
VSI C++ V10.1-2
for OpenVMS x86-64
Release Notes

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

Publication Date: November 2024

Operating System: VSI OpenVMS x86-64 Version 9.2-1 or higher

Kit Name: VSI-X86VMS-CXX-V1001-2-1.ZIP

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

All other trademarks and registered trademarks mentioned in this document are the property of their respective holders.

2

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

Table of Contents
1. Kit Name .. 4
2. Kit Description .. 4
3. Version(s) of VSI OpenVMS to Which This Kit May Be Applied .. 4
4. Changes from Prior Compilers ... 5
5. OpenVMS-Specific Pragmas ... 6
6. TLB And Headers ... 8
7. Prologue/Epilogue Files .. 9

7.1. Using Prologue/Epilogue Files ... 9
8. Differences Between C++ on OpenVMS IA-64 and OpenVMS x86-64 .. 9
9. SYS$STARTUP:CXX$STARTUP.COM Startup File .. 11
10. Known Issues .. 11

10.1. Using the Clang Command Line .. 14
11. Supported and Not Supported DCL Qualifiers .. 15
12. Using Clang Command Options from DCL Command Line .. 17
13. Mapping Clang Command Options to DCL Command Options .. 17
14. Threads and Thread-Local Variables .. 25
15. Online Clang Documentation .. 25

3

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

1. Kit Name
VSI-X86VMS-CXX-V1001-2-1.ZIP

2. Kit Description
This kit includes the VSI C++ x86-64 compiler. This compiler runs on OpenVMS x86-64 and generates
code for OpenVMS x86-64.

The compiler is based on the LLVM Clang compiler with additional OpenVMS features. You can learn
more about Clang at https://clang.llvm.org.

The PCSI package provides two C++ compilers, the CXX demangling tool, C++ run-time libraries, and
C++ system headers:

1. Clang – this compiler has a UNIX-style command line and is invoked as an OpenVMS foreign
command. To use this compiler, you will need to set up the CLANG DCL symbol by calling the
SYS$EXAMPLES:CXX$SETUP.COM command file.

2. CXX – this compiler has a DCL command line that is compatible with the C++ compiler on
OpenVMS IA-64. Currently, it does not support all possible qualifiers. Unsupported qualifiers are
silently ignored. See Section 10, “Known Issues” for a summary of qualifiers.

The $ HELP CXX command prints out general information about the CXX compiler and lists
all supported qualifiers. The supported qualifiers are listed first, followed by the qualifiers that are
ignored for now.

3. CXX$DEMANGLE – a demangling tool. It is invoked as an OpenVMS foreign command. The
SYS$EXAMPLES:CXX$SETUP.COM command file defines the CXX$DEMANGLE DCL
symbol. The tool is taken from the LLVM toolset known as llvm-cxxfilt and uses a UNIX-style
command line. For more information, enter:

$ CXX$DEMANGLE --help

4. LIBCXX/LIBCXXABI – LIBCXX/LIBCXXABI – the C++ run-time library images. LIBCXX is
the LLVM libc++ C++ Standard Library (https://libcxx.llvm.org) and LIBCXXABI is the libc++abi
C++ Standard Library Support (https://libcxxabi.llvm.org) with OpenVMS-specific changes. These
libraries are present on OpenVMS V9.2-2, but the newest versions are included in in the current
CXX kit. VSI expects to stop shipping these libraries at some point in the future and only provide
them through the base OpenVMS distribution.

5. C++ system headers – the installation provides headers for the LIBCXX library, C++ specific
versions of CRTL headers, and C++ selected versions of some OpenVMS system headers. VSI
expects to stop shipping some of these C++ specific headers in the future and only provide them
through the base OpenVMS distribution.

3. Version(s) of VSI OpenVMS to Which This
Kit May Be Applied
The compiler requires OpenVMS x86-64 V9.2-1 or higher. VSI strongly suggests that you upgrade your
system to V9.2-2 Update 1, which is available on the VSI service portal.

4

https://clang.llvm.org
https://libcxx.llvm.org
https://libcxxabi.llvm.org

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

4. Changes from Prior Compilers
This FT compiler includes the following changes from the CXX 10.1-1 GA version:

1. By default, the operators new and new[] return 64-bit addresses that will not fit into 32-
bit pointers. This is a change from the V10.1-1 compiler that always allocated memory
in 32-bit heap. Compilations that use /POINTER_SIZE=32 on the command line will
allocate memory from the 32-bit heap, but compilations that do not use /POINTER_SIZE
or those that use /POINTER_SIZE=64 will allocate memory from the 64-bit heap. The
#pragma pointer_size also changes the behavior of the new() operator and it allocates
memory from the 32-bit or 64-bit space depending on the pragma option.

For programs that revert back to 32-bit memory allocation with /POINTER_SIZE=32, ensure
that all systems have the newest LIBCXX and LIBCXXABI libraries installed on target systems.
Currently, these updated RTLs are only available with the C++ kit, so you must install C++ on all
target systems, even those that will not be used for development. The updated RTLs will be included
in a future update for OpenVMS V9.2-2.

2. The /LIST qualifier is now supported. The compiler supports most of the /SHOW keywords (like
on IA-64) and creates a listing file that has a very similar look and feel to the listing files created by
the Alpha and IA-64 compilers.

