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Preface

This manual provides reference information for using the VSI C language on OpenVMS systems. VSI
C is an ANSI compliant C compiler for the OpenVMS operating system on Alpha, Intel Itanium, and
x86-64 processors. The shortened forms, OpenVMS Alpha, OpenVMS 164, and OpenVMS x86-64 are
also used throughout this manual.

VSI C is compliant with the International Standards Organization (ISO) C Standard (ISO/IEC
9899:1999), formerly the American National Standard for Information Systems-Programming Language
C. By the use of command-line options, VSI C is compatible with older dialects of C, including common
usage C (Kernighan and Ritchie C) and VAX C.

This manual is based on the ISO C Standard (ISO/IEC 9899:1999), formerly the ANSI X3J11
committee’s standard for the C programming language (called the ANSI C standard in this manual). All
library functions and language extensions to the ANSI C standard are also described.

1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience

This manual is intended for programmers who need reference information on the VSI C language. There
is little task-oriented material or platform-specific material in this manual; for that type of information,
see your platform-specific VSI C documentation (user’s guide and online help for OpenVMS systems,
programmer’s guide and reference pages for UNIX systems.)

3. Purpose of the ANSI Standard

The ANSI C standard was developed by a committee of program developers and knowledgeable C
users to address the problems caused by inexact specification of the C language. These problems

were primarily related to portability of programs between different types of machines. The committee
analyzed the language for areas where its syntax and semantics were vague or indeterminate, and then
chose precise definitions for those C constructs. The result is an unambiguous, machine-independent
definition.

The ANSI C standard states that it:

“specifies the form and establishes the interpretation of programs expressed in the programming
language C. [The standard’s] purpose is to promote portability, reliability, maintainability, and efficient
execution of C language programs on a variety of computing systems.”

The standard specifies:

e Representation, syntax, and constraints of the C language
e Semantic rules for interpreting C programs

e Representation of input and output in C programs

The ANSI C standard does not specify:
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e How C programs are compiled
How C programs are linked
How C programs are executed

All minimum or maximum limits on the size of machines running ANSI C programs

4. Document Structure

This manual has the following chapters and appendixes:

Chapter 1, "Lexicon" describes the elements of the C language.

Chapter 2, "Basic Concepts" discusses some of the basic concepts underlying the C language.
Chapter 3, "Data Types" explains VSI C data types and type qualifiers.

Chapter 4, "Declarations" describes the declaration of identifiers in VSI C. The declaration of constants,
variables, structures, unions, pointers, and arrays is covered.

Chapter 5, "Functions" describes function calls, function declarations, function definitions, function
parameters, and function arguments.

Chapter 6, "Expressions and Operators" discusses the types of expressions you can build in C. It also
explains the effects of operators available in C, including unary, binary, conditional, primary, and postfix
operators.

Chapter 7, "Statements" describes the C statements that provide flow control, conditional executions,
looping, and interruption.

Chapter 8, "Preprocessor Directives and Predefined Macros" explains the purpose of the C preprocessor
directives and predefined macros.

Chapter 9, "The ANSI C Standard Library" lists and describes the functions, macros, and types in the
ANSI C standard library, arranged by header file.

Appendix A, "Language Syntax Summary" provides a syntax summary of all C language constructs.

Appendix B, "ANSI Conformance Summary" describes the extent of the ANSI conformance of VSI C,
including exceptions and extensions to the standard.

Appendix C, "ASCII Equivalence Table" provides the ASCII octal, decimal, and hexadecimal equivalents
for each character in the ASCII character set.

Appendix D, "Common C Extensions Supported by VSI C" lists the common C extensions supported by
VSI C using the common C compatibility option.

Appendix E, "VAX C Extensions Supported by VSI C" lists the VAX C extensions supported by VSI C
using the VAX C compatibility option.

5. Related Documents

You may find the following documents useful when programming in VSI C:
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o VSI C User Manual [https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-systems/]—
This guide contains the information necessary for developing and debugging VSI C programs on the
OpenVMS operating system. This guide also includes VSI C features specific to OpenVMS systems,
as well as information about porting C programs to and from OpenVMS and other operating
systems.

e VSI C Run-Time Library Reference Manual for OpenVMS Systems [https://docs.vmssoftware.com/
vsi-c-run-time-library-reference-manual-for-openvms-systems/]—Provides complete reference
information on the VSI C library functions included with the OpenVMS operating system.

o ANSI/ISO/IEC 9899:1999 - Programming Languages - C—The C99 standard, published by ISO in
December, 1999 and adopted as an ANSI standard in April, 2000.

o ISO/IEC 9899:1990-1994 - Programming Languages - C, Amendment 1: Integrity—Documents what
is also known as | SO C, Amendment 1.

o ISO/IEC 9899:1990[1992] - Programming Languages - C—Documents is also known as | SO
C. The normative part is the same as X3.159-1989, American National Standard for Information
Systems - Programming Language C, also known as ANSI C.

® American National Standard for Information Systems—Programming Language C—This document
is the result of the X3J11 standards committee analysis of the C language. This document is a very
technical description of the ANSI C language, written for knowledgeable C programmers.

® The C Programming Language, 2nd Edition—This volume was produced before the final ANSI
standard was accepted, but it still serves as a valuable reference to the C language.

Because ANSI C contains more features and enhancements to the C language than are defined in
The C Programming Language, use this VSI C Reference Manual [https://docs.vmssoftware.com/vsi-
c-language-reference-manual/] as the reference for a full description of VSI C.

6. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. OpenVMS Documentation

The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

8. Typographical Conventions

The conventions found in the following table are used in this document.

Convention Meaning

UPPERCASE TYPE All uppercase letters in a command line indicate keywords that must be
entered. You can enter them in either uppercase or lowercase. You can use
the first three characters to abbreviate command keywords, or you can use
the minimum unique abbreviation.
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Convention Meaning

lowercase italics Lowercase italics in command syntax or examples indicate variables for
which either you or the system supplies a value.

[] In examples showing VMS directory specifications, square brackets are a
necessary part of the specification, [directory-name].

In a procedure, square brackets in an inquiry enclose the default response for
the inquiry.

Return Press the Return key.

Ctrl/x While holding down the Ctrl key, press the key specified by x.

Vertical ellipses (dots) in examples represent data that has been omitted.
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Chapter 1. Lexicon

C, like any language, uses a standard grammar and character set. The specific elements that comprise
this grammar and character set are described in the following sections:

o Character set (Section 1.1, "Character Set")

e Rules for identifiers in C (Section 1.2, "Identifiers")

o Use of universal character names (Section 1.3, "Universal Character Names")
e Use of comments in a program (Section 1.4, "Comments'")

o Keywords (Section 1.5, "Keywords")

e Use of C operators (Section 1.6, "Operators")

e Use of punctuation characters (Section 1.7, "Punctuators")

e Use of character strings in a program (Section 1.8, "String Literals")

e Interpretation of constant values (Section 1.9, "Constants")

e Inclusion of function declarations and other definitions, common to multiple source files, in a
separate header file or module (Section 1.10, "Header Files")

o The limits imposed on a conforming program by the ANSI C standard (Section 1.11, "Limits")

C compilers interpret source code as a stream of characters from the source file. These characters

are grouped into fokens, which can be punctuators, operators, identifiers, keywords, string literals, or
constants. Tokens are the smallest lexical element of the language. The compiler forms the longest token
possible from a given string of characters; the token ends when white space is encountered, or when the
next character could not possibly be part of the token.

White space can be a space character, new-line character, tab character, form-feed character, or vertical
tab character. Comments are also considered white space. Section 1.1, "Character Set" lists all the white
space characters. White space is used as a token separator (except within quoted strings), but is otherwise
ignored in the character stream, and is used mainly for human readability. White space may also be
significant in preprocessor directives (see Chapter 8, "Preprocessor Directives and Predefined Macros").

Consider the following source code line:
static int x=0; /* Could also be written "static int x = 0;" */
The compiler breaks the previous line into the following tokens (shown one per line):

static
int

O Il X

4

As the compiler processes the input character stream, it identifies tokens and locates error conditions.
The compiler can identify three types of errors:
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e Lexical errors, which occur when the compiler cannot form a legal token from the character stream
(such as when an illegal character is used).

e Parsing (syntax) errors, which occur when a legal token can be formed, but the compiler cannot
make a legal statement from the tokens. For example, the following line contains incorrect
punctuation surrounding an initializer list:

char x[3] = (1,2,3);

e Semantic errors, which are grammatically correct but break another C language rule. For example,
the following line shows an attempt to assign a floating-point value to a pointer type:

int *x = 5.7;
Logical errors are not identified by the compiler.

An important concept throughout C is the idea of a compilation unit, which is one or more files compiled
by the compiler.

Note

The ANSI C standard refers to compilation units as translation units. This text treats these terms as
equivalent.

The smallest acceptable compilation unit is one external definition. The ANSI C standard defines several
key concepts in terms of compilation units. Section 2.2, "Compilation Units" discusses compilation units
in detail.

A compilation unit with no declarations is accepted with a compiler warning in all modes except for the
strict ANSI standard mode.

1.1. Character Set

A character set defines the valid characters that can be used in source programs or interpreted when a
program is running. The source character set is the set of characters available for the source text. The
execution character set is the set of characters available when executing a program. The source character
set does not necessarily match the execution character set; for example, when the execution character set
is not available on the devices used to produce the source code.

Different character sets exist; for example, one character set is based on the American Standard Code
for Information Interchange (ASCII) definition of characters, while another set includes the Japanese
kanji characters. The character set in use makes no difference to the compiler; each character simply

has a unique value. C treats each character as a different integer value. The ASCII character set has
fewer than 255 characters, and these characters can be represented in 8 bits or less. However, in some
extended character sets, so many characters exist that some characters' representation requires more than
8 bits. A special type was created to accommodate these larger characters, called the wchar _t (or wide
character) type. Section 1.9.3.1, "Wide Characters" discusses wide characters further.

Most ANSI-compatible C compilers accept the following ASCII characters for both the source and
execution character sets. Each ASCII character corresponds to a numeric value. Appendix C, "ASCII
Equivalence Table" lists the ASCII characters and their numeric values.

e The 26 lowercase Roman characters:

abcdefghijklmnopgrstuvwzixyz
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o The 26 uppercase Roman characters:
ABCDEFGHIJKLMNOPQRSTUVWXY?Z

e The 10 decimal digits:
0123456728279

o The 30 graphic characters:
P# s c&er () -_=+~""25 2/ 1 N{ YLD, .o <>8

A warning is issued if the $ character is used when the compiler's strict ANSI mode option is
specified.

e Five white space characters:

Space ()

Horizontal tab \t)
Form feed )
Vertical tab \v)
New-line character (\n)

In character constants and string literals, characters from the execution character set can also be
represented by character or numeric escape sequences. Section 1.9.3.3, "Character Escape Sequences’
and Section 1.9.3.4, "Numeric Escape Sequences" describe these escape sequences.

’

The ASCII execution character set also includes the following control characters:
e New-line character (represented by \ n in the source file),

e Alert (bell) tone (\ @)

e Backspace (\ b)

e Carriage return (\ r)

e Null character (\ 0)

The null character is a byte or wide character with all bits set to 0. It is used to mark the end of a
character string. Section 1.8, "String Literals" discusses character strings in more detail.

The new-line character splits the source character stream into separate lines for greater legibility and for
proper operation of the preprocessor.

Sometimes a line longer than the terminal or window width must be interpreted by the compiler as one
logical line. One logical line can be typed as two or more lines by appending the backslash character (\ )
to the end of the continued lines. The backslash must be immediately followed by a new-line character.
The backslash signifies that the current logical line continues on the next line. For example:

#define ERROR_TEXT "Your entry was outside the range of \
0 to 100."

The compiler deletes the backslash character and the adjacent new-line character during processing, so
that this line becomes one logical line, as follows:
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#define ERROR_TEXT "Your entry was outside the range of 0 to 100."

A long string can be continued across multiple lines by using the backslash-newline line continuation
feature, but the continuation of the string must start in the first position of the next line. In some cases,
this destroys the indentation scheme of the program. The ANSI C standard introduces another string
continuation mechanism to avoid this problem. Two string literals, with only white space separating
them, are combined to form one logical string literal. For example:

printf ("Your entry was outside the range of "
"0 to 100.\n");

The maximum logical line length is 32,767 characters.

1.1.1. Trigraph Sequences

To write C programs using character sets that do not contain all of C's punctuation characters, ANSI

C allows the use of nine trigraph sequences in the source file. These three-character sequences are
replaced by a single character in the first phase of compilation. (See Section 2.16, "Preprocessing" for
an explanation of compilation phases.) Table 1.1, "Trigraph Sequences" lists the valid trigraph sequences
and their character equivalents.

Table 1.1. Trigraph Sequences

Trigraph Sequence Character Equivalent
7= #

7 |

M \

i) ]

7 A

7M< {

m I

77> }

7- ~

No other trigraph sequences are recognized. A question mark (?) that does not begin a trigraph sequence
remains unchanged during compilation. For example, consider the following source line:

printf ("Any questions???/n");
After the 77/ sequence is replaced, this line is translated as follows:

printf ("Any questions?\n");

1.1.2. Digraph Sequences

Digraph processing is supported when compiling in ISO C 94 mode (/STANDARD=ISOC94 on
OpenVMS systems).

Digraphs are pairs of characters that translate into a single character, much like trigraphs, except that
trigraphs get replaced inside string literals, but digraphs do not. Table 1.2, "Digraph Sequences" lists the
valid digraph sequences and their character equivalents.
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Table 1.2. Digraph Sequences

Digraph Sequence Character Represented
< [

> ]

<% {

%> }

%: #

Y0:%: ##

1.

2. ldentifiers

An identifier is a sequence of characters that represents a name for the following:

Variable

Function

Label

Type definition

Structure, enumeration, or union tag
Structure, enumeration, or union member
Enumeration constant

Macro

Macro parameter

The following rules apply to identifiers:

Identifiers consist of a sequence of one or more: uppercase or lowercase alphabetic characters,
universal character names, the digits O to 9, the dollar sign ($), and the underscore character (_).

Using the $ character provokes a warning from the compiler in strict ANSI mode.

Character case is significant in identifiers; for example, the identifier Test 1 is different from the
identifier t est 1.

Identifiers cannot begin with a digit.

Do not begin identifiers with an underscore; the ANSI C standard reserves such identifiers for
internal names.

Each universal character name in an identifier must designate a character whose encoding in ISO/
IEC 10646 falls into one of the ranges specified in Appendix F, "Universal Character Names for
Identifiers".

Keywords are not identifiers (Section 1.5, "Keywords" lists the C keywords).

Using the names of library functions for identifiers is bad practice (Chapter 9, "The ANSI C Standard
Library" lists the C library function names). A function with the same name as a library function
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will supersede the library function. This may be the desired outcome, but program maintenance can
be confusing.

e In general, identifiers are separated by white space, punctuators, or operators. For example, the
following code fragment has four identifiers:

struct employee { int number; char sex; } emp;

The identifiers are: enpl oyee, nunber , sex, and enp. (st ruct,i nt, and char are
keywords).

An identifier without external linkage has at most 32,767 significant characters. An identifier with
external linkage has 31 significant characters. Section 2.8, "Linkage" describes linkage in more detail.
Case is not significant in external identifiers, unless the #pr agma namnes or / NAMES command-line
qualifier is used.

Identifiers that differ within their significant characters are different identifiers. If two or more identifiers
differ in nonsignificant characters only, they are treated as the same identifier.

1.3. Universal Character Names

Universal character names provide a way to name other characters. They can be used in identifiers,
character constants, and string literals to designate characters that are not in the basic character set.

A universal character name begins with a \u or \U and is followed by either four or eight hexadecimal
digits.

The universal character name \Unnnnnnnn designates the character whose eight-digit short identifier (as
specified by ISO/IEC 10646) is nnnnnnnn) Similarly, the universal character name \unnnn designates the
character whose four-digit short identifier is nnnn (and whose eight-digit short identifier is 0000nnnn).

A universal character name cannot specify a character whose short identifier is less than 00AOQ, other
than 0024 ($), 0040 (@), or 0060 ("), nor one in the range D800 through DFFF inclusive.)

See Appendix F, "Universal Character Names for Identifiers" for a list of valid universal character names.

1.4. Comments

Except within a character constant, string literal, or a comment, the / * character combination introduces
a comment and the */ character combination ends a comment. The contents of such a comment are
examined only to identify multibyte characters and to find the characters */ to terminate it.

Alternatively, the / / character combination introduces a comment that includes all multibyte characters
up to, but not including, the next new-line character. The contents of such a comment are examined only
to identify multibyte characters and to find the terminating new-line character.

Comments cannot be nested; once a comment is started, the compiler treats the first occurrence of */ as
the end of the comment.

To comment out sections of code, avoid using the / * and */ sequences. Using the / * and */
sequences works only for code sections containing no comments, because comments do not nest. A
better method is to use the #i f and #endi f preprocessor directives, as in the following example:

#1f 0
/* This code is excluded from execution because ... */
code_to_be_excluded ();
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#endif

See Chapter 8, "Preprocessor Directives and Predefined Macros" for more information on the
preprocessing directives #i f and #endi f .

Comments cannot span source files. Within a source file, comments can be of any length and are
interpreted as white space by both the compiler and the preprocessor.

Examples:

"a//b" // four-character string literal
#include "//e" // undefined behavior

/] */ // comment, not syntax error
f = g/**//h; // equivalent to £ = g / h;
//\

i(); // part of a two-line comment
/\

/ 30 // part of a two-line comment
#define glue(x,y) x##y

glue(/,/) k(); // syntax error, not comment
/*/7F) 1 (0); // equivalent to 1();

m = n//**/o

+ p; // equivalent tom = n + p;

1.5. Keywords

C defines several keywords, each with special meaning to the compiler. Keywords identify statement
constructs and specify basic types and storage classes. Keywords cannot be used as identifiers and
cannot be declared.

Table 1.3, "Keywords" lists the C keywords.

Table 1.3. Keywords

aut o doubl e i nt struct

br eak el se | ong switch
case enum regi ster t ypedef
char extern return uni on
const fl oat short unsi gned
conti nue for si ghed voi d

def aul t goto si zeof vol atile
do if static whil e
_Bool _Compl ex inline restrict
_lmagi nary

In addition to the keywords listed in Table 1.3, "Keywords", the compiler reserves all identifiers that
begin with two underscores (__) or with an underscore followed by an uppercase letter. User variable
names must never begin with one of these sequences.

Keywords are used as follows:

e To assign a storage class to a variable or function (aut o, ext ern,regi ster,stati c)
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e To construct or qualify a data type (_Bool , char, _Conpl ex, const, doubl e, enum f | oat,

i nt,long,short,signed,struct,uni on,unsi gned,void,vol atile)

e As part of a statement (br eak, case, conti nue,def aul t, do, el se,for,goto,if,
return,switch,while)

e To define a new named type (t ypedef)

e To perform an operation (Si zeof , __typeof_ )

The following VAX C keywords are also sometimes' recognized by the compiler:

_align
globaldef
globalref
globalvalue
noshare
readonly
variant_struct
variant_union

The following C99 Standard keywords are also sometimes’ recognized by the compiler:

inline
restrict

Use of a keyword as a superfluous macro name is not recommended, but is legal; for example, to change
the default size of a basic data type:

#define int short

Here, the keyword i nt has been redefined as shor t , which causes all data objects declared with the
i nt data type to be stored as Shor t objects.

1.6. Operators

An operator is a token that specifies an operation on at least one operand, and yields some result (a
value, designator, side effect, or some combination). Operands are expressions or constants (a form
of expression). Operators with one operand are unary operators, and operators with two operands are
binary operators. For example:

x = —-b; /* Unary minus operator */
y = a - c; /* Binary minus operator */

Operators with three operands are called fernary operators.

All operators are ranked by precedence, a ranking system determining which operators are evaluated
before others in a statement. See Chapter 6, "Expressions and Operators" for information on what each
operator does and for the rules of operator precedence.

Some operators in C are composed of more than one character, while others are single characters. The
single-character operators in C are:

| s N I * _ + = ~ \ . < > / ? : ’ [ ] ( ) #

lRecognized when /STANDARD=RELAXED (the default), STANDARD=VAXC or /ACCEPT=VAXC_KEYWORDS is specified on the
compiler command line.

2Recognized when /STANDARD=RELAXED (the default), 'STANDARD=C99, or /ACCEPT=C99_KEYWORDS is specified on the compiler

command line.
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The multiple-character operators in C are:

<<
<<=

>>
>>=

* = /=

&= A= = §&& |

The # and ## operators can only be used in preprocessor macro definitions. See Chapter 8,
"Preprocessor Directives and Predefined Macros" for more information on predefined macros and
preprocessor directives.

The si zeof operator determines the size of a data type. See Chapter 6, "Expressions and Operators"
for more information on the si zeof operator.

The old form for compound assignment operators (=+, =- , =* , =/ | =% =<<, =>> =&, =", and =| )

is not supported by the ANSI C standard. Use of these operators in a program is unsupported, and will
produce unpredictable results. For example:

x =-3;
This construction means X is assigned the value - 3, not X is assigned the value
x - 3

The error-checking compiler option provides a warning message when the old form of compound
assignment operators is encountered.

1.7. Punctuators

Some characters in C are used as punctuators, which have their own syntactic and semantic significance.
Punctuators are not operators or identifiers. Table 1.4, "Punctuators" lists the C punctuators.

Table 1.4. Punctuators

Punctuator |Use Example
<> Header name <limts. h>
[] Array delimiter char al7];
{1} Initializer list, function body, or char x[4] = {'H', 'i', "'!', '0' };
compound statement delimiter
() Function parameter list delimiter; |int £ (x,y)
also used in expression grouping
* Pointer declaration int *x;
, Argument list separator char x[4] = { 'H', 'i', '!', '0'};
Statement label labela: if (x == 0) x += 1;
= Declaration initializer char x[4] = { "Hi!" };
; Statement end X += 1;
Variable-length argument list int £ ( int vy, )
# Preprocessor directive #include
<limts.h>
7’ Character constant char x = 'x';
" String literal or header name char x[] = "Hi!";
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The following punctuators must be used in pairs:
< >
[ ]
()

{1}

Some characters can be used either as a punctuator or as an operator, or as part of an operator. The
context of the occurrence specifies the meaning. Punctuators usually delineate a specific type of C
construct, as shown in Table 1.4, "Punctuators".

1.8. String Literals

Strings are sequences of zero or more characters. A character string literal is a sequence of zero or more
multibyte characters enclosed in double quotation marks, as in "xyz". String literals can include any valid
character, including white-space characters and character escape sequences. A wide string literal is the
same, except prefixed by the letter L. Once a string is stored as a string literal, modification of the string
leads to undefined results.

In the following example, ABC s the string literal. It is assigned to a character array where each character
in the string literal is stored as one array element. Storing a string literal in a character array lets you
modify the characters of the array.

char x[] = "ABC";

String literals are typically stored as arrays of type char (or wchar _t if prefaced with an L), and have
static storage duration.

The following declaration declares a character array to hold the string "Hello!":
char s[] = "Hello!";

The character array S is initialized with the characters specified in the double quotation marks,

and terminated with a null character (\ 0). The null character marks the end of each string, and is
automatically concatenated to the end of the string literal by the compiler. Adjacent string literals are
automatically concatenated (with a single null character added at the end) to reduce the need for the line
continuation character (the backslash at the end of a line).

Normal string literals and wide string literals can be concatenated, in which case the normal strings get
promoted to wide strings, and a wide-string result is produced.

Following are some valid string literals:

" /* Here's a string with only the null character */
"You can have many characters in a string."
"\"You can mix characters and escape sequences.\"\n"

"Long lines of text can be continued on the next line \
by using the backslash character at the end of a line."

"Or, long lines of text can be continued by using "

10



Chapter 1. Lexicon

"ANSI's concatenation of adjacent string literals."
"\'"\n" /* Only escape sequences are in this string */

To determine the length of a given string literal (not including the null character), use the st r | en
function. See Chapter 9, "The ANSI C Standard Library" for more information on other library routines
available for string manipulation.

1.9. Constants

There are four categories of constants in C:

e Integer constants (such as 63, 0, and 42L)

e Floating-point constants (such as 1. 2, 0. 00, and 77E+2)

e Hexadecimal floating-point constants (such as 0X1P- 1 or Ox. 1P3 to represent 1/2).
e Character constants (suchas' A" ,' 0" ,andL'\n")

e Enumeration constants (such as enum bool ean { NO, YES };), where NOand YES are the
enumeration constants

The following sections describe these constants.

The value of any constant must be within the range of representable values for the specified type.
Regardless of its type, a constant is a literal or symbolic value that does not change. A constant is also an
rvalue, as defined in Section 2.14, "lvalues and rvalues".

1.9.1. Integer Constants

Integer constants are used to represent whole numbers. An integer constant can be specified in decimal,
octal, or hexadecimal radix, and can optionally include a prefix that specifies its radix and a suffix that
specifies its type. An integer constant cannot include a period or an exponent part.

Follow these rules when specifying an integer constant:

e To specify a decimal integer constant, use a sequence of decimal digits in which the first digit is not
0. The value of a decimal constant is computed in base 10.

e To specify an octal integer constant, start the sequence with a zero (0) and follow the O (if necessary)
with a sequence composed of the digits O to 7. A leading O alone signifies the octal number 0. The
value of an octal constant is computed in base 8.

e To specify a hexadecimal integer constant, start the hexadecimal sequence with a O followed by the
character X (or X). Follow the X or X with one or more hexadecimal characters (the digits O to 9 and
the upper or lowercase letters A to F). The value of a hexadecimal constant is computed in base 16
(the letters A to F have the values 10 to 15, respectively).

Without explicit specification, the type of an integer constant defaults to the smallest possible type that
can hold the constant's value, unless the value is suffixed withan L, | , LL, | | , U, or u.

