in the parameter
position. In the following example, the EXTERNAL statement declares a SUB subprogram named
allocate. This subprogram has three parameters: one LONG integer, and two that can be of any VSI
BASIC for OpenVMS data type.

270

Chapter 19. Using BASIC in the Common Language Environment

EXTERNAL SUB allocate(LONG, ANY,)

A parameter declared as OPTIONAL indicates that all following parameters are optional. You can
have both required and optional parameters. The required parameters, however, must appear before the
OPTIONAL keyword because all parameters following it are considered optional.

In the following example, the EXTERNAL statement declares the Run-Time Library routine LIB
$LOOKUP_KEY. The keyword OPTIONAL is specified to indicate that the last three parameters can be
optional.

EXTERNAL LONG FUNCTION LIB$LOOKUP_KEY(STRING, LONG, OPTIONAL LONG, STRING,
 INTEGER)

For more information about using the EXTERNAL statement, see the VSI BASIC Reference Manual.

19.2.3. Calling the Routine
Once you have declared an external routine, you can invoke it. To invoke a procedure, you use the CALL
statement. To invoke a function, you use the function name in an expression. You must specify the name
of the routine being invoked and all parameters required for that routine. Make sure the data types and
passing mechanisms for the actual parameters you are passing match those you declared earlier, and
those declared in the routine.

If you do not want to specify a value for a required parameter, you can pass a null argument by inserting
a comma as a placeholder in the argument list. If you are passing a parameter using a mechanism other
than the default passing mechanism for that data type, you must specify the passing mechanism in the
CALL statement or the function invocation.

The following example shows you how to call the external subprogram allocate declared in Section
19.2.2, "Declaring an External Routine and Its Arguments". When allocate is called, it is called as a
procedure. The first parameter must always be a valid LONG INTEGER value; the second and third
parameters can be of any valid VSI BASIC for OpenVMS data type.

EXTERNAL SUB allocate(LONG, ANY,)
 .
 .
 .
CALL allocate (entity%, a$, 1%)

This next example shows you how to call the Run-Time Library routine LIB$LOOKUP_KEY
declared in Section 19.2.2, "Declaring an External Routine and Its Arguments". When the routine
LIB$LOOKUP_KEY is called, it is invoked as a function. The first two parameters are required; all
remaining parameters are optional.

EXTERNAL LONG FUNCTION LIB$LOOKUP_KEY(STRING, LONG, OPTIONAL LONG, STRING,
 INTEGER)
 .
 .
 .
ret_status% = LIB$LOOKUP_KEY(value$, point%)

Note that if the actual parameter's data type in the CALL statement does not match that specified in the
EXTERNAL statement, VSI BASIC for OpenVMS reports the compile-time informational message
“Mode for parameter of routine changed to match declaration.” This tells you that VSI BASIC for
OpenVMS has made a local copy of the value of the parameter, and that this local copy has the data
type specified in the EXTERNAL declaration. VSI BASIC for OpenVMS warns you of this because
the change means that the parameter can no longer be modified by the subprogram. If VSI BASIC

271

Chapter 19. Using BASIC in the Common Language Environment

for OpenVMS cannot convert the data type, VSI BASIC for OpenVMS signals the error “Mode for
parameter of routine not as declared.”

The routine being called receives control, executes, and then returns control to the calling routine at the
next statement after the CALL statement or function invocation.

VSI BASIC for OpenVMS provides the built-in function LOC to allow you to access the address of a
named external function. This is especially useful when passing the address of a callback or AST routine
to an external subprogram. In the following example, the address of the function compare is passed to the
subprogram come_back_now using the LOC function:

EXTERNAL LONG FUNCTION compare (LONG, LONG)
EXTERNAL SUB come_back_now (LONG BY VALUE)
CALL come_back_now (LOC(compare) BY VALUE)

19.3. Calling VSI BASIC for OpenVMS
Subprograms from Other Languages
When you call a VSI BASIC for OpenVMS subprogram from another language, there are some
additional considerations that you should be aware of. For example, although VSI BASIC for OpenVMS
conforms to the OpenVMS Calling Standard, you should specify explicit passing mechanisms when
calling a routine written in another language. The default passing mechanisms of BASIC may not match
what the procedure expects. In the following section, FORTRAN refers to VAX FORTRAN and VSI
BASIC.

FORTRAN passes and receives numeric data by reference; only the default parameter-passing
mechanisms are required for passing numeric data back and forth between FORTRAN and VSI BASIC
for OpenVMS programs.

Both VSI BASIC for OpenVMS and FORTRAN pass strings by descriptor. However, FORTRAN
subprograms cannot change the length of strings passed to them. Therefore, if you pass a string to a
FORTRAN subprogram, you must make sure that the string is long enough to receive the result. You do
this in one of two ways:

● Pre-extend the string. Set the string variable equal to SPACE$ (n), where n is large enough to receive
the result.

● Define the string as fixed-length. Name the string in a COMMON or MAP statement.

Because the length of the returned string does not change, it is either padded with spaces or truncated.

To pass an array to a FORTRAN subprogram, you must specify BY REF.

Note that FORTRAN arrays are one-based, while VSI BASIC for OpenVMS arrays are zero-based by
default. For example, in FORTRAN the array Two_D(5,3) represents a 5 by 3 matrix, while in VSI
BASIC for OpenVMS the array Two_d(5,3) represents a 6 by 4 matrix. You can adjust your array
bounds in VSI BASIC for OpenVMS by using the keyword TO when defining the array bounds. For
more information about array bounds, see Chapter 6, "Arrays".

When passing two-dimensional arrays as parameters, keep in mind that FORTRAN addresses array
elements in column major order, while BASIC refers to array elements in row major order. That is,
FORTRAN arrays are of the form Fortran_array(column,row), while VSI BASIC for OpenVMS array
elements are addressed as Basic_array(row,column). The FORTRAN array Grid(x,y) is therefore
referred to as GRID(y,x) in VSI BASIC for OpenVMS. You should reverse references to array elements

272

Chapter 19. Using BASIC in the Common Language Environment

when passing arrays between VSI BASIC for OpenVMS and FORTRAN program modules. You can do
this in one of two ways:

● Reverse array bounds in parameter lists

● Switch row and column variables within loops in your program module

Example 19.1, "BASIC Main Program" shows a VSI BASIC for OpenVMS program that passes a two-
dimensional array to a FORTRAN subprogram. The FORTRAN subprogram is shown in Example 19.2,
"FORTRAN Subprogram".

Example 19.1. BASIC Main Program

PROGRAM call_fortran
 ! The BASIC main program prints the array before
 ! calling the subroutine
 EXTERNAL SUB forsub (WORD DIM(,) BY REF)
 DIM WORD array_x(1 TO 10, 1 TO 5)
 FOR column = 1 TO 5
 FOR row = 1 TO 10
 array_x(row,column)=(10*row + column)
 PRINT array_x(row,column);
 NEXT row
 PRINT
 NEXT column
 PRINT

 CALL forsub(array_x(,) BY REF)

END PROGRAM

Example 19.2. FORTRAN Subprogram

C The FORTRAN subprogram receives
C and then prints the same array

 SUBROUTINE forsub(f_array)
 INTEGER*2 f_array(5,10)
 DO 20 row = 1,5
 TYPE *, (f_array(row,column), column = 1,10)
20 CONTINUE
 RETURN
 END

You can pass only the data types that VSI BASIC for OpenVMS and FORTRAN have in common. You
cannot pass a complex number from a FORTRAN program to a VSI BASIC for OpenVMS program,
because VSI BASIC for OpenVMS does not support complex numbers. However, you can pass a
complex number as two floating-point numbers and treat them independently in the VSI BASIC for
OpenVMS program.

19.4. Calling System Routines
The steps for calling system routines are the same as those for calling any external routine. However,
when calling system routines, you need to provide additional information, which is discussed in the
following sections.

19.4.1. OpenVMS Run-Time Library Routines

273

Chapter 19. Using BASIC in the Common Language Environment

The OpenVMS Run-Time Library routines are grouped according to the types of tasks they perform.
The routines in each group have a prefix that identifies them as members of a particular OpenVMS Run-
Time Library facility. Table 19.2, "Run-Time Library Facilities" lists all the language-independent Run-
Time Library facility prefixes and the types of tasks each facility performs.

Table 19.2. Run-Time Library Facilities

Facility
Prefix

Types of Tasks Performed

DTK$ DECtalk routines that are used to control the DECtalk device
LIB$ General purpose routines that obtain records from devices, manipulate strings, convert

data types for I/O, allocate resources, obtain system information, signal exceptions,
establish condition handlers, enable detection of hardware exceptions, and process cross-
reference data

MTH$ Mathematics routines that perform arithmetic, algebraic, and trigonometric calculations
OTS$ Language-independent support routines that perform tasks such as data type conversions

as part of a compiler's generated code
PPL$ Parallel processing routines that help you implement concurrent programs on single-CPU

and multiprocessor systems
SMG$ Screen management routines that are used in designing, composing, and keeping track of

complex images on a video screen
STR$ String manipulation routines that perform such tasks as searching for substrings,

concatenating strings, and prefixing and appending strings

19.4.2. System Service Routines
System services are system routines that perform a variety of tasks such as controlling processes,
communicating among processes, and coordinating I/O.

Unlike the OpenVMS Run-Time Library routines, which are divided into groups by facility, all system
services share the same facility prefix (SYS$). However, these services are logically divided into groups
that perform similar tasks. Table 19.3, "System Services" describes these groups.

Table 19.3. System Services

Group Types of Tasks Performed

AST Allows processes to control the handling of ASTs
Change Mode Changes the access mode of particular routines
Condition Handling Designates condition handlers for special purposes
Event Flag Clears, sets, reads, and waits for event flags, and associates with

event flag clusters
Information Returns information about the system, queues, jobs, processes, locks,

and devices
Input/Output Performs I/O directly, without going through RMS
Lock Management Enables processes to coordinate access to shareable system resources
Logical Names Provides methods of accessing and maintaining pairs of character

string logical names and equivalence names

274

Chapter 19. Using BASIC in the Common Language Environment

Group Types of Tasks Performed

Memory Management Increases or decreases available virtual memory, controls paging and
swapping, and creates and accesses shareable files of code or data

Process Control Creates, deletes, and controls execution of processes
Security Enhances the security of OpenVMS systems
Time and Timing Schedules events, and obtains and formats binary time values

19.4.3. System Routine Arguments
 All of the system routine arguments are described in terms of the following information:

● OpenVMS usage

● Data type

● Type of access allowed

● Passing mechanism

OpenVMS usages are data structures that are layered on the standard OpenVMS data types. For
example, the OpenVMS usage mask_longword signifies an unsigned longword integer that is used
as a bit mask, and the OpenVMS usage floating_point represents any OpenVMS floating-point data
type. Table 19.4, "OpenVMS Usages" lists all the OpenVMS usages and the VSI BASIC for OpenVMS
statements you need to implement them.

Table 19.4. OpenVMS Usages

OpenVMS Usage BASIC Implementation

access_bit_names Not applicable (NA)
access_mode BYTE (signed)
address LONG
address_range LONG address_range1 or RECORD address_range LONG

beginning_address LONG ending_address END RECORD
arg_list NA
ast_procedure EXTERNAL LONG FUNCTION ast_proc 1

boolean LONG
byte_signed BYTE
byte_unsigned BYTE 2

channel WORD
char_string STRING
complex_number RECORD complex REAL real_part REAL imaginary_part END

RECORD
cond_value LONG
context LONG
date_time QUAD
device_name STRING
ef_cluster_name STRING

275

Chapter 19. Using BASIC in the Common Language Environment

OpenVMS Usage BASIC Implementation

ef_number LONG
exit_handler_block RECORD EHCB LONG flink LONG handler_addr BYTE

arg_count BYTE FILL(3) LONG status_value_addr END RECORD
fab NA
file_protection LONG
floating_point SINGLE DOUBLE GFLOAT SFLOAT TFLOAT XFLOAT
function_code RECORD function-code WORD major-function WORD

subfunction END RECORD
identifier LONG
io_status_block RECORD iosb WORD iosb_field(1 to 4) END RECORD
item_list_2 RECORD item_list_two GROUP item(15) VARIANT CASE

WORD comp_length WORD code LONG comp_address CASE
LONG terminator END VARIANT END GROUP END RECORD

item_list_3 RECORD item_list_3 GROUP item (15) VARIANT CASE WORD
buf_len WORD code LONG buffer_address LONG length_address
CASE LONG terminator END VARIANT END GROUP END
RECORD

item_list_pair RECORD item_list_pair GROUP item(15) VARIANT CASE
LONG code LONG item_value CASE LONG terminator END
VARIANT END GROUP END RECORD item_list_pair

item_quota_list RECORD item_quota_list GROUP quota(n) VARIANT CASE
BYTE quota_name LONG item_value CASE BYTE list_end END
VARIANT END GROUP END RECORD

lock_id LONG
lock_status_block NA
lock_value_block NA
logical_name STRING
longword_signed LONG
longword_unsigned LONG2

mask_byte BYTE
mask_longword LONG
mask_quadword QUAD
mask_word WORD
null_arg A null argument is indicated by a comma used as a placekeeper in

the argument list.
octaword_signed BASIC$OCTAWORD3

octaword_unsigned BASIC$OCTAWORD3

page_protection LONG
procedure EXTERNAL LONG FUNCTION proc
process_id LONG
process_name STRING

276

Chapter 19. Using BASIC in the Common Language Environment

OpenVMS Usage BASIC Implementation

quadword_signed QUAD
quadword_unsigned QUAD2

rights_holder QUAD
rights_id LONG
rab NA
section_id QUAD
section_name STRING
system_access_id QUAD
time_name STRING
uic LONG
user_arg LONG
varying_arg Dependent upon application.
vector_byte_signed BYTE array(n)
vector_byte_unsigned BYTE array(n)2

vector_longword_signed LONG array(n)
vector_longword_unsigned LONG array(n)2

vector_quadword_signed QUAD array(n)
vector_quadword_unsigned QUAD array(n)2

vector_word_signed WORD array(n)
vector_word_unsigned WORD array(n)2

word_signed WORD
word_unsigned WORD2

1Use the LOC function to pass the address of an AST routine to a system service. Specify BY VALUE for the passing mechanism.
2Although unsigned data structures are not directly supported in BASIC, you can substitute the signed equivalent provided you do not exceed the
range of the signed data structure.
3The definition of the RECORD structures are included in the VSI BASIC for OpenVMS system definitions text library. See Section 19.4.4,
"Including Symbolic Definitions" for more information.

If a system routine argument is optional, it will be indicated in the format section of the routine
description in one of the following ways:

[,optional-argument]
,[optional-argument]

If the comma appears outside the brackets, you must either pass a zero by value or use a comma in the
argument list as a placeholder to indicate the place of the omitted argument. If this is the last argument in
the list, you must still include the comma as a placeholder. If the comma appears inside the brackets, you
can omit the argument altogether as long as it is the last argument in the list.

19.4.4. Including Symbolic Definitions
To enhance program development, BASIC allows you to use symbolic definitions. Symbolic definitions
are names or symbols associated with values. These symbols are used in many ways; the value associated
with a symbol can be a status code, a mask, or an offset into a data structure. Many system routines
depend on values that are defined in separate symbol definition files. For example, the status code for

277

Chapter 19. Using BASIC in the Common Language Environment

successful completion has a value of one; however, this code for successful completion is defined in the
system library (STARLET) as the symbol SS$_NORMAL.

A program might compare the status code returned by a system service to either the symbolic constant
SS$_NORMAL or the integer value one. The program would execute the same way in either case. In the
first case, the value for SS$_NORMAL is supplied at link time by the OpenVMS Linker. In the second
case, the value 1 is included in the program as a literal constant.

The advantages of using symbolic definitions are as follows:

● Because symbolic definition names are mnemonic, the program is easier to read and understand.

● It is easier to write the symbolic definition and let the OpenVMS Linker fill in the value, than to look
up the value associated with the symbol and include that value in the program.

● Should the value associated with a symbol ever change, you must relink the program. To change a
hard-coded definition, you must edit the source file, then recompile and relink.

Symbolic definitions used by system services are located in the default system library, STARLET.OLB.

For Run-Time Library routines, the only time that you need to include symbolic definitions is when you
are calling an SMG$ routine, or when you are calling a routine that is a jacket to a system service. (A
jacket routine in the Run-Time Library is a routine that provides a simpler, more easily used interface
to a system service.) If you call a routine in the SMG$ facility, you must include the definition file
SMGDEF. All system services, however, require that you include SSDEF to check status. Many other
system services require other symbol definitions as well.

To determine whether or not you need to include other symbolic definitions for the system service you
want to reference, see the documentation for that service. If the documentation states that values are
defined in the specified macro, you must include those symbolic definitions in your program. BASIC
provides a text library that contains symbolic definitions that can be accessed using the %INCLUDE
directive. In the following example, the definition file, SMGDEF is included from the text library SYS
$LIBRARY:BASIC$STARLET.TLB:

%INCLUDE "SMGDEF" %FROM %LIBRARY "SYS$LIBRARY:BASIC$STARLET.TLB"

For more information about including text libraries, see Chapter 16, "Compiler Directives".

19.4.5. Condition Values
Many system routines return a condition value that indicates success or failure. If a condition value is
returned, you should check this value after you call a system routine and control returns to your program.

Condition values indicating success always appear first in the list of condition values for a particular
routine, and success codes always have odd values. A success code that is common to many system
routines is the condition value SS$_NORMAL, which indicates that the routine completed normally and
successfully. You can test for this condition value as follows:

ret_status = SMG$CREATE_PASTEBOARD(pb_id)
IF (ret_status <> SS$_NORMAL) THEN
 CALL LIB$STOP(ret_status BY VALUE)
END IF

Because all success codes have odd values, you can check a return status for any success code. For
example, you can cause execution to continue only if a success code is returned by including the
following statements in your program:

278

Chapter 19. Using BASIC in the Common Language Environment

ret_status = SMG$CREATE_PASTEBOARD(pb_id)
IF (ret_status AND 1%) = 0% THEN
 CALL LIB$STOP(ret_status BY VALUE)
END IF

In general, you can check for a particular success or failure code or you can test the condition value
returned against all success codes or all failure codes.

19.5. Examples of Calling System Routines
This section provides complete examples of calling system routines from VSI BASIC for OpenVMS. In
addition to the examples provided, the VMS Run-Time Library Routines Volume and the VSI OpenVMS
System Services Reference Manual also provide examples for selected routines. See these manuals for
help about the use of a specific system routine.

Example 19.3, "Calling System Services" uses a function that invokes the SYS$TRNLNM system service.
 SYS$TRNLNM translates a logical name to an equivalence name. It places the equivalence name string
into a string variable you supply in the parameter list.

System services never change a string variable's length. Therefore, if you use a system service that
returns a string, be sure that the receiving string variable is long enough for the returned data. You can
make sure of this in one of two ways:

● Define the string variable's length in a MAP, COMMON, or RECORD definition.

● Assign a long string to the variable (for example, A$ = SPACE$(80)). This pre-extends the variable
so that it is long enough to receive all of the returned data.

Example 19.3. Calling System Services

10 !This function attempts to translate a logical name while searching
 !through all of the tables defined in LNM$DCL_LOGICAL. If the
 translation
 !is successful, $TRNLNM returns the equivalence name string.

 FUNCTION STRING Translate(STRING Logical_name)
 EXTERNAL LONG FUNCTION SYS$TRNLNM (LONG, STRING, STRING, LONG,
 ITEM_LIST)
 EXTERNAL LONG CONSTANT LNMM_CASE_BLIND, LNM_STRING, SS$_NORMAL

 !Declare the parameters
 DECLARE LONG attributes, &
 trans_status
 DECLARE WORD equiv_len

 !Declare the value returned by the function.
 DECLARE LONG CONSTANT Buffer_length = 255
 RECORD item_list
 GROUP item (1)
 VARIANT
 CASE
 WORD Buf_len
 WORD Code
 LONG Buffer_address
 LONG Length_address

279

Chapter 19. Using BASIC in the Common Language Environment

 CASE
 LONG Terminator
 END VARIANT
 END GROUP item
 END RECORD item_list
 !Declare an instance of the record

 DECLARE ITEM_LIST TRNLNM_ITEMS

 !Define a common area for Translation_buffer

 COMMON (Trans_buffer) &
 STRING Translation_buffer = Buffer_length

 !Setting TRN$LNM to not distinguish between uppercase and lowercase
 !letters in the logical name to be translated.

 Attributes = LNM$M_CASE_BLIND
 !Assign values to each record item.

 TRNLNM_ITEMS::item(0)::Buf_len = Buffer_length
 TRNLNM_ITEMS::item(0)::Code = LNM$_STRING
 TRNLNM_ITEMS::item(0)::Buffer_address = LOC(Translation_buffer)
 TRNLNM_ITEMS::item(0)::Length_address = LOC(Equiv_len)
 TRNLNM_ITEMS::item(1)::Terminator = 0%

 !Invoke the function

 TRANS_STATUS = SYS$TRNLNM(attributes,"LNM$DCL_LOGICAL", logical_name,
 &
 ,trnlnm_items)
 !Check the condition value

 IF trans_status AND SS$_NORMAL
 THEN
 Translate = LEFT(Translation_buffer, Equiv_len)
 ELSE
 Translate = ""
 END IF
 END FUNCTION

Example 19.4, "Program Displaying the $QIOW System Service Routine" is a program that demonstrates
the use of the system service $QIOW. Unlike SYS$QIO, SYS$QIOW performs synchronously; SYS
$QIOW returns a condition value to the caller after I/O operation is complete.

Example 19.4. Program Displaying the $QIOW System Service Routine

10 !Declare SYS$QIOW as an EXTERNAL FUNCTION

 EXTERNAL LONG FUNCTION SYS$QIOW(,WORD BY VALUE,LONG BY VALUE,WORD DIM()
 &
 BY REF,,,STRING BY REF,LONG BY VALUE,,
 &
 LONG BY VALUE,,)
 !Declare SYS$ASSIGN as an EXTERNAL FUNCTION

 EXTERNAL LONG FUNCTION SYS$ASSIGN(STRING,WORD,,)

280

Chapter 19. Using BASIC in the Common Language Environment

 EXTERNAL LONG CONSTANT IO$_WRITEVBLK
 !Declare the parameters

 DECLARE STRING my_term, out_str, &
 WORD term_chan, counter, stat_block(3),&
 LONG ret_status, msg_len, car_cntrl

 out_str = "Successful $QIOW output!"
 my_term = "SYS$COMMAND"
 msg_len = LEN(out_str)
 car_cntrl = 32%
 !Assign a channel to the terminal
 ret_status = SYS$ASSIGN(my_term, term_chan, ,)
 CALL LIB$STOP(ret_status BY VALUE) IF (ret_status AND 1%) = 0%
 !Output the message four times
 FOR counter = 1% to 4%
 ret_status = SYS$QIOW(,term_chan BY VALUE, IO$_WRITEVBLK BY VALUE,
 &
 stat_block() BY REF,,,out_str BY REF,
 &
 msg_len BY VALUE,,car_cntrl BY VALUE,,)
 CALL LIB$STOP(ret_status BY VALUE) IF (ret_status AND 1%) = 0%
 CALL LIB$STOP(stat_block(0%) BY VALUE) &
 IF (stat_block(0%) and 1%) = 0%
 NEXT counter

 END

Output
Successful $QIOW output!
Successful $QIOW output!
Successful $QIOW output!
Successful $QIOW output!

In addition to invoking the function SYS$QIOW, the previous example also invokes the function SYS
$ASSIGN. This function provides a process with an I/O channel so that input and output operations
can be performed on a logical device name (my_term). As soon as SYS$ASSIGN is invoked and a path
is established to the device, a counter is set up to invoke the $QIOW function four times. Once all I/O
operations are complete, $QIOW returns to the caller.

19.6. OpenVMS Calling Standard
The primary purpose of the OpenVMS Calling Standard is to define the concepts for invoking routines
and passing data between them. For more information, see the VSI OpenVMS Calling Standard.

19.7. Additional Information
The information provided on system routines in this chapter is general to all system services and
OpenVMS Run-Time Library routines. For specific information about these routines, see the VMS Run-
Time Library Routines Volume and the VSI OpenVMS System Services Reference Manual.

281

Chapter 19. Using BASIC in the Common Language Environment

282

Chapter 20. Libraries and
Shareable Images
Libraries and shareable images allow you to access program symbols and incorporate commonly used
routines into your source code. This chapter describes how to create and access libraries and shareable
images in VSI BASIC.

20.1. Overview of Libraries
Libraries are files that can contain object modules, text modules, and shareable images. There are two
types of libraries: system-supplied and user-supplied. System-supplied libraries are provided by the
OpenVMS system, and user-supplied libraries are libraries that you create.

Shareable images are similar to libraries; they contain code that can be shared by other programs.
However, shareable images contain executable code rather than object code.

If you have routines that are used in many programs, placing the routines in object module libraries or
shareable image libraries lets you access them at link time. You do not need to include the routines in the
source code, thus shortening compilation time and conserving disk space.

If you have routines that are used simultaneously by many different programs, placing the routines in
installed shareable images can improve performance at run time, conserve main physical memory, and
reduce paging I/O because one copy of the executable code is shared by all users.

When you link programs, object module libraries, shareable image libraries, and shareable images can
contain object code created by any native mode compiler or assembler.

For more understanding of libraries and shareable images, see the VSI OpenVMS Linker Utility Manual
and the Guide to Creating OpenVMS Modular Procedures. For more information about installing
shareable images, see the VSI OpenVMS System Manager's Manual. For information about text libraries,
see Chapter 16, "Compiler Directives".

20.2. System-Supplied Libraries
If symbols are unresolved after the OpenVMS Linker (linker) searches all user-supplied libraries, the
linker goes on to search the files in the default system library. The OpenVMS system supplies the
following libraries:

System Library Description

IMAGELIB.OLB Contains symbol tables for all Run-Time Library (RTL) shareable images that are
part of the OpenVMS operating system—for example, an OpenVMS RTL routine
is called Lib$FAO.

STARLET.OLB An object module library containing the object files used to create the shareable
image version of the OpenVMS RTL, and other less frequently used procedures.
If program symbols remain unresolved after the OpenVMS Linker searches
IMAGELIB.OLB, the linker then searches this library.

The linker searches modules in the following order:

283

Chapter 20. Libraries and Shareable Images

1. Modules and libraries specified in the LINK command line, in the order given

2. User-supplied libraries (logicals of the form LNK$LIBRARY and LNK$LIBRARY_1 through LNK
$LIBRARY_999)

3. Images contained in IMAGELIB.OLB

4. Modules contained in STARLET.OLB

The linker only includes references to needed shareable images in the image being created. You can
use the /NOSYSSHR qualifier to the LINK command to suppress the linker's search of RTL shareable
images. Similarly, you can use the /NOSYSLIB qualifier to suppress the linker's search of both RTL
shareable images and STARLET.OLB.

The linker searches user-supplied libraries before searching the default system library. If one of your
modules has the same name (program symbol) as an OpenVMS System Service or an RTL routine, the
linker includes your module in the resulting image rather than the system service or RTL routine.

20.3. Creating User-Supplied Object Module
Libraries
You create a user-supplied object module library with the DCL command LIBRARY. Specify a
library file specification as well as a list of the program modules you want to insert into the library. For
example:

$ BASIC MODULE1,MODULE2
$ LIBRARY/CREATE TESTLIB1.OLB MODULE1.OBJ,MODULE2.OBJ

In the previous example, the BASIC command creates object files from MODULE1.BAS and
MODULE2.BAS. The LIBRARY command creates an object module library named TESTLIB1.OLB
and inserts MODULE1.OBJ and MODULE2.OBJ into that library. See the VSI OpenVMS DCL
Dictionary for more information about the LIBRARY command.

20.3.1. Accessing User-Supplied Object Module
Libraries
To access user-supplied object module libraries, specify the /LIBRARY qualifier to the DCL command
LINK. For example:

$ LINK MAIN,TESTLIB/LIBRARY

This command instructs the linker to search the library TESTLIB.OLB for any unresolved symbols in
the VSI BASIC for OpenVMS object module MAIN.OBJ.

Also, you can explicitly include a module from a library with the /INCLUDE qualifier. For example:

$ LINK MAIN,TESTLIB/LIBRARY/INCLUDE = (module1,module2)

This command instructs the linker to include module1 and module2 from the library TESTLIB.OLB,
whether or not it needs these modules to resolve symbols.

You can access user-supplied object module libraries automatically. However, a program executing at
DCL level does not automatically search libraries that are assigned to the logical name BASIC$LIB0.

284

Chapter 20. Libraries and Shareable Images

Instead, the linker searches libraries that are assigned to the logical name LNK$LIBRARY. If you have
more than one library for the linker to search, you must number these libraries consecutively; otherwise,
the linker does not search past the first missing logical name. The linker allows you to number libraries
from 1 to 999.

For example:

$ DEFINE LNK$LIBRARY USER$$DEV:[KELLY]TESTLIB.OLB
$ DEFINE LNK$LIBRARY_1 USER$$DEV:[KELLY]TESTLIB1.OLB
$ DEFINE LNK$LIBRARY_2 USER$$DEV:[KELLY]TESTLIB2.OLB

After you issue these commands, a program executing at DCL level automatically accesses these three
library files to resolve program symbols.

20.4. Shareable Images
Shareable images are not directly executable. They contain executable code that can be shared by other
images and are intended to be included by the linker in other images.

The benefits of using shareable images include:

● Conserving disk storage space

● Conserving main physical memory

● Reducing paging I/O

● Allowing shared memory-resident databases

● Eliminating the need to relink programs that access a new version of a shared routine

Note

Some of these benefits can only be realized if the shareable image is installed with the OpenVMS Install
utility (Install).

To create a shareable image, use the /SHAREABLE qualifier with the DCL command LINK and specify
at least one object module. For example:

$ LINK/SHAREABLE prog1

This command creates an image that can be linked to other programs. You cannot execute a shareable
image with the DCL command RUN.

When a program is linked with a shareable image, the required shareable image code is not included
in the created executable image on the disk. This code is included by the image activator at run time.
Therefore, many programs can reside on disk and be bound with a particular shareable image, and only
one physical copy of that shareable image file needs to exist on disk.

If a shareable image has been installed using the OpenVMS Install utility, you conserve physical memory
and potentially reduce paging I/O. Many processes can include the physical memory pages of an installed
shareable image in their address space. This reduces the requirements for physical memory.

Paging occurs when a process attempts to access a virtual address that is not in the process working set.
When this page fault occurs, the page is either in a disk file, in which case paging I/O is required, or is

285

Chapter 20. Libraries and Shareable Images

already in physical memory. If a page fault occurs for a shared page, the shared page may already be
resident in memory and no paging I/O is required.

20.4.1. Accessing Shareable Images
To access a shareable image, follow these steps:

1. Write and compile a program unit that is to be inserted into a shareable image.

2. Create an options file required for the link operation.

3. Link the program with the /SHAREABLE qualifier, and specify the options file with the /OPTION
qualifier.

4. Write a main program that accesses the routine in the shareable image.

5. Compile the main program, and link it with the shareable image.

The following example shows how to access a shareable image by performing these steps:

1. Write and compile a program unit that is to be inserted into a shareable image.

!Program name - ADD.BAS
FUNCTION REAL ADD (LONG A, LONG B)
ADD = A + B
FUNCTIONEND

2. Create an options file that will export the function for the link operation.

! Program name - ADDSUB.OPT
SYMBOL_ADDER = (ADD=PROCEDURE)

3. Link the program with the qualifiers /SHAREABLE and /OPTION.

$ LINK/SHAREABLE ADD, ADDSUB/OPTION

Copy the shareable image to SYS$SHARE:, or define a logical name to the full image file
specification. For example,

$ Define ADD Sys$Login:Add.exe

4. Write a main program that accesses the routine in the shareable image.

!Program name - CALLADD.BAS
EXTERNAL REAL FUNCTION ADD (LONG, LONG)
DECLARE LONG X,Y
X = 1
Y = 2
PRINT ADD(X,Y)
END

5. Compile the main program, and link it with the shareable image.

$ LINK CALLADD,ADDMAIN/OPTION

To link CALLADD with the shareable image ADD, you must have a linker options file specifying that
ADD is a shareable image. For example:

286

Chapter 20. Libraries and Shareable Images

!Options file - ADDMAIN.OPT
ADD/SHAREABLE

Next, execute the program. Upon executing the program, the image activator attempts to locate the
shareable image in the directory SYS$SHARE:. If you want the image activator to access a shareable
image outside SYS$SHARE:, you must define a logical name to the shareable image before you execute
the program. Define the full file specification of the shareable image to the name of the shareable image,
as follows:

$ DEFINE MYSHR DISK$WORKDISK:[MYDIR]MYSHR.EXE

This is a simple example of using shareable images. For more information, see the VSI OpenVMS Linker
Utility Manual and the Guide to Creating OpenVMS Modular Procedures.

287

Chapter 20. Libraries and Shareable Images

288

Chapter 21. Using CDD/
Repository with BASIC
This chapter explains how you can take advantage of CDD/Repository capabilities. For more detailed
information about CDD/Repository, see Using CDD/Repository on VMS Systems.

21.1. Overview of CDD/Repository
CDD/Repository is a common data dictionary tool that supports sharing of data definitions by
OpenVMS programming languages and information architecture products. Each language or product
translates the generic definitions stored in CDD/Repository language- or product-specific definitions that
it can use.

BASIC supports CDD/Repository features including dependency recording. Dependency recording
allows you to record (or track) which programs use CDD/Repository data definitions. Dependency
recording helps evaluate the effort needed to change a record definition by identifying the modules that
need to be modified, recompiled, or both.

To support dependency recording, CDD/Repository uses a dictionary structure known as CDO-format.
(The type of dictionary used in CDD versions prior to Version 4.0 is known as DMU-format.) You can
have many CDO-format dictionaries on an OpenVMS system (but only one DMU-format dictionary).
The two types of dictionaries can coexist on a system, and a program can refer to data definitions in both
types.

21.2. CDD/Repository Concepts
This section introduces CDD/Repository concepts.

21.2.1. Dictionary Formats
CDD/Repository allows the following types of dictionaries:

● DMU-format dictionary

● CDO-format dictionary

These dictionaries can coexist on a system to form one logical directory structure. CDD/Repository
uses a special dictionary, known as the compatibility dictionary, that allows an application to refer to
dictionary definitions without concern about which type of dictionary format the definitions are stored
in.

The compatibility dictionary is a CDO-format dictionary whose directory hierarchy matches that of the
DMU-format dictionary (if any) on the system.

Note

The compatibility dictionary is an installation option for CDD/Repository. If there is no compatibility
dictionary, an application program can refer to both types of dictionaries. In this case, refer to the CDO-
format dictionary with an anchor origin path name and to the DMU-format dictionary with a CDD$TOP
path name. Anchor origin path names are described in Section 21.2.2, "Dictionary Path Names".

289

Chapter 21. Using CDD/Repository with BASIC

Refer to the CDD/Repository documentation for detailed information about the CDO utility and the
compatibility dictionary.

21.2.2. Dictionary Path Names
To access dictionary definitions, you must specify a path name in the %INCLUDE %FROM %CDD
or %REPORT %DEPENDENCY directive. The path name tells CDD/Repository where to locate a
particular data definition in its directory. A CDD/Repository path name consists of a string of names
separated by periods and enclosed in quotation marks.

The origin is the top, or root, of a dictionary directory. This directory contains other dictionary
directories, subdictionary directories, and objects.

VSI BASIC for OpenVMS allows the following types of valid path name parameters when referring to
CDO dictionary definitions. They differ in the method of specifying the dictionary origin.

● Dictionary anchor path name

An anchor path name begins with an anchor, which is an OpenVMS directory specification, as the
dictionary origin. The anchor specifies the OpenVMS directory that contains the CDO dictionary.
This is known as the CDO naming convention. In the following example, MYNODE::DISK$2:
[MYDIRECTORY] is the anchor:

MYNODE::DISK$2:[MYDIRECTORY]PERSONNEL.EMPLOYEES_REC

● CDD$TOP path name

Use this to refer to either DMU-format dictionary definitions or CDO-format dictionary definitions
in a compatibility dictionary. The path origin is always CDD$TOP. This is known as the DMU
naming convention. For example:

CDD$TOP.PERSONNEL.EMPLOYEES_REC

● Relative path name

CDD/Repository always begins its search at CDD$TOP (or at the anchor you specify) unless you
define another directory or object to be the start of your directory. You can do this by assigning the
name of a dictionary directory to the logical name CDD$DEFAULT. For example:

$ DEFINE CDD$DEFAULT CDD$TOP.BASIC

Using this command defines the dictionary directory CDD$TOP.BASIC as the default start of your
directory. You can override the defined default by specifying CDD$TOP in a path name.

You can omit the origin of a path name and specify a relative path name. Any path name that
does not begin with either CDD$TOP or an anchor is automatically appended to the current CDD
$DEFAULT. For example, you can specify:

PERSONNEL.EMPLOYEES_REC

If CDD$DEFAULT is MYNODE::MY$DISK:[MYDIR], the relative path name is the same as:

MYNODE::MY$DISK:[MYDIR]PERSONNEL.EMPLOYEES_REC.

Similarly, if CDD$DEFAULT is CDD$TOP.MYDIR, the relative path name is the same as:

CDD$TOP.MYDIR.PERSONNEL.EMPLOYEES_REC.

290

Chapter 21. Using CDD/Repository with BASIC

21.2.3. Dictionary Entities
Several types of entities can exist in a dictionary. For example, DMU-format and CDO-format
dictionaries each contain record entities, database entities, and form entities.

VSI BASIC for OpenVMS creates a compiled module entity (and relationships in CDD/Repository
dictionaries that depend on compiled module entities) only if the compilation generates an object file.
Therefore, compiled module entities are not generated if you specify the /NOOBJECT qualifier on the
command line or if the program has compilation errors.

21.2.4. Dictionary Relationships
Relationships occur in a CDO-format dictionary when two or more CDO entity definitions are connected
in any of several possible ways. For example, you can relate a set of field definitions to a record
definition by including the field names in the record definition.

See the CDD/Repository documentation for detailed information about relationships in a CDO-format
dictionary.