3. LIB$ESTABLISH built-in is fully supported by CXX.

4. The allocation of objects of std::string is now based on the current pointer size
setting. The default allocator for std::string will be automatically changed to the
allocator appropriate for the 32-bit address space based on the current /POINTER_SIZE or
#pragma [required_]pointer_size setting. When the pointer size is set to 32 bits, the
object will be allocated in the 32-bit memory to ensure that std::string::c_str() and
std::string::data() return valid 32-bit pointer values.

5. The ability to do source-level debugging in the OpenVMS debugger is now supported. When
debugging, users need to enter SET SOURCE before printing a line from a file.

The kit contains a log file that lists the changes in this release and in prior releases:

$ type SYS$HELP:CXX.CHANGELOG

The compiler behaves very much like the Linux version of the Clang compiler in terms of language
features. The primary differences is the support of the OpenVMS-specific features, pragmas, and
predefined symbols.

VSI C++ predefines common OpenVMS symbols much like the IA-64 C++ compiler (for example,
VMS, __VMS, __vms, __INITIAL_POINTER_SIZE), as well as the industry standard symbols
such as __x86_64 and __x86_64__. VSI C++ compiler does not define the __DECCXX_VER and
__DECC_VER macros. Instead, it defines the __VSIC_VER and __VSICXX_VER macros. You can
use these macros to test whether the current compiler version is newer than another version. In order to
get the C++ standard version, you need to use __cplusplus value. When you compile in C mode with
Clang, please use __STDC_VERSION__ to get the C version.

VSI C++ also defines the _USE_STD_STAT macro by default which is not defined in IA-64 C++. To
undefine this macro from the command line, use the /UNDEFINE=_USE_STD_STAT qualifier for
CXX or the -U_USE_STD_STAT option for Clang.

Unlike a traditional UNIX compiler which "compiles and links" with a single command, the compiler on
OpenVMS only compiles (i.e., the equivalent of the "-c" option on UNIX).

5

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

There are two RTLs to support C++ (LIBCXX and LIBCXXABI). C++ provides two versions of
these libraries – static and shared. They are copied to the SYS$COMMON:[SYSLIB] directory during
the installation. Shared libraries are also inserted into SYS$LIBRARY:IMAGELIB.OLB, so if a
program needs to be linked against shared libraries, they will be found automatically. However, if a
program needs to be linked against static libraries, you must provide them explicitly, or you can use the
SYS$COMMON:[SYSHLP.EXAMPLES]CXX.OPT (or SYS$EXAMPLES:CXX.OPT) file.

For example:

// HW.CXX
#include <iostream>

int main()
{
 std::cout << "Hello World!\n";
 return 0;
}

$ CXX HW.CXX
$ LINK HW ! Link against installed shared libraries
$ RUN HW
Hello World!
$ LINK HW,SYS$EXAMPLES:CXX/OPT ! Link against static libraries
$ RUN HW
Hello World!

The OpenVMS x86-64 linker places code into the 64-bit address by default (the default on Alpha and
IA-64 was to place code into 32-bit address space). Programs should not notice the difference. The
linker creates small trampolines in the 32-bit address space, so the address of a routine will still fit into a
32-bit variable.

5. OpenVMS-Specific Pragmas
Compilers have been extended to support the following OpenVMS-specific pragmas:

 #pragma pointer_size [options]
 #pragma required_pointer_size [options]
 #pragma [no]member_alignment [options]
 #pragma extern_model [options]
 #pragma extern_prefix [options]
 #pragma include_directory <string-literal>
 #pragma message [option] ("message-list")

Other OpenVMS pragmas are processed, however they only have partial/limited support at the moment.
The #pragma message is supported, but the names of the error messages on IA-64 and x86-64 are
different, so they need to be modified.

The #pragma pointer_size is active only when the DCL qualifier /POINTER_SIZE (or
-pointer-size option for the foreign CLANG command) is given. This matches the behavior of the
VSI C++ IA-64 compiler.

Neither /POINTER_SIZE (-pointer-size) nor #pragma [required_]pointer_size
has any effect on vptr. The size of the virtual pointer is always 64 bit.

The option provided to #pragma nomember_alignment [option] determines the base
alignment of the structure. If provided with the appropriate alignment, the attribute is set on the structure
declaration.

6

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

There are some differences from the IA-64 CXX member alignment:

● In IA-64 CXX:

struct
 /*
 ** This directive does not change the alignment of s1 because we have
 ** already started the struct.
 */
#pragma nomember_alignment
 {
 ...
 } s1;

On OpenVMS x86-64, it does change the alignment. It is best to use the pragma prior to the struct
definition.

● In IA-64 CXX, the #pragma pack cancels the base alignment defined by
#pragma nomember_alignment <base_alignment>, but on OpenVMS x86-64,
#pragma pack has no effect on base alignment.

● In IA-64 CXX, if the aggregate is packed, a zero-length bit field causes the next member to start at
the next byte boundary.

On OpenVMS x86-64, the zero-length bit field pads to the next alignment boundary determined by
its declared base type, regardless of whether the aggregate is packed or not.

The compiler supports #pragma extern_model, which means that the strict_refdef,
common_block, relaxed_refdef, globalvalue, save, and restore options are
supported.

The following attributes are available:

 gbl lcl
 shr noshr
 wrt nowrt
 ovr con
 exe noexe
 vec novec

The following alignments are available:

 byte
 word
 long
 quad
 octa

The IA-64 compiler provided many header files that are not STL standard files. The x86-64 installation
adds hard links with .HXX extensions for all STL standard files and .H hard links for those of them that
conflict with the CRTL headers.

