
VSI OpenVMS

VSI DECforms
Guide to Converting FMS Applications

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: DECforms Version 4.0

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI DECforms Guide to Converting FMS Applications

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Motif is a registered trademark of The Open Group.

Oracle is a registered trademark of Oracle and/or its affiliates.

PostScript is a registered trademark of Adobe Systems, Incorporated

ii

VSI DECforms Guide to Converting FMS Applications

Table of Contents
Preface ... vii

1. About VSI .. vii
2. Intended Audience ... vii
3. Document Structure ... vii
4. Associated Documents .. viii
5. OpenVMS Documentation .. viii
6. VSI Encourages Your Comments ... viii
7. Conventions ... ix

Chapter 1. Introduction to Converting FMS Applications .. 1
1.1. What Features Are Available in DECforms? ... 1

1.1.1. Device-Independent Programs ... 1
1.1.2. Sophisticated Screen Control ... 1
1.1.3. Ability to Move Between Active Panels Without Returning to the Program 2
1.1.4. Beneficial Help Model .. 2
1.1.5. Program Subroutine Calls in the Form ... 2

1.2. Capabilities and Limitations of the FMS Converter .. 2
1.3. Steps in the Conversion Process ... 3

Chapter 2. DECforms Concepts for FMS Users .. 5
2.1. The DECforms Application ... 5

2.1.1. What's in a Form? ... 5
2.1.1.1. Form Data .. 6
2.1.1.2. Form Records ... 7
2.1.1.3. Layouts ... 7
2.1.1.4. Functions .. 7
2.1.1.5. Viewports ... 8
2.1.1.6. Panels ... 8
2.1.1.7. Text Literals .. 8
2.1.1.8. Panel Fields .. 8
2.1.1.9. Responses ... 9

2.1.2. Elements of the Program .. 9
2.1.2.1. FORMS$ENABLE Request Call ... 10
2.1.2.2. FORMS$SEND Request Call .. 10
2.1.2.3. FORMS$RECEIVE Request Call .. 10
2.1.2.4. FORMS$TRANSCEIVE Request Call ... 10
2.1.2.5. FORMS$CANCEL Request Call ... 11
2.1.2.6. FORMS$DISABLE Request Call .. 11
2.1.2.7. Escape Routines .. 11

2.2. Introduction to the Form Manager .. 11
2.2.1. Response to Request Calls ... 12
2.2.2. Control of the Display .. 12
2.2.3. Control of Operator Input ... 13
2.2.4. Data Manipulation .. 14

2.3. Introduction to the IFDL ... 14
Chapter 3. Converting Your Form or Form Library .. 17

3.1. Preparing Your FMS Form or Form Library for Conversion ... 17
3.2. Invoking the FMS Converter .. 17
3.3. Merging the Output from Several FMS Forms ... 18
3.4. Modifying the Converted IFDL Source File .. 22

iii

VSI DECforms Guide to Converting FMS Applications

3.4.1. Renaming Panel Fields and Form Data Items .. 22
3.4.2. Examining Form Data Items Created from Named Data 23
3.4.3. Declaring Form Records ... 23
3.4.4. Modifying Help Syntax ... 25

3.4.4.1. Conversion of FMS Help Messages ... 25
3.4.4.2. Conversion of FMS Help Panels ... 25
3.4.4.3. Modifying the USE HELP PANEL Clause Created by the FMS
Converter .. 26
3.4.4.4. Emulating Pre-Help and Post-Help UARs .. 26

3.5. Optimizing the Converted IFDL Source File ... 26
3.5.1. Form Data Item Data Types .. 27
3.5.2. Form Record Field and Program Record Field Data Types 28
3.5.3. Reordering Panel Fields .. 29
3.5.4. Rewriting Responses that Call UARs ... 30

Chapter 4. Modifying Your Program ... 31
4.1. Removing Form Driver Calls ... 31

4.1.1. The AFCX Call ... 31
4.1.2. The CLEAR_VA and FIX_SCREEN Calls ... 31
4.1.3. The DEL and READ Calls ... 32
4.1.4. The FCHAN and TCHAN Calls .. 32
4.1.5. The LEDON and LEDOF Calls ... 32
4.1.6. The RETFO and RETLE Calls .. 32
4.1.7. The SCR_LENGTH and SCR_WIDTH Calls ... 32
4.1.8. The SSRV and STAT Calls ... 33

4.2. Changing Form Driver Calls to DECforms Calls .. 33
4.2.1. DECforms Call Parameters ... 34
4.2.2. Opening the Form Environment .. 36
4.2.3. Sending Data to the Form ... 37
4.2.4. Getting Data from the Form ... 40
4.2.5. Canceling Requests ... 42
4.2.6. Closing the Form Environment .. 43

4.3. Moving the Logic for Form Driver Calls to the Form ... 44
4.3.1. Altering Field Video Attributes ... 45
4.3.2. Assigning Default Values to Fields ... 46
4.3.3. Clearing the Screen .. 47
4.3.4. Controlling Output to and Input from a Terminal Line ... 47
4.3.5. Controlling Supervisor Mode ... 49
4.3.6. Defining the Decimal Point as Comma .. 50
4.3.7. Defining Keys .. 50
4.3.8. Determining Form Context ... 51
4.3.9. Displaying Forms ... 52

4.3.9.1. Terminal Width Determination ... 52
4.3.9.2. Panel Overlays .. 52
4.3.9.3. Getting the Effect of the DISP and DISPW Calls 53
4.3.9.4. Getting the Effect of the CDISP Call ... 53

4.3.10. Marking Forms as Undisplayed .. 54
4.3.11. Modifying the Keypad Mode ... 56
4.3.12. Printing Forms ... 56
4.3.13. Processing Field Terminators ... 57
4.3.14. Refreshing the Screen ... 58
4.3.15. Refreshing a Shared Screen ... 59
4.3.16. Returning Data from the Form Workspace .. 61

iv

VSI DECforms Guide to Converting FMS Applications

4.3.17. Returning Named Data by Index and Name .. 62
4.3.18. Setting the Current Workspace .. 63
4.3.19. Signaling the Operator .. 64
4.3.20. Trapping Illegal Field Terminators ... 65
4.3.21. Waiting for the Operator ... 65

4.4. Running and Debugging the Converted DECforms Application .. 65
Chapter 5. Converting the FMS Sample Application .. 67

5.1. Preparing to Convert the FMS Sample Application .. 67
5.2. Invoking the FMS Converter .. 68
5.3. Modifying the Converted IFDL Source File .. 68

5.3.1. Modifying Form Data Items .. 68
5.3.2. Renaming Panel Fields ... 72
5.3.3. Adding Record Declarations .. 74
5.3.4. Modifying the Help Syntax ... 85

5.4. Rewriting the Application Program ... 87
5.4.1. Converting the SAMP Program ... 87

5.4.1.1. Converting the Working-Storage Section .. 87
5.4.1.2. Converting the Procedure Division .. 91

5.4.2. Converting FMS Status Checking .. 94
5.4.3. Converting the INACCT Subprogram ... 95
5.4.4. Converting the FMTCHK Subprogram ... 97
5.4.5. Converting the MENU Subprogram ... 98
5.4.6. Converting the WRITCH Subprogram .. 102
5.4.7. Converting the ONECHK Subprogram ... 104
5.4.8. Converting the ENDCHK and PRICHK Subprograms 117
5.4.9. Writing Escape Routines to Maintain a Balance, Summary Total, and Check
Number ... 117
5.4.10. Converting the MAKDEP Subprogram ... 119
5.4.11. Converting the VUEREG Subprogram .. 126
5.4.12. Converting the VUEACT Subprogram .. 130

5.5. Compiling, Linking, and Running the Converted Application ... 135
Chapter 6. Creating and Modifying Forms .. 137

6.1. Invoking the FDE and the Panel Editor .. 137
6.2. Using FMS Form Phase Features in DECforms ... 139

6.2.1. Assigning a Panel Name ... 140
6.2.2. Associating a Help Panel with Another Panel .. 141
6.2.3. Assigning Background Color ... 141
6.2.4. Assigning the Terminal Width ... 141
6.2.5. Assigning a Character Set to the Panel ... 142
6.2.6. Creating a Viewport to Control Clearing the Screen ... 142
6.2.7. Applying Active Highlight to Fields ... 142
6.2.8. Calling Escape Routines to Emulate Pre-Help, Post-Help, and Function Key
UARs .. 143

6.2.8.1. Getting the Effect of Pre-Help and Post-Help UARs 143
6.2.8.2. Getting the Effect of an Undefined Function Key UAR 144

6.2.9. Assigning Default Attributes to All New Fields ... 144
6.3. Using FMS Layout Phase Features in DECforms ... 147

6.3.1. Creating Panel Fields and Applying Field Defaults ... 147
6.3.2. Creating Text Literals ... 148
6.3.3. Drawing Points, Lines, Rectangles, and Polylines ... 148
6.3.4. Applying Display Attributes to Fields and Literals ... 149

v

VSI DECforms Guide to Converting FMS Applications

6.3.5. Creating Date and Time Fields and Adjacent Fields ... 149
6.3.6. Creating Groups ... 150

6.4. Using FMS Assign Phase Features in DECforms .. 150
6.4.1. Specifying Help for Fields ... 150
6.4.2. Assigning Field Attributes and Field Validators ... 151
6.4.3. DECforms Field Picture Characters .. 154
6.4.4. Emulating Field Completion UARs .. 157

6.5. Using FMS Order Phase Features in DECforms ... 159
6.6. Using FMS Test Phase Features in DECforms ... 160

Chapter 7. Using Advanced DECforms Features ... 161
7.1. Defining Keys ... 161

7.1.1. Binding Functions to Keys .. 161
7.1.2. Writing Function Responses .. 162

7.2. Moving Between Panels ... 164
7.3. Providing Help for Operators ... 166

7.3.1. Creating Help Messages .. 167
7.3.2. Creating Help Panels .. 168

7.4. Displaying Arrays .. 170
7.4.1. Storing Array Data in the Form ... 170
7.4.2. Displaying Data Stored in Form Data Groups ... 171
7.4.3. Activating Panel Groups for Input .. 174
7.4.4. Passing Group Data Between the Program and Form ... 175

7.5. Creating Scrolled Regions .. 177
7.5.1. Displaying Scrolled Data ... 177
7.5.2. Setting Up the Operator's Control of a Scrolled Region 179

7.6. Determining What Changed During Operator Input ... 180
7.6.1. Tracking Form Data Items .. 180
7.6.2. Using Receive Shadow Records ... 181

7.7. Using Escape Routines .. 182
7.7.1. Writing a Program That Uses Escape Routines ... 182
7.7.2. Writing Responses That Call Escape Routines ... 183
7.7.3. Linking Applications That Use Escape Routines .. 184

Appendix A. Comparison of FMS Form Language Statements and DECforms IFDL
Statements ... 185
Appendix B. FMS Call Conversion Summary ... 187
Appendix C. Comments Created by the FMS Converter .. 193

vi

Preface
This manual describes how to convert VAX Forms Management System(VAX FMS) and DEC Forms
Management System (DEC FMS)applications to DECforms applications. It explains some of the
differences between FMS and DECforms; describes how to run the FMS Converter, which is an
automated conversion utility provided with DECforms; and explains how to modify output from the
FMS Converter to create a working application.

This manual refers to products using shortened versions of their names. The following lists the product
names used in this manual:

● VSI DECforms software is called DECforms.

● VAX FMS software and DEC FMS software are called FMS.

● Oracle CDD/Plus software is called CDD/Plus.

● VSI Graphical Kernel System software is called VSI GKS.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is intended for programmers who want to convert their existing FMS applications to
DECforms applications. FMS Converter is available only for Alpha and not for I64. Readers of this
manual are expected to understand the concepts of FMS and to be familiar with using that product.

3. Document Structure
This manual has seven chapters and three appendixes.

Chapter 1, "Introduction to Converting FMS
Applications"

Provides an overview of converting FMS
applications to DECforms.

Chapter 2, "DECforms Concepts for FMS Users" Explains DECforms concepts by comparing and
contrasting them with FMS concepts.

Chapter 3, "Converting Your Form or Form
Library"

Explains how to use the FMS Converter and how
to modify the output from the Converter.

Chapter 4, "Modifying Your Program" Explains how to modify your program and run
your converted application.

Chapter 5, "Converting the FMS Sample
Application"

Describes converting the sample FMS application
to DECforms.

Chapter 6, "Creating and Modifying Forms" Explains how to use the DECforms Form
Development Environment (FDE) and Panel Editor
to perform the tasks you perform using the FMS
Form Editor.

Chapter 7, "Using Advanced DECforms Features" Explains how to use advanced DECforms features.

vii

Preface

Appendix A, "Comparison of FMS Form Language
Statements and DECforms IFDL Statements"

Compares FMS Form Language statements
to DECforms Independent Form Description
Language (IFDL) statements.

Appendix B, "FMS Call Conversion Summary" Summarizes converting each FMS call to
DECforms.

Appendix C, "Comments Created by the FMS
Converter"

Explains the messages the FMS Converter writes
to the output IFDL source file in the form of IFDL
comments.

4. Associated Documents
See the online help, the online release notes, and the following documents for more information about
DECforms:

● VSI DECforms Installation Guide for OpenVMS Systems—Describes how to install DECforms
software on processors that are running the OpenVMS operating system.

● VSI DECforms IFDL Reference Manual—Describes the syntax of the DECforms Independent Form
Description Language.

● VSI DECforms Style Guide for Character-Cell Devices—Describes how to develop user interfaces for
character-cell terminals.

● VSI DECforms Programmer's Reference Manual—Describes how DECforms software operates at run
time and how to call the DECforms requests from an application program.

● VSI DECforms Guide to Developing an Application—Part I explains to the beginning DECforms
programmer how to create a DECforms application, including both the form and the program. Part II
contains additional guidelines and examples for more experienced DECforms programmers.

● VSI DECforms Guide to Demonstration Forms and Applications—Describes how to use various
demonstration forms and applications. This guide is contained in online files named forms
$demo_guide.txt and forms$demo_guide.ps in the FORMS$EXAMPLES directory. If you cannot
find this document, ask your system manager to install it in the appropriate directory.

For information about displaying these forms, see the VSI DECforms Guide to Developing an
Application.

For further information on other topics covered in this guide, see the following:

● Oracle CDD/Repository documentation set for information on Oracle CDD/Repository definitions

● ISO IS 11730:1994 for information on the standard of which DECforms is an implementation (see
the Acknowledgment section)

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have

viii

https://docs.vmssoftware.com

Preface

VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Conventions
The following conventions may be used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

... A horizontal ellipsis in examples indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and

ix

Preface

Convention Meaning
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

x

Chapter 1. Introduction to
Converting FMS Applications
The FMS Converter is a software tool for converting forms created for VAX FMS and DEC FMS
(Forms Management System) to forms suitable for use with DECforms. It accepts an FMS form or form
library as input and writes a DECforms source file as output. The FMS Converter does not convert your
application program, so you must modify your program to use DECforms instead of FMS.

This chapter introduces you to the conversion process by providing the following information:

● An overview of important DECforms features that you may want your application to use

● A description of the capabilities and limitations of the Converter

● A list of steps in the conversion process

1.1. What Features Are Available in
DECforms?
In addition to providing many of the features of FMS, DECforms provides new features. The sections
that follow give an overview of these five DECforms features:

● Device-independent programs

● Sophisticated screen control

● Ability to move between active panels without returning to the program

● Beneficial help model

● Program subroutine calls in the form

1.1.1. Device-Independent Programs
One of the most important features provided by DECforms is that it makes your application program
device-independent. No application program written for a DECforms application needs to be rewritten to
support new devices. This feature of DECforms helps reduce the cost of maintaining your application.

1.1.2. Sophisticated Screen Control
DECforms offers sophisticated screen control capabilities. For example, you can overlap objects on
the display and conceal or reveal the contents of a field depending on the value of a variable. You can
display different information for novice operators than for experienced operators. You control whether
field contents are concealed and whether novice information is displayed in the form, instead of in the
program.

1

Chapter 1. Introduction to Converting FMS Applications

1.1.3. Ability to Move Between Active Panels Without
Returning to the Program
You can get operator input to a number of panels (a panel is similar to an FMS form) without returning
control to the program. You can also display more than one panel at a time. You determine how and
when the panels are displayed with statements you specify in the form.

1.1.4. Beneficial Help Model
DECforms provides a beneficial model for providing online help to your operators. You can provide
help when the operator asks for it, as you can in FMS, and you can provide help that is displayed
automatically. DECforms can display help automatically before the operator begins a task to provide
the operator with hints on completing the task. This type of help can increase the productivity of your
operators.

1.1.5. Program Subroutine Calls in the Form
You can call a program subroutine from your form during form processing. (During form processing
DECforms uses the form to control the display, control operator input, validate data and pass data
between the form and program.) This capability is similar to that provided by VAX FMS user
action routines (UARs). The ability to call program subroutines allows you to perform such tasks as
mathematical calculations and database updates between, for example, the operator ending input in one
field and beginning input in the next field. You can also call a subroutine at several other points during
form processing.

1.2. Capabilities and Limitations of the FMS
Converter
The FMS Converter accepts an FMS Version 2.0 or higher form or form library as input. It converts
the appearance-related syntax in the FMS form or form library to DECforms syntax. Figure 1.1, "The
Automated Conversion Process" illustrates the automated conversion process.

Figure 1.1. The Automated Conversion Process

In most cases, FMS syntax corresponds to DECforms syntax, so the Converter output contains complete
and correct form-appearance syntax. However, a form in DECforms contains more processing code
than an FMS form, so you may need to add form processing code to the converted form. (The form
processing code you add replaces form processing done by the FMS application program.) Also, data
transfer in DECforms is done on a record-by-record basis, so you must declare records in your form and
program transfer data.

2

Chapter 1. Introduction to Converting FMS Applications

The FMS Converter cannot create DECforms syntax to call your FMS pre-help and post-help UARs.
If you want to call a program subroutine during help processing, you must add DECforms syntax to the
Converter output. Section 6.2.8, "Calling Escape Routines to Emulate Pre-Help, Post-Help, and Function
Key UARs" describes the DECforms syntax to add. The FMS Converter creates DECforms syntax to call
other UARs you use in your FMS application. See Section 7.7, "Using Escape Routines" for information
on calling program subroutines in a DECforms application.

Because the FMS Converter accepts only your form or form library as input, it does not convert your
program. You must modify your program manually during the conversion process. When you modify
your program, you move much of the form processing logic out of the program and into the form.
Chapter 4, "Modifying Your Program" provides you with guidelines to make this process easier.

You should use the FMS Converter to help you convert your application,even if you want to change the
appearance of your forms. Output from the Converter gives you a good place to start for developing a
DECforms application that replaces a current FMS application.

1.3. Steps in the Conversion Process
The conversion process consists of the following steps:

1. Prepare your application for conversion.

2. Run the FMS Converter to change the appearance-related syntax to DECforms syntax.

3. Modify output from the Converter:

• Add form processing code

• Declare records to be passed between the form and program

4. Modify your application program:

• Declare records to be passed between the form and program

• Move some program code to the form

• Rewrite FMS calls to DECforms calls

• Rewrite UARs as necessary

5. Compile, link, and run the new application.

6. Test the new application.

3

Chapter 1. Introduction to Converting FMS Applications

4

Chapter 2. DECforms Concepts
for FMS Users
DECforms shares many concepts with FMS. For example, DECforms and FMS define an application as
a form and a program. Both have a special language for defining forms, and both have a special run-time
component.

However, some concepts of the two products differ. DECforms separates form processing from the
program by putting form processing logic in the form. Thus, a program that uses DECforms contains less
code to specify form appearance, data validation, and form processing than a program that uses FMS.
Also, the form language provided by DECforms contains syntax that describes not only form appearance
but also terminal management, data validation, and form processing.

This chapter explains the elements of a DECforms application. It also introduces two of the major
components of DECforms: the Independent Form Description Language(IFDL) and the Form Manager.

2.1. The DECforms Application
As in FMS, a DECforms application consists of a form and a program. However, the contents of a
DECforms program and form are different from the contents of an FMS program and form. Figure 2.1,
"Comparison of DECforms and FMS Applications" illustrates this difference.

Figure 2.1. Comparison of DECforms and FMS Applications

As shown in Figure 2.1, "Comparison of DECforms and FMS Applications", in addition to controlling
form appearance, the form in DECforms controls all form processing and most data validation. A
program that uses DECforms controls what data is passed to and from the form, but it does not control
how that data is displayed or how operator input is accepted. In fact, the same program can be used to
control a form that is displayed on a VT100 terminal, a VT200 terminal,or a printer. Unlike FMS, all
form appearance code is specified in the form.

The sections that follow describe more about DECforms applications by describing the contents of the
form and the program.

2.1.1. What's in a Form?
In FMS, the term “form” refers to a screen image and the binary file that describes that image. The
screen image is the visual representation of the binary file; that is, the screen image is the form

5

Chapter 2. DECforms Concepts for FMS Users

appearance. The binary file is the description of the screen that you create with FMS components like
the Form Editor.

In DECforms, the term form refers to a structured interface to an application. The structured interface
describes what is displayed on a terminal, how data used on the display is validated and stored,and how
operator input is accepted.

In FMS, a form can be stored independently or in a form library. In DECforms, each form is a separate
file. This file can be either an IFDL source file or a binary image file,called a form file.

The IFDL source file is similar to the sum of all your FMS form descriptions and form processing logic
for a single application. It is an ASCII file that contains IFDL statements describing form appearance,
data validation, form processing, and data transfer. Section 2.3, "Introduction to the IFDL" describes the
IFDL in more detail.

The form file is similar to your FMS form library. It is the file accessed by your program at run time.
DECforms makes the parts of it that are needed during application execution memory resident, which
helps your application execute efficiently. (You can combine form files into a shareable image if you
need better performance. See the VSI DECforms Programmer's Reference Manual for more information.)

The following sections define each form element. Where an analogous element exists in FMS and
DECforms, the sections compare the significance and purpose of the element. The elements of a form in
DECforms are as follows:

● Form data

● Form records

● Layouts

● Functions

● Viewports

● Panels

● Text literals

● Panel fields

● Responses

2.1.1.1. Form Data

Form data is the set of variables associated with the form. Although it has no FMS equivalent, the
concept of form data is similar to the concept of variable program data. Form data persists throughout
application execution. If you store the value “10” in an item of form data and never change that value,
the form data item stores that value until the form is no longer in use. (Each individual form variable is
called a form data item.) You declare a form data item to have a unique name, and you assign it a data
type. You can also as sign a default value to a form data item.

The form data item is the only means of storage in the form. You use form data items to store values
you send from your program to the form and to store operator input. You can display the value of a
form data item or return the value of a form data item to the program. You can also use a form data

6

Chapter 2. DECforms Concepts for FMS Users

item internally in the form, which means you never display its value or pass its value to the program. For
example, you could store the value “TRUE” in a form data item and compare the value of that form data
item to the value of other form data items during form processing.

Form data can contain groups. A form data group is a collection of form data items that DECforms treats
as a single entity. Items in the data group can occur multiple times to create one-dimensional arrays.
Groups with multiple occurrences can be nested to create two-dimensional arrays.

2.1.1.2. Form Records

Form records are structures that control data transfer between the program and the form. They define
a relationship between the program record and form data items. Form records do not store data. Form
records act as a map that shows DECforms how to transfer data between form data items and the
program record.(The Form Manager is the run-time component of DECforms. It is similar to the FMS
Form Driver. See Section 2.2, "Introduction to the Form Manager" for more information.)

DECforms transfers data record by record between the program and form. The name of each form
record field is significant. If you name a form record field the same as a form data item, DECforms
makes a default data transfer association between the two entities. This association causes DECforms
to always store data passed to a form record field in the form data item that has the same name, if one
exists. See Section 4.2, "Changing Form Driver Calls to DECforms Calls" for more information on this
association.

A form record must be logically equivalent to a program record. This means that it must have the same
number of fields as the program record, the fields must have the same length, and the fields must have
matching data types. You can declare groups within records to pass arrays to and from form data items.

2.1.1.3. Layouts

Layouts are the device-dependent part of the form description. DECforms allows you to display
information on many types of terminals. To take advantage of different terminal features, you can
organize or present information differently on each device. You can use a different layout for each
terminal class. DECforms decides which layout to use, depending on which terminal class you use.

In a layout, you can designate what size the display is. (The displayis the rectangular area that is
available to your application. It may or may not be as large as the terminal screen.) You can adjust the
size of the display depending on the number of lines and columns on the screen, how much of the screen
your application can access, and so on. You canal so determine layout-wide attributes that change the
appearance of your application for different terminals.

You can also use layouts to define different natural languages for a form. For example, you can have two
different layouts in a form, one for English-speaking operators and one for French-speaking operators.
At run time, DECforms chooses one of the layouts based on a value you specify the first time you call
DECforms from your program.

2.1.1.4. Functions

Functions are names that you bind to physical terminal keys. The binding is made by a function
declaration, which has an effect similar to the DFKBD (Define Keyboard) Form Driver call.

DECforms provides a set of predefined built-in functions that are associated with terminal keys by
default. You can associate built-in functions with non-default terminal keys and remove the default
association. You can also create your own functions and associate them with keys.

7

Chapter 2. DECforms Concepts for FMS Users

When the operator presses a key bound to a function, DECforms executes a function response.
DECforms provides default function responses for the built-in functions. You can write new function
responses for the built-in functions and for functions you create. Function responses cause, for example,
the cursor to move to the next field or input to the current panel to be transmitted to the program.
Responses are discussed later in Section 2.1.1.9, "Responses".

2.1.1.5. Viewports
Viewports are rectangular windows that you use to divide the display. You can divide the display into
one or more, possibly overlapping, viewports. Each viewport must have a name. You use the viewport
name in a panel declaration. The viewport name in a panel declaration controls where DECforms
displays that panel.

DECforms provides a default viewport that is as large as the display if you do not define any viewports.
If you do not name a viewport in a panel declaration, DECforms displays that panel in the default
viewport.

2.1.1.6. Panels
Panels are the images you see on the display. They are similar to FMS forms.

You declare the background text and fields that appear on the panel within a panel declaration. If you
want to display a data group, you declare a panel group. For example, you can use a panel group to
display a two-dimensional data group. You can also specify form processing that is done when the panel
is active, and you can define function responses that are specific to a panel.

You position a panel on the display inside a viewport. All the objects on the panel must fit inside the
viewport.

2.1.1.7. Text Literals
Text literals are constant strings that appear on a panel. They are similar to FMS background text. You
cannot change text literals while the application is running.

Literals can have display attributes, so you can specify that a literal be bold or underlined, for example.
You can also specify a set of default literal attributes. These default attributes are applied to all literals on
a panel unless you turn them off for a particular literal or set of literals.

2.1.1.8. Panel Fields
Panel fields show the contents of form data. A panel field is similar to an FMS form field. It displays
data and accepts operator input. Like an FMS form field, a panel field has an associated picture that
describes how data is to appear in it and what data the operator can enter in it.

Unlike an FMS form field, a panel field is bound by name to one form data item. Each panel field must
have the same name as a form data item. Each panel field is used only to display the value in the form
data item that shares its name. The operator may or may not be able to change that value. If the program
sends a value to a form data item that is displayed in a panel field, the value in the field changes,too.

You can assign display attributes to a field, so you can cause a panel field to blink or be bold. You can
also specify validation of operator input. For example, you can specify that DECforms compare the
input value to a list. If the value matches one of the list elements, it is valid, but if it does not match, it is
invalid.

8

Chapter 2. DECforms Concepts for FMS Users

2.1.1.9. Responses
Responses are named sets of instructions. The instructions are called response steps. You define a
response to control form processing. If you define no responses in your form, DECforms performs
default form processing. You use responses to alter and enhance this default form processing.

DECforms performs responses, for example, when it displays a new panel, when the operator presses a
function key, and when the operator completes entry in a field. When it performs a response, DECforms
executes response steps in the order you specify them in the response. You can include conditional
instructions in a response, but you cannot define a loop within a response. You can calla program
subroutine from a response.

The following list gives examples of what you can accomplish using a response:

● Remove and display panels

● Assign values to form data items

● Control the order in which the operator enters data

● Apply highlighting to fields

● Reposition the cursor to a particular field when a function key is pressed

● Based on the value of a field just completed, display one set or another of follow-up questions

● Call a program subroutine to verify that the data entered by the operator is valid for entry into a
database

2.1.2. Elements of the Program
The second element of a DECforms application, the program, is similar to a program in an FMS
program. For example,a DECforms program can be written in any language that supports the OpenVMS
Calling Standard. Also, a DECforms program can contain subroutines that are called from the form and
that are similar to the UARs found in an FMS program. The DECforms program performs all the input
and output to file storage or a database that needs to be done by the application, and it calls requests.
Requests are DECforms routines that perform form processing; they are functions that return a status
value and parameters.

DECforms request calls are similar to FMS Form Driver calls. Your program causes DECforms to
perform a task by using one of the following request calls:

● FORMS$ENABLE

● FORMS$SEND

● FORMS$RECEIVE

● FORMS$TRANSCEIVE

● FORMS$CANCEL

● FORMS$DISABLE

These request calls are the only entry points to DECforms that are available to the program. All other
DECforms activity must be specified in the form.

9

Chapter 2. DECforms Concepts for FMS Users

Unlike FMS applications, DECforms applications pass only whole records between the program and
form. Thus, the program must contain a declaration of the record to be passed, and this record must
match the declaration of a record in the form. Unlike an FMS program, the DECforms program does not
have direct field-level control of operator input. That control is in the form in DECforms.

You can interrupt form processing and call a subroutine in your program. This interruption is called a
procedural escape, and the program subroutine is called an escape routine.

The sections that follow introduce DECforms request calls and escape routines. They do not explain how
you perform input and output to file storage or a database because you access your files and databases
just as you do when you use FMS. For more information on the requests and on procedural escapes, see
the VSI DECforms Programmer's Reference Manual.

2.1.2.1. FORMS$ENABLE Request Call
FORMS$ENABLE calls the ENABLE request, which attaches the terminal, finds the form to be used,
chooses a layout, and returns a session identification stringto your program. The session identification
string identifies the channel;it has meaning only to DECforms. DECforms does not have the concept of
current terminal that FMS has, so you must pass the session identification string in subsequent calls to
indicate which terminal you are using.

You must specify the FORMS$ENABLE call before other DECforms calls in your program.

By default, DECforms clears the display in response to the ENABLE request. You can define an enable
response in the form to override the default form processing. For example, you could create an ENABLE
response that causes DECforms to initialize data or display a panel that introduces your application.

2.1.2.2. FORMS$SEND Request Call
FORMS$SEND calls the SEND request, which passes data from the program to form data items.
DECforms takes no other action by default. You can define a SEND response in the form to display the
data you send to the form, for example. You must pass a record in the FORMS$SEND call.

You pass a record from the program to the form.

2.1.2.3. FORMS$RECEIVE Request Call
FORMS$RECEIVE calls the RECEIVE request, which passes data from form data items to the
program. By default, DECforms gets input from the operator into panel fields before it passes data
from form data items to the program. DECforms gets input for the panel fields that correspond to form
record fields. DECforms returns that input to your program through the form record. You can define a
response in the form to perform other actions. For example, you can specify the order of operator input
in a RECEIVE response.

DECforms returns a record to your program.

2.1.2.4. FORMS$TRANSCEIVE Request Call
FORMS$TRANSCEIVE calls the TRANSCEIVE request, which combines the functions of the SEND
and RECEIVE requests. By default, the TRANSCEIVE request passes data from the program to form
data items. DECforms then gets input from the operator and returns that input to your program.

In the form, you can define a response that overrides the default and causes DECforms to perform other
actions. For example, you could write a TRANSCEIVE response that displays the data you send to the
form before DECforms gets operator input.

10

Chapter 2. DECforms Concepts for FMS Users

You pass a record to the form and receive a record from the form during the processing of this request.

2.1.2.5. FORMS$CANCEL Request Call
FORMS$CANCEL calls the CANCEL request, which cancels all active requests for the session you
specify.

You cannot specify a response for the CANCEL request.

2.1.2.6. FORMS$DISABLE Request Call
FORMS$DISABLE calls the DISABLE request, which detaches the terminal and form for the session
you specify. DECforms takes no other action by default. You can specify a DISABLE response in the
form to clear the display, for example.

2.1.2.7. Escape Routines
A procedural escape occurs when you interrupt the procedural portion of forms processing (the
response) to call an escape routine (program subroutine).An escape routine is similar to an FMS UAR.
You can use procedural escapes for a variety of purposes, including accessing databases, performing
calculations, and canceling request processing.

Escape routines are not associated with entities on the form in the same manner as UARs. You call
escape routines from within responses with the CALL response step. Because you can define several
types of responses, including request responses, you can call escape routines at the same points during
application execution that you can call UARs. That is, you can cause escape routines to be executed
when the operator completes entry into a panel field, before or after help processing,or after the operator
presses a function key.

You can transfer data between the form and the escape routine, and you can call requests from within
an escape routine. (However, you cannot call the DISABLE request for the session that called the escape
routine.) With the exception of calling the DISABLE request for the calling session, you can do anything
in an escape routine that you can do in any other part of your program. Also, you can use any subroutine
of your program that can be called from outside your program as an escape routine.

2.2. Introduction to the Form Manager
The Form Manager is the run-time component of DECforms. It is similar to the FMS Form Driver
because it contains the requests that you call from your program. Like the Form Driver, the Form
Manager requests are stored in a shareable image and linked automatically with your program.

The Form Manager performs the following functions:

● Processes requests

● Controls the appearance of the display

● Controls operator input

● Manipulates data

The sections that follow explain more about these functions of the Form Manager. The VSI DECforms
Programmer's Reference Manual fully describes the Form Manager.

11

Chapter 2. DECforms Concepts for FMS Users

2.2.1. Response to Request Calls
When you call a request from your program, the Form Manager processes the request you called. To
process a request, the Form Manager performs the following steps:

● Initializes the request

● Distributes data from the program into form data items (SEND and TRANSCEIVE requests only)

● Processes the request response

● Accepts operator input

● Collects data from form data items to return to the program (RECEIVE and TRANSCEIVE requests
only)

● Terminates the request

As shown in the list, the Form Manager performs a request response during the processing of a request.
The response is either one of the default responses DECforms provides or a response that you declare in
the form.

Each request is associated with a response. This association controls,in part, what response the Form
Manager executes when you call a request. For example, if you call the RECEIVE request, the Form
Manager always performs a RECEIVE response. Table 2.1, "DECforms Requests and Associated
Responses" describes the purpose of each request and identifies the response that corresponds to it.

Table 2.1. DECforms Requests and Associated Responses

Request Description Associated Response

ENABLE Creates a session for the
application.

ENABLE response

SEND Sends data from the program to
the FORM.

SEND response

RECEIVE Passes data from the form to the
program.

RECEIVE response

TRANSCEIVE Combines the effects of the
SEND and RECEIVE requests.

TRANSCEIVE response

CANCEL Cancels all currently active
requests for the specified session.

None

DISABLE Disables the specified session. DISABLE response

The Form Manager also performs responses when it accepts operator input. During operator input, the
Form Manager performs entry responses, function responses, validation responses, and exit responses.

2.2.2. Control of the Display
When processing most requests, the Form Manager modifies the terminal display. The Form Manager
determines how to modify the display by following instructions in the form.

The Form Manager can control a display that is 1 to 511 columns and 1 to 255 lines. The actual number
of columns and lines available to you depends on your display device. For example, if you are using a
VT200 terminal, the display can be from 1 to 132 columns and from 1 to 24 lines.

12

Chapter 2. DECforms Concepts for FMS Users

The Form Manager can display more than one panel at a time, and it can display more than one viewport
at a time. Which panel and viewport the Form Manager displays is controlled by what data entry the
operator needs to perform. You use responses in the form to control what panel fields are available for
operator entry.

The Form Manager can also use more than one form at a time. It determines which form it should use by
checking the session identification number you pass as a parameter in request calls.

You control how the Form Manager positions data on the display by describing the appearance of the
display in a form. The Form Manager has the following display capabilities:

● Displaying lines and rectangles

● Bolding, blinking, underlining, and reversing the video attributes of text and graphics

● Printing part or all of the display

● Overlapping images on the display

● Scrolling part or all of the display

● Redisplaying hidden images when they are needed for operator input or when overlaid images are
removed

If the Form Manager needs to write a message (such as an error message or a help message) to
the terminal, it displays the message in a special area called a message panel. You can declare a
message panel in the form and control its size and position on the display. If you do not declare a
message panel,the Form Manager creates a default, one-line message panel. When it needs to display
a message,the Form Manager displays the message panel on the last line of the display. The Form
Manager can scroll text within the message panel, so messages can be any length. You can send text to
the message panel from either the program or the form.

2.2.3. Control of Operator Input
In addition to controlling what is displayed, the Form Manager controls the order of operator input. To
do this, it maintains a list of items that need input, called an activation list.

By default, the Form Manager builds an activation list during the processing of each RECEIVE and
TRANSCEIVE request. You use response steps to determine what items the Form Manager adds to the
activation list. If you do not specify what items to add to the list, the Manager builds a default activation
list. The Form Manager builds the default activation list by activating form data items that correspond to
the record fields in the receive form record.

The Form Manager adds items to the activation in the order in which you declare panel fields in the
IFDL source file. For example, suppose the form record consists of three fields named FIELD_ONE,
FIELD_TWO, and FIELD_THREE. Suppose also that the FIELD_THREE panel field appears first in
the IFDL source file, followed by the FIELD_TWO panel field and the FIELD_ONE panel field. When
the Form Manager executes the default response to the RECEIVE or TRANSCEIVE request, it builds
the following activation list:

FIELD_THREE
FIELD_TWO
FIELD_ONE

After it builds the activation list, the Form Manager processes it. By default, the Form Manager begins
with the first unprotected item on the activation list. In this case, the Form Manager displays the

13

Chapter 2. DECforms Concepts for FMS Users

FIELD_THREE panel field and accepts and validates operator input. If the operator presses the key
bound to the default NEXT ITEM function and the input into FIELD_THREE passes validation, the
Form Manager accepts operator input into the FIELD_TWO panel field, and so on.

You control the order in which the Form Manager processes activation items using the POSITION
response step. Most built-in functions, such as the NEXT ITEM and PREVIOUS ITEM functions,
contain the POSITION response step. For example, the NEXT ITEM function contains the POSITION
TO NEXT ITEM response step. This response step makes the next item on the activation list into the
current item (the one in which the operator enters data).If you use the built-in functions, the order in
which items appear on the activation list and the function keys the operator presses control the order of
operator input.

The Form Manager continues activation list processing until the operator gives valid input to all items
on the list, you interrupt request processing in a response, or you call the CANCEL request to cancel
outstanding requests.

For more information on the activation list and the POSITION response step, see the VSI DECforms
Programmer's Reference Manual.

2.2.4. Data Manipulation
The Form Manager manipulates data when it responds to request calls, controls the display, and controls
operator input. Specifically, the Form Manager performs data type conversions, formats data for display
and storage in form data items, and checks the validity of data.

When the Form Manager displays data, it converts the data from its original data type to a character
string. Likewise, the operator enters a character string, which the Form Manager converts to the proper
data type before storing it in the form. When necessary, the Form Manager also converts data that it
passes between the form and program or between two data items. Notice that this means your program
does not have to perform data type conversions; the Form Manager handles that task for you. However,
you must be sure the Form Manager can convert data from its original data type to another data type. For
example, if you use two data items in an assignment statement, you must be sure that the Form Manager
can convert the data type of the data in the source data item to the data type of the object data item. See
the VSI DECforms Programmer's Reference Manual for information on how the Form Manager converts
the data type of data.

To make sure data displayed or stored by the Form Manager is valid, DECforms allows you to specify
input pictures and output pictures. An output picture describes editing that the Form Manager performs
when moving a value from storage to the display. It specifies details such as where a decimal point
appears, what sign character should be used, and so forth. The input picture specifies what input is
valid in a particular field. It also specifies how a value is edited when the Form Manager moves it from
the display to storage.

You can specify input validation beyond that provided by the input picture in the form. For example, you
can have the Form Manager verify that input is within a particular range of values. If the input is outside
the range, it is invalid and the Form Manager prompts the operator to input a valid value in that field.

2.3. Introduction to the IFDL
The Independent Form Description Language (IFDL) is a special language for defining forms. Like
the FMS Form Language, it is not intended to be used as a general programming language. The FMS
Converter converts your FMS form to IFDL statements. Because form processing is done in the form
in DECforms, instead of in the program, you may need to convert some statements in your program to
IFDL statements.

14

Chapter 2. DECforms Concepts for FMS Users

You can read an IFDL source file to get a full description of:

● The appearance of information on the display

● Form processing that occurs during application execution

● How data is transferred to and from the form, and within the form

To describe the form elements, you use the following components of the IFDL:

● Reserved words, which are words such as “END FORM” that are reserved for use by DECforms.

● Literals, which are character strings whose value is implicit in the characters themselves.

● Separators, which are flags that divide or organize pieces of information, such as tab characters,
carriage returns, commas, parentheses,and so on.

● Identifiers, which are names for form elements. Identifiers are similar to the names you assign to
variables, records, and routines in a program.

● Comments, which consist of explanatory text delimited by special characters (either /* and */ or
{ and }).

You arrange these IFDL components in an ordered manner to form clauses and statements that describe
the form. Example 2.1, "Sample IFDL Syntax" shows some sample IFDL syntax.

Example 2.1. Sample IFDL Syntax

/***/
/* This sample IFDL syntax describes a form. */
/* If you develop a program that uses this form, */
/* you can display it and exchange data with it. */
/* */
/* Identifiers are shown in capital letters. */
/* Reserved words are shown in mixed case. */
/***/

Form EMPLOYEE

Form Data
 NAME Character(30)
 ID_NUMBER Integer(7)
 CHANGE Character(3)
 ADDRESS Character(30) Tracked
 CITY Character(30) Tracked
 STATE Character(2) Tracked
 ZIP Integer(5) Tracked
 End Data

 Form Record EMPLOYEE_RECORD
 Copy EMPLOYEE_RECORD From Dictionary End Copy
 End Record

 Layout VT_Layout
 Device
 Terminal
 Type %VT200
 End Device

15

Chapter 2. DECforms Concepts for FMS Users

 Size 5 Lines By 80 Columns

 Panel DECIDE_WHETHER_TO_CHANGE

 Literal Text
 Line 2 Column 2
 Value "Name: "
 End Literal

 Field NAME
 Same Line Next Column
 End Field

 Literal Text
 Line 2 Column 60
 Value "ID Number: "
 End Literal

 Field ID_NUMBER
 Same Line Next Column
 End Field

 Literal Text
 Line 4 Column 2
 Value "Has this employee's address changed? "
 End Literal

 Field CHANGE
 Same Line Next Column
 Use Help Message "Please answer 'yes' or 'no'"
 End Field
 End Panel
 End Layout
End Form

You can use any OpenVMS text editor to create or modify an IFDL source file. For example, you can
use the DECforms templates provided for the DEC Language-Sensitive Editor (LSE). The DECforms
templates help you create and correct IFDL source code conveniently. In addition, DECforms provides a
utility called the Panel Editor that allows you to edit the appearance of panels in a “what you see is what
you get” manner. You can invoke the Panel Editor either from the DCL command line or from within
the Form Development Environment (FDE). The FDE provides an interface to all the components of
DECforms. It allows you to assign various form-level, layout-level,and panel-level attributes and guides
you through the form development process.

To display the panels declared in an IFDL source file, you must translate the source file into a binary
form file. You translate an IFDL source file into a binary form file using the IFDL Translator. If you
have syntax or other errors in your source file, the Translator may not be able to translate it. The
Translator issues error messages and writes a listing file, similar to a compiler listing file, to help you find
errors in your source file.

The Panel Editor allows you to modify the binary form file. To see the modifications you make as
source statements, you back translate the form file. The Back Translator reverses translation and changes
a form file into an IFDL source file.

See the VSI DECforms Guide to Commands and Utilities for more information on the capabilities of the
IFDL Translator and Back Translator. The VSI DECforms IFDL Reference Manual completely describes
the syntax of the IFDL.

16

Chapter 3. Converting Your Form
or Form Library
Once you have a basic understanding of DECforms and of the conversion process, you are ready to
convert your forms or form libraries to DECforms. This chapter helps you convert by explaining how to:

● Prepare your form or form library for conversion

● Invoke the FMS Converter

● Merge the output from several forms into a single IFDL source file

● Modify the converted IFDL source file

● Optimize the converted IFDL source file

Chapter 4, "Modifying Your Program" gives information on modifying your program and running your
converted application.

3.1. Preparing Your FMS Form or Form Library
for Conversion
Before you convert your FMS form or form library, you should ensure that it is free of errors (or as free
of errors as possible).The Converter is most helpful to you when the input it receives is error-free.

The FMS Converter converts only forms and form libraries. You cannot convert memory-resident forms
once you have linked them with your application program. If you use memory-resident forms, you may
want to store the forms for a particular application in a form library before you run the FMS Converter.
When you convert a form library that contains all the forms (including help forms) that an application
needs, you avoid later having to merge output from the Converter. The Converter writes all the converted
syntax into a single IFDL source file. To create a form library for an application, use the following FMS
command:

FMS/LIBRARY/CREATE form-library-spec form-list-spec

Replace form-library-spec with the name of the form library you are creating. List the form files or
form library files that you want inserted into the new library in place of form-list-spec.See the FMS
documentation for more information on creating form libraries.

If you have Version 1.0 FMS forms, you must upgrade them to Version 2.0 FMS forms before you
convert to DECforms. Use the following command to upgrade forms:

FMS/UPGRADE V1-file-spec

Replace V1-file-spec with the name of your Version 1.0 FMS form. See the FMS documentation for
information on upgrading Version 1.0 forms.

3.2. Invoking the FMS Converter
The FMS Converter accepts an FMS Version 2.0 or higher Form Library File or form file as input, and
it creates an IFDL source file as output. The IFDL source file contains one form, one layout, and a panel

17

Chapter 3. Converting Your Form or Form Library

for each form in the input file. If you input a Form Library File, the output IFDL source file contains
a panel for each form in your form library. If you input an FMS form file, the output IFDL source file
contains a single panel.

You invoke the FMS Converter with the FORMS CONVERT FMS command. This command has the
following syntax:

Parameters
[input-file-spec]

Specifies the file specification of an FMS binary form file or form library. You need not specify a file
type ifthe input to the FMS Converter is a form file because .FRM is the default file type. To specify an
FMS form library in this parameter, give the file name of the library and specify the .FLB type.

Qualifiers
/OUTPUT=[output-file-spec]

Specifies a name for the IFDL source file created by the Converter. If you omit the file type, the
Converter uses the .IFDL file type.

/[NO]LOG

Controls whether the FMS Converter informs you of successful conversions. If you specify /LOG,
the Converter writes a message to SYS$OUTPUT when it successfully completes the conversion. If
you specify /NOLOG, the Converter does not write this message to SYS$OUTPUT. Error messages,
if any, are written to SYS$OUTPUT regardless of whether you specify /LOG or /NOLOG.

The default is /NOLOG.

3.3. Merging the Output from Several FMS
Forms
When you convert each form for your application separately, the FMS Converter creates a number
of IFDL source files. Each source file contains a DECforms panel and a set of form data items
corresponding to one of your FMS forms. You may want to merge these source files into a single source
file. The most efficient way to use DECforms is to have your program open one form and use only that
form for the duration of the application. (However, you may find some cases in DECforms where you
want to use more than one form file. For example, if your form file is large, enabling the form may cause
too much delay when your application starts executing. In this case, you may want to use more than one
form file to spread the time the Form Manager spends enabling forms to different points in the execution
of your application. You probably would use fewer forms than the FMS Converter creates when you
convert each FMS form in your application separately, so merging IFDL source files is still a good idea.)

Using only one form is efficient because enabling forms is a relatively expensive process. The less forms
you need to enable, the more efficient your application can be. Merging forms can also make your
application smaller because information required in each form can be specified once in a merged form.
For example,each IFDL source file the Converter creates contains its own FORM DATA statement. In
some cases, the Converter declares the same data item in more than one source file. For example, if two
FMS forms contain a form field that has the same name, the Converter declares the same form data item
twice. If you merge the source files, you can remove duplicate form data item declarations. Removing

18

Chapter 3. Converting Your Form or Form Library

duplicate form data item declarations makes your IFDL source file smaller and reduces the amount of
memory your form uses at run time.

To merge the source files, use a text editor. It may be convenient to use a text editor that can split the
screen into two windows. You can then read one output IFDL source file (probably the largest produced
by the Converter) into the top window. Consider this IFDL source file the master source file into which
you move all the IFDL statements you need in your converted application. Read other source files into
the bottom window and move syntax from the bottom window into the master IFDL source file in the
top window.

You may want to exit from the editor periodically and translate the master source file. This can help you
discover and correct syntactical errors a few at a time. Alternatively, you can use the DEC Language-
Sensitive Editor(LSE) support for DECforms. If you use LSE to merge your source files, you can use its
COMPILE/REVIEW command to find and correct syntax errors. See the VSI DECforms IFDL Reference
Manual for information on using LSE.

Example 3.1, "FMS Converter Output for a Single FMS Form" shows sample output from the Converter
when you input a single form.

Example 3.1. FMS Converter Output for a Single FMS Form

 /* DECforms Version 1.0 */
 /* FMS Form Converter Utility */

Form EXPERIENCE_FORM

Form Data /* Form data for panel EXPERIENCE_PANEL */
 PREVIOUS_EMPLOYER Character (10)
 BEGIN_DATE Character (12)
 .
 .
 .

End Data

 Layout FMS_Cnv

 Device
 Terminal
 Type %VT200
 End Device
 Units Characters
 Size 24 Lines By 80 Columns

 Viewport EXPERIENCE_VP
 Lines 1 Through 24
 Columns 1 Through 80
 END VIEWPORT

 Panel EXPERIENCE_PANEL

 Viewport EXPERIENCE_VP

 Literal Text
 Line 3 Column 9
 Value "Work Experience"
 Display

19

Chapter 3. Converting Your Form or Form Library

 Font Size Double High
 End Literal
 .
 .
 .
 End Panel
 End Layout
End Form

The FORM statement names the form. The Converter creates the form name using the FMS form
name. It appends “_FORM” to the name to avoid naming conflicts.

The FORM DATA statement declares form data items to be used in this converted form. The
Converter creates each form data item from an FMS form field. See Section 3.5.1, "Form Data
Item Data Types" for information on how the Converter assigns a data type to form data items.

The layout specifies that panels in it are for use on VT200 terminals and are 24 or less lines by 80
columns.