21.2.5. Extracting CDD/Repository Data Definitions
A data definition is one type of a CDD/Repository object. In VSI BASIC for OpenVMS, you can extract
only data definition objects into your program.

To extract a CDD/Repository data definition in VSI BASIC for OpenVMS, specify the %INCLUDE
%FROM %CDD compiler directive and a CDD/Repository path name. You can use this to extract a data
definition from either a DMU-format or CDO-format dictionary. For example:

%INCLUDE %FROM %CDD "CDD$TOP.BASIC.BASICDEF"

The %INCLUDE %FROM %CDD directive extracts the CDD/Repository data definition you specify
and translates it into VSI BASIC for OpenVMS syntax. In VSI BASIC for OpenVMS, the syntax for data
definitions or data structures is defined by the RECORD statement.

After a CDD/Repository data definition is translated into RECORD statement syntax, you can reference
the name of the RECORD statement in your VSI BASIC for OpenVMS programs. After compilation, the
translated RECORD statement is included as a part of your program's listing.

The following is an example of a CDD/Repository data definition and the translated VSI BASIC for
OpenVMS RECORD statement. The examples in this chapter are CDD/Repository data definitions in
DMU-format that were written in the Common Data Definition Language (CDDL). In all examples,
a CDDL data definition is displayed in lowercase letters, and the translated RECORD statement is
displayed in uppercase letters.

CDDL Definition
define record
CDD$top.basic.basicdef
 description is

 /* This is an example record containing
 only data types supported by VSI BASIC */.

 employee structure.
 street datatype is text
 size is 30 characters.

291

Chapter 21. Using CDD/Repository with BASIC

 city datatype is text
 size is 30 characters.
 state datatype is text
 size is 2 characters.

 zip_code structure.
 new datatype is packed decimal
 size is 4 digits.
 old datatype is packed decimal
 size is 5 digits.
 end zip_code structure.

 emp_number datatype is signed word.
 wage_class datatype is text
 size is 2 characters.
 salary_ytd datatype is d_floating.
 end employee structure.
end basicdef.

Translated RECORD Statement
 C1 ! This is an example record containing
 C1 ! only data types supported by VSI BASIC
 C1 RECORD EMPLOYEE ! UNSPECIFIED
 C1 STRING STREET = 30 ! TEXT
 C1 STRING CITY = 30 ! TEXT
 C1 STRING STATE = 2 ! TEXT
 C1 GROUP ZIP_CODE ! UNSPECIFIED
 C1 DECIMAL(4 ,0) NEW ! PACKED DECIMAL
 C1 DECIMAL(5 ,0) OLD ! PACKED DECIMAL
 C1 END GROUP
 C1 WORD EMP_NUMBER ! SIGNED WORD
 C1 STRING WAGE_CLASS = 2 ! TEXT
 C1 DOUBLE SALARY_YTD ! D_FLOATING
 C1 END RECORD

When VSI BASIC for OpenVMS translates a CDD/Repository data definition, it does the following:

● For DMU-format definitions, BASIC takes the field name specified in the first CDDL STRUCTURE
statement and assigns that name to VSI BASIC for OpenVMS RECORD. For CDO-format
definitions, BASIC takes the record name from the CDO DEFINE RECORD statement and assigns
that name to a VSI BASIC for OpenVMS RECORD. In the previous example, the first CDD/
Repository structure statement is employee structure. When VSI BASIC for OpenVMS translates this
line of a CDD/Repository data definition, it names the record EMPLOYEE. If this first structure is
unnamed, VSI BASIC for OpenVMS signals the error “Record from CDD/Repository does not have
a record name.”

● Translates the field name in any subsequent CDD/Repository STRUCTURE statement to be the
name of a group. In the previous example, the second STRUCTURE statement, zip_code structure, is
translated to GROUP ZIP_CODE.

● Translates subordinate field names in CDD/Repository STRUCTURE statements to elementary
components in the RECORD statement. In the previous example, the subordinate field name street is
translated to STRING STREET.

If you specify the /LIST qualifier when VSI BASIC for OpenVMS translates a CDD/Repository data
definition, it does the following:

292

Chapter 21. Using CDD/Repository with BASIC

● Begins each line of the RECORD statement with the letter “C” followed by a number. The letter
“C” tells you that the RECORD statement is translated from a CDD/Repository data definition. The
number tells you the nesting level of the %INCLUDE %FROM %CDD directive within the source
program. For example, if your source program directly extracts a CDD/Repository record definition,
then each line is preceded by “C1.” If the CDD/Repository extraction came from a file included in
the source program, then each line of the record definition is preceded by “C2,” and so on.

● Includes the explanatory text in the CDDL DESCRIPTION clause as comment fields.

● Translates the data type text in the subordinate field to a comment field that tells you the data type
of each elementary RECORD component. For example, the comment ! TEXT tells you that STRING
STREET is a text data type.

VSI BASIC for OpenVMS requires that a CDD/Repository data definition include a minimum of one
structure to be translated into a RECORD statement. If a CDD/Repository data definition contains only
a single subordinate field (without a structure), VSI BASIC for OpenVMS signals an error because it
cannot give a name to the RECORD statement. You cannot include a CDO FIELD definition in a VSI
BASIC for OpenVMS program. You can, however, include CDO RECORD definitions that contain that
field.

For more information about how VSI BASIC for OpenVMS translates CDD/Repository data types, see
Section 21.9, " CDD/Repository Data Types".

21.3. Using CDD/Repository with BASIC
When dependency recording is in effect, the compiler updates the CDO-format dictionary to show what
dictionary data entities are used by the program (the data dependencies created by the compilation).

To take advantage of dependency recording, do the following:

● Use either or both of the VSI BASIC for OpenVMS lexical directives, %INCLUDE %FROM
%CDD and %REPORT %DEPENDENCY, in the source program to define the dependency
relationships you want to create between your program and definitions in the CDO-format dictionary.

● Establish a CDO-format dictionary called CDD$DEFAULT.

● Include the /DEPENDENCY_DATA qualifier in the BASIC command that compiles the module.

21.3.1. /DEPENDENCY_DATA Qualifier
When you compile a program that references CDO-format data definitions, you can include the qualifier
in the BASIC command line. The /DEPENDENCY_DATA qualifier instructs the compiler to create
dependency relationships (as defined in the program by %INCLUDE and %REPORT directives) and
update the dictionary to show those relationships.

To prevent update of the dictionary, specify the default, /NODEPENDENCY_DATA. The compiler can
extract record definitions from the dictionary (as specified by %INCLUDE %FROM %CDD directives
in the program) but not update the dictionary. The compilation does not add compiled module entities
and file entities to the dictionary, nor does it create dependency relationships in the dictionary, unless
you specify the /DEPENDENCY_DATA qualifier.

21.3.2. Creating Relationships with Included Record
Definitions

293

Chapter 21. Using CDD/Repository with BASIC

In Section 21.2.4, "Dictionary Relationships" a record description is defined as a set of fields (thus
establishing a simple relationship in CDD/Repository between the record and its fields). With that record
description defined, you can include it in a VSI BASIC for OpenVMS program.

With either a DMU-format or CDO-format dictionary, the compiler can extract a record description into
a program. Use the %INCLUDE lexical directive in the source program. The format is as follows:

%INCLUDE %FROM %CDD "pathname"

For example, the following BASIC source code extracts a record description named ADDRESS_REC
from CDD/Repository:

 PROGRAM EXAMPLE1
 %INCLUDE %FROM %CDD "CDD$TOP.SMITH.ADDRESS_REC"
 DECLARE ADDRESS_REC TEST_RECORD
 INPUT "First name";TEST_RECORD::FIRST_NAME
 INPUT "Last name";TEST_RECORD::LAST_NAME
 INPUT "Address";TEST_RECORD::ADDRESS
 INPUT "City";TEST_RECORD::CITY
 INPUT "State";TEST_RECORD::STATE
 INPUT "Zip code";TEST_RECORD::ZIP_CODE

 PRINT TEST_RECORD::FIRST_NAME; TEST_RECORD::LAST_NAME
 PRINT TEST_RECORD::ADDRESS
 PRINT TEST_RECORD::CITY; TEST_RECORD::STATE; TEST_RECORD::ZIP_CODE

The following shows the content of the record:

 1 PROGRAM EXAMPLE1
 2 %INCLUDE %FROM %CDD "CDD$TOP.SMITH.ADDRESS_REC"
 C1 RECORD ADDRESS_REC ! UNSPECIFIED
 C1 STRING FIRST_NAME = 20 ! TEXT
 C1 STRING LAST_NAME = 30 ! TEXT
 C1 STRING ADDRESS = 40 ! TEXT
 C1 STRING CITY = 20 ! TEXT
 C1 STRING STATE = 2 ! TEXT
 C1 DECIMAL(5 ,0) ZIP_CODE ! PACKED DECIMAL
 C1 END RECORD
 3 DECLARE ADDRESS_REC TEST_RECORD
 4 INPUT "First name";TEST_RECORD::FIRST_NAME
 5 INPUT "Last name";TEST_RECORD::LAST_NAME
 6 INPUT "Address";TEST_RECORD::ADDRESS
 7 INPUT "City";TEST_RECORD::CITY
 8 INPUT "State";TEST_RECORD::STATE
 9 INPUT "Zip code";TEST_RECORD::ZIP_CODE
 10
 11 PRINT TEST_RECORD::FIRST_NAME; TEST_RECORD::LAST_NAME
 12 PRINT TEST_RECORD::ADDRESS
 13 PRINT TEST_RECORD::CITY; TEST_RECORD::STATE;
 TEST_RECORD::ZIP_CODE

With a CDO-format dictionary, you can also instruct the dictionary to create and maintain a formal
relationship between the record description and the compiled module entity that represents your program
in the dictionary.

This is known as a CDD$COMPILED_DEPENDS_ON relationship. Specify the /
DEPENDENCY_DATA qualifier when compiling a program as follows:

294

Chapter 21. Using CDD/Repository with BASIC

$ BASIC/DEPENDENCY_DATA EX1.BAS

If you specify the /DEPENDENCY_DATA qualifier, the compiled module entity is created and updated
to reflect that your program uses that record. If you want to change the data definition, CDO allows you
to find out what programs depend on it before doing so. For example:

CDO> DIRECTORY
 Directory SYS$COMMON:[CDDPLUS]SMITH
ADDRESS;1 FIELD
ADDRESS_REC;1 RECORD
CITY;1 FIELD
EXAMPLE1;1 CDD$COMPILED_MODULE
FIRST_NAME;1 FIELD
LAST_NAME;1 FIELD
STATE;1 FIELD
ZIP_CODE;1 FIELD
 .
 .
 .

You can use the CDO SHOW USES command to find out what programs use a dictionary definition.
For example:

CDO> SHOW USES ADDRESS_REC
Owners of SYS$COMMON:[CDDPLUS]SMITH.ADDRESS_REC;1
| SYS$COMMON:[CDDPLUS]SMITH.EXAMPLE1;1 (Type : CDD$COMPILED_MODULE)
| | via CDD$COMPILED_DEPENDS_ON

You can also use CDO to find out what dictionary definitions a program uses. For example:

CDO> SHOW USED_BY EXAMPLE1
Members of SYS$COMMON:[CDDPLUS]SMITH.EXAMPLE1;1
| EX1 (Type : CDD$FILE)
| | via CDD$IN_FILE
| SYS$COMMON:[CDDPLUS]SMITH.ADDRESS_REC;1 (Type : RECORD)
| | via CDD$COMPILED_DEPENDS_ON

21.4. Creating Relationships for Referenced
Dictionary Entities
The compiler can create a relationship between a compiled module entity and any dictionary entity that a
program references (such as a VAX Rdb/VMS database or a form definition). The referenced dictionary
entity is not copied to the program. Instead, the compiled program references the dictionary entity at run
time or with the help of a preprocessor.

To create relationships for referenced dictionary entities in a BASIC program, use the %REPORT
%DEPENDENCY lexical directive in the source program and specify the /DEPENDENCY_DATA
qualifier when you compile the program. The format is as follows:

%REPORT %DEPENDENCY "pathname" ["relationship-type"]

The "pathname" parameter identifies the dictionary item that the compiled object module references.
The path name can specify a CDO-format dictionary item (with an anchor as the first element), or it
can specify a CDO-format item in the compatibility dictionary (which can be specified either as a CDD
$TOP path name or as an anchor path name). See Section 21.2.2, "Dictionary Path Names" for a full
description of the path name options.

295

Chapter 21. Using CDD/Repository with BASIC

The optional “relationship-type” parameter determines the type of relationship by specifying a CDD/
Repository protocol. There are many valid values; refer to the CDD/Repository documentation for full
information. The most commonly used relationship for VSI BASIC for OpenVMS users is as follows:

CDD$COMPILED_DEPENDS_ON

This specifies a relationship that links a compiled object module to the element that goes into the
compilation. This is the default.

The %REPORT %DEPENDENCY directive is meaningful only when the following conditions are true:

● The /DEPENDENCY_DATA qualifier is specified in the BASIC command line. (If it is not
specified, the compiler checks syntax but does not update the dictionary to reflect this usage of the
item.)

● The current CDD$DEFAULT dictionary points to a directory in a CDO dictionary.

● The dictionary item specified by pathname is in a CDO-format dictionary. (No relationship can be
created in a DMU-format dictionary).

Suppose the VSI BASIC for OpenVMS program DOG_REPORT.BAS contains the following directive:

%REPORT %DEPENDENCY "DISK1$:[CDDPLUS.BASIC]SMITH.DOG_DATABASE"

Use the /DEPENDENCY_DATA qualifier when you compile the program:

$ BASIC/DEPENDENCY_DATA DOG_REPORT

After the compilation, the dictionary contains the following:

CDO> DIR

 Directory DISK1$:[CDDPLUS.BASIC]SMITH

BREED;1 FIELD
CALL_NAME;1 FIELD
DOG_REPORT$MAIN;1 CDD$COMPILED_MODULE
DOG_DATABASE;1 CDD$DATABASE
DOG_INFORMATION;1 CDD$RMS_DATABASE
DOG_REC;1 RECORD
OWNER_NUMBER;1 FIELD
REG_DOG_NAME;1 FIELD

CDO> SHOW USES DOG_DATABASE

Owners of DISK1$:[CDDPLUS.BASIC]SMITH.DOG_DATABASE;1
| DISK1$:[CDDPLUS.BASIC]SMITH.DOG_REPORT$MAIN;1
| (Type : CDD$COMPILED_MODULE)
| | via CDD$COMPILED_DEPENDS_ON

CDO> SHOW USED_BY DOG_REPORT$MAIN
Members of DISK1$:[CDDPLUS.BASIC]SMITH.DOG_REPORT$MAIN;1
| DOG_REPORT (Type : CDD$FILE)
| | via CDD$IN_FILE
| DISK1$:[CDDPLUS.BASIC]SMITH.DOG_DATABASE;1 (Type : CDD$DATABASE)
| | via CDD$COMPILED_DEPENDS_ON

21.5. Specifying a CDD History List Entry

296

Chapter 21. Using CDD/Repository with BASIC

When your VSI BASIC for OpenVMS program accesses CDD/Repository, you have the option of
entering a history list entry in the database. The history list entry provides a history of users that access
CDD/Repository.

You create a history list entry by specifying the DCL command qualifier /AUDIT. For example:

$ BASIC/DEPENDENCY_DATA/AUDIT="History text goes here" EX1.BAS

Note that instead of typing the text directly on the command line, you can also specify a file specification
that contains the history entry.

When you specify /AUDIT, a history list entry is created for each compiled module entity that the
compilation creates. In addition, the compilation will add a history list entry to each data definition that
your program extracts with the %INCLUDE %FROM %CDD directive.

You can display history list information using the CDO utility. For example:

CDO> SHOW GENERIC CDD$COMPILED_MODULE EXAMPLE1 /AUDIT
Definition of EXAMPLE1 (Type : CDD$COMPILED_MODULE)
| History entered by SMITH ([SMITH])
| using BASIC Vn.n
| to CREATE definition on 25-APR-1989 13:04:01.48
| Explanation:
| "History text goes here"

21.6. CDD/Repository Arrays
CDD/Repository supports the following arrays:

● Multidimensional arrays (the ARRAY clause)

● One-dimensional, fixed length arrays (the OCCURS clause or ARRAY clause)

● One-dimensional, variable length arrays (the OCCURS DEPENDING ON clause—note that VSI
BASIC for OpenVMS does not support this clause)

Arrays are valid for any CDD/Repository field. VSI BASIC for OpenVMS does not support dimensions
on a RECORD statement; therefore, you cannot declare an entire RECORD statement as an array.
However, you can dimension an instance of the record.

The following is an example of a CDDL data definition containing arrays and the corresponding VSI
BASIC for OpenVMS RECORD statement:

CDDL Definition
define record CDD$top.basic.array1
 description is

 /* test arrays */.

 array_1 structure.
 my_byte array 0:2 datatype signed byte.
 my_string array 0:10 datatype text size 10.
 my_s_real array 0:2 0:4 datatype f_floating.
 my_d_real array 1:3 datatype d_floating.
 my_g_real occurs 4 times datatype g_floating.

297

Chapter 21. Using CDD/Repository with BASIC

 my_h_real occurs 4 times datatype h_floating.
 end array_1 structure.
end array1.

Translated RECORD Statement
 1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.ARRAY1"
 C1 ! test arrays
 C1 RECORD ARRAY_1 ! UNSPECIFIED
 C1 BYTE MY_BYTE(0 TO 2) ! SIGNED BYTE
 C1 STRING MY_STRING(0 TO 10) = 10 ! TEXT
 C1 SINGLE MY_S_REAL(0 TO 2,0 TO 4) ! F_FLOATING
 C1 DOUBLE MY_D_REAL(1 TO 3) ! D_FLOATING
 C1 GFLOAT MY_G_REAL(1 TO 4) ! G_FLOATING
 C1 HFLOAT MY_H_REAL(1 TO 4) ! H_FLOATING
 C1 END RECORD

By default, arrays in CDD/Repository are row-major. This means that when storage is allocated for the
array, the rightmost subscript varies fastest. All VSI BASIC for OpenVMS arrays are row-major. VSI
BASIC for OpenVMS does not support column-major arrays. If a CDD/Repository definition containing
a column-major array is extracted, VSI BASIC for OpenVMS signals the error “<array-name> from
CDD/Repository is a column major array.”

By default, VSI BASIC for OpenVMS extracts an array field from CDD/Repository with the bounds
specified in the data definition. However, if you use the qualifier /OLD_VERSION[=CDD_ARRAYS]
when you extract a data definition, VSI BASIC for OpenVMS translates the data definition with lower
bounds as zero and adjusts the upper bounds. This means that an array with dimensions of (2,5) in
CDD/Repository is translated by VSI BASIC for OpenVMS to be an array with a lower bound of 0 and
an upper bound of 3. VSI BASIC for OpenVMS issues an informational message to confirm the array
bounds when you use this qualifier.

The following CDD/Repository data definition and corresponding RECORD statement are extracted
with the /OLD_VERSION[=CDD_ARRAYS] qualifier:

CDDL Definition
define record CDD$top.basic.array2
 description is

 /* test arrays with /old_version[=CDD_ARRAYS] qualifier */.

 array_2 structure.
 my_byte array 0:2 datatype signed byte.
 my_string array 0:10 datatype text size 10.
 my_s_real array 0:2 0:4 datatype f_floating.
 my_d_real array 1:3 datatype d_floating.
 my_g_real occurs 4 times datatype g_floating.
 dep_item datatype signed longword.
 my_h_real occurs 4 times
 datatype h_floating.
 end array_2 structure.
end array2.

Translated RECORD Statement
1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.ARRAY2"

298

Chapter 21. Using CDD/Repository with BASIC

 C1 ! test arrays with /old_version[=CDD_ARRAYS] qualifier
 C1 RECORD ARRAY_2 ! UNSPECIFIED
 C1 BYTE MY_BYTE(0 TO 2) ! SIGNED BYTE
 C1 STRING MY_STRING(0 TO 10) = 10 ! TEXT
 C1 SINGLE MY_S_REAL(0 TO 2,0 TO 4) ! F_FLOATING
 C1 DOUBLE MY_D_REAL(0 TO 2) ! D_FLOATING
 C1 GFLOAT MY_G_REAL(0 TO 3) ! G_FLOATING
 C1 LONG DEP_ITEM ! SIGNED LONGWORD
 C1 HFLOAT MY_H_REAL(0 TO 3) ! H_FLOATING
 C1 END RECORD

21.7. CDD/Repository Variants
A variant comprises two or more fields of a record that provide alternative descriptions for the same
portion of a record.

The following is an example of a CDDL data definition containing variant fields and the corresponding
VSI BASIC for OpenVMS RECORD statement:

CDDL Definition
define record CDD$top.basic.variant_example
 description is

 /* test simple variant */.
 variant_example structure.
 my_string datatype text size 9.
 variants.
 variant.
 my_s_real datatype f_floating.
 my_d_real datatype d_floating.
 end variant.
 variant.
 my_g_real datatype g_floating.
 my_h_real datatype h_floating.
 end variant.
 end variants.
 my_byte datatype signed byte.
 end variant_example structure.
end variant_example.

Translated RECORD Statement
 1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.VARIANT_EXAMPLE"
 C1 ! test simple variant
 C1 RECORD VARIANT_EXAMPLE ! UNSPECIFIED
 C1 STRING MY_STRING = 9 ! TEXT
 C1 VARIANT
 C1 CASE
 C1 SINGLE MY_S_REAL ! F_FLOATING
 C1 DOUBLE MY_D_REAL ! D_FLOATING
 C1 CASE
 C1 GFLOAT MY_G_REAL ! G_FLOATING
 C1 HFLOAT MY_H_REAL ! H_FLOATING
 C1 END VARIANT
 C1 BYTE MY_BYTE ! SIGNED BYTE

299

Chapter 21. Using CDD/Repository with BASIC

 C1 END RECORD

CDD/Repository data definitions sometimes contain VARIANTS OF field description statements as well
as simple variants. A CDDL or CDO VARIANTS OF statement names a tag variable whose value at run
time determines which of the variant fields is the current variant. VSI BASIC for OpenVMS does not
support the VARIANTS OF statement. If a CDD/Repository data definition containing a VARIANTS
OF statement is extracted, VSI BASIC for OpenVMS signals the informational message, “<number>
tag value from CDD/Repository ignored” and treats the VARIANTS OF as an ordinary variant and
ignores the tag value.

21.8. NAME FOR BASIC Clause
VSI BASIC for OpenVMS supports the CDDL and CDO field attribute clause NAME FOR BASIC.

The field attribute clause NAME FOR BASIC declares a facility-specific name for a field. For example:

name for basic is "subject_name$"

When you assign a name using the NAME FOR BASIC clause in a CDDL or CDO data definition,
VSI BASIC for OpenVMS recognizes only this name when you refer to the field. Note that when you
use the NAME FOR BASIC clause, you can place dollar sign ($) and percent sign (%) suffixes in your
RECORD statement field names.

The following example is a CDDL data definition containing the NAME FOR BASIC clause and the
corresponding VSI BASIC for OpenVMS RECORD statement.

CDDL Definition
define record city_study
 description is

 /* This example formats data resulting from a
 study on the relationship between place of birth
 and earning potential */.
 info structure.
 subject_name datatype text size 10
 name for basic is "subject_name$".
 birth_city datatype text size 10
 name for basic is "city_of_birth$".
 salary datatype signed byte
 name for basic is "salary%".
 end info structure.
end city_study.

Translated RECORD Statement
1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.CITY_STUDY"
 C1 ! This example formats data resulting from a
 C1 ! study on the relationship between place of birth
 C1 ! and earning potential
 C1 RECORD INFO ! UNSPECIFIED
 C1 STRING SUBJECT_NAME$ = 10 ! TEXT
 C1 STRING CITY_OF_BIRTH$ = 10 ! TEXT
 C1 BYTE SALARY% ! SIGNED BYTE
 C1 END RECORD

300

Chapter 21. Using CDD/Repository with BASIC

Caution

The NAME FOR BASIC clause enables you to assign completely different names to the same field.

For more information about the CDDL NAME FOR BASIC field attribute clause, see the CDD/
Repository documentation.

21.9. CDD/Repository Data Types
VSI BASIC for OpenVMS supports a subset of CDD/Repository data types, as shown in Table 21.1,
"Supported CDD/Repository Data Types".

Table 21.1. Supported CDD/Repository Data Types

Data Type VSI BASIC for OpenVMS Translation

TEXT STRING
SIGNED BYTE BYTE
SIGNED WORD WORD
SIGNED LONGWORD LONG
F_FLOATING SINGLE
D_FLOATING DOUBLE
G_FLOATING GFLOAT
PACKED DECIMAL DECIMAL

If a CDD/Repository data definition containing an unsupported data type is extracted, VSI BASIC for
OpenVMS signals the informational message “Datatype in CDD/Repository not supported, substituted
group for: <field-name>” and translates the data type by creating a group to contain the data type
field. The group name is the name of the unsupported data type followed by the text “_VALUE”. This
allows you to access the field name within the group.

An example of how VSI BASIC for OpenVMS translates unsupported CDD/Repository data types is
shown in the following CDDL data definition and corresponding VSI BASIC for OpenVMS RECORD
statement:

CDDL Definition
define record CDD$top.basic.stock
 description is
 /* this is an example data definition that contains
 data types not supported by VSI BASIC */.

 stock structure.
 product_no datatype is text
 size is 8 characters.
 date_ordered datatype is date.
 status_code datatype is unsigned byte.
 quantity datatype is unsigned longword
 aligned on longword.
 location array 1:4
 datatype is text
 size is 30 characters.
 unit_price datatype is longword.

301

Chapter 21. Using CDD/Repository with BASIC

 end stock structure.
end stock.

Translated RECORD Statement
 1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.STOCK"
 C1 ! This is an example data definition that contains
 C1 ! data types not supported by VSI BASIC
 C1 RECORD STOCK ! UNSPECIFIED
 C1 STRING PRODUCT_NO = 8 ! TEXT
 C1 GROUP DATE_ORDERED ! DATE
 C1 STRING STRING_VALUE = 8
 C1 END GROUP
 C1 GROUP STATUS_CODE ! UNSIGNED BYTE
 C1 BYTE BYTE_VALUE
 C1 END GROUP
 C1 STRING FILL = 3
 C1 GROUP QUANTITY ! UNSIGNED
 LONGWORD
 C1 LONG LONG_VALUE
 C1 END GROUP
 C1 STRING LOCATION(1 TO 4) = 30 ! TEXT
 C1 GROUP UNIT_PRICE ! UNSIGNED
 LONGWORD
 C1 LONG LONG_VALUE
 C1 END GROUP
 C1 END RECORD
%BASIC-I-CDDSUBGRO, data type in CDD/Repository not supported,
 substituted group for: STOCK::DATE_ORDERED.
%BASIC-I-CDDSUBGRO, data type in CDD/Repository not supported,
 substituted group for: STOCK::STATUS_CODE.
%BASIC-I-CDDSUBGRO, data type in CDD/Repository not supported,
 substituted group for: STOCK::QUANTITY.
%BASIC-I-CDDSUBGRO, data type in CDD/Repository not supported,
 substituted group for: STOCK::UNIT_PRICE.

Table 21.2, "Unsupported CDD/Repository Data Types" describes CDD/Repository data types not
supported by VSI BASIC for OpenVMS and their translation.

Table 21.2. Unsupported CDD/Repository Data Types

Data Type VSI BASIC for OpenVMS Translation

UNSIGNED BYTE GROUP CDD/Repository-field-name

BYTE BYTE_VALUE

END GROUP
UNSIGNED WORD GROUP CDD/Repository-field-name

WORD WORD_VALUE

END GROUP
UNSIGNED LONGWORD GROUP CDD/Repository-field-name

LONG LONG_VALUE

302

Chapter 21. Using CDD/Repository with BASIC

Data Type VSI BASIC for OpenVMS Translation
END GROUP

SIGNED QUADWORD GROUP CDD/Repository-field-name

STRING STRING_VALUE = 8

END GROUP
UNSIGNED QUADWORD GROUP CDD/Repository-field-name

STRING STRING_VALUE = 8

END GROUP
SIGNED OCTAWORD GROUP CDD/Repository-field-name

STRING STRING_VALUE = 16

END GROUP
UNSIGNED OCTAWORD GROUP CDD/Repository-field-name

STRING STRING_VALUE = 16

END GROUP
H_FLOATING GROUP CDD/Repository-field-name

STRING STRING_VALUE = 16

END GROUP
F_FLOATING COMPLEX GROUP CDD/Repository-field-name

SINGLE SINGLE_R_VALUE

SINGLE SINGLE_I_VALUE

END GROUP
D_FLOATING COMPLEX GROUP CDD/Repository-field-name

DOUBLE DOUBLE_R_VALUE

DOUBLE DOUBLE_I_VALUE

END GROUP
G_FLOATING COMPLEX GROUP CDD/Repository-field-name

GFLOAT GFLOAT_R_VALUE

GFLOAT GFLOAT_I_VALUE

END GROUP
H_FLOATING COMPLEX GROUP CDD/Repository-field-name

HFLOAT HFLOAT_R_VALUE

303

Chapter 21. Using CDD/Repository with BASIC

Data Type VSI BASIC for OpenVMS Translation
HFLOAT HFLOAT_I_VALUE

END GROUP
ZONED NUMERIC GROUP CDD/Repository-field-name

STRING STRING_VALUE = length

END GROUP
UNSIGNED NUMERIC GROUP CDD/Repository-field-name

STRING STRING_VALUE = length

END GROUP
LEFT SEPARATE NUMERIC GROUP CDD/Repository-field-name

STRING STRING_VALUE = length + 1

END GROUP
LEFT OVERPUNCHED
NUMERIC

GROUP CDD/Repository-field-name

STRING STRING_VALUE = length

END GROUP
RIGHT SEPARATE NUMERIC GROUP CDD/Repository-field-name

STRING STRING_VALUE = length + 1

END GROUP
RIGHT OVERPUNCHED
NUMERIC

GROUP CDD/Repository-field-name

STRING STRING_VALUE = length

END GROUP
VARYING STRING GROUP CDD/Repository-field-name

WORD WORD_VALUE

STRING STRING_VALUE = length

END GROUP
BIT1 GROUP CDD/Repository-field-name

STRING STRING_VALUE = length /8

END GROUP
DATE GROUP CDD/Repository-field-name

STRING STRING_VALUE = 8

END GROUP
POINTER GROUP CDD/Repository-field-name

304

Chapter 21. Using CDD/Repository with BASIC

Data Type VSI BASIC for OpenVMS Translation
LONG LONG_VALUE

END GROUP
UNSPECIFIED GROUP CDD/Repository-field-name

STRING STRING_VALUE = length

END GROUP
VIRTUAL FIELD Ignored

1 CDD/Repository specifies bit field length in bits; VSI BASIC for OpenVMS specifies string length in bytes. If the length in bits does not divide
evenly into bytes, VSI BASIC for OpenVMS signals the error “Field <fieldname> from CDD/Repository has bit offset or length.”

The following sections describe how VSI BASIC for OpenVMS translates CDD/Repository data types.

21.9.1. Character String Data Types
There are two CDD/Repository character string data types, TEXT and VARYING STRING. The TEXT
data type translates directly into the VSI BASIC for OpenVMS STRING data type. VARYING STRING
is not a supported VSI BASIC for OpenVMS data type; therefore, VSI BASIC for OpenVMS creates a
group to contain the field.

The following example is a CDD/Repository definition that contains both the TEXT and VARYING
STRING data types and the translated VSI BASIC for OpenVMS RECORD statement:

Example 21.1. CDDL

define record CDD$top.basic.strings
 description is

 /* test */.

 basicstrings structure.
 abc datatype is text size is 10.
 xyz datatype is varying string size is 16.
 end basicstrings structure.
end strings.

Example 21.2. Translated RECORD Statement

 1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.STRINGS"
 C1 ! test
 C1 RECORD BASICSTRINGS ! UNSPECIFIED
 C1 STRING ABC = 10 ! TEXT
 C1 GROUP XYZ ! VARYING STRING
 C1 WORD WORD_VALUE
 C1 STRING STRING_VALUE = 16
 C1 END GROUP
 C1 END RECORD
................1
%BASIC-I-CDD/SUBGRO, 1: data type in CDD/Repository not supported,
 substituted group for: BASICSTRINGS::XYZ.

In the VARYING STRING data type, the actual character string is preceded by a 16-bit count field.
Therefore, VSI BASIC for OpenVMS creates a WORD variable to hold the specified string length.

305

Chapter 21. Using CDD/Repository with BASIC

Note

The count field preceding the VARYING STRING is actually an UNSIGNED WORD. Therefore, the
count field of a VARYING STRING whose length is greater than 32,767 is interpreted by VSI BASIC
for OpenVMS as a negative number.

In the previous example, the group name (XYZ) is the same name as a CDD/Repository field. Therefore,
VSI BASIC for OpenVMS supplies an additional name for the RECORD components. The supplied
names are WORD_VALUE and STRING_VALUE. For example, the following program statement
creates an instance of the record BASICSTRINGS, called MY_REC:

100 MAP (TEST) BASICSTRINGS MY_REC

The names you use to reference these components in VSI BASIC for OpenVMS are
MY_REC::XYZ::WORD_VALUE and MY_REC::XYZ::STRING_VALUE.

21.9.2. Integer Data Types
CDD/Repository refers to integer data types as fixed-point data types. CDD/Repository supports BYTE,
WORD, LONGWORD, QUADWORD, and OCTAWORD integer data types. Each of these data types
can have the following additional attributes:

SIGNED
UNSIGNED
SIZE
DIGITS
FRACTION
BASE
SCALE

In CDDL, if integer data types are not specified as being signed or unsigned, the default is unsigned.
VSI BASIC for OpenVMS supports only signed BYTE, signed WORD, signed LONGWORD, and
signed QUADWORD integers. If a CDD/Repository data definition containing an unsigned BYTE,
WORD, LONGWORD, or QUADWORD integer is extracted, VSI BASIC for OpenVMS signals the
informational message “Datatype in CDD/Repository not supported, substituted group for: <field-
name>,” and creates a group to contain the field. Because the group name is the same as the CDD/
Repository field name, VSI BASIC for OpenVMS assigns a new name to the field. This is shown in the
following CDDL data definition and corresponding VSI BASIC for OpenVMS RECORD statement:

CDDL Definition
define record CDD$top.basic.integers
 description is

 /*Test of selected integer data types*/.
 basicint structure.
 my_byte datatype is signed byte.
 my_ubyte datatype is byte.
 my_word datatype is signed word.
 my_uword datatype is unsigned word.
 my_long datatype is signed longword.
 my_ulong datatype is unsigned longword.
 end basicint structure.
end integers.

306

Chapter 21. Using CDD/Repository with BASIC

Translated RECORD Statement
 1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.INTEGERS"
 C1 ! Test of selected integer data types
 C1 RECORD BASICINT ! UNSPECIFIED
 C1 BYTE MY_BYTE ! SIGNED BYTE
 C1 GROUP MY_UBYTE ! UNSIGNED BYTE
 C1 BYTE BYTE_VALUE
 C1 END GROUP
 C1 WORD MY_WORD ! SIGNED WORD
 C1 GROUP MY_UWORD ! UNSIGNED WORD
 C1 WORD WORD_VALUE
 C1 END GROUP
 C1 LONG MY_LONG ! SIGNED
 LONGWORD
 C1 GROUP MY_ULONG ! UNSIGNED
 LONGWORD
 C1 LONG LONG_VALUE
 C1 END GROUP
 C1 END RECORD
................1
%BASIC-I-CDDSUBGRO, 1: data type in CDD/Repository not supported,
 substituted group for: BASICINT::MY_UBYTE.
%BASIC-I-CDDSUBGRO, 1: data type in CDD/Repository not supported,
 substituted group for: BASICINT::MY_UWORD.
%BASIC-I-CDDSUBGRO, 1: data type in CDD/Repository not supported,
 substituted group for: BASICINT::MY_ULONG.

When the previous data definition is extracted from CDD/Repository, VSI BASIC for OpenVMS signals
an informational message for each of the unsigned data types, and names the CDD/Repository unsigned
byte field BYTE_VALUE, the CDD/Repository unsigned word field WORD_VALUE, and the CDD/
Repository unsigned longword field LONG_VALUE.

VSI BASIC for OpenVMS does not support OCTAWORD integers. If a CDD/Repository definition
contains an OCTAWORD integer, VSI BASIC for OpenVMS signals the informational message
“Datatype in CDD/Repository not supported, substituted group for: <field-name>” and creates a
group to contain the field and a string component within the group. The string component is 16 bytes for
OCTAWORD integers. For example:

CDDL Definition
define record CDD$top.basic.bigintegers
 description is

 /*Test of quadword and octaword integer data types*/.

 basicint structure.
 my_quad datatype is signed quadword.
 my_octa datatype is signed octaword.
 end basicint structure.
end bigintegers.

Translated RECORD Statement
 1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.BIGINTEGERS"
 C1 ! Test of quadword and octaword integer data types
 C1 RECORD BASICINT ! UNSPECIFIED

307

Chapter 21. Using CDD/Repository with BASIC

 C1 QUAD MY_QUAD ! SIGNED
 QUADWORD
 C1 GROUP MY_OCTA ! SIGNED
 OCTAWORD
 C1 STRING STRING_VALUE = 16
 C1 END GROUP
 C1 END RECORD
%BASIC-I-CDDSUBGRO, data type in CDD/Repository not supported,
 substituted group for: BASICINT::MY_OCTA.

CDD/Repository supports the SCALE keyword to specify an implied exponent in integer data types, and
the BASE keyword (supported in CDDL only) to specify that the scale for a fixed-point field is to be
interpreted in a numeric base other than 10. VSI BASIC for OpenVMS does not support these integer
attributes. Therefore, VSI BASIC for OpenVMS signals the informational message “ CDD/Repository
specifies SCALE for <name>. Not supported” for fixed-point fields containing a SCALE specification,
and the error message “ CDD/Repository attributes for <name> are other than base 10” for fixed-point
fields specifying a base other than 10. For example:

CDDL Definition
define record CDD$top.basic.funnyintegers
 description is

 /* Test of quadword and octaword integer data types */.

 basicint structure.
 my_byte datatype is signed byte scale 2.
 my_long datatype is signed longword base 8.
 end basicint structure.
end funnyintegers.