The files like

 stream.h(xx)
 generic.h(xx)
 strstream.hxx
 messages.hxx

7

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

 cxxl.hxx

were provided for the IA-64 CXX internal use only and not for compiler users. If you for some reason
include these files, you must update your code to be able to compile with the x86-64 CXX compiler
based on Clang.

An OpenVMS style #pragma message is also available. Currently, the compiler only supports the
following format:

#pragma message [option] ("message-list")

The [option] parameter must be one of the following keywords:

Keyword Meaning

enable Enables issuance of messages specified in the message list.
disable Disables issuance of messages specified in the message list.
error Sets the severity of each message in the message list to Error.
fatal Sets the severity of each message in the message list to Fatal.
informational/warning Sets the severity of each message in the message list to Warning.
save Saves the current state of the compiler messages.
restore Restores the saved state of the compiler messages.

Example:
// example.cpp
#pragma message enable ("unused-variable")
#pragma message disable ("return-type implicitly-unsigned-literal")
int foo() {
 long long a = 12341234123412341234;
 int b = a;
}

With the example above, you should get something like this:

warning: unused variable 'a' [-Wunused-variable]

The values for the message-list is the name following the message severity code letter.
In this example, the unused-variable message is enabled, while return-type and
implicitly-unsigned-literal are disabled. The values in the message-list should be
separated by spaces.

The IA-64 C++ compiler message identifiers are not supported and are silently ignored. You should use
Clang's respective message IDs. Note that it is not possible to reduce message severity to warning after it
was set to error or fatal, but it is possible to reduce from fatal to error.

6. TLB And Headers
The C++ compiler allows to search and use text libraries (TLB) with the /LIBRARY qualifier and with
automatic searches for headers performed by the compiler. However, unlike in the C++ compiler on
IA-64, some of the headers on x86-64 are expanded into separate files. The installation directory for the
C++ standard library headers is SYS$COMMON:[VSICXX$LIB.INCLUDE.LIB_CXX.INCLUDE].

Both the CXX DCL command and the CLANG DCL symbol, defined by the
SYS$EXAMPLES:CXX$SETUP.COM command file, know the location of these headers.

8

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

7. Prologue/Epilogue Files
Both Clang and CXX automatically process user-supplied prologue and epilogue files just like the IA-64
compiler.

7.1. Using Prologue/Epilogue Files
Prologue/epilogue file are processed in the following way:

1. When the compiler encounters an #include preprocessing directive, it determines the location of
the file or text library module to be included. Then, it checks if one or both of the following specially
named files or modules exist in the same location as the included file:

__DECC_INCLUDE_PROLOGUE.H
__DECC_INCLUDE_EPILOGUE.H

The location is the OpenVMS directory containing the included file or the text library file containing
the included module. In case of a text library, module names should not include the .H suffix.

2. If the prologue and epilogue files do exist in the same location as the included file, then the content
of each is read into memory.

3. The text of the prologue file is processed just before the text of the file specified by #include.

4. The text of the epilogue file is processed just after the text of the file specified by #include.

5. Subsequent #includes that refer to files from the same location use the saved text from any
prologue/epilogue file found there.

8. Differences Between C++ on OpenVMS
IA-64 and OpenVMS x86-64
● The datatypes long, size_t, nullptr_t, ptrdiff_t are 64-bits wide on OpenVMS x86-64 but only 32-

bits wide on OpenVMS IA-64.

● The default size for pointers is 64 bits on OpenVMS x86-64 but only 32 bits on OpenVMS IA-64.
You can use the command-line option -pointer-size for Clang and /POINTER_SIZE
qualifier for CXX to change the default size of pointers.

● The compiler does not automatically upcase external names like all other OpenVMS compilers.
There is a -names command-line option for Clang and /NAMES qualifier for CXX and their default
is as_is.

● The compiler does not automatically truncate external names that are longer than 31 characters.
External names can be any length. There are symbol length limits in the LIBRARIAN and LINKER
options files, but in general, symbol lengths do not matter in LINKER. The /NAMES=TRUNCATED
option can be used to revert to the IA-64 C++ behavior.

● The compiler does not support passing non-trivial arguments with no corresponding parameter.

Example:

// Non-trivial type.
struct O {
 int a; int b; int c;

9

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

 ~O() {}
};

void hn(...) {}

int main()
{
 O o;
 hn(o);
 return 0;
}

In the example above, the C++ compiler will generate the error message similar to the following:

error: cannot pass object of non-trivial type 'O' through variadic
function; call will abort at runtime [-Wnon-pod-varargs]

You can suspend this error with -Wno-non-pod-varargs, but the program will abort at
runtime.

● Some well-known function calls may be optimized away.

Example:

#include <stdio.h>
#include <stdlib.h>
extern "C" {
 double ceil(double a) { printf("User defined\n"); return 0; }
}
int main() {
 printf("%f\n", ceil(5.6)); // user-defined won't be called, ceil call
 optimized out
 volatile double a;
 printf("%f\n", ceil(a));
 return 0;
}

In this case, Clang puts the result of the first ceil function call directly in the place where it is
called. And if first call never happens, you will get the next result.

Result:

6.000000
User defined
0.000000

● The x86-64 CXX command does not support comma-separated lists for source files, it only accepts
one source file at a time.

