
VSI OpenVMS

VSI DECforms
Guide to Developing an Application

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: DECforms Version 4.0

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI DECforms Guide to Developing an Application

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Motif is a registered trademark of The Open Group.

Oracle is a registered trademark of Oracle and/or its affiliates.

PostScript is a registered trademark of Adobe Systems, Incorporated

ii

VSI DECforms Guide to Developing an Application

Table of Contents
Preface .. ix

1. About VSI ... ix
2. Intended Audience .. ix
3. Document Structure .. ix
4. Associated Documents ... x
5. OpenVMS Documentation .. xi
6. VSI Encourages Your Comments ... xi
7. Conventions ... xi

Chapter 1. Introduction ... 1
1.1. DECforms Purpose ... 1
1.2. DECforms Architecture ... 1

1.2.1. The Form .. 1
1.2.2. The Program ... 4

1.2.2.1. Requests ... 4
1.2.2.2. Calls to Escape Routines .. 5
1.2.2.3. Phases in Processing Requests .. 5

1.3. DECforms Utilities and Facilities ... 7
1.4. Developing a DECforms Application .. 8
1.5. What Comes Next .. 9

Chapter 2. Planning the Application .. 11
2.1. The Paper Form ... 11
2.2. Planning the Data to Capture ... 11
2.3. Planning the Platforms and Layouts for the Application ... 12
2.4. Planning the User Interface .. 13

2.4.1. Planning Panel Size .. 13
2.4.2. Planning Panel Relationships ... 13
2.4.3. The Header Panel ... 14

2.4.3.1. The Header Panel Data .. 14
2.4.3.2. Operator Interaction with the Header Panel .. 15

2.4.4. The Trips Panel ... 16
2.4.4.1. Organizing the Trip Data ... 16
2.4.4.2. Operator Interaction with the Trips Panel .. 17
2.4.4.3. Understanding User-Defined Functions .. 17
2.4.4.4. Functions for the Trips Panel .. 18

2.4.5. Support for Printing ... 19
2.4.6. Message and Help Panels .. 19

2.5. Planning the Program Style ... 20
2.6. What Comes Next ... 21

Chapter 3. Creating the Character-Cell Layout .. 23
3.1. Creating the Form Using the Form Development Environment .. 23
3.2. Modifying the Default Layout .. 25
3.3. Creating Panels ... 25
3.4. Modifying the Help Panel .. 27
3.5. Choosing Panels .. 27
3.6. Creating the Appearance of the First Panel ... 28

3.6.1. Invoking the Panel Editor CCPED ... 29
3.6.2. Specifying Text Display Attributes ... 30
3.6.3. Creating a Graphic Literal ... 31

iii

VSI DECforms Guide to Developing an Application

3.6.4. Specifying Text Literals and Picture Fields for User Input 31
3.6.5. Specifying a Text Literal and Text Field for User Input .. 34
3.6.6. Specifying More Text Literals and a Picture Field ... 35
3.6.7. Creating Informational Text on the Header Panel .. 35
3.6.8. Modifying Text Display Attributes ... 36
3.6.9. Creating a Rectangle Literal .. 36

3.7. Creating the Appearance of the Second Panel ... 37
3.7.1. Creating Background Text and Graphics .. 37
3.7.2. Specifying a Group .. 38
3.7.3. Specifying Picture Fields for the Group .. 38
3.7.4. Completing the Form Data .. 42
3.7.5. Specifying Picture Fields for the Totals .. 43
3.7.6. Creating a Rectangle Literal for the TRIP Group ... 44
3.7.7. Creating Text Literals and the Final Picture Field for the Totals 44
3.7.8. Specifying Icons ... 45

3.8. Creating the Appearance of the Help Panels .. 46
3.9. Testing the Appearance of the Panels ... 47
3.10. What Comes Next ... 47

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the
IFDL File ... 49

4.1. Understanding User-Defined Functions and Function Responses 49
4.2. Creating User-Defined Functions and Function Responses .. 50

4.2.1. Declaring the Functions in the Layout .. 50
4.2.2. Where to Declare Function Responses ... 51
4.2.3. Creating Function Responses at the Layout Level .. 52
4.2.4. Creating Function Responses at the Panel Level .. 53
4.2.5. Creating Function Responses at the Group Level ... 53
4.2.6. Creating Function Responses at the Icon Level .. 54

4.3. Creating Other Responses .. 55
4.3.1. Summary of Responses and Response Steps ... 55
4.3.2. Order of Functions and Responses ... 57
4.3.3. Creating the Other Responses at the Layout Level ... 57
4.3.4. Creating Responses at the Panel Level ... 59
4.3.5. Creating Exit Responses at the Field Level ... 59

4.4. Declaring a Built-In Function Response .. 60
4.5. Creating Active Highlighting .. 61
4.6. Validating Data ... 62
4.7. What Comes Next ... 62

Chapter 5. Specifying Form Records and Program Data ... 63
5.1. Comparing the Portable and OpenVMS APIs .. 63
5.2. Understanding Form Record Descriptions ... 64

5.2.1. Form Records .. 64
5.2.2. Form Record Fields and Groups .. 64

5.3. Forms_Record_Data Structure ... 65
5.4. Creating the Form Record Descriptions .. 65
5.5. Creating Header Information and Data Declarations for the Program 67

5.5.1. Creating the Data Declarations and Header Information for the C Program 68
5.5.2. Creating the Data Declarations and Header Information for the FORTRAN
Program .. 69

5.6. What Comes Next ... 70
Chapter 6. Completing the Application Program for the Character-Cell Layout 71

iv

VSI DECforms Guide to Developing an Application

6.1. Enabling the Form .. 71
6.1.1. Creating the C ENABLE Request and Request Options Structure 72
6.1.2. Creating the FORTRAN ENABLE Request and Request Options Structure 73

6.2. Receiving the Form Data ... 73
6.2.1. Creating the C RECEIVE Requests and Form Record Data Definitions 74
6.2.2. Creating the FORTRAN RECEIVE Requests and Form Record Data
Definitions .. 75

6.3. Disabling the Form ... 76
6.3.1. Creating the C DISABLE Request ... 76
6.3.2. Creating the FORTRAN DISABLE Request ... 76

6.4. Creating the Escape Routines ... 76
6.4.1. Creating the Escape Routines for the C Program ... 78
6.4.2. Creating the Escape Routines for the FORTRAN Program 79

6.5. What Comes Next ... 80
Chapter 7. Building and Testing the Application for Character-Cell Devices 81

7.1. Translating the Form and Extracting an Object File ... 81
7.2. Building the Portable API Program .. 82
7.3. Testing the Application .. 83
7.4. What Comes Next ... 86

Chapter 8. Form Structure .. 87
8.1. Form Elements ... 87

8.1.1. Form Data ... 87
8.1.2. Form Records .. 88
8.1.3. Layouts ... 88
8.1.4. Viewports .. 89
8.1.5. Panels .. 90

8.2. Responses ... 91
8.3. Methods for Creating a Form ... 92
8.4. How a Form Is Described in the IFDL ... 93
8.5. IFDL Syntax Example ... 94

Chapter 9. Declaring, Displaying, and Tracking Data ... 97
9.1. Specifying Form Data Types .. 97

9.1.1. Text Data .. 97
9.1.2. Atomic Data .. 98
9.1.3. Date/Time Data .. 98

9.2. Assigning Default Values to Form Data .. 98
9.3. Altering the Display Attributes of Panel Fields ... 100
9.4. Declaring and Displaying Groups and Arrays ... 101

9.4.1. Grouping Data in a Form .. 101
9.4.2. Displaying Data Stored in Form Data Groups ... 103
9.4.3. Using Corresponding Subscripts in Panel Field Description Entries 107
9.4.4. Activating Panel Groups for Input .. 108
9.4.5. Specifying Navigation in a Panel Group .. 110
9.4.6. Passing Group Data Between the Program and the Form 113

9.5. Transferring Data Explicitly ... 117
9.6. Determining What Changed During Operator Input ... 118

9.6.1. Using Tracked Form Data Items .. 118
9.6.2. Using Receive Shadow Records ... 119
9.6.3. Using Send Shadow Records ... 121

Chapter 10. Controlling Form Processing .. 123

v

VSI DECforms Guide to Developing an Application

10.1. Using IF Response Steps .. 123
10.2. Using Control Text Responses .. 124
10.3. Controlling the Activation List .. 125

10.3.1. Using the ACTIVATE Response Step ... 126
10.3.2. Controlling the Activation List During the Accept Phase 127
10.3.3. Using Conditional Protection in Navigation ... 128
10.3.4. Using the DEACTIVATE Response Step .. 129

10.4. Writing Responses That Call Escape Routines ... 131
10.5. Performing Arithmetic Operations .. 132
10.6. Moving Between Panels ... 133
10.7. Waiting for Operator Input ... 134
10.8. Printing Panels .. 135
10.9. Returning Control to the Application ... 136

Chapter 11. Designing the Operator Interface .. 137
11.1. Using Viewports .. 137
11.2. Creating Scrolled Regions .. 138

11.2.1. Displaying Scrolled Data ... 139
11.2.2. Setting Up the Operator's Control .. 142

11.3. Defining Form Function Keys .. 142
11.3.1. Binding Functions to Keys .. 143
11.3.2. Writing Function Responses .. 144
11.3.3. Disabling Built-In Function Key Bindings ... 146

11.4. Using Situational Function Responses .. 147
11.4.1. Situational Function Responses in Character-Cell Layouts 147

11.5. Modifying the Keypad Mode .. 149
11.6. Signaling the Operator ... 150
11.7. Validating Fields ... 151
11.8. Sending Messages to the Operator .. 152

11.8.1. Sending Messages from the Form .. 152
11.8.2. Sending Messages from a Program or Escape Routine 153

11.9. Providing Online Help ... 153
11.9.1. Using Help Messages .. 154
11.9.2. Providing Hints .. 156
11.9.3. Using Help Panels .. 159
11.9.4. Creating Levels of Help Panels .. 161
11.9.5. Using a Help Text File .. 162

11.10. Simulating Menus and Dialog Boxes in Character-Cell Layouts 162
Chapter 12. Getting the Best Performance from Your Form ... 163

12.1. General Optimizations ... 163
12.1.1. Transferring Data .. 163
12.1.2. Using Escape Routines .. 164
12.1.3. WHEN Clause Performance .. 164
12.1.4. Controlling the Activation List ... 165
12.1.5. Preventing Unnecessary Validation ... 165
12.1.6. Using Multiple Sessions ... 166
12.1.7. Performing Data Conversion .. 166

12.2. Optimizations for Character-Cell Devices .. 167
12.2.1. Using Terminal Hardware Scrolling .. 167
12.2.2. Using Double-High and Double-Wide Attributes ... 168
12.2.3. Optimizing Screen Clearing ... 168
12.2.4. Improving Panel Display ... 168

vi

VSI DECforms Guide to Developing an Application

12.2.5. Formatting Input Pictures .. 168
Chapter 13. Demonstration and Sample Forms and Applications 171

13.1. Displaying the Demonstration Forms ... 171
13.2. The Sample Application Files ... 171
13.3. Data Declarations in the Introductory Sample Form and Application 172
13.4. OpenVMS API Request Calls in the Introductory Sample Application 174

13.4.1. ENABLE Request ... 174
13.4.2. ACCOUNT Record SEND Request .. 175
13.4.3. UPDATE Record TRANSCEIVE Request .. 176
13.4.4. GET_CHECK Record RECEIVE Request ... 178
13.4.5. GET_DEPOSIT Record RECEIVE Request .. 183
13.4.6. DISABLE Requests ... 185

13.5. Support for Printing in the Introductory Sample Application .. 186
13.5.1. PRINT_PANEL Function and Function Response ... 186
13.5.2. PRINT_CHECK Subroutine .. 187
13.5.3. PRINTER Layout in the Introductory Sample Application 188

13.6. Portable API Request Calls in the Advanced Sample Application 190
13.6.1. ENABLE Request ... 190
13.6.2. SEND Requests .. 190
13.6.3. RECEIVE Requests .. 191
13.6.4. TRANSCEIVE Request ... 191
13.6.5. DISABLE Request .. 192
13.6.6. RECEIVE and SEND Requests in an Operator Transaction 192

Appendix A. The Mileage Reimbursement Application .. 201
A.1. IFDL Source: mrf_form.ifdl .. 201
A.2. C Application Source: mrf_c.c .. 221
A.3. FORTRAN Application Source for OpenVMS Systems:mrf_for.for 227
A.4. FORTRAN Application Definition File: mrf_def.for .. 232

vii

VSI DECforms Guide to Developing an Application

viii

Preface
This guide explains how to create a DECforms software application.

Chapters 1-7 introduce DECforms and contain a tutorial for creating a simple sample application that
includes both a form and a program. The program is written in both the C and FORTRAN programming
languages. The application described in this tutorial is a portable application, created for display on VSI
VT-series devices.

Chapters 8-13 and appendix contain additional guidelines and examples for creating forms and
programs.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This guide is intended for programmers who have little or no previous experience with DECforms. It
also contains guidelines and examples for more experienced DECforms programmers.

Readers should have experience with the following:

● Programming in either the C or the FORTRAN language

● Using OpenVMS

● Using a text editor, such as DECTPU

3. Document Structure
This guide contains 13 chapters, and 1 appendix.

Chapter 1, "Introduction" Summarizes the concepts and process for creating
a DECforms application.

Chapter 2, "Planning the Application" Describes the planning of a sample application.
The sample application is a mileage reimbursement
form that is used throughout chapters 1-7 of this
guide to show the complete development cycle for
a DECforms application.

Chapter 3, "Creating the Character-Cell Layout" Steps through the process of creating the initial
form file, creating the panel appearance of the
character-cell layout, and testing the appearance of
the panels.

Chapter 4, "Adding Functions, Responses, Display
Actions,and Validations to the IFDL File"

Describes the specification in the IFDL file of
functions, responses, special display characteristics,
and validation for the application.

Chapter 5, "Specifying Form Records and Program
Data"

Describes the specification of the form records in
the IFDL file and the corresponding data in the
program.

ix

Preface

Chapter 6, "Completing the Application Program
for the Character-Cell Layout"

Describes how to write the rest of the program: the
request calls to the DECforms Form Manager and
the escape routines.

Chapter 7, "Building and Testing the Application
for Character-Cell Devices"

Explains how to build and test the application.

Chapter 8, "Form Structure" Describes the structure of a form.
Chapter 9, "Declaring, Displaying, and Tracking
Data"

Contains additional information on declaring,
displaying, and tracking data in a form.

Chapter 10, "Controlling Form Processing" Discusses ways to control form processing.
Chapter 11, "Designing the Operator Interface" Provides additional information concerning

basic features (such as viewports, scrolled
regions,functions, keypad mode, operator
signalling, messages, and online help)related to the
operator interface.

Chapter 12, "Getting the Best Performance from
Your Form"

Contains hints for getting the best performance
from a form.

Chapter 13, "Demonstration and Sample Forms
and Applications"

Explains how to display the DECforms
demonstration forms that are available on line and
examines the DECforms sample applications that
are also available on line.

Appendix A, "The Mileage Reimbursement
Application"

Contains the complete IFDL form and
programs (in C and FORTRAN) for the mileage
reimbursement application described in this guide.

4. Associated Documents
See the online help, the online release notes, or the following documents for more information about
DECforms:

● VSI DECforms Installation Guide for OpenVMS Systems—Describes how to install DECforms
software on Alpha and I64 systems that are running the OpenVMS operating system.

● VSI DECforms Guide to Commands and Utilities—Describes the DECforms forms commands and
utilities.

● VSI DECforms IFDL Reference Manual—Describes the DECforms syntax information of the
Independent Form Description Language (IFDL).

● VSI DECforms Style Guide for Character-Cell Devices—Describes how to develop user interfaces
with a Motif style for DECforms applications for character-cell terminals.

● VSI DECforms Programmer's Reference Manual—Describes how DECforms software operates at run
time and how to call the DECforms requests from an application program.

● VSI DECforms Guide to Converting FMS Applications—Describes how to convert a VAX FMS or
DEC FMS application to a DECforms application.

● VSI DECforms Guide to Demonstration Forms and Applications—Describes how to use various
demonstration forms and applications. This guide is contained in online files.

If you cannot find this document, ask your system manager to install it in the appropriate directory.

x

Preface

For information about displaying these forms, see Chapter 13, "Demonstration and Sample Forms
and Applications".

DECforms also provides demonstration and sample applications that you can use when developing your
own applications. For more information about these applications, see Chapter 13, "Demonstration and
Sample Forms and Applications".

For further information on other topics covered in this manual, see the following:

● DEC LSE documentation for information on how to use the DEC Language Sensitive Editor (LSE)

● Oracle CDD/Repository documentation set for information on Oracle CDD/Repository definitions

● The CODASYL Form Interface Management System Journal of Development

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Conventions
The following conventions are also used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

... A horizontal ellipsis in examples indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

xi

https://docs.vmssoftware.com

Preface

Convention Meaning

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

xii

Chapter 1. Introduction
This chapter reviews:

● The purpose of DECforms

● DECforms architecture

● DECforms utilities and facilities

● The major steps in creating a DECforms application

1.1. DECforms Purpose
Use DECforms to create and run software applications that display online forms containing text, data,
and simple graphics on workstations and terminals. An operator using your DECforms application can
read or enter form data and manipulate the data as required or allowed by your program.

Possibilities for applications are as numerous as you can imagine. For example, you might create an
application to keep track of employee expenses or inventory, to maintain data about work accomplished,
to look up phone numbers and addresses, to handle employee travel expenses, to make hotel or restaurant
reservations, to interact with large databases of constantly changing data, and so on.

Chapters 1-7 of this guide explains how to develop a simple application that gets and manipulates
employee data for business-related travel expenses. Once you have stepped through the basic process of
creating this application,you can go on to developing increasingly complex applications.

1.2. DECforms Architecture
The DECforms programmer creates two basic application components:the form and the program. Figure
1.1, "DECforms Form and Program" shows their relationship.

Figure 1.1. DECforms Form and Program

1.2.1. The Form
The form governs the complete user interface to the application program. It is a specification that
completely describes all screens that are to be shown on the display device,the data that is to be
transferred between the form and the application program, and all form processing that is to occur. The
form controls all details of the interaction with the operator.

A DECforms form is loaded by the Form Manager at execution time under the direction of an
application program. The form contains data that can be viewed and modified by both the operator and

1

Chapter 1. Introduction

the application program. The form also contains control information relating to overall control of the
user interaction.

The source for the form is written in a language called the Independent Form Description Language
(IFDL). You can create the form by using a text editor and entering the language declarations and
statements as described in VSI DECforms IFDL Reference Manual. However, an easier way to create
most of a form is to use DECforms tools such as the Form Development Environment (FDE). When you
create the form, you create form entities in an ordered hierarchy:

● Form Data—the set of variables contained within the form for the purpose of storing data (called
form data items) during the time the program is using the form

● Form Records—definitions of how the form data is organized(in form record fields) when it is
transferred to and from the program

Form record descriptions do not store data. Each form record field corresponds with a form data
item.

● Layouts—descriptions of specific display devices such as a VT100 terminal, a VT400 terminal.

You can have more than one layout in a form. DECforms uses the layout associated with the current
display device and ignores the other layouts.

• Viewports—rectangular areas on the screen used as areas for display

You specify viewport coordinates (lines and columns) in relationship to the upper-left corner of
the device.

• Functions—optional declarations that associate specific non-alphanumeric keyboard keys with
tasks that you want the operator to be able to perform; for example, pressing F8 to perform a
function response called QUIT

Whether or not you define your own functions, the Form Manager supplies default functions
called built-in functions, which you can override.

• Responses—optional procedures (consisting of lists of instructions called response steps) that
you declare to be executed at certain times; for example a response called QUIT that returns
control from the form to the program

Whether or not you define your own responses, the Form Manager provides default responses,
which you can override. Each response contains a list of response steps for the Form Manager to
perform. The CALL response step calls a subroutine (an escape routine) that you supply.

• Panels—containers for the items that will be displayed

You associate a panel with a viewport for screen display. You specify the location (line and
column values) of the items in the panel in relation to the upper-left corner of the viewport.

Figure 1.2, "Multiple Layouts, Viewports, and Panels" shows multiple panels and viewports
supporting multiple layouts.

2

Chapter 1. Introduction

Figure 1.2. Multiple Layouts, Viewports, and Panels

A form can contain many panels, and the display can be divided into several viewports. A
panel must be associated with a viewport to be visible. Multiple viewports can be displayed
simultaneously, and they can overlap one another. Several panels can be associated with the same
viewport, but only one panel can be displayed in a viewport at a time. One panel can occupy
different viewports at different times. A single panel cannot be displayed in multiple viewports
simultaneously.

Panel items (objects) fall into the following categories:

● Literals—fixed text and graphics(such as lines, polylines, or rectangles)that do not change in
appearance as the operator uses the form

● Fields—representations of data that the operator can read or manipulate

There are two kinds of fields: one-line picture fieldsand text fields. You can assign a format
(known as a picture string) to a picture field. Text fields can use one or more lines.

● Icons—special areas for character-cell terminals that an operator can select to make
something happen

● Groups—collections of panel items that occur multiple times; for example, the names and
addresses of several people

Figure 1.3, "Panel Objects" shows an example of a panel with objects.

3

Chapter 1. Introduction

Figure 1.3. Panel Objects

Chapter 8, "Form Structure" contains additional details concerning form structure.

1.2.2. The Program
The program takes care of the data processing and computational aspects of the application, and
interactswith the operator through the form by using the Form Manager.

Figure 1.4, "DECforms Interfaces" shows the basic DECforms interfaces.

Figure 1.4. DECforms Interfaces

1.2.2.1. Requests
The programming interface is the means of communication between the application program and
the Form Manager. In DECforms, the primary programming interface comprises six procedure calls
(requests) to the Form Manager:

● ENABLE—connects to a specified form and which creates a session.

4

Chapter 1. Introduction

● SEND—sends data from the application program to the form.

● RECEIVE—allows data to be returned from the form to the application program.

● TRANSCEIVE—sends data from the application program to the form, performs any necessary
operator interaction, and allows data to be returned from the form to the program.

This is particularly important for efficiency in a network environment where two-way transfer of data
can occur in a single network operation.

● DISABLE—terminates a form session.

● CANCEL—cancels any outstanding requests.

The SEND, RECEIVE, and TRANSCEIVE requests can all transfer one or more records at a time.

Form data remains in the form throughout the application session—from the time the form is enabled
until the disable request is completed. During the session, however, the values of the form data items can
change, depending on how the data is manipulated by the form or the program.

1.2.2.2. Calls to Escape Routines

In addition to the DECforms requests to the application program that go through the Form Manager, you
can call escape routines written in third-generation language (3GL) procedural code. You can pass data
directly to the routines; you do not need to use form records.

1.2.2.3. Phases in Processing Requests

DECforms run-time processing of requests is primarily event-driven. Events are caused either by requests
made by the application program to the Form Manager or by actions of the terminal or workstation
operator. The Form Manager responds to these events with default actions. You can override these
defaults by declaring in the form your own set of responses to selected events.

The Form Manager, when processing a request, follows a series of run-time phases, shown in Figure 1.5,
"Run-Time Processing Phases".

5

Chapter 1. Introduction

Figure 1.5. Run-Time Processing Phases

1. Request Initialization Phase

During this phase, the Form Manager gets the names of any form record descriptions, identifies the
data areas for the form records, and identifies the session. The SEND and RECEIVE requests each
use one name for the form record description, whereas the TRANSCEIVE request uses two: one for
the send part and one for the receive part.

2. Data Distribution Phase

For SEND and TRANSCEIVE requests, the Form Manager moves the data from application
program record fields to form data items by using the appropriate form record description.

3. Accept Phase

During this phase, the screen becomes active and the operator can interact with the form. Form data
is displayed to the operator within fields, and new data can be entered and validated.

The Form Manager maintains an internal list (the activation list)of form elements (such as fields or
icons) that are available for input. Only the current active item can accept input. When the text cursor
is on a field, that field is the currently active item.

By default, a RECEIVE request activates panels that contain the data required for the fields in the
form record description named in the request. A TRANSCEIVE request activates the fields named
by the form record description for the receive part of the TRANSCEIVE request. Mechanisms are
available for overriding these default actions and manipulating the activation list explicitly within the
form.

4. Data Collection Phase

For RECEIVE and TRANSCEIVE requests, the Form Manager moves data from form data items to
application program record fields by using the appropriate form record description.

6

Chapter 1. Introduction

5. Request Termination Phase

For each request, the Form Manager sets a value in the return status variable, and returns control to
the application program.

The activation list is emptied at the completion of each request;at the beginning of each request, the
activation list has no items in it.

For a more detailed description of the run-time phases, see the VSI DECforms Programmer's Reference
Manual.

1.3. DECforms Utilities and Facilities
DECforms provides the following tools for preparing your application:

● Form Development Environment (FDE)—supports the creation of forms for character-cell layouts.

The FDE is an interactive, menu-driven tool, created with DECforms, that runs on character-cell
terminals or terminal emulators. From the FDE, you can access some of the other utilities(CCPED,
Test, Extract Appearances, and Extract Object)as well as your text editor.

● Character-Cell Panel Editor (CCPED)—allows you to create panels for character-cell layouts in
an interactive,menu-driven way.

CCPED runs on character-cell terminals or terminal emulators.

● Test Utility—checks the appearance of form panels by displaying them on the screen so that you
can see the position and visual attributes of panel objects such as fields, literals, and icons.

● IFDL Translator—translates an IFDL source file to a binary form file.

● Back Translator—translates a binary form file back to an IFDL source file.

● Object Utility—creates a form object file from a binary form file, so that you can use the form
object in building your application program.

You can create the following two types of object files:

• Form object and vectors (pointers to escape routines)—for use when you want to link the form
into the program executable image

• Vectors only—for use in linking the program when you need to call escape routines from the
form, but do not need a linked form

● Extract Appearances Utility—extracts panels from a form, creating a text or DDIF output file that
you can print or convert and print to verify panel appearance.

● FMS Converter—converts a VAXFMS or DEC FMS form file or form library file to a DECforms
IFDL source file, as described in the VSI DECforms Guide to Converting FMS Applications.

● Trace Facility—logs form processing information at run time to help you in understanding how
your application is working.

● Event Log—logs only errors or unusual events that occur during run time to aid you in debugging
your application.

7

Chapter 1. Introduction

To run the FDE, the panel editors, translators, converters, and the other utilities, you issue DECforms
commands, as described in the VSI DECforms Guide to Commands and Utilities.

To use the Trace Facility and Event Log, you set certain DECforms logical names or parameters, as
described in the VSI DECforms Programmer's Reference Manual.

TDMS Converter

A VAX TDMS to DECforms Converter and VAX TDMS Emulator are available from Praxa Limited of
South Melbourne, Australia. This feature is supported only on VAX.

The VAX TDMS to DECforms Converter V2.0 is a migration tool that converts the forms and requests
in a VAX TDMS Request Library Definition into DECforms IFDL source files. This tool is available
from VSI as a separately or derable third-party product developed by Praxa Limited. It consists of
two major utilities: the Converter, which generates the IFDL source files from VAX TDMS .RLB
files and associated Oracle CDD/Repository objects; and the COBOL Translator, which processes
application sources and copy libraries,converting most TSS$ calls in COBOL applications to appropriate
FORMS$calls with supporting logic and data definitions. Contact your local VSI sales office for more
information on this tool (specify the Unique Product Identifier (UPI) of "270").

1.4. Developing a DECforms Application
To develop a DECforms application, follow these steps, possibly backtracking as you understand the data
processing problem better and after you test the user interface.

1. Decide what the application should do.

In this step, you determine the screens the operator should see,how the operator will interact with the
application, and what functions the program will perform. You establish the kinds of data that the
operator will use, the names to use for the data, and how the data should flow.

2. Create and test the form.

This step is the major task in creating a DECforms application. The approach you take for this step
depends on the number of layouts you require.

The procedure for creating a form with a single layout is as follows:

a. Create the form file and the initial part of the layout specification.

Use the FDE for just character-cell layouts or a text editor for any layout.

b. Create the form viewports, panels, and data items.

This step involves using one of the DECforms panel editors---CCPED for character-cell displays
—to create viewports and panels for the form. When you create the panel fields, the panel editor
automatically creates the form data items.

Another approach is to use LSE or any chosen text editor to create the IFDL code. You can also
use Oracle CDD/Repository data definitions to supply form data.

c. Check the panel appearance.

This step involves using DECforms utilities to check the appearance of the panel and its input
fields.

8

Chapter 1. Introduction

d. Create the form functions and responses.

This step involves using the FDE (for character-cell layouts only),LSE, or a chosen text editor to
create any desired user-defined functions and responses in the IFDL file.

e. Add any additional desired display characteristics and validations to the form.

This step involves further editing of the IFDL file to add such items as highlighting for active
fields or search lists for data validation.

f. Specify the form records for the form and corresponding data in the program.

g. Translate the IFDL source file to a binary form file, either automatically through the FDE or by
using the DECforms FORMS TRANSLATE command.

3. Create the program and test the application.

This step involves writing the application program in the programming language of choice. The VSI
DECforms Programmer's Reference Manual explains the possibilities for programming languages and
Application Program Interfaces (APIs) for use with DECforms.

Writing the program breaks down into the following basic tasks:

a. Define the program data and create any required header files.

b. Write the DECforms request calls in the program.

c. Write any additional subroutines or functions required by the application.

d. Compile, link, and test the application, using DECforms tools to help fix any problems.

1.5. What Comes Next
Chapters 2-7 go through the above steps in detail to create a sample portable application.

9

Chapter 1. Introduction

10

Chapter 2. Planning the
Application
This chapter describes the planning of an application,using a mileage reimbursement form as the
example. The chapter describes:

● The paper form on which the application is based

● The data that the form will contain

● The platforms on which the application will run

● What the operator will see on the screen

● How the operator will interact with the form on the screen

● What functions the program will perform

2.1. The Paper Form
The sample application implements an electronic version of the paper form shown in Figure 2.1, "Paper
Version of the Mileage Reimbursement Form".

Figure 2.1. Paper Version of the Mileage Reimbursement Form

2.2. Planning the Data to Capture
Before designing the form, you need to decide what data to capture and the size and type of the data.
Table 2.1, "Planned Application Data"lists the data that the electronic version of the paper form will
capture. (Capturing the rest of the data on the paper form is left to you as an optional exercise.) The table
also shows the data type and size for each data item.

11

Chapter 2. Planning the Application

Table 2.1. Planned Application Data

Data Description Data Type Data Size

Employee name Character 32
Employee badge number Integer 6
Employee cost center Character 3
Employee address Character 120
Reason for reimbursement Character 64
Date Datetime 8
Travel from location code Character 3
Travel to location code Character 3
Number of miles traveled for
each from/to item

Longword Integer 1

Amount (pennies) calculated for
number of miles traveled for each
from/to item

Longword Integer 1

Amount for tolls (pennies) for
each from/to item

Longword Integer 1

Subtotal amount for each from/to
item

Longword Integer 1

Total miles Longword Integer 1

Total amount calculated for total
miles

Longword Integer 1

Total tolls Longword Integer 1

Total of subtotals Longword Integer 1
1A Longword Integer has a specified format and occupies 4bytes in a form record. You will store money amounts in pennies, and convert to
dollars and cents in the form.

The three characters used for location are for location codes, and assume that your business already uses
known location codes.

2.3. Planning the Platforms and Layouts for
the Application
The mileage reimbursement application that you will create will be a portable application;it will be
designed to run on more than one platform. The term platform refers to the hardware and operating
system. You can run DECforms Version 4.0 applications on the character-cell terminals on OpenVMS
systems. For this example, you choose all the supported platforms.

Because DECforms requires different layouts depending on the display or output device, you must create
the following layouts in the form:

● Character-cell layout—for terminal devices

● PRINTER layout—for printing devices

12

Chapter 2. Planning the Application

Additional Information

You should choose the platforms for your own applications based on the equipment and software used in
your organization.

2.4. Planning the User Interface
The next step is to plan the appearance of each screen display and the interactions between the operator
and the form.

2.4.1. Planning Panel Size
Because the form contains a lot of information to display on one screen, you will divide the form into
two parts: one part for employee data and reason for reimbursement, and a second part for the trips data.

For the character-cell layouts, the electronic display will use two screens to display the form. You will
create one main viewport and use it to display first a panel for header information, and then a panel for
trips information.

In planning displays, it is important to keep in mind that the display must fit in the display area. For
character-cell terminals, the display area is typically 24 lines and80 columns. For this example, you will
use 22 lines for each of the two main panels, leaving 2 lines for displaying dynamic messages. You will
use all 80 columns.

For DDIF layouts, you must consider the size and orientation of the paper you plan to use for printing. If
you plan to use an online display facility such as the CDA Viewer, you might want to use the default size
of the view area. The mileage reimbursement application will use standard A size paper (8 and a half
inches by 11 inches) with portrait orientation.

2.4.2. Planning Panel Relationships
DECforms Version 4.0 supports the following style of viewport and panel display:

● Related panels

This is the only style available for character-cell layouts. In this style, all viewports maintain fixed
relationships to each other. When the operator displays different panels in the viewports, the panels
remain in fixed relationships to each other.

The VSI DECforms Style Guide for Character-Cell Devices describes how to design character-cell user
interfaces.

The next step is to sketch out the overall look of the two displays, as shown in Figure 2.2, "Preliminary
Sketch of Online Forms".

13

Chapter 2. Planning the Application

Figure 2.2. Preliminary Sketch of Online Forms

When planning the user interface, you need to consider such aspects as the order of the display of each
panel and what tasks the operator will perform. This requires a closer look at each panel.

2.4.3. The Header Panel
In the mileage reimbursement application, the header panel will appear first, followed by the trips panel.

2.4.3.1. The Header Panel Data

The operator will enter all the header data. When the operator indicates that input is complete, the
program will receive the data.

Additional Information

To keep this example as simple as possible, this application does not use an existing database,handle data
validation against an external database, or use Oracle CDD/Repository data definitions. In your own
applications, you might choose to use these methods of handling your data.

Table 2.2, "Header Panel Data" shows the data for the header panel.

Table 2.2. Header Panel Data

Data Action on Data Data Item Name

Employee name Received by program EMPLOYEE_NAME
Badge Number Received by program BADGE_NUMBER
Cost Center Received by program COST_CENTER
Address Received by program ADDRESS
Reason for reimbursement Received by program REASON

14

Chapter 2. Planning the Application

2.4.3.2. Operator Interaction with the Header Panel
You will create one field on the panel for each data item to be displayed. In addition to the fields on each
panel,you need to be aware of what the operator will be doing and the default actions that DECforms
provides.

The operator must navigate through the displayed panel from one field to another, entering data in each
field. The cursor must appear at the correct locations on the screen, and the form must accept the data as
it is input. When the operator has completed entering the data for all data items(each field is filled out),
the operator will indicate that input is complete.

DECforms provides default key bindings for commonly used operations(called built-in functions) on
the panel. DECforms also creates an internal activation list that determines how the cursor moves from
field to field when the operator presses the function key.

For example, for the character-cell display,pressing Tab, Return, or Enter moves the cursor to the next
item; this is called the NEXT ITEM built-in function. More specifically, pressing the function keys Tab,
Return, or Enter causes the Form Manager to perform a built-in function response that moves the cursor
to the next item on the activation list.

TRANSMIT is another built-in function. When the operator presses the appropriate function key for the
TRANSMIT built-in function, TRANSMIT indicates that input is complete.

Because DECforms provides these functions automatically, all you need do is place an informational
message on the panel so that the operator knows what to do.

Additional Information

By default, the order of the activation list (which is the order in which the NEXT ITEM built-in function
moves to the next item)is the order in which the fields are listed in the form. In CCPED, this means the
order in which they are created.

You can change this order later if necessary.

For a complete list of built-in functions, see the appendix on built-in functions in the VSI DECforms
IFDL Reference Manual.

You can override built-in functions. For example, PF1-Return is the default key binding for the INSERT
LINE built-in function for the character-cell layout. This function controls how the operator moves
to the next line of the multiline ADDRESS field. For ease of use, you will use Return instead of PF1-
Return.

Figure 2.3, "Final Header Panel Sketch for Character-Cell Display" shows the header panel for the
character-cell display with the additional instructional information.

Figure 2.3. Final Header Panel Sketch for Character-Cell Display

15

Chapter 2. Planning the Application

You will also create two associated help panels for a detailed explanation of the application. For
information on the help panels, see Section 2.4.6, "Message and Help Panels".

Additional Information

Notice that some of the text literals on the header panel are right-aligned (the colons (:) line up on the
same column). In your own applications, left alignment is recommended for fields and text literals if you
plan to use default fonts.

2.4.4. The Trips Panel
The trips panel allows the operator to enter specific trip data. The design for this panel demonstrates
more DECforms features than the design for the header panel. First, consider the trip data in more detail,
and then think about how the operator will interact with the panel.

2.4.4.1. Organizing the Trip Data
Consider how a typical user would use the mileage reimbursement form. There may be many times when
the user would want to record more than one trip on a single form. The user might want to submit only
one voucher per week with several trips recorded, or might visit more than one destination in one trip, or
might simply make a round trip from the home facility to the destination and back again.

The application must deal with a variable number of trip reports per voucher. The easiest way to
accomplish this is by creating an array of trip records, where each record contains the values for a single
trip, including:

● The date of the trip

● The starting location

● The ending location

● The number of miles traveled

● The mileage reimbursement amount

● The cost of tolls during the trip

● The subtotal reimbursement amount (mileage + tolls)

Table 2.3, "Trips Panel Data" shows the data for the trips panel. The data items pertaining to each trip
are in a multiply occurring group, corresponding to the array that you will create in the program.

Table 2.3. Trips Panel Data

Data Action on Data Data Item Name

Group Received by program TRIP
Date Received by program TRIP_DATE
Travel From Received by program TRIP_FROM
Travel To Received by program TRIP_TO
Miles Received by program MILES
Amount Received by program AMOUNT

16

Chapter 2. Planning the Application

Data Action on Data Data Item Name

Tolls Received by program TOLL
Subtotal Received by program SUBTOTAL

Total miles Received by program TOTAL_MILES
Total amount Received by program TOTAL_AMOUNT
Total tolls Received by program TOTAL_TOLLS
Total reimbursement Received by program FORM_TOTAL

Additional Information

A group of data need not be an array only. For example, a group can contain one field, a set of fields, a
field and an array, a set of fields and one or more arrays, and so on.

You might want to create groups to match group names with record names used in your program.

2.4.4.2. Operator Interaction with the Trips Panel
On the trips screen display, the operator navigates through the fields,entering data for date, from,
to, miles, and toll. The application computes the amounts and the subtotals,displaying them in the
appropriate fields on the display:the operator cannot enter data into the amount and subtotal fields.

When the data is entered, the operator moves the cursor to buttons at the bottom of the panel. These
buttons are icons on character-cell layouts. When the text cursor is on any one of the icons, pressing the
Select key will cause the operation to proceed.

You will also provide some function keys for performing the operations elicited by pressing the buttons.
The operator uses the buttons to compute totals, discard data if necessary, and, finally, record the data
and exit the application. The operator can also display help information at any time.

Figure 2.4, "Final Sketch of Trips Panel" shows the final sketch of the trips panel with the additional
buttons.

Figure 2.4. Final Sketch of Trips Panel

2.4.4.3. Understanding User-Defined Functions
You can define your own keys or key sequences for built-in functions, and you can also create your own,
user-defined functions that use other function keys or key sequences. For the trips panel, you will create
both kinds of user-defined functions.

17

Chapter 2. Planning the Application

Design Approaches for User-Defined Functions

You need to consider two alternative approaches when planning function keys for portable applications:

● Customized approach

In this approach, you use function keys commonly used for each platform. For example, use the PF1
(Gold) key sequences on character-cell terminals.

This is the approach used in the mileage reimbursement application.

● Common approach

In this approach, you use the same function keys on each platform. For example, use the F5, F6, and
F7 keys, which are available on all platforms with extended keyboards.

Use this approach if you expect that the same operators will be using a mixture of terminals and
workstations. The common approach makes it easier for an operator to go from one platform to
another once the function keys are learned.

Key Sequences for Character-Cell Functions

When designing the user interface, how function key sequences work on character-cell devices.

With DECforms applications on character-cell devices,an operator can perform a function by pressing
first one key and then another (for example, PF1-down arrow). The first key pressed is called the
introducer key.

Using the Numeric Keypad for User-Defined Functions

To enable the operator to use the numeric keypad for user-defined functions on character-cell devices,
you must specify the application keypad implementor attribute. When the application keypad is specified,
you can bind any numeric keypad key or key sequence to a user-defined function.

For more information about the keypad keys, see the appendix on built-in functions in the VSI DECforms
IFDL Reference Manual.

2.4.4.4. Functions for the Trips Panel
Before you plan the user-defined functions, consider the following two built-in function keys or key
sequences:

Built-in Function Name Task VT terminals

EXIT GROUP NEXT Move the cursor to the first
button on the trips panel.

PF4-Tab

PF4-Return

PF4-Enter
TRANSMIT Record data and exit. Ctrl/Z

Ctrl/D

F10

For ease of use, you will allow the following function keys or key sequences as alternatives in addition to
the default key assignments:

18

Chapter 2. Planning the Application

Built-in Function Name VT terminals

EXIT GROUP NEXT PF1-down arrow

The user-defined functions you will use for the trips panel are as follows:

Function Name Task VT terminals

DO_TOTALS Calculate the totals. Do PF1-KPperiod
DISCARD Erase the current data on panel

and start over.
F8 PF1-KP8

MOVE_UP Move the cursor up and display a
message if the cursor is at the top
of the group or panel.

Up arrow

MOVE_DOWN Move the cursor down and
display a message if the cursor
is at the bottom of the group or
panel.

Down arrow

SELECT Choose an option. Select KPperiod
PRINT_FILE Create a printable picture of the

trips panel.
Ctrl/P

2.4.5. Support for Printing
Because users of this application probably want a printed copy of their travel voucher, you should
provide the following support for printing:

● Give the operator the option to print a picture of the trips panel by pressing Ctrl/P when the panel is
displayed. Pressing Ctrl/P has the following results:

○ Character-cell terminals—creates a text file containing a picture of the trips panel. The operator
can print this file using the DCL PRINT command.

The operator can use an OpenVMS system command to convert this file to a format such as
PostScript ®, and then print it. For details on the commands, see Figure 2.6, "Sketch of Second
Help Panel".

● When the application is exited, create or print a copy of the form containing all the data input by the
operator.

○ On OpenVMS, a .doc file is created. The operator can convert this file to a format such as
PostScript, and then print it.

2.4.6. Message and Help Panels
In addition to the two main panels, you need a message panel for displaying any error or brief
informational messages.

You will also create two help panels for displaying additional information to help the operator.

DECforms supports one message panel for each layout and creates a default message panel and message
viewport. By default, this message panel is located on the lowest line of the layout display. You will
modify this message viewport so that it occupies the two lowest lines of the character-cell layout display.

19

Chapter 2. Planning the Application

The help panels will contain the information shown in Figure 2.5, "Sketch of First Help Panel" and
Figure 2.6, "Sketch of Second Help Panel". The first help panel, accessible from both the header and trips
panels,describes the most important built-in and user-defined functions for the character-cell platforms.
The second help panel, accessible from the first help panel, provides help on print files.

Figure 2.5. Sketch of First Help Panel

Figure 2.6. Sketch of Second Help Panel

Additional Information

For the sake of simplicity, the help panel will contain information for all platforms. A better approach
might be to create different help panels for each platform. To do this, you need to create a separate
layout for each display device, giving each layout different help panels.

2.5. Planning the Program Style
When planning a DECforms application, you should decide upon the basic design to use for your
program. You can choose between the following two basic styles:

● Keep control in the application program, and use DECforms SEND, RECEIVE, and TRANCEIVE
requests as the primary method for transferring data back and forth between the form and the
program.

● Keep control in the form, use only ENABLE and DISABLE requests, and use calls to escape routines
as the primary method for transferring data.

20

Chapter 2. Planning the Application

The mileage reimbursement application uses the first style, but also includes two calls to escape routines.
The sample applications, described in Chapter 13, "Demonstration and Sample Forms and Applications",
use this first style also.

When keeping control in the application program, because the activation list is emptied after each
request, you might need to maintain control data about the current state of the application at the time
each request is initiated. This control data might include such information as what key was pressed, what
icon was selected, what field the cursor was in, and so on.

With DECforms, you can create menu-like structures consisting of panels containing icons such as those
used in some of the demonstration applications described in Section 13.1, "Displaying the Demonstration
Forms".To keep information about the state of these “menus” in terms that the application can
understand, you would use an integer array containing data describing the menu tree. If you later change
your “menu” organization, you must also reorganize the data structures containing the menu data.

Keeping control in the form is useful when you have a complex or frequently changing user interface
containing many levels of “menus”. With this style, you use only ENABLE and DISABLE requests.
DECforms maintains the same activation list until the DISABLE call ends the session. For a good
example of this style, see the Track and Field application in Appendix B of the VSI DECforms Style
Guide for Character-Cell Devices.

2.6. What Comes Next
You have finished planning the application. The next step is to create the form file and the form layouts.

21

Chapter 2. Planning the Application

22

Chapter 3. Creating the Character-
Cell Layout
This chapter describes how to create the initial form file for the mileage reimbursement application and
how to create the major components of the form layout for character-cell terminals. The chapter covers
the following topics:

● Creating the form file

● Creating the character-cell layout

● Creating the character-cell panels using the character-cell panel editor, CCPED

● Testing the appearance of the panels

Note

The final source files for the mileage reimbursement form and programs described in this book are listed
in Appendix A, "The Mileage Reimbursement Application" and are also available on line in the DECforms
example directories.

3.1. Creating the Form Using the Form
Development Environment
To invoke the FDE and create a form named MRF_FORM,use the following procedure:

1. Invoke the FDE with the following command:

$ FORMS DEVELOP MRF_FORM

Additional Information

If the DEC Language-Sensitive Editor (LSE) is installed on your OpenVMS system, you can use it
for text-editing functions in the FDE by entering this command:

$ FORMS DEVELOP MRF_FORM/TEXT_EDITOR=LSE

Alternatively, you can define the logical name FORMS$TEXT_EDITOR to be CALLABLE_LSE.

You can also specify other editors, for example, EDT. For details on specifying other editors, see the
FORMS DEVELOP command description in the VSI DECforms Guide to Commands and Utilities.

LSE provides additional DECforms support (creating templates, compiling, debugging, and so on).
By default,LSE uses EDT-keypad mode, but you can change it to use the EVE keypad. LSE also
provides an interface to DECTPU.

If you do not specify a text editor, the FDE uses the DECTPU editor by default.

Because MRF_FORM does not yet exist, the FDE will create it. This form must contain at least one
layout to be valid, so the FDE will prompt you for information about the new layout to be created.

23

Chapter 3. Creating the Character-Cell Layout

The FDE displays the Main Menu and overlays it with the panel for a new form, as shown in Figure
3.1, "FDE Main Menu Appearance for New Forms".

Figure 3.1. FDE Main Menu Appearance for New Forms

2. Press Select (or KPperiod) to choose Yes and have the FDE create the layout.

The FDE creates the layout and displays the Main Menu again (Figure 3.2, "FDE Main Menu"),
showing the choicesfor the FDE functions.

Figure 3.2. FDE Main Menu

The name of the form, MRF_FORM, appears at the form level (the top row of choices), and the
name of the layout, VT_LAYOUT, appears at the layout level (the middle row of choices).

To select a choice, use the arrow keys to move the cursor to your choice and press either the Select
key or KPperiod (the period key on the numeric keypad).You can get help at any time by pressing
Help.

3. To see the IFDL statements created for your form, select Edit IFDL at the form level on the Main
Menu.

The FDE invokes your text editor and displays the following IFDL statements:

Form MRF_FORM

 Layout VT_LAYOUT
 Device
 Terminal
 Type %VT100
 End Device
 Size 24 Lines by 80 Columns

24

Chapter 3. Creating the Character-Cell Layout

 End Layout
End Form

The VT100 is the default terminal type in a layout created by the FDE because the layout works on
VT100 (except those without the advanced video option), and VT100-, VT200-, VT300-, VT400-,
and VT500-series terminals.

4. Quit the text editor to return to the Main Menu.

3.2. Modifying the Default Layout
You are going to change the default layout to support a two-line message panel and a help panel, as
follows:

1. Select Modify Layout at the layout level of the Main Menu.

The FDE displays the Modify LAYOUT panel as shown in Figure 3.3, "FDE Modify LAYOUT
Panel".

Figure 3.3. FDE Modify LAYOUT Panel

2. Move the cursor to the Message Lines field and replace the first number24 with the following:

23

This specifies a two-line message viewport.

3. Move the cursor to the Help Panel field and enter the following name for the help panel:

HELP_PANEL

4. Select OK or press the F10 key to return to the Main Menu.

The FDE displays a message saying that HELP_PANEL cannot be found and will be created.

When the Main Menu reappears,the FDE has created the first panel, named HELP_PANEL.
Because it is declared at the layout level, this help panel will be associated with all data panels that
you will create in the layout.

3.3. Creating Panels
To create the two main panels, use the following procedure:

1. Move the cursor to the panel level on the Main Menu and select the Choose, Create choice.

The FDE displays the menu in Figure 3.4, "FDE Choose or Create a Panel Menu"on top of the Main
Menu.

25

Chapter 3. Creating the Character-Cell Layout

Figure 3.4. FDE Choose or Create a Panel Menu

2. Select the Create Panel choice.

The FDE displays the Create PANEL panel as shown in Figure 3.5, "FDE Create PANEL Panel".

Figure 3.5. FDE Create PANEL Panel

3. Enter the following panel name:

HEADER_INFO_PANEL

4. Move the cursor to the Viewport Name field and enter the following viewport name:

MAIN_VIEWPORT

5. Move the cursor to the line just below the viewport name to the field containing the number 24.

6. Delete the number 24 and enter the following number:

22

This specifies that the viewport height will be from line 1 to line 22.Leave the viewport width as the
default size of columns 1 to 80.

7. Select Application Keypad Mode.

This allows the operator to use the keypad keys (in addition to the keyboard and other function
keys)to perform functions.