Translated RECORD Statement
 1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.FUNNYINTEGERS"
 C1 ! Test of quadword and octaword integer data
 types
 C1 RECORD BASICINT ! UNSPECIFIED
 C1 GROUP MY_BYTE ! SIGNED BYTE
 C1 BYTE BYTE_VALUE
 C1 END GROUP
 C1 LONG MY_LONG ! SIGNED
 LONGWORD
 C1 END RECORD
%BASIC-I-CDDATTSCA, CDD specifies SCALE for BASICINT::MY_BYTE. Not
 supported
%BASIC-E-CDDATTBAS, CDD attributes for BASICINT::MY_LONG are other than
 base 10

At compilation time, VSI BASIC for OpenVMS also signals these warning errors for each reference to
fields that are not base 10 or that have a SCALE.

21.9.3. Floating-Point Data Types
CDD/Repository supports F_floating, D_floating, and G_floating data types.1 These correspond to
the BASIC SINGLE, DOUBLE, and GFLOAT data types, respectively. As with fixed-point data types,

1VSI BASIC does not support the H_floating or HFLOAT data type.

308

Chapter 21. Using CDD/Repository with BASIC

CDD/Repository also allows the specification of scale and base for floating-point data types. If a CDD/
Repository data definition contains a floating-point field that specifies a SCALE or BASE, VSI BASIC
for OpenVMS signals the informational message “ CDD/Repository specifies SCALE for <name>. Not
supported” or the error message “ CDD/Repository attributes for <name> are other than base 10.” For
example:

CDDL Definition
define record floats
 description is

 /*Test of floating-point data types*/.

 basicfloat structure.
 my_single datatype is f_floating scale 3.
 my_double datatype is d_floating base 16.
 my_gfloat datatype is g_floating.
 end basicfloat structure.
end floats.

Translated RECORD Statement
 1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.FLOATS"
 C1 ! Test of floating-point data types
 C1 RECORD BASICFLOAT ! UNSPECIFIED
 C1 GROUP MY_SINGLE ! F_FLOATING
 C1 SINGLE SINGLE_VALUE
 C1 END GROUP
 C1 DOUBLE MY_DOUBLE ! D_FLOATING
 C1 GFLOAT MY_GFLOAT ! G_FLOATING
 C1 END RECORD
................1
%BASIC-I-CDDATTSCA, 1: CDD specifies SCALE for BASICFLOAT::MY_SINGLE.
 Not supported
%BASIC-E-CDDATTBAS, 1: CDD attributes for BASICFLOAT::MY_DOUBLE
 are other than base 10

In addition, CDD/Repository supports complex floating-point numbers, but VSI BASIC for OpenVMS
does not support them. Complex floating-point numbers consist of a real and an imaginary part. Each
part requires the same amount of storage as a simple floating-point number. Therefore, each complex
floating-point number requires twice as much storage as a simple floating-point number.

If a CDD/Repository data definition containing complex numbers is extracted, VSI BASIC for
OpenVMS signals the informational message “Datatype in CDD/Repository not supported, substituted
group for <field-name>,” and creates a group to contain the field. As before, VSI BASIC for
OpenVMS uses the data type and _VALUE to create the group name, but because each complex number
contains both a real and an imaginary part, VSI BASIC for OpenVMS adds an “_R” to the name of the
real part and an “_I” to the name of the imaginary part. This is shown in the following CDD/Repository
data definition and corresponding VSI BASIC for OpenVMS RECORD statement:

CDDL Definition
define record CDD$top.basic.complex
 description is

 /* test complex data types */.

309

Chapter 21. Using CDD/Repository with BASIC

 complex structure.
 my_s_complex_1 datatype f_floating_complex.
 my_d_complex_1 datatype d_floating_complex.
 my_g_complex_1 datatype g_floating_complex.
 end complex structure.
end complex.

Translated RECORD Statement
 1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.COMPLEX"
 C1 ! test complex data types
 C1 RECORD COMPLEX ! UNSPECIFIED
 C1 GROUP MY_S_COMPLEX_1 ! F_FLOATING_COMPLEX
 C1 SINGLE SINGLE_R_VALUE
 C1 SINGLE SINGLE_I_VALUE
 C1 END GROUP
 C1 GROUP MY_D_COMPLEX_1 ! D_FLOATING_COMPLEX
 C1 DOUBLE DOUBLE_R_VALUE
 C1 DOUBLE DOUBLE_I_VALUE
 C1 END GROUP
 C1 GROUP MY_G_COMPLEX_1 ! G_FLOATING_COMPLEX
 C1 GFLOAT GFLOAT_R_VALUE
 C1 GFLOAT GFLOAT_I_VALUE
 C1 END GROUP
 C1 END RECORD
................1
%BASIC-I-CDDSUBGRO, 1: data type in CDD/Repository not supported,
 substituted group for: COMPLEX::MY_S_COMPLEX_1.
%BASIC-I-CDDSUBGRO, 1: data type in CDD/Repository not supported,
 substituted group for: COMPLEX::MY_D_COMPLEX_1.
%BASIC-I-CDDSUBGRO, 1: data type in CDD/Repository not supported,
 substituted group for: COMPLEX::MY_G_COMPLEX_1.

21.9.4. Decimal String Data Types
CDD/Repository supports the following forms of decimal string data types:

● LEFT OVERPUNCHED NUMERIC

● LEFT SEPARATE NUMERIC

● RIGHT OVERPUNCHED NUMERIC

● RIGHT SEPARATE NUMERIC

● PACKED DECIMAL

● UNSIGNED NUMERIC

● ZONED NUMERIC

VSI BASIC for OpenVMS supports only the PACKED DECIMAL decimal string data type, which
corresponds to the VSI BASIC for OpenVMS DECIMAL data type. For all other decimal string
data types, VSI BASIC for OpenVMS creates a group with the same name as the CDD/Repository
subordinate field, and creates a string record component to contain the field. For example:

310

Chapter 21. Using CDD/Repository with BASIC

CDDL Definition
define record CDD$top.basic.decimalstring
 description is

 /* test decimal string data types */.

 decimalstring structure.
 my_packed_decimal datatype is packed decimal
 size is 5 digits 2 fractions.
 my_zoned_numeric datatype is zoned numeric
 size is 6 digits 2 fractions.
 my_unsigned_numeric datatype is unsigned numeric
 size is 8 digits 4 fractions.
 my_lef_sep_numeric datatype is left separate numeric
 size is 10 digits 3 fractions.
 my_left_ovpnch_numeric datatype is left overpunched numeric
 size is 5 digits 2 fractions.
 my_right_sep_numeric datatype is right separate numeric
 size is 3 digits 1 fractions.
 my_right_ovpnch_numeric datatype is right overpunched numeric
 size is 4 digits 2 fractions.
 end decimalstring structure.
end decimalstring.

Translated RECORD Statement
 1 %INCLUDE %FROM %CDD "CDD$TOP.BASIC.DECIMALSTRING"
 C1 ! test decimal string data types
 C1 RECORD DECIMALSTRING ! UNSPECIFIED
 C1 DECIMAL(5 ,2) MY_PACKED_DECIMAL ! PACKED DECIMAL
 C1 GROUP MY_ZONED_NUMERIC ! ZONED NUMERIC
 C1 STRING STRING_VALUE = 6
 C1 END GROUP
 C1 GROUP MY_UNSIGNED_NUMERIC ! UNSIGNED
 NUMERIC
 C1 STRING STRING_VALUE = 8
 C1 END GROUP
 C1 GROUP MY_LEF_SEP_NUMERIC ! NUMERIC LEFT
 ! SEPARATE
 C1 STRING STRING_VALUE = 11
 C1 END GROUP
 C1 GROUP MY_LEFT_OVPNCH_NUMERIC ! NUMERIC LEFT
 ! OVERPUNCHED
 C1 STRING STRING_VALUE = 5
 C1 END GROUP
 C1 GROUP MY_RIGHT_SEP_NUMERIC ! NUMERIC RIGHT
 ! SEPARATE
 C1 STRING STRING_VALUE = 4
 C1 END GROUP
 C1 GROUP MY_RIGHT_OVPNCH_NUMERIC ! NUMERIC RIGHT
 ! OVERPUNCHED
 C1 STRING STRING_VALUE = 4
 C1 END GROUP
 C1 END RECORD
%BASIC-I-CDDSUBGRO, data type in CDD/Repository not supported,
 substituted group for: DECIMALSTRING::MY_ZONED_NUMERIC.
%BASIC-I-CDDSUBGRO, data type in CDD/Repository not supported,

311

Chapter 21. Using CDD/Repository with BASIC

 substituted group for: DECIMALSTRING::MY_UNSIGNED_NUMERIC.
%BASIC-I-CDDSUBGRO, data type in CDD/Repository not supported,
 substituted group for: DECIMALSTRING::MY_LEF_SEP_NUMERIC.
%BASIC-I-CDDSUBGRO, data type in CDD/Repository not supported,
 substituted group for:
 DECIMALSTRING::MY_LEFT_OVPNCH_NUMERIC.
%BASIC-I-CDDSUBGRO, data type in CDD/Repository not supported,
 substituted group for: DECIMALSTRING::MY_RIGHT_SEP_NUMERIC.
%BASIC-I-CDDSUBGRO, data type in CDD/Repository not supported,
 substituted group for:
 DECIMALSTRING::MY_RIGHT_OVPNCH_NUMERIC.

21.9.5. Other Data Types
CDD/Repository supports the following additional data types:

BIT
DATE
POINTER
UNSPECIFIED
VIRTUAL
ALPHABETIC

VSI BASIC for OpenVMS does not support these data types. VSI BASIC for OpenVMS translates
these data types by signaling the informational message “Datatype in CDD/Repository not supported,
substituted group for: <field name>”, and creates a group to contain the field. See Table 21.2,
"Unsupported CDD/Repository Data Types" for a description of how VSI BASIC for OpenVMS
translates these data types.

If you extract a CDD/Repository definition that contains a BIT field, the field must be a multiple of 8
bits (1 byte). This means that the following field must be aligned on a byte boundary. If the following
field is not aligned on a byte boundary, VSI BASIC for OpenVMS signals the error “Field <name>
from CDD/Repository has bit offset or length.”

312

Chapter 22. Using DECwindows
Motif Bindings with BASIC
This chapter explains the BASIC language exceptions for using standard DECwindows Motif Bindings.
For more information about programming DECwindows Motif, see the DECwindows Motif Guide to
Application Programming.

22.1. Overview of DECwindows Motif
Concepts
This section introduces DECwindows Motif concepts. DECwindows Motif is an X Window System type
of operating environment. DECwindows Motif is used on a workstation, where several windows can be
displayed with different applications on each window.

To program in the DECwindows Motif environment, DECwindows Motif bindings are used to help write
programs that create and manage the different resources needed to control the windowing environment.

22.2. Using DECwindows Motif Bindings with
BASIC
The DECwindows Motif bindings consist of constant definitions, global variable declarations, record
structures, and function prototypes. The bindings include everything that is needed to do windows
programming using the DECwindows Motif Application Programming Interface (API).

The BASIC implementation of the DECwindows Motif bindings allow you to write to either the
C version or the non-C version of the bindings. In either case, you will want to refer to the VMS
DECwindows User Interface Language Reference Manual before you start programming. For information
about using non-C bindings, see the DECwindows Motif for OpenVMS Guide to Non-C Bindings.

BASIC$HELLOMOTIF.BAS, and BASIC$HELLOBURGER.BAS supplied on the kit as examples of
using the BASIC language for windows programming.

A BASIC user can code to the standard C DECwindows Motif bindings with the following exceptions:

● Any identifiers longer than 31 characters must be truncated to 31 characters. Known instances
include:

S__XmTraverseObscuredCallbackStru (33)
S_XmOperationChangedCallbackStruc (33)
S_XmDragDropFinishCallbackStruct (32)

● Any identifiers beginning with an underscore must have the underscore dropped. Known instances
include:

_DXmPrintFormatStruct
_DXmPrintOptionMenuStruct
_XA_MOTIF_BINDINGS
_XA_MOTIF_WM_FRAME
_XA_MOTIF_WM_HINTS

313

Chapter 22. Using DECwindows Motif Bindings with BASIC

_XA_MOTIF_WM_INFO
_XA_MOTIF_WM_MENU
_XA_MOTIF_WM_MESSAGES
_XA_MOTIF_WM_OFFSET
_XA_MWM_HINTS
_XA_MWM_INFO
_XA_MWM_MESSAGES
_XmSDEFAULT_BACKGROUND
_XmSDEFAULT_FONT
_XmSecondaryResuourceDataRec
_XmTraverseObscuredCallbackStru
_XtCheckSubclassFlag
_XtIsSubclassOf

● The following list of identifiers are used either as both a data type and a field name or as a BASIC
keyword. They cannot be used as is, but must have the suffix _D appended when used as a data type
and the suffix _F appended when used as a field name.

dimension
display
font
name
pixel
screen
size
status
substitution
time
value
window

The DECW$MOTIF.BAS Motif bindings file includes the file DECW$MOTIF_DEFS.BAS, which
contains data type aliases. This makes separate compilation of Motif application subroutines simpler. To
separately compile a Motif application routine, add both of the following:

● %INCLUDE DECW$MOTIF_DEFS.BAS before the subroutine statement

● %INCLUDE DECW$MOTIF.BAS after it

22.3. DECwindows Motif Programming
Examples Using BASIC
DECW$EXAMPLES contains two examples of DECwindows Motif applications
in BASIC: BASIC$HELLOMOTIF.BAS and BASIC$MOTIFBURGER.BAS.
SYS$LIBRARY:DECW$MOTIF.BAS, which contains the DECwindows Motif declarations, is required
to build the programs. The steps to build and run the HELLOMOTIF example are:

1. Copy the needed files into your current directory:

$ COPY DECW$EXAMPLES:BASIC$HELLOMOTIF.* *.*

2. Build the Resource (UID) file:

314

Chapter 22. Using DECwindows Motif Bindings with BASIC

$ UIL/MOTIF BASIC$HELLOMOTIF.UIL

3. Compile and link the BASIC program:

● Use the following example for DECWindows Motif V1.1:

$ BASIC BASIC$HELLOMOTIF
$ LINK BASIC$HELLOMOTIF,SYS$INPUT/OPTIONS
SYS$LIBRARY:DECW$DXMLIBSHR.EXE/SHARE
SYS$LIBRARY:DECW$XMLIBSHR.EXE/SHARE
SYS$LIBRARY:DECW$XTSHR.EXE/SHARE
^Z
$

● Use the following example for DECWindows Motif V1.2:

$ BASIC BASIC$HELLOMOTIF
$ LINK BASIC$HELLOMOTIF,SYS$INPUT/OPTIONS
SYS$LIBRARY:DECW$DXMLIBSHR12.EXE/SHARE
SYS$LIBRARY:DECW$MRMLIBSHR12.EXE/SHARE
SYS$LIBRARY:DECW$XMLIBSHR12.EXE/SHARE
SYS$LIBRARY:DECW$XTLIBSHRR5.EXE/SHARE
^Z
$

You may want to create an options file with the previously mentioned shareable libraries in it.

4. If you are not running on a workstation, make sure that your display is set correctly, for example:

$ SET DISPLAY/CREATE/NODE=xxxx

xxxx is the node name of a workstation with appropriate graphic capability.

5. Run the application:

$ RUN BASIC$HELLOMOTIF

Note

The .UID file must be kept in the same directory as the .EXE file when run. This program looks in
the current directory for the UID file.

6. Then follow the instructions in the dialog box.

22.4. Special Considerations for Handling
Strings with DECwindows Motif
All strings passed between DECwindows Motif and your program must be null terminated. For example:

"A string" + "0"C

When passing a string argument to a DECwindows Motif routine, the address of the string is required.
For static strings, the address of the string can easily be obtained with the LOC function. For example:

COMMON (c1) STRING hierarchy_file_name = 21

315

Chapter 22. Using DECwindows Motif Bindings with BASIC

hierarchy_file_name = "BASIC$HELLOMOTIF.UID" + "0"C

DECLARE LONG hierarchy_file_name_array(1)
hierarchy_file_name_array(0) = LOC (hierarchy_file_name)

Because dynamic strings are described by a descriptor, a different means is needed to get the address
of the string text. The following helper function will get the address of dynamic strings as well as static
strings:

FUNCTION LONG ADDRESS_OF_STRING (STRING str_arg BY REF)
 OPTION TYPE=EXPLICIT, INACTIVE=SETUP
END FUNCTION (LOC (str_arg))

Example of passing a dynamic string to a DECwindows Motif routine:

DECLARE STRING temp_string
temp_string = "A string value" + "0"C
list_test = DXmCvtFCtoCS (ADDRESS_OF_STRING (temp_string), &
 byte_count, istatus)

316

Appendix A. Compile-Time Error
Messages
This appendix describes compile-time and compiler command errors, their causes, and the user action
required to correct them.

A.1. Compile-Time Errors
VSI BASIC diagnoses compile-time errors and does the following:

● Indicates the program line that generated the error or errors.

● Displays this program line.

● Shows you the location of the error or errors and assigns a number to each location for future
reference.

● Displays the mnemonic, statement number within the line, the location number as previously
displayed, and the message text. This is repeated for each error in the line.

VSI BASIC repeats this procedure for each error diagnosed during compilation. The error message
format for compile-time errors is:

%BASIC–<l>–<mnemonic>, <n>: <message>

<l>

Is a letter indicating the severity of the error. The severity indicator can be one of the following:

● I ---- indicating information

● W ---- indicating a warning

● E ---- indicating an error

● F ---- indicating a severe error

<mnemonic>

Is a 3- to 9-character string that identifies the error. Error messages in this appendix are alphabetized by
this mnemonic.

<n>:

Is the nth error within the line's picture.

<message>

Is the text of the error message.

For example:

317

Appendix A. Compile-Time Error Messages

Diagnostic on source line 1, listing line 1, BASIC line 10

 10 DECLARE REAL BYTE A, A
........................1.......2

%BASIC--E--CONDATSPC, 1: conflicting data type specifications
%BASIC--E--ILLMULDEF, 2: illegal multiple definition of name A

This display tells you that two errors were detected on line 10; VSI BASIC displays the line containing
the error, then prints a picture showing you where the errors were detected. In the example, the picture
shows a 1 under the keyword BYTE and a 2 under the second occurrence of variable A. The following
line shows you:

● The error mnemonic CONDATSPC

● Which error in the line's picture is referred to by the mnemonic

● The message associated with that error

In this case, the error message tells you that there are two contradictory data-type keywords in the
statement. The next line shows you the same type of information for the second error; in this case, the
compiler detected multiple declarations of variable A.

If a compilation causes an error of severity I or W, the compilation continues and produces an object
module. If a compilation causes an error of severity E, the compilation continues but produces no object
module. If a compilation causes an error of severity F, the compilation aborts immediately.

The following is an alphabetized list of compilation error messages:

ACTARGMUS, actual argument must be specified

ERROR ---- A DEF function reference contains a null argument, for example, FNA(1,,2).

User action: Specify all arguments when referencing a DEF function.

ALLOCSML, allocated area may be too small for section

WARNING – A MAP or COMMON with the same name exists in more than one program module, and
the first one encountered by the compiler is smaller than the subsequent ones.

User action: VSI BASIC first allocates MAP and COMMON areas in the main program, then MAP and
COMMON areas in subprograms, in the order in which they were loaded. Thus, you can avoid this error
by loading modules with the largest MAP or COMMON first. However, it is better practice to make
MAP and COMMON areas equal in size.

AMBRECCOM, ambiguous RECORD component

ERROR – The program contains an ambiguous RECORD component reference, for example, A::D when
both A::B::D and A::C::D exist.

User action: Remove the ambiguity by fully specifying the record component.

318

Appendix A. Compile-Time Error Messages

AMPCONILL, & continuation is illegal after %INCLUDE directive

ERROR – A program contains a %INCLUDE directive followed by an ampersand continuation to
another statement. For example, the following is illegal:

 2300 %INCLUDE %FROM %CDD "CDD$TOP.PERSONNEL.EMPLOYEE" &
 GOTO 3000

Ampersand continuation of the %INCLUDE directive is legal, however.

User action: Recode to eliminate the line continuation or use backslash continuation.

AMPCONREP, & continuation is illegal after %REPORT directive

ERROR – A program contains a %REPORT directive followed by an ampersand continuation to another
statement. For example, the following is illegal:

 2300 %REPORT %DEPENDENCY "CDD$TOP.PERSONNEL.EMPLOYEE.COURSE_FORM" &
 GOTO 3000

Ampersand continuation of the %REPORT directive itself is legal, however.

User action: Recode to eliminate the line continuation or use backslash continuation.

ANSDEFMUS, ANSI DEF must be defined before reference

ERROR – A program compiled with the /ANSI_STANDARD qualifier contains a reference to a DEF
function before the function definition.

User action: Renumber the line containing the function definition so that the definition precedes all
references to the function.

ANSILNREQ, a line number is required on first line for ANSI

ERROR – When you specify the /ANSI qualifier, a program must have a line number on the first line for
the ANSI qualifier.

User action: Supply a line number on the first line.

ANSKEYSPC, keywords must be delimited by spaces in /ANSI

ERROR – A program compiled with the /ANSI_STANDARD qualifier contains a line where two
elements (two keywords, a keyword and a line number, or a keyword and a string constant) are not
separated by at least one space. For example, PRINT “Hello”.

User action: Delimit all keywords, line numbers, and string constants with at least one space.

ANSLINDIG, ANSI line number may not exceed 4 digits

ERROR – A program compiled with the /ANSI_STANDARD qualifier contains a line number with
more than 4 digits, that is, a number greater than 9999.

User action: Renumber the program lines so that no line number exceeds 9999.

319

Appendix A. Compile-Time Error Messages

ANSLINNUM, ANSI line numbers must begin in column 1

ERROR – A program compiled with the /ANSI_STANDARD qualifier contains a line number preceded
by one or more spaces or tabs.

User action: Remove any spaces and tabs that precede the line number.

ANSREQREA, ANSI requires REAL default type

ERROR – The /ANSI_STANDARD qualifier conflicts with the /TYPE_DEFAULT qualifier.

User action: Do not specify a default data type other than REAL. REAL is the default.

ANSREQSCA, ANSI requires SCALE 0

ERROR – The /ANSI_STANDARD qualifier conflicts with the /SCALE qualifier.

User action: Do not specify a scale factor.

ANSREQSET, ANSI requires SETUP

ERROR – The /ANSI_STANDARD qualifier conflicts with the /NOSETUP qualifier.

User action: Do not specify /NOSETUP.

ANYDIMNOT, dimension checking not allowed on ANY

ERROR – Both a data type of ANY and a DIM clause were specified in an EXTERNAL statement.

User action: Remove the DIM clause from the EXTERNAL statement. ANY implies either scalar or
array.

ANYNOTALL, ANY not allowed on EXTERNAL PICTURE

ERROR – An attempt was made to specify the ANY keyword on an EXTERNAL PICTURE
declaration. This is not allowed because the ANY data type should be used for calling non-BASIC
procedures only.

User action: Remove the ANY keyword from the EXTERNAL PICTURE declaration.

APPMISNUM, append file missing line number on first line

ERROR – An attempt was made to append a source file that does not contain a line number on the first
line.

User action: Put a line number on the first line of the appended file.

320

Appendix A. Compile-Time Error Messages

APPNOTALL, append not allowed on programs without line numbers

ERROR – The APPEND command cannot be used on a program without line numbers.

User action: Use an include file.

ARESTYMUS, area style must be “HOLLOW”, “SOLID”, “PATTERN”, or “HATCH”

ERROR – You specified an invalid value in the SET AREA STYLE statement.

User action: Specify one of the values listed in the message.

AREREQTHR, AREA output requires at least 3 X,Y points

ERROR – An AREA graphic output statement specifies less than 3 points.

User action: Specify at least 3 points in the AREA graphic output statement.

ARGERR, illegal argument for command

ERROR – An argument was entered for a command that does not take an argument, or an invalid
argument was entered for a command, for example, SCALE A or LIST A.

User action: Reenter the command with the proper arguments.

ARRMUSHAV, array must have 1 dimension

ERROR – An array with multiple dimensions is specified where a one-dimensional array is required.

User action: Specify an array that has 1 dimension.

ARRMUSELE, array must have at least 4 elements

ERROR – You specified an array with less than four elements. This statement requires an array with at
least four elements in it.

User action: Supply an array declared as having at least 4 elements.

ARRNAMREQ, array names only allowed

ERROR – The type of variable name required must be an array name.

User action: Change the variable name to an array name.

ARRNOTALL, array <name> not allowed in DEF declaration

ERROR – The parameter list for a DEF function definition contained an entire array.

User action: Remove the array specification. Passing an entire array as a parameter to a DEF function is
not allowed.

321

Appendix A. Compile-Time Error Messages

ARRTOOBIG, named array <array-name> is too large

ERROR – An array must occupy fewer than (2^16 ---- 1) bytes of storage.

User action: Reduce the size of the array. If the array is within a record, the maximum size of the array
is 65,535 bytes.

ATROVRVAR, attributes of overlaid variable <name> don't match

ERROR – A variable name appears in more than one overlaid MAP; however, the attributes specified
for the variable are inconsistent.

User action: If the same variable name appears in multiple overlaid MAPs, the attributes (for example,
data type) must be identical.

ATRPRIREF, attributes of prior reference to <name> don't match

WARNING – A variable or array is referenced before the MAP that declares it. The attributes of the
referenced variable do not match those of the declaration.

User action: Make sure that the variable or array has the same attributes in both the reference and the
declaration.

ATTGTRZER, graphics attribute value must be greater than zero

ERROR – You specified a negative value when a positive value is required.

User action: Supply a value greater than zero.

BADFMTSTR, invalid PRINT USING format string

ERROR – The PRINT USING format string specified is not valid.

User action: Supply a valid PRINT USING format string.

BADLOGIC, internal logic error detected

ERROR – An internal logic error was detected.

User action: This error should never occur. Please submit a Software Performance Report with a
machine-readable copy of the source program.

BADNO, qualifier <name> does not accept ’NO’

ERROR – A qualifier that does not allow a NO prefix was entered. For example, NODOUBLE.

User action: Select the proper qualifier.

322

Appendix A. Compile-Time Error Messages

BADPROGNM, error in program name

ERROR – The program name is longer than 39 characters or contains invalid characters.

User action: Change the program name to be less than or equal to 39 characters and make sure that it
contains only letters, digits, dollar signs, and underscores.

BADVALUE, <text> is an invalid keyword value

FATAL – The command supplied an invalid value for a keyword.

User action: Supply a valid value.

BASICHLB, BASIC's HELP library is not installed on this system

INFORMATION – A HELP command was entered and the VSI BASIC HELP library was not available.

User action: See your system manager.

BIFREQNUM, built in function requires numeric expression

ERROR – A reference to a VSI BASIC built-in function contains a string instead of a numeric
expression.

User action: Supply a numeric expression.

BIFREQSTR, built in function requires string expression

ERROR – The program specifies a numeric expression for a built-in function that requires a string
argument.

User action: Supply a string expression for the built-in function.

BLTFUNNOT, built in function not supported

ERROR – The program contains a reference to a built-in function not supported by this version of VSI
BASIC.

User action: Remove the function reference.

BOTBOUSPE, bottom boundary must be less than the top boundary

ERROR – In a statement that specifies a viewport or windowsize, you specified a bottom boundary that
is greater than or equal to the corresponding top boundary.

User action: Correct the bottom boundary so that it is less than the top boundary.

323

Appendix A. Compile-Time Error Messages

BOUCANNOT, bound cannot be specified for array

ERROR – An EXTERNAL statement declaring a SUB or FUNCTION subprogram specifies bounds in
an array parameter, for example:

 EXTERNAL SUB XYZ (LONG DIM(1,2,3))

User action: Remove the array parameter's bound specifications. When declaring an external
subprogram, you can specify only the number of dimensions for an array parameter. For example:

 EXTERNAL SUB XYZ (LONG DIM(,,))

BOUMUSTBE, bounds must be specified for array

ERROR – The program contains an array declaration that does not specify the bounds (maximum
subscript value). For example:

 DECLARE LONG A(,)

User action: Supply bounds for the declared array. For example:

 DECLARE LONG A(50,50)

CANCON, can't continue

FATAL – A CONTINUE command was typed after changes had been made to the source code.

User action: After changes have been made to the source code, you can run the program, but you
cannot continue it.

CAUNOTALL, CAUSE statement not allowed in error handler

ERROR – A CAUSE statement is specified within an error handler.

User action: Remove the CAUSE statement from the error handler.

CDDACCERR, CDD/Repository access error

ERROR – CDD/Repository detected an error on an attempted CDD/Repository record extraction. VSI
BASIC displays the CDD/Repository error.

User action: Take action based on the associated CDD/Repository error.

CDDACCITE, CDD/Repository error while accessing item <field-name> of record

ERROR – CDD/Repository reported an error when accessing the field. The CDD/Repository record
definition is corrupt, or there is an internal error in either VSI BASIC or CDD/Repository.

User action: If the problem is not in the CDD/Repository definition, please submit a software problem
report (SPR) with the source code of a small program that produces this error.

324

Appendix A. Compile-Time Error Messages

CDDACCREC, CDD/Repository error while accessing record

ERROR – CDD/Repository reported an error when accessing the record. The CDD/Repository record
definition is corrupt or there is an internal error in either VSI BASIC or CDD/Repository.

User action: If the problem is not in the CDD/Repository definition, please submit a software problem
report (SPR) with the source code of a small program that produces this error.

CDDADJBOU, adjusted bounds for dimension <number> of <array> to be zero based

INFORMATION – CDD/Repository contains an array field with a lower bound that is not zero. VSI
BASIC adjusts the bound so that the array is zero based.

User action: None.

CDDALCOFF, please submit an SPR ---- CDD/Repository inconsistent with allocated offset for
<field-name>

FATAL – The offset of a field within a VSI BASIC RECORD differs from the offset specified by CDD/
Repository for that record.

User action: Please submit a software problem report (SPR) with the source code of a small program
that produces this error.

CDDALCSIZ, please submit an SPR ---- CDD/Repository inconsistent with allocated size for
<field-name>

FATAL – The amount of storage allocated for a field in a VSI BASIC RECORD differs from the amount
specified by CDD/Repository for that record.

User action: Please submit a software problem report (SPR) with the source code of a small program
that produces this error.

CDDALCSPN, please submit an SPR ---- CDD/Repository inconsistent with allocated span for
<field-name>

FATAL – The amount of storage allocated by a VSI BASIC RECORD for an array differs from the
amount specified by CDD/Repository for that record.

User action: Please submit a software problem report (SPR) with the source code of a small program
this error.

CDDAMBFLD, ambiguous field name <name> for <RECORD--name>

ERROR – More than one CDDL structure share the same level and the same name.

User action: Change the CDD/Repository definition so that the structures have different names.

325

Appendix A. Compile-Time Error Messages

CDDATTBAS, CDD/Repository attributes for <name> are other than base 10

ERROR – A field in a CDD/Repository definition uses the BASE keyword. This warns you that the
numeric field is not interpreted as a base 10 number.

User action: Remove the BASE attribute in CDD/Repository or avoid using the field.

CDDATTDAT, CDD/Repository data type attribute not permitted for GROUP

ERROR – A CDD/Repository definition specified a data type after the CDD/Repository STRUCTURE
keyword. VSI BASIC translates STRUCTURE to a VSI BASIC RECORD or GROUP statement. These
VSI BASIC statements do not allow data type attributes.

User action: Change the CDD/Repository definition.

CDDATTDIG, DIGITS attribute of <field-name> not supported for datatype

INFORMATION – The field contains a CDD/Repository fixed-point data type that specifies the number
of allowed digits. This warning tells you that VSI BASIC interprets the field as BYTE, WORD, LONG,
or QUAD and does not support the DIGITS attribute for this data type.

User action: None.

CDDATTSCA, CDD/Repository specifies SCALE for <RECORD-component>. Not supported.

INFORMATION – A field in a CDD/Repository definition uses the SCALE keyword. This warns you
that the field has an implied exponent.

User action: Remove the SCALE attribute in CDD/Repository, or avoid using the field.

CDDATTTXT, CDD/Repository TEXT attribute for group <group-name> ignored

INFORMATION – A CDD/Repository record definition specifies a data type of TEXT for the entire
record.

User action: None. VSI BASIC ignores the TEXT attribute and substitutes the UNSPECIFIED attribute.

CDDBASNAM, CDD/Repository specified BASIC name <name> has illegal form

ERROR – The VSI BASIC name specified in the CDD/Repository record definition is a reserved
keyword or contains an illegal character.

User action: Change the invalid field name.

CDDBITFLD, field <field-name> from CDD/Repository has bit offset or length

ERROR – A CDD/Repository field does not start on a byte boundary.

User action: Change the bit field in CDD/Repository to have a length that is a multiple of 8 bits.

326

Appendix A. Compile-Time Error Messages

CDDCOLMAJ, <array-name> from CDD/Repository is a column major array

ERROR – An array specified in a CDD/Repository definition is column-major rather than row-major.
Thus, it is incompatible with VSI BASIC arrays.

User action: Change the CDD/Repository definition to be a row-major array.

CDDDIGERR, decimal digits of <VALUE> in CDD/Repository out of range for <field-name>

ERROR – A packed numeric CDD/Repository definition specifies more than 31 digits.

User action: Reduce the number of digits specified in the CDD/Repository definition.

CDDDIMNOT, RECORD cannot be dimensioned

ERROR – A CDD/Repository definition is itself an array. This is incompatible with VSI BASIC
RECORDs, which can contain arrays but cannot be arrays.

User action: None. You cannot access CDD/Repository definitions that are arrays.

CDDDUPREC, RECORD <name> from CDD/Repository has duplicate name

ERROR – The CDD/Repository record name conflicts with a previous RECORD name. The previous
RECORD name may be a standard VSI BASIC RECORD or another CDD/Repository record.

User action: Remove one of the duplicate definitions.

CDDFLDNAM, field name missing

ERROR – The CDD/Repository definition contains a field that is not named.

User action: Supply a field name for the CDD/Repository definition.

CDDINIIGN, initial value specified in CDD/Repository ignored for: name

INFORMATION – The specification of an initial value is unsupported by BASIC.

User action: Set the initial value of this field in your application program.

CDDINTONLY, % not allowed on <name> with noninteger datatype

ERROR – The % suffix is allowed only on numeric data types.

User action: Remove the % suffix from the variable name or change the data-type keyword.

CDDLOWBOU, lower bound omitted for dimension <number> of <array-name>

ERROR – An array in a CDD/Repository definition does not specify a lower bound.

User action: Check to make sure the omission is not a mistake. VSI BASIC supplies a lower bound of
zero and continues after issuing this warning.

327

Appendix A. Compile-Time Error Messages

CDDMAXDIM, <array-name> exceeds maximum dimensions

ERROR – An array in a CDD/Repository definition specifies more than 32 dimensions.

User action: Reduce the number of dimensions in the CDD/Repository definition.

CDDNAMKEY, <name> is a BASIC keyword

ERROR – A CDD/Repository definition contains a field name that is a reserved word in VSI BASIC.

User action: Change the name in the CDD/Repository definition or supply a VSI BASIC name clause.

CDDOCCIGN, OCCURS DEPENDING ON clause for <array-name> from CDD/Repository
ignored

INFORMATION – CDD/Repository contains an array field with a variable number of elements. VSI
BASIC creates an array large enough for the maximum value.

User action: If you modify the array field, be sure also to change the field that contains the number of
array elements.

CDDOFFERR, CDD/Repository offset error, field <field-name> offsets out of order

ERROR – The CDD/Repository definition has been corrupted or there is an internal error in either VSI
BASIC or CDD/Repository.

User action: If the problem is not in the CDD/Repository definition, please submit a software problem
report (SPR) with the source code of a small program that produces this error.

CDDPLUSERR, CDD/Repository access error

ERROR – CDD/Repository detected an error while attempting to record dependency data. VSI BASIC
displays the CDD/Repository error.

User action: Take action based on the associated CDD/Repository error.

CDDPREERR, decimal precision in CDD/Repository out of range for <field-name>

ERROR – The number of fractional digits for a packed decimal field is greater than the total number of
digits specified for that field.

User action: Change the number of fractional digits in CDD/Repository to be less than or equal to the
total number of digits.

CDDRECFOR, CDD/Repository record format is not fixed

ERROR – CDD/Repository supports both variable and fixed-length records. VSI BASIC supports only
fixed-length records.

User action: Change the CDD/Repository record definition to specify fixed-length.

328

Appendix A. Compile-Time Error Messages

CDDRECNAM, record from CDD/Repository does not have a record name

ERROR – VSI BASIC uses the field name of the outermost structure to name the record, and therefore
cannot include a CDD/Repository record that does not provide a record name.

User action: Change the CDD/Repository record definition to provide a field name for the outermost
structure of the record.

CDDSCAERR, decimal scale of <scale-factor> is out of range for <field> from CDD/
Repository

ERROR – The scale factor for a packed decimal CDD/Repository field is greater than the number of
digits in the field or less than zero.

User action: Change the scale factor in the CDD/Repository definition.

CDDSCAZER, scale 0 specified for CDD/Repository field <field-name>

INFORMATION – A CDD/Repository field specifies no scale factor for a D_floating field, but the VSI
BASIC program specifies a nonzero scale factor.

User action: Use a scale factor of zero in the VSI BASIC program.

CDDSTRONLY, $ not allowed on <name> with nonstring datatype

ERROR – The $ suffix is only allowed on string data types.

User action: Remove the $ suffix from the variable name or change the data-type keyword.

CDDSUBGRO, substituted GROUP for <field-name>. Data type in CDD/Repository not
supported.

INFORMATION – The CDD/Repository definition specifies a data type that is not native to VSI BASIC.
VSI BASIC creates a GROUP with the same name as the CDD/Repository field and creates variable
names for the GROUP components.

User action: None.

CDDTAGIGN, tag value ignored for <field-name> from CDD/Repository

INFORMATION – The CDD/Repository record definition contains a VARIANTS OF.