● #pragma required_pointer_size directive affects LIBCXX's allocating (not placement)
operator new behavior. The operator new allocates memory with a 32-bit or 64-bit address,
depending on the pragma option.

Example:

int main() {
 #pragma required_pointer_size short
 // here the operator new allocates 32bit address memory

10

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

 int* p1 = new int;
 delete p1;

 #pragma required_pointer_size long
 // here the operator new allocates 64bit address memory
 int* p2 = new int;
 delete p2;
}

● chf64$signal_array* thrown by LIB$SIGNAL call cannot be caught with the catch
block of the chf$64signal_array& param type. It can be caught directly with the
catch(chf$64signal_array*) or catch(...) block.

● The allocation of objects of std::string is now based on the current pointer size setting.
The default allocator for std::string will automatically change based on the current
/POINTER_SIZE or #pragma [required_]pointer_size setting. When the
pointer size is set to 32 bits, the object will be allocated in 32-bit memory to ensure that
std::string::c_str() and std::string::data() return valid 32-bit pointer values.

9. SYS$STARTUP:CXX$STARTUP.COM
Startup File
It contains commands that can be executed after the product install procedure has been run and at
startup to allow for the best compilation performance. You may want to invoke this command file from
your system's site-specific startup file. This command file does not have to be invoked for the correct
operation of VSI C++.

10. Known Issues
● long double

The long double data type is not fully supported yet.

● No machine code listing file generation. The ANALYZE/OBJECT/DISASSEMBLE command will
produce machine code with source line numbers. It does not show any static data or static constants.

● Still have some problems with 32-bit pointers.

Previously built and linked applications may have problems using the new versions of C++ RTLs
(LIBCXX and LIBCXXABI). Please report any issues related to 32/64-bit pointers.

● Calling std::cout.operator<< within global objects constructors brings to
%SYSTEM-F-ACCVIO when linked with static libraries CXX_STATIC.OLB and
CXXABI_STATIC.OLB.

● The overloading of global new/delete operators are currently not supported.

● Comma-separated list of source files is not supported by CXX, meaning you cannot compile multiple
files at once.

● If you have one or more files with the same name as the standard library header name, you must
specify their location with the -iquote option of Clang instead of the /INCLUDE qualifier to
avoid confusion.

Let's say the file is in current directory. Instead of specifying

11

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

$ CXX /INCLUDE=[] FOO.CXX

use

$ CXX /CLANG=("-iquote", "[]")

● If your C++ code calls LIB$FIND_IMAGE_SYMBOL or any other code that in turn calls
LIB$FIND_IMAGE_SYMBOL, you must link with /THREADS_ENABLE.

● The built-in functions are not fully supported yet for OpenVMS x86-64. Currently, only the
functions with the __ATOMIC_* and __PAL_* prefixes are supported.

__ATOMIC_ADD_LONG
__ATOMIC_ADD_LONG_RETRY
__ATOMIC_AND_LONG
__ATOMIC_AND_LONG_RETRY
__ATOMIC_OR_LONG
__ATOMIC_OR_LONG_RETRY
__ATOMIC_INCREMENT_LONG
__ATOMIC_INCREMENT_LONG_RETRY
__ATOMIC_DECREMENT_LONG
__ATOMIC_DECREMENT_LONG_RETRY
__ATOMIC_EXCH_LONG
__ATOMIC_EXCH_LONG_RETRY
__ATOMIC_ADD_QUAD
__ATOMIC_ADD_QUAD_RETRY
__ATOMIC_AND_QUAD
__ATOMIC_AND_QUAD_RETRY
__ATOMIC_OR_QUAD
__ATOMIC_OR_QUAD_RETRY
__ATOMIC_INCREMENT_QUAD
__ATOMIC_INCREMENT_QUAD_RETRY
__ATOMIC_DECREMENT_QUAD
__ATOMIC_DECREMENT_QUAD_RETRY
__ATOMIC_EXCH_QUAD
__ATOMIC_EXCH_QUAD_RETRY
__PAL_INSQHIL
__PAL_INSQTIL
__PAL_INSQUEL
__PAL_INSQUEL_D
__PAL_INSQHILR
__PAL_INSQTILR
__PAL_REMQHIL
__PAL_REMQTIL
__PAL_REMQUEL
__PAL_REMQUEL_D
__PAL_REMQHILR
__PAL_REMQTILR
__PAL_INSQHIQ
__PAL_INSQTIQ
__PAL_INSQUEQ
__PAL_INSQUEQ_D
__PAL_INSQHIQR

12

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

__PAL_INSQTIQR
__PAL_REMQHIQ
__PAL_REMQTIQ
__PAL_REMQUEQ
__PAL_REMQUEQ_D
__PAL_REMQHIQR
__PAL_REMQTIQR

Information for each group of newly supported built-in functions will be added here and in the
RELEASE_NOTES file of the OpenVMS x86-64 CXX kit.

● In some cases, the optimizer unexpectedly removes a user-defined operator delete(). This
optimizer bug has already been fixed in a currently unreleased version of the LLVM backend.
A future version of VSI C++ will include this newer LLVM. The workaround is to disable the
optimizer at compilation time.

