
VSI OpenVMS

VSI DECnet-Plus for OpenVMS
Network Management Guide

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI DECnet-Plus for OpenVMS Network Management Guide

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

ii

VSI DECnet-Plus for OpenVMS Network Management Guide

Table of Contents
Preface .. xi

1. About VSI ... xi
2. About This Manual ... xi
3. Intended Audience .. xi
4. Related Documents ... xi
5. VSI Encourages Your Comments ... xi
6. OpenVMS Documentation .. xi
7. Typographical Conventions .. xi

Chapter 1. Introduction to DECnet-Plus Network Management 1
1.1. What Is Network Management? ... 1
1.2. Identifying Manageable Network Components ... 3
1.3. Modules and Entities ... 4
1.4. DECnet Phase V Configurations .. 9

1.4.1. DECnet Phase V Configurations .. 9
Chapter 2. Transitioning from NCP to NCL ... 11

2.1. Using decnet_migrate to Convert NCP Commands to NCL Commands 11
2.1.1. Running decnet_migrate on Your System ... 15

2.1.1.1. Converting an NCP Command to an NCL Command 15
2.1.1.2. Converting NCP Commands in a DCL Command File to NCL 15
2.1.1.3. Converting NCP Commands in an NCP Command File to NCL 15
2.1.1.4. Editing a Command File That Contains NCL Commands 15

2.2. Using the Graphical User Interface for DECnet Phase V Network Management 16
2.3. Using the NCP Emulator to Convert NCP Commands to NCL .. 16

2.3.1. Information About Supported NCP Commands ... 18
2.3.2. Information About Supported NCP Components ... 19
2.3.3. Running the NCP Emulator on Your System ... 22
2.3.4. Remotely Managing DECnet Phase IV Nodes ... 22

Chapter 3. Checking the Network’s Configuration .. 23
3.1. Determining Your Network Topology ... 23

3.1.1. Determining Your Network Topology .. 23
3.1.2. Determining the DECnet Version of Your System ... 24

Chapter 4. Managing Routing Between DECnet Phase IV and Phase V Areas 27
4.1. Setting Up Interphase Links ... 27
4.2. Configurations That Do Not Require Manually Created Interphase Links 28
4.3. Configurations That Require Manually Created Interphase Links 28
4.4. Configurations That Require Multiple Interphase Links .. 29
4.5. Configurations with Multiple Interphase Links Between Two Subnetworks 31
4.6. Special Considerations Regarding Network Costs ... 32

Chapter 5. Managing Name Service Searches and Information 35
5.1. The Naming Search Path ... 35

5.1.1. Determining the Order for Name Service Searches .. 35
5.1.2. Using the Naming Search Path to Interpret Abbreviated Node Names 36
5.1.3. Displaying and Modifying Search Path Information ... 36

5.1.3.1. Displaying the Naming Search Path ... 36
5.1.3.2. Displaying the Backtranslation Search Path .. 37
5.1.3.3. Modifying the Naming and Backtranslation Search Paths 37
5.1.3.4. Using Backtranslation to Track Namespace Changes 38

iii

VSI DECnet-Plus for OpenVMS Network Management Guide

5.1.4. Changing the Default Namespace Name ... 38
5.1.5. Defining an Alternate Node Synonym Directory ... 38
5.1.6. Managing the DECdns Clerk ... 38

5.2. Resolving Names and Addresses with the Naming Cache ... 39
5.2.1. The CDI Naming Cache and DECdns .. 39
5.2.2. Managing the CDI Naming Cache ... 40

5.2.2.1. Checkpoint Interval ... 40
5.2.2.2. Timeout Period ... 40
5.2.2.3. Tracing Naming Information in the CDI Cache .. 41
5.2.2.4. Using the CDI$SYSTEM_TABLE To Define Node Synonyms 42
5.2.2.5. Using CDI Enhancements To Resolve IP Fully-Qualified Names 42
5.2.2.6. Using CDI_CACHE_DUMP To Analyze a CDI Cache Checkpoint 43
5.2.2.7. Controlling CDI’s Use of the Local Namespace Database 44
5.2.2.8. Automated CDI Cache Flushing .. 44

5.3. Managing DECdns and Local Namespace Information with decnet_register 44
5.3.1. Invoking decnet_register ... 45
5.3.2. Using decnet_register .. 46
5.3.3. Using an Initialization Command File for Preset Values 47
5.3.4. Showing the Information Registered for a Node in the Namespace 48
5.3.5. Registering or Modifying a Node ... 49
5.3.6. Updating Registered Node Addresses ... 50
5.3.7. Renaming a Registered Node ... 53
5.3.8. Repairing a Node’s Synonym and Reverse Address Links 54
5.3.9. Deregistering a Node from the Namespace ... 55
5.3.10. Exporting and Importing Node Information Between Name Services 56

5.3.10.1. Exporting Node Information from a Name Service 57
5.3.10.2. Importing Node Information from an Export/Import File to a Name
Service .. 57
5.3.10.3. Converting an Existing LNO Text File to a Local Namespace 58

5.3.11. Setting Preferences and Network Values ... 58
5.3.12. Managing the DECdns Directory Service .. 59

5.3.12.1. Initializing the DECdns Namespace for DECnet 60
5.3.12.2. Using the Manage Option ... 61
5.3.12.3. Creating Directories for Registering Node Names 62
5.3.12.4. Creating Backtranslation Directories for New IDPs, PreDSPs, and
Network Areas .. 63
5.3.12.5. Creating an Access Control Group .. 65
5.3.12.6. Adding Members to an Access Control Group .. 66
5.3.12.7. Removing Members from an Access Control Group 67

5.3.13. Spawning to DCL ... 69
Chapter 6. Modifying Your Network .. 71

6.1. Using the Configuration Procedure ... 71
6.2. Network Control Language .. 71

6.2.1. Using Interactive NCL .. 72
6.2.2. Editing NCL Scripts ... 72
6.2.3. Using User-Defined NCL Scripts ... 73

6.3. Defining Logical Names That Modify Network Operation .. 73
6.4. Creating DECnet-Plus Network Server Processes ... 76
6.5. Deleting Network Entities .. 77

Chapter 7. Managing Network Security ... 79
7.1. Required Rights Identifiers .. 79

iv

VSI DECnet-Plus for OpenVMS Network Management Guide

7.2. Network Management Security ... 80
7.3. Access Control .. 80

7.3.1. Using Explicit Access Control to Manage Remote Systems 81
7.3.2. Using Proxy Login ... 82

7.3.2.1. Setting Up a Proxy Database .. 83
7.3.2.2. Enabling or Disabling Incoming Proxy ... 85
7.3.2.3. Removing Proxy Access ... 85

7.3.3. Specifying Default Access Control Information for Applications 85
7.3.4. Specifying a Default Nonprivileged DECnet Account ... 87

7.4. Specifying Routing Initialization Passwords ... 88
Chapter 8. Managing DECnet Phase V Communications ... 91

8.1. Managing a Node ... 91
8.1.1. Reconfiguring DECnet-Plus ... 92
8.1.2. Starting Up DECnet-Plus .. 92

8.1.2.1. Using the NET$STARTUP_QUIET_NCL Logical Name 92
8.1.2.2. Using the SYSGEN STARTUP_P2 Parameter .. 93

8.1.3. Shutting Down DECnet-Plus ... 93
8.1.3.1. Creating a User-Defined Network Shutdown Procedure 93

8.1.4. Enabling a Node .. 93
8.1.5. Renaming a Node .. 94
8.1.6. Managing a Phase IV Node .. 94

8.2. Managing Physical Layer Devices and Modem Connect Lines ... 94
8.2.1. Managing WAN Communications Device Firmware .. 95
8.2.2. Managing Modem Connect Lines .. 95

8.2.2.1. Entities Created Automatically That Might Compete for Needed
Resources .. 95
8.2.2.2. Creating Modem Connect Lines .. 96

8.3. Managing Data Links .. 98
8.3.1. Creating LAN Data Links ... 98

8.3.1.1. Creating CSMA-CD Data Links .. 99
8.3.1.2. Creating FDDI Data Links ... 99
8.3.1.3. Creating LLC2 and XOT Data Links ... 100

8.3.2. Creating WAN Data Links .. 100
8.3.2.1. Creating HDLC Data Links .. 101
8.3.2.2. Creating DDCMP Data Links ... 102
8.3.2.3. Creating LAPB Data Links ... 102

8.4. Configuring Routing .. 103
8.4.1. Configuring Routing Type, Mode, and Routing Addresses 104

8.4.1.1. Routing Type .. 104
8.4.1.2. Host-Based Routing ... 104
8.4.1.3. Segregated Mode Routing and Integrated Mode Routing 106
8.4.1.4. Autoconfiguring Network Addresses .. 107
8.4.1.5. Configuring a Phase IV Network Address .. 107
8.4.1.6. Configuring End System Network Addresses for Non-DNA Networks 108

8.4.2. Configuring Routing Circuit Information .. 109
8.4.2.1. Configuring Multiple Circuits for End Systems 111
8.4.2.2. Sample NCL Script for Configuring Multiple Routing Circuits 112

8.4.3. Setting Up Network Routes ... 113
8.4.3.1. Configuring CLNS with Null Internet .. 113
8.4.3.2. Configuring Routing Reachable Addresses ... 114
8.4.3.3. Routing Use of the End System Cache .. 115
8.4.3.4. Configuring Network Adjacencies to Non-DNA Routers 117

v

VSI DECnet-Plus for OpenVMS Network Management Guide

8.5. Managing Transport Services ... 119
8.5.1. Configuring NSP .. 120
8.5.2. Configuring and Managing OSI Transport .. 121

8.5.2.1. Commands for Configuring General OSI Transport Attributes 122
8.5.2.2. Defining OSI Transport Templates .. 123
8.5.2.3. Configuring OSI Transport to Use CONS .. 124
8.5.2.4. Configuring OSI Transport to Use the Connectionless-Mode Network
Service .. 127
8.5.2.5. Configuring OSI Transport to Use RFC 1006 or RFC 1859 130
8.5.2.6. Testing OSI Transport .. 130
8.5.2.7. Possible Connection Failure to Non-Conformant Systems Using OSI
Transport ... 131
8.5.2.8. Avoiding Congestion in Multiprotocol Networks 132
8.5.2.9. Manually Configuring OSI Transport Network Applications 132

8.5.3. DECnet and OSI Applications over TCP/IP .. 133
8.5.3.1. Examples Establishing Network Connections Using DECnet over TCP/
IP ... 134
8.5.3.2. Configuring DECnet over TCP/IP (RFC 1859) and OSI over TCP/IP
(RFC 1006) ... 135
8.5.3.3. Disabling DECnet Over TCP/IP .. 136
8.5.3.4. DECnet over TCP/IP Tracing Support with Common Trace Facility
(CTF) .. 136
8.5.3.5. Recovering from Problems ... 136
8.5.3.6. Connection Auditing .. 137
8.5.3.7. Proxy Access ... 137

8.6. Managing Session Control .. 137
8.6.1. Adding a Session Control Network Application ... 138
8.6.2. Deleting a Connection ... 138
8.6.3. Deleting and Recreating the OSI and NSP Entities .. 138

8.6.3.1. Commands Required When Reenabling the OSI Transport Entity 138
8.6.3.2. Commands Required When Reenabling the NSP Entity 139

8.7. Managing OSAK ... 139
8.7.1. Managing OSAK Addresses .. 139

8.7.1.1. Registering Active and Passive Addresses ... 140
8.7.2. NCL and the OSAK Databases .. 140

8.8. Configuring X.25 Services ... 141
8.8.1. OSI Transport Over X.25 CONS ... 142

8.8.1.1. CONS Addressing Mechanisms ... 142
8.8.1.2. X.25 CONS Management Entities ... 149
8.8.1.3. Configuring X.25 to Provide the CONS Network Service 155

8.8.2. Configuring Routing Over X.25 Circuits ... 156
8.8.2.1. Commands for Configuring General X.25 Routing Circuit Information 157
8.8.2.2. Configuring Routing Over X.25 Dynamically-Assigned Circuits 159
8.8.2.3. Configuring Routing Over X.25 Static Circuits 161

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus 163
9.1. Configuring OpenVMS Cluster Satellite Nodes in a DECnet-Plus Environment 163

9.1.1. Adding, Modifying, or Deleting an OpenVMS Cluster Satellite Node 163
9.1.1.1. Adding a New Satellite Node to an OpenVMS Cluster Environment 164

9.1.2. Making the Transition from an Existing DECnet Phase IV OpenVMS Cluster
Satellite Node .. 167
9.1.3. Specifying Defaults for Phase IV Prefix and Node Synonym Directory 169
9.1.4. Customizing Your MOP Client Database for Multiple Boot Nodes 169

vi

VSI DECnet-Plus for OpenVMS Network Management Guide

9.2. Using an OpenVMS Cluster Alias .. 170
9.2.1. Adding a Node to an OpenVMS Cluster Alias .. 171
9.2.2. Adding an OpenVMS Cluster Alias to the Namespace 171
9.2.3. Configuring Multiple OpenVMS Cluster Aliases .. 171
9.2.4. Controlling Connect Requests to the OpenVMS Cluster Alias 172

9.2.4.1. Controlling Connections to Network Applications 172
9.2.4.2. Controlling the Number of Connections Allowed for an Alias 173
9.2.4.3. Restriction When Using Applications Supported Using Cluster Aliases 174

9.3. Sharing Network Applications in an OpenVMS Cluster Environment 174
Chapter 10. Downline Loading and Upline Dumping Remote Systems 177

10.1. Automatically Configuring MOP ... 177
10.2. Manually Configuring MOP ... 178

10.2.1. Configuring MOP and MOP Circuits .. 179
10.2.2. Setting Up a MOP Client for a Network Server ... 180

10.2.2.1. Setting Up MOP Service Passwords on a Network Server 182
10.2.3. Setting Up a MOP Client for an OpenVMS Cluster Satellite 183
10.2.4. After Configuring MOP .. 184
10.2.5. MOP’s Use of Default Directories .. 184

10.3. Starting MOP .. 185
10.3.1. New MOP Receive Buffer Limit .. 185

10.4. Stopping MOP .. 186
10.5. Downline Loading a Client System ... 186

10.5.1. Using the NCL Load Command .. 186
10.5.2. Using the NCL Boot Command ... 187
10.5.3. Automated Downline Loading ... 188
10.5.4. Supported Image Formats for Downline Loading ... 189

10.6. Automated Upline Dumping ... 190
10.7. Console Carrier ... 190
10.8. Using the LAN Configuration Monitor .. 191

Chapter 11. Monitoring the Network ... 193
11.1. Using the NCL Show Command to Monitor the Network ... 193

11.1.1. Using Counters to Evaluate Network Operations .. 193
11.1.2. Displaying Addresses .. 195
11.1.3. IP Address Backtranslation .. 195
11.1.4. More Examples Using the NCL Show Command .. 197

11.2. Using Logical Names to Obtain Status About the Network .. 198
11.3. Monitoring the OSAK Component of DECnet-Plus .. 199

11.3.1. Counting Connections, Releases, and Aborts ... 199
11.3.2. Monitoring Upper Layer Events ... 200
11.3.3. Checking Ports and Addresses ... 200

Chapter 12. Monitoring Network Events ... 201
12.1. Event Dispatching Concepts ... 201
12.2. Using Event Filters .. 204
12.3. Setting Up and Using Event Dispatching ... 205

12.3.1. Creating the Event Dispatcher .. 206
12.3.2. Setting Up Outbound Streams and Event Sinks ... 207
12.3.3. Identifying the Sink for an Outbound Stream .. 207
12.3.4. Creating an Event Sink ... 209
12.3.5. Setting Up Event Sink Filters .. 209
12.3.6. Testing Event Sink Filters .. 209
12.3.7. Modifying an Event Sink Filter .. 210

vii

VSI DECnet-Plus for OpenVMS Network Management Guide

12.3.8. Specifying the Event Report Destination ... 210
12.3.9. Using a DECdns Namespace Object Name with a Sink 211
12.3.10. Setting an End-User Specification for a Sink ... 211
12.3.11. Modifying the Display of Event UIDs .. 212
12.3.12. Enabling an Event Sink ... 212
12.3.13. Creating an Outbound Stream Entity .. 213
12.3.14. Setting Up Outbound Stream Event Filters .. 213
12.3.15. Testing Outbound Stream Event Filters ... 215

12.3.15.1. Correcting Outbound Stream Event Filters ... 215
12.3.16. Enabling an Outbound Stream Entity .. 217
12.3.17. Modifying Outbound Stream Characteristics .. 217
12.3.18. Enabling an Outbound Event Stream .. 218

12.4. Sample Event Report ... 218
12.5. Managing a Connection Between an Outbound Stream and an Event Sink 219

12.5.1. Establishing a Connection .. 219
12.5.2. Terminating a Connection ... 219
12.5.3. Shutting Down a Connection ... 220

12.6. Shutting Down Event Dispatching ... 221
12.6.1. Disabling an Outbound Stream and Its Connection .. 221
12.6.2. Disabling and Deleting an Event Sink ... 221

12.7. Collecting Event Reports from Phase IV Systems ... 222
12.7.1. Creating and Enabling the Relay Entity ... 222
12.7.2. Disabling and Deleting the Relay Entity .. 222
12.7.3. Enabling and Disabling Logging Entities ... 222
12.7.4. Using NCP Event Logging Commands on the Phase IV Systems 222
12.7.5. Sample Relayed Phase IV Event .. 223

Appendix A. DECnet Phase IV Components and Corresponding Phase V Entities 225
Appendix B. delay factor and delay weight for NSP and OSI Transport 229

B.1. delay factor and delay weight ... 229
B.2. Estimating the Round-Trip Delay ... 230

Appendix C. decnet_migrate Commands ... 231
C.1. Running decnet_migrate on Your System ... 231

Appendix D. decnet_register Commands ... 247
D.1. The Command Line Interface .. 247

D.1.1. Running decnet_register ... 247
Appendix E. Examples of Network Management Tasks .. 277

E.1. Event Dispatcher ... 277
E.1.1. Event Dispatcher .. 278

E.2. Session Control Application ... 278
E.3. NSP ... 279
E.4. OSI Transport ... 279
E.5. Routing Initialization Password .. 280
E.6. MOP .. 280

Appendix F. Using the Console Carrier ... 283
F.1. Using the Console Carrier .. 283

Appendix G. Migration Guidelines for VAX P.S.I. .. 285
G.1. Terminology ... 285
G.2. Phase IV Databases and DECnet Phase V Entities .. 285

G.2.1. X25 Access ... 286

viii

VSI DECnet-Plus for OpenVMS Network Management Guide

G.2.1.1. Configuring X25 Access Filters for Use by OSI Transport (VAX Only) 286
G.2.2. X25 Client .. 287
G.2.3. X25 Server .. 287
G.2.4. X25 Relay (OpenVMS I64 and OpenVMS Alpha) .. 288
G.2.5. X25 Protocol ... 288
G.2.6. LAPB ... 288
G.2.7. LLC2 .. 288
G.2.8. Modem Connect .. 289
G.2.9. XOT (OpenVMS I64 and OpenVMS Alpha Only) ... 289

G.3. Attribute Mapping .. 289
G.3.1. X25-ACCESS NETWORK Database .. 289
G.3.2. X25-PROTOCOL NETWORK Database ... 290
G.3.3. X25-PROTOCOL DTE Database .. 290
G.3.4. X25-PROTOCOL GROUP Database ... 292
G.3.5. X25-SERVER Database ... 292
G.3.6. X25-SERVER Local Destination Database ... 293
G.3.7. X25-SERVER Remote Destination Database .. 294
G.3.8. LINE Database .. 296
G.3.9. X29-SERVER Database ... 297
G.3.10. X29-SERVER Destination Database .. 297
G.3.11. X.25 Information in the CIRCUIT Database .. 299

G.3.11.1. DLM Outgoing Circuit .. 299
G.3.11.2. DLM Incoming Circuit .. 300
G.3.11.3. DLM PVC Circuit ... 302
G.3.11.4. PVC Circuit for X.25 Application ... 303

G.4. Security ... 304
G.4.1. X.25-Specific Rights Identifiers .. 304
G.4.2. Security Access Actions ... 305
G.4.3. Database Mapping ... 305

G.4.3.1. The Remote DTE Rights Database ... 305
G.4.3.2. The Access Node Rights Database .. 305
G.4.3.3. The Local DTE Access Control Database .. 306
G.4.3.4. The Remote DTE Access Control Database ... 306
G.4.3.5. The Destination Access Control Database .. 306
G.4.3.6. PVC and Closed User Group Security .. 306

Appendix H. Network Management Graphical User Interface (NET$MGMT) 309
H.1. Network Management Graphical User Interface (NET$MGMT) 309
H.2. Rights Required to Run NET$MGMT ... 309
H.3. How to Run NET$MGMT .. 309
H.4. Managing Other DECnet Phase V Nodes ... 310

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX) 311
I.1. Asynchronous DECnet Connections ... 311

I.1.1. Establishing a Static Asynchronous Connection .. 312
I.1.1.1. Terminating a Static Asynchronous Connection 315
I.1.1.2. Reasons for Failure of Static Asynchronous Connections 315

I.1.2. Establishing a Dynamic Asynchronous Connection ... 316
I.1.2.1. Setting Up Dynamic Asynchronous Connections 316
I.1.2.2. Switching on Dynamic Asynchronous Connections 319
I.1.2.3. Managing Dynamic Asynchronous Resources .. 321
I.1.2.4. Terminating a Dynamic Asynchronous Connection 322
I.1.2.5. Reasons for Failure of Dynamic Asynchronous Connections 322

ix

VSI DECnet-Plus for OpenVMS Network Management Guide

x

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. About This Manual
The VSI DECnet-Plus for OpenVMS Network Management Guide provides conceptual and task
information about managing VSI’s DECnet-Plus product. This guide explains how to manage and
monitor the network.

3. Intended Audience
This book is intended for system managers and network managers who control, monitor, or test DECnet-
Plus software running on an OpenVMS operating system. This guide assumes you are familiar with your
operating system, but not necessarily experienced with the DECnet-Plus product and the DECnet Phase
V architecture.

4. Related Documents
DECnet-Plus for OpenVMS documentation is available in two sets:

● Documentation set for DECnet-Plus for OpenVMS

● Supplemental X.25 for OpenVMS documentation set

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions
The following conventions may be used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

xi

https://docs.vmssoftware.com

Preface

Convention Meaning

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

... A horizontal ellipsis in examples indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

xii

Chapter 1. Introduction to DECnet-
Plus Network Management
Every day, a business depends on its network to exchange data in a timely, reliable fashion. A well
managed network lets an enterprise accomplish common, essential, time-critical business functions.
These tasks might include:

● Supporting transaction processing applications, for which remote access to distributed databases is
required

● Disseminating corporate documents

● Exchanging electronic mail messages

Whatever the task, the network is indispensable when users on multiple systems need to communicate.
Consequently, understanding how to manage a DECnet Phase V network becomes vitally important to
an enterprise that uses DECnet Phase V software such as DECnet-Plus for OpenVMS.

1.1. What Is Network Management?
A DECnet-Plus system needs little day-to-day management once you have installed and configured it.
You might need, however, to modify the configuration occasionally to meet changing circumstances.
You also need to monitor the system to make sure it is working correctly and providing the best service
for its users.

This book provides information about postinstallation and postconfiguration tasks you might have
to perform. For information about troubleshooting your network, refer to the VSI DECnet-Plus for
OpenVMS Problem Solving Guide.

DECnet-Plus provides many network management tools you can use to manage, monitor, and
troubleshoot your network. The primary tool you will use for managing your network is Network
Control Language (NCL). Table 1.1, "Network Management Tasks and Tools" correlates major
network management tasks with the appropriate tool for accomplishing that task. Table 1.1, "Network
Management Tasks and Tools" also provides a pointer to where you can find more information about the
tasks and tools.

Table 1.1. Network Management Tasks and Tools

Task Tool See

Managing

Managing nodes in your
namespace

decnet_register Chapter 5, "Managing
Name Service Searches and
Information"

Managing the namespace DNS$CONTROL VSI DECnet-Plus for OpenVMS
DECdns Management Guide

Reconfiguring network
components

NET$CONFIGURE Chapter 6, "Modifying Your
Network" and VSI DECnet-Plus
for OpenVMS Installation and
Configuration

1

Chapter 1. Introduction to DECnet-Plus Network Management

Task Tool See

Converting Network Control
Program (NCP) to NCL
commands

decnet_migrate and NCP
Emulator

Chapter 2, "Transitioning from
NCP to NCL"

Setting up routing between
DECnet Phase IV and Phase V
areas

decnet_migrate Chapter 4, "Managing Routing
Between DECnet Phase IV and
Phase V Areas"

Downline loading, upline
dumping, and controlling remote
or unattended systems

NCL and the Maintenance
Operations Protocol (MOP)

Chapter 10, "Downline Loading
and Upline Dumping Remote
Systems"

Setting up network security,
communications links

NCL

Network Management Graphical
User Interface (NET$MGMT)

Chapter 7, "Managing
Network Security", Chapter 8,
"Managing DECnet Phase V
Communications", Appendix H,
"Network Management Graphical
User Interface (NET$MGMT)",
Chapter 2, "Transitioning from
NCP to NCL"

Setting up an OpenVMS Cluster
alias

NCL

Network Management Graphical
User Interface (NET$MGMT)

Chapter 9, "Setting Up an
OpenVMS Cluster Environment
for DECnet-Plus", Appendix H,
"Network Management Graphical
User Interface (NET$MGMT)"

Monitoring

Reporting network events during
network operation

NCL and the event dispatcher Chapter 12, "Monitoring Network
Events"

Collecting information about your
network configuration

decnet_migrate Chapter 3, "Checking the
Network’s Configuration"

Displaying network status and
characteristics

NCL

Network Management Graphical
User Interface (NET$MGMT)

Chapter 11, "Monitoring the
Network", Appendix H, "Network
Management Graphical User
Interface (NET$MGMT)"

Problem Solving

Testing network software and
hardware by sending data through
various network components and
returning it

NCL and loopback tests VSI DECnet-Plus for OpenVMS
Problem Solving Guide

Testing network connections,
disconnect messages, and
interrupts and checking for data
integrity

DECnet Test Sender/DECnet Test
Receiver (DTS/DTR)

VSI DECnet-Plus for OpenVMS
Problem Solving Guide

Collecting and displaying
information about specific
protocol exchanges between
systems in the network

Common Trace Facility (CTF) DECnet/OSI for VMS CTF Use

2

Chapter 1. Introduction to DECnet-Plus Network Management

1.2. Identifying Manageable Network
Components
A DECnet Phase V network consists of many units (for example, systems and network components
such as links) that you can manage. To allow management of large networks, the units are organized
into a hierarchical structure. This structure establishes a naming scheme that allows you to deal with the
complexity of large networks. It is defined here only for the purpose of uniquely identifying entities, and
does not show how the entities interact with one another.

Figure 1.1, "Entity Naming Hierarchy" shows the DECnet entity naming hierarchy. Each computer
system in a DECnet Phase V network is a top-level unit that is represented as a node entity in network
management. A node entity is assigned a name that is unique throughout the network. This forms the
basis for assigning names to subordinate entities in the system that will themselves have networkwide
uniqueness.

Below the node entity in Figure 1.1, "Entity Naming Hierarchy" are module entities. Modules consist of a
group of network functions that, together, provide a particular service.

Some examples of modules are Modem Connect, OSI Transport, Data Communications Message
Protocol (DCMP), and High-Level Data Link Control (HDLC). There is only one occurrence of a
module entity in a node.

Below the module are additional entities (or child entities of the module). These entities allow
management of some part of a module’s functions. The HDLC module, for example, maintains hdlc link
entities for each communications link over which the protocol operates; hdlc link is the full class name
of the communication link entity. Each instance of the hdlc link entity requires further identification to
allow it to be distinguished from the others. For example, in hdlc link hdlc-1, hdlc-1 is the instance name
that further identifies the hdlc link.

Figure 1.1. Entity Naming Hierarchy

3

Chapter 1. Introduction to DECnet-Plus Network Management

The hierarchy of entities is used to form an entity name. An entity name consists of a global part and a
local part. The global part contains the node entity name, which identifies the node in the network. The
local part identifies the entity within the node. The local part is derived from the class name and instance
name, if applicable, of the entity itself and those of its parent entities, up to the level of the node entity.

To identify an instance of an entity, supply the information indicated by the italicized text:

Global part Local part

node node-instance module entity-class entity-instance

For example:

node admin hdlc link hdlc-1

This syntax is similar to a fully specified mailing address, where the order of addressing might consist
of the country, state, city, street, house and individual. All the components of the mailing address are
needed to uniquely identify the recipient of the mail. Regarding DECnet Phase V networks, you must
include all parts of the entity name to uniquely specify the precise unit being managed.

1.3. Modules and Entities
DECnet-Plus software implements the DECnet Phase V layered model. For each layer, DECnet-Plus
software provides one or more modules, each of which implements a specific protocol and provides a
corresponding service within the system. Each module is divided into entities that permit management of
some part of the module’s function.

Any modifications that you make to a DECnet-Plus system involve changing or adding to the network
management information on the system. To perform network management tasks, you manipulate entities
in the various modules.

For example, the Modem Connect module holds information for synchronous communications devices
attached to a system. Figure 1.2, "Modem Connect Module" shows a typical module (Modem Connect)
and its entities. The line entity in Modem Connect contains all the information (such as line speed,
duplex, errors detected, and current state) about a particular communications line. A line entity exists for
each communications line on the system.

Figure 1.2. Modem Connect Module

4

Chapter 1. Introduction to DECnet-Plus Network Management

Figure 1.3, "Entity Hierarchy and the Upper Layers" and Figure 1.4, "Entity Hierarchy and the Lower
Layers" show the entity hierarchy structure for each module within each layer of the DECnet Phase V
layered model.

Figure 1.3. Entity Hierarchy and the Upper Layers

5

Chapter 1. Introduction to DECnet-Plus Network Management

Figure 1.4. Entity Hierarchy and the Lower Layers

To manage a system effectively, you need to know which module and entity contain what information.
Table 1.2, "Management Tasks and Related Network Management Modules" summarizes the main tasks
you can perform with each module. It includes names of entities in the module.

Table 1.2. Management Tasks and Related Network Management Modules

Tasks Module Entities

Enable or disable the system for
networking.

Node node

Manage modem connections. Modem Connect modem connect, call
control port, data
port, line, template

Manage downline loads and
upline dumps of soft-loadable
microcode devices, such as DSF.

Device device, unit

Manage Ethernet CSMA-CD
connections.

CSMA-CD csma-cd, port, station

Manage fiber-optic data
transmission.

FDDI fddi, link, phy port,
station

Manage synchronous or
asynchronous DDCMP
connections.

DDCMP ddcmp, link, link
logical station, port

Manage synchronous HDLC
connections.

HDLC hdlc, link, link logical
station, port

6

Chapter 1. Introduction to DECnet-Plus Network Management

Tasks Module Entities

Manage X.25 level 2 protocol to
exchange frames between a DTE
and a DCE.

LAPB lapb, link, port

Manage X.25 level 2 protocol for
communications over a LAN.

LLC2 llc2, port, sap, sap link

Manage X.25 level 2 protocol
for communications over TCP/IP
connections (OpenVMS I64 and
OpenVMS Alpha only)

XOT xot, sap, link

Manage framing functions for a
communications link.

Frame frame, link, port

Manage routing for end node and
intermediate node configurations.

Routing routing, circuit,
circuit adjacency,
circuit ip address
translation, circuit
ip adjacency, circuit
ip reachable address,
circuit reachable
address, destination
area, destination
node, ip destination
address, permitted
neighbor, port,
reachable address

Manage downline loads and
upline dumps of dedicated
communications server systems.

MOP mop, circuit, circuit
operation, circuit
station, client

Manage transport between
DECnet Phase V nodes, and
DECnet Phase V nodes and
multivendor OSI systems.

OSI Transport osi transport,
application, local
nsap, local nsap remote
nsap, port, template

Manage transport between
DECnet Phase V nodes, and
between DECnet Phase V nodes
and Phase IV nodes.

NSP nsp, local nsap, local
nsap remote nsap, port

Manage proxies, applications, and
processes using the network.

Session Control session control,
application, port, tower
maintenance, transport
service

Invoke loopback tests between
applications on two nodes.

Loopback Application loopback application

Log events about network
operations.

Event Dispatcher event dispatcher,
outbound stream, relay,
relay logging, sink,
sink inbound stream

Manage an X.25 user interface. X25 Access x25 access,
application, dte class,

7

Chapter 1. Introduction to DECnet-Plus Network Management

Tasks Module Entities
filter, port, reachable
address, security
dte class, security
dte class remote
dte, security filter,
template

Manage how an X.25 client
system operates.