User action: None. VSI BASIC translates the VARIANTS OF as if it were a regular variant; however,
the tag value is ignored.

CDDUNSDAT, data type specified in CDD/Repository for <field-name> not supported

ERROR – The data type specified for a field is not supported by VSI BASIC.

User action: Change the data type in the CDD/Repository record definition.

329

Appendix A. Compile-Time Error Messages

CDDUPPBOU, upper bound omitted for dimension <number> of <array-name>

ERROR – An array in a CDD/Repository definition does not specify an upper bound.

User action: Specify an upper bound in the CDD/Repository definition.

CDDVARFLD, field <name> from CDD/Repository has variable offset or length

ERROR – A CDD/Repository field can be either variable or fixed-length. VSI BASIC supports only
fixed-length fields.

User action: Change the CDD/Repository definition.

CHAEXPMUS, channel expression must be numeric

ERROR – The program contains a nonnumeric channel expression, for example, PUT #A$

User action: Change the channel expression to be numeric.

CHALINCLA, CHAIN does not support line number clause

ERROR – A CHAIN statement contains a LINE keyword and a line number argument.

User action: Remove the LINE keyword and the line number argument.

CHANOTALL, CHANGES not allowed on primary key

ERROR – The PRIMARY KEY clause in an OPEN statement specifies CHANGES.

User action: Remove the CHANGES keyword; you cannot change the value of a primary key.

CHASTAAMB, CHANGE statement is ambiguous

ERROR – A string variable and a numeric array have the same name in a CHANGE statement.

User action: Change the name of the string variable or the numeric array.

CLIPMUSBE, clipping must be set to “ON” or “OFF”

ERROR – You specified an invalid value in the SET CLIP statement.

User action: Specify one of the values listed in the message.

CLOSEIN, error closing <file-name> as input

ERROR – An error was detected while closing an input file.

User action: Take corrective action based on the associated message.

330

Appendix A. Compile-Time Error Messages

CLOSEOUT, error closing <file-name> as output

ERROR – An error was detected while closing an output file.

User action: Take corrective action based on the associated message.

CMDNOTALL, command not allowed on programs without line numbers

ERROR – A command that cannot be used on a program without line numbers has been used on a
program without line numbers.

User action: Do not use this command on programs without line numbers.

CODLENEST, internal code length estimate error. Submit an SPR

FATAL – VSI BASIC has incorrectly estimated the size of the generated code for your program.

User action: Submit a software problem report (SPR) with the program that caused the error. (You can
often work around this error by making a simple change to your code.)

COLOUTRAN, color intensities must be in the range 0.0 to 1.0

ERROR – The value specified for color intensity is either less than 0.0 or greater than 1.0.

User action: Supply a value from 0.0 to 1.0.

COMMAPALI, variable <name> not aligned in COMMON/MAP <name>

INFORMATION – In a COMMON or MAP, the total storage preceding a REAL, WORD, LONG, or
QUAD numeric variable is an odd number of bytes.

User action: None. In VSI BASIC, numeric data can start on any byte boundary.

COMMAPNEQ, COMMON/MAP area sizes are not equal for section

WARNING – A MAP or COMMON with the same name exists in more than one program module, but
the size of the areas differs.

User action: Make the size of the COMMON or MAP areas equal in size in all modules.

COMMAPOVF, COMMON/MAP <name> is too large

ERROR – The program contains a MAP or COMMON longer than (2^31 ---- 1) longwords.

User action: Reduce the length of the COMMON or MAP.

331

Appendix A. Compile-Time Error Messages

CONCOMSYN, conditional compilation cannot be used with /SYNTAX

FATAL – The /SYNTAX_CHECKING qualifier is in effect when a program line containing the %IF,
%THEN, %ELSE, or %END %IF lexical directive was entered.

User action: Turn off syntax checking before entering a program line containing the %IF, %THEN,
%ELSE, or %END %IF lexical directive.

CONDATSPC, conflicting data type specifications

ERROR – The program contains a declarative statement containing two or more consecutive and
contradictory data-type keywords, for example, DECLARE REAL BYTE.

User action: Remove one of the data-type keywords or make sure that the keywords refer to the same
generic data type. For example, DECLARE REAL SINGLE is valid.

CONEXPREQ, constant expression required

ERROR – A statement specifies a variable, built-in function reference or exponentiation where a
constant is required.

User action: Supply an expression containing only literals or declared constants or remove the
exponentiation operation.

CONTARNOT, CONTINUE target not legal in detached error handlers

ERROR – A CONTINUE statement within a detached WHEN block error handler contains a target.

User action: Remove the target line number or label from the CONTINUE statement or use an attached
error handler.

CONIS_INC, constant is inconsistent with the type of <name>

ERROR – A DECLARE CONSTANT statement specifies a value that is inconsistent with the data type
of the constant, for example, a BYTE value specified for a REAL constant.

User action: Change the declaration so that the data type of the value matches that of the constant.

CONIS_NEE, <item> requires conditional expression

ERROR – A CASE or IF keyword is immediately followed by a floating-point or string expression.

User action: Supply a conditional expression (relational, logical, or integer).

CONLFTSID, constant <name> not allowed on left side of assignment

ERROR – The program tries to assign a value to a user-defined constant.

User action: Remove the assignment statement; once you have assigned a value to a declared constant,
you cannot change it.

332

Appendix A. Compile-Time Error Messages

CONNOTALL, constant <name> not allowed in assignment context

ERROR – The program tries to assign a value to a user-defined constant.

User action: Remove the assignment statement; once you have assigned a value to a declared constant,
you cannot change it.

COOMUSBE, coordinates must be within NDC space (0.0 to 1.0)

ERROR – The value of a coordinate is either less than 0.0 or greater than 1.0.

User action: Supply a value from 0.0 to 1.0.

CORSTAFRA, corrupted stack frame

ERROR – An immediate mode statement was entered after a STOP statement was executed in the VAX
BASIC Environment and something corrupted the stack.

User action: Check program logic to make sure that all array references are within array bounds. This
error can also be caused by loading non-BASIC object modules in the VAX BASIC Environment.

COUONLALO, COUNT clause only allowed with array LIST clause

ERROR – A COUNT clause was found on a SET INITIAL CHOICE statement that contains a LIST
clause that does not contain a string array.

User action: Remove the COUNT clause or use the array form of the LIST clause.

COUVALCAN, COUNT value cannot be greater than array size

ERROR – In the COUNT clause, you specified a count that is larger than the size of the array that you
supplied.

User action: Change either the COUNT value or the size of the array so that COUNT is less than or
equal to the number of elements in the array.

DATTYPEXP, data type required for variable <name> with /EXPLICIT

ERROR – A program compiled with the /TYPE=EXPLICIT qualifier declares a variable without
specifying a data type.

User action: Supply a data-type keyword for the variable or compile the program without the /
TYPE=EXPLICIT qualifier.

DATTYPNOT, data type keyword not allowed in SUB statement

ERROR – A SUB statement contains a data-type keyword between the subprogram name and the
parameter list.

User action: Remove the data-type keyword. In a SUB statement, data-type keywords can appear only
within the parameter list.

333

Appendix A. Compile-Time Error Messages

DATTYPREQ, data type required in EXTERNAL CONSTANT declaration

ERROR – An EXTERNAL CONSTANT statement has no data-type keyword.

User action: Supply a data-type keyword to specify the data type of the external constant.

DECIMERR, DECIMAL overflow

WARNING – The program contains a DECIMAL expression whose value is outside the valid range.

User action: Reduce the value of the DECIMAL expression.

DECLEXSYN, DECLARED lexical function syntax error

ERROR – The syntax of the %DECLARED lexical function is specified incorrectly.

User action: Supply the correct syntax.

DECPREOUT, DECIMAL precision specification out of range

ERROR – In the declaration for a packed decimal variable or constant, the number of digits to the right
of the decimal point is greater than the total number of digits specified, or greater than 31.

User action: Change the declaration so that the total number of digits specified is less than 31, and the
number of digits to the right of the decimal point is less than or equal to the total number of digits.

DECSIZOUT, DECIMAL size specification out of range

ERROR – The declaration for a packed decimal variable or variable specifies more than 31 digits.

User action: Change the declaration to specify 31 or fewer digits.

DEFEXPCOM, expression with DEF* too complex, moving <name> invocation

WARNING – A DEF* is being invoked from within a complex expression. To simplify the expression,
the compiler will evaluate the DEF*(s) first. (Alpha BASIC only.)

User action: Rewrite statement into simpler expressions.

DEFINVNOT, DEF invocation not allowed in assignment context

ERROR – A DEF function invocation (including a parameter list) appears on the left side of an
assignment statement.

User action: Remove the assignment statement. You cannot assign values to a function invocation.

334

Appendix A. Compile-Time Error Messages

DEFMODNOT, DEF <name> mode not as declared

ERROR – The specified data type in a function declaration disagrees with the data type specified in the
function definition.

User action: Make the data-type specifications match in both the function declaration and the function
definition.

DEFNOTDEF, DEF <name> not defined

ERROR – The program contains a reference to a nonexistent user-defined function.

User action: Define the function in a DEF statement.

DEFNOTWHE, DEF not allowed in WHEN block or handler

ERROR – A DEF function definition is not allowed in a WHEN block or its associated handler.

User action: Remove the DEF function definition from within the WHEN block or handler.

DEFRESREF, DEF <name> result reference illegal in this context

ERROR – The program attempts to assign a value to a DEF name outside the DEF block.

User action: Remove the assignment statement. You cannot assign a value to a DEF outside of the DEF
block.

DEFSIZNOT, DEF <name> decimal size not as declared

ERROR – The DECIMAL(d,s) size specified in the DEF statement does not match the DECIMAL(d,s)
used in the associated DECLARE DEF statement.

User action: Make the DECIMAL size specification agree in both the DECLARE DEF and DEF
statements.

DEFSTAPAR, DEF* formal <formal-name> inconsistent with usage outside DEF*

ERROR – A DEF* formal parameter has the same name as a program variable, but different attributes.

User action: You should not use the same names for DEF* parameters or program variables. If you do,
you must ensure that they have the same data type and size.

DEFSTOOCMPX, DEF* <name> too complex to compile

ERROR – A DEF* function uses too many temporary variables or parameters, or is too complex to
compile.

User action: Simplify and/or break the function into smaller pieces.

335

Appendix A. Compile-Time Error Messages

DEFSTRPAR, DEF string parameter is illegal in MAP DYNAMIC or REMAP

ERROR – You cannot use a static string that is a parameter declared in a DEF or DEF* function as the
storage area in a MAP DYNAMIC or REMAP statement.

User action: Change the storage area specification in the MAP DYNAMIC or REMAP statement to use
either a MAP name or a static string variable that is not a parameter to the DEF or DEF* function.

DELETE, ignoring <item>

ERROR – The program contains a syntax error. The compiler tries to recover from the error by ignoring
an operator or separator in the source line. For example, DIM A(3,) is a syntax error, but VSI BASIC
continues the compilation by ignoring the comma. The compilation continues only in order to discover
other errors; no object module is produced.

User action: Correct the syntax error in the displayed line.

DEPNOTANS, /DEPENDENCY_DATA qualifier not allowed with /ANSI

ERROR – The /DEPENDENCY_DATA qualifier conflicts with the /ANSI_STANDARD qualifier.

User action: Specify either the /DEPENDENCY_DATA qualifier or the /ANSI_STANDARD qualifier,
but not both.

DESCOMABORT, /DESIGN=COMMENT processing has been aborted due to an internal error
– please submit an SPR

INFORMATION – The compiler was unable to process comment information due to an internal error.

User action: Please submit a software problem report (SPR) with the source code of a small program
that produces the error.

DESCOMERR, error in processing design information

WARNING – The design information was syntactically incorrect.

User action: You should respecify the design information and compile the program again.

DESIGNTOOOLD, /DESIGN=COMMENT processing routines are too old for the compiler

WARNING – The compiler encountered obsolete routines.

User action: Install a new version of the Language Sensitive Editor for OpenVMS.

DESOUTRAN, destination out of range

FATAL – The branch destination in an ON GOSUB statement is greater than 32,767 bytes away from
the statement.

User action: Reduce the distance between the destination and the statement.

336

Appendix A. Compile-Time Error Messages

DIMOUTRAN, dimension is out of range

ERROR – The program contains the declaration of an array that specifies a negative number as a
dimension.

User action: Change the dimension to a positive number.

DIMLSSZERO, dimension must be greater than zero

ERROR – The number specified for a dimension must be greater than zero.

User action: Change the number to be greater than zero.

DIMTOOBIG, dimension for array <name> must be between 1 and <number>

ERROR – The number of the dimension specified is greater than the number of dimensions in the array.

User action: Change the dimension number to be less than or equal to the number of dimensions in the
array.

DIRMUSTBE, directive must be only item on line

ERROR – The program contains a compiler directive that is not the only item on the line.

User action: Place the directive on its own line.

DIRNOTIMM, directive not valid in immediate mode

ERROR – A compiler directive was typed in the VAX BASIC Environment.

User action: None. Compiler directives are invalid in immediate mode.

DIVBY_ZER, division by zero

WARNING – The value of a number divided by zero is indeterminate.

User action: Change the expression so that no expression is divided by the constant zero.

DRAWITREQ, DRAW WITH clause requires 4X4 matrix

ERROR – A user matrix is specified in a DRAW statement WITH clause where a two-dimensional
matrix with lower bounds 0 and upper bounds 4 in both dimensions is required.

User action: Declare the matrix to be a two-dimensional matrix with lower bounds 0 and upper bounds
4 in both dimensions.

DUPCLASPE, duplicate clause specified

ERROR – A duplicate clause was found on a SET INITIAL statement or a graphics input statement.

User action: Remove the duplicate clause.

337

Appendix A. Compile-Time Error Messages

DUPLINNOT, duplicate line numbers not ANSI

ERROR – A program compiled with the /ANSI_STANDARD qualifier from the DCL command level,
or called into the VAX BASIC Environment with the OLD command while the /ANSI_STANDARD
qualifier is in effect, contains two identical line numbers.

User action: Remove one instance of the duplicate line number. Even if you compile the program
without the /ANSI_STANDARD, VSI BASIC will ignore all statements connected with the first instance
of the duplicate line number before compiling the program.

DUPLNFND, duplicate line number <number> found

INFORMATION or WARNING

INFORMATION – A line number in an include file is the same as a line number in the main source file.

WARNING – There are two lines in the main source file with the same line number. VSI BASIC keeps
the second occurrence of the line number.

User action: Correct the source by changing one of the line numbers to an unused number.

DYNATTONL, DYNAMIC attribute only valid for MAP areas

ERROR – A COMMON keyword is followed by the DYNAMIC keyword.

User action: Remove the DYNAMIC keyword. The DYNAMIC attribute is valid only for MAP areas.

DYNSTRINH, dynamic string variable <name> inhibits optimization

INFORMATION – This error is reported only when the /NOSETUP qualifier is in effect. The program
contains a dynamic string variable. This prevents optimization of the compiler-generated code.

User action: Place the string variable in a COMMON keyword or MAP area.

ELENOALGN, Elements within array <array-name> are not naturally aligned.

WARNING – Identifies record arrays that may not be naturally aligned because the size of each record
element is not a multiple of the record's natural alignment. This error is reported only when the /
WARNING=ALIGNMENT qualifier is in effect.

User action: Modify the size of the record to be a multiple of the record's natural alignment.

ELSIMPCON, ELSE appears in improper context, ignored

ERROR – The program contains an ELSE clause that either is not preceded by an IF statement or that
appears after an IF has been terminated with a line number or END IF.

User action: Remove either the ELSE clause or the terminating line number or END IF.

338

Appendix A. Compile-Time Error Messages

EMPTYOBJ, Empty object file due to error

INFORMATION – The compiler has detected errors and therefore did not produce an object file.

User action: The errors must be corrected before the compiler will produce an object file.

ENDIMPCON, END IF appears in improper context, ignored

ERROR – The program contains an END IF statement that either is not preceded by an IF statement or
occurs after an IF has been terminated by a line number.

User action: Supply an IF statement or remove the terminating line number.

ENDSTAREQ, END statement required in ANSI

INFORMATION – A program compiled with the /ANSI_STANDARD qualifier does not contain an
END statement.

User action: Include an END statement as the last statement in the program. ANSI Minimal BASIC
requires an END statement.

ENTARRFIE, entire array field of virtual record cannot be passed

ERROR – The program attempts to pass an entire array as a parameter to a subprogram when:

● The array is an item in a record

● The record is itself dimensioned as a virtual array

User action: Assign the values of the array to another array that is of the same data type and dimension
but that is not a field of a virtual array record, and pass the second array as the parameter.

ENTARRNOT, entire array not allowed in this context

ERROR – The program specifies an entire array in a context that permits only array elements, for
example, in a PRINT statement.

User action: Remove the reference to the entire array.

ENTGRONOT, entire GROUP or RECORD not allowed in this context

ERROR – The program specifies an entire GROUP or RECORD in a context that permits only GROUP
or RECORD components, for example, PRINT ABC::XYZ where XYZ is a GROUP.

User action: Remove the reference to the entire GROUP or RECORD.

ENTVIRARR, entire virtual array cannot be a parameter

ERROR – The program attempts to pass an entire virtual array as a parameter.

User action: None. You cannot pass an entire virtual array as a parameter.

339

Appendix A. Compile-Time Error Messages

EOLNOTTER, End of line does not terminate IFs due to active blocks

ERROR – A THEN or ELSE clause contains a loop block, and a line number terminates the if-then-else
before the end of the loop block.

User action: Make sure that any loop is entirely contained in the THEN or ELSE clause.

ERLNOTALL, ERL statement not allowed in programs without line numbers

ERROR – An ERL statement has been found in a program without line numbers.

User action: Remove the ERL statement.

ERRACCLIB, error accessing module <mod-name> in text library <text-lib-name>

ERROR – VSI BASIC found an unexpected LIBRARIAN error while trying to %INCLUDE a text
library module. This error message is followed by a specific LIBRARIAN (LBR) message.

User action: Take appropriate action based on the associated LBR message.

ERRCLOLIB, error closing text library <text-lib-name>

ERROR – The text library specified in a %INCLUDE directive could not be closed. This error message
is followed by the specific LIBRARIAN (LBR) error.

User action: Take appropriate action based on the associated LBR message.

ERROPEFIL, error opening file

ERROR – The file specified in a %INCLUDE directive could not be opened. This error message is
followed by the specific RMS error.

User action: Take appropriate action based on the associated RMS error.

ERROPELIB, error opening text library <text-lib-name>

ERROR – The text library specified in a %INCLUDE directive could not be opened. This error message
is followed by the specific LIBRARIAN (LBR) error.

User action: Take appropriate action based on the associated LBR message.

ERRREADFIL, error reading file <file_name>

ERROR – the compiler encountered problems while reading either a BASIC source file or a CDD audit
file (as specified using the /AUDIT qualifier).

User action: Examine the secondary message that follows this message to find out what went wrong,
then take the appropriate action.

340

Appendix A. Compile-Time Error Messages

ERRRECCOM, erroneous RECORD component

ERROR – The program contains an erroneous record component, for example, specifying A::B when
RECORD A has no component named B.

User action: Remove the erroneous reference.

EXEDIMILL, executable DIMENSION illegal for static array

ERROR – A DIMENSION statement names an array already declared with a DECLARE, COMMON,
MAP, or RECORD statement, or one that was declared statically in a previous DIMENSION statement.

User action: Remove the executable DIMENSION statement or originally declare the array as
executable in a DIMENSION statement.

EXPDECREQ, explicit declaration of <name> required

ERROR – The program is compiled with the /TYPE:EXPLICIT qualifier in effect, and the program
references a variable, constant, function, or subprogram name that is not explicitly declared.

User action: Explicitly declare the variable, constant, function, or subprogram.

EXPIFDIR, expecting IF directive

ERROR – The program contains a %END that is not immediately followed by a %IF.

User action: Supply a %IF immediately following the %END.

EXPNOTALL, expression not allowed in this context

ERROR – The program contains an expression in a context that allows only simple variables, array
elements, or entire arrays, for example, in FIELD and MOVE statements.

User action: Remove the expression.

EXPNOTRES, expression does not contribute to result of string concatenation

INFORMATION – The compiler has detected an expression that is not needed in determining a result.

User action: Review the program to determine if the expression can be eliminated. You may want to
remove the expression if it is determined to be unnecessary.

EXPTOOCOM, expression too complicated

ERROR – The program contains an expression or statement too complicated to compile. This message
can occur whenever VSI BASIC is unable to allocate sufficient registers.

User action: Recode as required; for example, rewrite the statement as two or more less complicated
statements.

341

Appendix A. Compile-Time Error Messages

EXPUNAOPE, expecting unary operator or legal lexical operand

ERROR – A compiler directive contains an invalid lexical expression, for example, %IF *3% %THEN.

User action: Correct the lexical expression.

EXTELSFOU, extra ELSE directive found

ERROR – The program contains a %ELSE directive that is not matched with a %IF directive.

User action: Make sure that each %ELSE is preceded by a %IF, and that each %IF contains no more
than one %ELSE clause.

EXTENDIF, extra END IF directive found

ERROR – A program unit contains a %END %IF without a preceding %IF directive.

User action: Supply a %IF for the %END %IF.

EXTLEFPAR, extra left parenthesis in expression

ERROR – A compiler directive contains a lexical expression with an extra left parenthesis.

User action: Remove the extra parenthesis.

EXTNAMTOO, EXTERNAL name too long, truncating to <new--name>

WARNING – An EXTERNAL statement names a symbol longer than 31 characters.

User action: Shorten the symbol name to 31 characters or less.

EXTRIGPAR, extra right parenthesis in expression.

ERROR – A compiler directive contains a lexical expression with an extra right parenthesis.

User action: Remove the extra parenthesis.

EXTSTRVAR, EXTERNAL STRING variables not supported

ERROR – The program contains an EXTERNAL statement that specifies an external string variable.

User action: Remove or change the EXTERNAL statement. VSI BASIC does not support external
string variables.

342

Appendix A. Compile-Time Error Messages

FEANOTANS, language feature not ANSI

INFORMATION – A program compiled with the /ANSI_STANDARD qualifier contains a VSI BASIC
feature (such as a long variable name or a string array) that does not conform to the ANSI Minimal
BASIC Standard. (See Chapter 5, "Simple Input and Output" for more information about the ANSI
Minimal Standard).

User action: Although VSI BASIC allows you to run programs with non-ANSI language features, you
must remove these features if you want your program to be transportable to other ANSI Minimal BASIC
compilers.

FEANOTAVA, language feature not available in Alpha BASIC

Feature is not currently available in Alpha BASIC.

User action: Rewrite code to work around unavailable feature.

FIEVALONL, FIELD valid only for dynamic string variables

ERROR – A FIELD statement contains a numeric or fixed-length string variable.

User action: Remove the numeric or fixed-length string variable. Only dynamic string variables are valid
in FIELD statements.

FILACCERR, file access error for INCLUDE directive <file-name>

ERROR – The file named in the %INCLUDE directive was correctly opened but could not be read for
some reason, for example, the disk drive was switched off line.

User action: Take action based on the associated RMS error messages.

FILEWRITE, <prog--name> written to file: <file-name>

INFORMATION – The specified program name has been saved in file-name.

User action: None.

FILNOTALL, FILL not allowed in MAP DYNAMIC

ERROR – A MAP DYNAMIC statement contains a FILL item.

User action: Remove the FILL item.

FILNOTDEL, error deleting <file-name>

ERROR – An error was detected in attempting to delete a file.

User action: Supply a valid file specification, or take corrective action based on the associated message.

343

Appendix A. Compile-Time Error Messages

FILTOOBIG, FILL number <n> in overlay <m> of MAP <name> too big

ERROR – A FILL string length or repeat count caused the compiler to try to allocate more than 2^31
longwords of storage.

User action: Check the specified MAP statement and change the FILL string length or repeat count.

FLDNOALGN, FIELD <field-name> within RECORD <record_name> is not naturally
aligned.

WARNING – Identifies a field within a record that was found not to be naturally aligned. This error is
reported only when the /WARNING=ALIGNMENT qualifier is in effect.

User action: Modify the record so that all fields are naturally aligned.

FLOCVTILL, floating CVT valid only for SINGLE and DOUBLE

ERROR – A CVTF$ or CVT$F function names a GFLOAT, HFLOAT, SFLOAT, TFLOAT, or XFLOAT
value as an argument, or the default real size is one of these.

User action: Use a SINGLE argument rather than SFLOAT. Use a DOUBLE argument rather than
GFLOAT, TFLOAT, HFLOAT, or XFLOAT.

FLOPOIERR, floating point error or overflow

WARNING – The program contains a numeric expression whose value is outside the valid range for the
default floating-point data type.

User action: Modify the expression so that its value is within the allowable range or select as the default
REAL size a floating-point data type that has a greater range.

FNEWHINOT, exit from DEF while not in DEF

ERROR – An FNEXIT or EXIT DEF statement has no preceding DEF statement.

User action: Define the function before inserting an FNEXIT or EXIT DEF statement.

FNEWITDEF, end of DEF seen while not in DEF

ERROR – An FNEND or END DEF statement has no preceding DEF statement.

User action: Define the function before inserting an FNEND statement or delete the FNEND statement.

FORFEEMUS, FORM FEED must appear at end of line

INFORMATION – A form-feed character is followed by other characters in the same line.

User action: Remove the characters following the form feed. A form feed must be the last or only
character on a line.

344

Appendix A. Compile-Time Error Messages

FORPARMUS, formal parameter must be supplied for <name>

ERROR – The declaration of a DEF, SUB, or FUNCTION routine contains the parentheses for a
parameter list but no parameters.

User action: Supply a parameter list or remove the parentheses.

FORSTRPAR, formal string parameters may not be FIELDed

ERROR – A variable name appears both in a subprogram formal parameter list and a FIELD statement
in the subprogram.

User action: Remove the variable from the FIELD statement or the parameter list.

FOUENDWIT, found end of <block> without matching <item>

ERROR – The program contains an END SELECT, END DEF, END FUNCTION, FUNCTIONEND,
SUBEND, END SUB, or END IF without a matching SELECT, DEF, SUB, FUNCTION, or IF.

User action: Supply a SELECT, DEF, FUNCTION, SUB, or IF to match the END <block> statement,
or remove the erroneous END statement.

FOUND, found <item> when expecting <item>

ERROR – The program contains a syntax error. VSI BASIC displays the item where the error was
detected, then displays one or more items that make more sense in that context. The compilation
continues so that other errors can be detected. The actual program line remains unchanged and no object
file is produced.

User action: Examine the line carefully to discover the error. Change the program line to correct the
syntax error.

FOUNXTWIT, found NEXT without matching WHILE or UNTIL

ERROR – The program contains a NEXT statement without a corresponding WHILE or UNTIL
statement.

User action: Supply a WHILE or UNTIL statement or remove the erroneous NEXT statement.

FOUWITMAT, found NEXT without matching FOR

ERROR – The program contains a NEXT <control--variable> statement without a matching
FOR <control--variable> statement.

User action: Supply a FOR statement or remove the erroneous NEXT statement.

FUNINVNOT, function invocation not allowed in assignment context

ERROR – An external function invocation (including a parameter list) appears on the left side of an
assignment statement.

User action: Remove the assignment statement. You cannot assign values to a function invocation.

345

Appendix A. Compile-Time Error Messages

FUNNESTOO, function nested too deep

ERROR – The program contains too many levels of function definitions within function definitions.

User action: Reduce the number of nested functions.

FUNWHINOT, exit from FUNCTION while not in FUNCTION

ERROR – An EXIT FUNCTION or FUNCTIONEXIT statement was found in a module that is not a
FUNCTION subprogram.

User action: Remove the EXIT FUNCTION or FUNCTIONEXIT statement.

GRAARRMUS, graphics array must be integer or real

ERROR – The specified array has a data type other than an integer or real data type.

User action: Declare the array with an integer or real data type.

HANNOTDEF, HANDLER not allowed in DEF

ERROR – A HANDLER definition has been found within a DEF function definition.

User action: Remove the HANDLER definition from inside the DEF function definition.

HANNOTFOU, error handler <name> not found

ERROR – You did not define the HANDLER you referenced in a WHEN statement.

User action: Define the HANDLER you reference in the WHEN statement.

HANNOTWHE, HANDLER not allowed in a WHEN block or handler

ERROR – A detached HANDLER definition was found in a WHEN block protected region or
associated handler.

User action: Remove the HANDLER definition from within all WHEN block protected regions and
associated handlers.

HANWHINOT, exit from HANDLER while not in HANDLER

ERROR – An EXIT HANDLER statement was found while not in a HANDLER block.

User action: Remove the EXIT HANDLER statement.

HFLOATNOTS, HFLOAT is not supported

ERROR – HFLOAT floating-point data type is not supported by Alpha BASIC.

User action: Remove the use of HFLOAT floating-point data type, substituting either GFLOAT,
TFLOAT, or XFLOAT as appropriate.

346

Appendix A. Compile-Time Error Messages

HORJUSMUS, horizontal justification must be “LEFT”, “CENTER”, “RIGHT” or “NORMAL”

ERROR – You specified an invalid value for the horizontal component of the SET TEXT JUSTIFY
statement.

User action: Specify one of the values listed in the message.

IDEMAYAPP, IDENT directive may appear only once per module

WARNING – The program contains more than one %IDENT compiler directive.

User action: Remove all but one %IDENT directive.

IDENAMTOO, IDENT directive name is too long

WARNING – The quoted string in a %IDENT directive is too long.

User action: Reduce the length of the string. The maximum length is 31 characters.

IF_EXPMUS, IF directive expression must be terminated by THEN directive

ERROR – A %IF directive contains a %ELSE clause with no intervening %THEN clause.

User action: Insert a %THEN clause.

IF_IN_INC, IF directive in INCLUDE directive needs END IF directive in same file

ERROR – A %INCLUDE file contains a %IF but no %END %IF.

User action: Supply a %END %IF for the %INCLUDE file.

IF_NOTTER, IF statement not terminated

ERROR – The program contains an if-then-else statement within a block (for example, a FOR-NEXT,
SELECT-CASE, or WHILE block) and the end of the block was reached before the if-then-else
statement was terminated.

User action: Check program logic to be sure if-then-else statements are terminated with a line number
or an END IF statement before the end of the block is reached.

ILLALLCLA, illegal ALLOW clause <clause>

ERROR – The program contains an ALLOW clause on a GET statement, and the file was not opened
with the UNLOCK EXPLICIT clause.

User action: Either remove the ALLOW clause from the GET statement or use the UNLOCK
EXPLICIT clause in the OPEN statement.

347

Appendix A. Compile-Time Error Messages

ILLARGBP2, illegal argument count for BASIC-PLUS-2

INFORMATION – The program contains a SUB, DEF, or EXTERNAL FUNCTION reference with
more than 32 parameters. This error is reported only when the /FLAG:BP2COMPATIBILITY qualifier
is in effect.

User action: If the program must run under both VSI BASIC and PDP–11 BASIC-PLUS-2, the function
must have 32 or fewer parameters.

ILLARGPAS, illegal argument passing mechanism

ERROR – The program specifies an invalid argument-passing mechanism, for example, passing strings or
arrays BY VALUE, or passing an entire virtual array.

User action: Check all elements for the proper parameter-passing mechanism.

ILLCALFUN, illegal CALL of a DECIMAL, HFLOAT or STRING function

ERROR – You attempted to use the CALL statement to invoke either a DECIMAL, HFLOAT, or
STRING function.

User action: Invoke the function not using the CALL statement.

ILLCHA, illegal character <ASCII code>

WARNING – The program contains illegal or incorrect characters.

User action: Examine the program for correct usage of the VSI BASIC character set and possibly delete
the character.

ILLCHAEXT, illegal character <ASCII code> in external name

ERROR – The external symbol in an EXTERNAL FUNCTION or CONSTANT declaration contains an
invalid character.

User action: Remove the invalid character. External names can use only printable ASCII characters:
ASCII values in the range 32 to 126, inclusive.

ILLCHAIDE, illegal character <ASCII value> in IDENT directive

WARNING – A %IDENT directive contains an illegal character with the reported ASCII value.

User action: Remove the illegal character.

ILLCONTYP, illegal constant type

ERROR – The program contains an invalid declaration, for example, DECLARE RFA CONSTANT.

User action: Remove the invalid data type. You cannot declare constants of the RFA data type.

348

Appendix A. Compile-Time Error Messages

ILLEXTPDP, <name> is illegal as a PDP–11 external name

INFORMATION – This error is reported only when the /FLAG=BP2COMPATIBILITY qualifier is in
effect. The external name is longer than six characters or contains a non-RAD50 character.

User action: Reduce the length of the name or remove the non-RAD50 character.

ILLFRMNAM, illegally formed name

ERROR – The program contains an invalid user identifier (such as a variable, constant, or function
name).

User action: Change the name to comply with the rules for naming user identifiers. See the VSI BASIC
Reference Manual for more information.

ILLFRMNUM, illegally formed numeric constant

ERROR – The program contains either: 1) an invalid E-format expression, or 2) a numeric constant with
a digit that is invalid in the specified radix, for example, a decimal constant containing a hexadecimal
digit.

User action: Supply a valid E-format expression or a constant that is valid in the specified radix.

ILLGOTO, can't GOTO outside current procedure

WARNING – The target line number of an immediate mode GOTO statement is outside of the currently
compiled procedure.

User action: None. If you RUN a source file containing more than one program unit, the currently
compiled program is the last program unit in the source file. If you use the OLD command to read a
program into memory and load one or more object modules, then type RUN, the currently compiled
procedure is the program you read into memory with OLD.

ILLIDEPDP, illegal %IDENT string for PDP–11

INFORMATION – A %IDENT compiler directive contains a string that is invalid for PDP–11 systems.
This error is issued only when the BP2 compatibility flagger is enabled.

User action: Change the %IDENT string. The string must be from 1 to 6 characters, and must contain
only RAD-50 characters.

ILLIO_CHA, illegal I/O channel

ERROR – A constant channel expression is greater than 99, or a variable channel expression is greater
than 119.

User action: If the channel expression is a constant, change to be less than or equal to 99. A variable
channel expression can be less than or equal to 119; however, channels in the range 100 to 119 are
reserved for programs using LIB$GET_LUN.

349

Appendix A. Compile-Time Error Messages

ILLLINNUM, illegal line number in CHAIN

ERROR – A CHAIN with LINE statement specifies an invalid line number. Either the number is outside
the valid range, or a string expression follows the LINE keyword.

User action: Supply an integer line number from 1 to 32,767, inclusive.

ILLLOCARG, illegal LOC argument

ERROR – An argument to the LOC function is a constant, virtual array element, or expression.

User action: Change the argument to the LOC function.

ILLLOONES, illegal loop nesting, expecting NEXT <VARIABLE>

ERROR – The program contains overlapping loops.

User action: Examine the program logic to make sure that the FOR and NEXT statements for the inside
loop lie entirely within the outside loop.

ILLMATOPE, illegal matrix operation

ERROR – The program attempts matrix division. The operation is treated as a MAT multiply, and the
compilation continues.

User action: Remove the attempted matrix division. VSI BASIC does not support this operation.

ILLMCHPDP, illegal passing mechanism on PDP–11s

INFORMATION – This error is reported only when the /FLAG=BP2COMPATIBILITY qualifier is in
effect. A parameter list contains a BY clause that is invalid in PDP–11 BASIC-PLUS-2, for example,
specifying BY DESC for parameters that are not entire arrays or strings.

User action: See the VSI BASIC Reference Manual for allowable BASIC-PLUS-2 parameter-passing
mechanisms.

ILLMIDLEN, illegal MID assignment length

ERROR – The value of the length in the MID statement is either greater than the length of the string or
less than or equal to zero.

User action: Correct the length to be between 1 and the length of the string.

ILLMIDSTRT, illegal MID starting value

ERROR – The starting value in the MID statement is less than or equal to zero.

User action: Correct the starting value to be greater than or equal to one.

350

Appendix A. Compile-Time Error Messages

ILLMODMIX, illegal mode mixing

ERROR – The program contains string and numeric operands in the same operation.

User action: Change the expression so that it contains either string or numeric operands, but not both.

ILLMULDEF, illegal multiple definition of name <name>

ERROR – The program uses the same name for:

● More than one variable

● A variable and a MAP

● A variable and a COMMON

● A MAP and COMMON

User action: Use unique names for variables, COMMONs, and MAPs.

ILLMULOPT, OPTIONAL cannot be specified more than once

ERROR – The OPTIONAL clause was specified more than once in the EXTERNAL statement for
a single SUB or FUNCTION. This is not allowed because OPTIONAL implies that all parameters
following it are optional.

User action: Fix the EXTERNAL statement so that it has at most one OPTIONAL clause per SUB or
FUNCTION.

ILLNESDEF, illegally nested DEFs

ERROR – The program contains a DEF function block within another DEF function block.

User action: Remove the inner DEF block. A DEF cannot contain another DEF.

ILLOPEARG, illegal operation for argument

ERROR – The program performs an operation that is inconsistent with the data type of the arguments,
for example, an arithmetic operation on variables of the RFA data type.

User action: Remove the operation or change the data type of the arguments.

ILLOPTBAS, illegal OPTION BASE value

INFORMATION – A program compiled with the /ANSI_STANDARD qualifier contains an OPTION
BASE statement that specifies a value other than 0 or 1.

User action: Change the OPTION BASE statement to specify either 0 or 1.

351

Appendix A. Compile-Time Error Messages

ILLQUACOM, illegal qualifier combination

ERROR – In the VAX BASIC Environment, you specified an illegal combination of qualifiers, such as
COMPILE/NOSHOW=CDD.

User action: Issue the command again, using a valid combination of qualifiers.

ILLSTROPE, illegal string operator

ERROR – The program specifies an invalid string operation, for example, A$ = B$ – C$.

User action: Replace the invalid operator.

ILLUSAFIE, illegal usage of FIELDed variable

ERROR – A MAT statement operates on an element of a string array that appears in a FIELD statement.

User action: Remove the array from the MAT statement.

ILLUSEUNA, illegal use of unary operator

ERROR – A compiler directive contains an invalid lexical expression, for example, %IF 1 NOT 2.

User action: Correct the invalid lexical expression.