The C99 standard introduced the type | ong | ong i nt (both signed and unsigned) as a standard
integer type whose range of values requires at least 64 bits to represent. Although VSI C on Alpha
systems implemented the type | ong | ong as a language extension many releases ago, the compiler
followed the C89 rules for determining the type of an integer constant. Those rules specified that an

11
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unsuffixed decimal integer with a value too large to be represented in a Si gned | ong would be given
the type unsi gned | ong if it would fit, and only be given a 1ong 1long type if the value was too
large for unsi gned | ong.

In standardizing the | ong | ong type, the C99 standard regularized these rules and made them
extensible to longer types. In particular, unsuffixed decimal integer constants are given the smallest
signed integer type that will hold the value (the minimum type is still i nt ). If the value is larger than
the largest value of si gned | ong | ong, it is given the next larger implementation-defined signed
integer type (if there is one). Otherwise C99 states that the behavior is undefined. VSI C, however, uses
the type unsi gned | ong | ong next. The only portable way to specify a decimal constant that will
be given an unsigned type is to use a suffix containing u or U.

VSI C continues to use the C89 rules in VAXC, COMMON, and strict ANSI89 modes (including MIA),
but uses the new C99 rules in all other modes. Table 1.5, "Rules for Assigning Type to Integer Constants"
shows the rules for determining the type of an integer constant. The type of an integer constant is the
first of the corresponding list in which its value can be represented.

Table 1.5. Rules for Assigning Type to Integer Constants

Suffix Decimal Constant Octal or Hexadecimal Constant
none i nt i nt
| ong int unsi gned int
long long int! | ong int
unsi gned long | ong int unsi gned | ong int
long long int
unsi gned long long int
uorU unsi gned i nt unsi gned i nt
unsi gned | ong int unsi gned | ong int
unsi gned long |long int unsi gned long long int
lorL | ong int | ong int
I ong | ong int! unsi gned | ong int
unsi gned long |long int l ong long int
unsi gned | ong long int
BothuorU |unsigned |ong int unsi gned | ong int
andlorL unsi gned long |long int unsi gned long long int
llor LL long long int l ong long int
unsi gned |l ong | ong int unsi gned |long |l ong int
BothuorU |unsigned |ong long int unsi gned | ong long int
and Il or LL

'In VAXC, COMMON, ANSI89, and MIA modes, the type unsigned long int is assigned before | ong | ong int.

For example, the constant 59 is assigned the i nt data type; the constant 59L is assigned the | ong data
type; the constant 59UL is assigned the unsi gned | ong i nt data type.

Integer constant values are always nonnegative; a preceding minus sign is interpreted as a unary operator,
not as part of the constant. If the value exceeds the largest representable integer value (causing an

12
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overflow), the compiler issues a warning message and uses the greatest representable value for the
integer type. Unsuffixed integer constants can have different types, because without explicit specification
the constant is represented in the smallest possible integer type.

Note

The new C99 rules for determining the type of an integer constant could lead to some constants

in your program being interpreted as having a signed type when previous compiler versions gave

them an unsigned type. This could affect your program's behavior in subtle ways. The new message

i nt const si gned can be enabled to report constants in your source code that are being treated
differently under the C99 rules than they were in previous releases. This message is also part of the
new message group NEWC99. If your program relied on unsigned treatment, the simple fix is to add
the correct suffix including a "U" or "u" to force the constant to have the expected type. Such a change
would be backward compatible and portable.

1.9.2. Floating-Point Constants

A floating-point constant has a significand part that may be followed by an exponential part and an
optional suffix that specifies its type (for example, 32. 45E2).

The components of the significand part may include a digit sequence representing the whole number
part, followed by a period (.), followed by a digit sequence representing the fractional part.

The components of the exponent part are an e, E, p, or P followed by an exponent consisting of an
optionally signed digit sequence.

Either the whole-number part or the fraction part of the significand must be present. For decimal
floating constants, either the period or the exponent part must be present.

1.9.2.1. Semantics

The significand part of a floating-point constant is interpreted as a decimal or hexadecimal rational
number; the digit sequence in the exponent is interpreted as a decimal integer. For decimal floating
constants, the exponent indicates the power of 10 by which the significand part is to be scaled. For
hexadecimal floating constants, the exponent indicates the power of 2 by which the significand part is to
be scaled. For decimal floating constants, and for hexadecimal floating constants when FLT_RADIX is
not a power of 2, the result is either the nearest representable value, or the larger or smaller representable
value immediately adjacent to the nearest representable value, chosen in an platform-dependent manner.
For hexadecimal floating constants when FLT_RADIX is a power of 2, the result is correctly rounded.

Floating-point constant values must be nonnegative; a preceding minus sign is interpreted as a unary
operator, not as part of the constant.

1.9.2.2. Floating-Point Type
Floating-point constants have the following type:
e An unsuffixed floating-point constant has type doubl e.

If the value exceeds the largest value representable by type doubl e, a compiler overflow warning
results. (The result is truncated within the doubl e type.)

e If suffixed by the letter f or F, it has type f | oat .

13
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e If suffixed by the letter 1 or L, it has type | ong doubl e.

1.9.2.3. Hexadecimal Floating-Point Constants

The C99 standard introduced a hexadecimal form of floating-point constants. This form of constant
permits floating-point values to be specified reliably to the last bit of precision. It does not specify a

bit pattern for the representation. Instead it is interpreted much like an ordinary decimal floating-point
constant except that the significand is written in hexadecimal radix, and the exponent is expressed as a
decimal integer indicating the power of two by which to multiply the significand. A "P" instead of an "E"
separates the exponent from the significand. Thus, for example, 1/2 can be written as either Ox1P-1 or
0x.1P3.

The C99 standard also adds pr i nt f /scanf specifiers for this form of value.
1.9.2.4. Examples
Table 1.6, "Floating-Point Notation" shows examples of valid notational options.

Table 1.6. Floating-Point Notation

Notation Value Type

0 0.000000 doubl e
0. 0.000000 doubl e
2. 2.000000 doubl e
2.5 2.500000 doubl e
2el 20.00000 doubl e
2E1 20.00000 doubl e
0x1P-1 0.500000 doubl e
0x.1P3 0.500000 doubl e
2.E+1 20.00000 doubl e
2e+1 20.00000 doubl e
2e-1 0.200000 doubl e
2.5¢4 25000.00 doubl e
2.5E+4 25000.00 doubl e
2.5F 2.500000 fl oat
2.5L 2.500000 | ong doubl e

1.9.3. Character Constants

A character constant is any character from the source character set enclosed in apostrophes. Character
constants are represented by objects of type i nt . For example:

char alpha = 'A';

Characters such as the new-line character, single quotation marks, double quotation marks, and backslash
can be included in a character constant by using escape sequences as described in Section 1.9.3.3,
"Character Escape Sequences". All valid characters can also be included in a constant by using numeric
escape sequences, as described in Section 1.9.3.4, "Numeric Escape Sequences".

14
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The value of a character constant containing a single character is the numeric value of the character in
the current character set. Character constants containing multiple characters within the single quotation
marks have a value determined by the compiler. The value of a character constant represented by an
octal or hexadecimal escape sequence is the same as the octal or hexadecimal value of the escape
sequence. The value of a wide character constant (discussed in Section 1.9.3.1, "Wide Characters") is
determined by the mbt owc library function.

There is a limit of four characters for any one character constant. Enclosing more than four characters in
single quotation marks (such as ' ABCDE' ), generates an overflow warning,

Note that the byte ordering of character constants is platform specific.

1.9.3.1. Wide Characters

C provides for an extended character set through the use of wide characters. Wide characters are
characters too large to fit in the char type. The wchar _t type is typically used to represent a character
constant in a character set requiring more than 256 possible characters, because 8 bits can represent only
256 different values.

A character constant in the extended character set is written using a preceding L, and is called a
wide-character constant. Wide-character constants have an integer type, wchar _t , defined in the
<st ddef . h> header file. Wide-character constants can be represented with octal or hexadecimal
character escape sequences, just like normal character escape sequences, but with the preceding L.

Strings composed of wide characters can also be formed. The compiler allocates storage as if the string
were an array of type wchar _t , and appends a wide null character (\ 0) to the end of the string. The
array is just long enough to hold the characters in the string and the wide null character, and is initialized
with the specified characters.

The following examples show valid wide-character constants and string literals:
wchar_t wc = L'A';

wchar_t wmc = L'ABCD';

wchar_t *wstring = L"Hello!";

wchar_t *x = L"Wide";

wchar_t z[] = L"wide string";

VSI C stores wchar _t objects as unsi gned | ong objects in 32 bits of storage. The null character at
the end of a wide-character string is 32 bits long.

1.9.3.2. Multibyte Characters

Some programmers requiring an extended character set have used shift-dependent encoding schemes to
represent the non-ASCII characters in the normal char size of 8 bits. This encoding results in multibyte
characters. ANSI C supports these encoding schemes, in addition to providing the wide-character type
wchar t.

In accordance with the ANSI standard, VSI C recognizes multibyte characters in the following contexts:
e Comments

e String literals

e Header names

e Character constants
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For proper input and output of the multibyte character encodings, and to prevent conflicts with existing
string processing routines, note the following rules governing the use of multibyte characters:

e A byte with all bits set to zero is always recognized as a null character. Null characters can only be
single bytes.

e A null character cannot occur as the second or subsequent byte of a multibyte character.

Transforming multibyte characters to wide-character constants and wide string literals eases the
programmer's problems when dealing with shift-state encoding. There are several C library functions
available for transforming multibyte characters to wide characters and back. See Chapter 9, "The ANSI C
Standard Library" for more information.

1.9.3.3. Character Escape Sequences

Characters that cannot be displayed on a standard terminal, or that have special meaning when used in
character constants or string literals, can be entered as source characters by entering them as character
escape sequences. A backslash (\ ) begins each character escape sequence. Each of the escape sequences
is stored in a single char orwchar _t object. Table 1.7, "Character Escape Sequences" lists the ANSI-
defined escape sequences.

Table 1.7. Character Escape Sequences

Character Escape Sequence
Alert (Bell) \a
Backspace \b
Form Feed \ f
New line \n
Carriage Return \r
Horizontal Tab \t
Vertical Tab \'v
Backslash \\
Single Quote \'
Double Quote \ "
Question Mark \?

No other character escape sequences are valid. If another sequence is encountered in the source code,
the compiler issues a warning and the backslash character is ignored.

An example of a character escape sequence use follows:
printf ("\t\aReady\?\n");
Upon execution, this results in an alert bell and the following prompt:

Ready?

1.9.3.4. Numeric Escape Sequences

The compiler treats all characters as an integer representation, so it is possible to represent any character
in the source code with its numeric equivalent. This is called a numeric escape sequence. The character is
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represented by typing a backslash (\ ), followed by the character's octal or hexadecimal integer equivalent
from the current character set (see Appendix C, "ASCII Equivalence Table" for the ASCII equivalence
tables). For example, using the ASCII character set, the character A can be represented as \ 101 (the
octal equivalent) or \ Xx41 (the hexadecimal equivalent). A preceding O in the octal example is not
necessary because octal values are the default in numeric escape sequences. A lowercase X following the
backslash indicates a hexadecimal representation. For example, \ X5A is equivalent to the character Z.

An example of numeric escape sequences follows:

#define NUL '\O' /* Defines logical null character */
char x[] = {'"\110"', "\145"','\154"',"\154",'"\157"','\41"','\0"};
/* Initializes x with "Hello!" */

The escape sequence extends to three octal digits, or the first character that is not an octal digit,
whichever is first. Therefore, the string "\ 089" is interpreted as four characters: \ 0, 8, 9, and \ 0.

With hexadecimal escape sequences, there is no limit to the number of characters in the escape sequence,
but the result is not defined if the hexadecimal value exceeds the largest value representable by the

unsi gned char type for an normal character constant, or the largest value representable by the
wechar _t type for a wide-character constant. For example, ' \ Xx777" is illegal.

In addition, hexadecimal escape sequences with more than three characters provoke a warning if the
error-checking compiler option is used.

String concatenation can be used to specify a hexadecimal digit following a hexadecimal escape
sequence. In the following example, a is initialized to the same value in both cases:

char a[] = "\xff" "f";
char al] = {'"\x£ff', '£', '\0'};

Using numeric escape sequences can result in a nonportable program if the executing machine uses a
different character set. Another threat to portability exists if arithmetic operations are performed on
the integer character values, because multiple character constants (such as ' ABC can be represented
differently on different machines.

1.9.4. Enumeration Constants

An enumerated type specifies one or more enumeration constants to define allowable values for the
enumerated type. Enumeration constants have the type Si gned i nt, except in the compiler's
RELAXED mode, in which other types are allowed. See Section 3.6, "Enumerated Types" for details on
the declaration and use of enumerated types.

1.10. Header Files

Header files are text files included in a source file during compilation. To include a header file in a
compilation, the #i ncl ude preprocessor directive must be used in the source file. See Chapter 8,
"Preprocessor Directives and Predefined Macros" for more information on this directive. The entire
header file, regardless of content, is substituted for the #i ncl ude preprocessor directive.

A header file can contain other #i ncl ude preprocessor directives to include another file. You can nest
#i ncl ude directives to any depth.

Header files can include any legal C source code. They are most often used to include external variable
declarations, macro definitions, type definitions, and function declarations. Groups of logically related
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functions are commonly declared together in a header file, such as the C library input and output
functions listed in the St di 0. h header file. Header files traditionally have a . h suffix (st di 0. h, for
example).

The names of header files must not include the ', \, ", or /* characters, because the use of these
punctuation characters in a header file is undefined.

When referenced in a program, header names are surrounded by angle brackets or double quotation
marks, as shown in the following example:

#include <math.h> /* or */
#include "local.h"

Chapter 8, "Preprocessor Directives and Predefined Macros" explains the difference between the two
formats. The algorithm the compiler uses for finding the named files is discussed in Section B.37,
"Source File Inclusion (§3.8.2)". Chapter 9, "The ANSI C Standard Library" describes the library
routines in each of the ANSI standard header files.

1.11. Limits

The ANSI C standard suggests several environmental limits on the use of the C language. These limits
are an effort to define minimal standards for a conforming implementation of a C compiler. For example,
the number of significant characters in an identifier is implementation-defined, with a minimum set
required by the ANSI C standard.

The standard also includes several numerical limits that restrict the characteristics of integral and
floating-point types. For the most part, these limits will not affect your use of the C language or
compiler. However, for unusually large or unusually constructed programs, certain limits can be reached.
The ANSI standard contains a list of minimum limits, and your platform-specific VSI C documentation
contains the actual limits used in VSI C.

1.11.1. Translation Limits

As intended by the ANSI C standard, the VSI C implementation avoids imposing many of the translation
limits, allowing applications more flexibility. The VSI C limits are:

o A maximum of 32,767 significant characters in an internal identifier or macro name (a warning
message is issued if this limit is exceeded)

e A maximum of 31 significant characters in an external identifier (a warning message is issued if this
limit is exceeded and the identifier is truncated)

o A maximum of 253 function arguments/formal parameters or shortened depending on the usage of
the #pr agma namnes or / NAMES command-line option

e A maximum of 1012 bytes in any one function argument, and a maximum of 1012 bytes in a
function argument list

e A maximum of 32,767 characters in a logical source line
e A maximum of 32,767 characters in a physical source line

e A maximum of 32,767 bytes in the representation of a string literal (this limit does not apply to
string literals formed as a result of concatenation)
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1.11.2. Numerical Limits

Numerical limits define the sizes and characteristics of integral and floating-point types. Numerical limits
are described inthe | i m ts. h and f | oat . h header files. The limits are:

Each character of type char is represented in 8 bits.
Each character of type wchar _t is represented in 32 bits.

The machine representation and set of possible values for the char type is the same as for the
si gned char type. A compiler command-line option changes this equivalence to unsigned
char.

The machine representation and set of possible values for the i nt and si gned i nt types are the
same as for the | ong i nt type.

The machine representation and set of possible values for the unsi gned i nt type are the same as
for the unsigned long int type.

1.11.3. Character Display

Characters from the executable character set are output to the active position on the screen or in a file.
The active position is defined by the ANSI C standard as the spot where the next output character will
appear. After a character is output, the active position advances to the next position on the current line
(to the left or right).

The VSI C compiler moves the active position from left to right across an output line.
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The C language was initially designed as a small, portable programming language used to implement an
operating system. In its history, C has evolved into a powerful tool for writing all types of programs, and
includes mechanisms to achieve most programming goals. C offers:

To help you take full advantage of C's features, the following sections provide a guide to the basic

A standard set of lexical elements

A wide variety of types for data objects, including:

* Integer and floating-point constants and variables

* Pointers to data locations in memory and the ability to do pointer arithmetic
* Arrays of identically typed data

* Structures and unions with members of different data types

The ability to group independent code blocks into named functions

A large set of operators used to form expressions, including bit-wise operators
A simple method of declaring data objects and functions

Several preprocessor directives to expand the functionality of the language
Numerous library functions to handle many common programming tasks

A high degree of portability

concepts of the language:

Blocks (Section 2.1, "Blocks")

Compilation units (Section 2.2, "Compilation Units'")

Scope (Section 2.3, "Scope")

Visibility (Section 2.4, "Visibility")

Side effects and sequence points (Section 2.5, "Side Effects and Sequence Points")
Incomplete type (Section 2.6, "Incomplete Type")

Compatible and composite types (Section 2.7, "Compatible and Composite Types")
Linkage (Section 2.8, "Linkage")

Storage classes (Section 2.10, "Storage Classes")

Storage-class modifiers (Section 2.11, "Storage-Class Modifiers')

Forward references (Section 2.12, "Forward References")
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o Tags (Section 2.13, "Tags")

e lvalues and rvalues (Section 2.14, "lvalues and rvalues™)
e Name spaces (Section 2.15, "Name Spaces")

e Preprocessing (Section 2.16, "Preprocessing ')

e Type names (Section 2.17, "Type Names")

These sections represent an expanded glossary of selected C terms and basic concepts. Understanding
these concepts will provide a good foundation for a working knowledge of C, and will help show the
relationship of these concepts to more complex ones in the language.

2.1. Blocks

A block in C is a section of code surrounded by braces { }. Understanding the definition of a block is
very important to understanding many other C concepts, such as scope, visibility, and external or internal
declarations.

The following example shows two blocks, one defined inside the other:

main ()
{ /* This brace marks the beginning of the outer block */
int x;
if (x!=0)
{ /* This brace marks the beginning of the inner block */
X = X++;
return Xx;
}; /* This brace marks the end of the inner block */
} /* This brace marks the end of the outer block */

A block is also a form of a compound statement; a set of related C statements enclosed in braces.
Declarations of objects used in the program can appear anywhere within a block and affect the object's
scope and visibility. Section 2.3, "Scope" discusses scope; Section 2.4, "Visibility" discusses visibility.

2.2. Compilation Units

A compilation unit is C source code that is compiled and treated as one logical unit. The compilation
unit is usually one or more entire files, but can also be a selected portion of a file if, for example, the
#i f def preprocessor directive is used to select specific code sections. Declarations and definitions
within a compilation unit determine the scope of functions and data objects.

Files included by using the #i ncl ude preprocessor directive become part of the compilation unit.
Source lines skipped because of the conditional inclusion preprocessor directives are not included in the
compilation unit.

Compilation units are important in determining the scope of identifiers, and in determining the linkage
of identifiers to other internal and external identifiers. Section 2.3, "Scope" discusses scope. Section 2.8,
"Linkage" discusses linkage.

A compilation unit can refer to data or functions in other compilation units in the following ways:

e A function in one compilation unit can call a function in a different compilation unit.
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e Data objects can be assigned external linkage so that other compilation units have access to them (see
Section 2.8, "Linkage").

Programs composed of more than one compilation unit can be separately compiled, and later linked to
produce the executable program. A legal C compilation unit consists of at least one external declaration,
as defined in Section 4.3, "External Declarations".

A translation unit with no declarations is accepted with a compiler warning in all modes except for the
strict ANSI standard mode.

2.3. Scope

The scope of an identifier is the range of the program in which the declared identifier has meaning.
An identifier has meaning if it is recognized by the compiler. Scope is determined by the location of
the identifier's declaration. Trying to access an identifier outside of its scope results in an error. Every
declaration has one of four kinds of scope:

e File

e Block

e Function

e Function prototype (a declaration including only the function's parameter types)

An enumeration constant's scope begins at the defining enumerator in an enumerator list. The scope of
a statement label includes the entire function body. The scope of any other type of identifier begins at
the identifier itself in the identifier's declaration. See the following sections for information on when an
identifier's scope ends.

2.3.1. File Scope

An identifier whose declaration is located outside any block or function parameter list has file scope. An
identifier with file scope is visible from the declaration of the identifier to the end of the compilation
unit, unless hidden by an inner block declaration. In the following example, the identifier of f has file
scope:

int off = 5; /* Declares (and defines) the integer
identifier off. */
main ()
{
int on; /* Declares the integer identifier on. */

on = off + 1; /* Uses off, declared outside the function
block of main. This point of the
program is still within the
active scope of off. */
if (on<=100)
{
int off = 0;/* This declaration of off creates a new object
that hides the former object of the same name.
The scope of the new off lasts through the
end of the if block. */
off = off + on;j;
return off;
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}

2.3.2. Block Scope

An identifier appearing within a block or in a parameter list of a function definition has block scope and
is visible within the block, unless hidden by an inner block declaration.

Block scope begins at the identifier declaration and ends at the closing brace (}) completing the block. In
the following example, the identifier r ed has block scope and bl ue has file scope:

int blue = 5; /* blue: file scope */

main ()

{
int x =0, y = 0; /* x and y: block scope */
int red = 10; /* red: block scope */
x = red + blue;

}

2.3.3. Function Scope

Only statement labels have function scope (see Chapter 7, "Statements™). An identifier with function
scope is unique throughout the function in which it is declared. Labeled statements are used as targets
for got o statements and are implicitly declared by their syntax, which is the label followed by a colon
(:) and a statement. For example:

int funcl (int x, int y, int z)
{

label: x += (y + 2z); /* label has function scope */
if (x > 1) goto label;

}

int func2 (int a, int b, int c)

{
if (a > 1) goto label; /* illegal jump to undefined label */

}

See Section 7.1, "Labeled Statements" for more information on statement labels.

2.3.4. Function Prototype Scope

An identifier that appears within a function prototype's list of parameter declarations has function
prototype scope. The scope of such an identifier begins at the identifier's declaration and terminates at
the end of the function prototype declaration list. For example:

int students ( int david, int susan, int mary, int Jjohn );

In this example, the identifiers (davi d, susan, mary, and | ohn) have scope beginning at their
declarations and ending at the closing parenthesis. The type of the function st udent s is “function
returning i Nt with four i Nt parameters.” In effect, these identifiers are merely placeholders for the
actual parameter names to be used after the function is defined.

2.4. Visibility

An identifier is visible only within a certain region of the program. An identifier has visibility over its
entire scope, unless a subsequent declaration of the same identifier in an enclosed block overrides, or
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hides, the previous declaration. Visibility affects the ability to access a data object or other identifier,
because an identifier can be used only where it is visible.

Once an identifier is used for a specific purpose, it cannot be used for another purpose within the same
scope, unless the second use of the identifier is in a different name space. Section 2.15, "Name Spaces"
describes the name space restrictions. For example, declarations of two different data objects using the
same name as an identifier is illegal within the same scope.

When the scope of one of two identical identifiers is contained within the other (nested), the identifier
with inner scope remains visible, while the identifier with wider scope becomes hidden for the duration
of the inner identifier's scope.

In the following example, the identifier nunber is used twice: once as an integer variable and once as
a floating-point variable. For the duration of the function mai n, the integer nunber is hidden by the
floating-point nunber .

#include <math.h>

int number; /* number is declared as an integer variable */
main ()

{

float x;

float number; /* This declaration of number occurs in an inner

block, and "hides" the outer declaration.
The inner declaration creates a new object */
x = sqgrt (number);/* x receives a floating-point value */

}

2.5. Side Effects and Sequence Points

The actual order in which expressions are evaluated is not specified for most of the operators in C.
Because this sequence of evaluation is determined within the compiler depending on context, some
unexpected results may occur when using certain operators. These unexpected results are caused by side
effects.

Any operation that affects an operand's storage has a side effect. Side effects can be deliberately induced
by the programmer to produce a desired result; in fact, the assignment operator depends on the side
effect of altered storage to do its job. C guarantees that all side effects of a given expression will be
completed by the next sequence point in the program. Sequence points are checkpoints in the program at
which the compiler ensures that operations in an expression are concluded.

The most important sequence point is the semicolon marking the end of a statement. All expressions and
their side effects are completely evaluated when the semicolon is reached. Other sequence points are as
follows:

e exprl, expr2 (the comma operator)

o exprl && expr2 (the logical AND operator)

e exprl || expr2 (the logical OR operator)

e exprl ? expr2 : expr3 (the conditional operator)

These operations do guarantee the order, or sequence, of evaluation (exprl), expr2, and expr3 are
expressions). For each of these operators, the evaluation of expression exprl is guaranteed to occur
before the evaluation of expression expr2 (or expr3, in the case of the conditional expression).
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Relying on the execution order of side effects, when none is guaranteed, is a risky practice because
results are inconsistent and not portable. Undesirable side effects usually occur when the same data
object is used in two or more places in the same expression, where at least one use produces a side effect.
For example, the following code fragment produces inconsistent results because the order of evaluation
of operands to the assignment operator is undefined.

int x[4] = { 0, 0, 0, 0 };
int 1 = 1;
x[1] = i++;

If the increment of i occurs before the subscript is evaluated, the value of X[ 2] is 1. If the subscript is
evaluated first, the value of X[ 1] is 1.