Sample code:

$ type bug.cxx
 extern "C" int printf(const char *,...);
 class C {
 public:
 C() { throw "up"; }
 };

 void operator delete(void *ptr) throw()
 {
 printf("Called delete\n");
 }

 int main()
 {
 try {
 C *p = new C; // C() will throw exception, invoking delete
 }
 catch (...) { printf("Exception Caught\n"); }

 return 0;
 }

 $ CXX /OPT=(LEVEL=3) bug.cxx
 $ link bug
 $ run bug
 Exception Caught

 // But the expected output is:
 Called delete
 Exception Caught

● To be able to successfully use CXX NL: or CXX SYS$INPUT on ODS-5 disks, please set
DECC$RENAME_NO_INHERIT to 1.

$ define decc$rename_no_inherit 1

● std::string becomes std::string32 in contexts where the pointer size is 32 bits, and
these two types can be implicitly converted to each other. Still, these pointers and non-const
references for these types are not implicitly convertible.

13

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

Example:

#include <string>

#pragma required_pointer_size short
void foo32(std::string& str32);
void foo32const(const std::string& str32);
#pragma required_pointer_size long

void foo64(std::string& str64);
void foo64const(const std::string& str64);

int main () {
#pragma required_pointer_size short
 std::string str32 = "hello str32";
 std::string* str32p = &str32;
#pragma required_pointer_size long
 std::string str64 = "hello str64";
 std::string* str64p = &str64;

 str32 = str64; // Ok
 str64 = str32; // Ok
 foo32const(str64); // Ok
 foo64const(str32); // Ok

 str64p = str32p; //Failure
 str32p = str64p; //Failure
 foo32(str64); //Failure
 foo64(str32); //Failure

 return 0;
}

10.1. Using the Clang Command Line
Clang is sensitive to input file extensions. Clang is both a C and a C++ compiler. If you compile a file
with the ".C" extension, Clang enters "C mode". If you compile with the ".CPP" (or ".CXX") extension,
it will enter "C++ mode". In C-mode, C++ features and libs (even STL) are not available. But there is an
-x command-line option that can force Clang to switch to the specified language mode. The following
command will compile a.c as C++ code:

$ clang -x c++ a.c

The command-line options are also case-sensitive. However, due to the default parsing rules for upcasing
arguments in DCL, you will get errors such as:

$ clang except.cpp -Wall -I disk2:[000000]
 clang: error: unknown argument '-wall'; did you mean '-Wall'?
 clang: error: unknown argument: '-i'

The issue here is that DCL with traditional parsing will upcase all the arguments and then the CRTL will
downcase all the arguments. You can prevent DCL from upcasing by using double-quotes on the -Wall
and -I command-line options.

Alternatively, you can prevent DCL from upcasing and CRTL from downcasing with these definitions
(you can put them in your LOGIN.COM):

14

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

$ set process /parse=extended
$ define/nolog DECC$ARGV_PARSE_STYLE ENABLE
$ define/nolog DECC$EFS_CASE_PRESERVE ENABLE
$ define/nolog DECC$EFS_CHARSET ENABLE

Note, however, that these changes may impact other OpenVMS commands and programs.

Clang accepts multiple source files in one command line. For example:

$ clang a.cpp b.cpp

11. Supported and Not Supported DCL
Qualifiers
The following table shows the current set of supported DCL qualifiers. Support for the remaining
qualifiers will be added in a future release.

Qualifier Ignored Supported

/VERSION - +
/CLANG - +
/COMMENTS - +
/DEFINE - +
/DEBUG - +
/ERROR_LIMIT - +
/EXCEPTIONS - +
/FIRST_INCLUDE - +
/INCLUDE_DIRECTORY - +
/LIBRARY - +
/LIST - +
/L_DOUBLE_SIZE - +
/MEMBER_ALIGNMENT - +
/NAMES - +
/OBJECT - +
/OPTIMIZE - +
/POINTER_SIZE - +
/PREPROCESS_ONLY - +
/RTTI - +
/SHOW - +
/STANDARD - +
/UNDEFINE - +
/WARNINGS - +
/NESTED_INCLUDE_DIRECTORY - +
/VERBOSE - +
/EXTERN_MODEL - +

15

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

Qualifier Ignored Supported

/MMS_DEPENDENCIES + +
/BREAKPOINTS + -
/GEMDEBUG + -
/DUMPS + -
/SWITCHES + -
/TRACEPOINTS + -
/ANSI_ALIAS + -
/ARCHITECHTURE + -
/ASSUME + -
/BE_DUMPS + -
/CHECK + -
/DIAGNOSTICS + -
/FLOAT + -
/G_FLOAT + -
/IMPLICIT_INCLUDE + -
/ENDIAN + -
/EXPORT_SYMBOLS + -
/GRANULARITY + -
/IEEE_MODE + -
/INSTRUCTION_SET + -
/LINE_DIRECTIVE + -
/LOOKUP + -
/MACHINE_CODE + -
/MAIN + -
/OS_VERSION + -
/PENDING_INSTANTIATIONS + -
/PREFIX_LIBRARY_ENTRIES + -
/PSECT_MODEL + -
/PURE_CNAME + -
/USING_STD + -
/DISTINGUISH_NESTED_ENUMS + -
/ALTERNATIV_TOKENS + -
/QUIET + -
/REPOSITORY + -
/REENTRANCY + -
/ROUNDING_MODE + -
/SHARE_GLOBALS + -
/MODEL + -

16

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

Qualifier Ignored Supported

/STACK_CHECK + -
/TEMPLATE_DEFINE + -
/UNSIGNED_CHAR + -
/XREF + -
/FE_DUMP + -
/BOTH_CASE + -

12. Using Clang Command Options from DCL
Command Line
A new qualifier has been added that allows you to pass the Clang command-line options when there is
no equivalent DCL qualifier.