X25 Client x25 client

Manage DTEs, PVCs, and CUGs
to control packet exchange
between DTEs and DCEs.

X25 Protocol x25 protocol, dte, dte,
pvc, group

Manage incoming and outgoing
switched virtual calls.

X25 Relay x25 relay, client, pvc

Manage how X.25 Connector
systems communicate with client
systems.

X25 Server x25 server, client,
security nodes

Manage Open System
Application Kernel (OSAK)
software, VSI’s implementation
of the OSI upper layers.

OSAK osak, application,
invocation, port

Manage namespace and
clearinghouse characteristics for
the VSI DECnet-Plus Distributed
Name Service (DECdns) clerk.

DNS Clerk dns clerk, known
namespace, manual
nameserver, remote
clearinghouse

Manage clearinghouse
characteristics for the DECdns
server.

DNS Server dns server,
clearinghouse

Manage system clocks for the
VSI DECnet-Plus Distributed
Time Service (DECdts) server.

DTSS dtss, decnet global
server, decnet local
server

Establish an alias for an
OpenVMS Cluster environment.

Alias alias, port

To manage entities, you issue directives (commands) using NCL. The commands enable you to manage
local or remote network components by identifying entities throughout the network by their unique
entity names. For instance, you can create, examine, and modify entities.

For definitive information about modules, entities, and supported attributes, characteristics, status,
counters, and commands, refer to the VSI DECnet-Plus for OpenVMS Network Control Language
Reference Guide.

Note

DECnet Phase IV and Phase V differ in how network components are managed. Chapter 2,
"Transitioning from NCP to NCL" provides information on converting Network Control Program
(NCP) commands to Network Control Language (NCL) commands. Appendix A, "DECnet Phase
IV Components and Corresponding Phase V Entities" provides a table of Phase IV components and
parameters and their equivalent DECnet Phase V entities and attributes.

8

Chapter 1. Introduction to DECnet-Plus Network Management

1.4. DECnet Phase V Configurations
DECnet Phase V networks can be organized as local area networks (LANs) or wide area networks
(WANs) or a combination of the two. A LAN provides for communications within a limited
geographical area, such as a building or a cluster of buildings. A WAN permits long-distance
communication over media such as dedicated, leased and dialup lines, and microwave and satellite links.
A WAN can include one or more LANs.

DECnet-Plus allows you to manage the following local and wide area links:

● LAN connections using Carrier Sense, Multiple Access with Collision Detect (CSMA-CD) protocol.
DECnet-Plus supports the Ethernet protocol and the IEEE 802.3 standard.

● LAN connections using the Fiber Distributed Data Interface (FDDI) protocols.

● WAN connections using the High-Level Data Link Control (HDLC) protocol.

● WAN connections using the Data Communications Message Protocol (DCMP).

1.4.1. DECnet Phase V Configurations
● WAN connections using X.25 (level 2) data link capability over the Link Access Protocol Balanced

(LAPB) protocol.

● LAN connections using X.25 (level 2) data link capability over the Logical Link Control type 2
(LLC2) protocol.

● LAN/WAN connections using X.25 (level 2) data link capability over Transmission Control
Protocol/Internet Protocol networks (XOT).

For more detailed descriptions of DECnet-Plus network configurations, refer to the VSI DECnet-Plus
Planning Guide and the VSI DECnet-Plus for OpenVMS Introduction and User's Guide.

9

Chapter 1. Introduction to DECnet-Plus Network Management

10

Chapter 2. Transitioning from NCP
to NCL
In a Phase IV network, you use the Network Control Program (NCP) to configure, control, monitor,
and test the network. In a DECnet Phase V network, you use the Network Control Language (NCL) to
perform the same tasks. For an introduction to NCL, refer to the VSI DECnet-Plus for OpenVMS Network
Control Language Reference Guide. This chapter describes ways to convert NCP commands to NCL
commands for use on DECnet Phase V nodes.

2.1. Using decnet_migrate to Convert NCP
Commands to NCL Commands
Command procedures that issue NCP commands to manage the local node do not work in the DECnet
Phase V environment. Similarly, command procedures that issue NCP commands to a remote node do
not work if the remote node has been upgraded to DECnet Phase V software. Do the following to revise
any command procedures that issue NCP commands:

● To use the procedure to issue the commands to Phase IV nodes, run the procedure from NCP:

$ run sys$system:ncp
NCP>

● To use the procedure to issue commands to DECnet Phase V systems, change the NCP commands to
NCL commands.

VSI supplies a tool, decnet_migrate, that converts NCP commands to NCL commands when
possible. The tool converts individual NCP commands to NCL commands, and NCP commands within
command procedures to NCL commands.

Three decnet_migrate convert commands convert NCP commands to NCL equivalents, where
equivalents exist. The command conversion might not be complete because of the differences between
NCP and NCL. You might have to edit the NCL command before you can use it. For example, this
applies to Phase IV components that have new entity names for DECnet Phase V. In the output that
convert generates, the parts of the commands that cannot be converted are set off in tripple curly
brackets.

Table 2.1, "NCP Commands That Are Converted to NCL" lists the NCP commands that the
decnet_migrate convert commands can convert to NCL. Many NCP commands have NCL
equivalents or near equivalents. See Appendix A, "DECnet Phase IV Components and Corresponding
Phase V Entities" for a list of NCP commands with their nearest NCL equivalents. For an alphabetical
command reference for decnet_migrate, see Appendix C, "decnet_migrate Commands".

You may also use the Language-Sensitive Editor (LSE) to assist you when writing procedures
that contain NCL commands (see Section 2.1.1.4, "Editing a Command File That Contains NCL
Commands").

Table 2.1. NCP Commands That Are Converted to NCL

Verb Entity Attribute or Argument

tell node_name command_to_convert

set or clear executor address

11

Chapter 2. Transitioning from NCP to NCL

Verb Entity Attribute or Argument
area maximum cost
area maximum hops
broadcast routing
timer
buffer size
delay factor
delay weight
inactivity timer
incoming proxy
incoming timer
maximum address
maximum area
maximum buffers
maximum cost
maximum hops
maximum links
maximum path splits
maximum visits node
outgoing proxy
outgoing timer
retransmit factor
segment buffer size
state
type
all

show executor summary
status
characteristics
counters

loop executor count
length
with

show node
known nodes
active nodes
adjacent nodes

summary
status
characteristics
counters

trigger node or via physical address
service password
via

load node or via from
management file
physical address
secondary loader
service password
tertiary loader
via

loop node count
length
with

12

Chapter 2. Transitioning from NCP to NCL

Verb Entity Attribute or Argument

set or clear circuit
known circuits

active base
active increment
cost
dead threshold
dying base
dying increment
dying threshold
hello timer
inactive base
inactive increment
inactive threshold
polling state
router priority
state
all

show circuit
known circuits
active circuits

summary
status
characteristics
counters

loop circuit count
length
physical address
with

set or clear line
known lines

clock
dead timer
delay timer
line speed
receive buffers
retransmit timer
scheduling timer
state
stream timer
all

load node or via from
management file
physical address
secondary loader
service password
tertiary loader
via

loop node count
length
with

set or clear circuit
known circuits

active base
active increment
cost
dead threshold
dying base
dying increment

13

Chapter 2. Transitioning from NCP to NCL

Verb Entity Attribute or Argument
dying threshold
hello timer
inactive base
inactive increment
inactive threshold
polling state
router priority
state
all

show circuit
known circuits
active circuits

summary
status
characteristics
counters

loop circuit count
length
physical address
with

set or clear line
known lines

clock
dead timer
delay timer
line speed
receive buffers
retransmit timer
scheduling timer
state
stream timer
all

show line
known lines

summary
status
characteristics
counters

show link
known links

summary
status
characteristics
counters

set or clear object
known objects

accept
account
alias incoming
alias outgoing
default user
file
number
password
proxy
type
user
all

show object
known objects

summary
status

14

Chapter 2. Transitioning from NCP to NCL

Verb Entity Attribute or Argument
characteristics
counters

show logging
known logging

summary
status
characteristics
counters

2.1.1. Running decnet_migrate on Your System
Invoke decnet_migrate by entering the following command:

$ run sys$update:decnet_migrate

2.1.1.1. Converting an NCP Command to an NCL Command
The following example shows how to convert a single NCP command to its closest equivalent.

decnet_migrate> convert command "ncp-command"

To convert to NCL, replace ncp-command with the NCP command exactly as if it were entered at the
NCP> prompt and enclose the command in quotation marks. After you execute the command, the output
of the convert command appears on your terminal.

For more information about the convert command, see Appendix C, "decnet_migrate Commands".

2.1.1.2. Converting NCP Commands in a DCL Command File to
NCL
The following example shows how to convert NCP commands contained within a DCL command
procedure to their closest NCL command equivalent within the procedure.

decnet_migrate> convert dcl_file input_file [to output_file]

For more information about the convert dcl_file command, see Appendix C, "decnet_migrate
Commands".

2.1.1.3. Converting NCP Commands in an NCP Command File to
NCL
The following example shows how to convert NCP commands contained within an NCP command
procedure to their closest NCL command equivalent within the procedure.

decnet_migrate> convert ncp_file input_file [to output_file]

For more information about the convert ncp_file command, see Appendix C, "decnet_migrate
Commands".

2.1.1.4. Editing a Command File That Contains NCL Commands
The following example shows how to invoke the Language-Sensitive Editor (LSE) with the edit
command. You automatically set up LSE by specifying .COM or .NCL file extensions for the NCL
command file that you are editing.

15

Chapter 2. Transitioning from NCP to NCL

Note

The LSE layered product must be installed and licensed on your system. For more information about
LSE, see the Guide to Language-Sensitive Editor.

The initial placeholder used to start expanding a command is {NCL_SCRIPT}.

decnet_migrate> edit file-name

For more information about the edit command, see Appendix C, "decnet_migrate Commands".

2.2. Using the Graphical User Interface for
DECnet Phase V Network Management
You can access NCL either through a command line interface or through the graphical user interface
(GUI). The GUI allows network managers to view the status of network components and control those
components from a Motif-based window interface located at SYS$SYSTEM:NET$MGMT.EXE.

The NET$MGMT GUI utility is a Motif application that you can use as a learning tool to ease the
transition to NCL. This utility can help you become familiar with the DECnet Phase V hierarchy of
manageable components (modules, entities, and subentities) and with NCL syntax.

The NET$MGMT GUI utility can also perform some task-oriented functions that involve many NCL
commands or functions that are complex in some way. It provides a way to perform the equivalent of
ncp show known links and ncp show known node counters on a Phase V system.

Refer to Appendix H, "Network Management Graphical User Interface (NET$MGMT)" for more
information about the NET$MGMT GUI.

2.3. Using the NCP Emulator to Convert NCP
Commands to NCL
Many VSI software products must register themselves with the network during their installation. Some
of these products issue NCP commands during the installation. The NCP Emulator converts the NCP
commands to NCL commands.

The NCP Emulator is designed to facilitate software installations on DECnet Phase V systems; it is not
intended as a replacement for NCL. The NCP Emulator supports conversion for the NCP commands
listed in Table 2.2, "NCP Commands Converted by the NCP Emulator".

To have session control applications registered when you install them, you must have the following
identifiers:

● NET$MANAGE

● NET$EXAMINE

The following example shows how to set up these identifiers. This example assumes you are installing
the applications from the SYSTEM account.

$ SET DEF SYS$SYSTEM

16

Chapter 2. Transitioning from NCP to NCL

$ RUN AUTHORIZE
UAF> GRANT/ID NET$EXAMINE SYSTEM
%UAF-I-GRANTMSG, identifier NET$EXAMINE granted to SYSTEM
UAF> GRANT/ID NET$MANAGE SYSTEM
%UAF-I-GRANTMSG, identifier NET$MANAGE granted to SYSTEM
UAF> EXIT
%UAF-I-NOMODS, no modifications made to system authorization file
%UAF-I-NAFNOMODS, no modifications made to network proxy data base
%UAF-I-RDBDONEMSG, rights data base modified
$

In addition, ensure that the following NCP Emulator private command files are added to, and run from,
the site-specific system startup file:

● SYS$MANAGER:NET$NCP_MOP_CLIENTS.COM

● SYS$MANAGER:NET$NCP_APPLICATIONS.COM

● SYS$MANAGER:NET$NCP_MOP_CIRCUITS.COM

Note

The NCP Emulator attempts to communicate with the NET$MOP component of your DECnet Phase V
system. Therefore, before invoking the NCP Emulator, ensure that the NET$MOP process is running (see
Section 10.3, "Starting MOP" for information about starting MOP).

Table 2.2. NCP Commands Converted by the NCP Emulator

Verb Entities

CLEAR CIRCUIT
KNOWN CIRCUITS
OBJECT
KNOWN OBJECTS

DEFINE CIRCUIT
NODE
OBJECT

PURGE CIRCUIT
KNOWN CIRCUITS
OBJECT
KNOWN OBJECTS

SET CIRCUIT
EXECUTOR NODE
NODE
KNOWN NODES
OBJECT

SHOW/LIST CIRCUIT
KNOWN CIRCUITS
EXECUTOR
NODE
KNOWN NODES
OBJECT
KNOWN OBJECTS

17

Chapter 2. Transitioning from NCP to NCL

Verb Entities

TELL

All other NCP commands are unsupported and will cause an %NCP-W-SYSMGT error message. Some
of these unsupported NCP commands have corresponding NCL commands that perform identical
operations. Table 2.3, "Equivalents for Unsupported NCP Commands" lists the equivalent NCL command
for each of these unsupported NCP commands.

Table 2.3. Equivalents for Unsupported NCP Commands

NCP Command NCL Equivalent

CONNECT set host/mop

LOAD load mop circuit

load mop client
LOOP CIRCUIT loop mop circuit

loop mop client
TRIGGER boot mop circuit

boot mop client

2.3.1. Information About Supported NCP Commands
This section includes special notes about the NCP commands that the NCP Emulator tool supports.

SHOW/LIST Command
In DECnet Phase IV NCP, the SHOW command displays the volatile database information (information
on the running system), while the LIST command displays the permanent database information. Using
the DECnet Phase V NCP Emulator, both of these commands are converted to display volatile database
information. NCL has no command that displays permanent database information. In addition, the output
for these commands differs slightly between DECnet Phase IV NCP and the DECnet Phase V NCP
Emulator.

SET Command
The NCP SET command usually spawns an equivalent NCL command. If the NCP SET command
specifies the name of a component that does not exist, usually the spawned NCL command creates an
entity with that name, just as the NCP command does.

You can use node numbers as the target of the SET command, such as in the following example:

SET NODE 12.88 LOAD FILE LOAD.SYS

If you use a node number as the target, and if a mop client does not already exist with a matching
PHASE IV CLIENT ADDRESS (or ADDRESSES) attribute, the NCP Emulator checks DECdns for
a synonym. If a synonym is found, the NCP Emulator uses the synonym as the name of the mop client
when it is created.

You can specify NAME as part of the SET command as in the following example:

SET NODE 12.88 NAME ROYK

18

Chapter 2. Transitioning from NCP to NCL

The name is used as the mop client name.

The SET KNOWN NODE/CIRCUIT/OBJECT ALL command executes both the standard NCL startup
script and the private command procedure maintained by the NCP Emulator. If you use only SET ALL
on a specific named entity, the NCP Emulator executes the private command file.

DEFINE Command
The DEFINE command writes NCL commands to the private script files. When using the command to
define nodes, if you specify the node address, the NCP Emulator searches the script file for a client with
the corresponding address.

If the NCP Emulator does not find a corresponding address, and if you did not specify the NAME
parameter in the same command, the emulator checks DECdns for a node synonym. If you specify the
NAME parameter later, the mop client is renamed.

The NCP Emulator does not support the NCP DEFINE KNOWN command.

CLEAR Command
The CLEAR command clears a parameter or a set of parameters in the corresponding NCL entity
instance. The CLEAR ALL command deletes the instance.

PURGE Command
The PURGE command removes the SET command for a parameter from the private script file. The
PURGE ALL command removes the entire object.

The NCP Emulator does not support the NCP PURGE KNOWN command. Because the PURGE
command operates only on the NCP

Emulator private command file, use NET$CONFIGURE to purge objects from the standard system
applications or mop clients scripts (SYS$MANAGER:NET$APPLICATION_STARTUP.NCL and
SYS$MANAGER:NET$MOP_CLIENT_STARTUP.NCL).

TELL Command
The TELL command functions as it does in DECnet Phase IV, allowing you to remotely manage
Phase IV nodes. For more information on how to remotely manage Phase IV nodes by using the NCP
Emulator, see Section 2.3.4, "Remotely Managing DECnet Phase IV Nodes".

SET EXECUTOR NODE Command
The SET EXECUTOR NODE command works as expected for managing Phase IV nodes.

2.3.2. Information About Supported NCP Components
The NCP Emulator supports all NCP components except the following:

● AREA

● LINES

● LINKS

19

Chapter 2. Transitioning from NCP to NCL

● LOGGING

● CONFIGURATOR

● X.25/X.29 modules

If you attempt an operation with one of these unsupported components, you will receive the %NCP-
W-UNRCMP error message or, with the AREA or LINKS components, a message stating that no
information exists for these components in the database.

The remainder of this section includes special notes about the supported NCP components.

EXECUTOR Component
The NCP Emulator supports only the SHOW and LIST commands with the EXECUTOR component. It
does not change or clear any EXECUTOR parameters.

The only relevant EXECUTOR parameters are NAME and ADDRESS. The Identification displayed
with the SHOW EXECUTOR command indicates that the node is DECnet-Plus, but the executor type is
displayed as "nonrouting IV."

NODE Component
The DECnet Phase IV NODE component usually corresponds to the NCL mop client entity, since a
product installation usually requires that type of information. You can reference a node by name, which
results in a look-up in the mop client database. If the NCP Emulator does not find a name, it checks
DECdns for a node synonym with that name and the corresponding DECnet Phase IV address.

If you refer to a node by node number, the NCP Emulator first searches the mop client database for a
client with a PHASE IV CLIENT ADDRESS attribute matching the specified node address. If it finds a
client with a matching address, the corresponding client name becomes the node name. If the emulator
does not find a matching address, it then searches for a client that has, as one of its ADDRESSES
attributes, an address that begins with AA-00-04-00 and translates to the specified address. If it still
cannot find a matching address, the emulator uses DECdns. Because referencing nodes by address is not
efficient, VSI recommends that you avoid doing so.

With the NCP Emulator, KNOWN NODES refers to all NCL mop client entities. The NCP Emulator
maps MOP-related parameters only. For example, it maps the following DECnet Phase IV SET NODE
command parameters to the corresponding NCL mop client attributes:

● DIAGNOSTIC FILE

● DUMP_FILE

● HARDWARE ADDRESS

● LOAD_ASSIST_AGENT

● LOAD_ASSIST_PARAMETER

● LOAD_FILE

● MANAGEMENT FILE

● SECONDARY LOADER

20

Chapter 2. Transitioning from NCP to NCL

● SERVICE_CIRCUIT

● SERVICE_DEVICE

● SERVICE_NODE_VERSION

● SERVICE_PASSWORD

● TERTIARY LOADER

DECnet Phase IV node parameters such as ACCESS and COUNTER TIMER have nothing to do with
NCL MOP, so they are ignored during the translation from NCP to NCL.

The NCP Emulator does not attempt to set, clear, purge, or define any other parameter. Permanent
database operations (DEFINE, PURGE, SET ALL) manipulate the NCP private command file
SYS$MANAGER:NET$NCP_MOP_CLIENTS.COM.

OBJECT Component
The NCP OBJECT component maps to the NCL session control applications
entity. The permanent database for objects is the NCP private command file
SYS$MANAGER:NET$NCP_APPLICATIONS.COM.

CIRCUIT Component
The NCP CIRCUIT component refers to the NCL csma-cd station and mop circuit entities. The SHOW
KNOWN CIRCUITS command will list all of the csma-cd station entities currently configured.

Only two circuit characteristics are used by the NCP Emulator: STATE and SERVICE. The STATE
characteristic determines whether MOP will service requests from that circuit. It is determined by the
csma-cd station state attribute. The NCP Emulator can change the STATE parameter from Off to On but
not from On to Off.

The SERVICE parameter indicates whether a mop circuit exists and whether the service is enabled. The
parameter also is used to enable or disable the service, such as with the NCP SET CIRCUIT SERVICE
ENABLED command.

The NCP Emulator uses the mop circuit entity that is linked to the data link circuit.

Circuit names are always of the form "ddd-u", where "ddd" indicates the device type (such as SVA and
BNA) and "u" indicates the controller (0 or 1, for example).

The naming scheme is the same scheme used with NCP. The NCP Emulator attempts to translate a
circuit name to the correct csma-cd station and mop circuit, regardless of their actual names used with
NCL. For example, the circuit name SVA-0 translates to the station whose COMMUNICATIONS PORT
attribute is "ESA" and to the mop circuit whose LINK NAME attribute refers to the station with "ESA".
The name BNA-1 translates to the station with "ETB."

Enabling the SERVICE parameter on a circuit first creates (if necessary) the appropriate csma-cd
station and/or mop circuit, and then enables the LOAD SERVER, DUMP SERVER, and CONSOLE
REQUESTER functions on the mop circuit. Disabling SERVICE disables the same functions on the mop
circuit.

The circuits command procedure is SYS$MANAGER:NET$NCP_MOP_CIRCUITS.COM.

21

Chapter 2. Transitioning from NCP to NCL

2.3.3. Running the NCP Emulator on Your System
Use the following command to run the NCP Emulator. The NCP Emulator will prompt you for an NCP
command, as shown in the following example:

$ run sys$system:ncp
NCP>

2.3.4. Remotely Managing DECnet Phase IV Nodes
You can use the NCP Emulator tool to manage remote Phase IV nodes with the TELL and SET
EXECUTOR NODE commands. For example, to zero EXECUTOR counters on a remote Phase IV
node from a local Phase V node, enter the following commands:

$ run sys$system:ncp
NCP> tell remnod "account password" zero exec counters

The NCP Emulator tool is not intended for management of Phase V nodes. The following error is
returned when an NCP Emulator command is attempted on a Phase V system without specifying a
remote Phase IV system:

NCP> zero exec counters
%NCP-W-SYSMGT, System-specific management function not supported

22

Chapter 3. Checking the
Network’s Configuration
Before you begin to change your network’s configuration, make sure you have a clear picture of the
network’s current topology. Two decnet_migrate commands, collect and report, gather and organize
information about the DECnet Phase IV and Phase V nodes and connections in your network. A third
command, show path, displays the possible paths that node-to-node communication might take through
the network, helping to determine what effect the transition has had on the network’s communication
paths.

Note

You need network management privileges that allow you to display information for each remote node in
the network, so the collect and show path commands can gather information from the nodes. You also
need the same privilege for the local node.

3.1. Determining Your Network Topology
The collect and show path commands operate by sending network management requests. They use the
Network Information and Control Exchange (NICE) Protocol and the Network Architecture Common
Management Information Protocol (NA CMIP); they do not use the Simple Network Management
Protocol (SNMP). The collect and show path commands can succeed only when the nodes are able to
respond to either NICE or DNA CMIP network management requests. The commands do not work, for
example, if the nodes respond only to SNMP requests.

For collect, if an area contains both routers that do and do not respond to NICE or DNA CMIP requests,
you can collect information about the area by using the area=node:node_name parameter and
specifying the node name of a router that does respond to NICE or DNA CMIP requests.

This use of the area parameter is useful when an area contains only a few routers, such as cluster alias
routers, that respond to NICE or DNA CMIP. The collected data will not, however, contain information
on nodes that do not respond to NICE or DNA CMIP requests, other than their network addresses.
Invoke decnet_migrate on OpenVMS systems by entering the following command:

$ run sys$update:decnet_migrate

3.1.1. Determining Your Network Topology
The following example shows how to collect and report information about your network configuration:

decnet_migrate> collect data_file
decnet_migrate> report report_file data=data_file

Collects all information about your network and places it in a data file.

Reports information gathered with the collect command. In this example, the data is supplied from
the data file and reported in a report file.

The following example shows how to use the show path command:

decnet_migrate> show path from node-name to node-name

23

Chapter 3. Checking the Network’s Configuration

For more information and an example output of the collect, report, and show path commands and their
associated parameters, see Appendix C, "decnet_migrate Commands".

3.1.2. Determining the DECnet Version of Your System
Either DECnet Phase IV or DECnet-Plus for OpenVMS (Phase V) can run on a particular system; thus,
you cannot use the OpenVMS version to determine which software version is running. Instead, an item
code for the $GETSYI system service (DECNET_VERSION) shows the version of DECnet that is
running. The system cell containing the setting of this value is set by SYS$NETWORK_SERVICES
when the system boots. You can read the value directly with a program or through the F$GETSYI lexical
function with a command procedure. The DECNET_VERSION item has the following format:

● Byte 0 = User ECO (dependent on the DECnet software ECO level)

● Byte 1 = DECnet Minor (dependent on the DECnet software version)

● Byte 2 = DECnet Major (4 for Phase IV, 5 for DECnet-Plus for OpenVMS)

● Byte 3 = Reserved

To distinguish Phase IV from DECnet-Plus for OpenVMS, use the DECnet Major (byte 2).

For example, the lexical function F$GETSYI ("decnet_version") returns the value %X00040000 for a
system running Phase IV. DECnet/OSI for OpenVMS Version 6.3 returns %X0005090F.

Note

See the footnote in Table 3.1, "$GETSYI DECNET_VERSION Item Code Values" for important
information about the non-standard use of the DECnet Minor and User ECO fields in certain versions of
DECnet-Plus.

Any program or command procedure that requires different execution based on the DECnet version
should check DECNET_VERSION.

The format of the version longword is as follows:

|Reserved|DECnet Major|DECnet Minor|User ECO| 31 0

Table 3.1, "$GETSYI DECNET_VERSION Item Code Values" shows all the DECNET_VERSION item
code values used for the various releases of DECnet/OSI and DECnet-Plus.

Table 3.1. $GETSYI DECNET_VERSION Item Code Values

Value DECnet Version

00051200 DECnet-Plus Version 8.2
00051100 DECnet-Plus Version T8.1
00051001 DECnet-Plus Version 7.3-2 (+ ECO 01)1

00051000 DECnet-Plus Version 7.3-21

00050F03 DECnet-Plus Version 7.3-1 (+ ECO 03)1

00050500 DECnet-Plus Version 7.3-1 (+ ECO 02)b

00050E05 DECnet-Plus Version 7.3-1 (+ ECO 01)
00050E04 DECnet-Plus Version 7.3-1
00050E07 DECnet-Plus Version 7.3 (+ ECO 04)

24

Chapter 3. Checking the Network’s Configuration

Value DECnet Version

00050E06 DECnet-Plus Version 7.3 (+ ECO 03)
00050E02 DECnet-Plus Version 7.3 (+ ECO 02)
00050E01 DECnet-Plus Version 7.3 (+ ECO 01)
00050E00 DECnet-Plus Version 7.3
00050D07 DECnet-Plus Version 7.2-1 (+ ECO 06)
00050D06 DECnet-Plus Version 7.2-1 (+ ECO 05)
00050D05 DECnet-Plus Version 7.2-1 (+ ECO 04)
00050D04 DECnet-Plus Version 7.2-1 (+ ECO 03)
00050D03 DECnet-Plus Version 7.2-1 (+ ECO 02)
00050D02 DECnet-Plus Version 7.2-1 (+ ECO 01)
00050D01 DECnet-Plus Version 7.2-1
00050D00 DECnet-Plus Version 7.2
00050C07 DECnet-Plus Version 7.1 (+ ECO 07)
00050C06 DECnet-Plus Version 7.1 (+ ECO 06)
00050C05 DECnet-Plus Version 7.1 (+ ECO 05)
00050C04 DECnet-Plus Version 7.1 (+ ECO 04)
00050C03 DECnet-Plus Version 7.1 (+ ECO 03)
00050C02 DECnet-Plus Version 7.1 (+ ECO 02)
00050C01 DECnet-Plus Version 7.1 (+ ECO 01)
00050C00 DECnet-Plus Version 7.1
00050B02 DECnet/OSI Version 7.0 (+ ECO 2)
00050B01 DECnet/OSI Version 7.0A MUP
00050B00 DECnet/OSI Version 7.0
0005090F DECnet/OSI Version 6.3 (+ ECO 15)
0005090E DECnet/OSI Version 6.3 (+ ECO 14)
0005090D DECnet/OSI Version 6.3 (+ ECO 13)
00050912 DECnet/OSI Version 6.3 (+ ECO 12)c

00050911 DECnet/OSI Version 6.3 (+ ECO 11)c

00050910 DECnet/OSI Version 6.3 (+ ECO 10)c

00050909 DECnet/OSI Version 6.3 (+ ECO 09)
00050908 DECnet/OSI Version 6.3 (+ ECO 08)
00050907 DECnet/OSI Version 6.3 (+ ECO 07)
00050906 DECnet/OSI Version 6.3 (+ ECO 06)
00050905 DECnet/OSI Version 6.3 (+ ECO 05)
00050904 DECnet/OSI Version 6.3 (+ ECO 04)
00050903 DECnet/OSI Version 6.3 (+ ECO 03)
00050902 DECnet/OSI Version 6.3 (+ ECO 02)
00050901 DECnet/OSI Version 6.3 (+ ECO 01)

25

Chapter 3. Checking the Network’s Configuration

Value DECnet Version

00050900 DECnet/OSI Version 6.3
1Starting with V7.3-2 and any future ECOs to V7.3-1, future enhancement releases (V7.3-2 and V7.3- 1) will not use the same "DECnet
Minor" identifier as the base new feature release (such as V7.3). The value shown for V7.3-1 ECO03 is provided to indicate how future
numbers will be allocated. It does not represent a commitment by DECnet engineering to release this ECO kit.
bA build error caused V7.3-1 ECO02 to be released with an incorrect value for DECNET_VERSION.
cEarly ECO releases of Version 6.3 used decimal numbers in the User ECO field. Later releases of Version 6.3 and all future ECO releases use
or will use hexadecimal numbers.

Note that this table is provided for informational purposes only. The presence of a version in this table
does not imply that the version is still supported by VSI.

26

Chapter 4. Managing Routing
Between DECnet Phase IV and
Phase V Areas
DECnet Phase IV routers and DECnet-Plus host-based routers use a routing vector protocol to relay
messages and exchange routing information. DECnet Phase V routing also features a link state routing
protocol. These two protocols can coexist in the network.

All routers within an area must use the same routing protocol at level 1. However, DECnet Phase V
allows level 2 routers to run either a routing vector or a link state protocol at level 2. Routers running
different protocols at level 2 can communicate through interphase links. An interphase link directly
connects a level 2 router using a routing vector protocol with a level 2 router using a link state protocol.
DECnet Phase V routers running link state use manually configured reachable-address tables to route
information across these interphase links.

Note

Interphase links require the two areas connected by the interphase link to have different area numbers.

4.1. Setting Up Interphase Links
You can set up interphase links in one of two ways: if available, use the configuration program on your
dedicated router system as described in your router documentation, or use the decnet_migrate tool’s
create ipl_initialization_file command, as described in this chapter. Choose only one method, following
these guidelines:

● Use the configuration program on your dedicated router systems if your network configuration is
simple and you have only a few interphase links to set up.

● Use the decnet_migrate create ipl_initialization_file command if your network configuration is
complex and you have many interphase links to set up. This command automatically produces the
NCL commands to create the links.

Invoke decnet_migrate by entering the following command:

$ run sys$update:decnet_migrate

The following example shows how to create a command file that creates interphase link entries:

decnet_migrate> create ipl_initialization_file output-file for
node-name

Specifies the name of the command file you want to create.

Specifies the name of the DECnet Phase V level 2 routing node on which you want to create
interphase link entries.

For more information about the create ipl_initialization_file command, see Appendix C, "decnet_migrate
Commands". The following sections provide more information about setting up interphase links.

27

Chapter 4. Managing Routing Between DECnet Phase IV and Phase V Areas

4.2. Configurations That Do Not Require
Manually Created Interphase Links
The simplest configuration that connects DECnet Phase V link-state subnetworks to Phase IV routing-
vector subnetworks is one in which only two subnetworks are connected, with only one area in each
subnetwork, as shown in Figure 4.1, "Configuration with Adjacent Areas".

Figure 4.1. Configuration with Adjacent Areas

In this case, you are not required to manually create the interphase link because the adjacent areas
automatically configure to each other.