8. Select OK or press F10 to indicate you have finished creating the panel and return to the Main Menu.

The FDE creates a panel named HEADER_INFO_PANEL (using defaults for the rest of the options
on the Create Panel panel) and a viewport named MAIN_VIEWPORT. The FDE also associates
MAIN_VIEWPORT with HEADER_INFO_PANEL.

26

Chapter 3. Creating the Character-Cell Layout

Additional Information

Throughout the FDE, pressing F10 is the same action as pressing Select on the OK icon.

An alternative method for creating panels is to create them directly in CCPED using the create
panel command. Later in this chapter, you will get experience using CCPED commands.

9. Repeat steps 1 to 4 and 7 to 8 to create a second panel named TRIPS_INFO_PANEL.

10. Create a second help panel named SECOND_HELP_PANEL. Use the Tab and Select keys to set
the panel type to Help and use a viewport named HELP_VIEWPORT that is the same size as
MAIN_VIEWPORT. You do not need to change the keypad mode.

3.4. Modifying the Help Panel
Now you are going to assign the HELP_VIEWPORT to the HELP_PANEL, as follows:

1. Select Modify Panel from the Main Menu at the panel level.

DECforms displays the Modify PANEL panel, which is similar to the Create Panel panel.

2. Move the cursor to the Viewport Name field, and enter the following viewport name:

HELP_VIEWPORT

If you do not specifically assign a viewport to a panel, DECforms uses the default viewport, which is 24
lines long. In this case, you will use a 22-line HELP_VIEWPORT, reserving the bottom two lines for
messages.

3.5. Choosing Panels
To choose one of the data entry panels just created, use the following procedure:

1. Select the Choose, Create choice at the panel level.

The Choose or Create a Panel menu is displayed.

2. Select the Choose Panel choice.

The FDE displays a list of the two data entry panels you just created as shown in Figure 3.6, "FDE
Select a Data Entry Panel Menu".

Figure 3.6. FDE Select a Data Entry Panel Menu

27

Chapter 3. Creating the Character-Cell Layout

3. Select a data entry panel.

The Main Menu is redisplayed, with name of the panel appearing as the name of the current panel.

To display a help panel, select Choose Help from the Choose or Create a Panel menu, and then select the
help panel from the Help Panel Menu.

3.6. Creating the Appearance of the First
Panel
The procedures in this section explain how to use the character-cell panel editor CCPED to
create the appearance of HEADER_INFO_PANEL. When you complete these procedures,
the HEADER_INFO_PANEL in CCPED should look like Figure 3.7, "Appearance of
HEADER_INFO_PANEL in CCPED".

Figure 3.7. Appearance of HEADER_INFO_PANEL in CCPED

You will use some CCPED commands and several of the keys on the CCPED default keypad. For a
diagram of this keypad, see Figure 3.8, " CCPED Default Keypad".Press PF2 to display this keypad
within CCPED.

28

Chapter 3. Creating the Character-Cell Layout

Figure 3.8. CCPED Default Keypad

You will also use some of the CCPED default function keys in the following exercises. Table 3.1, "
CCPED Function Keys" lists the complete set of CCPED default function keys.

Table 3.1. CCPED Function Keys

Key Sequence Default Function

PF1-E Exit
PF1-H Double-high font size and line width
PF1-M Modify (menu)
PF1-N Normal font size and line width
PF1-O Order objects in the IFDL file and activation list in

the same order in which they appear on the panel
display from left to right and top to bottom

PF1-Q Quit, save journal
PF1-T Test appearance
PF1-S Single font size and line width
PF1-V Show version
PF1-W Double-wide font size and line width

Case does not matter when entering the CCPED alphabetic function keys. For example, you can enter
either PF1-h or PF1-H.

3.6.1. Invoking the Panel Editor CCPED
To invoke CCPED and position the cursor on the panel:

1. Select the HEADER_INFO_PANEL data entry panel, following the steps in Section 3.5, "Choosing
Panels".

29

Chapter 3. Creating the Character-Cell Layout

2. Select the Panel Editor choice at the panel level on the Main Menu.

The FDE invokes CCPED, which displays HEADER_INFO_PANEL (currently empty) and some
copyright information at the bottom of the screen.

3. Press Do.

The Command prompt (Command>) is displayed at the bottom of the screen.

4. Enter the following command (case does not matter) at the prompt to specify the cursor position on
the panel:

Command> POSITION TO (1,15)

Then press Return. The cursor is displayed at the specified position (line 1, column 15) on the panel.

3.6.2. Specifying Text Display Attributes
Before entering text on the panel, you can specify certain display attributes for the text. To specify those
attributes and enter some text on the panel:

1. Press Set (KP7 on the PED keypad).

CCPED displays the Set Display Attribute Menu as shown in Figure 3.9, " CCPED Set Display
Attribute Menu".

Figure 3.9. CCPED Set Display Attribute Menu

2. Select the Font Size option to display the Font Size submenu.

3. Select the Double Wide option.

4. Select OK (or press F10) to return to the Set Display Attribute Menu.

5. Select OK (or press F10) to return to the current panel and to cause the changes you made in steps 3
and 4 to take effect.

6. Enter the following text:

Mileage Reimbursement Form

The text appears in double-wide characters.

7. Press down arrow to move the cursor one line below the line you just typed.

Important Note

Do not use the space bar, Backspace, or Return keys to move the cursor or you will create literal
spaces on the panel.

8. Press left arrow to move the cursor under the letter a in the word Mileage.

30

Chapter 3. Creating the Character-Cell Layout

9. Enter the following text:

Header Information

10. Press PF1-N (the PF1 keypad key and the N keyboard key)to return the font size and line width to
normal.

Additional Information

Alternatively, as you did with the panel title, you can press Set (KP7)and use the Set Display
Attribute Menu to return the font size and line width to normal.

3.6.3. Creating a Graphic Literal
A graphic literal is a graphic object such as a line, polyline, or rectangle that forms part of the
background for a panel.

To create a line across the screen display:

1. Press down arrow once to move the cursor to the third line in the panel.

2. Press left arrow as many times as necessary to reach the leftmost column (column 1).

OR

Press PF1-KP2 to go automatically to the beginning of the line.

3. Press Mark (KP9) to mark one end of the line at the cursor position.

4. Do one of the following:

● Press right arrow to move the cursor to the rightmost column (column 80) of line 3.

● Press KP2 to go automatically to the end of the line.

5. Press Mark (KP9) to mark the other end of the line.

6. Press Draw Object (KPhyphen) to draw the line.

Additional Information

Another way of creating this line (replacing the previous six steps) is to press Do and enter the following
command:

Command> CREATE POLYLINE (3,1) (3,80)

3.6.4. Specifying Text Literals and Picture Fields for
User Input
Next you are going to create text literals and picture fields for the employee name, badge number, and
cost center. A picture fieldis a one-line data field. You have the option of specifying input,output, or
both formats for the picture field.

31

Chapter 3. Creating the Character-Cell Layout

To create the text literal for the employee name:

1. Press Do and enter the following command:

Command> POSITION TO (5,2)

2. Enter the following text:

Employee Name:

To create a picture field for the operator to enter input in the Employee Name: field on the panel:

1. Press right arrow once to leave a space between “Employee Name:” and the picture field.

2. Press Create Field (KP8).

The Panel Editor displays the Create Field Menu, shown filled-in in Figure 3.10, "CCPED Create
Field Menu".

3. In the Field Name field, enter the following name:

EMPLOYEE_NAME

4. Move the cursor to the Data Type field, and press Select to display the Choose Data Type Menu.

5. Move the cursor to the Character data type and select it.

CCPED displays a panel for entering the size of the field (the number of occurrences of the
character).

6. Enter the following number and select OK to return to the Create Field Menu:

32

The Create Field Menu should look like Figure 3.10, "CCPED Create Field Menu".

Figure 3.10. CCPED Create Field Menu

7. Select OK—skipping over the Picture field—to return to the panel.

CCPED creates a default field picture based on the data type you specified. The field picture, 32 X
characters, appears on the panel. The character X indicates that the operator can enter any allowable
character from the device's character set in this field.

When creating this field, CCPED also creates the form data type EMPLOYEE_NAME, using the
information you supplied through the Choose Data Type Menu.

To create a text literal and a picture field for the badge number on the panel:

1. Create a text literal called “Badge Number:” at Line 7,Column 3.

32

Chapter 3. Creating the Character-Cell Layout

Use the arrow keys to position the cursor, or use the following CCPED command:

Command> POSITION TO (7,3)

2. Press Do and enter the following command to specify the picture field:

Command> CREATE FIELD Badge_Number (7,17) TYPE INTEGER(6) PICTURE
 "999999R"

3. With the cursor on the BADGE_NUMBER field, press Select to select the field.

CCPED highlights the field to show that it is selected.

4. Press Do and enter the following command:

Command> MODIFY FIELD JUSTIFICATION RIGHT

5. Press PF1-KPperiod to deselect the field.

These commands create a picture field called BADGE_NUMBER at line 7, column 17.The
data type for this field is integer. The size is 6 digits. The output picture (output format) is 6
digits,represented by 9s in the output picture string. The letter R tells DECforms to replace any
leading zeros in front of the R with blank spaces. For example, on the badge number field with the
output picture of 999999R,if the operator entered the badge number 36, DECforms would output
####36 on the display instead of 000036.The output for the field is also specified to be right
justified.

If you do not specify a picture string, DECforms uses a default format.

Additional Information

If you want to know more about picture string formats, see the Picture String section in the VSI
DECforms IFDL Reference Manual.

To create the text literal and picture field for the cost center:

1. Create a text literal called “Cost Center:” at line 7,column 30.

2. Press Do and enter the following command:

Command> CREATE FIELD COST_CENTER (7,43) TYPE CHARACTER(3)

CCPED creates the picture field and the form data item. The panel should display a series of three
capital Xs at the field location.

3. With the cursor on the same field, select the field.

4. Press Do and enter the following command:

Command> MODIFY FIELD AUTOSKIP UPPERCASE

The AUTOSKIP clause causes the cursor to automatically skip to the next entry when the operator
finishes filling out this field. The UPPERCASE clause displays operator input in uppercase.

5. Deselect the field.

33

Chapter 3. Creating the Character-Cell Layout

3.6.5. Specifying a Text Literal and Text Field for User
Input
The address field will allow the operator to enter an address of up to three lines. For this field, you will
create a text literal followed by a multiline text field.

To create the text literal and text field for the address,using the CCPED keypad:

1. Create a text literal called “Address:” at line 9,column 8.

2. Press right arrow to move the cursor to the same column as the beginning of the picture field for the
badge number.

3. Press Create Field (KP8).

The Panel Editor displays the Create Field Menu.

4. In the Field Name field, enter the following name:

ADDRESS

5. Move the cursor to the Data Type field, and press Select to display the Choose Data Type Menu.

6. Move the cursor to the Character data type and select it.

CCPED displays the Data Type Character box.

7. Enter the following number in the Size field in the Data Type Character box:

120

8. Select OK.

9. Enter the following number in the Number of Rows field:

3

10. Enter the following number in the Number of Columns field:

40

This number creates a three-line text field. The operator can enter up to 120 characters of text. To
move to the next line of the field, the operator presses the Return key.

The operator can enter more than three lines of text or more than 40 characters per line as long as
the total number of characters does not exceed 120.If the operator enters more than three lines of
text, or more than 40 characters of text in aline, DECforms scrolls the text within the display area.

Notice that you cannot enter data in the Picture field, because you cannot specify input or output
picture strings for text fields.

Additional Information

An alternative method of specifying this field is to press Do and enter the following command:
34

Chapter 3. Creating the Character-Cell Layout

Command> CREATE FIELD Address (9,17) TYPE CHAR(120) ROWS 3 COLUMNS 40

The form data type does not have to be the same size as the field. For more details, see the
description of the TEXTFIELD declaration in the VSI DECforms IFDL Reference Manual.

11. Select OK.

3.6.6. Specifying More Text Literals and a Picture Field
To create the text literals and picture field for the reason for reimbursement:

1. Create a text literal called “Reason for” at line 13,column 2.

2. Create another text literal called “Reimbursement:” at line14, column 2.

3. Press Do and enter the following command:

Command> CREATE FIELD Reason (14,17) TYPE CHARACTER(64)

You do not need to specify a picture for this field. DECforms provides a default format for you.

Additional Information

If you accidentally place a panel object in the wrong position, you can change the position by selecting
the object, moving the cursor to the desired location, and then pressing PF1 Move (PF1-KPcomma).

If you use CCPED command mode to do a series of similar commands, use the following shortcut:

1. Recall previous CCPED commands by pressing up arrow.

2. Edit the command line and press Return to execute the new command.

3.6.7. Creating Informational Text on the Header Panel
To create the basic text for the information on the header panel,create the following text literals:

Line Column Text

16 17 To move to the next item:
17 17 To move to the previous item:
18 17 To move to next line of address:
19 17 When you are finished:
20 17 For more information:
16 50 Tab or Enter
17 50 F12 or Backspace
18 50 Return
19 50 F10 or Ctrl/Z
20 50 PF2 or Help

35

Chapter 3. Creating the Character-Cell Layout

You can create each literal in either of the following ways:

● Move the cursor on the panel display with arrow keys (notthe space bar), counting the lines and
columns, and then enter the text literal.

● Press Do, enter the position to command,and then enter the literal text.

3.6.8. Modifying Text Display Attributes
You now need to make boldface some of the text literals. When you created the title for the header
panel, you learned how to set display attributes before creating the text literal. The following task shows
you how to modify display attributes after creating the text literals.

To make boldface the text literals representing key names (Tab or Enter,F12 or Backspace, and so on):

1. Place the cursor on each object and press Select.(Pressing KP3 moves the cursor to the next object.)

This action places each object on the selection list(the list of selected objects).

2. Press Modify (KP4 on the keypad).

CCPED displays the Modify Display Attribute Menu.

3. Select the Video Attributes option to display the Video Attributes submenu.

4. Select the Bold attribute.

5. Select OK (or press F10) to return to the Modify Display Attribute Menu.

6. Select OK (or press F10) to return to the current panel.

This action automatically deselects all selected objects.

3.6.9. Creating a Rectangle Literal
To create a rectangle around the informational text:

1. Position the cursor at line 15, column 16.

2. Press Mark (KP9).

3. Position the cursor at line 21, column 68.

4. Press Mark (KP9).

5. Press Draw Object (KP-).

Additional Information

Another way of creating the rectangle literal (replacing the previous five steps) is to press Do and
enter the following CCPED command:

Command> CREATE RECTANGLE (16,16) (22,68)

36

Chapter 3. Creating the Character-Cell Layout

Note

If you want to stop now and continue the exercises later, press F10twice to exit CCPED and the FDE. If
you do this, you must reenter the FDE and select the Panel Editor before continuing.

3.7. Creating the Appearance of the Second
Panel
The procedures in this section allow you to develop further the skills that you learned in the previous
section. In addition, you will practice using your text editor within the FDE. When you complete this
section, the trips panel in CCPED should look like Figure 3.11, "Appearance of TRIPS_INFO_PANEL in
CCPED".

Figure 3.11. Appearance of TRIPS_INFO_PANEL in CCPED

3.7.1. Creating Background Text and Graphics
If you did not exit the FDE, the panel you just completed remains displayed in CCPED. If you exited and
reentered the FDE, and then selected the Panel Editor,the blank help panel, HELP_PANEL, appears on
the screen.

To display the second data panel and create some background text and graphics for this panel:

1. Press Next Panel (Next Screen) until the empty TRIPS_INFO_PANEL is displayed and becomes the
current panel.

2. Press PF1-W to set the font size to double width.

CCPED displays messages about the font size at the bottom of the screen.

3. Press Do and enter a command to position the cursor to line 1,column 15.

4. Enter the text “Mileage Reimbursement Form” on the panel display.

5. Press PF1-N to return the font size and line width to normal.

6. Use the Mark (KP9) and Draw Object (KP-) keypad keys to create a horizontal line across line 2 of
the panel.

If you need help, see Section 3.6.3, "Creating a Graphic Literal" on creating a graphic literal for the
header panel.

37

Chapter 3. Creating the Character-Cell Layout

7. Create the following text literals:

Line Column Value

3 11 Date
3 21 Travel Points
3 39 Personal Car
4 8 DD-MMM-YYYY
4 22 From
4 29 To
4 39 Miles
4 46 Amount
4 53 Tolls
4 61 Subtotal

3.7.2. Specifying a Group
The trip data requires a multiply occurring set of data fields(for the date, from, to, miles, amount, tolls,
and subtotal data).Before you can create the fields for this data, you must create a group to contain the
set of data.

To create the group, press Do and enter the following CCPED command:

Command> CREATE GROUP TRIP OCCURS 36 VERTICAL DISPLAYS 12

This command specifies that you want to create a group containing36 instances (trips), 12 of which are
displayed at a time vertically on the panel. The operator can scroll the display to enter information for
more than12 trips. From the program's perspective, the group is a data structure containing an array of
trip data.

3.7.3. Specifying Picture Fields for the Group
The next task is to create all the fields and associated form data items for the TRIP group. At this point,
you are going to exit CCPED and use another FDE feature, the Edit IFDL choice, to edit your form
source file:

1. Press Do and enter the exit command to return to the FDE Main Menu.

When you exit CCPED, the FDE uses a DECforms utility called the Back Translator to create an
IFDL source file.

Additional Information

Until you exit the FDE, DECforms creates temporary files in your current directory.

2. Press right arrow and select the Edit IFDL choice at the Main Menu panel level.

The FDE opens the IFDL source file and places the cursor at the current panel declaration.

3. If you like, move the cursor up and down through the source file to see the form data items, layout,
viewport, and panels that you have created so far.

38

Chapter 3. Creating the Character-Cell Layout

Additional Information

If you made any errors in the size or attributes of data or fields,you can correct them while in editing
mode.

4. Create an empty line at the bottom of the file, below Displays 12 and above End Group.

5. Using the text editor, enter the code for the TRIP_DATE field as follows:

 Field TRIP_DATE
 Line 6
 Column 8
 Autoskip
 Output ""
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Input Picture FOR DATE DD-AAA-YYYY
 End Field

Additional Information

DECforms does not require that you indent or capitalize the IFDL code as shown in the examples
here. When you exit from the text editor, the FDE uses a DECforms utility called the IFDL
Translator to translate the IFDL source into a form file before returning to the Main Menu.

If you then use CCPED to edit the form file, when you exit CCPED,the FDE uses the DECforms
Back Translator to convert the file back to an IFDL file. This Back Translator automatically formats
the text for you, providing indents and capitalization according to a set of internal rules.

You can also invoke the IFDL Translator and the Back Translator from the command line. If you
choose not to use the FDE, you must use the Translator or the LSE COMPILE/REVIEW command
to convert your source file to a binary, form file format. For more information about the translators,
see the VSI DECforms Guide to Commands and Utilities.

The IFDL code for TRIP_DATE specifies a picture field at line 6,column 8. The AUTOSKIP clause
specifies that when the operator finishes filling in this field, DECforms will move the input cursor to
the next field automatically.

The OUTPUT "" WHEN (TRIP(**).TRIP_DATE = BLANK_DATE)clause causes blank spaces to
be displayed for the date when TRIP_DATE has a zero-date value. This reduces screen clutter by
making the date field blank until the operator enters a date.

Additional Information

It is useful to compare the OUTPUT WHEN clause with two other clauses—the PROTECTED
WHEN and CONCEALED WHEN clauses. The PROTECTED WHEN clause prevents placing
the cursor on the field or entering data into the field when the stated condition is true. The
CONCEALED WHEN clause prevents viewing the contents of the field when the stated condition is
true.

BLANK_DATE is a form data item that you will define only within the form. Because the date is
initialized to a zero-date by default, you can use BLANK_DATE in the expression to signify the
condition under which no date has been entered.

39

Chapter 3. Creating the Character-Cell Layout

The asterisks (**) designate corresponding subscripts, which you can use in array expressions.
These indicate that the index for the field in the OUTPUT clause is the same index as for this field
(the occurrence of the field in the OUTPUT clause corresponds with the occurrence of the field
containing the clause).

Additional Information

For more information on groups, see Section 9.4, "Declaring and Displaying Groups and Arrays" as
well as the appendix on arrays in the VSI DECforms IFDL Reference Manual.

DECforms supports validation for dates if you use the date data types as specified in the
DATETIME DATA clause described in the VSI DECforms IFDL Reference Manual. The Form
Manager checks the date to make sure it is a valid date, and, if not, displays an error message, so
you do not have to perform date validation in your program. For example, 30-FEB-1994 is not a
valid date. The DATETIME data type is the only date data type that is portable across all devices
supported by DECforms.

The INPUT PICTURE DD-AAA-YYYY clause describes the acceptable format for inputting the
date. AAA designates the standard three-letter abbreviation for the month name. For example, 10-
JUN-1994 is acceptable,but JUN-10-94 and 10-JUNE-1994 are not acceptable. Because an output
picture is not specified, the Form Manager will use the input picture format for displaying the output
on the panel and for validating the input.

6. Enter the code for the TRIP_FROM field as follows:

 Field TRIP_FROM
 Line 6
 Column 22
 Autoskip
 Uppercase
 Protected
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 End Field

The UPPERCASE clause specifies that the operator input will appear on the screen in uppercase.
The PROTECTED WHEN(TRIP(**).TRIP_DATE = BLANK_DATE) clause specifies
that the operator cannot enter data or move the cursor into this field when the value of field
TRIP(**).TRIP_DATE is a zero-date.

Additional Information

You can specify fields in groups from within CCPED by entering the field name in the format
groupname.fieldname.You can also add certain clauses by pressing PF1-Enter and selecting items
in the Modify Field Description panel, described in Section 3.7.5, "Specifying Picture Fields for the
Totals".

You might find this an easier way to work when creating your own applications.

7. Enter the code for the TRIP_TO field as follows:

 Field TRIP_TO
 Line 6
 Column 29

40

Chapter 3. Creating the Character-Cell Layout

 Autoskip
 Uppercase
 Protected
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 End Field

8. Enter the code for the MILES field as follows:

 Field MILES
 Line 6
 Column 40
 Output ""
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Output Picture 999R
 Justification Right
 Protected
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 End Field

The OUTPUT PICTURE clause specifies an output display of three numeric characters. The R
will cause the leftmost places to be replaced by blank spaces if the operator enters only one or two
numbers. The number will be right justified.

9. Enter the code for the AMOUNT field as follows:

 Field AMOUNT
 Line 6
 Column 46
 Output ""
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Output Picture 99R9.99
 Scale -2
 Protected
 End Field

The SCALE clause allows you to use integer values in your program and form, but display the values
as floating point values. The SCALE –2 clause specifies that the displayed value of the data on the
screen will be the actual data value divided by 100 (multiplied by 10 -2). This is done so that you
can store the form and program data values as an integer value of pennies rather than dollars, thus
avoiding the problems of floating point rounding, truncation, and inaccuracies.

The PROTECTED clause ensures that the operator cannot enter data into this field. The application
will calculate and enter this data.

10. Enter the code for the TOLL field as follows:

 Field TOLL
 Line 6
 Column 54
 Output ""
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Output Picture 99R9.99
 Scale -2
 Justification Decimal
 Protected
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 End Field

41

Chapter 3. Creating the Character-Cell Layout

This IFDL code is similar to that for previous fields. The OUTPUT PICTURE 99R9.99 clause
and the JUSTIFICATION DECIMAL clause ensure that the amount will be displayed and justified
properly around a decimal point. The operator enters the dollar amount, presses the period key, and
then enters the cents value.

11. Enter the code for the SUBTOTAL field as follows:

 Field SUBTOTAL
 Line 6
 Column 62
 Output ""
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Output Picture 99R9.99
 Scale -2
 Protected
 End Field

3.7.4. Completing the Form Data
You have completed specifying the fields for the TRIP group. Now you must specify the form data for
these fields. When you use CCPED to create fields, CCPED creates form data for you. If you use a text
editor, you must enter the IFDL code for the form data items (if it does not exist already)in addition to
the code for the fields in the panel.

You also need to specify two local form data items: N, which represents the current occurrence of
the TRIP group, and BLANK_DATE, which represents a zero-date. N is a numeric form data item
that, during the accept phase, will receive the index of the occurrence of the group that is the current
activation item. BLANK_DATE has a DATETIME(8) data type, corresponding with the data type for
TRIP_DATE.

To specify form data items for the group fields:

1. Move the cursor to the beginning of the IFDL file and look at the form data that CCPED created for
you already.

2. Create an empty line just below REASONCharacter(64) and enter the following lines:

 N Unsigned Longword BLANK_DATE Datetime(8)

3. Move the cursor just above EndGroup in the Form Data section and just below Occurs36, create
an empty line, and enter the following code:

 Current N
 TRIP_DATE Datetime(8)
 TRIP_FROM Character(3)
 TRIP_TO Character(3)
 MILES Longword Integer
 AMOUNT Longword Integer
 TOLL Longword Integer
 SUBTOTAL Longword Integer

The CURRENT N clause specifies the current occurrence of the TRIP group.

4. Exit the editor and return to the FDE Main Menu.

When you exit the editor, the FDE uses the IFDL Translator to translate the IFDL source into a form
file before returning to the Main Menu. If translation errors occur, the FDE displays a panel(shown in

42

Chapter 3. Creating the Character-Cell Layout

Figure 3.12, "Correcting IFDL Syntax Errors in the FDE") to notify you and gives you the option of
correcting the errors.

Figure 3.12. Correcting IFDL Syntax Errors in the FDE

If you get this message, select Edit Again to reenter the text editor. Compare the text you entered with
the examples shown in this guide, make any necessary corrections, and exit the text editor.

Additional Information

On OpenVMS, DECforms creates a TPU buffer called FORMS$LIST that contains a list of errors
encountered by the IFDL Translator.

If you are using LSE, press DO, and then use the COMPILE/REVIEW command to list any errors. If
errors occur, use Ctrl/G to move to the line at which the first error occurred, and correct the error. Then
use Ctrl/F to move back to the next error in the list.

3.7.5. Specifying Picture Fields for the Totals
To create the final three picture fields for the trips panel, you will reenter CCPED to get more practice
with that tool.

To specify the TOTAL_MILES field:

1. From the FDE Main Menu panel level, select the Choose, Create option,then Choose Panel from the
resulting dialog box, and choose the TRIPS_INFO_PANEL.

2. Select the Panel Editor option.

3. Position the cursor at line 19, column 39.

4. Press Create Field (KP8).

5. Create a field named TOTAL_MILES.

6. Move the cursor to the Data Type field and press Select.

CCPED displays the Choose Data Type Menu.

7. Select Longword Integer and select OK.

8. Move the cursor to the Picture field and enter the specification for the output picture string as
follows:

999R9

9. Select OK to return to the panel display.

43

Chapter 3. Creating the Character-Cell Layout

10. Select the TOTAL_MILES field by pressing the Select key.

11. Press PF-1 Modify Field Description (PF1-Enter).

CCPED displays the Modify Field Description panel as shown in Figure 3.13, "CCPED Modify Field
Description Panel".

Figure 3.13. CCPED Modify Field Description Panel

12. Select Protected to specify that the operator cannot enter data in this field.

13. Select OK in the Modify Field Description panel.

To create the TOTAL_AMOUNT and TOTAL_TOLLS fields:

1. Create a field named TOTAL_AMOUNT at line 19, column 45 using CCPED keypad operations or
commands.

2. Give this field the Longword Integer data type.

3. Specify an output picture of 999R9.99, Scale –2 and make it a protected field.

You can use the Modify Field Description panel to specify picture,protection, and scale.

4. Create another field named TOTAL_TOLLS at line 19, column 54.

5. Give this field the same data type, scale, and protection as the TOTAL_AMOUNT field and an
output picture of 999R.99.

3.7.6. Creating a Rectangle Literal for the TRIP Group
When you have a group, it is a good idea to draw a rectangle around the fields in the group to connect
them visually.

Create a rectangle around the TRIP group by using either KP9 and KPminus or a CCPED command. If
you need help, see Section 3.6.9, "Creating a Rectangle Literal".

3.7.7. Creating Text Literals and the Final Picture Field
for the Totals
To create the text literal and the final picture field:

1. Position the cursor at line 19, column 31.

2. Enter the following text:

44

Chapter 3. Creating the Character-Cell Layout

Totals:

3. Create a picture field named FORM_TOTAL at line 19, column 61.

4. Give this field the Longword Integer data type.

5. Give this field the output picture 999R9.99, a scale of –2, and make it a protected field.

3.7.8. Specifying Icons
An icon can consist of text, graphic literals, or both, associated with a function response, so that when
the operator presses a key(usually the Select key), the application causes something to happen.

To create the three icons at the bottom of the trips panel:

1. Create an icon named COMPUTE_TOTALS by entering the following series of commands from
CCPED:

Command> CREATE RECTANGLE (20,2) (22,19)
Command> CREATE TEXT "Compute Totals" (21,4)
Command> SELECT AT (20,2)
Command> SELECT AT (21,4)
Command> CREATE ICON Compute_totals
Command> DESELECT ALL

2. Create an icon named DISCARD_DATA by entering the following series of commands from
CCPED:

Command> CREATE RECTANGLE (20,22) (22,37)
Command> CREATE TEXT "Discard Data" (21,24)
Command> SELECT AT (20,22) ; SELECT AT (21,24)
Command> CREATE ICON Discard_data ; DESELECT ALL

Notice that you can combine commands on one line by separating them with semicolons (;).

3. Create an icon named RECORD_AND_EXIT by entering the following series of commands from
CCPED:

Command> CREATE RECTANGLE (20,40) (22,58)
Command> CREATE TEXT "Record and Exit" (21,42)
Command> SELECT AT (20,40) ; SELECT AT (21,42)
Command> CREATE ICON Record_and_exit ; DESELECT ALL

4. Create an icon named HELP_ICON containing the text literal “Help” to the right of the “Record and
Exit” icon.

5. Exit the editor and return to the FDE Main Menu.

Additional Information

You have used three different methods to specify panel appearance:

● Keypad operations in CCPED

● Commands in CCPED

45

Chapter 3. Creating the Character-Cell Layout

● Editing the IFDL file with a text editor

In addition to these methods, you can create command scripts and you can define your own CCPED
keys. For a complete description of CCPED, see the VSI DECforms Guide to Commands and Utilities.

3.8. Creating the Appearance of the Help
Panels
To create the help panels with the FDE:

1. Select the Choose Help option from the Choose or Create a Panel menu.

2. Select HELP_PANEL from the Select a Help Panel menu.

3. Select the Panel Editor option.

4. Enter the text and create the icons for the help shown in Figure 2.5, "Sketch of First Help Panel".
Name the icons MORE_HELP and LEAVE_HELP. When you finish, the panel display should
appear similar to Figure 3.14, "Appearance of HELP_PANEL in CCPED".

Figure 3.14. Appearance of HELP_PANEL in CCPED

5. Press Next Screen and create the second help panel. Name the icons PREV_HELP and
LEAVE_SECOND_HELP. When you finish, the panel display should appear similar to Figure 3.15,
"Appearance of SECOND_HELP_PANEL in CCPED".

Figure 3.15. Appearance of SECOND_HELP_PANEL in CCPED

46

Chapter 3. Creating the Character-Cell Layout

6. Exit the editor and return to the FDE Main Menu.

3.9. Testing the Appearance of the Panels
To see how your form will look from the operator's point of view,select Test from the Main Menu, and
then select Test All.

The FDE displays each panel in the order in which it is declared in the IFDL file.

Press the Return or Tab key to move from one input field to another in the order in which they are
declared in the IFDL file (or the order in which you created them in CCPED). If you want to input data,
you can; the data will not remain with the form. To move the cursor to the next line of the ADDRESS
field, pressPF1-Return. If you want to change the panel (for example, to rearrange the order of the
fields), you must edit the IFDL file or return to the Panel Editor.

Press Next Screen to move to the next panel.

This test does not check the complete functioning of the panels; it tests only the panel appearance.

When you are finished, press F10 to return to the FDE, and then exit the FDE.

3.10. What Comes Next
You have completed creating the visual appearance of the panels for the character-cell layout for the
mileage reimbursement application. The next step is to create user-defined functions and responses for
the operator interaction with the application.

47

Chapter 3. Creating the Character-Cell Layout

48

Chapter 4. Adding Functions,
Responses, Display Actions,and
Validations to the IFDL File
This chapter describes ways to adapt the mileage reimbursement form to support special actions and
display characteristics related to operator actions on character-cell terminals. The chapter covers the
following major topics:

● Creating user-defined functions and function responses

● Creating other types of responses

● Overriding user-defined functions

● Creating active highlighting

● Adding validations to fields

4.1. Understanding User-Defined Functions
and Function Responses
To understand user-defined functions better, review the following information about how functions work.

As described in Section 1.2.2.3, "Phases in Processing Requests", the accept phase is the time during
which the operator can interact with the form. During this phase,the Form Manager keeps an activation
list containing items such as the fields or icons for the current display. For example, a field becomes
active, accepting operator input, when the operator moves the text entry cursor on it. Only one active
item can accept input at any one time (only one item on the activation list is current at any time).

To complete the processing of an activation item, the Form Manager typically performs an action
called a function response that the Form Manager takes when an operator presses a certain key or key
sequence (for example, the operator presses the Next Screen key, causing the cursor to move to the
next screen). An operator-entered key or key sequence is called a functionwhen it is associated with a
specific function response that DECforms makes.

DECforms provides built-in functions with default key bindings and responses. For example, when an
operator presses Tab, Return, or Enter, DECforms moves the cursor to the next item(field or icon) in the
activation list. For a complete list of these built-in functions, seethe appendix on built-in functions in the
VSI DECforms IFDL Reference Manual.

If you need a different function for your form, you can override the built-in functions, and you can
also define your own functions. Functions that you create in your form file are called user-defined
functions. It is not necessary to create user-defined functions: you do it only if you want the operator to
interact with your form in a different way than that provided by default.

In character-cell layouts only, you can use a wait activation item in an ACTIVATE response step to cause
the Form Manager to pause until the operator enters a function. Once the operator enters the function
key or key sequence, the Form Manager performs the function response associated with that function. In
portable applications, use icons to create the same effect.

49

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

4.2. Creating User-Defined Functions and
Function Responses
The user-defined functions you will create in the mileage reimbursement form are summarized in Table
4.1, "User-Defined Functions for the Character-Cell Layout".

Table 4.1. User-Defined Functions for the Character-Cell Layout

Function Name Key or Keys Task

DO_TOTALS Do

PF1-KP.

Compute the totals.

DISCARD F8

PF1-KP8

Delete data and start over.

MOVE_UP UP 1 Move the cursor up one item
or one occurrence; display a
message if the cursor is at the
topmost item or occurrence. This
overrides the built-in function
CURSOR UP.

MOVE_DOWN DOWN 2 Move the cursor down one item
or one occurrence; display a
message if the cursor is at the
bottommost item or occurrence.
This overrides the built-in
function CURSOR DOWN.

SELECT SELECT Perform a specific function
relating to each icon.

PRINT_FILE Ctrl/P Create a text file that is a picture
of the trips panel.

1Up arrow key
2Down arrow key

You will also add key bindings for two built-in functions, as follows:

Function Name Key or Keys Purpose of Function Response

INSERT LINE CARRIAGE RETURN Move the cursor to the next line
of a text field, in this case the
ADDRESS field.

EXIT GROUP NEXT PF1-DOWN Move the cursor from a field in a
group to the next activation item
outside the group, in this case to
the buttons on the trips panel.

4.2.1. Declaring the Functions in the Layout
When declaring functions, you associate particular keys or key sequences with a particular function
name. Key names begin with the percent (%) sign, and key sequences, such asPF1-KP., are enclosed in
parentheses.

50

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

To declare the functions for character-cell layout:

1. Open the mrf_form.ifdl file, either by choosing Edit IFDL from the layout level of the FDE Main
Menu or by invoking a text editor from the OpenVMS command line.

2. Place the cursor just after the last END VIEWPORT statement and before the USE HELP PANEL
declaration.

3. Enter the following code:

 Function DO_TOTALS
 Is %DO
 (%PF1 %KP_PERIOD)
 End Function

 Function DISCARD
 Is %F8
 (%PF1 %KP_8)
 End Function

 Function INSERT LINE
 Is %CARRIAGE_RETURN
 End Function

 Function EXIT GROUP NEXT
 Is (%PF4 %HORIZONTAL_TAB)
 (%PF4 %CARRIAGE_RETURN)
 (%PF4 %KP_ENTER)
 (%PF1 %DOWN)
 End Function

 Function MOVE_UP
 Is %UP
 End Function

 Function MOVE_DOWN
 Is %DOWN
 End Function

 Function SELECT
 Is %SELECT
 %KP_PERIOD
 End Function

 Function PRINT_FILE
 Is %CONTROL_P
 End Function

For the complete list of DECforms key names, see the appendix on key names in the VSI DECforms
IFDL Reference Manual.

You do not need to indent and capitalize as shown in the example. The Back Translator formats the text
for you when you exit the FDE or when you explicitly invoke it with a FORMS command.

4.2.2. Where to Declare Function Responses
The operator triggers a function response by performing a function; for example, by pressing the Select
key.

51

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

If you want the response to occur any time the operator performs the function, place the function
response delaration at the layout level(after the function declarations and before the panel declarations).

If you want the response to occur only for a particular panel, field, or icon,place the function response
within the panel, field, or icon declaration. A function response at a lower level supersedes a response for
the same function at a higher level.

Section 4.3.2, "Order of Functions and Responses " provides further information about the order of
functions and responses.

4.2.3. Creating Function Responses at the Layout Level
You will now create function responses for DISCARD, MOVE_UP, and MOVE_DOWN at the layout
level as follows:

1. Insert an empty line after the last End Function and before Use Help Panel.

2. Enter the following code:

 Function Response DISCARD
 Include RESET_DATA
 End Response

 Function Response MOVE_UP
 If (NOT UPPERMOST ITEM) Then
 Position to Up Item
 Else
 Include BORDER_PATROL
 End If
 End Response

 Function Response MOVE_DOWN
 If (NOT LOWERMOST ITEM) Then
 Position to Down Item
 Else
 Include BORDER_PATROL
 End If
 End Response

 Function Response PRINT_FILE
 Message "Preparing the print file..."
 Print TRIPS_INFO_PANEL
 Message "Print file completed."
 End Response

The DISCARD function response calls an internal response called RESET_DATA,described later in this
chapter.

The MOVE_UP function response specifies that if the cursor is not at the uppermost item on the
panel, MOVE_UP moves the cursor up one item. Otherwise, MOVE_UP calls another response called
BORDER_PATROL, described in Section 4.3.3, "Creating the Other Responses at the Layout Level".

The MOVE_DOWN function response is similar to MOVE_UP, except that it moves the cursor down
one item.

The PRINT_FILE function specifies a PRINT response step, which causes the Form Manager to create
a print file or to print a file containing the trip data from the trips panel. In the character-cell layout, the
Form Manager will create a text file called mrf_form.txt.

52

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

4.2.4. Creating Function Responses at the Panel Level
Next you will create the function responses at the panel level as follows:

1. Move the cursor down to the TRIPS_INFO_PANEL declaration just below Viewport
MAIN_VIEWPORT, and insert an empty line.

2. Enter the following code:

 Function Response TRANSMIT
 Include UPDATE_TOTALS
 Include RECORD_DATA
 End Response

 Function Response DO_TOTALS
 Include UPDATE_TOTALS
 End Response

When the operator presses the F10, Ctrl/Z, or Ctrl/D key or key sequence(for the built-in
TRANSMIT function) while the TRIPS_INFO_PANEL is displayed, the Form Manager calls
RECORD_DATA.(RECORD_DATA is another response that is described in Section 4.3.3, "Creating
the Other Responses at the Layout Level".)

The DO_TOTALS function response tells the Form Manager to call UPDATE_TOTALS when the
operator presses any of the function keys associated with the DO_TOTALS user-defined function.

3. Move the cursor to the HELP PANEL declaration, and insert a line above the first Literal Text
statement.

4. Enter the following function response:

 Function Response Next Help
 Activate panel SECOND_HELP_PANEL
 Position to panel SECOND_HELP_PANEL
 End Response

This function response causes the second help panel to be displayed if the operator presses help while
the first help panel is active.

4.2.5. Creating Function Responses at the Group Level
The next task is to create specific MOVE_UP and MOVE_DOWN function responses for the TRIP
group. These responses support moving up and down among group occurrences (instead of moving up
and down among panel items), and they override those at the layout level.

To create the function responses at the group level:

1. Move the cursor down to the Group TRIP declaration just below Displays 12, and insert an
empty line.

2. Enter the following code:

 Function Response MOVE_UP
 If (NOT FIRST OCCURRENCE VERTICAL) Then
 Position to Up Occurrence
 Else

53

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

 Include BORDER_PATROL
 End If
 End Response

 Function Response MOVE_DOWN
 If (NOT LAST OCCURRENCE VERTICAL) Then
 Position to Down Occurrence
 Else
 Include BORDER_PATROL
 End If
 End Response

4.2.6. Creating Function Responses at the Icon Level
In our form, the terminal operator selects an icon by pressing the Select key with the cursor on the
icon. The Select key triggers a different action on each icon. Each icon must have a function response
describing the specific action.

To specify the function responses for the icons:

1. Move the cursor just below Icon COMPUTE_TOTALS, and insert an empty line above Literal
Rectangle.

2. Enter the following code:

 Function Response SELECT
 Include UPDATE_TOTALS
 End Response

This response calls another response, UPDATE_TOTALS, described in Section 4.3.3, "Creating the
Other Responses at the Layout Level".

3. Insert an empty line just below Icon DISCARD_DATA, and enter the following code:

 Function Response SELECT
 Include RESET_DATA
 End Response

This response calls another response, RESET_DATA, described in Section 4.3.3, "Creating the Other
Responses at the Layout Level".

4. Insert an empty line just below Icon RECORD_AND_EXIT, and enter the following code:

 Function Response SELECT
 Include UPDATE_TOTALS
 Include RECORD_DATA
 End Response

This response calls two other responses, UPDATE_TOTALS and RECORD_DATA, described in
Section 4.3.3, "Creating the Other Responses at the Layout Level".

5. Insert an empty line just below Icon HELP_ICON, and enter the following code:

 Function Response SELECT
 ENTER HELP
 End Response

This response contains the ENTER HELP response step, which displays the help panel.

54

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

You will now create function responses for the four help panel icons.

6. Add the following response in the MORE_HELP icon declaration:

 Function Response SELECT
 Activate panel SECOND_HELP_PANEL
 Position to panel SECOND_HELP_PANEL
 End Response

This response causes the Form Manager to display the second help panel and activate the first icon in
the panel.

7. Add the following response in the LEAVE_HELP and LEAVE_SECOND_HELP icon declarations:

 Function Response SELECT
 Exit Help
 Remove Help
 End Response

This function response causes the display to return to the data panel that was active when the
operator invoked help.

8. Add the following response in the PREV_HELP icon declaration:

 Function Response SELECT
 Activate panel HELP_PANEL
 Position to panel HELP_PANEL
 End Response

This function response allows the operator to move from the second help panel back to the first help
panel.

4.3. Creating Other Responses
In addition to function responses, DECforms supports many other kinds of responses. Responses fit into
three major categories:

● External responses—triggered by an external event such as an application request or the receipt of
control text.

● Accept responses—triggered by accept phase events such as function key events, validation events, or
the entry or exit from a form element (panel, field, icon, and so on).

● Internal responses—called from another response.

4.3.1. Summary of Responses and Response Steps
Table 4.2, "DECforms Responses" summarizes the types of responses you can declare.

Table 4.2. DECforms Responses

External Responses
Response Description
Enable response Triggered when an ENABLE request is performed.

55

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

Disable response Triggered when a DISABLE request is performed.
Send response record-name Triggered when a SEND request to the specified

record is performed.
Receive response record-name Triggered when a RECEIVE request from the

specified record is performed.
Transceive response record-name-1 record-name-2 Triggered when a TRANSCEIVE request to and

from the specified records is performed.
Control text response text Triggered when control text matching the specified

text is received on a request.
Accept Responses

Response Description
Entry response Triggered when the form element within which the

response is declared is entered (before the operator
is allowed to enter input).

Exit response Triggered when the form element within which the
response is declared is exited (when the operator
leaves a panel field, icon, panel group, or panel).

Function response function-name Triggered when the specified function is performed
(when the operator presses the associated function
key or key sequence).

Validation response Triggered when the field is undergoing its
validation phase (when the operator finishes
entering input).

Internal Response
Response Description
Internal response response-name Specifies a response that can be included within

other responses.

Responses contain response steps, which are similar to programming statements. The response steps
direct the action of the Form Manager while the response is being evaluated.

Table 4.3, "DECforms Response Steps" summarizes the actions of the response steps.

Table 4.3. DECforms Response Steps

Response Step Description

ACTIVATE Adds items to the activation list.
CALL Executes an escape routine (user-written 3GL

code).
DEACTIVATE Removes items from the activation list.
DISPLAY Causes panels to be displayed.
ENTER HELP Causes the Form Manager to display the help panel

specified in the Use Help Panel clause that applies
to the current activation item.

EXIT HELP Causes the Form Manager to switch from the help
activation item to the current activation item on the
main activation list.

56

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

Response Step Description

IF-THEN-ELSE Specifies conditional response step processing.
INCLUDE Causes an internal response to be executed (similar

to a subroutine call).
INVALID Specifies that the field is to be marked invalid.
LET Assigns values to form data items (which can

update fields on the screen).
MESSAGE Causes a message to appear in the message panel.
POSITION Modifies which item is the current activation item

(where the cursor goes next).
PRINT Causes panels or the current screen to be printed to

a file.
REFRESH Repaints the screen.
REMOVE Removes one or more viewports from the screen.
RESET Resets data items to their initial value.
RETURN Causes the accept phase to terminate. This does

not cause the containing response to terminate.
Response steps following the RETURN are still
executed.

SIGNAL Signals the user via the bell or by reversing the
screen.

VALIDATE Validates items on the activation list.

4.3.2. Order of Functions and Responses
The order of functions and responses in the IFDL file is important. You declare functions after the
VIEWPORT declarations and before any response declarations. You declare layout level responses
immediately after any function declarations.

Use the VSI DECforms IFDL Reference Manual, the TPU Help Forms command, or the LSE expand
feature to determine the correct order of any declarations you use.

4.3.3. Creating the Other Responses at the Layout Level
You will now create the other responses at the layout level, as follows:

1. Move the cursor just above Function ResponseDISCARD (note that this is the declaration
of the function response and not of the function), and enter the following INTERNAL RESPONSE
declarations:

 Internal Response BORDER_PATROL
 Message
 "No items in that direction."
 Signal
 End Response

 Internal Response RESET_DATA
 Reset All

57

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

 Message
 "Data discarded."
 Signal
 Position To Panel TRIPS_INFO_PANEL
 End Response

 Internal Response RECORD_DATA
 Message
 "Data received. Program exiting."
 Signal
 Return Immediate
 End Response

 Internal Response UPDATE_TOTALS
 Message
 "Computing totals..."
 Call "DO_TOTALS" Using
 By Reference TRIPS_RECORD
 By Reference TOTAL_MILES
 By Reference TOTAL_AMOUNT
 By Reference TOTAL_TOLLS
 By Reference FORM_TOTAL
 Message
 "Done computing totals."
 Signal
 End Response

The BORDER_PATROL internal response displays a message and signals the operator with an audio
signal (beep or bell) to the display device when the operator attempts to move the cursor higher than
the topmost item or occurrence, or lower than the bottommost item or occurrence.

The RESET_DATA internal response resets the values of all form data items to their values at the
time the form was enabled, displays a message,signals the operator, and positions the cursor to the
first input field for the TRIPS_INFO_PANEL.

When the operator chooses the Record and Exit option, the RECORD_DATA internal response
displays the message “Data received. Program exiting.”, signals the operator, and returns control
to the application as soon as the current activation item is completed. The IMMEDIATE clause
specifies that the Form Manager should return control to the program without doing any more
validation.

Additional Information

To move the data to an external database, you could display a message such as “Recording data...” in
this internal response,and then use a CALL response step to call an escape routine. Follow the call
with the exit message.

When the operator chooses the Compute Totals or Record and Exit option,the UPDATE_TOTALS
internal response displays a message and calls the escape routine DO_TOTALS, passing the
addresses of the trip data to the routine. When the routine completes, the response displays the
message “Done computing totals.” and signals the operator. For more information about the escape
routine,see Section 6.4, "Creating the Escape Routines".

2. Immediately following the internal responses, enter the following DISABLE REPONSE and
RECEIVE RESPONSE declarations:

58

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

 Disable Response
 Remove All
 End Response

 Receive Response HEADER_INFO_RECORD
 Activate
 Panel HEADER_INFO_PANEL
 Position To Panel HEADER_INFO_PANEL
 End Response

 Receive Response TRIPS_RECORD
 Activate
 Panel TRIPS_INFO_PANEL
 Position To Panel TRIPS_INFO_PANEL
 End Response

The disable response removes all panels from the display when the program disables the form.

When the Form Manager performs a RECEIVE request (as requested by the program) to receive
the header data, the receive response for the HEADER_INFO_RECORD record activates the
HEADER_INFO_PANEL panel and places the cursor on the first input field. Similarly, when the
Form Manager performs a RECEIVE request to receive the trips data, the receive response for the
TRIPS_RECORD record activates the TRIPS_INFO_PANEL panel and places the cursor on the
first input field.

4.3.4. Creating Responses at the Panel Level
To display messages to the operator, you will now create some responses at the panel level.

1. In the PANEL declaration for the HEADER_INFO_PANEL just below Display
%Keypad_Application, enter the following ENTRYRESPONSE declaration:

 Entry Response
 Message "Press Help for information"
 " on how to use this application."
 End Response

This entry response causes the Form Manager to display the message just before the first field on the
panel becomes the current activation item.

2. Enter the same entry response for the TRIPS_INFO_PANEL panel.

3. Just after the entry response for the HEADER_INFO_PANEL panel, enter the following EXIT
RESPONSE declaration:

 Exit Response
 Message "Displaying next screen..."
 End Response

This exit response causes the Form Manager to display the message after the last field on the
HEADER_INFO_PANEL panel has been exited.

4.3.5. Creating Exit Responses at the Field Level
You now need to create the final two responses, which are exit responses for the MILES and TOLL
fields.