ILLWAIVAL, WAIT value must be in the range 0 to 255, inclusive

ERROR – An integer expression was specified on a WAIT clause that is less than 0 or greater than 255.

User action: Specify an integer expression from 0 to 255.

IMMMODOPE, immediate mode operation requires storage allocation

ERROR – An immediate mode statement attempted to allocate storage, for example, to create a new
variable.

User action: None. You cannot create new storage in immediate mode.

IMMNOTANS, immediate mode not valid when ANSI

ERROR – An immediate mode statement was typed when in ANSI mode.

User action: None.

IMPCNTNOT, implied continuation not allowed

ERROR – The program contains an implied continuation line after a statement that does not allow
implicit continuation, for example, a DATA statement.

User action: Use an ampersand (&) to continue the statement.

352

Appendix A. Compile-Time Error Messages

IMPDECILL, implicit declaration of <name> illegal in immediate mode

ERROR – A new variable was named in an immediate mode statement after a STOP, for example,
PRINT B after a STOP in a program that has no variable named B.

User action: None. You cannot create new variables in immediate mode after a STOP statement.

IMPDECNOT implied declaration not allowed for <name> with /EXPLICIT

ERROR – A program compiled with the /TYPE=EXPLICIT qualifier contains an implicitly declared
variable.

User action: Declare the variable explicitly or compile the program without the /TYPE=EXPLICIT
qualifier.

INACODFOL, inaccessible code follows line <n> statement <m>

WARNING – The compiler has detected code that will never be executed, for example, a multistatement
line whose first statement is a GOTO, EXIT, ITERATE, RESUME, or RETURN. (VAX BASIC only)

User action: Review the program to determine if the code should be executed. If you determine the
code should be executed, then you should revise the program flow logic accordingly. Otherwise, the
code is unnecessary and you may want to remove it. In the case of the GOTO, EXIT, ITERATE,
RESUME, or RETURN statements, make sure that these statements are the only statements on the line,
or the last statement on a multistatement line.

INCDIRSYN, INCLUDE directive syntax error

ERROR – A %INCLUDE directive either is not followed by a quoted string or incorrectly uses the
%FROM %CDD or %FROM %LIBRARY clause.

User action: Supply either a quoted string or the correct syntax for the %FROM %CDD or %FROM
%LIBRARY clause.

INCFUNUSA, inconsistent function usage for function <name>

ERROR – The parameter list in a DEF function invocation contains a string where the function expected
a number, or vice versa. This message is issued only when the invocation occurs before the DEF
statement in the program.

User action: Supply a correct parameter in the function invocation or correct the parameter list in the
DEF.

INCRMSERR, INCLUDE directive RMS error number <number>

ERROR – A %INCLUDE directive caused an RMS error when accessing the specified file.

User action: Take action based on the reported RMS error number.

353

Appendix A. Compile-Time Error Messages

INCSUBUSE, inconsistent subscript use for <array-name>

ERROR – The number of subscripts in an array reference does not match the number of subscripts
specified when the array was created.

User action: Specify the same number of subscripts.

INIOUTRAN, initial value must be within the specified range

ERROR – The specified initial value is not within the range specified in the RANGE clause.

User action: Change either the initial value or the range values so that the initial value falls within the
range.

INPPROMUS, input prompt must be a string constant

ERROR – An INPUT, LINPUT, or INPUT LINE statement list contains a numeric constant
immediately following the statement.

User action: Remove the numeric constant. You can specify only a string constant immediately after an
INPUT, LINPUT, or INPUT LINE statement.

INSERTB, assuming <keyword> before <keyword>

ERROR – The program contains a syntax error. VSI BASIC assumes a keyword is missing and continues
compilation under that assumption so that other errors can be detected. The actual program line remains
unchanged and no object file is produced.

User action: Examine the line carefully to discover the error. Change the program line to correct the
syntax error.

INSERTM, assuming <keyword> to match <keyword>

ERROR – The program contains a syntax error. VSI BASIC assumes a keyword is misspelled and
continues compilation under that assumption so that other errors can be detected. The actual program
line remains unchanged and no object file is produced.

User action: Examine the line carefully to discover the error. Change the program line to correct the
syntax error.

INSSPADYN, insufficient space for MAP DYNAMIC variable in MAP <name>

ERROR – A variable named in a MAP DYNAMIC statement is larger than the MAP, for example, a
GFLOAT variable in a MAP that is only four bytes long.

User action: Increase the size of the MAP so that it is large enough to hold the largest member.

354

Appendix A. Compile-Time Error Messages

INTCODERR, an internal coding error has been detected. Submit an SPR.

ERROR – An error has been detected in the VSI BASIC compiler.

User action: Please submit a software problem report (SPR) with the source code of a small program
that produces this error.

INTCONEXC, integer constant exceeds machine integer size

ERROR – The value specified in a DECLARE CONSTANT statement exceeds the largest allowable
value for an integer.

User action: Supply a value in the valid range.

INTCONREQ, integer constant required

ERROR – The program contains a noninteger named constant in a context that requires an integer. For
example:

DIM A ('123'D)

User action: Supply an integer constant.

INTDATTYP, integer data type not supported in ANSI

ERROR – A program compiled with the /ANSI_STANDARD qualifier contains an integer variable or
array.

User action: Remove the integer variable or array.

INTERR, integer error or overflow

WARNING – The program contains an integer expression whose value is outside the valid range.

User action: Modify the expression so that its value is within the allowable range or use an integer data
type that can contain all possible values for the expression.

INTERRDES, please submit an SPR ---- internal error in comment processing

WARNING – An error has been detected while processing a comment in the VSI BASIC compiler.

User action: Please submit a software problem report (SPR) with the source code of a small program
that produces the error.

INTERRSCA, please submit an SPR ---- internal error in SCA support

ERROR – An error has been detected in the SCA support in the VSI BASIC compiler. If you recompile
your program without the /ANALYSIS_DATA qualifier, this error should no longer appear.

User action: Please submit a software problem report (SPR) with the source code of a small program
that produces the error.

355

Appendix A. Compile-Time Error Messages

INVCHNNUM, invalid channel number, must be greater than zero

ERROR – A channel number less than or equal to zero was specified.

User action: Change the channel number to be greater than zero.

INVCONREQ, invalid conversion requested

ERROR – The program contains a reference to the REAL or INTEGER functions and the argument is
an entire array, GROUP, RECORD, or RFA expression.

User action: Remove the invalid argument. The argument to these functions must be a numeric
expression.

INVINTTYP, invalid integer type

ERROR – A reference to the INTEGER function contains an invalid data-type keyword, for example, A
= INTEGER(A, SINGLE).

User action: Change the invalid data-type keyword. The INTEGER function returns only BYTE,
WORD, LONG, or QUAD values.

INVLOGNAM, invalid logical name

ERROR – The argument to the ASSIGN compiler command specified a logical name length of less than
1 or greater than 63.

User action: Supply a valid logical name.

INVPRISPE, invalid priority specification, expecting < or >

ERROR – On the SET INPUT PRIORITY statement, you specified a character other than < or > to
indicate the relative priorities of the two transformation numbers.

User action: Specify the priority relationship with less than < (lower priority) or greater than > (higher
priority).

INVREATYP, invalid real type

ERROR – A reference to the REAL function contains an invalid data-type keyword, for example, A =
REAL(A, LONG).

User action: Change the invalid data-type keyword. The REAL function returns only SINGLE,
DOUBLE, GFLOAT, SFLOAT, TFLOAT, XFLOAT, or HFLOAT values.

INVSUBTYP, <data-type> is not a subtype of <data-type>

ERROR – The program contains an invalid declaration containing contradictory type declarations, for
example, DECLARE REAL BYTE.

User action: Supply a valid declaration. Use only valid integer subtypes for INTEGER and only valid
floating-point subtypes for REAL.

356

Appendix A. Compile-Time Error Messages

IS_NOTDYN, <name> is not a DYNAMIC MAP variable of MAP <name>

ERROR – A REMAP statement names a variable that was not named in the MAP DYNAMIC statement
for that MAP.

User action: Remove the variable from the REMAP statement or name the variable in the MAP
DYNAMIC statement for that map.

ITEMUSAPP, ITERATE must appear within a loop

ERROR – The program contains an ITERATE statement that is not within a FOR-NEXT, WHILE, or
UNTIL loop.

User action: Remove the ITERATE statement, or surround it with a loop.

JMPBADBLO, jump to line number <line number> is into a controlled block

ERROR – The program attempts to transfer control to a WHEN block or associated handler.

User action: Change the program logic so that it does not transfer control to a WHEN block or
associated handler.

JMPBADLAB, jump to label: <label> is into a block

ERROR – The program attempted to transfer control into a FOR-NEXT, WHILE, UNTIL, IF, or
SELECT-CASE block.

User action: Change the program logic so that it does not transfer control into a block.

JMPBADLIN, jump to line number <number> is into a block

INFORMATION – The program transfers control to a line number within a FOR-NEXT, WHILE,
UNTIL, IF, or SELECT-CASE block.

User action: This is an informational message. However, it is bad programming practice to transfer
control into a block.

JMPINTDEF, jump into DEF

ERROR – The program attempts to transfer control into a DEF block.

User action: Change the control statement; you cannot transfer control into a DEF block except by
invoking the function.

JMPOUTDEF, jump out of DEF

ERROR – The program attempts to transfer control out of a DEF block.

User action: Change the control statement. Use an EXIT DEF, FNEXIT, FNEND, or END DEF
statement to transfer control out of a DEF block.

357

Appendix A. Compile-Time Error Messages

JMPOUTHAN, jump out of HANDLER

ERROR – The program attempts to transfer control out of an error handler.

User action: Change the control statement. Use an EXIT HANDLER, RETRY, or CONTINUE
statement to transfer control out of an error handler.

JMPOUTPRO, jump out of program unit

ERROR – In a source file containing more than one program module, a statement attempts to transfer
control from one module into another.

User action: Change the statement that attempts to transfer control; you cannot transfer control into a
different program module.

JMPUNRLIN, jump to unreferenceable line number <number>

ERROR – A RESUME, GOSUB, or GOTO statement attempts to transfer control to a CASE statement.

User action: Label or number the SELECT statement and transfer control to the beginning of the
SELECT-CASE block.

KEYCANNOT, key <name> in MAP <map-name> cannot be a dynamic variable

ERROR – A KEY clause in an OPEN statement specifies a variable declared as dynamic in a MAP
DYNAMIC statement.

User action: Specify a static variable in the KEY clause; that is, declare the variable in a MAP
statement, not a MAP DYNAMIC statement.

KEYIS_NEE, key is needed for indexed files

ERROR – The program attempts to open an indexed file for output, and the PRIMARY KEY clause is
missing.

User action: Supply a PRIMARY KEY clause.

KEYMUSBE, key must be either word, longword, quadword, string, decimal, record or group

ERROR – A FIND or GET statement on an indexed file contains a key specification that is not a
WORD, LONG, QUAD, STRING, DECIMAL, or an 8-byte RECORD or GROUP expression.

User action: Change the key specification to be a WORD, LONG, QUAD, STRING, DECIMAL, or an
8-byte RECORD or GROUP expression.

358

Appendix A. Compile-Time Error Messages

KEYMUSTBE, key, <vbl-name> in map <map-name> must be either word, longword,
quadword, string, decimal, record or group

ERROR – An OPEN statement contains a key specification that is not an unsubscripted WORD, LONG,
QUAD, STRING, DECIMAL, or an 8-byte RECORD or GROUP variable.

User action: Change the key specification to be an unsubscripted WORD, LONG, QUAD, STRING,
DECIMAL, or an 8-byte RECORD or GROUP variable.

KEYNOTMAP, KEY <vbl-name> is not an unsubscripted variable in MAP <name>

ERROR – An indexed file OPEN statement specifies a KEY variable that does not appear in a MAP
statement.

User action: Place the KEY variable in the MAP referenced by the OPEN statement's MAP clause.

KEYREQMAP, KEY clauses require a MAP clause

ERROR – An OPEN statement specifies KEY clauses without specifying a MAP clause.

User action: Supply a MAP clause to define the position of the keys in the record buffer.

KEYSEGMUS, key segment <name> in map <map-name> must be a string key

ERROR – An OPEN statement specifies a segmented key containing a numeric variable. For example:

 OPEN "INDEX.DAT" AS FILE #1, ORGANIZATION INDEXED,
& PRIMARY KEY (A$, B$, C%), MAP ABC

User action: Specify only string variables in segmented keys.

KEYSINC, <keyword> keyword inconsistent with <keyword>

ERROR – An OPEN statement contains contradictory record format specifications, for example, both
FIXED and VARIABLE.

User action: Specify only one record format.

KEYTOOLON, KEY <name> in MAP <name> is too long (max is 255)

ERROR – A KEY variable is longer than 255 characters.

User action: Reduce the length of the KEY variable. The maximum key length is 255 characters.

KEYWORINC, keyword inconsistent with <OPEN clause> clause

ERROR – An OPEN statement contains an ALLOW, ACCESS, or RECORDTYPE clause whose
keyword argument is invalid, for example, ACCESS FORTRAN.

User action: Change the clause argument to a valid keyword for that clause.

359

Appendix A. Compile-Time Error Messages

LABNOTDEF, label <label> not defined

ERROR – The program tries to transfer control to a nonexistent label.

User action: Define the label before transferring control to it.

LABNOTLAB, label <name> does not label an active block statement

ERROR – An EXIT statement in a loop, if-then-else, or SELECT-CASE block specifies a label that does
not refer to that block.

User action: Change the program so that the label actually refers to the block in which the EXIT
statement occurs.

LABNOTLOO, label <name> does not label an active loop statement

ERROR – In a loop, an EXIT or ITERATE statement specifies a label that does not refer to that loop.

User action: Change the program so that the label actually refers to the loop in which the EXIT or
ITERATE statement occurs.

LANFEADEC, language feature is declining

INFORMATION – The program contains a language feature that is not recommended for new
program development, for example, the FIELD statement. This error is reported only when the /
FLAG=DECLINING qualifier is in effect.

User action: Use: 1) MAP, MAP DYNAMIC and REMAP statements instead of FIELD, 2) EDIT$
rather than CVT$$, and 3) overlaid MAPs rather than CVTxx functions.

LANFEAINC, language feature incompatible with BASIC-PLUS-2

INFORMATION – The program contains syntax that results in different behavior under VSI BASIC and
PDP–11 BASIC-PLUS-2, for example, opening a terminal–format file. This error is reported only when
the /FLAG=BP2COMPATIBILITY qualifier is in effect.

User action: None.

LANFEAINH, language feature inhibits optimization

INFORMATION – A program compiled with the /NOSETUP qualifier contains a language feature that
requires /SETUP, for example, the RESUME statement. The compilation continues with /SETUP in
effect.

User action: None. The program must be compiled with /SETUP in effect for the language feature to
work.

360

Appendix A. Compile-Time Error Messages

LANFEANOT, language feature not available in BASIC-PLUS-2

INFORMATION – The program contains a language element that is not supported in BASIC-PLUS-2,
for example, RECORD statements. This error is reported only when the /FLAG=BP2COMPATIBILITY
qualifier is in effect.

User action: If the program must run under both VSI BASIC and PDP–11 BASIC-PLUS-2, you must
remove the incompatible language feature.

LANFEAOPE, language feature not available in BASIC

ERROR – The program contains a PRINT statement with a RECORD clause. BASIC does not support
the RECORD clause in PRINT statements.

User action: Remove the RECORD clause.

LEFBOUSPE, left boundary must be less than the right boundary

ERROR – In a statement that specifies a viewport or windowsize, you specified a left boundary that is
greater than or equal to the corresponding right boundary.

User action: Correct the left boundary so that it is less than the right boundary.

LENDYNSTR, string length not allowed on dynamic string <name>

ERROR – The program contains a dynamic string variable declaration that specifies a string length.

User action: Length specifications are allowed only for fixed-length strings; remove the length
specification from the dynamic string, or allocate the string in a MAP or COMMON.

LENNUMFIL, string length not allowed on numeric FILL

ERROR – The program contains a numeric FILL item that specifies a length.

User action: Remove the length specification from the numeric FILL item.

LETDIRSYN, LET directive syntax error

ERROR – A %LET directive contains a syntax error, for example, an invalid lexical identifier.

User action: Use the correct syntax for the %LET directive.

LETKEYREQ, LET keyword required in ANSI

INFORMATION – A program compiled with the /ANSI_STANDARD qualifier contains an assignment
statement that omits the LET keyword.

User action: Supply a LET keyword.

361

Appendix A. Compile-Time Error Messages

LEXDIRSYN, lexical directive syntax error

ERROR – A syntax error was detected in a lexical directive.

User action: Correct the syntax of the lexical directive.

LEXIDEMUS, lexical identifier must be declared before reference

ERROR – You reference a lexical identifier before you declare it.

User action: Declare the lexical identifier before you reference it.

LINNOTALL, line numbers not allowed, use the EDIT command

ERROR – An EDIT command with a line number has been found in a program without line numbers.

User action: Use the EDIT command without specifying a line number to invoke a text editor.

LINNUMERR, illegal line number

ERROR – The program contains a line number that is outside the valid range or is not a valid integer
(note that the percent sign (%) suffix is not valid for line numbers).

User action: Specify only integer line numbers in the range 1 to 32,767, inclusive.

LINNUMINC, line number may not appear in INCLUDE directive file

ERROR – The file specified in a %INCLUDE compiler directive contains a line number.

User action: Remove the line number from the file.

LINNUMUND, line number <n> undefined due to conditional compilation

ERROR – The program references a line number that does not appear in the object code as a result of
the branch taken in a %IF-%THEN-%ELSE-%END-%IF directive.

User action: Change the %IF-%THEN-%ELSE-%END-%IF directive or remove the line number
reference.

LINOUTORDE, Line numbers are out of order

ERROR – The line numbers in an Alpha BASIC program are not in ascending order.

User action: Reorder the line numbers and/or statements in your program so that the line numbers are
in ascending order.

LINREQTWO, LINES output requires at least 2 X,Y points

ERROR – A LINE graphic output statement specifies less than 2 points.

User action: Specify a minimum of 2 points in the LINE graphic output statement.

362

Appendix A. Compile-Time Error Messages

LNPNOTBP2, programs without line numbers are not allowed in BASIC-PLUS-2

INFORMATION – BASIC-PLUS-2 does not support programs without line numbers. This error is
reported only when the /FLAG = BP2COMPATIBILITY qualifier is in effect.

User action: Add a line number to the first line of the program.

LOGOPENON, logical operation on noninteger quantity

ERROR – The program contains a logical operation performed on strings or real numbers.

User action: Change the logical operands to integers.

LOOINDMUS, loop control variable must be a numeric variable

ERROR – A FOR statement specifies a string variable as the loop control variable.

User action: Specify a numeric variable. You can use only numeric variables as loop control variables.

LOOINIMUS, loop initial value must be a numeric expression

ERROR – A FOR statement attempts to assign a string expression as the loop control variable's initial
value.

User action: Remove the string expression. You can assign only numeric values as the loop's initial
value.

LOOLIMMUS, loop limit must be numeric

ERROR – A FOR statement attempts to assign a string expression as the loop control variable's limiting
value.

User action: Remove the string expression. You can assign only numeric values as the loop control
variable's limiting value.

LOOWILNEV, loop will never execute

WARNING – The program contains a FOR/NEXT loop that is not executable, for example, FOR I% =
1% TO 0%. Compilation continues, but the loop is ignored.

User action: Change the loop parameters or insert an appropriate STEP clause.

LOWLSSUP, lower bound must be less than upper bound

ERROR – The lower bound specified in the array is greater than the upper bound.

User action: Correct the bounds.

363

Appendix A. Compile-Time Error Messages

LOWNOTVIR, lower bound not permitted with virtual arrays

ERROR – Lower bounds of virtual arrays must be zero.

User action: Correct the lower bounds to be zero.

LOWNOTZERO, lower bound must be zero

ERROR – The lower bound of the array must be zero.

User action: Correct the lower bound to be zero.

LOWRANVAL, range lower value must be less than upper value

ERROR – In the RANGE clause, the first value is greater than the second value.

User action: Change the range clause so that the first value is less than the second value.

LRSETNOT, <keyword> is not allowed with MID

ERROR – The LSET and RSET keywords are not allowed with MID.

User action: Change the LSET or RSET keyword to LET.

MACNOTDEF, macro is not defined

ERROR – The macro identifier used in this %UNDEFINE directive was not previously defined by a
%DEFINE directive.

User action: Verify that the identifier has been previously defined with the %DEFINE directive. Verify
that the %DEFINE and %UNDEFINE macro IDs match.

MAPDYNNOT, MAP DYNAMIC <map-name> may not be larger than 32,767 bytes

ERROR – A MAP DYNAMIC statement references a map that is greater than 32,767 bytes in size.

User action: Reduce the size of the map, as defined in the MAP statement, or MAP statements, to
32,767 bytes or less.

MAPDYNREQ, MAP DYNAMIC <name> requires corresponding static MAP

ERROR – The program contains a MAP DYNAMIC statement whose MAP name does not appear in a
MAP statement.

User action: Provide a MAP with the same name as the MAP DYNAMIC name.

MAPNOTDEF, MAP <name> used in OPEN not defined

ERROR – An OPEN statement's MAP clause references a nonexistent MAP.

User action: Define the MAP referenced by the MAP clause, or remove the MAP clause.

364

Appendix A. Compile-Time Error Messages

MAPTOOLAR, MAP too large in OPEN

FATAL – The size of the MAP referenced in an OPEN statement is greater than 32,767 bytes.

User action: Reduce the size of the MAP.

MAPVARALI, variable <name> not aligned in multiple references in MAP <name>

ERROR – More than one overlaid MAP contains the same variable, but the variable's position differs in
the MAPs.

User action: The same variable can appear in multiple overlaid MAPs, but the variable must occupy the
same position in the PSECT; make sure that the variable appears in the same position in the MAPs.

MAPVARREF, MAP variable <name> referenced before declaration

INFORMATION – A reference to a MAP variable occurs before the MAP statement.

User action: Make sure that the MAP statement precedes any references to variables in the MAP.

MATDIMERR, matrix dimension error

ERROR – The program either:

● Contains a MAT IDN, MAT TRN, or MAT INV performed on a one-dimensional array

● Performs a matrix operation that requires identical subscripts in the operand arrays and those arrays
have different subscripts

User action: Dimension the arrays to the proper number of subscripts.

MATLOWBOU, matrix must have lower bound 0 and upper bound 4

ERROR – The specified transformation matrix either has a lower bound other than 0 or an upper bound
other than 4.

User action: Declare the matrix such that both dimensions have a lower bound of 0 and an upper bound
of 4.

MATMUL2OP, MAT multiply of 2 4X4 matrices required

ERROR – You specified the wrong dimensions in a matrix in the MAT multiply statement or a WITH
clause on the DRAW statement, or you specified a nonmultiplication operation in a multiple operation
MAT arithmetic statement. For example: MAT A=B*C+D. A two-dimensional matrix with lower
bounds 0 and upper bounds 4 in both dimensions is required.

User action: Declare the matrix to be a two-dimensional matrix with lower bounds 0 and upper bounds
4 in both dimensions.

365

Appendix A. Compile-Time Error Messages

MATONEOR2, MAT statements require one or two dimensions

ERROR – A MAT statement references an array of more than two dimensions.

User action: Remove the array reference. MAT statements are valid only on arrays of one or two
dimensions.

MAXCONCOM, maximum conditional compilation depth exceeded

FATAL – Too many nested %IF-%THEN-%ELSE-%END-%IF directives are contained in the program.

User action: Reduce the number of nested %IF-%THEN-%ELSE-%END-%IF directives. You can nest
up to eight such constructs.

MAXDIMEXC, maximum number of dimensions exceeded. Maximum is 32

ERROR – An array declaration specifies more than the allowed number of dimensions.

User action: Reduce the number of dimensions to 32 or less.

MAXKEYSEG, maximum of 8 key segments exceeded

ERROR – An OPEN statement specifies a segmented key with more than eight segments.

User action: Reduce the number of segments in the KEY clause to eight or less.

MAXPAREXC, maximum parameters exceeded for <name>. Maximum is <number>

ERROR – The program attempts to declare a DEF with more than eight parameters or a subprogram
with more than 255 parameters.

User action: Reduce the number of parameters; DEFs allow up to eight parameters and subprograms
allow up to 255 parameters.

MAXPAREXP, no more than <number> parameter(s) expected for <sub--func--name>

ERROR – An external SUB or FUNCTION was called with more parameters than were specified in the
EXTERNAL statement, including both OPTIONAL and non-OPTIONAL parameters.

User action: Reduce the number of parameters in the call.

MERGE, merged <item> and <item>

ERROR – The program contains a syntax error. VSI BASIC assumes that there is an incorrect space, for
example, PR INT. Compilation continues so that other errors can be detected. The actual program line
remains unchanged and no object file is produced.

User action: Examine the line carefully to discover the error. Change the program line to correct the
syntax error.

366

Appendix A. Compile-Time Error Messages

MINPAREXP, at least <number> parameter(s) expected for <sub--func--name>

ERROR – An external SUB or FUNCTION was called with fewer parameters than were specified as
non-OPTIONAL parameters in the EXTERNAL statement.

User action: Increase the number of parameters in the call so that the number of parameters is equal to
or greater than the number of non-OPTIONAL parameters.

MISENDIF, missing END IF directive before end of program unit

ERROR – A %IF directive crosses a program module boundary.

User action: Terminate the %IF with a %END %IF before beginning a new source module.

MISENDFOR, missing END <block> for <block> at line <n> statement <m>

ERROR – The program contains a SELECT, IF, or DEF without a matching END statement.

User action: Supply a matching END statement.

MISMATEND, mismatched END, expected <block>

ERROR – The program contains an incorrect END statement, for example, an END RECORD statement
instead of an END GROUP statement.

User action: Supply the correct type of END statement.

MISMATFOR, missing NEXT for <item> at line <n> statement <m>

ERROR – The program contains a FOR, WHILE, or UNTIL without a matching NEXT.

User action: Supply the matching NEXT statement.

MODNOTFND, module <mod-name> not found in text library <text-lib-name>

ERROR – The module name you specified in a %INCLUDE directive was not found in the text library
you specified.

User action: Place the module name in the specified text library.

MULCHRARR, multiple character array name not ANSI

INFORMATION – A program compiled with the /ANSI_STANDARD qualifier contains an array whose
name contains more than one character.

User action: Reduce the length of the name to a single character.

367

Appendix A. Compile-Time Error Messages

MULCHRDEF, multiple character DEF name not ANSI

INFORMATION – A program compiled with the /ANSI_STANDARD qualifier contains a DEF whose
name contains more than one character.

User action: Reduce the length of the name to a single character.

MULDEFLEX, multiple definition of lexical identifier is illegal

ERROR – A lexical constant is named in more than one %LET directive.

User action: Declare the lexical constant only once with %LET.

MULHANSPE, multiple handlers specified for WHEN block

ERROR – A WHEN block specifies both an attached and detached error handler.

User action: Change the WHEN block to specify either an attached or detached error handler.

MULMAIPROG, multiple main program units are illegal

ERROR – More than one main program unit has been detected in a single source file.

User action: Modify your source file so that all VSI BASIC statements are contained within a single
main program or within a subprogram.

MULNOTBP2, multiple program units per module not BASIC-PLUS-2 compatible

INFORMATION – A program compiled with the /FLAG=BP2COMPATIBILITY qualifier contains
more than one program unit. BASIC-PLUS-2 does not allow more than one program unit in a single file.

User action: Separate the program into individual program units and compile the units separately.

MULOPTBAS, multiple OPTION BASE statements not ANSI

ERROR – A program compiled with the /ANSI_STANDARD qualifier contains more than one OPTION
BASE statement.

User action: Specify the OPTION BASE statement only once per program.

MULPRONOT, multiple program units per module not ANSI

INFORMATION – A program compiled with the /ANSI_STANDARD qualifier contains more than one
program unit.

User action: Rewrite the program converting the subprograms to subroutines.

368

Appendix A. Compile-Time Error Messages

MULSTAPER, multiple statements per line not ANSI

INFORMATION – A program compiled with the /ANSI_STANDARD qualifier contains more than one
statement on a line.

User action: Change the program so that each statement has its own line number.

MULTDEF, multiple definition of <name>

WARNING – A variable is declared in more than one declarative statement.

User action: Make sure that the variable is declared only once.

NAMNOTREC, name <name> is not of a RECORD component

ERROR – A RECORD component reference uses an invalid record name, for example, A::B when A is
not a RECORD name.

User action: Change the erroneous reference.

NAMTOOLON, name is too long, changed to <name>

WARNING – A variable or array name is longer than 31 characters. VSI BASIC truncates the name to
31 characters and continues compilation so that other errors can be detected. The actual program line
remains unchanged and no object file is produced.

User action: Reduce the length of the variable name to 31 or fewer characters.

NEGFILSTR, negative FILL or string length

ERROR – The program contains a negative FILL specification or string length.

User action: Change the FILL specification or string length to a positive number.

NESFORLOO, nested FOR loops with same control variable <name>

ERROR – The program contains nested FOR/NEXT loops that use the same index variable.

User action: Change the index variable for all but one of the loops.

NOBASFRAM, no BASIC frame on stack

ERROR – VSI BASIC could not find a valid stack frame. This could be caused by running a program
with /CHECK=NOBOUNDS or by a non-BASIC subprogram.

User action: Debug the program before running with /CHECK=NOBOUNDS or check the logic of the
non-BASIC subprogram.

369

Appendix A. Compile-Time Error Messages

NODESCALL, no descriptor allocated for array <name>

ERROR – An immediate mode statement required an array descriptor, but it was not available. VSI
BASIC allocates array descriptors only if the program code requires it.

User action: None.

NODIAGFILE, unsaved changes, no diagnostics file produced

WARNING – The program in memory contains changes that have not been saved; therefore, no
diagnostics file will be produced from this compilation.

User action: SAVE or REPLACE the file.

NOEDIT, no change made

WARNING – The search string in an EDIT command was not located in the text.

User action: Enter valid search string.

NOFILEALL, a file specification is not allowed with the REPLACE command

ERROR – The REPLACE command does not allow the use of a file specification.

User action: Use either the SAVE command with a file specification or the REPLACE command
without one.

NOFRAME, compiled procedure is currently not active

WARNING – A program containing multiple compilation units has been stopped while running in the
environment due to a STOP statement or a Ctrl/C entered by the user. The NOFRAME error indicates
that the routine executing when the program stopped is not the last compilation unit in the source
file. You can examine or modify a variable in immediate mode only if the current routine is the last
compilation unit in the source file.

User action: If you do not intend to debug your program in immediate mode, no action is required. If
you do intend to debug your program in immediate mode, make the routine that you want to debug the
last compilation unit in the source file. The symbols for the last compilation unit are always available.
Alternatively, use the OpenVMS Debugger to debug your program.

NOHANSPE, no handler specified for WHEN block

ERROR – A WHEN block has been found that does not specify an error handler.

User action: Specify an error handler for the WHEN block.

NOLINENUM, missing line number on first line

WARNING – There is no line number on the first line of the program.

User action: Add a line number to the first line of the program or remove all line numbers from the
program.

370

Appendix A. Compile-Time Error Messages

NOLNROOM, out of memory for line numbers

ERROR – The program contains more line-numbered statements than VSI BASIC allows.

User action: Change the program so that it uses multistatement lines instead of having each statement on
its own line or split the program into one or more program units in separate files.

NOMAPNAME, MAP statement requires map name

ERROR – A MAP statement does not specify a map name.

User action: Specify a name for the MAP.

NOSCAFILE, unsaved changes, no analysis file produced

WARNING – The program in memory contains changes that have not been saved; therefore, no data
analysis file will be produced from this compilation.

User action: SAVE or REPLACE the file.

NOSRCLINE, unsaved changes, no source line debugging available

WARNING – The program in memory contains changes that have not been saved; therefore, no source
line debugging will be available from this compilation.

User action: SAVE or REPLACE the file.

NOSUCHMAP, no such MAP area <name>

ERROR – A REMAP statement names a nonexistent MAP area.

User action: Supply a MAP before executing the REMAP statement.

NOTIMP, not implemented in this version

ERROR – The program attempted to use a feature that does not exist in this version of VSI BASIC.

User action: Examine your program and remove the nonimplemented feature.

NOTMACROOM, out of memory for macro definitions

ERROR – The limit on the number of macro definitions has been exceeded.

User action: Reduce the number of %DEFINE definitions, or undefine some previously defined macros
with the %UNDEFINE directive.

371

Appendix A. Compile-Time Error Messages

NOTPASSBY, <item> may not be passed BY <mechanism>

ERROR – The program specifies an incorrect passing mechanism for a parameter's data type, or an
invalid parameter. For example, you cannot pass an entire array BY VALUE, nor can you pass a label as
a parameter.

User action: Specify a valid parameter or passing mechanism.

NOTRANS, no main program

WARNING – When a RUN command was typed, only subroutines or functions were available. VSI
BASIC requires a main program to receive the transfer of control.

User action: Supply a main program.

NOTRECVBY, <item> may not be received by <mechanism>

ERROR – A subprogram specifies an invalid parameter or an incorrect passing mechanism for a
parameter's data type. For example, you cannot receive an entire array BY VALUE.

User action: Specify a valid parameter or passing mechanism.

NOTXTROOM, out of memory for statement text

ERROR – The program contains more text than VSI BASIC allows.

User action: Split the program into one or more program units.

NOVALUE, <text> keyword requires a value

ERROR – A keyword command was typed without a value.

User action: Supply a valid keyword value.

NUMARREXP, numeric array expected

ERROR – A CHANGE statement does not specify a numeric array.

User action: Supply a numeric array in the CHANGE statement.

NUMCONREQ, numeric constant required

ERROR – The program contains a string in a context that requires a numeric constant. For example:

 DECLARE INTEGER CONTANT A = "ABC"

User action: Supply a numeric constant.

372

Appendix A. Compile-Time Error Messages

NUMIS_NEE, numeric expression is required

ERROR – The program contains a string expression in a context that requires a numeric expression, for
example, WHILE A$.

User action: Supply a numeric expression.

NUMVARREQ, numeric variable required

ERROR – A nonnumeric variable was found with a numeric data type.

User action: Specify a numeric variable.

OBJFAIL, failure in loading object file

FATAL – In the VAX BASIC Environment, either an attempt was made to load a non-BASIC object
module, or the compiler could not find the object file referenced by a CALL statement or EXTERNAL
FUNCTION reference.

User action: If the object file resides in the Common Run-Time Library, you must link the program at
DCL level. If the object file is in a user-supplied library, use the DCL LIBRARY command to install the
missing object module. You can load only VSI BASIC for OpenVMS object modules.

ONENOTWHE, ON ERROR not allowed in WHEN block or handler

ERROR – An ON ERROR statement has been found in a WHEN block or an associated error handler.

User action: Remove the ON ERROR statement from the WHEN block or associated error handler.

OPEEXPNOT, operator expected, not found

ERROR – A compiler directive contains an invalid lexical expression that has a right parenthesis
immediately followed by a lexical identifier.

User action: Correct the lexical expression.

OPEMUSFOL, operator must follow right parenthesis

ERROR – The program contains an incorrect lexical expression.

User action: Correct the lexical expression.

OPENIN, error opening <file-name> as input

ERROR – An error was detected in attempting to open a file for input.

User action: Make sure the file specification is correct.

373

Appendix A. Compile-Time Error Messages

OPENOUT, error opening <file-name> as output

ERROR – An error was detected in attempting to open a file for output.

User action: Supply a valid file specification, or take corrective action based on the associated message.

OPNCLAVAL, OPEN clause <clause> value greater than <number>

ERROR – An OPEN statement contains a RECORDSIZE, FILESIZE, EXTENDSIZE, WINDOWSIZE,
BLOCKSIZE, BUCKETSIZE, or BUFFER clause whose argument is too large.

User action: Supply a smaller value for the argument.

OPNDUPCLA, duplicate OPEN clause

WARNING – An OPEN statement contains more than one clause of the same type.

User action: Remove one of the clauses.

OPNILLCLA, <clause> is an unsupported OPEN clause

ERROR – An OPEN statement specifies invalid attributes for the file, for example, CLUSTERSIZE on
OpenVMS systems, or uses the keyword COMMON in an I/O clause.

User action: Substitute valid attributes for the file or remove the COMMON keyword.

OPNINCCLA, <keyword> keyword is inconsistent with file organization

ERROR – An OPEN statement contains a clause that is not appropriate for the specified file
organization, for example, opening a relative file with the ACCESS APPEND clause.

User action: Remove the inconsistent clause.

OPTBASMUS, OPTION BASE must be before array declarations

ERROR – A program compiled with the /ANSI_STANDARD qualifier contains an OPTION BASE
statement that lexically follows an array declaration.

User action: Move the OPTION BASE statement so that it lexically precedes the array declaration.

OPTCLACON, OPTION clause occurs more than once

ERROR – The OPTION statement contains a duplicate clause, for example, specifying the default integer
size as both BYTE and LONG.

User action: Remove one of the clauses.

374

Appendix A. Compile-Time Error Messages

OPTNOTALL, OPTIONAL not allowed on EXTERNAL PICTURE

ERROR – An attempt was made to specify the OPTIONAL keyword on an EXTERNAL PICTURE
declaration. This is not allowed because OPTIONAL parameters should be used for calling non-BASIC
procedures only.

User action: Remove the OPTIONAL keyword from the EXTERNAL PICTURE declaration.

OPTOUTSEQ, OPTION statement out of sequence

ERROR – The OPTION statement is either: 1) not the first statement in a main program, or 2) not the
first statement following the SUB or FUNCTION statement.

User action: Move the OPTION statement so that it is either the first statement in the main program or
the first statement following the SUB or FUNCTION statement in the subprogram.

ORGUNDREQ, ORGANIZATION UNDEFINED requires FOR INPUT clause

ERROR – The program opens a file with ORGANIZATION UNDEFINED, but does not specify FOR
INPUT.

User action: Specify FOR INPUT in the OPEN statement. You cannot create a file with an undefined
file organization.

OVFCHKSUP, OVERFLOW checking supported only for INTEGER and DECIMAL

ERROR – Overflow checking was specified for a floating-point data type in: 1) a compiler command, 2)
a qualifier to the DCL BASIC command, or 3) an OPTION statement.