The viewport for the panel is 24 lines by 80 columns.

The panel that generates a screen appearance similar to the input FMS form is displayed in the
EXPERIENCE_VP viewport. It is named the same as the input form with “_PANEL” appended to
the name.

Your master source file should contain only one FORM statement, so do not move a FORM statement
from other source files into the master source file.

To merge the FORM DATA statement from one of the source files produced by the Converter into the
master source file, move the entire FORM DATA statement;that is, move the FORM DATA statement,
all the form data item declarations,and the END DATA statement. Do not nest FORM DATA statements.

You need not move any LAYOUT statements into the master source file. Each LAYOUT statement
created by the Converter is identical, so your master source file needs only one LAYOUT statement.

You may be able to avoid moving some viewports into the master source file. Many of the viewports
output by the Converter are identical. You need not move identical viewports into the master source
file. However,each panel contains a VIEWPORT clause that names the viewport on which it is to be
displayed. If you do not move a viewport into the master source file, you must modify the VIEWPORT
clause in the panel that names that viewport. Change the VIEWPORT clause to name one of the
viewports that does exist in the master source file.

If you need to move a viewport declaration, insert the VIEWPORT statement near the top of the layout
directly following existing viewport statements. If any viewports in your source file contain 132 columns,
you may need to modify the LAYOUT statement in the master source file. The LAYOUT statement
must define a display size that is at least as long and as wide as your largest viewport.

Move each panel into the master IFDL source file. Move the statements between the PANEL statement
and the END PANEL statements by inserting them into the layout statement in the master source file.
You should add panels to the master source file following existing panels.

Example 3.2, "Merged IFDL Source File with Two Viewports" shows a merged IFDL source file with two
viewports.

Example 3.2. Merged IFDL Source File with Two Viewports

Form EXPERIENCE_FORM

20

Chapter 3. Converting Your Form or Form Library

Form Data /* Form data for panel EXPERIENCE_PANEL */
 PREVIOUS_EMPLOYER Character (10)
 BEGIN_DATE Character (12)
 .
 .
 .

End Data

 Layout FMS_Cnv
 Device
 Terminal
 Type %VT200
 End Device
 Units Characters
 Size 24 Lines By 132 Columns

 Viewport EXPERIENCE_FORM_VP
 Lines 1 Through 24
 Columns 1 Through 80
 End Viewport

 Viewport CURRJOB_FORM_VP
 Lines 1 Through 24
 Columns 1 Through 132
 END VIEWPORT

 Panel EXPERIENCE_PANEL
 Viewport EXPERIENCE_FORM_VP
 Literal Text
 Line 3 Column 9
 Value "Work Experience"
 Display
 Font Size Double High
 End Literal
 .
 .
 .
 End Panel

 Panel CURRJOB_PANEL
 Viewport CURRJOB_FORM_VP
 .
 .
 .
 End Panel
 End Layout
End Form

The FORM statement is the one created for the EXPERIENCE FMS form.

The first FORM DATA statement is the one created for the EXPERIENCEFMS form. The second
FORM DATA statement was moved in from another source file.

The LAYOUT statement allows viewports of 24 lines or less and 132 columns or less.

The CURRJOB_FORM_VP viewport is moved into the master source file from another source
file to allow wide panels to be displayed.

21

Chapter 3. Converting Your Form or Form Library

CURRJOB_PANEL has been moved into the master source file. It must be displayed on a
wide viewport because elements of its panel appear outside column 80. Therefore, this panel's
VIEWPORT clause names the CURRJOB_FORM_VP viewport.

3.4. Modifying the Converted IFDL Source File
Most of your FMS form or form library can be converted directly to IFDL syntax. However, you
may need to modify the output from the Converter before you can use it. Also, you must add record
declarations to the source file before you can transfer data to the form at run time.

This section explains modifications you should make to your IFDL source file. Specifically, it explains
the following:

● Renaming panel fields and form data items

● Examining form data items created from Named Data

● Declaring form records

● Modifying help syntax

You may also need to add form processing code before you use the form at run time. Chapter 4,
"Modifying Your Program" explains moving form processing logic from your program to the form.

3.4.1. Renaming Panel Fields and Form Data Items
You may need to rename panel fields and form data items created by the FMS Converter. More than one
form data item in the IFDL source file the Converter creates may have the same name. Also, if you used
Named Data in an FMS form, the Converter output may need modification.

The Converter converts each FMS form field to a DECforms panel field. If two form fields in your FMS
application have the same name, the Converter creates two panel fields that have the same name. The
Converter also creates a form data item for each panel field it creates. Therefore, if two panel fields have
the same name, two form data items have the same name. DECforms requires that each form data item
have a unique name,so you must rename or remove one of the form data items. (If you convert form
libraries, the Converter flags duplicate names in form data with a message, so you can find them easily.)

DECforms requires that panel fields have the same name as the form data items to which they
correspond. Therefore, you should verify that the form data items you rename correspond to a panel field
by either creating a new panel field with the new name or renaming an existing panel field.

Because the FMS Converter creates a panel field and form data item for each field on each of your
FMS forms, you may have duplicate fields and data items that are not necessarily named the same. For
example, suppose your FMS application displays a customer account number on three forms. Suppose
that you call each field that displays the account number a different name on each form. In this case,
the Converter creates three panel fields and three data items to store and display the customer account
number. In DECforms you usually would need only one data item to store the customer account number.
Therefore, you should remove all but one account number form data item. You must then rename the
panel fields that display the account number so that they match the name of the form data item that
stores the account number.

Section 5.3, "Modifying the Converted IFDL Source File" shows examples of renaming and removing
duplicately named data items and panel fields.

22

Chapter 3. Converting Your Form or Form Library

3.4.2. Examining Form Data Items Created from Named
Data
The FMS Converter converts each Named Data item to a form data item. To store particularly long
values in a Named Data item, you may have created several Named Data items and given them the same
name. The FMS Converter declares a single form data item to correspond to these Named Data items.
The FMS Converter declares the form data item to be as long as the sum of the lengths of the Named
Data items.

If your application contains duplicately named Named Data items associated with different forms, the
FMS Converter declares separate form data items to replace those Named Data items. Thus, if you have
Named Data with the same name on different forms in a form library, the Converter may have declared
form data items with duplicate names. You must rename or remove one of the duplicately named form
data items.

FMS allows you to use any characters in any format for the name of a Named Data item. DECforms
allows only the characters A to Z, a to z, 0 to 9, dollar sign ($), and underscore (_) in the names
of identifiers. DECforms identifiers must begin with an alphabetic character and be fewer than 32
characters in length. When the Converter encounters a name it cannot change to a valid DECforms
identifier name, it writes the invalid name to the output IFDL source file. The Converter also writes a
message indicating that the invalid name cannot be used in DECforms. You must change any invalid
names to valid DECforms names.

3.4.3. Declaring Form Records
DECforms data transfer is done on a record-by-record basis. To allow record-by-record data transfer, you
must declare form records. The form records you declare show the Form Manager how to distribute data
that comes from your program into form data items and how to collect data from form data items before
it is sent to your program. Your form records should associate related form data. For example, you may
find that the form data items displayed on one panel are related and make a reasonable form record. On
the other hand,you may find that you need only one form record because you can pass all the data the
form needs to it at once.

To decide how to create form records, consider the following issues:

● Did you pass any records in your FMS application?

If you pass any records in your FMS application, you can probably retain those records in your
DECforms application program. Declare an equivalent form record to correspond to the program
record.

● Do a set of form data items always need to be passed together between the form and the program?

If you pass 10 data items only once and pass other data items four times during the execution of
your program, it is probably more efficient to group the 10 data items in a record separately from the
other data items. In this way, you avoid transferring data items needlessly.

● How much of the logic of your program can be moved to the form?

Because the IFDL is more powerful than the FMS Form Language, you may be able to move
much of your program logic into the form. This change can allow you to reduce the number of
times you return control to the program. For example, you maybe able to pass all data to the form
at the beginning of application execution. The data is then kept in the form and updated by the

23

Chapter 3. Converting Your Form or Form Library

operator;near the end of application execution, it is returned to the program. The more you can do
during a single request call, the more efficient your application can be.

You should declare form records that allow you to perform a number of operations without returning
to the program.

● When does the form need the data?

It might not make sense to group data needed early in application execution with data needed later
in application execution. Passing data too early can cause changes made by the program not to be
communicated to the form.

You must also decide what data type to assign to the fields in the form record. DECforms can store
data of several different types inform data items. This allows you, for example, to pass a LONGWORD
INTEGER between the form and program. DECforms converts the integer into a string for display and
then converts operator input to a LONGWORD INTEGER that is returned to your program. Eventually,
you may want to take advantage of this DECforms feature and declare form record fields that have data
types appropriate to the data that is passed.

Initially, however, it is probably best to use the CHARACTER data type for all your record fields.
Passing character strings is somewhat easier than passing atomic data. When you use character strings,
you must be sure that the length of each program record field matches the length of its corresponding
form record field. When you pass atomic data, you must be sure that not only the length, but also the
data type, of the form record fields and program record fields match. Because you must be aware of how
data is stored internally by your programming language and DECforms, passing atomic data can be more
difficult than passing character strings. Also, passing atomic data may require that you change the data
read into your program from string data to atomic data. You must plan any data type changes carefully.
Section 3.5.2, "Form Record Field and Program Record Field Data Types" describes how to modify your
application to pass numeric data to the form.

To declare a form record, use the FORM RECORD statement. You can also use the COPY statement
to copy record declarations from CDD/Plus. Example 3.3, "Sample Form Record Declarations" shows a
form record declaration and a COPY statement. See the VSI DECforms IFDL Reference Manual for more
information on the syntax of these statements.

Example 3.3. Sample Form Record Declarations

Form PERSONNEL_FORM
 .
 .
 .
 Form Record EMPLOYEE_RECORD
 DATE_AND_TIME Character (7)
 EMPLOYEE_NAME Character (30)
 EMPLOYEE_NUMBER Character (10)
 EMPLOYEE_BIRTH Character (7)
 SPOUSE_NAME Character (30)
 SPOUSE_BIRTH Character (7)
 INSURANCE_CARRIER Character (30)
 INSURANCE_ID_NUMBER Character (15)
 OFFICE_ADDRESS Character (7)
 VMS_MAIL_ADDRESS Character (40)
 End Record

 Form Record ORG_CHART_RECORD
 Copy ORGANIZATION_RECORD From Dictionary End Copy

24

Chapter 3. Converting Your Form or Form Library

 End Record
 .
 .
 .
End Form

The FORM RECORD statement declares a form record named EMPLOYEE_RECORD. The
record has 10 fields. The data type of these fields matches the data type of the program record
fields (which are all data type CHARACTER) and of form data items, which are all declared to be
text data types.

The COPY statement copies the declaration of ORGANIZATION_RECORD from CDD/Plus.
CDD/Plus stores record declarations that can be used by DECforms and many OpenVMS
programming languages.

Once you declare form records, you must declare logically equivalent program records. Logically
equivalent records have the same number of fields, the fields create the same OpenVMS internal data
type, and the fields have the same length. You then pass data between the form record and program
record using the DECforms FORMS$SEND, FORMS$RECEIVE, and FORMS$TRANSCEIVE calls.
See Section 4.2.3, "Sending Data to the Form" and Section 4.2.4, "Getting Data from the Form" for
information on declaring program records and transferring data using DECforms.

3.4.4. Modifying Help Syntax
The FMS Converter creates USE HELP MESSAGE clauses in the panel fields it creates to emulate the
messages associated with the form fields in your FMS application. It also converts your FMS help forms
to DECforms help panels. However, the Converter cannot distinguish FMS data entry forms from FMS
help forms. Therefore, it converts all FMS help forms into DECforms panels. Also, the Converter creates
IFDL syntax to associate help panels with data entry panels, but it creates that syntax inside comment
characters. The comments are needed to allow your converted IFDL source file to translate correctly
before you modify help. This section explains the Converter's output for help and how you must modify
it.

3.4.4.1. Conversion of FMS Help Messages
For each help message that you specify for an FMS field, the FMS Converter creates a USE HELP
MESSAGE clause in the panel field that replaces an FMS form field. The FMS Converter specifies
the text of the FMS message in the USE HELP MESSAGE clause. Thus, your FMS messages are
automatically converted to DECforms.

3.4.4.2. Conversion of FMS Help Panels
The FMS Converter declares all panels in the converted IFDL source file using the PANEL statement.
DECforms requires that panels used as help panels(that is, panels named in a USE HELP PANEL clause)
be declared with the HELP PANEL statement. You must modify each help panel so that it is declared
with the HELP PANEL statement. For example, the help panel shown in Example 3.4, "FMS Converter
Output from an FMS Help Form" is declared with the PANEL statement.

Example 3.4. FMS Converter Output from an FMS Help Form

Panel HELP_ACCOUNT_DATA_PANEL
 Viewport HELP_ACCOUNT_DATA_VP
 Display %Keypad_application
 Literal Rectangle
 .

25

Chapter 3. Converting Your Form or Form Library

 .
 .
End Panel

Modify this declaration to be a help panel as shown in Example 3.5, "DECforms Help Panel
Declaration".

Example 3.5. DECforms Help Panel Declaration

Help Panel HELP_ACCOUNT_DATA_PANEL
 Viewport HELP_ACCOUNT_DATA_VP
 Display %Keypad_application
 Literal Rectangle
 .
 .
 .
End Panel

3.4.4.3. Modifying the USE HELP PANEL Clause Created by the
FMS Converter
The FMS Converter creates a USE HELP PANEL clause in each DECforms data entry panel that should
be associated with a help panel. The FMS Converter can determine which DECforms data entry panel
should be associated to which help panel because your FMS application associates help forms to FMS
forms. The Converter creates USE HELP PANEL statements to maintain the FMS association.

You should remove the comments surrounding the USE HELP PANEL clause in each data entry panel.
Thus, the help panel named in the USE HELPPANEL clause can be displayed after any help message for
a field is displayed.

The FMS Converter may also have created the USE HELP PANEL clause inside help panels to maintain
the relationship that existed between two FMS help forms. DECforms does not allow you to specify the
USE HELP PANEL clause within help panels, so you must remove any USE HELP PANEL clauses
within help panels.

You can write function responses to allow more than one help panel to be displayed for the operator.
Section 5.3.4, "Modifying the Help Syntax" contains an example of one way to write help function
responses. See Section 7.3, "Providing Help for Operators"for information on the DECforms help model.

3.4.4.4. Emulating Pre-Help and Post-Help UARs
If your FMS application contains pre-help or post-help UARs, you can use those UARs as DECforms
escape routines. To do so, you must add responses containing the CALL response steps to the converted
DECforms IFDL source file. Section 6.2.8, "Calling Escape Routines to Emulate Pre-Help, Post-Help,
and Function Key UARs" describes how to write responses that emulate pre-help and post-help UARS.
You must also pass certain parameters to the FORMS$ENABLE call and link your application with a
vector to use escape routines. See Section 7.7, "Using Escape Routines" for information on using escape
routines.

3.5. Optimizing the Converted IFDL Source
File
The FMS Converter cannot always make its output efficient to use. It does not get enough information
from the FMS form or form library being converted to produce exactly what you need in all cases.

26

Chapter 3. Converting Your Form or Form Library

Therefore, you can probably take some steps to make its output more efficient at run time. This section
describes four areas that you should check for possible performance gains:

● The data types of form data items

● Form record and program record field data types

● The order of panel fields in a panel field declaration

● Responses that call UARs

3.5.1. Form Data Item Data Types
The FMS Converter creates a form data item to match each panel field it creates to replace an FMS
form field. The Converter assigns a data type to each form data item it creates. The Converter assigns the
INTEGER data type to a form data item it creates to correspond to an FMS field picture of all 9s. If the
FMS form field picture contains a decimal point, the FMS Converter creates a form data item that has
the DECIMAL data type. If the field is one of the FMS predefined DATE fields, the Converter assigns
the DATE or TIME data type. Otherwise, the Converter assigns the CHARACTER data type to the form
data item.

Thus, the Converter assigns the CHARACTER data type to many of the data items it creates. In some
cases, your application is more efficient if you store and use data that has a different type. Form data
items can have the following types:

Date/Time Data Types Atomic Data Types Text Data Types

ADT UNSIGNED BYTE CHARACTER
DATE BYTE INTEGER INTEGER
TIME UNSIGNED WORD DECIMAL

WORD INTEGER FLOAT
UNSIGNED LONGWORD
LONGWORD INTEGER
QUADWORD INTEGER
FFLOATING
DFLOATING
GFLOATING
HFLOATING

You can use any of these data types for your form data items. The data type of a data item does not
have to match the data type of its corresponding form record field. If the record field declaration creates
a different OpenVMS data type in internal storage than the form data item declaration, the data is
converted from the record field data type to the form data item data type when it is stored in the form
data item. The data is converted from the form data item data type to the form record field data type
when it is passed to the program.

Converting data from one data type to another is less efficient than passing between variables that have
matching data types. You should limit the number of data type conversions that are performed during
data transfer.

27

Chapter 3. Converting Your Form or Form Library

3.5.2. Form Record Field and Program Record Field
Data Types
Because your FMS program passed only CHARACTER data to FMS, your program may be converting
data from the CHARACTER data type to an atomic data type. You can make your program more
efficient by using atomic data types to store this data. Also, you may want to make the data type of form
record fields atomic to match the data type of corresponding form data items. When the data type of a
form record field matches the data type of a form data item, the Form Manager does not have to convert
the data to a new data type, which makes your application more efficient. To avoid converting data
between the CHARACTER data type to an atomic data type, you can exchange atomic data with your
form.

To store and use atomic data, program record fields must have atomic data types. Remember that the
data the record fields store must also be atomic. You may need to modify the data itself if it is initially
loaded into your program from a file or database. The file or database may store string data, which you
must modify to be numeric data.

To pass atomic data to the form, your form record fields must have atomic data types. For your program
and form to exchange data, the data in fields that correspond to each other must have the exact same
data type internally. All OpenVMS products store data using OpenVMS data types. Each product has its
own syntax for declaring data, which means that you cannot compare data declarations in two languages
to determine if data matches internally. For example, you cannot assume that a DEC COBOL data item
declared PIC 9(9) is stored the same internally as a DECforms data item declared as INTEGER(9).
To see if the data is stored the same internally, you must determine how DEC COBOL and DECforms
represent data items using OpenVMS data types. The VSI DECforms IFDL Reference Manual contains a
table that describes how DECforms stores data internally. You can use that table and the documentation
for your programming language to be sure that the data type of corresponding form record fields and
program record fields match.

Example 3.6, "Numeric Data Passed to DECforms" shows a program record field that has an atomic data
type and is passed to DECforms.

Example 3.6. Numeric Data Passed to DECforms

DATA DIVISION.
*
* Declare a record that passes numeric data.
*
WORKING-STORAGE SECTION.
01 GET_CHECK GLOBAL.
 05 PAYTO_NAME PIC X(30).
 05 CHECK_AMOUNT PIC 9(5) COMP.
 05 MEMO PIC X(35).
PROCEDURE DIVISION.
0.
*
* Get input into the GET_CHECK record.
*
 CALL "forms$send" USING BY DESCRIPTOR SESSION_ID
 "GET_CHECK"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED

28

Chapter 3. Converting Your Form or Form Library

 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR GET_CHECK
 GIVING FORMS_STATUS.

The COBOL record declaration contains three fields. The PAYTO_NAME field has the
CHARACTER data type. The CHECK_AMOUNT field has the INTEGER data type of
length 5 that is COMPUTATIONAL. Internally, COBOL represents this field as an OpenVMS
LONGWORD INTEGER data type. The MEMO_FIELD field has the CHARACTER data type.

The SEND request sends the data in the GET_CHECK record to the form.

Example 3.7, "Form Record Containing a Numeric Record Field" shows a form record that is logically
equivalent to the program record in Example 3.6, "Numeric Data Passed to DECforms".

Example 3.7. Form Record Containing a Numeric Record Field

/* Declare a form record to pass */
/* numeric data. */
Form Record GET_CHECK
 PAYTO_NAME Character (30)
 CHECK_AMOUNT Longword Integer
 MEMO Character (35)
End Record

The form record contains three fields. The first field has the CHARACTER data type; its length
matches the length of the first program record field. The second field has the LONGWORD INTEGER
data type. DECforms represents data items with the LONGWORD INTEGER data type as a VMS
LONGWORDINTEGER internally. This data type matches the internal representation of the program
record field data type. The third field has the CHARACTER data type and appropriate length.

3.5.3. Reordering Panel Fields
When the FMS Converter creates panel fields in your IFDL source file, it writes them to the source file
in the order you specified using the ORDER phase of the FMS Form Editor or the ORDER statement
of the FMS Form Language. The order in which panel field declarations appear in the converted IFDL
source file can be significant for operator input.

If you use the ACTIVATE CORRESPONDING RECEIVE ALL or the ACTIVATE
CORRESPONDING SEND ALL response step, the Form Manager activates panel fields. The Form
Manager activates panel fields that correspond to the record fields in the form record you name in a
request call.

When the Form Manager activates a panel field, it adds an item to the activation list. Unless you
explicitly name panel fields to activate, the order of panel field declaration in a panel controls the
order in which the Form Manager adds activation items to the activation list. The first item the Form
Manager adds to the activation list corresponds to the first field declared in the panel. The second item
corresponds to the second field, and so on.(See the VSI DECforms Programmer's Reference Manual for
more information on the ACTIVATE response step.)

By default, the Form Manager begins operator input by getting input to the first unprotected item on the
activation list. If the operator presses the key bound to the default NEXT ITEM function and the input
to the first activation item passes validation, the Form Manager gets input to the second activation item.
If the operator continues to give input by entering datain fields and pressing the key bound to the NEXT

29

Chapter 3. Converting Your Form or Form Library

ITEM function, operator input proceeds in the order in which items appear on the activation list. The
order in which items appear on the activation list is controlled by the order in which you declare panel
fields (when you use response steps that do not explicitly name panel fields). Thus, the order of panel
field declaration can control the order of operator input.

You may need to change the order in which panel fields appear in your IFDL source file if you plan to
use ACTIVATE CORRESPONDING RECEIVE ALL. Be sure the panel field order reflects the order
you want to be used for operator input.

3.5.4. Rewriting Responses that Call UARs
If your FMS form calls UARs other than pre-help or post-help UARs, the FMS Converter creates
responses in your converted IFDL source file that contains the CALL response step. The CALL response
step names your UAR. You can use your UAR as a DECforms escape routine, so the CALL response
step can call the same code as was called in your FMS application.(You must pass certain parameters to
the FORMS$ENABLE call and link your application with a vector to use a UAR as an escape routine.
See Section 7.7, "Using Escape Routines" for more information.)

Although DECforms allows you to continue to use your UARs as DECforms escape routines, you may
not need to do so. The IFDL allows you to specify more form processing than the FMS Form Language,
so you may be able to perform tasks you used to perform in UARs in your DECforms form. If you can
avoid calling DECforms escape routines, your application is more efficient.

To determine whether you can perform the UAR's task in a response, see the description of the effect of
each response step in the VSI DECforms Programmer's Reference Manual.

30

Chapter 4. Modifying Your
Program
Once you have converted your form or form library to DECforms,you must modify your program so that
it uses the new form. To do this, you must:

● Remove Form Driver calls that have no equivalent in DECforms

● Change some Form Driver calls to DECforms calls

● Move the logic for some Form Driver calls to the form

This chapter explains how to perform these tasks.

4.1. Removing Form Driver Calls
Some FMS Form Driver calls have no equivalent in DECforms. DECforms does not provide a call to
perform the same function as these calls, and you cannot easily get the effect of the call using statements
in the form. In many cases, DECforms does not supply an equivalent of an FMS call because you need
not perform the call's task in DECforms.

The sections that follow list FMS calls that have no DECforms equivalent and explain why no DECforms
equivalent exists. Where possible, they suggest ways to redesign your application to perform the same
function using DECforms.

4.1.1. The AFCX Call
The FMS AFCX (Alter Field Context) call alters the default input mode fora field. It allows you to
change the Insert/Overstrike mode of the field and the cursor position in the field.

DECforms does not allow you to modify the editing mode of a field or the position of the cursor in a
field. (DECforms calls Insert/Overstrike mode editing mode.) DECforms gives the operator control over
the editing mode and the position of the cursor.

The operator can change the editing mode by invoking the built-in INSERT OVERSTRIKE function.
The operator can move the cursor using the built-in functions, such as the CURSOR LEFT and
CURSOR RIGHT functions. See the VSI DECforms IFDL Reference Manual for information on what
built-in functions DECforms provides.

Remove all AFCX calls from your program.

4.1.2. The CLEAR_VA and FIX_SCREEN Calls
The CLEAR_VA (Clear Video Attributes) call clears the screen of video attributes and sets certain other
terminal attributes. The FIX_SCREEN (Repair Overwritten Lines of Terminal Screen) call allows you to
repair lines you overwrote with direct terminal output. These calls are useful primarily for modifying the
screen and resetting terminal attributes before or after you use software other than FMS to modify the
display.

DECforms does not allow you to directly refresh particular lines on the screen because DECforms
operates on viewports and panels. You can clear the area occupied by a viewport, but you cannot specify

31

Chapter 4. Modifying Your Program

clearing lines 10 through 15. DECforms does not have a call or procedural form statement to reset
terminal attributes.

You should remove FMS CLEAR_VA and FIX_SCREEN calls from your program. You may be able
to modify the screen and reset video attributes using a screen management tool other than DECforms
before you return control to DECforms. Alternatively, you could separate the screen into parts and use
one part only for DECforms and another part for screen management you do outside of DECforms. See
Section 4.3.15, "Refreshing a Shared Screen" for information on refreshing a shared screen.

4.1.3. The DEL and READ Calls
The DEL (Remove Form from Memory-Resident Form List) and READ (Read Form Into Memory)
calls maintain a memory-resident form list. In DECforms, all panels are memory resident if they belong
to the layout selected for use at the beginning of application execution. Therefore, you need not maintain
a memory-resident form list from your DECforms application program, and you should remove all DEL
and READ calls from your program.

4.1.4. The FCHAN and TCHAN Calls
The FCHAN (Return Free Channel) call allows you to determine which I/O channel is available. The
TCHAN (Set Terminal Channel) call allows you to specify a physical terminal channel that FMS uses for
the current terminal. DECforms does not allow you to use physical channel numbers because they are
device specific. Therefore, you should remove all FCHAN and TCHAN calls from your program.

4.1.5. The LEDON and LEDOF Calls
The LEDON (Turn Terminal LED On) and LEDOF (Turn Terminal LED Off) Form Driver calls allow
you to control the LEDs on aVT100 terminal. Because most terminals do not have the same LEDs as
VT100terminals, DECforms does not provide a way to control them. You should remove LEDON and
LEDOF calls from your program.

Instead of lighting LEDs, you can signal the operator by displaying a message on the message line or
by changing the appearance of the screen. See Section 4.3.4, "Controlling Output to and Input from a
Terminal Line" for one way of displaying a message.

4.1.6. The RETFO and RETLE Calls
When you use the GETAL call, you get data from all fields on the form. The data is concatenated and
returned to a variable in your program. To allow you to determine the contents of the variable, FMS
supplies two calls:RETFO and RETLE. The RETFO (Return Field Names in Order) call returns the
name of the first field on the form, the second field on the form, and so on. The RETLE call (Return
Length of Specified Field) is similar, except that it returns the lengths of fields, instead of their names.

Because you always exchange records between the form and the program in DECforms, you do not need
the RETFO and RETLE calls. The program always knows the structure of data it receives. Therefore,
remove all RETFO and RETLE calls from your program.

4.1.7. The SCR_LENGTH and SCR_WIDTH Calls
The SCR_LENGTH (Set Screen Length) and SCR_WIDTH (Set Screen Width) calls allow you to adjust
the terminal attributes table for a terminal. DECforms does not allow you to modify the attributes of a
specific terminal. Instead of modifying the attributes of the device to fit your form in DECforms, you
modify the form to fit different devices. You should remove SCR_LENGTH and SCR_WIDTH calls
from your program.

32

Chapter 4. Modifying Your Program

4.1.8. The SSRV and STAT Calls
The SSRV (Specify Status Reporting Variables) call allows you to specify a location in which FMS
stores the I/O status and completion status of each subsequent call. The STAT (Return Status from Last
Call) call returns the status code for the previous call. In DECforms, you call the Form Manager like
you call a function. Each DECforms call returns a LONGWORD INTEGER value that gives its status.
Therefore, you need not tell the Form Manager where to store status or when to return status. Remove
SSRV and STAT calls from your program.

4.2. Changing Form Driver Calls to DECforms
Calls
Some DECforms calls have the same purpose as one or more FMS calls. These are the calls that perform
the following functions:

● Open the form environment

● Send data to the form

● Get data from the form

● Cancel other calls

● Close the form environment

You can remove the FMS calls that perform these functions from your program and replace them
with DECforms calls that perform similar functions. Table 4.1, "Correspondence Between FMS and
DECformsCalls" shows the correspondence between FMS calls and DECforms calls.

Table 4.1. Correspondence Between FMS and DECformsCalls

DECforms Call FMS Calls DECforms Call Action

FORMS$ENABLE ATERM (Attach Terminal)

AWKSP (Attach Workspace)

LOAD (Load Form Without
Display)

LCHAN (Set Channel for Form
Library File)

LOPEN (Open Form Library)

Selects a form and terminal.
Creates session.

FORMS$SEND PUT (Output Value to Specified
Field)

PUTAL (Output Values to All
Fields)

PUTSC (Output Data to Current
Line of Scrolled Area)

Sends data from the program to
the form.

FORMS$RECEIVE GET (Get Value for Specified
Field)

Passes data from the form to the
program.

33

Chapter 4. Modifying Your Program

DECforms Call FMS Calls DECforms Call Action
GETAF (Get Value for Any
Field)

GETAL (Get All Field Values)

GETSC (Get Current Line of
Scrolled Area)

FORMS$CANCEL CANCL (Cancel Call) Cancels currently active requests.
FORMS$DISABLE LCLOSE (Close Form Library)

DWKSP (Detach Workspace)

DTERM (Detach Terminal)

Disables the session.

The sections that follow explain using the DECforms calls to perform the functions for which you
used the corresponding FMS calls. See the VSI DECforms Programmer's Reference Manual for more
information on the DECforms calls and requests.

4.2.1. DECforms Call Parameters
Each DECforms call has a defined format, including a number of parameters. The parameters appear
in the calls in the order defined by the format of the call. Some parameters have a slightly different
purpose,depending on which call they appear in. The following list describes the parameters you need to
open your form environment, exchange data with the form, and close your form environment.

form-object-address
Required argument that is either the FORMS$AR_FORM_TABLE symbol name or 0. The FORMS
$AR_FORM_TABLE symbol name is defined in an object module stored in a system library. The
symbol is a pointer to the address of a special object module, called a form object. The form object
module contains the addresses of escape routines and forms that are linked with the application. Until
you are ready to use escape routines, you can pass 0 in this parameter. See Section 7.7, "Using Escape
Routines" for more information on using escape routines.(Passed by value.)

display-device-specification
Name of the display device to be used. You should pass SYS$INPUT in this parameter. This parameter
serves the same general purpose as ATERM. (Passed by descriptor.)

session-id
Sixteen-character string that identifies the session.

The Form Manager returns the session identification string to your program during the ENABLE
request. When used in a call to the ENABLE request, this parameter is similar to LCHAN and AWKSP.
It causes the Form Manager to request a physical channel and create a session identification string. The
session identification string associates the display device with the currently loaded form.

When used to call the SEND or RECEIVE request, this parameter is similar to the FMS STERM(Set
Current Terminal) call. It controls what session (and therefore what terminal) the request effects. If you
are using more than one session, you switch between them by passing a different session identification
string for each session.

34

Chapter 4. Modifying Your Program

When used in a call to the DISABLE request, this parameter is similar to LCLOS and DWKSP in that
it identifies the form that the Form Manager closes. It also resembles DTERM because it identifies the
terminal to be detached. (Passed by descriptor.)

file-specification
File specification for the form file to be used. This parameter is similar to the LOAD call because it
identifies the set of panels to be moved into memory. (Passed by descriptor.)

form-specification
Name of the form as specified in the IFDL FORM statement. You should pass the name of the form
only if your form is linked with your program or stored in a shareable image. See the VSI DECforms
Programmer's Reference Manual for more information on linking forms and storing them in shareable
images.

record-identifier
Name of the form record or record list that matches the program record you are passing. The Form
Manager uses this parameter to determine which form record or record list to use for this request and
which request response (if any) to perform during the processing of this request.(Passed by descriptor.)

record-count
Specifies the number of records you are passing. (Passed by reference.)

timeout
Specifies the number of seconds the operator has to enter data to fields. DECforms resets the timer
between each operator keystroke. When used in a call that requires operator input, this parameter is
similar to the FMS STIME (Set Field Entry Timeout) call. (Passed by reference.)

record-message
Data you are passing. (Passed by descriptor.)

The DECforms calls have parameters other than the ones described here. The other parameters are
optional and allow you to:

● Receive special status information from the Form Manager in receive control text

● Invoke send control text responses during the processing of this request

● Identify the parent request identification string, which is a string the Form Manager uses when you
call a request from within an escape routine

● Specify options for this request

● Pass a shadow record (Section 7.6, "Determining What Changed During Operator Input" describes
using a receive shadow record)

You can omit these parameters from the calls without losing any of the functions that you use in FMS.

If you omit a required parameter, you may, depending on your programming language, need to supply a
placeholder for the parameter. For example,you can use the DEC COBOL OMITTED phrase to indicate
that you have omitted a required parameter from a request call in a DEC COBOL program.

35

Chapter 4. Modifying Your Program

4.2.2. Opening the Form Environment
DECforms provides a single call to open your form environment—the FORMS$ENABLE call. The
FORMS$ENABLE call invokes the ENABLE request, which causes the Form Manager to initialize the
current session. To initialize a session, the Form Manager finds the form to be used and selects a layout
from that form. The Manager also attaches the display device and performs other internal tasks to set
up the form environment. If you do not define an ENABLE response, the Form Manager performs the
default ENABLE response, which causes it to clear the display.

The format of the call follows (optional parameters are shown in brackets):

FORMS$ENABLE form-object-address, display-device-specification,
 session-id [file-specification,]
 [form-specification, receive-control-text,
 receive-control-text-count],
 [send-control-text, send-control-text-count], [timeout],
 [parent-request-id], [request-options]

To modify your program to use the ENABLE request, remove the ATERM, LOAD,LCHAN, and
LOPEN calls. Examine the parameters to these calls and move them to the appropriate FORMS
$ENABLE call parameters. For example, you may be able to use the LOAD call parameter as the file-
specification FORMS$ENABLE parameter. Example 4.1, "FORMS$ENABLE Call" shows the data
declarations needed for the FORMS$ENABLE call and passing that data in the call.

Example 4.1. FORMS$ENABLE Call

01 SAMP_FORM PIC X(21) GLOBAL VALUE "SAMP.FORM".
01 SESSION_ID PIC X(16) GLOBAL.

01 DISPLAY_DEVICE PIC X(9) GLOBAL VALUE "SYS$INPUT".
01 FORMS_STATUS PIC S9(9)COMP GLOBAL.

*
COPY "SYS$LIBRARY:FORMS$COB_DEFINITIONS.LIB".
*
* Set up DECforms Environment
*
 CALL "forms$enable" USING OMITTED
 BY DESCRIPTOR DISPLAY_DEVICE
 BY DESCRIPTOR SESSION_ID
 BY DESCRIPTOR SAMP_FORM
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
 .
 .
 .

These variable declarations create storage for the FORMS$ENABLE call parameters and the return
value.

The COPY statement copies declarations for the DECforms routine names and symbols.

This FORMS$ENABLE call enables a form that does not use procedural escapes. In response to
this call the ENABLE request loads SAMP.FORM, attaches the device that corresponds to SYS
$INPUT, and returns a string in the session identification string.

36

Chapter 4. Modifying Your Program

The FORMS_STATUS variable holds status information that DECforms returns after the function
call is complete. You should test this variable for success after each DECforms call.

Once you modify your program, you may want to add an ENABLE response to your form. Position the
response in your IFDL source file directly following any function declarations. You can specify only one
ENABLE response per layout.

4.2.3. Sending Data to the Form
To pass data to the form in DECforms, you use the FORMS$SEND call. This call invokes the SEND
request. The SEND request causes the Form Manager to pass data from the program record to form data
items. The Form Manager determines which form data items are to store the data by looking at the form
record name you pass in the request call. Using that form record name, the Form Manager determines
the names of form records fields in that form record. The Form Manager distributes the program data
into form data items that have the same name as fields in the form record.

You can specify a SEND response in the form to specify, for example, that the Form Manager signal
the operator when the new data is displayed. The Form Manager does not contain a default SEND
RESPONSE.

Figure 4.1, "Default Send Transfer in DECforms" shows how data is transferred when you call the SEND
request and do not specify as end response.

Figure 4.1. Default Send Transfer in DECforms

1

The program passes the data in EMPL_RECORD to the form, and it passes the name
"EMPL_RECORD" to the Form Manager.

2

The Form Manager reads the form record named EMPL_RECORD to determine what names are
assigned to its record fields.

3

The Form Manager distributes the data from the program into the form data items FIELD_ONE,
FIELD_TWO, and so on; these form data items have the same name as fields in the form record.

4

The Form Manager updates the data in panel fields named FIELD_ONE,FIELD_TWO, and so on.
These panel fields were on the display when the program called the SEND request.

37

Chapter 4. Modifying Your Program

The following shows the format of the FORMS$SEND call (optional parameters are shown in brackets):

FORMS$SEND session-id, send-record-name, send-record-count,
 [receive-control-text, receive-control-text-count],
 [send-control-text, send-control-text-count],
 [timeout], [parent-request-id], [request-options],
 [[send-record-message], [send-shadow-record],]

To modify your application to use the SEND request, declare a record in your program that you can use
to pass data to the form. Remove the PUT-type calls, STERM calls, and STIME calls that you use in the
FMS application to put the data out to the workspace. Replace them with the FORMS$SEND call and its
parameters. Example 4.2, "FORMS$SEND Call" shows a program record declaration and an example of
passing data with the FORMS$SEND call.

Example 4.2. FORMS$SEND Call

*
 .
 .
 .
01 RECORD_COUNT PIC 9(2) COMP GLOBAL VALUE 1.
*
01 ACCOUNT GLOBAL.
 05 ACCT_NUMBER PIC X(5).
 05 OPEN_DATE PIC X(7).
 05 ACCT_NAME.
 10 LAST_NAME PIC X(20).
 10 FIRST_NAME PIC X(15).
 10 MIDDLE_NAME PIC X(15).
 05 ACCT_STREET PIC X(30).
 05 CITY-STATE-ZIP.
 10 CITY PIC X(20).
 10 STATE PIC X(2).
 10 ZIP PIC X(5).
 05 ACCT_HOME_PHONE PIC X(10).
 05 ACCT_WORK_PHONE PIC X(10).
 05 ACCT_PASSWORD PIC X(12).
 .
 .
 .
*
* Send account data to the form.
*
 CALL "forms$send" USING BY DESCRIPTOR SESSION_ID
 "ACCOUNT"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR ACCOUNT
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
 .
 .

38

Chapter 4. Modifying Your Program

 .

The RECORD_COUNT variable stores the number of records being passed in the SEND call.

The ACCOUNT record stores the data that is sent to the form.

The FORMS$SEND call sends data to the form. Notice that you must indicate omitted parameters
that fall between parameters you use. You need not indicate omitted parameters that fall after the
last parameter in the call you use.

After you modify the program, declare a form record that is logically equivalent to your program record
(unless one already exists). Logically equivalent records have the same number of fields, corresponding
fields have the same length and matching data types. Matching data types are data types that create the
same OpenVMS data type in internal storage.

You should name the fields in the form record the same name as the form data items into which you
want the Form Manager to move data from the program. The form record field and form data item do
not have to have the same data type.

If you write a SEND response, you name the SEND response the same as the form record name you
specify in the send-record-name parameter of the FORMS$SEND call. This causes the Form Manager to
perform that response when you call the SEND request and name that form record.

Example 4.3, "Form Record and SEND Response for ACCOUNT Record" shows a form record
declaration that matches the COBOL record ACCOUNT. The example also shows the form data items
that correspond to the form record and the SEND response that the Form Manager per forms when the
send-record-name parameter names the ACCOUNT form record.

Example 4.3. Form Record and SEND Response for ACCOUNT Record

Form Data
 ACCTNO_FIELD Character (5)
 OPEN_DATE Character (7)
 LAST_FIELD Character (20)
 FIRST_FIELD Character (15)
 MIDDLE_FIELD Character (15)
 STREET_FIELD Character (30)
 CITY_FIELD Character (20)
 STATE_FIELD Character (2)
 ZIP_FIELD Character (5)
 HOMEPH_FIELD Character (10)
 WORKPH_FIELD Character (10)
 SECRET_FIELD Character (12)

 ACCOUNT_PASSWORD Character (12)
End Data

Form Record ACCOUNT
 ACCTNO_FIELD Character (5)
 OPEN_DATE Character (7)
 LAST_FIELD Character (20)
 FIRST_FIELD Character (15)
 MIDDLE_FIELD Character (15)
 STREET_FIELD Character (30)
 CITY_FIELD Character (20)
 STATE_FIELD Character (2)
 ZIP_FIELD Character (5)

39

Chapter 4. Modifying Your Program

 HOMEPH_FIELD Character (10)
 WORKPH_FIELD Character (10)
 SECRET_FIELD Character (12)
End Record
 .
 .
 .
 Send Response ACCOUNT
 Let ACCOUNT_PASSWORD = SECRET_FIELD
 End Response

The form data items store the data that is sent from the program.

The ACCOUNT form record is logically equivalent to the ACCOUNT program record. The form
record fields are declared to be of the CHARACTER data type to match the program record data
type.

The SEND response sets the ACCOUNT_PASSWORD form data item equal to the
SECRET_FIELD form data item. The value in the SECRET_FIELD form data item came from the
program.

Position SEND responses in your IFDL source file directly following function declarations.

4.2.4. Getting Data from the Form
To get data from the form in DECforms, you use the FORMS$RECEIVE call. This call invokes the
RECEIVE request. The RECEIVE request causes the Form Manager to pass data from form data items
to the program record. To determine what values to pass to the program, the Form Manager reads the
form record name you pass in the record identifier parameter. The Form Manager passes data from the
form data items that have the same name as fields in that form record.

You can specify a RECEIVE response in the form to control some aspects of RECEIVE request
processing. If you do not specify a RECEIVE response for the request, the Form Manager performs the
ACTIVATECORRESPONDING RECEIVE ALL response step. This response step causes the Form
Manager to activate each panel field that corresponds to the form record named in the record-identifier
parameter. The Form Manager gets input to each of those panel fields and stores that input in form data
items. Finally, it returns the input to the program.

Figure 4.2, "Default Receive Transfer in DECforms" shows how data transfer occurs when you call the
RECEIVE request and accept the default response.

Figure 4.2. Default Receive Transfer in DECforms

40

Chapter 4. Modifying Your Program

1

The program passes the name "EMPL_RECORD" to the Form Manager. The Form Manager reads
the form record named EMPL_RECORD to determine what names are assigned to its record fields.
Then, the Form Manager displays the panel that contains fields that correspond to record fields in
the receive record and accepts operator input.

2

The Form Manager stores operator input in the form data items that correspond by name to the
panel fields.

3

The Form Manager collects the data in the form data items that correspond to fields in the form
record.

4

The Form Manager returns the data to the program.

The following shows the format of the FORMS$RECEIVE call (optional parameters are shown in
brackets):

FORMS$RECEIVE session-id, receive-record-name, receive-record-count,
 [receive-control-text, receive-control-text-count],
 [send-control-text, send-control-text-count],
 [timeout], [parent-request-id], [request-options],
 [[receive-record-message], [receive-shadow-record],]

To modify your application to use the RECEIVE request, declare, in your program,a record that you can
use to get data from the form. Remove GET-type calls, STERM calls, and STIME calls. Replace those
calls with the FORMS$RECEIVE call and its parameters. Example 4.4, "FORMS$RECEIVE Call" shows
the FORMS$RECEIVE call. The call requests data for the ACCOUNT record shown in Example 4.2,
"FORMS$SEND Call".

Example 4.4. FORMS$RECEIVE Call

PROCEDURE DIVISION.
0.
*
* Get account data from the form
*
 CALL "forms$receive" USING BY DESCRIPTOR SESSION_ID
 "ACCOUNT"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR ACCOUNT
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.

This call gets data from the form data items that correspond to the ACCOUNT form record.

41

Chapter 4. Modifying Your Program

Once you have modified the program, declare a form record that is logically equivalent to your program
record (unless one already exists). The record must have the same number of fields as your program
record, the fields must be the same length, and the fields must have matching data types. Data types are
matching when they create the same OpenVMS data type internally. Name the fields in the form record
the same as the form data items from which you want the Form Manager to collect data to return to your
program.

You can write a response to the RECEIVE request if you want an effect other than what is given by the
ACTIVATE CORRESPONDING RECEIVE ALL response step. Specify the form record name you pass
in the receive-record-name parameter to the FORMS$RECEIVE call. The Form Manager performs the
receive response that is named the same as the receive-record-name parameter. Position the response in
your IFDL source file directly following function declarations.

Example 4.5, "RECEIVE Response" shows a RECEIVE Response.

Example 4.5. RECEIVE Response

 .
 .
 .
 Function NEXT_ITEM Is %HORIZONTAL_TAB End Function
 Receive Response ACCOUNT
 Activate Field LAST_FIELD on ACCOUNT_PANEL
 Activate Field FIRST_FIELD on ACCOUNT_PANEL
 Activate Field MIDDLE_FIELD on ACCOUNT_PANEL
 Activate Field STREET_FIELD on ACCOUNT_PANEL
 Activate Field CITY_FIELD on ACCOUNT_PANEL
 Activate Field STATE_FIELD on ACCOUNT_PANEL
 Activate Field ZIP_FIELD on ACCOUNT_PANEL
 Activate Field HOMEPH_FIELD on ACCOUNT_PANEL
 Activate Field WORKPH_FIELD on ACCOUNT_PANEL
 Activate Field ACCOUNT_PASSWORD on ACCOUNT_PANEL
 End Response

This response activates a number of the panel fields that correspond to the ACCOUNT form record.
Because only certain fields need to be activated for input, the default response that activates all panel
fields corresponding to form record fields is inappropriate.

4.2.5. Canceling Requests
To cancel a DECforms request, you use the FORMS$CANCEL call,which invokes the CANCEL
request. The CANCEL request causes the Form Manager to cancel currently active requests for the
session identified by the session identification string you pass in the call. It differs from the FMS
CANCL call in that it does not cancel any requests you call after you call the CANCEL request.

When you use it to cancel the SEND request, RECEIVE request, or TRANSCEIVE request, the
CANCEL request cancels pending input and output. Therefore, form data items and the display may
be in an unexpected state after you invoke the CANCEL request. When the Form Manager is finished
processing the CANCEL request, you can repair form data by sending a new copy of the record being
exchanged. A canceled TRANSCEIVE request or RECEIVE request may return a record to the program
if the Form Manager has already collected data to return to the program when it cancels the request. The
Form Manager does not validate the data before returning it to the program. The Form Manager restores
the screen to a known state the next time it does screen management.

The format of the FORMS$CANCEL call follows:

42

Chapter 4. Modifying Your Program

FORMS$CANCEL session-id [,request-options]

To modify your program to use the CANCEL request, replace all CANCL calls with FORMS$CANCEL
calls. Example 4.6, "FORMS$CANCEL Call" shows the FORMS$CANCEL call.

Example 4.6. FORMS$CANCEL Call

PROCEDURE DIVISION.
0.
*
* Fatal error in database update. Cancel outstanding requests.
*
 CALL "forms$cancel" USING BY DESCRIPTOR SESSION_ID
 GIVING FORMS_STATUS.

You cannot write a response for the CANCEL request.

4.2.6. Closing the Form Environment
DECforms provides a single call, FORMS$DISABLE, to close your form environment. The FORMS
$DISABLE call invokes the DISABLE request, which causes the Form Manager to end the current
session. To end a session, the Form Manager detaches the display device and form that are associated
with the session identification string,and it performs other internal tasks.

You should call the DISABLE request only when you have finished exchanging data with a form.
You need not disable a form before you use another form, perform database updates, or make calls to
another product, such as the Graphical Kernel System (GKS). (See the GKS documentation for more
information about that product.)

The format of the FORMS$DISABLE call follows (optional parameters are shown in brackets):

FORMS$DISABLE session-id [receive-control-text,receive-control-text
 -count], [send-control-text, send-control-text-count],
 [timeout], [parent-request-id], [request-options]

To modify your program to use the DISABLE request, remove the LCLOS and DTERM calls. Add the
FORMS$DISABLE call and pass the same variable for the session-id parameter as you passed in the
FORMS$ENABLE call. Example 4.7, "FORMS$DISABLE Call" shows the FORMS$DISABLE call.

Example 4.7. FORMS$DISABLE Call

PROCEDURE DIVISION.
0.
*
* Done using DECforms. Disable form environment.
*
 CALL "Forms$disable" USING BY DESCRIPTOR SESSION_ID_STRING
 GIVING FORMS_STATUS.
 .
 .
 .

You can write a response to the DISABLE request. Example 4.8, "DISABLE RESPONSE That Clears the
Screen" shows a DISABLE RESPONSE that clears the screen.

Example 4.8. DISABLE RESPONSE That Clears the Screen

 .

43

Chapter 4. Modifying Your Program

 .
 .
Disable Response
 Remove All
End Response
 .
 .
 .

The Form Manager performs the DISABLE response each time you call the DISABLE request.

Position the response in your IFDL source file directly following any function declarations. You
can specify only one DISABLE response per layout.

The REMOVE ALL response step causes the Form Manager to remove all the viewports for the
current layout. Note that if the current layout's viewports do not cover the entire screen, the Form
Manager does not clear the entire screen. The Form Manager clears only the portion covered by
the viewports. If no viewports for the current layout are on the display,this response step has no
effect.