59

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

1. In the MILES field, just above the OUTPUT "" WHEN clause, enter the following code:

 Exit Response
 Call "UPDATE_ROW" Using
 By Reference TRIP_ROW_RECORD
 End Response

This exit response calls an escape routine in the application program called UPDATE_ROW.

For this escape routine, a form record called TRIP_ROW_RECORD describes the data passed to
the program. The data is the value for the current occurrence of the TRIP group. You will learn more
about form records in Chapter 5, "Specifying Form Records and Program Data".

The routine calculates the reimbursement amount for the trip. The resulting amount will appear
in the AMOUNT field display. For more information about the escape routine,see Section 6.4,
"Creating the Escape Routines".

DECforms allows you to perform integer arithmetic in the form itself without having to call an
escape routine. This example is provided only to show how to send one row of data from an array
back to the program, saving the overhead of passing the entire array.

2. In the TOLL field, just above the OUTPUT "" WHEN clause, enter the following code:

 Exit Response
 Let TRIP(N).SUBTOTAL = TRIP(N).AMOUNT + TRIP(N).TOLL
 End Response

This exit response calculates the subtotal for the trip by adding the toll amount to the reimbursement
amount. The resulting amount will appear in the SUBTOTAL field display. N, which was previously
declared as a form data item, is the index to the current occurrence of the TRIP group.

4.4. Declaring a Built-In Function Response
As a result of the user-defined function responses MOVE_UP and MOVE_DOWN at the layout level,
the up arrow (%UP) and down arrow (%DOWN)keys are defined to move to the previous and next
items on the current panel. This user-defined function overrides the built-in function CURSOR UP and
CURSOR DOWN for %UP and %DOWN for character-cell devices.

The result of the override by the user-defined functions MOVE_UP and MOVE_DOWN is that
DECforms performs a PREVIOUS ITEM or NEXTITEM function response when the operator presses
up arrow or down arrow. Unfortunately, this also means that the operator cannot move the cursor up and
down within the multiline ADDRESS field by using the arrow keys.

To remove the user-defined override and reinstate the priority of the DECforms built-in function
response at any level, you can declare a built-in function response.

To declare a built-in function response for the ADDRESS field, move the cursor to the ADDRESS text
field in the header information panel, and enter the following code above the line End Field:

Builtin Function Response CURSOR UP
Builtin Function Response CURSOR DOWN

60

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

Additional Information

In your own applications, you might prefer to create FIELDDEFAULT declarations and apply them to
specific fields in the form,rather than use BUILTIN FUNCTION RESPONSE declarations. Section 4.5,
"Creating Active Highlighting " explains field defaults.

4.5. Creating Active Highlighting
The next task is to specify special display characteristics (such as boldface or reverse video) to occur
when a field or icon is the current activation item during the accept phase (when the operator places the
cursor over the icon).

You can apply default active highlighting or other characteristics for all fields at the layout, panel, group,
icon, or field level. These applied characteristics are called field defaults.A default at a lower level
overrides one at a higher level.

As an additional shortcut, you can declare named field defaults. At the layout level, you give a name to
a display specification that you plan to use in several different places. You can then refer to that name in
specific fields, panels, groups, or icons.

To create active highlighting for the mileage reimbursement form:

1. Create an empty line just below Use Help Panel HELP_PANEL and just above Message
Panel DEFAULT_MESSAGE_PANEL and enter the following code:

 Apply Field Default Of
 Active Highlight
 Underlined
 End Default

This FIELD DEFAULT application contains an ACTIVE HIGHLIGHT UNDERLINED clause,
which specifies that all fields in the layout are underlined by default when active.

2. Place the cursor just before the field default you just created, and add the following FIELD
DEFAULT declaration:

 Field Default BOLD_ICON
 Active Highlight
 Bold
 End Default

The ACTIVE HIGHLIGHT BOLD clause specifies that the Form Manager will bold the icon when
the icon becomes the current activation item.

You must specify FIELD DEFAULT declarations beforeany FIELD DEFAULT applications.

3. For each icon on the trips panel and the help panels (there are a total of eight), enter the following
code just after the first line of each icon declaration:

 Apply Field Default BOLD_ICON

61

Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File

4.6. Validating Data
DECforms performs a certain amount of data validation automatically. For example, if the operator
enters field data that does not correspond with the form data type for that field, DECforms displays an
error message.

In addition you can further validate operator input within the form,in the main program, or by calling a
separate escape routine. For example,you can create a search list in the form or in a separate routine. If
the operator input does not match an item in the search list, you can display an error message. You can
also perform mathematical operations on values entered to determine if they fall within a desired range
(for example, greater than zero).

In the mileage reimbursement form, you will add a search list for location codes. You will also make
sure that the miles entered is between 1 and 100. The codes and miles listed here are arbitrary: you can
create your own codes to suit your own purposes, or you can skip to the last step.

To create the data validation in the form, proceed as follows:

1. Move the cursor just below the line Size 24 Lines by80 Columns in the layout declaration,
and add the following code:

List location_codes
 "ACT" "BXB" "LTN" "MKO" "ZKO"End List

2. Enter the following code after the PROTECTED WHEN clauses in the declarations of the
TRIP_FROM and TRIP_TO fields:

Search location_codes
 Message "Must be a valid code: ACT, BXB, LTN, MKO, or ZKO"

3. Move the cursor to the TRIP_TO field, and enter the same code again.

4. Move the cursor to the MILES field, and enter the following code after the PROTECTED WHEN
clause:

Range 1 Through 100
 Message "You cannot get reimbursed for more "
 "than 100 miles per trip!"

5. Exit your editing session.

If you are using the FDE, the IFDL Errors in the Source File message will be displayed, because you
have not yet specified the form records in the form. In this case, choose the Exit, Save option.

4.7. What Comes Next
You have completed the creation of the functions, responses, highlight specifications, and validations for
the character-cell layout. In the next chapter, you will create the form records and begin to create the
program.

62

Chapter 5. Specifying Form
Records and Program Data
This chapter describes creating the form records in the form file and the first steps in creating the
program, using examples in C and FORTRAN programming languages. The chapter covers the following
topics:

● Comparing the portable and OpenVMS application programming interfaces(APIs)

● Understanding form record descriptions

● Creating the form records in the form

● Creating the structure format declarations for the C program

● Creating the structure declarations for the FORTRAN program

5.1. Comparing the Portable and OpenVMS
APIs
This guide describes a portable application, which requires the portable API. The VSI DECforms
Programmer's Reference Manual describes both the portable API and the OpenVMS API in detail. The
two APIs are similar in the following respects:

● Both APIs use the six programming requests summarized in Chapter 1, "Introduction".

● Both APIs support the use of disk-based and linked forms.

● The APIs support the use of escape routines as follows:

• Portable API on OpenVMS—link escape routines with the application program.

• OpenVMS API—link escape routines with the application program or use shareable libraries.

● Both APIs use the same information for form name, form file name, device name, session ID, send
record name, and receive record name parameters.

● Both APIs use request option structures (explained later in this chapter). However, structures can
vary and cannot be used interchangeably.

The two APIs are different in the following respects:

● There are fewer parameters in each portable API request than in each OpenVMS API request.

● The portable API uses request option structures to pass many of the values used as parameters in the
OpenVMS API requests.

● A request options structure is designed by DECforms for the portable API; the OpenVMS API uses
an OpenVMS item list to pass request options.

● The portable API cannot use shareable images for escape routines.

63

Chapter 5. Specifying Form Records and Program Data

● The portable API supports C and FORTRAN languages,using different subroutine names for the two
languages; the OpenVMS API supports all languages that use the OpenVMS Calling Standard and
uses the same subroutine names for all languages.

● The OpenVMS API passes most parameters by descriptor; the portable API uses the passing
mechanisms natural to the language used.

● The OpenVMS API request calls return OpenVMS status codes; the portable API request calls
return FIMS and DECforms portable status values.

5.2. Understanding Form Record Descriptions
Form record descriptions define how data is organized in records for transfer between a data record
defined within an application program and form data items defined within the form.

The form record descriptions do not store data. The form record descriptions merely define the
organization of the data for the transfer process. Once data transfer is completed, all data is resident in
application records or form data, or both.

5.2.1. Form Records
The term form record describes the data as formatted according to a form record description. You
transfer the data either to or from the form. A SEND request moves data to the form, whereas a
RECEIVE request moves data from the form. A TRANSCEIVE request moves data to the form, and
moves data back again. The form record for each direction in a TRANSCEIVE request can be the same
or different form records.

Unless specified differently, a request refers to one form record. A request can, however, reference
multiple form records in a single transfer. In this case, a single name refers to a list of form record
descriptions in the form. Such a list is called a form record list.Form record lists are useful when you
want to use different combinations of records at different times.

5.2.2. Form Record Fields and Groups
Individual elements of a form record description are form record fields or groups.

The field or groups within records correspond to form data items. You can declare the correspondence in
any of the following ways:

● Implicitly declare the correspondence by using the same name for a form field or group record as for
the corresponding data item.

● Explicitly declare a correspondence by using a transfer clause (as described in the TRANSFER
Clause section of the VSI DECforms IFDL Reference Manual).

● Substitute a COPY statement for the record description (as described in the COPY Statement section
of the VSI DECforms IFDL Reference Manual).

The COPY statement can include a record definition from Oracle CDD/Repository.

Note

The order and size of the form record fields mustbe the same as the order and size of the application
program record fields.

64

Chapter 5. Specifying Form Records and Program Data

5.3. Forms_Record_Data Structure
In the portable API, you must declare application program records by using the predefined DECforms
structure Forms_Record_Data. This structure is defined in the following header files found in SYS
$LIBRARY on OpenVMS systems:

● formsdef.h for C programs

● formsdef.f for FORTRAN programs

This record structure stores send and receive data record information as well as shadow record
information. The structure contains four elements:

● data_record

● data_length

● shadow_record

● shadow_length

You use shadow records to track data. The mileage reimbursement program does not use shadow
records. If you want to know more about shadow records,see Section 9.6.1, "Using Tracked Form Data
Items" and the VSI DECforms Programmer's Reference Manual.

5.4. Creating the Form Record Descriptions
The mileage reimbursement application contains four form record descriptions: the first for the header
data; the second for the current occurrence of the trip data; the third for the entire group of trip data; and
the fourth for the totals for all trips.

To create the form record descriptions for the mileage reimbursement application:

1. Using LSE or a text editor, open the IFDL file that you created in the previous chapter.

2. Move the cursor just below EndData and just above LayoutVT_LAYOUT.

3. Insert an empty line and enter the following code for the HEADER_INFO_RECORD:

 Form Record HEADER_INFO_RECORD
 EMPLOYEE_NAME Character(32)
 BADGE_NUMBER Character (6)
 COST_CENTER Character(3)
 ADDRESS Character(120)
 REASON Character(64)
 End Record

4. Enter the following code for the TRIP_ROW_RECORD:

 Form Record TRIP_ROW_RECORD
 Group TRIP
 TRIP_DATE Datetime(8)
 Using TRIP(N).TRIP_DATE
 TRIP_FROM Character(3)
 Using TRIP(N).TRIP_FROM
 TRIP_TO Character(3)
 Using TRIP(N).TRIP_TO

65

Chapter 5. Specifying Form Records and Program Data

 MILES Longword Integer
 Using TRIP(N).MILES
 AMOUNT Longword Integer
 Using TRIP(N).AMOUNT
 TOLL Longword Integer
 Using TRIP(N).TOLL
 SUBTOTAL Longword Integer
 Using TRIP(N).SUBTOTAL
 End Group
 End Record

The TRIP_ROW_RECORD form record is used when the operator exits the MILEAGE field. To
calculate the mileage reimbursement amount for the array element containing the current activation
item, the Form Manager passes only the array element containing the current activation item(the
MILEAGE field) to an escape routine that will perform the calculations and update the data items.

This strategy avoids having to pass the entire array—something that can seriously impact
performance. N contains the index of the current array element and specifies the use of only that
current element.

For information about the escape routine that receives this record, see Section 6.4, "Creating the
Escape Routines".

Additional Information

Because DECforms supports integer arithmetic within the form itself,it is not necessary to use this
escape routine. The primary reason for including this routine in our application is to demonstrate
how to send a subset of array data from a form to a program.

You can also specify ranges of array data by using subscript ranges, as described in the appendix on
arrays in the VSI DECforms IFDL Reference Manual.

5. Enter the code for the TRIPS_RECORD and TOTALS_RECORD:

 Form Record TRIPS_RECORD
 Group TRIP
 Occurs 36
 TRIP_DATE Datetime(8)
 TRIP_FROM Character(3)
 TRIP_TO Character(3)
 MILES Longword Integer
 AMOUNT Longword Integer
 TOLL Longword Integer
 SUBTOTAL Longword Integer
 End Group
 End Record

 Form Record TOTALS_RECORD
 TOTAL_MILES Longword Integer
 TOTAL_AMOUNT Longword Integer
 TOTAL_TOLLS Longword Integer
 FORM_TOTAL Longword Integer
 End Record

The Form Manager uses the TRIPS_RECORD form record to send the data for the entire array
(group) from the form to the application program. The program then calculates the totals for all the

66

Chapter 5. Specifying Form Records and Program Data

trips on the form. For information about the escape routine that receives this record, see Section 6.4,
"Creating the Escape Routines".

The Form Manager uses the TOTALS_RECORD to send the totals to the program, so that the
program can send them to the print session for the DDIF print file.

6. If you are using LSE, press DO and enter the following command until you get no errors:

LSE> COMPILE/REVIEW

If you are using another text editor, exit the editor and enter the following command until you get no
errors:

$ FORMS TRANSLATE /LIST MRF_FORM

This step produces the final form file for the character-cell version of the application.

If you get any error messages, check to make sure that you entered the code exactly as shown.
If necessary, check the mrf_form.lis file created in your current directory to see all error
messages. As a final resort, compare your file with that in Appendix A, "The Mileage Reimbursement
Application".

5.5. Creating Header Information and Data
Declarations for the Program
Both the C and FORTRAN programs support the portable application program interface (API).For
this exercise, you need only create one program, using either C or FORTRAN. The library files
formsdef.h (for C) and formsdef.f (for FORTRAN) contain all the definitions that you need
for the DECforms portable API bindings. For each request, DECforms requires particular routine
parameters. These parameters include the following:

● Session identification (Forms_Session_Id)—the name that you give to the session

● Form object name (Forms_Form_Object)—the name of the form object file, used if you have a
linked form or linked object vectors for escape routines

● Record structure (Forms_Record_Data)—the name of a form record or of a list of form records that
a SEND, RECEIVE, or TRANSEIVE request will handle

● Request options (Forms_Request_Options)—the name that you give to a data array that contains
requests for optional processing

In addition to these parameters, DECforms provides a Forms_Status variable, which contains the status
of the request. VSI highly recommends (although not done in the mileage reimbursement program) that
you check status after each request.

When you enter these parameter names in your program, you must use exact case.

Request options support optional processing information. You must format the request option data
according to a defined set ofrules. In the mileage reimbursement application, the request options support
linked forms. You can also use request options for such tasks as:

● Sending and receiving multiple records in one request

● Sending and receiving control text

67

Chapter 5. Specifying Form Records and Program Data

● Setting up trace files for particular sections of your form

Trace files are used to debug problems. For more information about trace files, see Chapter 7,
"Building and Testing the Application for Character-Cell Devices".

● Setting up escape routines that exist in separate files

● Setting up print file characteristics

● Suppressing terminal I/O

Section 6.1, "Enabling the Form" contains more details about request options.

The names you will use for the data in the HEADER_INFO_RECORD and TRIPS_RECORD structure
definitions are the sameas the data item and form record names in the form file; the correspondence
between the form and the program data will be declared implicitly.

5.5.1. Creating the Data Declarations and Header
Information for the C Program
Create a file called mrf_c.c and enter the following code for the header information, structure format
declarations, and DECforms parameter definitions:

#include <stdio.h> /* C standard input output header file */
#include <formsdef.h> /* DECforms header file for portable API */

#define EMPNAME 32
#define EMPBADGE 6
#define EMPCC 3
#define EMPADDRESS 120
#define EMPREASON 64
#define TRIPDATE 8
#define TRIPFROM 3
#define TRIPTO 3
#define TRIPRECORD 36

/*
 * Structure format declarations for records that will be sent to the form
 */
typedef struct {
 char employee_name[EMPNAME], badge_number[EMPBADGE],
 cost_center[EMPCC],
 address[EMPADDRESS], reason[EMPREASON];
} Hdr_Info_Record;

typedef struct {
 char trip_date[TRIPDATE], trip_from[TRIPFROM], trip_to[TRIPTO];
 unsigned long miles, amount, toll, subtotal;

} Trip_Record;
typedef struct {
 unsigned long total_miles, total_amount, total_tolls, form_total;
} Totals_Record;

/*
 * Static storage

68

Chapter 5. Specifying Form Records and Program Data

 */
Hdr_Info_Record header_info_record; /* The header info record
 */
Trip_Record trips_record[TRIPRECORD]; /* Array of trip records
 */
Totals_Record totals_record; /* totals for all trips */
/*
 * Create instances from data types in formsdef header file
 */
Forms_Session_Id session_id;
Forms_Form_Object MRF_FORM; /* linked form name */
Forms_Status status;
Forms_Record_Data header_info_record_descr; /* record */
Forms_Record_Data trips_record_descr; /* record */
Forms_Record_Data totals_record_descr; /* record */
Forms_Request_Options request_options[2]; /*form object for linked form*/

You will define the request options and form record descriptors in Chapter 6, "Completing the
Application Program for the Character-Cell Layout".

5.5.2. Creating the Data Declarations and Header
Information for the FORTRAN Program
Create the structure and data declarations for the FORTRAN program as follows:

1. Create a file called mrf_def.for and enter the following code for the structure declarations for
the form records:

!+
! Symbolic constants
!-
 Integer EMPNAME, EMPBADGE, EMPCC, EMPADDRESS, EMPREASON
 Integer TRIPDATE, TRIPFROM, TRIPTO, TRIPRECORD
 Parameter(EMPNAME=32)
 Parameter(EMPBADGE=6)
 Parameter(EMPCC=3)
 Parameter(EMPADDRESS=120)
 Parameter(EMPREASON=64)
 Parameter(TRIPDATE=8)
 Parameter(TRIPFROM=3)
 Parameter(TRIPTO=3)
 Parameter(TRIPRECORD=36)

!+
! Structure declarations for the form records
!-
 Structure /header_info_struct/
 Character employee_name*(EMPNAME)
 Character badge_number*(EMPBADGE)
 Character cost_center*(EMPCC)
 Character address*(EMPADDRESS)
 Character reason*(EMPREASON)
 End Structure

 Structure /trip_struct/
 Character trip_date*(TRIPDATE) ! date of the trip
 Character trip_from*(TRIPFROM) ! start facility

69

Chapter 5. Specifying Form Records and Program Data

 Character trip_to*(TRIPTO) ! end facility
 Integer*4 miles ! miles travelled
 Integer*4 amount ! mileage amount
 Integer*4 toll ! toll amount
 Integer*4 subtotal ! total for trip
 End Structure Structure /totals_struct/
 Integer*4 total_miles ! total miles travelled
 Integer*4 total_amount ! total mileage amount
 Integer*4 total_tolls ! total toll amount
 Integer*4 form_total ! total for all trips
 End Structure

Both the program and the escape routines include this file containing the structure declarations.

2. Create a file called mrf_for.for and enter the following header information and variable
declarations:

 Program MRF_FOR
 Implicit None
 Include 'Sys$Library:formsdef.f'
 Include 'Mrf_Def'!! Variables!
 Record /trip_struct/ trips_record(TRIPRECORD)
 Record /header_info_struct/ header_info_record
 Record /totals_struct/ totals_record
 Record/Forms_Record_Data/header_info_record_descr
 Record/Forms_Record_Data/trips_record_descr
 Record/Forms_Record_Data/totals_record_descr

 Integer MRF_FORM
 External MRF_FORM
 Character*16 session_id
 Integer status
 Record/Forms_Request_Options/request_options(2)

You will define the request options and record descriptors in Chapter 6, "Completing the Application
Program for the Character-Cell Layout".

5.6. What Comes Next
You have now completed the form records for the application, and you have declared the corresponding
data in your program. You have also set up the required header information in the program. The next
step is to complete the program requests and escape routines.

70

Chapter 6. Completing the
Application Program for the
Character-Cell Layout
This chapter explains how to write the DECforms requests and escape routines in the C and FORTRAN
portable APIs for the mileage reimbursement application program. The chapter covers the following
topics:

● Enabling the form (ENABLE request)

● Receiving the form data (RECEIVE request)

● Disabling the form (DISABLE request)

● Creating the escape routines

DECforms supports six requests. The three requests not described in this chapter are SEND,
TRANSCEIVE, and CANCEL. For detailed information on all the DECforms programming requests,
see the VSI DECforms Programmer's Reference Manual. The chapter on request processing of the
VSI DECforms Programmer's Reference Manual describes in detail how the Form Manager processes
programming requests.

6.1. Enabling the Form
The application program must first enable the form with the ENABLE request, which creates a session
for a specified form and display device. The ENABLE request takes five parameters (session ID, device
name, form file name, internal form name,and request options) and handles the following functions:

● Returns a session ID that is used in all subsequent calls to the form and device.

● Tells the Form Manager the user device.

● Tells the Form Manager the location of the form.

● Loads the form into memory and creates run-time data structures.

● Names the request options structure, if one exists.

For portable applications, leave out the device name. On OpenVMS systems, the operator or system
manager can set the logical name FORMS$DEFAULT_DEVICE at run time. If there is no device name,
and no logical name is used at run time, the Form Manager uses the default output device SYS$INPUT
for OpenVMS systems.

You must specify either one or both of the form file name or form name parameters so that the Form
Manager can locate the form to load into memory. Specify the form file name when you want to use a
disk-based form that is separate from the program. Specify the form name used in the IFDL file when
you want to use a form that is linked with the program.

Additional Information

Performance of the ENABLE request on OpenVMS is somewhat better with linked forms than with
disk-based forms.

71

Chapter 6. Completing the Application Program for the Character-Cell Layout

Disk-based forms are useful when you have one application that will be used with different forms at
different times or places. For example, you might have several forms that are alike, except that each uses
a different language.

With separate disk-based forms, you can make small, cosmetic changes to the form (such as moving
fields or correcting spelling errors) without having to rebuild the entire application.

Section 5.5, "Creating Header Information and Data Declarations for the Program" explains the use of
request options. The formsdef.h and formsdef.f header files define the request options structure.
You represent request options in an array of structures, each element of which contains:

● A request option type code, such as:

forms_c_opt_send_record
forms_c_opt_receive_record
forms_c_opt_trace
forms_c_opt_print
forms_c_opt_form

● One or more fields, containing such variables as:

count
file_name
object
flag

The first field of each request options structure is always .option.

In the mileage reimbursement application program, the request options allow the programmer to link the
form into the application, so that the operator does not need to keep track of a separate disk-based form.
The request options specify the forms_c_opt_form option and the form object file mrf_form.obj.
You will create the form object file in Chapter 7, "Building and Testing the Application for Character-
Cell Devices".

6.1.1. Creating the C ENABLE Request and Request
Options Structure
In the file mrf_c.c, after the code you entered in Chapter 5, "Specifying Form Records and Program
Data", declare the main program and enter the enable request as follows:

/*
 * Routine: main
 */
int main (void)
{
/*
 * Set up the request options for linking the form object file and
 * enable the form.
 */
request_options[0].option = forms_c_opt_form;
request_options[0].form.object = MRF_FORM;
request_options[1].option = forms_c_opt_end;

72

Chapter 6. Completing the Application Program for the Character-Cell Layout

status = forms_enable (session_id, /* session id returned */
 NULL, /* current device */
 NULL, /* name of form file */
 "MRF_FORM", /* name of the form */
 request_options); /* request options */

NULL indicates a null parameter.

6.1.2. Creating the FORTRAN ENABLE Request and
Request Options Structure
In the file mrf_for.for, after the code you entered in Chapter 5, "Specifying Form Records and
Program Data", enter the FORTRAN request options as follows:

!
! Request options for linked form
!
 request_options(1).option = forms_c_opt_form
 request_options(1).form_object = %loc (MRF_FORM)
 request_options(2).option = forms_c_opt_end
!
! Enable the form
!
 status = forms_enable_for(
 1 session_id,
 2 , !current device
 3 , !name of form file
 4 'MRF_FORM', !form name
 5 request_options)

You must use four commas to separate the five parameters, even when a parameter is optional or
unsupplied. You must use a tab at the beginning of each continuation line in a request.

6.2. Receiving the Form Data
The RECEIVE request passes data values from form data items to the application program record. The
RECEIVE request takes four parameters(session ID, form record name, program record, request options)
and handles the following tasks:

● Displays panels containing fields that match the form record.

● Prompts the operator for each field that matches a form data item in the record being received.

● Validates field values (can check a field's value against a range,a list of values, the values of other
fields, and so on).

● Collects form data and passes the record to the program.

The form record name parameter represents the name of the form record in the IFDL file. As discussed
in Chapter 5, "Specifying Form Records and Program Data", the contents of this record must correspond
with the record structure in the program, which is named in the program record parameter. In other
words, the program record data matches the form record groups and fields, and the form record groups
and fields match form data groups and fields.

73

Chapter 6. Completing the Application Program for the Character-Cell Layout

The program must define and initialize the form record data to be received according to the
Forms_Record_Data structure in the forms_def library file. Forms_Record_Data is a structure
containing four elements:

pointer to the data record
pointer to the length of the data record
pointer to the shadow record, if any exists
pointer to the length of the shadow record

Because the mileage reimbursement program does not use shadow records, these fields must be set
to zero. (For examples of using shadow records, see Chapter 9, "Declaring, Displaying, and Tracking
Data".)

6.2.1. Creating the C RECEIVE Requests and Form
Record Data Definitions
In the file mrf.c, enter the following code for the RECEIVE requests and form record data definitions:

/*
 * Obtain the employee header information – structure must contain the
 * length and address of the record being received from DECforms.
 */
header_info_record_descr.data_record = &header_info_record;
header_info_record_descr.data_length = sizeof(header_info_record);
header_info_record_descr.shadow_record = NULL;
header_info_record_descr.shadow_length = 0;

status = forms_receive (session_id, /* session id */
 "header_info_record", /* form record name in IFDL*/
 &header_info_record_descr, /* record in program*/
 NULL); /* no request options*/
/*
 * Obtain the information on all the trips made.
 */

trips_record_descr.data_record = &trips_record;
trips_record_descr.data_length = sizeof(trips_record);
trips_record_descr.shadow_record = NULL;
trips_record_descr.shadow_length = 0;

status = forms_receive (session_id,
 "trips_record",
 &trips_record_descr,
 NULL);

/*
 * Obtain totals for the form.
 */

totals_record_descr.data_record = &totals_record;
totals_record_descr.data_length = sizeof(totals_record);
totals_record_descr.shadow_record = NULL;
totals_record_descr.shadow_length = 0;

status = forms_receive (session_id,
 "totals_record",

74

Chapter 6. Completing the Application Program for the Character-Cell Layout

 &totals_record_descr,
 NULL);

6.2.2. Creating the FORTRAN RECEIVE Requests and
Form Record Data Definitions
In the file for_mrf.for, enter the following code for the RECEIVE requests and form record data
definitions:

!
! Structure must contain the length and address of the record being sent
! or received from DECforms
!
 header_info_record_descr.data_length = sizeof(header_info_record)
 header_info_record_descr.data_record = %loc(header_info_record)
 header_info_record_descr.shadow_record = 0
 header_info_record_descr.shadow_length = 0

 trips_record_descr.data_length = sizeof(trips_record)
 trips_record_descr.data_record = %loc(trips_record)
 trips_record_descr.shadow_record = 0
 trips_record_descr.shadow_length = 0

 totals_record_descr.data_length = sizeof(totals_record)
 totals_record_descr.data_record = %loc (totals_record)
 totals_record_descr.shadow_record = 0
 totals_record_descr.shadow_length = 0

!
! Obtain the header information
!
 status = forms_receive_for(
 1 session_id,
 2 'header_info_record', !form record
 name
 3 header_info_record_descr, !program
 record
 4) ! no request
 options

!
! Obtain information on all trips
!

 status = forms_receive_for(
 1 session_id,
 2 'trips_record',
 3 trips_record_descr,
 4)

!
! Obtain totals for all trips (to send to print session)
!
 status = forms_receive_for(
 1 session_id,
 2 'totals_record',
 3 totals_record_descr,

75

Chapter 6. Completing the Application Program for the Character-Cell Layout

 4)

6.3. Disabling the Form
The DISABLE request ends the session for a form. This request detaches the display device and
the form that are associated with the session ID string. The DISABLE request takes one required
parameter(session ID) and several optional parameters (described in the VSI DECforms Programmer's
Reference Manual).

6.3.1. Creating the C DISABLE Request
In the file mrf.c, enter the following code for the DISABLE request:

/*
 * Disable the form and exit
 */
status = forms_disable (session_id, NULL);
}

6.3.2. Creating the FORTRAN DISABLE Request
In the file for_mrf.for, enter the following code for the DISABLE request:

!
! Disable the form and exit
!
 status = forms_disable_for (
 1 session_id,)
 End

6.4. Creating the Escape Routines
An escape routine is a call from the form to an external routine such as a subroutine or a system service.
Typically, data passes to the escape routine in the routine's arguments,the routine processes the data in
some way, and resulting data passes to the form in the routine's arguments.

In the mileage reimbursement application, the escape routine UPDATE_ROW calculates a
reimbursement amount for mileage for a single trip. The escape routine DO_TOTALS calculates the total
mileage, total mileage amount, total toll amount, and total reimbursement amount.

You call an escape routine from the form by using a CALL response step in the form. You can pass the
data in the argument to the CALL response step in the following ways:

BY VALUE The argument contains the data value (for
BYTE,WORD, LONGWORD, FFLOATING, and
SHORT FLOAT form data items only). The Form
Manager converts BYTE and WORD values to
LONGWORD before passing them by value to
escape routines.

BY REFERENCE The argument contains the address of the data
value.

This is the recommended passing mechanism for
portable applications.

76

Chapter 6. Completing the Application Program for the Character-Cell Layout

BY DESCRIPTOR The argument contains the address of an
OpenVMS descriptor containing the length, data
type, and address of the data to the escape routine
for each subsequent argument. The escape routine
should not modify the descriptor itself—only the
data pointed to by the descriptor's pointer field.

BY DEFAULT The Form Manager uses the default passing
mechanism according to the type of form data
item.

On OpenVMS, the default passing mechanism for
strings is by descriptor. The Form Manager also
passes CHARACTER, DATETIME,INTEGER,
DECIMAL, and FLOAT form data items by
descriptor. The default passing mechanism for form
records, for CHARACTER NULLTERMINATED
form data items, and for all other form data items
is by reference.

If you do not specify a passing mechanism, the
default is BY DEFAULT.

Once you specify a passing mechanism in a call, DECforms uses that mechanism for all subsequent data
unless a different mechanism is specified. For example, the following call passes data A, B, C, and D by
value:

 Call "ROUTINE_X" Using
 By Value A B C D

The following call passes data B by value and data A, C, and D bydefault:

 Call "ROUTINE_X" Using
 A
 By Value B
 By Default C D

Chapter 4, "Adding Functions, Responses, Display Actions,and Validations to the IFDL File" describes the
function responses in the mileage reimbursement application form that call escape routines.

For the DO_TOTALS escape routine, the form passes the address of the form record TRIPS_RECORD
as well as the addresses of four LONGWORD INTEGER values. For more information about the call to
this routine, see Section 4.3.3, "Creating the Other Responses at the Layout Level".

For the UPDATE_ROW escape routine, the form passes the address of the form record
TRIP_ROW_RECORD. For more information about this call, see Section 4.3.5, "Creating Exit
Responses at the Field Level".For information about the form records,see Section 5.4, "Creating the Form
Record Descriptions".

You can create escape routines in the same file as your main program. The mileage reimbursement
application uses this approach.

If you want to use an escape routine from more than one program by using the portable API, you can
create it in a separate file, and then link it directly with your program, as described in the VSI DECforms
Programmer's Reference Manual.

77

Chapter 6. Completing the Application Program for the Character-Cell Layout

6.4.1. Creating the Escape Routines for the C Program
To create the escape routines and complete the C program, enter the following code at the end of the file
mrf.c:

/*
 * Routine: update_row
 *
 * Functional Description:
 *
 * Updates the information in the row of a trip record. The mileage
 * reimbursement amount is calculated from the number of miles travelled
 * (using 22 per mile).
 *
 * Formal Parameters:
 *
 * trip-record - a pointer to the trip record
 *
 * Routine Value:
 *
 * none
 *
 */void update_row (Trip_Record
 *trip)
{
/*
 * Type cast trip miles to unsigned float, multiply by 22.5, add .5
 * to round off, and then recast to unsigned integer.
 */
 trip->amount = (unsigned long)(((float)trip->miles * 22.5) + 0.5);
 return;
}
/*
 * Routine: do_totals
 *
 * Functional Description:
 *
 * Computes and updates the totals given the entire collection of trip
 * records.
 *
 * Formal Parameters:
 *
 * trips-record
 * total-miles
 * total-amount
 * total-tolls
 * form-total
 *
 * Routine Value:
 *
 * none
 *
 */
void do_totals (Trip_Record (*trips)[TRIPRECORD],
 unsigned long *miles, unsigned *amount,
 unsigned long *tolls, unsigned *total)
{

78

Chapter 6. Completing the Application Program for the Character-Cell Layout

 unsigned n;
/*
 * Initialize counters to zero
 */
 *miles = *amount = *tolls = *total = 0;
/*
 * For each entry with a nonzero mileage, accumulate the trips values into
 * the counters.
 */
 for (n = 0; n < TRIPRECORD; n++) {
 if ((*trips)[n].miles != 0) {
 *miles = *miles + (*trips)[n].miles;
 *amount = *amount + (*trips)[n].amount;
 *tolls = *tolls + (*trips)[n].toll;
 *total = *total + (*trips)[n].subtotal;
 }
 }
 return;
}

6.4.2. Creating the Escape Routines for the FORTRAN
Program
To create the escape routines and complete the FORTRAN program, enter the following code at the end
of the file mrf_for.for:

!+
! Routine: Update_Row
!
! Functional Description:
!
! Updates the information in the row of a trip record. The mileage
! reimbursement amount is calculated from the number of miles travelled
! (using 22 per mile)
!
! Formal Parameters:
!
! trip-record - the trip record
!
!-
 Subroutine Update_Row (trip)
 Include 'sys$library:formsdef.f'
 Include 'Mrf_Def'
 Record /trip_struct/ trip
 trip.amount = Int((trip.miles * 22.5)+0.5)
 Return
 End
!+
! Routine: Do_Totals
!
! Functional Description:
!
! Computes and updates the totals given the entire collection of trip
! records.
!
! Formal Parameters:
!

79

Chapter 6. Completing the Application Program for the Character-Cell Layout

! trips-record
! total-miles
! total-amount
! total-tolls
! form-total
!-
 Subroutine Do_Totals (trips, miles, amount, tolls, total)
 Include 'sys$library:formsdef.f'
 Include 'Mrf_Def'
 Record /trip_struct/ trips(TRIPRECORD)
 Integer miles, amount, tolls, total, n
!
! Initialize counters to zero
!
 miles = 0
 amount = 0
 tolls = 0
 total = 0
!
! For each entry with a nonzero mileage, accumulate the trips values into!
 the counters.
!
 Do n = 1,TRIPRECORD
 If (trips(n).miles .ne. 0) Then
 miles = miles + trips(n).miles
 amount = amount + trips(n).amount
 tolls = tolls + trips(n).toll
 total = total + trips(n).subtotal
 End If
 End Do
 Return
 End

6.5. What Comes Next
You have now completed the application for the character-cell layout. The next step is to compile, link,
and test the application.

80

Chapter 7. Building and Testing
the Application for Character-Cell
Devices
This chapter describes how to build and test a DECforms portable application, using the mileage
reimbursement application as the example. The chapter covers the following topics:

● Translating the form and extracting an object file

● Building the portable API program

● Testing the application

For more details on all these topics, see the VSI DECforms Programmer's Reference Manual.

7.1. Translating the Form and Extracting an
Object File
Translating the IFDL source file creates a form file with the default extension .form.

To translate the IFDL file at the OpenVMS DCL command line and list any translation errors, enter the
following command:

$ FORMS TRANSLATE/LIST MRF_FORM.IFDL

This command produces a file called mrf_form.lis, listing any errors.

If you are in IFDL editing mode in the FDE, DECforms translates your IFDL file automatically.

To translate the IFDL file while in an LSE editing session, press Do and enter the following command:

LSE> COMPILE/REVIEW

Use the standard LSE process for reviewing and correcting errors. For more information, see the LSE
documentation or online help.

When you are using escape routines in a portable API application, you must link them with the
application program. To resolve references in your form, you need to create a form object file using the
Forms Extract Object utility, and link the form object with your escape routines and application program.

To create the form object file at the OpenVMS DCL command line, enter the following command:

$ FORMS EXTRACT OBJECT /PORTABLE_API /FORM_LOAD MRF_FORM.FORM

The /FORM_LOAD qualifier causes the object file to contain both the form object and the names of all
escape routines called from the form.

The /PORTABLE_API qualifier configures the object file to support the portable API.

81

Chapter 7. Building and Testing the Application for Character-Cell Devices

Additional Information

You can use the File option on the FDE Main Menu to create form object files. However, the FDE does
not create form object files that are configured for the DECforms portable API;therefore, you should use
the FORMS EXTRACT OBJECT command instead.

To use linked forms, you must set the following up in your program,which you have already done if
you followed the steps in Chapter 5, "Specifying Form Records and Program Data" and Chapter 6,
"Completing the Application Program for the Character-Cell Layout":

● External global variable (declared using the form name)

In C, use the data type Forms_Form_Object. In FORTRAN, use EXTERNALINTEGER.

● Form object options in Forms_Request_Options using the global variable

This global variable is also defined when you link your program and the form object file.

● Form object request option in the ENABLE call

7.2. Building the Portable API Program
Because the source file for the mileage reimbursement program contains the escape routines, you
can compile these with one command. If an escape routine is in a separate file, you must compile it
separately and link it with the program.

To compile the C mileage reimbursement program from the OpenVMS DCL command line, enter the
following command:

$ CC MRF_C

To compile the FORTRAN mileage reimbursement program from the OpenVMS DCL command line,
enter the following command:

$ FORTRAN MRF_FOR

To compile the source file from LSE, press DO and enter the following command:

LSE> COMPILE/REVIEW

For portable API programs on OpenVMS, the shareable image forms$portable_api.exe in SYS
$LIBRARY contains all entry points for the portable bindings. The DECforms run-time system is in
FORMS$MANAGER in SYS$LIBRARY.

The following steps show how to link a portable DECforms program for use with a linked form on
OpenVMS, with the mileage reimbursement program as the example:

1. Create a file named mrf_opt.opt that contains the following line:

SYS$LIBRARY:FORMS$PORTABLE_API.EXE/SHARE

This tells the linker to link in the shareable image that contains the portable API entry points to the
Form Manager.

82

Chapter 7. Building and Testing the Application for Character-Cell Devices

2. For C programs, define the logical name LNK$LIBRARY, as follows:

$ DEFINE LNK$LIBRARY SYS$LIBRARY:VAXCRTL

This links in the C run-time library that defines the C forms calls.

3. To link the C program, form, and the link option file, enter the following command:

$ LINK MRF_C, MRF_FORM, MRF_OPT/OPT

To link the FORTRAN program, form, and the link option file,enter the following command:

$ LINK MRF_FOR, MRF_FORM, MRF_OPT/OPT

7.3. Testing the Application
Test your application for character-cell terminals as follows:

1. Define the logical name FORMS$DEFAULT_DEVICE to SYS$INPUT, as follows:

$ DEFINE FORMS$DEFAULT_DEVICE SYS$INPUT

2. Turn on the DECforms Trace facility by defining the following logical name on OpenVMS systems:

$ DEFINE FORMS$TRACE T

When you run the application, the Trace facility automatically creates a log file describing each
action taken during the course of the application session. The log file also describes any errors that
occurred.

Additional Information

You can log all errors within the Form Manager by setting the logical name FORMS
$LOG_EVENTS to 1. If an error occurs in your form sessions, a log file named FORMS
$EVENT_LOG.LOG,containing just the errors, appears in your working directory.

For more information on the Trace and Event Log Facilities, see the VSI DECforms Programmer's
Reference Manual.

3. Run the C mileage reimbursement application on OpenVMS systems by entering the following
command:

$ RUN MRF_C

Run the FORTRAN mileage reimbursement application on OpenVMS systems, by entering the
following command:

$ RUN MRF_FOR

If your application does not run, check the trace file for error conditions, fix the errors, and try again.

4. Try all the features and functions of the application,including Ctrl/P to print the trips panel.

Look at the online help and fill out each form. When you exit the program, DECforms creates two
files: 83

Chapter 7. Building and Testing the Application for Character-Cell Devices

● mrf_form.txt—the text file containing a printable copy of the trips panel

● mrf_form.trace—the log file containing a listing showing the program and form behavior
at run time

5. Type each file at the terminal or print each one out on a printer.

Examine the trace file, comparing it with the program and the form.

The following is an example from the ENABLE portion of a trace file for the mileage reimbursement
application:

Begin trace output to USERI$:[JONES]MRF_FORM.TRACE;18 at 16-APR-1997
 14:14:57.61.

Begin ENABLE request.
 Begin Initialize request phase.
 Validate the arguments for this request.
 Open form file named 'MRF_FORM'.
 Read form file named 'MRF_FORM'.
 Begin selecting a layout.
 Specified enable device is a Character-Cell Terminal.
 Character-cell terminal is a VT300 Color. Width of 132. Height of 24.
 No layout with a matching language clause was found.
 Now searching layouts without language clauses for a suitable device
 match.
 Selected layout VT_LAYOUT.
 End selecting a layout.
 Begin reset all data items.
 Resetting data item EMPLOYEE_NAME.
 Resetting data item BADGE_NUMBER.
 Resetting data item COST_CENTER.
 Resetting data item ADDRESS.
 Resetting data item REASON.
 Resetting data item N.
 Resetting data item BLANK_DATE.
 Resetting data item TRIP(1).TRIP_DATE.
 Resetting data item TRIP(1).FROM.
 Resetting data item TRIP(1).TO.
 Resetting data item TRIP(1).MILES.
 Resetting data item TRIP(1).AMOUNT.
 Resetting data item TRIP(1).TOLL.
 Resetting data item TRIP(1).SUBTOTAL.
 .
 .
 .
 Resetting data item TRIP(36).TRIP_DATE.
 Resetting data item TRIP(36).FROM.
 Resetting data item TRIP(36).TO.
 Resetting data item TRIP(36).MILES.
 Resetting data item TRIP(36).AMOUNT.
 Resetting data item TRIP(36).TOLL.
 Resetting data item TRIP(36).SUBTOTAL.
 Resetting data item TOTAL_MILES.
 Resetting data item TOTAL_AMOUNT.
 Resetting data item TOTAL_TOLLS.
 Resetting data item FORM_TOTAL.

84

Chapter 7. Building and Testing the Application for Character-Cell Devices

 Resetting data item TRIP_DATE.
 End reset all data items.
 End Initialize request phase.
 Begin External Response phase.
 Begin external responses for this request.
 Begin interpreting default response for this request.
 End default response for this request.
 End external responses for this request.
 End External Response phase.
End request.

The following is an example from the same trace file, showing portions of the first RECEIVE request:

Begin RECEIVE request.
 Begin Initialize request phase.
 Validate header_info_record record name for this request.
 Record header_info_record found in this form.
 Validate the arguments for this request.
 End Initialize request phase. Begin External Response phase.
 Begin external responses for this request.
 Begin ACTIVATE response step.
 Begin activate panel HEADER_INFO_PANEL.
 Activated field or icon EMPLOYEE_NAME on panel HEADER_INFO_PANEL.
 Activated field or icon BADGE_NUMBER on panel HEADER_INFO_PANEL.
 Activated field or icon COST_CENTER on panel HEADER_INFO_PANEL.
 Activated field or icon ADDRESS on panel HEADER_INFO_PANEL.
 Activated field or icon REASON on panel HEADER_INFO_PANEL.
 End activate panel HEADER_INFO_PANEL.
 End response step.
 Begin POSITION response step.
 Begin position to panel HEADER_INFO_PANEL.
 End position to panel HEADER_INFO_PANEL.
 End response step.
 End external responses for this request.
 End External Response phase.
 Begin Accept Input phase.
 The activation list is:
 Field EMPLOYEE_NAME on panel HEADER_INFO_PANEL.
 Field BADGE_NUMBER on panel HEADER_INFO_PANEL.
 Field COST_CENTER on panel HEADER_INFO_PANEL.
 Field ADDRESS on panel HEADER_INFO_PANEL.
 Field REASON on panel HEADER_INFO_PANEL.
 End activation list.

To see a trace file error message, edit the form to create some errors. For example, try changing the
picture for the Datetime field to DD-MMM-YYYY instead of DD-AAA-YYYY. (Using a picture string
of MMM rather than AAA causes a truncation error.) Recompile and extract the form, and rebuild and
rerun the application. You should see the following warning message in the trace file:

 Begin input from panel field TRIP(1).TRIP_DATE on panel
 TRIPS_INFO_PANEL.
 %FORMS-I-CONVERR, error while converting from one data type to
 another.
 -STR-W-TRU, truncation
 Returning receive control text "EI003".
 %FORMS-I-CONVERR, error while converting from one data type to
 another.
 -STR-W-TRU, truncation

85

Chapter 7. Building and Testing the Application for Character-Cell Devices

 Returning receive control text "EI003".

The VSI DECforms Programmer's Reference Manual lists the DECforms error messages.

7.4. What Comes Next
You have completed the application for the character-cell layout. The next step is to convert it to run on
other devices.

86

Chapter 8. Form Structure
This chapter discusses the same DECforms form concepts that are summarized in Chapter 1,
"Introduction", but covers the concepts in more detail.

Both the operator and the application program can view and modify the data contained in the form. A
form also contains control information in the layout about user interaction. At execution time, the Form
Manager loads a form under the direction of the application program. This chapter provides an overview
of:

● Form elements

● Responses

● Methods used to create a form

● The IFDL description of a form

8.1. Form Elements
Figure 8.1, "Information Contained in a Form" shows the information contained in a form, and the
interaction between the form and the operator, and the form and the application program.

Figure 8.1. Information Contained in a Form

Figure 8.2, "General Structure of a Form" illustrates the general structure of a form. The sections that
follow describe each of the form elements shown in the figure.

Figure 8.2. General Structure of a Form

8.1.1. Form Data
Form data items are the only means of storing values that an operator enters. You can display the value
stored in a form data item on the screen or pass it to the program.

Data passed to or from the program (by means of records) is stored in form data items. You also can use
a form data item internally in the form without displaying it or passing it to the program. Section 3.7.3,

87

Chapter 8. Form Structure

"Specifying Picture Fields for the Group" describes examples of internal form data items—the N and
BLANK_DATE fields in the mileage reimbursement application.

In DECforms software, each enabled form maintains a copy of form data items that persistthroughout
application execution. For example, if you store the value “10” in a form data item and never change that
value, the form data item stores that value until your program disables the form.

You can organize form data items that are related to one another into form data groups. You can nest
data groups. Nested data groups can have multiple occurrences so that elements of the groups (data
items or other groups) can be arrays. An array is a multiply occurring data item in a group. Chapter 9,
"Declaring, Displaying, and Tracking Data" describes how to use groups and arrays.

8.1.2. Form Records
A form record is a map of form data that allows the Form Manager to exchange data between the
program and the form. For the map to operate correctly, the form record must be logically equivalent to
an application program record. The name you declare for the record in IFDL is passed as an argument
to a request call. A request is a Form Manager routine that performs form processing, such as enabling a
form or sending a record message between the form and the program.

When the Form Manager transfers data to a form during the processing of a request, it copies the data
into the form data items with the same names as fields in the form record. These values are kept in the
form until they are changed by operator input, by the form itself, or by the processing of another request
called from the application program.

Form record fields correspond to form data items and usually have the same names as the
corresponding form data items. If the form record fields do not have the same names as form data
items,you can specify the correspondence explicitly with a USING clause or a TRANSFER clause (see
Chapter 9, "Declaring, Displaying, and Tracking Data").

You must specify data types for form record fields. The data types do not have to match those of the
form data items because you might want your application program to send or receive the data in a
different format. The Form Manager performs the data conversion. However, the most efficient data
transfer occurs when no conversion is needed.

You can treat a group of records as a unit by organizing them into a record group; a form record can
include both record fields and record groups. You can create a record listto combine multiple form
records for transfer between the application and the form.

Note

Your application will perform better if you define records that match your processing. Because the value
of form data remains the same between calls to a form, you should transfer only the data you need or the
data that has changed.

The VSI DECforms Programmer's Reference Manual describes data transfer between the application
program and the form in more detail.

8.1.3. Layouts
Layouts contain all the information needed for mapping a form to a display device. You can define
several layouts for a form so that you can use the same form to display information on several different
display devices.

88

Chapter 8. Form Structure

DECforms supports two types of layouts:

● Character cell—for devices using a character-cell display on OpenVMS systems, such as VT
terminals

● PRINTER—for high quality print output of panels and form data

The application program requires no knowledge of the screen layout or display device. All the
application does is communicate with the form by means of form records. The form knows how to
display and return data to the program. How you display the data can vary depending on the display
device.

Use a different layout to define a view of the form for each type of device. For example, you might
choose to display information in one large screen on a VAXstation terminal emulation window that is 54
lines long. On a VT330 terminal you might divide the information into several small panels and display
them one at a time.

At run time, the Form Manager chooses a layout based on the device specified in the application
program's ENABLE request. On OpenVMS systems, if the request does not specify a device, DECforms
uses the definition of the logical name FORMS$DEFAULT_DEVICE.

In a layout, you designate the size of the display. The display is the rectangular area that is available to
your application; it might or might not be as large as the display screen. You can adjust the size of the
display depending on considerations such as the number of lines and columns on the screen or how much
of the display the application can access. You also specify the units in which position coordinates and
measurements are to be expressed—inches, millimeters,points, BMUs (Basic Measurement Units or
1/1200 of an inch).