User action: Specify overflow checking only for INTEGER or DECIMAL data types or both.

OVRNOLINE, <keyword> overrides NOLINE

WARNING – The program: 1) was compiled with /NOLINES and 2) uses a keyword that requires line
number information. For example, ERL and RESUME with a line number both require that the program
be compiled with /LINES.

User action: None. If you use a keyword that requires line number information, VAX BASIC
automatically overrides the /NOLINE qualifier.

PAREXPFOR, <n> parameters expected for <routine>

ERROR – The CALL or invocation of a routine specifies a different number of parameters than the
number specified when the routine was declared.

User action: Change the number of parameters to match the number declared.

375

Appendix A. Compile-Time Error Messages

PARINCPRE, parameter <name> inconsistent with previous declaration or reference

ERROR – An external subprogram or DEF function declaration specifies a data type for one of the
parameters that is different than the data type the SUB, FUNCTION, or DEF statement specifies.

User action: Change the specified data type in either the declaration or the SUB, FUNCTION, or DEF
statement so that the data types agree.

PARMODCHA, mode for parameter <n> of routine <name> changed to match declaration

INFORMATION – The data type specified in a routine invocation does not match that of the routine
declaration. VSI BASIC issues this message only if the data-type conversion results in a parameter that
cannot be modified by the routine that was invoked.

User action: Make the data-type specifications in the declaration and the invocation match.

PARMODNOT, mode for parameter <n> of routine <name> not as declared

ERROR – The CALL or invocation of a routine specifies a string argument for a parameter that was
specified as a numeric when the routine was declared, or vice versa.

User action: Change the string parameter to numeric, or vice versa.

PARNOTENT, parenthesis illegal, entire array required context

ERROR – Parenthesis are used to specify an entire array in a context where an entire array is always
required.

User action: Remove the empty parenthesis from the entire array reference.

PARSTRNOT, parameter <n> of <type> structure not as declared

ERROR – The actual parameter list in subprogram CALL or an invocation specifies an entire array
where the subprogram declaration specified a simple variable or vice versa.

User action: Change the actual parameter list to match the declared parameter list or vice versa.

PARTYPREQ, parameter type specification required with /EXPLICIT

ERROR – In a program compiled with /TYPE=EXPLICIT, no data-type keyword is specified for a
parameter.

User action: Supply a data-type keyword for the parameter. There are no default data types when you
compile a program with /TYPE=EXPLICIT.

PASMECDEF, passing mechanism not allowed for DEF

ERROR – A DEF function declaration specifies a passing mechanism for a parameter.

User action: Remove the passing mechanism clause.

376

Appendix A. Compile-Time Error Messages

PASMECDIS, passing mechanism disagrees with declaration

ERROR – The CALL or invocation of a routine specifies a different passing mechanism for a parameter
than that specified when the routine was declared.

User action: Remove the BY clause specified in the CALL or invocation; VSI BASIC automatically
passes parameters with the passing mechanism specified when the routine was declared.

PASMECNOT, passing mechanism not allowed for <item>

ERROR – A program specifies a passing mechanism in a context other than the invocation or declaration
of an external subprogram.

User action: Remove the passing mechanism clause.

PASWITNO, <name> has a passing mechanism specified with no parameter list

WARNING – A CALL statement, external function reference, or EXTERNAL statement specifies a BY
clause but does not specify a formal parameter list.

User action: Remove the BY clause or supply a parameter list.

PATNOTREC, path name does not specify a CDD/Repository record

ERROR – The %INCLUDE directive contains an invalid path name for a record definition.

User action: Supply a valid path name for a record definition.

PICWHINOT, exit from PICTURE while not in PICTURE

ERROR – An EXIT PICTURE statement was found in a module that is not a PICTURE subprogram.

User action: Remove the EXIT PICTURE statement.

PLACENODESIGN, placeholders illegal without /DESIGN=PLACEHOLDERS

ERROR – A placeholder occurred in the source file and the /DESIGN=PLACEHOLDERS option was
not specified.

User action: Recompile the program and specify the qualifier.

PLACENODOT, repetition of pseudocode placeholders not allowed

ERROR – A pseudocode placeholder was syntactically incorrect.

User action: You should remove the trailing periods following the pseudocode placeholder.

377

Appendix A. Compile-Time Error Messages

PLACENOEXE, placeholders detected – source cannot be executed

ERROR – The source code for a RUN command in immediate mode contained at least one placeholder,
therefore it could not be executed.

User action: You should remove the placeholders from the source code and reissue the command.

PLACENOOBJ, placeholders detected – no object produced

INFORMATION – The program contained one or more placeholders and therefore no object module
was created.

User action: Remove the placeholders from the source code.

PLACEUNMAT, unmatched placeholder delimiter

ERROR– A placeholder was syntactically incorrect because the number of opening and closing brackets
did not match.

User action: First, make sure that the placeholder does not span multiple source lines. Second, add or
remove brackets until they are appropriately paired.

PLACEWRDOT, invalid placeholder repetition

ERROR – A list placeholder was syntactically incorrect. Three periods were expected.

User action: Add trailing periods until there are three periods following the placeholder.

POIREQONE, POINTS output requires at least 1 X,Y point

ERROR – You do not specify a point in the POINT graphic output statement.

User action: Specify a minimum of 1 point in the POINT graphic output statement.

POSGTRTAR, starting position greater than target length

ERROR – The starting value in the MID statement is greater than the length of the string.

User action: Correct the value to be less than or equal to the length of the string.

PRELOGNAM, previous logical name assignment replaced

INFORMATION – The specified logical name already existed. The new equivalence name replaces the
old one.

User action: None.

378

Appendix A. Compile-Time Error Messages

PRICDDERR, prior severe CDD/Repository error

ERROR – There have been one or more severe CDD/Repository errors, and this may be the reason for
the following errors.

User action: Recompile the program after correcting the first errors related to CDD/Repository.

PRIUSICLA, PRINT USING clause must be a string expression

ERROR – A PRINT USING statement specifies a numeric format string.

User action: Supply a valid format string.

PRIUSICON, PRINT USING conflicts with RECORD clause

ERROR – A PRINT USING statement contains a RECORD clause.

User action: Remove the RECORD clause or use the PRINT statement instead of PRINT USING.

PROSTRNES, program structures nested too deeply

FATAL – The program contains too many nested block constructs, for example, DEF function
definitions.

User action: Reduce the number of nested block constructs.

PROTOOBIG, program too big to compile

FATAL – The program is too big.

User action: Recode the program as two or more modules.

PROWHINOT, exit from PROGRAM while not in a main program

ERROR – An EXIT PROGRAM statement was found in a program unit that is not a main program.

User action: Use the type of EXIT appropriate to the program unit.

QUALERR, unknown qualifier <name>

ERROR – An attempt was made to enter an invalid qualifier to a SET, LOCK, or COMPILE command.

User action: Enter the SET, LOCK, or COMPILE command with the correct qualifier.

379

Appendix A. Compile-Time Error Messages

RADNOTSUP, radix not supported

ERROR – A literal constant specifies a radix. For example, in the following DECLARE statement, H is
an invalid radix specifier:

 10 DECLARE LONG CONSTANT A = H"111"

User action: Specify a valid radix. See the VSI BASIC Reference Manual for a list of the radices VSI
BASIC allows.

REAACCINC, READ access inconsistent with FOR OUTPUT

ERROR – An OPEN statement specifies FOR OUTPUT and ACCESS READ.

User action: FOR OUTPUT specifies that a new file is created; ACCESS READ specifies that the
program can only read the file. If you want to create a new file, remove the ACCESS READ clause; if
you want read-only access to a file, specify FOR INPUT.

READERR, error reading <file-name>

ERROR – An error was detected in attempting to read a file.

User action: Supply a valid file specification or take corrective action based on the associated message.

REAWITDAT, READ without DATA statement

ERROR – The program contains a READ statement and there are no DATA statements.

User action: Supply a DATA statement or remove the READ statement.

RECENTARR, RECORD entire array must not have subfields specified

ERROR – A RECORD component reference specifies an array before the end of the component path,
for example, A::B (,)::C.

User action: Remove the erroneous reference.

RECFILTOO, <field-name> from CDD/Repository has FILL too large

ERROR – The total size of a CDD/Repository record is greater than 65,535 bytes.

User action: Reduce the size of the record.

RECKEYQAD, entire RECORD or GROUP must be 8 bytes in length

ERROR – The user attempts to specify an entire RECORD or GROUP name in a key value field on a
GET or FIND statement and the size of the structure does not match the size of the QUADWORD.

User action: When specifying a quadword key, use an 8-byte RECORD or GROUP; otherwise, specify
the name of an elementary item in the RECORD or GROUP.

380

Appendix A. Compile-Time Error Messages

RECNOTBY, record may not be passed BY <mechanism>

ERROR – The program attempts to pass a record to a subprogram using either the BY VALUE or BY
DESC parameter-passing mechanism.

User action: Remove the passing mechanism, or specify BY REF. VSI BASIC programs can pass
records only by reference.

RECNOTDEF, record type <name> not defined

ERROR – The program declares an instance of a user data type, but this type was not defined in the
program module.

User action: Define the data type with a RECORD statement.

RECOVEMAP, RECORDSIZE overflows MAP

ERROR – An OPEN statement contains both a RECORDSIZE clause and a MAP clause, and the
RECORDSIZE clause is larger than the MAP.

User action: Make the RECORDSIZE the same as the MAP size.

RECRECDEF, recursive RECORD definition of type <name>

ERROR – The program contains two or more RECORD statements that reference each other.

User action: Change the program so that the RECORD statements do not point at each other.

RECTOBIGL, record too big from module <mod-name> in text library <text-lib-name>

ERROR – the text library module specified in a %INCLUDE directive contains a record longer than 255
bytes.

User action: Extract the module from the text library, edit it to remove any records longer than 255
bytes, and replace the module in the text library.

RECTOOBIG, record too big from INCLUDE directive file

ERROR – The file specified in a %INCLUDE directive contains a record longer than 255 bytes.

User action: Edit the file to remove any records longer than 255 bytes.

RECTOOLAR, RECORD too large. Limit is 65,535 bytes

ERROR – The components of a RECORD definition add up to more than 65,535 bytes, or 32,767 bytes
if the RECORD is used as an array component.

User action: Reduce the size of the RECORD definition.

381

Appendix A. Compile-Time Error Messages

REMARRREF, entire REMAPPED array <name> cannot be passed BY REF

ERROR – The program attempts to pass an array declared in a MAP DYNAMIC statement to an
external subprogram by reference.

User action: Entire remapped arrays must be passed by descriptor. Specify the BY DESC passing
mechanism either in the EXTERNAL declaration or the subprogram invocation.

REMNOTALL, REM statement not allowed in programs without line numbers

ERROR – A REM statement has been found in a program without line numbers.

User action: Remove the REM statement.

REPLACE, assuming <operator(s)> replaced by<operator>

ERROR – The program contains a syntax error. VSI BASIC found incorrect or multiple operators where
another single operator makes more sense, for example, 10 A == B. Compilation continues so that other
errors can be detected. The actual program line remains unchanged and no object file is produced.

User action: Examine the line carefully to discover the error. Change the program line to correct the
syntax error.

REQNUMEXP, <item> requires a numeric expression

ERROR – The program contains a string expression in a context requiring a numeric expression.

User action: Supply a numeric expression.

REQSTREXP, <item> requires string expression

ERROR – The program contains a numeric expression in a context requiring a string expression,
for example, the file specification in an OPEN statement or the default file specification in a
DEFAULTNAME clause.

User action: Supply a string expression.

RESABOCON, RESEQUENCE aborted due to conditional compilation

ERROR – A resequenced program contains a %IF-%THEN-%ELSE-%END-%IF directive.

User action: Remove the %IF-%THEN-%ELSE-%END-%IF directive.

RESABOSYN, RESEQUENCE aborted due to syntax error

ERROR – A RESEQUENCE operation was terminated because the program was not syntactically
correct.

User action: Correct the syntax error and retry the RESEQUENCE operation.

382

Appendix A. Compile-Time Error Messages

RESATTINC, result attributes inconsistent with prior declaration

ERROR – An external or DEF function declaration specifies a data type for the function's result, which
is different from the data type the DEF or FUNCTION statement specifies.

User action: Change the specified data type in either the declaration or the DEF or FUNCTION
statement so that the data types agree.

RESINCLIN, RESEQUENCE cannot be used if INCLUDE files reference line numbers

ERROR – The current program references an INCLUDE file that contains line number references, for
example, GOTO.

User action: Remove the %INCLUDE directive. VSI BASIC cannot resequence lines in an INCLUDE
file.

RESLINGTR, RESEQUENCE cannot generate line numbers greater than 32,767

ERROR – The RESEQUENCE command specified an interval or starting point that would have created
a line number greater than 32,767.

User action: Reduce the interval or the starting point.

RESNOTWHE, RESUME not allowed in WHEN block or handler

ERROR – A RESUME statement has been found in a WHEN block or an associated error handler.

User action: Remove the RESUME statement from the WHEN block or associated error handler.

RESORDLIN, RESEQUENCE cannot change the order of or delete lines

ERROR – The RESEQUENCE command specifies invalid source program changes.

User action: Supply a valid RESEQUENCE command.

RETCONMUS, RETRY and CONTINUE must appear in error handlers

ERROR – A RETRY or CONTINUE statement is not in an error handler associated with a WHEN
block protected region.

User action: Remove the RETRY or CONTINUE statement.

RFAEXPREQ, RFA expression required

ERROR – A GET BY RFA statement contains an expression that is not of the RFA data type.

User action: Supply a valid RFA expression.

383

Appendix A. Compile-Time Error Messages

RFANOTALL, RFA not allowed in this context

ERROR – The program attempts to use an RFA expression in an arithmetic expression or other invalid
context.

User action: Remove the RFA expression. You can use the RFA data type only in file I/O, in an
assignment statement, or in a comparison.

ROUSUPDEC, ROUNDing supported only for DECIMAL

ERROR – Rounding was specified for a non-DECIMAL data type in: 1) a compiler command, 2) a
qualifier to the BASIC DCL command, or 3) an OPTION statement.

User action: Specify rounding only for the DECIMAL data type.

RPTCOUMUS, repeat count must be positive numeric

ERROR – A FILL item specifies a nonnumeric or negative repeat count, for example, FILL(A$) or
FILL(-3).

User action: Supply a valid repeat count.

SCAFACINH, SCALE factor inhibits optimization

INFORMATION – This error is reported only when the /SETUP qualifier is in effect. Specifying a scale
factor prevents optimization of the compiler-generated code.

User action: Compile the program without specifying a scale factor.

SCAFILMUS, ANALYSIS file must be random access – no ANA file produced

WARNING – The file specification on the /ANALYSIS_DATA qualifier specifies a nonrandom access
device; therefore, no analysis data file will be produced. VSI BASIC ignores the /ANALYSIS_DATA
qualifier and continues compilation.

User action: Specify a random access device on the file specification on the /ANALYSIS_DATA
qualifier.

SCALE0, scale factor used is 0 for single precision

WARNING – An attempt was made to set the SCALE factor while in single precision.

User action: Set the precision to /REAL_SIZE = DOUBLE. You cannot use scaling when in single
precision.

SCANOTANS, /ANALYSIS_DATA qualifier not allowed with /ANSI

ERROR – The /ANALYSIS_DATA qualifier conflicts with the /ANSI_STANDARD qualifier.

User action: Specify either the /ANALYSIS_DATA qualifier or the /ANSI_STANDARD qualifier, but
not both.

384

Appendix A. Compile-Time Error Messages

SCAOUTRAN, SCALE is out of range. Valid is 0 to 6.

ERROR – The OPTION statement specifies a scale factor that is not from 0 to 6, inclusive.

User action: Supply a valid scale factor.

SEQERR, attempt to sequence over existing statement

ERROR – A SEQUENCE command specifies a starting line number that already exists in the VSI
BASIC source program in memory.

User action: Specify a starting line number higher than any existing line or delete the old statement
before using the SEQUENCE command.

SEVERRSCA, please submit an SPR ---- internal error in SCA support

FATAL – A severe error has been detected in the SCA support in the VSI BASIC compiler. If you
recompile your program without the /ANALYSIS_DATA qualifier, this error should no longer occur.

User action: Please submit a software problem report (SPR) with the source code of a small program
that produces the error.

SEVINTERR, severe internal error has been detected. Submit an SPR.

FATAL – An error has been detected in the VSI BASIC compiler.

User action: Please submit a software problem report (SPR) with the source code of a small program
that produces this error.

SHRNOTAVL, Unable to access the shareable image <name>

ERROR – The shareable image is not available on your system.

User action: Install the correct version of the required shareable image.

SPANOSPA, SPAN is inconsistent with NOSPAN

WARNING – An OPEN statement specifies both SPAN and NOSPAN.

User action: Remove one of the clauses.

SPELL, assuming <item> intended to be the keyword: keyword

ERROR – The program contains a syntax error. VSI BASIC assumes that a keyword has been
misspelled, and compilation continues so that other errors can be detected. The actual program line
remains unchanged and no object file is produced.

User action: Examine the line carefully to discover the error. Change the program line to correct the
syntax error.

385

Appendix A. Compile-Time Error Messages

SPENUMEXC, specified numeric exceeds valid character code

ERROR – A quoted literal of type character (C) contains a value outside the valid range, for example,
’300 ’C.

User action: Use a valid ASCII value.

STACKOVF, stack frame overflow for variables

ERROR – The program requires too much space for dynamic variables.

User action: Reduce the number of dynamic variables or place some of the variables in a MAP or
COMMON.

STANOTALL, statement not allowed within a PICTURE definition

ERROR – The statement you specified is not allowed in a PICTURE definition.

User action: Remove the statement from the PICTURE definition.

STARISNEE, star (*) is needed in DEF, not “/”

ERROR – The program contains a statement that starts with DEF/.

User action: Change the DEF/ to DEF*.

STRARRNOT, string array not ANSI

INFORMATION – A program compiled with the /ANSI_STANDARD qualifier contains a string array.

User action: Remove the string array.

STRCONEXP, string constant expression is too long

ERROR – The program contains a DECLARE STRING CONSTANT statement where the value
assigned to the constant exceeds the maximum number of characters allowed for string constant
expressions. The maximum length of a string constant expression at compile time is 498 characters.

User action: Change the string constant to a string variable and assign the string expression to the
variable at run time.

STRCONREQ, string constant required

ERROR – The program contains a numeric expression in a context that requires a string expression, for
example:

 DECLARE STRING CONSTANT ABC = 123

User action: Supply a string literal or a named string constant.

386

Appendix A. Compile-Time Error Messages

STRDEFNOT, string DEF not ANSI

INFORMATION – A program compiled with the /ANSI_STANDARD qualifier contains a string DEF.

User action: Remove the string DEF.

STRLENANY, string length not allowed on ANY

ERROR – An ANY parameter specifies a string length in an EXTERNAL statement. This is not allowed
because ANY implies that you can use any data type, not specifically a string data type.

User action: Remove the string length specification from the ANY clause.

STRIS_NEE, string expression is required

ERROR – The program contains a numeric expression where a string expression is needed, for example,
NAME 1% AS “ABC.DAT”.

User action: Supply a string expression.

STRLENDYN, string length not allowed on MAP DYNAMIC variable

ERROR – A string variable in a MAP DYNAMIC statement specifies a string length.

User action: Remove the string length. All string variables named in a MAP DYNAMIC statement have
a length of zero until a REMAP statement executes.

STRLENINC, virtual array string <name> length increased from <n> to <m>

WARNING – In a string virtual array DIM statement, the specified string length is not a power of two.

User action: None. VSI BASIC increases the string length to the next higher power of two.

STRLENMUS, string length specification for <name> must be numeric

ERROR – The length specification for a fixed-length string is nonnumeric, for example, COMMON A$
= “ABC”.

User action: Supply a numeric length specification.

STRLENNOT, string length not allowed on numeric variable <name>

ERROR – The declaration for a numeric variable contains a string length specification.

User action: Remove the string length specification.

387

Appendix A. Compile-Time Error Messages

STRLENTRU, virtual array string <name> length truncated from <n> to <m>

WARNING – A string virtual array specifies a string length greater than 512. VSI BASIC truncates the
length specification to 512.

User action: None. The maximum string length for virtual arrays is 512.

STRLITREQ, string literal required for compiler directive

ERROR – A quoted string is missing in a compiler directive that requires one, for example, %IDENT.

User action: Supply a string literal for the compiler directive.

STROUTRAN, string is too large

ERROR – A string exceeds the maximum allowable length. The maximum length is 65,535 characters.

User action: Reduce the length of the string.

STRRECFIE, string record element may not be FIELDed

ERROR – A FIELD statement contains a string record element as the fielded variable.

User action: Replace the string record element with a dynamic string. Fielded variables must be
dynamic.

STRRECFOR, stream format must have sequential organization

ERROR – A file was opened using STREAM as a record format, but the specified organization was not
SEQUENTIAL.

User action: Change the OPEN statement so that it specifies ORGANIZATION SEQUENTIAL.

STRVAREXP, string variable expected

ERROR – A CHANGE statement specifies a numeric variable.

User action: Supply a string variable; the CHANGE statement changes a string variable to a numeric
array and vice versa.

STRVARREQ, string variable required

ERROR – A statement references a numeric variable instead of a string variable, for example, LINPUT
A%.

User action: Supply a string variable instead of a numeric variable.

388

Appendix A. Compile-Time Error Messages

SUBMAYNOT, subscript may not be specified for entire array

ERROR – A CALL statement or external function reference passes an entire array as a parameter and
contains a subscript expression, for example, A(,,3).

User action: Remove the subscript expression. You cannot specify any subscripts when passing an entire
array as a parameter.

SUBOUTRAN, subscript out of range for <array-name>

ERROR – The program references an array element with constant subscript(s) outside the bounds of the
array.

User action: Check program logic to make sure all subscripts are within the bounds of the array.

SUBRECCOM, subscripting error in RECORD component

ERROR – The program contains a RECORD component reference with invalid subscripts, for example,
A::B(1,2)::C where B has only one subscript, or A::B where A requires a subscript.

User action: Change the erroneous reference. You must specify as many subscripts as were defined in
the RECORD.

SUBWHINOT, exit from SUB seen while not in SUB

ERROR – A program contains an EXIT SUB or SUBEXIT statement with no preceding SUB statement.

User action: If the program is a subprogram, supply a SUB statement; otherwise, remove the EXIT
SUB or SUBEXIT statement.

SUFFILNOT, suffix not allowed on FILL after datatype keyword

ERROR – A FILL item defined with an explicit data type ends in a percent or dollar sign.

User action: Remove the FILL item's percent or dollar sign.

SUFINTONLY, % only allowed with BYTE, WORD, LONG, QUAD, or INTEGER keywords

ERROR – The % suffix is only allowed on integer data types.

User action: Remove the % suffix from the variable name or change the data-type keyword.

SUFNOTALL, suffix not allowed on variable <name>

ERROR – A name, which cannot end in a percent sign or dollar sign, such as a label name, ends with
either a percent sign or dollar sign.

User action: Remove the variable's percent or dollar sign.

389

Appendix A. Compile-Time Error Messages

SUFNOTHAN, suffix not allowed on HANDLER <name>

ERROR – A HANDLER name ends in a percent or dollar sign.

User action: Remove the percent or dollar sign from the HANDLER name.

SUFNOTREC, suffix not allowed for record type

ERROR – A record definition specifies a user-defined record type that ends in a percent or dollar sign.

User action: Remove the record type's percent or dollar sign.

SUFSTRONLY, $ is only allowed with STRING keyword

ERROR – The $ suffix is only allowed on string data types.

User action: Remove the $ suffix from the variable name or change the data-type keyword.

SYNNOTANS, syntax check mode not allowed when ANSI

ERROR – A SET /SYNTAX_CHECK command was entered when the /ANSI_STANDARD qualifier
was in effect.

User action: None; syntax checking is not supported in ANSI mode.

SYSERROR, system service error

ERROR – An error was detected while executing a system service.

User action: Take corrective action based on the associated message.

TEXFOLEND, text following end of program unit must be on new <type of line> line

ERROR – The compiler detected text following an END, END SUB, or END FUNCTION statement.

User action: Remove the text. In a multimodule source file with line numbers, any text following an
END, END SUB, or END FUNCTION statement must begin on a numbered line. In a multimodule
source file without line numbers, any text following an END, END SUB, or END FUNCTION statement
must begin on a new physical line.

TEXLINMSG, text line exceeded 255 characters

INFORMATION – An input line contains more than 255 characters. VSI BASIC saves the first 255
input characters into the line buffer and ignores the rest of the input.

User action: Supply no more than 255 characters per input line to avoid truncation of input.

390

Appendix A. Compile-Time Error Messages

TEXPATMUS, text path must be “RIGHT”, “LEFT”, “UP” or “DOWN”

ERROR – You specified an invalid value for the path specification of the SET TEXT PATH statement.

User action: Specify one of the values listed in the message.

TEXPREMUS, text precision must be “STROKE”, “CHAR” or “STRING”

ERROR – You specified an invalid value for the text precision of the SET TEXT FONT statement.

User action: Specify one of the values listed in the message.

THEMUSFOL, THEN directive must follow a lexical expression

ERROR – A %IF directive contains a lexical expression that is not immediately followed by a %THEN
clause.

User action: Supply a %THEN clause. %THEN, %ELSE, and %END %IF are required in a %IF
directive.

TOMCHINFO, extra information about command line has been ignored

INFORMATION – You supplied an argument to a CONTINUE, EXIT, IDENTIFY, or SCRATCH
command. These commands do not accept arguments. VSI BASIC ignores the extra data and executes
the command.

User action: Remove the argument from the command.

TOOFEWARG, too few arguments

ERROR – The invocation of a VSI BASIC built-in function contains too few arguments.

User action: Supply the correct number of arguments to the function.

TOOMANARG, too many arguments

ERROR – The invocation of a VSI BASIC built-in function contains too many arguments.

User action: Supply the correct number of arguments to the function.

TOOMANIND, too many array indices active

ERROR – A subscript expression contains more than 100 array indices between the open parenthesis
and the close parenthesis.

User action: Reduce the number of active array indices.

391

Appendix A. Compile-Time Error Messages

TOOMANKEY, too many keys – limit is 255

ERROR – An OPEN statement specifies more than 255 index keys.

User action: Reduce the number of index keys. The maximum is 255.

TOOMANPAR, too many function parameters active

ERROR – An external function invocation contains too many expressions in the actual parameter list.

User action: Reduce the number of expressions in the actual parameter by assigning the expressions to
temporary variables.

TRAFUNONL, Transformation functions only permitted with multiplication

ERROR – A graphics transformation function is used in a MAT statement other than matrix
multiplication.

User action: Remove the transformation function from the MAT statement.

TRAOUTRAN, transformation number must be in the range 1 - 255

ERROR – You specified a transformation number that is less than 1 or greater than 255.

User action: Change the transformation number to be within the range 1 to 255.

TYPDEFSTR, TYPE default of STRING is not allowed

ERROR – STRING was specified as the default data type in: 1) a compiler command, 2) a qualifier to
the DCL BASIC command, or 3) an OPTION statement.

User action: Specify a numeric data type as the default.

UNCALLED, Routine <routine> can never be called

INFORMATION – The compiler has detected a routine that is never called.

User action: Review the program to determine if the routine is needed. If it is not, you may want to
remove it.

UNDEFINED, unresolved/undefined symbols

ERROR – A program executed in the VAX BASIC Environment calls or invokes a subprogram or
routine that has not been loaded.

User action: Load the subprogram or routine before running the program in the VAX BASIC
Environment.

392

Appendix A. Compile-Time Error Messages

UNDLINNUM, undefined line number

ERROR – A statement tries to transfer control to a nonexistent line. Or, in a numberless program, a line
number is referenced.

User action: Replace the nonexistent line number with the correct destination line number or label.

UNELEXDIR, unexpected lexical directive encountered

ERROR – The specified lexical directive is not legal in this statement.

User action: Use a supported lexical directive.

UNEXPEOF, unexpected end of file

ERROR – An end-of-file was specified immediately after an ampersand continuation character.

User action: Remove the ampersand continuation character or continue the line.

UNINIT, variable <variable> is fetched, not initialized

INFORMATION – The compiler has detected a variable that is used but not initialized.

User action: Review the program to determine if the variable should be initialized before use. If
necessary, you may want to add code to initialize the variable.

UNKCOMINP, unknown command input

ERROR – An attempt was made to enter an invalid or unknown command.

User action: Enter the VSI BASIC command correctly.

UNLINCREA, UNLOCK EXPLICIT clause inconsistent with ACCESS READ

ERROR – An OPEN statement contains both an ACCESS READ and an UNLOCK EXPLICIT clause.
This is inconsistent because ACCESS READ specifies no record locking while UNLOCK EXPLICIT
specifies that all accessed records remain locked until explicitly unlocked.

User action: Either remove the UNLOCK EXPLICIT clause or change the ACCESS clause.

UNREACH, code can never be executed at label <label>

INFORMATION – The compiler has detected code that will never be executed, for example, a
multistatement line whose first statement is a GOTO, EXIT, ITERATE, RESUME, or RETURN. (Alpha
BASIC only)

User action:Review the program to determine if the code should be executed. If you determine the code
should be executed, then you should revise the program flow logic accordingly; otherwise, the code is
unnecessary, and you may want to remove it. In the case of the GOTO, EXIT, ITERATE, RESUME,
or RETURN statements, make sure that these statements are the only statements on the line, or the last
statement on a multistatement line.

393

Appendix A. Compile-Time Error Messages

UNSCDDLEV, unsupported CDD/Repository level <number>. Supported level is <number>.

ERROR – The current CDD/Repository version is incompatible with VSI BASIC.

User action: Use a supported version of CDD/Repository.

UNTSTRLIT, unterminated string literal

ERROR – The program contains an improperly terminated string literal; for example, "ABC , "ABC ’,
and ’ABC" are all improperly terminated.

User action: Use the same type of quotation mark (either single or double) for both beginning and
ending string delimiters.

USEONLALO, USE only allowed inside WHEN blocks

ERROR – A USE statement is not within a WHEN block.

User action: Remove the USE statement.

USERABORT, user ABORT directive <text>

FATAL – The compilation was terminated as the result of a %ABORT directive. The compiler prints the
text following the %ABORT.

User action: None.

USERPRINT, <text>

SUCCESS – The compilation found a %PRINT directive and printed the specified message to the
terminal and listing file.

User action: None.

USEVARNOT, user variable <name> not allowed in declaration

ERROR – The parameter list in an external subprogram declaration contains a user variable name.

User action: Remove the variable from the parameter list. When declaring a routine, the parameter list
can contain only data type and parameter-passing mechanism specifications.

VALTOOLAR, value too large for constant

WARNING – The value of an EXTERNAL CONSTANT is larger than the specified data type allows.

User action: Make sure the data type specified in the EXTERNAL CONSTANT statement matches that
of the actual constant.

394

Appendix A. Compile-Time Error Messages

VALUEREQ, PRINT USING requires a value

ERROR – A PRINT USING statement must have at least one expression or value.

User action: Supply an expression or value at the end of the PRINT USING statement.

VARCONREQ, variable or constant required

ERROR – The program contains an executable DIM statement that contains an expression in the bounds
list.

User action: Remove the expression from the bounds list. Executable DIM statements can have only
constants or variables (simple or subscripted) as bounds.

VARNOALGN, Variable <name> within COMMON or MAP is not naturally aligned.

WARNING – Identifies a variable within a COMMON or MAP that was found not to be naturally
aligned. This error is only reported when the /WARNING=ALIGNMENT qualifier is in effect.

User action: Modify COMMON or MAP so that all variables are naturally aligned.

VERJUSMUS, vertical justification must be “TOP”, “CAP”, “HALF”, “BASE”, “BOTTOM” or
“NORMAL”

ERROR – You specified an invalid value for the vertical component of the SET TEXT JUSTIFY
statement.

User action: Specify one of the values listed in the message.

VIRARROVF, virtual array space exceeded at array <name>

ERROR – The storage for virtual arrays on a single channel exceeds 2,147,483,647 bytes.

User action: If there is only one virtual array on the channel, you must reduce the amount of storage
used by the array. However, if there is more than one virtual array on the channel, you can put each array
on a separate channel.

VIRNOTALL, virtual array not allowed in graphics statements

ERROR – You specified an entire virtual array on a statement that does not allow them.

User action: Specify a nonvirtual array in place of the virtual array.

VIRRECTOO, virtual RECORD <name> is too large. Limit is 512 bytes

ERROR – The elements of a virtual array are of type <name> and the total storage requirement for
each element is greater than 512 bytes.

User action: Reduce the size of the RECORD.

395

Appendix A. Compile-Time Error Messages

WRITEERR, error writing <file-name>

ERROR – An error was detected in attempting to write to a file.

User action: Supply a valid file specification or take corrective action based on the associated message.

WROTYPLIB, library <lib-name> is not an OBJECT or IMAGE library

WARNING – The logical BASIC$LIBn translates to a library that is not an object library or a shareable
image library.

User action: Change the logical BASIC$LIBn to translate to an object library or a shareable image
library.

XYPOIREQ, X,Y point required between semicolons

ERROR – In a list of points in a statement such as PLOT LINES, you specified two semicolons in a row
without an X,Y point specification between them.

User action: Either supply another point or remove the extra semicolon.

396

Appendix B. Run-Time Messages
VSI BASIC returns run-time messages if an error occurs while a program is executing. The error is
diagnosed and for programs without line numbers, VSI BASIC indicates the program line that generated
the error. Warning messages indicate that an error has occurred, but program execution continues.

In some cases, VSI BASIC performs the specified operation, but the results are not as expected. Fatal
(severe) error messages indicate that the program has aborted. You can recover from most fatal errors
by including error-handling routines in your program and by specifying OPTION HANDLE = SEVERE.
Certain errors, however, are not recoverable even when error-handlers are used. In the descriptions of
these errors, they are designated as not able to be trapped. You do not need error-handling routines to
trap errors that generate warning messages.

Section B.1, "VSI BASIC for OpenVMS Run-Time Errors by Mnemonic" lists VSI BASIC for OpenVMS
run-time errors, alphabetized by mnemonic code. Section B.2, "VSI BASIC for OpenVMS Run-Time
Errors by Number" is a cross-reference numerical listing of run-time errors generated by VSI BASIC
for OpenVMS. Section B.3, "Errors Not Generated by VSI BASIC for OpenVMS" lists messages that VSI
BASIC for OpenVMS does not generate, but which can be displayed with the ERT$ function. See the
VSI BASIC Reference Manual for information about RMSSTATUS and VMSSTATUS.

B.1. VSI BASIC for OpenVMS Run-Time Errors
by Mnemonic
The VSI BASIC for OpenVMS error message format is as follows:

%BAS-<l>-<mnemonic>, <message> -BAS-I-FROLINMOD, from Line x in module y

<l>

Is a letter indicating the severity of the error. The severity indicator can be one of the following:

● I – Indicating information

● W – Indicating a warning

● E – Indicating an error

● F – Indicating a severe error

<mnemonic>

Is a 3- to 9-character string that identifies the error.

<X>

Is the line number where the error occurred.

<Y>

Is the name of the module where the error occurred.

Warning error messages indicate that an error has occurred, but program execution continues. In some
cases, VSI BASIC for OpenVMS reprompts for more information or correct data; in other cases, VSI
BASIC for OpenVMS performs the specified operation, but the results are not as expected. Fatal error
messages indicate that the program has aborted.

397

Appendix B. Run-Time Messages

ARGDONMAT, Arguments don't match (ERR=88)

The proper array descriptor was not specified for a matrix operation.

User action: Use VSI BASIC for OpenVMS to create the array.

ARGTOOLAR, Argument too large in EXP (ERR=49)

The program contains:

● An argument to the EXP function larger than 88

● An exponentiation operation that results in a number greater than 1E38

User action: Change the EXP argument to be in the valid range, or reduce the size of the exponent.

ARRMUSSAM, Arrays must be same dimension (ERR=238)

The program attempts to perform matrix addition or subtraction on input arrays with a different
dimensions.

User action: Use arrays that have identical dimensions.

ARRMUSSQU, Arrays must be square (ERR=239)

The program attempts matrix inversion (MAT INV) on an array that is not inversible.

User action: Use only square arrays when performing a matrix inversion.

ARRTOOSMA, Array too small (ERR=197)

The array you referenced with a graphics statement is too small. Check the description of the graphics
statement to get the minimum size requirement for the array.

User action: Increase the size of the array.

BADDIRDEV, Bad directory for device (ERR=1)

The device directory does not exist or is unreadable.

User action: Supply a valid directory.

BADRECIDE, Bad record identifier (ERR=143)

The program attempted a record access that specified:

● A zero or negative record number on a RELATIVE file

● A null key value on an INDEXED file

User action: Change the record number or key specification to a valid value.

398

Appendix B. Run-Time Messages

BADRECVAL, Bad RECORDSIZE value on OPEN (ERR=148)

The value in the RECORDSIZE clause in the OPEN statement either 1) is zero or greater than 65,535 or
2) does not match the record size of an existing file.

User action: Change the value in the RECORDSIZE clause.

CANCHAARR, Cannot change array dimensions (ERR=240)

The program attempts to redimension an array to a different number of dimensions.

User action: Change the arrays dimensions in the DIM or MAT statement.

CANFINFIL, Cannot find file or account (ERR=5)

The specified file or directory is not present on the device.

User action: Supply a valid file specification.

CANINVMAT, Cannot invert matrix (ERR=56)

The program attempts to invert a single-dimension matrix.

User action: Supply a matrix of the proper form for inversion.

CANOPEFIL, Cannot open file (ERR=162)

The program attempts to open a file that cannot be opened.

User action: Use VMSSTATUS to determine the RMS failure that caused the error.

CLIPONOFF, Clipping must be set to ON or OFF (ERR=259)

Valid strings for the SET CLIP statement are “ON” and “OFF.”

User action:Change the string to either “ON” or “OFF.”

COLNOTCON, Color indices are not contiguous (ERR=261)

The color indices on the device you are using are not contiguous.