4.3. Moving the Logic for Form Driver Calls to
the Form
The interaction with the terminal is defined in the form in DECforms, instead of in the program;
therefore, you can move some of your FMS program logic to your converted form. You use IFDL
statements to produce the same result as these Form Driver calls. The sections that follow explain how to
perform the following tasks in DECforms:

● Altering field video attributes

● Assigning default values to fields

● Clearing the screen

● Controlling output to and input from a terminal line

● Controlling supervisor mode

● Defining the decimal point as comma

● Defining keys

● Determining form context

● Displaying forms

● Marking forms as undisplayed

● Modifying the keypad mode

● Printing forms

● Processing field terminators

● Refreshing the screen

● Refreshing a shared screen

44

Chapter 4. Modifying Your Program

● Returning data from the form workspace

● Returning Named Data by index and name

● Setting the current workspace

● Signaling the operator

● Trapping illegal field terminators

● Waiting for the operator

The sections that follow describe how to get the effect most similar to FMS behavior. Because the
sections describe emulating FMS, they may not always describe the most efficient way to perform tasks
in DECforms.See the VSI DECforms IFDL Reference Manual for more information on the IFDL syntax
discussed here.

4.3.1. Altering Field Video Attributes
The FMS AFVA (Alter Field Video Attributes) call changes the video attributes of a field. The attributes
change immediately and remain in effect until either you redisplay the form or modify them with another
AFVA call. This call cancels input highlighting for a field.

In DECforms, you use the HIGHLIGHT WHEN clause to change the video attributes of a field. This
clause allows you to apply highlight to a field based on a conditional expression. The attributes change
immediately after the condition becomes true and remain in effect until the condition is no longer true.

The Form Manager adds attributes you specify with HIGHLIGHT WHEN to the attributes that are
already in effect for the field, including active highlighting (highlighting applied to the field when it
becomes the current activation item). If the attributes you specify with ACTIVE HIGHLIGHT and
HIGHLIGHT WHEN conflict with each other or with an attribute you specify in the field's DISPLAY
clause,the attribute the Form Manager applies last takes precedence. The Form Manager always applies
attributes in the following order:

1. Attributes specified in the DISPLAY clause

2. Attributes specified in the ACTIVE HIGHLIGHT clause

3. Attributes specified in the HIGHLIGHT WHEN clause

Example 4.9, "Altering Video Attributes with HIGHLIGHT WHEN" shows a field declared with a
HIGHLIGHT WHEN clause.

Example 4.9. Altering Video Attributes with HIGHLIGHT WHEN

 Field EMPLOYEE_NAME
 Next Line Same Column
 Active Highlight Bold
 Highlight Reverse When Error = "TRUE"
 Exit Response
 Call "CHECK_DATA_BASE" Using By Reference EMPLOYEE_NAME_1
 Giving STATUS
 If STATUS <> 1
 Then
 Let Error = "TRUE"
 Invalid
 Else
 Position to Next item

45

Chapter 4. Modifying Your Program

 End If
 End Response
 End Field

The ACTIVE HIGHLIGHT statement specifies the video attributes applied by the Form Manager
when the operator is entering data in the field.

The HIGHLIGHT WHEN statement specifies what video attributes the Form Manager applies
when the form data item ERROR is equal to “TRUE.”

If this field is active when the ERROR form data item equals “TRUE,” the Form Manager applies
the reverse attribute and the bold attribute.

The exit response calls an escape routine named CHECK_DATA_BASE. The escape routine
verifies that the employee name exists in the employee database. If the employee name is not in
the database, the Form Manager sets the ERROR form data item to “TRUE” and continues input
into the EMPLOYEE_NAME field as specified by the INVALID response step. Otherwise, the
operator begins input to the next field, as specified by the POSITION response step.

You should remove all AFVA calls from your program. For each call you remove,add a HIGHLIGHT
WHEN statement to the form. Be sure to position the HIGHLIGHTWHEN statement in the field
declaration for the field you altered with a particular AFVA call.

4.3.2. Assigning Default Values to Fields
Two FMS calls reset fields on your form to their default values. These calls are PUTD (Output Default
to a Specified Field) and PUTDA (Output Default Values to All Fields). PUTD outputs the default value
to the field you specify. If the field does not have a default value, it is filled with the fill character in the
workspace and with spaces on the form. PUTDA causes the default values to be restored to all fields on
the form. If any fields do not have default values, they are filled with the fill character in the workspace
and with spaces on the form.

In DECforms, you reset form data items to their default value,instead of resetting the value of fields.
Because form data items store the values displayed in fields, resetting them has the effect of resetting
the field value. In other words, when you reset a form data item to its default value, the default value is
displayed when the panel field is displayed.

To reset form data items to their default value, use the RESET response step. Using this response step,
you can reset the value for a particular form data item, all values in a form data group, or all form data
items in your form. Example 4.10, "Using the RESET Response Step" shows a validation response that
uses the RESET response step.

Example 4.10. Using the RESET Response Step

 Field ACCOUNT_NUMBER
 Line 10 Column 5
 Input Picture 999'-'99999'-'999
 Input Required

 Validation Response
 Call "CHECK_DIGIT_VALIDATION" Using By Reference ACCOUNT_NUMBER
 Giving STATUS
 If STATUS <> 1 Then
 Invalid
 Reset ACCOUNT_NUMBER
 Else

46

Chapter 4. Modifying Your Program

 Position To Next Item
 End If
 End Response
 End Field

The CALL response step calls an escape routine named CHECK_DIGIT_VALIDATION that
verifies that the account number entered by the operator is valid.

The Form Manager tests the value stored in the STATUS form data item. If the STATUS form
data item contains a 1 indicating success, the operator continues input with the next field on the
panel. If the return status indicates failure, the Form Manager performs the INVALID response
step. This response steps causes the Form Manager to begin operator entry to this field again. The
Form Manager resets the ACCOUNT_NUMBER form data item to its default value as specified by
the RESET response step.

4.3.3. Clearing the Screen
The FMS CLEAR (Clear Screen) call erases the contents of all or part of the screen. You use it in
FMS to erase all or part of the screen. For example, you could clear the screen directly before your
application exits. You also use the CLEAR call to “break” parts of the screen. When you call another
screen management tool, such as GKS, from an FMS application, the other tool modifies the screen
independent of FMS. When control is returned to FMS, FMS operates as if the screen had not been
modified; FMS does not redraw forms that were overwritten by the other screen management tool. To
make FMS repair lines that were modified by another screen management tool, clear those lines. Then,
you can use the RFRSH call to make FMS refresh the screen and repair the lines you have “broken” with
the CLEAR call.

DECforms does not have a call that clears all or part of the screen. However, it does supply the
REMOVE response step that clears parts of the screen and the REFRESH response step that redraws
parts of the screen. Therefore, you can cause the Form Manager to erase parts of the screen and repair
lines that have been written over by another screen management tool.

The difference between the REMOVE and REFRESH response steps and the FMSCLEAR call is that
REMOVE and REFRESH operate on viewports. You specify the name of a viewport in the REMOVE
or REFRESH response step to determine which viewport the Form Manager clears or redraws. You can
specify the REMOVE ALL or REFRESH ALL to clear or redraw the display.

Remove FMS CLEAR calls from your program. Replace them with REMOVE or REFRESH response
steps that are performed at times similar to when the CLEAR call was performed.

See Section 4.3.15, "Refreshing a Shared Screen" for information on refreshing a shared screen. See the
VSI DECforms IFDL Reference Manual for more information on the REMOVE response step.

4.3.4. Controlling Output to and Input from a Terminal
Line
The PUTL (Output Line to Screen) call allows you to write a line of data to the terminal. You can use
it to send messages to the operator. The message you send can appear on any line of the terminal. You
can apply video attributes to the message using the ADLVA (Alter Data Line Video Attributes) call. The
ADLVA call allows you to make a data line blink, be bolded, appear in reverse video, and so on.

The GETDL (Get Data Line from Terminal) call allows you to get a data line from the operator. You can
display a prompt to let the operator know what input is required. Again, you can determine what video
attributes that line has by calling ADLVA.

47

Chapter 4. Modifying Your Program

To get the same effect in DECforms, you create a data line viewport and panel. Create a one-line
viewport that is as wide as the display. Position that viewport on the line of the display where you want
your data line to appear. Then, create a panel containing a field to display a variable prompt and a field
to get operator input. Position the panel inside the viewport. For example, if you want the data line to
appear on line 6, your viewport declaration would be similar to the one in Example 4.11, "Viewport and
Panel Declaration for Data Lines".

Example 4.11. Viewport and Panel Declaration for Data Lines

Form EMPLOYEE_FORM
 Form Data
 PROMPT_FIELD Character (10)
 DATA_LINE_FIELD Character (70)
 End Data

 Form Record PROMPT_RECORD
 PROMPT_FIELD Character (10)
 End Record Form Record DATA_LINE_RECORD
 DATA_LINE_FIELD Character (70)
 End Record
 .
 .
 .
 Viewport FOR_DATA_LINES
 Lines 6 Through 6
 Column 1 Through 80
 End Viewport

 Panel DATA_LINE_PANEL
 Viewport FOR_DATA_LINES
 Display Underlined
 Field PROMPT_FIELD
 Line 1 Column 1
 No Data Input
 End Field
 Field DATA_LINE_FIELD
 Line 1 Column 11
 End Field
 End Panel
 End Layout
End Form

This FORM RECORD declaration creates a form record you can use to pass a prompt from the
program to the form.

This FORM RECORD declaration creates a form record you can use to return operator input from
the data line to the program.

The VIEWPORT statement declares a 1-line, 80-column viewport that appears on line 6 on the
display.

The PANEL statement declares the DATA_LINE PANEL. The VIEWPORT clause positions the
panel in the FOR_DATA_LINES viewport. The DISPLAY clause specifies that fields and literals
on the panel are underlined.

PROMPT_FIELD is a field that begins on line1 in column 1 of this panel. The field NO DATA
INPUT protects the field from operator input. The prompt is stored in the PROMPT_FIELD form

48

Chapter 4. Modifying Your Program

data item and may have been passed from the program. You can use a literal prompt if you do not
need to vary the prompt.

DATA_LINE_FIELD is a field that appears beside PROMPT_FIELD and gets input from the
operator.

To pass data to the data line, you declare program records that are logically equivalent to the
PROMPT_RECORD form record and the DATA_LINE_RECORD form record. Then, use the FORMS
$TRANSCEIVE call shown in Example 4.12, "FORMS$TRANSCEIVE Call That Passes a Prompt to and
Gets Input from a Data Line" to exchange data with the form.

Example 4.12. FORMS$TRANSCEIVE Call That Passes a Prompt to and Gets Input
from a Data Line

WORKING-STORAGE SECTION.
*01 PROMPT_RECORD GLOBAL.
 05 PROMPT_FIELD PIX X(10).

 01 DATA_LINE_RECORD GLOBAL.
 05 DATA_LINE_FIELD PIX X(70).

 CALL "forms$transceive" USING BY DESCRIPTOR SESSION_ID
 "PROMPT_RECORD"
 BY REFERENCE RECORD_COUNT
 BY DESCRIPTOR "DATA_LINE_RECORD"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR PROMPT_RECORD
 OMITTED
 BY DESCRIPTOR DATA_LINE_RECORD
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.

This request call sends the data in the PROMPT_RECORD program record field to the form, and it
receives the data in the DATA_LINE_FIELD form data item in the program.

4.3.5. Controlling Supervisor Mode
FMS allows you to protect some fields from operator entry with supervisor-only mode. The operator
cannot enter data in fields with the supervisor-only attribute unless you turn supervisor-only mode off
from the program. You control supervisor-only mode with the SPOFF (Turn Supervisor-Only Mode
Off)and SPON (Turn Supervisor-Only Mode On) calls.

DECforms also allows you to conditionally protect fields from operator entry. In DECforms, you do this
with the PROTECTEDWHEN field attribute. Example 4.13, "Protecting Fields from Operator Entry"
shows a field declaration with the PROTECTED WHEN clause.

Example 4.13. Protecting Fields from Operator Entry

 Field EMPLOYEE_SALARY

49

Chapter 4. Modifying Your Program

 Line 15 Column 20
 Protected When OPERATOR_NUMBER <> SUPERVISOR_NUMBER
 End Field

The PROTECTED WHEN clause makes this field display-only unless the OPERATOR_NUMBER form
data item is equal to the SUPERVISOR_NUMBER form data item. While the condition is true, the
operator can enter data into the field.

Remove SPON and SPOFF calls from your program. Add the PROTECTED WHEN clause to fields that
need to be protected from operator entry at certain times during application processing.

4.3.6. Defining the Decimal Point as Comma
The DPCOM (Define Comma as Decimal Point) FMS call defines the comma or redefines the period as
the decimal point for signed numeric fields. The decimal point is returned to your program as part of the
field value.

The DECIMAL POINT IS clause controls the decimal point character in DECforms. You specify this
clause as an editing clause on an OUTPUT PICTURE field. The character not used as the decimal point
may be used as an insertion literal. The character that is used as a decimal point is not stored with the
value in form data. By default, the decimal point is a period.

Example 4.14, "Using DECIMAL POINT IS to Define the Decimal Point" shows a field declared with the
DECIMAL POINT IS clause.

Example 4.14. Using DECIMAL POINT IS to Define the Decimal Point

 Field EMPLOYEE_SALARY
 Line 20 Column 40
 Output Picture 999.99999
 Decimal Point Is Comma
 Input Picture XXX.XXXXX
 End Field

The DECIMAL POINT IS clause specifies that the decimal point for this field is a comma. The decimal
point for other fields could be a period.

Remove the DPCOM call from your program. Add the DECIMAL POINT IS clause to fields in which
you want the decimal point to be a comma. If you want a number of fields to have a comma as the
decimal point, you can apply a field default to a group, panel, or layout. The APPLY FIELD DEFAULT
clause specifies the default characteristics of fields that follow it in a group,panel, or layout declaration.

4.3.7. Defining Keys
You define keys in FMS with the DFKBD (Define Keyboard) call. You define keys in DECforms with
functions.

FMS and DECforms provide default definitions (called bindings in DECforms) for some keys. Also like
FMS, DECforms provides defaults for what the Form Manager does when the operator presses a key.
You can change the default effect of a key by defining a function response for the function bound to the
key.

To move your FMS key definitions to DECforms, remove all DFKBD calls from your program. Define
keys using the FUNCTION and FUNCTION RESPONSE statements in the form. Section 7.1, "Defining
Keys"discusses defining keys and writing function responses for keys.

50

Chapter 4. Modifying Your Program

4.3.8. Determining Form Context
The following FMS calls return information about the current state of the form.

● RETCX (Return Current Context), which returns:

• Address of the current terminal control area (TCA)

• Address of the current workspace

• Name of the form being processed

• Value of the associated UAR text, if one is defined

• Cursor position

• Last field terminator entered by the operator

• Mode (Insert or Overstrike) in effect for a field

• Number of times the operator has pressed the help key

● RETFN (Return Current Field Name), which returns the name of the current field.

You use these calls, for example, when the operator enters an invalid value. With them you determine
what state the terminal was in when the operator entered a field terminator. You can then put the form
into a context that make sit easy for the operator to correct input and issue another GET-type call.

In DECforms, you can do little to modify the operator's context. For example, you cannot control cursor
position or editing mode from the form. In DECforms, the operator is given this control.

However, you can get information about form context from built-in form data items. Built-in form data
items are special, read-only data items that the Form Manager maintains. You can use these data items
if you declare them in your form. The following list shows the built-inform data items that give you most
of the information you receive when you call RETCX or RETFN.

● SESSION—set to the session identification string the Form Manager returned to your session during
an ENABLE request. The session identification string identifies the connection to a terminal similar
to the way the current TCA and current workspace do in FMS.

● FORMNAME—set to the name of the form currently in use.

● FUNCTIONAME—set to the name of the last function entered by the operator. (Function names are
similar to field terminators.)

● CURRENTITEM—set to the name of the current field activation item or wait activation item.

Example 4.15, "Declaring Built-In Form Data Items" shows how you would declare these form data
items.

Example 4.15. Declaring Built-In Form Data Items

Form EMPLOYEE_FORM
 Form Data
 SESSION Character (16)

51

Chapter 4. Modifying Your Program

 FORMNAME Character (25) Varying
 FUNCTIONAME Character (25) Varying
 CURRENTITEM Character (25) Varying
 .
 .
 .
 End Data

The SESSION built-in form data item is declared to be 16 characters because all session
identification strings are 16 characters.

The other built-in form data items may vary in size. Each of them must be declared to be either
CHARACTER or CHARACTER VARYING.

See the VSI DECforms Programmer's Reference Manual for more information about the built-inform data
items.

4.3.9. Displaying Forms
FMS and DECforms use different algorithms to display forms and panels. They have different methods
of determining the width of what they display, and they have different methods of dealing with overlaid
images on the display. Also, while you display forms with program calls in FMS,you use response steps
in the form to display panels in DECforms. The sections that follow discuss how the Form Manager
determines the terminal width setting it should use and how it overlays panels. It also explains how to get
the effect of the three FMS calls that display forms.

4.3.9.1. Terminal Width Determination
The Form Manager determines how to set the terminal width using an aggregate of the widths of all
viewports on the display for a particular session. If the first viewport requires80 columns, the Form
Manager sets the terminal width to 80 columns. The terminal remains 80 columns wide until the Form
Manager displays a viewport that requires 132 columns. Once the Form Manager displays a viewport that
requires 132 columns, the terminal width is 132 columns until the Form Manager removes all viewports
that require 132 columns from the display.

To determine the width a viewport requires, the Form Manager uses the following criteria:

● If a panel specifies a DISPLAY VIEWPORT clause, the width specified in the DISPLAY
VIEWPORT clause determines the terminal width requirements of the viewport.

● If no DISPLAY VIEWPORT clause exists in the panel declaration, the DISPLAYVIEWPORT clause
in the viewport declaration determines the width requirements of the viewport.

● If no DISPLAY VIEWPORT clause exists in either the panel or the viewport,the layout-level
DISPLAY VIEWPORT clause determines the width requirements of the viewport.

● Finally, if the Form Manager finds no DISPLAY VIEWPORT clause, the COLUMNS clause in the
viewport declaration determines the width requirements of the viewport.

The Form Manager may change terminal width when it displays a panel or removes a viewport.

4.3.9.2. Panel Overlays
DECforms deals with overlaid images as follows:

52

Chapter 4. Modifying Your Program

● When the Form Manager displays a panel, it displays the panel over any other panels that it displayed
previously.

● If the operator requests a screen refresh, the Form Manager displays the active panel (the one
requiring operator input) over any other panels on the display.

● If the operator uses a function key to move from one panel to another,the Form Manager displays the
panel to which the operator is moving over any other panels on the display.

4.3.9.3. Getting the Effect of the DISP and DISPW Calls

The DISP (Display Form) and DISPW (Display Loaded Form) FMS calls display forms. FMS clears the
area specified by the Screen Area to Clear form attribute and overlays any remaining screen contents.
You can specify an offset with these calls to determine where on the screen the form appears. For the
DISP call, the form fields are empty when they are displayed, or they contain their default value. For the
DISPW call, the form fields contain the values assigned to them in the workspace.

DECforms contains a response step that has an effect similar to the DISP and DISPW calls—the
DISPLAY response step. Using this response step, you can display a particular panel. You can specify
a viewport name in the response step to determine where the panel appears on the display. The Form
Manager clears the area on the screen that corresponds to the viewport before it displays the panel.

When a DECforms panel is displayed, the values in the panel fields are the values of the corresponding
form data items. The first time a panel is displayed, the form data item may be empty. In this case,
the panel field is also empty. Otherwise, panel fields always contain the most recent data stored in the
form data item, whether that data came from the data declaration (default value), the operator, or your
program. Therefore, the DISPLAY response step is most similar to the FMS DISPW call.

Remove DISPW calls from your program and use the DISPLAY response step in ENABLE, SEND, and
RECEIVE responses to perform similar tasks.

Also remove DISP calls from your program and use the DISPLAY response step. To get the effect of
the DISP call, you may need to clear values out of form data items before the DISPLAY response step
is executed. One way to clear the values in form data is to use the VALUE clause to assign spaces as the
default value of form data items. Then, use the RESET response step toreset the form data items to their
default value before you use the DISPLAY response step.

4.3.9.4. Getting the Effect of the CDISP Call

The CDISP (Clear Screen and Display Form) call allows you to clear the screen and display a form. Its
purpose is to erase the effects of any screen management not done by FMS and then display an FMS
form. It combines the effect of the CLEAR call and the DISPLAY call.

You can get the effect of the CDISP call by defining a viewport that is as large as the screen and
displaying your panel in that viewport. The Form Manager clears the area of screen covered by the
viewport before it displays the panel in the viewport. Example 4.16, "Viewport That Emulates the CDISP
Call" shows a viewport and panel definition that have the same effect as CDISP.

Example 4.16. Viewport That Emulates the CDISP Call

Form EMPLOYEE_FORM
 .
 .

53

Chapter 4. Modifying Your Program

 .
 Send Response EMPLOYEE_CHANGE_RECORD
 Display CHANGE_NAME
 End Response

 Viewport WHOLE_SCREEN
 Lines 1 Through 24
 Columns 1 Through 80
 End Viewport

 Panel CHANGE_NAME
 Viewport WHOLE_SCREEN
 .
 .
 .
 End Panel

The SEND response causes the Form Manager to display the CHANGE_NAME panel when the
program sends form record named EMPLOYEE_CHANGE_RECORD to the form.

The VIEWPORT statement declares a viewport that is 24 lines by80 columns. This viewport is the
size of the screen on VT100 and VT200 series terminals. You may need to use different line and
column clauses for other devices.

The VIEWPORT clause specifies that the Form Manager display the CHANGE_NAME panel in
the WHOLE_SCREEN viewport.

4.3.10. Marking Forms as Undisplayed
In FMS, you use the NDISP (Mark Form in Current Workspace as Not Displayed)call to mark a form as
undisplayed. After you issue the call, the form is not redisplayed on a refresh operation and subsequent
GET-type calls to the form are invalid.

DECforms does not have a concept like NDISP because all panels in a form are available for display
at all times during application execution. Thus, displaying a DECforms panel is an efficient operation
because it does not involve memory allocation,and you can display any number of panels in sequence
without damaging performance.

Although you need not mark panels as undisplayed in DECforms,you may need to remove a panel from
the display. To do this, use the REMOVE response step. The REMOVE response step causes the Form
Manager to clear the viewport you specify, which removes the panel from the display.

For example, suppose a field termination UAR in your FMS application conditionally displays one of
two forms and waits for more input from the operator. Once the operator gives the input, the program
marks the form as undisplayed. Example 4.17, "Using the REMOVE Response Step to Emulate the NDISP
Call"shows IFDL code that has a similar effect.

Example 4.17. Using the REMOVE Response Step to Emulate the NDISP Call

Form PERSONNEL_FORM
 .
 .
 .
 Panel PERSONAL_INFO
 .

54

Chapter 4. Modifying Your Program

 .
 .
 Field MARITAL_STATUS
 Line 2 Column 6
 Exit Response
 If MARITAL_STATUS = "S" Then
 Activate Panel SINGLE_PANEL
 Position Immediate To Panel SINGLE_PANEL
 Else
 Activate Panel MARRIED_PANEL
 Position Immediate To Panel MARRIED_PANEL
 End If
 End Response
 End Field
 End Panel

Panel SINGLE_PANEL
 Viewport SMALL_VIEWPORT

 Exit Response
 Remove SMALL_VIEWPORT
 End Response
 .
 .
 .
 End Panel

 Panel MARRIED_PANEL
 Viewport SMALL_VIEWPORT

 Exit Response
 Remove SMALL_VIEWPORT
 End Response
 .
 .
 .
 End Panel
End Form

The field exit response causes the Form Manager to conditionally activate and position to
SINGLE_PANEL or MARRIED_PANEL.

This Form Manager performs this response when the operator finishes entering data in the
MARITAL_STATUS panel field.

SINGLE_PANEL is displayed in SMALL_VIEWPORT.

The exit response for SINGLE_PANEL causes the Form Manager to remove
SMALL_VIEWPORT. When the Form Manager removes SMALL_VIEWPORT, it also removes
SINGLE_PANEL. Notice that the REMOVE response step operates on viewports, not on panels.
You supply the name of the viewport to be removed with this response step.

This Form Manager performs this response when the operator finishes entering data in
MARRIED_PANEL.

The Form Manager displays MARRIED_PANEL in SMALL_VIEWPORT and removes it from
the display when it executes the exit response.

55

Chapter 4. Modifying Your Program

4.3.11. Modifying the Keypad Mode
FMS allows you to modify the mode (numeric or application) of the terminal keypad using the SPADA
(Set Keypad to Application Mode) call.

DECforms also allows you to modify the keypad mode. In DECforms you use the
%KEYPAD_NUMERIC, %KEYPAD_APPLICATION, and %KEYPAD_UNCHANGED implement or
attributes to control the keypad. You can apply these implement or attributes to panels or fields. Example
4.18, "Keypad Mode Elementary Attributes"shows how to apply the %KEYPAD_APPLICATION
attribute.

Example 4.18. Keypad Mode Elementary Attributes

Form PERSONNEL_FORM
 .
 .
 .
 Panel EMPLOYEE_PERSONAL_INFO

 Display %Keypad_application
 Field EMPLOYEE_NAME
 Line 3 Column 10
 End Field

 Field EMPLOYEE_PHONE_NUMBER
 Line 5 Same Column
 Display %Keypad_numeric
 End Field
 .
 .
 .
End Form

The DISPLAY clause causes keypad keys to be treated as function keys. The keypad mode is
application for all fields on the panel, unless the field overrides the mode in its own display clause.

The keypad mode for the EMPLOYEE_NAME field is application.

The DISPLAY clause for the EMPLOYEE_PHONE_NUMBER field specifies
%KEYPAD_NUMERIC. The%KEYPAD_NUMERIC attribute specifies that keypad keys send
the characters inscribed on them.

4.3.12. Printing Forms
The RETFL (Return Form Line) and PRINT_SCREEN (Write Screen to Print File)calls print FMS
forms. Using either call you can write form lines to a file for subsequent printing. You can also use
RETFL to return the form line you specify to your program. You can then print that line.

To print a DECforms panel, you use the PRINT response step. This response step causes the Form
Manager to write a panel to a file. You can then print the file. By default, the Form Manager writes the
current display to a file. To specify that the Form Manager print a specific panel, you name the panel in
the PRINT response step.

Each PRINT response step starts a new page in the printed output. You can close the current input file
and open anew version of it by specifying PRINT IMMEDIATE. Otherwise, the Form Manager writes
the output from the PRINT response step to the same file.

56

Chapter 4. Modifying Your Program

The Form Manager writes the output from the PRINT response step to your current default node, device,
and directory. The Manager names the print file the same as your form file with the .TXT file type. You
can specify a different file specification by defining the FORMS$PRINT_FILE logical name. You can
specify a node, device, directory, file name, and file type in the logical name definition.

The file created by the Form Manager is an ASCII file. You can print it on a line printer.

4.3.13. Processing Field Terminators
The PFT (Process Field Terminator) call processes a field terminator that you pass to the Form Driver
or, if you omit the terminator parameter, the last field terminator the operator entered. If necessary, the
Form Driver changes the current field in the workspace; it returns the name of the new current field in
one of the call parameters.

In DECforms, you need not trap field terminators in the program and pass them to the Form Manager
to get them processed. The form can trap field terminators and cause the Form Manager to take actions
based on those terminators. DECforms provides a set of built-in functions that correspond to the FMS
field terminators. Table 4.2, "FMS Field Terminators and DECforms Built-In Functions" compares FMS
field terminators and DECforms built-in functions. The table also describes what the Form Manager
does when the operator invokes a built-in function.

Table 4.2. FMS Field Terminators and DECforms Built-In Functions

FMS Field Terminator Comparable DECforms
Function

DECforms Function Response

FDV$K_FT_NTR TRANSMIT Terminates operator input,
validates each field on the panel,
and returns data to the program.

FDV$K_FT_NXT NEXT ITEM Makes the activation item that is
to be processed next the current
activation item. If the activation
item corresponds to a field,
moves the cursor to that field.
If no next activation item exists,
displays a message.

FDV$K_FT_PRV PREVIOUS ITEM Makes the activation item most
recently processed the current
activation item. If the previous
activation item corresponds to
a field, moves the cursor to that
field. If no previous activation
item exists, displays a message.

FDV$K_FT_ATB AUTOSKIP attribute Behaves like NEXT ITEM
FDV$K_FT_XBK EXIT GROUP PREVIOUS Makes the most recently

processed field activation
item that is not a member of
the current group the current
activation item. If no previous
field activation item exists, issues
an error message. Because a field
can be in a group and not be in
a scrolled region, this function

57

Chapter 4. Modifying Your Program

FMS Field Terminator Comparable DECforms
Function

DECforms Function Response

works outside of scrolled regions
in addition to inside them.

FDV$K_FT_XFW EXIT GROUP NEXT Makes the field activation item
that is not a member of the
current group and that is to
be processed next the current
activation item. If no next
activation item exists, issues an
error message. Because a field
can be in a group and not be in
a scrolled region, this function
works outside of scrolled regions
in addition to inside them.

FDV$K_FT_SNX

FDV$K_FT_SFW

UP OCCURRENCE Makes the next activation item
that corresponds to a field in
a vertically occurring group
the current activation item.
Scrolls the data on the display if
necessary.

FDV$K_FT_SPR

FDV$K_FT_SBK

DOWN OCCURRENCE Makes the previous activation
item that corresponds to a field
in a vertically occurring group
the current activation item.
Scrolls the data on the display if
necessary.

You should remove all PFT calls from your program. Because your DECforms form traps the functions
that correspond to FMS terminators by default, you need not modify your form for the functions to be
trapped. DECforms binds the functions to default keys, so you may want to change the key bindings
for the functions. For example, if your operator uses the F20 key to move to a new field in your FMS
application,you should bindF20 to the NEXT ITEM function. Section 7.1, "Defining Keys" explains how
you do this.

4.3.14. Refreshing the Screen
To refresh the screen from your program in FMS, you call the RFRSH (Refresh Screen) call. This call
redisplays all forms currently marked as being displayed. If more than one form is on the screen, the
Form Driver redisplays the forms in the order in which their workspaces were attached. The Form Driver
displays the current workspace's form last (on top of the other forms). In addition,the Form Driver may
reset the keypad mode if your program previously called the SPADA call.

To refresh the screen in DECforms, you use the REFRESH response step. This response step causes the
Form Manager to repaint the contents of all viewports in the current layout, a specific viewport, or the
default viewport. To emulate the RFRSH call, you should specify REFRESH ALL because it repaints all
viewports. This response step causes the Form Manager to refresh the entire screen if your viewports fill
the entire screen.

The REFRESH response step behaves differently from the RFRSH call in that it does not remove
inactive panels. In FMS, if a form's workspace is inactive and you call RFRSH, that form is not repainted
during the refresh operation. A DECforms panel that does not correspond to any items on the activation

58

Chapter 4. Modifying Your Program

list is roughly equivalent to a form that corresponds to an inactive workspace. The Form Manager
removes an inactive panel from the display when the operator leaves the panel, unless you specify
RETAIN in the panel's post display clause. If you specify RETAIN, the panel remains on the display
after the operator leaves it. You can remove inactive panels with the REMOVE response step, but you
cannot erase them with the REFRESH response step.

Another difference between the REFRESH response step and the RFRSH call is that the response step
does not refresh the keypad mode or the terminal LEDs. The keypad mode in DECforms is controlled
by the %KEYPAD_NUMERIC, %KEYPAD_APPLICATION, and %KEYPAD_UNCHANGED
implement or attributes. Because most terminals do not have VT00 LEDs, you cannot affect the LEDs
from the form or program.

To move your program to DECforms, remove all RFRSH calls. Use the REFRESH response step to
refresh the screen and the elementary attributes to control the keypad mode.

4.3.15. Refreshing a Shared Screen
FMS provides the USER_REFRESH (Set up User Refresh Routine) call that allows a routine you write
to refresh parts of the screen. The Form Driver calls your refresh routine any time it needs to refresh the
screen. This call,then, gives you control over what the Form Driver displays when it refreshes the screen.
If you did not have this control over the refresh operation, the Form Driver would clear any data you
display independent of FMS. This effect occurs because FMS assumes that it “owns”the entire screen. It
clears and repaints the entire screen during each refresh operation.

DECforms, on the other hand, assumes that it “owns” only the portion of the screen defined in the
layout. DECforms clears and repaints only the viewport you specify or the area occupied by the current
layout during a refresh operation. Therefore, if you define a layout that is smaller than the screen,you
can write data to the rest of the screen independent of DECforms. Be aware that DECforms layouts must
begin in thefirst row and first column of the screen. Example 4.19, "Layout and Viewport for a Shared
Screen"shows a layout and viewport that could be used on a shared screen.

Example 4.19. Layout and Viewport for a Shared Screen

 Layout SMALL_LAYOUT
 Device
 Terminal Type %VT200
 End Device
 Units Characters
 Size 17 Lines By 80 Columns

 Viewport TOP_PART
 Lines 1 Through 15 Columns 1 Through 80
 End Viewport

 Viewport MESSAGE_LINE
 Lines 16 Through 17 Columns 1 Through 80
 End Viewport

 Panel NAME_PANEL
 Viewport TOP_PART
 .
 .
 .
 End Panel

 Panel MESSAGE_PANEL

59

Chapter 4. Modifying Your Program

 Viewport MESSAGE_LINE

 Field MESSAGE_FIELD
 Line 1 Column 1
 No Data Input
 End Field
 End Panel
 .
 .
 .
End Form

The SIZE clause determines the size of the layout. All layouts must begin at Line 1 and Column 1.

The VIEWPORT declarations declare two viewports —one for data entry and one for messages.
Combined, they occupy the entire area reserved for the layout.

The PANEL declarations declare two panels. The Form Manager displays NAME_PANEL in the
TOP_PART viewport as specified by that panel's VIEWPORT clause. The Form Manager displays
MESSAGE_PANEL in the MESSAGE_LINE viewport.

You may want to refresh the entire screen when the operator requests a screen refresh. The operator
usually requests that the screen be refreshed when it has been corrupted, for example, by operating
system messages. If these messages could corrupt the part of the screen controlled by DECforms and the
part not under DECforms control, you should refresh the entire screen.

To refresh the entire screen at the request of the operator, write a function response for the REFRESH
function. In the function response, use the CALL response step to call your FMS refresh routine. (You
may have to modify your program to use an escape routine. See Section 7.7, "Using Escape Routines"
for more information on using escape routines.) Specify the REFRESH ALL response step to refresh the
DECforms layout. Example 4.20, "Response That Refreshes an Entire Shared Screen" shows a REFRESH
function response that performs a full screen refresh.

Example 4.20. Response That Refreshes an Entire Shared Screen

Form EMPLOYEE_FORM
 .
 .
 .
 Viewport MESSAGE_LINE
 Lines 16 Through 17 Columns 1 Through 80
 End Viewport

 Function USER_REFRESH Is %Control_R End Function

 Function Response USER_REFRESH
 Call 'USER_REFRESH_ROUTINE'
 Refresh All
 End Response
 .
 .
 .
End Form

The FUNCTION declaration binds the USER_REFRESH function to CTRL/R.

The USER_REFRESH_ROUTINE escape routine repaints lines 17 through24, columns 1 through
80.

60

Chapter 4. Modifying Your Program

The REFRESH ALL response step repaints lines 1 through 17. You should specify the REFRESH
response step after the call to USER_REFRESH_ROUTINE because this allows DECforms to
put the display device in a known state. For example, if your refresh routine sets the cursor to
underline, the DECforms REFRESH response step can reset the cursor to normal before it is used
by DECforms.

4.3.16. Returning Data from the Form Workspace
To get data from the form workspace in FMS, you call either the RET (Return Value for Specified
Field) or RETAL (Return Values for All Fields) call. The RET call returns the value of the field you
specify from the current workspace. The RETAL call returns the values of all non-scrolled fields from
the current workspace. The fields are returned in the order specified in the form description.

Although DECforms does not have the concept of a form workspace,it does maintain values in form data
items. You can get data from form data items without displaying them or accepting operator input. To do
so,you call the RECEIVE request and write a response for the request that specifies returning values to
the program.

Example 4.21, "FORMS$RECEIVE Call to Return Data from Form Data Items"shows a FORMS
$RECEIVE call that returns a record to the program.

Example 4.21. FORMS$RECEIVE Call to Return Data from Form Data Items

*
* The following call requests a record from form data.
* This call appears in the program.
*
 CALL "forms$receive" USING BY DESCRIPTOR SESSION_ID
 "EMPLOYEE_UPDATE"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR EMPLOYEE_UPDATE
 GIVING FORMS_STATUS.

Example 4.22, "RECEIVE Response That Returns Data from Form DataItems" shows a RECEIVE
response that causes the Form Manager to return data to the program without displaying it or accepting
operator input.

Example 4.22. RECEIVE Response That Returns Data from Form DataItems

/* /*
/* The following response returns data to the program. /*
/* This response appears in the form inside the LAYOUT /*
/* statement. /*

 Receive Response EMPLOYEE_UDPATE
 Return
 End Response
 .
 .
 .

61

Chapter 4. Modifying Your Program

The RETURN response step causes the Form Manager to collect the data from form data items that
correspond to the EMPLOYEE_UPDATE form record and return them to the program.

The call and response shown in Example 4.21, "FORMS$RECEIVE Call to Return Data from Form Data
Items" and Example 4.22, "RECEIVE Response That Returns Data from Form DataItems" do not exactly
match either the FMS RET or RETAL call. The group of data returned to your program in this case is
controlled by the fields in the form record, not the fields on the display. However, by declaring a form
record and program record that contain the appropriate fields, you can cause the Form Manager to return
the same data to your DECforms application program as the Form Driver did to your FMS application
program.

You can get data from a form data array that corresponds to a scrolled region with the RETURN
response step. To do so, you include the array in the form record and program record declarations.
Section 7.5, "Creating Scrolled Regions" describes using scrolled regions.

4.3.17. Returning Named Data by Index and Name
FMS allows you to declare constant data that is associated with a form. You can reference the data by
index or, if you supplied a name when you declared it, by name. This constant data is called Named
Data. You get values from Named Data in your program with the RETDI (Return Named Data by Index)
and RETDN (Return Named Data by Name) calls.

In DECforms you can create data items that serve the same function as named data by declaring form
data items. Form data items can contain pre-defined constant values, which need not be displayed on the
screen. Unlike Named Data, form data items must each have a unique name.

To declare form data and give it a constant value, use the FORM DATA statement and specify a VALUE
clause for each data item. Example 4.23, "Declaring Form Data with a Default Value"shows how to
declare form data items with a default value.

Example 4.23. Declaring Form Data with a Default Value

Form PERSONNEL_FORM

 Form Data
 VERSION_INFO Character (10) Value "VERSION 2"
 CREATION_DATE Character (12) Value "JANUARY 29"
 .
 .
 .
 End Data

Because most form processing is done in the form in DECforms,you may be able to move code that uses
Named Data from your program to your form. However, if you need the information in your program,
you must declare a form record that contains fields that correspond to the form data items. To get the
data in your program, call the RECEIVE request.

Example 4.24, "Form Record and Request Response for Constant Data" shows a form record declaration
for passing constant information and a RECEIVE RESPONSE that causes the data to be returned
efficiently.

Example 4.24. Form Record and Request Response for Constant Data

Form PERSONNEL_FORM
 .
 .

62

Chapter 4. Modifying Your Program

 .
 Form Record CONSTANT_DATA_RECORD
 VERSION_INFO Character (10)
 CREATION_DATE Character (12)
 End Record

 Layout
 .
 .
 .
 Receive Response CONSTANT_DATA_RECORD
 Return Immediate
 End Response

The form record declaration declares a record named CONSTANT_DATA_RECORD that contains
fields corresponding to the VERSION_INFO and CREATION_DATE form data items.

The RECEIVE response controls what happens when you call the RECEIVE request and name the
CONSTANT_DATA_RECORD in the receive-record-name parameter of the request call.

The RETURN IMMEDIATE response step causes the Form Manager to return control to the
program without validating form data item values. The Form Manager returns the values in the
VERSION_INFO and CREATION_DATE form data items to the program.

To get the constant data in the program, use the FORMS$RECEIVE call and pass the
CONSTANT_DATA_RECORD in the receive-record-identifier parameter.

4.3.18. Setting the Current Workspace
An FMS workspace maintains form context from one call to another. You can use more than one
workspace in an application. To switch between workspaces, you attach the workspaces and then call the
SWKSP (Set Current Workspace) call. This call makes the attached workspace you specify the current
workspace. The current workspace is eligible for input.

DECforms does not have a concept that is the same as workspaces. However, DECforms does have
an activation list, which determines what items are eligible for input. To get an effect similar to calling
SWKSP, you add a panel to the activation list. Each field on the panel is then eligible for input. Example
4.25, "Activating a Panel" shows a response that activates a panel.

Example 4.25. Activating a Panel

Form PERSONNEL_FORM
 .
 .
 .
 Receive Response EMPLOYEE_RECORD
 Activate Panel EMPLOYEE_PERSONAL_INFO
 Position To Panel EMPLOYEE_PERSONAL_INFO
 End Response

The Form Manager performs the RECEIVE response when the program calls the RECEIVE
request to get data from the form data items that correspond to the form record named
EMPLOYEE_RECORD.

The ACTIVATE response step causes the Form Manager to add an item to the activation list for
each panel field on the EMPLOYEE_PERSONAL_INFO panel.

63

Chapter 4. Modifying Your Program

The POSITION response step causes the Form Manager to display the
EMPLOYEE_PERSONAL_INFO panel. The Form Manager gets input to the first field on that
panel. (The first field in this case is determined by the order in which the fields are declared in
your IFDL source file. An explicit POSITION response step to one of the fields could determine
which field is processed first.)

When the operator completes input to the first field and invokes the built-in NEXT ITEM function,
input to the second field begins,and so on.

The Form Manager returns data to the program in EMPLOYEE_RECORD when it finishes
processing the RECEIVE request.

4.3.19. Signaling the Operator
In FMS, you signal the operator from your program with the BELL (Ring Terminal Bell) and SIGOP
(Signal Operator)calls. You can determine whether a visual or audible signal is used for the SIGOP call
with the SSIGQ (Set Signal to Quiet Mode) call.

In DECforms you signal the operator with the SIGNAL response step. You determine whether the signal
is audible or visual as follows:

● SIGNAL %BELL specifies that an audio signal (ringing the terminal bell) is given.

● SIGNAL %REVERSE specifies that a visual signal (reversing the display) is given. The screen video
attributes remain reversed (complemented) until the operator enters the next character. After that, the
video attributes return to their original appearance.

SIGNAL %BELL is the default.

Usually, you signal the operator when new information is displayed or when the operator has entered
invalid data. Therefore, you may want to use the SIGNAL response step in entry responses, exit
responses, validation responses, and function responses. Example 4.26, "Signaling an Input Error" shows
a function response that uses the SIGNAL response step.

Example 4.26. Signaling an Input Error

Form EMPLOYEE_FORM

 Function SELECT Is %Kp_3
 .
 .
 .
 Panel ADD_EMPLOYEE

Field CHOICE_CHECK
 Line 2 Column 5
 No Data Input
 Active Highlight Font Style Bold
 Function Response SELECT
 If CHECKING_BALANCE = 0 Then
 Signal %Bell
 Message "You can't write a check; you have a zero balance."
 Invalid
 Else
 Activate Panel CHECK_PANEL
 .

64

Chapter 4. Modifying Your Program

 .
 .
 End If
 End Response
End Field

This function declaration binds the SELECT function to the KP3 key.

The function response specifies that the Form Manager display a message and ring the terminal bell
if the operator's checking account balance is zero. Otherwise, the Form Manager activates the panel
that allows the operator to write a check.

The SIGNAL %REVERSE response step is inefficient on a VT241 terminal. Also, reversing the screen
is not implemented on most terminal emulators, such as those for workstations. When your display
device is a VT241 terminal or terminal emulator, use SIGNAL %BELL.

4.3.20. Trapping Illegal Field Terminators
The ILTRM (Return Illegal Terminators) call allows your program to receive terminators that are
normally illegal in the current context. For example,a Next Field terminator is illegal when the current
field is the last field on the form. Using ILTRM, you cause this terminator to be translated into a special
terminator and sent to either the form's function key UAR or the program.

DECforms traps field terminators in the form with functions. You determine what action is taken when
the operator presses a key using a function response. You can declare a response to a special function
called the UNDEFINED FUNCTION to determine what occurs when the operator presses an undefined
function key.

Section 7.1, "Defining Keys" gives more information on functions and function responses. See the VSI
DECforms IFDL Reference Manual for more information on the UNDEFINED FUNCTION.

4.3.21. Waiting for the Operator
To synchronize the program with the pace of the operator, you can call the FMS WAIT (Wait for
Operator) call. This call moves the cursor to the bottom right-hand of the screen and waits for the
operator to enter a field terminator. Once the operator enters a field terminator, the wait is terminated
and processing proceeds.

In DECforms, you use the ACTIVATE WAIT response step to create a wait activation item. When the
wait activation item becomes the current activation item, the Form Manager moves the cursor to the
bottom right corner of the screen and waits for the operator to enter a function. Once the operator enters
a function, the Form Manager terminates the wait and processing proceeds.

You can position to the wait activation item with the POSITION TO WAIT response step.

Remove FMS WAIT calls from your program. Use the ACTIVATE WAIT response step to synchronize
application control with operator input.

4.4. Running and Debugging the Converted
DECforms Application
Once you have modified the output from the FMS Converter, you can translate the IFDL source file to a
binary form file. Once you have rewritten your application program,you can compile and link it. You are
then ready to run and debug your converted application.

65

Chapter 4. Modifying Your Program

The FORMS TRANSLATE command invokes the IFDL translator. It has the following format:

FORMS TRANSLATE input-file-spec

You should replace input-file-spec with the file name of your IFDL source file. You can use qualifiers
to the FORMS TRANSLATE command to control, for example, whether or not the IFDL Translator
creates a log file during translation. You must translate each form your application uses into a binary
form file. See the VSI DECforms Guide to Commands and Utilities for more information on the IFDL
Translator.

Before you can run your application, you must compile and link yourprogram. You compile and link
a program that calls DECforms the same as any other program. For example, to compile and link a
COBOLprogram, you might issue the following commands:

$ COBOL MY_PROGRAM.COB
$ LINK MY_PROGRAM.OBJ

You may also want to turn tracing on before you run your application. The Form Manager provides a
Trace Facility that writes a message to a file. The messages indicate what tasks the Form Manager is
performing. The trace file can be helpful to you when you are correcting problems that cause run-time
errors.

To turn tracing on, define the FORMS$TRACE logical name to Y. The default trace file is named the
same as the form file with the .TRACE type.

To change the default trace file name, define the FORMS$TRACE_FILE logical name to be the name
of a file or the terminal. The following shows define commands that define FORMS$TRACE to on and
FORMS$TRACE_FILE to file that does not have the default name:

$ DEFINE FORMS$TRACE Y
$ DEFINE FORMS$TRACE_FILE TRACE_WITH_CHANGES.TRACE_FILE

Once you have successfully translated all necessary source files into form files, compiled and linked
your program, and turned tracing on if you need it, you can use the DCL RUN command to run your
application.

After you correct any errors that occur at run time, your conversion from FMS to DECforms is complete.
You should turn tracing off to make your application run more efficiently. The following command turns
tracing off:

$ DEFINE FORMS$TRACE N

You may want to create, from your IFDL source files, object modules that you can link directly with
your program, or you may want to store forms in a shareable image. The VSI DECforms Programmer's
Reference Manual describes linking form object modules and storing forms in shareable images.

66

Chapter 5. Converting the FMS
Sample Application
FMS provides a sample application on each distribution kit that demonstrates many FMS features. The
sample application is a checking account application that lets an operator write checks on the checking
account, make deposits into the account, see the transactions recorded in the check register, and view
account information.

This chapter contains step-by-step instructions for converting the FMS sample application to DECforms;
it assumes that you are familiar with the application. You may want to take time to look over the FMS
sample before you begin the conversion.

The FMS sample application can be converted in a number of ways. The sections that follow show one
way to convert the application so that the operator interface is maintained. This conversion would allow
operators to use the resulting DECforms application after relatively little retraining.

5.1. Preparing to Convert the FMS Sample
Application
The sample FMS application consists of a program and form library. The program includes definitions
files and is written in the following VAX languages:

● BASIC

● BLISS

● C

● COBOL

● FORTRAN

● Pascal

● PL/I

You should copy the sample program you intend to convert to a private area. This chapter explains
converting the COBOL version of the program. Although you can convert any of the programs, you can
follow the instructions in this chapter best if you use the COBOL version program, too.

To copy the COBOL sample program and its included files to a private area, set your default directory to
a private area and copy the files as follows:

$ SET DEFAULT [MYAREA.PRIVATE]
$ COPY FMS$EXAMPLES:SAMPCOB.COB, SAMPCOB.LIB, SAMPCOBUAR.LIB *.*

This command copies the source file for the COBOL program (SAMPCOB.COB),the library file for the
main program (SAMPCOB.LIB), and the library file for UARs (SAMPCOBUAR.LIB). If you receive
messages indicating that the directory or files cannot be found, the sample may not be installed on your
system. Ask your system manager to copy the sample to your system from the latest FMS distribution kit
available at your site.

67

Chapter 5. Converting the FMS Sample Application

You must refer to these files frequently during the conversion process,so you want to have printed copies
of them while you are converting the application. You may also want to get a description of the FMS
forms you are converting and print that description. For example, to generate and print descriptions of
the fields, named data, and certain attributes of the sample form, issue the following commands:

$ FMS/DESCRIPTION FMS$EXAMPLES:SAMP.FLB/OUTPUT=[MYAREA.PRIVATE]SAMP.LIS
$ PRINT SAMP.LIS

5.2. Invoking the FMS Converter
Before you invoke the FMS Converter, be sure you have set your default directory to one of your private
directories. The Converter writes output to your current directory.

To invoke the Converter, issue the following command:

$ FORMS CONVERT FMS FMS$EXAMPLES:SAMP.FLB/LOG

This command specifies that you want the FMS Converter to convert an FMS form library. The /LOG
qualifier causes the Converter to issue a message each time it converts an FMS form to DECforms. The
Converter also issues a message indicating that it has successfully converted 13 FMS forms.

In response to this command, the Converter creates an IFDL source file named SAMP.IFDL in your
default directory.

5.3. Modifying the Converted IFDL Source File
After you run the FMS Converter, you must modify the IFDL source file it produces. To do this,
perform the following tasks using a text editor:

● Modify form data items

● Rename panel fields

● Add record declarations

You should add and modify comments in the IFDL source file as you convert the application. The
sections that follow explain how to perform these tasks.

5.3.1. Modifying Form Data Items
The FMS Converter creates a panel field for each of the fields in the FMS form library for the sample
application. Because DECforms requires that each panel field correspond to a form data item, the FMS
Converter creates a form data item to match each panel field it creates. The FMS Converter gives the
form data item the same name as the panel field.