You can define functions and function responses to control what actions occur when the operator
presses one or more keys on the keyboard. For information about defining functions and responses, see
Chapter 4, "Adding Functions, Responses, Display Actions,and Validations to the IFDL File" and Chapter
11, "Designing the Operator Interface".

Layouts are also convenient for defining several different natural languages for one form. For example,
you could have two different views of a form, one for English-speaking operators and one for French-
speaking operators. The form would contain two layouts, one that specifies English as the natural
language and one that specifies French. At run time, the Form Manager chooses one of these layouts
based on the definition of the logical name FORMS$LANGUAGE.

For more information about how the Form Manager chooses a layout, see the VSI DECforms
Programmer's Reference Manual.

8.1.4. Viewports
Within a layout, the display is divided into viewports. A viewport's location is relative to the screen. You
can have more than one viewport on the display at a time, and they can overlap.

Viewports are useful because they name a rectangular part of the display. You can use this name to
specify explicitly where each panel appears on the display. You can display a panel in a viewport, remove
it, display another panel in the same viewport, remove it, and so on, for as long as you have panels to
display.

If you do not define a viewport explicitly, DECforms uses a default viewport that corresponds to the
size of the layout.

89

Chapter 8. Form Structure

8.1.5. Panels
A layout generally contains several panels. When you create a panel, you identify it as either a data
entry panel (the default) or a help panel. A data entry panel is used for data input and operator actions.
A help panel is used to provide help information. You can also use a help panel for data entry and
operator actions.

A third type of panel, a message panel, is used to display error or informational messages to the
operator. DECforms supports one message panel for each layout.

Relationship to Viewports and to Other Panels
Each panel is associated with a viewport. You can associate a panel with a viewport in any of three ways:

● Default to the default viewport

If you do not specify a viewport explicitly, DECforms uses the default viewport, the size of which is
determined by the SIZE clause in the LAYOUT declaration.

● Specify a viewport by using a VIEWPORT clause in the PANEL declaration

● Specify a viewport in a DISPLAY response step

You can associate several panels with the same viewport, although the Form Manager displays only one
panel in the viewport at a time. One panel can occupy different viewports at different times, but cannot
occupy different viewports at the same time.

In a character-cell display, the viewports and panels remain in a fixed relationship to each other. The
coordinates of character-cell panel objects are relative to the viewport's origin. All objects on a character-
cell panel must fit inside the viewport in which the panel is displayed

Processing and Functions
Within a data entry or help panel declaration,you can specify processing that is done when input is first
entered in the panel and when input is completed. You also can define function keys that are specific to a
panel, and you can specify messages that give help to the operator. Literals, panel fields, icons and panel
groups are the elements that compose the actual display. The following sections discuss these elements.

For complete information about how to create panels using the FDE or a panel editor, see the VSI
DECforms Guide to Commands and Utilities. For information about declaring help panels in the IFDL
source file, or about using message panels, see Chapter 11, "Designing the Operator Interface".

Literals
Literals are text and graphics that form the background ofa panel and that do not change while the
application is running. You can use literals to convey messages to the operator (about how touse the
panel, for example), or to create borders and other graphics.

Literals can have display attributes; you can specify that a literal be bolded or underlined, for example.
You can specify a set of literal default attributes to be applied to all literals on a panel. You can turn off
or override default attributes for a particular literal or set of literals.

Panel Fields
Panel fields are form data items displayed on the screen. There are three types of panel fields:

90

Chapter 8. Form Structure

● Picture fields—one-line fields that have specified formats

Picture fields have associated picture strings that describe how data is to appear in them and what
data the operator can enter into them under the direction of the Form Manager.

● Text fields—fields of one or more lines that contain text

Panel field values change over time as form data changes—when information is sent from the program
to form data items and when statements in the form change the form data items.

You can assign display attributes to individual panel fields. You also can declare and apply field default
attributes at the layout, panel, group, or field level. Field defaults are similar to literal defaults: you can
override field defaults by assigning other display attributes or by setting the defaults off at a lower level.

A panel field must have the same name as the form data item it displays. At run time, the initial value of
a panel field is the value stored in the form data item it represents. You can allow the operator to change
that value. When the value of a form data item changes, DECforms dynamically updates any associated
onscreen field.

In a panel field declaration, you can specify that operator entry be validated before the corresponding
data value is returned to the program in a record.

Icons

Panels use icons to give operators a way to perform an action by moving the cursor to and selecting an
icon. An icon is composed of one or more text or graphic literals.

Unlike fields, icons have no associated form data items. Although icons cannot accept data input,
function key input is allowed. For example, you can use icons to represent a menu option that the
operator can select. You can declare processing attributes for an icon, such as active highlight, or
conditional display by means of the CONCEALED WHEN clause.

Panel Groups

A panel group is a collection of panel fields, literals, and icons within the panel that can be treated as
an entity for certain operations. Such operations include scrolling, deciding which fields can have input,
deciding where to move the cursor, determining what to do when a function is entered while one of the
fields of the group is active, and so on.

A panel group is the mapping of a data group to the panel. Just as data groups can have multiple
occurrences, panel groups also can have multiple occurrences and appear on the screen as lists or tables
(possibly scrolled).

8.2. Responses
By default, the Form Manager moves data from form records to form data and displays the panels
necessary for the operator to enter the data that is to be transferred back to the program. You can take
over control of part or all of the communication between the operator, the application program,and the
form, by declaring responses. A response consists of a list of instructions, called response steps,to the
Form Manager.

For example, you can use responses to:

91

Chapter 8. Form Structure

● Reposition the cursor to a particular panel field when the operator presses a function key

● Display a set of follow-up questions, based on the value of the panel field just completed

● Call an application subroutine to verify that the entry in a panel field is valid in a database

● Validate that two fields in the form are in the proper relation to each other

A response is procedural in that the response steps are executed at particular times, in a particular order,
and there can be a choice between alternate sets of steps. A form is restricted to performing only display-
oriented procedures.

A DECforms response has no looping mechanism, so it cannot execute general procedural algorithms. A
response step that is a call to a user-supplied subroutine is called a procedural escape. The user-supplied
subroutine called in a procedural escape is an escape routine.

The Form Manager contains default responses. You can override the default responses by redefining
them in your IFDL source file. The different types of responses are:

● Accept Responses—control what the Form Manager does when accepting input from the operator or
when the operator presses a function key.

● External Responses—control what the Form Manager does in response to one of the six DECforms
external requests or in response to control text received on a request.

● Internal Responses—contain response steps used in more than one response; another response can
call an internal response.

The responses are discussed in later chapters of this guide. For information about how the Form
Manager processes requests, responses,and response steps, see the VSI DECforms Programmer's
Reference Manual. For IFDL syntax information, see the VSI DECforms IFDL Reference Manual.

8.3. Methods for Creating a Form
There are two basic methods for creating a form:

● Using the Form Development Environment (FDE)

● Using a text editor to write the IFDL source file

The FDE is useful to form designers who are new to DECforms and who are creating forms for
character-cell displays. The FDE helps you keep the structure of the form in mind as you create it so that
you can develop the form in an organized fashion.

Within the FDE, you can specify many elements of the form without having to write IFDL statements
for them. When you must write IFDL statements, you can directly access the IFDL source code without
leaving the FDE. You can also use other DECforms utilities, such as CCPED and the Test Utility, from
within FDE. The FDE can produce form files, IFDL source files, or both.

For more information about using the FDE, see the VSI DECforms Guide to Commands and Utilities.

There are instances when you must write IFDL statements directly,for example, to define function
responses, to specify certain declarations, and to create PRINTER layouts. You must specify these

92

Chapter 8. Form Structure

statements by editing IFDL source code using your text editor. If you are unfamiliar with the IFDL
structure, you can use the optional DEC LSE (Language Sensitive Editor)and its EXPAND command to
produce a template of the structure. (For more information on using DEC LSE, see the VSI DECforms
Guide to Commands and Utilities.)

Whichever method you choose, you can always use the appropriate panel editor (CCPED on form files to
create and organize panel appearance.

8.4. How a Form Is Described in the IFDL
The Independent Form Description Language 1(IFDL) is the language you use to create source files that
define forms and form characteristics. You can create or modify an IFDL source file with any text editor
supported by your operating system. You specify the language statements according to IFDL syntax
rules, and then you translate the source file into a form file using the IFDL Translator.

IFDL statements describe a form in terms of the following major elements:

● Data and records associated with the form

● Layouts associated with the form

● Viewports associated with panel displays

● Functions and responses

● Panel descriptions

● Object descriptions (field, icon, literal, group) and their locations on panels

● Display attributes and properties

● Help associated with panels and objects

Figure 8.3, "Hierarchical Structure of a Form" illustrates a simplified view of the hierarchical structure
of a form in terms of its IFDL elements. These elements are specified as IFDL statements in the IFDL
source file.

Figure 8.4, "Structure of a Form in IFDL Declarations" shows a syntactical view of the form's structure.
This figure shows the structure of a form as it is written in the IFDL. Uppercase letters denote IFDL
keywords, words that have special meaning in the IFDL.

The VSI DECforms IFDL Reference Manual describes the complete form structure,including syntax rules
for the IFDL and rules for naming DECforms elements.

1The DECforms Independent Form Description Language is a subset of the Independent Form Description Language proposed as a standard by
the CODASYL Form Interface Management System Committee and ISO/IEC JTC1/SC22 Working Group 18 (FIMS).

93

Chapter 8. Form Structure

Figure 8.3. Hierarchical Structure of a Form

Figure 8.4. Structure of a Form in IFDL Declarations

FORM
 FORM DATA declarations
 FORM RECORD declarations
 RECORD LIST declarations
 LAYOUT declarations
 DEVICE declarations
 VIEWPORT declarations
 FUNCTION declarations
 RESPONSE declarations
 USE HELP PANEL clause
 MESSAGE PANEL declaration
 PANEL declarations
 VIEWPORT viewport-name
 ACCEPT RESPONSE declarations
 FIELD declarations
 TEXTFIELD declarations
 LITERAL declarations
 GROUP declarations
 Fields, icons, literals
 ICON declarations
END FORM

8.5. IFDL Syntax Example
Example 8.1, "IFDL Syntax for a Form" shows the IFDL syntax of a simple form containing some of the
elements described in this chapter.

Example 8.1. IFDL Syntax for a Form

Form EMPLOYEE
/* This is the employee_record form */
 Form Data
 Copy

94

Chapter 8. Form Structure

 EMPLOYEE_RECORD Of "DEPT_FILE.TLB"
 End Copy
 HIRE_DATE Character(6)
 PREV_EMPLOYER Character(30)
 End Data

 Form Record EMPLOYEE_RECORD
 Copy
 EMPLOYEE_RECORD Of "DEPT_FILE.TLB"
 End Copy
 End Record

 Form Record EMPLOYEE_HISTORY
 HIRE_DATE Character(6)
 PREV_EMPLOYER Character(30)
 End Record

 Layout EASY
 Device
 Terminal DECVT
 Type %VT200
 End Device
 Units Characters
 Size 24 Lines By 80 Columns

 Viewport MAIN
 Lines 1 Through 22
 Columns 1 Through 80
 End Viewport

 Panel BASIC
 Viewport MAIN
 Literal Text
 Line 5
 Column 5
 Value "Name: "
 End Literal

 Field NAME
 Same Line
 Next Column
 Use Help Message
 "Enter employee's name"
 End Field
 End Panel
 End Layout
End Form
/* End of employee_record form */

The FORM declaration specifies the form name EMPLOYEE.

This is a comment stating that the employee record form follows. The IFDL Translator does not
interpret comments. For information about the best way to place comments in a form, see the VSI
DECforms Guide to Commands and Utilities.

The FORM DATA declaration specifies the form data for the EMPLOYEE form. This FORM
DATA declaration contains the same COPY statement as the first FORMRECORD declaration
because both include the same information.

95

Chapter 8. Form Structure

The COPY statement tells the IFDL Translator to copy into the form record the description of the
data record EMPLOYEE_RECORD from the EMPLOYEE_RECORD module in the text library
DEPT_FILE.TLB. The EMPLOYEE_RECORD looks like this:

 NAME Character(30)
 ADDRESS Character(30)
 CITY Character(15)
 STATE Character(2)
 ZIP Integer(2)

The FORM RECORD declaration specifies that the data record EMPLOYEE_RECORD is to be
exchanged between the form and the application program.

This LAYOUT declaration begins the layout section for a character-cell device. The name of the
layout is EASY.

The DEVICE declaration specifies the device for the layout. The TERMINAL declaration specifies
the class of terminal (DECVT, in this case). The TYPE declaration labels the specific type of
terminal. END DEVICE specifies the end of the device declaration.

The UNITS declaration specifies the units (in this case, characters) in which coordinates and
measurements are expressed in the layout.

The SIZE clause specifies an area of 24 lines by 80 columns as the layout size.

The VIEWPORT declaration names the viewport MAIN and specifies the portion of the screen to
use for displaying panels.

The PANEL declaration names the panel BASIC as the panel to be displayed.

The viewport MAIN is named as the viewport to use for the panel BASIC.

The LITERAL TEXT declaration specifies a text literal to be displayed beginning at line 5, column
5. The VALUE clause outputs “Name: ” as background text on the panel when it is displayed.
END LITERAL specifies the end of the literal declaration.

The FIELD declaration specifies the characteristics of the field NAME. SAME LINE and NEXT
COLUMN tell the program to output the contents of the field on the same line and the column
after the value “Name: ”. The USE HELP MESSAGE declaration specifies a help message to be
associated with the field. END FIELD specifies the end of the field NAME.

END PANEL declares the end of the panel BASIC.

END LAYOUT specifies the end of the layout.

END FORM declares the end of the EMPLOYEE form.

96

Chapter 9. Declaring, Displaying,
and Tracking Data
This chapter discusses how to declare, display, and track data in your form, including how to:

● Choose appropriate data types

● Assign default values to panel fields

● Apply conditional highlighting to panel fields

● Declare and display arrays

● Transfer data explicitly

● Track form data items that have changed

Note

You should not allow the operator to enter nonprintable characters, such as escape sequences, in
character panel fields. Although the DECforms run-time system does not prevent the use of such
characters, the results are device dependent, and VSI Equipment Corporation cannot ensure that later
versions of DECforms will perform the same way.

The result of passing nonprintable characters to a DECforms character panel field is unpredictable and
undefined. VSI strongly recommends against this practice.

9.1. Specifying Form Data Types
The FORM DATA declaration specifies all data stored in the form for all layouts. Each form data item
must have a unique name and must also have a clause describing the data format.

9.1.1. Text Data
You can specify the following types of text data:

CHARACTER
CHARACTER NULL TERMINATED
CHARACTER VARYING
INTEGER
INTEGER PACKED
DECIMAL
DECIMAL PACKED
FLOAT

You can use null terminated data with C programs. For example,if you specify a data item named
ADDRESS as a CHARACTER NULL TERMINATED text string that is 61 characters long, the 61st
character will be null. The maximum number of characters the operator can enter into a field having this
format is 60. If the initial value of the data is blank spaces, and the operator enters 40 characters, the
next 20 characters will remain blank, followed by the null character. You can use an escape routine in an
EXIT response to trim the trailing spaces.

97

Chapter 9. Declaring, Displaying, and Tracking Data

You can use varying strings with Pascal or PL/I programs.

A packed integer is not a longword; rather, it is a byte string in which each byte contains two digits, each
packed into four bits. The four low-order bits of the last byte in the string specify the sign.

See the TEXT DATA Clause section of the VSI DECforms IFDL Reference Manual for details on the text
formats.

9.1.2. Atomic Data
You can specify the following types of atomic (binary format) data:

BYTE INTEGER
DFLOATING
FFLOATING
GFLOATING
HFLOATING
LONG FLOAT
LONGWORD INTEGER
QUADWORD INTEGER
SFLOATING
SHORT FLOAT
TFLOATING
UNSIGNED BYTE
UNSIGNED LONGWORD
UNSIGNED WORD
WORD INTEGER
XFLOATING

DFLOATING, FFLOATING, GFLOATING, HFLOATING, and TFLOATING differ in precision and
length. Use Short Float and Long Float for future portability.

See the ATOMIC DATA Clause section of the VSI DECforms IFDL Reference Manual for details on the
atomic formats.

9.1.3. Date/Time Data
You can specify the following types of date/time formats for form data:

ADT
ADT CURRENT
DATE
DATE CURRENT
TIME
TIME CURRENT
DATETIME

For portable applications, use DATETIME. See the DATETIME DATA Clause section of the VSI
DECforms IFDL Reference Manual for details on date/time formats.

9.2. Assigning Default Values to Form Data
You can assign default values to form data when you declare it by using the VALUE clause, as shown in
the following example:

98

Chapter 9. Declaring, Displaying, and Tracking Data

 Form Data
 ORDER_DATE Date VALUE 1994 01 01
 SHOE_SIZE Integer VALUE 7
 SHOE_COLOR Character(10) VALUE BLACK
 SHOE_NUMBER Integer VALUE 1
 SHOE_PRICE Longword Integer VALUE 2500
 End Data

If you do not explicitly assign default values, DECforms uses default values such as zeros for integer data,
blanks for character data, and November 17, 1858 for dates.

When DECforms displays a panel containing fields, the default values for the associated form data
appear on the screen display. The operator might change these values by entering new values.

To cause DECforms to delete any changed values for form data and return to the default values, use the
RESET response step. The RESET response step causes DECforms to display the default form data value
when displaying the associated panel field.

The RESET response step lets you reset the value for a particular form data item, all values in a form
data group, or all form data items in your form.

Example 9.1, "Using the RESET Response Step" shows a validation response that uses the RESET
response step.

Example 9.1. Using the RESET Response Step

Form Data
 ACCOUNT_NUMBER Unsigned Longword VALUE 1000
 .
 .
 .
End Data
 .
 .
 .
Field ACCOUNT_NUMBER
 Line 10
 Column 5
 Input Picture 999'-'99999'-'999
 Validation Response
 Call "CHECK_DIGIT_VALIDATION" Using
 By Reference ACCOUNT_NUMBER
 Giving STATUS

 If STATUS <> 1 Then
 Invalid
 Reset ACCOUNT_NUMBER
 Else
 Position To Next Item
 End If
 End Response
End Field

This is the FORM DATA declaration for the ACCOUNT_NUMBER panel field, which includes a
default value of 1000.

The CALL response step calls an escape routine named CHECK_DIGIT_VALIDATION. The
escape routine verifies that the account number just entered by the operator is valid.

99

Chapter 9. Declaring, Displaying, and Tracking Data

The value returned from the escape routine, which is stored in the form data item STATUS, is
then tested. If the value contains a 1, the operator continues input with the next panel field. If the
return status indicates failure, the INVALID response step is performed. This response step causes
operator entry to this panel field to begin again. The RESET response step sets the form data item
ACCOUNT_NUMBER back to its default value.

9.3. Altering the Display Attributes of Panel
Fields
Using the HIGHLIGHT WHEN clause, you can change the display attributes of panel fields or icons,
with a conditional expression. The display attributes change immediately after the condition becomes
true and remain in effect until the condition is no longer true.

DECforms adds display attributes specified with the HIGHLIGHTWHEN clause to the attributes that are
in effect for the panel field, including active highlighting (that is, highlighting applied to the panel field
when it becomes the current activation item). If the attributes specified with the ACTIVE HIGHLIGHT
and HIGHLIGHT WHEN clauses conflict with each other or with the attributes specified in the panel
field's DISPLAY clause, the last attribute applied takes precedence.

The Form Manager applies display attributes in the following order:

1. Attributes specified in the DISPLAY clause

2. Attributes specified in the ACTIVE HIGHLIGHT clause

3. Attributes specified in the HIGHLIGHT WHEN clause

Example 9.2, "Altering Display Attributes with the HIGHLIGHT WHEN Clause" shows a panel field
declared with a HIGHLIGHT WHEN clause.

Example 9.2. Altering Display Attributes with the HIGHLIGHT WHEN Clause

Field EMPLOYEE_NAME
 Next Line
 Same Column
 Active Highlight
 Bold
 Highlight Reverse
 When (ERROR = "TRUE")
 Exit Response
 Call "CHECK_DATA_BASE" Using
 By Reference EMPLOYEE_NAME
 Giving STATUS

 If STATUS <> 1 Then
 Let ERROR = "TRUE"
 Invalid
 Else
 Position To Next Item
 End If
 End Response
End Field

The ACTIVE HIGHLIGHT clause specifies the display attributes applied when the operator is
entering data in the panel field.(Bold is an attribute for a character-cell layout.)

100

Chapter 9. Declaring, Displaying, and Tracking Data

The HIGHLIGHT WHEN clause specifies the display attributes applied when the form data
item ERROR is equal to “TRUE”. HIGHLIGHT WHEN clauses are evaluated after ACTIVE
HIGHLIGHT clauses. Therefore, if this panel field is active and the ERROR form data item equals
“TRUE” (which sets the reverse highlight on), DECforms applies the bold and reverse attributes.

The EXIT RESPONSE declaration calls the escape routine CHECK_DATA_BASE to verify that
the employee name exists in the employee database. If the employee name is not in the database,
the response sets the ERROR form data item to “TRUE” and uses the INVALID response step to
continue input into the EMPLOYEE_NAME panel field. Otherwise, the operator begins input to
the next panel field, as specified by the POSITION response step.

9.4. Declaring and Displaying Groups and
Arrays
DECforms allows you to specify groups or arrays in your form records. In DECforms you can use groups
with scrolled regions (see Chapter 11, "Designing the Operator Interface"). You might want to use
groups to organize your data.

You can create arrays by using groups. A form data group is a set of form data items that are related to
each other. You can declare form record field groups, and you can also declare panel groups that contain
fields,icons, and literals.

The following sections explain storing data in form data groups in a form,activating panel groups,
displaying panel groups, and passing group data between the form and the program.

9.4.1. Grouping Data in a Form
A form data group can be a simple group, which is a collection of form data items without an OCCURS
clause. Such a form data group contains form data items that occur only once and do not need subscripts.

You can even create a group containing only one form data item.

A form data group can include an OCCURS clause, which designates that each form data item in the
group occurs multiple times. Group declarations that include an OCCURS clause create one-dimensional
arrays. To create a two-dimensional array, nest one multiply occurring group inside another. You can also
specify a multiply occurring group within a single occurrence group.

Note

You can nest only one multiply occurring group from within the outermost multiply occurring group;
DECforms does not support arrays larger than two dimensions.

Example 9.3, "Declaration of Form Data Groups" shows the declaration of a group data item,a multiply
occurring group, and a nested, multiply occurring group.

Example 9.3. Declaration of Form Data Groups

Form Data
 EMPLOYEE_NAME Character(30)
 EMPLOYEE_ID_NUMBER Integer(10)

 Group EMPLOYEE_ADDRESS
 STREET_ADDRESS Character(32)
 CITY Character(32)

101

Chapter 9. Declaring, Displaying, and Tracking Data

 STATE Character(2)
 ZIP_CODE Integer(9)
 End Group

 Group SPOUSE
 Occurs 2
 NAME Character(15)
 End Group

 Group DEPENDENT
 Occurs 4
 Group CHILDREN
 Occurs 2
 CHILD_NAME Character(15)
 End Group
 End Group
End Data

The EMPLOYEE_ADDRESS group is a collection of four form data items. You refer to the first
item in this group by the name EMPLOYEE_ADDRESS.STREET_ADDRESS.

The SPOUSE group is a one-dimensional array. It contains one form data item that occurs twice.
The group stores the spouse's first name in the SPOUSE(1).NAME form data item and the
spouse's last name in the SPOUSE(2).NAME form data item. Array indexes are in the range of 1
to the number of occurrences.

The CHILDREN group contains one form data item that occurs twice(representing the first and
last name of each child). The DEPENDENT group contains four occurrences of the CHILDREN
group, each of which represents a single child, so this group stores the full name of four children.

Using Subscripts and Qualified Names
You can use the group name to perform operations on a group, or you can name a single member of a
group to perform the operation only on that member. To refer to group form data items, you must always
use the full name from the outermost group name to the innermost data item.

A full name consists of the name of each group, beginning with the outermost group the form data item
is a member of, and then the name of the form data item. You separate each group and form data item
from the next with a period. To refer to a member of a multiply occurring group, you also use a subscript
specified in parentheses. The following table shows examples of different kinds of group names:

Type of Group Example of Group Item Names

Simple group FAMILY.FATHER

FAMILY.MOTHER

FAMILY.CHILD1

FAMILY.CHILD2
Multiply occurring group FAMILY(1).FATHER

FAMILY(1).MOTHER

FAMILY(1).CHILD1

FAMILY(1).CHILD2

102

Chapter 9. Declaring, Displaying, and Tracking Data

Type of Group Example of Group Item Names
FAMILY(2).FATHER

FAMILY(2).MOTHER

FAMILY(2).CHILD1

FAMILY(2).CHILD2
Nested group FAMILY(1).FATHER

FAMILY(1).MOTHER

FAMILY(1).CHILD(1).CHILD_NAME

FAMILY(1).CHILD(2).CHILD_NAME

FAMILY(2).FATHER

FAMILY(2).MOTHER

FAMILY(2).CHILD(1).CHILD_NAME

FAMILY(2).CHILD(2).CHILD_NAME

FAMILY(2).CHILD(3).CHILD_NAME
Multiply occurring group nested in simple group FAMILY.FATHER

FAMILY.MOTHER

FAMILY.CHILD(1).CHILD_NAME

FAMILY.CHILD(2).CHILD_NAME

In Example 9.3, "Declaration of Form Data Groups", the CHILDREN group is a one-dimensional array.
The DEPENDENT group is a two-dimensional array. You refer to a form data item of the DEPENDENT
group using subscripts.

For example, DEPENDENT(1).CHILDREN(1).CHILD_NAME refers to the first occurrence
of the CHILD_NAME form data item in the CHILDREN group and the first occurrence of the
CHILD_NAME form data item in the DEPENDENT group.

Because the CHILDREN group is nested in the DEPENDENT group, you cannot refer to items in the
CHILDREN group without naming the DEPENDENT group.

For example, CHILDREN(1).CHILD_NAME is an unqualified reference. The reference must be a
qualified name, such as DEPENDENT(2).CHILDREN(1).CHILD_NAME.

9.4.2. Displaying Data Stored in Form Data Groups
To display form data items that are declared in a form data group, you must declare a panel group that
corresponds by name to that form data group. You can include literals or icons in a panel group. The
panel fields in the panel group must have the same names as the form data items in the form data group.

You declare line and column values for items in a group differently for character-cell layouts than for
PRINTER layouts. In character-cell layouts, the LINE and COLUMN clauses describe the location on

103

Chapter 9. Declaring, Displaying, and Tracking Data

the displayed panel of the first occurrence of the form data item, as shown in the following example from
the mileage reimbursement form.

 Group TRIP
 Vertical
 Displays 12
 Field TRIP_DATE
 Line 6
 Column 8
 .
 .
 .
 End Field
 Field TRIP_FROM
 Line 6
 Column 22
 .
 .
 .
 End Field

The VERTICAL and HORIZONTAL clauses control the appearance of subsequent occurrences. If you
specify vertical, subsequent occurrences of items in the panel group appear below the first occurrence.
If you specify horizontal,subsequent occurrences of the panel group appear to the right of the first
occurrence. You cannot specify both vertical and horizontal.

If the number of display occurrences is less than the number of form data occurrences, DECforms allows
the operator to scroll the panel group display area to show more occurrences of the panel group.

An inner multiply occurring panel group cannot scroll. Therefore, you must make sure that a multiply
occurring panel group nested inside another multiply occurring panel group occurs the same number of
times as its related form data group.

Use the DISPLAYS clause to specify how many occurrences in a vertical or horizontal panel group
will appear on the screen at one time. Chapter 11, "Designing the Operator Interface" describes the
DISPLAYS clause.

Example 9.4, "Declaration of Panel Fields to Display a Form Data Group" shows the IFDL source code
corresponding to the panel fields that display the group of form data items in Example 9.3, "Declaration
of Form Data Groups". This code is for a character-cell layout.

Example 9.4. Declaration of Panel Fields to Display a Form Data Group

Panel GROUP_PANEL

 Literal Text
 Line 3
 Column 5
 Value "Employee Information"
 Display
 Font Size Double High
 End Literal

 Group EMPLOYEE_ADDRESS
 Literal Text
 Line 6
 Column 5
 Value "Street:"

104

Chapter 9. Declaring, Displaying, and Tracking Data

 End Literal

 Field STREET_ADDRESS
 Same Line
 Next Column +1
 Display
 Underlined
 End Field

 Literal Text
 Next Line
 Column 5
 Value "City:"
 End Literal

 Field CITY
 Same Line
 Next Column +3
 Display
 Underlined
 End Field

 Literal Text
 Next Line
 Column 5
 Value "State:"
 End Literal

 Field STATE
 Same Line
 Next Column +2
 Display
 Underlined
 End Field

 Literal Text
 Same Line
 Next Column +3
 Value "Zip code:"
 End Literal

 Field ZIP_CODE
 Same Line
 Next Column +1
 Display
 Underlined End Field
 End Group

 Literal Text
 Line 10
 Column 5
 Value "Spouse:"
 End Literal

 Group SPOUSE
 Horizontal
 Field NAME
 Line 10

105

Chapter 9. Declaring, Displaying, and Tracking Data

 Column 13
 Display
 Underlined
 Input Picture XXXXXXXXXXXXXXX' '
 End Field
 End Group

 Literal Text
 Line 12
 Column 5
 Value "Dependent children:"
 End Literal

 Group DEPENDENT
 Vertical
 Group CHILDREN
 Horizontal
 Field CHILD_NAME
 Line 13
 Same Column
 Display
 Underlined
 Input Picture XXXXXXXXXXXXXXX' '
 End Field
 End Group
 End Group
End Panel

Declaration of a literal with a double-high font that labels the panel.

Declaration of a panel group that contains literals and panel fields. This group corresponds to the
form data group EMPLOYEE_ADDRESS, which is a simple group.

Declaration of a text literal to label the next group on the panel. The text literal is not declared
inside the SPOUSE panel group because the NAME form data item occurs twice. If the text literal
declaration is placed inside the panel group declaration, the text literal appears twice on the panel.
In this case, the form designer wants the text literal to appear only once on the panel,so the text
literal is declared outside the panel group.

Declaration of a panel group that corresponds to the SPOUSE form data group. The NAME panel
field is displayed twice and is underlined.

Declaration of a text literal to label the DEPENDENT group. Once again, the text literal is needed
only once on the panel and so is declared outside the panel group.

Declaration of the panel group that displays the DEPENDENT form data group. The
DEPENDENT form data group is displayed vertically; the second, third, and fourth occurrences
appear below the first occurrence. The CHILDREN form data group is displayed horizontally. The
first occurrence of that group appears on line 13in column 5. The second occurrence is repeated to
the right of the first occurrence.

You would most likely use the CCPED panel editor to create this display. Figure 9.1, "Appearance of
Panel Groups in CCPED" shows how the display appears in CCPED.

106

Chapter 9. Declaring, Displaying, and Tracking Data

Figure 9.1. Appearance of Panel Groups in CCPED

Figure 9.2, "Appearance of Panel Groups on a Character-Cell Display Device" illustrates how the panel
in Example 9.4, "Declaration of Panel Fields to Display a Form Data Group" is displayed to the operator.

Figure 9.2. Appearance of Panel Groups on a Character-Cell Display Device

A panel group need not have a panel field declaration for every form data item in the data group. On the
other hand, it is possible for a panel group to have an item in it that is not in the associated form data
group—an icon. You can declare icons in simple or multiply occurring panel groups. They must not have
the same name as any form data items. When you declare an icon within a panel group, you must qualify
it in the same way as you would qualify a panel field. For example, if you declare icon MENU_ITEM in
panel group MENU, you would refer to the icon as MENU.MENU_ITEM.

9.4.3. Using Corresponding Subscripts in Panel Field
Description Entries
A special type of array expression involves the use of corresponding subscripts,designated by a double
asterisk (**). You can use a corresponding subscript in the following panel field description entries:

CONCEALED WHEN
HIGHLIGHT WHEN
PROTECTED WHEN
OUTPUT WHEN
RANGE
REQUIRE
When you use a corresponding subscript in a form data array expression within one of these panel field
description entries, each occurrence of the form data item in the expression is evaluated. The resulting
value of each occurrence of the form data item is used on the same occurrence of the panel field in
which the field description entry appears.

For example, suppose you have the following form data group and panel group:

107

Chapter 9. Declaring, Displaying, and Tracking Data

Group GROUP_1 Occurs 10 /* data group */
 AMOUNT Longword Integer
 LIMIT Longword Integer
End Group
 .
 .
 .
Group GROUP_1 /* panel group */
 Vertical Displays 5

 Field AMOUNT
 Input Picture 999,999.99
 Protected When GROUP_1(**).LIMIT > 9999
 End Field

 Field LIMIT
 Protected
 Output Picture 999,999.99
 End Field
End Group

In this example, each occurrence of GROUP_1.AMOUNT is protected if the corresponding
occurrence of GROUP_1.LIMIT is greater than 9999. If GROUP_1(1).LIMIT is greater than
9999, GROUP_1(1).AMOUNT is protected;if GROUP_1(2).LIMIT is greater than 9999,
GROUP_1(2).AMOUNT is protected;and so on, for all 10 occurrences of the panel fields in GROUP_1.

9.4.4. Activating Panel Groups for Input
You use the ACTIVATE response step to activate panel groups, panel fields, and icons, as follows:

● To activate all items within either a simple or multiply occurring panel group, you specify the
ACTIVATE GROUP response step and name the panel group to be activated.

● To activate individual panel fields or icons in a panel group, you use the ACTIVATE FIELD,
ACTIVATE or ACTIVATE ICON response step.

In the ACTIVATE response step, you must include the name of the panel on which the panel group,
panel field, or icon is displayed.

Activating Simple Panel Groups and Panel Fields

To activate a simple panel group (one that does not contain the OCCURS clause),use the group name in
the ACTIVATE GROUP response step. For example, the following ACTIVATE GROUP response step
activates each panel field in the EMPLOYEE_ADDRESS panel group:

Activate Group EMPLOYEE_ADDRESS On GROUP_PANEL

The items in the panel group are added to the activation list in order of their declaration after the current
activation list item. For example, the EMPLOYEE_ADDRESS panel group shown in Example 9.4,
"Declaration of Panel Fields to Display a Form Data Group" is activated in the following order:

STREET_ADDRESS
CITY
STATE
ZIP CODE

108

Chapter 9. Declaring, Displaying, and Tracking Data

To activate a particular panel field in a simple panel group, such as the STREET_ADDRESS panel field
in the EMPLOYEE_ADDRESS panel group in the preceding example, use the following response step:

Activate Field EMPLOYEE_ADDRESS.STREET_ADDRESS On GROUP_PANEL

Activating Multiply Occurring Panel Groups and Panel Fields
There are three ways you can refer to multiply occurring panel groups and elements of multiply
occurring panel groups in an ACTIVATE response step:

● Refer to the entire panel group without specifying any subscripts. For example:

Activate Group DEPENDENT on GROUP_PANEL

This response step activates each panel field in the DEPENDENT panel group shown in Example
9.4, "Declaration of Panel Fields to Display a Form Data Group" and creates the following activation
list:

DEPENDENT(1).CHILDREN(1).CHILD_NAME
DEPENDENT(1).CHILDREN(2).CHILD_NAME
DEPENDENT(2).CHILDREN(1).CHILD_NAME
DEPENDENT(2).CHILDREN(2).CHILD_NAME
DEPENDENT(3).CHILDREN(1).CHILD_NAME
DEPENDENT(3).CHILDREN(2).CHILD_NAME
DEPENDENT(4).CHILDREN(1).CHILD_NAME
DEPENDENT(4).CHILDREN(2).CHILD_NAME

● Refer to a specific occurrence of the panel group by specifying a subscript that is either a number or
a numeric form data item. For example,the following response step shows the use of a subscript to
refer to the second occurrence of the DEPENDENT panel group in the previous example

Activate Group DEPENDENT(2) On GROUP_PANEL

This response step creates the following activation list:

DEPENDENT(2).CHILDREN(1).CHILD_NAME
DEPENDENT(2).CHILDREN(2).CHILD_NAME

The following response steps show the use of subscripts to refer to specific panel fields in the
DEPENDENT panel group:

Activate Field DEPENDENT(2).CHILDREN(1).CHILD_NAME On GROUP_PANEL
Activate Field DEPENDENT(1).CHILDREN(2).CHILD_NAME On GROUP_PANEL

These response steps create the following activation list:

DEPENDENT(2).CHILDREN(1).CHILD_NAME
DEPENDENT(1).CHILDREN(2).CHILD_NAME

● Specify a range of subscripts, anywhere from one occurrence to all occurrences of the panel group.
The following response step shows the use of a subscript range to refer to specific occurrences of a
multiply occurring panel group:

Activate Group EXAMPLE(5:9) On SAMPLE_PANEL

This response step activates five occurrences (the fifth through the ninth)of a panel group
EXAMPLE on a panel SAMPLE_PANEL.

109

Chapter 9. Declaring, Displaying, and Tracking Data

You can specify any legal subscripts as the minimum and maximum occurrences;the subscript after
the colon must be at least as large as the subscript before the colon. An asterisk (*) in either position
selects the minimum or maximum for that position. For example:

Activate Field EXAMPLE(5.*).FIELD_1 On SAMPLE_PANEL

This response step activates all panel fields FIELD_1 in occurrences of panel group EXAMPLE
starting at occurrence 5 up through the end of the array. The following response step example
activates occurrence 5 of panel field FIELD_1 in all occurrences of panel group EXAMPLE:

Activate Field EXAMPLE(*).FIELD_1(5) on SAMPLE_PANEL.

You can abbreviate the notation (*:*) to (*), which means all occurrences of the array. This notation
is the same as specifying no subscript.

The following example from the advanced sample checking form shows the use of a variable in a
subscript range:

Activate Field REGISTER(1:ENTRY_COUNT).REG_TAX_DED on REGISTER_PANEL

The variable ENTRY_COUNT determines how many elements of the array are meaningful at this
time, and the Form Manager activates only those panel fields.

9.4.5. Specifying Navigation in a Panel Group
DECforms does not allow the programmer to explicitly position the cursor (for example, by specifying
line and column). The cursor follows the current activation item. You can control the positioning of the
cursor in panel groups by using the following DECforms features:

● The POSITION response step

● Built-in functions

● User-defined function responses to built-in functions

● Icons in panel groups

● The CURRENT clause in the declaration for the form data group in conjunction with a temporary
form data item, and entry and exit responses for the panel group

● The BASE clause in the declaration for the form data group

● The FIRST clause in the GROUP declaration

This section describes using the POSITION response step,the major built-in navigation functions and
function responses, and icons, and the CURRENT clause. For information about using the BASE and
FIRST clauses, see the VSI DECforms IFDL Reference Manual.

Using the POSITION Response Step
Once items from a panel group are entered on the activation list, you can specify navigation among these
items in a variety of ways, using the POSITION response step. You can specify any panel field or icon in
the panel group as the current activation item. For example:

Position To Field EMPLOYEE_ADDRESS.STREET_ADDRESS on GROUP_PANEL

110

Chapter 9. Declaring, Displaying, and Tracking Data

By naming the panel group, you can make the current activation item be whatever item happens to be the
first item of the panel group on the activation list. You might want to do this when, for example, some
items in a panel group are conditionally protected, in which case you might not know whether they are
accessible at a certain time. In such a situation, the POSITION TO GROUP response step causes the
cursor to move to the first accessible item of the panel group. For example:

Position to Group DEPENDENT on GROUP_PANEL

At run time, when you move to a panel group, you visit not the first item in the group, but the first
occurrence of that group on the activation list. To specify a certain occurrence of the group to visit, use a
subscript as follows:

Position To Group EXAMPLE(5) on SAMPLE_PANEL

Using Built-In Functions to Control Navigation
To control the operator's navigation in a panel group that has several items on the activation list, you can
use the built-in functions described in this section. Each built-in function has a default function response
(listed in the appendix on built-in functions in the VSI DECforms IFDL Reference Manual).

Use one of the following methods to override a built-in function response:

● Declare a user-defined function that uses the same key or keys as the built-in function (as shown in
Section 4.2, "Creating User-Defined Functions and Function Responses").

● Define your own function response to the built-in function.

Some functions, called situational functions (described in Section 11.4, "Using Situational Function
Responses") do not have associated function keys. You override these function responses by explicitly
defining your own function responses.

The major navigation built-in functions are as follows:

● NEXT ITEM and PREVIOUS ITEM

These built-in functions move to the next and previous items on the activation list. When the Form
Manager reaches the end of the elements that belong to the panel group, it automatically goes to the
first nonprotected item not in the panel group (in the appropriate direction).

● UP OCCURRENCE, DOWN OCCURRENCE, LEFT OCCURRENCE, and RIGHT
OCCURRENCE

These built-in functions move to the next occurrence of the panel group in the displayed direction.
If there is another occurrence of the panel group, but that occurrence is not visible because the panel
group is scrolled, the Form Manager automatically scrolls the panel group.

If the Form Manager reaches the end of the occurrences, it issues an error message. The operator has
to use another function to leave the panel group, unless you override the default function response for
the OCCURRENCE function in your IFDL source file.

● EXIT GROUP NEXT and EXIT GROUP PREVIOUS

These built-in functions leave the group immediately in the specified direction. You might use
these functions when,for example, you have a scrolled panel group with many occurrences, and
you want to spare the operator from having to press the keys bound to the NEXT ITEM or DOWN
OCCURRENCE built-in functions many times to get out of the group. You position to the previous
or next unprotected item on the activation list that is not part of the current group.

111

Chapter 9. Declaring, Displaying, and Tracking Data

● FOCUS CHANGE

An area on the screen that is ready to accept input has input focus.The DECforms FOCUS
CHANGE built-in function response for the current activation item is invoked when the operator
changes focus. The default FOCUS CHANGE function response is POSITION IMMEDIATE
TOFOCUS CHANGE.

Using Icons for Navigation in Groups
You also can use icons for navigation in panel groups. When an icon is declared as part of a panel group
that has multiple occurrences, the icon also has multiple occurrences—it becomes an icon array, just as
panel fields become panel field arrays.

You could use an icon array for navigation,for example, in cases where all the fields in a panel group are
protected. Because icons accept function key input, the operator can scroll from one occurrence of the
panel group to another.

Using the CURRENT Clause to Return to the Occurrence Last
Visited
When an operator leaves a panel group and later returns to that panel group, the operator usually wants
to return to the occurrence last visited. To make this happen, do the following in the IFDL source file:

● Specify a CURRENT clause in the form data group declaration. The CURRENT clause identifies a
form data item that the Form Manager sets to the value of the subscript of the current form data item
in the form data group whenever the operator navigates to a different occurrence of the panel group.

● Create a temporary form data item for saving the subscript.

● Specify an entry response for the panel group that contains a POSITIONIMMEDIATE response step
to move to the saved occurrence of the panel group.

● Specify an exit response for the panel group to save the subscript when the panel group is exited.

Example 9.5, "IFDL Source Code for Returning to the Occurrence Last Visited" shows sample IFDL
source code for navigating to the occurrence the operator visited last.

Example 9.5. IFDL Source Code for Returning to the Occurrence Last Visited

Form Data
 Group REVISIT
 Occurs 10
 Current REV_CUR
 EMPLOYEE_NAME Character(18)
 End Group
 REV_CUR Longword Integer
 SAVE_REV_CUR Word Integer VALUE 1
End Data
 .
 .
 .
Panel CURRENT_EMPLOYEES
 Group REVISIT
 Vertical
 Displays 10
 Entry Response
 Position Immediate To Group REVISIT(SAVE_REV_CUR)

112

Chapter 9. Declaring, Displaying, and Tracking Data

 On CURRENT_EMPLOYEES
 End Response
 Exit Response
 LET SAVE_REV_CUR = REV_CUR
 End Response
 Field EMPLOYEE_NAME
 .
 .
 .

When the operator visits an element of the panel group—for example,
REVISIT(1).EMPLOYEE_NAME—the Form Manager executes the entry response for the
panel group REVISIT before soliciting input for the panel field EMPLOYEE_NAME in the first
occurrence.

The POSITION response step instructs the Form Manager to ignore the current activation item
(REVISIT(1).EMPLOYEE_NAME, in this example) and go to occurrence SAVE_REV_CUR of
the panel group (presumably the panel field EMPLOYEE_NAME of that occurrence).Because
the POSITION response step is executed before the operator is asked for input for this occurrence,
the Form Manager does not get input for the occurrence. Instead, the Form Manager moves to the
saved occurrence.

When the operator exits the panel group, the Form Manager saves the subscript for the revisit.

The method illustrated in Example 9.5, "IFDL Source Code for Returning to the Occurrence Last Visited"
works for any way the operator entered the panel group, because the entry response for the panel group
is always executed by the Form Manager before any input is entered into items in the panel group.

9.4.6. Passing Group Data Between the Program and
the Form
To pass data between form data groups and your program, you must declare the following:

● Form data items that hold the transferred data either implicitly or explicitly

● A form record that contains a form record group corresponding to the form data group

If you are passing data by means of escape routines (see Section 2.5, "Planning the Program Style"),
the use of form records is optional.

● An application program record that is logically equivalent to the form record and that contains a
structure that is logically equivalent to the form record group

If Oracle CDD/Repository software is installed on your OpenVMS system, you can avoid declaring the
same record twice by storing record declarations in Oracle CDD/Repository. Using the COPY FROM
DICTIONARY statement, you can copy the form record declarations into your form and program.

Example 9.6, "Declaration of Logically Equivalent Data: Form Data and Records" shows an IFDL
form record declaration containing arrays, and Example 9.7, "Declaration of Logically Equivalent Data:
Program Data and Records" shows a logically equivalent program record declaration in a COBOL
program. The associated form data declaration appears in Example 9.3, "Declaration of Form Data
Groups".

Example 9.6. Declaration of Logically Equivalent Data: Form Data and Records

Form EMPLOYEE_FORM

113

Chapter 9. Declaring, Displaying, and Tracking Data

 .
 .
 .
 Form Data
 Group EMPLOYEE_ADDRESS
 STREET_ADDRESS Character (30)
 CITY Character (15)
 STATE Character(2)
 ZIP_CODE Integer(9)
 End Group
 .
 .
 .
 Group DEPENDENT
 Occurs 4
 Group CHILDREN
 Occurs 2
 CHILD_NAME Character(15)
 End Group
 End Group
 Form Record EMPLOYEE_DATA
 Group EMPLOYEE_ADDRESS
 STREET_ADDRESS Character (30)
 CITY Character (15)
 STATE Character(2)
 ZIP_CODE Integer(9)
 End Group
 Group SPOUSE
 Occurs 2
 NAME Character(15)
 End Group
 Group DEPENDENT
 Occurs 4
 Group CHILDREN
 Occurs 2
 CHILD_NAME Character(15)
 End Group
 End Group
 End Record

Example 9.7. Declaration of Logically Equivalent Data: Program Data and Records

IDENTIFICATION DIVISION.
PROGRAM ID. Employee_program

DATA DIVISION.
WORKING STORAGE SECTION.
01 GROUP_RECORD GLOBAL.
 03 STREET_ADDRESS PIC X(30).
 03 CITY PIC X(15).
 O3 STATE PIC X(2).
 03 ZIP_CODE PIC 9(9).
 03 SPOUSE OCCURS 2.
 05 NAME PIC X(15).
 03 DEPENDENT OCCURS 4.
 05 CHILDREN OCCURS 2.
 07 CHILD_NAME PIC X(15).
PROCEDURE DIVISION.

114

Chapter 9. Declaring, Displaying, and Tracking Data

 .
 .
 .
END PROGRAM Employee_program.

The form record fields in the EMPLOYEE_ADDRESS form record group have a default data
transfer association with the form data items in the EMPLOYEE_ADDRESS form data group
(refer to Example 9.3, "Declaration of Form Data Groups").The names of the form record fields
match the names of the form data items.

In this example, the size of each form data item does not always match the size of each associated
form record field. The result of this size mismatch is that the data will be truncated in the program.
In this case,the Form Manager issues a warning, but continues to process the form.

The SPOUSE.NAME form record field is associated with the SPOUSE.NAME form data item for
data transfer.

The DEPENDENT form record field group is associated with the DEPENDENT form data group.

The program record is logically equivalent to the form record.

Data Transfer When Occurrences Do Not Match
In Example 9.6, "Declaration of Logically Equivalent Data: Form Data and Records" and Example 9.7,
"Declaration of Logically Equivalent Data: Program Data and Records", the following conditions are
true:

● The form data groups and form record groups have the same names and dimension. For example,
in both the form data and the form record, the DEPENDENT group has a nested group called
CHILDREN, which contains one element called CHILD_NAME.

● The form data and form record groups have the same number of occurrences in each dimension.

If either of these conditions is not true in your form, data transfer can take place, but there are additional
rules you must consider.

If the number of occurrences in an array does not match in the form data and the form record, the
number of occurrences that gets transferred is the smaller of the two. For example, if the form record
group SPOUSE shown in Example 9.7, "Declaration of Logically Equivalent Data: Program Data and
Records" had an OCCURS 5 clause, only the first two occurrences would be transferred to the form data,
because there is no place to put the other three occurrences. On a RECEIVE request, only the first two
occurrences would be received by the program from the form data; the remaining three would be set to
default values (spaces for character data and zeros for numeric data).

A likely application of this data transfer feature is to change or retrieve only one or two occurrences of
form data groups. For example, if the form record contains form data group SPOUSE with an OCCURS
1 clause, the first occurrence would be transferred.

You can change which occurrence is transferred with the USING clause. For example, the following
IFDL source code transfers information to the second occurrence of the REPEAT_1 form data group in
form data:

Form Data
 .
 .
 .

115

Chapter 9. Declaring, Displaying, and Tracking Data

 Group REPEAT_1 Occurs 4
 ITEM_1 Character(8)
 End Group
 .
 .
 .
End Data

Form Record GROUP_RECORD
 .
 .
 .
 Group REPEAT_1
 Occurs 1
 ITEM_1 Character(8) Using REPEAT_1(2).ITEM_1
 End Group
 .
 .
 .
End Record

To transfer more than a single occurrence, you can use a subscript range. For example, suppose there are
five occurrences of the form data group in form data, and two occurrences in the form record. In this
case, you could specify USING REPEAT_1(3:4).ITEM_1 to transfer the two occurrences in the form
record to the third and fourth occurrences in form data.