/CLANG=(quoted_string[,...])

This qualifier takes Clang options and passes them to the Clang driver. It is important to specify them in
double quotes and separate them with a comma.

Instead of

 CXX /CLANG=(-Wall, "-D__macro1 -D__MACRO2") foo.cxx

specify

 CXX /CLANG=("-Wall", "-D__macro1", "-D__MACRO2") foo.cxx

13. Mapping Clang Command Options to DCL
Command Options
This section shows Clang options that are similar to CXX DCL qualifiers.

/DEFINE

-D flag, so /DEFINE=TRUE becomes -DTRUE which results to #define TRUE 1.

/INCLUDE_DIRECTORY

-I <directory> – add directory to include search path.

The compiler is extended to support files lookup at predefined logicals locations.

Example:

// DISK:[SOURCES]INC.CPP
#include <SYS/INC.HPP>
int main()
{
 f();
}

17

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

// DISK:[HEADERS]INC.HPP
void f() {};

To compile INC.CPP, it is enough to define the corresponding SYS logical:

$ DEFINE SYS DISK:[HEADERS]

And then compile INC.CPP:

$ SET DEF DISK:[SOURCES]
$ CXX INC.CPP

The CXX$SYSTEM_INCLUDE, CXX$LIBRARY_INCLUDE, and CXX$USER_INCLUDE
logical names are supported.

If some of them are defined, then the compiler will also do the header search in the directories
mentioned by the logicals in the same order as listed above.

Note that CXX$USER_INCLUDE will also impact angle-bracket include directives, which is NOT
the same behavior as in IA-64 CXX. The /ASSUME qualifier is not supported yet.

/POINTER_SIZE, /NOPOINTER_SIZE

-no-pointer-size

● Disables processing of #pragma pointer_size

● Predefines the preprocessor macro __INITIAL_POINTER_SIZE to 0

● Note, that the initial default pointer size is 64-bit

On Alpha and IA-64, /NOPOINTER_SIZE instructs the compiler to assume that all pointers are
32-bit pointers.

-pointer-size={long|short|64|32|argv64}

● argv64 means:

○ The main argument argv will be an array of 64-bit pointers. The default is an array of 32-
bit pointers.

○ Enables processing of #pragma pointer_size

○ Sets the initial default pointer size to 64-bit for translation unit

○ Predefines the preprocessor macro __INITIAL_POINTER_SIZE to 64

● long or 64 means:

○ Enables processing of #pragma pointer_size

○ Sets the initial default pointer size to 64-bit for translation unit

○ Predefines the preprocessor macro __INITIAL_POINTER_SIZE to 64

● short or 32 means:

○ Enables processing of #pragma pointer_size

18

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

○ Sets the initial default pointer size to 32-bit for translation unit

○ Predefines the preprocessor macro __INITIAL_POINTER_SIZE to 32

The default is -no-pointer-size option.

/NAMES=(UPPERCASE,AS_IS)

-names={uppercase|as_is} option.

This option controls the conversion of external symbols to the specified case. Two possible options
are uppercase and as_is:

● uppercase – uppercases all external symbols in translation unit.

● as_is – leaves them as they are. This is default.

/NAMES=(TRUNCATED,SHORTENDED)

-names2={truncated|shortened} option.

This option controls whether the external names longer than 31 characters get truncated or
shortened. Two possible options are:

● truncated – Truncates long external names to first 31 characters.

● shortened – shortens long external names.

A shortened name consists of the first 23 characters of the name followed by a 7-character Cyclic
Redundancy Check (CRC), computed by looking at the full name and then the dollar sign ("$").

By default, external names can be of any length. IA-64 C++ defaults to /NAMES=TRUNCATED.

/[NO]MEMBER_ALIGNMENT

-[no-]member-alignment

Clang is extended to support the -[no-]member-alignment command-line option. It
directs the compiler to align the data structure members naturally. This means that the data
structure members are aligned on the next boundary appropriate to the type of the member,
rather than on the next byte. For instance, a long variable member is aligned on the next longword
boundary; a short variable member is aligned on the next word boundary. Any use of the
#pragma member_alignment or #pragma nomember_alignment directives within
the source code overrides the setting established by this qualifier.

Specifying -no-member-alignment causes the data structure members to be byte-aligned
(with the exception of bit-field members).

/PENDING_INSTANTIATIONS

-ftemplate-depth=n, sets the maximum instantiation depth for template classes to n.

/EXTERN_MODEL

The /EXTERN_MODEL qualifier takes the following options (the meaning is the same as for the
#pragma extern_model directive):

19

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

COMMON_BLOCK
RELAXED_REFDEF (D)
STRICT_REFDEF=["NAME"]
GLOBALVALUE

Clang is extended to support the -extern-model=option command-line option. Options are
the same as for CXX, by default Clang does not set any extern model.

/LIBRARY

-text-library=<TEXT_LIBRARY_PATH>

Clang's option to add text library to include search path.

/LIST

-listing-file=<LISTING_FILENAME>

The Clang option to provide the listing filename. Clang does not add extension by default.

/L_DOUBLE_SIZE
/L_DOUBLE_SIZE=128 (D)
/L_DOUBLE_SIZE=option

Determines how the compiler interprets the long double type. The qualifier options are 64 and 128.