A function call also has side effects. In the following example, the order in which f 1(y) and f 2( z)
are called is undefined:

int y = 0;
int z = 0;
int x = 0;

int f1(int s)
{
printf ("Now in f1\n");
y += 7; /* Storage of y affected */
return y;

}

int f2(int t)
{
printf ("Now in f2\n");
z += 3; /* Storage of z affected */
return z;

}

main ()

{
x = fl(y) + £2(z); /* Undefined calling order */
}

The pri nt f functions can be executed in any order even though the value of X will always be 10.

2.6. Incomplete Type

An identifier can be initially declared as having an incomplete type. An incomplete type declaration
describes the object, but lacks the information needed to determine the object's size. For example, a
declaration of an array of unknown size is an incomplete type declaration:

extern int x[];

The incomplete type may be completed in a subsequent declaration. Incomplete types are most
commonly used when forward referencing arrays, structures, and unions. (Section 2.12, "Forward
References” discusses forward references.) An object of an aggregate type cannot contain a member of
an incomplete type; therefore, an aggregate object (a structure or array member) cannot contain itself,
because the aggregate type is not complete until the end of its declaration. The following example shows
how an incomplete structure type is declared and later completed:
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struct s
{ struct t *pt }; /* Incomplete structure declaration */

struct t
{ int a;
float *ps }; /* Completion of structure t */

The voi d type is a special case of an incomplete type. It is an incomplete type that cannot be
completed, and is used to signify that a function returns no value. Section 3.5, "void Type" has more
information on the voi d type.

2.7. Compatible and Composite Types

Compatibility between types refers to the similarity of two types to each other. Type compatibility is
important during type conversions and operations. All valid declarations in the same scope that refer to
the same object or function must have compatible types. Two types are compatible if they fit any of the
following categories:

e Two types are compatible if they are the same.

e Two qualified types (see Section 3.7, "Type Qualifiers") are compatible if they are identically
qualified and the two types, unqualified, are compatible. The order of the qualifiers in the type
declaration does not matter.

e The types short,signed short, short int,andsigned short int arethe same and
are compatible.

e The types unsi gned short and unsigned short int are the same and are compatible.
e The typesi nt,si gned, and signed int are the same and are compatible.
e The types unsi gned and unsi gned i nt are the same and are compatible.

e Thetypes!| ong, si gned |ong, long int,signed | ong int arethe same and are
compatible.

e The types unsi gned | ong and unsi gned | ong i nt are the same and are compatible.

e Two array types are compatible if they are of the same size and contain elements of compatible
types. If one array has an unknown size, it is compatible with all other array types having compatible
element types.

e Two unions or structures are compatible if they are declared in different compilation units, share the
same members in the same order, and whose members have the same widths (including bit fields).

e Two enumerations are compatible if all members have the same values. All enumerated types are
compatible with other enumerated types. An enumerated type is also compatible with the si gned
i nt type.

e Two pointer types are compatible if they are identically qualified and point to objects of compatible
types.

e A function type declared using the old-style declaration (such as int tree ()) is compatible with
another function type if the return types are compatible.
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A function type declared using the new prototype-style declaration (such asi nt tree (i nt
X)) is compatible with another function type declared with a function prototype if:

* The return types are compatible.
* The parameters agree in number (including an ellipsis if one is used).

* The parameter types are compatible. For each parameter declared with a qualified type, its type
for compatibility comparison is the unqualified version of the declared type.

The function type of a prototype-style function declaration is compatible with the function type of
an old-style function declaration if the return types are compatible, and if the old-style declaration is
not a definition. (Different styles of function declarations are discussed in Chapter 5, "Functions".)
Otherwise, the function type of a prototype-style function declaration is compatible with the function
type of an old-style function definition if all of the following conditions are met:

* The return types of the two functions are compatible.
*  The number of parameters agree.
* The prototype-style function declaration does not contain an ellipsis as a parameter.

* The promoted types of the old-style parameters are compatible with the prototype-style
parameter types. In the following example, the functions t r ee and t r ee2 are compatible.
treeandtreel are not compatible, and t r eel and t r ee2 are not compatible.

int tree (int);
int treel (char);
int tree2 (x)

char x; /* char promotes to int in old-style
function parameters, and so is
compatible with tree */

{

bi

The following types, which may appear to be compatible, are not:

unsi gned int andi nt types are not compatible.

char,si gned char,and unsigned char types are not compatible.

Composite Type

A composite type is constructed from two compatible types and is compatible with both of the two types.
Composite types satisfy the following conditions:

If one type is an array of known size, the composite type is an array of that size. Otherwise, if one
type is a variable-length array, the composite type is that type.

If only one type is a function type with a prototype, the composite type is a function type with the
parameter type list.

If both types are functions types with prototypes, the type of each parameter in the composite
parameter type list is the composite type of the corresponding parameters.
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Consider the following file-scope declarations:

int f(int (*) (), double (*) [3]);
int £ (int (*) (char *), double (*)[]);

They result in the following composite type for the function:
int f£(int (*) (char *), double (*)I[3]);

The previous composite type rules apply recursively to types derived from composite types.

2.8. Linkage

Data objects and functions can be implicitly or explicitly assigned linkage. There are three kinds of
linkage:

e Internal linkage—a declaration referring to a data object or function declared in the same
compilation unit, and not known outside the compilation unit.

e External linkage—a declaration referring to a definition of a data object or function known outside
the compilation unit. The definition of the object also has external linkage.

o No linkage—a declaration declaring a unique data object.

When more than one declaration of the same object or function is made, linkage is made. The linked
declarations can be in the same scope or in different scopes. Externally linked objects are available to
any function in any compilation unit used to create the executable file. Internally linked objects are
available only to the compilation unit in which the declarations appear.

The concept of linkage and the st at i ¢ and ext er n keywords are related, but not directly. Using the
ext er n keyword in an object's declaration does not guarantee external linkage. The following rules
determine the actual linkage of an object or function:

e An identifier explicitly specified with the aut 0 or r egi st er storage class has no linkage.

e An identifier with block scope and the ext er n storage-class specification has linkage the same as
any visible declaration of the same identifier with file scope. If no such declaration of the object or
function is visible, then the object or function has external linkage.

e The declaration of functions defaults to external linkage. The only other storage class possible for a
function is St at i ¢, which must be specified explicitly, cannot be applied to a block scope function
declaration, and results in internal linkage.

e The file scope declaration of a data object without an explicit storage class specification, or with the
ext er n storage class specified, has external linkage.

e An identifier with file scope and the St at i c storage class has internal linkage.
e An identifier with block scope and without the ext er n storage-class specification has no linkage.

Identifiers other than data objects and functions have no linkage. An identifier declared as a function
parameter also has no linkage.

The following examples show declarations with different linkages:

extern int x; /* External linkage */
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static int y; /* Internal linkage */
register int z; /* Illegal storage-class declaration */
main () /* Functions default to external linkage */
{
int w; /* No linkage */
extern int x; /* External linkage */
extern int vy; /* Internal linkage */
static int a; /* No linkage */
}
void funcl (int argl) /* argl has no linkage */
{1

In VSI C, a message is issued if the same object is declared with both internal and external linkage.

2.9. Tentative Definitions

A declaration of an identifier with file scope, no initializer, and either no storage-class specifier or the
st ati c storage-class specifier is a tentative definition. The tentative definition only applies if no other
definition of the object appears in the compilation unit, in which case all tentative definitions for an
object are treated as if there were only one file scope definition of the object, with an initializer of zero.

If a definition for a tentatively defined object is used later in the compilation unit, the tentative definition
is treated as a redundant declaration of the object. If the declaration of an identifier for an object is a
tentative definition and has internal linkage, the declared type cannot be an incomplete type. Section 2.8,
"Linkage" discusses linkage.

The following are examples of tentative definitions:

int i1 = 1; /* Standard definition with external linkage */
int i4; /* Tentative definition with external linkage */
static int 15; /* Tentative definition with internal linkage */
int i1; /* Valid tentative definition, refers to previous */

/* 11 declaration */

2.10. Storage Classes

Storage classes apply only to data objects and function parameters. However, storage class keywords in C
are also used to affect the visibility of functions. Every data object and parameter used in a program has
exactly one storage class, either assigned explicitly or by default. There are four storage classes:

e auto

e register

e static

e extern

An object's storage class determines its availability to the linker and its storage duration. An object with
external or internal linkage, or with the storage-class specifier St at i ¢, has static storage duration,

which means that storage for the object is reserved and initialized to 0 only once, before mai n begins
execution. An object with no linkage and without the storage-class specifier St at i ¢ has automatic
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storage duration; for such an object, storage is automatically allocated on entry to the block in which it is
declared, and automatically deallocated on exiting from the block. An automatic object is not initialized.

When applied to functions, the storage-class specifier ext er n makes the function visible from other
compilation units, and the storage-class specifier St at i ¢ makes the function visible only to other
functions in the same compilation unit. For example:st ati c i nt tree(void);

The following sections describe these storage classes.

2.10.1. The auto Class

The aut o class specifies that storage for an object is created upon entry to the block defining the object,
and destroyed when the block is exited. This class can be declared only at the beginning of a block, such
as at the beginning of a function's body. For example:

auto int aj; /* Illegal - auto must be within a block */

main ()
{
auto int b; /* Valid auto declaration */
for (b = 0; b < 10; b++)
{

auto int a = b + a; /* Valid inner block declaration */
}
}

When you use an initializer with an aut 0 object (see Section 4.2, "Initialization"), the object is
initialized each time it is created. Storage is reserved for the object whether the block containing the
object is entered through normal processing of the block or through a jump statement into the block.
However, if the block is entered through a jump statement, initialization of the object is not guaranteed,
and if the object is a variable-length array, storage is not reserved.

The aut o class is the default for objects with block scope. Objects with the aut o class are not available
to the linker.

Note

Entering an enclosed block suspends, but does not end, execution of the enclosing block. Calling a
function from within a block suspends, but does not end, execution of the block containing the call.
Automatic objects with reserved storage maintain their storage in these cases.

2.10.2. The register Class

The r egi st er class identifies the assigned object as frequently used, suggesting to the compiler that
the object should be assigned a register to minimize access time. r egi St er is never the default class; it
must be explicitly specified.

The r egi st er class has the same storage duration as the aut o class; that is, storage is created for a
regi st er object upon entry to the block defining the object, and destroyed when the block is exited.

The r egi st er class is the only storage class that can be explicitly specified for function parameters.

The VSI C compiler uses sophisticated register allocation techniques that make the use of the
regi st er keyword unnecessary.
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2.10.3. The static Class

The st at i ¢ class specifies that space for the identifier is maintained for the duration of the program.
Static objects are not available to the linker. Therefore, another compilation unit can contain an identical
declaration that refers to a different object.

A st ati ¢ object can be declared anywhere a declaration may appear in the program; it does not have
to be at the beginning of a block, as with the aut o class. If a data object is declared outside a function,
it has static duration by default—it is initialized only once at the beginning of the program.

Expressions used to initialize St at i ¢ objects must be constant expressions. If the object with st at i ¢
storage duration is not explicitly initialized, every arithmetic member of that object is initialized to 0, and
every pointer member is initialized as a null pointer constant. See Section 4.2, "Initialization" for more
information on initializing objects of various data types.

2.10.4. The extern Class

The ext er n class is the default class for objects with file scope. Objects outside of any function (an
external definition) receive the ext er n class storage unless explicitly assigned the st at i ¢ keyword
in the declaration. The ext er n class specifies the same storage duration as St at i ¢ objects, but the
object or function name is not hidden from the linker. Using the ext er n keyword in a declaration
results in external linkage in most cases (see Section 2.8, "Linkage"), and results in static duration of the
object.

2.11. Storage-Class Modifiers

VSI C provides the following storage-class modifiers:

__inline
__forceinline
__align
inline

The first three modifiers listed are recognized as valid keywords in all compiler modes on all platforms.
They are in the namespace reserved to the C implementation, so it is not necessary to allow them to be
treated as user-declared identifiers. They have the same effects on all platforms.

The i nl i ne storage-class modifier is supported in relaxed ANSI C mode or if
the /ACCEPT=C99_KEYWORDS or /ACCEPT=GCCINLINE qualifier is specified.

Note

VSI C for OpenVMS systems also provides support for the storage-class modifiers noshar e,
readonl y,and _al i gn as VAX C keywords. For more information about these storage-class
modifiers, see the VSI C User Manual [https://docs.vmssoftware.com/vsi-c-user-s-guide-for-openvms-

systems/].

You can use a storage-class specifier and a storage-class modifier in any order. Usually, the modifier is
placed after the specifier in the source code. For example:

extern noshare int x;

/* Or, equivalently.. */
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int noshare extern x;
However, placing the storage-class specifier anywhere other than first is obsolescent.

The following sections describe each of the VSI C storage-class modifiers.

2.11.1. The __inline Modifier

The __i nli ne storage-class modifier marks a function for inline expansion. Using __i nl i ne on
a function definition and prototype tells the compiler that it can substitute the code within the function
definition for every call to that function. Substitution occurs at the discretion of the compiler. The _
_inline storage-class modifier has the same effect as the #pragma inline preprocessor directive,
except that #pr agma i nl i ne attempts to provide inline expansion for all functions in a translation
unit, rather than for selected functions (See your platform-specific VSI C documentation for more
information on #pr agma i nl i ne).

Use the following form to designate a function for inline expansion:
__inline [type] function_definition

The compiler issues a warning if __i nl i ne is used in /STANDARD=PORTABLE mode, because
this is an implementation-specific extension.

Here is an example of using _ _inline:
/* prototype */
__inline int x (float vy);

/* definition */
__inline int x (float vy)

return (1.0);

}

2.11.2. The inline Modifier

Similar to the __i nl i ne storage-class modifier, the i nl i ne storage-class modifier can be used as a
declaration specifier in the declaration of a function.

The i nl i ne storage-class modifier is supported in relaxed ANSI C mode or if the /
ACCEPT=C99_KEYWORDS or /ACCEPT=GCCINLINE qualifier is specified.

With static functions, i nl i ne has the same effect as applying _ _inline or#pragma i nlineto
the function.

However, when i nl i ne is applied to a function with external linkage, besides allowing calls within that
translation unit to be inlined, the i nl i ne semantics provide additional rules that also allow calls to the

function to be inlined in other translation units or for the function to be called as an external function, at
the compiler's discretion:

e Ifthei nl i ne keyword is used on a function declaration with external linkage, then the function
must also be defined in the same translation unit.
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e If all of the file-scope declarations of the function use the i nl i ne keyword but do not use the
ext er n keyword, then the definition in that translation unit is called an inline auxiliary definition,
and no externally-callable (global) definition is produced by that compilation unit.

Otherwise, the compilation unit does produce an externally-callable definition.

e Ani nl i ne auxiliary definition must not contain a definition of a modifiable object with static
storage duration, and it must not refer to an identifier with internal linkage. These restrictions do not
apply to the externally-callable definition.

e As usual, at most one compilation unit in an entire program can supply an externally-callable
definition of a given function.

e Any call to a function with external linkage might be translated as a call to an external function,
regardless of the presence of the i nl i ne qualifier. It follows from this and the previous point that
any function with external linkage that is called must have exactly one externally-callable definition
among all the compilation units of an entire program.

e The address of an i nl i ne function with external linkage is always computed as the address of the
unique externally-callable definition, never the address of an inline definition.

e Acalltoani nl i ne function made through a pointer to the externally-callable definition may still
be inlined or translated as a call to an inline definition, if the compiler can determine the name of the
function whose address was stored in the pointer.

e Without the i nl i ne keyword, a function definition in a header file produces MULDEEF errors at
link time, if the header file is included by more than one translation unit. Specifying i nl i ne on
such a function definition is one way to eliminate these MULDEEF errors. See the example (Section
2.11.2.1, "Example — Using the inline Function Specifier").

Note
This section describes the semantics of the C99 Standard i nl i ne keyword.

The gcc compiler implements an inline function declaration specifier for functions with external linkage
that gives similar capabilities to this C99 inline feature, but the details of usage are somewhat different:
essentially, the combination of ext er n and i nl i ne keywords makes an inline definition, instead of
the exclusive use of the i nl i ne keyword without the ext er n keyword.

The /ACCEPT=[NO]GCCINLINE qualifier controls which variation of the feature is implemented.

2.11.2.1. Example — Using the inline Function Specifier

Consider the following C code, which results in a multiply defined function identifier (nmy__nmax):

$ type t.h
int my_max (int x, int vy)
{
if (x >= y)
return (x);
else
return (y);
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$ type a.c
#include "t.h"

main ()

{
int a =1;
int b=2;

funcl () ;
my_max (funcl (a,b),20);
}
$
$ type b.c

#include "t.h"

void funcl (int pl, int p2)
{
my_max (pl,p2);
}
$
$ link a,b
$LINK-W-MULDEF, symbol MY_MAX multiply defined
in module B file DISKS$:[TEST.TMP]B.OBJ; 4

One way around this problem is to define the function my_max with the keyword st ati c:

static int my_max (int x, int vy)
{
if (x >= y)
return (x);
else
return (y);

}

However, this means there is no globally visible my_max function but, rather, a copy of my_max for
each module, each copy with a different address. Therefore, any function pointer comparisons would
break.

The ISO C99 solution to this problem is the i nl i ne keyword. Adding i nl i ne to the header file t . h
eliminates the MULDEEF errors:

inline int my_max (int x, int vy)
{
if (x >= vy)
return (x);
else
return (y);

}

This type of function definition, like one specified with the __i nl i ne keyword, marks the function
for potential inlining by the compiler. One difference, however, is that for an i nl i ne function, the
compiler creates an inline auxiliary definition of the function, which is associated with the function being
declared (my_max in this example). The compiler is then free to do one of the following:

1. Call the auxiliary function.

2. Call the global function (my_nmax). This implies that there must be a global definition of any
non-St at i ¢ i nl i ne function in one of the modules of the application.
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3. Generate inlined code for the call to my_nmax.

There can be one and only one global definition for the i nl i ne function within an application. There
can be one inline auxiliary definition per module, or many prototype declarations of the auxiliary
function per module.

You can create a global inline definition by including in one of your modules (such as a. € in our
example) a file-scope function declaration that:

1. Omits the i nl i ne keyword:

#include "t.h"
int my_max (int x, int vy);

OR

#include "t.h"
extern int my_max (int x, int y);

2. Or that specifies the ext er n storage class with the i nl i ne keyword:

#include "t.h"
extern inline int my_max (int x, int y);

Note

Taking the address of an i nl i ne function always resolves to the global function, never the auxiliary
function.

2.11.3. The _ forceinline Modifier

Similar to the __i nl i ne storage-class modifier, the _ _forceinline storage-class modifier
marks a function for inline expansion. However, using __f or cei nl i ne on a function definition and
prototype tells the compiler that it must substitute the code within the function definition for every call to
that function. (With __i nl i ne, such substitution occurs at the discretion of the compiler.)

Use the following form to designate a function for forced inline expansion:
__forceinline [type] function_definition

The compiler issues a warning if __f or cei nl i ne is used in /STANDARD=PORTABLE mode,
because this is an implementation-specific extension.

2.11.4. The __align Modifier

The __al i gnand_al i gn storage-class modifiers have the same semantic meaning. The difference
isthat __al i gn is a keyword in all compiler modes while _al i gn is a keyword only in modes that
recognize VAX C keywords. For new programs, using __al i gn is recommended.

The __al i gn storage-class modifier aligns objects of any of the VSI C data types on a specified
storage boundary. Use the __al i gn modifier in a data declaration or definition.

For example, to align an integer on the next quadword boundary, you can use any of the following
declarations:

int __align( QUADWORD ) dataj;
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int __align( guadword ) data;
int __align( 3 ) data;

When specifying the boundary of the data alignment, you can either use a predefined constant or specify
an integer value that is a power of 2. These constants, or explicit powers of 2, tell VSI C the number of

bytes to pad in order to align the data. In the previous example, i nt __align ( 3 ) specifies an
alignment of 23 bytes, which is 8 bytes—a quadword of memory.

Table 2.1, "Predefined Alignment Constants" presents all the predefined alignment constants, their
equivalent power of 2, and their equivalent number of bytes.

Table 2.1. Predefined Alignment Constants

Constant Power of 2 Number of Bytes
BYTE or byte 0 1
WORD or word 1 2
LONGWORD or longword 2 4
QUADWORD or quadword 3 8
OCTAWORD or octaword 4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 (Alpha, 164) 16384
15 (Alpha, 164) 32768
PAGE or page 16 (Alpha, 164) 65,536 (Alpha, 164)

2.12. Forward References

Once declared, identifiers can be used freely. Using an identifier before its declaration is called a forward

reference, and results in an error, except in the following cases:
e When a got o statement refers to a statement label before the label's declaration
e When a structure, union, or enumeration tag is used before it is declared

Here are some examples of valid and invalid forward references:

int a;

main ()

{
int b = ¢; /* Forward reference to ¢ - illegal */
int ¢ = 10;

glop x = 1; /* Forward reference to glop type - illegal */
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typedef int glop;
goto test; /* Forward reference to statement label —-
legal */
test:
if (a > 0 ) b = TRUE;
}

The following example shows the use of a structure tag in a forward reference:

struct s
{ struct t *pt }; /* Forward reference to structure t */
/* (Note that the reference is preceded */
/* by the struct keyword to resolve */
. /* potential ambiguity) */
struct t

{ struct s *ps };

2.13. Tags

Tags can be used with structures, unions, or enumerated types as a means of referring to the structure,
union, or enumerated type elsewhere in the program. Once a tag is included in the declaration of a
structure, union, or enumerated type, it can specify the declared structure, union, or enumerated type
anywhere the declaration is visible.

The following code fragment shows the use of a structure tag, a union tag, and an enumerated type tag:

struct tnode { /* Initial declaration - */
/* tnode is the structure tag */
int count;
struct tnode *left, *right; /* tnode's members referring to tnode */
union datanode *p; /* forward reference to union type is
declared below */
bi
union datanode { /* Initial declaration - */
/* datanode is the union tag */

int ival;
float fval;
char *cval;

Fa = {5};

enum color { red, blue, green };/* Initial declaration - */
/* color is the enumeration tag */
struct tnode x; /* tnode tag is used to declare x */
enum color z = blue; /* color tag declares z to be of
type color; =z is also
initialized to blue */

As shown in the previous example, once a tag is declared it can be used to reference other structure,
union, or enumerated type declarations in the same scope without fully redefining the object.

Tags can be used to form an incomplete type if they occur before the complete declaration of a
structure or union. Incomplete types do not specify the size of the object; therefore, a tag introducing
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an incomplete type can only be used when the size of the object is not needed. To complete the type,
another declaration of the tag in the same scope must define the object completely. The following
example shows how a subsequent definition completes the incomplete declaration of the structure type S:

struct s; /* Tag s used in incomplete type declaration */
struct t |

struct s *p;
i

struct s { int i; };/* struct s definition completed */
Section 2.6, "Incomplete Type" describes the concept of an incomplete type.

Consider the following declarations:

struct tag;
union tag;

These declarations specify a structure or union type and declare a tag visible only within the scope of
the declaration. The declaration specifies a new type distinct from any other type with the same tag in an
enclosing scope (if any).

The following example shows the use of prior tag declarations to specify a pair of mutually-referential
structures:

struct sl { struct s2 *s2p; /*...*/ }; /* D1 */
struct s2 { struct sl *slp; /*...*/ }; /* D2 */

If s2 was declared as a tag in an enclosing scope, the declaration D1 would refer to S2, not to the tag
s2 declared in D2. To eliminate this context sensitivity, the following declaration can be inserted ahead
of D1:

struct s2;

This declares a new tag S2 in the inner scope; the declaration D2 then completes the specification of the
type.

2.14. lvalues and rvalues

An rvalue is the value of an expression, suchas 2, orx + 3,or(X + y) * (a - b).rvaluesare
not allocated storage space. Examples of rvalues are the numbers 0 and 1 in the following code fragment:

if (x > 0)
{
y +=1;
}
X = *y; /* The value pointed to by vy is assigned to x */

The identifiers X and y are objects with allocated storage. The pointer to ¥ holds an lvalue.

An lvalue is an expression that describes the location of an object used in the program. The location of
the object is the object's lvalue, and the object's rvalue is the value stored at the location described by the
Ivalue. The following operators always produce lvalues:

(]

*

—->

39



Chapter 2. Basic Concepts

The dot operator ( . ) can, and usually does, produce an lvalue but it does not have to do so. For example,
f () . mis not an lvalue.

A modifiable Ivalue is an lvalue that does not have array type, an incomplete type, a const -qualified
type, or, if it is a structure or union, has no member with const -qualified type.

2.15. Name Spaces

Name spaces are identifier classifications based on the context of the identifier's use in the program.
Name spaces allow the same identifier to simultaneously stand for an object, statement label, structure
tag, union member, and enumeration constant. Simultaneous use of an identifier in the same scope for
two different entities without ambiguity is possible only if the identifiers are in different name spaces.
The context of the identifier's use resolves the ambiguity over which of the identically named entities is
desired.

There are four different name spaces:

e Statement labels

e Structure, union, and enumeration tags

e Each structure and union member set

e Other identifiers (variables, functions, type definitions, and enumeration constants)

For example, the identifier f | ower can be used in one block to stand for both a variable and an
enumeration tag, because variables and tags are in different name spaces. Subsequently, an inner block
can redefine the variable f | ower without disturbing the enumeration tag f | ower . Therefore, when
using the same identifier for various purposes, analyze the name space and scope rules governing the
identifier. Section 2.3, "Scope" presents the scope rules.

A structure, union, and enumeration member name can be common to each of these objects at the same
time. The use of the structure, union, or enumeration name in the reference to the member resolves any
ambiguity about which identifier is meant. However, the structure, union, or enumeration tag must be
unique, since the tags of these three object types share the same name space.

2.16. Preprocessing

The translation of a C program occurs in several phases. Normally, when the compiler is started, several
events occur before the actual compiler starts:

1. Trigraph sequences (if any) are replaced by single-character internal representations.

2. Each occurrence of a new-line character immediately preceded by a backslash character is deleted
and the following line is spliced to form one logical line.