You can transfer data to a variable occurrence by specifying a form data item as the subscript in the
USING clause. For example:

Form Data
 .
 .
 .
 Group REPEAT_1 Occurs 4
 ITEM_1 Character(8)
 End Group
 WHICH_ONE Unsigned Word
 .
 .
 .
End Data
Form Record JUST_ONE
 WHICH_ONE Unsigned Word
 Group REPEAT_1
 ITEM_1 Character(8) Using REPEAT_1(WHICH_ONE).ITEM_1
 End Group
End Record

On a SEND request for the form record JUST_ONE,the program sets the occurrence number into the
form record field WHICH_ONE. The Form Manager transfers the occurrences in the form record to the
proper occurrences in form data. In the same way, the program can get back a specific occurrence on
a RECEIVE request. This method is particularly useful in conjunction with the CURRENT clause of a
form data group declaration. See Example 9.8, "Group Data Transfer on a RECEIVE Request".

Example 9.8. Group Data Transfer on a RECEIVE Request

Form Data
 CR1 Longword Integer

116

Chapter 9. Declaring, Displaying, and Tracking Data

 Group REPEAT_1
 Occurs 12
 Current CR1
 ITEM_A Longword Integer
 ITEM_B Character(4)
 End Group
End Data
Form Record ONE
 CR1 Longword Integer
 Group REPEAT_1
 ITEM_A Longword Integer Using REPEAT_1(CR1).ITEM_A
 ITEM_B Character(4) Using REPEAT_1(CR1).ITEM_B
 End Group
End Record

In this example, a RECEIVE request on form record ONE would get back three form record fields (CR1,
ITEM_A, and ITEM_B).

CR1 is the occurrence of the panel group the operator was in or visited last. The form record fields
REPEAT_1.ITEM_A and REPEAT_1.ITEM_B would receive the occurrences of form data items
REPEAT_1(CR1).ITEM_A and REPEAT_1(CR1).ITEM_B, the two data items in occurrence CR1 of
form data group REPEAT_1.

9.5. Transferring Data Explicitly
Default data transfer between form data items and form record fields occurs only when their full names
match. To transfer a form data item named G1.G2.ITEM_1 by default to a form record field, you must
declare a form record field named G1.G2.ITEM_1.

In this case, you can perform explicit data transfer with the USING,SOURCE, or DESTINATION
clauses:

● Specify the USING clause to transfer data from a form data item to a form record field or the
opposite.

● Use the SOURCE clause to transfer data from a form data item to a form record field.

● Use the DESTINATION clause to transfer data from a form record field to a form data item.

If you are using Oracle CDD/Repository data definitions, use the TRANSFER clause, because Oracle
CDD/Repository does not support the USING, SOURCE, and DESTINATION clauses in a form record
field.

For example, suppose you have the following form data and form record declarations:

Form Data
 Group G1
 Group G2
 ITEM_1 Character(1)
 End Group
 End Group
End Data
Form Record REC_1
 Group G2
 ITEM_1 Character(1)
 End Group

117

Chapter 9. Declaring, Displaying, and Tracking Data

End Record

By default, no data transfer would take place, because the full name of the data item G1.G2.ITEM does
not match the full name of the form record field G2.ITEM_1. In the previous example, you could add a
USING clause to the form record field declaration as follows:

Form Record REC_1
 Group G2
 ITEM_1 Character(1) Using G1.G2.ITEM_1
 End Group
End Record

The USING clause causes data to be transferred to the record from the G1.G2.ITEM_1 form data item.
You do not have to declare a form record with the same name. If the form record REC_1 was defined in
Oracle CDD/Repository, you would use a TRANSFER clause to achieve the same effect. For example:

Form Record REC_1
 Copy CDD$TOP.REC_1 From Dictionary End Copy
 Transfer G2.ITEM_1 Using G1.G2.ITEM_1End Record

Any form record fields in a receive record that do not correspond to form data items and that are not
specified in a TRANSFER clause are initialized to default values (zero or blanks) before the form record
is returned to the program.

9.6. Determining What Changed During
Operator Input
It might be difficult to determine whether the operator changed the value of a form data item, because
you might be passing large amounts of data between your program and your form. To help your program
determine what the operator changed, DECforms lets you use the following:

● Tracked form data items

● Send and receive shadow records

9.6.1. Using Tracked Form Data Items
When you use a tracked form data item to specify that you want to know whether the value of a form
data item changes, the Form Manager maintains two copies of the data item, as follows:

● One copy containing the last known value, which is one of the following:

• The last value passed from the program into the form data item

• The last value passed from the form data item to the program

● A second copy that stores the current value of the form data item

Immediately before the Form Manager returns the current value of the form data item to the program,
it compares the current value to the last known value. If these values differ, the Form Manager returns
information to your program in a receive shadow record, which indicates that the form data item has
changed.

To specify that a form data item is tracked, you use the TRACKED clause in the FORM DATA
declaration.

118

Chapter 9. Declaring, Displaying, and Tracking Data

Example 9.9, "Tracked Form Data Items" shows a FORM DATA declaration that contains the
TRACKED clause. The example also shows a form record that can be used to pass data to and from the
form data items.

Example 9.9. Tracked Form Data Items

Form EMPLOYEE_FORM
 Form Data
 EMPLOYEE_NAME Character(30) Tracked
 EMPLOYEE_ID_NUMBER Integer(10)
 HIRE_DATE Date
 CURRENT_JOB_TITLE Character(30) Tracked
 End Data

 Form Record EXPERIENCE_RECORD
 EMPLOYEE_NAME Character(30)
 EMPLOYEE_ID_NUMBER Integer(10
 HIRE_DATE Date
 CURRENT_JOB_TITLE Character(30)
 End Record
 .
 .
 .

In this example,the EMPLOYEE_NAME and the CURRENT_JOB_TITLE form data items are tracked.

Note

You should use the TRACKED clause only where you need it, because the TRACKED clause doubles
the amount of storage needed for a data item. Doubling data item storage could degrade performance.

9.6.2. Using Receive Shadow Records
If you create a receive shadow record and pass it in your request call,the Form Manager writes
information about the tracked data items in the receive shadow record. To create a receive shadow
record, declare a form record in your program that has a one-character field at the beginning, followed
by a one-character field for each of the fields in your record. Each field in the receive shadow record
should be one character in length.

Example 9.10, "Shadow Record Declaration" shows a shadow record declaration for the form record in
Example 9.9, "Tracked Form Data Items".

Example 9.10. Shadow Record Declaration

WORKING STORAGE SECTION.
*-----
* COBOL record declaration for a shadow record
*-----
01 EXPERIENCE_RECORD_SHADOW GLOBAL.
 03 RECORD_SHADOW PIC X.
 03 EMPLOYEE_NAME_SHADOW PIC X.
 03 EMPLOYEE_ID_NUMBER_SHADOW PIC X.
 03 HIRE_DATE_SHADOW PIC X.
 03 CURRENT_JOB_TITLE_SHADOW PIC X.

After the request is completed:

119

Chapter 9. Declaring, Displaying, and Tracking Data

1. The first character in the shadow record indicates whether any field in the record being returned to
the program has been modified.

2. The second shadow record character gives information about the first record field.

3. The third shadow record character gives information about the second record field.

4. And so on.

Table 9.1, "Meaning of Shadow Record Characters" explains the characters the Form Manager uses in
shadow records.

Table 9.1. Meaning of Shadow Record Characters

Shadow Character (First Character in Shadow
Record) Meaning for Entire
Record

(All Other Characters)
Meaning for a Specific Field

1 One or more fields in the record
have been modified.

The record field has changed.

X Modified status was not
requested for at least one
field,and all fields in the record
were either not tracked or not
modified.

The form data item to which this
shadow record field corresponds
is not tracked.

0 All fields in the record are
unchanged.

The record field is unchanged.

For example, suppose DECforms returns a shadow record for EXPERIENCE_RECORD in Example 9.9,
"Tracked Form Data Items" that contains the following:

First Character Second Character Third Character Fourth Character Fifth Character

1 1 X X 0

In this shadow record for EXPERIENCE_RECORD:

1. The first character (RECORD_SHADOW) indicates that one or more fields in the original
EXPERIENCE_RECORD have changed.

2. The second character indicates the first field in the original EXPERIENCE_RECORD
(EMPLOYEE_NAME) has changed.

3. The third and fourth characters indicate that the second and third fields
(EMPLOYEE_ID_NUMBER and HIRE_DATE) were not tracked.

4. The fifth character indicates that CURRENT_JOB_TITLE was not changed.

You can tell the Form Manager not to update its internal last known values for the tracked form data
items when you receive a shadow record; you do this by passing a receive shadow record whose first
character is “N”. This capability is useful when, for example,your program has to validate fields received.
You might want your program to validate only those fields that the operator has changed—not counting
the value that the application passes in this record.

The Form Manager will update a receive shadow record whose first character is “Y” or any character
other than “N”.

120

Chapter 9. Declaring, Displaying, and Tracking Data

You pass the receive shadow record in an argument to the RECEIVE and TRANSCEIVE requests. For
information on these arguments, see the VSI DECforms Programmer's Reference Manual.

9.6.3. Using Send Shadow Records
You can tell the Form Manager not to update its internal last known values for the tracked form data
items when you are sending records to the form. Unlike receive shadow records, send shadow records
must be one character long. A value of “N”tells the Form Manager not to update the last known value.
A “Y” or any character other than “N” tells the Form Manager to update the last known value of the
corresponding form data items in the record.

You pass the send shadow record in an argument to the SEND and TRANSCEIVE requests. For
information on these arguments, see the VSI DECforms Programmer's Reference Manual.

121

Chapter 9. Declaring, Displaying, and Tracking Data

122

Chapter 10. Controlling Form
Processing
This chapter discusses ways you can control form processing in DECforms software, including how to:

● Use the IF response step to perform conditional processing

● Use control text responses to cause an action to occur prior to the processing of a request's responses

● Control the order of the activation list

● Call escape routines

● Perform integer arithmetic

● Move between panels without returning to your program

● Create a wait activation item for operator input

● Write the currently displayed panel to a printable file

● Return control to the application program

For information about how to get the best performance from DECformsforms, see Chapter 12, "Getting
the Best Performance from Your Form".

10.1. Using IF Response Steps
To perform conditional processing in a request, you can use the IF response step. The IF response step,
with its THEN and ELSE clauses, causes the Form Manager to execute optional response steps based on
the result of the evaluation of a conditional expression.

Example 10.1, "Using the IF Response Step" shows the use of IF response steps in a send response in the
advanced sample form.

Example 10.1. Using the IF Response Step

Send Response UPDATE
 If (NEXT_UPDATE_MESSAGE <> "") Then
 Message
 NEXT_UPDATE_MESSAGE
 ": "
 NEXT_UPDATE_AMOUNT
 Reset
 NEXT_UPDATE_MESSAGE
 End If
 If ROOM_IN_REG = 0 Then
 Message
 "The register is full, you can only do reviews now."
 Signal
 End If
 .
 .

123

Chapter 10. Controlling Form Processing

 .
End Response

This IF response step checks whether there is a message in the NEXT_UPDATE_MESSAGE
variable. If there is a message, the Form Manager displays it in the message panel and then resets
the variable so the same message is not displayed again.

For more information about the IF response step, seethe comments to Example 11.5, "New
Definition for a Built-In Function Response". The VSI DECforms Programmer's Reference Manual
also contains descriptions of how the Form Manager processes each response step.

This IF response step checks whether there is room in the check register for more transactions. If
the register is full, the Form Manager displays the message and rings the terminal bell.

You can also display the value of a variable by including its name in the message.

10.2. Using Control Text Responses
You can use control text responses in your form to cause the Form Manager to perform certain actions
immediately before it responds to a request(but after it distributes data). For example, you could define a
send control text response that applies highlighting to a set of panel fields that are about to be activated
for input from the operator.

The Form Manager does not contain any built-in control text responses. You must define control text
responses in your IFDL source file and pass a send control message in your request call in order for the
Form Manager to process any control text responses.

You can specify up to a maximum of five control text responses to be executed prior to the request
response. Each control text response to be executed corresponds to a control text item, which is a five-
character string holding the name of the response.

The application passes control text items with the request as a five-element array. Each element in the
array is five characters in length. The application also supplies a control text count with the request
specifying the number of valid elements in the array of control text items. Do not embed blank items
when specifying control text items.

To specify a control text response:

● Set the control text string to contain one or more control text items.

● Set the count of valid control text items.

● Create a corresponding control text response for each control text item within the form.

● Pass the control text as an argument for the OpenVMS API or as an option list item for the portable
API.

As an example, suppose you want to create a single panel that can be used for several purposes.
Depending on the state of the dialogue with the operator, the program might want the operator to
perform one of the following three operations:

● Enter values for a new employee.

● Correct the current values.

● Confirm that the record for this employee is to be deleted.

124

Chapter 10. Controlling Form Processing

The only difference you want the operator to see on the panel for these three operations is a label at the
top of the panel. To avoid defining the same panel three times(for character-cell layouts) you define a
protected field on the panel that will contain a title. You set the value of the title form data item in three
LET response steps, one for each use of the panel.

To specify which LET response step to execute, send a control message to specify the control text
response that includes the correct LET response step.

Example 10.2, "Control Text Responses" shows the IFDL declarations for specifying control text
responses, which, when executed, perform the response steps to display the appropriate title on the panel.

Example 10.2. Control Text Responses

Control Text Response "NEW$$"
 Let TITLE = "Fill in data for the new employee"
End Response

Control Text Response "MODIF"
 Let TITLE = "Modify this employee's data"
End Response

Control Text Response "DELET"
 Let TITLE = "Press F13 to delete this employee"
End Response

Example 10.3, "Control Text Program Code" shows the corresponding program code for the portable C
API for specifying the control text to modify employee data.

Example 10.3. Control Text Program Code

Forms_Request_Options request_option [2];
Forms_Record_Data account_record;
Forms_Session_Id session_id;

account_record.data_length = sizeof (employee_data);
account_record.data_record = &employee_data;
account_record.shadow_record = NULL;
account_record.shadow_length = 0;

request_option[0].option = forms_c_opt_send_control;
request_option[0].send_control.text_count = 1;
request_option[0].send_control.text = "MODIF";

request_option[1].option = forms_c_opt_end;

status = forms_send(
 session_id /*session id */
 "employee_data", /*record name in form */
 &account_record, /*send record structure */
 request_option); /*send control request option */

10.3. Controlling the Activation List
The Form Manager maintains the activation list, an internal list containing items (fields, icons, and
waits) that are eligible for input. For information about activation list processing, see the VSI DECforms
Programmer's Reference Manual.

125

Chapter 10. Controlling Form Processing

In simple forms, you might not have to do anything explicitly with the activation list. If you do not
specify a RECEIVE response for a record, the Form Manager executes a default RECEIVE response,
putting panel fields corresponding to the form record fields on the activation list.

The order in which the Form Manager puts panel fields on the activation list is the visitation order (the
order in which the cursor moves to panel fields when the operator presses the key bound to the NEXT
ITEM built-in function). If you are satisfied the order, and you do not want to do any special navigation
between fields,you need not be concerned with the activation list.

However, there are reasons why you might want to control the activation list directly. For example:

● The default RECEIVE response is ACTIVATE CORRESPONDING RECEIVE ALL;this response
step directs the Form Manager to select panel fields to activate. If a panel field appears on more than
one panel, the Form Manager could activate a field other than the one you want. In such a situation,
write your own RECEIVE response with an ACTIVATE response step to select exactly what you
want activated.

● You might use icons, or other interface control mechanisms that do not relate directly to form
records. In this case, you must specify the ACTIVATE response step to get the effect you want.

10.3.1. Using the ACTIVATE Response Step
Every DECforms request starts with an empty activation list. The activation list can contain only three
kinds of items:

● Panel fields

● Icons

● Waits

Whenever the Form Manager executes an ACTIVATE response step, it puts activation items after the
current activation list item. If the activation list is empty, the current item is at the top of the list. The
items on the activation list specify those panel fields, icons, and waits that an operator can visit. The
items on the list also specify what will be validated at the end of the accept phase, when the operator
signals the end of input for the request.

When you specify an ACTIVATE FIELD, ACTIVATE ICON, or ACTIVATE BUTTON response step,
you usually add a single panel field, icon, to the activation list. If the object of the ACTIVATE response
step specifies a range of fields, or icons in a multiply occurring group, you add all the fields, and icons
in the range to the activation list. The items in the range are added to the activation list with the lowest
subscripts first. For nested arrays, elements are added in row major order.

When you specify an ACTIVATE GROUP or ACTIVATE PANEL response step, you might be adding
all those items in the group or panel that are unprotected or conditionally protected to the activation list.
Using an ACTIVATEGROUP or ACTIVATE PANEL response adds the contents of the group or panel
to activation list, not the group or panel itself.

Although you do not add groups or panels to the activation list, the panel fields, and icons that you do
add have groups and panels associated with them. The concept of group and panel therefore has meaning
when you specify navigation and refer to panels or groups.

The Form Manager always performs navigation with respect to items on the activation list. When a
response contains a POSITION response step, the POSITION response step refers to a particular item

126

Chapter 10. Controlling Form Processing

on the activation list or to an item relative to the current activation item. If you try to use the POSITION
response step to move to an item that is not on the activation list, the response step is ignored.

10.3.2. Controlling the Activation List During the Accept
Phase
A new activation list is created each time the application program makes a form request. The activation
list exists only for the life of the request. You can manipulate the activation list after it has been created
at the external response phase of request processing (during the accept phase) by using the ACTIVATE
response step to add more items to it and by using the DEACTIVATE response step to delete items from
it. You might want to control the activation list during the accept phase to achieve special navigational
effects, often involving pop-up panels.

Throughout the accept phase, there is a current activation item, the item for which the Form Manager
is currently performing processing. When you execute an ACTIVATE response step during the accept
phase, you add the new items to the activation list after the current activation item. For example, suppose
there are three panel fields on the activation list:

FIELD_A
FIELD_B
FIELD_C

Also suppose that FIELD_B is the current activation item. If you specify ACTIVATE FIELD FIELD_D,
that field is added to the activation list after FIELD_B, so the activation list contains the following items:

FIELD_A
FIELD_B
FIELD_D
FIELD_C

If you then specify POSITION TO NEXT ITEM, the cursor goes to FIELD_D instead of FIELD_C.

If you add more than one item to the activation list, those items are added after the current activation
item and after any other items that have been added since the beginning of the current response. For
example, if the current item is FIELD B and you specify ACTIVATE FIELD FIELD_D, and later in
the same response you specify ACTIVATE FIELD FIELD_E, the activation list contains the following
items:

FIELD_A
FIELD_B
FIELD_D
FIELD_E
FIELD_C

The Form Manager places an item on the activation list only once, so if you try to put an item on the
activation list that is already on the list, the Form Manager does nothing. You can use this feature
to control the placement order in the activation list. For example, you might specify the following
ACTIVATE response steps:

ACTIVATE FIELD X ON Panel_A
ACTIVATE PANEL Panel_A

In this example, the activation list contains field X first and then all the other fields of panel PANEL_A
in the order in which they are declared. This is a convenient way of changing the visitation order that you
would get by specifying just ACTIVATE PANEL PANEL_A.

127

Chapter 10. Controlling Form Processing

10.3.3. Using Conditional Protection in Navigation
If you exercise control over the activation list by means of the ACTIVATE response step, you must pay
attention to panel fields and icons that are conditionally protected (items with a PROTECTEDWHEN
clause). Such items go on the activation list, but whenever a POSITION response step is executed, their
protection determines whether the operator can move to them.

Whenever a POSITION response step specifies a target, the Form Manager evaluates the fields and
icons on the activation list. If a field or icon is a potential target, the conditional expression in the
PROTECTED WHEN clause is evaluated. If the expression is evaluated as false, the item is not
protected,and it can be considered a target of the POSITION response step. If the expression is evaluated
as true, the item is protected, and it is not considered a target of the POSITION response step.

For example, if the operator presses the NEXT ITEM function key, the Form Manager tries to move
to the next item on the activation list after the current item. If the next item on the list is protected,
the Form Manager ignores that item as if it were not on the list, and then goes to the following item,
checking to see whether that item is unprotected.

Items protected by a PROTECTED WHEN clause are particularly useful in menu processing. The
WHEN clause can specify a condition that determines when the item is not a legal choice. If the item is
not a legal choice, the operator will not be able to move the cursor to it.

The CONCEALED WHEN,OUTPUT WHEN, or HIGHLIGHT WHEN clauses are useful in
conjunction with such protected items;they can specify that the item not be displayed on the screen, so
that the operator cannot move to or see the item.

The character-cell layout of the advanced sample application shows an example of using a PROTECTED
WHEN clause in conjunction with a CONCEALED WHEN clause in the CASH_PANEL panel: the
operator can only see and move the cursor to those icons representing amounts that can be withdrawn.
The condition is a comparison of the amount in the checking account against the amount represented by
the icon.

Example 10.4, "Conditionally Protecting and Concealing an Icon" shows the IFDL source code for
one of the icons in the cash panel. This example illustrates how to protect and conceal an item when a
condition is met.

Example 10.4. Conditionally Protecting and Concealing an Icon

Icon CHOICE_CASH_50
 Function Response SELECT
 Let AMOUNT = 5000
 Let NEXT_UPDATE_AMOUNT = "$50"
 Return
 End Response

 Active Highlight
 Reverse
 Concealed
 When (CHECKING_BALANCE < 5000)
 Protected
 When (CHECKING_BALANCE < 5000)
 Literal Text
 Next Line
 Same Column
 Value " $50"

128

Chapter 10. Controlling Form Processing

 End Literal
End Icon

Chapter 13, "Demonstration and Sample Forms and Applications" contains more information on the
CASH_PANEL panel used in the advanced sample checking form.

10.3.4. Using the DEACTIVATE Response Step
When you use the DEACTIVATE response step, the Form Manager removes items from the activation
list. You should use the DEACTIVATE response step with care, to avoid deactivating an item that was
previously specified as the next activation item.

For example, if you use POSITION TO PANEL PAYROLL_PANEL as part of a function response, the
Form Manager specifies the first item on PAYROLL_PANEL that is on the activation list to be the next
activation item—the one to be processed after the current activation item has been processed. If you then
use DEACTIVATE PANEL PAYROLL_PANEL, the current activation item is now on a deactivated
panel.

In this case, the Form Manager goes to the next activation item on another panel. If there are no more
activation items, the Form Manager sets the current activation item as the next activation item. The
cursor does not move and input starts again with the same item, which might confuse the operator.

Refer to Figure 13.2, "Operator Choice Panel on a Character-Cell Device", and Example 13.1,
"IFDL Source for the Introductory Sample Operator Choice Panel—Character-Cell Layout" to see the
appearance and the complete IFDL source code for this panel.

How the ACTIVATE and DEACTIVATE Response Steps Work
Together
The advanced sample checking form shows how the ACTIVATE and DEACTIVATE response steps can
work together. The following description refers to the character-cell layout.

When the CHOOSE form record is used in a receive request, the Form Manager executes the
ACTIVATE PANEL CHOICE_PANEL response step. Panel CHOICE_PANEL has six icons, which
were placed on the activation list in theorder in which they were declared in the IFDL source file:

CHOICE_CHECK
CHOICE_DEPOSIT
CHOICE_CASH
CHOICE_TRANSFER
CHOICE_REVIEW
CHOICE_EXIT

The operator can navigate these icons by using the arrow keys and the NEXT ITEM and PREVIOUS
ITEM function keys. If the operator presses the key bound to the SELECT function for any of the first
five icons, the SELECT function response displays a pop-up panel corresponding to that icon. The
mechanism used is activating the contents of another panel and then positioning to it. For example, if
the operator presses Select while on the CHOICE_DEPOSIT icon, the SELECT function response is as
follows:

ACTIVATE PANEL deposit_panel
POSITION IMMEDIATE TO PANEL deposit_panel

The deposit panel has just two unprotected fields: AMOUNT and MEMO. After the ACTIVATE
response step has been performed, the activation list contains the following items:

129

Chapter 10. Controlling Form Processing

CHOICE_CHECK (icon in the CHOICE_PANEL panel)
CHOICE_DEPOSIT (icon in the CHOICE_PANEL panel)
AMOUNT (field in the DEPOSIT_PANEL panel)
MEMO (field in the DEPOSIT_PANEL panel)
CHOICE_CASH (icon in the CHOICE_PANEL panel)
CHOICE_TRANSFER (icon in the CHOICE_PANEL panel)
CHOICE_REVIEW (icon in the CHOICE_PANEL panel)
CHOICE_EXIT (icon in the CHOICE_PANEL panel)

The POSITION IMMEDIATE TO PANEL response step tells the Form Manager to go to the first
item on the DEPOSIT_PANEL panel without doing any validation. There is no validation on the
CHOICE_DEPOSIT icon, so the IMMEDIATE clause is unnecessary. The IMMEDIATE clause, does,
however, tell the Form Manager not to check whether there is any validation, so using this clause is
slightly more efficient than not using it.

The ACTIVATE and POSITION response steps work together to make the DEPOSIT_PANEL panel
look like a pop-up panel. Much of the normal navigation on this panel is disabled. For example, the
MEMO field contains a NEXT ITEM function response that overrides the default. The function response
displays a message telling the operator to complete the deposit operation, as follows:

FUNCTION RESPONSE NEXT ITEM
 MESSAGE "Press F10 or PF1-E to make the deposit."
END RESPONSE

Similarly, the AMOUNT field contains a PREVIOUS ITEM function response that overrides the default.
The PREVIOUS PANEL function response is also overridden. These function responses display a useful
message instead of allowing the operator to go to another panel.

The operator can leave the DEPOSIT_PANEL panel by pressing the key bound to the QUIT function
(F8 or PF1-Q in the character-cell layout). In this context, the QUIT function response should return to
the menu on the CHOICE_PANEL menu and disregard the deposit slip.

The combination of response steps in the QUIT function response at the panel level and of the EXIT
response at the panel level achieves this effect. The QUIT function response executes the POSITION
IMMEDIATE TO PREVIOUSPANEL response step, as follows:

Function Response QUIT
 Message "Quitting – no deposit has been made."
 Position Immediate to Previous Panel
End Response

The response step establishes the next activation item to be the first field, CHOICE_CHECK,on the
previous panel, CHOICE_PANEL. Returning directly to this field returns the operator to the beginning
of the list of selection icons instead of to the icon selected last. Therefore, the panel's EXIT response
overrides the QUIT function response by executing the DEACTIVATE PANEL DEPOSIT_PANEL
response step, removing the AMOUNT and MEMO fields from the activation list, and executing the
POSITION IMMEDIATE TO PREVIOUS ITEM response step, as follows:

Exit Response
 Remove MID_VP
 If IMMEDIATE Then
 Deactivate Panel DEPOSIT_PANEL

130

Chapter 10. Controlling Form Processing

 Position Immediate To Previous Item
 .
 .
 .
End Response

Because the AMOUNT and MEMO fields are no longer on the activation list, the previous item is
CHOICE_DEPOSIT, and that icon becomes the next new activation item.

In the previous example, the DEACTIVATE response step performed two tasks:

● It removed all activation items on the DEPOSIT_PANEL panel so that the POSITION IMMEDIATE
TO PREVIOUS ITEM response step returned the cursor to the activation item on the previous panel
that had activated the pop-up panel.

The POSITION response step now works, no matter how many items were on the
DEPOSIT_PANEL panel or where the cursor was located on the DEPOSIT_PANEL panel (no
matter what the current activation item was).

● It removed the items from the activation list.

If the items stayed on the activation list, a POSITION TO NEXT ITEM response step
while the operator had moved to the CHOICE_DEPOSIT icon would send the cursor to the
DEPOSIT_PANEL panel again. The operator would not expect to move to that panel.

10.4. Writing Responses That Call Escape
Routines
An escape routine is a program subroutine that is called from a form (instead of from another part of
the program) during request processing. Escape routines are used to do operations that cannot be done
within the form. For example, an escape routine can be written to perform a file operation or make
a system call. For information about writing escape routines and linking applications that use escape
routines, seethe VSI DECforms Programmer's Reference Manual. This section describes how to call
escape routines.

To transfer control to an escape routine, you write a response that contains the CALL response step. This
response step calls the escape routine. You can pass form data names to the escape routine as read or
write parameters with this response step.

You can use the GIVING clause of the response step to get the status from the escape routine when it
completes. You must declare the variable into which the status is written as either a longword integer or
an unsigned longword, according to the data type returned from the escape routine.

Because you can use the CALL response step in any response, you can cause an escape routine to be
performed when:

● A panel, panel group, icon, or panel field is entered or exited.

● A panel field is being validated.

● A request begins (request response) or ends (request exit response).

● The operator presses a function key.

131

Chapter 10. Controlling Form Processing

Example 10.5, "CALL Response Step" shows a response with the CALL response step.

Example 10.5. CALL Response Step

Entry Response
 .
 .
 .
 Call "FIELDEDIT" Using
 By Descriptor BOUND_RECORD
 By Descriptor TEXT_AREA_RECORD
 By Descriptor EXIT_DIRECTION
 .
 .
 .
End Response

The ENTRY RESPONSE declaration in Example 10.5, "CALL Response Step" calls an escape routine
named FIELDEDIT and passes the form data items BOUND_RECORD, TEXT_AREA_RECORD, and
EXIT_DIRECTION to the escape routine.

For more information about using the CALL response step, see the VSI DECforms IFDL Reference
Manual.

10.5. Performing Arithmetic Operations
You can use numeric expressions to perform integer arithmetic operations in the form, rather than in the
program. Valid arithmetic operators are:

+
-
*
/

The value of a numeric expression is determined by applying the operators to the operands you specify.
For example, the following numeric expression calculates a subtotal by adding together two amounts:

Form Data
 N Unsigned Longword
 Group TRIP
 Occurs 36
 Current N
 AMOUNT Longword Integer
 TOLL Longword Integer
 SUBTOTAL Longword Integer
 End Group
 .
 .
 .
End Data
 .
 .
 .
Exit Response
 Let TRIP(N).SUBTOTAL = TRIP(N).AMOUNT + TRIP(N).TOLL
End Response

132

Chapter 10. Controlling Form Processing

10.6. Moving Between Panels
DECforms allows you to move between panels without returning to the program, enabling you to:

● Get data from any number of panels during the processing of a single request

● Process decision-making data (the operator's choices for performing tasks)in the form, rather than in
the program

Suppose your application displays a menu that contains three choices. Depending on the operator's
choice, one of two panels is displayed, or control is returned to the program.

Example 10.6, "Menu Panel with Choice Processing"shows a panel declaration for a menu that allows the
decision-making processing to be done in the form.

Example 10.6. Menu Panel with Choice Processing

Form Data
 CHOICE_ITEM Integer(1)
End Data
 .
 .
 .
 Panel MENU
 Field CHOICE_ITEM
 Line 10
 Column 20
 Minimum Length 1
 Range 1 Through 3
 Exit Response
 If Functionname = "NEXT ITEM" Then
 If CHOICE_ITEM = 1 Then
 Activate
 Group NEW_EMPLOYEE_DATA On NEW_EMPLOYEE
 Position To Panel NEW_EMPLOYEE
 End If

 If CHOICE_ITEM = 2 Then
 Activate
 Field GET_EMPLOYEE_NAME
 On EXISTING_EMPLOYEE
 Position To Field GET_EMPLOYEE_NAME
 On EXISTING_EMPLOYEE
 End If

 If CHOICE_ITEM = 3 Then
 Return
 End If
 End If
 End Response
 End Field
 .
 .
 .

The FORM DATA declaration specifies an integer of length 1 to hold the operator's choice.

133

Chapter 10. Controlling Form Processing

The EXIT RESPONSE declaration determines what action the Form Manager takes when the
operator leaves the CHOICE_ITEM field.

FUNCTIONNAME is a built-in form data item that contains the name of the last function the
operator entered. If the operator leaves the field by entering the NEXT ITEM built-in function, the
Form Manager executes the response steps included in the EXIT response. For more information
on built-in form data items, see the VSI DECforms Programmer's Reference Manual.

If the CHOICE_ITEM form data item contains a 1, the NEW_EMPLOYEE panel is displayed. A
group of data items that is displayed on that panel is added to the activation list. The POSITION
response step moves the activation list processing to the first item on the NEW_EMPLOYEE
panel. There is no DISPLAY response step because the Form Manager automatically displays a
panel when input is required for a field on the panel.

If the CHOICE_ITEM form data item contains a 2, the GET_EMPLOYEE_NAME field is
activated. The POSITION response step designates getting input to that field as the next step in
processing.

If the CHOICE_ITEM form data item contains a 3, control is returned to the program. The
operator wants to exit the application when choosing the number 3.

When the Form Manager needs input to satisfy an item, it displays the panel on which the item is
displayed, unless that panel is already displayed. If a panel is already displayed, the Form Manager uses
the display on the panel rather than repainting the screen. Therefore,each item that becomes the current
activation item is by default moved to and displayed by the Form Manager.

10.7. Waiting for Operator Input
In character-cell layouts, you can regulate program processing with the pace of the operator by using
the ACTIVATE WAIT response step to create a wait activation item. When the wait activation item
becomes the current activation item, the cursor moves to the bottom right corner of the screen and waits
for the operator to enter a function. Once the operator enters a function, the wait is terminated, the Form
Manager executes the function response defined for the function at the layout level (or the default, if no
response is explicitly defined), and processing proceeds.

To cause the cursor to move to the wait activation item, use the POSITION TO WAIT response step.
Otherwise, the wait activation item becomes the current activation item when the Form Manager
encounters it during activation list processing.

To associate a wait activation item with a particular panel, use the ACTIVATE WAIT ON panel-name
response step. In this case, the named panel is displayed during the wait. Such a panel might have
instructions to the operator. If the operator enters a function during the wait, function responses declared
in that panel are interpreted. For example, the panel might tell the operator to press the PF3 or PF4 key
to proceed in one of two ways. The function responses for PF3 and PF4 would contain response steps to
go one of the two ways. For example:

 .
 .
 .
 Function GOTO_PANEL_2
 Is %PF3
 End Function

 Function GOTO_PANEL_3
 Is %PF4 End Function

134

Chapter 10. Controlling Form Processing

 .
 .
 .
 Function Response GOTO_PANEL_2
 Activate Panel PANEL_2
 Position to Panel PANEL_2
 End Response

 Function Response GOTO_PANEL_3
 Activate Panel PANEL_3
 Position to Panel PANEL_3
 End Response
 .
 .
 .
 Enable Response
 Activate Wait on PANEL_1
 Message "Press PF3 to display Panel 2 and PF4 to display Panel 3"
 End Response

Wait activation is available only for character-cell layouts. Because of this, the use of the WAIT
ACTIVATE response step is discouraged. A preferred method that works for character-cell layouts is to
use icons to wait for operator input. Label the icon with an operator instruction such as “OK”, “Cancel”,
“Continue”, or “Exit”.

10.8. Printing Panels
To allow the operator to create a printable file of a panel that is currently displayed, use the PRINT
response step in your form. In character-cell layouts, this response step causes the Form Manager to
write a panel to a file for subsequent printing. By default, the PRINT response step writes the current
display to a file. To specify that a specific panel is printed, name the panel in the PRINT response step.

Each PRINT response step starts a new page in the printed output. You can close the current version of
the input file and open a new version by specifying PRINT IMMEDIATE. Otherwise, output from all
the PRINT response steps in your form is written to the same file (OpenVMS).

On OpenVMS systems,the Form Manager writes the output from the PRINT response step to your
current default node, device, and directory. The Form Manager gives the file the same name as the
form file, with a .txt file type for character-cell layouts. You can specify a different file specification by
defining the OpenVMS FORMS$PRINT_FILE logical name to point to the node,device, directory, file
name, and file type of your choice. The file created by the PRINT response step is an ASCII text file for
character-cell layouts.

For more information about the PRINT response step, see the VSI DECforms IFDL Reference Manual.

To test the appearance of the print panels in character-cell or PRINTER layouts, use the Extract
Appearances Utility. When you extract a panel using the Extract Appearances Utility, the panel's fields
show either their initial values or picture strings. For complete information on the Extract Appearances
Utility, see the VSI DECforms Guide to Commands and Utilities.

To create an OpenVMS file that supports high-quality,printable output that represents form panels and
panel contents,including application data, use a PRINTER layout in your form.

On OpenVMS, the operator can convert the resulting DDIF output to PostScript format for viewing or
printing.

135

Chapter 10. Controlling Form Processing

You cannot use the PRINT response step in PRINTER layouts: the purpose of the entire PRINTER
layout is to create a printable file for a form. The VSI DECforms Programmer's Reference Manual
contains additional information about creating applications that use a PRINTER layout.

10.9. Returning Control to the Application
During the accept phase, you can use the RETURN response step in any response to terminate data
input and return control to the application program, thereby ending the accept phase. If you specify the
IMMEDIATE clause, control is returned to the application program as soon as the current activation
item has been processed. If you do not specify the IMMEDIATE clause, the Form Manager performs
validation on all currently activated items on the activation list.

If validation is successful, the accept phase ends, and control returns to the application program. If
validation fails, the Form Manager positions the operator to the item that caused the failure.

136

Chapter 11. Designing the
Operator Interface
This chapter describes the following features to help you design the operator interface:

● Viewports

● Scrolled regions

● Function keys

● Functions associated with collections of keys

● Keypad mode

● Operator signaling

● Input validation

● Messages

● Online help

● Simulation of menus on character-cell terminals

11.1. Using Viewports
You can declare a unique viewport for each panel, but there are other useful ways to use viewports.

If you have several panels that use the same section of the screen, those panels can share the same
viewport: you create one viewport, and then associate each panel with that viewport. Using one viewport
has the advantage of automatically removing the old panel when the new panel is displayed.

Sometimes, however, you might want different panels to appear in different areas of the display. In a
PRINTER layout, if you want to print more than one panel on a page, you must use a different, non-
overlapping viewport for each panel.

You can use different viewports to display the same panel at different locations on the screen at different
times. To do so, declare the different viewports and use the DISPLAY response step to put the panel in
the location you want at run time. Example 11.1, "Displaying the Same Panel at Different Locations"
shows an example in a character-cell layout.

Example 11.1. Displaying the Same Panel at Different Locations

Viewport TOP_HALF_OF_SCREEN
 Lines 1 Through 10
 Columns 1 Through 80
End Viewport

Viewport BOTTOM_HALF_OF_SCREEN
 Lines 11 Through 20
 Columns 1 Through 80
End Viewport

Internal Response DISPLAY_POPUP_PANEL

137

Chapter 11. Designing the Operator Interface

 If USE_TOP_OF_SCREEN = TRUE Then
 Display POPUP_USER_PANEL On TOP_HALF_OF_SCREEN
 Else
 Display POPUP_USER_PANEL On BOTTOM_HALF_OF_SCREEN
 End If
 Activate Panel POPUP_USER_PANEL
 Position To Panel POPUP_USER_PANEL
End Response
Panel POPUP_USER_PANEL
 Viewport TOP_HALF_OF_SCREEN

 Field F1
 .
 .
 .
 End Field
 .
 .
 .
End Panel

The TOP_HALF_OF_SCREEN viewport uses the top 10 lines of the screen.

The BOTTOM_HALF_OF_SCREEN viewport uses the bottom 10 lines of the screen (assume that
the message panel is lines 21 through 24).

The internal response causes the panel POPUP_USER_PANEL to be displayed on the top or
the bottom of the screen, depending on what else is on the screen at the moment. The variable
USE_TOP_OF_SCREEN determines which half of the screen should contain the panel. You
would include the DISPLAY_POPUP_PANEL internal response in another response in the form
where you would normally use the ACTIVATE and POSITION response steps to display the
POPUP_USER_PANEL panel. The ACTIVATE and POSITION response steps are included in the
internal response, instead of in a panel declaration, to save steps.

The panel POPUP_USER_PANEL is displayed in the top or the bottom of the screen, as
determined by the internal response.

In the absence of a DISPLAY response specifying the viewport, the Form Manager uses the default
viewport declared for the panel, TOP_HALF_OF_SCREEN.

Use processing such as that shown in Example 11.1, "Displaying the Same Panel at Different
Locations"when you want a panel to appear in apart of the screen where the user's attention is not
focused. If the operator is entering data at the bottom of the screen, you might want another panel to
appear at the top of the screen as a result of some action the operator takes. If the operator is working at
the top of the screen, you might want that same panel to appear at the bottom of the screen.

11.2. Creating Scrolled Regions
A scrolled region is a section of a form with one or more identical, vertically or horizontally contiguous
areas that can contain panel fields, icons, and literals in a group. A scrolled region enables the operator to
enter and read multiple occurrences of a group on a panel with limited space.

Note the following when creating scrolled regions:

● You indicate a scrolled region for a group with a DISPLAYS clause.

● If you have a nested group, only the outer group can scroll.

138

Chapter 11. Designing the Operator Interface

● Scrolled regions can contain any number of occurrences, from one to whatever fits on the panel.

● In character-cell layouts, scrolled regions can include double-wide and double-high lines.

● A region can scroll either vertically or horizontally.

The following sections explain how to display arrays in a scrolled region and give the operator control of
the scrolled region.

11.2.1. Displaying Scrolled Data
To create a scrolled region, use the following procedure:

1. Declare a form data group and a corresponding panel group, using the same name for each.

2. Include a VERTICAL DISPLAYS or a HORIZONTAL DISPLAYS clause in the GROUP declaration
to specify the number of group occurrences to place on the display. For a description of the
DISPLAYS clause, seethe CREATE GROUP and MODIFY GROUP command descriptions for
CCPED in the VSI DECforms Guide to Commands and Utilities,or the description of the GROUP
declaration in the VSI DECforms IFDL Reference Manual.

The Form Manager displays the amount of data in the panel group that fits in the number of occurrences
on the display. If the operator requests to see more of the data, the Form Manager scrolls the data, either
by occurrence or by page, depending on what you specify.

Figure 11.1, "Operation of a Vertical Scrolled Region" and Example 11.2, "Scrolling in a Character-Cell
Layout" show how a vertical scrolled region works on a character-cell device.

Figure 11.1. Operation of a Vertical Scrolled Region

In Figure 11.1, "Operation of a Vertical Scrolled Region", the form data group occurs four times. The
panel group displays two occurrences of the form data group at once. When the panel is first displayed,
the form data occurrence that contains Bill Smith and the form data occurrence that contains Sally Sneed
are displayed.

When the operator requests more information by pressing a function key or key sequence,the form data
occurrence that contains Jane Towers is displayed on the bottom line of the scrolled region. The form

139

Chapter 11. Designing the Operator Interface

data occurrence that contains Sally Sneed moves to the top line of the scrolled region, and the form
data occurrence that contains Bill Smith is removed from the display. This process continues until the
operator stops requesting new data or all occurrences have been displayed.

Example 11.2, "Scrolling in a Character-Cell Layout" shows how to declare the panel fields, form
data items, and a form record that allow you to display the data from the program in the panel for the
character-cell display shown in Figure 11.1, "Operation of a Vertical Scrolled Region".

Example 11.2. Scrolling in a Character-Cell Layout

Form EMPLOYEE_FORM

 Form Data
 Group NAME_AND_NUMBER Occurs 4
 EMPLOYEE_NAME Character (30)
 EMPLOYEE_PHONE Character (10)
 End Group
 CHANGE_NUMBER Character (1)
 End Data

 Form Record EMPLOYEE_PHONE_NUMBERS
 Group NAME_AND_NUMBER Occurs 4
 EMPLOYEE_NAME Character (30)
 EMPLOYEE_PHONE Character (10)
 End Group
 CHANGE_NUMBER Character (1)
 End Record

 Layout VT_LAYOUT
 Device
 Terminal
 Type %VT100
 End Device
 Size 24 Lines by 80 Columns
 .
 .
 .
 Panel SCROLL_PANEL

 Literal Text
 Line 2
 Column 31
 Value "VIEW PHONE NUMBERS"
 Display
 Font Size Double High
 End Literal

 Literal Text
 Line 7
 Column 10
 Value "Employee Name and Phone Number:"
 End Literal

 Literal Rectangle
 Line 10
 Column 10
 Line 16
 Column 65

140

Chapter 11. Designing the Operator Interface

 End Literal

 Group NAME_AND_NUMBER
 Vertical Displays 2

 Field EMPLOYEE_NAME
 Line 12
 Column 15
 End Field

 Field EMPLOYEE_PHONE
 Line 12
 Column 47
 End Field
 End Group

 Literal Text
 Line 20
 Column 10
 Value "Press KP7 to change a phone number."
 End Literal

 End Panel
 End Layout
 .
 .
 .
End Form

The NAME_AND_NUMBER form data group stores the group data for the scrolled region. This
group contains only four occurrences. This is an arbitrary limit. The form data item group could
contain hundreds of data items and scrolling would work the same.

The EMPLOYEE_PHONE_NUMBERS form record allows the form to exchange phone number
data with the program.

The NAME_AND_NUMBER panel group corresponds to the NAME_AND_NUMBER form
data group. Two occurrences of the group are displayed vertically,which means that the field
declaration specifies the position of the first item in the activation list. Another item is displayed
directly below that item.

Note

On VT1xx, VT2xx, and VT3xx terminals, hardware considerations might require DECforms to
rewrite all contents of the scrolling region on every scroll operation rather than using the more
time-saving hardware scroll operation. If your panel design allows it, you can have DECforms use
hardware scrolling: define elements in the group so that each occurrence takes up the entire width
of the terminal screen. In this case, declare literals in columns 1 and 80, each containing a single
blank.

Data in the NAME_AND_NUMBER.EMPLOYEE_NAME and
NAME_AND_NUMBER.EMPLOYEE_PHONE panel fields scrolls because the panel fields are
displayed fewer times than the data occurs.

In a character-cell layout, declare the locations of fields within the group relative to the panel.

141

Chapter 11. Designing the Operator Interface

11.2.2. Setting Up the Operator's Control
The operator controls a scrolled region by using function keys. Table 11.1, "Default Key Bindings for
Scrolling Functions" shows the DECforms default key bindings for scrolling functions. The DISPLAYS
clause in the GROUP declaration controls the number of occurrences.

Table 11.1. Default Key Bindings for Scrolling Functions

Function Name Default Key Binding

DOWN

OCCURRENCE

(PF4 Down arrow)

LEFT

OCCURRENCE

(PF4 Left arrow)

RIGHT

OCCURRENCE

(PF4 Right arrow)

UP

OCCURRENCE

(PF4 Up arrow)

Using the function keys causes the cursor to move to the occurrence in the direction indicated. If
scrolling is necessary to make the new cursor position visible, the Form Manager will scroll the scrolled
region.

You can change the keys bound to these functions by declaring the function in your IFDL source file. If
you need actions other than those given by default, you can write a function response for these functions.
For information on declaring functions and writing function responses, see Section 11.3, "Defining Form
Function Keys" and the table on built-in functions in the VSI DECforms IFDL Reference Manual.

If you specify the SCROLL BY PAGE clause in the GROUP declaration, a new page of data is output to
the display. If you omit the SCROLL BY PAGE clause, the region scrolls smoothly, one occurrence at a
time.

11.3. Defining Form Function Keys
Chapter 2, "Planning the Application" and Chapter 4, "Adding Functions, Responses, Display Actions,and
Validations to the IFDL File" introduced you to the concepts and implementation of functions and
function responses. This section and its subsections cover the same topic, adding more detail and
providing additional examples.

DECforms allows you to define non- alphanumeric keyboard keys in the form so that the operator can
press a key or key sequence to perform a certain task. The key or key sequence is called a function.

The following sections explain the types of functions,how to bind functions to keys, and how to write
responses for function keys. Function responses allow you to tailor or control what happens when a
function key or key sequence is pressed.

142

Chapter 11. Designing the Operator Interface

11.3.1. Binding Functions to Keys
When you want the operator to be able to press a key or key sequence to perform a particular task, you
first bind a key or key sequence to a function name in a function declaration. The function name can be
either of the following:

● A predefined, DECforms built-in function name

● A user-defined name

Built-in function names are bound to keys by default. When you bind one of the DECforms built-in
function names to a key in a function declaration, you replace the previous default key binding with the
binding you specify.

You can bind more than one key to a function name by naming more than one key in the FUNCTION
declaration. For example, if you want the operator to be able to invoke a function using a default key and
another key, name both the default key and the other key in a function declaration.

You can declare function definitions only at the layout level. However, you can declare or change the
form's response to a key definition at the layout, panel, group, field, or icon level by redefining function
responses (see Section 11.3.2, "Writing Function Responses").

For character-cell layouts, you can specify a sequence of keys that must be pressed to invoke the
function.

Note

If you bind a built-in function name to a different key, and that key is already bound to another built-in
function name, your redefinition of the key takes precedence.

All key sequences must be unique and start with a key that is not bound to any single-key function.

Example 11.3, "FUNCTION Declaration for a Built-In Function" shows a function declaration for the
TRANSMIT built-in function. In the example, the TRANSMIT built-in function is bound to the KP1
key, the F10 key, and Ctrl/Z on character-cell devices.

Example 11.3. FUNCTION Declaration for a Built-In Function

 .
 .
Layout VT_LAYOUT
 Device
 Terminal
 Type %VT100
 End Device
 Size 24 Lines By 80 Columns

 Function TRANSMIT
 Is %KP_1
 %F10
 %CONTROL_Z
 End Function
 .
 .
 .

143

Chapter 11. Designing the Operator Interface

 .
 .
 .

It is possible to disable the default key definition for a built-in function;see Section 11.3.3, "Disabling
Built-In Function Key Bindings".

You can also declare function names that are not built-in functions. Such declarations have no effect
unless you define a function response for the function.

Example 11.4. User-Defined FUNCTION Declaration

Layout ANOTHER_LAYOUT
 .
 .
 .
 Function CHANGE_EMPLOYEE
 Is %F11
 End Function
 .
 .
 .

The FUNCTION declaration in Example 11.4, "User-Defined FUNCTION Declaration" binds a function
named CHANGE_EMPLOYEE to the F11key. This function has no effect unless you define a function
response for CHANGE_EMPLOYEE (see Example 11.6, "Function Response for a User-Defined
Function").