The FMS form library in the sample application contains several fields that share the name of other
fields. The duplicate names in the FMS form library cause the FMS Converter to create form data
items that have the same name. DECforms does not allow duplicately named form data items, so you
must delete or rename duplicate form data items. Notice that the FMS Converter creates comments that
highlight data items that are duplicates.

Also, some form data items that the Converter declares are not needed in the DECforms application, so
you can remove them.

To modify the form data declaration, follow these steps (the result is shown following this list):

1. Delete the second declaration of the STREET_FIELD form data item.

68

Chapter 5. Converting the FMS Sample Application

The STREET_FIELD form data item is created from the FMS form field STREET. The STREET
field is used on the Account_data form and on the Check form in the FMS application. If you look
at each of those forms,you notice that the street address of the account owner is displayed in the
STREET field. Because the account owner has only one street address that is always the same, you
need only one form data item to store that street address. To verify this,look in the program. The
program stores the street address that it passes to both the Check FMS form and the Account_data
FMS form in the ACCT_STREET variable.

2. Modify the declaration of the DATE_FIELD form data items.

In the FMS application, the date is displayed on the Account_data form, the Check form, the Deposit
form, and the Register form. On the Account_data form, the date is the date on which the account
was opened. On the Check form and the Deposit form, the date is the current date (today's date).
On the Register form,the date is a scrolled field that displays the date of a number of transactions.
Clearly, these dates have different purposes and more than one data item for storing dates is needed
in the DECforms application. Follow these steps to create the needed date data items:

a. Rename the first declaration of the DATE_FIELD form data item to OPEN_DATE. This form
data item stores the date the account is opened.

b. Add the CURRENT clause to the declaration of the DATE_FIELD form data item.

You can use the DATE_FIELD form data item to display the current date on CHECK_PANEL
and DEPOSIT_PANEL. Specify the CURRENT clause following the data type specification for
this form data item.

c. Delete the declaration of DATE_FIELD that appears in the form data declaration for
DEPOSIT_PANEL.

d. Retain the DATE_FIELD data item in the group. This data item stores a number of dates that
are displayed in a scrolled region, so it must be a member of a group. Because the data item is
in a group, its name is and it is, therefore, uniquely named with respect to non-group data items
named DATE_FIELD. You must fully qualify all references to this data item; that is, you must
include the group name in all references to the data item.

3. Delete the second declarations of the HOMEPH_FIELD and ACCTNO_FIELD form data items.

The HOMEPH_FIELD and ACCTNO_FIELD data items are similar to the STREET_FIELD
data item. Both store values that are relative constants during application execution. The
HOMEPH_FIELD stores the account owner's home phone number and the ACCTNO_FIELD stores
the account number for the account. You need only one data item to store these values. Again, you
can verify this by checking the program and seeing that the program stores each value in a single
program variable.

4. Delete the second declaration of the MEMO_FIELD form data item.

The FMS Converter creates the MEMO_FIELD form data item from fields on the FMS Check
form and the FMS Deposit form. The MEMO field on the Check form allows the operator to enter
a memo that FMS prints on the check. The FMS application does not store the memo with other
check information. On the Deposit form, the MEMO field allows the operator to indicate the source
of the funds being deposited. The FMS application stores this memo with the deposit amount.

The purpose of the MEMO field on the FMS Deposit form is similar to the purpose of the PAYTO
field on the FMS Check form. Both store information about funds being transferred. You can use the

69

Chapter 5. Converting the FMS Sample Application

PAYTO_FIELD form data item to store deposit memos as well as information for checks. By using
PAYTO_FIELD for checks and deposits, you eliminate the need for the second MEMO_FIELD
form data item.

5. Retain the NUMBER_FIELD, AMTPAY_FIELD and BALANCE_FIELD declarations.

The NUMBER_FIELD, AMTPAY_FIELD, and BALANCE_FIELD form data items are generated
by the FMS Converter from fields that are displayed on the Check form and the Register form in the
FMS application. The NUMBER field displays the check number. The AMTPAY field displays the
check amount. The BALANCE field displays the account balance. On the Check form, all three are
simple fields. On the Register form, all three are scrolled fields that display a number of values. To
create a scrolled field in DECforms,you declare a group of form data items. You then declare a panel
group to match the group of form data items. You cannot display data stored in simple form data
items in a scrolled region. You must declare a group of form data items to create a scrolled region.
Therefore, you need two data items to store the check number, check amount, and account balance.
One must be a simple form data item and one must be a group form data item.

In this case, the Converter output is exactly what is needed. The Converter creates three simple
form data items, NUMBER_FIELD, AMTPAY_FIELD,and BALANCE_FIELD. The Converter
also creates three form data items that are group members, .Notice that these form data items are
uniquely named. You must fully qualify all references to the group data items.

6. Retain the DEPOSIT_FIELD form data items.

The DEPOSIT_FIELD form data item is generated by a field that appears on both the Deposit form
and the Register form in the FMS application. On the Deposit form, the DEPOSIT field displays the
deposit amount. On the Register form the DEPOSIT field is a scrolled field that displays the amount
of a number of deposits. Therefore, you need two form data items to store deposit amounts.

7. Delete the FIRST_ND and LAST_ND data item declarations.

The Converter declares the FIRST_ND and LAST_ND form data items because the FMS application
contains the FIRST and LAST Named Data items. These Named Data items store the first and
last lines of the check form. The FMS application uses this information when it prints checks. In
DECforms, you need not store the location of the first and last lines of a panel that you want to print.

8. Delete the NSCROL_ND form data item declaration.

The FMS Converter generates this item because the FMS application contains Named Data named
NSCROL. This Named Data stores the number of lines in the scrolled region on the form. In
DECforms, you need not store the number of lines in a scrolled region in a variable. The Form
Manager controls scrolling for you, so your program does not have to keep track of how large
scrolled regions are.

9. Delete the SUMMARY_FIELD_4 form data item.

The Converter creates the SUMMARY_FIELD_4 form data item from an FMS field that displays
the current balance. In the DECforms application, the CURBAL_FIELD form data item stores the
current balance. You need not replicate that storage in the SUMMARY_FIELD_4 data item.

10. Delete the FAKE_FIELD form data item declaration.

The FMS Converter creates the FAKE_FIELD form data item because of a field on the FMS
Register form that gets a field terminator from the operator and allows the cursor to appear on each
line of the scrolled region. The FAKE field is needed in the FMS application because each field in

70

Chapter 5. Converting the FMS Sample Application

the scrolled region has the DISPLAY ONLY attribute. In DECforms, you can assign the NO DATA
INPUT attribute to fields to protect them from data input, but allow function key input. The Form
Manager can position the cursor to fields with the NO DATA INPUT attribute.

11. Delete the messages that mark the duplicately named items.

The FMS Converter creates IFDL comments that mark duplicately named form data items. You can
remove the comments now that each form data item is uniquely named.

Once you have made these changes, your form data declaration appears as shown:

Form Data /* Form data for panel ACCOUNT_DATA_PANEL */
 ACCTNO_FIELD Integer (5)
 OPEN_DATE Character (7)
 LAST_FIELD Character (20)
 FIRST_FIELD Character (15)
 MIDDLE_FIELD Character (15)
 STREET_FIELD Character (30)
 CITY_FIELD Character (20)
 STATE_FIELD Character (2)
 ZIP_FIELD Integer (5)
 HOMEPH_FIELD Integer (10)
 WORKPH_FIELD Integer (10)
 SECRET_FIELD Character (12)
 Supervisor_Only Integer(1) Value 1
End Data

Form Data /* Form data for panel CHECK_PANEL */
 NAME_FIELD Character (39)
 NUMBER_FIELD Integer (4)
 CSZ_FIELD Character (30)
 DATE_FIELD Date CURRENT
 PAYTO_FIELD Character (35)
 AMTPAY_FIELD Decimal (6,2)
 MEMO_FIELD Character (35)
 BALANCE_FIELD Decimal (6,2)
End Data

Form Data /* Form data for panel DEPOSIT_PANEL */
 CURBAL_FIELD Decimal (6,2)
 DEPOSIT_FIELD Decimal (6,2)
 NEWBAL_FIELD Decimal (6,2)

/* The following data items are a simulation of the FMS named_data for */
/* form DEPOSIT */

 DONE_ND Character (48) Value 'Deposit made.
 Press RETURN
 or ENTER to
 continue.'
End Data

Form Data /* Form data for panel MENU_PANEL */
 OPTION_FIELD Integer (1) Value 2
End Data

Form Data /* Form data for panel REGISTER_PANEL */
 Group REGISTER_PANEL_GROUP_1

71

Chapter 5. Converting the FMS Sample Application

 Occurs 6
 NUMBER_FIELD Character (4)
 DATE_FIELD Character (7)
 PAYMEM_FIELD Character (35)
 DEPOSIT_FIELD Character (6)
 AMTPAY_FIELD Character (6)
 BALANCE_FIELD Character (6)
 End Group
 SUMMARY_FIELD_1 Decimal (6,2)
 SUMMARY_FIELD_2 Decimal (6,2)
 SUMMARY_FIELD_3 Decimal (6,2)
End Data

Layout FMS_Cnv
 .
 .
 .

5.3.2. Renaming Panel Fields
The FMS Converter creates panel fields for each of the fields in the FMS form library. These panel
fields are bound by name to the form data items that the FMS Converter creates. Each panel field
displays data and accepts input for the form data item that shares its name. Because you deleted or
renamed some of the form data items the Converter created, you must remove or rename the panel fields
that corresponded to those data items.

The FMS Converter creates form data items with names that end in “_ND”to replace FMS Named
Data. Because Named Data is not displayed, the Converter assumes that you do not need to display
the contents of these data items. Therefore, the Converter does not create panel fields to correspond to
these data items. You need not remove or rename panel fields to adjust for removing the FIRST_ND,
LAST_ND, and NSCROLL_ND data items.

To make panel fields declarations match form data item declarations follow these steps:

1. Rename the DATE_FIELD panel field on ACCOUNT_DATA_PANEL to OPEN_DATE.

You must change the date panel field on the ACCOUNT_DATA_PANEL from the name
DATE_FIELD to the name OPEN_DATE. This change makes the panel field match the form data
item that stores the date on which the account was opened.

2. Rename the MEMO_FIELD form data item on DEPOSIT_PANEL to PAYTO_FIELD.

The data input as a memo to DEPOSIT_PANEL should be stored and returned to the program with
the deposit amount. The best form data item to use for this purpose is PAYTO_FIELD, which has
been created to perform a similar purpose for check writing.

3. Rename the SUMMARY_FIELD_4 panel field to CURBAL_FIELD.

The SUMMARY_FIELD_4 panel field is designed to display the current account balance.
The current account balance is stored in the CURBAL_FIELD form data item. If you rename
SUMMARY_FIELD_4 to CURBAL_FIELD, the data in CURBAL_FIELD is displayed on
REGISTER_PANEL.

4. Delete the FAKE_FIELD panel field on REGISTER_PANEL.

The FAKE_FIELD panel field is not needed in the DECforms application.

72

Chapter 5. Converting the FMS Sample Application

Once you make these changes, your form should contain the following panel fields:

● ACCOUNT_DATA_PANEL

ACCNTNO_FIELD
OPEN_DATE
LAST_FIELD
FIRST_FIELD
MIDDLE_FIELD
STREET_FIELD
CITY_FIELD
STATE_FIELD
ZIP_FIELD
HOMEPH_FIELD
WORKPH_FIELD
SECRET_FIELD

● CHECK_PANEL

NAME_FIELD
NUMBER_FIELD
STREET_FIELD
CSZ_FIELD
DATE_FIELD
HOMEPH_FIELD
PAYTO_FIELD
AMTPAY_FIELD
MEMO_FIELD
ACCTNO_FIELD
BALANCE_FIELD

● DEPOSIT_PANEL

DATE_FIELD
DEPOSIT_FIELD
CURBAL_FIELD
NEWBAL_FIELD
PAYTO_FIELD

● MENU_PANEL

OPTION_FIELD

● REGISTER_PANEL

REGISTER_PANEL_GROUP_1.NUMBER_FIELD
REGISTER_PANEL_GROUP_1.DATE_FIELD
REGISTER_PANEL_GROUP_1.PAYMEM_FIELD
REGISTER_PANEL_GROUP_1.DEPOSIT_FIELD
REGISTER_PANEL_GROUP_1.AMTPAY_FIELD
REGISTER_PANEL_GROUP_1.BALANCE_FIELD
SUMMARY_FIELD_1
SUMMARY_FIELD_2
SUMMMARY_FIELD_3

73

Chapter 5. Converting the FMS Sample Application

CURBAL_FIELD

Notice that although you removed form data items from the FORM DATA statement for
CHECK_PANEL, you need not rename any of the fields on CHECK_PANEL. Each of the form data
items that you removed from the form data item declaration for CHECK_PANEL was a duplicate form
data item. A form data item by the same name exists elsewhere in the form data declaration and stores
the appropriate value to be displayed in fields on CHECK_PANEL.

Also, you need not rename the DATE_FIELD panel field on DEPOSIT_PANEL, despite the fact that
you deleted the form data item named DATE_FIELD from the form data items for DEPOSIT_PANEL.
A form data item named DATE_FIELD appears in the form data declaration and the Form Manager
displays its value in the DATE_FIELD panel field.

5.3.3. Adding Record Declarations
After you modify form data items and rename panel fields, you can add record declarations to your
IFDL source file and your program. The records you declare allow your program to exchange data with
the form. To determine what records are needed, you must determine what data needs to be exchanged
between the form and the program and when the data needs to be exchanged. You must also know the
data type of the data being passed.

To determine what records are needed for the sample application, step through the program. Determine
when the sample program passes data and what data it passes by examining the FMS PUT-type and
GET-type calls in the program. You may be able to use existing records in the program to pass data in
the converted application.

The data type of all the data items the FMS sample program passes to FMS forms is the CHARACTER
data type. Therefore, you can create all your form record fields in DECforms with the CHARACTER
data type. Later, as you modify the program, you may want to change some of the data types to match
how you use the data and avoid converting numeric data to and from character strings. However, it is
best to begin transferring character string data.

Follow these steps to create records:

1. Create a form record and program record to pass the current balance to the form.

The sample program reads the current account balance from a data file and passes it to the form. In
the DECforms application, you can pass the current balance only once during application execution.
Once the current balance is stored in the form, you can maintain it in the form.

Add the following form record declaration following the last FORM DATA statement in your IFDL
source file:

 .
 .
 .
 SUMMARY_FIELD_2 Decimal (6,2)
 SUMMARY_FIELD_3 Decimal (6,2)
 End Data

Form Record CURRENT_BALANCE
 CURBAL_FIELD Character (6)
End Record

Declare a program record to pass the current balance. Add the following program record declaration
to the Working-Storage Section of the SAMP program:

74

Chapter 5. Converting the FMS Sample Application

IDENTIFICATION DIVISION.PROGRAM-ID. SAMP.
 .
 .
 .
WORKING-STORAGE SECTION.
 .
 .
 .
*
* Record to pass the current balance
*
01 CURRENT_BALANCE GLOBAL.
 05 CURBAL_FIELD PIC 9(6).

The CURBAL_FIELD program variable and form data item store the current balance.

2. Declare records to pass formatted check data to the form.

During the initialization of program data, the INACCT subprogram calls the FMTCHK subprogram,
which formats account data and sends the formatted data to the form. The FMS program formats
the account data because it is too long to be displayed in the fields on the FMS Check form. This
formatting must be done in the DECforms application, too, and you need to declare a form record
and program record that pass the formatted values. You must also pass a check number to the form,
and you can pass it in the same record.

Add the declaration of the CHECK_FORMAT form record following the CURRENT_BALANCE
form record in the IFDL source file, as shown:

 .
 .
 .
 CURBAL_FIELD Character (6)
End Record

Form Record CHECK_FORMAT
 CHECK_NUMBER Character (4)
 NAME_FIELD Character (39)
 CSZ_FIELD Character (30)
End Record

Add the CHECK_FORMAT program record to the Working-Storage Section of the FMTCHK
subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. FMTCHK IS COMMON.
*+
* Format account data so that it can be displayed on CHECK_PANEL
*+
DATA DIVISION.
WORKING-STORAGE SECTION.
*
* Record to pass formatted check data
*
01 CHECK_FORMAT
 05 NEW_CHECK_NUMBER PIC 9(4).
 05 NAME_CONDENSED PIC X(39).
 05 CSZ_CONDENSED PIC X(30).

75

Chapter 5. Converting the FMS Sample Application

01 FIRST_LEN PIC 9(4) COMP.
01 CITY_LEN PIC 9(4) COMP.
01 UNUSED_STRING PIC X(80).

The NEW_CHECK_NUMBER program variable stores the check number. The
NAME_CONDENSED program variable and the NAME_FIELD form data item store the formatted
account owner name. The formatted city, state, zip code information is stored in CSZ_CONDENSED
in the program and CSZ_FIELD form data item. (You can pass other check information that need
not be formatted in another record, as explained later in this section.)

You must declare a form data item to correspond to the CHECK_NUMBER form record field.
Declare the form data item to appear as follows:

Form Data /*Form data for panel CHECK_PANEL*/
 CHECK_NUMBER Integer (4)
 NAME_FIELD Character (39)
 NUMBER_FIELD Integer (4)
 .
 .
 .

You must also rename the panel field that displays the check number on CHECK_PANEL. Rename
the NUMBER_FIELD panel field to CHECK_NUMBER.

Do not rename the panel field. The use of that panel field is explained later in this section.

3. Create a form record and program record to get a choice from the operator.

The first value that the FMS sample program gets from the form is the operator choice. The operator
enters a value to indicate what task (write a check,make a deposit, and so on) is desired.

In the DECforms application, the operator enters the choice value in a panel field named
OPTION_FIELD. The Form Manager stores input to that field in the OPTION_FIELD form data
item. To move data from the OPTION_FIELD to the program, you need a form record and a
program record.

Declare the form record following the CHECK_FORMAT form record in the IFDL source file:

 .
 .
 .
 NAME_FIELD Character (39)
 CSZ_FIELD Character (30)
End Record

Form Record GET_CHOICE
 OPTION_FIELD Character (1)
End Record

Add the program record to the Working-Storage Section of the MENU subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. MENU.
 .
 .
 .
WORKING-STORAGE SECTION.

76

Chapter 5. Converting the FMS Sample Application

*+
* Record to get a choice from the operator
*-
01 GET_CHOICE.
 05 D-MENU-OPTION PIC X(1).
*

The D-MENU-OPTION program variable and the OPTION_FIELD form data item store the
operator's choice.

4. Add a form record and a program record to get check data from the operator.

If the operator chooses to write a check, the program calls the WRITCH subprogram. The operator
can write a number of checks during the execution of the WRITCH subprogram. One way to allow
this in DECforms is to put a loop in the program and call the RECEIVE request a number of times
until the operator finishes writing checks. Another way is to declare a group of form data items. A
group of form data items creates an array and can store a number of occurrences of the same type of
data. If you use a group of form data items, the program can call the RECEIVE request once to get
data on a number of checks.

Add a form record that contains a group to the IFDL source file following the GET_CHOICE
record, as shown:

 .
 .
 .
Form Record GET_CHOICE
 OPTION_FIELD Character (1)
End Record

Form Record COLLECT_DATA
 TRANSACTION_COUNT Longword Integer
 Group TRANSACTION_DATA
 Occurs 50
 NUMBER_FIELD Character (4)
 DATE_FIELD Character (7)
 PAYTO_FIELD Character (35)
 AMTPAY_FIELD Character (6)
 BALANCE_FIELD Character (6)
 End Group
End Record

Add the program record to the SAMP routine, as shown:

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMP.
 .
 .
 .
WORKING-STORAGE SECTION.
 .
 .
 .
*
* Record to get check data
*

77

Chapter 5. Converting the FMS Sample Application

01 COLLECT_DATA GLOBAL.
 05 TRANSACTION_COUNT PIC 9(8) COMP.
 05 TRANSACTION_DATA OCCURS 50.
 10 NUMBER_FIELD PIC X(4).
 10 DATE_FIELD PIC X(7).
 10 PAYMEM_FIELD PIC X(35).
 10 AMTPAY_FIELD PIC 9(6).
 10 BALANCE_FIELD PIC X(6).

The TRANSACTION_COUNT program record field and form data item store the number of
checks written. The program uses this number when it updates the check register record. The
TRANSACTION_DATA group stores the check number, date, person to whom the check is written,
amount of the check, and new account balance for each check written.

You must modify form data to make it match the declaration of this form record. Change
the CHECK_PANEL form data declaration by adding form data item declarations and group
declarations; the FORM DATA statement for CHECK_PANEL must appear as follows:

Form Data /* Form data for panel CHECK_PANEL */
 CHECK_NUMBER Integer (4)
 NAME_FIELD Character (39)
 CSZ_FIELD Character (30)
 MEMO_FIELD Character (35) Value " "
 TRANSACTION_COUNT Longword Integer
 Group TRANSACTION_DATA
 Occurs 50
 NUMBER_FIELD Integer (4)
 DATE_FIELD Date Current
 PAYTO_FIELD Character (35) Value " "
 AMTPAY_FIELD Decimal (6,2) Value 0
 BALANCE_FIELD Decimal (6,2) Value 0
 End Group
End Data

Add the VALUE clauses to ensure that each form data item contains spaces or zeros the first time
it is displayed. The Form Manager initializes the data items using the VALUE clause during the
processing of the ENABLE request.

In addition, you must modify the panel fields displayed on CHECK_PANEL. You must
create a panel group containing the panel fields that correspond to the form data items in
the TRANSACTION_DATA group. The following example shows how the panel fields for
CHECK_PANEL must appear:

 Panel CHECK_PANEL
 .
 .
 .
 Field NAME_FIELD
 Line 3 Column 5
 Output Picture X(39)
 Protected
 End Field

 Field STREET_FIELD
 Line 4 Column 5
 Output Picture X(30)
 Protected

78

Chapter 5. Converting the FMS Sample Application

 End Field

 Field CSZ_FIELD
 Line 5 Column 5
 Output Picture X(30)
 Protected
 End Field

 Field HOMEPH_FIELD
 Line 6 Column 13
 Output Picture '('999')'999'-'9999
 Protected
 End Field

 Field CHECK_NUMBER
 Line 3 Column 72
 Display Underlined
 Justification Right
 Output Picture 9(4)
 Protected
 End Field

 Group TRANSACTION_DATA
 Vertical Displays 1

 Field NUMBER_FIELD
 Line 3 Column 72
 Display Underlined
 Justification Right
 Output Picture 9(4)
 Protected
 End Field

 Field DATE_FIELD
 Line 5 Column 64
 Display Underlined
 Output Picture 99'-'AAA'-'99
 Protected
 End Field

 Field PAYTO_FIELD
 Line 8 Column 12
 Display Underlined
 Minimum Length 1
 Output Picture X(35)
 Use Help Message 'The person/company who is the
 recipient of your beneficence'
 End Field

 Field AMTPAY_FIELD
 Line 8 Column 66
 Display Underlined
 Justification Right
 Replace Leading '*'
 Minimum Length 1
 Output Picture 9999R'.'99
 Use Help Message 'Enter amount of check'

79

Chapter 5. Converting the FMS Sample Application

 Exit Response
 Call 'CHKCHK'
 Call 'RANGE' Using '100, This bank doesn''t issue
 such small checks. Send cash.'
 End Response
 End Field

 Field BALANCE_FIELD
 Line 16 Column 44
 Justification Right
 Output Picture 9999R'.'99
 Protected
 End Field
 End Group

 Field MEMO_FIELD
 Line 10 Column 12
 Display Underlined
 Output Picture X(35)
 Use Help Message '(Optional) A reminder of why you and
 your money are parting'
 End Field

 Field ACCTNO_FIELD
 Line 13 Column 71
 Justification Right
 Output Picture X(5)
 Protected
 End Field
 End Panel

5. Modify the COLLECT_DATA record so that you can use it to get deposit data, in addition to check
data.

If the operator chooses to make a deposit in the FMS application, the program sends the current
balance to the form twice. First,the program sends the current balance for FMS to display before the
operator makes a deposit. Then, the program sends an updated balance that FMS displays after the
operator makes a deposit. After the deposit transaction is complete, FMS returns the deposit date,
memo of why the deposit is made, and deposit amount to the program. The program updates the
check register with this information.

Because DECforms can store values between several requests, the before-deposit balance does not
need to be sent to the form in DECforms. That balance is stored in the CURBAL_FIELD data item.
You can calculate the after-deposit balance in an escape routine that you call from the form, so you
do not need a record to transfer the after-deposit balance between the program and form.

The other information that the form and program need to exchange is similar to the information they
exchange during check writing. The program needs to get the date of the deposit, memo of where the
funds for the deposit came from, and amount of the deposit. The program also needs to get the new
account balance from the form.

Because this data is similar to the check-writing data, you can use the COLLECT_DATA record to
get deposit data. Modify that record to appear as follows:

 .
 .
 .

80

Chapter 5. Converting the FMS Sample Application

 NAME_FIELD Character (39)
 CSZ_FIELD Character (30)
End Record

Form Record COLLECT_DATA
 TRANSACTION_COUNT Longword Integer
 Group TRANSACTION_DATA Occurs 50
 NUMBER_FIELD Character (4)
 DATE_FIELD Character (7)
 PAYTO_FIELD Character (35)
 AMTPAY_FIELD Character (6)
 DEPOSIT_FIELD Character (6)
 BALANCE_FIELD Character (6)
 End Group
End Record

You must also modify the program record as follows:

IDENTIFICATION DIVISION.PROGRAM-ID. SAMP.
 .
 .
 .
WORKING-STORAGE SECTION.
 .
 .
 .
*
* Record to get check and deposit data
*
01 COLLECT_DATA GLOBAL.
 05 TRANSACTION_COUNT PIC 9(8) COMP.
 05 TRANSACTION_DATA OCCURS 50.
 10 NUMBER_FIELD PIC X(4).
 10 DATE_FIELD PIC X(7).
 10 PAYMEM_FIELD PIC X(35).
 10 AMTPAY_FIELD PIC 9(6).
 10 DEPOSIT_FIELD PIC 9(6).
 10 BALANCE_FIELD PIC X(6).

The form record field and program record field allow this record to get the deposit amount. The
form record field and the program record field exchange the memo for a deposit. The and record
fields exchange the date of the deposit and balance after the deposit, respectively. The other fields in
these records are not used during deposits.

You must modify form data by moving the declaration of the DEPOSIT_FIELD form data
item from the FORM DATA statement for DEPOSIT_PANEL to the declaration of the
TRANSACTION_DATA group. Form data should appear as follows after you make this change:

Form Data /* Form data for panel CHECK_PANEL */
 CHECK_NUMBER Integer (4)
 NAME_FIELD Character (39)
 CSZ_FIELD Character (30)
 MEMO_FIELD Character (35) Value " "
 TRANSACTION_COUNT Longword Integer
 Group TRANSACTION_DATA
 Occurs 50
 NUMBER_FIELD Integer (4)

81

Chapter 5. Converting the FMS Sample Application

 DATE_FIELD Date Current
 PAYTO_FIELD Character (35) Value " "
 AMTPAY_FIELD Decimal (6,2) Value 0
 DEPOSIT_FIELD Decimal (6,2) Value 0
 BALANCE_FIELD Decimal (6,2) Value 0
 End Group
End Data

Form Data /* Form data for panel DEPOSIT_PANEL */
 CURBAL_FIELD Decimal (6,2)
 NEWBAL_FIELD Decimal (6,2)
End Data
 .
 .
 .

Add the VALUE clause to the DEPOSIT_FIELD form data item to be sure that it is empty the first
time you use it.

Modify the panel fields declared on DEPOSIT_PANEL and create a panel group containing the
panel fields that correspond to the form data items in the TRANSACTION_DATA group. The
following example shows how the panel fields for DEPOSIT_PANEL must appear:

Panel DEPOSIT_PANEL
 .
 .
 .
 Group TRANSACTION_DATA
 Vertical Displays 1

 Field DATE_FIELD
 Line 2 Column 55
 Output Picture 99'-'AAA'-'99
 Protected
 End Field

 Field DEPOSIT_FIELD
 Line 6 Column 42
 Display Underlined
 Replace Leading '0'
 Minimum Length 1
 Output Picture 9999R'.'99
 Use Help Message 'Enter amount of deposit'
 End Field

 Field PAYTO_FIELD
 Line 11 Column 28
 Display Underlined
 Minimum Length 1
 Output Picture X(35)
 Use Help Message 'Enter the origin of the deposit'
 End Field
 End Group

 Field CURBAL_FIELD
 Line 4 Column 42
 Justification Right

82

Chapter 5. Converting the FMS Sample Application

 Output Picture 9999R'.'99
 Protected
 End Field

 Field NEWBAL_FIELD
 Line 8 Column 42
 Justification Right
 Output Picture 9999R'.'99
 Protected
 End Field
 End Panel

6. Declare one form record and program record for viewing the check register.

The check register in the FMS application is an array of data items that shows all transactions made
on the account. The form that displays the check register also shows a summary of the current
session. That form shows the starting balance of the session,the deposits made, the checks written,
and the new balance.

In the DECforms application, only the array of data items needs to be sent to the form when the
operator asks to see the check register. You can maintain the session summary information in the
form using escape routines.

The following example shows the record you must declare to pass check register data to the form:

 .
 .
 .
 DEPOSIT_FIELD Character (6)
 BALANCE_FIELD Character (6)
 End Group
End Record

 Form Record REGISTER
 TRANSACTION_COUNT Longword Integer
 Group REGISTER_PANEL_GROUP_1
 Occurs 50
 NUMBER_FIELD Character (4)
 DATE_FIELD Character (7)
 PAYMEM_FIELD Character (35)
 DEPOSIT_FIELD Character (6)
 AMTPAY_FIELD Character (6)
 BALANCE_FIELD Character (6)
 End Group
End Record

Delete the FILLER field from the REGISTER program record and move the declaration of the
program record field from the FOUND-IN-REGISTER record to the REGISTER record. You can
then use the REGISTER record to pass register information to the form. The record must appear as
follows:

IDENTIFICATION DIVISION.PROGRAM-ID. SAMP.
 .
 .
 .
WORKING-STORAGE SECTION.
 .

83

Chapter 5. Converting the FMS Sample Application

 .
 .
*+
* Register data format of 2nd thru n records in SAMP.DAT
*+
01 REGISTER GLOBAL.
 05 LAST_REGISTER_NUM PIC 9(4).
 05 REGISTER_ITEM OCCURS 50 TIMES.
 10 REG_ITEM_NUMBER PIC 9(4).
 10 REG_ITEM_DATE PIC X(7).
 10 REG_ITEM_MEMO_PAY_TO PIC X(35).
 10 REG_ITEM_DEPOSIT_AMT PIC 9(6).
 10 REG_ITEM_PAY_AMT PIC 9(6).
 10 REG_ITEM_BALANCE PIC 9(6).
*

Change the group declaration in the FORM DATA statement to allow it to store 50 items as follows:

Form Data /* Form data for panel REGISTER_PANEL */
 Group REGISTER_PANEL_GROUP_1
 Occurs 50
 NUMBER_FIELD Character (4)
 .
 .
 .

7. Create one form record for viewing the account data.

When the operator chooses to view and change account data, the FMS application displays account
data previously sent to the form. If the operator chooses to change the account information, FMS
returns the new information to the program.

In the DECforms application, the account data must be sent to the form and may be returned to
the program. The COBOL source file contains a program record that you can use for both these
purposes. Declare a logically equivalent form record to allow the data to be passed.

Add the form record declaration following the declaration of the REGISTER form record, as shown:

 .
 .
 .
 AMTPAY_FIELD Character (6)
 BALANCE_FIELD Character (6)
 End Group
 End Record

 Form Record ACCOUNT
 ACCTNO_FIELD Character (5)
 OPEN_DATE Character (7)
 LAST_FIELD Character (20)
 FIRST_FIELD Character (15)
 MIDDLE_FIELD Character (15)
 STREET_FIELD Character (30)
 CITY_FIELD Character (20)
 STATE_FIELD Character (2)
 ZIP_FIELD Character (5)
 HOMEPH_FIELD Character (10)
 WORKPH_FIELD Character (10)

84

Chapter 5. Converting the FMS Sample Application

 SECRET_FIELD Character (12)
 End Record
Layout FMS_Cnv
 .
 .
 .

5.3.4. Modifying the Help Syntax
The help provided in the FMS sample application is consistent throughout the application. When the
cursor is on a field and the operator presses the HELP key, FMS displays a message that explains how to
give input to that field. If the operator presses the HELP key again, FMS displays a help form that gives
information about the form on which the FMS field appears. If the operator presses the HELP key three
times, FMS displays a help form that explains the keys defined in the sample application.

The FMS Converter automatically converts the help messages to DECforms. Follow these steps to
convert the help panels and retain the help processing in the converted application:

1. Change the PANEL statement to the HELP PANEL statement for each panel in the DECforms IFDL
source file that is a help panel.

The FMS Converter cannot distinguish between help panels and data entry panels. It declares all
panels in the converted form using the PANEL statement. DECforms requires that panels you use
as help panels(that is, panels you name in a USE HELP PANEL clause) be declared with the HELP
PANEL statement. The converted DECforms application contains the following help panels:

● HELP_ACCOUNT_DATA_PANEL

● HELP_CHECK_PANEL

● HELP_DEPOSIT_PANEL

● HELP_KEYS_PANEL

● HELP_MENU_PANEL

● HELP_WELCOME_PANEL

The following example shows how the FMS Converter declares:

Panel HELP_ACCOUNT_DATA_PANEL
 Viewport HELP_ACCOUNT_DATA_VP
 Display %Keypad_application
 Literal Rectangle
 .
 .
 .
End Panel

Modify this declaration to appear as follows:

Help Panel HELP_ACCOUNT_DATA_PANEL
 Viewport HELP_ACCOUNT_DATA_VP
 Display %Keypad_application
 Literal Rectangle
 .
 .

85

Chapter 5. Converting the FMS Sample Application

 .
End Panel

2. Delete the comments around the USE HELP PANEL clause in the data entry panels.

The FMS Converter creates a USE HELP PANEL clause in each DECforms data entry panel that
should be associated with a help panel. The Converter determines which data entry panels should
relate to help panels by using information in the sample FMS application. Each of the FMS help
forms is related to an FMS data entry form or help form. The Converter relates the DECforms help
panel created from each FMS help form to the data entry panel created from the data entry form or
help form.

You should remove the comments surrounding the USE HELP PANEL clause in each data entry
panel. The USE HELP PANEL clause appears in the following data entry panels in the converted
application:

● ACCOUNT_DATA_PANEL

● CHECK_PANEL

● CHECK_DONE_PANEL

● DEPOSIT_PANEL

● MENU_PANEL

● WELCOME_PANEL

3. Delete the USE HELP PANEL clause from help panels.

The FMS Converter also creates the USE HELP PANEL clause inside of help panels to maintain
the relationship that existed between two FMS help forms. DECforms does not allow you to specify
the USE HELP PANEL clause within help panels, so you must remove it. The following help panels
contain USE HELP PANEL clauses:

● HELP_ACCOUNT_DATA_PANEL

● HELP_CHECK_PANEL

● HELP_DEPOSIT_PANEL

● HELP_MENU_PANEL

● HELP_WELCOME_PANEL

4. Add a function response to help panels to display the HELP_KEYS_PANEL.

DECforms provides a function named NEXT HELP that the Form Manager performs when
the operator presses the HELP key. You can define a function response for this function inside
help panels to override its default actions. By default, when the operator presses the HELP
key while positioned on a help panel, the Form Manager displays a message indicating that no
more help is available. Add the following function response to the help panels (other than the
HELP_KEYS_PANEL) in the sample application:

Function Response NEXT HELP
 Activate Wait On HELP_KEYS_PANEL86

Chapter 5. Converting the FMS Sample Application

 Position To Wait On HELP_KEYS_PANEL
End Response

This function response causes the Form Manager to add a wait activation item to the activation list
for the HELP_KEYS_PANEL. The Form Manager makes that item the current item, as specified
by the POSITION response step. When the wait activation item becomes the current activation item,
the Form Manager displays the HELP_KEYS_PANEL. The operator can press a function key to
satisfy the activation item.

Add this response immediately following the VIEWPORT statement in the help panels other than the
HELP_KEYS_PANEL.

5. Add a function response to terminate help to the HELP_KEYS_PANEL.

Once the HELP_KEYS_PANEL is displayed, no more help is available. In the FMS application,
the operator terminates help by pressing the RETURN key. Add the following function response to
the HELP_KEYS_PANEL:

Panel HELP_KEYS_PANEL
 Viewport HELP_KEYS_VP
 Display %Keypad_application
 Function Response NEXT_STEP
 Exit Help
 End Response

This response causes the Form Manager to set the HELP ACTIVE condition to false and return
processing to the item that was active when the operator invoked help.

5.4. Rewriting the Application Program
During the conversion process you must modify the program that drives the sample application to
use DECforms, instead of FMS. To do this, you change FMS calls to DECforms calls, move program
logic into the form,and rewrite parts of the application to use DECforms more efficiently. One way to
approach these tasks is to start at the point in the program where execution begins. You can then convert
each statement in the program by following the flow of execution through the program. The sections that
follow explain one way of modifying the FMS sample program.

5.4.1. Converting the SAMP Program
The main program of the sample program, SAMP, declares much of the data used in the application.
It also attaches and detaches FMS by attaching and detaching a terminal and workspaces, opening and
closing the form library, and setting the keypad mode and signal mode. The sections that follow explain
how to convert the SAMP program.

5.4.1.1. Converting the Working-Storage Section

The first part of the SAMP program that you should examine is the data declarations. Several of the
variables declared in the Working-Storage Section can be removed, while others should be added.
Follow these steps to modify the SAMP program data declaration:

1. Delete the data items named in Table 5.1, "Data Items That Can Be Removed from the Sample
Program".

87

Chapter 5. Converting the FMS Sample Application

Table 5.1. Data Items That Can Be Removed from the Sample Program

Data Item Explanation

TERM_CONTROL_AREA Stores the name of the Terminal Control Area
(TCA). DECforms does not store a TCA name.

WORKSPACE

CHECK_WORKSPACE

Stores the location of the workspace. DECforms
does not use workspaces.

MENU_FORM

CHECK_FORM

DPOSIT_FORM

Store the locations of memory-resident forms.
In DECforms, the panels in the active layout are
automatically memory resident.

KEY_PAD_MODE Stores a value that determines the setting of the
keypad mode: application or numeric mode.
You control the keypad mode in the form in
DECforms.

SIGNAL_BELL Stores a value that controls the signal mode:
audio or visual. You control the signal mode in
the form in DECforms.

LOGICAL_UNIT

LOGICAL_UNIT_TT

Store the channel number for the form library
and terminal. In DECforms, you use a session
identification number instead of a channel
number.

RMS_STATUS Stores status from RMS (Record Management
Services). In DECforms, all status is returned to
a single variable.

TERMINATOR Stores terminators used by the operator.
In DECforms, you trap terminators (called
functions) in the form,instead of in the program.

TERM_CONTROL_AREA_SIZE Stores the size of the TCA. OpenVMS does not
need this value.

WORKSPACE_SIZE

CHECK_WORKSPACE_SIZE

Store the estimated sizes of workspaces.
DECforms does not use workspaces.

MENU_FORM_SIZE

CHECK_FORM_SIZE

DPOSIT_FORM_SIZE

UNUSED_TRUE_SIZE

Store the sizes of the forms to be added to
the dynamic memory-resident list. DECforms
determines the size of panels in memory
automatically.

FIELD_INDEX Stores the index of the SUMMARY indexed
field. DECforms does not use indexed fields.

CUR_LINE

MIN_WINDOW

MAX_WINDOW

Store values that allow the program to control
scrolling in the application's scrolled region. In
DECforms, the Form Manager controls scrolling.

88

Chapter 5. Converting the FMS Sample Application

2. Delete the following COPY statement:

COPY "SAMPCOB"

The SAMPCOB library file declares the FMS field name variables. Your DECforms program does
not need to know the names of panel fields.

3. Rename the SAMP_FORM_LIB data item and change its initial value. The SAMP_FORM_LIB
contains the name of the form library for the application. You should change the name of this
variable to SAMP_FORM and change its value to “SAMP.FORM”.

4. Rename the FMS_STATUS variable to FORMS_STATUS.

5. Delete the DEPOSIT record. The COLLECT_DATA record gets information for deposit
transactions.

6. Modify the LAST_CHECK_NUM record field and the ACCT_BALANCE record field.

Make the LAST_CHECK_NUM field and the ACCT_BALANCE field variables, instead of record
fields. Remove the FOUND-IN-REGISTER record because it is not needed in the converted
application.

7. Modify the COPY statement for the FMS definitions file.

The FDVDEF.LIB file is copied to give the program access to FMS declarations. Change the
definitions file name to SYS$LIBRARY:FORMS$COB_DEFINITIONS.LIB to copy DECforms
definitions.

8. Add the following three variables that are needed by DECforms:

● SESSION_ID, which must be declared to be a 16-character string.

● RECORD_COUNT, which you can declare as a numeric string. You must also assign a value of
1 to the variable using the COBOL VALUE clause.

● DISPLAY_DEVICE, which you can declare to hold the name of a device. You can store SYS
$INPUT in this variable to make it general-purpose.

Declare each of these variables as global variables.

Once you have made these changes, your data declaration appears as shown:

IDENTIFICATION DIVISION.PROGRAM-ID. SAMP.
 .
 .
 .
WORKING-STORAGE SECTION.
01 SAMP_FORM PIC X(21) VALUE "FORMS
$EXAMPLES:SAMP.FORM".
01 TOTAL_DEPOSIT PIC 9(6) GLOBAL.
01 TOTAL_PAYMENTS PIC 9(6) GLOBAL.
01 MAX_DEPOSIT PIC 9(6) GLOBAL VALUE 999999.
01 MAX_PAYMENT PIC 9(6) GLOBAL VALUE 999999.
01 FORMS_STATUS PIC S9(9) COMP GLOBAL.
01 SESSION_ID PIC X(16) GLOBAL.
01 RECORD_COUNT PIC 9(1) GLOBAL VALUE 1.
01 DISPLAY_DEVICE PIC X(10) VALUE "SYS$INPUT".
*

89

Chapter 5. Converting the FMS Sample Application

* Record to pass current balance
*
01 CURRENT_BALANCE PIC 9(6) GLOBAL.
 05 CURBAL_FIELD PIC 9(6).
*
* Record to get check and deposit data
*
01 COLLECT_DATA GLOBAL.
 05 TRANSACTION_COUNT PIC 9(8) COMP.
 05 TRANSACTION_DATA OCCURS 50.
 10 NUMBER_FIELD PIC 9(4).
 10 DATE_FIELD PIC X(7).
 10 PAYMEM_FIELD PIC X(35).
 10 AMTPAY_FIELD PIC 9(6).
 10 DEPOSIT_FIELD PIC 9(6).
 10 BALANCE_FIELD PIC 9(9).
*
* Account Record format of first record in SAMP.DAT
*
01 ACCOUNT GLOBAL.
 05 ACCT_NUMBER PIC X(5).
 05 PIC X(7).
 05 ACCT_NAME.
 10 LAST_NAME PIC X(20).
 10 FIRST_NAME PIC X(15).
 10 MIDDLE_NAME PIC X(15).
 05 ACCT_STREET PIC X(30).
 05 CITY-STATE-ZIP.
 10 CITY PIC X(20).
 10 STATE PIC X(2).
 10 ZIP PIC X(5).
 05 ACCT_HOME_PHONE PIC X(10).
 05 PIC X(10).
 05 ACCT_PASSWORD PIC X(12).
*
* Register data format of 2nd thru n records in SAMP.DAT
*
01 REGISTER GLOBAL.
 05 LAST_REGISTER_NUM PIC 9(4).
 05 REGISTER_ITEM OCCURS 50 TIMES.
 10 REG_ITEM_NUMBER PIC 9(4).
 10 REG_ITEM_DATE PIC X(7).
 10 REG_ITEM_MEMO_PAY_TO PIC X(35).
 10 REG_ITEM_DEPOSIT_AMT PIC 9(6).
 10 REG_ITEM_PAY_AMT PIC 9(6).
 10 REG_ITEM_BALANCE PIC 9(6).
01 REGISTER_MAX PIC 9999 GLOBAL VALUE 50.
01 LAST_CHECK_NUM PIC 9(4) GLOBAL.
01 ACCT_BALANCE PIC 9(6) GLOBAL.
*
* Forms SYMBOLS*COPY "SYS$LIBRARY:FORMS$DEFINITIONS_COBOL".
 .
 .
 .

90

Chapter 5. Converting the FMS Sample Application

5.4.1.2. Converting the Procedure Division

Once you have modified the Working-Storage Section of the SAMP program,you can convert the
Procedure Division. Follow these steps to modify the Procedure Division:

1. Delete the first 14 calls in the program, including the calls to the GETSTAT subprogram.

These calls set up the FMS form environment. In DECforms, you use the ENABLE call for this
purpose.

One of these calls sets the signal mode for the application to ring the terminal bell. DECforms does
not contain the concept of signal mode. It does contain a SIGNAL response step that you can use to
signal the operator. You specify that the signal ring the terminal bell in the response step; that is, by
specifying SIGNAL %BELL.

2. Add the FORMS$ENABLE call.

Add the FORMS$ENABLE call as the first statement in the Procedure Division:

PROCEDURE DIVISION.0.*+* Initialize
DECforms
* Choose form for this session
* Attach terminal
* Open channel
* Put up welcome form and wait for response
*- CALL "forms$enable" USING BY VALUE FORMS$AR_FORM_TABLE
 BY DESCRIPTOR DISPLAY_DEVICE
 SESSION_ID
 SAMP_FORM
 GIVING FORMS_STATUS.

This call attaches the terminal, selects the form to be used, and returns a session identification
string. The form to be used is named in SAMP_FORM. The display device is named in
DISPLAY_DEVICE, and SESSION_ID returns the session identifications string. The FORMS\$AR
_FORM_TABLE symbol stores the address of escape routines.

3. Add a DISPLAY clause to each panel in the form to set the keypad mode.

The FMS application also sets the keypad mode. To perform this task in the DECforms application,
you specify a DISPLAY clause in a panel declaration. Add the DISPLAY clause following the
VIEWPORT clause in each panel declaration:

Panel ACCOUNT_DATA_PANEL
 Viewport ACCOUNT_DATA_VP
 Display %Keypad_application

This DISPLAY clause sets the keypad to application mode throughout the panel.

4. Delete the CDISP and WAIT Form Driver calls in the program that display the welcome panel and
wait for operator input from the program. Also remove the SRVCHK subprogram call. These calls
are not needed in the converted application.

5. Add an ENABLE response to display the welcome panel and wait for operator input.

The following example shows how to add the ENABLE response following the VIEWPORT
declarations in the IFDL source file:

91

Chapter 5. Converting the FMS Sample Application

 .
 .
 .
Viewport REGISTER_VP Lines 1 Thru 23 Columns 1 Thru 80 End Viewport
Viewport WELCOME_VP Lines 2 Thru 23 Columns 1 Thru 80 End Viewport

Enable Response
 Activate Wait On WELCOME_PANEL
End Response

This response causes the Form Manager to activate the WELCOME_PANEL and the Form Manager
to process the wait activation item associated with WELCOME_PANEL. To process the activation
item, the Manager displays WELCOME_PANEL and waits for valid function key input from the
operator.

6. Add the NEXT_STEP function and function response at the layout level.

The operator presses the RETURN key or ENTER key in the FMS application to signify that the
application should proceed beyond the WELCOME form.

To emulate this in DECforms, add a function declaration to bind a function named NEXT_STEP to
the RETURN and ENTER keys. Add a function response to that function that returns control to the
application program(so that processing can proceed beyond WELCOME_PANEL).

Add the FUNCTION declaration immediately following the LAYOUT declaration:

 .
 .
 .
 Size 23 Lines By 80 Columns

 Function NEXT_STEP
 Is %Carriage_return
 %Kp_Enter
 End Function

 Viewport ACCOUNT_DATA_VP Lines 1 thru 23 Columns 1 Thru 80 End
 Viewport

Add the FUNCTION RESPONSE statement following the ENABLE responseyou added to the
source file, as shown:

 .
 .
 .
 Reset REGISTER_PANEL_GROUP_1
 End Response

 Function Response NEXT_STEP
 Return
 End Response

The combination of the function and function response cause the Form Manager to return control to
the program when the operator presses the RETURN or ENTER key. You can override the function
response at lower levels (such as panel level or field level) in the form.

92

Chapter 5. Converting the FMS Sample Application

7. Add the REMOVE clause to WELCOME_PANEL.

When the operator completes input to this panel, the Form Manager should remove it from the
display. The REMOVE clause causes the Form Manager to remove the panel.

Add the REMOVE clause directly following the DISPLAY VIEWPORT clause:

Panel WELCOME_PANEL
 Viewport WELCOME_VP
 Display %Keypad_application

 Display Viewport Background Color BLACK
 Remove
 .
 .
 .
End Panel

8. Delete the last six FMS calls in the program and the MOVE statement. These calls disable the
FMS form environment, including resetting the keypad mode. In DECforms, the Form Manager
automatically restores the keypad mode to its initial state when you disable it.

9. Add the FORMS$DISABLE call.

In DECforms you disable the form environment using the FORMS$DISABLE call. Add the FORMS
$DISABLE call preceding the EXIT PROGRAM statement in the SAMP program, as shown:

 CALL "forms$disable" USING BY DESCRIPTOR SESSION_ID
 GIVING FORMS_STATUS.
 EXIT PROGRAM.
IDENTIFICATION DIVISION.
PROGRAM-ID. INACCT.
 .
 .
 .

This call detaches the terminal and unloads the form.

Once you have made these changes, your main program appears as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMP.
 .
 .
 .
PROCEDURE DIVISION.
0.
*+
* Initialize DECforms
* Choose form for this session
* Attach terminal
* Open channel
* Put up welcome form and wait for response
*
 CALL "forms$enable" USING BY VALUE FORMS$AR_FORM_TABLE
 BY DESCRIPTOR DISPLAY_DEVICE
 SESSION_ID
 SAMP_FORM

93

Chapter 5. Converting the FMS Sample Application

 GIVING FORMS_STATUS.
*+
* Initialize account information
*-
 CALL "INACCT".
*+
* Process all menu requests
*-
 CALL "MENU".
*+
* Clean up and leave:
* Detach session
* Unload form
* Detach terminal
* Close channel
*
 CALL "forms$disable" USING SESSION_ID
 GIVING FORMS_STATUS.
 EXIT PROGRAM.