3. The source file is decomposed into preprocessing tokens and sequences of white-space characters.
Each comment is replaced by one space character.

4. Preprocessing directives are executed and preprocessor macros are expanded. Files named in
#i ncl ude preprocessing directives are processed through these four steps recursively.

5. Each source character set member, and each escape sequence in character constants and string
literals is converted to a member of the execution character set.
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6. Adjacent character string literal tokens are concatenated and adjacent wide string literal tokens are
concatenated.

7. The resulting stream of tokens is analyzed and translated.

8. The linking phase. All external object and function references are resolved. Library components are
linked to satisfy external references to functions and objects not defined in the current compilation
unit. All such linker output is collected into a program image.

The fourth step is called preprocessing, and is handled by a separate unit of the compiler. Each
preprocessor directive appears on a line beginning with a pound sign (#); white space may precede the
pound sign. These lines are syntactically independent from the rest of the C source file, and can appear
anywhere in the source file. Preprocessor directive lines terminate at the end of the logical line.

It is possible to preprocess a source file without actually compiling the program (see your platform-
specific VSI C documentation for the available compiler options.) Chapter 8, "Preprocessor Directives
and Predefined Macros" discusses the preprocessing directives.

2.17. Type Names

In several contexts a type name can or must be specified without an identifier. For example, in a function
prototype declaration, the parameters of the function can be declared only with a type name. Also, when
casting an object from one type to another, a type name is required without an associated identifier.
(Section 6.4.6, "The Cast Operator" has information on casting, and Section 5.5, "Function Prototypes"
has information on function prototypes.) This is accomplished using a type name, which is a declaration
for a function or object which omits the identifier.

Table 2.2, "Type Name Examples” shows examples of type names with the associated types they refer to.

Table 2.2. Type Name Examples

Construction Type Name

i nt I nt

int * Pointer to i nt

int *[3] Array of three pointers to i nt

int (*)[3] Pointer to an array of three i nt s

int *() Function with no parameter specification returning
a pointer to i nt

int (*) (void) Pointer to function with no parameters returning an
i nt

int (*const []) (unsigned Array of an unspecified number of const

int, ...) pointers to functions, each with one parameter that

has type unsi gned i nt and an unspecified
number of other parameters, returning an i nt

Table 2.2, "Type Name Examples" also provides good examples of abstract declarators. An abstract
declarator is a declarator without an identifier. The characters following the i nt type name form an
abstract declarator in each case. The *,[ ] , and ( ) characters all indicate a declarator without naming a
specific identifier.
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The type of a data object in C determines the range and kind of values an object can represent, the size
of machine storage reserved for an object, and the operations allowed on an object. Functions also have
types, and the function's return type and parameter types can be specified in the function's declaration.

The following sections discuss these topics:
o Data sizes (Section 3.1, "Data Sizes")
e Integral types (Section 3.2, "Integral Types")
e Floating-point types (Section 3.3, "Floating-Point Types")
e Derived types (Section 3.4, "Derived Types"), including:
* Function type (Section 3.4.1, "Function Type")
* Pointer type (Section 3.4.2, "Pointer Type')
* Array type (Section 3.4.3, "Array Type")
» Structure type (Section 3.4.4, "Structure Type")
*  Union type (Section 3.4.5, "Union Type")
e The voi d type (Section 3.5, "void Type")
o Enumerated types (Section 3.6, "Enumerated Types")
e Type qualifiers (Section 3.7, "Type Qualifiers")
e Type definition (Section 3.8, "Type Definition")

The selection of a data type for a given object or function is one of the fundamental programming steps
in any language. Each data object or function in the program must have a data type, assigned either
explicitly or by default. (Chapter 4, "Declarations"” discusses the assignment of a data type to an object.)
C offers a wide variety of types. This diversity is a strong feature of C, but can be initially confusing.

To help avoid this confusion, remember that C has only a few basic types. All other types are derived
combinations of these basic types. Some types can be specified in more than one way; for example,
short and short i nt are the same type. (In this manual, the longest, most specific name is always
used.) Type is assigned to each object or function as part of the declaration. Chapter 4, "Declarations"
describes declarations in more detail.

Table 3.1, "Basic Data Types" lists the basic data types: integral types (objects representing integers
within a specific range), floating-point types (objects representing numbers with a significand part—a
whole number plus a fractional number—and an optional exponential part), and character types (objects
representing a printable character). Character types are stored as integers.

Note

Enumerated types are also normally classified as integral types, but for the purposes of clarity they are
not listed here. See Section 3.6, "Enumerated Types" for more information.
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Table 3.1. Basic Data Types

Integral Types Floating Point Types

short int fl oat

signed short int doubl e

unsi gned short int | ong doubl e

i nt fl oat _Conpl ex

si gned int doubl e _Conpl ex

unsi gned i nt | ong doubl e _Conpl ex
_|I magi nary

In VSI C, use of the _| magi nar y keyword
produces a warning, which is resolved by treating it
as an ordinary identifier.

| ong int

signed |long int

unsi gned long int

long long int

signed |l ong long int

unsi gned |l ong |l ong int

_Bool

Integral Character Types

char

si gned char

unsi gned char

The integral and floating-point types combined are called the arithmetic types. See Section 3.1, "Data
Sizes" for information about the size and range of integral and floating-point values.

A large variety of derived types can be created from the basic types. Section 3.4, "Derived Types"
discusses the derived types.

Besides the basic and derived types, there are three keywords that specify unique types: voi d, enum
and t ypedef :

e The voi d keyword specifies a special type indicating no value, or it can be used with the pointer
operator (*) to indicate a generic pointer type. See Section 3.5, "void Type" for more information on
the voi d type.

e The enumkeyword specifies an integer type of your own design, specifying the acceptable values
of the type to a predefined set of named integer constant values. Enumerated types are stored as
integers, except in the compiler's RELAXED mode, in which other types are allowed. See Section
3.6, "Enumerated Types" for a detailed description of enumerated types.

e Thet ypedef keyword specifies a synonym for a type made from one or more basic or derived
types. See Section 3.8, "Type Definition" for more information on creating type definitions.

There are also the type-qualifier keywords:
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e const, used to prevent write access to an object (see Section 3.7.1, "const Type Qualifier")

e vol ati | e, used to restrict the optimizations that might otherwise be performed on references to an
object (see Section 3.7.2, "volatile Type Qualifier")

e __unal i gned (Alpha, I64), used in pointer definitions, to indicate to the compiler that the data
pointed to is not properly aligned on a correct address

e _ restrict (for pointer type only), used to designate a pointer as pointing to a distinct object,
thus allowing compiler optimizations to be made (see Section 3.7.4, "__restrict Type Qualifier")

Using a qualifying keyword in the type declaration of an object results in a qualified type. See Section
3.7, "Type Qualifiers" for general information on type qualifiers.

With such a wide variety of types, operations in a program often need to be performed on objects of
different types, and parameters of one type often need to be passed to functions expecting different
parameter types. Because C stores different kinds of values in different ways, a conversion must be
performed on at least one of the operands or arguments to convert the type of one operand or argument
to match that of the other. You can perform conversions explicitly through casting, or implicitly through
the compiler. See Section 6.11, "Data-Type Conversions" for more information on data-type conversions.
See Section 2.7, "Compatible and Composite Types" for a description of type compatibility.

See your platform-specific VSI C documentation for a description of any implementation-defined data
types.

3.1. Data Sizes

An object of a given data type is stored in a section of memory having a discreet size. Objects of
different data types require different amounts of memory. Table 3.2, "Sizes and Ranges of Data Types"
shows the size and range of the basic data types.

Table 3.2. Sizes and Ranges of Data Types

Type Size Range
Integral Types
short int,orsigned short 16 bits -32768 to 32767
i nt
unsi gned short int 16 bits 0 to 65535
i nt orsigned int 32 bits -2147483648 to 2147483647
unsi gned int 32 bits 0 to 4294967295
I ong int,orsigned |ong int |32bits -2147483648 to 2147483647
unsi gned long int 32 bits 0 to 4294967295
64 bits -9223372036854775808 to
9223372036854775807
unsi gned long long int, 64 bits 0 to 18446744073709551615
unsigned __int64
Integral Character Types
char and si gned char 8 bits -128 to 127
unsi gned char 8 bits 0 to 255
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Type Size Range

wchar _t 32 bits 0 to 4294967295
Floating-Point Types (range is for absolute value)

f| oat 32 bits 1.1x 10 t0 3.4 x 10°
doubl e 64 bits 22x107% t0 1.7 x 10>

| ong doubl e! 128 bits 3.4 x 1043 10 1.2 x 101049321

"Unless the / L_ DOUBLE command-line option is used to specify 64. If it is, the range is the same as the for the doubl e type.
Derived types can require more memory space.

See your platform-specific VSI C documentation for the sizes of implementation-defined data types.

3.2. Integral Types

In C, an integral type can declare:

e Integer values, signed or unsigned

e Boolean values, where 0 is equivalent to false and any nonzero number is equivalent to true
e Characters, which are automatically converted to an integer value by the compiler

e Members of an enumerated type, which are interpreted as an integer by the compiler
e Bit fields

The integral types are:

e char,signed char,unsi gned char - 8 bits

e short int,signed short int,andunsi gned short int —16 bits
e _Bool -1 byte

e int,signed int,unsigned int —32bits

e long int,signed | ong int,andunsi gned |ong int —32bits

e signed long long int andunsi gned | ong | ong int —64 bits

e signed __int64andunsi gned __int64—64bits

e enum- 32 bits

3.2.1. Non-Character Types

Storage for i nt and | ong is identical. Similarly, storage of Si gned i nt and si gned | ong is
identical, and storage for unsi gned i nt and unsi gned | ong is identical.

The 64-bit integral types Si gned |1 ong | ong i nt and unsi gned | ong | ong i nt, and their
equivalents Si gned __i nt 64 and unsi gned __i nt 64 are provided.
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Note

The __int64andl ong | ong int datatypes (both signed and unsigned) can be used
interchangeably, except for use with pointer operations, in which case the pointer types must be identical:

__int64d *pl;
__int64d *p2;
long long int *p3;

pl = p2; // valid
pl p3; // invalid

For each of the signed integral types, there is a corresponding unsigned integral type that uses the same
amount of storage. The unsi gned keyword with the integral type modifies the way the integer value
is interpreted, which allows the storage of a larger range of positive values. When using the unsi gned
keyword, the bits are interpreted differently to allow for the increased positive range with the unsigned
type (at the expense of the negative range of values). For example:

signed short int x = 45000; /* ERROR - value too large for short int */
unsigned short int y = 45000;/* This value is OK */

The range of values for the si gned short i nt typeis-32,768 to 32,767. The range of values for
the unsi gned short int typeis0to 65,535.

A computation involving unsigned operands can never overflow, because any result outside the range of
the unsi gned type is reduced to fit the type by the rules of modulus arithmetic. If the result cannot be
represented by the resulting integer type, the result is reduced modulo the number that is one greater than
the largest value that can be represented by the resulting unsigned integer type. This means that the low-
order bits are kept, and the high-order bits of the mathematical result that do not fit in the type of the
result are discarded. For example:

unsigned short int z = (99 * 99999);
/* Value of y after evaluation is 3965 */

VSI C treats the plain char type as si gned by default for compatibility with VAX C and many
other C compilers. However, a command-line option can control this, and a predefined macro can be
tested to determine the setting of the option in a given compilation. For character-intensive processing,
unsi gned char might offer some performance advantage.

An unsigned integer of n bits is always interpreted in straight unsigned binary notation, with possible
values ranging from 0 to 2"-1.

Note

The interpretation of signed integers depends on the size of machine representation and the encoding
technique used on the machine. With two's-complement representation, signed integers of n bits have a
range of -2 to 2™1-1.

The C99-specified _Bool data type is available in all modes of the compiler except VAX C, common,
and strict ANSI89 modes. A _Bool object occupies a single byte of storage and is treated as an
unsi gned i nt eger, but its value can be only O or 1.
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Notes
e A bit field can be declared to be type _Bool .
e A pointer can be converted to a _Bool type.

e When any scalar value is converted to _Bool , the result is O if the value compares equal to O (for
example, if the pointer is NULL). Otherwise, the result is 1. This is one way the _Bool type is
different than the other integer types. In the following example, the value of b is zero, but the value
of cis 1:

double a = .01;
int b = a;
_Bool ¢ = a;

e The Bool type is intended to be used in conjuction with a new standard header, <st dbool . h>,
but that is not required. The content of the new header is:

#define bool _Bool

#define true 1

#define false 0

#define __bool_true_false_are_defined 1

Also see Section 9.11, "Boolean Type and Values(<st dbool . h>)".

3.2.2. Character Types

Character types are declared with the keyword char and are integral types. Using char objects
for nonintegral operations is not recommended, as the results are likely to be nonportable. An object
declared as a char type can always store the largest member of the source character set.

Valid character types are:
e char

e signed char

e unsigned char
e wchar _t

The wide character type wchar _t is provided to represent characters not included in the ASCII
character set. The wchar _t type is defined using the t ypedef keyword in the <stddef .h> header
file. Wide characters used in constants or strings must be preceded with an L. For example:

#include <stddef.h>
wchar_t a[6] = L"Hello";

All char objects are stored in 8 bits. All wchar _t objects are stored as unsi gned i nt objects
in 32 bits. The value of a given character is determined by the character set being used. In this text, the
ASCII character set is used in all examples. See Appendix C, "ASCII Equivalence Table" for a complete
list of ASCII equivalents, in decimal, octal, and hexadecimal radixes.

48



Chapter 3. Data Types

To aid portability, declare char objects that will be used in arithmetic as Si gned char or
unsi gned char . For example:

signed char letter;

unsigned char symbol_1, symbol_2;

signed char alpha = 'A'; /* alpha is declared and initialized as 'A' */
Strings are arrays of characters terminated by the null character (\0). Section 1.9.3, "Character

Constants" has more information on the syntactic rules of using strings; Chapter 4, "Declarations" has
information on declaring string literals.

3.3. Floating-Point Types

The floating-point types are:

e float —32hbits

e doubl e — 64 bits

e | ong doubl e - 128 bits by default, with the option for 64 bits
e float _Conplex

e doubl e _Conpl ex

e | ong double _Conplex

Use the floating-point types for variables, constants, and function return values with fractional parts, or
where the value exceeds the storage range available with the integral types. The following examples show
sample floating-point type declarations (and initializations):

float x = 35.69;

double y = .0001;
double z = 77.0e+10;
float Q0 = 99.9e+99; /* Exceeds allowable range */

3.3.1. Complex Type

The C99 standard introduces a built-in complex data type similar to the Fortran type, in all three
precisions (f | oat _Conpl ex, doubl e _Conpl ex, and| ong doubl e _Conpl ex). It
also has an associated header file, <conpl ex. h>. The <complex.h> header file defines a macro
spelled "complex", intended to be the preferred way to refer to the types. (See Section 9.2, "Complex
Arithmetic(<conpl ex. h>)").

A complex type has the same representation and alignment requirements as an array type containing
exactly two elements of the corresponding real type; the first element is equal to the real part, and the
second element to the imaginary part, of the complex number.

The type is similar to the Fortran type in its use. There is no special syntax for constants; instead there is
a new keyword _Conpl ex_I, which has a complex value whose real part is zero and whose imaginary
part is 1.0. The header file defines a macro | that expands to _Conpl ex_| , and so a complex constant
with equal real and imaginary parts of 2.0 would be written as 2. 0 + 2. 0*1 .

There are some known issues with complex types on VSI C:
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e The complex data types are not available when using the /FLOAT=D_FLOAT command-line option.
This is a permanent restriction.

e [Initialized declarations of | ong doubl e conpl ex variables cause a compiler assertion failure
when generating a machine-code listing.

e Functions named cabs, cabsf , and cabs| have traditionally been declared in <math . h> using
a struct representation to hold two floating values. This is not compatible with the calling standard
for passing complex values. To access working cabs functions, you must include <complex.h>
before you include <math.h>.

3.3.2. Imaginary Type

The C99 standard reserves the keyword _| magi nary for use as a type-specifier in conjunction with an
experimental/optional feature called a "pure imaginary" type, specified in informative Annex G. In VSI
C, use of the _| magi nar y keyword produces a warning, which is resolved by treating it as an ordinary
identifier.

3.4. Derived Types

There are five derived types in C:

e Function types

e Pointer types

e Array types

e Structure types

e Union types

The following sections describe these derived types.

A derived type is formed by using one or more basic types in combination. Using derived types, an
infinite variety of new types can be formed. The array and structure types are collectively called the
aggregate types. Note that the aggregate types do not include union types, but a union may contain an
aggregate member

3.4.1. Function Type

A function type describes a function that returns a value of a specified type. If the function returns no
value, it should be declared as "function returning voi d" as follows:

void functionl ();

In the following example, the data type for the function is "function returning i nt ":

int uppercase (int 1lc)

{
int uc = lc + 0X20;
return uc;

}
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Chapter 4, "Declarations" discusses declarations in general. Chapter 5, "Functions" covers functions
specifically, including their declarations, parameters, and argument passing.

3.4.2. Pointer Type

A pointer type describes a value that represents the address of an object of a stated type. A pointer is
stored as an integral value that references the address of the target object. Pointer types are derived from
other types, called the referenced type of the pointer. For example:

int *p; /* p is a pointer to an int type */
double *qg(); /* g is a function returning a pointer to an
object of type double */
int (*r) [5]; /* r is a pointer to an array of five elements */
/* (r holds the address to the first element of
the array) */
const char s[6]; /* s is a const-qualified array of 6 elements */

The pointer itself can have any storage class, but the object addressed by the pointer cannot have the
regi st er storage class or be a bit field. Pointers to qualified or unqualified versions of compatible
types have the same representation and alignment requirements as the target type. Pointers to other types
need not have the same representation or alignment requirements.

The construction voi d * designates a generic “pointer to Voi d” type. The voi d * construction

can be used to point to an object of any type, and it is most useful when a pointer is needed to point to
the address of objects with different or unknown types (such as in a function prototype). A pointer to
voi d can also be converted to or from a pointer of any other type, and has the same representation and
alignment requirements as a pointer to a character type.

A pointer to the address 0 (zero) is called a null pointer. Null pointers are often used to indicate that no
more members of a list exist (for example, when using pointers to show the next member of the list).
Dereferencing a null pointer with the * or subscripting operators leads to unpredictable and usually very
unfavorable results.

See Chapter 4, "Declarations" for details on the syntax of pointer declarations.

3.4.3. Array Type

An array type can be formed from any valid completed type. Completion of an array type requires that
the number and type of array members be explicitly or implicitly specified. The member types can be
completed in the same or a different compilation unit. Arrays cannot be of voi d or function type, since
the voi d type cannot be completed and function types are not object types requiring storage.

Typically, arrays are used to perform operations on some homogeneous set of values. The size of the
array type is determined by the data type of the array and the number of elements in the array. Each
element in an array has the same type. For example, the following definition creates an array of four
characters:

char x[] = "Hi!" /* Declaring an array X *x/;

Each of the elements has the size of a char object, 8 bits. The size of the array is determined by its
initialization; in the previous example, the array has three explicit elements plus one null character. Four
elements of 8 bits each results in an array with a size of 32 bits.

An array is allocated contiguously in memory, and cannot be empty (that is, have no members). An array
can have only one dimension. To create an array of “two dimensions,” declare an array of arrays, and so
on.
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It is possible to declare an array of unknown size; this sort of declaration is called an incomplete array
declaration, because the size is not specified. The following example shows an incomplete declaration:

int x[];

The size of an array declared in this manner must be specified elsewhere in the program. (See Section
4.7, "Declaring Arrays" for more information on declaring incomplete arrays and initializing arrays.)

Character strings (string literals) are stored in the form of an array of char orwchar _t type, and are
terminated by the null character (0).

An array in C has only one dimension. An array of arrays can be declared, however, to create a
multidimensional array. The elements of these arrays are stored in increasing addresses so that the
rightmost subscript varies most rapidly. This is called row-major order, and is analogous to a car's
odometer. For example, in an array of two arrays declared asi nt a[ 2] [ 3] ; the elements are stored
in this order:

3.4.4. Structure Type

A structure type is a sequentially allocated nonempty set of objects, called members. Structures let

you group heterogeneous data. They are much like records in Pascal. Unlike arrays, the elements of a
structure need not be of the same data type. Also, elements of a structure are accessed by name, not by
subscript. The following example declares a structure enpl oyee, with two structure variables (ed and
mar y) of the structure type enpl oyee:

struct employee { char name[30]; int age; int empnumber; };
struct employee ed, mary;

Structure members can have any type except an incomplete type, such as the voi d type or a function
type. Structures can contain pointers to objects of their own type, but they cannot contain an object of
their own type as a member; such an object would have an incomplete type. For example:

/* This is invalid. */
struct employee {
char name[30];
struct employee divl; /* This is invalid. */

int *f(); /* This is also invalid. */
bi
The following example, however, is valid:

struct employee {
char name[307];
struct employee *divl;/* Member can contain pointer to employee
structure. */
int (*f) (); /* Pointer to a function returning int */

}i

The name of a declared structure member must be unique within the structure, but it can be used in
another nested or unnested structure or name spaces to refer to a different object. For example:

struct |
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int a;
struct {
int a; /* This 'a' refers to a different object
than the previous 'a' */

} nested;
bi

As an extension, the relaxed modes of VSI C allow a strucure or union to declare nested structure or
union members without specifying names for the members - called anonymous members. The effect is as
if the names of the members of the anonymous nested structure or union were declared directly within
the containing structure or union, rather than being nested. Therefore, in the preceding example, if the
identifier nest ed were omitted from the inner St r uct declaration, there would be an error because
the member a in the inner structure would conflict with the member a in the containing structure. This
is similar to the anonymous union feature of the C++ language (except that it is permitted for both
structures and unions), and to the var i ant _st ruct and vari ant _uni on features unique to VAX
C.

Chapter 4, "Declarations" contains more examples on structures and their declarations.

The compiler assigns storage for structure members in the order of member declaration, with increasing
memory addresses for subsequent members. The first member always begins at the starting address of
the structure itself. Subsequent members are aligned per the alignment unit, which may differ depending
on the member sizes in the structure. A structure may contain padding (unused bits) so that members
of an array of such structures are properly aligned, and the size of the structure is the amount of
storage necessary for all members plus any padded space needed to meet alignment requirements. See
your system's VSI C documentation for platform-specific information about structure alignment and
representation.

A pragma is available to change the alignment of a structure on one platform to match that of structures
on other platforms. See Section B.29, "Structure Alignment" for more information on this pragma.

3.4.5. Union Type

A union type can store objects of different types at the same location in memory. The different union
members can occupy the same location at different times in the program. The declaration of a union
includes all members of the union, and lists the possible object types the union can hold. The union can
hold any one member at a time — subsequent assignments of other members to the union overwrite the
existing object in the same storage area.

Unions can be named with any valid identifier. An empty union cannot be declared, nor can a union
contain an instance of itself. A member of a union cannot have a voi d, function, or incomplete type.
Unions can contain pointers to unions of their type.

Another way to look at a union is as a single object that can represent objects of different types at
different times. Unions let you use objects whose type and size can change as the program progresses,
without using machine-dependent constructions. Some other languages call this concept a variant record.

The syntax for defining unions is very similar to that for structures. Each union type definition creates
a unique type. Names of union members must be unique within the union, but they can be duplicated in
other nested or unnested unions or name spaces. For example:

union {
int a;
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union foo {

int a; /* This 'a' refers to a different object
than the previous 'a' */

} nested;
bi

Note that as an extension, relaxed modes of VSI C permit anonymous union members as in the C++
language.

The size of a union is the amount of storage necessary for its largest member, plus any padding needed
to meet alignment requirements.

Once a union is defined, a value can be assigned to any of the objects declared in the union declaration.
For example:

union name {
double dvalue;
struct x { int wvaluel; int value2; };
float fvalue;
} alberta;
alberta.dvalue = 3.141596;
/* Assigns the value of pi to the union object */

Here, al bert a can hold a doubl e, struct, or f | oat value. The programmer has responsibility
for tracking the current type of object contained in the union. An assignment expression can be used to
change the type of value held in the union.

Undefined behavior results when a union is used to store a value of one type, and then the value is
accessed through another type. For example:

/*
Assume that “node' is a typedef_name for objects for which
information has been entered into a hash table;

“hash_entry' is a structure describing an entry in the hash table.
The member “hash_value' is a pointer to the relevant “node'.
*/
typedef struct hash_entry
{
struct hash_entry *next_hash_entry;
node *hash_value;
/* ... other information may be present ... */
} hash_entry;

extern hash_entry *hash_table [512];

/*
'hash_pointer' is a union whose members are a pointer to a
'node' and a structure containing three bit fields that
overlay the pointer value. Only the second bit field is
being used, to extract a value from the middle
of the pointer to be used as an index into the hash table.
Note that nine bits gives a range of values from 0 to 511;
hence, the size of 'hash_table' above.

54



Chapter 3. Data Types

*/
typedef union
{
node *node_pointer;
struct
{

unsigned : 4;

unsigned index : 9;
unsigned :19;
} bits;

} hash_pointer;

3.5. void Type

The voi d type is an incomplete type that cannot be completed.

The voi d type has three important uses:

e To signify that a function returns no value

e To indicate a generic pointer (one that can point to any type object)
e To specify a function prototype with no arguments

The following example shows how v Oi d is used to define a function, with no parameters, that does not
return a value:

void message (void)
{
printf ("Stop making sense!");

}

The next example shows a function prototype for a function that accepts a pointer to any object as its
first and second argument:

void memcopy (void *dest, void *source, int length);

A pointer to the voi d type has the same representation and alignment requirements as a pointer to a
character type. The voi d * type is a derived type based on voi d.