4.3. Configurations That Require Manually
Created Interphase Links
If either subnetwork contains more than one area, or if multiple subnetworks are interconnected, you
must create interphase links to provide routing information about the nonadjacent areas.

For small networks (for example, with three or four areas), you can enter the interphase link information
into the reachable-address tables using the appropriate router configuration tools. For details, see the
management documentation for your router.

For larger networks, you can use the create ipl_initialization_file command to create a DCL command
file. When executed, the command file creates interphase link entries in the reachable-address table on
the target DECnet Phase V level 2 router. Whenever the level 2 network configuration changes, VSI
recommends that you use the create ipl_initialization_file command for every DECnet Phase V level 2
router that has interphase links.

Figure 4.2, "Configuration Requiring Manually Created Interphase Links" shows a level 2 network
configuration that requires manually created interphase links, because areas 2 and 4 are nonadjacent and,
therefore, do not exchange routing information.

28

Chapter 4. Managing Routing Between DECnet Phase IV and Phase V Areas

Figure 4.2. Configuration Requiring Manually Created Interphase Links

4.4. Configurations That Require Multiple
Interphase Links
If your network configuration consists of multiple Phase IV routing-vector subnetworks connected
by DECnet Phase V link-state subnetworks, you must run the create ipl_initialization_file command
multiple times. Each time, specify the DECnet Phase V link-state level 2 router that needs interphase
links. The same is true for networks that consist of multiple DECnet Phase V link-state subnetworks
connected by Phase IV routing-vector subnetworks. Figure 4.3, "Two Configurations with Multiple
Interphase Links" shows two examples of these configurations.

29

Chapter 4. Managing Routing Between DECnet Phase IV and Phase V Areas

Figure 4.3. Two Configurations with Multiple Interphase Links

If you use the create ipl_initialization_file command only once for each target router, the routing
information created in the target routers’ reachable- address tables is incomplete. It is incomplete
because not all area routing information is available to each target router at the time the command is run.
Information about nonadjacent areas becomes available only after you run the command file, created by
the create ipl_initialization_file command.

For configurations with multiple interphase links, the simplest way to guarantee that routers have all
required interphase links is to:

1. Identify all the DECnet Phase V level 2 routers that require interphase links. These are your target
routers.

2. For each target router:

a. Use the create ipl_initialization_file command specifying the target router.

b. Run the resulting DCL command file to create the interphase link entries in the target router’s
reachable-address table.

c. Wait at least 15 minutes for the routing information to propagate through the network.

30

Chapter 4. Managing Routing Between DECnet Phase IV and Phase V Areas

3. Repeat Step 2 n times, where n is the number of target routers.

After you complete these steps, routing information for every area is available to every level 2 router in
the network.

4.5. Configurations with Multiple Interphase
Links Between Two Subnetworks
You can use either a single interphase link or multiple interphase links to connect two subnetworks. This
section discusses the advantages and disadvantages of both methods. Figure 4.4, "Single Interphase Link
Between Two Subnetworks" shows the use of a single interphase link.

Figure 4.4. Single Interphase Link Between Two Subnetworks

The advantage of the configuration shown in Figure 4.4, "Single Interphase Link Between Two
Subnetworks" is that it is easier to diagnose connectivity problems. The disadvantage is that it makes
possible a single point of failure between the subnetworks.

You can use multiple interphase links to provide communication path redundancy between the
subnetworks, as shown in Figure 4.5, "Multiple Interphase Links Between Two Subnetworks".

31

Chapter 4. Managing Routing Between DECnet Phase IV and Phase V Areas

Figure 4.5. Multiple Interphase Links Between Two Subnetworks

In Figure 4.5, "Multiple Interphase Links Between Two Subnetworks", the configuration solves the
problem of having a single point of failure, but it can result in areas being unreachable even though there
is a physical path that could be used. This makes connectivity problems more difficult to diagnose.

For example, in Figure 4.5, "Multiple Interphase Links Between Two Subnetworks", if the lowest cost
path from area 1 to area 5 is through area 4, and the circuits connecting area 4 to area 5 go down,
messages from area 1 to area 5 are still sent to area 4. This is because area 1 cannot detect the loss of
connectivity between areas 4 and 5. Therefore, area 1 continues to send these messages through area
4 rather than through area 2, because the path through area 4 is the lowest cost path to area 5, but the
messages never reach area 5.

4.6. Special Considerations Regarding
Network Costs
When the create ipl_initialization_file command gathers the information about which areas exist and
which paths to use to reach those areas, it also calculates the cost associated with each path. A network
cost is then associated with each interphase link in the reachable-address table.

A restriction is built into the reachable-address tables regarding network cost. Costs of 63 or more
cannot be included in the table. If a path has a network cost of 63 or greater, when you run the create
ipl_initialization_file command, the commands to create the interphase link for that path are included in
the command file as comments. When you run the command file, that path will not be entered into the
reachable-address table.

You can, however, edit the output_file_cre command file to change the network cost values. You must
have a clear picture of your network topology to be able to make good decisions about modifying
network cost values.

32

Chapter 4. Managing Routing Between DECnet Phase IV and Phase V Areas

Refer to your router management documentation for more information about network costs.

33

Chapter 4. Managing Routing Between DECnet Phase IV and Phase V Areas

34

Chapter 5. Managing Name
Service Searches and Information
This chapter covers the following topics:

● Selecting name services and determining the order in which name services are searched

● Managing the in-memory naming cache for resolving names and addresses

● Managing DECdns and local namespace information using the decnet_register registration tool

● Updating and creating a local node’s Phase IV database with information from a remote DECnet
node’s database

5.1. The Naming Search Path
For storing name and address information, DECnet Phase V supports the local namespace, the DECdns
distributed namespace, and the Domain Name System (DNS/BIND) distributed namespace. DECnet
Phase V uses one or more of these namespaces to look up name or address information. The order in
which DECnet Phase V searches the available namespaces is determined by the naming search path.
The naming search path is set up during DECnet configuration. The naming search path applies to
DECnet applications systemwide.

The ordering of the name services is important. The first name service listed is the primary name
service to use on the system. The primary name service is the first choice used when looking up names
and addressing information. The remaining name services listed are the secondary name services used
on the system.

Note that the search path information for a system is maintained in two separate search paths:

● One for forward translation or naming (node name to address translation)

● One for backtranslation (address to node name translation)

5.1.1. Determining the Order for Name Service
Searches
Use NET$CONFIGURE to configure DECnet-Plus and set up one or more name services for a node.
From the information provided, NET$CONFIGURE creates the NET$SEARCHPATH_STARTUP.NCL
script, which contains the naming search path information for the node. For example, if the ordered
list of LOCAL, DECDNS, DOMAIN was chosen for the directory services at configuration time,
then DECnet-Plus searches the local namespace first for forward and back translation information. If
necessary, it will then search the DECdns namespace specified in the node’s DECdns name. Finally, if it
still has not successfully obtained the translation information, it will use the Domain Name System.

Do not edit the NET$SEARCHPATH_STARTUP.NCL script. If you need to change the naming search
path information, use NCL or rerun NET$CONFIGURE.

35

Chapter 5. Managing Name Service Searches and Information

5.1.2. Using the Naming Search Path to Interpret
Abbreviated Node Names
Besides determining the order of searches, the naming search path describes how DECnet should
interpret any abbreviated node names entered by users. The search path contains an ordered list of
name service keywords, each followed by a naming template that specifies a "defaulting rule" so
users can enter shorter node names. In each template, the user-supplied portion of the name (usually
the node’s terminating name or rightmost simple name) is indicated with an asterisk (*). For example,
if the DECdns template is "ACME:.mgmt.*" and a user supplies the name accnt, then the full name
ACME:.mgmt.accnt will be looked up in namespace ACME in the DECdns name service. See Section
5.1.3, "Displaying and Modifying Search Path Information" for more examples.

5.1.3. Displaying and Modifying Search Path
Information
You can use NCL commands to display information about the search path maintained for forward or
backward translation.

5.1.3.1. Displaying the Naming Search Path
To display information about the search path maintained for forward translation or naming (node
name to address translation), use the following NCL command (descriptions of the display follow the
example):

$ ncl show session control naming search path
Node 0 Session Control
AT 2019-03-19-10:26:03.809-05:00I49.474
Characteristics
 Naming Search Path =
 (
 [
 Directory Service = Local ,
 Template = "*"
] ,
 [
 Directory Service = Local ,
 Template = "local:.lky.*"
] ,
 [
 Directory Service = Local ,
 Template = "LOCAL:*"
] ,
 [
 Directory Service = DECdns ,
 Template = "*"
] ,
 [
 Directory Service = Domain ,
 Template = "*"
]
)

Note that each name service can have more than one entry, each template defining a different way for the
name to be searched.

36

Chapter 5. Managing Name Service Searches and Information

The local namespace is listed first, and so it is the primary name service. This line defines the
first of three rules for searching the local namespace. The template definition with an asterisk "*"
specifies that the user-supplied name be passed to the local namespace exactly as entered by the
user.

The template definition of local:.lky.* specifies that the user-specified name be searched next in
the local namespace as local:.lky.name. For example, if the user specified node name plm, then the
local namespace is searched for local:.lky.plm.

The template definition of local:* specifies that the user-specified name be searched next in the
local namespace as local:name. For example, if the name is specified as .plm, then namespace
search is for local:.plm.

This line defines the DECdns namespace search rules, specifying that the name be searched for
exactly as the user specifies it.

This line defines the DNS/BIND namespace search rules, specifying that the name be searched for
exactly as the user specifies it.

5.1.3.2. Displaying the Backtranslation Search Path
To display information about the search path maintained for backtranslation (address to node name
translation), use the following NCL command (descriptions of the display follow the example):

$ ncl show session control backtranslation search path
Node 0 Session Control
AT 2019-03-19-11:00:57.490-05:00I49.712
Characteristics
 Backtranslation Search Path =
 (
 [
 Directory Service = Local ,
 Template = "*"
] ,
 [
 Directory Service = DECdns ,
 Template = "local:.DNA_BackTranslation"
] ,
 [
 Directory Service = Domain ,
 Template = "*"
]
)

The template in this line specifies that the user-supplied address be searched in the local namespace
exactly as specified by the user.

The template in this line specifies that the user-specified address be searched in the directory
local:.DNA_BackTranslation.

The template in this line specifies that the user-supplied address next be searched in the DNS/
BIND namespace exactly as specified by the user.

5.1.3.3. Modifying the Naming and Backtranslation Search Paths
VSI recommends that you rerun NET$CONFIGURE.COM to revise the standard search path NCL
script (NET$SEARCHPATH_STARTUP.NCL) whenever it is necessary to reorder access to the name

37

Chapter 5. Managing Name Service Searches and Information

services on the node. To modify the standard search path startup script, run NET$CONFIGURE.COM
and use Option 2 (Change node name/namespace name).

Note

Whenever you directly edit an existing NET$SEARCHPATH_STARTUP.NCL script,
or when you use NCL set commands to change the script (rather than changing the
script by rerunning NET$CONFIGURE.COM), your edits are overwritten by any new
NET$SEARCHPATH_STARTUP.NCL scripts you subsequently generate by rerunning
NET$CONFIGURE.COM.

5.1.3.4. Using Backtranslation to Track Namespace Changes
The name of the backtranslation directory that Session Control uses is .DNA_BackTranslation with
the same nickname as the node name in the current namespace. If the node name is changed, Session
Control tracks the change within the number of seconds specified by Session Control’s address update
interval attribute. See the backtranslation directory status attribute under the session control entity for the
current full name of the backtranslation directory used by Session Control.

5.1.4. Changing the Default Namespace Name
The name of the node synonym directory that Session Control uses is .DNA_NodeSynonym with the
nickname of the default namespace at the time that Session Control was first created.

{default-namespace}:.dna_nodesynonym

If you change the default namespace name without reconfiguring, you must set the name of the node
synonym directory. (Section 5.1.6, "Managing the DECdns Clerk" describes how to change the default
namespace name.) Set the node synonym directory with the node synonym directory characteristic
attribute under the session control entity. For example:

ncl> set session control node synonym -
_ncl> directory default-namespace:.dna_nodesynonym

5.1.5. Defining an Alternate Node Synonym Directory
In very large or widely distributed networks you can use multiple directories to store node synonym soft
links, rather than the single default .DNA_NodeSynonym directory.

To use an alternate node synonym directory, edit SYS$MANAGER:NET$LOGICALS.COM and add
the following line:

$ define/system/exec decnet_migrate_dir_synonym ".synonym_dir_name"

The defined directory is then used by NET$CONFIGURE, decnet_register, and decnet_migrate.

See Section 6.3, "Defining Logical Names That Modify Network Operation" for information about how to
create and use the SYS$MANAGER:NET$LOGICALS.COM file.

5.1.6. Managing the DECdns Clerk
The DECdns namespace is the total collection of names that one or more DECdns servers know
about, look up, manage, and share. You define the default namespace name during configuration of a

38

Chapter 5. Managing Name Service Searches and Information

DECdns clerk. Then, unless a user specifies otherwise, DECdns always assumes a name is in the default
namespace. Use the following NCL set command to change the default namespace:

ncl> set dns clerk default namespace {namespace-name}

Note that this command will affect all users of DECdns on the system, including the Session Control
module. Therefore, VSI recommends that you do not use this command, but instead use the DECnet-
Plus configuration procedure.

In general, to manage the namespace, use the DECdns Control Program
SYS$SYSTEM:DNS$CONTROL.EXE.

For more information about managing the namespace, refer to the VSI DECnet- Plus for OpenVMS
DECdns Management Guide.

5.2. Resolving Names and Addresses with the
Naming Cache
DECnet Phase V software includes the common directory interface (CDI) as an interface between
DECnet Phase V Session Control and all the supported name services (local namespace, DECdns, DNS/
BIND). CDI performs the necessary switching between the various name services during lookups,
enabling the use of multiple name services.

Prior to the addition of the CDI, the DECdns clerk was the primary interface between DECnet Session
Control and DECdns servers or the local namespace. Now most all DECnet-related calls to DECdns (or
to any other naming service) are first handled by CDI.

The DECdns clerk receives requests for name/address information from client applications and looks
up the requested information on the appropriate DECdns server or in the local namespace. The DECdns
clerk caches (saves) pointers to DECdns servers discovered during these lookups. This saves the clerk
from repeatedly connecting to a server for the same information. For lookups involving applications such
as DECmcc and DFS, the DECdns clerk caches results of lookups. Caching improves performance and
reduces network traffic.

5.2.1. The CDI Naming Cache and DECdns
CDI uses an in-memory naming cache to improve performance of name and address resolution for
the supported name services. DECnet-Plus for OpenVMS requests CDI directly for name and address
resolution. DECnet-Plus uses CDI for looking up information from all three name services: local
namespace, DECdns, and DNS/BIND.

The DECdns clerk cache still exists. When CDI calls DECdns for node name information, DECdns
searches the clerk cache to determine where to look up the requested information. DECdns continues
to use the clerk cache to determine the location of servers in the DECdns namespace. DECnet-Plus for
OpenVMS uses the DECdns clerk to parse the special namespace nicknames LOCAL: and DOMAIN:.
These nicknames in a node full name indicate to DECnet-Plus the name service where the name and
addressing information is stored. Note that DECdns clerks do not directly cache DECnet names for any
namespace. The clerk caches pointers to the servers where node names are stored.

The DECdns clerk cache continues to be used by applications other than DECnet- Plus that use DECdns
directly, such as the Distributed File Service (DFS) application.

39

Chapter 5. Managing Name Service Searches and Information

5.2.2. Managing the CDI Naming Cache
Using NCL commands, you can manage two CDI naming cache parameters, the checkpoint interval
and the timeout period, and you can flush entries from the in-memory naming cache. Note that these
parameters do not affect DECdns; they only affect CDI.

This section also discusses the following additional CDI topics:

● Tracing naming information in the CDI cache.

● Using the CDI$SYSTEM_TABLE to define node synonyms.

● Using CDI enhancements to resolve IP fully-qualified names.

● Using CDI_CACHE_DUMP to analyze the most recent cache checkpoint.

● Controlling CDI’s use of the Local namespace database.

● Automated CDI cache flushing.

5.2.2.1. Checkpoint Interval
To ensure that the information contained in the naming cache is preserved across system reboots,
DECnet periodically saves (or checkpoints) a snapshot of the in-memory naming cache to disk. At
system startup, the naming cache can be populated with the entries most recently saved to disk. Note that
this means the naming cache is read into memory only during DECnet startup. Keep this in mind if you
are copying the cache to other nodes in the network for updates.

The following NCL command changes the frequency of this checkpoint operation from the default of
once every 8 hours to once every 12 hours:

$ mcr ncl set session control naming cache checkpoint interval 12:00:00

One advantage of resetting the checkpoint interval is that you force a new checkpoint to be written
within the next 15 minutes, even if a checkpoint is not due at that time.

5.2.2.2. Timeout Period
The naming cache includes a mechanism to remove old cache entries. When a naming cache entry
reaches a preset age, the entry times out, or expires, and is eliminated from the cache. On the first lookup
request for an entry after it has timed out, when DECnet does not find the entry in the in-memory
cache, DECnet will retrieve up-to-date information from the name service. In this way, cache entries are
periodically refreshed to accurately reflect the current network environment.

The following NCL command changes the length of the timeout interval from the default of 30 days. For
example, this command decreases the timeout interval to once every 5 days:

$ mcr ncl set session control naming cache timeout 5-00:00:00

The default timeout value of 30 days is suitable for most networks. However, for stable networks in
which node names are rarely changed or swapped with other names, you can increase the value. The
only benefit of keeping a lower value is that more space is freed in the cache as each timed-out entry is
deleted.

Reducing the timeout value may result in the sudden loss of cached entries. Use the NCL flush command
to remove specific entries, as explained below.

40

Chapter 5. Managing Name Service Searches and Information

VSI recommends that you do not change a node name or swap names of nodes until after the naming
cache timeout period has passed. This allows time for the out-of-date node and addressing information
to be flushed from the cache.

Consider the following scenario. Node .mgmt.accnt is assigned address 4.234 and this name and address
information is stored in the name service. After DECnet has looked up node .mgmt.accnt, it stores
this node name and address combination (.mgmt.accnt and 4.234) in its in-memory cache. When
node .mgmt.accnt is subsequently reassigned to address 4.235, the following events can occur:

1. DECnet retrieves address 4.234 for node name .mgmt.accnt from the in- memory cache.

2. DECnet attempts to connect to address 4.234.

3. When the connection fails, DECnet again looks up the address for node .mgmt.accnt, this time
bypassing the naming cache and searching the name service. This new lookup for node .mgmt.accnt
finds address 4.235 in the name service, updates the cache, and successfully connects to the node.

However, if after node .mgmt.accnt is assigned a new address, .mgmt.accnt’s old address, 4.234, is
subsequently reassigned to node .mgmt.pers before the timeout period has elapsed, the following can
occur:

1. DECnet retrieves address 4.234 for node name .mgmt.accnt from the in- memory cache.

2. DECnet attempts to connect to address 4.234.

3. The connection succeeds. DECnet is unable to tell that it has connected to the wrong node
(mgmt.pers).

To prevent this scenario, do either of the following:

● Before reassigning a node address to another node name, first deassign the node address from the
current node name and wait until the cache timeout interval passes before reassigning the address
to another node name. This allows time for the addresses to be flushed automatically from the in-
memory cache.

● Use an NCL command to manually flush one or more in-memory cache entries. When manually
flushing cache entries, be sure to perform the flush command on every system with stale cache
entries. If you must reassign a node before the cache timeout period has expired, you must flush all
cache entries. Although entries are immediately removed from memory, the cache saved on disk will
still contain these cache entries until the next checkpoint interval. To force a quicker checkpoint of
the cache (within the next 15 minutes), reset the checkpoint interval to the value currently set (if you
do not want to change the interval thereafter).

In the following example, the first NCL command flushes one specified entry from the cache. The
second command flushes all cache entries:

$ mcr ncl flush session control naming cache entry "entry-name"
$ mcr ncl flush session control naming cache entry "*"

5.2.2.3. Tracing Naming Information in the CDI Cache
You can use either the Common Trace Facility or the CDI$TRACE program to obtain naming trace
information.

Use the following command to invoke the Common Trace Facility:

41

Chapter 5. Managing Name Service Searches and Information

$ Trace Start "SESSION CDI *"

Including the CDI parameter restricts trace facility output to node name and address resolution messages.

Use the following command to run CDI$TRACE, a program located in SYS$SYSTEM:

$ run sys$system:cdi$trace

You can use the following procedure to redirect CDI$TRACE output to a file:

1. Define a DCL foreign command symbol:

$ cdi$trace == "$cdi$trace"

2. Specify the name of the file to contain the CDI$TRACE output:

$ cdi$trace trace.log

The output file may occasionally be missing the last few records of the trace. This is a known
problem.

CDI$TRACE has known problems when run during a LAT terminal session (on an LT device). A
workaround is to issue the DCL spawn command first.

5.2.2.4. Using the CDI$SYSTEM_TABLE To Define Node Synonyms
You can use a logical name table (CDI$SYSTEM_TABLE) to define node synonyms. You should use
the following commands to create and examine logical names in the CDI$SYSTEM_TABLE logical
name table. In the following command examples, the node bks.pub.dec.com has the synonym bks.

To define the CDI$SYSTEM_TABLE logical name table, enter the following command:

$ create/name_table/exec/parent=lnm$system_directory cdi$system_table

To define a synonym, enter the following command:

$ define/table=cdi$system_table bks bks.pub.dec.com

To examine a synonym, enter the following command:

$ show logical/table=cdi$system_table bks

The system displays the synonym information:

$ "bks.pub.dec.com" = "bks" (cdi$system_table)

SYSNAM system privileges are required.

5.2.2.5. Using CDI Enhancements To Resolve IP Fully-Qualified
Names
The common directory interface (CDI) has been enhanced to resolve an IP fully- qualified node name
to a Phase IV-style node synonym. CDI resolves the fully- qualified node name to the IP short name.
For example, the fully-qualified name mynode.cmp.com resolves to the Phase IV-style node synonym
mynode. Normally, CDI returns the synonym only if the following conditions are satisfied:

● The local node name and the fully-qualified node name are in the same domain.

42

Chapter 5. Managing Name Service Searches and Information

● The resulting IP short name is a syntactically correct Phase IV-style node name (that is, six
characters or less with a leading alphabetic character).

If the preceding conditions are not met, or if the node is using another synonym (for example, the node
this.vsi.com is using the synonym that), you must make an entry for the node in the TCP/IP software’s
local hosts database.

If you are using VSI TCP/IP Services for OpenVMS software, you would need to enter a command
similar to the following:

$ tcpip set host mynodelong.cmp.com/address=100.50.75.20/alias=mynode

5.2.2.6. Using CDI_CACHE_DUMP To Analyze a CDI Cache
Checkpoint
To view what was in the CDI cache the last time a CDI checkpoint was taken, issue the following
command:

$ run sys$system:cdi_cache_dump

The dump utility first displays summary information about the cache file:

 CDI Cache Checkpoint file dumper
[Checkpoint filename = "SYS$SYSTEM:DECNET$CDI_CACHE.DAT;1"]
Reading file...
224926 bytes (of 4) loaded from checkpoint file
Computing checksum...
cache size (except checksum) (in words): 56231
Checksum correct
Cache checksum: file: C0E2F780, computed: C0E2F780
CDI cache successfully loaded from ckpt file...
 Cache id............. 950022
 Cache version........ 2.4
 cache_init_flag...... 1
 cache_size........... 211
 Cache Max Size....... 4096
 Cache Increments 40
 Total entries........ 211

Next, the dump utility displays each entry in the cache in most recently used (MRU) order (usually the
local node, cluster alias, if present, and other cluster members are the first entries displayed):

*********************** Cache Entries (MRU order) *********************
- ptr - Dir s.name
Ent Svc off len Input name Synonym Fullname
0 2 9 6 VSI:.MA.ASHFLD ASHFLD VSI:.MA.ASHFLD 1
| tower 1: "DNA_NODE"/"SC3"/"TP4=DEC0"/NS+49+0018AA000400246021
| tower 2: "DNA_NODE"/"SC3"/"NSP"/NS+49+0018AA000400246020
| created: Fri Sep 17 18:10:35 2019
1 3 0 6 ASHFLD ASHFLD VSI:.MA.ASHFLD 1
| tower 1: "DNA_NODE"/"SC3"/"TP4=DEC0"/NS+49+0018AA000400246021
| tower 2: "DNA_NODE"/"SC3"/"NSP"/NS+49+0018AA000400246020
| tower 3: "DNA_NODE"/"SC2"/"TP4=DEC0"/IP+123.456.789.123
| created: Fri Sep 17 18:10:36 2019
2 3 0 5 WMASS WMASS VSI:.MA.WMASS 0
| tower 1: "DNA_NODE"/"SC2"/"NSP"/NS+49+0018AA000400246020
| tower 2: "DNA_NODE"/"SC2"/"TP4=DEC0"/IP+123.456.789.120

43

Chapter 5. Managing Name Service Searches and Information

| created: Fri Sep 17 18:10:37 2019
3 3 0 6 IP$123.456.789.123 ASHFLD ASHFLD.MA.USA
| tower 1: "DNA_NODE"/"SC2"/"TP4=DEC0"/IP+123.456.789.123
| created: Fri Sep 17 18:10:37 2019
4 3 0 6 CONWAY CONWAY VSI:.MA.CONWAY 0
| tower 1: "DNA_NODE"/"SC2"/"NSP"/NS+49+0018AA000400246120
| tower 2: "DNA_NODE"/"SC2"/"TP4=DEC0"/IP+123.456.789.124
| created: Fri Sep 17 18:12:27 2019

The preceding example shows the entries for the local node ashfld under both its DECdns name and its
node synonym. Next, is the entry for the cluster alias, wmass, followed by an entry for the IP address for
the local node, IP$123.456.789.123. Finally, is an entry for another member of the cluster, conway.

5.2.2.7. Controlling CDI’s Use of the Local Namespace Database

The NET$LOCAL_CLOSE logical name controls whether the common directory interface (CDI) closes
its local namespace database (normally, SYS$SYSTEM:NET$LOCAL_NAME_DATABASE.DAT)
after each use. If CDI keeps the database open continuously, this can create problems (in the form of
unwanted file merges) if the CDI database is moved to a disk other than SYS$SYSTEM: and that disk is
a member of a shadow set.

If the NET$LOCAL_CLOSE logical name is defined with a value of 1, CDI closes the database
after each use. The default is for the NET$LOCAL_CLOSE logical name to be undefined (that is,
CDI keeps the local namespace database open continuously). See Section 6.3, "Defining Logical
Names That Modify Network Operation" for information about how to define this logical name in the
NET$LOGICALS.COM file.

5.2.2.8. Automated CDI Cache Flushing

Session Control bypasses the CDI cache when the existing cache entry causes a node unreachable
condition. When the node unreachable condition is detected, Session Control makes a second call to CDI
with an indication that CDI should bypass the cache and look up the name directly in the appropriate
naming service. In addition, the new address is used to update the CDI cache for future lookups. Without
this feature, if a node’s address changed and the CDI cache was not flushed to force the new address into
the cache, CDI would return the stale address information to Session Control. Session Control would
then return a node unreachable error to the caller.

5.3. Managing DECdns and Local Namespace
Information with decnet_register
The decnet_register tool simplifies and centralizes management of namespace information.

The decnet_register manage command assists with setting up and managing DECdns distributed
namespaces by creating the required hierarchy of directories, setting and altering access rights to these
directories, and enabling and disabling autoregistration.

This section explains how to use decnet_register to manage and register node names in a DECdns or
local namespace. In particular, this section explains how to use decnet_register to perform the following
distributed namespace tasks. For an alphabetical command reference, see Appendix D, "decnet_register
Commands".

● Invoke the decnet_register utility (Section 5.3.1, "Invoking decnet_register").

44

Chapter 5. Managing Name Service Searches and Information

● Use the decnet_register interface (Section 5.3.2, "Using decnet_register").

● Use an initialization command file for preset values (Section 5.3.3, "Using an Initialization Command
File for Preset Values").

● Display node registrations and verify their internal consistency (Section 5.3.4, "Showing the
Information Registered for a Node in the Namespace").

● Register and modify node names, node synonyms, and addresses in your namespaces (Section 5.3.5,
"Registering or Modifying a Node").

● Update a remote node’s registered address information with information decnet_register obtains by
connecting to the node itself (Section 5.3.6, "Updating Registered Node Addresses").

● Rename registered nodes in a namespace (Section 5.3.7, "Renaming a Registered Node").

● Repair the synonym and address links for registered nodes (Section 5.3.8, "Repairing a Node’s
Synonym and Reverse Address Links").

● Deregister nodes from a namespace (Section 5.3.9, "Deregistering a Node from the Namespace").

● Export node registration information from a namespace into an editable text file (Section 5.3.10.1,
"Exporting Node Information from a Name Service").

● Import node registration information from a text file into a namespace (Section 5.3.10.2, "Importing
Node Information from an Export/Import File to a Name Service").

● Convert an existing LNO text file to a Local namespace (Section 5.3.10.3, "Converting an Existing
LNO Text File to a Local Namespace").

● Set preferences and network values (Section 5.3.11, "Setting Preferences and Network Values").

● Manage the DECdns directory service (Section 5.3.12, "Managing the DECdns Directory Service").

● Spawn to DCL to enter one or more DCL commands and return again to decnet_register (Section
5.3.13, "Spawning to DCL").

Note

Do not register nodes in the DECdns namespace that do not use DECnet. Only DECnet-to-DECnet
applications use node-name objects in the DECdns namespace. OSI applications use their own
private naming databases, DNS/BIND, or X.500.

The decnet_register tool does not manage information in DNS/BIND.

5.3.1. Invoking decnet_register
To invoke decnet_register, enter the following run command:

$ run sys$system:decnet_register

You can also invoke decnet_register using a foreign command symbol:

$ netreg :== syssystem:decnet_register
$ netreg

45

Chapter 5. Managing Name Service Searches and Information

Once invoked, decnet_register continues to accept commands until you enter the exit command.

If you have defined a foreign command symbol, you can include a decnet_register command on the
invocation command line as follows:

$ netreg show node mynode

With this command line, decnet_register executes the included command and immediately exits.

When you invoke decnet_register from a video terminal, decnet_register starts in forms mode by
default. When you invoke decnet_register from a command procedure or from a hardcopy terminal,
decnet_register starts in command mode by default. You can change this default behavior permanently
by defining a logical name or for a single invocation only by using the /c and /f qualifiers on the
command line.

To change the default behavior permanently, define one of the following logical names:

● $ define decnet_register_commands 1 forces default use of the command line
interface until you deassign the logical name.

● $ define decnet_register_forms 1 forces default use of the forms interface until you
deassign the logical name.

Note that only one logical name takes effect at a time. If you define both logical names, the
decnet_register_forms logical name overrides the other.

To change the default behavior for the current invocation only, use one of the following switches:

● $ netreg /c forces the use of the command line interface for the current invocation of
decnet_register only.

● $ netreg /f forces the use of the forms interface for the current invocation of decnet_register
only.

Note

The decnet_register tool is not supported on a system booted with minimum startup.

5.3.2. Using decnet_register
The decnet_register tool has both command line and forms interfaces. When invoked from a video
terminal, decnet_register is by default a forms-driven tool. You select a task and decnet_register prompts
you for the information the task requires. The command line interface for decnet_register includes help
information for all the tool’s commands.

The following example shows the decnet_register main menu form.

DECNET_REGISTER - Manage node registrations in network directory services
 Use Return, Ctrl/N, and Ctrl/P to move between input fields
 Use "?" to obtain help, Ctrl/Z to cancel
 1 - Show information about registered node names
 2 - Register or modify node names
 3 - Update registered node towers using information from the nodes
 4 - Rename a registered node name
 5 - Repair the synonym and address links for registered node names

46

Chapter 5. Managing Name Service Searches and Information

 6 - Deregister node names
 7 - Export node names to a data file
 8 - Import node names from a data file
 9 - Set preferences and network values
 10 - Manage the directory service
 11 - Spawn to DCL
* Option (use Ctrl/Z to exit):

To select a task, type the appropriate number and press Return. You can cancel any task and return to
this main menu by pressing Ctrl/Z.

To perform certain tasks discussed in this chapter, you need access rights. For more information about
the access rights, refer to the VSI DECnet-Plus for OpenVMS DECdns Management Guide, which also
contains complete information about DECdns and the namespace and provides detailed namespace
planning information. Note that when you use decnet_register to manage DECdns, these access rights
are stored in the DECdns namespace rather than locally on your system. So, you might not be able to use
certain decnet_register commands, even if you are logged in as a system account user.