User action: Unlike most devices, all color indices between zero and the number returned by the ASK
MAX COLOR statement are not available on this device.

COONOTNDC, Coordinates are not within NDC space (ERR=273)

The boundaries of NDC space are 0,1,0,1; coordinates must be within this range.

User action:Supply coordinates with values from 0 to 1. Make sure that the minimum value of x is less
than the maximum value of x and that the minimum value of y is less than the maximum value of y.

399

Appendix B. Run-Time Messages

CORFILSTR, Corrupted file structure (ERR=29)

RMS has detected an invalid file structure on disk.

User action: See your system manager.

DATFORERR, Data format error (ERR=50)

The program specifies a data type in a statement that does not agree with the value supplied or invalid
data was used in string arithmetic.

User action: Change the statement or supply data of the correct type.

DATOVERF, data overflow (ERR=289)

The keystroke retrieved by the INKEY$ function caused the type-ahead buffer to overflow or the
terminal attempted to send a valid ANSI escape sequence that did not correspond to a keystroke.

User action: Specify the DCL command SET TERMINAL/HOSTSYNC before using the INKEY$
function. This command will prevent the type-ahead buffer from overflowing.

DATTYPERR, Data type error (ERR=101)

The program attempts to access a parameter passed BY DESC (by descriptor), and the descriptor
contains an incorrect data type. This error cannot be trapped with a VSI BASIC for OpenVMS error
handler unless the program contains OPTION HANDLE = SEVERE.

User action: Check the program code that created the passed parameter and make sure it creates a
parameter of correct data type.

DEADLOCK, Detected deadlock while waiting for GET or FIND (ERR=193)

The record your program is trying to access is currently locked on another channel or by another process.
Simultaneously, your program has locked a record that the other user cannot access. The deadlock cannot
be resolved.

User action:Possible solutions include:

● Use the FREE statement to unlock all locked records

● Use GET...REGARDLESS if read access is sufficient

DECERR, DECIMAL error or overflow (ERR=181)

The result of a DECIMAL expression is greater than or requires more precision than can be contained in
the variable.

User action: Reduce the magnitude of the expression or increase the allowed digits in the DECIMAL
variable.

User action: Check program logic or trap the error in an error handler.

400

Appendix B. Run-Time Messages

DEVHUNWRI, Device hung or write locked (ERR=14)

The program attempted an operation to a hardware device that is not functioning properly or is protected
against writing.

User action: Check the device on which the operation is performed.

DEVINMET, Device is an input metafile (ERR=270)

The operation cannot be performed on an input metafile (device type 3).

User action: Specify the device ID for a device other than an input metafile.

DEVNOTOPE, Device is not open (ERR=268)

The device has not been identified in an OPEN...FOR GRAPHICS statement.

User action:Specify the device ID number in an OPEN...FOR GRAPHICS statement.

DEVOPEINC, Device and operation are incompatible (ERR=272)

The operation you requested cannot be performed on the specified device. For example, output cannot be
dislayed on a device that is for input only.

User action:Specify the device ID for a device with the appropriate compatibility. Device types are
listed in Programming with VAX BASIC Graphics.

DEVOUTMET, Device is an output metafile (ERR=269)

The specified device is an output metafile (device type 2).

User action: Specify the device ID for a device other than an output metafile.

DEVTYPNOT, Device type is not supported (ERR=267)

The specified device type is not supported by Compaq GKS for OpenVMS.

User action:Specify an alternative device type. Standard supported device types are listed in
Programming with VAX BASIC Graphics and in the Compaq GKS for OpenVMS documentation. Verify
with your system manager that support for the specified device has been installed. Also, verify that the
Compaq GKS for OpenVMS startup command procedure has properly executed.

DIFUSELON, Differing use of LONG/WORD or SINGLE/DOUBLE qualifiers (ERR=229)

The main and subprograms were compiled with different LONG/WORD modes. This error cannot be
trapped with a VSI BASIC for OpenVMS error handler unless the program contains OPTION HANDLE
= SEVERE.

User action: Recompile one of the programs with the same qualifier as the other.

401

Appendix B. Run-Time Messages

DIMOUTRAN, Dimension number out of range (ERR=195)

The upper or lower bound of the specified dimension cannot be returned because the array has fewer
dimensions than the one requested.

User action:Change the dimensions specified with the LBOUND or UBOUND function.

DIRERR, Directive error (ERR=253)

A system service call resulted in an error.

User action: See the VSI OpenVMS I/O User's Reference Manual or the VSI OpenVMS Record
Management Services Reference Manual.

DIVBY_ZER, Division by 0 (ERR=61)

The program attempts to divide a value by zero.

User action: Check program logic and change the attempted division or trap the error in an error
handler.

DUPKEYDET, Duplicate key detected (ERR=134)

In a PUT operation to an indexed file, a duplicate key was specified, and DUPLICATES was not
specified when the file was created.

User action: Change the duplicate key, or recreate the file specifying DUPLICATES for that key.

ECHTYPNOT, Prompt/echo type not supported (ERR=256)

The specified prompt or echo type is invalid. VSI BASIC for OpenVMS supports only the default prompt
and echo types.

User action:Do not change the prompt or echo type. If you do so, you should continue to use direct calls
to Compaq GKS routines rather than use VSI BASIC for OpenVMS input statements.

ENDFILDEV, End of file on device (ERR=11)

The program attempted to read data beyond the end of the file.

User action: None. The program can trap this error in an error handler.

ENTPOINOT, Entered points not within a transformation (ERR=285)

Input points are not within the viewport of a defined transformation.

User action:Issue a warning to the user to input points within the defined area. Alternatively, you can
change at least one transformation to include the viewport area not defined. At the start of program
execution, transformation 1 includes all of NDC space. Optionally, you can define one transformation to
cover the default viewport.

402

Appendix B. Run-Time Messages

ERRFILCOR, Error on OPEN - file corrupted (ERR=178)

The program attempted to open an invalid structure on disk.

User action: See your system manager.

ERRTRANEE, ERROR trap needs RESUME (ERR=246)

An error handler attempts to execute an END, END SUB, END FUNCTION, SUBEND,
FUNCTIONEND, or FNEND statement without first executing a RESUME statement. This error
cannot be trapped with a VSI BASIC for OpenVMS error handler unless the program contains OPTION
HANDLE = SEVERE.

User action: Change the program logic so that the error handler executes a RESUME statement before
executing an END, END SUB, END DEF, SUBEND, FUNCTIONEND, or FNEND statement.

FATSYSIO_, Fatal system I/O failure (ERR=12)

An I/O error has occurred in: 1) the system or 2) Record Management Services. The last operation will
not be completed.

User action: See the OpenVMS System Messages and Recovery Procedures Reference Manual for RMS
errors or retry the operation. Use VMSSTATUS to return the VMS condition code that caused the error.

FIEOVEBUF, FIELD overflows buffer (ERR=63)

A FIELD statement attempts to access more data than exists in the specified buffer.

User action: Change the FIELD statement to match the buffer's size, or increase the buffer's size.

FILACPFAI, FILE ACP failure (ERR=252)

The operating system's file handler reported an error to RMS.

User action: See the VSI OpenVMS I/O User's Reference Manual or the VSI OpenVMS Record
Management Services Reference Manual.

FILATTNOT, File attributes not matched (ERR=160)

The following attributes in the OPEN statement do not match the corresponding attributes of the target
file:

● ORGANIZATION

● BUCKETSIZE

● BLOCKSIZE

● Key number, size, position, or attributes (CHANGES and DUPLICATES)

● Record format

User action: Change the OPEN statement attributes to match those of the file or remove the clause.

403

Appendix B. Run-Time Messages

FILEXPDAT, File expiration date not yet reached (ERR=174)

The program attempted to delete a file before the file's expiration date was reached.

User action: Change the file's expiration date.

FILIS_LOC, File is locked (ERR=138)

The program does not allow shared access, and attempts to access a file that has been locked by another
user or by the system.

User action: Change the OPEN statement to allow shared access or wait until the file is released by
other users.

FLOPOIERR, Floating point error or overflow (ERR=48)

A program operation resulted in a floating-point number with absolute value outside the allowable range
for that data type.

User action: Check program logic or trap the error in an error handler.

FNEWITFUN, FNEND without function call (ERR=73)

The program executes an END DEF or FNEND statement before executing a function call. This error
cannot be trapped with a VSI BASIC for OpenVMS error handler unless the program contains OPTION
HANDLE = SEVERE.

User action: Check program logic to make sure that END DEF or FNEND statements are executed only
in multiline DEFs or remove the END DEF or FNEND statement.

GKSNOTINS, DEC GKS FOR VMS is not installed (ERR=226)

Graphics statements are not operational when Compaq GKS is not installed.

User action:See your system manager.

ILLALLCLA, Illegal ALLOW clause (ERR=168)

The value specified for the ALLOW clause (sharing) on the OPEN statement is illegal for the type of file
organization.

User action: Change the ALLOW clause argument.

ILLARGLOG, Illegal argument in LOG (ERR=53)

The program contains a negative or zero argument to the LOG or LOG10 function.

User action: Supply an argument in the valid range.

404

Appendix B. Run-Time Messages

ILLARESTY, Illegal area style (ERR=262)

Area style must be one of the following:

● SOLID (the default)

● HOLLOW

● HATCH

● PATTERN

User action:Specify a valid area style for the device.

ILLBYTCOU, Illegal byte count for I/O (ERR=31)

A PRINT or INPUT list invoked a function that closed an I/O channel.

User action: Change the function so that it does not close the I/O channel.

ILLCNTCLA, Illegal count clause (ERR=290)

In a graphics statement, you specified a COUNT clause with a numeric value that exceeds the size of the
array.

User action: Specify a numeric value that is less than or equal to the size of the array.

ILLCOLIND, Illegal color index (ERR=280)

The index you specified is not supported by the device.

User action:Specify a valid color index. The valid range of indices for the device is from 0 to the value
retrieved by the ASK MAX COLOR statement.

ILLCOLMIX, Illegal color mix (ERR=291)

The color mix value specified on the SET COLOR MIX statement is outside the range of 0 to 1.

User action: Specify a value from 0 to 1.

ILLDEVID, Illegal device identification number (ERR=266)

The device identification number is beyond the valid range of 0 through 255.

User action:Specify a device identification number between 0 and 255.

405

Appendix B. Run-Time Messages

ILLDEVNAM, Illegal device name in OPEN (ERR=292)

An explicit or implicit OPEN...FOR GRAPHICS statement contains an illegal device name for the device
type being used. Possible causes include:

● Specifying a device that does not exist on the system

● Specifying a logical name that is not defined

● Specifying a file name that does not exist when the device type is for an input metafile

● Specifying a file name for a device type that requires an OpenVMS physical device name

User action: Specify an appropriate device name.

ILLECHARE, Illegal echo area (ERR=283)

The specified echo area boundaries are invalid.

User action:Specify echo area boundaries within the device viewport.

ILLEXIDEF, Illegal exit from DEF* (ERR=245)

A multiline DEF* contains a branch to an END, END SUB, END DEF, SUBEND, or FUNCTIONEND
statement. This error cannot be trapped with a VSI BASIC for OpenVMS error handler unless the
program contains OPTION HANDLE = SEVERE.

User action: Change the program logic so that the program executes the multiline function's END DEF
or FNEND statement before executing the END, END SUB, END DEF, SUBEND, or FUNCTIONEND
statement.

ILLFIEVAR, Illegal FIELD variable (ERR=122)

A FIELDed variable is referenced after a non-BASIC subprogram closed the file associated with that
variable. This error cannot be trapped with a VSI BASIC for OpenVMS error handler unless the program
contains OPTION HANDLE = SEVERE.

User action: Check program logic; do not reference the variable after the file has been closed.

ILLFILNAM, Illegal file name (ERR=2)

A file name is: 1) too long, 2) incorrectly formatted, or 3) contains embedded blanks or invalid
characters.

User action: Supply a valid file specification.

406

Appendix B. Run-Time Messages

ILLILLACC, Illegal or illogical access (ERR=136)

The requested access is impossible because:

● The attempted record operation and the ACCESS clause in the OPEN statement are incompatible.

● The ACCESS clause is inconsistent with the file organization.

● ACCESS READ or APPEND was specified when the file was created.

User action: Change the ACCESS clause.

ILLINIVAL, Illegal initial value (ERR=284)

The current initial value specified on the SET INITIAL VALUE or LOCATE VALUE statement is
beyond the range of possible values.

User action:Specify an initial value within the default range (0 through 1) or within the alternative range
you optionally specified, or change the range limits.

ILLIO_CHA, Illegal I/O channel (ERR=46)

The program specified an I/O channel outside the legal range.

User action: Specify I/O channels in the range 1 to 99, inclusive or one returned from LIB$GET_LUN.

ILLKEYATT, Illegal key attributes (ERR=137)

The program specified CHANGES for the primary key.

User action: Remove the CHANGES specification from the primary key. You can specify CHANGES
only for alternate keys.

ILLLINSIZ, Illegal line size (ERR=275)

The specified line size is less than or equal to zero.

User action:Specify a line size value greater than zero.

ILLLINSTY, Illegal line style number (ERR=274)

The specified line style number is less than or equal to zero.

User action:Specify a valid line style value greater than zero.

ILLNETOPE, Illegal network operation (ERR=190)

The program tries to mix GET and PUT operations, or PRINT and INPUT operations, on a remote
terminal-format file.

User action:Change the file organization when opening the file to be sequential variable.

407

Appendix B. Run-Time Messages

ILLNUM, Illegal number (ERR=52)

A value supplied to a numeric variable is incorrect, for example, “ABC” and “1..2” are illegal numbers.

User action: Supply numeric values of the correct form.

ILLOPE, Illegal operation (ERR=141)

The program attempts to:

● DELETE a record in a sequential file.

● UPDATE a record on a magtape file.

● Rewind a process-permanent file.

● DELETE a record in a read-only file.

● Assign a value to a virtual array element in a read-only file.

● Perform a MARGIN operation on VIRTUAL file.

● Transpose a matrix, or perform a matrix multiplication, with the same array as source and
destination.

● Perform an invalid operation on a VIRTUAL file, for example, using GET and PUT on a VIRTUAL
file, then attempting to reference a virtual array dimensioned on that file.

User action: Change the illegal operation.

ILLPICOPE, Illegal picture operation (ERR=258)

The program attempts to change a transformation within a picture definition. The following statements
are invalid within pictures and within routines that are called by pictures:

● SET WINDOW

● SET VIEWPORT

● SET DEVICE WINDOW

● SET DEVICE VIEWPORT

● SET TRANSFORMATION

● SET INPUT PRIORITY

● SET CLIP

User action: Remove any invalid statements from the picture definition. Set the boundaries for windows
and viewports before a picture is invoked.

ILLPOISTY, Illegal point style number (ERR=276)

The specified point style is less than or equal to zero.

User action:Specify a valid point style greater than or equal to zero.

408

Appendix B. Run-Time Messages

ILLRECACC, Illogical record accessing (ERR=152)

The program attempts to perform an operation that is invalid for the specified file type, for example, a
random access on a sequential file.

User action: Supply a valid operation for that file type or change the file type.

ILLRECFIL, Illegal record on file (ERR=142)

A record contains an invalid byte count field.

User action: Use the DCL command DUMP to check the file for possible bad data.

ILLRECLOC, illegal record locking (ERR=187)

The program contains an ALLOW clause on a GET statement and the file was not opened with the
UNLOCK EXPLICIT clause. This error cannot be trapped with a VSI BASIC for OpenVMS error
handler unless the program contains OPTION HANDLE = SEVERE.

User action: Either remove the ALLOW clause from the GET statement or use the UNLOCK
EXPLICIT clause in the OPEN statement.

ILLRESSUB, Illegal RESUME to subroutine (ERR=247)

While in an error handler activated by an ON ERROR GO BACK, the error handler attempts to
RESUME without a line number. This error cannot be trapped with a VSI BASIC for OpenVMS error
handler unless the program contains OPTION HANDLE = SEVERE.

User action: None; you cannot specify the RESUME statement without a line number in any program
module except in the program module containing the error handler.

ILLSTYIND, Illegal area style index (ERR=279)

The specified area style index is less than or equal to zero.

User action:Specify a valid area style index greater than zero.

ILLSWIUSA, Illegal switch usage (ERR=67)

The program attempts an illegal SYS call.

User action: See the appropriate RSTS/E SYS call documentation.

ILLSYSUSA, Illegal SYS usage() (ERR=18)

The program attempted an illegal SYS call.

User action: See the appropriate RSTS/E SYS call documentation.

409

Appendix B. Run-Time Messages

ILLTEXHEI, Illegal text height (ERR=278)

The text height is less than or equal to zero.

User action:Specify a text height greater than zero.

ILLTEXJUS, Illegal text justification (ERR=263)

The specified text justification factor is invalid.

User action:See Programming with VAX BASIC Graphics for valid justification values. Specify valid
values.

ILLTEXPAT, Illegal text path (ERR=265)

The specified text path is invalid.

User action:Specify a valid text path. Valid text path values are as follows:

● RIGHT (the default)

● LEFT

● UP

● DOWN

ILLTEXPRE, Illegal text precision (ERR=264)

The specified precision string is invalid.

User action:Valid precision values are: “STROKE” for software fonts, “STRING” and “CHAR” for
hardware fonts. Specify a valid string for the precision value.

ILLTEXRAT, Illegal text width-to-height ratio (ERR=276)

The specified width-to-height ratio is less than or equal to zero.

User action:Specify a width-to-height ratio greater than zero.

ILLTFFOPE, Illegal terminal-format file operation (ERR=191)

The program specifies a GETRFA function on a terminal-format file.

User action:Change the file organization when opening the file to be sequential variable.

ILLTRANUM, Illegal transformation number (ERR=257)

The specified transformation number is less than 1 or greater than 255.

User action:Specify a transformation number from 1 to 255.

410

Appendix B. Run-Time Messages

ILLUSADEV, Illegal usage for device (ERR=133)

The requested operation cannot be performed because:

● The device specification contains illegal syntax.

● The specified device does not exist on your system.

● The specified device is inappropriate for the requested operation (for example, an indexed file access
on magnetic tape).

User action: Supply the correct device type.

ILLWAIVAL, Illegal wait value (ERR=192)

The specified integer expression on the WAIT clause is less than zero or greater than 255.

User action:Specify an integer expression whose value is 0 through 255.

IMASQUROO, Imaginary square roots (ERR=54)

An argument to the SQR function is negative.

User action: Supply arguments to the SQR function that are greater than or equal to zero.

IMPERRHAN, improper error handling (ERR=186)

After an error has occurred, a program's error handler calls another program unit, and the called
program unit executes an ON ERROR GO BACK statement before clearing the error with a RESUME
statement. This error cannot be trapped with a VSI BASIC for OpenVMS error handler unless the
program contains OPTION HANDLE = SEVERE.

User action: Change the program logic so that the called program clears the error condition before
executing the ON ERROR GO BACK statement.

INDNOTFUL, Index not fully optimized (ERR=170)

A record was successfully written to an INDEXED file; however, the alternate key path was not
optimized. This slows record access.

User action: Delete the record and rewrite it.

INTERR, Integer error (ERR=51)

The program contains an integer whose absolute value is greater than 127 in BYTE mode, 32,767 in
WORD mode, 2,147,483,647 in LONG mode, or 9,223,372,036,854,775,807 in QUAD mode.

User action: Use an integer in the valid range for specified data type.

411

Appendix B. Run-Time Messages

INVCHASTR, Invalid character in string (ERR=287)

The program attempts to output a string that contains an invalid character.

User action: Remove the invalid character from the string.

INVFILOPT, Invalid file options (ERR=139)

The program has specified invalid file options in the OPEN statement.

User action: Change the invalid file options.

INVKEYREF, Invalid key of reference (ERR=144)

The program attempts to perform a GET, FIND, or RESTORE on an INDEXED file using an invalid
KEY, for example, an alternate KEY that does not exist for the file that was opened.

User action: Use a valid KEY in the GET, FIND, or RESTORE statement.

INVRFAFIE, Invalid RFA field (ERR=173)

During a FIND or GET by RFA, an invalid record's file address was specified.

User action: Supply a correct RFA field.

IO_CHAALR, I/O channel already open (ERR=7)

The program attempted to open a channel in a def or function while I/O was pending on that channel.

User action: Change the function so that it does not open the channel.

IO_CHANOT, I/O channel not open (ERR=9)

The program attempted to perform an I/O operation before opening the channel.

User action: Open the channel before attempting an I/O operation to it.

KEYFIEBEY, Key field beyond end of record (ERR=151)

The position given for the key field exceeds the maximum size of the record.

User action: Specify a key field within the record.

KEYLARTHA, Key larger than record (ERR=159)

The key specification exceeds the maximum record size.

User action: Reduce the size of the key specification.

412

Appendix B. Run-Time Messages

KEYNOTCHA, Key not changeable (ERR=130)

An UPDATE statement attempted to change a key field that did not have CHANGES specified in the
OPEN statement.

User action: Remove the changed key field in the UPDATE statement or specify CHANGES for that
key field in the OPEN statement. Note that the primary key cannot be changed and that you cannot
specify CHANGES when you open an existing file if the OPEN statement that created the file did not
specify CHANGES.

KEYSIZTOO, Key size too large (ERR=145)

The key length on a GET or FIND is either zero or larger than the key length defined for the target
record.

User action: Change the key specification in the GET or FIND statement.

KEYWAIEXH, Keyboard wait exhausted (ERR=15)

No input was received during the execution of an INPUT, LINPUT, or INPUT LINE statement that was
preceded by a WAIT statement or INKEY$ timeout value.

User action: None; you must supply input within the specified time.

LINTOOLON, Line too long (ERR=47)

The program attempted to input more data than the input buffer can hold. The default input buffer size
for terminal input is 132.

User action: Either decrease the amount of data entered at one time, or increase the size of the
input buffer. You can explicitly OPEN the input device and specify the input buffer size with the
RECORDSIZE or MAP clause.

MATDIMERR, Matrix dimension error (ERR=124)

The program attempts to:

● Assign more than two dimensions to an array.

● Reference an array with fewer or more subscripts than there are dimensions in the array.

● Redimension an array that cannot be redimensioned.

● Perform a matrix operation with an array that has a lower bound, other than zero, in any of its
dimensions.

This error cannot be trapped with a VSI BASIC for OpenVMS error handler unless the program contains
OPTION HANDLE = SEVERE.

User action: Change the number of array subscripts. Reference the array using the correct number
of dimensions, change the array so that it can be redimensioned, or change the array so that its lower
bounds are zero in all of its dimensions.

413

Appendix B. Run-Time Messages

MAXMEMEXC, Maximum memory exceeded (ERR=126)

The program has insufficient string and I/O buffer space because: 1) its allowable memory size has
been exceeded, or 2) the system's maximum memory capacity has been reached. This error cannot be
trapped with a VSI BASIC for OpenVMS error handler unless the program contains OPTION HANDLE
= SEVERE.

User action: Reduce the amount of string or I/O buffer space, or split the program into two or more
programs.

MEMMANVIO, Memory management violation (ERR=35)

The program attempted to read or write to a memory location to which it was not allowed access. This
error cannot be trapped with a VSI BASIC for OpenVMS error handler unless the program contains
OPTION HANDLE = SEVERE.

User action: If the program was compiled with /NOCHECK, it may be exceeding an array bound;
recompile with /CHECK. Otherwise, check program logic.

MISSPEFEA, Missing special feature (ERR=66)

The program attempts to use an unavailable SYS call.

User action: See the appropriate RSTS/E SYS call documentation.

MOVOVEBUF, Move overflows buffer (ERR=161)

In a MOVE statement, the combined length of elements in the I/O list exceeds the size of the record just
read or the size of the buffer.

User action: Reduce the size of the I/O list or increase the file's RECORDSIZE.

NEGFILSTR, Negative fill or string length (ERR=166)

A MOVE statement I/O list contains a FILL item or string length with a negative value.

User action: Change the FILL item or string length value to be greater than or equal to zero.

NEGZERTAB, negative or zero TAB (ERR=176)

The program attempted a zero or negative TAB. This error is signaled only for programs compiled with
the /ANSI_STANDARD qualifier.

User action: Change the argument to the TAB statement.

NETOPERR, network operation error (ERR=182)

The program attempts to perform an invalid network operation, or the network software failed during a
network operation.

User action: Take action based on the associated error messages.

414

Appendix B. Run-Time Messages

NODNAMERR, Node name error (ERR=175)

A file specification's node name contains a syntax error.

User action: Supply a valid node name.

NOTBASIC, Not a BASIC error (ERR=194)

The error is not a VSI BASIC for OpenVMS error and is not mapped to an alternative VSI BASIC for
OpenVMS error message.

User action:Use RMSSTATUS or VMSSTATUS to access the text of the error message.

NOTENDFIL, Not at end of file (ERR=149)

The program attempted a PUT operation: 1) on a sequential or relative file before the last record, or 2)
without opening the file for WRITE access.

User action: OPEN a sequential or relative file with ACCESS APPEND or OPEN the file with ACCESS
WRITE.

NOTENOAVA, Not enough available memory (ERR=111)

The program has exhausted its virtual space limits.

User action: Raise the user PGFLQUOTA limit.

NOTENODAT, Not enough data in record (ERR=59)

An INPUT statement did not find enough data in one line to satisfy all the specified variables.

User action: Supply enough data in the record or reduce the number of specified variables.

NOTIMP, Not implemented (ERR=250)

The program attempted to use a feature that does not exist in this version of VSI BASIC for OpenVMS,
for example, TIME(4%).

User action: Do not use the feature.

NOTRANACC, Not a random access device (ERR=64)

The program attempts a random access on a device that does not allow such access, for example, a PUT
with a record number to a magtape file.

User action: Make the access sequential instead of random or use a suitable I/O device.

415

Appendix B. Run-Time Messages

NO_CURREC, No current record (ERR=131)

The program attempts a DELETE or UPDATE when the previous GET or FIND failed, or no previous
GET or FIND was done.

User action: Correct the cause of failure for the previous GET or FIND, or make sure a GET or FIND
was done, then retry the operation.

NO_PRIKEY, No primary key specified (ERR=150)

The program attempts to create an INDEXED file without specifying a PRIMARY KEY value.

User action: Specify a PRIMARY KEY.

NO_ROOUSE, No room for user on device (ERR=4)

No user storage space exists on the specified device.

User action: Delete files that are no longer needed.

NUMCOOINS, Number of coordinates insufficient (ERR=281)

Insufficient coordinates are provided. A GRAPH POINTS statement requires the coordinates for at least
one point. A GRAPH LINES statement requires a minimum of two points. A GRAPH AREA statement
requires a minimum of three points.

User action:Supply an adequate number of points.

ONEOR_TWO, One or two dimensions only (ERR=102)

The program contains a MAT statement that attempts to assign more than two dimensions to an array.
This error cannot be trapped with a VSI BASIC for OpenVMS error handler unless the program contains
OPTION HANDLE = SEVERE.

User action: Change the number of dimensions in the MAT statement to one or two.

ON_STAOUT, ON statement out of range (ERR=58)

The index value in an ON GOTO or ON GOSUB statement is less than one or greater than the number
of line numbers in the list.

User action: Check program logic to make sure that the index value is greater than or equal to one, and
less than or equal to the number of line numbers in the ON GOTO or ON GOSUB statement.

OUTOF_DAT, Out of data (ERR=57)

A READ statement requested additional data from an exhausted DATA list.

User action: Remove the READ statement, reduce the number of variables in the READ statement, or
supply more DATA items.

416

Appendix B. Run-Time Messages

PRIKEYOUT, Primary key out of sequence (ERR=158)

RMS has detected an error in a sequential PUT to an INDEXED file.

User action: Change the PUT statement. If this does not work, the file is corrupted and you cannot do
anything.

PRIUSIFOR, PRINT-USING format error (ERR=116)

The program contains a PRINT USING statement with an invalid format string.

User action: Change the PRINT USING format string.

PROC_TRA, Programmable ^C trap (ERR=28)

A CTRL/C was typed at the controlling terminal.

User action: None; however, you can trap this error with an error handler.

PROLOSSOR, Internal error in BASIC Run-Time Library. Please submit an SPR. (ERR=103)

A consistency check in the VSI BASIC for OpenVMS run-time support failed. Program execution is
aborted. This error cannot be trapped with a VSI BASIC for OpenVMS error handler unless the program
contains OPTION HANDLE = SEVERE.

User action: This error should never occur. Submit a Software Performance Report.

PROVIO, Protection violation (ERR=10)

The program attempted to read or write to a file whose protection code did not allow the operation.

User action: Use a different file or change the file's protection code or the attempted operation.

RECALREXI, Record already exists (ERR=153)

An attempted random access PUT on a relative file has encountered a pre-existing record.

User action: Specify a different record number for the PUT or delete the record.

RECATTNOT, Record attributes not matched (ERR=228)

A RECORDTYPE clause specifies record attributes that do not match those of the file.

User action: Change the RECORDTYPE attribute to match that of the file.

RECBUCLOC, Record/bucket locked (ERR=154)

The program attempts to access a record or bucket that has been locked by another program.

User action: Retry the operation.

417

Appendix B. Run-Time Messages

RECFILTOO, Record on file too big (ERR=157)

The specified record is longer than the input buffer.

User action: Increase the input buffer's size.

RECHASBEE, Record has been deleted (ERR=132)

A record previously located by its Record File Address (RFA) has been deleted.

User action: None.

RECNOTFOU, Record not found (ERR=155)

A random access GET or FIND was attempted on a deleted or nonexistent record.

User action: None.

RECNUMEXC, RECORD number exceeds maximum (ERR=147)

The specified record number exceeds the maximum specified for this file.

User action: Reduce the specified record number. The maximum record number cannot be specified in
VSI BASIC for OpenVMS; it is either a default, or it was specified by a non-BASIC program when the
file was created.

RECOVEMAP, RECORDSIZE overflows MAP buffer (ERR=185)

The OPEN statement specifies a RECORDSIZE value larger than the size of the MAP specified in the
MAP clause. This error cannot be trapped with a VSI BASIC for OpenVMS error handler unless the
program contains OPTION HANDLE = SEVERE.

User action: Increase the size of the MAP to match the RECORDSIZE value.

REDARR, Redimensioned array (ERR=105)

A MAT statement attempts to redimension an array to have more elements than were originally
dimensioned.

User action: Change the statement that attempts the redimension or increase the original number
elements.

REMOVEBUF, REMAP overflows buffer (ERR=183)

A REMAP statement causes the variables in the dynamic MAP to be associated with nonexistent
storage.

User action: Change the REMAP statement so that all variables are associated with the storage in the
MAP.

418

Appendix B. Run-Time Messages

REMSTRNOT, REMAP string is not static (ERR=196)

The program referenced a string with a REMAP statement that was not declared in COMMON or MAP.

User action: Declare the string in the COMMON or MAP statement.

RESNO_ERR, RESUME and no error (ERR=104)

The program executes a RESUME statement without a line number outside of the error handling routine.
This error cannot be trapped with a VSI BASIC for OpenVMS error handler unless the program contains
OPTION HANDLE = SEVERE.

User action: Check program logic to make sure that the RESUME statement is executed only in the
error handler.

RETWITGOS, RETURN without GOSUB (ERR=72)

The program executes a RETURN statement before a GOSUB. This error cannot be trapped with a VSI
BASIC for OpenVMS error handler unless the program contains OPTION HANDLE = SEVERE.

User action: Check program logic to make sure that RETURN statements are executed only in
subroutines or remove the RETURN statement.

RRVNOTFUL, RRV not fully updated, (ERR=171)

RMS wrote a record successfully, but did not update one or more Record Retrieval Vectors; therefore,
you cannot retrieve any records associated with those vectors.

User action: Delete the record and rewrite it.

SCAFACINT, SCALE factor interlock (ERR=127)

A subprogram was compiled with a different SCALE factor than that of the calling program. This error
cannot be trapped with a VSI BASIC for OpenVMS error handler unless the program contains OPTION
HANDLE = SEVERE.

User action: Recompile one of the programs with a scale factor that matches the other.

419

Appendix B. Run-Time Messages

SIZRECINV, Size of record invalid (ERR=156)

The program contains a COUNT or RECORDSIZE specification that is invalid because:

● COUNT equals zero.

● COUNT exceeds the maximum size of the record.

● COUNT conflicts with the actual size of the current record during a sequential file UPDATE on disk.

● COUNT does not equal the record size for fixed format records.

● You specified a record size in the OPEN statement that was unequal to the actual record size
established when the file was created.

User action: Supply a valid COUNT value in the PUT or UPDATE statement, or a valid RECORDSIZE
in the OPEN statement, whichever is applicable.

STO, Stop (ERR=123)

The program executed a STOP statement. This error cannot be trapped with a VSI BASIC for OpenVMS
error handler unless the program contains OPTION HANDLE = INFO or a greater severity.

User action: Continue execution by typing CONTINUE or terminate execution by typing EXIT.

STRLENZER, string length is zero (ERR=288)

A graphics statement references a null string where a null string is illegal.

User action: Adjust the string length so that it is greater than zero.

STRTOOLON, String too long (ERR=227)

The program attempts to create a string longer than 65,535 bytes.

User action: Reduce the length of the string.

SUBOUTRAN, Subscript out of range (ERR=55)

The program attempts to reference an array element outside of the array's dimensioned bounds.

User action: Check program logic to make sure that all array references are to elements within the array
boundaries.

TAPBOTDET, Tape BOT detected (ERR=129)

The program attempts a rewind or backspace operation on a magnetic tape that is already at the
beginning of the file.

User action: Trap the error or check program logic; do not rewind or backspace if the magnetic tape is
at the beginning of the file.

420

Appendix B. Run-Time Messages

TAPNOTANS, Tape not ANSI labeled (ERR=146)

The program attempts to access a file-structured magnetic tape that does not have an ANSI label.

User action: Determine the magnetic tape's format by mounting it with the /FOREIGN qualifier and
using the DCL DUMP command. You can then access it as a non-file-structured magnetic tape.

TAPRECNOT, Tape records not ANSI (ERR=128)

The records in the magtape you accessed are neither ANSI D nor ANSI F format.

User action: Determine the magtape's format by mounting it with the /FOREIGN qualifier and using
the DCL DUMP command.

TERFORFIL, Terminal format file required (ERR=164)

The program attempted to use PRINT #, INPUT #, LINPUT #, MAT INPUT #, MAT PRINT #, or
PRINT USING # to access a RELATIVE, INDEXED, or VIRTUAL file.

User action: Supply a terminal-format file.

TOOFEWARG, Too few arguments (ERR=97)

A function invocation, CALL, or DRAW statement passed fewer arguments than were defined in the
function, picture, DEF, DEF*, or subprogram. This error cannot be trapped with a VSI BASIC for
OpenVMS error handler unless the program contains OPTION HANDLE = SEVERE.

User action: Change the number of arguments to match the number defined in the function or
subprogram.

TOOLITDAT, too little data in record (ERR=189)

An INPUT statement did not find enough data in one line to satisfy all the specified variables. This error
is signaled only for programs compiled with the /ANSI_STANDARD qualifier.

User action: Supply enough data in the record, or reduce the number of specified variables.

TOOMANARG, Too many arguments (ERR=89)

A function invocation, CALL, or DRAW statement passed more arguments than were expected. This
error cannot be trapped with a VSI BASIC for OpenVMS error handler unless the program contains
OPTION HANDLE = SEVERE.

User action: Reduce the number of arguments. A SUB or FUNCTION subprogram can pass a
maximum of 255 arguments; a DEF function call can pass a maximum of eight arguments.

421

Appendix B. Run-Time Messages

TOOMUCDAT, too much data in record (ERR=177)

The user has given too many items in response to the INPUT statement. This error is only signaled for
ANSI INPUT.

User action: Supply the correct number of items to the INPUT statement or change the INPUT
statement.

TRANOTDIF, Transformation numbers are not different (ERR=260)

The same transformation number is used twice in the SET INPUT PRIORITY statement.

User action:Specify two different transformations in the SET INPUT PRIORITY statement.

UNEFILDAT, unexpired file date (ERR=179)

The program attempts to delete a file whose expiration date has not yet passed.

User action: None.

UNINUMNOT, Unit number is not defined for the device (ERR=282)

The specified unit is a method that is not supported by the device. (The default unit is 1.)

User action:Verify the supported units for the device and specify a valid unit.

UNKGKSERR, Unknown DEC GKS FOR VMS error (ERR=286)

A graphics error has occurred that is not mapped to a VSI BASIC for OpenVMS error message.

User action:Use VMSSTATUS to access the text of the Compaq GKS error message.

USEABOINP, User aborted input, locate point cancelled (ERR=293)

The middle mouse button was pressed during the execution of a graphics input statement that uses
a mouse to enter points (for example, LOCATE POINT). The pressing of the middle mouse button
aborts the graphics input statement in progress and the data in the variables used for the graphics input
statement is unchanged.

The pressing of the middle mouse button during a graphics input statement is analogous to typing Ctrl/Z
at a regular INPUT statement.

User action: None. The program can trap this error in an error handler and attempt the input statement
again if so desired.

VIRARRDIS, Virtual array not on disk (ERR=43)

The program attempted to reference a virtual array on a nondisk device, or the virtual array is not
opened as ORGANIZATION VIRTUAL.

User action: Virtual arrays must be on disk; change the file specification in the OPEN statement for this
array. Open the file with ORGANIZATION VIRTUAL.

422

Appendix B. Run-Time Messages

VIRARROPE, Virtual array not yet open (ERR=45)

The program attempted to reference a virtual array before opening the associated disk file.

User action: Open the disk file containing the virtual array before referencing the array.

VIRBUFTOO, Virtual buffer too large (ERR=42)

The program attempted to access a VIRTUAL file and the buffer size was not 512 bytes.

User action: Change the I/O buffer to be a multiple of 512 bytes.

B.2. VSI BASIC for OpenVMS Run-Time Errors
by Number
Table B.1, "BASIC Run-Time Errors" shows the run-time errors by their number and gives an explanation
of each error.