The voi d type can also be used in a cast expression to explicitly discard or ignore a value. For example:
int tree(void);

void main ()

{

int 1i;

for (; ; (void)tree()){...} /* void cast 1is wvalid */

for (; (void)tree(); ;){...} /* void cast is NOT valid, because the */
/* value of the second expression in a */
/* for statement is used */

for ((void)tree(); ;) {...} /* void cast 1s valid */
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A voi d expression has no value, and cannot be used in any context where a value is required.

3.6. Enumerated Types

An enumerated type is used to specify the possible values of an object from a predefined list. Elements
of the list are called enumeration constants. The main use of enumerated types is to explicitly show the
symbolic names, and therefore the intended purpose, of objects whose values can be represented with
integer values.

Objects of enumerated type are interpreted as objects of type Si gned i nt, and are compatible with
objects of other integral types.

Note

In RELAXED mode, the compiler allows enumeration constants to have type other than si gned i nt.

The compiler automatically assigns integer values to each of the enumeration constants, beginning
with 0. The following example declares an enumerated object backgr ound_col or with a list of
enumeration constants:

enum colors { black, red, blue, green, white } background_color;
Later in the program, a value can be assigned to the object backgr ound_col or:
background_color = white;

In this example, the compiler automatically assigns the integer values as follows: bl ack =0, red =
1, bl ue =2, green =3, and whi t e = 4. Alternatively, explicit values can be assigned during the
enumerated type definition:

enum colors { black = 5, red = 10, blue, green = 7, white = greent2 };

Here, bl ack equals the integer value 5, r ed = 10, bl ue =11, gr een =7, and whi t e = 9. Note
that bl ue equals the value of the previous constant (r ed) plus one, and gr een is allowed to be out of
sequential order.

Because the ANSI C standard is not strict about assignment to enumerated types, any assigned value not
in the predefined list is accepted without complaint.

3.7. Type Qualifiers

There are four type qualifiers:

e const

e volatile

e _ unaligned

e _ restrict (pointer type only)

Type qualifiers were introduced by the ANSI C standard to, in part, give you greater control over the
compiler's optimizations. The const and vol at i | e type qualifiers can be applied to any type. The
__restrict type qualifier can be applied only to pointer types.
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Note that because the __restri ct type qualifier is not part of the 1989 ANSI C standard, this
keyword has double leading underscores. Version C99 of the C standard adopted the keyword
restrict with the same semantics described in this section.

The use of const gives you a method of controlling write access to an object, and eliminates potential
side effects across function calls involving that object. This is because a side effect is an alteration of an
object's storage and const prohibits such alteration.

Use vol at i | e to qualify an object that can be changed by other processes or hardware. The use

of vol at i | e disables optimizations with respect to referencing the object. If an object is volatile
qualified, it may be changed between the time it is initialized and any subsequent assignments. Therefore,
it cannot be optimized.

Function parameters, however, do not all share the type qualification of one parameter. For example:
int f£( const int a, int b) /* a is const qualified; b is not */

When using a type qualifier with an array identifier, the elements of the array are qualified, not the array
type itself.

The following declarations and expressions show the behavior when type qualifiers modify an array or
structure type:

const struct s { int mem; } cs = { 1 };

struct s ncs; /* ncs is modifiable */
typedef int A[2][3];

const A a = {{4, 5, 6}, {7, 8, 9}}; /* array of array of const */

/* int's */
int *pi;
const int *pci;
ncs = cs; /* Valid */
cs = ncs; /* Invalid, cs is const—qualified */
pi = &ncs.mem; /* Valid */
Pi = &cs.mem; /* Violates type constraints for = operator */
pci = &cs.mem; /* Valid */
pi = al[0]; /* Invalid; a[0] has type "const int *" */

3.7.1. const Type Qualifier

Use the const type qualifier to qualify an object whose value cannot be changed. Objects qualified

by the const keyword cannot be modified. This means that an object declared as const cannot
serve as the operand in an operation that changes its value; for example, the ++ and —— operators are not
allowed on objects qualified with const . Using the const qualifier on an object protects it from the
side effects caused by operations that alter storage.

The declaration of const -qualified objects can be slightly more complicated than that for nonqualified
types. Here are some examples, with explanatory comments:

const int x = 44; /* const qualification of int type.

The value of x cannot be modified. */
const int *z; /* Pointer to a constant integer.

The value in the location pointed

to by z cannot be modified. */
int * const ptr; /* A constant pointer, a pointer

that will always point to the

57



Chapter 3. Data Types

same location */
const int *const p; /* A constant pointer to a constant

integer: neither the pointer or

the integer can be modified. */
const const int y; /* 1Illegal - redundant use of const */

The following rules apply to the const type qualifier:

e The const qualifier can be used to qualify any data type, including a single member of a structure
or union.

e Ifconst is specified when declaring an aggregate type, all members of the aggregate type are
treated as objects qualified with const . When const is used to qualify a member of an aggregate
type, only that member is qualified. For example:

const struct employee {
char *name;

int birthdate; /* name, birthdate, job_code, and salary are */
int job_code; /* treated as though declared with const. */
float salary;

} a, b; /* All members of a and b are const-qualified*/

struct employee2 {
char *name;
const int birthdate; /* Only this member is qualified */
int Jjob_code;
float salary;
boe, d;

All members in the previous structure are qualified with const . If the tag enpl oyee is used
to specify another structure later in the program, the const qualifier does not apply to the new
structure's members unless explicitly specified.

e The const qualifier can be specified with the vol at i | e qualifier. This is useful, for example, in
a declaration of a data object that is immutable by the source process but can be changed by other
processes, or as a model of a memory-mapped input port such as a real-time clock.

e The address of a non-const object can be assigned to a pointer to a cOnst object (with an explicit
const specifier), but that pointer cannot be used to alter the value of the object. For example:

const int i = 0;

int j = 1;

const int *p = &i; /* Explicit const specifier required */

int *q = &3j;

o= 1; /* Error - attempt to modify a const-
qualified object through a pointer */

*q = 1; /* OK */

e Attempting to modify a const object using a pointer to a non-const qualified type causes
unpredictable behavior.

3.7.2. volatile Type Qualifier

Any object whose type includes the vol at i | e type qualifier indicates that the object should not be
subject to compiler optimizations altering references to, or modifications of, the object.

Optimizations that are defeated by using the vol at i | e specifier can be categorized as follows:
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e Optimizations that alter an object's duration; for example, cases where references to the object are
shifted or moved to another part of the program.

e Optimizations that alter an object's locality; for example, cases where a variable serving as a loop
counter is stored in a register to save the cost of doing a memory reference.

e Optimizations that alter an object's existence; for example, loop induction to actually eliminate a
variable reference.

An object without the vol at i | e specifier does not compel the compiler to perform these
optimizations; it indicates that the compiler has the freedom to apply the optimizations depending on
program context and compiler optimization level.

The vol at i | e qualifier forces the compiler to allocate memory for the vol at i | e object, and to
always access the object from memory. This qualifier is often used to declare that an object can be
accessed in some way not under the compiler's control. Therefore, an object qualified by the vol ati | e
keyword can be modified or accessed in ways by other processes or hardware, and is especially
vulnerable to side effects.

The following rules apply to the use of the vol at i | e qualifier:

e Thevol ati | e qualifier can be used to qualify any data type, including a single member of a
structure or union.

o Redundant use of the vol at i | e keyword elicits a warning message. For example:

volatile volatile int x;

e Whenvol ati | e is used with an aggregate type declaration, all members of the aggregate type are
qualified with vol ati | e. When vol at i | e is used to qualify a member of an aggregate type,
only that member is qualified. For example:

volatile struct employee {
char *name;
int birthdate; /* name, birthdate, job_code, and salary are */
int job_code; /* treated as though declared with volatile. */
float salary;
} a,b; /* All members of a and b are volatile-qualified */
struct employee2 {
char *name;
volatile int birthdate; /* Only this member is qualified */
int Jjob_code;
float salary;
}oe, di

If the tag enpl oyee is used to specify another structure later in the program, the vol ati | e
qualifier does not apply to the new structure's members unless explicitly specified.

e The const qualifier can be used with the vol at i | e qualifier. This is useful, for example, in a
declaration of a data object that is immutable by the source process but can be changed by other
processes, or as a model of a memory-mapped input port such as a real-time clock.

e The address of anon-vol ati | e object can be assigned to a pointer that points to avol ati | e
object. For example:

const int *intptr;
volatile int x;
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intptr = &x;

Likewise, the address of a vol at i | e object can be assigned to a pointer that points to a
non-vol at i | e object.

3.7.3. __unaligned Type Qualifier

Use this data-type qualifier in pointer definitions to indicate to the compiler that the data pointed to is
not properly aligned on a correct address. (To be properly aligned, the address of an object must be a
multiple of the size of the type. For example, two-byte objects must be aligned on even addresses.)

When data is accessed through a pointer declared __unal i gned, the compiler generates the additional
code necessary to copy or store the data without causing alignment errors. It is best to avoid use of
misaligned data altogether, but in some cases the usage may be justified by the need to access packed
structures, or by other considerations.

Here is an example of a typical use of __unal i gned:

typedef enum {int_kind, float_kind, double_kind} kind;
void foo(void *ptr, kind k) {
switch (k) {
case int_kind:
printf ("$d", *(_unaligned int *)ptr);
break;
case float_kind:
printf ("$f", *(_unaligned float *)ptr);
break;
case double_kind:
printf ("$f", *(_unaligned double *)ptr);
break;

}

3.7.4. __restrict Type Qualifier

Usethe __restri ct type qualifier on the declaration of a pointer type to indicate that the pointer
is subject to compiler optimizations. Restricted pointers are included in the C99 revision of the ISO
C Standard. Using restricted pointers judiciously can often improve the quality of code output by the
compiler.

3.7.4.1. Rationale

The following sections describe the rationale for restricted-pointer support.
3.7.4.1.1. Aliasing

For many compiler optimizations, ranging from simply holding a value in a register to the parallel
execution of a loop, it is necessary to determine whether two distinct lvalues designate distinct objects. If
the objects are not distinct, the Ivalues are said to be aliases. If the compiler cannot determine whether or
not two lvalues are aliases, it must assume that they are aliases and suppresses various optimizations.

Aliasing through pointers presents the greatest difficulty, because there is often not enough information
available within a single function, or even within a single compilation unit, to determine whether two
pointers can point to the same object. Even when enough information is available, this analysis can
require substantial time and space. For example, it could require an analysis of a whole program to
determine the possible values of a pointer that is a function parameter.
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3.7.4.1.2. Library Examples

Consider how potential aliasing enters into implementations in C of two Standard C library functions
menmove and MeENTPY:

e There are no restrictions on the use of menmove, and the sample implementation that follows
adheres to the model described in the revised ISO C Standard by copying through a temporary array.

e Because mentpy cannot be used for copying between overlapping arrays, its implementation can be
a direct copy.

The following example contrasts sample implementations of the mencpy and menmove functions:
/* Sample implementation of memmove */

void *memmove (void *sl, const void *s2, size_t n) {
char * tl1 = s1;
const char * t2 = s2;
char * t3 = malloc(n);
size_t 1i;

for (1=0; 1&lt;n; i++) t3[1] = t2[i];
for (1i=0; 1i&lt;n; i++) tl1[i] = t3[i];
free (t3);

return si;

/* Sample implementation of memcpy */

void *memcpy (void *sl, const void *s2, size_t n);
char * tl1 = s1;
const char * t2 = s2;
while(n -> 0) *tl++ = *t2++;
return si;

}

The restriction on Mentpy is expressed only in its description in the Standard, and cannot be expressed
directly in its implementation in C. While this allows the source-level optimization of eliminating the
temporary used in MeMMDOV e, it does not provide for compiler optimization of the resulting single loop.

In many architectures, it is faster to copy bytes in blocks, rather than one at a time:

e The implementation of menmove uses mal | oc to obtain the temporary array, and this guarantees
that the temporary is disjoint from the source and target arrays. From this, a compiler can deduce
that block copies can safely be used for both loops (if the compiler recognizes mal | oc as a special
function that allocates new memory).

e The implementation of mentpy, on the other hand, provides no basis for the compiler to rule out
the possibility that, for example, S1 and S2 point to successive bytes. Therefore, unconditional use
of block copies does not appear to be safe, and the code generated for the single loop in mentpy
might not be as fast as the code for each loop in menmove.

3.7.4.1.3. Overlapping Objects

The restriction in the description of mentpy in the Standard prohibits copying between overlapping
objects. An object is a region of data storage, and except for bit-fields, objects are composed of
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contiguous sequences of one or more bytes, the number, order, and encoding of which are either
explicitly specified or implementation-defined.

Consider the following example:
/* memcpy between rows of a matrix */
void f1 (void) {

extern char af[2][N];

memcpy (a[l1], al[0], N);
}

In this example:

e The objects are exactly the regions of data storage pointed to by the pointers and dynamically
determined to be of N bytes in length (that is, treated as an array of N elements of character type).

e The objects are not the largest objects into which the arguments can be construed as pointing.
e The call to mentpy has defined behavior.
e The behavior is defined because the pointers point into different (non-overlapping) objects.

Now consider the following example:
/* memcpy between halves of an array */
void f2 (void) {
extern char b[2*N];
memcpy (b+N, b, N);
}
In this example:

e Objects are defined as regions of data storage unrelated to declarations or types.

e For mencpy, a contiguous sequence of elements within an array can be regarded as an object in its
own right.

e The objects are not the smallest contiguous sequence of bytes that can be construed; they are exactly
the regions of data storage starting at the pointers and of N bytes in length.

e The non-overlapping halves of array b can be regarded as objects in their own rights.

e Behavior is defined.

The length of an object is determined by various methods:

e For strings in which all elements are accessed, length is inferred by null-byte termination.

e Fornbst owcs,wcstonbs,strftinme,vsprintf,sscanf,sprintf,and all other similar
functions, objects and lengths are dynamically determined.

3.7.4.1.4. Restricted Pointer Prototype for memcpy

If an aliasing restriction like the one for mentpy could be expressed in a function definition, then
it would be available to a compiler to facilitate effective pointer alias analysis. The __restri ct
type qualifier accomplishes this by specifying in the declaration of a pointer that the pointer provides
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exclusive initial access to the object to which it points, as though the pointer were initialized with a call to
mal | oc.

The following prototype for mentpy both expresses the desired restriction and is compatible with the
current prototype:

void *memcpy (void * __ _restrict s1, const void * __restrict s2, size_t n);

3.7.4.2. Formal Definition of the __restrict Type Qualifier

The following definition of restricted pointers supports expression of aliasing restrictions in as many
paradigms as possible. This is helpful in converting existing programs to use restricted pointers, and
allows more freedom of style in new programs.

This definition, therefore, allows restricted pointers to be:
e Modifiable
e Members of structures and elements of arrays

e Strongly scoped, in the sense that a restricted pointer declared in a nested block makes a non-aliasing
assertion only within that block

Definition

A pointer is designated as a restricted pointer by specifying the __rest ri ct type qualifier on its
declaration.

The formal definition of a restricted pointer from the C99 version of the ISO C Standard follows:

Let D be a declaration of an ordinary identifier that provides a means of designating an object P as a
restrict-qualified pointer.

If D appears inside a block and does not have storage-class extern, let B denote the block. If D appears
in the list of parameter declarations of a function definition, let B denote the associated block. Otherwise,
let B denote the block of main (or the block of whatever function is called at program startup, in a
freestanding environment).

In what follows, a pointer expression E is said to be based on object P if (at some sequence point in the
execution of B prior to the evaluation of E) modifying P to point to a copy of the array object into which
it formerly pointed would change the value of E. (In other words, E depends on the value of P itself
rather than on the value of an object referenced indirectly through P. For example, if identifier p has type
(int ** restrict), then the pointer expressions p and p+1 are based on the restricted pointer
object designated by p, but the pointer expressions * p and p[ 1] are not.)

During each execution of B, let O be the array object that is determined dynamically by all references
through pointer expressions based on P. All references to values of O shall be through pointer
expressions based on P. Furthermore, if P is assigned the value of a pointer expression E that is based on
another restricted pointer object P2, associated with block B2, then either the execution of B2 shall begin
before the execution of B, or the execution of B2 shall end prior to the assignment. If this requirement is
not met, then the behavior is undefined.

Here an execution of B means that portion of the execution of the program during which storage is
guaranteed to be reserved for an instance of an object that is associated with B and has automatic
storage duration. A reference to a value means either an access to or a modification of the value. During
an execution of B, attention is confined to those references that are actually evaluated (this excludes
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references that appear in unevaluated expressions, and also excludes references that are "available," in the
sense of employing visible identifiers, but do not actually appear in the text of B).

A translator is free to ignore any or all aliasing implications of uses of restrict.

3.7.4.3. Examples

The formal definition of the __restri ct type qualifier can be difficult to grasp, but simplified
explanations tend to be less accurate and complete. The essence of the definition is that the
__restrict type qualifier is an assertion by the programmer that whenever a memory access is made
through a restricted pointer, the only aliases the compiler need consider are other accesses made through
the same pointer.

Much of the complexity is in defining exactly what is meant for an access to be made through a pointer
(the based-on rules), and specifying how a restricted pointer can be assigned the value of another
restricted pointer, while limiting the aliasing potential to occur only at block boundaries. Examples can
be the best way to understand restricted pointers.

The following examples show the use of restricted pointers in various contexts.
3.7.4.3.1. File Scope Restricted Pointers

A file scope restricted pointer is subject to very strong restrictions. It should point into a single array
object for the duration of the program. That array object must not be referenced both through the
restricted pointer and through either its declared name (if it has one) or another restricted pointer.

Because of these restrictions, references through the pointer can be optimized as effectively as references
to a static array through its declared name. File scope restricted pointers are therefore useful in providing
access to dynamically allocated global arrays.

In the following example, a compiler can deduce from the __restri ct type qualifiers that there is no
potential aliasing among the names a, b, and c:

/* File Scope Restricted Pointer */

float * _ restrict a, * _ restrict b;
float c[1007];

int init (int n) {
float * t = malloc(2*n*sizeof (float));
a = t; /* a refers to 1st half. */
b =t + n; /* b refers to 2nd half. */
}

Notice how the single block of allocated storage is subdivided into two unique arrays in the function
init.
3.7.4.3.2. Function Parameters

Restricted pointers are also very useful as pointer parameters of a function. Consider the following
example:

/* Restricted pointer function parameters */

float x[1007;
float *c;
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void f3(int n, float * _ restrict a, float * const b) {
int 1i;
for ( 1=0; i&lt;n; i++ )
ali] = bli] + cl[i];

}
void g3 (void) {
float d[100], e[1007;

c = x; £3(100, d, e); /* Behavior defined. */
£3( 50, d, d+50); /* Behavior defined. */
£3( 99, d+1, d); /* Behavior undefined. */

c =d; £3( 99, d+1, e); /* Behavior undefined. */
£3( 99, e, d+1); /* Behavior defined. */

In the function f 3, it is possible for a compiler to infer that there is no aliasing of modified objects, and
S0 to optimize the loop aggressively. Upon entry to f 3, the restricted pointer a must provide exclusive
access to its associated array. In particular, within f 3 neither b nor ¢ may point into the array associated
with @, because neither is assigned a pointer value based on a. For b, this is evident from the const
qualifier in its declaration, but for €, an inspection of the body of f 3 is required.

Two of the calls shown in g3 result in aliasing that is inconsistent with the __ r est ri ct qualifier, and
their behavior is undefined. Note that it is permitted for C to point into the array associated with b. Note
also that, for these purposes, the "array" associated with a particular pointer means only that portion of
an array object that is actually referenced through that pointer.

3.7.4.3.3. Block Scope

A block-scope restricted pointer makes an aliasing assertion that is limited to its block. This is more
natural than allowing the assertion to have function scope. It allows local assertions that apply only
to key loops, for example. It also allows equivalent assertions to be made when inlining a function by
converting it into a macro.

In the following example, the original restricted-pointer parameter is represented by a block-scope
restricted pointer:

/* Macro version of £3 */

float x[1007;
float *c;

#define £3 (N, A, B) \

{ int n = (N); \
float * _ _restrict a = (A); \
float * const b = (B); \
int 1i; \
for ( i=0; i&lt;n; i++ ) \

alil = bl[i] + cl[il; \

}

3.7.4.3.4. Members of Structures

A restricted-pointer member of a structure makes an aliasing assertion. The scope of that assertion is the
scope of the ordinary identifier used to access the structure.

Therefore, although the structure type is declared at file scope in the following example, the assertions
made by the declarations of the parameters of f 4 have block (of the function) scope.
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/* Restricted pointers as members of a structure */

struct t { /* Restricted pointers assert that */
int nj; /* members point to disjoint storage. */
float * _ _restrict p;
float * _ _restrict gj;

}i

void f4 (struct t r, struct t s) {

/* r.p, r.q, s.p, s.q should all point to */
/* disjoint storage during each execution of f4. */
VA

}
3.7.4.3.5. Type Definitions

A __restrict qualifierin atypedef makes an aliasing assertion when the t ypedef name is
used in the declaration of an ordinary identifier that provides access to an object. As with members of
structures, the scope of the latter identifier, not the scope of the t ypedef name, determines the scope
of the aliasing assertion.

3.7.4.3.6. Expressions Based on Restricted Pointers

Consider the following example:

/* Pointer expressions based on p */

#include <stdlib.h>
#include <string.h>
int i; { /% o0 %/}

struct t { int * g; Palz2] =

void f5(struct t * __restrict p, int c)
{
struct t * g;
int n;
if(c) |
struct t * r;
r = malloc(2*sizeof (*p));
memcpy (r, p, 2*sizeof (*p));

p =r;
}
a = ps
n = (int)p;
J* - — - — - - - - - - o - o - o

Pointer expressions
based on p:

p+1

&p 1]

&pl[l1].1

q

++g

(char *)p
(struct t *)n

Pointer expressions
not based on p:
pP—>q

pll]l.q

Jq->p

(char *) (p—>1)
((struct t *)n)->g

66



Chapter 3. Data Types

In this example, the restricted pointer parameter p is potentially adjusted to point into a copy of its
original array of two structures. By definition, a subsequent pointer expression is said to be based on p if
and only if its value is changed by this adjustment.

In the comment:

e The values of the pointer expressions in the first column are changed by this adjustment, and so
those expressions are based on p.

o The values of the pointer expressions in the second column are not changed by the adjustment, and
so those expressions are not based on p.

This can be verified by adding appropriate print statements for the expressions and comparing the values
produced by the two calls of f 5 in mai n.

Notice that the definition of "based on" applies to expressions that rely on implementation-defined
behavior. This is illustrated in the example, which assumes that the casts (i nt) followed by ( st r uct
t *) give the original value.

3.7.4.3.7. Assighments Between Restricted Pointers

Consider one restricted pointer "newer" than another if the block with which the first is associated begins
execution after the block associated with the second. Then the formal definition allows a newer restricted
pointer to be assigned a value based on an older restricted pointer. This allows, for example, a function
with a restricted-pointer parameter to be called with an argument that is a restricted pointer.

Conversely, an older restricted pointer can be assigned a value based on a newer restricted pointer only
after execution of the block associated with the newer restricted pointer has ended. This allows, for
example, a function to return the value of a restricted pointer that is local to the function, and the return
value then to be assigned to another restricted pointer.

The behavior of a program is undefined if it contains an assignment between two restricted pointers that
does not fall into one of these two categories. Some examples follow:

/* Assignments between restricted pointers */
int * __ restrict pl, * ___ restrict p2;
void f6(int * __ restrict gl, * ___ restrict g2)
{

gl = pl; /* Valid behavior */

pl = p2; /* Behavior undefined */

pl = gl; /* Behavior undefined */
gl = g2; /* Behavior undefined */
{
int * restrict rl1, * restrict r2;

rl = pl; /* vValid behavior */
rl = gl; /* Vvalid behavior */
rl = r2; /* Behavior undefined */
gl = rl; /* Behavior undefined */
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pl = rl; /* Behavior undefined */

}
3.7.4.3.8. Assighments to Unrestricted Pointers

The value of a restricted pointer can be assigned to an unrestricted pointer, as in the following example:

/* Assignments to unrestricted pointers */
void f£f7(int n, float * restrict r, float * restrict s) {
float * p =, * g = s;
while (n—>0)
*pt+ = *g++;
}

The VSI C compiler tracks pointer values and optimizes the loop as effectively as if the restricted
pointers I and S were used directly, because in this case it is easy to determine that p is based on r , and
g is based on S.

More complicated ways of combining restricted and unrestricted pointers are unlikely to be effective
because they are too difficult for a compiler to analyze. As a programmer concerned about performance,
you must adapt your style to the capabilities of the compiler. A conservative approach would be to avoid
using both restricted and unrestricted pointers in the same function.

3.7.4.3.9. Ineffective Uses of Type Qualifiers

Except where specifically noted in the formal definition, the __r est ri ct qualifier behaves in the
same way as const andvol atil e.

In particular, it is not a constraint violation for a function return type or the fype-name in a cast to be
qualified, but the qualifier has no effect because function call expressions and cast expressions are not
Ivalues.

Thus, the presence of the __restri ct qualifier in the declaration of f 8 in the following example
makes no assertion about aliasing in functions that call f 8:

/* Qualified function return type and casts */

float * _ restrict £8(void) /* No assertion about aliasing. */

{

extern int i, *p, *q, *r;
r = (int * __restrict)qg; /* No assertion about aliasing. */
for (i=0; i<100; i++)
*(int * ___restrict)p++ = r[(i]l; /* No assertion */
/* about aliasing. */
return p;

}

Similarly, the two casts make no assertion about aliasing of the references through the pointers p and r .
3.7.4.3.10. Constraint Violations

It is a constraint violation to restrict-qualify an object type that is not a pointer type, or to restrict-qualify
a pointer to a function:
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/*__restrict cannot qualify non-pointer object types: */

int _ restrict x; /* Constraint violation */

int _ _restrict *p; /* Constraint violation */

/* __restrict cannot qualify pointers to functions: */
float (* __restrict f£9) (void); /* Constraint violation */

3.8. Type Definition

The keyword t ypedef is used to define a type synonym. In such a definition, the identifiers name
types instead of objects. One such use is to define an abbreviated name for a lengthy or confusing type
definition.