Note

If the namespace has not yet been created on your network or its root directory cannot be read from
your node, then decnet_register indicates this in a message. You cannot proceed if you cannot access the
namespace. See your namespace manager to find out why the existing namespace is unavailable. If the
namespace has not been created yet, the namespace manager should create a namespace following the
instructions in the VSI DECnet-Plus for OpenVMS Installation and Configuration and VSI DECnet-Plus
for OpenVMS DECdns Management Guide.

Initializing the namespace consists of creating a backtranslation directory (commonly
called .DNA_BackTranslation), a node synonym directory (commonly called .DNA_NodeSynonym),
and the required DECdts directory (.DTSS_GlobalTimeServers). Some DECnet features do not work
properly unless these directories exist; for example, you cannot use Phase IV node names if the node
synonym directory (.DNA_NodeSynonym or equivalent) is not available.

Note

VSI strongly recommends that you create these directories immediately. See Section 5.3.12, "Managing
the DECdns Directory Service" for a description of these directories and the initialization procedure.

5.3.3. Using an Initialization Command File for Preset
Values
When it starts, decnet_register attempts to execute an initialization command file
(sys$login:decnet_register.ini) if one is present. By including a set default command in your
decnet_register initialization command file, you can preset parameter values before your decnet_register
session begins.

If this file is found, it is executed as a command file containing decnet_register commands.

To use a different file name, specify a logical name definition as follows with initialization-command-file
naming your command file:

$ define decnet_register_init initialization-command-file

47

Chapter 5. Managing Name Service Searches and Information

5.3.4. Showing the Information Registered for a Node in
the Namespace
As part of your job as a network manager, you might at times need to review the information registered
for a node in the namespace. This information includes the node’s address tower and, for the DECdns
namespace, the names of the synonym and address-to-name backtranslation soft links.

To view this information, select Option 1 at the decnet_register main menu and respond to the prompts
as they appear, one by one. Press Ctrl/Z to cancel the show operation. Output is similar to the following
example:

Show registered node information
 Use Return, Ctrl/N, and Ctrl/P to move between input fields
 Use "?" to obtain help, Ctrl/Z to cancel
Specify the directory service as LocalFile, DECdns, or PhaseIV
* Directory service:
Specify the node to show using an explicit or wildcard name, an NSAP,
or a Phase IV synonym or address.
* Node name or address:
Specify the information to display as either brief, full, or names.
Specify the output file name (a blank line indicates the terminal).
* Display format:
* Output file:
Press Return to show the node values, Ctrl/Z to cancel

For help answering the prompts, refer to the following:

Directory Service
Identify the name service where the node’s information is stored. Name services include the local
namespace, the DECdns distributed namespace, and the Phase IV database.

Node Name or Address
Enter a node name or address, as follows:

Full name The node’s full name, including the directory or directories. You can
replace all or part of any simple name in the full name, including
the directory names, with a wildcard character (*) to show multiple
nodes.

Synonym The node’s Phase IV synonym. This must not contain any directory
names. You can replace all or part of the synonym with a wildcard
character (*) to show multiple nodes.

NET or NSAP The node’s network entity title (NET), which is the node’s NSAP
(network service access point) with a selector field of 00 or its
NSAP. You can replace the node ID field of the NET with a
wildcard character (*) to show all nodes within an area. For more
information about NETs, refer to the VSI DECnet-Plus for OpenVMS
Introduction and User's Guide.

Address The node’s Phase IV address, in the format area.id. You can replace
the id field of the address with a wildcard character (*) to show all
nodes within an area.

48

Chapter 5. Managing Name Service Searches and Information

Display Format
The tool displays the node information in brief or full format or simply displays the node full name.

Output File
Enter a file name and press Return to send the output to a file. Press Return without entering a file name
to display the information on the screen.

If you specify a full name, brief format appears as follows:

Directory Service: Local name file
Node name: LOCAL:.grand.sales
Phase IV synonym: SALES
Node address: 49::00-04:AA-00-04-00-93-10:20 (4.147)
Node address: 49::00-04:AA-00-04-00-93-10:21 (4.147)
Node address: 41:45418715:00-41:08-00-2B-14-2D-47:21
Node address: 41:45418715:00-41:08-00-2B-14-2D-47:20
Number of nodes reported on: 1

5.3.5. Registering or Modifying a Node
You must register all DECnet Phase V nodes and Phase IV nodes in the namespace to make them
accessible to other nodes in the network.

When you register a node name, decnet_register creates a node entry by that name in the namespace you
specify. For nodes in the DECdns namespace, decnet_register also creates a Phase IV synonym soft link
and an address- to-name backtranslation soft link. Each object and soft link is assigned the minimally
required access control. You can later add additional access control to the object manually.

To register or modify a DECnet Phase V node in the namespace, select Option 2 at the decnet_register
main menu and respond to the prompts as they appear, one by one. Press Ctrl/Z to cancel the register
operation. Output is similar to the following example:

Register or modify node information
 Use Return, Ctrl/N, and Ctrl/P to move between input fields
 Use "?" to obtain help, Ctrl/Z to cancel
Specify the directory service as LocalFile, DECdns, or PhaseIV.
* Directory service: LocalFile
Specify the explicit name of the node to register or modify:
* Node name: sales
Attempting to look up node name
* Node name: LOCAL:.grand.sales
* Synonym: SALES
Specify how to handle the node’s registered address towers, using either
modify, keep, replace, or delete. The current number of towers is "4".
* What should be done with the current address towers: Modify
Register or modify node address information
 Use Return, Ctrl/N, and Ctrl/P to move between input fields
 Use ? to obtain help, Ctrl/Z to cancel
The first six towers for "LOCAL:.grand.sales" are:
 1) SC3/NSP/CLNS=4.147
 2) SC3/TP4/CLNS=4.147
 3) SC3/TP4/CLNS=41:45418715:00-41:08-00-2B-14-2D-47:21
 4) SC3/NSP/CLNS=41:45418715:00-41:08-00-2B-14-2D-47:20
 5) none
 6) none

49

Chapter 5. Managing Name Service Searches and Information

The address must be CLNS NSAP or DECnet Phase IV address.
The transport must be either TP4, TP4=tsel, or NSP.
The DECdns directory service also permits towers containing
IP addresses (IP=d.d.d.d) with the TP2 transport.
The Session Control version (SC2 or SC3) cannot be changed.
Tower number 1
* Address: CLNS=4.147
* Transport: NSP
* Specify another address tower (No or Yes): No
* Press Return to register the node, Ctrl/Z to cancel

For help answering the prompts, refer to the following:

Directory Service
Identify the name service where the node’s information is to be registered. Name services include the
local namespace, the DECdns distributed namespace, and the Phase IV database.

Node Name
Enter an explicit node name, as follows: Enter a node full name formatted for the local namespace or for
DECdns, or enter a Phase IV node name. Do not include any wildcard characters.

Synonym
Enter the node’s Phase IV synonym. You can replace all or part of the synonym with a wildcard
character (*) to show multiple nodes.

Address Towers
Enter one of the specified keywords (modify, keep, replace, or delete) to indicate what you want to do
with the node’s registered address towers.

To add an address tower, specify the node’s NSAP or its Phase IV address. Specify one of the following
transports: TP4, TP4=tsel, or NSP.

The display continues:

Directory Service: LocalFile
Registering the node LOCAL:.grand.sales
Modifying the node synonym
Modifying the node towers
* Press Return to continue

5.3.6. Updating Registered Node Addresses
The update function establishes a network management connection to a node, reads the node’s
addressing information directly from the node, and updates the node registration to contain the correct
addresses. You must specify a usable address in order to establish a network connection to the node to
obtain the remainder of the addressing information.

To update addressing information for the node, select Option 3 at the decnet_register main menu and
respond to the prompts as they appear, one by one. Press Ctrl/Z to cancel the update operation. Output is
similar to the following example:

Update node towers information using network management
 Use Return, Ctrl/N, and Ctrl/P to move between input fields

50

Chapter 5. Managing Name Service Searches and Information

 Use "?" to obtain help, Ctrl/Z to cancel
Specify the directory service as LocalFile, DECdns, or PhaseIV.
* Directory service: decdns
Specify the node to update using an explicit or wildcard name or Phase IV
synonym. If explicitly specifying the local node name, indicate "Local",
otherwise indicate "Remote" (wildcard names must always be "Remote").
* Node name: sales
* Node is remote or local: remote
Specify the NET, NSAP, or Phase IV address to use to access the node and
obtain the node’s full tower set. If you do not specify an address, an
attempt will be made to use the currently defined addresses.
* Node address: 4.147
Press Return to update, Ctrl/Z to cancel

For help answering the prompts, refer to the following:

Directory Service
Identify the name service where the node’s information is to be updated. Name services include the local
namespace, DECdns, and the Phase IV database.

Node Name
Enter a node name, as follows:

Full name The node’s full name properly formatted for the local namespace or
DECdns. You can replace all or part of any simple name in the full name
with a wildcard character (*) to show multiple nodes. Wildcard names
must always be remote.

Synonym The node’s Phase IV synonym. You can replace all or part of the
synonym with a wildcard character (*) to show multiple nodes. Wildcard
names must always be remote.

Node is Remote or Local
If the node to be updated is the local node, specify Local to force use of the local network management
connection. Names that include wildcard characters must always be remote.

Node Address
The node address can be the node’s network entity title (NET), which is the node’s NSAP with a selector
field of 00 or its NSAP, or the node’s Phase IV address, in the format area.id. You can specify a node
address only if you specified an explicit node name.

The display continues:

Directory Service: DECdns
Updating the tower set for "LOCAL:.grand.sales"
Number of nodes updates: 1
Number of update failures: 0
* Press Return to continue

Usage Notes
While Option 3 is is useful for updating a directory’s node tower information, at least one node address
must already be correct in the namespace or you must provide a node address in the decnet_register

51

Chapter 5. Managing Name Service Searches and Information

dialog. For a wildcard operation, this requires that the directory service must contain the correct node
addresses for all nodes prior to the operation.

Because of this restriction, Option 3 is most useful during the conversion from Phase IV to Phase V
names. During the configuration process, the local directory is populated with information taken from
any existing Phase IV database. Option 3 allows you to update the local directory to include Phase V
information obtained from the individual remote nodes.

If the DECdns directory is also being configured, you can use Option 7 to export the local directory
information to an export file. Then use Option 8 to import this information into the newly created
DECdns namespace. Using Option 3 on the local directory first allows this export/import file to contain
Phase V information instead of the default Phase IV information. This assumes that all your nodes have
been configured as Phase V nodes.

Because this option was designed mainly to assist in the Phase IV to Phase V migration, it assumes that
it must initially attempt a Phase IV-style connection to each node. Therefore, if this option is used at
some later time, most connection attempts will initially fail because the remote nodes are now Phase V
nodes. The failure results in an OPCOM message similar to the following:

%%%%%%%%%%% OPCOM 19-FEB-2019 08:27:16.51 %%%%%%%%%%%
(from node ASHFLD at 19-FEB-2019 08:27:17.33)
Message from user SYSTEM on ASHFLD
Event: Remote Protocol Error from: Node LOCAL:.ASHFLD NSP Local NSAP
490003AA000400230C20 Remote NSAP 490003AA000400220C20,
 at: 2019-02-19-08:27:17.332-07:00Iinf
 Reject Cause=Invalid Message Format,
 Erroneous Transport PDU=’3831002700000005’H
 eventUid F4BC1601-43E3-11D7-B04D-434352202020
 entityUid 853F4E9F-3936-11D7-A8F6-434352202020
 streamUid 8AF7A6C9-3888-11D7-8456-AA000400230C

To update the local directory after configuration, the preferred method is to use the export/import
options in decnet_register. To update the directory at any time, perform the following steps:

1. Invoke decnet_register.

2. Select Option 7 --- Export node names to a data file. Be sure to specify the proper SOURCE
directory and a file name.

3. Edit the text file as needed.

4. Invoke decnet_register.

5. Select Option 8 --- Import node names from a data file. Be sure to specify the proper TARGET
directory and the same file name used in the export operation. Enter in response to the Template:
and Error file name: prompts. Enter replace in response to the Function: prompt.

6. Update other nodes in the network as required using the export file created in Step 2. Note that
decnet_register has a command line interface option that is useful when creating command
procedures to automate this step.

Note

Although these steps work for the DECdns directory, DECdns has its own update mechanisms.
Therefore, this procedure is usually not appropriate for the DECdns directory.

52

Chapter 5. Managing Name Service Searches and Information

Option 3 does have limited usefulness after configuration. Using Option 3 provides direct feedback about
which nodes are correctly addressed and currently reachable. (With the caveat that initial attempts are
Phase IV-based which may result in numerous errors.)

5.3.7. Renaming a Registered Node
If the name of a node registered in the namespace changes, make sure to change the node name in the
namespace.

To change the name of a node in the namespace without changing any other information associated with
the node name, select Option 4 at the decnet_register main menu. For nodes registered in the DECdns
namespace, the synonym soft link and address-to-name backtranslation soft link are updated to point to
the new name. For the local namespace, this information is changed in the database.

Note

When you rename a node, you should subsequently modify any DECdns access control entry (ACE)
whose principal contains the node name. If the node whose name you are changing is a DECdns server,
create the new ACEs for the OpenVMS system’s system account and DNS$Server account before you
change the node name. If you do not create new ACEs before renaming the node, you can lock the
server out of access to the namespace. For details, refer to the chapter on managing access control in the
VSI DECnet-Plus for OpenVMS DECdns Management Guide.

To change the node name, select Option 4 at the decnet_register main menu and respond to the prompts
as they appear, one by one. Press Ctrl/Z to cancel the rename operation. Output is similar to the
following example:

Rename a registered node
 Use Return, Ctrl/N, and Ctrl/P to move between input fields
 Use "?" to obtain help, Ctrl/Z to cancel
Specify the directory service as LocalFile, DECdns, or PhaseIV.
* Directory service: LocalFile
Specify the current name and the new name for the node. Both names must be
explicit full names.
* Old node name: Local:.hiho
* New node name: Local:.happy
Specify the Phase IV synonym to use after the node has been renamed.
Enter an asterisk (*) to keep the old synonym name. Leave the
field blank to indicate no synonym.
* New synonym: happy
Press Return to rename, Ctrl/Z to cancel

For help answering the prompts, refer to the following:

Directory Service

Identify the name service containing information for the node to be renamed. Name services include
the local namespace, DECdns, and the Phase IV database. Nodes can be renamed only within a name
service. You cannot change the name service when renaming a node.

Old Node Name

Enter the node’s current full name properly formatted for the name service.

53

Chapter 5. Managing Name Service Searches and Information

New Node Name
Enter the node’s new full name properly formatted for the name service.

New Synonym
Enter the new Phase IV synonym for the node. To keep the current synonym, enter an asterisk. To have
no synonym, leave the field empty.

Directory Service: Local name file
Checking the current node registration
Renaming: LOCAL:.hiho
To: happy
* Press Return to continue

5.3.8. Repairing a Node’s Synonym and Reverse
Address Links
If the synonym or reverse address mapping links for the local namespace and the DECdns name service
are deleted or changed accidentally, use the repair option to restore the correct soft links. Use Option
1 of the decnet_register main menu to display the current values for a node’s synonym link and reverse
address mapping link.

To repair synonym or reverse address mapping links, select Option 5 at the decnet_register main menu.
The tool prompts you for the name of the directory service where the node information is stored and
for the name of the node whose soft links are to be repaired. Press Ctrl/Z to cancel the repair operation.
Output is similar to the following example:

Repair node synonym and reverse address mapping links
 Use Return, Ctrl/N, and Ctrl/P to move between input fields
 Use "?" to obtain help, Ctrl/Z to cancel
Specify the directory service as LocalFile or DECdns.
* Directory service: decdns
Specify the node to repair using an explicit or wildcard full name.
The only valid name for the LocalFile directory service is "*".
* Node name: hiho
Press Return to repair, Ctrl/Z to cancel

For help answering the prompts, refer to the following:

Directory Service
Identify the name service where synonym and reverse address mapping links need to be repaired.
Specify either LocalFile or DECdns.

Node Name
Enter the node’s full name properly formatted for the DECdns name service. This argument is not used
for the local namespace. You can replace all or part of any simple name with a wildcard character (*) to
repair multiple nodes.

The display continues:

Directory Service: DECdns

54

Chapter 5. Managing Name Service Searches and Information

No repairs needed: Hiho
Number of nodes repaired: 0
Number not needing repair: 1

5.3.9. Deregistering a Node from the Namespace
To maximize performance, keep your namespace as up-to-date and uncluttered as possible. This includes
removing obsolete node registrations from the namespace.

To deregister a node from the namespace, select Option 6 at the decnet_register main menu. The tool
prompts you for the node name to be removed. Press Ctrl/Z to cancel the deregister operation. Output is
similar to the following example:

Deregister node names
 Use Return, Ctrl/N, and Ctrl/P to move between input fields
 Use "?" to obtain help, Ctrl/Z to cancel
Specify the directory service as LocalFile, DECdns, or PhaseIV.
* Directory service: LocalFile
Specify the node to deregister using an explicit or wildcard name, an NSAP,
or a Phase IV synonym or address.
* Node name or address: hiho
Specify whether or not to display node name, synonym, and NSAP information
before indicating that the nodes should or should not be deregistered.
* Display node information (no or yes):
Press Return to deregister, Ctrl/Z to cancel

For help answering the prompts, refer to the following:

Directory Service

Identify the name service where the node’s information is stored. Name services include the local
namespace, the DECdns distributed namespace, and the Phase IV database.

Node Name or Address

Enter a node name or address, as follows:

Full name The node’s full name, including the directory or directories. You can
replace all or part of any simple name in the full name, including
the directory names, with a wildcard character (*) to show multiple
nodes.

Synonym The node’s Phase IV synonym. This must not contain any directory
names. You can replace all or part of the synonym with a wildcard
character (*) to show multiple nodes.

NET or NSAP The node’s network entity title (NET), which is the node’s NSAP
with a selector field of 00 or its NSAP. You can replace the node
ID field of the NET with a wildcard character (*) to show all nodes
within an area. For more information about NETs, refer to the VSI
DECnet-Plus for OpenVMS Introduction and User's Guide.

Address The node’s Phase IV address, in the format area.id. You can replace
the id field of the address with a wildcard character (*) to show all
nodes within an area.

55

Chapter 5. Managing Name Service Searches and Information

Display Node Information (NO or YES)
Enter NO to deregister the node without first confirming. Enter YES to see information about the node
before you deregister it.

Directory Service: Local name file
Deregistering: Local:.hiho
Number of nodes deregistered: 1
Press Return to continue

5.3.10. Exporting and Importing Node Information
Between Name Services
Using the decnet_register tool’s export and import functions, you can transfer name and addressing
information between different namespaces, including:

● To or from a Phase IV local node’s database

● To or from a DECdns distributed namespace

● To or from the new local namespace

See Section 5.3.10.3, "Converting an Existing LNO Text File to a Local Namespace" for information on
moving information from a Local Naming Option (LNO) database.

Use the decnet_register tool export option to create an export/import file. The following is an example
export/import file created for a local namespace:

!
! DECnet-Plus node name export/import file 8-AUG-2019 11:53:24.16
!
=Type DECnet Node
=Version 1
=All Address Prefix 49::
=DECdns Name Template ???:.???.*
=DECdns Synonym Directory ???:.???
=DECdns Reverse Address Directory ???:.???
=PhaseIV Name Template *
=LocalFile Name Template LOCAL:.*
TOYBOAT TOY {Tower=SC2/NSP/CLNS=41.619}
TOPAZ TOPAZ {Tower=SC2/NSP/CLNS=40.251}
TROY TROY {Tower=SC2/NSP/CLNS=59.202}
TROUBLE TROUBLE {Tower=SC2/NSP/CLNS=31.121}

During network configuration, NET$CONFIGURE.COM creates an export/import
file when it determines that your node is not yet completely registered in either
DECdns or the local namespace. Then, NET$CONFIGURE.COM can use the export/
import file to register your node in the name service. It names the export/import file
SYS$MANAGER:DECNET_REGISTER_IMPORT_FILE_SYNONYM.TXT where SYNONYM is the
synonym for your node.

You can make changes to the information contained in the namespace by editing the export/import file
with any text editor before importing the export/import file into a name service. The following import
option functions are available:

● import — Registers the listed nodes into the specified name service.

56

Chapter 5. Managing Name Service Searches and Information

● modify — Makes changes to the node information in the name service. This makes it possible to
make a large number of synonym or tower changes at one time.

● update — Registers the listed nodes into the name service if they do not already exist, or modifies
them if they do exist. This makes it possible to make changes in one name service based on the
information from another name service.

● replace — Deregisters any nodes that use the same synonyms or towers as the listed nodes. Then
registers the listed nodes in the name service. This makes it possible to make a number of name
changes at one time.

● verify — Checks whether or not the information in the name service matches the listed nodes.

● deregister — Deregisters the listed nodes from the name service.

5.3.10.1. Exporting Node Information from a Name Service
Select Option 7 at the decnet_register main menu to create a text file that can be edited and contains the
node information extracted from the name service. Press Ctrl/Z to cancel the export operation. Output is
similar to the following example:

Export node information
 Use Return, Ctrl/N, and Ctrl/P to move between input fields
 Use "?" to obtain help, Ctrl/Z to cancel
Specify the directory service as LocalFile, DECdns, or PhaseIV.
* Directory service: LocalFile
Specify the node names to export using a wildcard name, NSAP, Phase IV
synonym, or Phase IV address.
* Node name or address: T*
Specify the file name to export data into.
* File name: export_nodes.txt
Press Return to export, Ctrl/Z to cancel
Exporting node name information using: T*
1) LOCAL:.TOYBOAT
2) LOCAL:.TOPAZ
3) LOCAL:.TROY
4) LOCAL:.TROUBLE

5.3.10.2. Importing Node Information from an Export/Import File to
a Name Service
Select Option 8 at the decnet_register main menu to import the node information contained in a text
file in to a name service. Press Ctrl/Z to cancel the import operation. Output is similar to the following
example:

Import node information
 Use Return, Ctrl/N, and Ctrl/P to move between input fields
 Use "?" to obtain help, Ctrl/Z to cancel
Specify the directory service as LocalFile, DECdns, or PhaseIV.
* Directory service: LocalFile
Specify the file containing the data to import into the directory service.
Specify the error log file (if none, errors go to the terminal).
* Data file name: export_nodes.txt
* Error file name:
Specify the name template, with "*" where the node names should be
 inserted.

57

Chapter 5. Managing Name Service Searches and Information

Specify the function as either update, register, modify, replace,
 deregister,
or verify.
* Template: *
Specify either update, register, modify, replace, deregister, or verify.
* Import function to perform: verify
Press Return to import, Ctrl/Z to cancel
Directory Service: Local name file
Verifying nodes listed in export_nodes.txt
1) TOYBOAT
2) TOPAZ
3) TROY
4) TROUBLE

5.3.10.3. Converting an Existing LNO Text File to a Local
Namespace
DECnet-Plus includes a local namespace that replaces functionality previously provided by the LNO
namespace, the DECdns Local Naming Option.

The decnet_register_lno tool translates an existing LNO text file into a new local namespace file.

Run decnet_register_lno with the following command:

$ mcr sys$system:decnet_register_lno

This tool is supplied for backward compatibility only. You must have an existing LNO text file to use this
procedure.

5.3.11. Setting Preferences and Network Values
Select Option 9 at the decnet_register main menu to preset values for the most commonly used
decnet_register parameters and to establish parameter values for the remainder of your current
decnet_register session.

Note

By including a set default command in your decnet_register initialization command file, as explained in
Section 5.3.3, you can preset parameter values before the session begins.

Press Ctrl/Z to cancel the set preferences operation. Output is similar to the following example:

Set preferences and network values
 Use Return, Ctrl/N, and Ctrl/P to move between input fields
 Use "?" to obtain help, Ctrl/Z to cancel
Specify the directory service as LocalFile, DECdns, or Phase IV.
* Directory service: DECdns
Settings applicable to any directory service.
* Phase IV address prefix: 49::
* NSAP format (DNA or OSI): DNA
Settings applicable to the specific directory service.
* Synonym directory: .DNA_NodeSynonym
* Reverse address directory: .DNA_BackTranslation
Press Return to set the values, Ctrl/Z to cancel

For help answering the prompts, refer to the following:

58

Chapter 5. Managing Name Service Searches and Information

Directory Service
Enter a directory service keyword: Local, DECdns, or PhaseIV.

Phase IV Address Prefix
Enter the AFI (authority and format identifier), IDI (initial domain identifier), and preDSP (domain-
specific part) to use when constructing an NSAP from a Phase IV address. For example, the Phase IV
address 1.5 and the Phase IV prefix 39:840:800AB738 result in the following NSAP address:

39:840:800AB738-0001:AA-00-04-00-05-04:20

NSAP Format
Enter an NSAP format keyword: DNA or OSI to use when converting an NSAP address to a text
representation.

DNA specifies DNA text format:

<afi>:<idi>:<predsp>-<locarea>:<nodeid>:<nsel>

OSI specifies OSI text format:

<afi><idi>+<predsp><locarea><nodeid><nsel>

Synonym Directory
For the DECdns name service, enter the synonym directory name to use when a decnet_register
command does not specify a synonym directory.

Reverse Address Directory
For the DECdns name service, enter the reverse address (or backtranslation) directory name to use when
a decnet_register command does not specify a backtranslation directory.

5.3.12. Managing the DECdns Directory Service
This section contains instructions for managing the DECdns distributed namespace by using the
decnet_register manage function to invoke the decnet_register_decdns command procedure. This section
describes how to perform the following namespace tasks:

● Creating the namespace directories required by DECnet-Plus (Do this once per network, immediately
after creating the namespace.)

● Creating other directories in the namespace

● Replicating directories

● Creating access control groups and adding, removing, and showing members of an access control
group

● Changing the security level of directories in the namespace to allow or disallow nodes to
automatically register themselves in the namespace when they are configured

To create directories and manage access control groups, you need to have access to the clearinghouses
and directory in which you want to create and manage these directories and groups. You usually do this
from the node and account that created the namespace. For more information about the access rights,

59

Chapter 5. Managing Name Service Searches and Information

refer to the VSI DECnet-Plus for OpenVMS DECdns Management Guide. Also, the VSI DECnet-Plus for
OpenVMS DECdns Management Guide contains complete information about DECdns and the namespace
and provides namespace planning information.

5.3.12.1. Initializing the DECdns Namespace for DECnet
Every DECdns namespace must be initialized for DECnet use at least once. This involves creating
certain required namespace directories and the .DNA_Registrar access control group. The namespace
is automatically initialized when the DECnet-Plus advanced configuration procedure creates the
namespace.

Initialization creates the following directories:

● Backtranslation directory

Translates an address to a name. This directory contains one child directory for each IDP (initial
domain part) and preDSP in the network. Each of these child directories contains one child directory
for each local area defined within that IDP and preDSP. Each local area child directory contains one
soft link for each node ID defined in that local area. This is usually called .DNA_BackTranslation
directory.

The decnet_register tool creates the soft link for each Phase IV node when you register the node
using either Option 2 or Option 8 on the main menu form.

When you specify that the network contains Phase IV nodes, the DECnet- Plus advanced
configuration procedure automatically creates the address backtranslation directories required for
registering Phase IV nodes. You can create additional address backtranslation directories manually
by selecting Function 3 on the decnet_register_decdns function menu.

● Node Synonym directory

Translates a Phase-IV-compatible node name (called a Phase IV node synonym) to a DECnet
Phase V node full name. This directory contains a soft link for each node that has a Phase IV node
synonym. This is usually called the .DNA_NodeSynonym directory.

The decnet_register tool automatically creates synonym soft links for nodes when you register the
nodes using either Option 2 or Option 8 on the main menu form.

The DECnet-Plus advanced configuration procedure automatically creates the node synonym
directory required for registering Phase IV node synonyms. If necessary, you can recreate the node
synonym directory manually by selecting Function 2 on the decnet_register_decdns function menu.

● .DTSS_GlobalTimeServers

Holds the names and network locations of global time servers for DECdts.

The DECnet-Plus advanced configuration procedure automatically creates the global timer servers
directory required for registering the names and network locations of global time servers for DECdts.
If necessary, you can recreate the global timer servers directory manually by selecting Function 4 on
the decnet_register_decdns function menu.

The DECnet-Plus advanced configuration procedure also creates the access control group
.DNA_Registrar. This access control group contains a list of network users with read, write, delete, test,
and control access to all namespace objects, soft links, and directories created using decnet_register and
decnet_register_decdns.

60

Chapter 5. Managing Name Service Searches and Information

You can reinitialize the namespace for DECnet at any time; if the namespace directories already
exist, the tool does not overwrite them. You need to reinitialize the namespace if, for example, a
backtranslation directory was accidentally deleted.

5.3.12.2. Using the Manage Option

To manage the DECdns namespace for DECnet-Plus, select Option 10 on the decnet_register main
menu. The following messages and prompts appear, one by one. Enter decdns as the name service to
manage. Enter ? for help. Press Ctrl/Z to cancel the operation and return to the decnet_register main
menu. Output is similar to the following example:

Manage the node name storage aspects of a directory service
 Use Return, Ctrl/N, and Ctrl/P to move between input fields
 Use "?" to obtain help, Ctrl/Z to cancel

Specify the directory service as DECdns.
* Directory Service: decdns

This function executes the "SYS$MANAGER:DECNET_REGISTER_DECDNS.COM"
 procedure
to perform management operations for the specified directory service.

This provides management of only those aspects of the directory service
that affect the storage of node name data.

Press Return to execute the procedure, Ctrl/Z to cancel

Starting the directory management procedure for the DECdns directory
 service

The procedure name is "@SYS$MANAGER:DECNET_REGISTER_DECDNS.COM"

DECnet-Plus node directory management for DECdns

Type a question mark (?) at any prompt to obtain help.
Press Ctrl/Z at any prompt to exit from the function.

Enter the name of the DECdns namespace to use.
The default is the system default namespace (bb_ns:).

* Namespace name: bb_ns:
Checking the bb_ns: namespace.

Choose one of the following functions by specifying its function number, or
 request help by typing HELP or a question mark (?).
 0 - Exit
 1 - Create a directory to hold registered node names
 2 - Create a directory for Phase IV Synonyms
 3 - Create a directory for address-to-name translations
 4 - Create the directory for the DECdts Time Services
 5 - Replicate a node name or synonym directory
 6 - Replicate an address-to-name translation directory
 7 - Create an access control group
 8 - Add members to an access control group
 9 - Remove members from an access control group
 10 - Show members of an access control group
 11 - Allow node autoregistration into a directory

61

Chapter 5. Managing Name Service Searches and Information

 12 - Disallow node autoregistration into a directory
* Function to execute:

5.3.12.3. Creating Directories for Registering Node Names
Your namespace will probably include many directories in which nodes are registered. Only the smallest
networks should have all nodes registered in the root directory. For a more detailed discussion of this
strategy, refer to the VSI DECnet-Plus for OpenVMS DECdns Management Guide.

Note

Because decnet_register can set up any access control required by DECnet, VSI recommends that you
use this tool (rather than the DECdns Control Program) to create the namespace directories you want to
use for node names.

To create a directory, select Option 10 at the decnet_register main menu. Enter decdns as the name
service to manage and enter the name of the DECdns namespace to use. Then select Function 1 from the
decnet_register_decdns function menu.

The following messages and prompts appear, one by one. Press Ctrl/Z to exit. Output is similar to the
following example:

Create a directory to hold registered node names.
Press Ctrl/Z when done.
Enter the name of the node name directory to create.
* Directory name: .xyz
Enter the name of the clearinghouse for the master copy of the directory.
The default is the parent directory’s clearinghouse.
* Master replica clearinghouse: .mgv460_bb_ch
Enter the names of the access control groups to apply to the directory,
separated by commas.
* Access control groups [Def=DNA_Registrar]: .worldread_group
Creating the bb_ns:.xyz directory.
* Directory name:

For help answering the prompts, refer to the following:

Directory Name

Specify the full name for the directory to be created. This should not include a node or user name; for
example, .Japan.Osaka.

Master Replica Clearinghouse

Specify the name of the clearinghouse where the master directory replicas should be created. Include
any required directory information; for example, if your clearinghouse is in the root directory, you might
type .MAS_CH.

If you do not specify a clearinghouse name, the parent directory’s clearinghouse is used (this is the
DECdns default).

Access Control Groups

Enter the names of one or more DECdns access control groups that you want to include in the access
control set for the directory (or directories) you create.