The converted SAMP program controls the flow of execution for the entire application. The SAMP
program enables DECforms, initializes account information,and begins a loop that gets menu choices
from the operator. Once the operator is done using the application, the other programs in the application
return control to the SAMP program. The SAMP program then disables the form environment.

5.4.2. Converting FMS Status Checking
The FMS application contains status checking for FMS. You should check status in the converted
application, too. You must convert the status subprogram and then call it after each DECforms call.
Follow these steps to convert the status checking:

1. Remove the GETSTAT subprogram.

The GETSTAT subprogram in the FMS application gets status information from FMS. In DECforms,
status conditions are returned to each call,so you do not need a subprogram to get status from
DECforms.

2. Modify the SRVCHK subprogram to test an OpenVMS condition value.

The SRVCHK subprogram tests the status returned from FMS.

You test DECforms status differently than you test FMS status values because DECforms returns
an OpenVMS condition value. Replace the statements in the SRVCHK subprogram's Procedure
Division with the Procedure Division in the following example:

IDENTIFICATION DIVISION.
PROGRAM-ID. SRVCHK IS COMMON.
*+
* Check DECforms status by looking at the status recording variable.
*+
DATA DIVISION.
WORKING-STORAGE SECTION.

LINKAGE SECTION.
01 FORMS_STATUS PIC S9(9) COMP.

PROCEDURE DIVISION USING FORMS_STATUS.

94

Chapter 5. Converting the FMS Sample Application

0.
 IF FORMS_STATUS IS FAILURE THEN
 CALL "LIB$SIGNAL" USING BY VALUE FORMS_STATUS
 STOP RUN
 END-IF.
END PROGRAM SRVCHK.

3. Call the new status checking subprogram following the FORMS$ENABLE and FORMS$DISABLE
calls in the SAMP program. For example:

 .
 .
 .
* Put up welcome panel and wait for response
* CALL "forms$enable" USING BY VALUE FORMS$AR_FORM_TABLE
 BY DESCRIPTOR DISPLAY_DEVICE
 SESSION_ID
 SAMP_FORM
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.

4. Include the call to the SRVCHK subprogram after each DECforms call that you add to the program.

5.4.3. Converting the INACCT Subprogram
The INACCT subprogram in the sample FMS program reads data from a data file into the ACCOUNT
record and the REGISTER record. This subprogram also stores the appropriate check number and
account balance in the appropriate variables. The subprogram contains some error handling, a call to
another subprogram named FMTCHK, and it closes the data file. Each of these tasks must be performed
in the converted application,so you need not modify the existing statements in this subprogram.

Because the INACCT subprogram's purpose is to initialize storage of the account data, you should call
the SEND request from that subprogram to send the account data to the form. You should also send the
current balance to the form. The form needs to keep a copy of the account data and current balance in
form data items,so it makes sense to initialize those form data items at the same time you initialize the
ACCOUNT and CURRENT_BALANCE records in the program.

Add the FORMS$SEND call for the ACCOUNT record immediately following the error handling for the
READ statement that reads data into the ACCOUNT record, as shown:

WORKING-STORAGE SECTION.
01 EOF-FLAG PIC S9(9) COMP.

PROCEDURE DIVISION.
0.
*+
* Open file, get account data. The first record in the file is the
* account data. The 2nd thru n records are the check register data.
* The last record has the current balance data.
*-
 OPEN INPUT SAMP-FILE.
 READ SAMP-FILE INTO ACCOUNT\
 AT END DISPLAY "Error on SAMP.DAT"
 STOP RUN.
*+
* Send account data to the form
*+
 CALL "forms$send" USING BY DESCRIPTOR SESSION_ID

95

Chapter 5. Converting the FMS Sample Application

 "ACCOUNT"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR ACCOUNT
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
*+
* Read the remaining records into the check register, counting them.
 .
 .
 .

The FORMS$SEND call that sends the ACCOUNT record causes the Form Manager to initialize form
data items with the account owner's name, address, and telephone number. The Form Manager also
initializes information about the account, such as the account number.

Add the FORMS$SEND call for the CURRENT_BALANCE record immediately preceding the CALL
statement that calls the FMTCHK subprogram.

 END-EVALUATE.
*+
* Send current balance to the form.
*-
 CALL "forms$send" USING BY DESCRIPTOR SESSION_ID
 "CURRENT_BALANCE"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR CURRENT_BALANCE
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
*+
* Set up the check workspace once so we don't have to do it every time.
 .
 .
 .

The FORMS$SEND call that sends the CURRENT_BALANCE record causes the Form Manager to
initialize the CURBAL_FIELD form data item. Add the following SEND response after the ENABLE
response in the IFDL source file:

 .
 .
 .
 Reset REGISTER_PANEL_GROUP_1
End Response

96

Chapter 5. Converting the FMS Sample Application

Send Response CURRENT_BALANCE
 Let SUMMARY_FIELD_1 = CURBAL_FIELD
End Response

When it executes this response, the Form Manager stores the current (beginning) account balance in the
SUMMARY_FIELD_1 form data item. You must initialize the SUMMARY_FIELD_1 form data item
at the beginning of application execution because the SUMMARY_FIELD_1 panel field must display
the beginning account balance when the operator asks to see a summary of the transactions made on the
account.

5.4.4. Converting the FMTCHK Subprogram
The INACCT subprogram calls the FMTCHK subprogram, which sends formatted data to the form to
compose the header on the check. The FMTCHK subprogram in the FMS application sets the workspace
to CHECK_WORKSPACE and loads the check form. The subprogram then calls the STR$TRIM RTL
routine and uses the STRING statement to format some data,which it passes to the form in a PUT call.
Follow these steps to convert the FMTCHK subprogram:

1. Delete the SWKSP and LOAD Form Driver calls from the program. The DECforms application need
not set the workspace or LOAD the form.

2. Group all the STR$TRIM calls and STRING statements together near the top of the Procedure
Division.

3. Replace the PUT calls and the SWKSP call with the FORMS$SEND call.

The FMS application puts values to each field in the workspace one at a time. In the DECforms
application, you can send all the formatted data to the form at once, in a record.

4. Move the ADD statement for the variable from the ONECHK subprogram to the FMTCHK
subprogram.

In the FMS sample program, the INACCT subprogram contains the following ADD statement:

 ADD 1, LAST_CHECK_NUM GIVING NEW_CHECK_NUMBER.

This ADD statement increments the check number so that each check has anew number. You should
pass in the new check number in the CHECK_FORMAT record,so you should increment it in this
subprogram, which passes the CHECK_FORMAT record to the form. Place the ADD statement
following the STR$TRIM calls and STRING statements.

5. Add the FORMS$SEND call for the CHECK_FORMAT form record following the ADD statement.

Once you have made these changes, your FMTCHK subprogram appears as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. FMTCHK IS COMMON.
*+
* Format account data to be displayed on the check panel.
*-
DATA DIVISION.
WORKING-STORAGE SECTION.
01 CHECK_FORMAT
 05 NEW_CHECK_NUMBER PIC 9(4).
 05 NAME_CONDENSED PIC X(39).
 05 CSZ_CONDENSED PIC X(30).
01 CITY_LEN PIC 9(4) COMP.

97

Chapter 5. Converting the FMS Sample Application

01 FIRST_LEN PIC 9(4) COMP.
01 RECORD_COUNT PIC 9(2).
01 UNUSED_STRING PIC X(80).
PROCEDURE DIVISION.
0.
*+
* Need to trim trailing blanks - use the OpenVMS RTL routine to find out
* how long the trimmed string is, then do explicit moves.
* Put only middle initial in, not full middle name.
*-
 CALL "STR$TRIM" USING BY DESCRIPTOR UNUSED_STRING
 BY DESCRIPTOR FIRST_NAME
 BY REFERENCE FIRST_LEN.
 STRING FIRST_NAME(1:FIRST_LEN) " "
 MIDDLE_NAME(1:1) ". "
 LAST_NAME DELIMITED BY SIZE INTO NAME_CONDENSED.

 CALL "STR$TRIM" USING BY DESCRIPTOR UNUSED_STRING
 BY DESCRIPTOR CITY
 BY REFERENCE CITY_LEN.
 STRING CITY(1:CITY_LEN) ", "
 STATE " "
 ZIP DELIMITED BY SIZE INTO CSZ_CONDENSED.
*
 ADD 1, LAST_CHECK_NUM GIVING NEW_CHECK_NUMBER.
*+
* Send condensed check data to the form
*+
 CALL "forms$send" USING BY DESCRIPTOR SESSION_ID
 "CHECK_FORMAT"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR CHECK_FORMAT
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
 EXIT PROGRAM.
END PROGRAM FMTCHK.
END PROGRAM SAMP.

5.4.5. Converting the MENU Subprogram
The MENU subprogram gets input from the operator that determines what the operator wants to
do (write a check, make a deposit, and so on). The FMS program sends a default value that FMS
displays on the form, and FMS returns the operator input to the program. The program uses the input to
determine what subprogram to call. During operator input,FMS calls two UARs. One validates the data
entered by the operator. The other translates the terminator entered by the operator into a string that the
program can use for decision making. Follow these steps to convert this subprogram:

1. Delete the CDISP Form Driver call that displays the MENU form.

DECforms automatically displays MENU_PANEL when operator input is needed to that panel.

98

Chapter 5. Converting the FMS Sample Application

2. Replace the MOVE statement and PUT call in the RESET response step in the form.

The MOVE statement and the PUT call in the FMS application send a default value to the
workspace for the OPTION field on the FMS MENU form. To display a default value in
OPTION_FIELD on the DECforms panel, add a RECEIVE response to reset the OPTION_FIELD
form data item. Specify the RESET response step in the RECEIVE response.

The FMS Converter declares the OPTION_FIELD form data items with a VALUE clause that
specifies a default value of 2. The VALUE clause controls what value the Form Manager stores in
the OPTION_FIELD form data item when it performs the RESET response step.

The following example shows the RECEIVE response that resets the OPTION_FIELD form data
item. Add the GET_CHOICE RECEIVE response following the CURRENT_BALANCE RECEIVE
response.

 Let SUMMARY_FIELD_1 = CURBAL_FIELD
 End Response

 Receive Response GET_CHOICE
 Reset OPTION_FIELD
 Activate Field OPTION_FIELD On MENU_PANEL
 End Response

The Form Manager performs the GET_CHOICE RECEIVE response when the program calls the
RECEIVE request to get data in the GET_CHOICE record; that is, each time operator input to the
OPTION_FIELD form data item is needed.

The ACTIVATE response step causes the Form Manager to request operator input to the
OPTION_FIELD form data item.

3. Replace the GET call in the FMS program with the FORMS$RECEIVE call.

The FMS program contains a GET call to get the operator's choice from the workspace. In
DECforms, you use the FORMS$RECEIVE call to get the operator's choice from the form.

Add the FORMS$RECEIVE call as first statement in the subprogram, and be sure to specify the
GET_CHOICE record in the call, as shown:

* 4 => View register
* 5 => View account data
*-
*DATA DIVISION.
01 GET_CHOICE.
 05 D-MENU-OPTION PIC X(1).
WORKING-STORAGE SECTION.
PROCEDURE DIVISION.
0.
 CALL "forms$receive" USING BY DESCRIPTOR SESSION_ID
 "GET_CHOICE"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED

99

Chapter 5. Converting the FMS Sample Application

 BY DESCRIPTOR GET_CHOICE
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
 EVALUATE D-MENU-OPTION
 WHEN "1" GO TO FINI
 WHEN "2" CALL "WRITCH"
 WHEN "3" CALL "MAKDEP"
 WHEN "4" CALL "VUEREG"
 WHEN "5" CALL "VUEACT"
 END-EVALUATE.
 GO TO 0.FINI.
 EXIT PROGRAM.

The call gets data into the D-MENU-OPTION program variable. The value in that variable
determines which subprogram is called.

4. Add the RANGE clause to the OPTION_FIELD panel field declaration to replace the VALID1
UAR.

During operator input to the FMS MENU form, the FMS calls the VALID1 UAR. The VALID1
UAR verifies that the input from the operator is a single-character value between 1 and 5, inclusive.

In DECforms you can verify this using the RANGE clause in the field declaration. Add a RANGE
clause to the OPTION_FIELD panel field declaration as shown:

 .
 .
 .
 Value 'To continue, press keypad 1-5.'
 End Literal
 Field OPTION_FIELD
 Line 6 Column 61

 Display
 Font Size Double wide
 Underlined
 Minimum Length 1
 Range 1 through 5
 Message "Illegal value"
 Output Picture 9
 Use Help Message "Enter one of the numbers 1, 2, 3, 4, or 5"
 End Field
End Panel

If the operator enters a value that is not in the range specified by the RANGE clause the Form
Manager displays the “Illegal value” message.

Remove the exit response that calls the VALID1 UAR from this field declaration. Also, remove the
VALID1 UAR from the program. That UAR is not needed in the converted application.

5. Declare functions bound to the keypad keys and write function responses for the functions to replace
the TAKE15 UAR.

FMS also calls the TAKE15 UAR during operator input to the MENU form. The TAKE15 UAR
translates terminators the operator enters into values that the program can use to make a decision.
Once the UAR is finished,FMS displays the value the operator enters and then returns control to the
program.

100

Chapter 5. Converting the FMS Sample Application

In DECforms you trap functions in the form. You can assign a value to a form data item and return
control to the program in a function response. Add the following functions to define the keys used in
the FMS application:

 .
 .
 .
 Viewport WELCOME_VP Lines 1 Thru 23 Columns 1 Thru 80 End Viewport

 Function OPERATOR_CHOICE_1
 Is %KP_1
 End Function

 Function OPERATOR_CHOICE_2
 Is %KP_2
 End Function

 Function OPERATOR_CHOICE_3
 Is %KP_3
 End Function

 Function OPERATOR_CHOICE_4
 Is %KP_4
 End Function

 Function OPERATOR_CHOICE_5
 Is %KP_5
 End Function

 Function OPERATOR_CHOICE_PERIOD
 Is %KP_PERIOD
 End Function

The FUNCTION statements bind the KP1 key to the OPERATOR_CHOICE_1function; the KP2
key to the OPERATOR_CHOICE_2 function, and so on.

Then, add the following function responses to the OPTION_FIELD declaration. Place them after the
LINE and COLUMN clauses and before the DISPLAY clause:

 Field OPTION_FIELD
 Line 6 Column 61
 Function Response OPERATOR_CHOICE_1
 Let OPTION_FIELD=1
 Return
 End Response

 Function Response OPERATOR_CHOICE_2
 Let OPTION_FIELD=2
 Return
 End Response

 Function Response OPERATOR_CHOICE_3
 Let OPTION_FIELD=3
 Return
 End Response

 Function Response OPERATOR_CHOICE_4

101

Chapter 5. Converting the FMS Sample Application

 Let OPTION_FIELD=4
 Return
 End Response

 Function Response OPERATOR_CHOICE_5
 Let OPTION_FIELD=5
 Return
 End Response

 Function Response OPERATOR_CHOICE_PERIOD
 Let OPTION_FIELD=1
 Return
 End Response

 Display
 Font Size Double wide
 Underlined
 .
 .
 .

The function responses assign the appropriate value to OPTION_FIELD and return control to
the program. For example, the OPERATOR_CHOICE_1 function response moves 1 into the
OPTION_FIELD form data item and returns control to the program.

6. Add the REMOVE clause to MENU_PANEL.

When the operator completes input to this panel, the Form Manager should remove it from the
display. The REMOVE clause causes the Form Manager to remove the panel. Add it to the panel
following the DISPLAY VIEWPORT clause,as shown:

Panel MENU_PANEL
 Viewport MENU_VP
 Display %Keypad_application

 Display Viewport Background Color WHITE
 Remove
 .
 .
 .
End Panel

7. Delete the function response that calls the TAKE15 UAR and the TAKE15UAR code in the
program.

MENU_PANEL contains a function response created by the FMS Converter that calls the TAKE15
UAR. Because you have added functions and function responses to replace that UAR, the function
response that calls it is no longer needed. Likewise, you can remove the TAKE15 UAR from the
program.

5.4.6. Converting the WRITCH Subprogram
When the operator chooses to write a check, the FMS program calls the WRITCH subprogram. The
WRITCH subprogram sets up check processing and controls it by calling the ONECHK and ENDCHK
subprograms until the operator chooses to quit writing checks. Follow these steps to convert the
WRITCH subprogram:

102

Chapter 5. Converting the FMS Sample Application

1. Delete the LEDON, the LEDOFF call and the declaration of the LED-NUMBER-3 variable.

DECforms does not contain a call or IFDL statement to control LEDs. This application turns the
LED on and off as an illustration. Lighting the LED serves no real purpose and need not be emulated
in the DECforms application.

2. Delete the NDISP, SWKSP, and DISPW calls.

These workspace management calls are not needed in DECforms because DECforms does not have
the concept of workspaces.

3. Delete the PUT call.

The PUT call sends the current balance to the FMS form. In the DECforms application, you can
maintain the current balance in the form, so you need not send it from the program.

4. Delete the PERFORM statement and the SWKSP call.

The PERFORM statement processes checks in a loop to allow the operator to write a number of
checks. In the DECforms application, you need not process checks in a loop because a single call can
get inputto a number of checks. The form data that stores check information is group data. The Form
Manager can get input to an entire group of form data items during the processing of a single request.

The workspace management call is not needed in DECforms.

5. Remove the EXIT PROGRAM statement and the IDENTIFICATION DIVISION for the ONECHK
subprogram.

Because the WRITCH subprogram contains no procedural statements, you can move the procedural
statements from the ONECHK subprogram into the WRITCH subprogram. This saves calling the
ONECHK subprogram from the WRITCH subprogram.

To merge the WRITCH and ONECHK subprograms, remove the Data Division and Procedure
Division for the WRITCH subprogram. Also, remove the Identification Division of the ONECHCK
subprogram.

You can use the Data Division and Procedure Division for the ONECHK subprogram with the
Identification Division of the WRITCH subprogram. This forms a new WRITCH subprogram that
contains the statements from the ONECHK subprogram.

The WRITCH subprogram appears as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. WRITCH.
*+
* Write one or more checks.
*-
* If input is terminated by kpd period, return with no action
* Else deduct from balance and enter into register.
 .
 .
 .
DATA DIVISION.WORKING-STORAGE SECTION.
01 REG-FULL-MSG PIC X(35) VALUE "Register full, can't
 enter check."
01 TMP PIC X (207) VALUE SPACE.

103

Chapter 5. Converting the FMS Sample Application

01 TMP_REG_PAY_ITEM_AMT PIC 9(6).
01 NUM_REG_ITEM_PAY_AMT PIC 9(6) COMP.
 .
 .
 .

5.4.7. Converting the ONECHK Subprogram
The procedural statements from the ONECHK subprogram calculate a new check number and register
number. The statements send the new check number to the workspace and get input to each field on the
FMS Check form. The operator can quit by pressing the KP_PERIOD key. If the operator does not quit,
the IF statement compares the number of checks that have already been written to the maximum number
of checks for which the check register can store information. If the check register is full, the subprogram
issues a message and stops getting input to the Check form. Otherwise, the subprogram updates the
check register with values returned from the workspace, sends a new current balance to the form, and
increments the check number. The subprogram also increments the variable that determines whether the
register has more room to store information about transactions.

Because you deleted the Identification Division for the ONECHK subprogram,its Procedure Division
is now in the WRITCH subprogram in the converted application. Follow these steps to convert the
Procedure Division to DECforms:

1. Remove the ADD statements.

Because control does not return to the program between each check the operator writes in the
converted application, you cannot maintain the register pointer in the program. You must store the
register pointer in the form.

2. Remove the PUT call that sends the new check number. You send the check number to the form in
the FMTCHK subprogram and maintain it in the form.

3. Replace the GETAL call with the FORMS$RECEIVE call.

The GETAL call gets check data. Replace it with a FORMS$RECEIVE call that asks for data in the
COLLECT_DATA record. The following example shows the FORMS$RECEIVE call to add:

IDENTIFICATION DIVISION.
PROGAM-ID. WRITCH.
 .
 .
 .
PROCEDURE DIVISION.
0.
 CALL "forms$receive" USING BY DESCRIPTOR SESSION_ID
 "COLLECT_DATA"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR COLLECT_DATA
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.

104

Chapter 5. Converting the FMS Sample Application

The COLLECT_DATA record contains a group of record fields to pass check information. The Form
Manager can, potentially, get input into each group member (allow the operator to write 50 checks)
during the processing of the request. The COLLECT_DATA record also passes a housekeeping
variable called TRANSACTION_COUNT, which stores the number of checks the operator writes
during the processing of this RECEIVE request.

4. Write a RECEIVE response for the COLLECT_DATA record.

When the Form Manager processes the RECEIVE response for the COLLECT_DATA record, it
must perform some tasks that are not part of the default processing of a RECEIVE request. Add the
following RECEIVE response following the RECEIVE response for the GET_CHOICE record:

 .
 .
 .
 Activate Field OPTION_FIELD On MENU_PANEL

 End Response

 Receive Response COLLECT_DATA
 Reset TRANSACTION_DATA
 Let TRANSACTION_COUNT = 1
 Activate Group TRANSACTION_DATA(TRANSACTION_COUNT) On CHECK_PANEL
 Activate Field MEMO_FIELD On CHECK_PANEL
 End Response

This response causes the Form Manager to clear the TRANSACTION_DATA group. (The VALUE
clause specifies spaces for these form data items.) The Form Manager then activates the fields that
are both in the TRANSACTION_DATA group and displayed on CHECK_PANEL. Some fields in
the TRANSACTION_DATA group are displayed on DEPOSIT_PANEL. The Form Manager does
not activate these fields for input. The Form Manager also activates MEMO_FIELD for input.

5. Add a function and function responses to allow the operator to move around CHECK_PANEL.

In the FMS application, the operator uses the TAB key to move forward in the CHECK form. To
allow the operator to use the TAB key in DECforms, add the following function definition following
the function declaration for the function.

 .
 .
 .
 Is %KP_PERIOD
 End Function
 Function NEXT ITEM
 Is %HORIZONTAL_TAB
 End Function

By default, the NEXT ITEM function causes the Form Manager to move the cursor to the next item.
If no next item exists, the Form Manager writes a message to the message panel. In most cases, this
is what should occur when the operator is using CHECK_PANEL; that is, this default response has
the same effect as the TAB key has in the FMS application. However, in certain cases, you must add
special function responses for the NEXT ITEM function.

Add a function response for the NEXT ITEM function in AMTPAY_FIELD. The operator
enters the check amount in this field. When the operator presses the TAB key to leave the field,

105

Chapter 5. Converting the FMS Sample Application

the Form Manager must validate the contents of the field. The Form Manager must ensure that
the check amount does not exceed the account balance. Add the following function response to
AMTPAY_FIELD to test the value the operator enters:

Field AMTPAY_FIELD
 Line 8 Column 66
 Function Response NEXT ITEM
 If TRANSACTION_DATA(TRANSACTION_COUNT).AMTPAY_FIELD > CURBAL_FIELD
 Then
 Invalid
 Message "Your balance doesn't cover that much. Re-enter amount"
 Else
 Position To Field MEMO_FIELD On CHECK_PANEL
 End if
 End Response
 No Active Highlight
 Display Underlined
 Output Picture 9999'.'99R
 Replace Leading '*'
 Justification Right
 Minimum Length 1
 Message "Input Required"
 Protected When OPTION_FIELD="3"
End Field

The function response tests the value the operator enters in AMTPAY_FIELD to be sure it is less
than the current balance. If it is greater than the current balance, the INVALID response step causes
the Form Manager to continue accepting input from AMTPAY_FIELD. The Manager also writes a
message to the message line.

If the value the operator enters in AMTPAY_FIELD is less than the value stored in
CURBAL_FIELD, the Form Manager moves the cursor to the next field on the panel.

You must also add a function response for NEXT ITEM to MEMO_FIELD. In this field, pressing
the TAB key should cause the Form Manager to write a message to the message line that says “No
Next Field On Form.” The following function response causes the TAB key to have this effect:

 Field MEMO_FIELD
 Line 10 Column 12
 Function Response Next Item
 Message "No Next Field On Form"
 End Response
 Display Underlined
 Output Picture X(35)
 End Field

6. Add function responses for the NEXT_STEP function.

In most cases, the Form Manager should return control to the program when the operator presses
the RETURN key. The layout-level response for the NEXT_STEP function causes this to occur.
However, when the operator is entering data in CHECK_PANEL, the NEXT_STEP function should
cause the Form Manager to display and wait for further input. The following example shows the
panel-level function response for NEXT_STEP to add:

Panel CHECK_PANEL
 .
 .

106

Chapter 5. Converting the FMS Sample Application

 .
 Function Response NEXT_STEP
 Activate Wait On CHECK_DONE_PANEL
 Position To Wait On CHECK_DONE_PANEL
 End Response
 Apply Field Default Of
 Active Highlight Bold
 .
 .
 .
End Panel

Although pressing the RETURN or ENTER key in most fields should terminate input to
CHECK_PANEL, when the cursor is on PAYTO_FIELD and the operator presses the RETURN
or ENTER key, input should not terminate. Instead, the Form Manager should move the cursor to
the AMTPAY_FIELD to get the check amount. This movement does not happen automatically
in DECforms because DECforms waits until input to a request is complete to validate all fields.
DECforms allows the operator to move freely around a panel until it is ready to return control to the
program. To emulate the FMS behavior, add the following function response to PAYTO_FIELD:

Field PAYTO_FIELD
 Line 8 Column 12
 Function Response NEXT_STEP
 Position To Next Item
 Message "Input Required"
 End Response
 Display Underlined
 .
 .
 .
End Field

This response causes the Form Manager to move the cursor to AMTPAY_FIELD and write the
"Input Required" message to the message panel.

Finally, you must add a function response for the NEXT_STEP function to AMTPAY_FIELD.
When the operator presses the RETURN key while the cursor is in the AMTPAY_FIELD, the Form
Manager should verify that the amount the operator entered is less than the current balance. If the
check amount is greater than the current balance, the Form Manager should continue to accept input
in AMTPAY_FIELD because the check amount is invalid. If the amount is valid, however,the Form
Manager should activate and display CHECK_DONE_PANEL.

The following shows the function response to add to AMTPAY_FIELD:

 Field AMTPAY_FIELD
 .
 .
 .
 Position To Field MEMO_FIELD On CHECK_PANEL
 End if
 End Response

 Function Response NEXT_STEP
 If TRANSACTION_DATA(TRANSACTION_COUNT).AMTPAY_FIELD >
 CURBAL_FIELD Then
 Invalid
 Message "Your balance doesn't cover that much.

107

Chapter 5. Converting the FMS Sample Application

 Re-enter amount"
 Else
 Activate Wait on CHECK_DONE_PANEL
 Position to Wait on CHECK_DONE_PANEL
 End if
 End Response
 No Active Highlight
 Display Underlined
 Output Picture 9999'.'99R
 Replace Leading '*'
 Justification Right
 Minimum Length 1
 Message "Input Required"
 Protected When OPTION_FIELD="3"
 End Field

7. Modify the exit response for CHECK_PANEL.

The FMS Converter creates an exit response for CHECK_PANEL. The exit response calls two
UARS that perform validation on data entered in the check. The CALL response steps are not
needed in the converted DECforms application, so you can remove them.

Instead of performing extra validation, the exit response should update the current balance and
check number and perform other tasks. The following shows the exit response you should use in the
converted application:

Panel CHECK_PANEL
 Viewport CHECK_VP
 Display %Keypad_Application

 Exit Response
 Let TRANSACTION_DATA(TRANSACTION_COUNT).NUMBER_FIELD = CHECK_NUMBER
 Call 'DIFFERENCE' Using By Reference CURBAL_FIELD

 TRANSACTION_DATA(TRANSACTION_COUNT).AMTPAY_FIELD
 Let TRANSACTION_DATA(TRANSACTION_COUNT).BALANCE_FIELD = CURBAL_FIELD
 Call 'CALCULATE' Using By Reference SUMMARY_FIELD_3

 TRANSACTION_DATA(TRANSACTION_COUNT).AMTPAY_FIELD
 Deactivate Group TRANSACTION_DATA(TRANSACTION_COUNT) On CHECK_PANEL
 Call 'INCREMENT' Using By Reference TRANSACTION_COUNT
 Activate Group TRANSACTION_DATA(TRANSACTION_COUNT) On CHECK_PANEL
 End Response

The first LET response step causes the Form Manager to store the check number for the check
the operator just completed in the TRANSACTION_DATA group. Next, the Form Manager
calls an escape routine to subtract the amount of the check from the current balance. (Writing
the escape routine is explained in Section 5.4.9, "Writing Escape Routines to Maintain a
Balance, Summary Total, and Check Number".) The Form Manager stores the new balance in the
TRANSACTION_DATA group, and it calls an escape routine to update the SUMMARY_FIELD_3
form data item, which stores the total number of checks written.

Once control returns from the escape routine, the Form Manager deactivates the group of data items
into which the operator enters check data. The exit response specifies deactivating used groups to
ensure that the operator cannot move back to checks that were written previously. (Each field on the
check panel is a 1-line scrolled region. This DEACTIVATE response step ensures that the operator
can never scroll back to checks written previously.)

108

Chapter 5. Converting the FMS Sample Application

Next the Form Manager calls an escape routine to increment the TRANSACTION_COUNT variable.
Finally, the Form Manager activates the next group of data items so that the operator can write
another check.

8. Add one function and three function responses to control the effect of function key input in the
CHECK_DONE_PANEL.

After the operator completes input to the Check form in the FMS application,FMS displays the
Check_done form. The operator then has the option of writing another check, printing the check, or
returning to the main menu. To allow the operator to have these choices in DECforms, you must add
another function. You must also add three function responses to CHECK_DONE_PANEL.

Add the function declaration for the PRINT_CHECK function immediately following the function
declaration of the NEXT ITEM function:

Function NEXT ITEM
 Is %HORIZONTAL_TAB
End Function

Function PRINT_CHECK
 Is %KP_0
End Function
 .
 .
 .

This function declaration binds the PRINT_CHECK function to the KP_0 key.

Add three function responses following the DISPLAY clause in the CHECK_DONE_PANEL:

Panel CHECK_DONE_PANEL
 Viewport CHECK_DONE_VP
 Display %Keypad_application

 Function Response PRINT_CHECK
 Print CHECK_PANEL
 End Response

 Function Response NEXT_STEP
 Reset MEMO_FIELD
 Message " "
 Position To Group TRANSACTION_DATA(TRANSACTION_COUNT)
 On CHECK_PANEL
 End Response

 Function Response OPERATOR_CHOICE_PERIOD
 Return
 End Response
 .
 .
 .
End Panel

When the operator presses the KP_0 key while positioned in CHECK_DONE_PANEL,the Form
Manager writes CHECK_PANEL to a file.

109

Chapter 5. Converting the FMS Sample Application

If the operator presses the RETURN key to invoke the NEXT_STEP function,the Form Manager
resets the MEMO_FIELD data item and displays spaces in the message panel. These two response
steps have the effect of clearing the MEMO_FIELD panel field and the message panel. In addition,
the Form Manager displays the next occurrence of the data items in the TRANSACTION_DATA
group. The Manager moves the cursor to the PAYTO_FIELD panel field, so the operator can write
another check.

When the operator presses KP_PERIOD, the Form Manager returns control to the program. The
operator has finished writing checks.

9. Add an exit response for CHECK_DONE_PANEL.

Each time the operator satisfies the wait activation item associated with CHECK_DONE_PANEL
and the Form Manager transfers control out of that panel,the Form Manager should deactivate the
wait item. The operator must not be able to move back to using the PREVIOUS ITEM function.
Also, the Form Manager should call an escape routine to increment the check number when the
operator leaves CHECK_DONE_PANEL.

Add an exit response following the DISPLAY clause in CHECK_DONE_ PANEL, as shown:

Panel CHECK_DONE_PANEL
 Viewport CHECK_DONE_VIEWPORT
 Display %Keypad_application
 Exit Response
 Deactivate Wait on CHECK_DONE_PANEL
 Call 'INCREMENT' Using By Reference CHECK_NUMBER
 End Response
 .
 .
 .

See Section 5.4.9, "Writing Escape Routines to Maintain a Balance, Summary Total, and Check
Number" for information on writing the INCREMENT escape routine.

10. Add the REMOVE clause to CHECK_DONE_PANEL.

When the operator completes input to CHECK_DONE_PANEL, the Form Manager should remove
it from the display. The REMOVE clause causes the Form Manager to remove the panel. The
following example shows how to add this statement:

Panel CHECK_DONE_PANEL
 Viewport CHECK_DONE_VP
 Display %Keypad_application
 Remove
 .
 .
 .
End Panel

11. Delete the function response for UNDEFINED FUNCTION that calls the PASSKY escape routine
from CHECK_PANEL and CHECK_DONE_ PANEL. Also, delete the PASSKY subprogram from
the COBOL source file.

The PASSKY UAR is not needed in the DECforms application. The escape routine's purpose
is to determine if the terminator the operator entered is a valid terminator in the context of this
application. For example, the application allows the operator to use all the predefined FMS

110

Chapter 5. Converting the FMS Sample Application

terminators, the KP_PERIOD key, and the KP_0 key as terminators. The operator should not be
able to use any other keys. The PASSKY UAR ensures that other keys are recognized as undefined
terminators.

In DECforms, you trap keys in the form. The only keys that have any effect are those for which you
define a function response and those for which DECforms defines a function response. All others are
undefined keys.

12. Delete the IF statement from the COBOL source file.

An IF statement immediately follows the FORMS$RECEIVE call for the COLLECT_DATA
record in the COBOL source file. In the FMS application, the IF statement tests the terminator that
identifies the key pressed by the operator. If the operator presses the KP_PERIOD key, the program
transfers control to FINI procedure and no more checks can be written. In DECforms, you do not
trap terminators in the program, so you must remove the IF statement.

13. Add a function response to CHECK_PANEL to allow the operator to quit writing checks by pressing
the KP_PERIOD key.

To allow the operator to quit while writing a check, add the following function response after the
response to the NEXT_STEP function in CHECK_PANEL:

Panel CHECK_PANEL
 .
 .
 .
 Position To Wait On CHECK_DONE_PANEL
 End Response
 Function Response OPERATOR_CHOICE_PERIOD
 Let TRANSACTION_COUNT = 0
 Return
 End Response

 Apply Field Default Of
 Active Highlight Bold
 .
 .
 .
End Panel

The response causes the Form Manager to assign zero to the TRANSACTION_COUNT form data
item. This assignment indicates that no transactions were made during the processing of the current
request. The RETURN response step causes the Form Manager to return control to the program.

14. Add an IF statement to the program to test the value of TRANSACTION_COUNTand transfer
control to the FINI procedure if TRANSACTION_COUNT is zero. Add the IF statement following
the FORMS$RECEIVE call that getsdata in the COLLECT_DATA record, as shown:

IDENTIFICATION DIVISION.
PROGRAM-ID. WRITCH.
 .
 .
 .
 OMITTED
 BY DESCRIPTOR COLLECT_DATA
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.

111

Chapter 5. Converting the FMS Sample Application

 IF TRANSACTION_COUNT = 0 THEN
 GO TO FINI.
*+
* If the check wouldn't fit in the register, don't process, just
* give error message, wait for acknowledgement, and return
*-
 .
 .
 .

Notice that the effect of quitting with KP_PERIOD is different in the converted application than it is
in the FMS application. In the FMS application,the program enters each check into the register as it
is written. In the DECforms application, the program enters each check into the check register after
the operator writes a number of checks. In the FMS application, if the operator quits while writing
a check, the data on that check is lost. In DECforms, if the operator quits while writing a check, the
data on all checks written during the processing of that request is lost. PressingKP_PERIOD causes
the program to not update the register.

15. Rename the variable NEW_LAST_REGISTER_NUM.

Change the name of the NEW_LAST_REGISTER_NUM variable to END_ REGISTER_NUM.
The variable stores the total number of transactions made on the account throughout the life of
the account. (Note that in the sample application, new transactions are not stored in the data
file. Therefore,this number is reset each time you run the application.)Add this declaration to the
Working-Storage Section of the WRITCH subprogram,as shown:

01 END_REGISTER_NUM PIC 9(4).

16. Write an ADD statement to add the number of transactions the Form Manager returns and the
variable LAST_REGISTER_NUM, as follows:

ADD TRANSACTION_COUNT LAST_REGISTER_NUM GIVING END_REGISTER_NUM.

This ADD statement updates END_REGISTER_NUM. That variable now contains the total number
of transactions on the account.

17. Replace the variable in the IF statement that tests to see if the register should be updated. Also,
replace the PUT call with the FORMS$SEND call.

The contains the total number of transactions made on the account. If that variable contains a
value that is higher than the maximum number of transactions the register can store, the program
cannot update the register. When this occurs, the program sends a message to the operator to tell the
operator that the register is full.

The following example shows the logic that should be in the DECforms application for determining
if the check register is full and signaling the operator if it is:

*+
* If the check won't fit in the register, don't process, just
* give error message, wait for acknowledgement, and return.
*+
 ADD TRANSCATION_COUNT LAST_REGISTER_NUM GIVING
 END_REGISTER_NUM.
 IF END_REGISTER_NUM NOT LESS THAN REGISTER_MAX THEN
 CALL "forms$send" USING BY DESCRIPTOR SESSION_ID
 "REG_FULL_MSG"
 BY REFERENCE RECORD_COUNT

112

Chapter 5. Converting the FMS Sample Application

 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR REG_FULL_MSG
 GIVING FORMS_STATUS
 CALL "SRVCHK" USING FORMS_STATUS
 END-IF.

The FORMS$SEND call sends a message to the form if the register is full.

18. Modify the declaration of the REG_FULL_MSG program variable to make it a record.

You must modify the REG_FULL_MSG variable to be a record, instead of a simple variable, to send
it to the form. You must also declare a corresponding form record and name the form record field
MESSAGEPANEL. When the Form Manager reads a form record field named MESSAGEPANEL,
it writes the contents of that record field directly to the message panel.

Modify the program record to appear as follows:

WORKING-STORAGE SECTION.
01 REG_FULL_MSG.
 05 MESSAGE_PANEL PIC X(35) VALUE "Register full, can't enter
 check.".

Add the following form record after the declaration of the REGISTER form record:

Form Record REG_FULL_MSG
 MESSAGEPANEL Character (35)
End Record

19. Remove the WAIT call in the program and add a SEND response for the REG_FULL_MSG record
to the form.

When the FMS program displays the message that indicates the register is full,it makes the WAIT
call to give the operator time to read the message and decide what to do next. To wait for the
operator at this time in the DECforms application, add a SEND response following the RECEIVE
response for the COLLECT DATA record:

 Activate Field MEMO_FIELD On CHECK_PANEL
 End Response

 Send Response REG_FULL_MSG
 Activate Wait
 End Response

This response causes the Form Manager to wait for function key input from the operator.

20. Delete the RET calls and the statements to calculate a new balance and summary check total.

The FMS application contains a RET call, two MOVE statements, an INSPECT statement, a
SUBTRACT statement, an ADD statement, and a PUT call that updates the current balance and the
total amount of all checks written during this session.

113

Chapter 5. Converting the FMS Sample Application

In the DECforms application, you maintain the current balance and the total amount of all checks
written during this session in the form. The statements in the program are not needed.

21. Delete the RET calls and the statements that get check data from the workspace.

The program contains four MOVE statements and three RETURN statements that get check data
from the workspace. The FORMS$RECEIVE call returns this data to the DECforms application
program, so these statements are no longer needed.

22. Add an ADD statement and a PERFORM statement to the program to update the check register.

Once control returns to the DECforms program after the operator has written checks, the program
must update the check register. The check register should be updated as soon as the program
determines that it is not full. Therefore, add the ADD and PERFORM statements following the
FORMS$SEND call for the REG_FULL_MSG record:

IDENTIFICATION DIVISON.
PROGRAM-ID. WRITCH.
 .
 .
 .
 BY DESCRIPTOR REG_FULL_MSG
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
 END-IF.
*+
* Update the check register
*-
 ADD 1 TO LAST_REGISTER_NUM
 PERFORM
 VARYING LAST_REGISTER_NUM FROM LAST_REGISTER_NUM BY 1
 UNTIL LAST_REGISTER_NUM IS GREATER THAN END_REGISTER_NUM
 ADD 1 TO COUNTER
 MOVE NUMBER_FIELD(COUNTER) TO REG-ITEM-NUMBER(LAST_REGISTER_NUM)
 MOVE DATE_FIELD(COUNTER) TO REG_ITEM_DATE(LAST_REGISTER_NUM)
 MOVE PAYMEM_FIELD(COUNTER) TO REG_ITEM_MEMO_PAY_TO
 (LAST_REGISTER_NUM)
 MOVE AMTPAY_FIELD(COUNTER) TO REG_ITEM_PAY_AMT(LAST_REGISTER_NUM)
 MOVE BALANCE_FIELD(COUNTER) TO REG_ITEM_BALANCE(LAST_REGISTER_NUM)
 END-PERFORM.

The ADD statement increments so that it points to the first empty position in the register. The
PERFORM statement updates the register by filling an empty position in the register, incrementing to
point to the next empty position, filling that position, and so on. The COUNTER variable is needed
because the data returned to the program always begins in the first field in the COLLECT_DATA
record. The first MOVE statement moves to REG-ITEM-NUMBER(4) (because three transactions
are already stored in the register).

Declare the COUNTER variable in the Working-Storage Section of the WRITCH subprogram as
follows:

Working-Storage
Section.01 COUNTER PIC 9(2) Value Zero.
01 REG_FULL_MSG
 .
 .

114

Chapter 5. Converting the FMS Sample Application

 .

23. Replace the MOVE statements that were used to update the register previously with a statement that
moves the value in to LAST_REGISTER_NUM.

The FMS application contains three MOVE statements to update the register and array counters. As
shown in the following example, delete these MOVE statements and create a new one. Add the new
MOVE statement following the PERFORM statement that updates the check register.

 .
 .
 .
 MOVE AMTPAY_FIELD(COUNTER) TO REG_ITEM_PAY_AMT(LAST_REGISTER_NUM)
 MOVE BALANCE_FIELD(COUNTER) TO REG_ITEM_BALANCE(LAST_REGISTER_NUM)
 END-PERFORM.
*+
* Update register counter
*-
 MOVE END_REGISTER_NUM TO LAST_REGISTER_NUM.
FINI.
 EXIT PROGRAM.

This MOVE statement moves the last position in the register to the variable, , that stores the current
location in the check register.

24. Delete the END PROGRAM statement for the ONECHK subprogram.

The ONECHK subprogram no longer exists in the converted application. Ithas become the WRITCH
subprogram. Delete the END PROGRAM statement forONECHK, but retain the END PROGRAM
statement for WRITCH.

Once you perform these tasks, your WRITCH subprogram appears as shown:

PROGRAM-ID. WRITCH.
*+
* If input is terminated by kpd period, return with no action
* Else deduct from balance and enter into register.
* Note that a UAR in the form guarantees that the amount of
* the check is always less than or equal to the balance.
* Note that the form function key UAR allows only kpd period
* as terminator (other than FDV$K_FT_NTR).
*-
*
DATA DIVISION.

WORKING-STORAGE SECTION.
01 REG_FULL_MSG.
 05 MESSAGEPANEL PIC X(35) VALUE "Register full, can't enter
 check.".
01 TMP PIC X(207) VALUE SPACE.
01 TMP_REG_ITEM_PAY_AMT PIC X(6).
01 NUM_REG_ITEM_PAY_AMT PIC 9(6) COMP.
01 NEW_CHECK_NUMBER PIC 9(4) VALUE ZERO.
01 END_REGISTER_NUM PIC 9(4).
01 COUNTER PIC 9(2) VALUE ZERO.

PROCEDURE DIVISION.
0.

115

Chapter 5. Converting the FMS Sample Application

 CALL "forms$receive" USING BY DESCRIPTOR SESSION_ID
 "COLLECT_DATA"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR COLLECT_DATA
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.

 IF TRANSACTION_COUNT = 0 THEN
 GO TO FINI.
 ADD TRANSACTION_COUNT LAST_REGISTER_NUM GIVING END_REGISTER_NUM.
*+
* If the check wouldn't fit in the register, don't process, just
* give error message, wait for acknowledgement, and return
*-

 IF END_REGISTER_NUM NOT LESS THAN REGISTER_MAX THEN
 CALL "forms$send" USING BY DESCRIPTOR SESSION_ID
 "REG_FULL_MSG"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR REG_FULL_MSG
 GIVING FORMS_STATUS
 CALL "SRVCHK" USING FORMS_STATUS
 GO TO FINI
 END-IF.
*+
* Update values in register.
*+
 PERFORM
 ADD 1 TO LAST_REGISTER_NUM.
 VARYING LAST_REGISTER_NUM FROM LAST_REGISTER_NUM BY 1
 UNTIL LAST_REGISTER_NUM IS GREATER THAN END_REGISTER_NUM
 ADD 1 TO COUNTER
 MOVE NUMBER_FIELD(COUNTER) TO REG-ITEM-NUMBER(LAST_REGISTER_NUM)
 MOVE DATE_FIELD(COUNTER) TO REG_ITEM_DATE(LAST_REGISTER_NUM)
 MOVE PAYMEM_FIELD(COUNTER) TO REG_ITEM_MEMO_PAY_TO
 (LAST_REGISTER_NUM)
 MOVE AMTPAY_FIELD(COUNTER) TO REG_ITEM_PAY_AMT
 (LAST_REGISTER_NUM)
 MOVE BALANCE_FIELD(COUNTER) TO REG_ITEM_BALANCE
 (LAST_REGISTER_NUM)
 END-PERFORM.
*+
* Update register counter
*-

116

Chapter 5. Converting the FMS Sample Application

 MOVE END_REGISTER_NUM TO LAST_REGISTER_NUM.
FINI.
 EXIT PROGRAM.
END PROGRAM WRITCH.

This subprogram calls the RECEIVE request to get check data. The check data is returned in the
COLLECT_DATA record. The subprogram determines whether any checks were written. If not, it exits.
If checks were written, the subprogram determines if they can be entered in the check register. If the
register is full, the subprogram exits and sends a message to the operator. Otherwise, it enters the checks
in the check register.

5.4.8. Converting the ENDCHK and PRICHK
Subprograms
The ENDCHK subprogram in the FMS application displays a form called FORM_CHKDON. This
form allows the operator to press one of three keys to indicate what is to be done next. The operator can
choose to write another check, print the check just written,or stop writing checks and return to the menu.
If the operator chooses to print the current check, the FMS program calls the PRICHK subprogram. This
subprogram writes each of the lines in the check form to a field for subsequent printing.

Remove both of these subprograms. The tasks they perform are now performed in the form using
responses.

5.4.9. Writing Escape Routines to Maintain a Balance,
Summary Total, and Check Number
During check processing, the form calls three escape routines. The first one subtracts the amount entered
on checks from the current balance. The second one adds the amount entered on checks to the running
check total. The running check total is the total of all checks written during this session. Finally,the last
one increments a number—either the check number or the transaction counter.

You should write general-purpose escape routines to perform each of these tasks. You should write one
general-purpose routine to subtract one number from another,a second routine to add two numbers, and
a third routine to increment a number. The following example shows the escape routines.

END PROGRAM FMTCHK.
END PROGRAM SAMP.
IDENTIFICATION DIVISION.
PROGRAM-ID. DIFFERENCE.
**
* General escape routine to subtract one value from another. *
**
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
01 NUMBER_1 PIC 9(9) COMP.
01 NUMBER_2 PIC 9(9) COMP.

PROCEDURE DIVISION USING NUMBER_1 NUMBER_2.
0.
*+
* Perform subtraction.
*+

117

Chapter 5. Converting the FMS Sample Application

 SUBTRACT NUMBER_2 FROM NUMBER_1.
*
 EXIT PROGRAM.
END PROGRAM DIFFERENCE.

IDENTIFICATION DIVISION.
PROGRAM-ID. CALCULATE.
**
* General purpose escape routine to add two values. *
**
DATA DIVISION.
WORKING-STORAGE SECTION.

LINKAGE SECTION.
01 NUMBER_1 PIC 9(9) COMP.
01 NUMBER_2 PIC 9(9) COMP.

PROCEDURE DIVISION USING NUMBER_1 NUMBER_2.
0.
*+
* Perform addition.
*+
 ADD NUMBER_2 TO NUMBER_1.
*
 EXIT PROGRAM.
END PROGRAM CALCULATE.

IDENTIFICATION DIVISION.
PROGRAM-ID. INCREMENT.
**
* General escape routine to increment a value. *
**
DATA DIVISION.
WORKING-STORAGE SECTION.

LINKAGE SECTION.
01 COUNT_KEEPER PIC 9(9) COMP.
PROCEDURE DIVISION USING COUNT_KEEPER.
0.
*+
* Add one.
*+

 ADD 1 to COUNT_KEEPER.
*
 EXIT PROGRAM.
END PROGRAM INCREMENT.

Add the escape routines to the COBOL source file following the END PROGRAM statement for the
SAMP program.

The DIFFERENCE escape routine subtracts NUMBER_2 from NUMBER_1, and stores the result in
NUMBER_1. The Form Manager passes both parameters to the PROCEDURE DIVISION header and
the escape routine returns both parameters to the form. The data type of the parameters to the CALL
response step must match the data type of the PROCEDURE DIVISION parameters.

The CALCULATE escape routine adds NUMBER_2 to NUMBER_1. The result is stored in
NUMBER_1.

118

Chapter 5. Converting the FMS Sample Application

The INCREMENT escape routine adds 1 to COUNT_KEEPER and stores the result in
COUNT_KEEPER.

5.4.10. Converting the MAKDEP Subprogram
The MAKDEP subprogram in the FMS sample application allows the operator to make deposits into
the account. The subprogram initially displays the current balance and prompts the operator to enter
a deposit amount. The operator must also enter a deposit memo. Once the deposit is complete, the
program verifies that it can be entered in the register, enters the deposit into the register,and displays an
updated balance to the operator.

Follow these steps to convert this subprogram:

1. Delete the first three calls in the subprogram, including the call to the SRVCHK subprogram.

The CDISP call clears the display and displays the DEPOSIT form. The DECforms Form Manager
automatically clears a viewport and displays a panel when it gets input to fields on that panel. The
PUT call sends the current balance to the FMS form. In the DECforms application, you store the
current balance in the form,so you need not pass it from the program.

2. Replace the GETAL call with the FORMS$RECEIVE call to get the deposit data.

The GETAL call gets data from each field on the DEPOSIT form. Delete the GETAL call and
replace it with the FORMS$RECEIVE call to pass the COLLECT_DATA record, as shown:

*+
* Get deposit amount and memo from operator.
* Abort on kpd period.
*+
 CALL "forms$receive" USING BY DESCRIPTOR SESSION_ID
 "COLLECT_DATA"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR COLLECT_DATA
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.