A type definition does not create a new basic data type; it creates an alias for a basic or derived type. For
example, the following code helps explain the data types of objects used later in the program:

typedef float *floatp, (*float_func_p) ();

The type f | oat p is now “pointer to a f | oat value” type, and the type f | oat _f unc_p is “pointer
to a function returning f | oat ”.

A type definition can be used anywhere the full type name is normally used (you can, of course, use the
normal type name). Type definitions share the same name space as variables, and defined types are fully
compatible with their equivalent types. Types defined as qualified types inherit their type qualifications.

Type definitions can also be built from other type definitions. For example:

typedef char byte;
typedef byte ten_bytes[10];

Type definition can apply to variables or functions. It is illegal to mix type definitions with other type
specifiers. For example:

typedef int *int_p;

typedef unsigned int *uint_p;

unsigned int_p x; /* Invalid */
uint_p vy; /* Valid */

Type definitions can also be used to declare function types. However, the type definition cannot be
used in the function's definition. The function's return type can be specified using a type definition. For
example:

typedef unsigned *uint_p; /* uint_p has type "pointer to unsigned */

/* int" */
uint_p xp;
typedef uint_p func(void); /* func has type "function returning */
/* pointer to unsigned int */
func f;
func b;
func f (void) /* Invalid - this declaration specifies a */
/* function returning a function type, which */
{ /* 1s not allowed */

return xp;
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uint_p b(void) /* Legal - this function returns a value of */
{ /* type uint_p. * )
return xp;

}
The following example shows that a function definition cannot be inherited from a t ypedef name:

typedef int func(int x);
func f£;
func £ /* Valid definition of f with type func */
{
return 3;
} /* Invalid, because the function's type is not inherited */

Changing the previous example to a valid form results in the following:

typedef int func(int x);

func f;

int f(int x) /* Valid definition of f with type func */
{

return 3;
} /* Legal, because the function's type is specified */

You can include prototype information, including parameter names, in the t ypedef name. You can
also redefine t ypedef names in inner scopes, following the scope rules explained in Section 2.3,
"Scope”.
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Declarations are used to introduce the identifiers used in a program and to specify their important
attributes, such as type, storage class, and identifier name. A declaration that also causes storage to be
reserved for an object or that includes the body of a function, is called a definition.

Section 4.1, "Declaration Syntax Rules" covers general declaration syntax rules, Section 4.2,
"Initialization" discusses initialization, and Section 4.3, "External Declarations" describes external
declarations.

The following kinds of identifiers can be declared. See the associated section for information on specific
declaration and initialization syntax. Functions are discussed in Chapter 5, "Functions".

e Simple objects (Section 4.4, "Declaring Simple Objects’)

e Enumeration constants (Section 4.5, "Declaring Enumerations")

e Pointers (Section 4.6, "Declaring Pointers")

e Arrays (Section 4.7, "Declaring Arrays")

e Structure and union members (Section 4.8, "Declaring Structures and Unions")

o Tags (Section 4.10, "Declaring Tags")

Note

Preprocessor macros created with the #def i ne directive are not declarations. Chapter 8, "Preprocessor
Directives and Predefined Macros" has information on creating macros with preprocessor directives.

4.1. Declaration Syntax Rules

The general syntax of a declaration is as follows:

declaration:

declaration-specifiers init-declarator—listept;
declaration-specifiers:

storage—-class—specifier declaration-specifiersgpt
type-specifier declaration-specifiersqp:
type—qualifier declaration-specifiersqp:

init-declarator-list:

init-declarator
init_declarator-list , init-declarator

init-declarator:

declarator
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declarator = initializer
Note the following items about the general syntax of a declaration:

e The storage-class-specifier, type-qualifier, and type-specifier can be listed in any order. All are
optional, but, except for function declarations, at least one such specifier or qualifier must be present.
Placing the storage-class-specifier anywhere but at the beginning of the declaration is an obsolete
style.

e Storage-class keywords are aut 0, stati c,extern,andregi ster.

e Type qualifiers are const and vol ati | e.

e The declarator is the name of the object or function being declared. A declarator can be as simple as
a single identifier, or can be a complex construction declaring an array, structure, pointer, union, or

function (such as *x,tree(),and t r eebar[ 10]).

A full declarator is a declarator that is not part of another declarator. The end of a full declarator is
a sequence point. If the nested sequence of declarators in a full declarator contains a variable-length
array type, the type specified by the full declarator is said to be variably modified.

e [nitializers are optional and provide the initial value of an object. Initializers can be a single value or a
brace-enclosed list of values, depending on the type of object being declared.

e A declaration determines the beginning of an identifier's scope.
e An identifier's linkage is determined by the declaration's placement and its specified storage class.

Consider the following example:
volatile static int data = 10;

This declaration shows a qualified type (a data type with a type qualifier—in this case, i Nt qualified by
vol ati | e), a storage class (St at i ¢), a declarator (dat a), and an initializer (10). This declaration is
also a definition, because storage is reserved for the data object dat a.

The previous example is simple to interpret, but complex declarations are more difficult. See your
platform-specific VSI C documentation for more information about interpreting C declarations.

The following semantic rules apply to declarations:

e Empty declarations are illegal; declarations must contain at least one declarator, or specify a structure
tag, union tag, or the members of an enumeration.

e Each declarator declares one identifier. There is no limit to the number of declarators in a
declaration.

e At most, one storage-class specifier can be used in each object declaration. If none is provided, the
aut o storage class is assigned to objects declared inside a function definition, and the ext er n class

is assigned to objects declared outside of a function definition.

e The only allowable (and optional) storage class for declaration of a function with block scope is
extern.

e If no type-specifier is present, the default is si gned i nt .
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A declarator is usable only over a certain range of the program, determined by the declarator's scope.
The duration of its storage allocation is dependent on its storage class. See Section 2.3, "Scope" for
more information on scope and Section 2.10, "Storage Classes" for more information on storage
classes.

The usefulness of an identifier can be limited by its visibility, which can be hidden in some parts of
the program. See Section 2.4, "Visibility" for more information on visibility.

All declarations in the same scope that refer to the same object or function must have compatible
types.

If an object has no linkage, there can be no more than one declaration of the object with the same
scope and in the same name space. Objects without linkage must have their type completed by the
end of the declaration, or by the final initializer (if it has one). Section 2.8, "Linkage" describes
linkage.

Storage Allocation

Storage is allocated to a data object in the following circumstances:

If the object has no linkage, storage is allocated upon declaration of the object. If a block scope
object with aut 0 or r egi st er storage class is declared, storage is deallocated at the end of the
block.

If the object has internal linkage, storage is allocated upon the first definition of the object.

If the object has external linkage, storage is allocated upon initialization of the object, which

must occur only once for each object. If an object has only a tentative definition (see Section 2.9,
"Tentative Definitions"), the compiler acts as though there were a file scope definition of the object
with an initializer of zero. Section 2.8, "Linkage" describes linkage in detail.

Note

The compiler does not necessarily allocate distinct variables to memory locations according to the
order of declaration in the source code. Furthermore, the order of allocation can change as a result of
seemingly unrelated changes to the source code, command-line options, or from one version of the
compiler to the next - it is essentially unpredictable. The only way to control the placement of variables
relative to each other is to make them members of the same St r uct type or by using the nor eor der
attribute on a named #pr agma ext ern_nodel strict_refdef.

4.2. Initialization

Initialization of objects of each type is discussed in the following sections, but a few universal constraints
apply to all initializations in C:

Initializers provide an initial value for objects, and follow this syntax:

initializer:

assignment-expr
{ initializer-1list }
{ initializer-1list, }
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initializer-list:

designation-opt initializer
initializer-1list, designation-opt initializer

designation:
designator-list =
designator-list:

designator
designator-list designator

designator:

[ constant—expr ]
identifier

Initialization of objects of each type is discussed in the following sections, but a few universal constraints
apply to all initializations in C:

e The number of initializers cannot exceed the number of objects to be initialized. Initializers can
number less than the number of objects to be initialized, in which case the remaining objects are
initialized to zero.

e Constant expressions must be used in an initializer for an object that has static storage duration, or in
an initializer list for an object that has an aggregate or union type.

e If an identifier's declaration has block scope, and the identifier has external or internal linkage, the
declaration of the identifier cannot include an initializer.

e If an object that has static storage duration is not explicitly initialized, it is initialized implicitly as if
every member with an arithmetic type were assigned 0, and every member with a pointer type were
assigned a null pointer constant. If an object that has automatic storage duration is not initialized
explicitly, its value is indeterminate.

e The initializer for a scalar object must be a single expression, optionally enclosed in braces. The
initial value of the object is that of the expression. The same type constraints and conversions apply
as for simple assignment.

e If an aggregate object contains members that are aggregates or unions, or if the first member of a
union is an aggregate or union, the initialization rules apply recursively to the aggregate members
or contained unions. If an initializer list is used for an aggregate member or contained union, the
initializers in that list initialize the members of the aggregate member or contained union. Otherwise,
only enough initializers from the list are used to account for the object; any remaining members in
the list are left to initialize the next member of the aggregate object. For example:

struct tl1 {
int 1i;
double d;
bi

union t2 {
int 1i;
double d;
}i
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struct t3 {
struct tl s;
union t2 u;

}i

struct t3 st[] = { /* complete initializer */
i, 2, 0, 4, 0, 0, 7, 0, O
bi

Given the previous declarations, the variable St is an array of 3 structures. Its initial contents are:

S u
st[0]: 1, 2.0, 0
st[1]: 4, 0.0, 0
st[2]: 7, 0.0, 0

This variable can also be defined in the following ways—all four initializers are equivalent:

struct t3 st[] = { /* partial initializer */
i, 2, 0, 4, 0, 0, 7
bi

struct t3 st[]
{1, 2, 0%},
{4, 0, 0},
{7, 0, 0}

bi

{ /* nested and complete initializers */

struct t3 st[]
{1, 2},

{4},

{7}

bi

{ /* nested and partial initializers */

For initialization of arrays, structures, and unions, see Sections Section 4.7.1, "Initializing Arrays",

Section 4.8.4, "Initializing Structures", and Section 4.8.5, "Initializing Unions".

e For a description of initializers with designations for arrays and structures, see Section 4.9,
"Initializers with Designations".

e Variant structures and unions are initialized just like normal structures and unions. See Section 4.8.4,

"Initializing Structures" and Section 4.8.5, "Initializing Unions" for more information.

C has historically allowed initializers to be optionally surrounded by extra braces (to improve formatting

clarity, for instance). These initializers are parsed differently depending on the type of parser used.
VSI C uses the parsing technique specified by the ANSI standard, known as the top-down parse.

Programs depending on a bottom-up parse of partially braced initializers can yield unexpected results.

The compiler generates a warning message when it encounters unnecessary braces in common C
compatibility mode or when the error-checking compiler option is specified on the command line.

4.3. External Declarations

An object declaration outside of a function is called an external declaration. Contrast this with an infernal

declaration, which is a declaration made inside a function or block; the declaration is internal to that
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function or block, and is visible only to that function or block. The compiler recognizes an internally
declared identifier from the point of the declaration to the end of the block.

If an object's declaration has file scope and an initializer, the declaration is also an external definition for
the object. A C program consists of a sequence of external definitions of objects and functions.

Any definition reserves storage for the entity being declared. For example:

float fvalue = 15.0; /* external definition */
main ()
{

int ivalue = 15; /* internal definition */

}

External data declarations and external function definitions take the same form as any data or function
declaration (see Chapter 5, "Functions" for standard function declaration syntax), and must follow these
rules:

e The storage class of an object externally declared can be left unspecified, or it can be declared as
externorstati c (see Section 2.10, "Storage Classes"). If it is unspecified, the default is the
ext er n storage class, and linkage for the declared object is external. The type specifier may also
be omitted, in which case the default type is i nt . Note that the storage-class-specifier, type-qualifier,
and type-specifier cannot all be omitted from a declaration.

e If an object with external linkage is declared or used in an expression, there must be only one
external definition for the identifier somewhere in the program. If the same object is declared more
than once externally, the declarations must agree in type and linkage. (See Section 2.8, "Linkage".)

e If one or more of the declarations incompletely specify the object's type, and there exists one
declaration of the object with completed type, all the declarations are taken to be in agreement with
the completed type.

e The scope of external declarations persist to the end of the file in which they are declared, while
internal declarations persist only to the end of the block in which they were declared. Data objects to
be used within only one block should be declared in that block. The syntax for external definitions is
the same as for all definitions. Function definitions can only occur at the external level.

e Externally declared aut 0 and r egi St er objects are not permitted. Internally declared aut o
and r egi st er objects are not automatically initialized and, if not explicitly initialized, have the
irrelevant value previously stored at their address. All St at i ¢ objects are automatically initialized
to 0, if not explicitly initialized.

Note

An external function can be called without previously declaring it in C, but this construction is not
recommended because of the loss of type checking and subsequent susceptibility to bugs. If such a
function call is made, the compiler will treat the function as if an external declaration of type i nt
appeared in the block containing the call. For example:

void functionl ()
{

int a,b;

x (a,b);

}
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Here, the compiler will behave as if the declaration ext ern i nt x(); appeared within the
functi onl definition block.

The first declaration of an identifier in a compilation unit must specify, explicitly or by the omission of
the st at i ¢ keyword, whether the identifier is internal or external. For each object, there can be only
one definition. Multiple declarations of the same object may be made, as long as there are no conflicting
or duplicate definitions for the same object.

An external object may be defined with either an explicit initialization or a tentative definition. A
declaration of an object with file scope, without an initializer, and with a storage-class specifier other
than St at i c is a tentative definition. The compiler will treat a tentative definition as the object's only
definition unless a complete definition for the object is found. As with all declarations, storage is not
actually allocated until the object is defined.

If a compilation unit contains more than one tentative definition for an object, and no external definition
for the object, the compiler treats the definition as if there were a file scope declaration of the object
with an initializer of zero, with composite type as of the end of the compilation unit. See Section 2.7,
"Compatible and Composite Types" for a definition of composite type.

If the declaration of an object is a tentative definition and has internal linkage, the declared type must not
be an incomplete type. See Section 2.9, "Tentative Definitions" for examples of tentative definitions.

4.4. Declaring Simple Objects

Simple objects are objects with one of the basic data types. Therefore, a simple object can have an
integral or floating-point type. Like all objects, simple objects are named storage locations whose values
can change throughout the execution of the program. All simple objects used in a program must be
declared.

A simple object declaration can be composed of the following items:
e Optional data-type specifier keywords

e Optional type-qualifier keywords (const or vol ati | e). For example:

const int *p; /* const qualifies the integer p points to */
int *const p; /* const qualifies the pointer p */

e An optional storage-class keyword. If the storage-class keyword is omitted, there is a default storage
class that depends on the location of the declaration in the program. The positions of the storage-
class keywords and the data-type keywords are interchangeable, but placing the storage-class
keyword anywhere but at the beginning of the declaration is an obsolete construction.

e Declarators, which list the names of the declared objects.

e Initializers giving the initial value of a simple object. An initializer for a simple object consists of an
equal sign (=) followed by a single expression.

4.4.1. Initializing Simple Objects

An initializer for a simple object consists of an equal sign (=) followed by a single constant expression.
For example:

int x = 10;
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float y = ((12 - 2) + 25);

Here, the declaration both declares and defines the object X as an integer value initially equal to 10, and
declares and defines the floating-point value y with an initial value of 35.

Without an initializer, the initial value of an aut 0 object is undefined. A st at i ¢ object without
explicit initialization is automatically initialized to 0. (If the object is a St at i C array or structure, all
members are initialized to 0.)

A block scope identifier with external or internal linkage (that is, declared using the ext er n or
st at i ¢ keywords) cannot include an initializer in the declaration, because it is initialized elsewhere.

4.4.2. Declaring Integer Objects

Integer objects can be declared with the i nt, | ong, short, si gned, and unsi gned keywords.
char can also be used, but only for small values. The following statements are examples of integer
declarations:

int x; /* Declares an integer variable x */
int y = 10; /* Declares an integer variable y */
/* and sets y's initial value to 10 */

Some of the keywords can be used together to explicitly state the allowed value range. For example:
unsigned long int a;
signed long; /* Synonymous with "signed long int" */

unsigned int;

Consider the range of values an integer object must be capable of representing when selecting the
integral data type for the object. See Chapter 3, "Data Types" for more information on the size and range
of integral data types.

4.4.3. Declaring Character Variables

Character objects are declared with the char keyword. The following example shows a character
declaration with the initialization of a character object:

char ch = 'a'; /* Declares an object ch with an initial value 'a' */

In C, character string literals are stored in arrays of type char . See Section 4.7, "Declaring Arrays" for
more information on arrays.

4.4.4. Declaring Floating-Point Variables

When declaring floating-point objects, determine the amount of precision needed for the stored object.
Single-precision or double-precision objects can be used. For single precision, use the f | oat keyword.
For double precision, use the doubl e or | ong doubl e keywords. For example:

float x = 7.5;
double y = 3.141596;

See your platform-specific VSI C documentation for specific information on the range and precision of
floating-point types.

4.5. Declaring Enumerations

78



Chapter 4. Declarations

An enumerated type is a user-defined integer type. An enumerated type defines enumeration constants,
which are integral constant expressions with values that can be represented as integers. An enumerated
type declaration follows this syntax:

enum-specifier:
enum identifierg,: { enumerator-list}

enum identifierg,: { enumerator-list , }
enum identifier

enumerator-list:

enumerator
enumerator—-list, enumerator

enumerator:

enumeration—-constant
enumeration-constant = constant_expression

In VSI C, objects of type enumare compatible with objects of type Si gned i nt.

The following example shows the declaration of an enumeration type and an enumeration tag:

enum shades

{
off, verydim, dim, prettybright, bright
} light;

This declaration defines the variable | i ght to be of an enumerated type shades. | i ght can assume
any of the enumerated values.

The tag shades is the enumeration tag of the new type. of f through br i ght are the enumeration
constants with values 0 through 4. These enumeration constants are constant values and can be used
wherever integer constants are valid.

Once a tag is declared, it can be used as a reference to that enumerated type, as in the following
declaration, where the variable | i ght 1 is an object of the enumerated data type shades:

enum shades lightl;

An incomplete type declaration of an enumerated type is illegal; for example:

enum e;

An enumtag can have the same spelling as other identifiers in the same program in other name spaces.
However, enumconstant names share the same name space as variables and functions, so they must
have unique names to avoid ambiguity.

Internally, each enumeration constant is associated with an integer constant; the compiler gives the first
enumeration constant the value 0 by default, and the remaining enumeration constants are incremented
by 1 for each succeeding value. Any enumeration constant can be set to a specific integer constant value.
The enumeration constants following such a construct (unless they are also set to specific values) then
receive values that are one greater than the previous value. Consider the following example:

enum spectrum
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red, yellow = 4, green, blue, indigo, violet
} colorz2 = yellow;

This declaration gives r ed, yel | ow, gr een, bl ue, ..., the values 0, 4, 5, 6, ... Assigning duplicate
values to enumeration constants is permitted.

The value of col or 2 is an integer (4), not a string such as "red" or "yellow".

4.6. Declaring Pointers

Pointers are variables that contain the memory addresses of objects or functions. Pointer variables are
declared as a pointer type by using the asterisk punctuator and the data type of the object pointed to, as
shown in the following syntax:

pointer:

* type-qualifier-listept
* type-qualifier-listqp: pointer

type-qualifier-list:

type—-qualifier
type—-qualifier-list type-qualifier

By default, VSI C pointers are 32 bits long. VSI supports both 32-bit (short) and 64-bit (long) pointers.
VSI C provides qualifiers/switches and #pr aga preprocessor directives to control pointer size.

The type-qualifier is either const ,vol ati |l e, __unal i gned (Alpha), __restri ct, or any
combination thereof.

An object of pointer type is declared as in the following example:
char *px;

In this example, identifier pX is declared as a pointer to an object of type char . No type-qualifier is
used in this example. The expression * pX yields the char that px points to.

The following declarations show the difference between a variable pointer to a constant, a constant
pointer to a variable, and a constant pointer to a constant object.

const int *ptr_to_constant; /* pointer variable pointing

to a const object */
int *const constant_ptr; /* constant pointer to a

non-const object */
const int *const constant_ptr; /* Const pointer to a

const object */

The contents of an object pointed to by pt r _t 0_const ant cannot be modified through that pointer,
but pt r _t o_const ant itself can be changed to point to another const -qualified object. Similarly,
the contents of the integer pointed to by const ant _pt r can be modified, but const ant _pt r itself
will always point to the same location.

The declaration of the constant pointer const ant _pt r can be clarified by including a definition for
the type pointer to i nt . The following example declares const ant _pt r as an object with type const-
qualified pointer to i nt . The pointer's value (an address) is constant:
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typedef int *int_ptr;
const int_ptr constant_ptr;

The __unal i gned data-type qualifier can be used in pointer definitions to indicate to the compiler
that the data pointed to is not properly aligned on a correct address. To be properly aligned, the address
of an object must be a multiple of the size of the type. For example, 2-byte objects must be aligned on
even addresses.

When data is accessed through a pointer declared __unal i gned, the compiler generates the additional
code necessary to copy or store the data without causing alignment errors. It is best to avoid use of
misaligned data altogether, but in some cases the usage may be justified by the need to access packed
structures, or by other considerations. VSI OpenVMS 164 and VSI OpenVMS x86-64 are not as
sensitive to unaligned data accesses with regards to run-time performance.

The __restrict data-type qualifier is used to designate a pointer as pointing to a distinct object, thus
allowing compiler optimizations to be made (see Section 3.7.4, "__restrict Type Qualifier").

Unless an ext er n or st at i ¢ pointer variable is explicitly initialized, it is initialized to a null pointer.
A null pointer is a pointer value of 0. The contents of an uninitialized aut o pointer are undefined.

4.6.1. Declaring void Pointers

A voi d pointer is a pointer without a specified data type to describe the object to which it points. In
effect, it is a generic pointer. (Before the ANSI C standard, char * was used to define generic pointers;
this practice is now discouraged by the ANSI standard because it is less portable.)

A pointer to any type can be assigned to a vVOi d pointer without a cast, and vice versa. See Section
6.4.6, "The Cast Operator" for more information on the cast operation. The following statements show
how a voi d pointer can be assigned to other typed pointers, without explicit casts:

float *float_pointer;
void *void_pointer;

float_pointer voild_pointer;

/* or, */
vold_pointer = float_pointer;

A voi d pointer is often used in function calls, function arguments, or function prototypes when a
parameter or return value is a pointer of an unknown type. Consider the following example, where a
voi d pointer is used as a generic return value:

void *memcpy (void *sl1, const void *s2, size_t n);

{

void *generic_pointer;

/* The function return value can be a pointer to many types. */

generic_pointer = func_returning_pointer( argl, arg2, arg3 );
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/* size_t is a defined type */

}

See Section 5.3, "Function Definitions" for further information about using voi d in function
declarations.

4.6.2. Initializing Pointers

The pointer object can be initialized with a single expression. For example:

int 1 = 10;
int *p = &i; /* p 1s a pointer to int, initialized */
/* as holding the address of i */

Without an initializer, the values of St at i ¢ and ext er n pointers are automatically initialized to null
pointers (pointers to memory location 0).

The following declaration defines p with type pointer to char , and initializes p to point to an object of
type array of char with length 4, whose elements are initialized by a character string literal. (The null
character is the fourth member of the array.) If an attempt is made to use p to modify the contents of the
array, the behavior is undefined.

char *p = "abc";

4.7. Declaring Arrays

Arrays are declared with the bracket punctuators [ ], as shown in the following syntax:

storage—class—specifiery,: type-specifier declarator[* or constant-
expression—listypt]

The following example shows a declaration of a 10-element array of integers, a variable called
t abl e_one:

int table_one[10];

The type-specifier shows the data type of the elements. The elements of an array can be of any scalar or
aggregate data type. The identifier t abl e_one specifies the name of the array. The constant expression
10 gives the number of elements in a single dimension. Arrays in C are zero-based; that is, the first
element of the array is identified with a O subscript, such as the one shown in the following example:

int x[5];
x[0] = 25; /* The first array element is assigned the value 25 */

The expression between the brackets in the declaration must be either the (* ) punctuator or an integral
constant expression with a value greater than zero.

If * is specified between the brackets, then the array type is a variable-length array type of unspecified
size, which can be used only in declarations with function prototype scope.

If the size expression is an integer constant expression and the element type has a known constant size,
the array type is not a variable-length array type. Otherwise, it is a variable-length array type. The size of
each instance of a variable-length array type does not change during its lifetime. For more information
on variable-length arrays, see Section 4.7.3, "Variable-Length Arrays".
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Omitting the * or the constant expression creates an incomplete array declaration, which is useful in the
following cases:

e If the array is declared external and its storage is allocated by a definition in another place, you can
omit the constant expression for convenience when the array name is declared, as in the following
example:

extern int arrayll[];
int first_function (void)

{

}
In a separate compilation unit:
int arrayl1[10];

int second_function (void)

{

}
The array size specifier may only be omitted from the first pair of brackets in a multidimensional

array declaration. This is because an array's elements must have complete types, even if the array
itself has an incomplete type.

e If the declaration of the array includes initializers (see sections Section 4.7.1, "Initializing Arrays”
and Section 4.9, "Initializers with Designations"), you can omit the size of the array, as in the
following example:

char array_one[] = "Shemps";
char array_twol] {'s', 'h', 'e', 'm', 'p', 's', '"\O0' };

The two definitions initialize variables with identical elements. These arrays have seven elements: six
characters and the null character (\0), which terminates all character strings. The size of the array is
determined from the number of characters in the initializing character-string constant or initialization
list. Initializing an incomplete array completes the array type. An array is completed at the end of its
initializer list.

e If you use the array as a function parameter, the array must be defined in the calling function.
However, the declaration of the parameter in the called function can omit the constant expression
within the brackets. The address of the first element of the array is passed. Subscripted references in
the called function can modify elements of the array. The following example shows how to use an
array in this manner:

main ()
{
/* Initialize array */
static char arg_str[] = "Thomas";
int sum;

sum = adder (arg_str); /* Pass address of first array element */
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/* adder adds ASCII values of letters in array */

int adder( char param_string[])

int i, sum = 0; /* Incrementer and sum */
/* Loop until NULL char */
for (i = 0; param_string[i] != "\0'; i++)

sum += param_string[i];
return sum;

}

After the function adder is called, parameter par am st r i ng receives the address of the first
character of argument ar g_st r, which can then be accessed in adder . The declaration of
par am st ri ng serves only to give the type of the parameter, not to reserve storage for it.