62

Chapter 5. Managing Name Service Searches and Information

Using groups other than .DNA_Registrar allows you to control user access to the directories by
listing those users who have read, write, delete, test, and control access to directories created using
decnet_register_decdns. The specified access control groups are propagated to all node names registered
in the created directories.

To specify more than one group name, separate them by commas.

The .DNA_Registrar group is included automatically in the list, whether or not you specify it.

The .DNA_Registrar group is created and populated by decnet_register_decdns. You are responsible for
creating and populating any additional groups that you specify.

5.3.12.4. Creating Backtranslation Directories for New IDPs,
PreDSPs, and Network Areas
When you initialize the namespace for DECnet use, the DECnet-Plus configuration procedure creates
backtranslation directories in the namespace for your network IDP and preDSP and for each network
area that you specify.

If you add an IDP, preDSP, or network area to your network, you must create new backtranslation
directories. Also, if you plan to change the network’s IDP or preDSP or a node’s area, first create new
backtranslation directories.

To create a directory for a new DECnet area or IDP and preDSP, select Function 3 at the
decnet_register_decdns function menu. The following messages and prompts appear, one by one. Press
Ctrl/Z to exit. Output is similar to the following example:

Create a directory tree to hold address-to-name translation information.
Press Ctrl/Z when done.
Enter the name of the base address-to-name translation directory.
The current default is ".DNA_BackTranslation".
* Directory name: .DNA_BackTranslation
* Create the base directory [y/n, def=no]: y
Enter the name of the clearinghouse for the master copy of the directory.
The default is the parent directory’s clearinghouse.
* Master replica clearinghouse: major2:.nyc_ch
Enter the names of the access control groups to apply to the directory,
separated by commas.
Enter "." to reset the default to no access control groups.
The current default is ".dna_registrar".
* Access control groups: .dna_registrar
Creating the MAJOR2:.DNA_BackTranslation directory.
Enter the OSI area prefix, using either of the formats:
 <afi>:<idi>:<predsp>
 <afi><idi>+<predsp>
The current default is "49::"
* OSI area prefix: 49::
* Create the OSI area prefix directory [y/n, def=no]: y
Enter the name of the clearinghouse for the master copy of the directory.
The default is the parent directory’s clearinghouse.
* Master replica clearinghouse: major2:.nyc_ch
Enter the names of the access control groups to apply to the directory,
separated by commas.
Enter "." to reset the default to no access control groups.
The current default is ".dna_registrar".
* Access control groups: .dna_registrar
Creating the MAJOR2:.DNA_BackTranslation.%X49 directory.

63

Chapter 5. Managing Name Service Searches and Information

Enter the local area, using either of the formats:
 A decimal value, from 1 to 63
 A hexadecimal value, from %x0001 to %xFFFE
It is assumed that local area child directory needs to be created.
* Local area: 4
Enter the name of the clearinghouse for the master copy of the directory.
The default is the parent directory’s clearinghouse.
* Master replica clearinghouse: major2:.nyc_ch
Enter the names of the access control groups to apply to the directory,
separated by commas.
Enter "." to reset the default to no access control groups.
The current default is ".dna_registrar".
* Access control groups: .dna_registrar
Creating the MAJOR2:.DNA_BackTranslation.%X49.%X0004 directory.
Enter the local area, using either of the formats:
 A decimal value, from 1 to 63
 A hexadecimal value, from %x0001 to %xFFFE
It is assumed that local area child directory needs to be created.
* Local area:

The value that you enter for the local area creates a child directory under the OSI area prefix
directory created previously.

For help answering the prompts, refer to the following:

Directory Name

Enter the name of the base backtranslation directory. This directory is commonly
called .DNA_BackTranslation.

Enter YES to create the base backtranslation directory.

Master Replica Clearinghouse

Specify the name of the clearinghouse where the master directory replicas should be created. Include
any required directory information; for example, if your clearinghouse is in the root directory, you might
type .MAS_CH.

If you do not specify a clearinghouse name, the parent directory’s clearinghouse is used (this is the
DECdns default).

Access Control Groups

Enter the names of one or more DECdns access control groups that you want to include in the access
control set for the directory (or directories) you create. Using access control groups allows you to control
user access to the directories by listing those users who have read, write, delete, test, and control access
to directories created using decnet_register_decdns. The specified access control groups are propagated
to all backtranslation soft links.

To specify more than one group name, separate them by commas. You are responsible for creating and
populating any access control groups that you specify.

OSI Area Prefix

Specify the IDP (initial domain part) and preDSP (domain-specific part) value for the network. Specify
either the default value (49::) or a value explicitly allocated for this network.

The format is afi:idi:predsp, where:

64

Chapter 5. Managing Name Service Searches and Information

afi Two decimal digits indicating the IDP allocation authority. Press question
mark (?) at the prompt to obtain a complete list of all the recognized
authority format identifier (AFI) values.

idi A string of decimal digits indicating the initial domain identifier (IDI)
value.

predsp A string of hexadecimal digits whose use might be required for this IDP.
The preDSP will be prefixed to the node’s local area value in the domain-
specific part (DSP) of the node’s network service access point (NSAP). If
a predsp has not been defined for your network, do not specify a value.

Note

For more information on IDP and preDSP values, refer to the chapter describing how to create NSAP
addresses in the VSI DECnet-Plus Planning Guide.

The default of 49:: means that both the idi and predsp are null. When the AFI equals 49::, the network is
not to be interconnected with other OSI networks.

If you specify an IDP with an AFI other than 49::, that value appears as the default the next time the
prompt appears.

Enter YES to create the OSI area prefix directory.

Local Area Value

Specify the local area to use within the IDP. This is either of the following:

● A hexadecimal value from %X0040 to %XFFFF, for a DECnet Phase V extended area

● A decimal value from 1 to 63, for a Phase-IV-compatible area

5.3.12.5. Creating an Access Control Group
This function creates an access control group (for example, the .DNA_Registrar access control group).
The .DNA_Registrar access control group lists those users who have read, write, delete, test, and control
access to all directories, objects, and soft links created using decnet_register. This group is automatically
placed in the appropriate access control list for every node registered using decnet_register.

If necessary, you can also use the DECdns Control Program to add additional users and groups to
individual access control lists.

To create an access control group, select Function 7 at the decnet_register_decdns function menu.
The following messages and prompts appear, one by one. Press Ctrl/Z to exit. Output is similar to the
following example:

Create an access control group.
Press CTRL/Z when done.
Enter the name of the access control group to create.
* Group name: .biggroup

Creating the .WorldRead_Group

When you create a new namespace on an DECdns name server, a group called .WorldRead_Group is
also created. This allows you to easily change from one namespace to another. This group allows READ

65

Chapter 5. Managing Name Service Searches and Information

and TEST access to node objects. Therefore, a node that is moving from one namespace to another
can read old information from its previous namespace and move any of this information to the new
namespace.

When the .WorldRead_Group is created, it contains members LOCAL:.*... and <ns>:.*..., where <ns>
is the name of your namespace. The person managing the namespace determines which systems (or
namespaces) will get READ and TEST access to the namespace. The namespace manager needs to
explicitly remove the members from the .WorldRead_Group if the namespace manager does not want
these members included.

Using the .WorldRead_Group Access Control Group

When decnet_register_decdns is first used to set up the directories for a namespace, it checks for the
existence of the .WorldRead_Group access control group. This group is generally used when multiple
namespaces are in use in the network (for example, multiple DECdns namespaces, or one or more
DECdns namespaces plus the local namespace). The members of this group are automatically granted
read access to any created directories and objects, regardless of the namespace they are in.

Without the .WorldRead_Group access control group, users in other namespaces would need
to be granted access to any appropriate directories and objects individually. Members in
the .WorldRead_Group group are usually of the form namespace:.*..., where namespace is your
namespace nickname (for example, ACME:.*...). Individuals can also be listed.

If decnet_register_decdns does not find the .WorldRead_Group access control group, it asks whether to
create the group. If so, decnet_register_decdns does the following:

● Creates the .WorldRead_Group access control group

● Adds the group to the root directory

● Sets the group to be added by default to any subsequently created directories (and subsequently
created objects within those directories)

If the access control group is not created, decnet_register_decdns does not ask this question
again on subsequent invocations. To have the question repeated on a later invocation, edit the
decnet_register_decdns.defaults file in the login directory, find the line that contains def_worrea or
nrg_def_worrea, and remove the appropriate namespace from the value list.

It is important to note that this group affects only those directories and objects created after the group.
Any directories and objects created before the group must have the access control set (ACS) explicitly
set using the DECdns Control Program.

5.3.12.6. Adding Members to an Access Control Group
This function adds new members to an access control group (for example, the .DNA_Registrar access
control group). The .DNA_Registrar access control group lists those users who have read, write, delete,
test, and control access to all directories, objects, and soft links created using decnet_register. This
group is automatically placed in the appropriate access control list for every node registered using
decnet_register.

If necessary, you can also use the DECdns Control Program to add additional users and groups to
individual access control lists.

To add members to an access control group, select Function 8 at the decnet_register_decdns function
menu. The following messages and prompts appear. Press Ctrl/Z to exit. Output is similar to the
following example:

66

Chapter 5. Managing Name Service Searches and Information

Add members to the access control group.
Press Ctrl/Z when done.
Enter the name of the access control group to use.
The current default is "bb_ns:.biggroup".
* Group name: .DNA_Registrar
Enter the name of the group member to add.
* Member name: .Japan.Osaka.Sales.Yamamoto
Adding member ".Japan.Osaka.Sales.Yamamoto" to ".DNA_Registrar"
* Member name: GCsale::Obrien
Adding member ".DNS$IV.GCsale.Obrien" to ".DNA_Registrar"
* Member:

For help answering the prompt for a member name, refer to the following:

Member Name

Enter the name of the member you want to add, using the format:

node_full_name.user_name

where:

node_full_name The DECnet Phase V full name of the node on
which the user has an account. This node must be
registered in the namespace.

user_name The account name for the user on this node.

You can also specify members using the format:

node_name::user_name

where:

node_name The Phase IV name of the node on which the user
has an account. This node must be registered in
the namespace, with this name as its Phase IV
synonym.

user_name The account name for the user on this node.

The preceding example shows two members being added to the access control group, the first by
specifying the node’s full name, and the second by specifying the Phase IV node name.

5.3.12.7. Removing Members from an Access Control Group
This function removes members from an access control group.

To perform this task, select Function 9 at the decnet_register_decdns function menu. The following
messages and prompts appear. Press Ctrl/Z to exit. Output is similar to the following example:

Remove members from the access control group.
Press Ctrl/Z when finished.
Note that removing a nonexistent member does not result in an error. This
is also true for member names that are entered incorrectly. For this
 reason,
it is recommended that you show the group members are finishing the remove

67

Chapter 5. Managing Name Service Searches and Information

function, to verify that all members were removed correctly.
Enter the name of the access control group to use.
The current default is "".
* Group name: .DNA_Registrar
Enter the name of the group member to remove, as displayed by the Show
Member function.
* Member name: .Japan.Osaka.Sales.Yamamoto
Removing member ".Japan.Osaka.Sales.Yamamoto" from ".DNA_Registrar".
* Member name: GCsale::Obrien
Removing member ".DNS$IV.GCsale.Obrien" from ".DNA_Registrar".
* Member name:

For help answering the prompt, refer to the following:

Member Name

Enter the name of the member you want to remove. Specify the member’s name exactly as it appears
when you use Function 10 of decnet_register_decdns function menu to list the members of the access
control group.

If the member’s name was added using the format node_name::user_name, you can use this same
format to remove it.

To delete all members of the group, enter an asterisk (*) at the prompt. This command re-creates
the .DNA_Registrar access control group.

The preceding example shows two members being removed from the access control group, the first using
the name as shown by Function 10, and the second using the Phase IV format.

Showing Members of an Access Control Group

This function shows the members of an access control group. Specifying the .DNA_Registrar group lists
those users who are allowed to manage node names in the namespace.

To perform this task, select Function 10 at the decnet_register_decdns function menu. The following
messages and prompts appear. Press Ctrl/Z to exit. Output is similar to the following example:

Show members of the access control group.
Press Ctrl/Z when done.
Enter the name of the access control group to use.
The current default is "bb_ns:.biggroup".
Group name:
 SHOW
 GROUP bb_ns:.biggroup
 AT 05-NOV-2019:14:41:25
 DNS$Members (set) = :
 (V) Principal = bb_ns:.mgv460.manager

Enabling and Disabling Autoregistration of DECnet Phase V Nodes

Some tasks in this chapter manually register nodes in the namespace. DECnet Phase V nodes — but not
Phase IV nodes — can automatically register themselves in the namespace when they are configured.
This is called autoregistration. With this option you can enable or disable autoregistration of DECnet
Phase V nodes. (Autoregistration of DECnet Phase V nodes is disabled by default.)

Although convenient, autoregistration of DECnet Phase V nodes presents a potential security risk
because allowing autoregistration into a specific directory adds write access for the world (.*...) to

68

Chapter 5. Managing Name Service Searches and Information

the access control set (ACS) for that directory. Therefore, all users in the network can create child
directories, objects, and soft links in that directory.

Note

Once a node has been registered into the directory, its registration can be modified only by the node
itself or by an authorized namespace manager. The security risk applies to the directory but not to the
node-name objects within the directory.

If you disallow autoregistration in a directory, the namespace is more secure because only authorized
users can create entries in that directory. However, node names in that directory must be registered by an
authorized namespace manager.

Allowing Autoregistration

To allow node autoregistration for a directory, select Function 11 at the decnet_register_decdns function
menu. The following messages and prompts appear. Press Ctrl/Z to exit. Output is similar to the
following example:

Allow node autoregistration into a directory.
Press Ctrl/Z when done.
Enter the name of the directory for which to allow autoregistration.
The current default is ".DNA_BackTranslation.%X49".
* Directory name: .Japan.Osaka
Modifying world write access to allow node autoregistration in this
 directory.

For help answering the prompt, refer to the following:

Directory Name

Specify the full name for the directory whose access is to be modified. This should not include a node
name; for example, .Japan.Osaka.

Disallowing Autoregistration

To disallow node autoregistration for a directory, select Function 12 at the decnet_register_decdns
function menu. The following messages and prompts appear. Press Ctrl/Z to exit. Output is similar to the
following example:

Disallow node autoregistration into a directory.
Press Ctrl/Z when done.
Enter the name of the directory for which to disallow autoregistration.
The current default is ".DNA_BackTranslation.%X49".
* Directory name: .Japan.Osaka
Modifying world write access to disallow node autoregistration in this
 directory.
* Directory name:

5.3.13. Spawning to DCL
Select Option 11 at the decnet_register main menu to create an interactive subprocess where you can
enter NCL and other commands.

Enter the DCL logout command to terminate the subprocess and return to decnet_register.

69

Chapter 5. Managing Name Service Searches and Information

70

Chapter 6. Modifying Your
Network
This chapter provides information about four methods you can use to modify your network
configuration:

● Configuration procedures

● Interactive Network Control Language (NCL) commands

● NCL scripts

● Logical names

This chapter also explains how you can create network server processes and how to delete and disable
entities on all DECnet Phase V systems.

6.1. Using the Configuration Procedure
The DECnet-Plus software provides a configuration procedure, NET$CONFIGURE.COM, that you use
to set up a basic, working node. The procedure produces a set of files called NCL scripts. To modify
your network, rerun the configuration procedure, make the appropriate changes, and reboot the system.
This modifies the configuration scripts and makes the changes permanent.

Note

VSI recommends that, whenever possible, you use the configuration procedure to modify your node.

To customize your system beyond what the configuration procedure provides, you must edit the NCL
scripts produced by the configuration procedure (see Section 6.2.2, "Editing NCL Scripts").

6.2. Network Control Language
NCL is a command-based tool that lets you set up, modify, and display information about any DECnet-
Plus entity. You may, at times, want to manage an attribute of an entity, such as a buffer size. To perform
this task, you need to use NCL to make the change interactively or you need to edit the NCL scripts
produced by the configuration procedure.

You should manage your DECnet-Plus system this way only if:

● You cannot use the configuration program to carry out the task you want. For instance, you might
need to make a temporary change to the running network (see Section 6.2.1, "Using Interactive
NCL").

● The feature you want to use is not available through the configuration procedure.

NCL supports an optional initialization file and an optional key definition file:

● The initialization file contains NCL commands that are executed when you start NCL; that is,
before you receive the NCL prompt (ncl>). Alternatively, the NCL commands are executed prior to
executing an NCL script file that is specified as part of a DCL command line.

● The key definition file associates commonly used NCL commands with keys on the keypad.

71

Chapter 6. Modifying Your Network

For more information, refer to the VSI DECnet-Plus for OpenVMS Network Control Language Reference
Guide.

6.2.1. Using Interactive NCL
Interactive NCL is useful only for temporary changes to a configuration. When you make changes to the
running node using NCL interactively, the changes become effective immediately, but last only until the
system is rebooted. For example, you might want to monitor a set of counters for a particular entity or
you might want to temporarily disable a link.

The following steps briefly explain how to use interactive NCL:

1. Run the NCL utility on your local system. Refer to the VSI DECnet-Plus for OpenVMS Network
Control Language Reference Guide for information about starting NCL.

If you want to issue several commands to a remote node, you can set the default to the node with the
following command:

ncl> set ncl default entity node node-id

Where node-id is the name of the remote node. You can now enter NCL commands as if you were
using them on a local node.

2. Enter the appropriate NCL commands to accomplish your task. Refer to the VSI DECnet-Plus for
OpenVMS Network Control Language Reference Guide for an explanation of all the commands and
the entities and attributes that support them.

3. Update the NCL script if necessary. If you have made changes to the configuration of the system,
and you want these changes to be permanent, use the configuration program (if possible) to update
the system. If the configuration program cannot make the changes, modify the system’s NCL script
(see Section 6.2.2, "Editing NCL Scripts").

6.2.2. Editing NCL Scripts
An NCL script is an ASCII file of NCL commands that sets up the network management entities. These
commands reflect the configuration you specified in the configuration procedure. You can edit the script
files with a text editor to make permanent changes to your configuration. You can also edit the NCL
script to add features that are not covered by the configuration procedure.

The following example shows a typical example (Routing module) of a script file produced by a
configuration procedure.

create node 0 routing type endnode
set node 0 routing phaseiv address = 19.5
enable node 0 routing

create node 0 routing circuit csmacd-0 type = csma-cd
set node 0 routing circuit csmacd-0 data link entity = -
 csma-cd station csmacd-0
enable node 0 routing circuit csmacd-0

The configuration procedure produces a script file for each module that it can configure. However, the
configuration procedure creates more than one script file for some tasks. Therefore, manually making
some changes to your configuration might require you to edit more than one NCL script. Script files
have names that indicate what modules they implement.

Some common NCL scripts are:

72

Chapter 6. Modifying Your Network

● SYS$MANAGER:NET$CSMACD_STARTUP.NCL (CSMA-CD module)

● SYS$MANAGER:NET$SESSION_STARTUP.NCL (Session Control module)

The VSI DECnet-Plus for OpenVMS Installation and Configuration provides full information about the
configuration procedure and NCL scripts generated.

The following steps briefly explain how to edit NCL scripts:

1. Log in to a suitably privileged account on the system. Usually, this is the system account or one with
equivalent privileges.

2. Edit the NCL scripts with any text editor. Enter the new commands in sections of their own, or in the
appropriate sections that are already in the NCL script. Refer to the VSI DECnet-Plus for OpenVMS
Network Control Language Reference Guide for an explanation of all the commands and the entities
and attributes that support them. If possible, test the changes before you make them by interactively
entering the appropriate NCL commands.

3. After you have completed updating your NCL scripts, disable the entity and, if possible, re-execute
the script or reboot the system to have the new values take effect.

To execute an NCL script, use the following format:

ncl> do ncl_script_file

For example, to define the NSP transport service, execute the following script:

ncl> do sys$manager:net$nsp_transport_startup.ncl

If you cannot re-execute or reboot at that time, enter the NCL commands interactively so they take
effect immediately (see Section 6.2.1, "Using Interactive NCL"). Then, when you reboot the system,
the changes in the NCL script take effect.

You may also need to alter DECdns or DECdts modules and entities. Refer to the VSI DECnet-Plus for
OpenVMS DECdns Management Guide, VSI DECnet-Plus for OpenVMS DECdts Management, and VSI
DECnet-Plus for OpenVMS Installation and Configuration for this information.

6.2.3. Using User-Defined NCL Scripts
If you want to have site-specific NCL commands in scripts, you can create the
files NET$APPLICATION_LOCAL.NCL, NET$EVENT_LOCAL.NCL, and
NET$MOP_CLIENT_LOCAL.NCL in the SYS$MANAGER directory. If these files exist, the network
startup procedure executes these scripts immediately after the NET$APPLICATION_STARTUP.NCL,
NET$EVENT_STARTUP.NCL, and NET$MOP_CLIENT_STARTUP.NCL scripts supplied by VSI are
executed.

Whenever possible, you should place your site-specific NCL commands in these user-defined NCL
scripts. These user-defined scripts will not be overwritten or deleted by NET$CONFIGURE.COM.

6.3. Defining Logical Names That Modify
Network Operation
Prior to starting the network with NET$STARTUP.COM, you can modify components of the network
by using the following system logical names:

● DECNET_MIGRATE_DIR_SYNONYM

73

Chapter 6. Modifying Your Network

Specifies the node synonym directory to be used by NET$CONFIGURE, decnet_register, and
decnet_migrate. The default is .DNA_NodeSynonym. See Section 5.1.5, "Defining an Alternate Node
Synonym Directory" for more information about this logical name.

● NET$ENTITY-NAME_STARTUP

Specifies an alternate file location for the network startup .ncl scripts (the default is
SYS$MANAGER:). For example, enter the following to redefine NET$ROUTING_STARTUP:

$ define/system net$routing_startup -
_$ sys$sysroot:[sysmgr.network_scripts]net$routing_startup.ncl

● NET$process-name_quota

Specifies a value for one of several process quotas that NET$STARTUP.COM should use when
starting the network processes NET$ACP (ACP), NET$EVD (EVD), or NET$MOP (MOP). The
following table shows the relationship between the values for quota and the OpenVMS run command
qualifiers and shows the default value used for each qualifier when no logical name is defined.

quota RUN Qualifier Default

ASTLM /AST_LIMIT 24
BIOLM /IO_BUFFERED 18
BYTLM /BUFFER_LIMIT 65500
DIOLM /IO_DIRECT 18
ENQLM /ENQUEUE_LIMIT 200
FILLM /FILE_LIMIT 100
JTQUOTA /JOB_TABLE_ QUOTA 1024
PGFLQUO /PAGE_FILE 25000
TQELM //QUEUE_LIMIT 50
WSDEF /WORKING_SET 512
WSQUO /MAXIMUM_

WORKING_SET
9216 (1024 for OpenVMS
VAX)

WSEXTENT /EXTENT 2048

In addition, you can specify a value for the /PRIORITY qualifier using PRIO (default = 4) or specify a
value for the /OUTPUT qualifier using OUTPUT (default = NLA0:). For example, enter the following
commands to assign the NET$MOP process a direct I/O limit of 25, a default working set size of 1024,
and cause NET$MOP to create a log file:

$ define/system net$mop_diolm 25
$ define/system net$mop_wsdef 1024
$ define/system net$mop_output "sys$manager:net$mop_output.log"

For information about each of these values, see the description of the OpenVMS run command
qualifiers. VSI does not recommend specifying values lower than the default values.

● NET$APPLICATION_SHUTDOWN

Specifies a site-specific procedure used to shut down network applications before the network itself
is shut down. See Section 8.1.3.1, "Creating a User-Defined Network Shutdown Procedure" for more
information.

74

Chapter 6. Modifying Your Network

● NET$IGNORE_DECNET

Specifies whether DECnet-Plus should be started. Values can be either true or false.

If set to true, the network software is not started. If not defined, or set to false, the network starts
normally.

● NET$IGNORE_EVD

Specifies whether the Event Dispatcher should be started. Values can be either true or false.

If not defined or set to false, the Event Dispatcher is started. If set to true, the Event Dispatcher is not
started.

● NET$LOCAL_CLOSE

Specifies whether the common directory interface (CDI) closes its local namespace database
(normally, SYS$SYSTEM:NET$LOCAL_NAME_DATABASE.DAT) after each use. By default,
CDI keeps the database open continuously. This can create problems (in the form of unwanted file
merges) if the CDI database is moved to a disk other than SYS$SYSTEM and that disk is a member
of a shadow set.

If the NET$LOCAL_CLOSE logical name is defined with a value of 1, CDI closes the database after
each reference. By default, the NET$LOCAL_CLOSE logical name is undefined. This causes CDI to
take the default action of leaving the database open continuously.

● NET$LOCAL_NAME_DATABASE

Specifies the location of the local namespace database if the database is not located in
SYS$SYSTEM. The default is SYS$SYSTEM:NET$LOCAL_NAME_DATABASE.DAT.

● NET$NOISY_SHUTDOWN

Specifies whether NCL displays any output during network shutdown. Values can be either true or
false.

If set to false or not defined, NCL output is suppressed during the network shutdown. If set to true,
all NCL output is displayed.

● NET$STARTUP_MOP

Specifies whether the MOP process is started. Values can be either true or false.

If set to true, MOP is started. If not defined, or false, MOP is not started.

● NET$STARTUP_QUIET_NCL

Specifies whether NCL output is displayed during network startup. Values can be either true or false.

If set to true or not defined, NCL output is suppressed during the startup sequence. A message
indicates that an NCL script is being executed. If set to false, all NCL output is displayed.

See Section 10.2.5, "MOP’s Use of Default Directories" and Section 10.3.1, "New MOP Receive Buffer
Limit" for several additional logical names related to MOP.

If you want the operating system to define these logical names before starting the network, place these
system logical name definitions in the SYS$MANAGER:NET$LOGICALS.COM file. (If you do not

75

Chapter 6. Modifying Your Network

have the SYS$MANAGER:NET$LOGICALS.COM file on your system, you can create one using the
SYS$MANAGER:NET$LOGICALS.TEMPLATE file.)

Check the template file for any additional logical names.

6.4. Creating DECnet-Plus Network Server
Processes
All DECnet Phase V applications run as processes. Unless a currently running process has declared itself
to be a numbered network application or a named network application (with number 0), the network
ancillary control program (NET$ACP) must invoke a process to receive the connect request.

When the logical link request comes in, a standard procedure called NET$SERVER.COM runs, which
in turn causes NET$SERVER.EXE to be executed. This program works in concert with NET$ACP to
invoke the proper program for the requested application. Then, when the logical link is disconnected,
the application program (such as file access listener (FAL)) terminates, but the process is not deleted.
Instead, control returns to the NET$SERVER.EXE program, which asks NET$ACP for another
incoming logical link request to process. This cycle continues until NET$SERVER is deleted after a
specified time limit. The default is 5 minutes. To use a different default time limit, define the system
logical name NETSERVER$TIMEOUT in SYS$MANAGER:NET$LOGICALS.COM, using an
equivalence string in the standard OpenVMS delta time format:

dddd hh:mm:ss.cc

For example, to set the time limit to 30 minutes, use the following command:

$ define/system netserver$timeout "0 0:30:0"

The effect of NET$SERVER is to reuse network server processes for more than one logical link request,
eliminating the overhead of process creation for an often-used node. The network ancillary control
program (NET$ACP) reuses a NET$SERVER process only if the access control on the connect request
matches that used to start the process originally.

When NET$ACP creates a process to receive the connect request, the process runs like a batch job. The
sequence is as follows:

1. The process is logged in according to information found in the user authorization file (UAF). The
key to this file is the user name, which is part of the access control information. For information
about access control information, see Section 7.3, "Access Control".

2. DECnet-Plus automatically creates a log file in SYS$LOGIN:NET$SERVER.LOG. Unlike the log
file for a batch job, this log file is neither printed nor deleted. The log file is helpful for debugging
your own network tasks. If NET$SERVER.LOG cannot be created for any reason, the network job
continues running but does not produce any log file.

3. The login command procedure indicated in the UAF for the process is executed.

4. The process runs a command file to start the image that implements the DECnet Phase V
application. The rules for locating this command file differ depending on whether the application has
the number 0.

Because NET$SERVER.LOG files are not required for network server processes, you can explicitly
inhibit all log files in your default nonprivileged DECnet-Plus account by setting the default directory for

76

Chapter 6. Modifying Your Network

the account to a nonexistent directory. The effect of this action is to suppress all log files, while allowing
network jobs to run.

6.5. Deleting Network Entities
This section explains how to delete and disable network entities, and what you must do prior to
recreating a previously deleted entity. In general, the procedures are the same for most entities.

To delete an entity, you must usually disable that entity first. Disabling an entity means you are putting
the entity into the off state. You must also delete entities in order. That is, you must delete a child entity
before you can delete the parent entity. After deleting the child entity, you can delete the parent. Then the
entity is completely deleted. In some cases, the DECnet-Plus software automatically deletes entities. The
VSI DECnet-Plus for OpenVMS Network Control Language Reference Guide indicates which commands
support the various entities.

The following example disables and deletes routing for end systems using csma-cd links. A similar
process applies to disabling and deleting most DECnet Phase V entities.

ncl> disable routing circuit csmacd-0 reachable address reachable-address
ncl> delete routing circuit csmacd-0 reachable address reachable-address
ncl> disable routing circuit csmacd-0
ncl> delete routing circuit csmacd-0
ncl> disable routing
ncl> delete routing

Disables the routing circuit reachable address child entity

Deletes the routing circuit reachable address child entity

Disables the routing circuit child entity

Deletes the routing circuit child entity

Disables the routing parent entity

Deletes the routing parent entity

77

Chapter 6. Modifying Your Network

78

Chapter 7. Managing Network
Security
DECnet-Plus regulates access to the network on various levels, including the following:

● Rights identifiers for access to the network

● Access control

● Routing initialization passwords for connecting local nodes to remote nodes The following sections
describe these levels of control for DECnet-Plus.

7.1. Required Rights Identifiers
To perform any kind of network activity, all network users must have TMPMBX and NETMBX
privileges and certain rights identifiers enabled. You can define a user’s rights and privileges with the
OpenVMS Authorize utility (see Section 7.3.4, "Specifying a Default Nonprivileged DECnet Account").
For more information about using this utility, refer to the VSI OpenVMS System Management Utilities
Reference Manual, Volume 1: A-L.

Identifiers are created in the rights database during installation. Table 7.1, "Rights Identifiers" lists the
rights identifiers that you and network users need.

Table 7.1. Rights Identifiers

Rights Identifier Description

NET$DECLAREOBJECT Permits an application to declare itself available for
incoming connections

NET$DECNETACCESS Gives $IPC users access to the network in the
absence of the NETMBX privilege

NET$DIAGNOSE Permits use of network diagnostics
NET$EXAMINE Permits display of the attributes of an entity and

the use of the set ncl default entity and set ncl
default access commands

NET$MANAGE Permits display, creation, or modification of an
entity

NET$POSTEVENT Permits posting of events
NET$REGISTERDNSOBJECT Permits registration or deregistration of a DECdns

object
NET$SECURITY Permits setting a user name for session control or

session control application
NET$TRACEALL Permits tracing of entire messages on a local node
NET$TRACEALLREMOTE Permits tracing of entire messages on a remote

node
NET$TRACEHEADERS Permits tracing of message headers on a local node
NET$TRACEHEADERSREMOTE Permits tracing of message headers on a remote

node

79

Chapter 7. Managing Network Security

7.2. Network Management Security
DECnet-Plus for OpenVMS uses OpenVMS rights identifiers to perform access checks on all
manageable entities. This differs from the Phase IV software, which used OpenVMS privileges for
access to the permanent database and for write access. Read access to the volatile database in Phase IV
was unprotected.

In DECnet-Plus for OpenVMS, the rights identifier NET$EXAMINE grants a user read access to the
network configuration data. The NET$MANAGE rights identifier grants read and write access to the
network configuration data, and NET$SECURITY grants the ability to set default accounts. These
new rights allow the network manager to restrict access to network parameters. Access is granted to an
individual user by means of the Authorize utility on OpenVMS. The following command examples grant
access.

Examples
UAF> grant/id net$examine Joe ! Grant user Joe read access to local
 network data
UAF> grant/id net$manage Joe ! Grant user Joe read/write access to local
 network data
UAF> grant/id net$security Joe ! Grant user Joe ability to set default
 accounts

In lieu of NET$MANAGE rights, the BYPASS privilege will grant read and write access.

When issuing NCL commands to the local node (for example, ncl show session control all), the rights of
the executing process determine whether access is granted.

Note

If the local node name is explicitly included in the NCL command (for example, ncl show node ashfld
session control all or ncl show node 0 session control all), access is controlled in the same manner used
when issuing a command to a remote node (see next paragraph).