11.3.2. Writing Function Responses
To control what occurs when the operator presses a function key, you define a function response. You
can write a function response for any function, including many of the DECforms built-in functions.

You can define function responses at the layout, panel, field,icon, or group level. Function responses
defined at the layout level apply throughout the layout. Function response declarations at lower levels
in the layout hierarchy override function response declarations at higher levels, so you can change the
behavior of keys at any level in the form.

For example, you can define a function response at panel level and define the same function response to
perform a different set of actions for a field in that panel. If a form element does not contain a function
response declaration, the Form Manager uses the function response defined at the next level above.

The following describes how the Form Manager determines which function to perform when an operator
presses a key at a field or icon:

1. When the key is pressed, the Form Manager performs the function response defined in the field or
icon declaration.

2. If there is no function response defined at field, icon, and the field, icon is declared in a panel group,
a function response defined at group level is performed.

3. If there is no function response defined for the group (or if the field or icon is not part of a group), a
function response defined at panel level is performed.

For character-cell layouts, if the current activation item is a wait activation item that is associated
with a panel, the function response at panel level is performed.

144

Chapter 11. Designing the Operator Interface

4. If there is no function response defined for the panel, or if the current activation item is a wait
activation item that is not associated with a panel,a function response defined at layout level is
performed.

5. If there is no function response defined at layout level, a DECforms built-in function is performed.

6. If no built-in function response exists, the function has no effect.

To control what occurs when the operator presses an undefined key for character-cell layouts only,
you can write a special function response called UNDEFINED FUNCTION. For information on the
UNDEFINED FUNCTION function response, see Section 11.4, "Using Situational Function Responses".

When you write a function response for a built-in function, you change what occurs when the operator
accesses the function. For example, the default function response for the NEXT ITEM built-in function
makes the next item on the activation list the current item. If no next item exists (because the current
item is the last on the list), the Form Manager displays a message.

However, you might want the Form Manager to wrap around to the top of the activation list after it
encounters the last item in the list. The Form Manager would then continue activation list processing
beginning at the top of the list. Example 11.5, "New Definition for a Built-In Function Response" shows
how to define such a function response. It also shows how to restore the default response for a built-in
function at a lower level in the form.

Example 11.5. New Definition for a Built-In Function Response

Layout SAMPLE
 .
 .
 .
 Function Response NEXT ITEM
 If LAST ITEM Then
 Position To FIRST ITEM
 Else
 Position To NEXT ITEM
 End If
 End Response

 Panel EMPLOYEE_PANEL
 Builtin Function Response NEXT ITEM
 .
 .
 .

This function response tests the elementary condition LAST ITEM. Elementary conditions are
predefined conditions that indicate the state of activation item processing. If the condition is true,
activation list processing proceeds with the first item on the activation list. Otherwise, activation list
processing proceeds with the next item on the activation list.

You do not have to redeclare the NEXT ITEM function for this function response to work. The
built-in functions are declared by default, and you only declare them when you want to bind them
to keys other than the default keys.

This built-in function response restores the default response for the NEXT ITEM built-in function.
The default response applies only to this panel.

When you write a function response for a function other than a built-in function, you determine what
happens when the function key bound to that function is pressed.

145

Chapter 11. Designing the Operator Interface

Example 11.6, "Function Response for a User-Defined Function" shows a function response for the
CHANGE_EMPLOYEE function declared in Example 11.4, "User-Defined FUNCTION Declaration".

Example 11.6. Function Response for a User-Defined Function

Layout L1
 .
 .
 .
 Function CHANGE_EMPLOYEE
 Is %F11
 End Function
 .
 .
 .
 Panel EMPLOYEE_PANEL
 Function Response CHANGE_EMPLOYEE
 Position To Next Panel
 End Response
 .
 .
 .

In Example 11.6, "Function Response for a User-Defined Function", the function response causes the
Form Manager to display the panel that corresponds to the next activation item on its activation list. The
Form Manager moves the cursor to the first active field in that panel. The function response is defined
inside EMPLOYEE_PANEL, so it is performed when the operator presses the F11 function key (bound
to that function in the CHANGE_EMPLOYEE FUNCTION declaration) while the cursor is in that
panel. Outside the panel, the CHANGE_EMPLOYEE function has no effect (unless other responses are
defined).

11.3.3. Disabling Built-In Function Key Bindings
You may want to use a built-in function key for your own task and not allow that key to be used for the
default DECforms function. Or you may simply want to disable one or more key bindings for a built-in
function. This section describes two ways to disable built-in function key bindings.

The first method for disabling built-in function key bindings is to explicitly declare the built-in function
at the layout level in your form.

For example, the default keys for the NEXT HELP built-in function for character-cell layouts are PF2
and Help. Example 11.7, "Disabling All Key Bindings for a Built-In Function" shows how to disable all
the NEXT HELP built-in function keys with a FUNCTION declaration.

Example 11.7. Disabling All Key Bindings for a Built-In Function

Layout VT_LAYOUT
 Function NEXT HELP
 Is %None
 End Function

Example 11.8, "Disabling a Built-In Function Key " shows how to disable just the PF2 key by declaring
only the Help key in the FUNCTION declaration.

Example 11.8. Disabling a Built-In Function Key

Layout VT_LAYOUT

146

Chapter 11. Designing the Operator Interface

 Function NEXT HELP
 Is %Help
 End Function

For a table of the DECforms built-in functions, their default key bindings, and default responses and for
syntax information on the built-in functions, see the appendix on built-in functions in the VSI DECforms
IFDL Reference Manual.

11.4. Using Situational Function Responses
DECforms provides special functions for character-cell layouts that are associated with situations or
context rather than with particular keys.

• UNDEFINED FUNCTION

A function key that does not have a built-in function response or a function response declared in
the form is called an undefined function. The Form Manager's default function response for an
undefined function is to display a message stating that the key is undefined. By using a function
response for the function name UNDEFINED FUNCTION, you can direct the Form Manager to
perform some other action. Normally, such an action would provide more direction to the operator
about what to do in a particular context.

• USER FUNCTION

If the operator presses a function key that is defined in a user-defined function, but there is no
function response for that user-defined function at the level where the operator pressed the key, the
Form Manager executes the USER FUNCTION function response if it is defined at this level. You
usually use the USER FUNCTION function response as a catch-all. For example, you might specify
several functions at a particular level,and you might want all other functions to receive the same error
message.

• BUILTIN FUNCTION

BUILTIN FUNCTION has the same purpose as USER FUNCTION, but it refers only to the
DECforms built-in functions.

• BOUNDARY CURSOR UP/DOWN/LEFT/RIGHT

The Form Manager invokes these function responses when the cursor is in an icon, a wait, or at the
up, down, left, or right boundary of a field when the operator enters a key bound to the CURSOR
UP, CURSOR DOWN,CURSOR LEFT, or CURSOR RIGHT built in function. (These are special
situations when the Form Manager does not just move the cursor.)

• BOUNDARY DELETE LEFT

The Form Manager invokes this function response when the cursor is in an icon, a wait, or at the left
boundary of a field when the operator enters a key bound to the DELETE CHARACTER built-in
function.

11.4.1. Situational Function Responses in Character-
Cell Layouts
Example 11.9, "Use of the UNDEFINED FUNCTION, USER FUNCTION, and BUILTINFUNCTION
Function Responses" shows the part of the Welcome Panel from the advanced sample (checking)
application that demonstrates one use of some of the situational responses.

147

Chapter 11. Designing the Operator Interface

Example 11.9. Use of the UNDEFINED FUNCTION, USER FUNCTION, and
BUILTINFUNCTION Function Responses

 Panel WELCOME_PANEL
 Viewport WELCOME_VP
 Display
 %Keypad_Application

 Remove
 Function Response NEXT HELP
 Enter Help
 End Response

 Function Response BUILTIN FUNCTION
 Return
 End Response

 Function Response USER FUNCTION
 Return
 End Response

 Function Response UNDEFINED FUNCTION
 Return
 End Response
 .
 .
 .
 Literal Text
 Next Line
 Same Column
 Value "To continue, press RETURN."
 End Literal
 End Panel

This panel demonstrates the use of the UNDEFINED FUNCTION, the USER FUNCTION, and the
BUILTIN FUNCTION function responses in a panel to allow any key to return to the application.

Example 11.10, "Use of the USER FUNCTION Function Response" from the Windows Form
demo shows another use of the USER FUNCTION function response. In this ICON declaration,
if the operator presses any user-defined function key or key sequence, the Form Manager calls the
POSITION_TO_BLANK internal response.

Example 11.10. Use of the USER FUNCTION Function Response

 Icon FILE_ICON
 Function Response SELECT
 Activate
 Panel FILE_PANEL
 Position To Panel FILE_PANEL
 End Response

 Function Response RIGHT_ITEM
 Position To Next Item
 End Response

 Function Response UP_ITEM
 Position To Icon ICONIZE_PUZZLE On PUZZLE_PANEL
 End Response

148

Chapter 11. Designing the Operator Interface

 Function Response FLIP_FLOP
 Include POSITION_TO_BLANK
 End Response

 Function Response USER FUNCTION
 Include POSITION_TO_BLANK
 End Response

 Active Highlight
 Reverse
 Underlined
 Literal Text
 Line 2
 Column 2
 Value " File "
 Display
 Underlined
 End Literal
 End Icon

Example 11.11, "Use of the BOUNDARY CURSOR LEFT Function Response" shows a function response
for a boundary function.

Example 11.11. Use of the BOUNDARY CURSOR LEFT Function Response

Layout VT_LAYOUT
 .
 .
 .
 Icon CHOICE_REV_REG
 .
 .
 .
 Function Response BOUNDARY CURSOR LEFT
 Position to Previous Item
 End Response
 .
 .
 .
 End Icon
 .
 .
 .

The BOUNDARY CURSOR xxx functions are activated when one of the CURSOR xxx functions is
entered and the cursor is at the boundary mentioned. In an icon, because there is no data input allowed,
the cursor is always considered to be on the boundary. In this example, when the operator enters the
CURSOR LEFT function (bound by default to the left arrow key), the function response causes the
Form Manager to move the cursor to the previous item rather than to perform the default function
response, which is to display an error message.

11.5. Modifying the Keypad Mode
In character-cell layouts, DECforms allows you to modify the mode (numeric or application)of the
terminal keypad. In numeric mode, the keypad keys send the characters inscribed on the keys. In
application mode, the keypad keys are additional function keys for operator input into a field or icon.

149

Chapter 11. Designing the Operator Interface

To control the keypad, you use the %KEYPAD_NUMERIC, %KEYPAD_APPLICATION, and
%KEYPAD_UNCHANGED implementor attributes in the IFDL language. You can apply these
attributes to panels or fields, as shown in Example 11.12, "Keypad Mode Implementor Attributes".

Example 11.12. Keypad Mode Implementor Attributes

 Panel EMPLOYEE_PERSONAL_INFO

 Display
 %Keypad_Application

 Field EMPLOYEE_NAME
 Line 3
 Column 10
 End Field

 Field EMPLOYEE_PHONE_NUMBER
 Line 5
 Same Column
 Display
 %Keypad_Numeric
 End Field

The DISPLAY clause causes keypad keys to be treated as function keys. The keypad mode is
application for all fields on the panel, unless the field overrides the mode in its own DISPLAY
clause.

The keypad mode for the EMPLOYEE_NAME field is application.

The DISPLAY clause for the EMPLOYEE_PHONE_NUMBER field specifies the
%KEYPAD_NUMERIC attribute, which specifies that keypad keys send the characters inscribed
on the keys.

11.6. Signaling the Operator
To signal the operator, use the SIGNAL response step. You determine whether the signal is audible or
visible as follows:

● The SIGNAL %BELL attribute specifies that an audible signal(ringing the terminal bell) be given.
SIGNAL %BELL is the default.

● The SIGNAL %REVERSE attribute specifies that a visible signal(reversing the screen) be given to
users on character-cell devices. The screen video attributes remain reversed (complemented) until the
operator enters the next character, and then the video attributes return to their original appearance.

A VT241 terminal takes a significant amount of time to reverse the screen. Other VT-class terminals
perform reversal almost instantly.

Usually, you signal the operator when new information is displayed or when the operator has entered
invalid data. Therefore, you might want to use the SIGNAL response step in entry responses, exit
responses, validation responses,and function responses.

Example 11.13, "Signaling an Input Error to the Operator" shows a function response that uses the
SIGNAL response step.

150

Chapter 11. Designing the Operator Interface

Example 11.13. Signaling an Input Error to the Operator

Layout SAMPLE
 .
 .
 .
 Function SELECT
 Is %KP_3
 End Function
 .
 .
 .
 Panel WRITE_CHECK

 Field CHOICE_CHECK
 .
 .
 .
 Function Response SELECT
 If CHECKING_BALANCE = 0 Then
 Signal %Bell
 Message
 "You can't write a check; you have a zero balance."
 Invalid
 Else
 Activate Panel CHECK_PANEL
 .
 .
 .
 End If
 End Response
 End Field
 .
 .
 .

This function declaration binds the user-defined SELECT function to theKP3 key.

The function response specifies that a message be displayed and the terminal bell rung if the
operator's checking account balance is zero. Otherwise, the panel that allows the operator to write a
check is activated. In other fields, the SELECT function could have a different function response.

11.7. Validating Fields
Use the VALIDATION RESPONSE declaration to check operator input fora field or icon. Example
11.14, "Validation Response Example",taken from the advanced sample application, illustrates the use of
validation for a field.

Example 11.14. Validation Response Example

 Field AMOUNT
 .
 .
 .
 Validation Response
 If OPERATOR_CHOICE = VALUE_XFER_TO_SAV

151

Chapter 11. Designing the Operator Interface

 Then
 If AMOUNT > CHECKING_BALANCE
 Then
 Message "Transfer amount must be less"-
 " than the checking account balance."
 Invalid
 Signal
 End If
 Else
 If OPERATOR_CHOICE = VALUE_XFER_TO_CHK
 Then
 If AMOUNT > SAVINGS_BALANCE
 Then
 Message "Transfer amount must be less "-
 "than the savings account balance."
 Invalid
 Signal
 End If
 End If
 End If
 End Response

The Forms Manager executes the validation response if the operator moves from the transfer panel
after choosing to transfer money and then entering an amount in this field. If the operator cancels the
selection or moves from the panel without making a selection, the field is not entered and the validation
is not performed. In this case, the Forms Manager deactivates the panel so that the validation is not
performed at the end of the accept phase.

When the operator moves from the panel, the validation compares the transfer amount against the
appropriate balance amount depending upon whether the operator has chosen to transfer from checking
to savings or from savings to checking.

If the comparison fails, the field is marked INVALID(which means the cursor stays on the field)and the
operator is signaled with a beep(see Section 11.6, "Signaling the Operator").The Form Manager then
returns to the operator input phase and waits for the operator to correct the data or cancel the operation.

11.8. Sending Messages to the Operator
You display messages to the operator by using the message panel. The message panel is a special panel
in which error messages, help messages,and output from the MESSAGE response step are displayed.
DECforms supports one message panel for each layout in a form. A message panel cannot contain fields
or literals, but you can specify display attributes for the messages that appear on it.

If you do not specify a message panel for a layout, the Form Manager creates a default message panel
and a default message viewport when it loads the form into memory. The Form Manager places the
default message panel at the bottom of the area defined in the SIZE clause for the layout. For character-
cell layouts, this is the last line of the area.

11.8.1. Sending Messages from the Form
To send messages to the operator from the form, use the MESSAGE response step. You can supply the
text for the message as one or more of the following:

● The name of a form data item

● A string literal

152

Chapter 11. Designing the Operator Interface

● A Form Manager message code

The VSI DECforms Programmer's Reference Manual describes each of these methods, including a list of
the message codes that you can use.

You can also use help messages to send information to the operator. For information about help
messages, see Section 11.9.1, "Using Help Messages".

11.8.2. Sending Messages from a Program or Escape
Routine
To send a message from your application program or from an escape routine, use a record field named
MESSAGEPANEL in a SEND record message. The value of the MESSAGEPANEL record field is
transferred to the message panel,and the message panel is automatically displayed when that record
message is sent to the form.

Example 11.15, "Sending a Message to the Form from a Program or Escape Routine" shows the IFDL
syntax for defining the MESSAGEPANEL record field in a form.

Example 11.15. Sending a Message to the Form from a Program or Escape Routine

Form Record MESSAGE_RECORD
 MESSAGEPANEL Character(512) Varying
End Record

You can specify a different size for the MESSAGEPANEL record field. However,do not declare a form
data item for it.

11.9. Providing Online Help
DECforms allows you to provide the following types of help to aid the operator's understanding of the
panels you create:

● Help messages

Help messages are associated with a field, group, icon, panel, or field default.

● Help panels

Help panels are special panels that you declare with the HELP PANEL statement. Each help panel is
associated with a field, group, icon, data-entry panel, or field default.

By default, when the operator presses Help, the help message at the lowest level of the form hierarchy is
displayed. The hierarchy determines how help is displayed as follows:

1. If a help message is specified for the current field, that message is displayed.

2. If no help message is specified for the current field, but one is specified for the group that contains
that field, the message associated with the group is displayed.

3. If no help message is associated with the group, the message associated with the current panel is
displayed.

4. If no help message is found, the help panel at the lowest level of the hierarchy is displayed.

If a help message is found and displayed, and the operator presses Help again, the help panel at the
lowest level of the hierarchy is displayed.

153

Chapter 11. Designing the Operator Interface

The following sections explain how to use help messages and help panels to provide online help for
operators.

11.9.1. Using Help Messages
The purpose of a help message is to provide specific information about what is needed as input to a
particular field. You create a help message with the USEHELP MESSAGE clause.

Example 11.16, "Declarations of Help Messages" shows a panels in a character-cell layout containing
fields that have help messages associated with them.

Example 11.16. Declarations of Help Messages

Form EMPLOYEE_FORM
 .
 .
 .
 Layout VT_LAYOUT
 .
 .
 .
 Panel EMPLOYEE_INFORMATION
 Viewport DEFAULT_VIEWPORT
 Use Help Message
 "Enter the employee's name and previous work experience"

 Literal Text
 Line 2
 Column 2
 Value "Employee Name:"
 End Literal

 Field EMPLOYEE_NAME
 Line 2
 Column 20
 End Field

 Group PREVIOUS_EMPLOYER_INFORMATION
 Vertical
 Displays 4
 Use Help Message
 "Enter information about the employee's previous jobs"

 Literal Text
 Line 5
 Column 1
 Value "Employer Name: "
 End Literal
 Field EMPLOYER_NAME
 Line 5
 Column 16
 Use Help Message
 "Enter the previous employer's name"
 End Field

 Literal Text
 Same Line

154

Chapter 11. Designing the Operator Interface

 Column 47
 Value "Street: "
 End Literal

 Field EMPLOYER_STREET
 Same Line
 Column 55
 End Field

 Literal Text
 Same Line
 Column 66
 Value "Years Emp: "
 End Literal

 Field YEARS_EMPLOYED
 Same Line
 Column 77
 No Help Message
 End Field
 End Group
 End Panel
 End Layout

When the operator presses Help while the cursor is on the EMPLOYEE_NAME field, the message
“Enter the employee's name and previous work experience” is displayed as shown in Figure 11.2,
"Help Message at Panel Level on a Character-Cell Device". This message appears because that field
does not have a specific help message. Therefore, the help message at the panel level is used.

Figure 11.2. Help Message at Panel Level on a Character-Cell Device

When the operator presses Help while the cursor is on the
PREVIOUS_EMPLOYER_INFORMATION.EMPLOYER_NAME field, the message “Enter the
previous employer's name” appears. This message is specified in the USE HELP MESSAGE clause
of that field declaration. Figure 11.3, "Help Message at Field Level on a Character-Cell Device"
shows an example.

155

Chapter 11. Designing the Operator Interface

Figure 11.3. Help Message at Field Level on a Character-Cell Device

When the operator presses Help while the cursor is on the
PREVIOUS_EMPLOYER_INFORMATION.EMPLOYER_STREET field,the message “Enter
information about the employee's previous jobs” is displayed as shown in Figure 11.4, "Help
Message at Group Level on a Character-Cell Device". The field does not have a specific help
message. The field is a member of a group, however, and the group does have a specific help
message, which is displayed.

Figure 11.4. Help Message at Group Level on a Character-Cell Device

When the operator presses Help while the cursor is on the
PREVIOUS_EMPLOYER_INFORMATION.YEARS_EMPLOYED field, no message appears, as
specified in the USE HELPMESSAGE clause of that field declaration.

You can specify only one help message for each field. Each help message can be any length—the Form
Manager wraps and scrolls messages that are too long to fit in the message panel. This might cause long
messages to scroll off the message panel before the operator has a chance to read the entire message,so
try to avoid using multiple-line messages unless you have declared your message panel to occupy a
viewport having more than a single line.

11.9.2. Providing Hints
Sometimes you want to supply messages that provide help when the operator moves the cursor to a
field. Such messages—or hints—differ from those that are displayed after data is entered, such as error
messages, or those that are displayed when the operator presses Help.

One way of providing hints is to include an entry response containing the MESSAGE HELP response
step in each field for which you want to display a hint. The entry response causes the Form Manager

156

Chapter 11. Designing the Operator Interface

to take the specified action when the operator moves the cursor to the field. The MESSAGE HELP
response step causes the Form Manager to display the help message(specified by the USE HELP
MESSAGE clause) associated with the field.

Example 11.17, "Using an Entry Response to Display Hints"shows a field declaration that contains an
entry response to display a help message when the operator moves the cursor to the field.

Example 11.17. Using an Entry Response to Display Hints

Field EMPLOYEE_NAME
 Line 3
 Column 18
 Entry Response
 Message Help
 End Response
 Display
 Reverse
 Use Help Message
 "Enter the employee's name"
End Field

When the operator moves the cursor to the EMPLOYEE_NAME field shown in Example 11.17, "Using
an Entry Response to Display Hints", the message “Enter the employee's name” is displayed in the
message panel as shown in Figure 11.5, "Hint at Field Level on a Character-Cell Device". If some other
message obscures the help message, the operator can restore it by pressing Help.

Figure 11.5. Hint at Field Level on a Character-Cell Device

To display all help messages associated with fields in the message panel, you can put the entry response
declaration in afield default application at panel level. For example:

Panel SHIPPING_PANEL
 Apply Field Default Of
 Entry Response
 Message Help
 End Response
 End Default

 Field SHIP_TO_CITY
 Use Help Message
 "Enter the city to ship to"
 .
 .
 .

157

Chapter 11. Designing the Operator Interface

 End Field

 Field SHIP_DATE
 Use Help Message
 "Enter the date the item was shipped"
 .
 .
 .
 End Field
 .
 .
 .
End Panel

After becoming familiar with a form, the operator might not want to see hints all the time. To disable
hints, you can do one of the following:

● Give the operator the choice of enabling or disabling hints;for example, define a function key to turn
hinting on or off.

The form needs to determine whether hinting is on or off.

● Include conditional processing in each entry response step.

● Declare an internal response that contains the conditional processing so as to avoid repeating the
conditional processing in each field declaration.

You can include the internal response in entry responses in the field declarations, as shown in
Example 11.18, "Using an Internal Response to Display Hints Conditionally".

Example 11.18. Using an Internal Response to Display Hints Conditionally

Layout SAMPLE
 .
 .
 .
 Internal Response CHECK_HINTING
 If (HINTING_STATUS = 1) Then
 Message Help
 End If
 End Response
 .
 .
 .
 Field EMPLOYEE_NAME
 Line 3
 Column 18
 Entry Response
 Include CHECK_HINTING
 End Response

 Display
 Underlined
 Use Help Message
 "Enter the employee's name"
 End Field
 .
 .

158

Chapter 11. Designing the Operator Interface

 .

The CHECK_HINTING internal response determines whether hinting is enabled or disabled
by checking the value of the HINTING_STATUS variable. If the value of HINTING_STATUS
is zero, help messages are not displayed when the operator moves the cursor to fields. If
HINTING_STATUS is 1, help messages are displayed.

The entry response for the field includes the internal response. If the form does not contain such
an internal response, every entry response that displays hints would have to include conditional
processing like that in the CHECK_HINTING internal response.

11.9.3. Using Help Panels
Help panels provide information beyond what is given in a help message. DECforms help works as
follows:

1. When the operator presses Help, a help message is displayed.

2. If the operator presses Help again, a help panel is displayed, and control is passed to that panel if any
fields or icons are present. This is the recommended way to pass control to the panel. It avoids the
use of wait activation, which is no longer in the FIMS standard.

The help panel can be a simple text panel, or it can prompt the operator to navigate through more
help panels.

3. By default, the operator exits help by pressing PF1-PF2 on character-cell devices.

To provide help panels, use the following procedure:

1. Create a help panel with the HELP PANEL declaration.

Include at least one field or icon (it could be blank) on the panel so that the Form Manager can
activate the panel. Ideally,you should include icons for navigating to the next or previous help and for
exiting help.

2. Associate the help panel with a field, icon, group, data-entry panel, or field default with the USE
HELP PANEL clause.

Example 11.19, "Declaring and Using Help Panels" shows a help panel declaration and the use of the
USE HELP PANEL clause.

Example 11.19. Declaring and Using Help Panels

Help Panel EMPLOYEE_INFORMATION_HELP
 .
 .
 .
End Panel

Help Panel EMPLOYEE_NAME_HELP
 .
 .
 .
End Panel

Panel EMPLOYEE_INFORMATION

159

Chapter 11. Designing the Operator Interface

 Use Help Panel
 EMPLOYEE_INFORMATION_HELP

 Field EMPLOYEE_NAME
 Line 2
 Column 2
 Use Help Panel
 EMPLOYEE_NAME_HELP
 End Field

 Group PREVIOUS_EMPLOYER_INFORMATION
 Field EMPLOYER_NAME
 Line 5
 Column 2
 Use Help Message
 "Enter the previous employer's name"
 End Field

 Field EMPLOYER_STREET
 Same Line
 Column 34
 End Field

 Field YEARS_EMPLOYED
 Same Line
 Column 66
 End Field
 End Group
End Panel

The EMPLOYEE_INFORMATION_HELP and the EMPLOYEE_NAME_HELP help panels
contain text, fields, and icons that explain how to use the EMPLOYEE_INFORMATION panel
and the EMPLOYEE_NAME field.

When the operator presses Help while the cursor is on the EMPLOYEE_NAME field, the
EMPLOYEE_NAME_HELP help panel is displayed as specified by the USE HELP PANEL
clause.

When the operator presses Help while the cursor is on the
PREVIOUS_EMPLOYER_INFORMATION.EMPLOYER_NAME field, the “Enter the
previous employer's name” message is displayed. If the operator presses Help again, the
EMPLOYEE_INFORMATION_HELP help panel is displayed.

When the operator presses Help while the cursor is on the
PREVIOUS_EMPLOYER_INFORMATION.EMPLOYER_STREET field, the
EMPLOYEE_INFORMATION_HELP help panel is displayed.

When the operator presses Help while the cursor is on the
PREVIOUS_EMPLOYER_INFORMATION.YEARS_EMPLOYED field, the same help panel is
displayed as for the PREVIOUS_EMPLOYER_INFORMATION.EMPLOYER_STREET field.

You can put help panels anywhere inside a LAYOUT statement, as long as they are outside all PANEL
declarations.

You can create special viewports for help panels. Doing so allows you to position the help panels
anywhere on the display. Also, the RETAIN clause allows you to specify that a help panel not be
removed from the display when the operator terminates help. Therefore, the help information can remain

160

Chapter 11. Designing the Operator Interface

on the screen while the operator is entering data in the field on which help was needed. For more
information on the RETAIN clause, see the description of the POSTDISPLAY declaration in the VSI
DECforms IFDL Reference Manual.

11.9.4. Creating Levels of Help Panels
To display different help panels when the operator presses Help several times in succession,
you can redefine the function responses for the NEXT HELP and TERMINATE HELP built-
in functions within each help panel. For example, if the first help panel to be displayed is the
EMPLOYEE_INFORMATION_HELP help panel, you use function responses inside that panel to
display other help panels.

Example 11.20, "Function Responses That Create Levels of Help Panels" shows function responses you
can use.

Example 11.20. Function Responses That Create Levels of Help Panels

Help Panel EMPLOYEE_INFORMATION_HELP
 Function Response Next Help
 Activate
 Panel SECOND_HELP_PANEL
 Position To Panel SECOND_HELP_PANEL
 End Response
 .
 .
 .
End Panel

Help Panel SECOND_HELP_PANEL
 Function Response Next Help
 Activate
 Panel THIRD_HELP_PANEL
 Position To Panel THIRD_HELP_PANEL
 End Response

 Function Response Previous Panel
 Deactivate
 Panel SECOND_HELP_PANEL
 Position To Previous Panel
 End Response
 .
 .
 .
End Panel

Help panel THIRD_HELP_PANEL
 .
 .
 .
End Panel

Panel USER_PANEL
 Use Help Panel
 EMPLOYEE_INFORMATION_HELP
 .
 .
 .

161

Chapter 11. Designing the Operator Interface

End Panel

If the operator presses Help while the EMPLOYEE_INFORMATION_HELP help panel is active,
the SECOND_HELP_PANEL help panel is activated. The POSITION response step causes this
help panel to be displayed.

If the operator presses Help while the SECOND_HELP_PANEL help panel is displayed, the
THIRD_HELP_PANEL help panel is activated and displayed.

If the operator presses a key or key sequence bound to the PREVIOUS PANEL function while
the SECOND_HELP_PANEL help panel is active, the SECOND_HELP_PANEL help panel is
deactivated, and the previous help panel (EMPLOYEE_INFORMATION_HELP) is displayed
again.

To leave help entirely, the operator presses the key bound to the TERMINATE HELP function. In
that case,processing of the data entry panel (USER_PANEL)resumes at the point where help was
invoked.

11.9.5. Using a Help Text File
On OpenVMS systems, you can create a text library containing help text and use a procedural escape
to scroll an array of text lines on the help panel display. For sample files that support this approach
for character-cell terminals, see the files forms$demo_show_textlib.ifdl and forms
$demo_textlib.cob in the FORMS$EXAMPLES directory. These files contain comments
explaining the procedure.

You might want to present a Motif style windowing environment on a character-cell terminal. For
information about designing and implementing screens, controls, menus, and dialog boxes, see the VSI
DECforms Style Guide for Character-Cell Devices. For another example of a form that demonstrates a
windowing environment for a character-cell layout, see the Window Simulation demo in the OpenVMS
examples directory.

11.10. Simulating Menus and Dialog Boxes in
Character-Cell Layouts
You might want to present a Motif style windowing environment on a character-cell terminal. For
information about designing and implementing screens, controls, menus, and dialog boxes, see the VSI
DECforms Style Guide for Character-Cell Devices. For another example of a form that demonstrates a
windowing environment for a character-cell layout, see the Window Simulation demo in the OpenVMS
examples directory.

162

Chapter 12. Getting the Best
Performance from Your Form
This chapter suggests ways you can make effective use of DECforms features to get the best performance
from your forms. It describes:

● General optimizations

● Ways to improve the performance of character-cell forms

12.1. General Optimizations
How you design your form can affect performance. This section helps you determine the tradeoffs
between functionality and performance.

12.1.1. Transferring Data
You can reduce the amount of data passed between the application and the form by doing the following:

● Send data to the form once, rather than sending it in each request that needs it.

Data sent to the form is stored in form data and remains there until the session finishes. Data used to
process one request is already available for subsequent requests.

● Use records that match your processing needs.

Consider the volume of information that must be exchanged in each request and transfer only the
data needed or the data that has changed.

● Use TRANSFER clauses to pass subsets of large arrays.

Transfer individual fields of a form record by using SOURCE and DESTINATION clauses on the
TRANSFER clause when declaring the form record, or by using a subscript range specification to
limit the number of elements passed. A subscript range is shown in the following example:

Form Record MY_RECORD
 MAX_ITEMS Longword Integer
 Group LARGE_ARRAY Occurs 1000
 MY_NAME Character(10)
 Using MY_NAME (1 : MAX_ITEMS)
 MY_AGE Integer(3)
 Using MY_AGE (1 : MAX_ITEMS)
 End Group
End Record

In this example, MAX_ITEMS occurrences are transferred to form data.

● Use SEND and RECEIVE requests to send or receive data as needed. Use a TRANSCEIVE request
to send and receive data in a single request, as when your program must send data and receive
immediate input on it. When you use TRANSCEIVE, consider whether you should use different
records for the send and receive parts of the request, to avoid transferring data unnecessarily.

163

Chapter 12. Getting the Best Performance from Your Form

● Avoid unnecessary data type conversions. See Section 12.1.7, "Performing Data Conversion" for
more information.

12.1.2. Using Escape Routines
The Form Manager collects data prior to a procedure call and distributes it after the call. The amount of
data that is passed as parameters affects performance. Because parameters passed by reference and by
descriptor are read and write enabled, you should transfer only the data you need,to use the minimum
processing time.

To optimize performance, you should limit array transfers, as described previously in Section 12.1.1,
"Transferring Data". Use SOURCE and DESTINATION clauses when passing form records as
parameters to simulate read-only (source) and write-only (destination) parameters, or use the parameter
passing mechanism BY VALUE in the CALL response step to gain the effect of a read-only parameter.

If you send records in an escape routine, you might want to create records especially for the escape
routine. Sometimes the data you pass to an escape routine might not be the same data you send to the
application program. Using a separate record for the escape routine ensures that only relevant data is
transferred.

12.1.3. WHEN Clause Performance
WHEN clauses control dynamic field and icon properties. In particular:

● HIGHLIGHT WHEN controls display attributes dynamically.

● CONCEALED WHEN makes fields and icons visible or invisible dynamically.

● PROTECTED WHEN makes active fields and icons inaccessible dynamically.

● OUTPUT WHEN displays fixed text in picture fields dynamically.

For example, the following HIGHLIGHT WHEN clause displays the field in reverse when
ACCOUNT_BALANCE is less than 0:

Field ACCOUNT_BALANCE
 Highlight Reverse When ACCOUNT_BALANCE < 0
End Field

Whenever a form data item referenced in a WHEN expression could change,as ACCOUNT_BALANCE
in the previous example, the Form Manager reevaluates the expression if the field is on a displayed panel.
You can control evaluation by carefully selecting the form data items used in the expression. Consider
using additional form data items,and then setting them in explicit LET response steps. Data transfer and
escape routines can modify large amounts of form data, which can trigger expression evaluation. Avoid
complex expressions; character conditional expressions are the most efficient.

CONCEALED WHEN clauses require more processing than OUTPUT WHEN clauses. To prevent
fields from being displayed, use OUTPUT " " WHEN (with a quoted space character) clauses rather than
CONCEALED WHEN clauses. For example:

Field ACCOUNT_BALANCE
 Output " " When (STUDENT(3).GRADE > "A") AND
 (FACULTY(8).NAME = SAVED_NAME)End Field

Limit use of CONCEALED WHEN to icons and to fields that need non-echoed input such as passwords.

164

Chapter 12. Getting the Best Performance from Your Form

12.1.4. Controlling the Activation List
The activation list contains all the fields and icons, eligible for data input or function key input. The
primary performance consideration for the activation list is the number of items on it.

You should avoid large activation lists. Certain navigation operations are sensitive to the length of
the list. For example, the POSITION TO NEXT PANEL response step searches forward through the
activation list for the first field not on the current panel.

Activating entire panels, rather than individual items, is more efficient when you need to add all the
items to the activation list.

During accept phase, you should add items to and delete items from the list as needed, rather than create
one large activation list. For example, you can avoid activating a panel group until the operator moves off
the field immediately before it. If the operator does not visit the group, the Form Manager does not have
to activate all the fields in the group.

If you do use the method just described, the performance cost of activating the panel group occurs at
the point the operator moves into the group. You might prefer that this cost occur when the panel is first
displayed. This trade-off depends on the size of the panel group, how likely it is that the operator will
visit the group, and where the cost is least noticeable. You can try various activation possibilities and see
which ones best suit your needs.

After accept phase, deactivate fields and panels you no longer need. Deactivating entire panels is more
efficient that deactivating individual items.

12.1.5. Preventing Unnecessary Validation
You can specify validation when the operator leaves a field (field validation), and again at the end of
accept phase (request validation) to validate all items on the activation list. Request validation is useful
for cross-field validation; data entered or changed later in the form might invalidate an earlier check. The
only way the Form Manager can guarantee that all validation is satisfied at the same time is to perform
all validation at request validation time.

Some ways to reduce the impact of request validation are to:

● Deactivate fields for which validation is specified before declaring RETURN response steps. The
Form Manager only validates fields that are on the activation list at the time a RETURN response
step is executed.

● Validate only those fields that the operator has changed. For example, suppose you have the
following validation response for a field named DATABASE_FIELD (assume that the value of
DATABASE_FIELD_LAST_VALID is originally set to the value of DATABASE_FIELD).

 Field DATABASE_FIELD
 Validation Response
 If DATABASE_FIELD_LAST_VALID <> DATABASE_FIELD Then
 Call DB_LOOKUP
 Using DATABASE_FIELD
 Giving DB_STATUS
 If DB_STATUS <> 1 Then
 Message
 "Field not in database"
 Else
 Let DATABASE_FIELD_LAST_VALID = DATABASE_FIELD

165

Chapter 12. Getting the Best Performance from Your Form

 End If
 End If
 End Response
 .
 .
 .
 End Field

The response performs validation by calling an escape routine. DATABASE_FIELD_LAST_VALID
contains the last valid value for DATABASE_FIELD. If the operator changes the value, the new
value needs validation. Otherwise,no validation is performed.

● Use the RETURN IMMEDIATE response step to avoid all validation.

12.1.6. Using Multiple Sessions
When you have multiple sessions enabled on a single input device, keep in mind how the sessions
interact on the display.

Each session controls its own viewports. Viewports are a session-wide entity: if you have a form with
three viewports enabled twice on a single display device, the Form Manager considers these three
viewports as six individual viewports for purposes of display.

Display operations in one session can affect another session on the same device, as illustrated in the
following list:

● Panel display

Panels displayed in viewports of one session can occlude panels displayed in viewports of a second
session.

● Viewport removal

When viewports are removed, they can expose previously occluded sections of viewports on the
same session or on other sessions. Occluded sections ofall viewports are refreshed immediately.

● Viewport refresh

Refreshing an individual viewport does not alter that viewport's position in the current stack of
viewports. If a completely occluded viewport is refreshed, no display changes are visible.

12.1.7. Performing Data Conversion
The Form Manager must convert all data that appears on the screen to character format to display the
data. If the data can be stored in form data in character format, and transferred to and from the program
in character format, no data conversion has to occur for your form to perform optimally.

Often, however, data needs to be used in other formats, and data conversion is necessary. Consider where
the data is used in what format, and then decide the best place for conversion.

For example, suppose you need data in your program in a binary format, such as longword integer, and
that data is displayed only in one field on one panel. You might store the data in a longword integer in
form data and let it be converted twice: once on data entry (input)and once on display (output).

However, if the data item is displayed on many panels, the Form Manager would need to convert the data
item into a character format every time it is displayed. If the record is sent instead as a longword integer

166

Chapter 12. Getting the Best Performance from Your Form

with a corresponding form data item of character format, the Form Manager would need to perform data
conversion only twice: once at the beginning of the send and once at the exit. There would be no need to
perform data conversion for input and output.

12.2. Optimizations for Character-Cell Devices
The following sections describe performance optimizations that can affect forms that run on character-
cell devices.

12.2.1. Using Terminal Hardware Scrolling
Although DECforms can scroll partial screen areas,it can take advantage of VT100-, VT200-, or
VT300-series terminal hardware scrolling, if the scrolling region spans the full width of the screen.

To use terminal hardware scrolling, you must ensure the following:

● The viewport must be full width (80 or 132 columns).

● The group must touch both column 1 and column 80 (or 132).

If the group does not touch both columns, you can add blank literals to make it touch. For example,
if group elements are displayed from columns 5 to 72, you could add the following literals:

Literal Text
 Same Line
 Column 1
 Value " "
End Literal

Literal Text
 Same Line
 Column 80
 Value " "
End Literal

● You cannot have any objects (literals, for example) declared outside the group crossing the scrolling
region.

The most common example of objects declared outside a group is a border rectangle that surrounds
the viewport. To make hardware scrolling work, you need to break the border up into pieces. The
parts above and below the scroll region are defined with normal polyline literals. The part that
crosses the scroll region is done by vertical bars added to the group in the appropriate spots. For
example, if you want a border to cross the scroll area in columns 2 and 79, you could add this to the
group:

Literal Text
 Same Line
 Column 2
 Value "x"
 Display
 Character Set Private_Rule
End Literal

Literal Text
 Same Line

167

Chapter 12. Getting the Best Performance from Your Form

 Column 79
 Value "x"
 Display
 Character Set Private_Rule
End Literal

(The “x” character is the vertical bar from the line drawing character set. For more information
about this Private Rule character set, see the VSI DECforms IFDL Reference Manual.)

Because the message panel frequently scrolls, you should make message panels the full width of the
screen (layout).

If you use VT400-series terminals, DECforms takes advantage of the device's rectangular area copy
feature. For this type of terminal, scrolling is efficient, regardless of the scrolling region's size.

12.2.2. Using Double-High and Double-Wide Attributes
If you are going to use double-high and double-wide attributes, you should specify panels that use the
entire width of the display device. Also, do not mix double-high and double-wide attributes with single-
high and single-wide attributes on the same line.

12.2.3. Optimizing Screen Clearing
For optimum screen clearing performance, specify that the viewport touch an edge of the display device.
If the viewport touches both edges of the screen, performance is improved, but it is not significantly
better than having just one viewport edge touch the display edge. Having the viewport touch both edges
as well as the top and bottom of the screen is most efficient, because the Form Manager can clear an
entire area rather than erase each line individually.

If the display device is a VT200-, VT300, VT400-, or VT500-series terminal and the viewport edges
do not touch the edge of the screen, there is no significant performance penalty during screen clearing.
However, if the device is a VT100 terminal, there is a performance penalty because of the way in which
the VT100 clears the screen.

12.2.4. Improving Panel Display
When the Form Manager displays panels, it attempts to buffer its output to minimize the number of
$QIO operations. The MAXBUF system parameter sets the maximum size of buffered I/O transfer. To
ensure the timely display of panels, you should set the value of MAXBUF to a minimum of 2048.

If you set MAXBUF to a value higher than 2048, panels might not be displayed until a buffer is filled
(although transaction processing performance will improve). For example, if you display two panels in
the same DISPLAY clause,and both panels are fairly small, the panels might not be displayed until the
Form Manager has processed both of them.

For more information about the MAXBUF system parameter, see the OpenVMS documentation on the
System Generation Utility (SYSGEN).

12.2.5. Formatting Input Pictures
Data input is controlled by the INPUT PICTURE, PICTURE STRING, and EDITING clauses. Field
input is I/O sensitive; DECforms uses the most efficient form of the $QIO Read/Verify service when you
create efficient input pictures, as follows:

168

Chapter 12. Getting the Best Performance from Your Form

● If possible, use fixed sign and currency symbols. Using floating signs and currency symbols reduces
efficiency.

● If the Delete key is bound to a function other than DELETE CHARACTER,delete character
performance is not as efficient as possible,due to underlying operating system constraints.

● Overstrike editing produces the most efficient operation when the Form Manager enters a Format 1
(character format) picture string. Overstrike is the default for left-justified fields.

● The EDITING clauses REPLACE LEADING and REPLACE TRAILING cause the Form Manager
to consume additional CPU cycles to keep the field up to date during data entry. You should avoid
replacement editing whenever possible. For example, replacement editing is usually unnecessary in
Format 1pictures.

Note

Floating sign and currency symbols imply REPLACE LEADING and REPLACE TRAILING field
editing clauses. Use fixed sign and currency symbols when possible.

● If you specify replacement editing to the left of the decimal point, try to place the R next to the
decimal point. For example, use 99R.99rather than 9R9.99.

● Avoid placing the rightmost character of a field on the right margin of the display. Doing so requires
additional cursor positioning sequences to be generated to avoid losing track of the cursor during
delete operations on some terminals.

● Right-justified input can be expensive if you also specify floating objects or replacement editing.
Right justification increases the number of characters transmitted between the program and the
terminal because a portion of the field needs to be repainted after each keystroke. In most cases, you
can avoid right justification in Format 1 pictures. However, in Format 2pictures (numeric pictures),
right justification is often the best choice for input processing.

The more complex the field picture, the more processing the Form Manager requires to keep the field up
to date. You should consider using another input format if:

● You use floating objects (sign, currency, and so on).

● Replacement editing is occurring and does not cover the entire area that is being shifted right (for
example, using 99R.99 with JUSTIFICATION DECIMAL instead of 9R9.99 is more efficient).

● Low terminal speeds are being used. Low speed is generally defined as less than 2400 baud.

● You have double-high fields. In double-high fields, right-justified input can be slow, especially over
low-speed lines.

● You are accessing data over a slow network link.

The expensive performance of complex field pictures is the result of necessary device handling. It is not
due to any deficiency in DECforms. For more information about picture strings, see the Picture String
section of the VSI DECforms IFDL Reference Manual.

169

Chapter 12. Getting the Best Performance from Your Form

170

Chapter 13. Demonstration and
Sample Forms and Applications
This chapter provides information about the demonstration forms and sample applications that come
with DECforms.

13.1. Displaying the Demonstration Forms
DECforms provides some demonstration forms. Some of these forms do not have individual
applications, so all you can do is display these and see how they respond to various operations you
perform on the forms. However, they might give you ideas for creating your own forms, or perhaps you
can adapt some of the demonstration forms for your own applications.

For information about the demonstration forms and a program to enable them on OpenVMS systems,
type or print the file forms$demo_guide.txt from the directory FORMS$EXAMPLES.

On OpenVMS systems,if you have access to a PostScript ® printer such as the LPS40, you can print the
PostScript version of the file, forms$demo_guide.ps.

13.2. The Sample Application Files
DECforms software provides introductory and advanced sample applications with corresponding forms.

Note

You can also examine the mileage reimbursement application, described in chapters 1-7 and Appendix A,
"The Mileage Reimbursement Application", in the same location as the sample applications.

The introductory application uses the DECforms OpenVMS API (application programming interface),
which supports the OpenVMS Calling Standard. The introductory application is available in FORTRAN
and C on OpenVMS systems only.

For more information about the APIs, see the VSI DECforms Programmer's Reference Manual.

The source files for the advanced application are available in several programming languages. The C and
FORTRAN source files for the advanced application support the DECforms portable API. The rest of
the languages (Ada, Basic, COBOL, DIBOL, Pascal, and PL/I) support the OpenVMS Calling Standard
and the DECforms OpenVMS API on OpenVMS systems.

Both the introductory and advanced sample applications maintain a checking account. This chapter
explains the following aspects of these sample applications:

● How the data declarations in the introductory sample form correspond to the data declarations in the
introductory sample application program

● A summary of what the Form Manager does in response to the OpenVMS API request calls made in
the introductory sample application program

● What statements in the IFDL source file create the panels that are displayed during the execution of
the introductory sample application program

171

Chapter 13. Demonstration and Sample Forms and Applications

● A description of the PRINTER layout in the introductory sample application

● A summary of the portable API request calls in the advanced sample application

● An example of what occurs in the advanced sample application during one complete operator
transaction

For detailed information about the syntax of the request calls and about the Form Manager's processing
of these calls, see the VSI DECforms Programmer's Reference Manual.

On OpenVMS systems, the files are installed in a directory pointed to by the logical name FORMS
$EXAMPLES. If you find that the directory for the sample files is empty or does not exist, ask your
system manager to install DECforms with the sample applications and demonstration forms.

To create a working version of the OpenVMS applications in your own directory, see the instructions in
the source files.

The programming examples in this chapter refer to the FORTRAN version of the introductory
application and the C version of the advanced application.

Important

For reference as you read this chapter,you should print any relevant form and program files.

See the following files for the sample applications using the OpenVMS API on OpenVMS systems:

● Introductory samples

forms$sample_form.ifdl
forms$sample_common.f
forms$sample_program_fortran.for
forms$sample_program_c.c

● Advanced samples

forms$checking_ada.ada
forms$checking_basic.bas
forms$checking_cobol.cob
forms$checking_dibol.dbl
forms$checking_pascal.pas
forms$checking_pli.pli

See the following files for the sample applications using the portable API on OpenVMS systems:

forms$checking_form.ifdl
forms$checking_fortran.for
forms$checking_c.c

13.3. Data Declarations in the Introductory
Sample Form and Application
For data to be exchanged between the form and the application program, the declarations of records in
the form and of records in the application program must be logically equivalent.

172

Chapter 13. Demonstration and Sample Forms and Applications

Figure 13.1, "Logically Equivalent Declarations of the ACCOUNT Record" shows a record declaration in
the introductory sample form and in the application program. The names of the records match, and the
record fields have identical (or equivalent) data types and identical lengths. The data declarations in the
advanced sample application are similar to those in the introductory sample.

Figure 13.1. Logically Equivalent Declarations of the ACCOUNT Record

 IFDL Syntax FORTRAN Syntax

FORM RECORD account STRUCTURE /account/
 account_number UNSIGNED LONGWORD INTEGER account_number
 mail_name CHARACTER(39) CHARACTER*39 mail_name
 street CHARACTER(30) CHARACTER*30 street
 mail_csz CHARACTER(30) CHARACTER*30 mail_csz
END RECORD END STRUCTURE

 RECORD /account/ account

Form records define a mapping between program data and form data. Form data items must be declared
in the IFDL source file for each record field that the user wants to transfer to and from the form.

Table 13.1, "Form Data Item and Form Record Field Correspondence" shows the FORM DATA
declaration in the introductory sample form and how the data items declared correspond to fields in
the form record field declarations. The same name is used to perform default data transfer between the
record fields and data items.