This FORMS$RECEIVE call gets data in the COLLECT_DATA record. The COLLECT_DATA
record contains a group of record fields to pass deposit information.

3. Modify the RECEIVE response for the COLLECT_DATA record.

The RECEIVE response for the COLLECT_DATA record performs tasks that are specific to
writing checks. For example, that response activates the panel fields in the TRANSACTION_DATA
group that appear on CHECK_PANEL. You must modify this response so that it controls deposit
processing as well.

To rewrite this response, add an IF response step that tests whether the operator is writing a check
or making a deposit and add an ACTIVATE response step that activates the appropriate fields for
deposit processing. Finally,add a request exit response that performs deposit specific tasks,such

119

Chapter 5. Converting the FMS Sample Application

as clearing the message panel. The following example shows how the RECEIVE response for the
COLLECT_DATA record appears after you modify it:

 Receive Response COLLECT_DATA
 Reset TRANSACTION_DATA
 Let TRANSACTION_COUNT = 1
 If OPTION_FIELD = "2" Then
 Activate Group TRANSACTION_DATA(TRANSACTION_COUNT) On CHECK_PANEL
 Activate Field MEMO_FIELD on CHECK_PANEL
 Else
 Activate Group TRANSACTION_DATA(1) On DEPOSIT_PANEL
 End If
 Request Exit Response
 If OPTION_FIELD = "3" Then
 Let CURBAL_FIELD = NEWBAL_FIELD
 Reset NEWBAL_FIELD
 Remove DEPOSIT_VP
 Message " "
 Call 'INCREMENT' Using By Reference TRANSACTION_COUNT
 End If
 End Response
 End Response

The first IF response step tests OPTION_FIELD. If OPTION_FIELD is 2, check processing
should begin and the ACTIVATE response step causes the Form Manager to activate fields on
CHECK_PANEL. Otherwise, a deposit should be made, so the Form Manager activates fields on
DEPOSIT_PANEL, as specified by the ACTIVATE response step in the ELSE clause.

When the operator is making a deposit, the ACTIVATE response step causes the Form Manager to
activate the first occurrence of the TRANSACTION_DATA group on DEPOSIT_PANEL. Fields in
the TRANSACTION_DATA group on CHECK_PANEL are not activated by this response step. The
response step explicitly specifies the first occurrence of TRANSACTION_DATA because only one
deposit can be made during this request. The program expects deposit data to be stored in the first
occurrence of the group when the Form Manager returns data to the program. Explicitly activating
only the first occurrence of the group ensures the Form Manager stores operator input in the first
occurrence.

The Form Manager performs the request exit response when operator input is complete. The IF
response step in the request exit response ensures that the Form Manager performs the response steps
that follow only when the operator is making deposits.

DEPOSIT_PANEL displays the current account balance, which is stored in the CURBAL_FIELD
form data item, at all times during the deposit process. That panel also displays the new balance,with
the deposit amount added in the NEWBAL_FIELD. Once the deposit is complete, the LET response
step causes the Form Manager to update the current balance stored in the CURBAL_FIELD form
data item. The Form Manager moves the value stored in the NEWBAL_FIELD form data item to
the CURBAL_FIELD form data item.

The Form Manager resets the NEWBAL_FIELD to zero as specified by the RESET response step.
NEWBAL_FIELD is, therefore, empty the next time the Form Manager displays it. Add the VALUE
clause to NEWBAL_FIELD to assign zero to the field as follows:

Form Data /* Form data for panel DEPOSIT_PANEL*/\
 CURBAL_FIELD Decimal (6,2)
 NEWBAL_FIELD Decimal (6,2) Value 0
 .

120

Chapter 5. Converting the FMS Sample Application

 .
 .
End Data

The Form Manager must clear the DEPOSIT_VP viewport when the deposit is complete. By causing
the Form Manager to clear the DEPOSIT_VP viewport,you ensure that the DEPOSIT_VP viewport
does not appear behind the MENU_VP viewport when the Form Manager redisplays the MENU_VP
viewport. The REMOVE response step causes the Form Manager to remove DEPOSIT_VP.

The CALL response step calls the INCREMENT escape routine. This escape routine adds 1 to
TRANSACTION_COUNT. When this step is complete, TRANSACTION_COUNT contains a 1.

The MESSAGE response step causes the Form Manager to clear the message panel of messages
issued during the deposit process.

4. Copy the function response for from CHECK_PANEL to DEPOSIT_PANEL.

When the operator presses the KP_PERIOD key during a deposit, the program should exit without
completing the deposit. The function response for causes the Form Manager to assign zero to
the TRANSACTION_COUNT form data item and returns that value to the program in the
COLLECT_DATA record. When TRANSACTION_COUNT is zero, the program does not complete
the deposit.

5. Modify the IF statement in the program to test the value of TRANSACTION_COUNT, instead of
testing the TERMINATOR variable.

The FMS application tests the value of the TERMINATOR variable to determine if the operator
pressed the KP_PERIOD key. In the DECforms application, the program should test the
TRANSACTION_COUNT variable to determine if the operator pressed the KP_PERIOD key. If
the TRANSACTION_COUNT variable is zero, the program should transfer control to the FINI
statement. Change the IF statement that tests the TERMINATOR variable to appear as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. MAKDEP.
 .
 .
 .
 BY DESCRIPTOR COLLECT_DATA
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.

 IF TRANSACTION_COUNT = 0 THEN GO TO FINI.

6. Change the PUTL call that sends the message that indicates the register is full to the FORMS$SEND
call and remove the WAIT call.

The FMS program contains a PUTL call that sends a message to the form in the event that it cannot
enter the deposit in the register because the register is full. You must use the FORMS$SEND call in
the DECforms program.

Delete the PUTL call and the WAIT call and add the following FORMS$SEND call after the IF
statement that tests for room in the register:

*+
* Have deposit information now.
* If no room in check register must abort.
*-

121

Chapter 5. Converting the FMS Sample Application

 IF LAST REGISTER_NUM NOT LESS THAN REGISTER MAX THEN
 CALL "forms$send" USING BY DESCRIPTOR SESSION_ID
 "REG_FULL_MSG"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR REG_FULL_MSG
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
 GO TO FINI.
 END-IF.
 .
 .
 .

A SEND response already exists in the form for the REG_FULL_MSG record. That SEND
response, which causes the Form Manager to activate and position to a wait on the message
panel,performs the tasks needed in response to this call.

7. Modify the declaration of the REG_FULL_MSG program variable to make it a record.

To pass a message to the form, declare a REG_FULL_MSG program record by modifying the
REG_FULL_MSG variable. You have already declared a corresponding form record,which is named
REG_FULL_MSG. Modify the REG_FULL_MSG variable as follows:

WORKING-STORAGE SECTION.
01 REG_FULL_MSG.
 05 MESSAGE_PANEL PIC X(80) VALUE "Register full, can't enter
 deposit."

8. Add a function response for the NEXT_STEP function and include it in the PAYTO_FIELD panel
field on DEPOSIT_PANEL.

Once the operator enters the deposit amount and the deposit memo in the FMS application, the
program updates the current balance. The FMS program also updates a running total of deposits
made during this session, updates the check register, and displays a message for the operator.

In the DECforms application, the current balance and deposit summary are maintained in the
form. The message can also be displayed from the form. Each of these tasks can be performed in a
function response for the NEXT_STEP function.

To make the application more efficient, the order of these tasks is changed in the DECforms
application. Before the program can update the check register, control must return to the program.
However, once control returns to the program, you must call DECforms to display the message for
the operator. Calling DECforms for the sole purpose of displaying a message is inefficient. Therefore,
the DECforms application displays the message before control returns to the program.

Add the following function response after the LINE and COLUMN clauses for PAYTO_FIELD.

Field PAYTO_FIELD
 Line 11 Column 28
 Function Response NEXT_STEP

122

Chapter 5. Converting the FMS Sample Application

 Let NEWBAL_FIELD = CURBAL_FIELD
 Call 'CALCULATE' Using By Reference NEWBAL_FIELD

 TRANSACTION_DATA(1).DEPOSIT_FIELD
 If NEWBAL_FIELD > 999999 Then
 Call 'DIFFERENCE' Using By Reference NEWBAL_FIELD
 BANK_SHARE
 Message "Overflow, only 6 digits allowed."
 Activate Wait
 End If
 Let TRANSACTION_DATA(1).BALANCE_FIELD = NEWBAL_FIELD
 Call 'CALCULATE' Using By Reference SUMMARY_FIELD_2

 TRANSACTION_DATA(1).DEPOSIT_FIELD
 Message "Deposit made, press RETURN or ENTER to continue."
 Activate Wait
 Position To Wait
 End Response
 Display Underlined
 .
 .
 .
End Field

In the response, the LET response step stores the current balance in the NEWBAL_FIELD form data
item. Instead of displaying the current balance,the NEWBAL_FIELD must display the balance after
the deposit is made.

The first CALL response step that calls the CALCULATE escape routine passes the current balance
stored in the NEWBAL_FIELD form data item and the deposit amount to an escape routine. The
escape routine adds the two values, giving a new balance.

If the new balance stored in NEWBAL_FIELD is greater than 999,999, the second CALL response
step calls an escape routine to subtract 1,000,000 from NEWBAL_FIELD. The variables in the
program that store the current balance can store only 6 or less characters. Therefore, no value greater
than 999,999 is allowed for an account balance. This is an arbitrary limit set by the application. Like
the FMS application,this application subtracts 1,000,000 from the new current balance to get an
acceptable balance.

If an overflow occurs, the Form Manager displays a message in the message panel and waits for
function key input from the operator before proceeding.

You must declare the BANK_SHARE form data item. Add the following to the FORM DATA
statement from DEPOSIT_PANEL:

Form Data /* Form data for panel DEPOSIT_PANEL*/
 BANK_SHARE Integer (7) Value 1000000
 CURBAL_FIELD Decimal (6,2)

The TRANSACTION_DATA group returns deposit information to the program in the
COLLECT_DATA record. The second LET response step in this response causes the Form Manager
to move the new current balance into a data item that the Form Manager returns to the program.

The second CALL response step for the CALCULATE escape routine calls an escape routine to add
the deposit amount to the summary of deposits for this session.

123

Chapter 5. Converting the FMS Sample Application

The Form Manager writes a message to tell the operator that the deposit is complete when it
encounters the MESSAGE response step. The ACTIVATE and POSITION response steps cause the
Form Manager to wait for the operator to recognize that the deposit has been made (by pressing a
function key).

9. Delete the declaration of the OVERFLOW_MSG variable from the program. The message is now
stored in the form (in the MESSAGE response step).

10. Add a function response for the NEXT_STEP function to DEPOSIT_FIELD.

In the FMS application, the operator must give input to the deposit memo before the FMS program
calculates the new balance. To require input to the PAYTO_FIELD on DEPOSIT_PANEL in the
DECforms application, add the following function response after the LINE and COLUMN clauses in
DEPOSIT_FIELD:

Field DEPOSIT_FIELD
 Line 6 Column 42
 Function Response NEXT_STEP
 Position to Next Item
 Message "Input required."
 End Response
 Display Underlined
 .
 .
 .
End Field

When the operator invokes the NEXT_STEP function, this response causes the Form Manager to
make PAYTO_FIELD the current item and display the message "Input required."

11. Delete the INSPECT statement, the two ADD statements (including the error handling statements),
and the PUT call from the program.

The FMS program contains an INSPECT statement that changes the deposit from a character string
to a number. This change allows the program to add the deposit amount to the current balance and
modify the current balance if it is greater than 999,999. In the DECforms application, these tasks are
performed in escape routines.

12. Modify the MOVE statements in the MAKDEP subprogram that move data into the register.

In the program, a group of MOVE statements move data that came from the FMS form into the
register. Modify these to appear as follows:

 ADD 1 TO LAST_REGISTER_NUM
 MOVE ZEROS TO REGISTER_ITEM_NUMBER(LAST_REGISTER_NUM)
 REG_ITEM_PAY_AMT(LAST_REGISTER_NUM).
 MOVE DATE_FIELD(1) REG_ITEM_DATE(LAST_REGISTER_NUM).
 MOVE DEPOSIT_FIELD(1) REG_ITEM_DEPOSIT_AMT(LAST_REGISTER_NUM).
 MOVE BALANCE_FIELD(1) REG_ITEM_BALANCE(LAST_REGISTER_NUM).
 MOVE PAYMEM_FIELD(1) REG_ITEM_MEMO_PAY_TO(LAST_REGISTER_NUM).

These move statements move data from the first occurrence of items in the TRANSACTION_DATA
group to the appropriate position in the register.

13. Delete the RET, RETDN, PUTL, and WAIT calls from the program.

124

Chapter 5. Converting the FMS Sample Application

The last five calls in the FMS program return the new balance to the program and display a message
stored in the form that indicates that the deposit has been made. The FMS application then waits for
the operator to enter a terminator before it continues.

In the DECforms application, the Form Manager returns the current balance in the
COLLECT_DATA record and displays the message stored in the form. The RET, RETDN, PUTL,
and WAIT calls are not needed.

14. Delete variables that are no longer needed.

The FMS application declares four variables in the MAKDEP subprogram that are not needed in the
converted application. The following lists the variables and explains why they are not needed:

● TMP is used to get a message from named data in the FMS form. In the converted application,
the message is output with the MESSAGE response step and need not be stored in a variable.

● BANK_SHARE stores 10,000.00 to be subtracted from the current balance when it is greater
than 9999.99 (stored in cents). In the converted application, the BANK_SHARE form data item
stores this value and ensures that no value greater than 9999.99 is returned to the program.

● FORM-DONE stores the name of the FMS Named Data item that stores the message displayed
to the operator when the deposit is complete. The converted application displays the message
using DECforms features and this variable is no longer needed.

15. Delete the function response for UNDEFINED FUNCTION that calls the PASSKY escape routine.

A function response appears in DEPOSIT_PANEL that calls the PASSKY UAR. The PASSKY
UAR is not needed in the DECforms application. The UAR's purpose is to determine if the operator
entered a valid terminator.

In DECforms, you trap keys in the form. The only keys that have any effect are those for which you
define a function response and those for which DECforms defines a function response. All others are
undefined keys.

When you finish these changes, the MAKDEP subprogram appears as shown:

IDENTIFICATION DIVISION.
PROGRAM-ID. MAKDEP.
*+
* Make a deposit, enter into check register
* Cancel on keypad period.
* Note that the form function key UAR allows only kpd period.
*+
DATA DIVISION.
WORKING-STORAGE SECTION.
01 REG_FULL_MSG.
 05 MESSAGE_PANEL PIC X(80) VALUE "Register full, can't enter
 deposit.".
PROCEDURE DIVISION.
0.
*+
* Get deposit amount and memo from operator.
* Abort on kpd period.
*-

 CALL "forms$receive" USING BY DESCRIPTOR SESSION_ID

125

Chapter 5. Converting the FMS Sample Application

 "COLLECT_DATA"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR COLLECT_DATA
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.

 IF TRANSACTION_COUNT = 0 THEN
 GO TO FINI.
*+
* Have deposit information now.
* If no room in check register must abort.
*-
 IF LAST_REGISTER_NUM NOT LESS THAN REGISTER_MAX THEN
 CALL "forms$send" USING BY DESCRIPTOR SESSION_ID
 "REG_FULL_MSG"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR REG_FULL_MSG
 GIVING FORMS_STATUS
 CALL "SRVCHK" USING FORMS_STATUS GO TO FINI END-IF.
*+
* Make entry in register.
*-
 ADD 1 TO LAST_REGISTER_NUM.
 MOVE ZEROS TO REG_ITEM_NUMBER(LAST_REGISTER_NUM),
 REG_ITEM_PAY_AMT(LAST_REGISTER_NUM).
 MOVE DATE_FIELD(1) TO REG_ITEM_DATE(LAST_REGISTER_NUM).
 MOVE DEPOSIT_FIELD(1) TO REG_ITEM_DEPOSIT_AMT(LAST_REGISTER_NUM).
 MOVE BALANCE_FIELD(1) TO REG_ITEM_BALANCE(LAST_REGISTER_NUM).
 MOVE PAYMEM_FIELD(1) TO REG_ITEM_MEMO_PAY_TO(LAST_REGISTER_NUM).
FINI.
 EXIT PROGRAM.
END PROGRAM MAKDEP.

This subprogram calls the RECEIVE request to get deposit data from the operator. The Form Manager
returns deposit data in the COLLECT_DATA record. The subprogram then determines whether the
deposit data can be entered into the check register. If the data cannot be entered, the subprogram aborts
the deposit and sends a message to the operator. If the data can be entered, the subprogram enters the
data in the register and exits.

5.4.11. Converting the VUEREG Subprogram
The VUEREG subprogram displays the check register for the operator. The check register is a scrolled
region that contains a record of each of the checks written or deposits made since the account was

126

Chapter 5. Converting the FMS Sample Application

opened. The FMS application arbitrarily limits the account owner to 50 transactions over the life of the
account. Follow these steps to convert the VUEREG subprogram:

1. Delete the CDISP and SRVCHK calls from the program.

The FMS application makes the CDISP call to display the form. In the DECforms application, the
Form Manager displays the panel that contains the register when it becomes the current panel.

2. Delete the MOVE statements, IF statements, and PUT calls that update the summary fields.

Four fields on the FMS REGISTER form display summary information about this session.
These fields display the beginning account balance,the total amount of deposits made during
the session, the total amount of the checks written during the session, and the current account
balance. You maintain this information in the SUMMARY_FIELD_1, SUMMARY_FIELD_2,
SUMMARY_FIELD_3,and CURBAL_FIELD form data items in the DECforms application,so you
need not send data from the program.

The IF statements in the FMS application ensure that only values less than10,000 are sent to the
form. Because of the size of the form data items that store the summary values, you cannot store a
value greater than 10,000 in those form data items.

3. Replace the rest of the statements in the subprogram with the FORMS$SEND call.

The other statements in the VUEREG subprogram perform tasks that let the program control
scrolling in the FMS scrolled region. In DECforms,the Form Manager controls scrolling, so the
program can pass the data to the form and let the Form Manager display it. Add the following call to
the SEND request as the first statement in the Procedure Division of the VUEREG subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. VUEREG.
 .
 .
 .
PROCEDURE DIVISION.
0.
*+
* Put up register panel and summary of this session.
*-
 CALL "forms$send" USING BY DESCRIPTOR SESSION_ID
 "REGISTER"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR REGISTER
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
 .
 .
 .

127

Chapter 5. Converting the FMS Sample Application

This call passes the REGISTER record, which contains the date, check number (if any), memo, and
amount for each check and deposit. The record also contains the account balance as it appears after
each transaction on the account.

The Form Manager displays this information in a scrolled region on REGISTER_PANEL.

4. Add a SEND response in the form to display the check register data on REGISTER_PANEL.

Add the following SEND response after the SEND response for the REG_FULL_MSG record:

 Activate Wait
 End Response

 Send Response REGISTER
 Activate Group REGISTER_PANEL_GROUP_1 On REGISTER_PANEL
 Position To Group REGISTER_PANEL_GROUP_1(1) On REGISTER_PANEL
 End Response

This response causes the Form Manager to activate the group that corresponds to the scrolled region
and make that group active for operator input.

5. Remove the SCRFWD and SCRBAK subprograms from the FMS application.

The SCRFWD and SCRBAK subprograms allow the operator to scroll through the FMS scrolled
region. In DECforms, the Form Manager controls scrolling.

6. Delete the declarations of program variables that are no longer needed.

The FMS application declares four variables in the VUEREG subprogram. None of these variables is
needed in the converted application. The following lists the variables and explains why they are not
needed:

● OVERFLOW_MSG stores a message to be displayed when a number larger than9999.99
is stored in a program variable that corresponds to a summary variable. In the converted
application, numbers greater than 9999.99 are truncated and no message is needed.

● TMP is used to get input from the fake field the FMS application uses to control scrolling. In the
converted application, the operator can input functions to fields protected from data entry, and no
fake field is needed.

● RETURNED_NUM_LINES is used in controlling scrolling. The Form Manager controls
scrolling in the DECforms application.

● NUM_LINES_IN_SCROLL is used in controlling scrolling. The Form Manager controls
scrolling in the DECforms application.

7. Bind the UP OCCURRENCE and DOWN OCCURRENCE functions to the UP ARROW and
DOWN ARROW keys, respectively, in a function declarations.

The UP OCCURRENCE and DOWN OCCURRENCE built-in DECforms functions allow the
operator to scroll through a scrolled region. By default, DECforms binds these functions to thePF4-
UP key sequence and the PF4-DOWN key sequence, respectively. Add the following function
declarations to change the default key binding:

 .
 .

128

Chapter 5. Converting the FMS Sample Application

 .
 Is %KP_0
End Function

Function UP OCCURRENCE
 Is %Up
End Function

Function DOWN OCCURRENCE
 Is %Down
End Function

8. Change the PROTECTED attribute on each field in the scrolled region to the NO DATA INPUT
attribute.

The FMS Converter assigns the PROTECTED attribute to each field in the scrolled region because
the fields on the FMS form have the DISPLAY ONLY attribute. The PROTECTED attribute is
equivalent to the FMS DISPLAY ONLY attribute.

Another DECforms attribute, NO DATA INPUT is more appropriate for the fields in a scrolled
region. The NO DATA INPUT attribute allows the operator to position the cursor on a field
and enter a function key,but not modify the data in the field. Using this attribute instead of the
PROTECTED attribute saves you from defining a fake field to get input from the operator.

Change the PROTECTED attribute to NO DATA INPUT in declaration of the following fields:

REGISTER_PANEL_GROUP_1.NUMBER_FIELD
REGISTER_PANEL_GROUP_1.DATE_FIELD
REGISTER_PANEL_GROUP_1.PAYMEM_FIELD
REGISTER_PANEL_GROUP_1.DEPOSIT_FIELD
REGISTER_PANEL_GROUP_1.AMTPAY_FIELD
REGISTER_PANEL_GROUP_1.BALANCE_FIELD

9. Add the REMOVE clause to the panel declaration.

When the operator completes input to this panel, the Form Manager should remove it from the
display. The REMOVE clause causes the Form Manager to remove the panel. Add the REMOVE
clause following the DISPLAY clause in REGISTER_PANEL:

Panel REGISTER_PANEL
 Viewport REGISTER_VP
 Display %Keypad_application
 Remove
 .
 .
 .
End Panel

10. Delete the function response for UNDEFINED FUNCTION that calls the PASSKY escape routine.

The PASSKY UAR is not needed in the DECforms application.

11. Delete the comments created by the FMS Converter in DEPOSIT_FIELD,AMTPAY_FIELD, and
BALANCE_FIELD on DEPOSIT_PANEL.

DEPOSIT_FIELD, AMTPAY_FIELD, and BALANCE_FIELD contain messages created by the
Converter that appear as follows:

129

Chapter 5. Converting the FMS Sample Application

/* Clear character ignored for character type field */

This message is informational and indicates that the FMS Converter did not create IFDL syntax to
specify a blank for the clear character in this field. A blank is the default clear character for character
type fields,so the syntax is not needed.

Once you have made these changes, the VUEREG subprogram appears as shown:

IDENTIFICATION DIVISION.
PROGRAM-ID. VUEREG.
*+
* View the check register and scroll through it.
* Also display totals for current session.
*

DATA DIVISION.
WORKING-STORAGE SECTION.

PROCEDURE DIVISION.
0.
* Put up register panel.
* Display summary of this session.
*-

 CALL "forms$send" USING BY DESCRIPTOR SESSION_ID
 "REGISTER"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR REGISTER
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
 EXIT PROGRAM.
END PROGRAM VUEREG.

This subprogram calls the SEND request to display data on the REGISTER panel. The subprogram
passes the check register data in the REGISTER record.

5.4.12. Converting the VUEACT Subprogram
The VUEACT subprogram in the FMS application displays account information. If the operator enters
the appropriate password, the VUEACT subprogram allows the operator to modify the account data.
The operator can quit without saving any changes made by pressing KP_PERIOD. Follow these steps to
convert the VUEACT subprogram:

1. Delete the first four calls in the subprogram, including the calls to the SRVCHK subprogram.

The CDISP and PUTAL calls display the form and account data in the FMS application. In the
DECforms application, the data is stored in the form and displayed in when input to that panel is
needed.

130

Chapter 5. Converting the FMS Sample Application

2. Delete the PUTD call.

The PUTD call restores the default value to the field in which the operator enters the password. This
ensures that the field is empty before operator entry begins. The field can be reset from the form in
the DECforms application.

3. Replace the GETAL call with the FORMS$RECEIVE call.

The GETAL call gets input to all unprotected fields on the FMS form. The DECforms equivalent
of the GETAL call is the FORMS$RECEIVE call. In this case, the FORMS$RECEIVE call should
request input to the ACCOUNT record. Delete the GETAL call and add the following call as the first
statement of the Procedure Division:

IDENTIFICATION DIVISION.PROGRAM-ID. VUEACT.
 .
 .
 .
PROCEDURE DIVISION.
0.
 CALL "forms$receive" USING BY DESCRIPTOR SESSION_ID
 "ACCOUNT"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR ACCOUNT
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
 .
 .
 .

Add the FORMS$RECEIVE call so that it is the first statement in the VUEACT subprogram.

4. Add a RECEIVE response in the form to reset the field into which the operator enters the password
and activate that field. Also, add a VALUE clause to determine to what value the field is reset.

To be sure the operator can enter the appropriate password into the field,reset the SECRET_FIELD
form data item in a response to the RECEIVE request. Because the field is no longer automatically
activated (by the default RECEIVE response),you must also activate that field in the response.

Add the following RECEIVE response for the account record after the SEND response for the
REGISTER record:

 .
 .
 .
 Position To Group REGISTER_PANEL_GROUP_1(1) On REGISTER_PANEL
 End Response

 Receive Response ACCOUNT
 Reset SECRET_FIELD
 Activate Field SECRET_FIELD On ACCOUNT_DATA_PANEL

131

Chapter 5. Converting the FMS Sample Application

 End Response

The RESET response step resets SECRET_FIELD to spaces,and the ACTIVATE response step
activates SECRET_FIELD for input.

Add the following VALUE clause to the SECRET_FIELD form data item:

Form Data /* Form data for panel ACCOUNT_DATA_PANEL */
 .
 .
 .
 SECRET_FIELD Character (12) Value " "
 SUPERVISOR_ONLY Integer (1) Value 1
End Data

The VALUE clause indicates that spaces are the default value for SECRET_FIELD.

5. Add a function response for the NEXT_STEP function to test the password entered by the operator
and unprotect and activate fields if the password is correct.

When the is displayed by the DECforms application, the Form Manager prompts the operator for
a password. If the password the operator enters is the correct password,the Form Manager allows
the operator to change the account data. Otherwise, the Form Manager displays the main menu. The
operator indicates that input into the password field is complete in the FMS application by pressing
the RETURN key. To allow the operator to terminate field input with the RETURN key in the
DECforms application, add the following function response to the declaration of SECRET_FIELD
after the LINE and COLUMN clauses:

Field SECRET_FIELD
 Line 18 Column 60
 Function Response NEXT_STEP
 If SECRET_FIELD = PASSWORD_STORAGE Then
 Let SUPERVISOR_ONLY = 0
 Let ACCTNO_FIELD_TMP = ACCT_NO_FIELD
 Let OPEN_DATE_TMP = OPEN_DATE
 Let LAST_FIELD_TMP = LAST_FIELD
 Let FIRST_FIELD_TMP = FIRST_FIELD
 Let MIDDLE_FIELD_TMP = MIDDLE_FIELD
 Let STREET_FIELD_TMP = STREET_FIELD
 Let CITY_FIELD_TMP = CITY_FIELD
 Let STATE_FIELD_TMP = STATE_FIELD
 Let ZIP_FIELD_TMP = ZIP_FIELD
 Let HOMEPH_FIELD_TMP = HOMEPH_FIELD
 Let WORKPH_FIELD_TMP = WORKPH_FIELD
 Activate Panel ACCOUNT_DATA_PANEL
 Deactivate Field SECRET_FIELD On ACCOUNT_DATA_PANEL
 Position To Field ACCTNO_FIELD On ACCOUNT_DATA_PANEL
 Else
 Return
 End If
 End Response
 .
 .
 .

The function response controls what happens when the operator invokes the NEXT_STEP function
by pressing the RETURN key. The IF statement compares operator input to SECRET_FIELD to a

132

Chapter 5. Converting the FMS Sample Application

value stored in PASSWORD_STORAGE. You must declare the PASSWORD_STORAGE form data
item as follows:

Form Data /* Form data for panel ACCOUNT_DATA_PANEL */
 .
 .
 .
 PASSWORD_STORAGE Character (12) Value "SAMP"
End Data

Be sure to specify the word “SAMP” in all capital letters in the VALUE clause to emulate the FMS
application.

If the operator enters the correct password, the first LET response step assigns zero to
the SUPERVISOR_ONLY form data item. The other fields on the are protected when
SUPERVISOR_ONLY equals one. When SUPERVISOR_ONLY equals zero, these fields are no
longer protected from operator input.

The rest of the LET response steps in the function response keep a copy of the current account
data before the operator begins making changes. If the operator chooses to quit without saving the
changes made to the account data, a copy of the original data is needed. You must add the following
form data item declarations to the FORM DATA statement for the ACCOUNT_DATA_PANEL:

Form Data /* Form data for panel ACCOUNT_DATA_PANEL */
 ACCTNO_FIELD_TMP Integer (5)
 OPEN_DATE_TMP Character (7)
 LAST_FIELD_TMP Character (20)
 FIRST_FIELD_TMP Character (15)
 MIDDLE_FIELD_TMP Character (15)
 STREET_FIELD_TMP Character (30)
 CITY_FIELD_TMP Character (20)
 STATE_FIELD_TMP Character (2)
 ZIP_FIELD_TMP Integer (5)
 HOMEPH_FIELD_TMP Integer (10)
 WORKPH_FIELD_TMP Integer (10)
 .
 .
 .
End Data

The ACTIVATE response step that follows the LET response step causes the Form Manager to
activate all fields on ACCOUNT_DATA_PANEL, so the operator can give input to them. These
fields are not on the activation list before the Form Manager performs this response step because
they were protected until the SUPERVISOR_ONLY form data item became equal to zero.

The DEACTIVATE response step causes the Form Manager to remove the activation item for
SECRET_FIELD from the activation list. Now that the operator has entered the password,there is no
reason for further input to this field.

The POSITION response step begins operator input to the other fields on
ACCOUNT_DATA_PANEL.

If the operator enters an incorrect password, control returns to the program and no account data is
changed.

6. Add the REMOVE clause to the panel declaration.

133

Chapter 5. Converting the FMS Sample Application

When the operator completes input to this panel, the Form Manager should remove it from the
display. The REMOVE clause causes the Form Manager to remove the panel. Add the REMOVE
clause to the following the DISPLAY clause:

Panel ACCOUNT_DATA_PANEL
 Viewport REGISTER_VP
 Display %Keypad_application
 Remove

End Panel

7. Add a function response for the function at the panel level in to allow the operator to quit.

As in other FMS forms, the operator can quit giving input to the ACCOUNT_DATAFMS form by
pressing the KP_PERIOD key. To emulate this in DECforms, add the following function response to
ACCOUNT_ DATA_PANEL:

Panel ACCOUNT_DATA_PANEL
 Viewport ACCOUNT_DATA_VIEWPORT
 Display %Keypad_application
 Remove
 Function Response OPERATOR_CHOICE_PERIOD
 If SUPERVISOR_ONLY = 0 Then
 Let ACCTNO_FIELD = ACCT_NO_FIELD_TMP
 Let OPEN_DATE = OPEN_DATE_TMP
 Let LAST_FIELD = LAST_FIELD_TMP
 Let FIRST_FIELD = FIRST_FIELD_TMP
 Let MIDDLE_FIELD = MIDDLE_FIELD_TMP
 Let STREET_FIELD = STREET_FIELD_TMP
 Let CITY_FIELD = CITY_FIELD_TMP
 Let ZIP_FIELD = ZIP_FIELD_TMP
 Let HOMEPH_FIELD = HOMEPH_FIELD_TMP
 Let WORKPH_FIELD = WORKPH_FIELD_TMP
 Return
 Else
 Return
 End If
End Response

In function response, if the SUPERVISOR_ONLY form data item equals zero, the operator may
have to change values in the account data items. In this case, the original values in the account data
items must be restored. The LET response steps restore each of the items in the account data to their
original value. Control returns to the program.

If the SUPERVISOR_ONLY form data item is not equal to zero, the operator could not have
changed any account data. Control is returned to the program without the values in the account form
data items being changed.

8. Delete the IF statements in the program that tests the terminator and get input from the operator in
the account data fields on the FMS form.

The tasks performed by the rest of the statements in the VUEACT subprogram are performed in the
DECforms form.

134

Chapter 5. Converting the FMS Sample Application

9. Delete the READAL subprogram.

The READAL subprogram shows how to get data from all fields on an FMS form without using the
GETAL call. This demonstration is not needed in the converted application.

10. Delete the function response for UNDEFINED FUNCTION that calls the PASSKY escape routine.

The PASSKY UAR is not needed in the DECforms application. Its purpose is to determine if
the terminator entered by the operator is a valid terminator in the context of this application. The
PASSKY UAR ensures that other keys are recognized as undefined terminators.

In DECforms, you trap keys in the form. The only keys that have any effect are those for which you
define a function response and those for which DECforms defines a function response. All others are
undefined keys.

Once you have made these changes to the VUEACT subprogram, it appears as follows:

IDENTIFICATION DIVISION.
PROGRAM-ID. VUEACT.
*+
* View the account data.
* If operator knows the secret word, let operator change
* the account data for this session.
*-
DATA DIVISION.
WORKING-STORAGE SECTION.
PROCEDURE DIVISION.
0.
 CALL "forms$receive" USING BY DESCRIPTOR SESSION_ID
 "ACCOUNT"
 BY REFERENCE RECORD_COUNT
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 OMITTED
 BY DESCRIPTOR ACCOUNT
 GIVING FORMS_STATUS.
 CALL "SRVCHK" USING FORMS_STATUS.
 EXIT PROGRAM.
END PROGRAM VUEACT.

This subprogram requests input to the ACCOUNT record. If the operator knows the correct password,
the account data can be changed. Otherwise,the Form Manager displays the account data and then
returns control to the program.

5.5. Compiling, Linking, and Running the
Converted Application
Once you have finished modifying the IFDL source file and program, you should compile,link, and run
the application. You may encounter syntax errors, linker errors, or run-time errors. If you do, compare
the changes you made to the instructions in this chapter. Correct the errors as you find them.

Use the following command to compile the COBOL program:

135

Chapter 5. Converting the FMS Sample Application

$ COBOL/LIST=SAMPCOB.LIS SAMPCOB.COB

The COBOL compiler creates a listing file that indicates syntax errors. The file is named SAMPCOB.LIS
and is written to your current default directory. When you have corrected syntax errors and recompiled,
the compiler creates SAMPCOB.OBJ in your current default directory.

Next, you should translate the IFDL source file into a form file. Use the following command:

$ FORMS TRANSLATE/LIST=SAMP.LIS SAMP.IFDL

The Translator creates a listing file that highlights syntax errors in your IFDL source file. The file is
named SAMP.LIS and is written to your default directory. When you have corrected all syntax errors
and retranslated, the Translator creates a form file, named SAMP.FORM, in your default directory.

Because this application uses escape routines, you must extract vectors from the form file. Use the
following command:

$ FORMS EXTRACT OBJECT SAMP.FORM/OUTPUT=SAMP_OBJ.OBJ

The EXTRACT utility creates a file named SAMP_OBJ.OBJ in your default directory. The file contains
vectors to the escape routines.

Now, you must link the program and vector object file. Use the following LINK command:

$ LINK SAMPCOB.OBJ, SAMP_OBJ.OBJ

You are now ready to run the executable image created by the linker. Issue the following command:

$ RUN SAMPCOB

136

Chapter 6. Creating and Modifying
Forms
DECforms provides an interactive environment for developing forms, called the Form Development
Environment (FDE). The FDE allows you to create,modify, and store form definitions. The interface to
the FDE is menu-driven,so it guides you through the form development process by allowing you to make
choices from the menus. The FDE allows you to use most features of DECforms without memorizing
IFDL statements.

You can access several DECforms components from within the FDE. For example, you can access an
interactive editor called the Panel Editor. Like the Layout phase of the FMS Form Editor, the Panel
Editor allows you to create the appearance of panels. Unlike the FMS Form Editor, the Panel Editor is
object-oriented, which means that it contains a set of commands that operate on objects instead of on
lines and characters as the FMS Form Editor does.

This chapter explains how to invoke the FDE and Panel Editor and use them to perform the tasks you
perform in the following five phases of the FMS Form Editor:

● Form

● Layout

● Assign

● Order

● Test

See the VSI DECforms Guide to Commands and Utilities for a complete description of using the FDE and
Panel Editor.

6.1. Invoking the FDE and the Panel Editor
To invoke the FDE, use the FORMS DEVELOP command, which has the following format:

FORMS DEVELOP input-file-spec

Replace input-file-spec with the name of an IFDL source file or a form file. The FDE displays its main
menu in response to this command. Figure 6.1, "FDE Main Menu" shows the FDE main menu. To leave
the FDE, select the Exit option. (Select an option by using the arrow keys to move the cursor to the
option. Then, press either the SELECT key or the KEYPAD PERIOD key.)

137

Chapter 6. Creating and Modifying Forms

Figure 6.1. FDE Main Menu

If you invoke the FDE to create a new form, it displays a panel that you can use to cause the FDE to
create a layout for you automatically. Each form must have a layout, so the FDE provides the ability
to create a 24line by 80 column character cell layout automatically. To specify that the FDE create the
layout, select the YES option.

You can enter the Panel Editor either by selecting the Panel Editor option on the FDE main menu, or
by issuing the following DCL command:

FORMS EDIT input-file-spec

Replace input-file-spec with the name of a form file. The Panel Editor displays its screen display when
you invoke it. Figure 6.2, "CCPED Screen Display"shows the Panel Editor's screen display. To leave the
Panel Editor, press Ctrl/Z.

138

Chapter 6. Creating and Modifying Forms

Figure 6.2. CCPED Screen Display

The panel shown in the screen display is one of the panels in the DECforms sample application.

See the VSI DECforms Guide to Commands and Utilities for information on the complete syntax of the
FORMS DEVELOP and FORMS EDIT commands.

6.2. Using FMS Form Phase Features in
DECforms
In the Form phase of the FMS Form Editor, you can specify the following form-wide attributes:

● Form name, which you use to identify the form you want the Form Driver to use

● Help form name, to name a help form that you want associated with a data entry form

● Screen background, to control whether the screen is black or white when FMS displays a form

● Screen width, to control whether the screen contains 80 or 132 columns

● Screen character set, to control what character set appears on a form at run time

● Screen area to clear, to specify how many lines on the screen should be cleared before FMS displays
a form

● Field highlighting, to highlight a field when it is open for input at run time

● Function key and help user action routine (UAR) names and the names of data items you use with
them

● Initial field attributes to apply attributes to all new fields you create

Because each FMS form is equivalent to one DECforms panel assigning a DECforms attribute to a panel
has the same effect as assigning an attribute to an FMS form.

To assign attributes to a panel, you must create a panel. To create a panel:

1. Invoke the FDE.

139

Chapter 6. Creating and Modifying Forms

2. Select the Choose, Create option from the panel level on the FDE main menu. The FDE displays the
panel shown in Figure 6.3, "FDE Choose, Create Panel" on top of the Main Menu panel.

Figure 6.3. FDE Choose, Create Panel

3. Select the Create Panel option. When you choose this option, the FDE displays the Create Panel
that lets you specify the name of the panel you are creating, attributes about that panel, and the
viewport on which the Form Manager displays the panel. The Create panel appears as shown in
Figure 6.4, "FDE Create Panel".

Figure 6.4. FDE Create Panel

To exit from the Create Panel, select the Ok or Cancel option.

Use this panel to assign panel-wide attributes as described in the sections that follow.

6.2.1. Assigning a Panel Name
The panel name in DECforms identifies a set of panel fields and literals. Unlike an FMS form name,
you do not pass a panel name in a request call. You use it within the form when you need to refer to a
particular panel.

To assign a panel name, type the name in the Panel Name field on the Create Panel.

140

Chapter 6. Creating and Modifying Forms

6.2.2. Associating a Help Panel with Another Panel
Like FMS, you can associate a DECforms help panel with data entry panels. To associate a help panel
with a data entry panel,specify the name of the help panel in the Help Panel field.

You may need to define certain functions and function responses to have your help operate correctly. See
Section 7.3, "Providing Help for Operators"for information on providing help for the operator.

6.2.3. Assigning Background Color
The DECforms background color attribute is equivalent to the FMS Screen Background attribute. The
background color of a panel can be, depending on the capabilities of your terminal, BLACK, WHITE,
BLUE, GREEN, CYAN, RED, MAGENTA, YELLOW or UNCHANGED. UNCHANGED is the same
as the FMS AS IS screen background.

To assign background color:

1. Use the arrow keys to move to the Colors section of the Create Panel.

2. Select the BACK: option in the color list. The FDE displays the menu shown in Figure 6.5, "FDE
Color Choice Panel".

Figure 6.5. FDE Color Choice Panel

3. Use the arrow keys to move the cursor to the color you want for the background of your panel.

4. Press the SELECT key.

You can also use an RGB color specification to define your own colors. See the description of the
MODIFY PANEL display-attribute COLOR command in the VSI DECforms Guide to Commands and
Utilities for information on using RGB color specifications.

6.2.4. Assigning the Terminal Width
The terminal can be set to a width of 80 columns, 132 columns, or UNCHANGED.UNCHANGED
means that the run-time terminal width setting is used. UNCHANGED is the same as the FMS AS IS
screen width.

To set the width of a panel:

1. Use the arrow keys to move to the Terminal Width section of the Create Panel.

2. Use the arrow keys to position the cursor on your choice for terminal width.

141

Chapter 6. Creating and Modifying Forms

3. Press the SELECT key.

6.2.5. Assigning a Character Set to the Panel
In DECforms, the character set used on a panel is a display attribute. You can display each object on the
panel (each field or literal) using a different character set. Use the Panel Editor to choose a character set
for all objects on a panel. Section 6.2.9, "Assigning Default Attributes to All New Fields" explains using
the Panel Editor's Display Attribute Menu to choose a character set.

6.2.6. Creating a Viewport to Control Clearing the
Screen
You must display each panel in DECforms in a viewport. The viewport controls how much of the screen
the Form Manager clears when it displays a panel. To specify that the Form Manager clear 14 lines when
it displays a panel, create a 14-line viewport and specify that the Form Manager display the panel in that
viewport.

To create a viewport:

1. Type a viewport name in the Viewport Name field.

2. Specify the lines and columns that you want the viewport to include in the Lines and Columns fields.
For example, you could have a viewport from line 3 to line 23 and from column2 through column
56.

6.2.7. Applying Active Highlight to Fields
If you want the Form Manager to highlight a field when it is open for input, or active, you can specify
that in the field declaration. You can use the IFDL ACTIVE HIGHLIGHT clause to specify that the field
is BOLD, BLINKING, REVERSE, or UNDERLINED.

To apply active highlight to fields:

1. Return to the FDE Main Menu by selecting the OK option.

2. Select the Edit IFDL option from panel level of the FDE main menu.

3. Add the ACTIVE HIGHLIGHT clause to fields. For example, the followingfield contains an
ACTIVE HIGHLIGHT clause:

Field EMPLOYEE_NAME
 Line 5 Column 10
 Active Highlight Bold
 Input Required
 End Field

(You can create fields using the Panel Editor as described in Section 6.3.1, "Creating Panel Fields
and Applying Field Defaults".)

4. Return to the FDE by pressing Ctrl/Z to exit from the text editor.

You can apply the same active highlight to all fields on a panel by creating an APPLY FIELD
DEFAULT clause in the panel declaration. See Section 6.3.1, "Creating Panel Fields and Applying Field
Defaults" for information on using the APPLY FIELDDEFAULT clause.

142

Chapter 6. Creating and Modifying Forms

6.2.8. Calling Escape Routines to Emulate Pre-Help,
Post-Help, and Function Key UARs
FMS allows you to specify three UARs that are associated with a form: a pre-help UAR, a post-help
UAR, and a function key UAR. DECforms allows you to call escape routines from your form. You can
call an escape routine before help messages are displayed, after help messages are displayed, and when
an undefined function key is pressed. In DECforms, you call escape routines from responses.

The sections that follow explain more about calling escape routines to emulate pre-help, post-help, and
function key UARs.

6.2.8.1. Getting the Effect of Pre-Help and Post-Help UARs
To specify a pre-help procedural escape, define an entry response for the help panel that the Form
Manager displays when the operator presses the HELP key. In the entry response, specify the CALL
response step to call the escape routine.

To specify a post-help procedural escape, define an exit response for that same panel. Again, use the
CALL response step to call the escape routine.

To define entry and exit responses for a help panel:

1. Select the Choose, Create option from the panel level FDE main menu.

2. Choose the help panel to which you want to add responses or create a help panel.

3. Select the Edit IFDL option at the panel level on the FDE main menu.

The FDE displays the IFDL source code for the current panel, and you can add the syntax for the
response.

Example 6.1, "Calling Escape Routines from ENTRY and EXIT Responses" shows entry and exit
responses that call escape routines.

Example 6.1. Calling Escape Routines from ENTRY and EXIT Responses

Form Data
 HELP_REQUESTED CHARACTER (2)
 HELP_TERMINATING CHARACTER (2)
End Data
 .
 .
 .
Help Panel FOR_FIELD_ACCOUNT
 Entry Response
 Call 'ENTRY_PROCEDURAL_ESCAPE' Using HELP_REQUESTED
 End Response
 .
 .
 .
 Exit Response
 Call 'EXIT_PROCEDURAL_ESCAPE' Using HELP_TERMINATING
 End Response
End Panel
END PANEL

143

Chapter 6. Creating and Modifying Forms

See Section 7.7, "Using Escape Routines" for more information on using escape routines.

You may be able to perform the tasks specified in your UAR in an entry response or an exit response.
You can improve your application's performance by not calling an escape routine. Therefore, use
response steps when possible. See the VSI DECforms Programmer's Reference Manual for information on
all the available response steps.

6.2.8.2. Getting the Effect of an Undefined Function Key UAR
To specify what actions are taken when the operator presses an undefined function key, create a function
response for a special function called UNDEFINED FUNCTION. You can call an escape routine from
this response to get the effect of your undefined function key UAR.

To define a function response for UNDEFINED FUNCTION:

1. Select the Choose, Create option from the panel level on the FDE Main Menu.

2. Choose the panel from which you call the escape routine.

3. Select the Edit IFDL option at the panel level on the FDE Main Menu.

The FDE displays the IFDL source code for the current panel.

4. Add a function response for UNDEFINED FUNCTION.

Example 6.2, "Calling an Escape Routine from an UNDEFINED FUNCTION Response" shows an
example of an UNDEFINED FUNCTION response. The Form Manager performs this function response
only when ACCOUNT_PANEL is the active panel and the operator presses an undefined function key.

Example 6.2. Calling an Escape Routine from an UNDEFINED FUNCTION Response

Panel ACCOUNT_PANEL

Function Response UNDEFINED FUNCTION
 Call 'ESCAPE_ROUTINE' Using NO_KEY_DEFINITION
End Response
 .
 .
 .
End Panel

If you want the Form Manager to execute this function response each time the operator presses an
undefined function key (as opposed to only when the operator is in ACCOUNT_PANEL), define the
function response at the layout level.

See Section 7.1, "Defining Keys" for more information on defining keys. See Section 7.7, "Using Escape
Routines" for more information on using escape routines.

You may be able to perform the tasks specified in your undefined function key UAR in the function
response for UNDEFINED FUNCTION. You can improve your application's performance by not calling
an escape routine. Therefore, use response steps when possible. See the VSI DECforms Programmer's
Reference Manual for information on all the available response steps.

6.2.9. Assigning Default Attributes to All New Fields
DECforms contains a set of display attributes that the Form Manager can apply either to viewports and
panels or to fields and literals. Table 6.1, "Comparison of DECforms Display Attributes and FMS Video

144

Chapter 6. Creating and Modifying Forms

Attributes" lists and explains all the DECforms display attributes. Some DECforms display attributes
are equivalent to FMS video attributes. The table lists the FMS video attributes that correspond to
DECforms display attributes.

Table 6.1. Comparison of DECforms Display Attributes and FMS Video Attributes

DECforms

Display Attribute

FMS

Video Attribute

Description of the DECforms
Display Attribute

BACKGROUND COLOR Screen Background Specifies the background
color (BLACK, WHITE,
BLUE, GREEN, CYAN, RED,
MAGENTA, YELLOW or
UNCHANGED) of a panel or
a viewport. You can also use
an RGB color specification to
define your own colors. See the
VSI DECforms IFDL Reference
Manual for information on using
RGB color specifications. Your
terminal must be capable of
displaying the colors you choose.

[NO]BLINKING Blink Causes the object to flash on and
off.

[NO]BOLD Bold Displays the object in a bold-
faced font.

CHARACTER SET Character Set Specifies the character set used
to display an object. See the
VSI DECforms IFDL Reference
Manual for information on which
character sets are available.

FONT SIZE Double High

Double Wide

Specifies the font characteristics
for an object. SINGLE or
NORMAL indicate that each
character in an object occupies
one character cell. DOUBLE
HIGH indicates that each
character in an object is two
character cells high. DOUBLE
WIDE indicates that each
character in an object is two
character cells wide.

FOREGROUND COLOR None Specifies the color (BLACK,
WHITE, BLUE, GREEN,
CYAN, RED, MAGENTA,
YELLOW or UNCHANGED) of
literals and fields. You can also
use an RGB color specification to
define your own colors. See the
VSI DECforms IFDL Reference
Manual for information on using

145

Chapter 6. Creating and Modifying Forms

DECforms

Display Attribute

FMS

Video Attribute

Description of the DECforms
Display Attribute

RGB color specifications. Your
terminal must be capable of
displaying the colors you choose.

LINE WIDTH None Specifies the width of lines.
SINGLE or NORMAL indicate
a thin line. DOUBLE HIGH
indicates that horizontal lines
are heavier than NORMAL.
DOUBLE WIDE indicates that
vertical lines are heavier than
NORMAL.

[NO]NEGATIVE Reverse Changes the background color
to the foreground color, and
the foreground color to the
background color.