When issuing NCL commands to the remote node (for example, ncl show node remote-node-name
all or ncl set ncl default entity node remote-node-name), a connection is established to the Common
Management Information Protocol (CMIP) Management Listener (CML) application on the remote
node. Access checks performed on the remote node are discussed in Section 7.3, "Access Control".

7.3. Access Control
Throughout the discussion of access control, the term source node is used to mean the accessing node
(that is, the node where the command is entered or the access is otherwise requested). The term target
node is used to designate the node where the access is granted or denied (that is, the node where the
command’s actions are performed or the requested access is otherwise granted or denied). In the case of
a request using node 0 or node local_node, the source node and the target node are the same node.

Whenever a source node attempts to connect to a target node, it sends access control information to
the session control entity on the target node. Access control allows you to control connections between
nodes. Access control information can come from a number of sources. The following list shows the
hierarchy of access control from highest to lowest priority:

80

Chapter 7. Managing Network Security

1. The network user on the source node can supply explicit access control information to the target
node. If this is the case, the target node uses the access control information. See Section 7.3.1, "Using
Explicit Access Control to Manage Remote Systems" for information about explicit access control.
However, see the item 2 for information about how explicit access control is used when a password is
not supplied. Also, see item 3 for information about how explicit access control is used if the explicit
access control string is null.

2. If the network user on the source node does not supply explicit access control information, or
supplies explicit access control information that includes only a user name and no password, the
source node checks to see if outgoing proxy access is enabled on the source node. If outgoing proxy
access is enabled, the source node initiates a connection and the session control entity on the target
node determines if the source node user has proxy access. See Section 7.3.2, "Using Proxy Login" for
information about proxy access control.

3. When the target node sees that no explicit access control has been specified or that the explicit access
control string is null, and that no proxy matches, it checks the target application’s definition. If the
application definition includes a default account, it uses that account. See Section 7.3.3, "Specifying
Default Access Control Information for Applications" for information about default application
accounts.

4. If the application definition does not include a default account, the target node checks its session
control entity attributes for default nonprivileged DECnet account information. If the information is
there, the target node uses the default nonprivileged DECnet account. See Section 7.3.4, "Specifying
a Default Nonprivileged DECnet Account" for information about the default nonprivileged DECnet
account.

Finally, if none of these sources supply valid access control information, the connection fails.

Note

You do not need to use access control information when a connection to a program has declared an
application name and has started independently of DECnet.

Instead, you need the NET$DECLAREOBJECT rights identifier to declare that you want to accept
incoming connections.

7.3.1. Using Explicit Access Control to Manage Remote
Systems
If you want to execute an NCL command on a target node, you can do so by supplying explicit access
control information. The access control information contains a user name and password and provides
access to a specific account on the target system. To supply explicit access control information, you
can use either a standard OpenVMS node specification (node"username password") or you can use the
NCL prepositional phrase by with a user name and password. For more information about a standard
OpenVMS node specification, refer to the VSI OpenVMS DCL Dictionary: N–Z.

The following two commands show how you can display all the characteristics information about
the application statistics on the target node toronto by specifying a user name and password with the
prepositional phrase by and by specifying the explicit access control as part of the node specification:

ncl> show node toronto session control application -
_ncl> statistics all characteristics, by user a_johnston, -
_ncl> password general ncl>

81

Chapter 7. Managing Network Security

ncl> show node toronto"a_johnston general" session control application -
_ncl> statistics all characteristics

If you supply full explicit access control information (that is, both a user name and a password), the
account must exist and must be accessible using the specified password. If the password is incorrect or
the account does not exist, the target node performs no further access control checking and access to
the target node is denied. This is true even if a valid proxy exists or an application has default account
information defined.

If you do not supply any explicit access control information, or you supply only partial explicit access
control information (that is, you supply a user name but no password), the target node attempts a proxy
login as described in Section 7.3.2, "Using Proxy Login".

If you supply a null string for the explicit access control information (""), the target node does not
attempt a proxy login. Instead, it proceeds directly to attempting a login using the application’s default
account information, if present, as described in Section 7.3.3, "Specifying Default Access Control
Information for Applications".

7.3.2. Using Proxy Login
Proxy login enables a user logged in at a source node to be logged in automatically to a specific account
at the target node, without having to supply explicit access control information. Note that proxy login is
not the same as interactive login.

Proxy login means that specific network access operations can be executed. By contrast, interactive
login requires a user to supply a user name and password before the user can perform any interactive
operations.

To establish proxy login on the target node (without specifying explicit access control information), the
source user must have a default proxy account on the target node that maps to a local user name on the
target node. The source user assumes the same file access, same rights, and same privileges as the local
user account on the target node. You can use the proxy login capability to increase security, because it
minimizes the need to specify explicit access control information in node specifications passed over the
network or stored in command procedures.

If you require access to more than one local account on the target node from the same source node
and user name, you must indicate which account should be the default. To use any of the non-default
accounts, you must supply the account name using explicit access control. For example, assuming a proxy
database entry has been set up to include access to the ROBERTS account for the source user SYSTEM
on node LAMCHP, the following command (executed by user SYSTEM) on node LAMCHP) would
obtain proxy access to the ROBERTS account on the target node:

LAMCHP> DIR TARGET"ROBERTS"::

If no matching proxy database entry is found, an entry is found but the entry has no default local
account, or an entry is found but does not include the explicitly specified account, the target node
attempts to use the application’s default access control as described in Section 7.3.3, "Specifying Default
Access Control Information for Applications".

If a matching proxy database record is found (and in the case of an explicitly specified account contains
that account), the local account must exist. If the account does not exist or for some other reason is
not usable, the target node performs no further access control checking and access to the target node is
denied. This is true even if the target application has default account information defined.

Note that network applications can also be assigned proxy login access.

82

Chapter 7. Managing Network Security

7.3.2.1. Setting Up a Proxy Database
If a source user’s connection request does not contain access control information, the following
conditions must be met for proxy to be approved:

● The proxy database on the target node must contain at least one entry that matches the source node’s
node synonym and source user name.

● The target node’s system authorization file must contain a local user name that matches the proxy
database entry’s target local user name.

● The session control characteristic incoming proxy must be enabled for the target node.

● The session control application characteristic incoming proxy must be enabled for the target
application.

Use the Authorize utility to create and modify the permanent proxy database, NETPROXY.DAT (or
NET$PROXY.DAT), at your node. Each proxy database entry can map a single source user to multiple
proxy user names on the target node (one default proxy user name and up to 15 additional proxy user
names). The proxy database entry identifies the source user by a six-character node synonym in the form
of nodename::username or nodename::[group,member]. (For information on using the Authorize utility,
refer to the VSI OpenVMS System Management Utilities Reference Manual, Volume 1: A-L.)

For example, to create a proxy database file at the target node and add a default proxy entry mapping
source user martin on source node boston to local user allen at the target node, enter the following
commands at the target node:

$ set default sys$system
$ run authorize
uaf> create/proxy
uaf> add/proxy boston::martin allen/default
uaf> exit

Note

You must include a proxy entry for each type of node name the source user may use. For example, a
source user might specify the DECdns namespace name or the local namespace as part of the node
name. Include a separate entry for each case. The following example sets up three proxy entries mapping
source user martin to user allen at the target node:

uaf> create/proxy
uaf> add/proxy boston::martin allen/default
uaf> add/proxy acme:.boston.martin allen/default
uaf> add/proxy LOCAL:.boston.martin allen/default
uaf> exit

Refer to the VSI OpenVMS System Management Utilities Reference Manual, Volume 2: M-Z for more
information on establishing proxy accounts.

Using Wildcard Proxy Entries

You can use the wildcard symbol (*) when creating proxy database entries. You can use wildcards in the
source user name field, the source node name field, the local user name field, and in any combination of
fields.

83

Chapter 7. Managing Network Security

● To allow proxy access for a specific user on any source node to a specific local account, specify the
wildcard symbol in the node name field. For example, the following proxy database entry allows user
SYSTEM on all source nodes access to the SYSTEM account on the target node:

*::SYSTEM
 SYSTEM (D)

● To allow proxy access for all users on a specific source node to a specific local account, specify the
wildcard symbol in the source user name field. For example, the following proxy database entry
allows all users from node LAMCHP access to the GUEST account on the target node:

LAMCHP::*
 GUEST (D)

● To allow proxy access for a specific user on a specific source node to all accounts on the target node,
specify the wildcard symbol in the local user name field. For example, the following proxy database
entry allows user SYSTEM on source node LAMCHP access to all accounts on the target node:

LAMCHP::SYSTEM
 * (D)

VSI recommends this form of wildcard use only for trusted accounts.

● Wildcard combinations provide further options. For example, the following proxy database entry
allows all users on node LAMCHP access to all accounts an the target node:

LAMCHP::*
 * (D)

VSI does not recommend this form of wildcard use.

When matching source node and user information against entries in the proxy database, only one entry
is used and exact matches are preferred over wildcard entries. Therefore, care must be exercised when
using wildcard entries. As an example, assume the proxy database has the following entry:

*::SYSTEM
 * (D)

If the system manager on the target node wanted to add the alternate account USERX for user SYSTEM
on source node LAMCHP while retaining the SYSTEM account as the default account, the manager
would use the following command:

UAF> ADD/PROXY LAMCHP::SYSTEM SYSTEM/DEFAULT, USERX

After the ADD command, the proxy database would contain the following entries:

UAF> SHOW /PROXY *
 Default proxies are flagged with (D)
 *::SYSTEM
 * (D)
LAMCHP::SYSTEM
 SYSTEM (D) USERX

If the system manager omitted the local SYSTEM account from the previous ADD command (ADD/
PROXY LAMCHP::SYSTEM USERX), the proxy database would contain the following entries:

*::SYSTEM
 * (D)

84

Chapter 7. Managing Network Security

LAMCHP::SYSTEM
 USERX

The preceding proxy database entries allow SYSTEM on source node LAMCHP access to the USERX
account (and deny access to the SYSTEM account) on the target node. This occurs because the proxy
processing prefers exact matches over wildcard matches.

7.3.2.2. Enabling or Disabling Incoming Proxy
The session control entity attribute incoming proxy allows you to control proxy access to the target
node. The session control application attribute incoming proxy allows you to control proxy access to a
particular application.

If proxy access is disabled, the system treats the request as if proxy access were not requested. To
disable proxy access on a systemwide basis, set the session control attribute incoming proxy to false. The
following example shows the command you need to disable proxy access for a system:

ncl> set session control incoming proxy false

For proxy access to a particular application, you must enable proxy access to both the node and the
application. For example, to enable proxy access for particular applications, set the session control
attribute incoming proxy to true and set the session control application attribute incoming proxy to true
for those applications to which you want to allow proxy access.

The following example shows the commands you need to enable proxy access for the application cml
and to disable proxy access for the application fal:

ncl> set session control incoming proxy true
ncl> set session control application cml incoming proxy true
ncl> set session control application fal incoming proxy false

Note

NCL ignores any use of the by proxy=false clause.

For examples of setting up session control application entities, refer to Appendix E, "Examples of Network
Management Tasks".

7.3.2.3. Removing Proxy Access
You should remove proxy access to the system when it is no longer needed. Invoke the Authorize utility
and enter the following command to remove proxy access:

uaf> remove/proxy boston::martin

For information on using the Authorize utility, refer to the VSI OpenVMS System Management Utilities
Reference Manual, Volume 1: A-L.

7.3.3. Specifying Default Access Control Information for
Applications
Another form of access control specific to network applications is default account information used by
inbound connects from source nodes that send no access control information. Because the source node

85

Chapter 7. Managing Network Security

supplies no access control information, the target node uses the default account information you specify
for the application to make the connection.

The default account information is useful to allow users to perform certain network operations, such
as the exchange of electronic mail between users on different nodes, without having to supply a user
name and password. The default account information is also used for file operations when access control
information is not supplied. For example, it permits source users to access files on the target node which
have their file protection set to allow world access. If you do not want remote users accessing your node,
do not specify default account information for your applications.

Warning

For security reasons, VSI recommends that you use application access control defaults sparingly. They
provide access to the system that is only as restricted as the application with which they are associated.

Use the user name attribute to store the default access control information for an application in the
session control application entity. To execute this command you need NET$SECURITY rights. For
example, to define default access control information for the fal application, use the following command:

ncl> set session control application fal user name jill

You can check if there is a default account for an application by using the show session control
application command. For example, to check for a default account on the fal application, use the
following command:

ncl> show session control application fal user name

The CMIP Management Listener (CML) application uses this method of access to allow remote users
to perform NCL SHOW commands. This is why the session control application CML user name is
usually set to CML$SERVER, and this account is generally granted the NET$EXAMINE right. Even
if a remote user does not include explicit access control information in an NCL command, and even if
the user does not possess a default proxy account with NET$EXAMINE or BYPASS, the NCL SHOW
requests are still be permitted via the CML$SERVER account.

You can use the NET$CONFIGURE.COM procedure to create both the actual accounts and the default
account settings for the fal, mail, mirror, phone, vpm, and cml network applications.

If no default access control is specified for an application, the target node attempts to use the Session
Control nonprivileged DECnet account as described in Section 7.3.4, "Specifying a Default Nonprivileged
DECnet Account".

If default access control is specified for an application but for some reason access fails, access is denied.

Note

NET$CONFIGURE.COM sets incoming and outgoing proxy to false for the MAIL application. If you
already have a previous version of DECnet running, the proxy may be set to true. If you want to change
the setting to false, you must either run NET$CONFIGURE and select Option 1 to recreate the Session
Control Application startup script, or edit SYS$MANAGER:NET$APPLICATION_STARTUP.NCL to
change the settings of these attributes to false.

Use the following example as a guide for setting up a default account for your own application:

$ set default sys$system
$ run authorize

86

Chapter 7. Managing Network Security

uaf> add appxaccount/password=appxpassword/device=device-name: -
_ /directory=[appx$server]/uic=[nnn,nnn] -
_ /privilege=(tmpmbx,netmbx)/defprivilege=(tmpmbx,netmbx) -
_ /flags=(nocaptive,restricted,nodisuser)/nobatch/nointeractive/
lgicmd=nla0:
uaf> exit

$ grant/identifier net$decnetaccess appxaccount
$ create/directory device-name:[appx$server]/owner_uic=[nnn,nnn]

device-name is the name of the device on which your application has its directory.

This example uses the directory [APPX$SERVER]. Provide the UIC information for your
application.

Grants the NET$DECNETACCESS right that allows your application access to the network.

For information on using the Authorize utility, refer to the VSI OpenVMS System Management Utilities
Reference Manual, Volume 1: A-L.

7.3.4. Specifying a Default Nonprivileged DECnet
Account
The default nonprivileged DECnet account is similar to an application default account except that it is not
tied to any one application. It allows all users unrestricted access to the account you designate using the
non privileged user attribute of the session control entity.

Note

In DECnet-Plus, nonprivileged means having NET$DECNETACCESS rights and TMPMBX and
NETMBX privileges. These are the minimal rights and privileges necessary for any network activity.
Privileged means any rights and privileges in addition to NET$DECNETACCESS rights and TMPMBX
and NETMBX privileges.

In Phase IV, nonprivileged means NETMBX and TMPMBX privileges only. NETMBX and TMPMBX
are the minimal requirement for any network activity. Privileged means any privileges in addition to
NETMBX and TMPMBX.

You can check if there is a default nonprivileged user name for session control by issuing the following
command:

ncl> show session control non privileged user

If all other access methods have been attempted and the default nonprivileged DECnet account is not
defined, access is denied. If the default nonprivileged DECnet account is defined and access fails for
some reason, access is denied.

Caution

For security reasons, VSI does not recommend specifying a default nonprivileged DECnet account. The
default nonprivileged DECnet account provides unrestricted, open access to an OpenVMS system. The
following command example shows how to enhance the security of a system or the network by deleting
the account (for example, netnonpriv):

87

Chapter 7. Managing Network Security

$ set default sys$system
$ run authorize
uaf> remove netnonpriv
uaf> exit

7.4. Specifying Routing Initialization
Passwords
For point-to-point connections, especially over dialup lines, you can use routing initialization passwords
to verify that the initiating node is authorized to form a connection with your node. Each end of a point-
to-point circuit can establish a verifier to transmit to the other node, and specify a verifier expected from
the other node. Before the link is established, each node verifies that it received the expected verifier
from the other node.

Passwords are usually optional for point-to-point connections but are required for dynamic asynchronous
connections. To provide for increased security when a remote node requests a dynamic asynchronous
connection (which is normally maintained only for the duration of a telephone call), the node requesting
the dynamic connection supplies a password, but the node receiving the login request is prevented from
revealing a password to the requesting node.

The following command example shows how to set up a routing initialization password:

ncl> create routing type endnode
ncl> enable routing
ncl> create routing circuit hdlc-0 -
_ncl> type hdlc
ncl> set routing circuit hdlc-0 -
_ncl> transmit verifier hex-string
ncl> set routing circuit hdlc-0 -
_ncl> explicit receive verification false
ncl> set routing circuit hdlc-0 -
_ncl> receive verifier hex-string
ncl> enable routing circuit hdlc-0
ncl> create routing permitted neighbor -
_ncl> neighbor-name id node-id
ncl> set routing permitted neighbor -
_ncl> neighbor-name verifier hex-string

The circuit type can be one of the following:

● ddcmp

● hdlc

● x25 static outgoing

If you need to send a routing layer password to the remote node, set this attribute to the value
you want to transmit. If the remote node requires a verifier and this attribute has not been set, the
circuit does not come up.

This specifies the type of verification performed on received verifiers. If you set this attribute to
true, the received verifier is checked against the value of the characteristic receive verifier for this
circuit. If set to false, the received verifier is checked against the set of verifiers specified in the
permitted neighbors entity. That is, the node id of the remote system is used as a search key into

88

Chapter 7. Managing Network Security

the permitted neighbor database to locate the verifier (password). The password is then checked
against the verification data exchanged during the circuit initialization sequence.

This specifies the value against which the verifier transmitted by a neighbor node is checked, if
explicit receive verification is set to true. If no verifier is specified, no verification is performed.

During connection initialization, the node id of the remote system is used to select a specific
permitted neighbor. The verifier from the remote system is then compared against the verifier in
the permitted neighbor. If there is a match, or the verifier in the permitted neighbor is null, then the
point-to-point connection is accepted.

The verifier is a read-only attribute. Routing does not display it.

Appendix E, "Examples of Network Management Tasks" provides an example of setting up a routing
initialization password.

Note

If a remote node has more than one id (a DECnet Phase V address and a Phase IV address), you must
specify all of the ids in the permitted neighbor entity. For example:

ncl> create routing permitted neighbor -
_ncl> nashua_decnet-osi id 08-00-2b-12-34-56
ncl> set routing permitted neighbor -
_ncl> nashua_decnet-osi verifier %x1234
ncl> create routing permitted neighbor -
_ncl> nashua_phase_iv id aa-00-04-00-12-34
ncl> set routing permitted neighbor -
_ncl> nashua_phase_iv verifier %x1234

89

Chapter 7. Managing Network Security

90

Chapter 8. Managing DECnet
Phase V Communications
This chapter explains common management tasks necessary to customize DECnet Phase V
communications for your DECnet-Plus system:

● Managing a node, including how to reconfigure, start up, and shut down DECnet-Plus software on
your system, and how to manage remote DECnet Phase IV nodes (Section 8.1, "Managing a Node")

● Managing Physical layer devices and modem connect lines (Section 8.2, "Managing Physical Layer
Devices and Modem Connect Lines")

● Managing data links (Section 8.3, "Managing Data Links")

● Configuring routing (Section 8.4, "Configuring Routing")

● Managing NSP and OSI transport services (Section 8.5, "Managing Transport Services")

● Managing session control (Section 8.6, "Managing Session Control")

● Managing the Open System Application Kernel (OSAK) (Section 8.7, "Managing OSAK")

● Configuring X.25 services (Section 8.8, "Configuring X.25 Services")

This chapter assumes that you have configured your system and created a basic working DECnet-Plus
configuration. This chapter provides the information you need to manually modify your network’s
configuration. You can manually modify the configuration in the following ways:

● Editing NCL script files to make permanent changes

● Issuing interactive NCL commands to make temporary changes

Use the DECnet-Plus for OpenVMS configuration procedure (NET$CONFIGURE) to make permanent
changes automatically. For information on using the DECnet-Plus configuration procedure, see the VSI
DECnet-Plus for OpenVMS Installation and Configuration. For more information about the manual
configuration methods, see Chapter 6, "Modifying Your Network".

Note

Use the methods for manually modifying your configuration only when your customization needs exceed
what is provided by the configuration procedures. Use the configuration procedure to modify your
node’s network configuration whenever possible.

Note that you can also define logical names to modify network operations, as explained in Chapter 6,
"Modifying Your Network".

8.1. Managing a Node
Generally, your DECnet-Plus software starts at system boot time. However, in some situations, you may
need to start and stop DECnet-Plus on your system, such as for testing. In some situations, you may need

91

Chapter 8. Managing DECnet Phase V Communications

to reconfigure DECnet-Plus, such as after changing the hardware configuration or network management
parameters. The following sections describe the tools suitable for these tasks.

8.1.1. Reconfiguring DECnet-Plus
DECnet-Plus provides configuration procedures that enable you to reconfigure your node. The
procedures create new startup scripts for DECnet-Plus entities, and sometimes save any original
procedures that you might have customized. Whenever possible, use the configuration procedure to
reconfigure, especially if you want to significantly modify your network. Significant changes might
include:

● New communications hardware

● A new network address

● A change in the node name

● Creating a new OSI transport template

These changes can affect the following or some combination of the following:

● Namespace name

● Node object name

● Directory path in which the node object is located

For information about using the configuration procedure, refer to the VSI DECnet-Plus for OpenVMS
Installation and Configuration. The procedures for configuring DECnet-Plus create NCL scripts
that create and enable certain entities (as necessary and appropriate) and set appropriate network
management attributes. In general, you can permanently customize an entity by including changes in the
correct NCL script.

8.1.2. Starting Up DECnet-Plus
DECnet-Plus starts automatically. If you should need to restart DECnet-Plus for any reason (for example,
after shutting down the network by executing SYS$STARTUP:NET$SHUTDOWN.COM), then you can
restart the network using the following command:

@SYS$STARTUP:NET$STARTUP

The directory SYS$MANAGER contains the NCL scripts. Prior to starting the network, you can modify
components of the network by using system logical names, as explained in Section 6.3, "Defining Logical
Names That Modify Network Operation".

8.1.2.1. Using the NET$STARTUP_QUIET_NCL Logical Name
By default, the startup procedure displays a minimal amount of Network Control Language (NCL)
information.

If you want to view the complete NCL output for troubleshooting purposes, you can define the following
logical name in the SYS$MANAGER:NET$LOGICALS.COM file:

$ define/system/nolog net$startup_quiet_ncl false

92

Chapter 8. Managing DECnet Phase V Communications

For more information about the NET$LOGICALS.COM file, see Section 6.3, "Defining Logical Names
That Modify Network Operation".

8.1.2.2. Using the SYSGEN STARTUP_P2 Parameter
NET$STARTUP.COM supports the startup_p2 SYSGEN parameter. The value is set using either
SYSGEN or the SYSMAN STARTUP SET OPTIONS command. This parameter controls the output
from STARTUP.COM (and now from NET$STARTUP.COM).

8.1.3. Shutting Down DECnet-Plus
Use the SYS$MANAGER:NET$SHUTDOWN.COM shutdown procedure to disable and delete the
various network entities on the local node.

The shutdown procedure stops all logical links and OSI components (Open System Application Kernel
(OSAK), Virtual Terminal (VT), and File Transfer Access Module (FTAM)), as well as X.25 software,
if they are running. CSMA-CD stops unless the local area transport (LAT) is running. The procedure
disables and deletes most DECnet Phase V entities.

8.1.3.1. Creating a User-Defined Network Shutdown Procedure
The network shutdown procedure, (NET$SHUTDOWN.COM), checks for the existence of the
NET$APPLICATION_SHUTDOWN logical name. If this logical name is defined, NET$SHUTDOWN
invokes the site-specific network application shutdown command procedure referenced by the logical
name.

Note

VSI strongly recommends that you use this logical name. Placing network application shutdown
commands in the system’s site-specific SYSHUTDWN.COM file fails to shut down the applications
before the network shutdown performed by NET$SHUTDOWN. As a result, NET$SHUTDOWN can
hang waiting for network applications to shut down. Most DECnet shutdown problems can be traced to
shutting down applications (and any PATHWORKS Internet Protocol (PWIP) software if TCP/IP is in
use) in the incorrect order. Using the NET$APPLICATION_SHUTDOWN logical name corrects these
problems by specifying that NET$SHUTDOWN should shut down the indicated network applications
before shutting down the network.

Support for this feature includes a template file
SYS$MANAGER:NET$APPLICATION_SHUTDOWN.TEMPLATE that you can use to create a
customized network application shutdown file. You should rename this file to a .COM file, edit the file
as necessary for your site, and define the logical name NET$APPLICATION_SHUTDOWN to reference
this file. See the template file for more information.

The NET$LOGICALS.TEMPLATE file includes this logical name. For more information about the
NET$LOGICALS.TEMPLATE file, see Section 6.3, "Defining Logical Names That Modify Network
Operation".

The NET$APPLICATION_SHUTDOWN logical name does not change the function of the
NET$AUX_CONTROL logical name.

8.1.4. Enabling a Node
To manually enable the node entity, issue the following command:

93

Chapter 8. Managing DECnet Phase V Communications

ncl> enable node 0 function address watcher

This enables the address watcher, changing the system’s state from OFF to ON.

8.1.5. Renaming a Node
To rename a node in a DECdns or local namespace, use the DECnet-Plus configuration procedure
to specify the new node name. The full name includes the namespace name and the names of all its
directories, starting from the root. Elements within a full name are separated by periods and are known
as simple names.

Some reasons for changing node names include:

● The namespace name has changed (for example, XYZ_CORP:.boston.artist to
ABC_CORP:.boston.artist).

● The directory path has changed (for example, XYZ_CORP:.boston.artist to
XYZ_CORP:.portland.artist).

● The node object name has changed (for example, XYZ_CORP:.boston.artist to
XYZ_CORP:.boston.poet).

Use the following steps to change the node name of a DECnet Phase V system:

● Choose a new node name.

● Rerun the configuration procedure, specifying the new node name (and the new synonym, if
appropriate). If any other configuration parameters (such as addressing information) need to be
changed, change them at this time.

The DECnet-Plus configuration procedure removes the original node name, registers the new node
name, and renames the local node. The configuration procedure also updates the various entities that
might be affected by the name change, including the DNS clerk and the Session Control modules.

8.1.6. Managing a Phase IV Node
From a DECnet-Plus for OpenVMS node, you can manage a remote Phase IV node by invoking the
Network Control Program (NCP) Emulator and entering NCP commands. You must specify the remote
Phase IV node using the tell or set executor node commands. For example:

$ run sys$system:ncp
NCP> set executor node remnod"account password"
NCP> zero exec counters

For more information about using the NCP Emulator for network management of remote DECnet Phase
IV nodes, see Section 2.3, "Using the NCP Emulator to Convert NCP Commands to NCL".

8.2. Managing Physical Layer Devices and
Modem Connect Lines
You can configure the device and modem control entities using WANDD$STARTUP
(X25$CONFIGURE and NET$CONFIGURE automatically invoke WANDD$STARTUP if needed).

94

Chapter 8. Managing DECnet Phase V Communications

8.2.1. Managing WAN Communications Device
Firmware
You can load microcode into the DSB, DSF, DSV, and DSW communications devices and dump
microcode from these devices back to the host system by using the device entity. If you use the
WANDD$STARTUP.COM procedure, the information discussed in this section is set up automatically.

The following example creates and enables the device unit. Characteristics associated with the device
unit, such as load and dump file specifications, are created by default as part of the create command.
You can specify these characteristics manually with the set command.

ncl> create device unit device-name name dsv-0
ncl> enable device unit device-name

If the communications device fails, you will need to reload it manually, unless you have set the auto load
attribute for device unit to true. Use the following command:

ncl> load device unit device-name

If you have set auto load to true, the communications device tries to load its microcode automatically.

The WANDD$STARTUP procedure sets the auto load attribute to false for the DSB, DSV, and the
DSW. It sets it to true for the DSF. Therefore, if you want autoloading, you must manually specify true
as in the following example:

ncl> set device unit device-name auto load true

8.2.2. Managing Modem Connect Lines
To configure any synchronous link, you must first create the Modem Connect module to set up the
underlying physical lines.

Note

On OpenVMS VAX systems, you can configure asynchronous modem connect lines. For information
about setting up asynchronous modem connect lines, see Appendix I, "Configuring Asynchronous
Connections (OpenVMS VAX)".

You can find additional information about synchronous links and about writing your own data link
protocols that make calls to the Frame module in DECnet/OSI for VMS VAX WANDD Programming.

If you use the NET$CONFIGURE.COM, NET$STARTUP.COM, X25$STARTUP.COM,
PSI$STARTUP.COM, and WANDD$STARTUP.COM procedures, then modem connect lines for
HDLC links, DDCMP links, and X.25 links are set up automatically.

8.2.2.1. Entities Created Automatically That Might Compete for
Needed Resources
Note that data link entities and other supporting entities are created automatically by certain
scripts or procedures. For example, the NET$CONFIGURE.COM, NET$STARTUP.COM, and
WANDD$STARTUP.COM procedures set up modem connect line and HDLC data link entities
automatically. An automatically created entity can use resources needed for another entity. For instance,

95

Chapter 8. Managing DECnet Phase V Communications

when you configure DECnet and X.25 together, the automatically created hdlc link entity uses the
Modem Connect line, preventing you from enabling your LAPB link, which needs the modem connect
line. Table 8.1, "Files That Automatically Create Data Links on OpenVMS I64 and Alpha Systems" and
Table 8.2, "Files That Automatically Create Data Links on OpenVMS VAX Systems" list scripts and
procedures that automatically create entities on OpenVMS I64 and Alpha systems and on OpenVMS
VAX systems, respectively, and indicate how to delete these entities if they are not needed. All scripts
and procedures listed here are located in SYS$STARTUP.

Table 8.1. Files That Automatically Create Data Links on OpenVMS I64 and Alpha
Systems

Automatically Created Entity Source File How to Delete the Entity

csma-cd station NET$CONFIGURE Edit NET
$CSMACD_STARTUP.NCL1

modem connect line X25$CONFIGURE Edit NET
$HDLC_STARTUP.NCL1 and
NET$MODEM_STARTUP.NCL1

hdlc NET$CONFIGURE Edit NET
$HDLC_STARTUP.NCL1

lapb, llc2 X25$CONFIGURE @X25$CONFIGURE

lapb link, llc2 sap
link

X25$CONFIGURE X25$CONFIGURE

1To prevent automatic creation of the entity, edit the .NCL file to comment out the create and enable commands for that entity.

Table 8.2. Files That Automatically Create Data Links on OpenVMS VAX Systems

Automatically Created Entity Source File How to Delete the Entity

csma-cd station NET$CONFIGURE Edit NET
$CSMACD_STARTUP.NCL1

modem connect line PSI$CONFIGURE or NET
$CONFIGURE

Edit NET
$HDLC_STARTUP.NCL1, NET
$MODEM_STARTUP.NCL1, and
NET$DDCMP_STARTUP.NCL1

ddcmp NET$CONFIGURE Edit NET
$DDCMP_STARTUP.NCL1

hdlc NET$CONFIGURE Edit NET
$HDLC_STARTUP.NCL1

lapb, llc2 PSI$CONFIGURE Edit PSI$CONFIGURE.NCL1

lapb link, llc2 sap
link

PSI$CONFIGURE Edit PSI$CONFIGURE1

1To prevent automatic creation of the entity, edit the .NCL file to comment out the enable and create commands for that entity.

8.2.2.2. Creating Modem Connect Lines

This section shows the commands to create the Modem Connect module to set up your lines. For the
variables, substitute values appropriate to your configuration. VSI, however, recommends that you accept
the default settings for the various attributes and change these only if you need to. For more information
about these attributes, refer to the VSI DECnet-Plus for OpenVMS Network Control Language Reference
Guide. Figure 8.1, "Modem Connect Entity" shows the modem connect entity and subentities.

96

Chapter 8. Managing DECnet Phase V Communications

Figure 8.1. Modem Connect Entity

The following steps show the commands for creating the Modem Connect module to set up your lines:

1. If the configuration procedures have not already created the Modem Connect module, create it
manually before configuring the line. (The following example shows how to create the module; for
more information on configuring the module, refer to the VSI DECnet-Plus for OpenVMS Installation
and Configuration.)