Table 13.1. Form Data Item and Form Record Field Correspondence

Form Data Declaration Form Record Field Declarations

FORM DATA
account_number UNSIGNED

LONGWORD
account_number UNSIGNED

LONGWORD
balance UNSIGNED

LONGWORD
balance UNSIGNED

LONGWORD
check_amount UNSIGNED

LONGWORD
check_amount UNSIGNED

LONGWORD
check_memo CHARACTER(35) check_memo CHARACTER(35)
check_number UNSIGNED WORD check_number UNSIGNED WORD
check_payto CHARACTER(35) check_payto CHARACTER(35)
deposit_amount UNSIGNED

LONGWORD
deposit_amount UNSIGNED

LONGWORD
deposit_memo CHARACTER(35) deposit_memo CHARACTER(35)
mail_csz CHARACTER(30) mail_csz CHARACTER(30)
mail_name CHARACTER(39) mail_name CHARACTER(39)
menu_option UNSIGNED BYTE

VALUE 2
menu_option WORD INTEGER

street CHARACTER(30) street CHARACTER(30)
END DATA

173

Chapter 13. Demonstration and Sample Forms and Applications

13.4. OpenVMS API Request Calls in the
Introductory Sample Application
The purpose of the introductory sample application is to maintain a personal checking account. The
account data would usually be maintained in a database file, from which the application program
would read values when it begins executing. To make the introductory sample application program less
complex, values are explicitly assigned to the account record fields in the STRUCTURE statement that
defines the account record.

The operator who uses this application can write checks on the account and make deposits into the
account. When the operator chooses to write a check, a panel resembling the checks that most banks
issue is displayed. When the operator chooses to make a deposit, a panel that prompts for the deposit
amount and a memorandum is displayed. The panel also shows the current date and the account number.

To maintain the account record and get new information about the account,the introductory sample
application program makes six request calls:

forms$enable
forms$send
forms$transceive
forms$receive
forms$receive
forms$disable

The application uses five other request calls for creating DDIF output:

forms$enable
forms$send
forms$send
forms$send
forms$disable

The following sections:

● Explain the purpose of these request calls.

● Summarize the processing the Form Manager performs in response to the requests.

● Show how the processing affects the screen display.

● Show the IFDL syntax that creates each screen display.

13.4.1. ENABLE Request
The first request is an ENABLE request, which is called as follows:

forms_status = forms$enable(forms$ar_form_table,
1 'forms$default_device',
2 session_id,
3 forms$sample_form',
4
5 ,
6 ,
7 ,

174

Chapter 13. Demonstration and Sample Forms and Applications

8 ,
9 ,
1 ,
2)
 CALL check_forms_status(forms_status)

The purpose of this request call is to create a session. This call contains four explicit parameters:

● forms$ar_form_table—a symbol that points to the address of the form object module, which
contains the addresses of escape routines linked with the application.

● forms$default_device—the logical name of the device.

● session_id—a required argument in which the Form Manager returns a session identification string.
You must pass this string in subsequent calls to indicate which device and form the Form Manager
should use.

● forms$sample_form—the internal name of the form in the IFDL source file.

As part of the ENABLE request, the Form Manager clears the display and resets all data items. Because
there is no ENABLE response, control is returned to the application upon completion of these ENABLE
actions.

By using the logical name FORMS$DEFAULT_DEVICE for the device specification, this application
can run on character-cell devices. The operator on OpenVMS define the logical name FORMS
$DEFAULT_DEVICE name to SYS$INPUT (for character cell) before running the application.

The null parameters shown at the end of the list in this example can be omitted. They are included here
to show how many parameters can be passed.

There is a check_forms_status call after each request. VSI recommends that you check request status for
any failure.

A second ENABLE request controls the print session, and is described in Section 13.5, "Support for
Printing in the Introductory Sample Application".

13.4.2. ACCOUNT Record SEND Request
The next request is a SEND request, which is called as follows:

forms_status = forms$send(session_id,
1 'account',
2 count,
3 ,,
4 ,,
5 ,
6 ,
7 descriptor1,
8)
 CALL check_forms_status(forms_status)

This request call sends the initial values that were assigned to the ACCOUNT application program
record to the ACCOUNT form record. In the request call,the string ’account ’ (the second argument)
names the form record to which data is sent. This data is stored in the form data items that correspond
to the ACCOUNT form record. The count argument contains a value of 1, which indicates that only one
record is being sent.

175

Chapter 13. Demonstration and Sample Forms and Applications

13.4.3. UPDATE Record TRANSCEIVE Request
The introductory sample form and application program distribute and collect information from the third
request. The third request is a TRANSCEIVE request, which is called as follows:

forms_status = forms$transceive(session_id,
1 'update',
2 %ref(count),
3 'operator_choice',
4 %ref(count),
5 ,,
6 ,,
7 ,
8 ,
9 descriptor1,
1 ,
2 descriptor2,
3)
 CALL check_forms_status(forms_status)

This request first performs all SEND request actions and then all RECEIVE request actions. As part of
the SEND request actions, the check number and current balance are distributed from the application
program to the form. This allows the form to display a new check number with each new check that is
displayed and the current balance of the account when the account balance is displayed. The new check
number and current balance are sent, or distributed,from fields in the UPDATE application program
record to form data items that correspond to fields in the UPDATE form record.

When data distribution has been completed, the Form Manager performs a RECEIVE request, specifying
the OPERATOR_CHOICE form record (the fourth argument). As the default RECEIVE response, the
Form Manager solicits input from the operator and returns that input to the application program. The
input returned whether the operator wants to write a check on the account, deposit money into the
account, or exit the application.

This input is sent from the OPERATOR_CHOICE record in the form to the MENU_CHOICE record
in the application program. The mapping from the form record to the program record is achieved in the
TRANSCEIVE request arguments, which specify the form record and also the name of the structure that
points to the program record information.

Because the form contains no explicit response for this request call, the Form Manager executes
the default RECEIVE response, ACTIVATECORRESPONDING RECEIVE ALL. The default
response causes the Form Manager to add an activation item to the activation list for each field in the
OPERATOR_CHOICE record.

The OPERATOR_CHOICE record contains only one field, MENU_OPTION. Therefore, the Form
Manager adds one activation item to the activation list. The Form Manager also displays the panel on
which the MENU_OPTION field is contained.

Figure 13.2, "Operator Choice Panel on a Character-Cell Device" shows the operator choice panel for the
character-cell layout.

176

Chapter 13. Demonstration and Sample Forms and Applications

Figure 13.2. Operator Choice Panel on a Character-Cell Device

Example 13.1, "IFDL Source for the Introductory Sample Operator Choice Panel—Character-Cell
Layout" shows the IFDL source statements that DECwindows operator compose the character cell
operator choice panel shown in Figure 13.2, "Operator Choice Panel on a Character-Cell Device".

Example 13.1. IFDL Source for the Introductory Sample Operator Choice Panel—
Character-Cell Layout

PANEL choice_panel

 LITERAL TEXT
 LINE 5 COLUMN 19
 VALUE "Enter Choice:"
 DISPLAY FONT SIZE DOUBLE HIGH
 END LITERAL

 FIELD menu_option
 SAME LINE NEXT COLUMN + 2
 DISPLAY FONT SIZE DOUBLE HIGH
 OUTPUT PICTURE 9
 USE HELP MESSAGE "Enter 1, 2, or 3; then press Ctrl/Z."
 RANGE 1 THROUGH 3
 MESSAGE "Please choose a value between 1 and 3."
 FUNCTION RESPONSE NEXT ITEM
 RETURN
 END RESPONSE
 END FIELD

 LITERAL TEXT
 NEXT LINE + 2 COLUMN 21
 VALUE "1 - Exit"
 DISPLAY FONT SIZE DOUBLE WIDE
 END LITERAL

 LITERAL TEXT
 NEXT LINE + 1 SAME COLUMN
 VALUE "2 - Write a Check"
 DISPLAY FONT SIZE DOUBLE WIDE
 END LITERAL

 LITERAL TEXT
 NEXT LINE + 1 SAME COLUMN
 VALUE "3 - Make a Deposit"
 DISPLAY FONT SIZE DOUBLE WIDE

177

Chapter 13. Demonstration and Sample Forms and Applications

 END LITERAL

 LITERAL TEXT
 NEXT LINE + 3 COLUMN 19
 VALUE "Balance "
 DISPLAY FONT SIZE DOUBLE WIDE
 END LITERAL
 FIELD balance
 SAME LINE NEXT COLUMN
 OUTPUT PICTURE 9,999,99W9.99
 CURRENCY SIGN IS "$"
 SCALE -2
 PROTECTED
 DISPLAY FONT SIZE DOUBLE WIDE
 END FIELD

 LITERAL TEXT
 NEXT LINE + 3 COLUMN 11
 VALUE "Enter the number of your choice and then press CTRL/Z."
 END LITERALEND PANEL

The DISPLAY FONT SIZE statements declare the font sizes that are used for the panel's fields and
literals.

The RANGE statement in the field declaration specifies the valid range of values the operator
can enter into the MENU_OPTION field. If the operator enters a value other than 1, 2, or 3 in
this field, the Form Manager displays the text specified in the MESSAGE clause of the RANGE
statement.

If the operator presses Help, the text specified in the USE HELP MESSAGE clause for the
MENU_OPTION field is displayed. Because there is no explicit declaration of a message panel in
the form, the Form Manager displays the messages in the default message panel.

The BALANCE field displays the current account balance. The CURRENCY SIGN literal is
displayed with the value of the BALANCE form data item to indicate to the operator what the
number in the BALANCE field shows (the BALANCE field shows the current account balance in
dollars).

The OUTPUTPICTURE and SCALE clauses combine to format the data in the BALANCE
form data item. The OUTPUT PICTURE clause displays a decimal number that has a floating
currency symbol, which can appear anywhere to the left of the "W" shown in the picture string
(9,999,99W9.99). The picture string also indicates that a comma is to be inserted if the number
displayed in the BALANCE field is greater than five characters.

The SCALE clause causes the value of the BALANCE form data item (which is an integer number
representing cents) to be multiplied by 1/100 before being passed through the output picture. The
output picture specifies that a decimal point be displayed as a period.

13.4.4. GET_CHECK Record RECEIVE Request
If the operator chooses to write a check (option 2), control returns to the application program. The
application program then calls the fourth request, as follows:

forms_status = forms$receive(session_id,
1 'get_check',
2 %ref(count),
3 ,,

178

Chapter 13. Demonstration and Sample Forms and Applications

4 ,,
5 ,
6 ,
7 ,
8 descriptor1,
9)
 CALL check_forms_status(forms_status)

This request solicits input. This input determines to whom the check is written, the amount of the check,
and what memorandum is stored for the check. An explicit response for this request is declared in the
form as follows:

RECEIVE RESPONSE GET_CHECK
 RESET check_payto check_amount check_memo
 ACTIVATE FIELD check_payto ON check_panel
 FIELD check_amount ON check_panel
 FIELD check_memo
ON check_panelEND RESPONSE

The RESET response step in this response causes the Form Manager to set the values of the form data
items CHECK_PAYTO, CHECK_AMOUNT, and CHECK_MEMO to their initial values. Because no
values were specified in the declarations of these form data items, the RESET response step causes these
data items to beset to spaces (for the alphanumeric data items CHECK_PAYTO and CHECK_MEMO)
or zeros (for the numeric data item CHECK_AMOUNT).

The ACTIVATE response step in the GET_CHECK request response causes the Form Manager
to add activation items to the activation list for the CHECK_PAYTO, CHECK_AMOUNT, and
CHECK_MEMO form record fields. The Form Manager adds the activation items to the activation list
in the order in which the form record field names are specified in the response step. The Form Manager
also displays the panel on which the CHECK_PAYTO, CHECK_AMOUNT, and CHECK_MEMO
fields appear.

Figure 13.3, "Check Panel on a Character-Cell Device" shows the appearance of the check panel on a
character-cell device.

Figure 13.3. Check Panel on a Character-Cell Device

Example 13.2, "IFDL Source for the Introductory Sample Check Panel—Character-Cell Layout" shows
the IFDL source code for the character cell check panel.

Example 13.2. IFDL Source for the Introductory Sample Check Panel—Character-Cell
Layout

PANEL check_panel
 LITERAL TEXT

179

Chapter 13. Demonstration and Sample Forms and Applications

 LINE 4 COLUMN 27
 VALUE "WRITE A CHECK"
 DISPLAY FONT SIZE DOUBLE HIGH
 END LITERAL

 LITERAL RECTANGLE
 LINE 5 COLUMN 2
 LINE 18 COLUMN 79
 END LITERAL

 FIELD check_number
 LINE 6 COLUMN 70
 OUTPUT PICTURE 9999R9
 PROTECTED
 END FIELD

 FIELD mail_name
 LINE 6 COLUMN 4
 PROTECTED
 END FIELD

 FIELD street
 PROTECTED
 END FIELD

 FIELD mail_csz
 PROTECTED
 END FIELD

 LITERAL TEXT
 NEXT LINE +1 COLUMN 54
 VALUE "Date:"
 END LITERAL

 FIELD current_date
 SAME LINE NEXT COLUMN + 1
 OUTPUT PICTURE FOR DATE MMMMMMMMMQ' 'DD', 'YYYY
 PROTECTED
 END FIELD

 LITERAL TEXT
 NEXT LINE +1 COLUMN 4
 VALUE "Pay to"
 END LITERAL

 FIELD check_payto
 SAME LINE NEXT COLUMN +1
 OUTPUT PICTURE X(35)
 ACTIVE HIGHLIGHT REVERSE
 USE HELP MESSAGE "Enter the person or organization to whom you"
 " wish to pay the check."
 MINIMUM LENGTH 1
 MESSAGE "You must fill in the payee."
 END FIELD

 LITERAL TEXT
 SAME LINE COLUMN 59
 VALUE "Amount"

180

Chapter 13. Demonstration and Sample Forms and Applications

 END LITERAL

 FIELD check_amount
 SAME LINE NEXT COLUMN + 1
 OUTPUT PICTURE 9,999,99R9.99
 SCALE -2
 JUSTIFICATION DECIMAL
 REPLACE LEADING "*"
 ACTIVE HIGHLIGHT REVERSE
 USE HELP MESSAGE "Enter the amount to be paid."

 RANGE 0 THROUGH balance
 MESSAGE "Check amount must be less than the balance in "
 "the account."
 REQUIRE check_amount > 0
 MESSAGE "Check amount must be greater than zero."
 END FIELD

 LITERAL TEXT
 NEXT LINE + 1 COLUMN 4
 VALUE "Memo"
 END LITERAL
 FIELD check_memo
 SAME LINE NEXT COLUMN + 1
 OUTPUT PICTURE X(35)
 ACTIVE HIGHLIGHT REVERSE
 USE HELP MESSAGE "Fill in a reminder to yourself about what the"
 " check is for. You need not fill this in."
 END FIELD

 LITERAL TEXT
 NEXT LINE + 2 COLUMN 4
 VALUE "FIRST NATIONAL BANK"
 END LITERAL

 LITERAL TEXT
 SAME LINE COLUMN 65
 VALUE "Account"
 END LITERAL

 FIELD account_number
 SAME LINE NEXT COLUMN + 1
 OUTPUT PICTURE 9(5)
 PROTECTED
 END FIELD

 LITERAL TEXT
 LINE 19 COLUMN 11
 VALUE "Enter values and then press Ctrl/Z to record check."
 END LITERAL

 LITERAL TEXT
 LINE 20 COLUMN 11
 VALUE "or press CTRL/P to create a DDIF file for printing check."
 END LITERALEND PANEL

The following fields are declared with the PROTECTED clause:

181

Chapter 13. Demonstration and Sample Forms and Applications

CHECK_NUMBER
MAIL_NAME
STREET
MAIL_CSZ
CURRENT_DATE
ACCOUNT_NUMBER

These fields contain variable data received from the application program. Because the operator
does not need to change these fields,they are protected from operator entry. Because they are fields
instead of literals, they can be changed by new data from the application program.

The three fields that can receive operator input--- CHECK_PAYTO, CHECK_AMOUNT, and
CHECK_MEMO—all have help text specified for them. The text specified in the USE HELP
MESSAGE clause is displayed in the message panel when the operator presses Help.

In the character-cell layout,The ACTIVE HIGHLIGHT REVERSE clause is specified for all three
of these fields. This clause causes the Form Manager to display the field in reverse video when the
field corresponds to the current activation item on the activation list (when the operator is allowed
to enter input into the field).

Validation MESSAGE clauses are included in the declarations of the CHECK_PAYTO and
CHECK_AMOUNT fields. If the data that the operator enters fails validation, the text in the
MESSAGE clause is displayed in the message panel.

For example, if the operator does not enter a value in the CHECK_PAYTO field, the
MINIMUMLENGTH 1 clause causes validation of the CHECK_PAYTO field to fail. When this
failure occurs, the Form Manager displays the “You must fill in the payee”message in the message
panel.

The CHECK_AMOUNT field contains an OUTPUT PICTURE clause with a picture string
that specifies replacement editing. When the Form Manager displays the value of the form data
item, the picture string causes the Form Manager to replace certain characters with the character
specified in the REPLACE LEADING clause. In this case, the REPLACELEADING clause
specifies that the Form Manager use an asterisk (*) to replace leading characters.

The position of the “R” in the picture string (9,999,99R9.99) and the value to be displayed
determine what characters are replaced with an asterisk. The picture string in this OUTPUT
PICTURE clause causes the Form Manager to replace zeros and insertion literals to the left of the
position specified by the “R” with asterisks.

In the character-cell layout,the JUSTIFICATION DECIMAL clause in the CHECK_AMOUNT
field declaration causes the operator input to be justified around the fixed decimal point specified
in the OUTPUT PICTURE clause. When the operator enters the field, the cursor is on the decimal
point, and entry of the dollar amount is made using right justification. When the operator enters a
period, the cursor moves to the cents (or fractional part of the number) and enters that part of the
amount as a left-justified number.

In a right-justified field, each new character that the operator enters forces any existing characters
to move one character position to the left. The last character in the data appears in the far right
character position, and the rest of the data characters appear to the left of that character position.

When the operator presses Ctrl/Z on the character-cell panel, the Form Manager by default
performs the TRANSMIT built-in function,which contains the RETURN response step. The
RETURN response step causes the Form Manager to return control to the program.

182

Chapter 13. Demonstration and Sample Forms and Applications

In fact, Ctrl/Z also performs the TRANSMIT built-in function on character-cell devices, and F10
performs the same function on character-cell devices. Only one method is documented to the
operator for the sake of simplicity.

13.4.5. GET_DEPOSIT Record RECEIVE Request
After calling the RECEIVE request for the GET_CHECK record, the application program reissues the
TRANSCEIVE request call, which sends a new check number and balance to the form and activates
the field in the operator choice panel. The operator can choose to write another check, make a deposit,
or exit the application. For this example, assume that the operator chooses to make a deposit into the
account.

When the operator chooses to make a deposit into the account, the application program issues the fifth
request call, as follows:

forms_status = forms$receive(session_id,
1 'get_deposit',
2 %ref(count),
3 ,,
4 ,,
5 ,
6 ,
7 ,
8 descriptor1,
9)
 CALL check_forms_status(forms_status)

This request solicits input. This input determines the amount that is deposited in the account and the
memo text that is stored with this deposit. An explicit response for this request is declared in the form, as
follows:

RECEIVE RESPONSE get_deposit
 RESET deposit_amount deposit_memo
 ACTIVATE PANEL deposit_panel
END RESPONSE

The RESET response step causes the Form Manager to set the values of the DEPOSIT_AMOUNT form
data item to zeros and of the DEPOSIT_MEMO form data item to spaces.

The ACTIVATE response step causes the Form Manager to add an activation item for all the unprotected
fields on the deposit panel—the DEPOSIT_AMOUNT and DEPOSIT_MEMO fields, in the order in
which the fields are declared in the panel. The Form Manager also displays the deposit panel, as shown
in Figure 13.4, "Deposit Panel on a Character-Cell Device".

After the operator enters valid input to the DEPOSIT_AMOUNT field and,optionally, the
DEPOSIT_MEMO field, pressing Ctrl/Z or Ctrl/D returns control to the application program.

183

Chapter 13. Demonstration and Sample Forms and Applications

Figure 13.4. Deposit Panel on a Character-Cell Device

Example 13.3, "IFDL Source for the Introductory Sample Deposit Panel—Character-Cell Layout" shows
the IFDL source code for the deposit panel for the character-cell layout.

Example 13.3. IFDL Source for the Introductory Sample Deposit Panel—Character-Cell
Layout

PANEL deposit_panel

 LITERAL RECTANGLE
 LINE 5 COLUMN 14
 LINE 13 COLUMN 67
 END LITERAL

 LITERAL TEXT
 LINE 4 COLUMN 27
 VALUE "Deposit Record"
 DISPLAY FONT SIZE DOUBLE HIGH
 END LITERAL

 LITERAL TEXT
 NEXT LINE + 1 COLUMN 16
 VALUE "Date:"
 END LITERAL

 FIELD current_date
 SAME LINE NEXT COLUMN + 1
 OUTPUT PICTURE FOR DATE MMMMMMMMMQ' 'DD', 'YYYY
 PROTECTED
 END FIELD

 LITERAL TEXT
 SAME LINE COLUMN 53
 VALUE "Account"
 END LITERAL

 FIELD account_number
 SAME LINE NEXT COLUMN + 1
 OUTPUT PICTURE 9(5)
 PROTECTED
 END FIELD

 LITERAL TEXT
 NEXT LINE + 2 COLUMN 21

184

Chapter 13. Demonstration and Sample Forms and Applications

 VALUE "Deposit"
 END LITERAL

 FIELD deposit_amount
 SAME LINE SAME COLUMN + 10
 OUTPUT PICTURE 9,999,99R9.99
 SCALE -2
 JUSTIFICATION DECIMAL
 USE HELP MESSAGE "Enter the amount of the deposit."
 REQUIRE deposit_amount > 0
 MESSAGE "You must specify a non-zero deposit amount."
 END FIELD

 LITERAL TEXT
 NEXT LINE + 2 COLUMN 21
 VALUE "Memo"
 END LITERAL

 FIELD deposit_memo
 SAME LINE SAME COLUMN + 10
 OUTPUT PICTURE X(35)
 USE HELP MESSAGE "Fill in a reminder of where you got the money."
 END FIELD

 LITERAL TEXT
 LINE 14 COLUMN 13
 VALUE "Enter values and then press Ctrl/Z to finish deposit."
 END LITERAL
END PANEL

13.4.6. DISABLE Requests
After calling the RECEIVE request for the GET_DEPOSIT record, the application program calls the
TRANSCEIVE request to update form data items and activate the choice panel again. The operator can
choose to write another check, deposit more into the account, or exit from the application program.

When the operator chooses to exit from the application, the introductory sample program issues two
DISABLE request calls,as follows:

forms_status = forms$disable(ddif_session_id)
CALL check_forms_status(forms_status)

forms_status = forms$disable(session_id)
CALL check_forms_status(forms_status)

These requests end the sessions that were created by the two ENABLE requests. In response to these
requests, the Form Manager detaches the display device and restores all device settings. Once the display
device has been detached, the Form Manager returns control to the application program. If the operator
pressed Ctrl/P, a DDIF file is created.

At this time, the application program would normally write new information received from the operator
into a database file. However, because this sample application program does not maintain a database file,
execution of the program ends directly after the processing of the DISABLE request.

185

Chapter 13. Demonstration and Sample Forms and Applications

13.5. Support for Printing in the Introductory
Sample Application
When the operator invokes the introductory sample application, the program creates two sessions. The
first session, based on the value of forms$default_device, is described in Section 13.4.1, "ENABLE
Request". The second session specifies the file name ddif_form.doc as the device to be enabled. When
the Form Manager detects a file name specified as the device, the Form Manager selects a PRINTER
layout. The following FORTRAN code shows the ENABLE request for the print session:

forms_status = forms$enable(forms$ar_form_table,
1 'ddif_form.doc',
2 ddif_session_id,
3 forms$sample_form,
4
5 ,
6 ,
7 ,
8 ,
9 ,
1 ,
2)
 CALL check_forms_status(forms_status)

The operator can create a DDIF file called ddif_form.doc by pressing Ctrl/P after entering the data for
the check on the check display.

The following sections describe the FORTRAN subroutine and the IFDL source code that support the
creation of the DDIF file.

To print the file, the operator must convert it to a printable format, and then print it on a printer by using
OpenVMS commands. For example:

$ CONVERT/DOCUMENT DDIF_FORM.DOC DDIF_FORM.PS/FORMAT=PS
$ PRINT/QUEUE=MY_POSTSCRIPT_QUEUE DDIF_FORM.PS

13.5.1. PRINT_PANEL Function and Function Response
Literal text on the check panel informs the operator to press Ctrl/P to create the printable check. The
Ctrl/P function is declared for the form as follows for the character-cell layout:

 Function PRINT_PANEL
 Is %CONTROL_P
 End Function

The following function response is declared for the form:

 Function Response PRINT_PANEL
 Return
 Call "PRINT_CHECK"
 Using
 By Descriptor CHECK_PAYTO
 By Reference CHECK_AMOUNT
 By Descriptor CHECK_MEMO
 End Response

186

Chapter 13. Demonstration and Sample Forms and Applications

The RETURN response step returns the data entered by the operator to the application. The Call
response step invokes the PRINT_CHECK subroutine,sending it the check and application-provided
data.

13.5.2. PRINT_CHECK Subroutine
The PRINT_CHECK subroutine sends the check data to the forms print session in response to the
GET_CHECK send response described in Section 13.5.3, "PRINTER Layout in the Introductory Sample
Application".

The FORTRAN version of the PRINT_CHECK subroutine includes three SEND requests and is coded
as follows. Comments in the code explain the three requests.

SUBROUTINE print_check(payto, amount, memo)

C Send the check data to a DDIF file.

INCLUDE 'forms_sample_common.f'

 CHARACTER*35 payto
 INTEGER amount
 CHARACTER*35 memo
INTEGER forms_status,
1 count/1/

STRUCTURE /descriptor/
 INTEGER*2 reclen
 BYTE type /DSC$K_DTYPE_T/
 BYTE class /DSC$K_CLASS_S/
 INTEGER*4 address
END STRUCTURE

RECORD /descriptor/ descriptor1

C Initialize the descriptor with ACCOUNT structure info

descriptor1.reclen =4 +
 1 len(account.mail_name) +
 1 len(account.street) +
 1 len(account.mail_csz)
 descriptor1.address = %loc(account)

C Send the static account information to be printed
C (i.e., the account record).

forms_status = forms$send(ddif_session_id,
1 'account',
2 count,
3 ,,
4 ,,
5 ,
6 ,
7 ,
8 descriptor1,
9)
 CALL check_forms_status(forms_status)

187

Chapter 13. Demonstration and Sample Forms and Applications

C Initialize the descriptor with the current check number
 descriptor1.reclen = 6
 descriptor1.address = %loc(update)

C Send the dynamic account information to be printed
C (i.e., check number)

forms_status = forms$send(ddif_session_id,
1 'update',
2 count,
3 ,,
4 ,,
5 ,
6 ,
7 ,
8 descriptor1,
9)
CALL check_forms_status(forms_status)

C Fill in current values for GET_CHECK structure
 get_check.check_payto = payto
 get_check.check_amount = amount
 get_check.check_memo = memo

C Initialize the descriptor with GET_CHECK structure info

 descriptor1.reclen = 4 +
 1 len(get_check.check_payto) +
 1 len(get_check.check_memo)
 descriptor1.address = %loc(get_check)

C Send the check-specific information to be printed
C (i.e., check amount, to whom, and possibly memo).

forms_status = forms$send(ddif_session_id,
1 'get_check',
2 count,
3 ,,
4 ,,
5 ,
6 ,
7 ,
8 descriptor1,
9)
 CALL check_forms_status(forms_status)
END

13.5.3. PRINTER Layout in the Introductory Sample
Application
Example 13.4, "IFDL Code for PRINTER Layout for the Introductory Sample Application" shows parts of
the PRINTER layout for the introductory sample application.

Example 13.4. IFDL Code for PRINTER Layout for the Introductory Sample
Application

 Layout SIMPLE_DDIF

188

Chapter 13. Demonstration and Sample Forms and Applications

 Device
 Pixel DDIF
 Type %PRINTER
 End Device
 Units Inches
 Size 6.000 Lines by 8.880 Columns
 Send Response GET_CHECK
 Display Check_Panel
 End Response
 Panel CHECK_PANEL
 Display Viewport
 Nodecorations
 Literal Rectangle
 Line 1.125 Column .166
 Line 4.375 Column 8.713
 End Literal
 Field CHECK_NUMBER
 Line 1.250
 Column 7.659
 DISPLAY
 NOSHADOW
 Output Picture 9999R9
 Protected
 End Field
 .
 .
 .
 Field CURRENT_DATE
 Line 2.250
 Column 6.549
 DISPLAY
 UNDERLINED
 Output Picture For Date MMMMMMMMMQ' 'DD', 'YYYY
 Protected
 End Field
 .
 .
 .
 End Panel
 End Layout

The PRINTER layout must have a device declaration of type %PRINTER.

The layout has an appropriate size for printing.

The DISPLAY response step in the SEND RESPONSE declaration causes the Form Manager
to send the data associated with the CHECK_PANEL panel's fields from the PRINT_CHECK
subroutine (described in Section 13.5.2, "PRINT_CHECK Subroutine ")to the form.

NODECORATIONS as a DISPLAY VIEWPORT clause option removes the default border line
around the edge of the panel.

Underlining is added to some fields for the printed version of the form for improved appearance.

189

Chapter 13. Demonstration and Sample Forms and Applications

13.6. Portable API Request Calls in the
Advanced Sample Application
The purpose of the advanced sample application is to maintain a personal checking account. In addition
to writing checks on the checking account and to making deposits into that account, the operator can
withdraw cash from the checking account, transfer cash between this account and a savings account, and
review account information.

To maintain the account records, the advanced application makes nine request calls, in the following
order:

forms_enabl1
forms_send
forms_send
forms_send
forms_receive
forms_transceive
forms_receive
forms_send
forms_disable

The following sections show and briefly explain the purpose of these calls. In addition to explaining two
of the request calls, the last section discusses the IFDL source code for two panels used in an operator
transaction and provides two examples of operator transactions.

13.6.1. ENABLE Request
The first request is an ENABLE request, which initializes the DECforms form and checks for errors.
This request is called as follows:

 forms_status = forms_enable (session_id,
1 device_name_string,
2 form_file_name_string,
3 form_name_string,
4 enable_request_options)

The device name is specified in the sample application, but you can omit it in the portable API. For
the portable API, the session ID is specified first. For more information about the difference in the
ENABLE request between the OpenVMS and portable APIs, see the VSI DECforms Programmer's
Reference Manual.

13.6.2. SEND Requests
The second request is a SEND request, which distributes data for the ACCOUNT record to the form
(setting the form storage variables, for example).This request is called as follows:

 forms_status = forms_send (session_id,
1 'account',
2 record_data,

1The request names in the C binding of the portable API use the format forms_request-name. In the FORTRAN binding,all request names use
the format forms_request-name_for.

190

Chapter 13. Demonstration and Sample Forms and Applications

3 0)

The third request is another SEND request, which sends the MAIL_FORMAT record. This request is
called as follows:

 forms_status = forms_send(session_id,
1 'mail_format',
2 record_data,
3 0)

The fourth request is another SEND request, which distributes data for the UPDATE record whenever
the register is changed (when the operator deposits or withdraws cash, for example). This request is
called as follows:

 forms_status = forms_send_ (session_id,
1 'update',
2 record_data,
3 0)

For information about the remaining SEND request (the eighth request),see Section 13.6.6, "RECEIVE
and SEND Requests in an Operator Transaction".

13.6.3. RECEIVE Requests
The fifth request is a RECEIVE request,which gets the CHOOSE record for the form when the operator
requests a choice. For information about this request,see Section 13.6.6, "RECEIVE and SEND Requests
in an Operator Transaction".

The other RECEIVE request is the seventh request, which collects data for the ACCOUNT record from
the form when the operator chooses to review and change account data. This request is called as follows:

 forms_status = forms_receive (session_id,
1 'account',
2 record_data,
3 request_options)

13.6.4. TRANSCEIVE Request
The sixth request is a TRANSCEIVE request, which distributes data for the REGISTER_RECORD
record to the form and collects data from the form when the operator chooses to review the check
register. This request is called as follows:

 forms_status = forms_transceive (session_id,
1 'register_record',
2 record_data,
3 'register_record',
4 record_data,
5 request_options)

The external response for this request is declared in the form as follows:

TRANSCEIVE RESPONSE register_record register_record
 ACTIVATE FIELD register(1:entry_count).reg_tax_ded ON register_panel
 POSITION TO LAST ITEM
END RESPONSE

191

Chapter 13. Demonstration and Sample Forms and Applications

When the check register is displayed, the operator can change only tax deduction information and is
given access only to the tax deduction field on the check register. The cursor appears on the last item in
the tax deduction column.

13.6.5. DISABLE Request
The ninth request is a DISABLE request, which removes viewports and ends the session created by the
ENABLE request. This request is called as follows:

forms_status = forms_disable(session_id , 0)

13.6.6. RECEIVE and SEND Requests in an Operator
Transaction
In the advanced sample application, an operator transaction begins when the application program calls
the RECEIVE request for the CHOOSE record, as follows:

 forms_status = forms_receive(session_id,
1 'choose',
2 record_data,
3 0)

An explicit response for this request is declared in the form as follows (shown here for the character-cell
layout):

RECEIVE RESPONSE choose
 ACTIVATE PANEL choice_panel
 /* Don't have to worry about check, since that's where the cursor
 will go by default, so we can start checking for deposit */
 IF operator_choice = value_deposit THEN
 POSITION TO ICON choice_deposit ON choice_panel
 END IF
 IF operator_choice = value_cash THEN
 POSITION TO ICON choice_cash ON choice_panel
 END IF
 IF operator_choice = value_xfer_to_sav OR
 operator_choice = value_xfer_to_chk THEN
 POSITION TO ICON choice_transfer ON choice_panel
 END IF
 IF operator_choice = value_rev_reg OR
 operator_choice = value_rev_account THEN
 POSITION TO ICON choice_review ON choice_panel
 END IF
END RESPONSE

This response causes the Form Manager to determine which option on CHOICE_PANEL the operator
last selected and to place the cursor on that option. If this series of IF statements was not executed, the
Form Manager would put the cursor in the first icon on the panel (Write a Check...). Having the cursor
on the item last selected is probably more natural to most operators.

Figure 13.5, "Operator Choice Panel for the Character-Cell Layout" shows the choice panel for the
character-cell layout.

192

Chapter 13. Demonstration and Sample Forms and Applications

Figure 13.5. Operator Choice Panel for the Character-Cell Layout

Example 13.5, "IFDL Source for the Advanced Sample Choice Panel—Character-Cell Layout" shows
the IFDL source code for the operator character cell choice panel in the advanced sample checking
application form.

Example 13.5. IFDL Source for the Advanced Sample Choice Panel—Character-Cell
Layout

PANEL choice_panel
 VIEWPORT top_vp
 DISPLAY %keypad_application
 FUNCTION RESPONSE quit
 POSITION IMMEDIATE TO ICON choice_exit ON choice_panel
 MESSAGE "Press F10 or Ctrl/Z to leave the application."
 END RESPONSE
 FUNCTION RESPONSE NEXT ITEM
 IF LAST ITEM THEN
 POSITION TO FIRST ITEM
 ELSE
 POSITION TO NEXT ITEM
 END IF
 END RESPONSE
 FUNCTION RESPONSE BOUNDARY CURSOR RIGHT
 IF RIGHTMOST ITEM THEN
 POSITION TO FIRST ITEM
 ELSE
 POSITION TO RIGHT ITEM
 END IF
 END RESPONSE
 FUNCTION RESPONSE DOWN ITEM
 IF RIGHTMOST ITEM THEN
 POSITION TO FIRST ITEM
 ELSE
 POSITION TO RIGHT ITEM
 END IF
 END RESPONSE
 FUNCTION RESPONSE PREVIOUS ITEM
 IF FIRST ITEM THEN
 POSITION TO LAST ITEM
 ELSE
 POSITION TO LEFT ITEM
 END IF
 END RESPONSE
 FUNCTION RESPONSE BOUNDARY CURSOR LEFT

193

Chapter 13. Demonstration and Sample Forms and Applications

 IF FIRST ITEM THEN
 POSITION TO LAST ITEM
 ELSE
 POSITION TO LEFT ITEM
 END IF
 END RESPONSE
 FUNCTION RESPONSE UP ITEM
 IF FIRST ITEM THEN
 POSITION TO LAST ITEM
 ELSE
 POSITION TO LEFT ITEM
 END IF
 END RESPONSE

 .
 .
 .
 ICON choice_cash
 FUNCTION RESPONSE select
 IF checking_balance < 1000
 THEN MESSAGE "You can't withdraw cash because your
 checking"
 " account balance is too small."
 SIGNAL
 ELSE
 ACTIVATE PANEL cash_panel
 POSITION IMMEDIATE TO PANEL cash_panel
 END IF
 END RESPONSE
 ACTIVE HIGHLIGHT
 REVERSE
 CONCEALED
 WHEN (room_in_reg = 0)
 PROTECTED
 WHEN (room_in_reg = 0)
 LITERAL TEXT
 SAME LINE COLUMN 34
 VALUE " Cash... "
 END LITERAL
 END ICON
 .
 .
 .
END PANEL

Function responses declare actions that the Form Manager is to perform when the user-defined
QUIT function (declared earlier in the form) or one of the built-in functions NEXT ITEM,
PREVIOUS ITEM, UP ITEM, or DOWN ITEM is called; for example, when the operator presses
a function key. These FUNCTION RESPONSE declarations apply only to this panel. Other
function responses for these functions can be declared elsewhere in the form.

Function responses for the built-in NEXT ITEM, PREVIOUS ITEM, UPITEM, or DOWN ITEM
function might not be declared for one of the other panels in the form. If this is the case, the Form
Manager performs the default function responses for these functions if the functions are called
when that panel is activated.

194

Chapter 13. Demonstration and Sample Forms and Applications

In the character-cell layout,the special function BOUNDARY CURSOR allows you to control
where the cursor goes next when it is at the beginning or end of an icon or panel field. Because
data entry is not allowed for an icon, the cursor is positioned at the icon's boundary. As a result,
the left and right arrow keys in this example become (by default) the BOUNDARY CURSOR
functions. The function responses allow you to use the arrow keys for right and left navigation
through the menu.

The icon for the character-cell layout for CHOICE_CASH is protected and displayed as a blank
when the operator can no longer perform transactions of the account (if the operator chooses to
withdraw cash). This occurs when the check register that the application program maintains is full.

When the register is full, the application program sends the value zero in the ROOM_IN_REG
variable to the form. This occurs when the application program calls the SEND request explained
after Example 13.6, "IFDL Source for the Advanced Sample Cash Panel—Character-Cell Layout".

In the character-cell layout,the ACTIVE HIGHLIGHT REVERSE clause causes the icon to be
displayed in reverse video when the icon is the current activation item. The icon becomes the
current activation item because the operator called the NEXT ITEM, PREVIOUSITEM, UP
ITEM, DOWN ITEM, CURSOR LEFT, or CURSOR RIGHT function to move the cursor to the
field. The function responses for these functions cause the Form Manager to begin processing the
activation item associated with the icon on which the operator positions the cursor.

If the operator positions the cursor on the CHOICE_CASH icon, the function response is
performed after pressing the key bound to the SELECT function.

The key bound to the SELECT function on the character-cell layout

The function response causes the Form Manager to add activation items to the activation list for the
unprotected icons in the cash panel:

CHOICE_CASH_10
CHOICE_CASH_20
CHOICE_CASH_50
CHOICE_CASH_100

The POSITION response step in the SELECT function response causes the activation item
associated with the CHOICE_CASH_10 icon to become the current activation item. The Form
Manager also displays the cash panel,as shown in Figure 13.6, "Cash Panel for the Character-Cell
Layout".

Figure 13.6. Cash Panel for the Character-Cell Layout

Example 13.6, "IFDL Source for the Advanced Sample Cash Panel—Character-Cell Layout" shows the
IFDL source code for the character-cell cash panel in the advanced sample form.

195

Chapter 13. Demonstration and Sample Forms and Applications

Example 13.6. IFDL Source for the Advanced Sample Cash Panel—Character-Cell
Layout

PANEL cash_panel
 VIEWPORT cash_vp
 DISPLAY %keypad_application
 EXIT RESPONSE
 /* Put these 3 assignments here to avoid doing them */
 /* for each choice. */
 LET operator_choice = value_cash
 LET memo = "*Cash withdrawal*"
 LET next_update_message =
 "Cash withdrawal made against your checking account"
 DEACTIVATE PANEL cash_panel
 REMOVE cash_vp
 POSITION TO PREVIOUS ITEM
 END RESPONSE

 FUNCTION RESPONSE quit
 MESSAGE "Quitting – no cash withdrawn."
 DEACTIVATE PANEL cash_panel
 POSITION IMMEDIATE to PREVIOUS ITEM /*Causes exit & deactivate*/
 END RESPONSE

 FUNCTION RESPONSE NEXT ITEM
 IF NOT PANEL LAST ITEM THEN
 POSITION TO NEXT ITEM
 END IF
 END RESPONSE

 FUNCTION RESPONSE BOUNDARY CURSOR RIGHT
 POSITION TO DOWN ITEM
 END RESPONSE

 FUNCTION RESPONSE BOUNDARY CURSOR LEFT
 POSITION TO UP ITEM
 END RESPONSE

 FUNCTION RESPONSE UP ITEM
 IF UPPERMOST ITEM THEN
 POSITION TO PREVIOUS ITEM /* which is on previous panel */
 ELSE
 POSITION TO UP ITEM
 END IF
 END RESPONSE

 USE HELP PANEL CASH_PANEL_HELP
 LITERAL RECTANGLE
 LINE 1 COLUMN 1
 LINE 7 COLUMN 8
 END LITERAL

 LITERAL TEXT
 LINE 1 COLUMN 2
 VALUE " Cash "
 DISPLAY REVERSE
 END LITERAL

196

Chapter 13. Demonstration and Sample Forms and Applications

 ICON choice_cash_10
 ACTIVE HIGHLIGHT REVERSE
 CONCEALED WHEN checking_balance < 1000
 PROTECTED WHEN checking_balance < 1000
 FUNCTION RESPONSE select
 LET amount = 1000
 LET next_update_amount = "$10"
 RETURN
 END RESPONSE

 LITERAL TEXT
 LINE 3 COLUMN 2
 VALUE " $10"
 END LITERAL
 END ICON

 ICON choice_cash_20
 ACTIVE HIGHLIGHT REVERSE
 CONCEALED WHEN checking_balance < 2000
 PROTECTED WHEN checking_balance < 2000
 FUNCTION RESPONSE select
 LET amount = 2000
 LET next_update_amount = "$20"
 RETURN
 END RESPONSE

 LITERAL TEXT
 NEXT LINE SAME COLUMN
 VALUE " $20"
 END LITERAL
 END ICON

 ICON choice_cash_50
 ACTIVE HIGHLIGHT REVERSE
 CONCEALED WHEN checking_balance < 5000
 PROTECTED WHEN checking_balance < 5000
 FUNCTION RESPONSE select
 LET amount = 5000
 LET next_update_amount = "$50"
 RETURN
 END RESPONSE

 LITERAL TEXT
 NEXT LINE SAME COLUMN
 VALUE " $50"
 END LITERAL
 END ICON

 ICON choice_cash_100
 ACTIVE HIGHLIGHT REVERSE
 CONCEALED WHEN checking_balance < 10000
 PROTECTED WHEN checking_balance < 10000
 FUNCTION RESPONSE select
 LET amount = 10000
 LET next_update_amount = "$100"
 RETURN
 END RESPONSE

197

Chapter 13. Demonstration and Sample Forms and Applications

 LITERAL TEXT
 NEXT LINE SAME COLUMN
 VALUE " $100"
 END LITERAL
 END ICON
END PANEL

The VIEWPORT statement causes the cash panel to be displayed within the CASH_VP viewport.
In the character-cell layout,this viewport is declared as follows:

 Viewport CASH_VP
 Lines 3 Through 9
 Columns 33 Through 40
 End Viewport

This viewport declaration specifies that the top left-hand corner of the viewport appear 3 lines
from the top edge of the character-cell layout for this form and 33 columns from the left edge of
that layout.

The exit response for this panel specifies that the Form Manager assign values to the
OPERATOR_CHOICE, MEMO, and NEXT_UPDATE_MESSAGE form data items. The
OPERATOR_CHOICE form data item is assigned the value stored in the VALUE_CASH form
data item. This form data item is initialized to 4 in the FORM DATA statement, indicating that a
cash withdrawal has been made.

The MEMO form data item is assigned a string value that also indicates a cash withdrawal. The
value assigned to the NEXT_UPDATE_MESSAGE form data item is displayed in the message
panel the next time the account balance is updated. In this case, the message indicates to the
operator that cash has been withdrawn from the checking account.

The exit response also causes the cash panel to be deactivated and the CASH_VP viewport to be
removed; the panel disappears from the display. The POSITION TO PREVIOUS ITEM response
step returns the operator to the CHOICE_CASH icon in the choice panel.

The icon for CHOICE_CASH_10is protected and output as a blank when the account form data
item contains a value that is less than 1000 (if there is less than$10—or 1000 pennies—in the
checking account). This ensures that the operator cannot withdraw more money than the account
contains.

The operator chooses to withdraw $10 from the account by pressing the key bound to the SELECT
or TRIGGER OBJECT function.

For the character-cell layout, the SELECT function is bound to the following keys:

Select
F10
KPperiod
PF1-E
PF1-e
Ctrl/D
Ctrl/Z

The function response defined for the SELECT or TRIGGER OBJECT function assigns a value
to the AMOUNT form data item, indicating that the operator chose to withdraw $10 from the
checking account.

198

Chapter 13. Demonstration and Sample Forms and Applications

This function response also contains a RETURN response step, which causes the Form Manager to
perform the exit responses for the icon and the panel.

To finish processing the RETURN response step specified in the SELECT function response, the
Form Manager passes values to the application program. The Form Manager returns the values in
the OPERATOR_CHOICE, AMOUNT, MEMO, and CURRENT_DATE form data items, which are
specified as fields in the CHOOSE form record.

In the RECEIVE request shown at the beginning of this section, the application program specified
the CHOOSE form record. The Form Manager moves the values for this record into the CHOICE
application program record.

After the application program receives the values from the form, it performs some calculations (such
as the new balance) and some housekeeping that is internal to the application program. Then the
application program calls the eighth request, a SEND request in the UPDATE_FORM subroutine, and
passes new values to the form:

 forms_status = forms_send (session_id,
1 'account',
2 record_data,
3 0)

This SEND request specifies the ACCOUNT form record in the second argument. The ACCOUNT form
record descriptions correspond with the form data items for the following values:

the checking account balance
the savings account balance
the current check number
the value of a logical variable, ROOM_IN_REG

The SEND request updates the values of these form data items.

In this case, the checking account balance sent to the form is $10 less than the previous checking
account balance because the operator withdrew$10 from the checking account. The savings account
balance and the check number are unchanged. The operator did not make any transactions on the savings
account balance before this request was called.

The operator did not write a check, so the check number does not need to be changed. If the check
register that the application program maintains contains room for more entries, the value of the
ROOM_IN_REG variable would also be unchanged. Otherwise, the application program would store the
value zero in this variable, and the Form Manager would pass this value to the form.

Note

The check register that the application program maintains is limited to storing memorandums of 30
transactions made on the account. This means that the operator can make only 30 transactions on the
account. Normally, an application would not restrict the number of transactions made on the account in
this way.

After the processing of the SEND request for the UPDATE record, the application program calls the
RECEIVE request for the OPERATOR_CHOICE record again. This RECEIVE request is shown at the
beginning of this section. During the processing of the RECEIVE request, the operator can choose to
make another account transaction.

199

Chapter 13. Demonstration and Sample Forms and Applications

200

Appendix A. The Mileage
Reimbursement Application
This appendix contains the sources for the Mileage Reimbursement Form application used as an example
throughout this guide. Although a fairly simple application, it demonstrates many DECforms features
(though by no means the majority).

The Independent Forms Description Language (IFDL) source for the form, as well as the application
sources in C and FORTRAN formats are included. For a summary of the DECforms architecture and
process for creating an application, see Chapter 1, "Introduction".

These files are also available on line in the DECforms examples directory, FORMS$EXAMPLES.
The file names in this directory on OpenVMS systems include a prefix. For example, the file
mrf_form.ifdl is called forms$demo_mrf_form.ifdl on OpenVMS systems.

Note

If you created your own mileage reimbursement application by following the directions in this book,
your source files should have the same content as those in this appendix. However, there will be minor
differences such as the order in which literal text items appear in the panel declarations. You may have
created items in a different order.

In addition, OpenVMS file names listed in the instructions at the beginning of the OpenVMS program
files include the prefix forms$demo_ so that they can be used in the DECforms examples directory.

A.1. IFDL Source: mrf_form.ifdl
This section shows the IFDL source code for the mileage reimbursement form.