Array members can also be pointers. The following example declares an array of floating-point numbers
and an array of pointers to floating-point numbers:

float falll]l, *afpll7];

When a function parameter is declared as an array, the compiler treats the declaration as a pointer to
the first element of the array. For example, if X is a parameter and is intended to represent an array of
integers, it can be declared as any one of the following declarations:

int x[];
int *x;
int x[10];

Note that the specified size of the array does not matter in the case of a function parameter, since the
pointer always points to only the first element of the array.

C supports arrays declared as an array of arrays. These are sometimes called multidimensional arrays.
Consider the following example, where variable t abl e_one is a two-dimensional array containing 20
integers:

int table_one[10][2];

Arrays are stored in row-major order, which means the element t abl e_one[ 0] [ O] (in the
previous example) immediately precedes t abl e_one[ O] [ 1], which in turn immediately precedes
tabl e_one[ 1][0].

4.7.1. Initializing Arrays

Arrays are initialized with a brace-enclosed list of constant expressions. A list of initializers for an
incomplete array declaration completes the array's type and completely defines the array size. Therefore,
when initializing an array of unknown size, the number of initializers in the initializer list determines the
size of the array. For example, the following declaration initializes an array of three elements:

int x[1 = {1, 2, 3 };
If the array being initialized has a storage class of St at i ¢, the initializers must be constant expressions.

Initializers for an array of a given size are assigned to array members on a one-to-one basis. If there
are too few initializers for all members, the remaining members are initialized to 0. Listing too many
initializers for a given size array is an error. For example:
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int x[5] = { 0, 1, 2, 3, 4, 5 }; /* error */

String literals are often assigned to a char or wchar _t array. In this case, each character of the string
represents one member of a one-dimensional array, and the array is terminated with the null character.
When an array is initialized by a pointer to a string literal, the string literal cannot be modified through
the pointer.

When initializing an array with a string literal, use quotation marks around the initializing string. For
example:

char string[26] = { "This is a string literal." };
/* The braces above are optional here */

The terminating null character is appended to the end of the string if the size permits, as it does in this
case. Another form for initializing an array with characters is the following:

char string[12] = {'T', 'h', 'i', 's', "', 'w', 'a', 'y' };

The preceding example creates a one-dimensional array containing the string value "Thi s way".
The characters in this array can be freely modified. Remaining uninitialized array members will be
automatically initialized to zero.

If the size of the array used for a string literal is not explicitly stated, its size is determined by the number
of characters in the string (including the terminating null character). If the size of the array is explicitly
stated, initializing the array with a string literal longer than the array is an error.

Note

There is one special case where the null character is not automatically appended to the array. This case
is when the array size is explicitly specified and the number of initializers completely fills the array size.
For example:

char c[4] = "abcd";

Here, the array c holds only the four specified characters, a, b, ¢, and d. No null character terminates
the array.

Using the following rules, you can omit braces when initializing the members of a multidimensional
arrays:

e When initializing arrays, you can omit the outermost pair of braces.

o If the initializer list includes all of the initializers for the object being initialized, you can omit the
inner braces.

Consider the following example:

float x[4][2] = {
{1, 2}
{3, 4}
{5 6}

b

In this example, 1 and 2 initialize the first row of the array X, and the following two lines initialize the
second and third rows, respectively. The initialization ends before the fourth row is initialized, so the
members of the fourth row default to 0. Here is the result:
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The following declaration achieves the same result:
float x[4](2] = { 1, 2, 3, 4, 5, 6 };

Here, the compiler fills the array row by row with the available initial values. The compiler places 1 and
2 in the first row (X[ 0] ), 3 and 4 in the second row (X[ 1] ), and 5 and 6 in the third row (X[ 2] ).
The remaining members of the array are initialized to zero.

Notes

e See Section 4.9, "Initializers with Designations" for a description of initializers with designations for
arrays and structures.

e A variable-length array cannot be initialized.

4.7.2. Pointers and Arrays

Data objects in an array can be referenced through pointers instead of using array subscripts. The data
type of such a pointer is referred to as “pointer to array of type”. The array name itself behaves like a
pointer, so there are several alternative methods to accessing array elements. For example:

int x[5] = { 0, 1, 2, 3, 4 };

/* Array x declared with five elements */

int *p = x; /* Pointer declared and initialized to point */
/* to the first element of the array x */

int a, b;

a = *(x + 3); /* Pointer x incremented by twelve bytes */
/* to reference element 3 of x */

b = x[3]; /* b now holds the same value as a */

In the previous example, a receives the value 3 by using the dereferencing operator (*). b receives the
same value by using the subscripting operator. See Chapter 6, "Expressions and Operators" for more
information on the different unary operators.

Note that the assignment of a was a result of incrementing the pointer to X. This principle, known as
scaling, applies to all types of pointer arithmetic. In scaling, the compiler considers the size of an array
element when calculating memory addresses of array members. For example, each member of the array
X is 4 bytes long, and adding three to the initial pointer value automatically converts that addition to 3 *
(the size of the array member, which in this case is 4). Therefore, the intuitive meaningof z = *(y +
3) ; is preserved.

When passing arrays as function arguments, only a pointer to the first element of the array is passed to
the called function. The conversion from array type to pointer type is implicit. Once the array name is
converted to a pointer to the first element of the array, you can increment, decrement, or dereference the
pointer, just like any other pointer, to manipulate data in the array. For example:
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int func(int *x, int *y) /* The arrays are converted to pointers */

{

*y = *(x + 4); /* Various elements of the arrays are accessed */

Remember that a pointer is large enough to hold only an address; a pointer into an array holds the
address of an element of that array. The array itself is large enough to hold all members of the array.

When applied to arrays, the Si zeof operator returns the size of the entire array, not just the size of the
first element in the array.

4.7.3. Variable-Length Arrays

Variable-length arrays allow array objects with aut o storage class, and array t ypedef s declared at
block scope, to have bounds that are runtime-computed expressions.

Variable-length arrays also allow the declaration and definition of functions whose parameters are arrays
dimensioned by other parameters (similar to Fortran assumed-shape arrays).

The following example illustrates both uses. Note that the definition of function Sub uses prototype
syntax and that the dimension parameters precede the array parameter that uses them. In order to define
a function with the dimension parameters following the array parameter that uses them, the function
definition must be written using using Kernighan and Ritchie C syntax (because that syntax allows

the declarations of the types of the parameters to be written in a different order from the parameters
themselves). Kernighan and Ritchie function definitions should generally be avoided.

#include <stdio.h>
#include <stdlib.h>

void sub (int, int, int[*][*]);

int main (int argc, char **argv)
{
if (argc !'= 3) {
printf ("Specify two array bound arguments.\n");
exit (EXIT_FAILURE) ;

int diml = atoi(argvi[l1l]);
int dim2 = atoi(argvi[2]);
int a[diml] [dim2];

int i, 3, k = 0;

for (1 = 0; 1 &lt; diml; i++) |
for (j = 0; j &lt; dim2; J++) |
alil[J] = k++;

}

printf ("diml =
sizeof (a
sizeof (a

%$d, dim2 = %d.",
) /sizeof (al0]),
[0])/sizeof (int));

sub (diml, dim2, a);
sub (dim2, diml, a);
}
exit (EXIT_SUCCESS) ;
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void sub (int subl, int sub2, int suba[subl] [sub2])
{
int i, j, k = 0;
printf ("\nIn sub, subl = %d, sub2 = %d.",
subl, sub2);
for (1 = 0; 1 &lt; subl; i++) |
printf ("\n");
for (j = 0; j &lt; sub2; j++) |
printf ("%$4d", subalil[Jj]);

}

On OpenVMS systems, variable-length arrays can often be used in place of the non-standard al | oca
intrinsic, __ ALLOCA.

However, an important difference between __ ALLOCA and variable-length arrays is that the storage
allocated by __ ALLOCA is not freed until return from the function, while the storage allocated for a
variable-length array is freed on exit from the block in which it is allocated. If _ ALLOCA is called
within the scope of a variable-length array declaration (including within a block nested within the block
containing a variable-length array declaration), then the storage allocated by that call to __ ALLOCA is
freed at the same time that the storage for the variable-length array is freed (that is, at block exit rather
than at function return). The compiler issues a warning in such cases.

4.8. Declaring Structures and Unions

A structure consists of a list of members whose storage is allocated in an ordered sequence. A union
consists of a sequence of members whose storage overlaps. Structure and union declarations have the
same form, as follows:

struct-or-union-specifier:

struct-or-union identifierg,: {struct-declaration-list}
struct-or—-union identifier

struct-or-union:

struct
union

struct-declaration-list:

struct—-declaration
struct—-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-1list struct-declarator-list ;
specifier-qualifier-list:

type-specifier specifier—qualifier—-listqpe
type-qualifier specifier—qualifier-list cpt

struct-declarator-list:
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struct-declarator
struct—-declarator—-list , struct-declarator

struct-declarator:

declarator
declaratorept : constant—-expression

Neither a structure nor union member can have a function type or an incomplete type. Structures and
unions cannot contain instances of themselves as members, but they can have pointers to instances of
themselves as members. The declaration of a structure with no members is accepted; its size is zero.

Each structure or union definition creates a unique structure or union type within the compilation unit.
The st ruct or uni on keywords can be followed by a tag, which gives a name to the structure or
union type in much the same way that an enumtag gives a name to an enumerated type. The tag can
then be used with the St r uct or uni on keywords to declare variables of that type without repeating a
long definition.

The tag is followed by braces { } that enclose a list of member declarations. Each declaration in the list
gives the data type and name of one or more members. The names of structure or union members can

be the same as other variables, function names, or members in other structures or unions; the compiler
distinguishes them by context. In addition, the scope of the member name is the same as the scope of the
structure or union in which it appears. The structure or union type is completed when the closing brace
completes the list.

An identifier used for a structure or union tag must be unique among the visible tags in its scope, but the
tag identifier can be the same as an identifier used for a variable or function name. Tags can also have
the same spellings as member names; the compiler distinguishes them by name space and context. The
scope of a tag is the same as the scope of the declaration in which it appears.

Structures and unions can contain other structures and unions. For example:

struct person
{
char first[20];
char middle[3];
char last([30];
struct /* Nested structure here */
{
int day;
int month;
int year;
} birth_date;
} employees, managers;

Structure or union declarations can take one of the following forms:

e If a declaration includes only a tag and a list of member declarations, then the list of member
declarations defines the tag to be a data type by which other objects can be declared. The tag is
considered a shorthand notation for the structure type. For example:

struct person
{
char first[20];
char middle[3];
char last([30];
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bi
struct person employee; /* The tag (person) identifies employee as */
a structure with members shown in */
the declaration of person */

When a declaration includes a tag, a list of member declarations, and a list of identifiers, the
identifiers become objects of the structure type and the tag is considered a shorthand notation, or
mnemonic, for the structure type. The following example shows this:

struct person
{
char first[20];
char middle[3];
char last[30];
} employees, managers;

If the tag is omitted, the structure or union definition applies only to the identifiers that follow in the
declaration. For example:

struct
{
char first[20];
char middle[3];
char last[30];
} employees, managers;

The tag can refer to a structure or union type defined elsewhere. The definition is then applied to the
variable identifiers that follow the tag name in the declaration, as in the following example:

struct person employees, managers;

Another form uses only the St r uct or uni on keyword and the tag to override other identical tags
in the scope, and to reserve the tag for a later definition within a new scope. A definition within a
new scope overrides any previous tag definition appearing in an outer scope. This use of declaring
tags is called tentative structure tag declaration. Using such declarations, you can eliminate ambiguity
when making a forward reference to tag identifiers. The following example shows such a case:

struct A {...}; /* Definition of external struct A */
{
struct A; /* Tentative structure tag declaration. */
/* First declaration of A (in external scope) 1is
hidden. This structure will be defined later */

struct inner

{

struct A *pointer; /* Declare a structure pointer by */
/* forward referencing. */
bi
struct A {...}; /* Tentative declaration of internal struct A is
defined here. */

/* External struct A is unaffected by this definition*/

}

In the example, the pointer to the structure defined using the tag A points to the internal definition of
A, not the external definition.
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4.8.1. Similarities Between Structures and Unions

Structures and unions share the following characteristics:

Their members can be objects of any type, including other structures and unions or arrays. A
member can also consist of a bit field.

The only operators valid for use with entire structures and unions are the simple assignment (=) and
Si zeof operators. In particular, structures and unions cannot appear as operands of the equality
(==), inequality (! =), or cast operators. The two structures or unions in the assignment must have
the same members and member types.

A structure or a union can be passed by value to functions and returned by value by functions. The
argument must have the same type as the function parameter. A structure or union is passed by
value just like a scalar variable; that is, the entire structure or union is copied into the corresponding
parameter.

Note

When passing structures as arguments, they might or might not terminate on a longword boundary. If
they do not, VSI C aligns the following argument on the next longword boundary.

4.8.2. Differences Between Structures and Unions

The difference between structures and unions lies in the way their members are stored and initialized, as
follows:

Within a structure, the members have addresses that increase as the declarators are read left-to-right.
That is, the members of a structure all begin at different offsets from the base of the structure. The
offset of a particular member corresponds to the order of its declaration; the first member is at offset
0.

A pointer to a structure points to its first member, so no unnamed holes can reside at the beginning
of a structure.

On legacy OpenVMS VAX systems, nonbit-field structure members are byte-aligned by default.
However, the

#pragma
[no]member_alignment

and #pr agma pack preprocessor directives are provided to switch from byte preprocessor
directive is provided to switch from byte alignment to natural alignment.

On currently supported OpenVMS systems, nonbit-field structure members are naturally aligned;
each successive nonbit-field structure member begins at the next byte boundary that matches the
alignment appropriate to its type. For example, a short integer is aligned on a 2-byte boundary and a
long integer is aligned on a 4-byte boundary, so there may be unnamed holes in a structure.

The length of a naturally-aligned structure must be a multiple of the greatest alignment requirement
of any of its members. For example, a structure containing characters, short integers, and longwords
will be a multiple of four in length to match the multiple of four bytes for the longword.
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The (#pragna [ no] menber _al i gnnent ) and #pr agma pack preprocessor directives are
also supported on this platform.

See your platform-specific VSI C documentation for specific structure alignment requirements and
examples.

e In a union, every member begins at offset 0 from the address of the union. The size of the union in
memory is the size of its largest member. The value of only one member can be stored in a union
object at a time. When the storage space allocated to the union contains a smaller member, the
extra space between the end of the smaller member and the end of the allocated memory remains
unaltered. The rules for alignment of union members are the same as for structure members (see
your platform-specific VSI C documentation).

A pointer to a union member, converted to the proper type, points to the beginning of the union
object.

e Several members of a structure can be initialized at once; only the first member of a union can be
given an initializer.

4.8.3. Bit Fields

One of the advantages of structures is the ability to pack data into them bit-by-bit.

A structure member often is an object with a basic type size. However, you can also declare a structure
member that is composed only of a specified number of bits. Such a member is called a bit field; its
length, an integral nonnegative constant expression, is set off from the field name by a colon, as shown
by the following syntax:

struct-declarator:

declarator: constant-expression
:constant-expression

Bit fields provide greater control over the structure's storage allocation and allow tighter packing of
information in memory. By using bit fields, data can be densely packed into storage.

A bit field's type must be specified (except with unnamed bit fields), and a bit field can have the i nt ,
unsi gned int,orsigned int type. The bit field's value must be small enough to store in an
object of the declared size.

In the compiler's default mode, the enum | ong, short, and char types are also allowed for bit
fields.

A bit field can be named or unnamed. A bit-field declaration without a declarator (for example, : 10)
indicates an unnamed bit field, which is useful for padding a structure to conform to a specified layout.
If the bit field is assigned a width of 0, it indicates that no further bit fields should be placed in the
alignment unit, and it cannot name a declarator. Use a colon (:) to separate the member's declarator (if
any) from a constant expression that gives the field width in bits. No field can be longer than 32 bits (1
longword).

Since nonbit-field structure members are aligned on at least byte boundaries, the unnamed form can
create unnamed gaps in the structure's storage. As a special case, an unnamed field of width O causes
the next member (normally another field) to be aligned on at least a byte boundary; that is, a bit-field
structure member with zero width indicates that no further bit field should be packed into an alignment
unit.

92



Chapter 4. Declarations

The following restrictions apply to the use of bit fields:
® You cannot declare arrays of bit fields.
e The ampersand operator (&) cannot be applied to fields, so there cannot be pointers to bit fields.

Sequences of bit fields are packed as tightly as possible. In C, bit fields are assigned from right to left;
that is, from low-order to high-order bit.

To create bit fields, specify an identifier, a colon, and the identifier's width (in bits) as a structure
member. In the following example, three bit fields are created in the structure declaration:

struct |

unsigned int a : 1; /* Named bit field (a) */
unsigned int : 0; /* Unnamed bit field = 0 */
unsigned int : 1; /* Unnamed bit field */

} class;

The first and third bit fields are one bit wide, the second is zero bits wide, which forces the next member
to be aligned on a natural or byte boundary.

Bit fields (including zero-length bit fields) not immediately declared after other bit fields have the
alignment requirement imposed by their type, but never a lesser alignment requirement than that of i nt .
In a declaration of a bit field that immediately follows another bit field, the bits are packed into adjacent
space in the same alignment unit, if sufficient space remains; otherwise, padding is inserted and the
second bit field is put into the next alignment unit.

See your VSI C documentation for platform-specific information on bit-field alignment within a
structure.

4.8.4. Initializing Structures

All structures can be initialized with a brace-enclosed list of component initializers. Structures with
automatic storage class can also be initialized by an expression of compatible type.

Initializers are assigned to components on a one-to-one basis. If there are fewer initializers than members
for a structure, the remaining members are initialized to 0. Listing too many initializers for the number
of components in a structure is an error. All unnamed structure or union members are ignored during
initialization.

Separate initializing values with commas and delimit them with braces { }. The following example
initializes two structures, each with two members:

struct

{
int 1i;
float c;
} a=4{1, 3.0e10 }, b =4{ 2, 1.5e5 };

The compiler assigns structure initializers in increasing member order. Note that there is no way to
initialize a member in the middle of a structure without also initializing the previous members. Example
4.1, "The Rules for Initializing Structures" shows the initialization rules applied to an array of structures.

Example 4.1. The Rules for Initializing Structures

#include <stdio.h>

93



Chapter 4. Declarations

main ()

{

int m,

nj

static struct

00O

printf ("row/col\t ch\t i\t
printf ("
for

}

{

for

char ch;

int 1i;

float c;

ar[2]1[3] =
{

{ ra', 1,
{ o', 2,
{ 'e'y 3,

3el10 1},
4el10 1},
5e10 },

}i

dl:", n, m);
\t %d \t %e \n",
] ar[n] [m].1i,

Key to Example 4.1, "The Rules for Initializing Structures'

©  Delimit an array row initialization with braces.

®  Delimit a structure initialization with braces.

®  Delimit an array initialization with braces.

ar[n] [m].

Example 4.1, "The Rules for Initializing Structures" writes the following output to the standard output:

row/col ch i c
[0][0] a 1 3.000000e+10
[0][1] b 2 4.000000e+10
[0]1[2]: < 3 5.000000e+10
[1]1[0] 0 0.000000e+00
[1][1] 0 0.000000e+00
[(1]1[2] 0 0.000000e+00
Note

See Section 4.9, "Initializers with Designations"” for a description of initializers with designations for
arrays and structures.

4.8.5. Initializing Unions

Unions are initialized with a brace-enclosed initializer that initializes only the first member of the union.
For example:
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static union

{
char ch;
int 1i;
float c;
} letter = {'A'};

Unions with the aut o storage class may also be initialized with an expression of the same type as the
union. For example:

main ()
{
unionl {
int 1i;
char ch;
float c;
} numberl = { 2 };

auto union?2

{
int 1i;
char ch;
float c;
} number2 = numberl;

}

4.9. Initializers with Designations

In conformance with the C99 standard, VSI C supports the use of designations in the initialization of
arrays and structures. (Note that designations are not supported in the common C, VAX C, and Strict
ANSI89 modes of the compiler.)

4.9.1. Current Object

C99 initializers introduce the concept of a current object and a designation.
The current object is the next thing to be initialized during the initialization of an array or structure.

A designation provides a way to set the current object. When no designations are present, subobjects of
the current object are initialized in order according to the type of the object: array elements in increasing
subscript order, and structure members in declaration order.

So for an array, the first current object is a[ 0] when initialization begins; as each initializer is used, the
current object is bumped to the next initializer, in increasing subscript order.

Similarly, for a structure, the current object is the first declaration within the structure when initialization
begins; as each initializer is used, the current object is bumped to the next initializer, in declaration order.

4.9.2. Designations

The C99 Standard allows brace-enclosed initializer lists to contain designations, which specify a new
current object. The syntax for a designation is:

designation:
designator-list =
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designator—-1list:
designator
designator-1list designator

designator:
[ constant-expression ]
identifier

A designator within a designation causes the following initializer to begin initialization of the object
described by the designator. Initialization then continues forward, in order, beginning with the next
object after that described by the designator.

For an array, a designator looks like this:

[ integral-constant-expression ]
If the array is of unknown size, any nonnegative value is valid.

For a structure, a designator looks like this:
.identifier

Where identifier is a member of the structure.

4.9.3. Examples

The old way of initializing arrays and structures is still supported. However, the use of designators can
simplify coding of initializer lists and better accommodate future changes you might want to make to
arrays and structures in your application.

1. Using designators, array elements can be initialized to nonzero values without depending on their

order:
int a[5] = { 0, 0, 0, 5 }; // 0ld way
int a[5] = { [3]=5 }; // New way

The designator [3] initializes a[3] to 5.

2. Structure members can be initialized to nonzero values without depending on their order. For
example:

typedef struct {
char flagl;
char flag2;
char flag3;
int datal;
int data2;
int data3;
b oSx;

sx = { 0, 0, 0, 0, 6 }; // 0ld way

Sx

{ .data2 = 6 }; // New way
Designator . dat a2 initializes structure member .data2 to 6.
3. Another example of using designators in an array:

int af10] = { 1, [5] = 20, 10 };
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In this example, the array elements are initialized as follows:

al[0]1=1

al[l] through af4] = 0
al5] = 20

ale] = 10

al[7] through a[9] = 0

Future changes to structures can be accommodated without changing their initializer lists:

typedef struct {
char flagl;
char flag2;
char flag3;
int datal;
int data2;
int data3;
b Sx;

Sx = {1, 0, 1, 65, 32, 18 }; // 0l1d way
Sx = { .flagl=1, 0, 1, .datal=65, 32, 18 }; // New way

Use of designators . f | ag1 and . dat al allows for future insertion of additional flags in front
of .flagl or between flag3 and datal.

Designators do not have to be in order. For example, the following two initializer lists are equivalent:
Sx = { .datal=65, 32, 18, .flagl=1, 0, 1 };

Sx = { .flagl=1, 0, 1, .datal=65, 32, 18 };

Space can be "allocated" from both ends of an array by using a single designator:

int a[MAX] =
{

}i

In this example, if MAX is greater than 10, there will be some zero-valued elements in the middle; if
it is less than 10, some of the values provided by the first five initializers will be overridden by the
second five.

Designators can be nested:

b} wl] =

struct { int al[3],
[1].a[0] = 2 };

{ [0].a = {1},

This initialization is equivalent to the following:

.a 1
wl(l].a[0]=2;

~

~

Another example of nesting designators:

struct {
int a;
struct {
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int b
int c[10]
rx;
ty = A{.x =A{1, .c =A{[5] =6, 7 }}}

This initialization is equivalent to the following:

4.10. Declaring Tags

The following syntax declares the identifier fag as a structure, union, or enumeration tag. If this tag
declaration is visible, a subsequent reference to the tag substitutes for the declared structure, union, or
enumerated type. Subsequent references of the tag in the same scope (visible declarations) must omit the
bracketed list. The syntax of a tag is:

struct tag { declarator-list }
union tag { declarator-list }
enum tag { enumerator-list }

If the tag is declared without the complete structure or union declaration, it refers to an incomplete type.
Incomplete enumerated types are illegal. An incomplete type is valid only to specify an object where the
type is not required; for example, during type definitions and pointer declarations. To complete the type,
another declaration of the tag in the same scope (but not within an enclosed block), defines the content.

The following construction uses the tag t €st to define a self-referencing structure.

struct test {
float height;
struct test *x, *y, *z;

}i

Once this declaration is given, the following declaration declares S to be an object of type St r uct
t est and Sp to be a pointer to an object of type St ruct test:

struct test s, *sp;

Note

The keyword t ypedef can also be used in an alternative construction to do the same thing:

typedef struct test tnode;
struct test {
float height;
tnode *x, *y, *z;
bi
tnode s, *sp;

4.11. Declaring Type Definitions

In a declaration whose storage-class specifier is t ypedef , each declarator defines at ypedef name
that specifies an alias for the stated type. A t ypedef declaration does not introduce a new type, but
only introduces a synonym for the stated type. For example:
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typedef int integral_type;
integral_type x;

In the previous example, i nt egr al _t ype is defined as a synonym for i nt, and so the following
declaration of X declares X to be of type i nt . Type definitions are useful in cases where a long type
name (such as some forms of structures or unions) benefits from abbreviation, and in cases where the
interpretation of the type can be made easier through a type definition.