2. The following example creates, sets, and enables a modem connect line. Do this for each line:

ncl> create modem connect line hdlc-0 -
_ncl> communication port comm_port_device_name,-
_ncl> profile "normal", -
_ncl> duplex full
ncl> set modem connect line hdlc-0 modem control full
ncl> enable modem connect line hdlc-0

For a synchronous line, the communication port attribute, (comm_port_device_name),
has two formats:

● The standard OpenVMS device format, such as sja0

● The DECnet dev-c-u format, such as dsv-0-0

where dev-c-u is defined as follows:

dev The first three letters of the synchronous device controller name (such as the
dsv in DSV11).

c A decimal number (0 or a positive integer) designating a device’s hardware
controller. If the third letter of the device name is A, c equals 0. If the third
letter of the device name is B, c equals 1, and so on. For example, SJB1: has a
c value of 1.

u The unit number of the device name; u is always equal to 0 or a positive
integer. For example, SJB1: has a u value of 1.

Therefore, the second line on the second DSV11 controller could be SJB2 or dsv-1-1.

You can specify two profiles, "normal" or "datexp". (You must include the profile name
within double quotes.) The profile defines the maximum, minimum, and defaults of attributes

97

Chapter 8. Managing DECnet Phase V Communications

that control the way the device driver monitors and controls the physical interchange circuits
connected to the local data circuit-terminating equipment (DCE). Generally, the "normal"
profile is the only profile you will need.

Specify the duplex mode of the line as either half or full.

Specify modem control if you want to monitor and use the interchange circuits. You can
specify values full or none. A value of none means "data leads only" operation and is
incompatible with a duplex value of half.

8.3. Managing Data Links
A data link connection allows DECnet Phase V systems to communicate with other nodes. If you
want to create a new connection, or modify an existing one, you need to create, set up, and enable
appropriate data link entities. VSI recommends that you use your DECnet-Plus configuration procedure
to configure data links. To modify the hdlc, ddcmp, csma-cd, and fddi data links,
run NET$CONFIGURE ADVANCED. To modify lapb, llc2, and xot data links, run
X25$CONFIGURE.

DECnet-Plus supports the following local area network (LAN) data link entities, as described in Section
8.3.1, "Creating LAN Data Links":

● csma-cd

● fddi

● llc2 (with X.25)

● xot (with X.25 on OpenVMS I64 and OpenVMS Alpha systems)

DECnet-Plus supports the following wide area network (WAN) data link entities, as described in Section
8.3.2, "Creating WAN Data Links":

● hdlc (VSI’s HDLC)

● ddcmp (OpenVMS VAX only)

● lapb (with X.25)

● xot (with X.25 on OpenVMS I64 and OpenVMS Alpha systems)

For each type of data link you use, you need to manage a different group of entities. For example, for
each HDLC data link, you must manage the hdlc link entity plus the modem connect and device Physical
layer entities (see Section 8.2, "Managing Physical Layer Devices and Modem Connect Lines"). The type
of data link you use on your node depends on the communication hardware on the system. The following
sections provide examples and more detailed information about the supported data link entities.

8.3.1. Creating LAN Data Links
This section explains how to manually create LAN data links. Figure 8.2, "LAN Data Link Entities"
shows the LAN data link entities for DECnet-Plus for OpenVMS systems:

98

Chapter 8. Managing DECnet Phase V Communications

Figure 8.2. LAN Data Link Entities

8.3.1.1. Creating CSMA-CD Data Links
The following steps show the commands to create a CSMA-CD data link for an end system. VSI,
however, recommends that you accept the default settings (used in the example) for the various attributes
and change these only if you need to. Refer to the VSI DECnet-Plus for OpenVMS Network Control
Language Reference Guide for more information about these attributes.

1. Enter the following command to create and enable the csma-cd entity:

ncl> create csma-cd

2. Enter the following commands to create and enable a csma-cd station and communication port:

ncl> create csma-cd station csmacd-0 -
_ncl> communication port port-name
ncl> enable csma-cd station csmacd-0

The port-name refers to the name assigned to the communication device by the operating
system. The communication device is hardware that provides an interface between the system
and network.

Note

The Routing layer uses only those CSMA-CD stations that have an associated routing circuit
entity. See Section 8.4.2, "Configuring Routing Circuit Information" for further details.

8.3.1.2. Creating FDDI Data Links
The following steps show the commands to create an FDDI data link for an end node. VSI, however,
recommends that you accept the default settings (used in the example) for the various attributes and

99

Chapter 8. Managing DECnet Phase V Communications

change these only if you need to. Refer to the VSI DECnet-Plus for OpenVMS Network Control Language
Reference Guide for more information about these attributes.

1. Enter the following command to create and enable the fddi entity:

ncl> create fddi

2. Enter the following commands to create and enable an fddi station (fddi-1) and communication port.

ncl> create fddi station fddi-1 -
_ncl> communication port port-name
ncl> enable fddi station fddi-1

The port-name refers to the name assigned to the communication device by the operating
system. It is not user settable.

Note

The Routing layer uses only those FDDI stations that have an associated routing circuit entity.
See Section 8.4.2, "Configuring Routing Circuit Information" for further details.

8.3.1.3. Creating LLC2 and XOT Data Links
For information about creating LLC2 and X.25 over TCP/IP (XOT) data links, see the VSI X.25 for
OpenVMS Management Guide.

8.3.2. Creating WAN Data Links
This section explains how to manually create WAN data links. Note that to configure any synchronous
link, you must first create the Modem Connect module to set up the underlying physical lines. See
Section 8.2, "Managing Physical Layer Devices and Modem Connect Lines" for more information.
Figure 8.3, "WAN Data Link Entities" shows the WAN data link entities for DECnet-Plus for OpenVMS
systems:

Figure 8.3. WAN Data Link Entities

100

Chapter 8. Managing DECnet Phase V Communications

8.3.2.1. Creating HDLC Data Links

The following steps show the commands to create an HDLC data link for an end system. (As
implemented by DECnet-Plus, HDLC is VSI’s variant of the HDLC protocol. It interoperates with
some implementations of HDLC from other vendors.) VSI recommends that you accept the default
settings for the various attributes and change these only if you need to. Refer to the VSI DECnet-Plus for
OpenVMS Network Control Language Reference Guide for more information about these attributes. You
can configure the device and modem control entities using WANDD$STARTUP (NET$CONFIGURE
automatically invokes WANDD$STARTUP if needed).

1. If the configuration procedures have not already created the HDLC module, create it manually
before configuring the link. (The following example shows how to create the module; for
information on configuring the module, refer to the VSI DECnet-Plus for OpenVMS Installation and
Configuration.)

 ncl> create node 0 hdlc

2. Enter the following commands to create, set, and enable an hdlc link and logical station. Enter the
following for each link that you want.

ncl> create hdlc link hdlc-0 linktype balanced
ncl> create hdlc link hdlc-0 logical station hdlc-0
ncl> set hdlc link hdlc-0 physical line -
_ncl> modem connect line hdlc-0, -
_ncl> receive buffers 16, -
_ncl> preferred window size 16, -
_ncl> acknowledge timer 3000, -
_ncl> preferred local station address 2
ncl> enable hdlc link hdlc-0
ncl> enable hdlc link hdlc-0 logical station hdlc-0

The name of the link is user settable, and it usually corresponds to the modem connect line.

linktype specifies the operational mode and the station’s role on this link. Use a balanced link
for full-duplex circuits. If you are using a half-duplex circuit, you need to specify a linktype of
primary or secondary. Specify primary at one end of the link and secondary at the other.

The name of the logical station is user settable, and it usually corresponds to the link.

Associates the hdlc link with a modem connect line.

Set the preferred window size, receive buffers, and acknowledge timer to account for
transmission delay, line speed, line quality, and line utilization.

The acknowledge timer measures (in milliseconds) the waiting time between sending a message
and receiving a response before retransmitting the message. Increase the value if using a slow
link, decrease the value if using a noisy or fast link. The acknowledge timer corresponds to the
hdlc t1 timer.

The preferred local station address is the address proposed for this station during xid
negotiation. Any addressing conflict is resolved by the xid negotiation procedures.

The preferred local station address is also the proposed address for this local station when it is
not running in balanced mode.

101

Chapter 8. Managing DECnet Phase V Communications

8.3.2.2. Creating DDCMP Data Links

The following steps show the commands to create a DDCMP data link for an end system. VSI, however,
recommends that you accept the default settings for the various attributes and change these only if
you need to. For more information about these attributes, refer to the VSI DECnet-Plus for OpenVMS
Network Control Language Reference Guide.

1. If the configuration procedures have not already created the DDCMP module, create it manually
before configuring the link. (The following example shows how to create the module; for
information on configuring the module, refer to the VSI DECnet-Plus for OpenVMS Installation and
Configuration.)

NCL> create node 0 ddcmp

2. Enter the following commands to create, set, and enable a ddcmp link and logical station. Enter the
commands for each link that you want.

ncl> create ddcmp link ddcmp-0 protocol point
ncl> create ddcmp link ddcmp-0 -
_ncl> logical station ddcmp-0
ncl> set ddcmp link ddcmp-0 -
_ncl> physical line modem connect line ddcmp-0, -
ncl> receive buffers 16, -
_ncl> retransmit timer 3000, -
_ncl> transmit window 16
ncl> enable ddcmp link ddcmp-0
ncl> enable ddcmp link ddcmp-0 logical station ddcmp-0

The name of the link is user settable, and it usually corresponds to the modem connect line.

Protocol specifies the protocol mode of the communication. In addition to point-to-point
links, you can specify multipoint links where the local station can act as a control station or a
tributary.

The name of the logical station is user settable, and it usually corresponds to the link.

Associates the ddcmp link with a modem connect line.

Set the receive buffers, retransmit timer, and transmit window to account for delay, line speed,
line quality, and line utilization.

The retransmit timer attribute measures the waiting time (in milliseconds) between sending a
message and receiving a response before retransmitting the message. Increase the value if using
a slow link, decrease the value if using a noisy or fast link.

Note

The Routing layer uses only those DDCMP links that have an associated routing circuit entity. See
Section 8.4.2, "Configuring Routing Circuit Information" for further details.

8.3.2.3. Creating LAPB Data Links

For information about creating LAPB data links, see the VSI X.25 for OpenVMS Management Guide.

102

Chapter 8. Managing DECnet Phase V Communications

8.4. Configuring Routing
DECnet-Plus systems comply with the DECnet Phase V routing architecture. DECnet-Plus systems are
normally configured as end systems with dedicated routers used to provide the routing service. DECnet-
Plus end systems can communicate with DECnet Phase V routers, DECnet Phase IV routers, and OSI
routers from other vendors. You can configure end systems with DECnet Phase V addresses beyond the
limits of Phase IV addressing (using extended addresses) if your routing infrastructure supports DECnet
Phase V routing.

In summary, DECnet-Plus end systems support:

● Communication with nodes running DECnet Phase IV and OSI protocols

● Full cluster alias configuration

● FDDI large packets. This feature requires a Phase V FDDI router on the same LAN.

● X.25 switched virtual circuits (SVCs) and permanent virtual circuits (PVCs)

As discussed in Section 8.4.1, "Configuring Routing Type, Mode, and Routing Addresses", you have the
option of setting up your DECnet-Plus for OpenVMS system as a host-based router.

Note

Review the discussion of routing in the VSI DECnet-Plus Planning Guide.

This section discusses the following three main tasks that are necessary for configuring routing on your
DECnet-Plus system:

● Setting up the type of routing node and routing address information

● Setting up the routing circuit information

● Setting up the network routes

Figure 8.4, "Routing Entity" shows the routing entity and subentities.

Figure 8.4. Routing Entity

103

Chapter 8. Managing DECnet Phase V Communications

8.4.1. Configuring Routing Type, Mode, and Routing
Addresses
This section explains how to set up the routing type, segregated or integrated mode, and routing
addresses. It also discusses the features of host-based routing, which you can set up when configuring the
DECnet-Plus software.

8.4.1.1. Routing Type
To configure routing, you first create the routing entity, specifying the routing type; set the routing
attributes discussed in subsequent subsections; and then enable routing. To set up the routing type,
use the routing type attribute as in the following example. The routing type attribute can be endnode,
L1router, or L2router.

ncl> create routing type endnode [set routing attributes]
.
.
.
ncl> enable routing

To set up your system as a host-based router (or an end system if it is currently set up as a host-based
router), use the DECnet-Plus configuration procedure. Host-based routing is explained in Section 8.4.1.2,
"Host-Based Routing". Likewise, to modify the type of routing your system uses, integrated mode or
segregated mode, use the DECnet-Plus configuration procedure or NCL (as explained in Section 8.4.1.3,
"Segregated Mode Routing and Integrated Mode Routing").

8.4.1.2. Host-Based Routing
DECnet-Plus for OpenVMS supports host-based routing. An OpenVMS system can operate as a DECnet
Phase V intermediate system in a routing domain (a collection of systems that automatically configure to
each other and exchange network topology information using consistent network layer protocols).

DECnet-Plus for OpenVMS host-based routing includes support for:

● Communication with nodes running DECnet Phase IV and OSI protocols.

● Cluster aliases (see Section 9.2, "Using an OpenVMS Cluster Alias"). To enable cluster alias support
in environments including WANs or Phase IV nodes, at least one Phase V routing node must exist on
the cluster’s LAN. A host-based routing system fulfills this requirement.

● Both router levels. A host-based routing system can act as a level 1 (L1) router or a level 2 (L2)
router. When configured as a level 2 router, individual circuits can be configured to carry level 2
traffic only.

● Both routing algorithms (routing vector and link state) at both the L1 and L2 levels. Different
routing algorithms can be used at the L1 and L2 levels. NET$CONFIGURE only supports
configuring routers using the routing vector algorithm. To configure a host-based routing system
using link state routing, first use the NET$CONFIGURE procedure to configure the system (which
results in a routing vector router). Then, use the ISIS$CONFIGURE procedure to modify the
system to use link state routing. The use of the ISIS$CONFIGURE procedure is described in the
VSI DECnet-Plus for OpenVMS Installation and Configuration. Table 8.3, "Choosing the Routing
Algorithms" describes briefly how to choose the routing algorithm that the host-based router should
use.

104

Chapter 8. Managing DECnet Phase V Communications

● Full control of all level 1 and level 2 routing parameters. You can assign values to all the routing
characteristics associated with dedicated routing nodes. These include Phase IV characteristics
(such as phaseiv maximum address, and phaseiv maximum area, Phase V characteristics (such as
manual area addresses), and routing circuit characteristics (such as l1 and l2 cost and l1 and l2 router
priority).

● FDDI large packets. If you have configured your end node systems to use FDDI large packets, their
host LAN must have at least one Phase V router that supports FDDI large packets. You can fulfill
this requirement by enabling large packet support on the system’s FDDI routing circuits. To enable
FDDI large packets, set the routing circuit’s type characteristic to fddi.

● Data Communications Message Protocol (DCMP) (supported on OpenVMS VAX only). When
configuring DDCMP links to Phase IV routers, you must set the routing circuit’s manual data link
sdu size attribute and the Phase IV router’s executor buffer size parameter to the same value.

● X.25 switched virtual circuits (SVCs) and permanent virtual circuits (PVCs). Note that X.25
dynamically-assigned (DA) circuits can only be used for level 2 routing. Also, X.25 DA circuits
require that you configure corresponding routing circuit reachable address entities.

Table 8.3. Choosing the Routing Algorithms

If... Then...

There are DECnet Phase IV routers in the same
area as the host-based router.

You must configure the host-based router to use
the routing vector algorithm at level 1.

All the routers in the same area as the host-based
router are running the link state algorithm.

You must configure the host-based router to use
the link state routing algorithm at level 1.

The host-based router only communicates
with level 2 routers running the routing vector
algorithm.

You should configure the host-based router to use
the routing vector algorithm at level 2.

The host-based router only communicates with
level 2 routers running the link state algorithm.

You should configure the host-based router to use
the link state algorithm at level 2.

The host-based router communicates with level
2 routers running the routing vector algorithm
and with level 2 routers running the link state
algorithm.

You should configure the host-based router to
use the link state algorithm at level 2. Then,
configure interphase links (using routing circuit
reachable address entities) to the level 2 routers
running the routing vector algorithm. You can
configure interphase links automatically using
the create ipl_initialization_file command of the
decnet_migrate utility (see Chapter 4, "Managing
Routing Between DECnet Phase IV and Phase V
Areas") or manually using the ISIS$CONFIGURE
procedure (see the VSI DECnet-Plus for OpenVMS
Installation and Configuration).

Host-based routing is especially useful for those configurations where you need to route from a LAN
to a WAN and want to use an existing system to do the routing rather than investing in a dedicated
router. Host-based routing is not intended for use in network configurations that have high-throughput
requirements.

The following commands were generated by NET$CONFIGURE to configure a level 2 router using the
routing vector routing algorithm:

ncl> create node 0 routing type l2router

105

Chapter 8. Managing DECnet Phase V Communications

ncl> set node 0 routing phaseiv address = 23.14
ncl> set node 0 routing phaseiv prefix = 49::
ncl> set node 0 routing manual l1 algorithm = routing vector
ncl> set node 0 routing manual l2 algorithm = routing vector
ncl> set node 0 routing default eshello timer 600
ncl> set node 0 routing maximum path splits = 2
ncl> set node 0 routing phaseiv maximum address = 1023
ncl> set node 0 routing phaseiv maximum area = 63
ncl> set node 0 routing phaseiv buffer size = 576
ncl> enable node 0 routing

The following commands were generated by ISIS$CONFIGURE to configure a level 2 router using the
link state routing algorithm:

ncl> CREATE NODE 0 ROUTING TYPE L2ROUTER
ncl> SET NODE 0 ROUTING MANUAL AREA ADDRESSES = {12:234}
ncl> SET NODE 0 ROUTING MANUAL L1 ALGORITHM = LINK STATE
ncl> SET NODE 0 ROUTING MANUAL L2 ALGORITHM = LINK STATE

8.4.1.3. Segregated Mode Routing and Integrated Mode Routing
For end systems, you have the option of using integrated mode routing or segregated mode routing.

Integrated mode routing works in the following way: It sends DECnet Phase IV messages across the
network using DECnet Phase V Network layer protocols. Routers receiving DECnet Phase IV packets
translate them to OSI CLNP format before forwarding them. Messages destined for DECnet Phase
IV systems are translated to Phase IV format only on the last hop of their journey. Integrated mode
routing allows routers to route both DECnet Phase IV and Phase V traffic while storing a single network
topology in their internal databases.

Under integrated mode, DECnet-Plus systems attempt to send packets in DECnet Phase V format unless:

● They are communicating directly to an adjacent DECnet Phase IV system.

or

● No DECnet Phase V routers exist on the network to forward the packets.

Integrated mode routing is the only mode supported on OpenVMS systems preceding DECnet/OSI for
OpenVMS Version 5.8.

Segregated mode routing handles DECnet Phase IV and Phase V as independent protocols. Routers
do not translate messages between DECnet Phase IV and Phase V format. The routers must maintain
separate network topologies in their internal databases to handle each type of protocol.

Under segregated mode, DECnet-Plus end systems transmit messages in the Phase IV address format if
they have a DECnet Phase IV translatable destination address. All other messages are sent in DECnet
Phase V format. If you use non-VSI routers that do not support VSI’s technique of translating DECnet
Phase V addresses to DECnet Phase IV, you may want to use segregated mode routing.

Integrated mode is the default routing mode. To configure segregated mode, use the advanced
configuration procedure or NCL. With NCL, you can switch from the default to segregated mode by
setting the routing mode attribute, as in the following commands:

ncl> disable routing
ncl> set routing routing mode = segregated

106

Chapter 8. Managing DECnet Phase V Communications

ncl> enable routing

Note

If your OpenVMS system is running cluster alias, you must use integrated mode.

Use integrated routing mode in an integrated routing environment where the routers can handle Phase-
IV-to-Phase-V or Phase-V-to-Phase-IV packet format conversions. Use segregated routing mode when
the adjacent routers cannot perform Phase-IV-to-Phase-V or Phase-V-to-Phase-IV packet conversions.

8.4.1.4. Autoconfiguring Network Addresses
A DECnet Phase V environment is a subnetwork where OSI systems, both end systems and intermediate
systems (ES-IS), adhere to the DECnet Phase V routing protocol and support DNA-structured NSAP
addresses, as defined in the VSI DECnet-Plus Planning Guide. When existing in a Network Architecture
(NA) environment, an end system can determine (that is, autoconfigure) its network addresses from
information sent by the routers in its subnetwork. In this environment, you do not have to manually
set the local network service access point (NSAP) addresses. This is the default during configuration
using NET$CONFIGURE.COM. In some networks, you must manually set the network address at
configuration time.

An empty set for the manual network entity titles attribute indicates the use of autoconfiguration. If the
set is non-empty, autoconfiguration does not take place. To change the value of this routing attribute
from an empty set to a non-empty set, or from a non-empty set to an empty set, the routing entity must
be disabled.

Note

The dna address format attribute controls the interpretation of Phase IV addresses; it does not control
whether autoconfiguration takes place.

8.4.1.5. Configuring a Phase IV Network Address
DECnet Phase IV nodes cannot recognize DECnet Phase V addresses. However, DECnet Phase V nodes
can recognize Phase IV addresses. For a DECnet Phase V node to communicate with a Phase IV node,
the DECnet Phase V node must have a Phase IV address that conforms to the normal Phase IV limits
(area number less than or equal to 63 and node number less than or equal to 1023). You must configure
this Phase IV address on your DECnet-Plus system.

Use the DECnet-Plus configuration procedure or the following command to set up a Phase IV address.
For this command to succeed, routing must not be enabled.

ncl> set routing phaseiv address 12.1

The Phase IV address along with a Phase IV address prefix is used to construct a Phase IV-compatible
NSAP address. This is done by concatenating the Phase IV address prefix, the area portion of the Phase
IV address, the DECnet LAN address, and a transport selector. See Section 10.2.2 for information on
how to convert the Phase IV address to a DECnet LAN address. For example, if a system’s Phase IV
address is 12.1 and the Phase IV address prefix is 49::, the resulting NSAP addresses for NSP and OSI
Transport are respectively (where 12 decimal is converted to 0c hexadecimal and 12.1 is converted to
DECnet LAN address of aa-00-04-00-01-30):

49::00-0c:aa-00-04-00-01-30:20

107

Chapter 8. Managing DECnet Phase V Communications

49::00-0c:aa-00-04-00-01-30:21

In the same way that they learn their OSI network addresses, end systems learn their Phase IV address
prefix from the routers in the subnetwork. Only if there are no DECnet Phase V routers present, does
the end system use its own routing attribute phaseiv prefix to construct its Phase IV-compatible NSAP
address.

For an end system to learn its Phase IV address prefix, you must configure it into the routers of the
subnetwork in which the system resides. The default prefix for all systems is 49::. If you want to use a
different initial domain part (IDP) and pre-DSP (domain-specific part), you can override the default by
setting the phaseiv prefix attribute as follows. For this command to succeed, routing must not be enabled.

ncl> set routing phaseiv prefix 37:1234:

For example, if you configure a router in area 41 with the phaseiv prefix 37:1234:, any DECnet-Plus
end system with a Phase IV address in area 41 sets its Phase IV area as follows, where 41 decimal is
converted to 29 hexadecimal:

37:1234:00-29:

This results in a Phase IV-compatible NSAP address of the form:

37:1234:00-29:aa-00-04-00-nn-nn:ss

All systems in the subnetwork should have the same Phase IV prefix, but because DECnet Phase V
systems autoconfigure, you only need to set the prefix on the routers used by the end system. VSI,
however, recommends that you ensure that the phaseiv prefix attribute is consistently set on all DECnet
Phase V systems.

Note

For DIGITAL Network Architecture (DNA) routing (via the Connectionless Network Protocol (CLNP)),
DECnet-Plus does not support the configuration of NSAPs using decimal DSP (domain-specific parts)
syntax. VSI supports X.121 format NSAPs (AFI=36) for the use of OSI transport over the Connection-
Oriented Network Service (CONS), which requires the X.25 for OpenVMS product.

8.4.1.6. Configuring End System Network Addresses for Non-DNA
Networks
If your end system is operating in an environment with one or more non-DNA routers, your DECnet-
Plus end system cannot autoconfigure its network address or network entity title (NET). (The NET is the
address that identifies the Network layer.) In this case, you can manually specify up to three NETs for
your system. To do this, you need to know the following information about the node:

● The network IDP

● The area where the node resides

● The node ID

The following sequence of commands specifies the NET for a system:

ncl> create routing type endnode
ncl> set routing manual network entity titles -

108

Chapter 8. Managing DECnet Phase V Communications

_ncl> { 41:45418715:00-49:08-00-2b-00-01-02:00}
ncl> enable routing

Specifies the NET for the node so the node does not attempt to autoconfigure. For information
about NETs and NSAPs, see the VSI DECnet-Plus Planning Guide.

To make this change permanent, rerun the advanced configuration procedure or add these commands to
the NET$ROUTING_STARTUP.NCL script file after the line create routing type endnode. (Replace the
string (41:45418715:00-49:08-00- 2b-00-01-02:00) with the correct NET for your node.) The next time
you reboot the system, DECnet-Plus uses this new information.

Note

Phase IV backward compatibility is not supported when operating in a non-DNA environment.
Therefore, the routing attribute phase iv address should be set to 0.0 or left unset.

8.4.2. Configuring Routing Circuit Information
This section explains how to configure routing circuit information and how to set up a multicircuit
configuration.

The following example shows how to configure routing circuit information. The first three commands set
up the routing type and addressing information, as described in Section 8.4.1, "Configuring Routing Type,
Mode, and Routing Addresses". The remaining commands set up the routing circuit, as described below.

ncl> create routing type endnode
ncl> set routing dna address format true, lifetime 63, -
_ncl> manual network entity titles {}, probe rate 20
ncl> enable routing
ncl> create routing circuit hdlc-0 type hdlc
ncl> set routing circuit hdlc-0 data link entity -
_ncl> hdlc link hdlc-0 logical station hdlc-0, -
_ncl> manual data link sdu size 1492, -
_ncl> template template-name
ncl> enable routing circuit hdlc-0

You need to configure routing circuits:

● For CLNS connections over a LAN, you can configure a routing circuit for each LAN device
on your system. Each LAN routing circuit supports the CLNS/ES-IS routing protocol; it can
optionally also support null internet over CSMA-CD and FDDI links.

● For CLNS connections over synchronous links, you can configure two types of synchronous
circuits:

HDLC
DDCMP

● For CLNS connections over an X.25 network, you can configure four types of X.25 routing
circuit on OpenVMS systems:

Static outgoing (for outbound connections only)
Static incoming (for inbound connections only)
Dynamically assigned (for both outbound and inbound connections)

109

Chapter 8. Managing DECnet Phase V Communications

Permanent (for both outbound and inbound connections)

Table 8.4, "Routing Circuits Supported for CLNS" lists the supported routing circuits for CLNS on
your system.

For information on configuring routing to use an X.25 data link, see Section 8.8.2, "Configuring
Routing Over X.25 Circuits".

Associate the routing circuit with the appropriate data link entity. The data link entity attribute is
valid for all circuits.

● For broadcast circuits, set this attribute to:

csma-cd station station-name

where station-name is the generic name of the LAN adapter (for example, csmacd-0).

● For HDLC circuits, set this attribute to:

hdlc link link-name logical station station-name

where link-name is the generic name of the link (for example, hdlc-0) and the logical station
(for example, hdlc-0).

● For DDCMP circuits, set this attribute to:

ddcmp link link-name logical station station-name

where link-name is the generic name of the link (for example, ddcmp-0) and the logical station
(for example, ddcmp-0).

● For FDDI circuits, set this attribute to:

fddi station station-name

where station-name is the generic name of the LAN adapter (for example, fddi-0) and the
logical station (for example, fddi-0).

● For X.25 circuits, set this attribute to:

x25 access

The manual data link sdu size attribute is valid for all circuits.

The template attribute is valid for X.25 circuits and ignored for all other circuits.

Table 8.4. Routing Circuits Supported for CLNS

Circuit Description

csma-cd IEEE 802.3 LAN routing circuit
hdlc Synchronous HDLC circuit
ddcmp Synchronous DDCMP circuit
fddi Fiber Distributed Data Interface (FDDI) for LANs
x25 static incoming X.25 inward switched virtual circuit
x25 static outgoing X.25 outward switched virtual circuit

110

Chapter 8. Managing DECnet Phase V Communications

Circuit Description

x25 da Dynamically-assigned X.25 virtual circuit
x25 permanent Permanent X.25 virtual circuit

Table 8.5, "Additional Routing Circuit Attributes for CLNS" lists additional attributes to consider when
setting up a routing circuit with CLNS. It also shows the circuits for which the attributes are valid.

Table 8.5. Additional Routing Circuit Attributes for CLNS

Attribute Valid Circuit Type

idle timer x25 da

inactive area address csma-cd

initial minimum timer x25 static incoming

x25 static outgoing

x25 da

manual routers csma-cd

maximum call attempts x25 static outgoing

maximum svc adjacencies x25 da

recall timer x25 static outgoing

reserved adjacency x25 da

reserve timer x25 da

x25 filters x25 static incoming

x25 da

For inactive area address:

Each LAN circuit that supports Null Internet must specify a different inactive area address.

For circuits using only CLNS/ES-IS, this characteristic is an empty set (this is the default value).

For initial minimum timer:

On X.25 static incoming or outgoing circuits, if no adjacency has been established when this timer
expires, the circuit is cleared.

8.4.2.1. Configuring Multiple Circuits for End Systems

DECnet Phase V end systems can operate over more than one data link. As such, traffic can be sent
or received over any of the links, but protocol data units (PDUs) are not forwarded from one link
to another. In other words, a multicircuit end system does not perform the functions of a router.
Instead, this function provides network redundancy, as well as higher throughput, depending upon the
configuration.

DECnet-Plus for OpenVMS supports up to 16 circuits. Hardware, OpenVMS, or WANDD software,
however, can further limit the number of circuits you can have. For more information about possible
limits, refer to your system and WANDD documentation.

111

Chapter 8. Managing DECnet Phase V Communications

When communicating with remote systems, data PDUs are sent over all circuits in turn. If the remote
end system is directly connected on one or more circuits, only those circuits are used to reach the end
system. Moreover, a single data PDU is transmitted over all circuits at the interval at which you set the
probe rate.

The probe rate is a Routing module attribute that has a default value of 1000. Therefore, every
thousandth data PDU bound for a specific end system is transmitted on all circuits. This helps ensure that
all available paths are used.

When operating a DECnet-Plus end system in a multicircuit configuration, you must adhere to certain
topology restrictions:

● All the links must be in the same area. That is, the set of area addresses (a Routing module status
attribute) must be the same for each circuit.

● All the data links must be of similar capacity or usable bandwidth.

● If an end system has multiple circuits connected to an extended LAN, only one of those circuits can
have the attribute enable phase iv address set to true.

Failure to comply with these restrictions might result in unacceptable operation.

To create multiple circuits for an end system on a CSMA-CD LAN, use the DECnet-Plus configuration
procedure. VSI recommends that you accept the default settings (used in the example in Section 8.4.2.2,
"Sample NCL Script for Configuring Multiple Routing Circuits") for the various attributes and change
these only if you need to. Refer to the VSI DECnet-Plus for OpenVMS Network Control Language
Reference Guide for more information about these attributes.

8.4.2.2. Sample NCL Script for Configuring Multiple Routing
Circuits
The following example shows the contents of the file NET$ROUTING_STARTUP.NCL, located
by default in SYS$SPECIFIC:[SYSMGR]. This file is created by the DECnet-Plus for OpenVMS
configuration procedure. The file enables routing, creates the Routing module, and creates CSMA-CD
and FDDI circuits.

create node 0 routing type endnode
set node 0 routing phaseiv address = 4.884
set node 0 routing phaseiv prefix = 49::
set node 0 routing dna address format true
set node 0 routing default eshello timer 600
enable node 0 routing
create node 0 routing circuit csmacd-0 type = csma-cd
set node 0 routing circuit csmacd-0 data link entity = csma-cd station
 csmacd-0
set node 0 routing circuit csmacd-0 enable phaseiv address = false
enable node 0 routing circuit csmacd-0
create node 0 routing circuit fddi-0 type = fddi
set node 0 routing circuit fddi-0 data link entity = fddi station fddi-0
set node 0 routing circuit fddi-0 enable phaseiv address = true
enable node 0 routing circuit fddi-0

Note

To delete and disable entities, see the information in Section 6.5, "Deleting Network Entities".