Form MRF_FORM
Form Data
 EMPLOYEE_NAME Character(32)
 BADGE_NUMBER Integer(6)
 COST_CENTER Character(3)
 ADDRESS Character(120)
 REASON Character(64)
 N Unsigned Longword
 BLANK_DATE Datetime(8)
 Group TRIP
 Occurs 36
 Current N
 TRIP_DATE Datetime(8)
 TRIP_FROM Character(3)
 TRIP_TO Character(3)
 MILES Longword Integer
 AMOUNT Longword Integer
 TOLL Longword Integer
 SUBTOTAL Longword Integer
 End Group
 TOTAL_MILES Longword Integer
 TOTAL_AMOUNT Longword Integer
 TOTAL_TOLLS Longword Integer
 FORM_TOTAL Longword Integer

201

Appendix A. The Mileage Reimbursement Application

 End Data

 Form Record HEADER_INFO_RECORD
 EMPLOYEE_NAME Character(32)
 BADGE_NUMBER Character(6)
 COST_CENTER Character(3)
 ADDRESS Character(120)
 REASON Character(64)
 End Record

 Form Record TRIP_ROW_RECORD
 Group TRIP
 TRIP_DATE Datetime(8)
 Using TRIP(N).TRIP_DATE
 TRIP_FROM Character(3)
 Using TRIP(N).TRIP_FROM
 TRIP_TO Character(3)
 Using TRIP(N).TRIP_TO
 MILES Longword Integer
 Using TRIP(N).MILES
 AMOUNT Longword Integer
 Using TRIP(N).AMOUNT
 TOLL Longword Integer
 Using TRIP(N).TOLL
 SUBTOTAL Longword Integer
 Using TRIP(N).SUBTOTAL
 End Group
 End Record

 Form Record TRIPS_RECORD
 Group TRIP
 Occurs 36
 TRIP_DATE Datetime(8)
 TRIP_FROM Character(3)
 TRIP_TO Character(3)
 MILES Longword Integer
 AMOUNT Longword Integer
 TOLL Longword Integer
 SUBTOTAL Longword Integer
 End Group
 End Record

 Form Record TOTALS_RECORD
 TOTAL_MILES Longword Integer
 TOTAL_AMOUNT Longword Integer
 TOTAL_TOLLS Longword Integer
 FORM_TOTAL Longword Integer
 End Record

 Layout VT_LAYOUT
 Device
 Terminal
 Type %VT100
 End Device
 Size 24 Lines by 80 Columns

 List LOCATION_CODES
 "ACT"

202

Appendix A. The Mileage Reimbursement Application

 "BXB"
 "LTN"
 "MKO"
 "ZKO"
 End List

 Viewport MAIN_VIEWPORT
 Lines 1 Through 22
 Columns 1 Through 80
 End Viewport

 Viewport DEFAULT_MESSAGE_VIEWPORT
 Lines 23 Through 24
 Columns 1 Through 80
 End Viewport

 Viewport HELP_VIEWPORT
 Lines 1 Through 22
 Columns 1 Through 80
 End Viewport

 Function DO_TOTALS
 Is %DO
 (%PF1 %KP_PERIOD)
 End Function

 Function DISCARD
 Is %F8
 (%PF1 %KP_8)
 End Function

 Function INSERT LINE
 Is %CARRIAGE_RETURN
 End Function

 Function EXIT GROUP NEXT
 Is (%PF4 %HORIZONTAL_TAB)
 (%PF4 %CARRIAGE_RETURN)
 (%PF4 %ENTER)
 (%PF1 %DOWN)
 End Function

 Function MOVE_UP
 Is %UP
 End Function

 Function MOVE_DOWN
 Is %DOWN
 End Function

 Function SELECT
 Is %SELECT
 %KP_PERIOD
 End Function

 Function PRINT_FILE
 Is %CONTROL_P
 End Function

203

Appendix A. The Mileage Reimbursement Application

 Internal Response BORDER_PATROL
 Message
 "No items in that direction."
 Signal
 End Response

 Internal Response RESET_DATA
 Reset All
 Message
 "Data discarded."
 Signal
 Position To Panel TRIPS_INFO_PANEL
 End Response

 Internal Response RECORD_DATA
 Message
 "Data received. Program exiting."
 Signal
 Return Immediate
 End Response

 Internal Response UPDATE_TOTALS
 Message
 "Computing totals..."
 Call "DO_TOTALS" Using
 By Reference TRIPS_RECORD
 By Reference TOTAL_MILES
 By Reference TOTAL_AMOUNT
 By Reference TOTAL_TOLLS
 By Reference FORM_TOTAL
 Message
 "Done computing totals."
 Signal
 End Response

 Disable Response
 Remove All
 End Response

 Receive Response HEADER_INFO_RECORD
 Activate
 Panel HEADER_INFO_PANEL
 Position To Panel HEADER_INFO_PANEL
 End Response

 Receive Response TRIPS_RECORD
 Activate
 Panel TRIPS_INFO_PANEL
 Position To Panel TRIPS_INFO_PANEL
 End Response

 Function Response DISCARD
 Include RESET_DATA
 End Response

 Function Response MOVE_UP
 If (NOT UPPERMOST ITEM) Then

204

Appendix A. The Mileage Reimbursement Application

 Position To Up Item
 Else
 Include BORDER_PATROL
 End If
 End Response

 Function Response MOVE_DOWN
 If (NOT LOWERMOST ITEM) Then
 Position To Down Item
 Else
 Include BORDER_PATROL
 End If
 End Response

 Function Response PRINT_FILE
 Message
 "Preparing the print file..."
 Print
 TRIPS_INFO_PANEL
 Message
 "Print file completed."
 End Response

 Use Help Panel
 HELP_PANEL

 Field Default BOLD_ICON
 Active Highlight
 Bold
 End Default

 Apply Field Default Of
 Active Highlight
 Underlined
 End Default

 Message Panel DEFAULT_MESSAGE_PANEL
 Viewport DEFAULT_MESSAGE_VIEWPORT
 End Panel

 Help Panel HELP_PANEL
 Viewport HELP_VIEWPORT
 Function Response NEXT HELP
 Activate
 Panel SECOND_HELP_PANEL
 Position To Panel SECOND_HELP_PANEL
 End Response

 Literal Text
 Line 1
 Column 18
 Value "HELP FOR THE MILEAGE REIMBURSEMENT APPLICATION"
 Display
 Bold
 End Literal

 Literal Polyline
 Line 2 Column 1

205

Appendix A. The Mileage Reimbursement Application

 Line 2 Column 80
 Display
 Bold
 End Literal

 Literal Rectangle
 Line 4 Column 1
 Line 18 Column 80
 End Literal

 Literal Polyline
 Line 4 Column 40
 Line 18 Column 40
 End Literal

 Literal Text
 Line 3
 Column 14
 Value "To:"
 Display
 Bold
 End Literal

 Literal Text
 Line 3
 Column 59
 Value "VT"
 Display
 Bold
 End Literal

 Literal Text
 Line 5
 Column 3
 Value "Move to next item"
 End Literal

 Literal Text
 Line 5
 Column 42
 Value "Tab or KP Enter"
 End Literal

 Literal Text
 Line 6
 Column 3
 Value "Move to previous item"
 End Literal

 Literal Text
 Line 6
 Column 42
 Value "F12 or Backspace"
 End Literal

 Literal Text
 Line 7
 Column 3

206

Appendix A. The Mileage Reimbursement Application

 Value "Display help message"
 End Literal

 Literal Text
 Line 7
 Column 42
 Value "PF2 or Help"
 End Literal

 Literal Text
 Line 8
 Column 3
 Value "Leave help"
 End Literal

 Literal Text
 Line 8
 Column 42
 Value "PF1-PF2 or PF1-Help"
 End Literal

 Literal Text
 Line 9
 Column 6
 Value "Header Screen:"
 Display
 Bold
 End Literal

 Literal Text
 Line 10
 Column 3
 Value "Next line of address"
 End Literal

 Literal Text
 Line 10
 Column 42
 Value "Return"
 End Literal

 Literal Text
 Line 11
 Column 3
 Value "Move to next screen"
 End Literal

 Literal Text
 Line 11
 Column 42
 Value "F10 or Ctrl/Z"
 End Literal

 Literal Text
 Line 12
 Column 6
 Value "Trips Screen:"
 Display

207

Appendix A. The Mileage Reimbursement Application

 Bold
 End Literal

 Literal Text
 Line 13
 Column 3
 Value "Move to option buttons"
 End Literal

 Literal Text
 Line 13
 Column 42
 Value "PF1-down arrow"
 End Literal

 Literal Text
 Line 14
 Column 3
 Value "Choose an option"
 End Literal

 Literal Text
 Line 14
 Column 42
 Value "Select or KP."
 End Literal

 Literal Text
 Line 15
 Column 3
 Value "Compute totals"
 End Literal

 Literal Text
 Line 15
 Column 42
 Value "Do or PF1-KP."
 End Literal

 Literal Text
 Line 16
 Column 3
 Value "Discard data"
 End Literal

 Literal Text
 Line 16
 Column 42
 Value "F8 or PF1-KP8"
 End Literal

 Literal Text
 Line 17
 Column 3
 Value "Record and exit"
 End Literal

 Literal Text

208

Appendix A. The Mileage Reimbursement Application

 Line 17
 Column 42
 Value "F10 or Ctrl/Z"
 End Literal

 Icon MORE_HELP
 Apply Field Default BOLD_ICON
 Function Response SELECT
 Activate
 Panel SECOND_HELP_PANEL
 Position To Panel SECOND_HELP_PANEL
 End Response

 Literal Rectangle
 Line 19 Column 16
 Line 21 Column 33
 End Literal

 Literal Text
 Line 20
 Column 17
 Value "Help on Printing"
 End Literal

 End Icon

 Icon LEAVE_HELP
 Apply Field Default BOLD_ICON
 Function Response SELECT
 Exit Help
 Remove Help
 End Response

 Literal Text
 Line 20
 Column 44
 Value "Dismiss Help"
 End Literal

 Literal Rectangle
 Line 19 Column 43
 Line 21 Column 56
 End Literal

 End Icon

End Panel

Panel HEADER_INFO_PANEL
 Viewport MAIN_VIEWPORT
 Display
 %Keypad_Application

 Entry Response
 Message
 "Press Help for information on how to use this
 application."
 End Response

209

Appendix A. The Mileage Reimbursement Application

 Exit Response
 Message
 "Displaying next screen..."
 End Response

 Literal Text
 Line 1
 Column 15
 Value "Mileage Reimbursement Form"
 Display
 Font Size Double Wide
 End Literal

 Literal Text
 Line 2
 Column 23
 Value "Header Information"
 Display
 Font Size Double Wide
 End Literal

 Literal Polyline
 Line 3 Column 1
 Line 3 Column 80
 End Literal

 Literal Text
 Line 5
 Column 2
 Value "Employee Name: "
 End Literal

 Field EMPLOYEE_NAME
 Line 5
 Column 17
 End Field

 Literal Text
 Line 7
 Column 3
 Value "Badge Number:"
 End Literal

 Field BADGE_NUMBER
 Line 7
 Column 17
 Output Picture 999999R
 Justification Right
 End Field

 Literal Text
 Line 7
 Column 30
 Value "Cost Center:"
 End Literal

 Field COST_CENTER

210

Appendix A. The Mileage Reimbursement Application

 Line 7
 Column 43
 Autoskip
 Uppercase
 End Field

 Literal Text
 Line 9
 Column 8
 Value "Address:"
 End Literal

 Textfield ADDRESS
 Line 9
 Column 17
 Builtin Function Response CURSOR UP

 Builtin Function Response CURSOR DOWN

 Rows 3
 Columns 40
 End Field

 Literal Text
 Line 13
 Column 2
 Value "Reason for"
 End Literal

 Literal Text
 Line 14
 Column 2
 Value "Reimbursement:"
 End Literal

 Field REASON
 Line 14
 Column 17
 End Field

 Literal Text
 Line 17
 Column 17
 Value "To move to the previous item:"
 End Literal

 Literal Text
 Line 16
 Column 17
 Value "To move to the next item:"
 End Literal

 Literal Text
 Line 19
 Column 17
 Value "When you are finished:"
 End Literal

211

Appendix A. The Mileage Reimbursement Application

 Literal Text
 Line 20
 Column 17
 Value "For more information:"
 End Literal

 Literal Text
 Line 16
 Column 50
 Value "Tab or Enter"
 Display
 Bold
 End Literal

 Literal Text
 Line 17
 Column 50
 Value "F12 or Backspace"
 Display
 Bold
 End Literal

 Literal Text
 Line 19
 Column 50
 Value "F10 or Ctrl/Z"
 Display
 Bold
 End Literal

 Literal Text
 Line 20
 Column 50
 Value "PF2 or Help"
 Display
 Bold
 End Literal

 Literal Rectangle
 Line 15 Column 16
 Line 21 Column 68
 End Literal

 Literal Text
 Line 18
 Column 17
 Value "To move to next line of address:"
 End Literal

 Literal Text
 Line 18
 Column 50
 Value "Return"
 Display
 Bold
 End Literal
End Panel

212

Appendix A. The Mileage Reimbursement Application

Panel TRIPS_INFO_PANEL
 Viewport MAIN_VIEWPORT
 Display
 %Keypad_Application
 Entry Response
 Message
 "Press Help for information on how to use this
 application."
 End Response

 Function Response TRANSMIT
 Include UPDATE_TOTALS
 Include RECORD_DATA
 End Response

 Function Response DO_TOTALS
 Include UPDATE_TOTALS
 End Response

 Literal Text
 Line 1
 Column 15
 Value "Mileage Reimbursement Form"
 Display
 Font Size Double Wide
 End Literal

 Literal Polyline
 Line 2 Column 1
 Line 2 Column 80
 End Literal

 Literal Text
 Line 3
 Column 11
 Value "Date"
 End Literal

 Literal Text
 Line 4
 Column 8
 Value "DD-MMM-YYYY"
 End Literal

 Literal Rectangle
 Line 5 Column 6
 Line 18 Column 69
 End Literal

 Literal Text
 Line 3
 Column 21
 Value "Travel Points"
 End Literal

 Literal Text
 Line 3
 Column 39

213

Appendix A. The Mileage Reimbursement Application

 Value "Personal Car"
 End Literal

 Literal Text
 Line 4
 Column 22
 Value "From"
 End Literal

 Literal Text
 Line 4
 Column 33
 Value "To"
 End Literal

 Literal Text
 Line 4
 Column 39
 Value "Miles"
 End Literal

 Literal Text
 Line 4
 Column 46
 Value "Amount"
 End Literal

 Literal Text
 Line 4
 Column 53
 Value "Tolls"
 End Literal

 Literal Text
 Line 4
 Column 61
 Value "Subtotal"
 End Literal

 Group TRIP
 Vertical
 Displays 12
 Function Response MOVE_UP
 If (NOT FIRST OCCURRENCE VERTICAL) Then
 Position To Up Occurrence
 Else
 Include BORDER_PATROL
 End If
 End Response

 Function Response MOVE_DOWN
 If (NOT LAST OCCURRENCE VERTICAL) Then
 Position To Down Occurrence
 Else
 Include BORDER_PATROL
 End If
 End Response

214

Appendix A. The Mileage Reimbursement Application

 Field TRIP_DATE
 Line 6
 Column 8
 Autoskip
 Input Picture For Date DD-AAA-YYYY
 Output " "
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 End Field

 Field TRIP_FROM
 Line 6
 Column 22
 Autoskip
 Uppercase
 Protected
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Search LOCATION_CODES
 Message
 "Must be a valid code: ACT, BXB, LTN, MKO, or ZKO"
 End Field

 Field TRIP_TO
 Line 6
 Column 29
 Autoskip
 Uppercase
 Protected
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Search LOCATION_CODES
 Message
 "Must be a valid code: ACT, BXB, LTN, MKO, or ZKO"
 End Field

 Field MILES
 Line 6
 Column 40
 Exit Response
 Call "UPDATE_ROW" Using
 By Reference TRIP_ROW_RECORD
 End Response
 Output Picture 999R
 Justification Right
 Output ""
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Protected
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Range
 1 Through 100
 Message
 "You cannot get reimbursed for more than 100 "
 "miles per trip!"
 End Field

 Field AMOUNT
 Line 6
 Column 46
 Output Picture 99R9.99
 Scale -2

215

Appendix A. The Mileage Reimbursement Application

 Output ""
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Protected
 End Field

 Field TOLL
 Line 6
 Column 54
 Exit Response
 Let TRIP(N).SUBTOTAL = (TRIP(N).AMOUNT + TRIP(N).TOLL)
 End Response

 Output Picture 99R9.99
 Scale -2
 Justification Decimal
 Output ""
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Protected
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 End Field

 Field SUBTOTAL
 Line 6
 Column 62
 Output Picture 99R9.99
 Scale -2
 Output ""
 When (TRIP(**).TRIP_DATE = BLANK_DATE)
 Protected
 End Field

End Group

 Field TOTAL_MILES
 Line 19
 Column 39
 Output Picture 999R9
 Protected
 End Field

 Field TOTAL_AMOUNT
 Line 19
 Column 45
 Output Picture 999R9.99
 Scale -2
 Protected
 End Field

 Field TOTAL_TOLLS
 Line 19
 Column 54
 Output Picture 999R.99
 Scale -2
 Protected
 End Field

 Literal Text
 Line 19

216

Appendix A. The Mileage Reimbursement Application

 Column 31
 Value "Totals:"
 End Literal

 Field FORM_TOTAL
 Line 19
 Column 61
 Output Picture 999R9.99
 Scale -2
 Protected
 End Field

 Icon COMPUTE_TOTALS
 Apply Field Default BOLD_ICON
 Function Response SELECT
 Include UPDATE_TOTALS
 End Response

 Literal Rectangle
 Line 20 Column 2
 Line 22 Column 19
 End Literal

 Literal Text
 Line 21
 Column 4
 Value "Compute Totals"
 End Literal

 End Icon

 Icon DISCARD_DATA
 Apply Field Default BOLD_ICON
 Function Response SELECT
 Include RESET_DATA
 End Response

 Literal Rectangle
 Line 20 Column 22
 Line 22 Column 37
 End Literal

 Literal Text
 Line 21
 Column 24
 Value "Discard Data"
 End Literal

 End Icon

 Icon RECORD_AND_EXIT
 Apply Field Default BOLD_ICON
 Function Response SELECT
 Include UPDATE_TOTALS
 Include RECORD_DATA
 End Response

 Literal Rectangle

217

Appendix A. The Mileage Reimbursement Application

 Line 20 Column 40
 Line 22 Column 58
 End Literal

 Literal Text
 Line 21
 Column 42
 Value "Record and Exit"
 End Literal

 End Icon

 Icon HELP_ICON
 Apply Field Default BOLD_ICON
 Function Response SELECT
 Enter Help
 End Response

 Literal Rectangle
 Line 20 Column 61
 Line 22 Column 75
 End Literal

 Literal Text
 Line 21
 Column 66
 Value "Help"
 End Literal

 End Icon

End Panel

Help Panel SECOND_HELP_PANEL
 Viewport HELP_VIEWPORT
 Literal Text
 Line 1
 Column 24
 Value "HELP ON PRINTING FORM DATA"
 Display
 Bold
 End Literal

 Literal Polyline
 Line 2 Column 1
 Line 2 Column 80
 End Literal

 Literal Text
 Line 3
 Column 1
 Value "When you finish entering the data for your form, you "-
 "can press Ctrl/P to"
 End Literal

 Literal Text
 Line 4
 Column 1

218

Appendix A. The Mileage Reimbursement Application

 Value "create a file that contains a picture of the second "-
 "screen:"
 End Literal

 Literal Text
 Line 5
 Column 7
 Value "Platform"
 Display
 Underlined
 End Literal

 Literal Text
 Line 5
 Column 30
 Value "Files Created"
 Display
 Underlined
 End Literal

 Literal Text
 Line 5
 Column 56
 Value "Description"
 Display
 Underlined
 End Literal

 Literal Text
 Line 6
 Column 10
 Value "VT"
 End Literal

 Literal Text
 Line 6
 Column 30
 Value "mrf_form.txt"
 End Literal

 Literal Text
 Line 6
 Column 56
 Value "Text file "
 End Literal

 Literal Polyline
 Line 9 Column 1
 Line 9 Column 80
 End Literal

 Literal Text
 Line 10
 Column 1
 Value "On all platforms, all your form data is formatted for "-
 "quality printing."
 End Literal

219

Appendix A. The Mileage Reimbursement Application

 Literal Text
 Line 11
 Column 1
 Value "On OpenVMS, the application creates a file named "-
 "prin_mrf.doc."
 End Literal

 Literal Polyline
 Line 12 Column 1
 Line 12 Column 80
 End Literal

 Literal Text
 Line 14
 Column 1
 Value "On OpenVMS, to convert a .doc file to PostScript "-
 "format and print the file,"
 End Literal

 Literal Text
 Line 15
 Column 1
 Value "use the following commands:"
 End Literal

 Literal Text
 Line 16
 Column 1
 Value "$ CONVERT/DOCUMENT filename.DOC filename.PS/FORMAT=PS"
 End Literal

 Literal Text
 Line 17
 Column 1
 Value "$ PRINT /QUEUE=postscript_queue_name file_name.PS"
 End Literal

 Icon PREV_HELP
 Apply Field Default BOLD_ICON
 Function Response SELECT
 Activate
 Panel HELP_PANEL
 Position To Panel HELP_PANEL
 End Response

 Literal Rectangle
 Line 19 Column 15
 Line 21 Column 29
 End Literal

 Literal Text
 Line 20
 Column 16
 Value "Previous Help"
 End Literal

 End Icon

220

Appendix A. The Mileage Reimbursement Application

 Icon LEAVE_SECOND_HELP
 Apply Field Default BOLD_ICON
 Function Response SELECT
 Exit Help
 Remove Help
 End Response

 Literal Rectangle
 Line 19 Column 42
 Line 21 Column 55
 End Literal

 Literal Text
 Line 20
 Column 43
 Value "Dismiss Help"
 End Literal

 End Icon

 End Panel

 End Layout

End Form

A.2. C Application Source: mrf_c.c
This section shows the C language source code for the mileage reimbursement application program.

/*
 * © Copyright 2005 Hewlett-Packard Development Company,
 *
 * Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
 * Computer Software Documentation, and Technical Data for Commercial
 * Items are licensed to the U.S. Government under vendor’s standard
 * commercial license.
 *
 *
 *========== OpenVMS - Character-Cell Instructions ========
 *
 * If your system manager copied the Mileage Reimbursement Demonstration
 * Application from the DECforms kit onto your system, you can run the
 * application by doing the following:
 *
 * To run the character-cell version:
 *
 * $ run forms$examples:forms$demo_mrf
 *
 * Any printing you do while running the Mileage Reimbursement
 Demonstration
 * Application will end up in your SYS$SCRATCH directory (usually your
 login
 * directory).
 *
 * The Mileage Reimbursement Demonstration Application in the C language
 * consists of three files:

221

Appendix A. The Mileage Reimbursement Application

 *
 * forms$demo_mrf_form.ifdl The IFDL source form
 * forms$demo_mrf_c.c The application itself
 * formsdef.h An include file with DECforms
 definitions
 *
 * The first two files are copied from the DECforms kit to the FORMS
$EXAMPLES
 * directory and the last is put into SYS$LIBRARY. Putting the files in
 * FORMS$EXAMPLES is an installation option; talk to your system manager if
 * they aren’t there. The FORMSDEF.H file is put into SYS$LIBRARY
 * unconditionally, so that you should be able to use it from all your C
 * programs using DECforms.
 *
 * To create a working version of the Mileage Reimbursement Application in
 * your own directory from these sources, follow these steps:
 *
 * 1. Set the default to your own directory:
 *
 * $ set default your-directory
 *
 * 2. Copy the source files to your own directory:
 *
 * $ copy forms$examples:forms$demo_mrf_form.ifdl, -
 * forms$demo_mrf_c.c []
 *
 * 3. Translate the IFDL form file with the following command:
 *
 * $ forms translate forms$demo_mrf_form.ifdl
 *
 * This creates a binary form file named forms$demo_mrf_form.form.
 *
 * 4. Create the form object file with the following command:
 *
 * $ forms extract object /portable_api /form_load forms
$demo_mrf_form.form
 *
 * This creates a forms object file named forms$demo_mrf_form.obj.
 *
 * 5. Compile the program with the following command:
 *
 * $ cc forms$demo_mrf_c
 *
 * This creates an object file named forms$demo_mrf_c.obj.
 *
 * 6. Create a file named mrf_opt.opt that contains the following line:
 *
 * SYS$LIBRARY:FORMS$PORTABLE_API.EXE/SHARE
 *
 * This file tells the linker to link in the shareable image that
 * contains the portable API entry points to the Form Manager.
 *
 * 7. Define the logical LNK$LIBRARY with the following command:
 *
 * $ define lnk$library sys$library:vaxcrtl
 *
 * This links in the C run-time library that defines the C forms
 calls.

222

Appendix A. The Mileage Reimbursement Application

* 8. Link the C program with the following command:
*
* $ link forms$demo_mrf_c, forms$demo_mrf_form, mrf_opt/opt
*
* 9. To prepare to run this application on character-cell devices,
 define
* the logical FORMS$DEFAULT_DEVICE with the following command:
*
* $ define forms$default_device sys$input:
*
* 10. To create a trace file that will describe each action taken
* during the course of the application session, define the logical
* FORMS$TRACE with the following command:
*
* $ define forms$trace t
*
* 11. To the application, enter the following command:
*
* $ run forms$demo_mrf_c
*
* If you turned on the trace file, running the application will
* produce a log file named forms$demo_mrf_form.trace.
*
*===
*/
#include <stdio.h>
#include <formsdef.h>

#define EMPNAME 32
#define EMPBADGE 6
#define EMPCC 3
#define EMPADDRESS 120
#define EMPREASON 64
#define TRIPDATE 8
#define TRIPFROM 3
#define TRIPTO 3
#define TRIPRECORD 36

/*
 * Structure format declarations for records that will be sent to the form
 */
typedef struct {
 char employee_name[EMPNAME], badge_number[EMPBADGE],
 cost_center[EMPCC],
 address[EMPADDRESS], reason[EMPREASON];
} Hdr_Info_Record;

typedef struct {
 char trip_date[TRIPDATE], trip_from[TRIPFROM], trip_to[TRIPTO];
 unsigned long miles, amount, toll, subtotal;
} Trip_Record;

typedef struct {
 unsigned long total_miles, total_amount, total_tolls, form_total;
} Totals_Record;

/*
 * Static storage

223

Appendix A. The Mileage Reimbursement Application

 */
Hdr_Info_Record header_info_record; /* The header info record */
Trip_Record trips_record[TRIPRECORD]; /* Array of trip records */
Totals_Record totals_record; /* totals for all trips */

/*
 * Create instances from datatypes in forms_def header file
 */
Forms_Session_Id session_id;
Forms_Form_Object MRF_FORM; /* linked form name */
Forms_Status status;
Forms_Record_Data header_info_record_descr; /* record */
Forms_Record_Data trips_record_descr; /* record */
Forms_Record_Data totals_record_descr; /* record */
Forms_Request_Options request_options[2]; /* form object for linked form*/
Forms_Session_Id print_session; /* session for creating print form */

/*
 * Routine: main
 *
 * Functional Description:
 *
 * Enables the form session and performs the receive requests necessary
 to
 * obtain the employee and the trips data. Note that although these
 * operations are performed in two separate requests for simplicity, a
 * single request receiving both records would be more efficient and is
 * suitable for this situation since the application performs no
 operations
 * between the separate requests.
 */
int main (void)
{
/*
 * Set up the request options for linking the form object file and
 * enable the form.
 */
request_options[0].option = forms_c_opt_form;
request_options[0].form.object = MRF_FORM;
request_options[1].option = forms_c_opt_end;

status = forms_enable (session_id, /* session id returned */
 NULL, /* current device */
 NULL, /* name of form file */
 "MRF_FORM", /* name of the form */
 request_options); /* request options */
/*
 * Obtain the employee header information -- structure must contain the
 length
 * and address of the record being received from DECforms.
 */

header_info_record_descr.data_record = &header_info_record;
header_info_record_descr.data_length = sizeof(header_info_record);
header_info_record_descr.shadow_record = NULL;
header_info_record_descr.shadow_length = 0;

status = forms_receive (session_id, /* session id */

224

Appendix A. The Mileage Reimbursement Application

 "header_info_record", /* form record in IFDL
 */
 &header_info_record_descr, /* record in program */
 NULL); /* no request options
 */

/*
 * Obtain the information on all the trips made.
 */

trips_record_descr.data_record = &trips_record;
trips_record_descr.data_length = sizeof(trips_record);
trips_record_descr.shadow_record = NULL;
trips_record_descr.shadow_length = 0;

status = forms_receive (session_id,
 "trips_record",
 &trips_record_descr,
 NULL);

/*
* Obtain totals for the form.
*/

totals_record_descr.data_record = &totals_record;
totals_record_descr.data_length = sizeof(totals_record);
totals_record_descr.shadow_record = NULL;
totals_record_descr.shadow_length = 0;

status = forms_receive (session_id,
 "totals_record",
 &totals_record_descr,
 NULL);

status = forms_enable (print_session,
 "prin_mrf.doc",
 NULL,
 "MRF_FORM",
 request_options);

status = forms_send (print_session,
 "header_info_record",
 &header_info_record_descr,
 NULL);

status = forms_send (print_session,
 "trips_record",
 &trips_record_descr,
 NULL);

status = forms_send (print_session,
 "totals_record",
 &totals_record_descr,
 NULL);

/*
 * Disable each session and exit.
 */

225

Appendix A. The Mileage Reimbursement Application

status = forms_disable (print_session, NULL);
return 1;

status = forms_disable (session_id, NULL);
return 1;
}

/*
 * Routine: update_row
 *
 * Functional Description:
 *
 * Updates the information in the row of a trip record. The mileage
 * reimbursement amount is calculated from the number of miles
 travelled
 * (using 22½¢ per mile).
 *
 * Formal Parameters:
 *
 * trip-record - a pointer to the trip record
 *
 * Routine Value:
 *
 * none
 *
 */
void Forms_Callback update_row (Trip_Record *trip)
{

/*
 * Type cast trip miles to unsigned float, multiply by 22.5, and add .5
 * to round off, and then recast to unsigned integer.
 */
 trip->amount = (unsigned long)(((float)trip->miles * 22.5) + 0.5);
 return;
}

/*
 * Routine: do_totals
 *
 * Functional Description:
 *
 * Computes and updates the totals given the entire collection of trip
 * records.
 *
 * Formal Parameters:
 *
 * trips-record
 * total-miles
 * total-amount
 * total-tolls
 * form-total
 *
 * Routine Value:
 *
 * none
 *
 */

226

Appendix A. The Mileage Reimbursement Application

void Forms_Callback do_totals (Trip_Record (*trips)[TRIPRECORD],
 unsigned long *miles, unsigned long *amount,
 unsigned long *tolls, unsigned long *total)
{
unsigned n;
/*
* Initialize counters to zero
*/
 *miles = *amount = *tolls = *total = 0;
/*
 * For each entry with a nonzero mileage, accumulate the trips values into
 * the counters.
 */
 for (n = 0; n < TRIPRECORD; n++) {
 if ((*trips)[n].miles != 0) {
 *miles = *miles + (*trips)[n].miles;
 *amount = *amount + (*trips)[n].amount;
 *tolls = *tolls + (*trips)[n].toll;
 *total = *total + (*trips)[n].subtotal;
 }
 }
 return;
}

A.3. FORTRAN Application Source for
OpenVMS Systems:mrf_for.for
This section shows the FORTRAN language source code for the mileage reimbursement application
program for OpenVMS systems.

!+
! © Copyright 2005 Hewlett-Packard Development Company,.
!
! Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
! Computer Software Documentation, and Technical Data for Commercial
! Items are licensed to the U.S. Government under vendor’s standard
! commercial license.
!
!
!============== OpenVMS(TM) - Character-Cell Instructions ==============
!
! If your system manager copied the Mileage Reimbursement Application from
! the DECforms kit onto your system, you can run the application by doing
! the following:
!
! To run the character-cell version of the application:
!
! $ run forms$examples:forms$demo_mrf
!
! Any printing you do while running the application will end up in your
! SYS$SCRATCH directory (usually your login directory).
!
! The Mileage Reimbursement Demonstration Application in the FORTRAN
 language
! consists of the following files:
!

227

Appendix A. The Mileage Reimbursement Application

! forms$demo_mrf_form.ifdl The IFDL source form
! forms$demo_mrf_for.for The application itself
! forms$demo_mrf_def.for An include file
! formsdef.f An include file with DECforms definitions
!
! The first three files are copied from the DECforms kit to the FORMS
$EXAMPLES
! directory and the last is put into SYS$LIBRARY. Putting the files in
! FORMS$EXAMPLES is an installation option; talk to your system manager if
 they
! aren’t there. The FORMSDEF.F file is put into SYS$LIBRARY
 unconditionally, so
! that you should be able to use it from all your FORTRAN programs using
! DECforms.
!
! To create a working version of the Mileage Reimbursement Application in
! the FORTRAN language in your own directory, follow these steps:
!
! 1. Set the default to your own directory:
!
! $ set default your-directory
!
! 2. Copy all the source files from FORMS$EXAMPLES to your own
 directory:
!
! $ copy forms$examples:forms$demo_mrf_form.ifdl, -
! forms$demo_mrf_for.for, -
! forms$demo_mrf_def.for []
!
! 3. Translate the IFDL form file with the following command:
!
! $ forms translate forms$demo_mrf_form.ifdl
!
! This creates a binary form file named forms$demo_mrf_form.form.
!
! 4. Create the form object file with the following command:
!
! $ forms extract object /portable_api /form_load forms
$demo_mrf_form.form
!
! This creates a forms object file named forms$demo_mrf_form.obj.
!
! 5. Compile the program with the following command:
!
! $ fortran forms$demo_mrf_for.for
!
! This creates an object file named forms$demo_mrf_c.obj.
!
! 6. Create a file named mrf_opt.opt that contains the following line:
!
! SYS$LIBRARY:FORMS$PORTABLE_API.EXE/SHARE
!
! This file tells the linker to link in the shareable image that
! contains the portable API entry points to the Form Manager.
!
!
! 7. Link the FORTRAN program with the following command:
!

228

Appendix A. The Mileage Reimbursement Application

! $ link forms$demo_mrf_for, forms$demo_mrf_form, mrf_opt/opt
!
! 8. To prepare to run this application on character-cell devices, define
! the logical FORMS$DEFAULT_DEVICE with the following command:
!
! $ define forms$default_device sys$input:
!
! 9. To create a trace file that will describe each action taken
! during the course of the application session, define the logical
! FORMS$TRACE with the following command:
!
! $ define forms$trace t
!
! 10. To the application, enter the following command:
!
! $ run forms$demo_mrf_for
!
! If you turned on the trace file, running the application will
! produce a log file named forms$demo_mrf_form.trace.
!
!
==
!-
 Implicit None
 Include ’Sys$Library:formsdef.f’
 Include ’forms$demo_Mrf_Def’
!
! Variables
!
 Record /trip_struct/ trips_record(TRIPRECORD)
 Record /header_info_struct/ header_info_record
 Record /totals_struct/ totals_record
 Record/Forms_Record_Data/header_info_record_descr
 Record/Forms_Record_Data/trips_record_descr
 Record/Forms_Record_Data/totals_record_descr
 Record/Forms_Request_Options/request_options(2)

 Integer MRF_FORM
CDEC$ ATTRIBUTES EXTERN :: MRF_FORM
 Character*16 session_id
 Character*16 print_session
 Integer status

!
! Request options for linked-in form
!

 request_options(1).option = forms_c_opt_form
 request_options(1).form_object = %loc (MRF_FORM)
 request_options(2).option = forms_c_opt_end

!
! Structure must contain the length and address of the record being sent
! or received from DECforms; shadow records are optionally used to track
! changes to fields in a data record - here they are set to 0
!
 header_info_record_descr.data_length=sizeof(header_info_record)
 header_info_record_descr.data_record = %loc(header_info_record)

229

Appendix A. The Mileage Reimbursement Application

 header_info_record_descr.shadow_record = 0
 header_info_record_descr.shadow_length = 0
 trips_record_descr.data_length = sizeof(trips_record)
 trips_record_descr.data_record = %loc (trips_record)
 trips_record_descr.shadow_record = 0
 trips_record_descr.shadow_length = 0
 totals_record_descr.data_length = sizeof(totals_record)
 totals_record_descr.data_record = %loc (totals_record)
 totals_record_descr.shadow_record = 0
 totals_record_descr.shadow_length = 0

!
! Enable the form -- the ENABLE request expects 5 parameters; in FORTRAN
! requests, all expected parameters must be specified by passing a
! variable, a value, or a placeholder; session id returned by DECforms
! is used in all subsequent calls to the form and device
!

 status = forms_enable_for(
 1 session_id,
 2 , ! current device
 3 , ! name of form file
 4 ’MRF_FORM’, ! form name
 5 request_options)

!
! Obtain the header information
!

 status = forms_receive_for(
 1 session_id,
 2 ’header_info_record’, !form record
 3 header_info_record_descr, !program
 record
 4) ! no request
options
!
! Obtain information on all trips
!
 status = forms_receive_for(
 1 session_id,
 2 ’trips_record’,
 3 trips_record_descr,
 4)
!
! Obtain totals for all trips (to send to print session)
!
 status = forms_receive_for(
 1 session_id,
 2 ’totals_record’,
 3 totals_record_descr,
 4)

!
! Enable second session for print file
!
 status = forms_enable_for (
 1 print_session,

230

Appendix A. The Mileage Reimbursement Application

 2 ’prin_mrf.doc’,
 3 ,
 4 ’MRF_FORM’,
 5 request_options)
!
! Send data from program to form for print file
!
 status = forms_send_for (
 1 print_session,
 2 ’header_info_record’,
 3 header_info_record_descr,
 4)

 status = forms_send_for (
 1 print_session,
 2 ’trips_record’,
 3 trips_record_descr,
 4)

 status = forms_send_for (
 1 print_session,
 2 ’totals_record’,
 3 totals_record_descr,
 4)
!
! Disable the form
!
 status = forms_disable_for (
 1 print_session,)

 status = forms_disable_for(
 1 session_id,)
 End

!+
! Routine: Update_Row
!
! Functional Description:
!
! Updates the information in the row of a trip record. The mileage
! reimbursement amount is calculated from the number of miles travelled
! (using 22½¢ per mile)
!
! Formal Parameters:
!
! trip-record - the trip record
!
!-
 Subroutine Update_Row (trip)
 Include ’sys$library:formsdef.f’
 Include ’forms$demo_Mrf_Def’
 Record /trip_struct/ trip
 trip.amount = Int((trip.miles * 22.5)+0.5)
 Return
 End

!+
! Routine: Do_Totals

231

Appendix A. The Mileage Reimbursement Application

!
! Functional Description:
!
! Computes and updates the totals given the entire collection of trip
! records.
!
! Formal Parameters:
!
! trips-record
! total-miles
! total-amount
! total-tolls
! form-total
!-

 Subroutine Do_Totals (trips, miles, amount, tolls, total)
 Include ’sys$library:formsdef.f’
 Include ’forms$demo_Mrf_Def’
 Record /trip_struct/ trips(TRIPRECORD)
 Integer miles, amount, tolls, total, n

!
! Initialize counters to zero
!
 miles = 0
 amount = 0
 tolls = 0
 total = 0
!
! For each entry with a nonzero mileage, accumulate the trips values into
! the counters.
!
 Do n = 1,TRIPRECORD
 If (trips(n).miles .ne. 0) Then
 miles = miles + trips(n).miles
 amount = amount + trips(n).amount
 tolls = tolls + trips(n).toll
 total = total + trips(n).subtotal
 End If
 End Do
 Return
 End

A.4. FORTRAN Application Definition File:
mrf_def.for
This section shows the FORTRAN definition file for the mileage reimbursement application program.

!+
! Symbolic constants
!-
 Integer EMPNAME, EMPBADGE, EMPCC, EMPADDRESS, EMPREASON
 Integer TRIPDATE, TRIPFROM, TRIPTO, TRIPRECORD
 Parameter(EMPNAME=32)
 Parameter(EMPBADGE=6)
 Parameter(EMPCC=3)

232

Appendix A. The Mileage Reimbursement Application

 Parameter(EMPADDRESS=120)
 Parameter(EMPREASON=64)
 Parameter(TRIPDATE=8)
 Parameter(TRIPFROM=3)
 Parameter(TRIPTO=3)
 Parameter(TRIPRECORD=36)
!+
! Structure delcarations for the form records
!-

 Structure /header_info_struct/
 Character employee_name*(EMPNAME)
 Character badge_number*(EMPBADGE)
 Character cost_center*(EMPCC)
 Character address*(EMPADDRESS)
 Character reason*(EMPREASON)
 End Structure

 Structure /trip_struct/
 Character trip_date*(TRIPDATE) ! date of the trip
 Character trip_from*(TRIPFROM) ! start facility
 Character trip_to*(TRIPTO) ! end facility
 Integer*4 miles ! miles travelled
 Integer*4 amount ! mileage amount
 Integer*4 toll ! toll amount
 Integer*4 subtotal ! total for trip
 End Structure

 Structure /totals_struct/
 Integer*4 total_miles ! total miles travelled
 Integer*4 total_amount ! total mileage amount
 Integer*4 total_tolls ! total toll amount
 Integer*4 form_total ! total for all trips
 End Structure

233

Appendix A. The Mileage Reimbursement Application

234

	VSI DECforms Guide to Developing an Application
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Associated Documents
	5. OpenVMS Documentation
	6. VSI Encourages Your Comments
	7. Conventions

	Chapter 1. Introduction
	1.1. DECforms Purpose
	1.2. DECforms Architecture
	1.2.1. The Form
	1.2.2. The Program
	1.2.2.1. Requests
	1.2.2.2. Calls to Escape Routines
	1.2.2.3. Phases in Processing Requests

	1.3. DECforms Utilities and Facilities
	1.4. Developing a DECforms Application
	1.5. What Comes Next

	Chapter 2. Planning the Application
	2.1. The Paper Form
	2.2. Planning the Data to Capture
	2.3. Planning the Platforms and Layouts for the Application
	2.4. Planning the User Interface
	2.4.1. Planning Panel Size
	2.4.2. Planning Panel Relationships
	2.4.3. The Header Panel
	2.4.3.1. The Header Panel Data
	2.4.3.2. Operator Interaction with the Header Panel

	2.4.4. The Trips Panel
	2.4.4.1. Organizing the Trip Data
	2.4.4.2. Operator Interaction with the Trips Panel
	2.4.4.3. Understanding User-Defined Functions
	2.4.4.4. Functions for the Trips Panel

	2.4.5. Support for Printing
	2.4.6. Message and Help Panels

	2.5. Planning the Program Style
	2.6. What Comes Next

	Chapter 3. Creating the Character-Cell Layout
	3.1. Creating the Form Using the Form Development Environment
	3.2. Modifying the Default Layout
	3.3. Creating Panels
	3.4. Modifying the Help Panel
	3.5. Choosing Panels
	3.6. Creating the Appearance of the First Panel
	3.6.1. Invoking the Panel Editor CCPED
	3.6.2. Specifying Text Display Attributes
	3.6.3. Creating a Graphic Literal
	3.6.4. Specifying Text Literals and Picture Fields for User Input
	3.6.5. Specifying a Text Literal and Text Field for User Input
	3.6.6. Specifying More Text Literals and a Picture Field
	3.6.7. Creating Informational Text on the Header Panel
	3.6.8. Modifying Text Display Attributes
	3.6.9. Creating a Rectangle Literal

	3.7. Creating the Appearance of the Second Panel
	3.7.1. Creating Background Text and Graphics
	3.7.2. Specifying a Group
	3.7.3. Specifying Picture Fields for the Group
	3.7.4. Completing the Form Data
	3.7.5. Specifying Picture Fields for the Totals
	3.7.6. Creating a Rectangle Literal for the TRIP Group
	3.7.7. Creating Text Literals and the Final Picture Field for the Totals
	3.7.8. Specifying Icons

	3.8. Creating the Appearance of the Help Panels
	3.9. Testing the Appearance of the Panels
	3.10. What Comes Next

	Chapter 4. Adding Functions, Responses, Display Actions,and Validations to the IFDL File
	4.1. Understanding User-Defined Functions and Function Responses
	4.2. Creating User-Defined Functions and Function Responses
	4.2.1. Declaring the Functions in the Layout
	4.2.2. Where to Declare Function Responses
	4.2.3. Creating Function Responses at the Layout Level
	4.2.4. Creating Function Responses at the Panel Level
	4.2.5. Creating Function Responses at the Group Level
	4.2.6. Creating Function Responses at the Icon Level

	4.3. Creating Other Responses
	4.3.1. Summary of Responses and Response Steps
	4.3.2. Order of Functions and Responses
	4.3.3. Creating the Other Responses at the Layout Level
	4.3.4. Creating Responses at the Panel Level
	4.3.5. Creating Exit Responses at the Field Level

	4.4. Declaring a Built-In Function Response
	4.5. Creating Active Highlighting
	4.6. Validating Data
	4.7. What Comes Next

	Chapter 5. Specifying Form Records and Program Data
	5.1. Comparing the Portable and OpenVMS APIs
	5.2. Understanding Form Record Descriptions
	5.2.1. Form Records
	5.2.2. Form Record Fields and Groups

	5.3. Forms_Record_Data Structure
	5.4. Creating the Form Record Descriptions
	5.5. Creating Header Information and Data Declarations for the Program
	5.5.1. Creating the Data Declarations and Header Information for the C Program
	5.5.2. Creating the Data Declarations and Header Information for the FORTRAN Program

	5.6. What Comes Next

	Chapter 6. Completing the Application Program for the Character-Cell Layout
	6.1. Enabling the Form
	6.1.1. Creating the C ENABLE Request and Request Options Structure
	6.1.2. Creating the FORTRAN ENABLE Request and Request Options Structure

	6.2. Receiving the Form Data
	6.2.1. Creating the C RECEIVE Requests and Form Record Data Definitions
	6.2.2. Creating the FORTRAN RECEIVE Requests and Form Record Data Definitions

	6.3. Disabling the Form
	6.3.1. Creating the C DISABLE Request
	6.3.2. Creating the FORTRAN DISABLE Request

	6.4. Creating the Escape Routines
	6.4.1. Creating the Escape Routines for the C Program
	6.4.2. Creating the Escape Routines for the FORTRAN Program

	6.5. What Comes Next

	Chapter 7. Building and Testing the Application for Character-Cell Devices
	7.1. Translating the Form and Extracting an Object File
	7.2. Building the Portable API Program
	7.3. Testing the Application
	7.4. What Comes Next

	Chapter 8. Form Structure
	8.1. Form Elements
	8.1.1. Form Data
	8.1.2. Form Records
	8.1.3. Layouts
	8.1.4. Viewports
	8.1.5. Panels

	8.2. Responses
	8.3. Methods for Creating a Form
	8.4. How a Form Is Described in the IFDL
	8.5. IFDL Syntax Example

	Chapter 9. Declaring, Displaying, and Tracking Data
	9.1. Specifying Form Data Types
	9.1.1. Text Data
	9.1.2. Atomic Data
	9.1.3. Date/Time Data

	9.2. Assigning Default Values to Form Data
	9.3. Altering the Display Attributes of Panel Fields
	9.4. Declaring and Displaying Groups and Arrays
	9.4.1. Grouping Data in a Form
	9.4.2. Displaying Data Stored in Form Data Groups
	9.4.3. Using Corresponding Subscripts in Panel Field Description Entries
	9.4.4. Activating Panel Groups for Input
	9.4.5. Specifying Navigation in a Panel Group
	9.4.6. Passing Group Data Between the Program and the Form

	9.5. Transferring Data Explicitly
	9.6. Determining What Changed During Operator Input
	9.6.1. Using Tracked Form Data Items
	9.6.2. Using Receive Shadow Records
	9.6.3. Using Send Shadow Records

	Chapter 10. Controlling Form Processing
	10.1. Using IF Response Steps
	10.2. Using Control Text Responses
	10.3. Controlling the Activation List
	10.3.1. Using the ACTIVATE Response Step
	10.3.2. Controlling the Activation List During the Accept Phase
	10.3.3. Using Conditional Protection in Navigation
	10.3.4. Using the DEACTIVATE Response Step

	10.4. Writing Responses That Call Escape Routines
	10.5. Performing Arithmetic Operations
	10.6. Moving Between Panels
	10.7. Waiting for Operator Input
	10.8. Printing Panels
	10.9. Returning Control to the Application

	Chapter 11. Designing the Operator Interface
	11.1. Using Viewports
	11.2. Creating Scrolled Regions
	11.2.1. Displaying Scrolled Data
	11.2.2. Setting Up the Operator's Control

	11.3. Defining Form Function Keys
	11.3.1. Binding Functions to Keys
	11.3.2. Writing Function Responses
	11.3.3. Disabling Built-In Function Key Bindings

	11.4. Using Situational Function Responses
	11.4.1. Situational Function Responses in Character-Cell Layouts

	11.5. Modifying the Keypad Mode
	11.6. Signaling the Operator
	11.7. Validating Fields
	11.8. Sending Messages to the Operator
	11.8.1. Sending Messages from the Form
	11.8.2. Sending Messages from a Program or Escape Routine

	11.9. Providing Online Help
	11.9.1. Using Help Messages
	11.9.2. Providing Hints
	11.9.3. Using Help Panels
	11.9.4. Creating Levels of Help Panels
	11.9.5. Using a Help Text File

	11.10. Simulating Menus and Dialog Boxes in Character-Cell Layouts

	Chapter 12. Getting the Best Performance from Your Form
	12.1. General Optimizations
	12.1.1. Transferring Data
	12.1.2. Using Escape Routines
	12.1.3. WHEN Clause Performance
	12.1.4. Controlling the Activation List
	12.1.5. Preventing Unnecessary Validation
	12.1.6. Using Multiple Sessions
	12.1.7. Performing Data Conversion

	12.2. Optimizations for Character-Cell Devices
	12.2.1. Using Terminal Hardware Scrolling
	12.2.2. Using Double-High and Double-Wide Attributes
	12.2.3. Optimizing Screen Clearing
	12.2.4. Improving Panel Display
	12.2.5. Formatting Input Pictures

	Chapter 13. Demonstration and Sample Forms and Applications
	13.1. Displaying the Demonstration Forms
	13.2. The Sample Application Files
	13.3. Data Declarations in the Introductory Sample Form and Application
	13.4. OpenVMS API Request Calls in the Introductory Sample Application
	13.4.1. ENABLE Request
	13.4.2. ACCOUNT Record SEND Request
	13.4.3. UPDATE Record TRANSCEIVE Request
	13.4.4. GET_CHECK Record RECEIVE Request
	13.4.5. GET_DEPOSIT Record RECEIVE Request
	13.4.6. DISABLE Requests

	13.5. Support for Printing in the Introductory Sample Application
	13.5.1. PRINT_PANEL Function and Function Response
	13.5.2. PRINT_CHECK Subroutine
	13.5.3. PRINTER Layout in the Introductory Sample Application

	13.6. Portable API Request Calls in the Advanced Sample Application
	13.6.1. ENABLE Request
	13.6.2. SEND Requests
	13.6.3. RECEIVE Requests
	13.6.4. TRANSCEIVE Request
	13.6.5. DISABLE Request
	13.6.6. RECEIVE and SEND Requests in an Operator Transaction

	Appendix A. The Mileage Reimbursement Application
	A.1. IFDL Source: mrf_form.ifdl
	A.2. C Application Source: mrf_c.c
	A.3. FORTRAN Application Source for OpenVMS Systems:mrf_for.for
	A.4. FORTRAN Application Definition File: mrf_def.for