/L_DOUBLE_SIZE for Clang is analogous to -mlong-double-[128,64,80]. 80 is
supported by Clang, but OpenVMS does not support 80 bit long double size.

/STANDARD
/STANDARD=(option)
/STANDARD=RELAXED (D)

The following new keywords are added to explicitly specify C++ standards: CXX98, GNU98,
CXX03, GNU03, CXX11, GNU11, CXX14, GNU14.

Example:

● /STANDARD=CXX03 is translated to --std=c++03

● /STANDARD=GNU03 is translated to --std=gnu++03

The value LATEST is equivalent to STRICT_ANSI, which is equivalent to CXX98. The default
standard for CXX is set to GNU98. The equivalent Clang option is -std=<value> - language
standard to compile for.

/ARCHITECTURE=option

Determines the processor instruction set to be used by the compiler. Select one of the
/ARCHITECTURE qualifier options shown below.

X86=option Similar to Clang's -march option.

For example:

$ cxx /arch=x86="skylake" hw.cxx

GENERIC Ignored.

20

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

HOST Ignored.
ITANIUM2 Ignored.
EV4 Ignored.
EV5 Ignored.
EV56 Ignored.
PCA56 Ignored.
EV6 Ignored.
EV68 Ignored.
EV7 Ignored.

/NESTED_INCLUDE_DIRECTORY
/NESTED_INCLUDE_DIRECTORY[=option]
/NESTED_INCLUDE_DIRECTORY=INCLUDE_FILE (D)

Controls the first step in the search algorithm the compiler uses when looking for files included
using the quoted form of the #include preprocessing directive: #include "file-spec".
The /NESTED_INCLUDE_DIRECTORY qualifier has the following options:

Option Usage

PRIMARY_FILE Directs the compiler to search the default
file type for headers using the context of the
primary source file. This means that only the
file type (".H" or ".") is used for the default
file-spec but, in addition, the chain of "related
file-specs" used to maintain the sticky defaults
for processing the next top-level source file is
applied when searching for the include file. This
is not supported for x86-64.

INCLUDE_FILE Directs the compiler to search the directory
containing the file in which the #include
directive occurred. The meaning of "directory
containing" is: the RMS "resultant string"
obtained when the file in which #include
occurred was opened, except that the filename
and subsequent components are replaced by the
default file type for headers (".H", or just "." if
/ASSUME=NOHEADER_TYPE_DEFAULT
is in effect, /ASSUME is not supported for
x86-64).

The "resultant string" will not have translated
any concealed device logical.

NONE Directs the compiler to skip the first step of
processing #include "file.h" directives.
The compiler starts its search for the include file
in the /INCLUDE_DIRECTORY directories.

For more information on the search order for included files, see the /INCLUDE_DIRECTORY
qualifier.

21

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

/FIRST_INCLUDE

-include <file> – include file before parsing.

/UNDEFINE

-U <macro> – undefine macro <macro>.

/LINE_DIRECTIVES

-P – disable linemarker output in preprocessing mode.

/UNSIGNED_CHAR

For the compiler, /UNSIGNED_CHAR is respective to:

● -fno-signed-char – char is unsigned.

● -fsigned-char – char is signed.

/COMMENTS

-C – includes comments in preprocessed output.

/ERROR_LIMIT
/ERROR_LIMIT[=number]
/NOERROR_LIMIT

Limits the number of error-level diagnostic messages that are acceptable during program
compilation. Compilation terminates when the limit (number) is exceeded. /NOERROR_LIMIT
specifies that there is no limit on error messages. The default is /ERROR_LIMIT=20, which
specifies that compilation terminates after issuing 20 error messages.

-ferror-limit=n – stops emitting diagnostics after n errors have been produced.

/OBJECT

-o <file> – writes output to the file. Default object file has .OBJ extension.

/PREPROCESS_ONLY

-E – only run the preprocessor.

/RTTI
/RTTI (D)
/NORTTI

Enables or disables support for RTTI (runtime type identification) features: dynamic_cast and
typeid. Disabling runtime type identification can also save space in your object file because static
information to describe polymorphic C++ types is not generated. The default is to enable runtime
type information features and generate static information in the object file. The /RTTI qualifier
defines the macro __RTTI. Note that specifying /NORTTI does not disable exception handling.

Clang has similar options:

-fno-rtti – disable generation of rtti information.

-frtti – enable generation of rtti information (default).

22

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

Clang does not define the __RTTI macro.

/SHOW
/SHOW=(option[,...])
/SHOW=(HEADER,SOURCE) (D)

Used with the /LIST qualifier to set or cancel specific listing options. You can select the following
options:

Option Usage

ALL Print all listing information.
[NO]HEADER Print/do not print header lines at the top of each

page (D = HEADER)
[NO]INCLUDE Print/do not print contents of #include files

(D = NOINCLUDE)
NONE Print no listing information
[NO]SOURCE Print/do not print source file statements

(D = SOURCE)
[NO]EXPANSION Expand preprocessor #if and #elif macros
[NO]STATISTIC Ignored

Clang's corresponding options are:

● -show-header

● -show-include

● -show-source

● -show-expansion

There are no equivalent -show options that correspond to the /SHOW=NOHEADER or
/SHOW=NOSOURCE. None of these options are enabled by default for Clang.