[NO]REVERSE Reverse Equivalent to NEGATIVE.
[NO]UNDERLINED Underline Underlines the object.

To apply attributes to fields you create, follow these steps:

1. Return to the FDE Main Menu by exiting from the Create Panel.

2. Select the Panel Editor option from the panel level on the FDE Main Menu.

3. Press the DO key to receive the Panel Editor's Command> prompt and issue the SET command. The
Panel Editor displays the menu shown in Figure 6.6, "Panel Editor Display Attributes Menu" that lets
you choose which attributes to set.

Figure 6.6. Panel Editor Display Attributes Menu

4. Use the arrow keys to move around the menu and the SELECT key to invoke sub-menus and choose
attributes.

The Panel Editor applies the attributes you choose to all new objects you create on this panel. You
can set different attributes at any time.

To assign the clear character or a help message to each field in a panel at once, you create an APPLY
FIELD DEFAULT clause. Section 6.3.1, "Creating Panel Fields and Applying Field Defaults" describes
creating that clause.

146

Chapter 6. Creating and Modifying Forms

To assign a default value to a field, you assign a default value to the form data item associated with the
field.

6.3. Using FMS Layout Phase Features in
DECforms
In the FMS Form Editor, you can do the following in Layout phase:

● Create fields and background text

● Create solid lines and rectangles

● Apply video highlights to the fields you create

● Create special fields, such as DATE fields

● Create scrolled regions and indexed fields

The sections that follow explain how to perform these tasks in DECforms.

6.3.1. Creating Panel Fields and Applying Field Defaults
To create a panel field, follow these steps:

1. Invoke the Panel Editor.

2. Press the KP8 key.

When you press this key, the Panel Editor displays a panel that prompts you for the following:

● Field name

You must supply a name for each field you create.

● Data type (of the form data item associated with the field)

The Panel Editor prompts you for a data type because it automatically creates a form data item
to match each field you create. The Panel Editor gives this form data item the same name as the
panel field you are creating. If you have already declared a form data item for a field you are
creating,you can omit the data type. Remember that the name of the form data item must be the
same as the name of the panel field.

● Output picture

If you omit the output picture, the Panel Editor creates one for you. The Panel Editor creates the
output picture so that it matches the data type of the form data item that corresponds to the panel
field you are creating.

To save you from specifying the same set of attributes for each field you create,you can add an APPLY
FIELD DEFAULT clause to a panel. In the clause, you specify the attributes you want the Panel Editor
to apply to each field. The Panel Editor applies attributes to all fields on the panel.

You can override a default attribute by specifying a conflicting attribute in the field declaration. If a field
specifies an attribute that conflicts with a default attribute, the attribute specified in the field definition
takes precedence for that field.

147

Chapter 6. Creating and Modifying Forms

Follow these steps to create an APPLY FIELD DEFAULT clause:

1. Exit from the Panel Editor by pressing Ctrl/Z.

2. Select the Edit IFDL option from the panel level on the FDE main menu.

3. Add the APPLY FIELD DEFAULT clause to the panel as follows:

Panel EMPLOYEE_PANEL
 Display Viewport
 %Terminal_Width_Unchanged
 Display
 %Keypad_application
 Remove
 Apply Field Default Of
 Active Highlight Bold
 End Default
 .
 .
 .
End Panel

4. Press Ctrl/Z to exit from the text editor.

6.3.2. Creating Text Literals
To create a text literal, enter the Panel Editor and move the cursor to the position where you want the
literal to appear. Type the text of the literal exactly as you want it to appear on the panel.

To modify existing text literals, put the cursor on them and either type new text (to modify the literal) or
press the DELETE key (to delete characters in the literal).

6.3.3. Drawing Points, Lines, Rectangles, and Polylines
DECforms allows you to draw points, lines, rectangles, and polylines. For example, to create a point:

1. Move the cursor to the position on the panel where you want the point to appear.

2. Press the KP_HYPHEN key.

To create a line follow these steps:

1. Move the cursor to the point where you want the line to begin.

2. Press KP9 to mark the beginning point.

3. Move the cursor to the point where you want the line to end.

4. Press KP9 to mark the end point.

5. Press KP_HYPHEN to draw the line.

(Because of the restrictions of the character cell display device, you cannot create diagonal lines with the
Panel Editor)

If you mark more than two points, the Panel Editor creates a polyline by connecting each mark in the
order in which you create them.

To create a rectangle, follow these steps:

148

Chapter 6. Creating and Modifying Forms

1. Move the cursor to the point where you want one corner of the rectangle,for example upper left
corner.

2. Press KP9 to mark this corner.

3. Move the cursor to the point where you want the opposite corner of the rectangle, for example the
lower right corner.

4. Press KP9 to mark this corner.

5. Press KP_HYPHEN to draw the rectangle.

6.3.4. Applying Display Attributes to Fields and Literals
The Panel Editor maintains a list of display attributes. The Panel Editor applies the display attributes on
the list to all new objects you create on the panel. When you create a new panel, the display attributes on
the list are the DECforms default display attributes. The default attributes are as follows:

● CHARACTER SET defaults to User Preference.

● FONT SIZE defaults to NORMAL.

● LINE WIDTH defaults to NORMAL.

● Video attribute defaults are as follows:

• NOBLINKING

• NOBOLD

• NOREVERSE

• NOUNDERLINED

You can change the list of display attributes the Panel Editor uses for newly created items using the
Panel Editor's Set Display Attribute Menu. You access the Set Display Attribute Menu using the Panel
Editor SET command as described in Section 6.2.9, "Assigning Default Attributes to All New Fields".

6.3.5. Creating Date and Time Fields and Adjacent
Fields
DECforms does not distinguish between DATE and TIME fields and other fields. Also, because the
Panel Editor is object-oriented, it can create adjacent fields the same way it creates fields separated by
one or more spaces.

To create a DATE or TIME field, enter the Panel Editor. Issue the CREATEFIELD command and
specify a DATE or TIME data type for the data item associated with the field. For example, to create a
DATE field, enter the Panel Editor. Press the DO key and issue the following command:

Command> CREATE FIELD DATE_ONLY TYPE DATE

To create an adjacent field, create two fields that have no spaces between them. For example, press the
DO key and issue the following commands to create two adjacent fields containing an area code and a
telephone number:

Command> CREATE FIELD AREA_CODE (5,10) TYPE CHARACTER(3) PICTURE
 "'('CCC')'"

149

Chapter 6. Creating and Modifying Forms

Command> CREATE FIELD PHONE_NUMBER (5,15) TYPE CHARACTER(6)
 PICTURE"CCC'-'CCCC"

6.3.6. Creating Groups
DECforms uses panel groups to display arrays and create scrolled regions. You can create groups in the
Panel Editor with the CREATE GROUP command. To create a group, press the DO key and issue the
following command:

Command> CREATE GROUP CHILD_GROUP OCCURS 3 HORIZONTAL
Command> CREATE FIELD CHILD_GROUP.CHILD_NAME (2,5) TYPE CHARACTER(20)

The CREATE GROUP command creates the group declaration. The CREATE FIELD command creates
one member for that group.

You can also create nested groups using the Panel Editor. To do so, create the outer group first, then
the inner group, and then group members. The following example shows commands that create a nested
group:

Command> CREATE GROUP CHILD_INFO OCCURS 3 VERTICAL
Command> CREATE GROUP CHILD_INFO.SPECIFIC.CHILD OCCURS 4 HORIZONTAL
Command> CREATE FIELD CHILD_INFO.SPECIFIC.CHILD.CHILD_FACT (2,5) TYPE
 CHAR(10)

Section 7.4, "Displaying Arrays" gives more information on DECforms groups. Section 7.5, "Creating
Scrolled Regions" gives more information on creating scrolled regions.

6.4. Using FMS Assign Phase Features in
DECforms
In FMS, you apply field attributes during the Assign phase of the Form Editor. During this phase, you
specify what the name of the field is, what help message is associated with the field, a number of field
attributes, and what field completion UARs are associated with a field.

In DECforms, you apply some field attributes from the Panel Editor and some using the IFDL. You
apply all field validators using the IFDL. This section explains the following:

● How you associate a help message with a field

● How you apply field attributes

● How you apply field validators

● The difference between DECforms field attributes and validators and their FMS equivalents

● How to call an escape routine when a field is complete

6.4.1. Specifying Help for Fields
Help messages in DECforms are the same as they are in FMS. Help messages give the operator
information. The only difference between a help message in DECforms and a help message in FMS is
that in DECforms, help messages can be any length.

To associate a help message with a field:

1. Select the Choose, Create option from panel level on the FDE Main Menu.

150

Chapter 6. Creating and Modifying Forms

2. Choose the panel that contains the field to which you want to add a help message.

3. Select the Edit IFDL option from the panel level on the FDE main menu.

4. Move to the field for which you want to specify help, and add the USE HELP MESSAGE clause. For
example:

Field EMPLOYEE_NAME
 Line 5 Column 10
 Active Highlight Bold
 Input Required
 Use Help Message "You must enter an employee's name in this field."
End Field

For more information on providing help to your operator, see Section 7.3, "Providing Help for
Operators".

6.4.2. Assigning Field Attributes and Field Validators
Attributes in DECforms include field attributes and field validators. These are not display attributes,
but attributes that control how operator input to the field proceeds and what operator input is valid.
Table 6.2, "Comparison of DECforms Field Attributes and Field Validators and FMS Field Attributes and
Validation Attributes" describes the field attributes and field validation attributes. To help you understand
the purpose of DECforms field attributes and field validators, the FMS equivalent of an attribute is given
where one exists.

Table 6.2. Comparison of DECforms Field Attributes and Field Validators and FMS Field
Attributes and Validation Attributes

DECforms Field and
Validation Attributes and
Clauses

FMS Equivalent Description of DECforms Field
or Validation Attribute

ACTIVE HIGHLIGHT Input field highlighting Specifies the display attributes
that the Form Manager applies
to the field when it is open for
input. You can specify any of
the display attributes described
in Table 6.1, "Comparison of
DECforms Display Attributes and
FMS Video Attributes".

AUTOSKIP Autotab Specifies that when the operator
enters the character that fills
the field, the Form Manager
automatically moves the cursor to
the next field.

Comment text None A 1-line comment associated
with the field.

CONCEALED No Echo Specifies that the Form Manager
not display the value of the field's
associated form data item, nor
does the Form Manager display
operator input. However,the
Form Manager does store data

151

Chapter 6. Creating and Modifying Forms

DECforms Field and
Validation Attributes and
Clauses

FMS Equivalent Description of DECforms Field
or Validation Attribute

the operator enters in the form
data item associated with the
field.

HIGHLIGHT WHEN None Specifies display attributes that
the Form Manager applies to the
field while the WHEN condition
is true.

INPUT PICTURE Field validation picture In conjunction with the editing
clause, specifies what data the
operator can enter in the field and
how the Form Manager stores
that data in a form data item.

INPUT REQUIRED Response Required Specifies that the operator must
enter data in this field.

JUSTIFICATION DECIMAL None Specifies that operator input
begin at the decimal point. The
Form Manager inserts new
characters to the left of the
decimal point to form the whole
part of the number. After the
operator enters a decimal point,
the Form Manager displays
subsequent characters to the right
of the decimal point to form the
fractional part of the number.

JUSTIFICATION LEFT Left Justify Specifies that operator input
begins at the left end of the field.

JUSTIFICATION RIGHT Right Justify Specifies that operator input
begins at the right end of the
field.

MINIMUM LENGTH Must Fill Specifies the number of
characters that the operator must
enter into the field for input to
be valid. MINIMUM LENGTH
is different from Must Fill in
that you can specify a value
that is less than the number of
characters the field can hold.

NO DATA INPUT None Specifies that no data can be
entered into a field, but if the
operator presses a function key
while in the field, the Form
Manager performs its function
response.

OUTPUT PICTURE Fixed Decimal, In conjunction with the editing
clause, specifies how the Form

152

Chapter 6. Creating and Modifying Forms

DECforms Field and
Validation Attributes and
Clauses

FMS Equivalent Description of DECforms Field
or Validation Attribute

Zero Fill,

Zero Suppress,

Clear Character

Manager displays data in a panel
field.

OUTPUT WHEN None Specifies a value that the Form
Manager displays in the field if
the WHEN condition is true.

PROTECTED [WHEN] Display Only

Supervisor Only

Specifies that the operator cannot
enter data in the field. If WHEN
is specified, the field is protected
only while the WHEN condition
is true.

RANGE None Allows you to specify two values
between which the input value
must fall.

REQUIRE None Specifies a condition that must be
satisfied before input is valid.

SEARCH [NOT] None Specifies the name of a list
of values to which the Form
Manager compares input. If you
specify NOT, the input value
must not match one of the values
on the list. Otherwise, the input
value must match a value on the
list. You create the named list
with the IFDL LIST statement.

TIMEOUT None Specifies the amount of time the
operator can take to complete
input to the field.

UPPERCASE Uppercase Specifies that the Form Manager
echo input and display output
only in uppercase characters.

USE HELP MESSAGE Help Text Specifies the text fora help
message for this field.

USE HELP PANEL Help forms Specifies a panel of help
information associated with the
field.

DECforms does not have the concept of index value, so index value does not appear in Table 6.2,
"Comparison of DECforms Field Attributes and Field Validators and FMS Field Attributes and Validation
Attributes".

To specify attributes for a field:

1. Select the Choose, Create option from the panel level on the FDE Main Menu.

153

Chapter 6. Creating and Modifying Forms

2. Select the Choose option.

3. Choose the panel that contains fields to which you want to add attributes.

4. Select the Panel Editor option from the panel level of the FDE Main Menu.

5. Move the cursor to the field you want to modify.

6. Press the PF1-Enter key sequence. The Panel Editor displays the panel shown in Figure 6.7, "Panel
Editor Field Description Panel".

Figure 6.7. Panel Editor Field Description Panel

7. Move the cursor to the attributes you want and press the SELECT key. Supply values when they are
needed.

8. Exit from this panel by selecting the OK option.

9. Exit from the Panel Editor by pressing Ctrl/Z.

10. Specify attributes not on the Field Description Panel by selecting the Edit IFDL option from panel
level of the FDE Main Menu.

11. Add attributes to fields. For example:

Field EMPLOYEE_NAME
 Line 5 Column 10
 Active Highlight Bold
 Input Required
 Range 1 through 10
 Use Help Message "You must enter an employee's name in this field."
End Field

See the discussion of Field Description Entry in the VSI DECforms IFDL Reference Manual for the
correct syntax needed to add each attribute.

6.4.3. DECforms Field Picture Characters
DECforms uses picture characters to describe panel fields. Like FMS field validation characters, these
characters determine the picture type and length of the field. In DECforms, two types of picture strings
can exist for a field:an output picture and an input picture.

154

Chapter 6. Creating and Modifying Forms

Output pictures identify how data appears when the Form Manager displays it. Input pictures identify
what input is valid for a field. The output picture for a field can be the same as its input picture, or it
can be different. However, the output picture and the input picture must specify an image that the Form
Manager can convert from or to the data type of the form data item to which the field corresponds. For
example, an output picture must not describe a FLOATING POINT data type if the form data item's data
type is DATE.

In addition to the output picture and input picture, DECforms allows you to specify an editing clause.
In the editing clause, you specify information like whether the decimal point is a period (.) ora comma
(,) and whether scale is applied to a value. You also specify the character used for leading or trailing zero
replacement, currency, and sign. When the Form Manager displays a value, it uses the output picture and
the editing clause to determine how the value should appear. When the Form Manager stores a value in
form data,it uses the input picture and the editing clause to determine whether or not the input value is
valid and how to store that value.

Some of the picture characters that compose an output picture or an input picture are similar to FMS
field validation characters; others are new or different. Table 6.3, "Comparison of DECforms Picture
Characters and FMS Field Validation Characters" compares the DECforms picture characters to FMS
field validation characters.

Table 6.3. Comparison of DECforms Picture Characters and FMS Field Validation
Characters

DECforms Picture Character FMS

Equivalent

Description

Picture Characters for Numeric and Character Data Types
9 9 Position that contains a numeric

digit.
A A Position that contains an

alphabetic digit.
C C Position that contains an

alphanumeric digit.
X X Position that contains any

displayable character.
R None Position before which any leading

zeros are replaced with the
character specified in the editing
clause.

W None Position of a currency character.
Depending on where the W
appears, this position is fixed or
floats.

S None Position of a sign character.
Depending on where the S
appears, this position is fixed or
floats.

V None Position of the decimal point.
E None Position that begins the exponent

in a floating point number.

155

Chapter 6. Creating and Modifying Forms

DECforms Picture Character FMS

Equivalent

Description

. None Either the same as V or a literal
period, depending on what the
editing clause specifies as the
decimal point character.

, None Either the same as V or a literal
comma, depending on what the
editing clause specifies as the
decimal point character.

' None Delimits literals.
() None Positive integer representing

the number of consecutive
occurrences of the preceding 9,
X, C, or A symbol.

Picture Characters for DATE and TIME Data Types
C None Position that contains a digit

representing fractions of a
second.

S None Position that contains a digit
representing a second.

I None Position that contains a digit
representing a minute.

H None Position that contains a digit
representing an hour in a 12-hour
clock.

G None Position that contains a digit
representing an hour in a 24-hour
clock.

L None Lowercase designator.
U None Uppercase designator.
Q None Space removal designator.
R None Replace leading designator.
D None Position that contains a digit in

the number of a day.
N None Position that contains a digit in

the number of a month.
M None Position that contains a character

in the name of a month.
A None Position that contains a character

in an abbreviated month name.
Y None Position that contains a digit in a

year.

156

Chapter 6. Creating and Modifying Forms

DECforms Picture Character FMS

Equivalent

Description

P None Position that contains a character
of the meridian indicator, for
example “AM” or “PM.”

- None Literal hyphen.
/ None Literal slash.
: None Literal colon.
, None Literal comma.
. None Literal period.

To specify an output picture and an input picture for a field:

1. Select the Choose, Create option from the panel level on the FDE Main Menu.

2. Select the Choose option.

3. Choose the panel that contains fields to which you want to add an output picture and input picture.

4. Select the Edit IFDL option from panel level of the FDE Main Menu.

5. Add the pictures to the field. For example, the following field declaration contains an output and
input picture:

Field EMPLOYEE_NAME
 Line 5 Column 10
 Active Highlight Bold
 Output Picture XXXXXXXXXXR' 'X' 'XXXXXXXXXXXX
 Input Picture XXXXXXXXXXR' 'X' 'XXXXXXXXXXXX
 Replace Leading " "
 Input Required
 Use Help Message"You must enter an employee's name in this field."
End Field

If you do not specify an output picture for a field, DECforms generates it automatically from the data
type of the field's associated form data item. If you do not specify an input picture for afield, it is the
same as that field's output picture.

See the description of picture strings in the VSI DECforms IFDL Reference Manual for more information
about picture characters.

6.4.4. Emulating Field Completion UARs
In FMS, you use field completion UARs to validate operator input and perform other operations on field
completion. FMS performs field completion UARs when the operator fills an Autotab field or presses a
field terminator key.

In DECforms, you can call an escape routine on field completion.(See Section 7.7, "Using Escape
Routines" for information on escape routines.) You call the escape routine from either a validation
response or an exit response.

The Form Manager performs a validation response for a field directly after input to the field is complete.
The operator signals that input to a field is complete by either filling a field with the AUTOSKIP

157

Chapter 6. Creating and Modifying Forms

attribute or pressing a function key. A validation response should contain response steps that either
validate operator input or call escape routines that validate operator input. Notice that you may be able
to perform tasks in a validation response that you used to perform in a field completion UAR. Your
application is more efficient if you can validate data in a response, instead of calling an escape routine.

The Form Manager performs exit responses directly after it finishes processing validation responses. You
should define an exit response to perform tasks that should be done after field completion. For example,
you could print the screen from an exit response. You may be able to perform tasks in an exit response
that you used to perform in a field completion UAR. Using exit responses,instead of escape routines,
makes your application more efficient.

To create validation and exit responses:

1. Select the Choose, Create option from the panel level on the FDE Main Menu.

2. Choose the panel to which you want to add responses.

3. Select the Edit IFDL option at the panel level on the FDE Main Menu.

The FDE displays the IFDL source code for the current panel.

4. Add the responses.

Example 6.3, "Calling Escape Routines on Field Completion" shows a validation response and an exit
response that call escape routines.

Example 6.3. Calling Escape Routines on Field Completion

 Field ACCOUNT_NUMBER
 Line 10 Column 5
 Validation Response
 Call 'CHECK_DIGIT_VALIDATION'
 Using By Reference ACCOUNT_NUMBER Giving SUCCESS
 If SUCCESS = 0 Then Invalid End If
 End Response

 Exit Response
 Call WRITE_TO_DATABASE
 Using By Reference ACCOUNT_NUMBER Giving SUCCESS
 If SUCCESS = 0 Then
 Message "WARNING–Database update failed."
 Return Immediate
 End If
 End Response
 Input Picture 999'-'99999'-'999
 Input Required End Field

The CALL response step calls an escape routine called CHECK_DIGIT_VALIDATION that
verifies that the account number just entered by the operator is valid.

The IF response step then tests the value returned from the CHECK_DIGIT_VALIDATION
escape routine, which is stored in the form data item SUCCESS. If the SUCCESS form data item
contains a 1, the response ends normally. If SUCCESS contains a 0, the Form Manager performs
the INVALID response step. This response step causes the Form Manager to begin operator input
to this field again.

158

Chapter 6. Creating and Modifying Forms

The exit response calls an escape routine called WRITE_TO_DATABASE. The CALL response
step passes the account number input by the operator to the escape routine, which stores it in the
database.

The IF response step tests the escape routine's return value. If the SUCCESS form data item
contains a 1, the response ends normally. If SUCCESS contains a 0, the Form Manager displays the
message"WARNING–Database update failed" and returns control to the program.

The VSI DECforms Programmer's Reference Manual contains more information about the response steps.

6.5. Using FMS Order Phase Features in
DECforms
In FMS, you control the order of operator input in two ways. You can request input explicitly in your
program using the FDVGET, FDVGETDL,or FDV$GETSC call. In this case, you cannot change the
order of operator input without modifying your program. You can also use a more general input model
using FDV$GETAL which gets values from all fields on the form. If you use this call, you control the
order of operator input by entering the Order phase of the Form Editor. During this phase, you specify
the order that the cursor moves through the fields when the operator is entering data. Once the order
is set, you cannot change it without entering the Order phase again and respecifying it. When you add
new fields to the form, the cursor moves to them last during data entry unless you change the order. In
DECforms, the order of operator input is controlled by the POSITION response step and the activation
list.

You use the POSITION response step to explicitly control which activation item the Form Manager
processes first,second, third, and so on. For example, you could include the POSITION response step in
a request response to control what activation item the Form Manager processes first. You could redefine
the NEXT ITEM function in a function response that explicitly controls what activation item the Form
Manager processes second, third, and so on. By controlling when the Form Manager processes each
activation item, you control the order in which panel fields receive input.

When you use default function responses and your operator uses the NEXTITEM function to move
around a panel, the Form Manager processes the activation list from top to bottom. The Form Manager
processes the activation list in top to bottom order because it always begins activation list processing
at the topmost, unprotected activation item. The default NEXT ITEM function response contains the
POSITION TO NEXT ITEM response step, which causes the Form Manager to move down through the
activation list. In this case, you control the order of operator input by controlling the order of items on
the activation list. You control what items are on the activation list with the ACTIVATE response step.

If you prefer not to activate items explicitly, you can use a more general-purpose ACTIVATE response
step, such as ACTIVATECORRESPONDING RECEIVE ALL. This response step causes the Form
Manager to activate each panel field that corresponds to a field in the form record currently being used.
When you use this response step, the Form Manager adds panel fields to the activation list in the order
in which they appear in the IFDL source file. Therefore, if your operator uses the default NEXT ITEM
function to move around the panel, the order in which you declare panel fields in your IFDL source file
affects the order of operator input. The Panel Editor writes fields to the source file in the order in which
you create them.

You can change the order in which the fields appear in the IFDL source file list by using the ORDER
SELECTED Panel Editor command. To use this command,enter the Panel Editor and select the objects
that you want to order. Then,issue the ORDER SELECTED command. The Panel Editor orders the
objects as you selected them, so the first object you selected is first in order, the second object you
selected is second in order,and so on.

159

Chapter 6. Creating and Modifying Forms

If you add a new field to the center of a panel, and you want to reorder all the fields in a left-to-right,
top-to-bottom order, press the DO key or thePF1-KP7 key sequence and issue the following commands:

COMMAND> DESELECT ALL; SELECT ALL; ORDER SELECTED

6.6. Using FMS Test Phase Features in
DECforms
The TEST phase of the FMS Form Editor allows you to display the current form and type data into
fields to test field validation. In DECforms,you can test panels using the DECforms Test Utility. To
do this, enter the Panel Editor. Press the DO key and enter the TEST command at the Panel Editor
Command> prompt.

After you issue this command, the Tester displays the current panel. You can enter data into fields on the
panel. The Tester compares data you enter to the field's input picture, so you can determine whether each
field is prepared to accept the data you expect operators to enter. For example, if entering a date into
what you expect to be a date field causes an error,you know that you need to change the input picture for
that field.

Press Ctrl/Z to exit from the Tester. See the VSI DECforms Guide to Commands and Utilities for more
information on the Form Tester.

160

Chapter 7. Using Advanced
DECforms Features
Although the FMS Form Editor is powerful, you cannot access every FMS feature using the Form
Editor. To take advantage of some features you must modify your program. Using these features requires
more effort than, for example, applying video attributes to fields or naming a form. These are the
advanced features of FMS.

DECforms also has features that are not accessible through the Panel Editor. Some of these are the same
as the advanced FMS features, but others are new. This chapter describes how you perform the following
tasks:

● Defining keys

● Moving between panels

● Providing help for your operator

● Displaying arrays

● Creating scrolled regions

● Determining what changed during operator input

● Using escape routines

For information on using other features of DECforms see the VSI DECforms Guide to Commands and
Utilities.

7.1. Defining Keys
Like FMS, DECforms allows you to bind functions to keyboard keys. Operators can use these keys to
perform tasks with a single keystroke. In DECforms, you define keys in the form,not in the program. The
sections that follow explain how to bind functions to keys and how to write responses for function keys.
Function responses allow you to tailor what happens when the operator presses a function key.

7.1.1. Binding Functions to Keys
When you want to allow the operator to press a key to perform a particular task, you first bind a key to a
function name in a function declaration. The function name can be either a pre-defined, DECforms built-
in function name or any other name that follows OpenVMS naming conventions and does not conflict
with other names in the form.

DECforms provides a set of built-in functions that are bound to keys by default. (See the VSI DECforms
IFDL Reference Manual for information on what those functions are and to which keys they are
bound.)When you bind one of the DECforms built-in function names to a key in a function declaration,
you replace the previous, default key binding with the binding you specify.

You can bind more than one key to a function by naming more than one key in the function declaration.
For example, if you want to allow the operator to invoke a function using a default key and another key,
name the default key and the other key in a function declaration.

161

Chapter 7. Using Advanced DECforms Features

You can bind keys to functions only at the layout level.

Example 7.1, "Function Declaration for a Built-In Function" shows a function declaration for the
TRANSMIT built-in function. In the example, the TRANSMIT function is bound to the KP1 key, the
F10 key, and Ctrl/Z.

Example 7.1. Function Declaration for a Built-In Function

Form EMPLOYEE_FORM

 Layout FOR_NON_DEFAULT_KEY_BINDINGS
 Device
 Terminal Type %VT200
 End Device
 Size 24 Lines By 80 Columns

 Function Transmit
 Is %KP_1
 %F10
 %Control_Z
 End Function
 .
 .
 .
 End Layout
End Form

You can also declare function names that are not built-in functions. Example 7.2, "Function Declaration
for a Function You Name" shows a function declaration.

Example 7.2. Function Declaration for a Function You Name

Form EMPLOYEE_FORM

 Layout FOR_NON_DEFAULT_KEY_BINDINGS
 .
 .
 .
 Function CHANGE_EMPLOYEE Is %KP_Enter End Function
 .
 .
 .
 End Layout
End Form

This function declaration binds a function named CHANGE_EMPLOYEE to the Enter key. This
function is undefined unless you define a function response for CHANGE_EMPLOYEE.

7.1.2. Writing Function Responses
To control what occurs when the operator presses a function key, you define a function response. You
can write a function response for any function, including most of the DECforms built-in functions. You
determine what function invokes a function response by naming the function response the same as the
function. For example,when the operator presses the key bound to the CHANGE_EMPLOYEE function,
the Form Manager performs the CHANGE_EMPLOYEE function response.

162

Chapter 7. Using Advanced DECforms Features

You can define function responses at the field, group, panel, or layout level. Therefore, you can change
the behavior of keys at any level in the form hierarchy, except the form level or the viewport level. The
following list describes how the Form Manager determines which function response to perform when an
operator presses a function key:

1. If the current activation item corresponds to a field and the field contains a function response, the
Form Manager performs that function response.

2. If the current activation item corresponds to a field and no function response is at the field level, the
Form Manager performs the function response at the group level.

3. If the current activation item corresponds to a field and no function response is at the group level (or
if the field is not a group member), the Form Manager performs the function response at the panel
level.

If the current activation item is a wait activation item that is associated with a panel, the panel-level
function response is performed.

4. If the panel does not contain a function response or if the current activation item is a wait activation
item that is not associated with a panel, the Form Manager performs the function response at the
layout level.

5. If the layout does not contain a function response, the Manager performs the DECforms built-in
function response.

6. If no built-in function response exists, the Form Manager displays a message.

You can write a special function response, called an UNDEFINED FUNCTION response, that controls
what occurs when the operator presses an undefined key. The VSI DECforms Guide to Developing an
Application describes writing a function response for UNDEFINED FUNCTION.

When you write a function response for a built-in function, you change what occurs when the operator
invokes the function. For example, the default function response for the NEXT ITEM built-in function
makes the next item on the activation list the current item. If no next item exists (because the current
item is the last on the list) the Form Manager displays a message. Instead of displaying a message, you
may want the Form Manager to “wrap around” to the top of the activation list after it encounters the
last item in the list. The Form Manager could then continue activation list processing beginning from the
first item on the list. Example 7.3, "New Definition for the NEXT ITEM Function" shows such a function
response.

Example 7.3. New Definition for the NEXT ITEM Function

Form EMPLOYEE_FORM

 Layout FOR_NON_DEFAULT_KEY_BINDINGS
 .
 .
 .
 Function Response NEXT ITEM
 If Last Item Then
 Position to First Item
 Else
 Position to Next Item
 End If
 End Response
 .

163

Chapter 7. Using Advanced DECforms Features

 .
 .
 End Layout
End Form

The response in Example 7.3, "New Definition for the NEXT ITEM Function" tests the elementary
condition LAST ITEM. Elementary conditions are predefined conditions that indicate the state of
activation item processing. See the VSI DECforms Programmer's Reference Manual for more information
on elementary conditions. If the condition is true, activation list processing proceeds with the first item
on the activation list. Otherwise, activation list processing proceeds with the next item on the activation
list. You do not have to declare the NEXT ITEM function for this function response to work. The built-
in functions are declared by default, and you only declare them when you want to bind them to keys
other than the default keys.

When you write a function response for a function name other than a built-in function, you determine
what happens when the operator presses the key bound to that function. Writing a function response
is the only way to control what occurs in response to the function. Example 7.4, "Definition for the
CHANGE_EMPLOYEE Function"shows a function response for the CHANGE_EMPLOYEE function
declared in Example 7.2, "Function Declaration for a Function You Name".

Example 7.4. Definition for the CHANGE_EMPLOYEE Function

Form EMPLOYEE_FORM
 .
 .
 .
 Panel EMPLOYEE_PANEL
 Function Response CHANGE_EMPLOYEE
 Position To Next Panel
 End Response

The function response causes the Form Manager to display the panel that corresponds to the next panel
activation item on the activation list. The Form Manager positions the cursor to the first field in that
panel.

The FUNCTION RESPONSE declaration appears inside the declaration of EMPLOYEE_PANEL, so
the Form Manager performs the response when the operator presses the ENTER key while entering data
in that panel. When the operator is entering data in other panels, the CHANGE_EMPLOYEE function
has no effect(unless you define other function responses).

7.2. Moving Between Panels
When you use FMS, you display a form, get input from it, and then return to the program. You can then
display another form. FMS does not allow you to move directly from one form to another.

DECforms, on the other hand, does allow you to move between panels without returning to the program.
Thus, you can get data from any number of panels during the processing of a single request. It also
means that you may be able to process decision-making data (for example,choices the operator makes
from a menu while performing tasks) in the form, rather than the program.

Suppose that your application displays a menu that contains three menu items. Depending on which
item the operator selects, the Form Manager displays either one of two panels or returns control to the
program. Example 7.5, "Menu Panel with Choice Processing" shows a panel declaration for a menu that
allows the choice processing to be done in the form.

164

Chapter 7. Using Advanced DECforms Features

Example 7.5. Menu Panel with Choice Processing

Form Data
 CHOICE_ITEM Integer(1)
 FUNCTIONNAME Character(20) Builtin
 Group NEW_EMPLOYEE_DATA NEW_EMPLOYEE_NAME Character(20)
 .
 .
 .
 End Group
 GET_EMPLOYEE_NAME Character(20)
End Data
 .
 .
 .
 Panel EMPLOYEE_PANEL
 .
 .
 .
 Field CHOICE_ITEM
 Line 10 Column 20
 Minimum Length 1
 Range 1 Through 3
 Exit Response
 If Functionname = "NEXT ITEM" Then
 If CHOICE_ITEM = 1 Then
 Activate Group NEW_EMPLOYEE_DATA On NEW_EMPLOYEE_PANEL
 Position to Field NEW_EMPLOYEE_DATA.NEW_EMPLOYEE_NAME On
 NEW_EMPLOYEE_PANEL
 End If

 If CHOICE_ITEM = 2 Then
 Activate Field GET_EMPLOYEE_NAME On EXISTING_EMPLOYEE_PANEL
 Position to Field GET_EMPLOYEE_NAME On
 EXISTING_EMPLOYEE_PANEL
 End If

 If CHOICE_ITEM = 3 Then
 Return
 End If
 End If
 End Response
 End Field
 .
 .
 .
 End Panel
 Panel NEW_EMPLOYEE_PANEL

 Group NEW_EMPLOYEE_DATA

 Field NEW_EMPLOYEE_NAME
 Line 10 Column 20
 End Field
 .
 .
 .
 End Group

165

Chapter 7. Using Advanced DECforms Features

 End Panel

 Panel EXISTING_EMPLOYEE_PANEL
 Field GET_EMPLOYEE_NAME
 Line 10 Column 20
 End Field
 End Panel
 End Layout
End Form

The FORM DATA statement declares an integer of length 1 to hold the operator's choice. The
statement also declares the built-in FUNCTIONNAME data item and two form data items to
store employee names. The GET_EMPLOYEE_NAME form data item stores existing employee
names. The NEW_EMPLOYEE_DATA\.NEW_EMPLOYEE_NAME form data item stores
new employee names.

The EXIT RESPONSE statement determines what occurs when the operator completes entry into
the CHOICE_ITEM panel field.

If the operator presses the key bound to the NEXT ITEM function when the CHOICE_ITEM form
data item equals 1, the Form Manager activates a group on the NEW_EMPLOYEE panel. The
Form Manager displays the NEW_EMPLOYEE panel and gets input to the first field on that panel.

If the CHOICE_ITEM form data item contains a 2 when the operator invokes the NEXT ITEM
function, the Form Manager activates the GET_EMPLOYEE_NAME field. The POSITION
response step causes the Form Manager to process the activation item for the GET_EMPLOYEE
_NAME field.

If CHOICE_ITEM contains a 3, the Form Manager returns control to the program. The third
choice provides the operator with a way to exit from the application.

The ACTIVATE response steps puts items on the activation list for input. In Example 7.5, "Menu Panel
with Choice Processing", if the operator always enters the NEXT ITEM function, the Form Manager
processes the activation list from top to bottom. If the Form Manager encounters no POSITION response
steps in any response it performs when the operator completes entry in afield, the Form Manager does
not move the cursor. The Form Manager moves the cursor only when it executes a POSITION response
step.

When the Manager gets input to satisfy an item, it displays the panel on which the item is displayed,
unless that panel is already displayed.

7.3. Providing Help for Operators
FMS allows you to provide help messages and help forms. Each help message is associated with a field
on your form and each help form is associated with a form. By default, when the operator presses the
HELP key, FMS displays the help message. If the operator presses the HELP key again, FMS displays
the help form.

You can alter this default processing by writing pre-help and post-help UARs. If you write a pre-help
UAR, FMS performs that UAR before it displays any help message. If you write a post-help UAR, FMS
performs that UAR after it displays the help form. Section 6.2.8, "Calling Escape Routines to Emulate
Pre-Help, Post-Help, and Function Key UARs"explains emulating pre-help and post-help UARs.

The Form Manager displays DECforms help messages in the message panel. You associate each help
message with a field, group, data-entry panel, or field default.

166

Chapter 7. Using Advanced DECforms Features

DECforms help panels are special panels you declare with the HELP PANEL statement. You also
associate help panels with fields, groups, data-entry panels, or field defaults.

By default, when the operator presses the HELP key, the Form Manager displays the help message at the
lowest level of the form hierarchy. That is, if you specified a help message for the current field, the Form
Manager displays that message. If no help message is specified for the current field, but you specified
one for the group that contains that field, the Form Manager displays the message associated with the
group.

You can alter default help processing by writing new function responses for the DECforms built-in help
functions, NEXT HELP, PREVIOUS HELP, and TERMINATE HELP. The sections that follow explain
how to create help messages and help panels. See the VSI DECforms Guide to Developing an Application
for additional information on creating help.

7.3.1. Creating Help Messages
Help messages provide specific information about what the operator should enter in a field. You create
a help message with the USE HELP MESSAGE clause. Example 7.6, "Declarations of Help Messages"
shows a panel that contains fields for which help messages are provided.

Example 7.6. Declarations of Help Messages

Panel NEW_EMPLOYEE_PANEL

 Use Help Message "Enter the employee's name and previous
 work experience."

 Group NEW_EMPLOYEE_DATA

 Field NEW_EMPLOYEE_NAME
 Line 2 Column 2
 End Field

 Group PREVIOUS_EMPLOYER_INFORMATION
 Use Help Message "Enter information about the employee's
 previous jobs"
 Field EMPLOYER_NAME
 Line 5 Column 2
 Use Help Message "Enter the previous employer's name"
 End Field

 Field EMPLOYER_STREET
 Same Line Column 34
 End Field

 Field YEARS_EMPLOYED
 Same Line Column 66
 Use Help Message "Enter the number of years spent with
 this employer."
 End Field
 End Group
End Panel

When the cursor is positioned on the NEW_EMPLOYEE_DATA\.NEW_EMPLOYEE_NAME
field and the operator presses the HELP key, the Form Manager displays the message “Enter the

167

Chapter 7. Using Advanced DECforms Features

employee's name and previous work experience.” Since that field does not have a specific help
message, the Form Manager uses the help message at the panel level.

When the cursor is positioned on the
PREVIOUS_EMPLOYER_INFORMATION.EMPLOYER_NAME field and the operator presses
the HELP key, the Form Manager displays the message “Enter the previous employer's name.” This
message is specified in the USE HELP MESSAGE clause of that field declaration.

When the cursor is on the PREVIOUS_EMPLOYER_INFORMATION.EMPLOYER_STREET
field and the operator presses the HELP key, the Form Manager displays the message “Enter
information about the employee's previous jobs.” Since this field does not have a specific help
message, the Form Manager displays the message specified for the panel group.

When the cursor is positioned on the
PREVIOUS_EMPLOYER_INFORMATION.YEARS_EMPLOYED field and the operator presses
the HELP key, the Form Manager displays the message “Enter the number of years spent with this
employer.” This message is specified in the USE HELP MESSAGE clause of that field declaration.

You only have to specify a message with the USE HELP MESSAGE clause to have help messages
available for your operator.

You can specify only one help message for each field. The message can be of any length because the
Form Manager wraps and scrolls messages that are too long to fit in the message panel. Note that this
may cause long messages to scroll off the message panel before the operator has a chance to read the
entire message.

You can specify only one help message for each field, panel group, data-entry panel, or field default.

7.3.2. Creating Help Panels
Help panels provide information beyond what is given in the help message. You create a help panel
with the HELP PANEL statement. You associate the help panel with a field, group, data-entry panel,
or field default with the USE HELP PANEL clause. You cannot use the USE HELP PANEL clause
within a HELP PANEL declaration. Example 7.7, "Declaring and Using Help Panels" shows a help panel
declaration and the use ofthe USE HELP PANEL clause.

Example 7.7. Declaring and Using Help Panels

Help Panel HELP_EMPLOYEE_INFO
 .
 .
 .
End Panel

Help Panel HELP_EMPLOYEE_NAME
 .
 .
 .
End Panel

Panel NEW_EMPLOYEE_PANEL

 Use Help Message "Enter the employee's name and previous
 work experience."
 Use Help Panel HELP_EMPLOYEE_INFO

168

Chapter 7. Using Advanced DECforms Features

 Group NEW_EMPLOYEE_DATA

 Field EMPLOYEE_NAME
 Line 2 Column 2
 Use Help Panel HELP_EMPLOYEE_NAME
 End Field

 Group PREVIOUS_EMPLOYER_INFORMATION
 Use Help Message "Enter information about the employee's
 previous jobs"
 Field EMPLOYER_NAME
 Line 5 Column 2
 Use Help Message "Enter the previous employer's name"
 End Field

 Field EMPLOYER_STREET
 Same Line Column 34
 End Field

 Field YEARS_EMPLOYED
 Same Line Column 66
 Use Help Message "Enter the number of years spent with
 this employer."
 End Field
 End Group
End Panel

The HELP_EMPLOYEE_INFO and the HELP_EMPLOYEE_NAME panels contain text
and fields that explain how to use the EMPLOYEE_INFORMATION panel and the NEW
_EMPLOYEE_DATA\.EMPLOYEE_NAME field.

When the operator presses the HELP key while the cursor is on the NEW_EMPLOYEE_DATA
\.EMPLOYEE_NAME field, the Form Manager displays the message “Enter the employee's name
and previous work experience.” If the operator presses the HELP key again, the Form Manager
displays the HELP_EMPLOYEE_NAME panel,as specified by the USE HELP PANEL clause for
that field.

When the operator presses the HELP key while the cursor is on the
PREVIOUS_EMPLOYER_INFORMATION.EMPLOYER_NAME field,the Form Manager
displays the “Enter the previous employer's name” message. If the operator presses the HELP
key again, the Form Manager displays the HELP_EMPLOYEE_INFO panel. This field does not
contain a USE HELP PANEL clause, so the Form Manager displays the help panel named in the
USE HELP PANEL clause for this data-entry panel.

When the operator presses the HELP key while the cursor is on the
PREVIOUS_EMPLOYER_INFORMATION.EMPLOYER_STREET field, the Form Manager
displays the message “Enter information about the employee's previous jobs.” If the operator
presses the HELP key again, the Form Manager displays HELP_EMPLOYEE_INFO panel.

Pressing the HELP key while on the
PREVIOUS_EMPLOYER_INFORMATION.YEARS_EMPLOYED causes the
Form Manager to displays the same message and help panel as it displays for the
PREVIOUS_EMPLOYER_INFORMATION.EMPLOYER_STREET field.

You need not do anything beyond declaring help panels and associating them with fields, groups, and
data-entry panels with the USE HELP PANEL clause to have help panels available to your operator.

169

Chapter 7. Using Advanced DECforms Features

You can create special viewports for help panels. This allows you to position them anywhere on the
display. Also, the RETAIN clause allows you to specify that the panel is not removed from the display
when the operator terminates help. This allows the help text to be displayed while the operator is entering
data in the field on which help was needed. See the description of the POSTDISPLAY clause in the VSI
DECforms IFDL Reference Manual for more information on the RETAIN clause.

7.4. Displaying Arrays
In FMS, you use arrays mainly with scrolled regions. In DECforms, you use arrays with scrolled regions,
and you may want to use arrays to organize your data. You create DECforms arrays using groups. A data
item group is a set of form data items that are related to each other. You can also declare panel groups
that contain literals and panel fields to display data, and you can declare form record field groups to pass
group data to the program.

The sections that follow explain how to store data in form data groups, how to activate panel groups,
how to display groups on panels, and how to pass group data between the form and program. Section 7.5,
"Creating Scrolled Regions" describes creating scrolled regions.

7.4.1. Storing Array Data in the Form
A data group can be a simple group, which is a collection of form data items. Each group can include an
OCCURS clause, which designates that each form data item in the group occurs multiple times. Group
declarations that include an occurs clause create one-dimensional arrays. To create a two-dimensional
array, you nest one multiple-occurrence group inside another. You can nest multiple-occurrence groups
only one level. However, you can nest simple groups any number of levels.

You can use a group name to perform operations on a group, or you can name a single member of a
group to perform the operation only on that member. To refer to a member of a multiple-occurrence
group, you use a subscript. You must fully qualify all references to group members.

Example 7.8, "Declaration of Form Data Groups" shows the declaration of a group data item,a multiple-
occurrence group, and a nested, multiple-occurrence group.

Example 7.8. Declaration of Form Data Groups

 Form Data
 EMPLOYEE_NAME Character(30)
 EMPLOYEE_ID_NUMBER Integer(10)
 Group EMPLOYEE_ADDRESS
 STREET_ADDRESS Character(30)
 CITY Character(15)
 STATE Character(2)
 ZIP_CODE Integer(9)
 End Group

 Group SPOUSE
 Occurs 2
 NAME Character(15)
 End Group

 Group DEPENDENT
 Occurs 4
 Group CHILDREN
 Occurs 2

170

Chapter 7. Using Advanced DECforms Features

 CHILD_NAME Character(15)
 End Group
 End Group
 End Data

The group EMPLOYEE_ADDRESS is a collection of four form data items. You refer to the first
item in this group by the name EMPLOYEE_ADDRESS.STREET_ADDRESS

The SPOUSE group contains one form data item that occurs twice. The group stores the spouse's
first name in the SPOUSE(1).NAME form data item and the spouse's second name in the
SPOUSE(2).NAME form data item.

The SPOUSE group is a one-dimensional array.

The CHILDREN group contains one data item that occurs two times,representing first and second
names. The DEPENDENT group contains four occurrences of the CHILDREN group. This group
stores the full name of four children.

The CHILDREN group is a one-dimensional array. The DEPENDENT group is a two-dimensional
array.

You refer to an item of the DEPENDENT group using subscripts. For example,
DEPENDENT(1).CHILDREN(1).CHILD_NAME refers to the first occurrence of the
CHILD_NAME form data item in the CHILDREN group and the first occurrence of the
CHILD_NAME form data item in the DEPENDENT group. Because the CHILDREN group is
nested in the DEPENDENT group, you cannot refer to items in the CHILDREN GROUP without
naming the DEPENDENT group. For example,CHILDREN(1).CHILD_NAME is an unqualified
reference. You must use a reference like DEPENDENT(2).CHILDREN(1).CHILD_NAME.

7.4.2. Displaying Data Stored in Form Data Groups
To display form data items that are declared in a group, you must declare a panel group that corresponds
by name to that form data group. You can include literals in the panel group. The panel fields in the
panel group must be named the same as the form data items in the form data group.

For fields or literals within multiple-occurrence panel groups, the line and column clause in the field or
literal declaration determines the position of the first occurrence of that field or literal on the display. The
appearance of subsequent occurrences is controlled by the VERTICAL and HORIZONTAL clauses. If
you specify VERTICAL, subsequent occurrences of items in the group appear below the first occurrence.
If you specify HORIZONTAL, subsequent occurrences of the group appear to the right of the first
occurrence.

Horizontal groups of panel fields must occur the same number of times as the form data group to which
they correspond (that is, they cannot scroll). Vertical groups of panel fields that are the outermost
multiple-occurrence group can occur fewer times than their corresponding data groups. The Form
Manager scrolls data in the group of panel fields when necessary to show all data stored in the data
group. A vertical multiple-occurrence group nested inside another multiple-occurrence group must
occur the same number of times as its related data group. You determine how many times a vertical
group occurs with the DISPLAYS clause. Section 7.5, "Creating Scrolled Regions" describes using the
DISPLAYS clause.

Example 7.9, "Declaration of Panel Fields to Display a Form Data Item Group" shows how you declare
panel fields to display the group of form data items shown in Example 7.8, "Declaration of Form Data
Groups".

171

Chapter 7. Using Advanced DECforms Features

Example 7.9. Declaration of Panel Fields to Display a Form Data Item Group

Panel GROUP_PANEL
 Literal Text
 Line 3
 Column 5
 Value "Employee Information"
 Display
 Font Size Double High
 End Literal

 Group EMPLOYEE_ADDRESS
 Literal Text
 Line 6
 Column 5
 Value "Street:"
 End Literal

 Field STREET_ADDRESS
 Same Line
 Next Column +1
 Display
 Underlined
 End Field

 Literal Text
 Next Line
 Column 5
 Value "City:"
 End Literal

 Field CITY
 Same Line
 Next Column +3
 Display
 Underlined
 End Field

 Literal Text
 Next Line
 Column 5
 Value "State:"
 End Literal

 Field STATE
 Same Line
 Next Column +2
 Display
 Underlined
 End Field

 Literal Text
 Same Line
 Next Column +3
 Value "Zip code:"
 End Literal

 Field ZIP_CODE

172

Chapter 7. Using Advanced DECforms Features

 Same Line
 Next Column +1
 Display
 Underlined
 End Field
 End Group

 Literal Text
 Line 10
 Column 5
 Value "Spouse:"
 End Literal

 Group SPOUSE
 Horizontal
 Field NAME
 Line 10
 Column 13
 Display
 Underlined
 Input Picture XXXXXXXXXXXXXXX' '
 End Field
 End Group

 Literal Text
 Line 12
 Column 5
 Value "Dependent children:"
 End Literal

 Group DEPENDENT
 Vertical
 Group CHILDREN
 Horizontal
 Field CHILD_NAME
 Line 13
 Same Column
 Display
 Underlined
 Input Picture XXXXXXXXXXXXXXX' '
 End Field
 End Group
 End Group
End Panel

Declaration of a literal with a double high font that labels the panel.

Declaration of a panel group that contains literal and fields. This group corresponds to the form
data item group EMPLOYEE_ADDRESS, which is a simple group.

Declaration of a text literal to label the next group on the panel. The literal is not declared inside
the SPOUSE panel group because the NAME form data group occurs twice, so the NAME panel
group must be displayed twice. If the literal declaration is placed inside the panel group declaration,
the literal appears twice on the panel. In this case, the literal should appear only once on the panel,
so it is declared outside the panel group.