At ypedef name shares the same name space as other identifiers in ordinary declarators. If an object
is redeclared in an inner scope, or is declared as a member of a structure or union in the same or inner
scope, the type specifiers cannot be omitted from the inner declaration. For example:

typedef signed int t;
typedef int plain;
struct tag {
unsigned t:4;
const t:5;
plain r:5;
bi

It is evident that such constructions are obscure. The previous example declares at ypedef namet
with type si gned i nt,atypedef name pl ai n with type i nt, and a structure with three bit-field
members, one named t , another unnamed member, and a third member named r . The first two bit-field
declarations differ in that unsi gned is a type specifier, which forces t to be the name of a structure
member by the rule previously given. The second bit-field declaration includes const , a type qualifier,
which only qualifies the still-visible t ypedef name't .

The following example shows additional uses of the t ypedef keyword:

typedef int miles, klicksp(void);
typedef struct { double re, im; } complex;

miles distance;

extern klicksp *metricp;
complex x;

complex z, *zp;

All of the code shown in the previous example is valid. The type of di St ance isi nt, the type of
met ri cp is a pointer to a function with no parameters returning i nt , and the type of X and z is the
specified structure. Zp is a pointer to the structure.

It is important to note that any type qualifiers used with a t ypedef name become part of the type
definition. If the t ypedef name is later qualified with the same type qualifier, an illegal construction
results. For example:

typedef const int x;
const x yj; /* Illegal - duplicate qualifier used */
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Chapter 5. Functions

A C program is a collection of user-defined and system-defined functions. Functions provide a
convenient way to break large computing tasks into smaller ones, which helps in designing modular
programs that are easier to understand and maintain. A function contains zero or more statements to be
executed when it is called, can be passed zero or more arguments, and can return a value.

This chapter discusses the following information about C functions:

e Function calls (Section 5.1, "Function Calls")

e Function types (Section 5.2, "Function Types")

e Function definitions (Section 5.3, "Function Definitions")

e Function declarations (Section 5.4, "Function Declarations')

e Function prototypes (Section 5.5, "Function Prototypes")

e Parameters and arguments (Section 5.6, "Parameters and Arguments")

5.1. Function Calls

A function call is a primary expression, usually a function identifier followed by parentheses, that is used
to invoke a function. The parentheses contain a (possibly empty) comma-separated list of expressions
that are the arguments to the function. The following is an example of a call to the function power ,
assuming this function is appropriately defined:

main ()

{

y = power (x,n); /* function call */
}

See Section 6.3.2, "Function Calls" for more information on function calls.

5.2. Function Types

A function has the derived type “function returning fype”. The fype can be any data type except array
types or function types, although pointers to arrays and functions can be returned. If the function returns
no value, its type is “function returning voi d”, sometimes called a void function. A void function in C is
equivalent to a procedure in Pascal or a subroutine in FORTRAN. A non-void function in C is equivalent
to a function in these other languages.

Functions can be introduced into a program in one of two ways:
e A function definition can create a function designator, define its parameters and their type, define the

type of its return value, and supply the body of the function. In the following example, power is a
function returning i nt :
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int power (int base, int exp)

{

int n=1;

if (exp < 0)

{

printf ("Error: Cannot handle negative exponent\n");
return -1;

}

for ; exp; exp-)

(
n = base * n;

return n;

}

See Section 5.3, "Function Definitions" for more information on function definitions.

e A function declaration announces the properties of a function defined elsewhere. In the following
example, the function mai n declares and calls the function power ; the definition of the function,
where the code is defined, exists elsewhere:

main ()

{
int power (int base, int exp); /* function declaration */
int x, n, vy;

y = power (x,n); /* function call */
}

This style of function declaration, in which the parameters are declared in a parameter type list, is
called a function prototype. Function prototypes require the compiler to check function arguments for
consistency with their parameters, and to convert arguments to the declared types of the parameters.

See Sections Section 5.4, "Function Declarations" and Section 5.5, "Function Prototypes" for more
information on function declarations and prototypes.

5.3. Function Definitions

A function definition includes the code for the function. Function definitions can appear in any order,
and in one source file or several, although a function cannot be split between files. Function definitions
cannot be nested.

A function definition has the following syntax:
Sfunction-definition:

declaration-specifiersq,: declarator declaration—11isStept
compound-statement

decl arati on-specifiers

The declaration-specifiers (storage-class-specifier, type-qualifier, and type-specifier) can be listed in any
order. All are optional.
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By default, the storage-class-specifier is ext er n. The st at i ¢ specifier is also allowed. See Section
2.10, "Storage Classes" for more information on storage-class specifiers.

ANSI allows the type-qualifier to be const or vol ati | e, but either qualifier applied to a function
return type is meaningless, because functions can only return rvalues and the type qualifiers apply only to
Ivalues.

The type-specifier is the data type of the value returned by the function. If no return type is specified,
the function is declared to return a value of type i nt . A function can return a value of any type except
“array of type” or “function returning type”. Pointers to arrays and functions can be returned. The value
returned, if any, is specified by an expression in a I et ur n statement. Executing a r et ur n statement
terminates function execution and returns control to the calling function. For functions that return a
value, any expression with a type compatible with the function's return type can follow r et ur n using
the following format:

return expression;

If necessary, the expression is converted to the return type of the function. Note that the value returned
by a function is not an lvalue. A function call, therefore, cannot constitute the left side of an assignment
operator.

The following example defines a function returning a character:

char letter (char paraml)

{

return paraml;

}

The calling function can ignore the returned value. If no expression is specified after r et ur n, or if a
function terminates by encountering the right brace, then the return value of the function is undefined.
No value is returned in the case of a voi d function.

If a function does not return a value, or if the function is always called from within a context that does
not require a value, a return type of voi d should be specified:

volid message ()

{
printf ("This function has no return value.");
return;

}

Specifying a return type of voi d in a function definition or declaration generates an error under the
following conditions:

e If the function attempts to return a value, an error occurs at the offending r et ur n statement.

e Ifthe voi d function is called in a context that requires a value, an error occurs at the function call
site.

decl ar at or

The declarator specifies the name of the function being declared. A declarator can be as simple as a
single identifier, such as f 1 in the following example:

int f1 (char p2)
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In the following example, f 1 is a “function returning i Nt ”. A declarator can also be a more complex
construct, as in the following example:

int (* (*fpapfi(int x)) [5]) (float)

In this example, f papf i is a “function (taking an i Nt argument) returning a pointer to an array of five
pointers to functions (taking a f | oat argument) returning i nt ”. See Chapter 4, "Declarations" for
information on specific declarator syntax.

The declarator (function) need not have been previously declared. If the function was previously
declared, the parameter types and return type in the function definition must be identical to the previous
function declaration.

The declarator can include a list of the function's parameters. In VSI C, up to 253 parameters can be
specified in a comma-separated list enclosed in parentheses. Each parameter has the aut o storage class
by default, although r egi st er is also allowed. There is no semicolon after the right parenthesis of the
parameter list.

There are two methods of specifying function parameters:

e The new or prototype style, which includes a parameter type list. For example:

int fl(char a, int b)

{
function body

}

o The old style, which includes an identifier list; the parameter types are defined in a separate
declaration-list within the function definition, before the left brace that begins the function body. For
example:

int fl(a, b)

char a;
int b;
{

function body
}

Any undeclared parameters are assumed to be of type i nt .

A function definition with no parameters is defined with an empty parameter list. An empty parameter
list is specified in either of two ways:

e Using the keyword voi d if the prototype style is used. For example:

char msg(void)
{
return 'a';

b
e Using empty parentheses if the old style is used. For example:

char msg()

{
return 'a';

}

A function defined using the prototype style establishes a prototype for that function. The prototype must
agree with any preceding or following declarations of the same function.
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A function defined using the old style does not establish a prototype, but if a prototype exists because
of a previous declaration for that function, the parameter declarations in the definition must exactly
match those in the prototype after the default argument promotions are applied to the parameters in the
definition.

Avoid mixing old style and prototype style declarations and definition for a given function. It is allowed
but not recommended.

See Section 5.6, "Parameters and Arguments” for more information on function parameters and
arguments. See Section 5.5, "Function Prototypes” for more information on function prototypes.

compound- st at enent

The compound-statement is the group of declarations and statements surrounded by braces in a function
or loop body. This compound statement is also called the function body. It begins with a left brace ({)
and ends with a right brace (}), with any valid C declarations and statements in between. One or more
I et ur n statements can be included, but they are not required.

5.4. Function Declarations

A function can be called without declaring it if the function's return value is i nt (although this practice
is not recommended due to the loss of type-checking capability; all functions should be declared). If
the return value is anything else, and if the function definition is located after the calling function in the
source code, the function must be declared before calling it. For example:

char lower (int c); /* Function declaration */
caller () /* Calling function */
{

int c;

char c_out;

c_out = lower (c); /* Function call */

}

char lower (int c_up) /* Function definition */

{

}
If the function definition for | ower was located before the function cal | er in the source code,
| ower would not have to be declared again before calling it. In that case, the function definition would

serve as its own declaration and would be in scope for any function calls from within all subsequently
defined functions in the same source file.

Note that both the function definition and function declaration for | ower are in the prototype style.
Although C supports the old style of function declaration in which the parameter types are not specified
in the function declarator, it is good programming practice to use prototype declarations for all user-
defined functions in your program, and to place the prototypes before the first use of the function.

Also note that it is valid for the parameter identifier in the function declaration to be different from the
parameter identifier in the function definition.
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In a function declaration, the voi d keyword should be used to specify an empty argument list. For
example:

char function_name (void) ;

As with function definitions, the voi d keyword can also be used in function declarations to specify the
return value type for functions that do not return a value. For example:

main ()

{

void function_name( );

}

void function_name( )

{3

5.5. Function Prototypes

A function prototype is a function declaration that specifies the data types of its arguments in

the parameter list. The compiler uses the information in a function prototype to ensure that the
corresponding function definition and all corresponding function declarations and calls within the scope
of the prototype contain the correct number of arguments or parameters, and that each argument or
parameter is of the correct data type.

Prototypes are syntactically distinguished from the old style of function declaration. The two styles can
be mixed for any single function, but this is not recommended. The following is a comparison of the old
and the prototype styles of declaration:

Old style:
e Functions can be declared implicitly by their appearance in a call.
e Arguments to functions undergo the default conversions before the call.

e The number and type of arguments are not checked.

Note

The VSI C compiler will warn about old-style function declarations only in strict ANSI standard mode,
or when the check compiler option is specified.

Prototype style:

e Functions are declared explicitly with a prototype before they are called. Multiple declarations must
be compatible; parameter types must agree exactly.

e Arguments to functions are converted to the declared types of the parameters.

e The number and type of arguments are checked against the prototype and must agree with or be
convertible to the declared types. Empty parameter lists are designated using the voi d keyword.

e Ellipses are used in the parameter list of a prototype to indicate that a variable number of parameters
are expected.
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5.5.1. Prototype Syntax

A function prototype has the following syntax:
Jfunction-prototype-declaration:
declaration-specifiersq,: declarator;

The declarator includes a parameter type list, which specifies the types of, and can declare identifiers for,
the parameters of the function.

A parameter type list can consist of a single parameter of type voi d to specify that the function has no
parameters.

A parameter type list can contain a member that is a variable-length array, specified by the [ *] notation.

In its simplest form, a function prototype declaration might have the following format:

storage_classqpt return_typegpt
function_name ( type; parameter;, ...,
typen parameter, );

Consider the following function definition:

char function_name( int lower, int *upper, char (*func) (), double y )

{1}
The corresponding prototype declaration for this function is:
char function_name( int lower, int *upper, char (*func) (), double y );

A prototype is identical to the header of its corresponding function definition specified in the prototype
style, with the addition of a terminating semicolon (;) or comma (,), as appropriate (depending on
whether the prototype is declared alone or in a multiple declaration).

Function prototypes need not use the same parameter identifiers as in the corresponding function
definition because identifiers in a prototype have scope only within the identifier list. Moreover, the
identifiers themselves need not be specified in the prototype declaration; only the types are required.

For example, the following prototype declarations are equivalent:

char function_name( int lower, int *upper, char (*func) (), double y );
char function_name( int a, int *b, char (*c) (), double d );
char function_name( int, int *, char (*) (), double );

Though not required, identifiers should be included in prototypes to improve program clarity and
increase the type-checking capability of the compiler.

Variable-length argument lists are specified in function prototypes with ellipses. At least one parameter
must precede the ellipses. For example:

char function_name( int lower, ... );
Data-type specifications cannot be omitted from a function prototype.

The C99 standard permits the keyword St at i ¢ to be used within the outermost array bound of a
formal parameter in a prototype function declaration. The effect is to assert to the compiler that at each
call to the function, the corresponding actual argument will provide access to at least as many array
elements as specified in the declared array bound. Consider the following two function definitions:
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void foo(int a[10001){ ... }
void bar (int b[static 1000]) { ...}

The declaration of f 00 is absolutely equivalent to one that declares @ to be i nt  *. When compiling
the body of f 00, the compiler has no information about how many array elements might exist. The
declaration of bar differs in that the compiler can assume that at least 1000 array elements exist and
may be safely accessed. The intent is to provide a hint to the optimizer about what can be safely pre-
fetched.

5.5.2. Scope and Conversions

Prototypes must be placed appropriately in each compilation unit of a program. The position of the
prototype determines its scope. A function prototype, like any function declaration, is considered within
the scope of a corresponding function call only if the prototype is specified within the same block as the
function call, any enclosing block, or at the outermost level of the source file. The compiler checks all
function definitions, declarations, and calls from the position of the prototype to the end of its scope. If
you misplace the prototype so that a function definition, declaration, or call occurs outside the scope of
the prototype, any calls to that function behave as if there were no prototype.

The syntax of the function prototype is designed so that you can extract the function header of each of
your function definitions, add a semicolon (;), place the prototypes in a header, and include that header
at the top of each compilation unit in your program. In this way, function prototypes are declared to be
external, extending the scope of the prototype throughout the entire compilation unit. To use prototype
checking for C library function calls, place the #i ncl ude preprocessor directives for the . h files
appropriate for the library functions used in the program.

It is an error if the number of arguments in a function definition, declaration, or call does not match the
prototype.

If the data type of an argument in a function call does not match the corresponding type in the function
prototype, the compiler tries to perform conversions. If the mismatched argument is assignment-
compatible with the prototype parameter, the compiler converts the argument to the data type

specified in the prototype, according to the argument conversion rules (see Section 5.6.1, "Argument
Conversions").

If the mismatched argument is not assignment-compatible with the prototype parameter, an error
message is issued.

5.6. Parameters and Arguments

C functions exchange information by means of parameters and arguments. The term parameter refers
to any declaration within the parentheses following the function name in a function declaration or
definition; the term argument refers to any expression within the parentheses of a function call.

The following rules apply to parameters and arguments of C functions:

e Except for functions with variable-length argument lists, the number of arguments in a function call
must be the same as the number of parameters in the function definition. This number can be zero.

e The maximum number of arguments (and corresponding parameters) is 253 for a single function.

e Arguments are separated by commas. However, the comma is not an operator in this context, and the
arguments can be evaluated by the compiler in any order. There is, however, a sequence point before
the actual call.

108



Chapter 5. Functions

Arguments are passed by value; that is, when a function is called, the parameter receives a copy of
the argument's value, not its address. This rule applies to all scalar values, structures, and unions
passed as arguments.

Modifying a parameter does not modify the corresponding argument passed by the function call.
However, because arguments can be addresses or pointers, a function can use addresses to modify

the values of variables defined in the calling function.

e In the old style, parameters that are not explicitly declared are assigned a default type of i nt .

o The scope of function parameters is the function itself. Therefore, parameters of the same name in

different functions are unrelated.

5.6.1. Argument Conversions

In a function call, the types of the evaluated arguments must match the types of their corresponding

parameters. If they do not match, the following conversions are performed in a manner that depends on

whether a prototype is in scope for the function:

e Arguments to functions specified with prototypes are converted to the parameter types specified in
the prototype, except that arguments corresponding to an ellipsis (...) are converted as if no prototype

were in scope. (In this case, the rules in the following bullet apply.) For example:
void f (char, short, float, ...);

char cl1, c2;

short sl1,s2;

float f1,f2;

f(cl, sl1, f1, c2, s2, £2);

The arguments c1, s1, and f 1 are passed with their respective types, while the arguments c2, S2,

and f 2 are converted to i nt , i nt, and doubl e, respectively.

e Arguments to functions that have no prototype in scope are not converted to the types of the

parameters. Instead, the expressions in the argument list are converted according to the following

rules:
* Any arguments of type f | oat are converted to doubl e.

* Any arguments of types char , unsi gned char,short,orunsi gned short are
converted to i nt .

*  When compiling in common C compatibility mode, VSI C converts any arguments of types
unsi gned char orunsi gned short tounsi gned int.

No other default conversions are performed on arguments. If a particular argument must be converted

to match the type of the corresponding parameter, use the cast operator. For more information about the

cast operator, see Section 6.4.6, "The Cast Operator".

5.6.2. Function and Array ldentifiers as Arguments

Function and array identifiers can be specified as arguments to a function. Function identifiers are

specified without parentheses, and array identifiers are specified without brackets. When so specified,
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the function or array identifier is evaluated as the address of that function or array. Also, the function

must be declared or defined, even if its return value is an integer. Example 5.1, "Declaring Functions

Passed as Arguments" shows how and when to declare functions passed as arguments, and how to pass

them.

Example 5.1. Declaring Functions Passed as Arguments

Q@int x() { return 25; } /* Function definition and
int z[10]; /* array defined before use
Ofn (int £1(), int (*£f2) (), int alfll)) /* Function definition
{

£1(); /* Call to function f1

void caller (void)

{

(3] int yv(); /* Function declaration

(4] fn(x, y, z); /* Function call: functions
/* x and y, and array z
/* passed as addresses

}

int y(void) { return 30; } /* Function definition

Key to Example 5.1, "Declaring Functions Passed as Arguments"

*/
*/

*/

*/

*/
*/
*/

*/

*/

©®  Without being declared in a separate declaration, function X can be passed in an argument list

because its definition, located before the function cal | er, serves as its declaration.

®  Parameters that represent functions can be declared either as functions or as pointers to functions.
Parameters that represent arrays can be declared either as arrays or as pointers to the element type

of the array. For example:

fn(int f£1(), int £2(), int all[]) /* f£f1, f2 declared as

{...} /* functions; al declared

/* as array of int.

fn(int (*f1) (), int (*f2) (), int *al) /* f1, f2 declared as

{...} /* pointers to functions;
/* al declared as pointer

/* to int.

When such parameters are declared as functions or arrays, the compiler automatically converts the

corresponding arguments to pointers.

®  Because its function definition is located after the function cal | er, function y must be declared

before passing it in an argument list.

*/
*/
*/

*/
*/
*/
*/
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O  When passing functions as arguments, do not include parentheses. Similarly, when specifying
arrays, do not include subscripts.

5.6.3. Passing Arguments to the main Function

The function called at program startup is named mai n. The mai n function can be defined with no
parameters or with two parameters (for passing command-line arguments to a program when it begins
executing). The two parameters are referred to here as argc and argv, though any names can be used
because they are local to the function in which they are declared. A mai n function has the following
syntax:

int main(void) {...}
int main(int argc, char *argv[ 1) {...})
argc

The number of arguments in the command line that invoked the program. The value of argc is
nonnegative.

ar gv

Pointer to an array of character strings that contain the arguments, one per string. The value
ar gv[ ar gc] is a null pointer.

If the value of argc is greater than zero, the array members argv[0] through argv[argc - 1] inclusive
contain pointers to strings, which are given implementation-defined values by the host environment
before program startup. The intent is to supply the program with information determined before program
startup from elsewhere in the host environment. If the host environment cannot supply strings with letters
in both uppercase and lowercase, the host environment ensures that the strings are received in lowercase.

If the value of argc is greater than zero, the string pointed to by argv[0] represents the program name;
argv[0][0] is the null character if the program name is not available from the host environment. If the

value of argc is greater than one, the strings pointed to by argv[1] through argv[argc - 1] represent the
program parameters.

The parameters argc and argv, and the strings pointed to by the argv array, can be modified by the
program and keep their last-stored values between program startup and program termination.

In the main function definition, parameters are optional. However, only the parameters that are defined
can be accessed.

See your platform-specific VSI C documentation for more information on the passing and return of
arguments to the mai n function.
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Operators

An expression is any sequence of C operators and operands that produces a value or generates a side
effect. The simplest expressions are constants and variable names, which yield values directly. Other

expressions combine operators and subexpressions to produce values. An expression has a type as well as

a value.

Except where noted in this chapter, the order of evaluation of subexpressions, and the order in which side

effects take place, is unspecified. Code that depends on such order might produce unexpected results.

The operands of expressions must have compatible type. In some instances, the compiler makes
conversions to force the data types of the operands to be compatible.

The following sections discuss these topics:

e Primary expressions and operators (Section 6.1, "Primary Expressions")

e An overview of the C operators (Section 6.2, "Overview of the C Operators")
e Postfix expressions (Section 6.3, "Postfix Operators")

e Unary expressions and operators (Section 6.4, "Unary Operators")

e Binary expressions and operators (Section 6.5, "Binary Operators")

e The conditional expression and operator (Section 6.6, "Conditional Operator")
e Assignment expressions and operators (Section 6.7, "Assignment Operators")
e The comma expression and operator (Section 6.8, "Comma Operator")

e Constant expressions (Section 6.9, "Constant Expressions")

e Compound literal expressions (Section 6.10, "Compound Literal Expressions")

e Data-type conversions (Section 6.11, "Data-Type Conversions")

6.1. Primary Expressions

Simple expressions are called primary expressions; they denote values. Primary expressions include

previously declared identifiers, constants, string literals, and parenthesized expressions.
Primary expressions have the following syntax:

primary-expression:

identifier

constant

string-literal
expression

The following sections describe the primary expressions.

6.1.1. Identifiers
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An identifier is a primary expression provided it is declared as designating an object or a function.

An identifier that designates an object is an Ivalue if its type is arithmetic, structure, union, or pointer.
The name of an array evaluates to the address of the first element of the array; an array name is an Ivalue
but not a modifiable Ivalue.

An identifier that designates a function is called a function designator. A function designator evaluates to
the address of the function.

6.1.2. Constants

A constant is a primary expression. Its type depends on its form (integer, character, floating, or
enumeration); see Section 1.9, "Constants". A constant is never an lvalue.

6.1.3. String Literals

A string literal is a primary expression. Its type depends on its form (character or wchar _t ); see
Section 1.9, "Constants". A string literal is an lvalue.

6.1.4. Parenthesized Expressions

An expression within parentheses has the same type and value as the expression without parentheses
would have. Any expression can be delimited by parentheses to change the precedence of its operators.

6.2. Overview of the C Operators

Variables and constants can be used in conjunction with C operators to create more complex expressions.
Table 6.1, "C Operators" presents the set of C operators.

Table 6.1. C Operators

Operator Example Description

0O f() Function call

[] a[ 10] Array reference

-> S->a Structure and union member selection
s.a Structure and union member selection

+ [unary] +a Value of a

- [unary] -a Negative of a

* [unary] *a Reference to object at address a

& [unary] &a Address of a

~ ~a One's complement of a

++ [prefix] ++a The value of a after increment

++ [postfix] at++ The value of a before increment

— [prefix] -a The value of a after decrement

— [postfix] a— The value of a before decrement

si zeof si zeof (t1) Size in bytes of object with type t1

si zeof si zeof e Size in bytes of object having the type of expression e
__typeof __typeof __ (t1l) |Type of typetl
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Operator Example Description
__typeof __ __typeof __ (e) Type of expression e
_Pragma _Pragma (string-literal) | destringize string-literal
+ [binary] a+hb aplusb
- [binary] a-»ob a minus b
* [binary] / a*b a times b
% al b a divided by b
a %b Remainder of a/b
>> >> b a, right-shifted b bits
<< a<<b a, left-shifted b bits
< <b 1 if a < b; 0 otherwise
> a>bhb 1 if a > b; 0 otherwise
<= a<=b 1 if a <= b; 0 otherwise
>= a>=»>b 1 if a >=b; 0 otherwise
== a == 1 if a equal to b; O otherwise
I= =D 1 if a not equal to b; O otherwise
& [binary] & b Bitwise AND of a and b
| al b Bitwise OR of a and b
A N b Bitwise XOR (exclusive OR) of a and b
&& && b Logical AND of a and b (yields O or 1)
! al|l b Logical OR of a and b (yields O or 1)
la Logical NOT of a (yields O or 1)
?: a?el: e2 Expression el if a is nonzero;
Expression e2 if a is zero
= a=> a, after b is assigned to it
+= a+=b a plus b (assigned to a)
-= a-==>b a minus b (assigned to a)
* = a*=bh a times b (assigned to a)
/= al=»b a divided by b (assigned to a)
% a% b Remainder of a/b (assigned to a)
>>= a >>=b a, right-shifted b bits (assigned to a)
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Operator Example Description

<<= a<<=b a, left-shifted b bits (assigned to a)
&= aé& b a AND b (assigned to a)

| = al=»b a OR b (assigned to a)

Nz a”=b a XOR b (assigned to a)

, el, e2 e2 (el evaluated first)

The C operators fall into the following categories:
e Postfix operators, which follow a single operand.
e Unary prefix operators, which precede a single operand.

e Binary operators, which take two operands and perform a variety of arithmetic and logical
operations.

e The conditional operator (a ternary operator), which takes three operands and evaluates either the
second or third expression, depending on the evaluation of the first expression.

e Assignment operators, which assign a value to a variable.
e The comma operator, which guarantees left-to-right evaluation of comma-separated expressions.

Operator precedence determines the grouping of terms in an expression. This affects ho