/WARNINGS
/WARNINGS[=(option[,...])]
/WARNINGS (D)
/NOWARNINGS

Controls the issuance of compiler diagnostic messages and lets you modify the severity of messages.

The default qualifier, /WARNINGS, outputs all enabled warnings. The /NOWARNINGS qualifier
suppresses warning messages.

The message-list in the following table of options can be any one of the following:

● A single message identifier in double quotes (within parentheses, or not).

● A comma-separated list of message identifiers in double quotes, enclosed in parentheses.

● The keyword "all".

The options are processed and take effect in the following order:

23

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

NOWARNINGS Suppresses warnings. Similar to Clang's -w
option.

NOINFORMATIONALS Has no effect.
ENABLE=message-list Enables issuance of the specified messages.

Can be used to enable specific messages that
normally would not be issued when messages
disabled with /WARNINGS=DISABLE. Specify
all to enable all warnings.

DISABLE=message-list Similar to Clang's -W<warning> option.
Disables issuance of the specified messages.
Specify all to suppress all warnings. Similar to
Clang's -Wno-<warning> option.

INFORMATIONALS=message- list Has no effect.
WARNINGS=message-list Don't error out on the specified warnings.

Similar to Clang's -Wno-error=<warning>
option.

[NO]ANSI_ERRORS Has no effect.
[NO]TAGS Has no effect.
ERRORS=message-list Sets the severity of the specified

messages to Error. Similar to Clang's
-Werror=<warning> option.

Important

CXX uses Clang message IDs. For example, if Clang issues a warning such as:

warning: non-void function does not return a value [-Wreturn-type]

The ID of the message is return-type.

All message IDs should be given to CXX as they are in double quotes to preserve the case. This is
true for the keyword all as well.

There is a list of warnings in Clang that are turned off by default and are enabled
with their specific ID or with the keyword all. The VMS-specific warning
cast from long pointer to short pointer will lose data is off by default.
It can be enabled with the ID may-lose-data or with all.

/EXCEPTIONS

-fexceptions – enable support for exception handling.

-fno-exceptions – disable support for exception handling.

/OPTIMIZE[=option]
/OPTIMIZE=(LEVEL=n)
/NOOPTIMIZE (D)

LEVEL=n – Selects the level of code optimization. Specify an integer from 0 (no optimization) to 5
(full optimization). Similar to Clang's -On option, where n=[0,4] and LEVEL=5 is translated to
-Ofast.

24

VSI C++ V10.1-2 for OpenVMS x86-64 Release Notes

[NO]INLINE – Similar to Clang's -finline/-fno-inline options.

Clang's options:

-O0, -O1, -O2, -O3, -Ofast, -Os, -Oz, -Og, -O, -O4

-O0 Means "no optimization": this level compiles the fastest and generates
the most debuggable code.

-O1 Somewhere between `-O0` and `-O2`.
-O2 Moderate level of optimization which enables most optimizations.
-O3 Like `-O2`, except that it enables optimizations that take longer to

perform or that may generate larger code (in an attempt to make the
program run faster).

-Ofast Enables all the optimizations from `-O3` along with other aggressive
optimizations that may violate strict compliance with language
standards.

-Os Like `-O2` with extra optimizations to reduce code size.
-Oz Like `-Os` (and thus `-O2`), but reduces code size further.
-Og Like `-O1`. In future versions, this option migh disable different

optimizations in order to improve debuggability.
-O Equivalent to `-O2`.
-O4 and higher Currently equivalent to `-O3`

/VERBOSE

With this qualifier, the driver first prints out the fully generated command line which is going to
Clang, and then runs the compiler.

/PREFIX_LIBRARY_ENTRIES

Only the /NOPREFIX_LIBRARY_ENTRIES option of this qualifier has an effect. Clang similar
option for that option is -noprefix-lib-entries. Other options of this qualifier have no
effect on OpenVMS x86-64.

14. Threads and Thread-Local Variables
OpenVMS does not currently support the thread_local/__thread/_Thread_local
declaration specifiers provided by the Clang compiler. As an alternative, use the POSIX API functions,
such as pthread_key_create, pthread_setspecific, pthread_getspecific, or
pthread_key_delete.

15. Online Clang Documentation
The full documentation about the Clang compiler is available at the links below:

https://releases.llvm.org/10.0.0/tools/clang/docs/index.html
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangCommandLineReference.html

25

https://releases.llvm.org/10.0.0/tools/clang/docs/index.html
https://releases.llvm.org/10.0.0/tools/clang/docs/ClangCommandLineReference.html

	VSI C++ V10.1-2 for OpenVMS x86-64
	Table of Contents
	1. Kit Name
	2. Kit Description
	3. Version(s) of VSI OpenVMS to Which This Kit May Be Applied
	4. Changes from Prior Compilers
	5. OpenVMS-Specific Pragmas
	6. TLB And Headers
	7. Prologue/Epilogue Files
	7.1. Using Prologue/Epilogue Files

	8. Differences Between C++ on OpenVMS IA-64 and OpenVMS x86-64
	9. SYS$STARTUP:CXX$STARTUP.COM Startup File
	10. Known Issues
	10.1. Using the Clang Command Line

	11. Supported and Not Supported DCL Qualifiers
	12. Using Clang Command Options from DCL Command Line
	13. Mapping Clang Command Options to DCL Command Options
	14. Threads and Thread-Local Variables
	15. Online Clang Documentation