Table B.1. BASIC Run-Time Errors

Error
Number

Explanation

1 BADDIRDEV, Bad directory for device
2 ILLFILNAM, Illegal file name
4 NO_ROOUSE, No room for user on device
5 CANFINFIL, Can't find file or account
7 IO_CHAALR, I/O channel already open
9 IO_CHANOT, I/O channel not open
10 PROVIO, Protection violation
11 ENDFILDEV, End of file on device
12 FATSYSIO_, Fatal system I/O failure
14 DEVHUNWRI, Device hung or write locked
15 KEYWAIEXH, Keyboard wait exhausted
18 ILLSYSUSA, Illegal SYS() usage
28 PROC__TRA, Programmable ^C trap
29 CORFILSTR, Corrupted file structure
31 ILLBYTCOU, Illegal byte count for I/O
35 MEMMANVIO, Memory management violation
42 VIRBUFTOO, Virtual buffer too large
43 VIRARRDIS, Virtual array not on disk
45 VIRARROPE, Virtual array not yet open
46 ILLIO_CHA, Illegal I/O channel
47 LINTOOLON, Line too long

423

Appendix B. Run-Time Messages

Error
Number

Explanation

48 FLOPOIERR, Floating point error or overflow
49 ARGTOOLAR, Argument too large in EXP
50 DATFORERR, Data format error
51 INTERR, Integer error
52 ILLNUM, Illegal number
53 ILLARGLOG, Illegal argument in LOG
54 IMASQUROO, Imaginary square roots
55 SUBOUTRAN, Subscript out of range
56 CANINVMAT, Can't invert matrix
57 OUTOF_DAT, Out of data
58 ON_STAOUT, ON statement out of range
59 NOTENODAT, Not enough data in record
61 DIVBY_ZER, Division by 0
63 FIEOVEBUF, FIELD overflows buffer
64 NOTRANACC, Not a random access device
66 MISSPEFEA, Missing special feature
67 ILLSWIUSA, Illegal switch usage
72 RETWITGOS, RETURN without GOSUB
73 FNEWITFUN, FNEND without function call
88 ARGDONMAT, Arguments don't match
89 TOOMANARG, Too many arguments
97 TOOFEWARG, Too few arguments
101 DATTYPERR, Data type error
102 ONEOR_TWO, One or two dimensions only
103 PROLOSSOR, Internal error in BASIC Run-Time Library. Please submit an SPR.
104 RESNO_ERR, RESUME and no error
105 REDARR, Redimensioned array
116 PRIUSIFOR, PRINT-USING format error
122 ILLFIEVAR, Illegal FIELD variable
123 STO, Stop
124 MATDIMERR, Matrix dimension error
126 MAXMEMEXC, Maximum memory exceeded
127 SCAFACINT, SCALE factor interlock
128 TAPRECNOT, Tape records not ANSI
129 TAPBOTDET, Tape BOT detected
130 KEYNOTCHA, Key not changeable
131 NO_CURREC, No current record

424

Appendix B. Run-Time Messages

Error
Number

Explanation

132 RECHASBEE, Record has been deleted
133 ILLUSADEV, Illegal usage for device
134 DUPKEYDET, Duplicate key detected
136 ILLILLACC, Illegal or illogical access
137 ILLKEYATT, Illegal key attributes
138 FILIS_LOC, File is locked
139 INVFILOPT, Invalid file options
141 ILLOPE, Illegal operation
142 ILLRECFIL, Illegal record on file
143 BADRECIDE, Bad record identifier
144 INVKEYREF, Invalid key of reference
145 KEYSIZTOO, Key size too large
146 TAPNOTANS, Tape not ANSI labelled
147 RECNUMEXC, RECORD number exceeds maximum
148 BADRECVAL, Bad RECORDSIZE value on OPEN
149 NOTENDFIL, Not at end of file
150 NO_PRIKEY, No primary key specified
151 KEYFIEBEY, Key field beyond end of record
152 ILLRECACC, Illogical record accessing
153 RECALREXI, Record already exists
154 RECBUCLOC, Record/bucket locked
155 RECNOTFOU, Record not found
156 SIZRECINV, Size of record invalid
157 RECFILTOO, Record on file too big
158 PRIKEYOUT, Primary key out of sequence
159 KEYLARTHA, Key larger than record
160 FILATTNOT, File attributes not matched
161 MOVOVEBUF, Move overflows buffer
162 CANNOT OPEN FILE
164 TERFORFIL, Terminal format file required
166 NEGFILSTR, Negative fill or string length
168 ILLALLCLA, Illegal ALLOW clause
170 INDNOTFUL, Index not fully optimized
171 RRVNOTFUL, RRV not fully updated,
173 INVRFAFIE, Invalid RFA field
174 FILEXPDAT, File expiration date not yet reached
175 NODNAMERR, Node name error

425

Appendix B. Run-Time Messages

Error
Number

Explanation

176 NEGTABNOT, Negative TAB not allowed
177 TOOMUCDAT, Too much data in record
178 ERRFILCOR, Error on OPEN - file corrupted
179 UNEFILDAT, Unexpired file date
181 DECERR, Decimal error or overflow
182 NETOPERR, Network operation error
183 REMOVEBUF, REMAP overflows buffer
185 RECOVEMAP, RECORDSIZE overflows MAP buffer
186 IMPERRHAN, Improper error handling
187 ILLRECLOC, Illegal record locking
189 TOOLITDAT, Too little data in record
190 ILLNETOPE, Illegal network operation
191 ILLTFFOPE, Illegal terminal-format file operation
192 ILLWAIVAL, Illegal wait value
193 DEADLOCK, Detected deadlock while waiting for GET or FIND
194 NOTBASIC, Not a BASIC error
195 DIMOUTRAN, Dimension number out of range
196 REMSTRNOT, REMAP string is not static
197 ARRTOOSMA, Array too small
226 GKSNOTINS, DEC GKS FOR VMS is not installed
227 STRTOOLON, String too long
228 RECATTNOT, Record attributes not matched
229 DIFUSELON, Differing use of LONG/WORD qualifiers
238 ARRMUSSAM, Arrays must be same dimension
239 ARRMUSSQU, Arrays must be square
240 CANCHAARR, Cannot change array dimensions
245 ILLEXIDEF, Illegal exit from DEF*
246 ERRTRANEE, ERROR trap needs RESUME
247 ILLRESSUB, Illegal RESUME to subroutine
250 NOTIMP, Not implemented
252 FILACPFAI, FILE ACP failure
253 DIRERR, Directive error
256 ECHTYPNOT, Prompt/echo type not supported
257 ILLTRANUM, Illegal transformation number
258 ILLPICOPE, Illegal picture operation
259 CLIPONOFF, Clipping must be ON or OFF
260 TRANOTDIF, Transformation numbers are not different

426

Appendix B. Run-Time Messages

Error
Number

Explanation

261 COLNOTCON, Color indices are not contiguous
262 ILLARESTY, Illegal area style
263 ILLTEXJUS, Illegal text justification
264 ILLTEXPRE, Illegal text precision
265 ILLTEXPAT, Illegal text path
266 ILLDEVID, Illegal device identification number
267 DEVTYPNOT, Device type is not supported
268 DEVNOTOPE, Device is not open
269 DEVOUTMET, Device is an output metafile
270 DEVINMET, Device is an input metafile
272 DEVOPEING, Device and operation are incompatible
273 COONOTNDC, Coordinates are not within NDC space
274 ILLLINSTY, Illegal line style number
275 ILLLINSIZ, Illegal line size
276 ILLPOISTY, Illegal point style number
277 ILLTEXRAT, Illegal text width-to-height ratio
278 ILLTEXHEI, Illegal text height
279 ILLSTYIND, Illegal area style index
280 ILLCOLIND, Illegal color index
281 NUMCOOINS, Number of coordinates is insufficient
282 UNINUMNOT, Unit number is not defined for the device
283 ILLECHARE, Illegal echo area
284 ILLINIVAL, Illegal initial value
285 ENTPOINOT, Entered points not within a transformation
286 UNKGKSERR, Unknown DEC GKS FOR VMS error
287 INVCHASTR, Invalid character in string
288 STRLENZER, String length is zero
289 DATOVERF, Data overflow
290 ILLCNTCLA, Illegal count clause
291 ILLCOLMIX, Illegal color mix
292 ILLDEVNAM, Illegal device name in OPEN
293 USEABOINP, User aborted input, locate point cancelled

427

Appendix B. Run-Time Messages

B.3. Errors Not Generated by VSI BASIC for
OpenVMS
Table B.2, "Errors Not Generated by VSI BASIC for OpenVMS" contains errors that cannot be generated
in VSI BASIC for OpenVMS. However, they can be displayed with the ERT$ function and are included
for completeness.

Table B.2. Errors Not Generated by VSI BASIC for OpenVMS

Number Text

3 ?Account or device in use
6 ?Not a valid device
8 ?Device not available
13 ?User data error on device
16 ?Name or account now exists
17 ?Too many open files on unit
19 ?Disk block is interlocked
20 ?Pack ids don't match
21 ?Disk pack is not mounted
22 ?Disk pack is locked out
23 ?Illegal cluster size
24 ?Disk pack is private
25 ?Disk pack needs ’cleaning ’
26 ?Fatal disk pack mount error
27 ?I/O to detached keyboard
30 ?Device not file-structured
32 ?No buffer space available
33 ?Odd address trap
34 ?Reserved instruction trap
36 ?SP stack overflow
37 ?Disk error during swap
38 ?Memory parity (or ECC) failure
39 ?Magtape select error
40 ?Magtape record length error
41 ?Non-res run-time system
44 ?Matrix or array too big
47 ?Line too long
60 ?Integer overflow, FOR loop
62 ?No run-time system
65 ?Illegal MAGTAPE() usage
68-70 unused

428

Appendix B. Run-Time Messages

Number Text

71 ?Statement not found
74 ?Undefined function called
75 ?Illegal symbol
76 ?Illegal verb
77 ?Illegal expression
78 ?Illegal mode mixing
79 ?Illegal IF statement
80 ?Illegal conditional clause
81 ?Illegal function name
82 ?Illegal dummy variable
83 ?Illegal FN redefinition
84 ?Illegal line number(s)
85 ?Modifier error
86 ?Can't compile statement
87 ?Expression too complicated
90 %Inconsistent function usage
91 ?Illegal DEF nesting
92 ?FOR without NEXT
93 ?NEXT without FOR
94 ?DEF without FNEND
95 ?FNEND without DEF
96 ?Literal string needed
98 ?Syntax error
99 ?String is needed
100 ?Number is needed
106 %Inconsistent subscript use
107 ?ON statement needs GOTO
108 ?End of statement not seen
109 ?What?
110 ?Bad line number pair
111 ?Not enough available memory
112 ?Execute only file
113 ?Please use the run command
114 ?Can't CONTinue
115 ?File exists-RENAME/REPLACE
117 ?Matrix or array without DIM
118 ?Bad number in PRINT USING
119 ?Illegal in immediate mode

429

Appendix B. Run-Time Messages

Number Text

120 ?PRINT-USING buffer overflow
121 ?Illegal statement
125 ?Wrong math package
135 ?Illegal usage
140 ?Index not initialized
163 ?No file name
165 ?Cannot position to EOF
167 ?Illegal record format
169 unused
172 ?Record lock failed
180 ?No support for operation in task
182 ?Network operation rejected
184 ?Unaligned REMAP variable
188 ?UNLOCK EXPLICIT requires RECORDSIZE 512
198-225 unused
230 ?No fields in image
231 ?Illegal string image
232 ?Null image
233 ?Illegal numeric image
234 ?Numeric image for string
235 ?String image for numeric
236 ?TIME limit exceeded
237 ?First arg to SEG$ greater than second
241 ?Floating overflow
242 ?Floating underflow
243 ?CHAIN to nonexistent line number
244 ?Exponentiation error
248 ?Illegal return from subroutine
249 ?Argument out of bounds
251 ?Recursive subroutine call
254-255 unused
294-300 unused

430

Appendix C. Optional
Programming Productivity Tools
This appendix provides an overview of optional programming productivity tools. These tools are not
included with the VSI BASIC software; they must be purchased separately. Using these tools can
increase your productivity as a VSI BASIC programmer.

The following products are briefly described in this appendix:

● Digital Language Sensitive Editor for OpenVMS (LSE) and Digital Source Code Analyzer for
OpenVMS (SCA) (Section C.1, "Language Sensitive Editor (LSE) and Source Code Analyzer (SCA)")

● Oracle CDD/Repository (Section C.2, "CDD/Repository")

● Database Management System (DBMS) (Section C.3, "Database Management System (DBMS)")

● Digital Test Manager for OpenVMS (Section C.4, "Digital Test Manager for OpenVMS")

● Digital Code Management System for OpenVMS (CMS) (Section C.5, "Code Management System
for OpenVMS (CMS)")

For more information on using these tools, see the listed documentation at the end of each section.

For information about how to purchase these tools, contact your VSI Software, Inc.

C.1. Language Sensitive Editor (LSE) and
Source Code Analyzer (SCA)
The Digital Language Sensitive Editor for OpenVMS (LSE) and the Digital Source Code Analyzer for
OpenVMS (SCA) must be purchased separately. LSE is a powerful and flexible text editor designed
specifically for software development. LSE has important features that help you produce syntactically
correct code in VSI BASIC. SCA is an interactive tool that is used to perform program analysis.

LSE and SCA are closely integrated products; generally, SCA can be invoked through LSE. LSE
provides additional editing features that make SCA program analysis more efficient. In addition, LSE
and SCA, in conjunction with the VSI BASIC compiler, provide a set of new enhancements supporting
source code designing and review.

For more information about LSE and SCA, see the Guide to Language-Sensitive Editor for OpenVMS
Systems and Guide to Source Code Analyzer for VMS Systems.

C.1.1. Preparing an SCA Library
SCA stores data generated by the VSI BASIC compiler in an SCA library. The data in the SCA library
contains information about all symbols, modules, and files encountered during a specific compilation of
the source.

After creating and initializing the OpenVMS directory of the SCA library, direct the VSI BASIC
compiler to generate data analysis files by appending the /ANALYSIS_DATA qualifier to the VSI
BASIC command as follows:

431

Appendix C. Optional Programming Productivity Tools

$ BASIC/ANALYSIS_DATA PG1,PG2,PG3

This command line compiles the input files PG1.BAS, PG2.BAS, and PG3.BAS, and generates
corresponding output files for each input file with the file types OBJ and ANA. SCA puts these files in
your current default directory.

Load the information in the data analysis files into your SCA library with the LOAD command as
follows:

$ SCA LOAD PG1,PG2,PG3

This command loads your library with the modules contained in the data analysis files PG1.ANA,
PG2.ANA, and PG3.ANA.

After the SCA library has been prepared, enter LSE to begin an SCA session. Within this context, the
integration of LSE and SCA provides commands that can be used only within LSE.

C.1.2. Compiling From Within LSE
To compile a completed VSI BASIC program, enter the following command at the LSE prompt:

LSE> COMPILE

To compile a VSI BASIC program that contains placeholders and design comments, include the
following qualifiers to the previous command:

LSE> COMPILE $/ANALYSIS_DATA/DESIGN=(PLACEHOLDERS, COMMENTS)

The /ANALYSIS_DATA qualifier causes the compiler to generate an analysis data file containing source
code analysis information. This information is provided to the SCA library.

The /DESIGN qualifier instructs the VSI BASIC compiler to recognize placeholders and design
comments as valid program elements. If the /ANALYSIS_DATA qualifier has also been specified, the
VSI BASIC compiler includes information on placeholders and design comments in the analysis data file.

C.1.3. VSI BASIC Support for LSE and SCA Features
This section describes information specific to BASIC for programming language placeholders and
tokens.

LSE accepts keywords, or tokens, for all languages with LSE support. However, the specific tokens
themselves are language defined. For example, you can expand the [MAT] token only when using VSI
BASIC.

Likewise, LSE provides placeholders, or prompt markers, for all languages with LSE support. However,
as with tokens, the specific text or choices these markers call for are language defined. For example, you
see the [record-declarations] placeholder only when using VSI BASIC.

Note

Keywords such as TYPE, VARIANT, IF, FOR, and OPEN, can be tokens as well as placeholders.
Therefore, any time you are in LSE with the language set to VSI BASIC, you can type one of these
words and press Ctrl/E to expand the construct.

432

Appendix C. Optional Programming Productivity Tools

Remember that braces ({}) enclose required placeholders and brackets ([]) enclose optional placeholders.
Note that when you erase an optional placeholder, LSE also deletes any associated text before and after
that placeholder.

You can use the SHOW TOKEN and SHOW PLACEHOLDER commands to display a list of all VSI
BASIC tokens and placeholders, or a particular token or placeholder. For example:

LSE> SHOW TOKEN IF {lists the token IF}
LSE> SHOW TOKEN {lists all tokens}

To copy the listed information into a separate file, first enter the appropriate SHOW command to put the
list into the $SHOW buffer. Next, enter the following command:

LSE> GOTO BUFFER $SHOW
LSE> WRITE filename.filetype

You can use the PRINT command to print the file you created.

C.2. CDD/Repository
VSI BASIC supports CDD/Repository. The current version of CDD/Repository is compatible with
previous versions of CDD.

See Chapter 21, "Using CDD/Repository with BASIC" for more information about CDD/Repository.

C.3. Database Management System (DBMS)
DBMS is a multiuser, general-purpose, CODASYL-compliant database management system. DBMS
is used for accessing and administrating databases ranging in complexity from simple hierarchies to
complex networks with multilevel relationships. DBMS supports full concurrent access in a multiuser
environment without compromising the integrity and security of your database.

For more information, see the DBMS documentation.

C.4. Digital Test Manager for OpenVMS
The Test Manager helps test software during development and maintenance. This tool automates the
organization, execution, and review of tests and allows several developers to use one set of tests at the
same time.

With the Test Manager, you can describe your tests, organize them by assigning them to groups, and
choose combinations of tests to run by test name or by group. The Test Manager executes the tests
selected and then compares the result with the expected results.

For more information, see the Guide to Test Manager for VMS Systems.

C.5. Code Management System for OpenVMS
(CMS)
The Code Management System for OpenVMS (CMS) is a program librarian for software development
and evolution. It is comprised of a set of commands that enable you to manage files of an ongoing
project.

433

Appendix C. Optional Programming Productivity Tools

For more information about CMS, see the Guide to Source Code Analyzer for VMS Systems.

434

	VSI BASIC User Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. OpenVMS Documentation
	6. VSI Encourages Your Comments
	7. Conventions

	Part I. Developing BASIC Programs on OpenVMS Systems
	Chapter 1. Overview of VSI BASIC
	1.1. Language Constructs Supported
	1.2. Advantages on OpenVMS

	Chapter 2. Developing VSI BASIC Programs
	2.1. Compiling a VSI BASIC Program
	2.1.1. BASIC Command
	2.1.2. BASIC Command Qualifiers
	2.1.3. Declining Qualifiers and Their Recommended Replacements
	2.1.4. Compiler Listings

	2.2. Linking a VSI BASIC Program
	2.2.1. LINK Command
	2.2.2. LINK Command Qualifiers
	2.2.3. Linker Input Files
	2.2.4. Linker Output Files
	2.2.5. Using an Object Module Library
	2.2.6. Linker Error Messages

	2.3. Running a VSI BASIC Program
	2.3.1. Improving Run-Time Performance of VSI BASIC Programs
	2.3.1.1. Data Items
	2.3.1.2. Qualifiers
	2.3.1.3. Statements

	Chapter 3. Using the OpenVMS Debugger with BASIC
	3.1. Overview of the Debugger
	3.2. Compiling and Linking to Prepare for Debugging
	3.3. Viewing Your Source Code
	3.3.1. Noscreen Mode
	3.3.2. Screen Mode

	3.4. Controlling and Monitoring Program Execution
	3.4.1. Starting and Resuming Program Execution
	3.4.2. Determining the Current Location of the Program Counter
	3.4.3. Suspending Program Execution
	3.4.4. Tracing Program Execution
	3.4.5. Monitoring Changes in Variables

	3.5. Examining and Manipulating Data
	3.5.1. Displaying the Values of Variables
	3.5.2. Changing the Values of Variables
	3.5.3. Evaluating Expressions

	3.6. Stepping Into BASIC Routines
	3.6.1. Controlling Symbol References

	3.7. Sample Debugging Session
	3.8. Hints for Using the OpenVMS Debugger

	Part II. BASIC Programming Concepts
	Chapter 4. BASIC Concepts and Elements
	4.1. Line Numbers
	4.1.1. Programs with Line Numbers
	4.1.2. Programs Without Line Numbers
	4.1.3. Labels
	4.1.4. Continuation of Long Program Statements

	4.2. Identifying Program Units
	4.3. BASIC Character Set
	4.4. Program Documentation
	4.5. Declarations and Data Types
	4.5.1. Implicit Data Typing
	4.5.2. Explicit Data Typing

	4.6. Constants
	4.7. Variables
	4.7.1. Floating-Point Variables
	4.7.2. Integer Variables
	4.7.3. Packed Decimal Variables
	4.7.4. String Variables
	4.7.5. Subscripted Variables
	4.7.6. Initialization of Variables

	4.8. Keywords and Reserved Words
	4.9. Operands, Operators, and Expressions
	4.10. Assignment Statements

	Chapter 5. Simple Input and Output
	5.1. Program Input
	5.1.1. Providing Input Interactively
	5.1.1.1. INPUT Statement
	5.1.1.2. INPUT LINE and LINPUT Statements
	5.1.1.3. Enabling and Disabling the Question Mark Prompt

	5.1.2. Providing Input from the Source Program
	5.1.2.1. READ and DATA Statements
	5.1.2.2. RESTORE Statement

	5.2. Program Output
	5.2.1. Print Zones—The Comma and the Semicolon
	5.2.2. Output Format for Numbers and Strings

	5.3. Terminal-Format Files
	5.3.1. Opening and Closing a Terminal-Format File
	5.3.2. Writing Records to a Terminal-Format File

	Chapter 6. Arrays
	6.1. Overview of Arrays
	6.2. Creating Arrays Explicitly
	6.2.1. Creating Arrays with the DECLARE Statement
	6.2.2. Creating Arrays with the DIM Statement
	6.2.2.1. Declarative DIM Statements
	6.2.2.2. Executable DIM Statements

	6.2.3. Creating Arrays with the COMMON Statement
	6.2.4. Creating Arrays with the MAP Statement

	6.3. Creating Arrays Implicitly
	6.4. Determining the Bounds of an Array
	6.5. Assigning and Displaying Array Values
	6.5.1. Assigning Values with the LET Statement
	6.5.2. Listing Array Elements with the PRINT Statement

	6.6. Using MAT Statements
	6.6.1. MAT Statement
	6.6.2. MAT READ Statement
	6.6.3. MAT INPUT [#] Statement
	6.6.4. MAT LINPUT [#] Statement
	6.6.5. MAT PRINT [#] Statement
	6.6.6. Matrix I/O Functions (NUM and NUM2)

	6.7. Matrix Operators
	6.7.1. Arithmetic Matrix Operations
	6.7.1.1. Assignment
	6.7.1.2. Addition and Subtraction
	6.7.1.3. Multiplication

	6.7.2. Matrix Functions
	6.7.2.1. TRN Function
	6.7.2.2. INV Function
	6.7.2.3. DET Function

	Chapter 7. Data Definition
	7.1. Declarative Statements
	7.2. Data Types
	7.3. Setting the Default Data Type and Size
	7.4. Declaring Variables
	7.5. Declaring Named Constants
	7.6. Operations with Multiple Data Types
	7.7. Allocating Dynamic and Static Storage
	7.7.1. COMMON Statement
	7.7.2. MAP Statement
	7.7.2.1. Single Maps
	7.7.2.2. Multiple Maps

	7.7.3. FILL Items
	7.7.4. Using COMMON and MAP Statements in Subprograms
	7.7.5. Dynamic Mapping

	Chapter 8. Creating and Using Data Structures
	8.1. RECORD Statement
	8.1.1. Grouping RECORD Components
	8.1.2. RECORD Variants
	8.1.3. Accessing RECORD Components

	Chapter 9. Program Control
	9.1. Statement Modifiers
	9.1.1. IF Modifier
	9.1.2. UNLESS Modifier
	9.1.3. FOR Modifier
	9.1.4. UNTIL Modifier
	9.1.5. WHILE Modifier
	9.1.6. Nesting Modifiers

	9.2. Loops
	9.2.1. FOR...NEXT Loops
	9.2.2. WHILE...NEXT Loops
	9.2.3. UNTIL...NEXT Loops
	9.2.4. Nesting Loops

	9.3. Unconditional Branching (GOTO Statement)
	9.4. Conditional Branching
	9.4.1. ON...GOTO...OTHERWISE Statement
	9.4.2. IF...THEN...ELSE Statement
	9.4.3. SELECT...CASE Statement

	9.5. EXIT and ITERATE Statements
	9.6. Executing Local Subroutines
	9.6.1. GOSUB and RETURN Statements
	9.6.2. ON...GOSUB...OTHERWISE Statement

	9.7. Suspending and Halting Program Execution
	9.7.1. SLEEP Statement
	9.7.2. WAIT Statement
	9.7.3. STOP Statement
	9.7.4. END Statement

	Chapter 10. Functions
	10.1. Built-In Functions
	10.1.1. Numeric Functions
	10.1.1.1. ABS Function
	10.1.1.2. INT and FIX Functions
	10.1.1.3. SIN, COS, and TAN Functions
	10.1.1.4. SQR Function
	10.1.1.5. LOG10 Function
	10.1.1.6. EXP Function
	10.1.1.7. RND Function

	10.1.2. Data Conversion Functions
	10.1.2.1. ASCII Function
	10.1.2.2. CHR$ Function

	10.1.3. String Numeric Functions
	10.1.3.1. FORMAT$ Function
	10.1.3.2. NUM$ and NUM1$ Functions
	10.1.3.3. VAL% and VAL Functions

	10.1.4. String Arithmetic Functions
	10.1.4.1. SUM$ and DIF$ Functions
	10.1.4.2. QUO$, PLACE$, and PROD$ Functions

	10.1.5. Date and Time Functions
	10.1.5.1. DATE$ Function
	10.1.5.2. DATE4$ Function
	10.1.5.3. TIME$ Function
	10.1.5.4. TIME Function

	10.1.6. Terminal Control Functions
	10.1.6.1. CTRLC and RCTRLC Functions
	10.1.6.2. ECHO and NOECHO Functions
	10.1.6.3. INKEY$ Function

	10.2. User-Defined Functions
	10.2.1. Single-Line DEF Functions
	10.2.2. Multiline DEF Functions

	Chapter 11. String Handling
	11.1. Overview of Strings
	11.2. Using Dynamic Strings
	11.3. Using Fixed-Length Strings
	11.4. Using String Virtual Arrays
	11.5. Assigning String Data
	11.5.1. LET Statement
	11.5.2. LSET Statement
	11.5.3. RSET Statement
	11.5.4. MID$ Assignment Statement

	11.6. Manipulating String Data with String Functions
	11.6.1. LEN Function
	11.6.2. POS Function
	11.6.3. SEG$ Function
	11.6.4. MID$ Function
	11.6.5. STRING$ Function
	11.6.6. SPACE$ Function
	11.6.7. TRM$ Function
	11.6.8. EDIT$ Function

	11.7. Manipulating String Data with Multiple Maps

	Chapter 12. Program Segmentation
	12.1. VSI BASIC Subprograms
	12.1.1. SUB Subprograms
	12.1.2. FUNCTION Subprograms

	12.2. Declaring Subprograms and Parameters
	12.3. Compiling Subprograms
	12.4. Invoking Subprograms
	12.4.1. Invoking SUB Subprograms
	12.4.2. Invoking FUNCTION Subprograms

	12.5. Returning Program Status

	Chapter 13. File Input and Output
	13.1. Record Formats
	13.1.1. Fixed-Length Records
	13.1.2. Variable-Length Records
	13.1.3. Stream Records

	13.2. File Organizations
	13.2.1. Terminal-Format Files
	13.2.2. Sequential Files
	13.2.3. Relative Files
	13.2.4. Indexed Files
	13.2.5. Virtual Files

	13.3. Record Access and Record Context
	13.4. I/O and Record Buffers
	13.5. Accessing the Contents of a Record
	13.5.1. MAP Statement
	13.5.2. MAP DYNAMIC and REMAP Statements
	13.5.3. MOVE Statement

	13.6. File and Record Operations
	13.6.1. Opening Files
	13.6.2. Creating Virtual Array Files
	13.6.3. Locating Records
	13.6.4. Reading Records
	13.6.5. Writing Records
	13.6.6. Deleting Records
	13.6.7. Updating Records
	13.6.8. Controlling Record Access
	13.6.9. Gaining Access to Locked Records
	13.6.10. Accessing Records by Record File Address
	13.6.11. Transferring Data to Terminal-Format Files
	13.6.12. Resetting the File Position
	13.6.13. Truncating Files
	13.6.14. Renaming Files
	13.6.15. Closing Files and Ending I/O
	13.6.16. Deleting Files

	13.7. File-Related Functions
	13.7.1. FSP$ Function
	13.7.2. RECOUNT Function
	13.7.3. STATUS, VMSSTATUS, and RMSSTATUS Functions

	13.8. OPEN Statement Options
	13.8.1. BUCKETSIZE Clause
	13.8.2. BUFFER Clause
	13.8.3. CONNECT Clause
	13.8.4. CONTIGUOUS Clause
	13.8.5. DEFAULTNAME Clause
	13.8.6. EXTENDSIZE Clause
	13.8.7. FILESIZE Clause
	13.8.8. NOSPAN Clause
	13.8.9. RECORDTYPE Clause
	13.8.10. TEMPORARY Clause
	13.8.11. USEROPEN Clause
	13.8.12. WINDOWSIZE Clause

	Chapter 14. Formatting Output with the PRINT USING Statement
	14.1. Overview of the PRINT USING Statement
	14.2. Using Format Strings
	14.3. Printing Numbers
	14.3.1. Specifying the Number of Digits
	14.3.2. Specifying Decimal Point Location
	14.3.3. Printing Numbers with Special Symbols
	14.3.3.1. Commas
	14.3.3.2. Asterisk-Fill Fields
	14.3.3.3. Currency Symbols
	14.3.3.4. Negative Fields
	14.3.3.5. E (Exponential) Format
	14.3.3.6. Leading Zeros
	14.3.3.7. Blank-If-Zero Fields
	14.3.3.8. Debits and Credits

	14.4. Printing Strings
	14.4.1. Left-Justified Format
	14.4.2. Right-Justified Format
	14.4.3. Centered Fields
	14.4.4. Extended Fields

	14.5. PRINT USING Statement Error Conditions

	Chapter 15. Handling Run-Time Errors
	15.1. Default Error Handling
	15.2. User-Supplied Error Handlers
	15.2.1. Protected Regions
	15.2.2. Handlers
	15.2.3. Exiting from Handlers
	15.2.3.1. RETRY Statement
	15.2.3.2. CONTINUE Statement
	15.2.3.3. EXIT HANDLER Statement

	15.2.4. Selecting the Severity of Errors to Handle
	15.2.5. Identifying Errors
	15.2.5.1. Determining the Error Number (ERR)
	15.2.5.2. Determining the Error Line Number (ERL)
	15.2.5.3. Determining Where the Error Occurred (ERN$)
	15.2.5.4. Determining the Error Message Text (ERT$)
	15.2.5.5. Determining OpenVMS Error Information
	15.2.5.6. Determining RMS Error Information

	15.2.6. Ctrl/C Trapping
	15.2.7. Handling Errors in Multiple-Unit Programs
	15.2.8. Forcing Errors

	15.3. Using the ON ERROR Statements

	Chapter 16. Compiler Directives
	16.1. Overview of Compiler Directives
	16.2. Controlling the Compilation Listing
	16.2.1. %TITLE and %SBTTL Directives
	16.2.2. %IDENT Directive
	16.2.3. %PAGE Directive
	16.2.4. %LIST and %NOLIST Directives
	16.2.5. %CROSS and %NOCROSS Directives

	16.3. Accessing External Source Files
	16.4. Controlling Compilation
	16.4.1. %LET Directive
	16.4.2. %VARIANT Directive
	16.4.3. %ABORT Directive
	16.4.4. %PRINT Directive
	16.4.5. %IF-%THEN-%ELSE-%END %IF Directive
	16.4.6. %DEFINE and %UNDEFINE Directives

	16.5. Record Dependency Relationships in CDD/Repository

	Chapter 17. Data Representation
	17.1. Integer Format
	17.1.1. Byte-Length Integer Format
	17.1.2. Word-Length Integer Format
	17.1.3. Longword Integer Format
	17.1.4. Quadword Integer Format

	17.2. Real Number Format
	17.2.1. SINGLE Floating-Point Number Format (F_floating)
	17.2.2. DOUBLE Floating-Point Number Format (D_floating)
	17.2.3. GFLOAT Floating-Point Number Format (G_floating)
	17.2.4. SFLOAT Floating-Point Number Format (S_floating)
	17.2.5. TFLOAT Floating-Point Number Format (T_floating)
	17.2.6. XFLOAT Floating-Point Number Format (X_floating)

	17.3. Packed Decimal Number Format
	17.4. String and Array Descriptor Format
	17.4.1. Fixed-Length String Descriptor Format
	17.4.2. Dynamic String Descriptor Format

	17.5. Array Descriptors
	17.6. Decimal Scalar String Descriptor (Packed Decimal String Descriptor)

	Part III. Using VSI BASIC for OpenVMS Features on OpenVMS Systems
	Chapter 18. Advanced File Input and Output
	18.1. RMS I/O to Magnetic Tape
	18.1.1. Allocating and Mounting a Tape
	18.1.2. Opening a Tape File for Output
	18.1.3. Opening a Tape File for Input
	18.1.4. Positioning a Tape
	18.1.5. Writing Records to a File
	18.1.6. Reading Records from a File
	18.1.7. Controlling Tape Output Format
	18.1.8. Rewinding a Tape
	18.1.9. Closing a File

	18.2. Device-Specific I/O
	18.2.1. Device-Specific I/O to Unit Record Devices
	18.2.2. Device-Specific I/O to Magnetic Tape Devices
	18.2.2.1. Allocating and Mounting a Tape
	18.2.2.2. Opening a Tape File for Output
	18.2.2.3. Opening a Tape File for Input
	18.2.2.4. Writing Records to a File
	18.2.2.5. Reading Records from a File
	18.2.2.6. Rewinding a Tape
	18.2.2.7. Closing a Tape

	18.2.3. Device-Specific I/O to Disks
	18.2.3.1. Assigning and Mounting a Disk
	18.2.3.2. Opening a Disk File for Output
	18.2.3.3. Opening a Disk File for Input
	18.2.3.4. Writing Records to a Disk File
	18.2.3.5. Reading Records from a Disk File

	18.3. I/O to Mailboxes
	18.4. Network I/O
	18.4.1. Remote File Access
	18.4.2. Task-to-Task Communication
	18.4.3. Accessing a VAX Rdb/VMS Database

	Chapter 19. Using BASIC in the Common Language Environment
	19.1. Specifying Parameter-Passing Mechanisms
	19.1.1. Passing Parameters by Reference
	19.1.2. Passing Parameters by Descriptor
	19.1.3. Passing Parameters by Value
	19.1.4. VSI BASIC for OpenVMS Default Parameter-Passing Mechanisms
	19.1.5. Creating Local Copies
	19.1.6. Passing Arrays

	19.2. Calling External Routines
	19.2.1. Determining the Type of Call
	19.2.2. Declaring an External Routine and Its Arguments
	19.2.3. Calling the Routine

	19.3. Calling VSI BASIC for OpenVMS Subprograms from Other Languages
	19.4. Calling System Routines
	19.4.1. OpenVMS Run-Time Library Routines
	19.4.2. System Service Routines
	19.4.3. System Routine Arguments
	19.4.4. Including Symbolic Definitions
	19.4.5. Condition Values

	19.5. Examples of Calling System Routines
	19.6. OpenVMS Calling Standard
	19.7. Additional Information

	Chapter 20. Libraries and Shareable Images
	20.1. Overview of Libraries
	20.2. System-Supplied Libraries
	20.3. Creating User-Supplied Object Module Libraries
	20.3.1. Accessing User-Supplied Object Module Libraries

	20.4. Shareable Images
	20.4.1. Accessing Shareable Images

	Chapter 21. Using CDD/Repository with BASIC
	21.1. Overview of CDD/Repository
	21.2. CDD/Repository Concepts
	21.2.1. Dictionary Formats
	21.2.2. Dictionary Path Names
	21.2.3. Dictionary Entities
	21.2.4. Dictionary Relationships
	21.2.5. Extracting CDD/Repository Data Definitions

	21.3. Using CDD/Repository with BASIC
	21.3.1. /DEPENDENCY_DATA Qualifier
	21.3.2. Creating Relationships with Included Record Definitions

	21.4. Creating Relationships for Referenced Dictionary Entities
	21.5. Specifying a CDD History List Entry
	21.6. CDD/Repository Arrays
	21.7. CDD/Repository Variants
	21.8. NAME FOR BASIC Clause
	21.9. CDD/Repository Data Types
	21.9.1. Character String Data Types
	21.9.2. Integer Data Types
	21.9.3. Floating-Point Data Types
	21.9.4. Decimal String Data Types
	21.9.5. Other Data Types

	Chapter 22. Using DECwindows Motif Bindings with BASIC
	22.1. Overview of DECwindows Motif Concepts
	22.2. Using DECwindows Motif Bindings with BASIC
	22.3. DECwindows Motif Programming Examples Using BASIC
	22.4. Special Considerations for Handling Strings with DECwindows Motif

	Appendix A. Compile-Time Error Messages
	A.1. Compile-Time Errors

	Appendix B. Run-Time Messages
	B.1. VSI BASIC for OpenVMS Run-Time Errors by Mnemonic
	B.2. VSI BASIC for OpenVMS Run-Time Errors by Number
	B.3. Errors Not Generated by VSI BASIC for OpenVMS

	Appendix C. Optional Programming Productivity Tools
	C.1. Language Sensitive Editor (LSE) and Source Code Analyzer (SCA)
	C.1.1. Preparing an SCA Library
	C.1.2. Compiling From Within LSE
	C.1.3. VSI BASIC Support for LSE and SCA Features

	C.2. CDD/Repository
	C.3. Database Management System (DBMS)
	C.4. Digital Test Manager for OpenVMS
	C.5. Code Management System for OpenVMS (CMS)