Declaration of a panel group that corresponds to the SPOUSE form data item group. The Form
Manager displays the NAME field twice and underline sit.

173

Chapter 7. Using Advanced DECforms Features

Declaration of a literal to label the DEPENDENT group. Once again, the literal is needed only
once on the panel and so is declared outside the panel group.

Declaration of the panel group that displays the form data group DEPENDENT. The Form
Manager displays the DEPENDENT group vertically; the second, third, and fourth occurrences
appear below the first occurrence. The Form Manager displays the CHILDREN group horizontally.
The first occurrence of that group appears on line 13 in column 5. The second occurrence appears
to the right of the first occurrence.

Figure 7.1, "Appearance of Groups on the Display" illustrates how the panel in the Example 7.9,
"Declaration of Panel Fields to Display a Form Data Item Group" is displayed.

Figure 7.1. Appearance of Groups on the Display

7.4.3. Activating Panel Groups for Input
To activate a panel field, you specify the ACTIVATE response step and name the panel field. If you
want to activate an entire panel group, you specify the GROUP clause with the ACTIVATE response
step. You name the group you want the Form Manager to activate in the ACTIVATE GROUP response
step. You must specify the panel on which the Form Manager displays the panel group or panel field in
the ACTIVATE response step.

To activate a simple group (one that does not contain the OCCURS clause)use the group name in the
ACTIVATE response step. For example, the following ACTIVATE response step causes the Form
Manager to activate each field in the EMPLOYEE_ADDRESS panel group:

ACTIVATE GROUP EMPLOYEE_ADDRESS On GROUP_PANEL

If you name a panel group in the ACTIVATE response step, the Form Manager adds activation items
to the activation list in the order in which you declare panel fields in the panel group. For example, the
Form Manager activates the EMPLOYEE_ADDRESS group in Example 7.9, "Declaration of Panel
Fields to Display a Form Data Item Group" as follows:

STREET_ADDRESS
CITY
STATE
ZIP_CODE

To activate only the EMPLOYEE_ADDRESS.STREET_ADDRESS panel field, you use the following
response step:

Activate Field EMPLOYEE_ADDRESS.STREET_ADDRESS On GROUP_PANEL

174

Chapter 7. Using Advanced DECforms Features

This response step causes the Form Manager to activate only the first panel field in the
EMPLOYEE_ADDRESS group.

To activate a panel group with an OCCURS clause, use the following ACTIVATE response step:

Activate Group SPOUSE On GROUP_PANEL

The Form Manager creates the following activation list:

SPOUSE(1).NAME
SPOUSE(2).NAME

The following ACTIVATE response step causes the Form Manager to activate each panel field in the
DEPENDENT panel group shown in Example 7.9, "Declaration of Panel Fields to Display a Form Data
Item Group":

Activate Group DEPENDENT On GROUP_PANEL

This ACTIVATE response step causes the Form Manager to create the following activation list:

DEPENDENT(1).CHILDREN(1).CHILD_NAME
DEPENDENT(1).CHILDREN(2).CHILD_NAME
DEPENDENT(2).CHILDREN(1).CHILD_NAME
DEPENDENT(2).CHILDREN(2).CHILD_NAME
DEPENDENT(3).CHILDREN(1).CHILD_NAME
DEPENDENT(3).CHILDREN(2).CHILD_NAME
DEPENDENT(4).CHILDREN(1).CHILD_NAME
DEPENDENT(4).CHILDREN(2).CHILD_NAME

You can activate only certain items in a group. For example, the following ACTIVATE response steps
cause the Form Manager to activate three panel fields in the DEPENDENT panel group:

Activate Field DEPENDENT(2).CHILDREN(1).CHILD_NAME On GROUP_PANEL
Activate Field DEPENDENT(1).CHILDREN(2).CHILD_NAME On GROUP_PANEL

The Form Manager creates the following activation list:

DEPENDENT(2).CHILDREN(1).CHILD_NAME
DEPENDENT(1).CHILDREN(2).CHILD_NAME

7.4.4. Passing Group Data Between the Program and
Form
To pass data between form data groups and the program, you must declare a form record that contains a
group that corresponds to the form data group. You must also declare a program record that is logically
equivalent to the form record and contains a structure that is logically equivalent to the form record field
group.

Example 7.10, "Declaration of a Form Record That Passes Data to Form Data Groups" shows a
form record declaration that allows you to pass data to the form data groups shown in Example 7.8,
"Declaration of Form Data Groups".

Example 7.10. Declaration of a Form Record That Passes Data to Form Data Groups

Form EMPLOYEE_FORM

175

Chapter 7. Using Advanced DECforms Features

 Form Record EMPLOYEE_DATA
 Group EMPLOYEE_ADDRESS
 STREET_ADDRESS Character (30)
 CITY Character (15)
 STATE Character(2)
 ZIP_CODE Integer(9)
 End Group

 Group SPOUSE Occurs 2
 NAME Character (15)
 End Group
 Group DEPENDENT Occurs 4
 Group CHILDREN Occurs 2
 CHILD_NAME Character (15)
 End Group
 End Group

END RECORD

The record fields in the EMPLOYEE_ADDRESS group have a default data transfer association
with the form data items in the EMPLOYEE_ADDRESS group. The names of the form record
fields match the names of the form data items.

The SPOUSE.NAME record field is associated with the SPOUSE.NAME form data item for data
transfer.

The DEPENDENT form record field group is associated with the DEPENDENT form data item
group.

Example 7.11, "Declaration of a Program Record That Passes Data to Groups" shows a program record
that is logically equivalent to the form record shown in Example 7.10, "Declaration of a Form Record
That Passes Data to Form Data Groups". The program record declaration is shown in COBOL.

Example 7.11. Declaration of a Program Record That Passes Data to Groups

IDENTIFICATION DIVISION.
PROGRAM ID. Employee_program.

DATA DIVISION.
WORKING STORAGE SECTION.
*—
* This COBOL record is logically equivalent to the preceding
* form record.
*–
01 GROUP_RECORD GLOBAL.
 03 STREET_ADDRESS PIC X(30).
 03 CITY PIC X(15).
 O3 STATE PIC X(2).
 03 ZIP_CODE PIC 9(9) COMP.

 03 SPOUSE OCCURS 2.
 05 NAME PIC X(15).
 03 DEPENDENT OCCURS 4.
 05 CHILDREN OCCURS 2.
 07 CHILD_NAME PIC X(15).
PROCEDURE DIVISION.

176

Chapter 7. Using Advanced DECforms Features

 .
 .
 .
END PROGRAM Employee_program.

7.5. Creating Scrolled Regions
In DECforms, a scrolled region is a section of a panel with one or more identical, contiguous fields and
(optionally) literals. The region allows the operator to enter and read many lines of data on a panel. You
can create a scrolled region that contains one line or many lines, up to the number of lines on the panel.
Scrolled regions can include double-wide and double-size lines.

The sections that follow explain how you display arrays in a scrolled region and how yougive the
operator control of the scrolled region.

7.5.1. Displaying Scrolled Data
In DECforms, you use a scrolled region to display groups. Therefore,to create a scrolled region,
you declare a form data group and a panel group that correspond to each other. You then include a
VERTICAL DISPLAYS clause in the panel group declaration to specify the number of times the panel
group occurs on the display. The Form Manager displays as much data as fits in the group on the display.
If the operator requests to see more of the data, the Form Manager scrolls the data, either by line or by
page,depending on what you specify. Figure 7.2, "Operation of a Scrolled Region" shows how a scrolled
region works.

Figure 7.2. Operation of a Scrolled Region

In Figure 7.2, "Operation of a Scrolled Region", the form data group occurs four times. The panel group
is displayed twice, so two occurrences of the form data group can be displayed at once.

Example 7.12, "Declarations of the Elements That Control Array Transfer and Scrolling" shows how
to declare the panel fields, form data items and form record that allow you to display data from the
program in the panel shown in Figure 7.2, "Operation of a Scrolled Region".

177

Chapter 7. Using Advanced DECforms Features

Example 7.12. Declarations of the Elements That Control Array Transfer and Scrolling

Form EMPLOYEE_FORM

 Form Data
 Group NAME_AND_NUMBER Occurs 4
 Employee_name CHARACTER (30)
 Employee_phone CHARACTER (10)
 End Group
 Change_number CHARACTER (1)
 End Data

 Form Record EMPLOYEE_PHONE_NUMBERS
 Group NAME_AND_NUMBER Occurs 4
 Employee_name CHARACTER (30)
 Employee_phone CHARACTER (10)
 END GROUP
 Change_number CHARACTER (1)
 End Record

 Layout
 Device
 Terminal Type %VT200
 End Device

 Function CHANGE_ITEM is %KP_7 End Function
 .
 .
 .
 Panel SCROLL_PANEL
 Function Response CHANGE_ITEM
 Activate Panel CHANGE_ITEM_PANEL
 End Response

 Literal Text
 Line 2 Column 30
 Value "VIEW PHONE NUMBERS"
 Double High
 End Literal

 Literal Text
 Line 7 Column 10
 Value "Employee Name and Phone Number:"
 End Literal

 Literal Rectangle
 Line 10 Column 10
 Line 16 Column 65
 End Literal

 Group NAME_AND_NUMBER
 Vertical Displays 2

 Field EMPLOYEE_NAME
 Line 12 Column 15
 End Field

 Field EMPLOYEE_PHONE

178

Chapter 7. Using Advanced DECforms Features

 Line 12 Column 47
 End Field
 End Group

 Literal Text
 Line 20 Column 10
 Value "Press KP7 to change a phone number or remove an entry"

 END PANEL
 END LAYOUT
END FORM

The NAME_AND_NUMBER form data item group stores the group data for the scrolled region.
This group contains only four occurrences, which is an arbitrary limit. The form data item group
could contain hundreds of data items, and scrolling works the same.

The EMPLOYEE_PHONE_NUMBERS form record allows the form to exchange phone number
data with the program.

The function declaration binds the KP7 key to the CHANGE_ITEM function.

The CHANGE_ITEM function response activates the CHANGE_ITEM_PANEL for input.

The NAME_AND_NUMBER panel group corresponds to the NAME_AND_NUMBER form
data item group. The Form Manager displays two occurrences of the group vertically, which
means that the field declaration specifies the position of the first item. The Form Manager displays
another item directly below that item.

Data in the EMPLOYEE_NAME and EMPLOYEE_PHONE panel fields scrolls because the panel
fields are displayed fewer times than the data group occurs.

7.5.2. Setting Up the Operator's Control of a Scrolled
Region
The operator controls a scrolled region using function keys. By default DECforms binds scrolling
functions to keys as follows:

● The UP OCCURRENCE function is bound to the PF4-Up Arrow key sequence.

This function causes the data in the scrolled region to move down. If you specify SCROLL BY
PAGE in the panel group declaration, the Form Manager displays a new page of data on the display.
The VERTICAL DISPLAYS clause controls the length of the page. The page is as long as the
number of vertical occurrences of the field. If you omit SCROLL BY PAGE, the Form Manager
scrolls the region smoothly, one line at a time.

● The DOWN OCCURRENCE function is bound to the PF4-Down Arrow sequence.

This function causes the data in the scrolled region to move up. If you specify SCROLL BY PAGE
in the panel group declaration, a new page of data is output to the display. The length of the page
is controlled by the VERTICAL DISPLAYS clause. The page is as long as the number of vertical
occurrences of the field. If you omit SCROLL BY PAGE, the region scrolls smoothly, one line at a
time.

You can change the keys to which these functions are bound by declaring the function in your IFDL
source file. You can write a function response for these functions if you need actions other than those

179

Chapter 7. Using Advanced DECforms Features

given by default. See Section 7.1, "Defining Keys" for information on declaring functions and writing
function responses.

7.6. Determining What Changed During
Operator Input
You may need to determine whether the operator changed the value of a form data item. Determining
this can be difficult because you may pass large amounts of data between your program and your form.
In particular, you can pass all the data needed for a scrolled region to the form in a single call, instead of
passing the data a little at a time,as you do in FMS. In DECforms, you can use tracked form data items
and receive shadow records to help your program determine what the operator changed.

7.6.1. Tracking Form Data Items
When you specify that you want to know if a form data item's value changes by using a tracked form
data item,the Form Manager maintains two copies of the data item. One copy contains the last known
value. The last known value is one of the following:

● The last value passed from the program to the form data item

● The last value passed from the form data item to the program

In other words, the last known value is the last value the program “knows.” The second copy of the form
data item stores the current value of the form data item.

Directly before the Form Manager returns the current value of the form data item to your program,
it compares the current value to the last known value. If the current value and last known value are
different, the Form Manager returns information to your program in the shadow record that indicates the
form data item has changed.

To specify that a form data item is tracked, you use the TRACKED clause in the form data declaration.
Example 7.13, "Tracked Form Data Items" shows a FORM DATA statement that contains the
TRACKED clause.

Example 7.13. Tracked Form Data Items

Form EMPLOYEE_FORM

 Form Data
 EMPLOYEE_NAME Character (30) Tracked
 EMPLOYEE_ID_NUMBER Integer (10)
 HIRE_DATE Date
 CURRENT_JOB_TITLE Character (10) Tracked
 End Data

 Form Record EXPERIENCE_RECORD
 EMPLOYEE_NAME Character (30)
 EMPLOYEE_ID_NUMBER Integer (10)
 HIRE_DATE Date
 CURRENT_JOB_TITLE Character (30)
 End Record
 .
 .
 .

180

Chapter 7. Using Advanced DECforms Features

End Form

The EMPLOYEE_NAME and the CURRENT_JOB_TITLE form data items are tracked. You should
use the TRACKED clause only where you need it. It doubles the amount of storage needed for a data
item, and it may degrade performance.

The example also shows a form record that can be used to pass data to and from the form data items.

7.6.2. Using Receive Shadow Records
The Form Manager writes information about tracked data items in a receive shadow record, if you
create one and pass it in your request call. To create a receive shadow record, declare a record in your
program that contains the number of fields in the record you want to shadow, plus one extra field.
For example, Example 7.14, "Shadow Record Declaration" shows a shadow record declaration for the
EXPERIENCE_RECORD form record in Example 7.13, "Tracked Form Data Items".

Example 7.14. Shadow Record Declaration

WORKING STORAGE SECTION.
*-----
* COBOL record declaration for a shadow record
*-----
01 EXPERIENCE_RECORD_SHADOW GLOBAL.
 03 RECORD_SHADOW PIC X.
 03 EMPLOYEE_NAME_SHADOW PIC X.
 03 EMPLOYEE_ID_NUMBER_SHADOW PIC X.
 03 HIRE_DATE_SHADOW PIC X.
 03 CURRENT_JOB_TITLE_SHADOW PIC X.

The first character in the shadow record indicates whether any field in the record being returned to the
program has been modified. Each following character in the shadow record indicates whether a specific
field in the program record has been modified. The second shadow record character gives information
about the first record field; the third shadow record character gives information about the second record
field; and so on. Table 7.1, "Meaning of Shadow Record Characters" explains the characters the Form
Manager uses in shadow records.

Table 7.1. Meaning of Shadow Record Characters

Shadow Character Meaning for Entire Record Meaning for a Specific Field

1 One or more fields in the record
have been modified

The record field has changed

X Either no tracked form data items
have been changed or no fields
in the record correspond to form
data items that are tracked.

The form data item to which this
shadow record field corresponds
is not tracked

0 All fields in the record are
unchanged

The record field is unchanged

For example, suppose DECforms returns a shadow record that contains the following:

Shadow Record Contents

First Character Second Character Third Character Fourth Character Fifth Character

1 1 X X 0

181

Chapter 7. Using Advanced DECforms Features

This shadow record indicates that one or more fields in EXPERIENCE_RECORD have changed
because a 1 is the first character of the shadow record. The second character of the shadow record
indicates that new input changed the EMPLOYEE_NAME field in EXPERIENCE_RECORD. The
next two characters in the shadow record indicate that the Form Manager did not maintain tracking
information for the form data items that correspond to those record fields. Finally, the 0 indicates that
the CURRENT_JOB_TITLE field is unchanged.

Pass the receive shadow record in the receive-shadow-record parameter to the FORMS$RECEIVE
call or the FORMS$TRANSCEIVE call. See the VSI DECforms Programmer's Reference Manual for
information on the receive-shadow-record parameter.

7.7. Using Escape Routines
An escape routine is an application program subroutine that you call from the form. It is similar to an
FMS user action routine (UAR). You use an escape routine when you need to do something you cannot
do in a response in the form. For example, you might write an escape routine that performs arithmetic
calculations or one that performs a file operation.

This section explains what to do in your program to use escape routines,how to use the CALL response
step, and how to link a program that uses escape routines.

7.7.1. Writing a Program That Uses Escape Routines
You can write an escape routine in any of the programming languages that DECforms supports. You
must follow the syntax rules of the programming language for creating a subroutine. The only difference
between an escape routine and other subroutines in your program is that you call an escape routine from
the form, instead of from another part of your program. You must write the escape routine so that it can
be called from code external to your program.

You can call a request from an escape routine, but you cannot call a DISABLE request that terminates
the session from which you called the escape routine. (See the description of using escape routines in
the VSI DECforms Programmer's Reference Manual for information on calling DECforms requests from
escape routines.)

Example 7.15, "Escape Routine in a COBOL Program" shows an example of an escape routine in a
COBOL program.

Example 7.15. Escape Routine in a COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. INCREMENT.
**
* General escape routine to increment a value. *
**
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
01 COUNT_KEEPER PIC 9(9) COMP.
PROCEDURE DIVISION USING COUNT_KEEPER.
0.
*+
* Add one.
*+
 ADD 1 to COUNT_KEEPER.
*

182

Chapter 7. Using Advanced DECforms Features

 END PROGRAM INCREMENT.

In addition to writing the escape routines, you must include the FORMS$AR_FORM_TABLE symbol
in your FORMS$ENABLE call. This symbol allows the Form Manager to find the escape routines.
The symbol is a declared DECforms-supplied definitions file that is stored in SYS$LIBRARY.
The definitions file also declares the DECforms request calls. DECforms provides the file for most
programming languages. You should copy the definitions file into your program.

Example 7.16, "FORMS$ENABLE for Escape Routines" shows the COPY statement needed
to get the definitions file for COBOL and a FORMS$ENABLE call that includes the FORMS
$AR_FORM_TABLE symbol.

Example 7.16. FORMS$ENABLE for Escape Routines

*
* Copy statement for COBOL definitions
*
COPY "SYS$LIBRARY:FORMS$COB_DEFINITIONS.LIB".
*
* Enable call for escape routines
*
 CALL "forms$enable" USING BY VALUE FORMS$AR_FORM_TABLE
 BY DESCRIPTOR DISPLAY_DEVICE
 BY DESCRIPTOR SESSION_ID
 BY DESCRIPTOR SAMP_FORM
 GIVING FORMS_STATUS.

7.7.2. Writing Responses That Call Escape Routines
To transfer control to an escape routine, write a response that contains the CALL response step. This
response step calls your escape routine. You can pass data items to the escape routine as parameters
to this response step. You can use the GIVING phrase of the response step to get status from the
procedural escape. You must declare the variable into which Form Manager writes status as a
LONGWORD INTEGER.

Because you can use the CALL response step in any response, you can cause a procedural escape when:

● Operator entry to a field is complete.

● A panel, group, or field is entered or exited.

● The Form Manager is validating a field.

● You call a request.

● The operator presses a function key.

Example 7.17, "CALL Response Step" shows an example response with the CALL response step.

Example 7.17. CALL Response Step

Exit Response
 Call 'Increment' Using By Reference TRANSACTION_COUNT
End Response

The EXIT RESPONSE in Example 7.17, "CALL Response Step" calls the INCREMENT escape routine
shown in Example 7.15, "Escape Routine in a COBOL Program". The CALL response step passes the

183

Chapter 7. Using Advanced DECforms Features

form data item TRANSACTION_COUNT to the escape routine. The escape routine increments the
value it receives from the form and returns it to the TRANSACTION_COUNT form data item.

You must be aware of the data type and length of form data items that you pass to escape routines.
The data type of the form data item must create the same internal OpenVMS data type as the variable
declared in your program. For example, suppose you declare a form data item to be the DECforms
INTEGER data type. DECforms represents the INTEGER data type as an OpenVMS numeric string
with a left separate sign. The variable in your program that is to receive the data must also create an
OpenVMS numeric string with a left separate sign in internal storage. See the VSI DECforms IFDL
Reference Manual for information on what OpenVMS data types DECforms uses to represent IFDL data
types. The lengths of the form data item and program variable must also match.

Each programming language has different rules for how you pass external variables to a routine written
in the programming language. You must use the appropriate passing mechanism in the CALL response
step so that your escape routine can use the value you pass to it. See the documentation for your
programming language for information on passing external variables to your program.

See the VSI DECforms IFDL Reference Manual for more information about the CALL response step and
defining responses.

7.7.3. Linking Applications That Use Escape Routines
To link your application when it contains escape routines, first create a form object module. A form
object module contains a list of the escape routines that you call from the form. You create a form
object module using the Extract Object Utility.

To create an object module using the Extract Object Utility, issue the FORMS EXTRACTOBJECT
command, which has the following format:

FORMS EXTRACT OBJECT input-file-specification[,input-file-specification...]

Substitute the file name of your form file for input-file-specification. The default file type for the input
file is the .FORM type.

You can specify several input files. Separate the file names with a comma. The Extract Object Utility
generates one object file, which contains an object module for each form listed on the command line.
The default name of the output file is the same as the input file name with the .OBJ file type. (See the
VSI DECforms Guide to Commands and Utilities for more information on the FORMS EXTRACT
OBJECT command.)

After you create an object module, link it with your program using the DCL LINK command. For
example, to link a vector object module called VECTOR_NAME.OBJ to a program object module name
PROGRAM_NAME.OBJ, issue the following command:

$ LINK PROGRAM_NAME.OBJ, VECTOR_NAME.OBJ

If you store your escape routines in a separate file from the rest of your program, you must also link the
escape routines to the program. You may also want to store escape routines in shareable images. See the
documentation on escape routines in the VSI DECforms Programmer's Reference Manual for information
on linking escape routines stored in shareable images.

184

Appendix A. Comparison of FMS
Form Language Statements and
DECforms IFDL Statements
Table A.1, "Comparison of FMS and DECforms Language Statements" compares FMS Form Language
statements to DECforms IFDL statements. The table lists FMS language statements, their DECforms
IFDL equivalent, and describes the IFDL statements.

Table A.1. Comparison of FMS and DECforms Language Statements

FMS Form Language
Statement

Corresponding DECforms
IFDL Statement

Description

ATTRIBUTE_DEFAULTS FIELD DEFAULT

LITERAL DEFAULT

Specifies default characteristics
for fields and literals.

DRAW LITERAL POLYLINE

LITERAL RECTANGLE

LITERAL POINT

Describes an object to be drawn
on the display at or between the
specified coordinates.

END_OF_FORM END FORM Marks the end of the form.
FIELD FIELD Specifies the characteristics of a

particular field within a panel.
FORM FORM Specifies the syntactical

beginning of the form definition.
NAMED_DATA Form data items that are not

displayed
Form data items specify all
variable or constant storage in the
form. They are not displayed if
no corresponding panel field is
declared.

ORDER POSITION and ACTIVATE You control the order of operator
input using the POSITION
response step. This response step
allows you to explicitly name
what activation item the Form
Manager processes first, second,
third,and so on. If you use default
function responses, the Form
Manager processes the activation
list by executing the POSITION
TO NEXT ITEM response
step. In this case, the Form
Manager processes activation
items in the order in which
they appear on the activation
list. You control the order of
items on the activation list using

185

Appendix A. Comparison of FMS Form Language Statements and DECforms IFDL Statements

FMS Form Language
Statement

Corresponding DECforms
IFDL Statement

Description

the ACTIVATE response step.
If you specify ACTIVATION
CORRESPONDING RECEIVE
ALL, the Form Manager adds
items to the activation list in the
order in which you declare panel
fields in the IFDL source file.

SCROLL Panel group with a VERTICAL
DISPLAYS clause that specifies
fewer occurrences than the form
data group to which the panel
group corresponds.

When a panel group occurs fewer
times than its corresponding form
data item group, the panel group
is a scrolled region. The Form
Manager displays as much data as
it can from the form data group
in the panel group. If the operator
asks to see more data, the Form
Manager scrolls the data in the
panel group.

TEXT LITERAL TEXT Describes a text object to be
written on the display at the
specified coordinates.

VIDEO DISPLAY Applies DECforms display
attributes and attributes you
define to fields and panels.

186

Appendix B. FMS Call Conversion
Summary
Table B.1, "FMS Call Conversion Summary" summarizes how you convert the FMS calls to DECforms
syntax. It also gives references to sections in the manual that give more detail on converting each call.

Table B.1. FMS Call Conversion Summary

FMS Call Emulating in DECforms

ADLVA To create a data line in DECforms, create a one-
line panel. Apply video attributes to the panel using
the DISPLAY clause at the panel level. See Section
4.3.4, "Controlling Output to and Input from a
Terminal Line" for more information.

AFCX No DECforms equivalent. See Section 4.1.1, "The
AFCX Call"for more information.

AFVA Use the HIGHLIGHT WHEN clause within a field.
See Section 4.3.1, "Altering Field Video Attributes"
for more information.

ATERM Specify which display device to use in the display-
device-specification parameter to the ENABLE
request. Usually, you can specify SYS$INPUT in
this argument. See Section 4.2.2, "Opening the
Form Environment" for more information.

AWKSP Relate a form with a terminal by calling the
ENABLE request. The session identification string
returned from this request identifies the form
and terminal. Use the session identification string
to determine which session each call you make
affects. See Section 4.2.2, "Opening the Form
Environment"for more information.

BELL Use the SIGNAL %BELL response step to ring
the terminal bell. See Section 4.3.19, "Signaling the
Operator" for more information.

CANCEL Use the FORM$CANCEL call to cancel
outstanding requests for a specified session. See
Section 4.2.5, "Canceling Requests" for more
information.

CDISP Clear the terminal screen before you display a
panel by declaring a viewport as large as the
terminal screen. Use the VIEWPORT clause within
the panel to designate displaying the panel on
the full screen viewport. Display the panel with
the DISPLAY response step. See Section 4.3.9,
"Displaying Forms" for more information.

CLEAR Clear the part or all of the terminal screen with
the REMOVE ALL response step. Redraw parts

187

Appendix B. FMS Call Conversion Summary

FMS Call Emulating in DECforms
of the screen using the REFRESH response step.
See Section 4.3.3, "Clearing the Screen" for more
information.

CLEAR_VA No DECforms equivalent. See Section 4.1.2, "The
CLEAR_VA and FIX_SCREEN Calls" for more
information.

DEL No DECforms equivalent. See Section 4.1.3, "The
DEL and READ Calls" for more information.

DFKBD Define keys with the FUNCTION and FUNCTION
RESPONSE statements. See Section 7.1, "Defining
Keys" for more information.

DISP Display panels with the DISPLAY response step.
If you need the initial values of form data items to
appear in the panel fields,specify the initial value
with the VALUE clause. Use the RESET response
step to reset form data items to their initial values.
See Section 4.3.9, "Displaying Forms" for more
information.

DISPW Display panels with the DISPLAY response step.
See Section 4.3.9, "Displaying Forms" for more
information.

DPCOM Control what character is used as the decimal
point with the DECIMAL POINT IS clause in the
OUTPUT PICTURE for a field. See Section 4.3.6,
"Defining the Decimal Point as Comma" for more
information.

DTERM To detach the terminal, call the DISABLE request.
This request also closes the form. See Section
4.2.6, "Closing the Form Environment" for more
information.

DWKSP To close the form, call the DISABLE request. This
request also detaches the terminal. See Section
4.2.6, "Closing the Form Environment" for more
information.

FCHAN No DECforms equivalent. See Section 4.1.4, "The
FCHAN and TCHAN Calls" for more information.

FIX_SCREEN No DECforms equivalent. See Section 4.1.2, "The
CLEAR_VA and FIX_SCREEN Calls" for more
information.

GET

GETAF

GETAL

GETSC

Get data from the form by calling the RECEIVE
request. The RECEIVE request gets a record from
the form. See Section 4.2.4, "Getting Data from the
Form" for more information.

188

Appendix B. FMS Call Conversion Summary

FMS Call Emulating in DECforms

GETDL Get data from a data line using the RECEIVE
request. To emulate the data line, declare a one-
line panel and viewport into which the operator
can enter data. Position the viewport and panel on
the display where you want the data line to appear.
See Section 4.3.4, "Controlling Output to and Input
from a Terminal Line"for more information.

ILTRM Trap invalid functions by writing a function
response for functions that are invalid in a
particular context. For example, the NEXT FIELD
function is invalid when the operator is positioned
on the last field on the panel. Determine what
occurs when the operator invokes the NEXT
FIELD function by defining a function response
for that function within the last field on the panel.
The function response is executed only when
the operator is positioned on the last field on the
panel. See Section 7.1, "Defining Keys" for more
information about writing function responses.

LCHAN Request that the Form Manager choose an I/O
channel by calling the ENABLE request. The
session identification string returned from this
request identifies the channel opened. See Section
4.2.2, "Opening the Form Environment" for more
information.

LCLOS To close the channel, call the DISABLE request.
This request also detaches the terminal. See Section
4.2.6, "Closing the Form Environment" for more
information.

LEDOF No DECforms equivalent. See Section 4.1.5, "The
LEDON and LEDOF Calls" for more information.

LOAD Identify which form should be used during
a session by naming the form in the form-
specification parameter to the ENABLE
request. See Section 4.2.2, "Opening the Form
Environment" for more information.

LOPEN The form is opened (made ready to use) during the
processing of the ENABLE request. See Section
4.2.2, "Opening the Form Environment" for more
information on the ENABLE request.

NDISP No DECforms equivalent for marking forms as
not displayed. However, to remove a panel from
the display, use the REMOVE response step. This
response step clears the contents of a viewport and
removes the viewport from the display. See Section
4.3.10, "Marking Forms as Undisplayed" for more
information.

189

Appendix B. FMS Call Conversion Summary

FMS Call Emulating in DECforms

PFT Standard DECforms functions are trapped in the
form by default. If you want new keys to invoke
the functions or different actions to occur in
response to the functions, use the FUNCTION and
FUNCTIONRESPONSE statements to redefine the
functions and respecify the actions they cause. See
Section 4.3.13, "Processing Field Terminators" for
more information.

PRINT_SCREEN Print panels using the PRINT response step. This
response step writes the contents of the named
panel to a file. See Section 4.3.12, "Printing
Forms" for more information.

PUT

PUTAL

PUTSC

Put data to the form by calling the SEND request.
The SEND request sends a record to the form. See
Section 4.2.3, "Sending Data to the Form" formore
information.

PUTD

PUTDA

Assign form data items a default value using the
VALUE clause with the FORM DATA statement.
If the value in the form data item changes, reset
it to the default value using the RESET response
step. You can reset particular form data items or all
form data items.

PUTL Put data to a data line using the SEND request.
To emulate the data line, declare a one-line panel
and viewport into which the operator can enter
data. Position the viewport and panel on the display
where you want the data line to appear. See Section
4.3.4, "Controlling Output to and Input from a
Terminal Line"for more information.

READ No DECforms equivalent. See Section 4.1.3, "The
DEL and READ Calls" for more information.

RET

RETAL

Return data from the form to the program by
calling the RECEIVE request and writing a
RECEIVE response in the form. Use the RETURN
response step to specify returning control to the
program without getting operator input. See
Section 4.3.16, "Returning Data from the Form
Workspace" for more information.

RETCX Get information about the operator's current
context by examining the values in built-in form
data items. See Section 4.3.8, "Determining Form
Context"for more information.

RETDI

RETDN

Declare constant information in the form by
declaring form data items and using the VALUE
clause to assign a value to them. If you need the
constant information stored in the form data items
in your program, use the FORMS$RECEIVE call

190

Appendix B. FMS Call Conversion Summary

FMS Call Emulating in DECforms
to get the data from the form. See Section 4.3.17,
"Returning Named Data by Index and Name" for
more information.

RETFL Print panels using the PRINT response step. This
response step writes the contents of a panel to a
file. See Section 4.3.12, "Printing Forms" for more
information.

RETFN Determine the current field name by examining
the contents of the CURRENTITEM built-in form
data item. See Section 4.3.8, "Determining Form
Context"for more information.

RETFO No DECforms equivalent. See Section 4.1.6, "The
RETFO and RETLE Calls" for more information.

RETLE No DECforms equivalent. See Section 4.1.6, "The
RETFO and RETLE Calls" for more information.

RFRSH Refresh the viewports on the display using the
REFRESH response step. Specify REFRESH
ALL to refresh all viewports. See Section 4.3.14,
"Refreshing the Screen" for more information.

SCR_LENGTH No DECforms equivalent. See Section 4.1.7, "The
SCR_LENGTH and SCR_WIDTH Calls" for more
information.

SCR_WIDTH No DECforms equivalent. See Section 4.1.7, "The
SCR_LENGTH and SCR_WIDTH Calls" for more
information.

SIGOP Use the SIGNAL %BELL response step to ring
the terminal bell. Use the SIGNAL %REVERSE
response step to reverse the video attributes of
the screen. See Section 4.3.19, "Signaling the
Operator" for more information.

SPADA Modify the keypad mode using the DISPLAY
clause. The%KEYPAD_APPLICATION
attribute sets the keypad to application
mode. The%KEYPAD_NUMERIC attribute
sets the keypad to numeric mode. The
%KEYPAD_UNCHANGED attribute allows the
operator to control the keypad mode. See Section
4.3.11, "Modifying the Keypad Mode" for more
information.

SPON Use the PROTECTED WHEN clause to
conditionally protect fields from operator entry.
Make the WHEN condition true to protect the
field. See Section 4.3.5, "Controlling Supervisor
Mode" for more information.

SPOFF Use the PROTECTED WHEN clause to
conditionally protect fields from operator entry.
Make the WHEN condition false to unprotect the

191

Appendix B. FMS Call Conversion Summary

FMS Call Emulating in DECforms
field. See Section 4.3.5, "Controlling Supervisor
Mode" for more information.

SSIGQ Signal the operator with the SIGNAL %BELL or
SIGNAL %REVERSE response steps. Choose
the signal mode with each response step. See
Section 4.3.19, "Signaling the Operator" for more
information.

SSRV No DECforms equivalent. See Section 4.1.8, "The
SSRV and STAT Calls" for more information.

STAT No DECforms equivalent. See Section 4.1.8, "The
SSRV and STAT Calls" for more information.

STERM Determine what session is affected by a DECforms
call using the session identification string. See
Section 4.2, "Changing Form Driver Calls to
DECforms Calls" for more information.

STIME Specify the number of seconds the operator has to
enter data in a field using the timeout parameter to
one of the request calls. See Section 4.2, "Changing
Form Driver Calls to DECforms Calls" for more
information.

SWKSP Switch operator entry to a new panel using the
ACTIVATE and POSITION response steps. The
ACTIVATE response step makes fields on a panel
eligible for input. The POSITION response step
causes the Form Manager to process the items. See
Section 4.3.18, "Setting the Current Workspace" for
more information.

TCHAN No DECforms equivalent. See Section 4.1.4, "The
FCHAN and TCHAN Calls" for more information.

USER_REFRESH Use the CALL response step to call an escape
routine that refreshes parts of the screen that are
not maintained by the Form Manager. You should
specify the REFRESH ALL response step to be
performed after control returns to the form. This
allows the Form Manager to reset the terminal.

WAIT Synchronize form processing with the pace of
the operator using the WAIT response step. See
Section 4.3.21, "Waiting for the Operator" for more
information.

192

Appendix C. Comments Created
by the FMS Converter
The FMS Converter creates comments in the IFDL source file. These comments give information about
the Converter output, highlight IFDL source code that may need to be changed, or indicate that syntax to
create a default DECforms attribute has not been written to the source file. This appendix explains each
of the comments written by the Converter.

Message
/**Change the panel named in this USE HELP PANEL clause from a data entry panel to a help
panel. Then, remove the comments that surround the USE HELP PANEL clause.**/

Explanation
The FMS Converter writes this message when it creates a USE HELP PANEL statement to maintain
the relationship between an FMS help form and data entry form. The DECforms USE HELP PANEL
statement appears in the data entry panel in the converted source file and names the help panel that the
FMS Converter created from the FMS help form.

The Converter cannot distinguish between help panels and data entry panels,so it declares all panels as if
they are data entry panels.

DECforms help panels cannot contain the USE HELP PANEL statement.

User Action
To convert help, modify the panel declaration for the help-panel-name to make it a help panel
declaration. A help panel is declared with the HELP PANEL statement. Be sure the help panel contains
no USE HELP PANEL statements. Then, delete the comment characters that surround the USE HELP
PANEL statement in the data entry panel.

Message
/**Default clear character attribute not specified for this CHARACTER field.**/

Explanation
You specified an explicit blank clear character for an FMS field. The data to be displayed in the
converted panel field is a character string. The DECforms default for character string data is to display a
blank for the clear character. The Converter does not output IFDL syntax to explicitly state this default.

User Action
None; this is an informational message.

193

Appendix C. Comments Created by the FMS Converter

Message
/**If possible, convert the UAR this function response calls to response steps.**/

Explanation
The FMS Converter creates a function response for the UNDEFINE FUNCTION to call undefined
function key UARs.

User Action
Examine the UAR. If you can perform the same task using response steps,remove the UAR from your
program. Write response steps in the UNDEFINEDFUNCTION response to replace the UAR.

Message
/**Modify the character set clause in this field to name a valid &CIRCLE; character set. **/

Explanation
Of the character sets FMS supports, the FMS Converter supports converting only the Private_Rule
character set and the US character set.

When the Converter encounters a character set in the FMS application that it does not convert to
DECforms, it creates an invalid field. The Converter creates a field with the CHARACTER SET clause
that names the FMS character set.

User Action
You must modify the CHARACTER SET clause in the field. Substitute one of the valid DECforms
character set names for the character set name written to the source file by the Converter. See the
documentation on elementary attributes in the VSI DECforms IFDL Reference Manual for information on
what character sets DECforms supports.

194

Appendix C. Comments Created by the FMS Converter

Message
/**The CHARACTER SET clauses in this panel name invalid character sets. Modify the clauses
to name a &CIRCLE; character set. **/

Explanation
Of the character sets FMS supports, the FMS Converter converts only the Private_Rule character set and
the US character set.

When the Converter converts FMS form-wide attributes to DECforms,it creates text literals or field
default declarations. If the FMS form-wide attributes specify a character set that the FMS Converter does
not convert,the Converter creates an invalid literal or field default declaration. The Converter writes the
name of the FMS character set to the CHARACTER SET clause in the literal or field default declaration.

User Action
You must modify CHARACTER SET clauses in this panel. Substitute one of the valid DECforms
character set names for any invalid character set names written to the source file by the Converter.
See the documentation on elementary attributes in the VSI DECforms IFDL Reference Manual for
information on what character sets DECforms supports.

Message
/**The FMS Converter truncated the length of this form data item.**/

Explanation
FMS allows Named Data items to have any length. DECforms allows form data items to be 2048 bits in
length. The FMS Converter truncates any Named Data items that are longer than 2048.

User Action
Examine the resulting form data item. Divide data and create new data items as necessary.

195

Appendix C. Comments Created by the FMS Converter

Message
/**These data items simulate the FMS Named Data for form form-name.**/

Explanation
When the FMS Converter encounters Named Data items in the FMS application,it creates form data
items to correspond to the FMS Named Data. The Converter identifies the data items it creates to replace
Named Data with this message.

The FMS Converter does not create a panel field to correspond to form data items that replace FMS
Named Data. FMS Named Data is not displayed, so the Converter assumes that the form data items
should not be displayed.

User Action
None; this message is informational.

Message
/**This field is also declared on a previous panel.**/

Explanation
The field declaration following the message appears in another panel in this IFDL source file. The other
panel field is declared before this one.

User Action
Verify that this panel field displays the same data as other panel fields that have the same name. Only
one form data item of that name can exist,so this field must always display the same data as other fields
that share its name.

If this field displays unique data, rename it and create a form data item to store the data. Otherwise, you
need not modify the panel field declaration.

Message
/**This form data item is declared previously. You must rename either this item or the previous
one.**/

Explanation
The form data item that immediately follows this message is declared more than once. Other declarations
appear before this one in the IFDL source file.

User Action
Remove or rename form data items so that each data item has a unique name. If you rename a form data
item,you may also need to rename the panel field that displays the data stored in that data item.

196

Appendix C. Comments Created by the FMS Converter

Message
/**This form data item's name is invalid. You must rename it.**/

Explanation
FMS allows you to use any characters in any format for the name of a Named Data item. DECforms
allows only the characters A to Z, a to z, 0 to 9, dollar sign ($), and underscore (_) in the names of
identifiers. When the Converter encounters a name it cannot change to a valid DECforms name, it writes
the invalid name to the output source file.

User Action
Rename form data items that have invalid names.

Message
/** This literal creates a character that is not in the line drawing character set or that replaces an
FMS single character DRAW literal.**/

Explanation
The FMS Converter creates text literals to draw shapes other than polylines and rectangles using the
Private_Rule character set. For example, an FMS DRAW statement may contain characters that are not
in the line drawing character set. The Converter declares text literals that contain the same characters as
the FMS DRAW statement. The appearance of the resulting form is identical.

The Converter may also create text literals with the Private_Rule character set when the FMS application
contains a single character draw literal. The FMS and DECforms defaults for single character literals
differ;FMS uses a vertical or horizontal line, while DECforms uses across. To emulate the FMS draw
literal, the Converter creates a single-character text literal, using the Private_Rule character set that
creates the appropriate line.

User Action
None; this is an informational message.

197

Appendix C. Comments Created by the FMS Converter

198

	VSI DECforms Guide to Converting FMS Applications
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Associated Documents
	5. OpenVMS Documentation
	6. VSI Encourages Your Comments
	7. Conventions

	Chapter 1. Introduction to Converting FMS Applications
	1.1. What Features Are Available in DECforms?
	1.1.1. Device-Independent Programs
	1.1.2. Sophisticated Screen Control
	1.1.3. Ability to Move Between Active Panels Without Returning to the Program
	1.1.4. Beneficial Help Model
	1.1.5. Program Subroutine Calls in the Form

	1.2. Capabilities and Limitations of the FMS Converter
	1.3. Steps in the Conversion Process

	Chapter 2. DECforms Concepts for FMS Users
	2.1. The DECforms Application
	2.1.1. What's in a Form?
	2.1.1.1. Form Data
	2.1.1.2. Form Records
	2.1.1.3. Layouts
	2.1.1.4. Functions
	2.1.1.5. Viewports
	2.1.1.6. Panels
	2.1.1.7. Text Literals
	2.1.1.8. Panel Fields
	2.1.1.9. Responses

	2.1.2. Elements of the Program
	2.1.2.1. FORMS$ENABLE Request Call
	2.1.2.2. FORMS$SEND Request Call
	2.1.2.3. FORMS$RECEIVE Request Call
	2.1.2.4. FORMS$TRANSCEIVE Request Call
	2.1.2.5. FORMS$CANCEL Request Call
	2.1.2.6. FORMS$DISABLE Request Call
	2.1.2.7. Escape Routines

	2.2. Introduction to the Form Manager
	2.2.1. Response to Request Calls
	2.2.2. Control of the Display
	2.2.3. Control of Operator Input
	2.2.4. Data Manipulation

	2.3. Introduction to the IFDL

	Chapter 3. Converting Your Form or Form Library
	3.1. Preparing Your FMS Form or Form Library for Conversion
	3.2. Invoking the FMS Converter
	3.3. Merging the Output from Several FMS Forms
	3.4. Modifying the Converted IFDL Source File
	3.4.1. Renaming Panel Fields and Form Data Items
	3.4.2. Examining Form Data Items Created from Named Data
	3.4.3. Declaring Form Records
	3.4.4. Modifying Help Syntax
	3.4.4.1. Conversion of FMS Help Messages
	3.4.4.2. Conversion of FMS Help Panels
	3.4.4.3. Modifying the USE HELP PANEL Clause Created by the FMS Converter
	3.4.4.4. Emulating Pre-Help and Post-Help UARs

	3.5. Optimizing the Converted IFDL Source File
	3.5.1. Form Data Item Data Types
	3.5.2. Form Record Field and Program Record Field Data Types
	3.5.3. Reordering Panel Fields
	3.5.4. Rewriting Responses that Call UARs

	Chapter 4. Modifying Your Program
	4.1. Removing Form Driver Calls
	4.1.1. The AFCX Call
	4.1.2. The CLEAR_VA and FIX_SCREEN Calls
	4.1.3. The DEL and READ Calls
	4.1.4. The FCHAN and TCHAN Calls
	4.1.5. The LEDON and LEDOF Calls
	4.1.6. The RETFO and RETLE Calls
	4.1.7. The SCR_LENGTH and SCR_WIDTH Calls
	4.1.8. The SSRV and STAT Calls

	4.2. Changing Form Driver Calls to DECforms Calls
	4.2.1. DECforms Call Parameters
	4.2.2. Opening the Form Environment
	4.2.3. Sending Data to the Form
	4.2.4. Getting Data from the Form
	4.2.5. Canceling Requests
	4.2.6. Closing the Form Environment

	4.3. Moving the Logic for Form Driver Calls to the Form
	4.3.1. Altering Field Video Attributes
	4.3.2. Assigning Default Values to Fields
	4.3.3. Clearing the Screen
	4.3.4. Controlling Output to and Input from a Terminal Line
	4.3.5. Controlling Supervisor Mode
	4.3.6. Defining the Decimal Point as Comma
	4.3.7. Defining Keys
	4.3.8. Determining Form Context
	4.3.9. Displaying Forms
	4.3.9.1. Terminal Width Determination
	4.3.9.2. Panel Overlays
	4.3.9.3. Getting the Effect of the DISP and DISPW Calls
	4.3.9.4. Getting the Effect of the CDISP Call

	4.3.10. Marking Forms as Undisplayed
	4.3.11. Modifying the Keypad Mode
	4.3.12. Printing Forms
	4.3.13. Processing Field Terminators
	4.3.14. Refreshing the Screen
	4.3.15. Refreshing a Shared Screen
	4.3.16. Returning Data from the Form Workspace
	4.3.17. Returning Named Data by Index and Name
	4.3.18. Setting the Current Workspace
	4.3.19. Signaling the Operator
	4.3.20. Trapping Illegal Field Terminators
	4.3.21. Waiting for the Operator

	4.4. Running and Debugging the Converted DECforms Application

	Chapter 5. Converting the FMS Sample Application
	5.1. Preparing to Convert the FMS Sample Application
	5.2. Invoking the FMS Converter
	5.3. Modifying the Converted IFDL Source File
	5.3.1. Modifying Form Data Items
	5.3.2. Renaming Panel Fields
	5.3.3. Adding Record Declarations
	5.3.4. Modifying the Help Syntax

	5.4. Rewriting the Application Program
	5.4.1. Converting the SAMP Program
	5.4.1.1. Converting the Working-Storage Section
	5.4.1.2. Converting the Procedure Division

	5.4.2. Converting FMS Status Checking
	5.4.3. Converting the INACCT Subprogram
	5.4.4. Converting the FMTCHK Subprogram
	5.4.5. Converting the MENU Subprogram
	5.4.6. Converting the WRITCH Subprogram
	5.4.7. Converting the ONECHK Subprogram
	5.4.8. Converting the ENDCHK and PRICHK Subprograms
	5.4.9. Writing Escape Routines to Maintain a Balance, Summary Total, and Check Number
	5.4.10. Converting the MAKDEP Subprogram
	5.4.11. Converting the VUEREG Subprogram
	5.4.12. Converting the VUEACT Subprogram

	5.5. Compiling, Linking, and Running the Converted Application

	Chapter 6. Creating and Modifying Forms
	6.1. Invoking the FDE and the Panel Editor
	6.2. Using FMS Form Phase Features in DECforms
	6.2.1. Assigning a Panel Name
	6.2.2. Associating a Help Panel with Another Panel
	6.2.3. Assigning Background Color
	6.2.4. Assigning the Terminal Width
	6.2.5. Assigning a Character Set to the Panel
	6.2.6. Creating a Viewport to Control Clearing the Screen
	6.2.7. Applying Active Highlight to Fields
	6.2.8. Calling Escape Routines to Emulate Pre-Help, Post-Help, and Function Key UARs
	6.2.8.1. Getting the Effect of Pre-Help and Post-Help UARs
	6.2.8.2. Getting the Effect of an Undefined Function Key UAR

	6.2.9. Assigning Default Attributes to All New Fields

	6.3. Using FMS Layout Phase Features in DECforms
	6.3.1. Creating Panel Fields and Applying Field Defaults
	6.3.2. Creating Text Literals
	6.3.3. Drawing Points, Lines, Rectangles, and Polylines
	6.3.4. Applying Display Attributes to Fields and Literals
	6.3.5. Creating Date and Time Fields and Adjacent Fields
	6.3.6. Creating Groups

	6.4. Using FMS Assign Phase Features in DECforms
	6.4.1. Specifying Help for Fields
	6.4.2. Assigning Field Attributes and Field Validators
	6.4.3. DECforms Field Picture Characters
	6.4.4. Emulating Field Completion UARs

	6.5. Using FMS Order Phase Features in DECforms
	6.6. Using FMS Test Phase Features in DECforms

	Chapter 7. Using Advanced DECforms Features
	7.1. Defining Keys
	7.1.1. Binding Functions to Keys
	7.1.2. Writing Function Responses

	7.2. Moving Between Panels
	7.3. Providing Help for Operators
	7.3.1. Creating Help Messages
	7.3.2. Creating Help Panels

	7.4. Displaying Arrays
	7.4.1. Storing Array Data in the Form
	7.4.2. Displaying Data Stored in Form Data Groups
	7.4.3. Activating Panel Groups for Input
	7.4.4. Passing Group Data Between the Program and Form

	7.5. Creating Scrolled Regions
	7.5.1. Displaying Scrolled Data
	7.5.2. Setting Up the Operator's Control of a Scrolled Region

	7.6. Determining What Changed During Operator Input
	7.6.1. Tracking Form Data Items
	7.6.2. Using Receive Shadow Records

	7.7. Using Escape Routines
	7.7.1. Writing a Program That Uses Escape Routines
	7.7.2. Writing Responses That Call Escape Routines
	7.7.3. Linking Applications That Use Escape Routines

	Appendix A. Comparison of FMS Form Language Statements and DECforms IFDL Statements
	Appendix B. FMS Call Conversion Summary
	Appendix C. Comments Created by the FMS Converter