112

Chapter 8. Managing DECnet Phase V Communications

8.4.3. Setting Up Network Routes
The primary function of the Routing layer is to identify the best path to a given destination. DECnet
Phase V systems have multiple mechanisms to determine such a path. Under most circumstances, these
mechanisms work automatically without any need for special configuration. This section describes the
routing mechanisms and explains how to use them to handle special circumstances.

DECnet-Plus uses the following rules in order of precedence to determine where to send each packet:

1. If the destination has a routing circuit inactive area address attribute set for the circuit, DECnet-
Plus sends the message over the indicated circuit using the Null Internet format (Section 8.4.3.1,
"Configuring CLNS with Null Internet").

2. If the route is explicitly defined in a routing circuit reachable address attribute, DECnet-Plus sends
the packet to the indicated destination (Section 8.4.3.2, "Configuring Routing Reachable Addresses").

3. If the DECnet-Plus system recently communicated with a given destination, the paths to that
destination are saved in the end node cache. DECnet-Plus uses one of the cached paths (Section
8.4.3.3, "Routing Use of the End System Cache").

4. If adjacent routers are known to exist on any of the attached circuits, DECnet-Plus sends the message
to one of the routers (Section 8.4.3.4, "Configuring Network Adjacencies to Non-DNA Routers").

5. If the destination is within the sender’s area, DECnet-Plus broadcasts the message to all end nodes on
all attached LANs.

8.4.3.1. Configuring CLNS with Null Internet
DECnet-Plus supports the inactive subset of CLNS, also known as null internet. An inactive subset PDU
contains no Network layer addressing information; it is sent directly to the data link address derived from
the destination NSAP address. Therefore, it cannot be routed by an intermediate system. This means
that only LAN devices can support the inactive subset PDU, and the two communicating nodes must
be on the same LAN. The inactive subset of CLNS allows communication with OSI systems that only
implement the inactive subset.

Configuring CLNS with null internet is no different from configuring full CLNS, with the following
restrictions:

● The routing circuit entity must have its type attribute set to csma-cd.

● You must specify a value for the inactive area address attribute of the routing circuit entity. For
inactive area address, each LAN circuit that supports null internet must specify a different inactive
area address. (For circuits using only CLNS/ES-IS, this attribute is an empty set (this is the default
value).)

For more information on configuring CLNS OSI transport to use the null internet, see Section 8.5.2.4.3,
"Null Internet Information".

You can turn the ability to transmit and receive inactive subset protocol data units (PDUs) on and off
on a per circuit basis by defining a value for the circuit attribute inactive area address. The following
example uses the default inactive area address attribute on a LAN:

ncl> create routing circuit csmacd-0 -
_ncl> type csma-cd
ncl> set routing circuit csmacd-0 -
_ncl> inactive area address {49::FF-00}

113

Chapter 8. Managing DECnet Phase V Communications

ncl> enable routing circuit csmacd-0

You must do this after the circuit is created, but before you enable it. The value is the address of an
otherwise unused area in your network.

If you want to change the transport, modify the Routing module’s preset attribute, inactive selector, with
the selector of the transport you want to use. Only one transport may use the inactive subset and, by
default, this is OSI transport (which has a default selector value of 33). To operate NSP over the inactive
subset, before enabling the Routing module (and any circuits) enter the command:

ncl> set routing inactive selector 32

When using the inactive subset, destination NSAPs must contain the inactive area address followed by
the data link address of the remote machine followed by the transport selector. For example:

49::FF-00:08-00-23-00-01-02:21

8.4.3.2. Configuring Routing Reachable Addresses
Reachable addresses allow the system manager to override the automatic routing mechanisms in
DECnet-Plus. You can define reachable addresses for each circuit. Two types of reachable addresses
are outbound and filter, as described below. (For information about routing reachable addresses used
for X.25 routing circuits, see Section 8.8.2.2, "Configuring Routing Over X.25 Dynamically-Assigned
Circuits".)

● Outbound (the default) — Defines the destination data link address for packets whose destination
NSAP address start with the specified address prefix. If a packet’s destination NSAP matches
multiple reachable address entities, the one with the longest address prefix is used. Outbound
reachable addresses are supported on broadcast circuits and X.25 dynamically-assigned circuits.
Outbound reachable addresses are necessary to transmit packets directly to nodes in other routing
domains.

● Filter — Reachable addresses of this type are for broadcast circuits only and specify the permitted
LAN addresses of routers on the LAN. Only those routers with LAN addresses that are listed in the
permitted LAN addresses attribute (described below) will be used for transmitting packets before the
routing circuit establishes its reverse path cache.

You can use NCL to switch from the default (outbound) to filter by setting the reachable address entity
type attribute to the value filter. You must disable the routing reachable address entity before changing
the value of the type attribute.

Note

For either the outbound or filter type of reachable address, you must set the mapping attribute to manual
(the default is x.121). See the command example below.

The following reachable address attributes are supported by outbound reachable addresses:

● data format format, where format is either phase v (the default) or phase iv. This attribute
specifies the PDU data format to be used when forwarding data network protocol data units
(NPDUs) using this reachable address.

● block size size, where size can be in the range of 0 (the default) to 65535. This attribute
defines the data link block size to be used for this prefix. If the block size is set to the default, the
manual block size of the circuit will be used instead.

114

Chapter 8. Managing DECnet Phase V Communications

● lan address xx-xx-xx-xx-xx-xx, where xx-xx-xx-xx-xx-xx specifies the single LAN
address to which an NPDU may be directed in order to reach an address that matches the address
prefix of the parent reachable address entity. The default value is 00-00-00-00-00-00. You must
specify a valid LAN address. This attribute applies to broadcast circuits only.

The following example shows how to use NCL commands to create an outbound type of reachable
address:

ncl> create routing circuit csmacd-0 reachable address to-area4 -
_ncl> address prefix 49::00-04:
ncl> set routing circuit csmacd-0 reachable address to-area4 -
_ncl> mapping manual
ncl> set routing circuit csmacd-0 reachable address to-area4 -
_ncl> type outbound
ncl> set routing circuit csmacd-0 reachable address to-area4 -
_ncl> data format phaseiv
ncl> set routing circuit csmacd-0 reachable address to-area4 -
_ncl> block size 500
ncl> set routing circuit csmacd-0 reachable address to-area4 -
_ncl> lan address aa-00-04-00-xx-xx

The permitted lan addresses attribute applies to filter reachable addresses for broadcast circuits only.
This attribute specifies a set of LAN addresses corresponding to routers that are permitted to forward to
this prefix. The default is an empty set. You must specify at least one LAN address. Specify these LAN
addresses within a pair of braces, separating the addresses by commas, as in the last command in the
following example, which shows how to create a filter reachable address.

ncl> create routing circuit csmacd-0 reachable address to-area4 -
_ncl> address prefix 49::00-04:
ncl> set routing circuit csmacd-0 reachable address to-area4 -
_ncl> mapping manual
ncl> set routing circuit csmacd-0 reachable address to-area4 -
_ncl> type filter
ncl> set routing circuit csmacd-0 reachable address to-area4 -
_ncl> data format phasev
ncl> set routing circuit csmacd-0 reachable address to-area4 -
_ncl> permitted lan address {aa-00-04-00-xx-xx, aa-00-04-00-yy-yy}

8.4.3.3. Routing Use of the End System Cache
The Routing module stores information about remote systems (including NSAP addresses) to which data
transfer is in progress. This information is known as the end system cache, and the data stored in this
cache allows the Routing layer to quickly choose the correct data link address to which packets should
be forwarded, as well as which format (Phase IV or OSI) should be used. The cache entries are created
automatically, based upon the receipt of data and/or routing redirect packets, and indicate if the remote
system is on-LAN (direct), or reachable by way of a router (indirect or reverse).

When an end system communicates to another node for the first time, the end system cache has no
routing information for that node. The end system chooses at random an adjacent router and transmits
the data to it, allowing the adjacent router to find a path to the destination node. The end system creates
cache entries based on information about the routing path received from incoming data sent by routers
and from advertisements sent directly from other end systems.

Cache entries are each assigned a precedence which determines the path chosen when two or more
cache entries refer to the same destination. The Routing module assigns precedence as shown in Table
8–6, where 1 is the highest precedence. Direct reachability indicates the path is direct from source to

115

Chapter 8. Managing DECnet Phase V Communications

destination without intermediary routers. Indirect indicates the path is through one or more intermediary
routers. Reverse reachability implies the directness of the path is indeterminate at the time (whether a
direct path exists will be resolved during subsequent communications).

A reverse path cache entry indicates that a data packet was received from an adjacent node on a specific
circuit. The adjacent node could be the original sender or the last router that forwarded the packet. Given
no other information, the most efficient path for sending response packets is usually the path the original
data message followed.

Note

A static routing path that is defined by a reachable address of type outbound has the highest precedence.
All other cache entries for the same destination are ignored.

Table 8.6. Cache Entry Precedence Values

Precedence Reachability Blocksize

1 Direct FDDI
2 Indirect FDDI
3 Reverse FDDI
4 Direct Non-FDDI
5 Indirect Non-FDDI
6 Reverse Non-FDDI

The Routing module follows these rules for making a cache entry:

● If an entry for a destination NSAP address with higher precedence already exists (on any circuit), no
cache entry is made.

● If any entries for a destination NSAP address with lower precedence already exist on any circuit,
they are deleted from the cache and a new cache entry is created.

● If an entry for a destination NSAP address with the same precedence exists on the same circuit and
with the same data link address (and any type), the remaining fields in the cache entry are updated.

When multiple paths with the same precedence exist for the same destination, the Routing module
selects the path based on round robin. This helps balance the load on the paths. On multicircuit end
systems, if no direct path to the destination node exists on a broadcast circuit, a duplicate packet is sent
periodically, as determined by the probe rate.

The es cache holding time attribute determines how long an entry is held in the end system cache. The
default is 600 seconds. The timer is refreshed each time a data packet is successfully received by the
destination node over the path defined by the entry. The entry is deleted if no communication occurs
between the source and destination nodes within the period defined by the timer. This maximizes the
effectiveness of the end system cache.

Displaying Cache Entries

Use the System Dump Analyzer (SDA) to show cache entries, as in the following example:

$ analyze/system

116

Chapter 8. Managing DECnet Phase V Communications

OpenVMS (TM) System Analyzer
SDA> net show routing cache
%SDA-I-READSYM, 3361 symbols read from SYS$COMMON:[SYSEXE]NET$SYMBOLS.STB;1
DECnet-Plus for OpenVMS Routing ES Cache Dump
--
Routing Prefix DataBase Address 816C63A8
Prefix Table Start: 825D5F0C , End: 825D610C, Size 0
Routing Cache DataBase Address 816C6390
Cache Table Start: 825D10CC , End: 825D12CC, Size 1
 Cache Entry at Address 825D256C
 NSAP:
 4900 04AA0004 007F1321
 OSI Transport - (4.895)
 Cache Circuit Entry Count : 1, Probe Count: 992
 Cache Circuit List: 8260B500
 Cache Circuit Entry:
 Type: BroadCast
 Format: PhaseV
 Reachability: Direct
 Blocksize: Non-FDDI
 Remaining LifeTime: 005F
 Holding Time: 0258
 Data Link Address:
 137F 000400AA ª..... 00000000
 (4.895)
SDA>

8.4.3.4. Configuring Network Adjacencies to Non-DNA Routers

DECnet Phase IV and Phase V end systems and routers regularly advertise their existence on their
attached data links. DECnet-Plus nodes listen for these advertisements and automatically build
(autoconfigure) an adjacency database. For LANs, the adjacency database contains the list of routers
attached to each circuit. For WAN circuits, the adjacency database identifies the type of node attached
to the other end of the circuit, router or endnode. DECnet-Plus also automatically records OSI systems
from other vendors in its adjacency database as OSI-only nodes.

If the routers in a subnetwork do not adhere to the DECnet Phase V routing protocol (in other words,
they are non-DNA routers), DECnet Phase V end systems are unable to create physical connections to
them.

Normally, a DECnet Phase V end system learns about its routers through the ES-IS protocol. If your
LAN has only routers that do not implement the ES-IS protocol, you must identify the LAN address of
the routers that the DECnet Phase V end system uses. Included in the following sequence of commands
is a command needed for specifying the LAN address for a CSMA-CD data link. The command is called
out (1).

Note

You do not need to do this if there are routers on the LAN that support ES-IS.

ncl> create routing type endnode
ncl> enable routing
ncl> create routing circuit csmacd-0 -
_ncl> type csmacd
ncl> set routing circuit csmacd-0 manual routers -

117

Chapter 8. Managing DECnet Phase V Communications

_ncl> { 08-00-2b-00-01-03, 08-00-2b-00-03-04 }
ncl> set routing circuit csmacd-0 -
_ncl data link entity csma-cd station csmacd-0
ncl> enable routing circuit csmacd-0

This command identifies the LAN address of the routers that the DECnet Phase V end system
uses. You can specify up to five routers in this command line.

Displaying Adjacencies

Display routing adjacencies by using the following NCL command:

ncl> show routing circuit circuit_name adjacency * all

The following example shows two adjacencies for circuit csmacd-0:

$ mcr ncl show routing circuit csmacd-0 adj * all
Node 0 Routing Circuit CSMACD-0 Adjacency RTG$0001
at 2019-07-24-09:48:29.181-04:00I22.051
Identifiers
 Name = RTG$0001
 Status
 Type = Autoconfigured
 State = Up
 LAN Address = 08-00-2B-A2-08-B9
 Neighbor Node Type = Phase V Router
 Router NETs =
 {
 47:24:02-01-0A-04:08-00-2B-A2-08-B0:00 ,
 49::00-04:AA-00-04-00-F5-13:00 (DEC:.LKG.LKISL2)
 }
Node 0 Routing Circuit CSMACD-0 Adjacency RTG$0002
at 2019-07-24-09:48:29.191-04:00I22.051
Identifiers
 Name = RTG$0002
 Status
 Type = Autoconfigured
 State = Up
 LAN Address = AA-00-04-00-FF-13 (LOCAL:.A04NIS)
 Neighbor Node Type = Phase V Router
 Router NETs =
 {
 47:24:02-01-0A-04:08-00-2B-A0-17-90:00 ,
 49::00-04:AA-00-04-00-FF-13:00 (LOCAL:.A04NIS)
 }

The adjacency type attribute can be autoconfigured or manual. An autoconfigured adjacency is one
that was configured automatically by means of hello PDUs. A manual adjacency is one that was
created manually, such as by the create command.

The neighbor node type attribute indicates whether the neighboring node is a DECnet Phase V
router or a Phase IV router.

Networking with Routers That Do Not Support Phase IV Backward Compatibility

Connectivity from a DECnet Phase V end system to a Phase IV node through a router that does not
support Phase IV backward compatibility is not possible. A non-DNA OSI router does not know how to

118

Chapter 8. Managing DECnet Phase V Communications

translate a DECnet Phase V address to a Phase IV address, or convert Network layer data protocol data
unit (PDU) formats. The following are possible solutions to consider:

● Replace the non-DNA routers with routers that understand both DECnet Phase V and Phase IV
backward compatibility. If the final destination is a Phase IV end node, the router converts the OSI
PDU to a Phase IV PDU that the Phase IV end node can understand and respond to.

● Obtain one DECnet Phase V router and set up static routes on the non-DNA routers to route all data
with Phase IV style NSAPs to the DECnet Phase V router. The DECnet Phase V router performs the
Phase IV backward compatibility function that the non-DNA OSI router is unable to do.

● On a LAN with both routers that support Phase IV backwards compatibility and routers that do not
support Phase IV backwards compatibility, set up the end systems in segregated mode. See Section
8.4.1.3, "Segregated Mode Routing and Integrated Mode Routing" for details.

● You can also consider the following alternative:

If the end system does not require connections to a Phase IV node, configure the end system to
perform only the OSI protocol. To operate as an OSI-only node, do not set a Phase IV address.
However, you may still need to set the Phase IV prefix. For further information on the Phase IV
prefix, see Section 8.4.1.5, "Configuring a Phase IV Network Address".

If you have configured your DECnet-Plus end systems to have a Phase IV- compatible address and
you are operating in a non-DNA environment, you must ensure that all level 2 non-DNA OSI routers
advertise the complete set of area addresses for the level 1 networks to guarantee connectivity between
your DECnet-Plus end systems.

8.5. Managing Transport Services
DECnet Phase V nodes support multiple transport protocols. DECnet Phase IV nodes have Network
Services Protocol (NSP) as the only transport protocol available. DECnet Phase V nodes have NSP
and OSI transport available. DECnet Phase V automatically determines a compatible transport protocol
between communicating nodes.

OSI transport on DECnet Phase V systems supports the Connection-Oriented Transport Protocol
specification (International Standard ISO 8073) and the Connectionless-Mode Transport Protocol
specification (International Standard ISO 8602). The OSI transport can use two types of network
services:

● The Connection-Oriented Network Service (CONS)

● The Connectionless-Mode Network Service (CLNS)

The Routing module supports CLNS. The X25 Access module supports CONS.

The OSI transport implements the RFC 1006 and RFC 1859 specifications, using TCP network services.

DECnet-Plus automatically starts with both OSI transport and NSP. If, for any reason, you want to
disable either transport protocol, use disable nsp or disable osi transport.

If you do not want session control to use a particular protocol, use one of the following commands:

 ncl> delete session control transport service osi
ncl> delete session control transport service nsp

119

Chapter 8. Managing DECnet Phase V Communications

This section explains how to configure and manage:

● NSP

● OSI transport protocol

● DECnet over TCP/IP

● OSI over TCP/IP

8.5.1. Configuring NSP
This section explains how to configure the Network Services Protocol (NSP). The following example
shows the commands to create the nsp entity on your system. VSI recommends that you accept the
default settings (used in the example) for the various attributes and change these only if you need to.
Refer to the VSI DECnet-Plus for OpenVMS Network Control Language Reference Guide for more
information about these attributes. Figure 8.5, "nsp Entity" shows the nsp entity and its subentities.

Figure 8.5. nsp Entity

 ncl> create nsp
 ncl> set nsp delay factor 2, delay weight 3, -
 _ncl> maximum remote nsaps 200, maximum transport connections 200, -
 _ncl> maximum window 20, nsap selector 32, -
 _ncl> retransmit threshold 5 ncl> enable nsp

The effect of delay factor is to increase the retransmission time by increasing the average round-trip
delay time, thus allowing for additional network delay.

The value of the weighting factor is given by the delay weight attribute. Basically, delay weight
determines how quickly the retransmission timer responds to variations in actual round-trip delay
times. A low value of delay weight means that the retransmission timer responds quickly to each
sample of round-trip delay time; a delay weight of 0 means that an estimate will be nearly the same
as the last actual sample of round-trip delay. A high value for delay weight will reduce the impact
of recent variations in network delay; the higher the value, the closer each estimate of round-trip
delay will be to the average of all estimates.

The default values of delay factor and delay weight should be suitable for most networks. However,
consider increasing these values if wide variations in round-trip delay times exist on your network.

120

Chapter 8. Managing DECnet Phase V Communications

You can save memory resources by reducing the value of maximum remote nsaps. However, you
will not have access to the information provided by this entity’s counters and status attributes
(except through information in event logs). The maximum remote nsaps value must be greater than
the value of maximum transport connection.

The NSP transport receiver’s window is controlled by a combination of the maximum transport
connections, maximum receive buffers, and the maximum window attributes. The receiver initial
quota is determined by dividing the value of maximum receive buffers by the value of maximum
transport connections. During the life of the connection, the receiver quota fluctuates, using the
value of maximum receive buffers divided by the value of currently active connections. The credit
window sent to the remote transmitter may be this quota value, depending on the value of the
maximum window attribute. If the value of maximum window is less than the determined receiver
quota, the value of the maximum window is used instead for the credit granted to the remote
transmitter.

The transmitter on an NSP transport connection uses the credit sent by the remote receiver as its
transmit window, unless the value of maximum window is lower than this value. In that case, the
value of maximum window is used for the transmitter window.

By controlling the transmitter and receiver windows in this way, a dynamic balance of system
resource consumption and network performance can be achieved and maintained.

For some NSP attributes, such as maximum remote nsaps or maximum transport connections, you can
raise values at any time, but you cannot lower the value without first disabling NSP.

The following is an example of how to set up NSP:

ncl> create nsp
ncl> set nsp maximum window 8
ncl> set nsp maximum transport connections 200 ncl> enable nsp
ncl> create session control transport service nsp protocol %x04

8.5.2. Configuring and Managing OSI Transport
This section explains how to:

● Configure general osi transport attributes

● Define osi transport entity templates

● Configure OSI transport to use the Connection-Oriented Network Service (CONS)

● Configure OSI transport to use the Connectionless-Mode Network Service (CLNS)

● Configure OSI transport to use RFC 1006 or RFC 1859

● Test OSI transport

● Avoid OSI transport connection failures involving systems that do not conform to ISO 8073

● Avoid congestion in multiprotocol networks

● Configure OSI applications that don’t use the OSI Applications Kernel (OSAK)

Figure 8.6, "osi transport Entity" shows the osi transport entity and its subentities.

121

Chapter 8. Managing DECnet Phase V Communications

Figure 8.6. osi transport Entity

8.5.2.1. Commands for Configuring General OSI Transport
Attributes

The following example shows the NCL commands you can use to create the osi transport entity on
your system, setting attributes applicable to all types of network services. Section 8.5.2.3, "Configuring
OSI Transport to Use CONS" gives examples of commands required to configure CONS support. VSI
recommends that you accept the default settings used in the examples for the attributes. Change them
only if necessary. For more information on these attributes, refer to the VSI DECnet-Plus for OpenVMS
Network Control Language Reference Guide.

ncl> create osi transport
ncl> set osi transport delay factor 4, delay weight 5,-
_ncl> maximum remote nsaps 64, -
_ncl> maximum transport connections 33, maximum window 20
ncl> enable osi transport

The effect of delay factor is to increase the retransmission time by increasing the average round-trip
delay time, thus allowing for additional network delay.

The value of the weighting factor is given by the delay weight attribute. Basically, delay weight
determines how quickly the retransmission timer responds to variations in actual round-trip delay
times. A low value of delay weight means that the retransmission timer responds very quickly to
each sample of round-trip delay time; a delay weight of 0 means that an estimate will be nearly
the same as the last actual sample of round-trip delay. A high value for delay weight will reduce
the impact of recent variations in network delay; the higher the value, the closer each estimate of
round-trip delay will be to the average of all estimates.

The default values of delay factor and delay weight should be suitable for most networks. However,
consider increasing their value if wide variations in round-trip delay times exist on your network.

For a complete discussion of delay factor and delay weight and how to calculate round-trip delay,
refer to Appendix B, "delay factor and delay weight for NSP and OSI Transport".

You can save memory resources by reducing the value of maximum remote nsaps. However, you
will not have access to the information provided by this entity’s counters and status attributes
(except through information in event logs). The maximum remote nsaps cannot be lower than the
maximum transport connections. In addition, the osi transport entity does not support a value of
zero (0) for the maximum remote nsaps attribute.

122

Chapter 8. Managing DECnet Phase V Communications

The OSI transport receiver and transmitter windows are controlled by a combination of the
maximum transport connections, maximum receive buffers, and the maximum window attributes.
The OSI transport implements several algorithms that help achieve and maintain a dynamic balance
of system resource consumption and network performance. You can control this balance by altering
the defaults for these attributes.

The OSI transport determines the receiver initial quota by dividing the value of maximum receive
buffers by the value of maximum transport connections. During the life of the connection, the
receiver quota fluctuates, using the value of maximum receive buffers divided by the value of
currently active connections. The credit window sent to the remote transmitter may be this quota
value, depending on the value of the maximum window attribute. If the value of maximum window
is less than the determined receiver quota, the value of the maximum window is used instead for
the credit granted to the remote transmitter.

The transmitter on an OSI transport connection uses the credit sent by the remote receiver as its
transmit window, unless the value of maximum window is lower than this value. In that case, the
value of maximum window is used for the transmitter window.

By controlling the transmitter’s and receiver’s window as above a dynamic balance of system
resource consumption and network performance may be achieved and maintained.

You must disable the osi transport entity before modifying attributes that affect operation.

8.5.2.2. Defining OSI Transport Templates
When DECnet-Plus is configured, templates are set up for the OSI Transport module. Each template
is an NCL database entry that manages network access. Each template includes a group of attributes
that supply default values for certain parameters that influence the operation of a port on a transport
connection.

The templates store information and also may reference information located elsewhere.

Each OSI transport template corresponds to a specific type of network service to which OSI transport
can direct outbound messages and from which it can receive inbound messages.

OSI transport supports three network services:

● Connectionless-Mode Network Service (CLNS)

● Connection-Oriented Network Service (CONS)

● Null internet (inactive subset of CLNP, the Connectionless Network Protocol) OSI transport supports
RFC 1006 as a service and template.

Table 8.7, "Templates Set Up for OSI Transport on OpenVMS Systems" describes the templates that are
set up for OSI transport on your system. Note that the null internet does not require a template.

Table 8.7. Templates Set Up for OSI Transport on OpenVMS Systems

Name Network Service Classes

Default CLNS 4
OSIT$LOOP_CONS CONS 0, 2, 4
OSIT$LOOP_CLNS CLNS 4
OSIT$RFC1006 RFC1006 0
OSIT$RFC1006PLUS RFC1859 2

123

Chapter 8. Managing DECnet Phase V Communications

Do not modify listed attributes of the default template. The other templates are defined in the NCL
initialization script SYS$MANAGER:NET$OSI_TRANSPORT_STARTUP.NCL.

8.5.2.3. Configuring OSI Transport to Use CONS
The following sections describe how to configure the Connection-Oriented Network Service (CONS).
CONS is a network service that operates according to a connection-oriented model. Before data can be
exchanged, a connection must first be established. X.25 provides this type of service.

Note

This subsection and other related subsections within Section 8.5.2, "Configuring and Managing OSI
Transport" discuss configuring OSI applications using the osi application entity. For information about
using OSAK applications over CONS and for additional information about configuring the OSI transport
to use X.25 CONS, see Section 8.8.1, "OSI Transport Over X.25 CONS".

8.5.2.3.1. Establishing Outbound Connections Using CONS

To establish an outbound transport connection that uses CONS as its network service, an OSI application
makes a connection request in which it specifies:

● The OSI transport address of the destination host.

● The OSI transport service access point identifier (TSAP-ID) of the remote application. A TSAP-ID
identifies a TSAP. A TSAP is a unique identifier for a single transport user.

● Optionally, other transport connection parameters.

The OSI transport address consists of:

● The name of the OSI transport template to be used in setting up the transport connection. The
specified OSI transport template must have its network service characteristic set to cons.

● A network address that uniquely identifies the destination host. The network address for a CONS
connection is a DTE address.

OSI transport either creates a new network connection (using X.25), or uses an existing outbound
network connection (provided the transport connection is class 2 or class 4). If a new connection is to
be created, X.25 uses the DTE address from the OSI transport address and the X25 Access template
specified in the OSI transport template to set up a network connection.

8.5.2.3.2. Establishing Inbound Connections Using CONS

To establish an inbound transport connection:

1. OSI transport must be listening to one or more X25 Access filters.

X.25 passes calls from these filters up to OSI transport.

2. OSI transport must have an OSI transport template for CONS connections with its inbound
characteristic set to true. This OSI transport template must also specify an X25 Access template with
the same name (including matching case) as the X25 Access filter on which a call arrives.

3. If a suitable OSI transport template for CONS connections is found, it is used to accept the call, using
the X25 Access template specified in the OSI transport template.

124

Chapter 8. Managing DECnet Phase V Communications

4. The incoming transport connection can then be received. If an application is found to receive the
inbound request, the application can accept or reject the request.

5. If the application accepts the inbound request, the OSI transport template for CONS connections is
used for the accept.

For incoming connections to applications that are invoked by passive TSAP association, you must also
configure one or more OSI transport application entities to represent the passive association between a
TSAP-ID and an application. Refer to Section 8.5.2.9, "Manually Configuring OSI Transport Network
Applications" for information about managing OSI transport application entities.

8.5.2.3.3. Steps for Configuring the CONS Network Service

The following steps show how to use NCL commands to configure OSI transport to support CONS.
You can configure OSI transport to use X.25 CONS by using the NET$CONFIGURE ADVANCED,
X25$CONFIGURE, as well as manually entering a few NCL commands, see the VSI DECnet-Plus for
OpenVMS Installation and Configuration.

The attributes added or set up for OSI transport in the following examples are relevant to CONS. For the
variables, substitute values appropriate to your configuration.

1. The following example shows how to create the OSI Transport module, set its attributes, and enable
it:

ncl> create osi transport
ncl> add osi transport cons filters {filter-name}
ncl> set osi transport disconnect holdback 0, -
_ncl> maximum multiplexing 65535, maximum network connections 65535
ncl> add osi transport cons nsap addresses { cons-address-set }
ncl> enable osi transport

Specifies the names of one or more X.25 filters used to listen for incoming transport
connection requests. Each element in the set of the cons filters attribute of the osi
transport entity must have a corresponding X25 Access filter of the same name. By
default, the cons filters attribute of the osi transport entity is set to osi
transport.

Set a high value for disconnect holdback if you want to keep idle network connections.
This will save the cost of re-establishing network connections. You should be aware, however,
that this is unnecessarily costly if the network connection remains idle.

Set disconnect holdback to 0 if you want to lose idle network connections as soon as
possible.

You can only use disconnect holdback for transport protocol classes 2 and 4.

Sets the value of maximum multiplexing. Increasing the value saves on the cost of
network connections but reduces the throughput for each transport connection that uses a
multiplexed network connection.

You can only use maximum multiplexing for transport protocol classes 2 and 4.

If you set maximum network connections too low, local transport users might be
unable to make transport connection requests, particularly if all the active network connections
are inbound. For example, if the limit is 7 and there are seven active network connections, all
inbound, then local transport users will be unable to make transport connections unless you

125

Chapter 8. Managing DECnet Phase V Communications

either increase the value of maximum network connections or one of the network
connections is released by a remote host.

Add the CONS NSAP addresses for the local node. For additional information about the values
to specify for this attribute, see Section 8.8.1, "OSI Transport Over X.25 CONS" and the VSI
DECnet-Plus for OpenVMS Installation and Configuration.

2. The following example shows how to create the OSI transport templates:

ncl> create osi transport template template-name
ncl> set osi transport template template-name -
_ncl> acknowledgment delay time 1, -
_ncl> checksums false, classes {0,2,4}, -
_ncl> cons template osi transport, cr timeout 30, er timeout 30, -
_ncl> inbound true, initial retransmit time 15, loopback false, -
_ncl> keepalive time 60, maximum nsdu size 2048, -
_ncl> network service cons, retransmit threshold 8
ncl> set osi transport template template-name -
_ncl> local nsap local-nsap
ncl> enable osi transport template template-name

OSI transport templates are used by OSI transport to supply connection parameters not
provided by the requesting OSI transport application.

An OSI transport template name must contain only alphanumeric characters, underscores (_),
hyphens (-), or dollar ($) signs. OSI transport template names should not be more than 16
characters long.

You can configure two types of OSI transport templates for CONS connections:

● For outbound connections only

You can configure as many outbound OSI transport templates as you want.

● For both outbound and inbound connections

Configure a single outbound-inbound OSI transport template for each X25 Access filter
used by inbound transport connections.

Including checksums reduces data throughput but increases reliability of the data transmission.
Use checksums only if you have reason to believe that data will be corrupted by the network.

The default value for cr timeout is adequate for most networks. However, consider increasing
the value if you find that a high proportion of transport connection requests are being timed
out.

The cons template attribute of the osi transport template subentity must contain a name that
is an X25 Access filter and is contained in the set of cons filters of the osi transport entity.
The default value of the cons template attribute of an osi transport template subentity is osi
transport.

When true, inbound specifies that this OSI transport template for CONS connections can be
used for inbound as well as outbound connections.

The default initial retransmit time value should be suitable for most networks. It is set to a
relatively high value to reflect the fact that a transport connection request Transport layer

126

Chapter 8. Managing DECnet Phase V Communications

protocol data unit (TPDU) usually has a longer round-trip delay than a data TPDU. Consider
increasing the value if transport connection requests frequently time out.

You can set up different OSI transport templates to provide different values of this attribute for
networks with significantly different round-trip delay. For example, round-trip delay on an X.25
PSDN is usually much greater than on an 802.3 LAN.

network service cons indicates that transport connections set up using a specified template
will use CONS. An OSI transport template for CONS connections configured with the NET
$CONFIGURE procedure will have this attribute set correctly. However, if you create a CONS
OSI Transport template directly, you must set this attribute, since the default is clns. Note that
the network service attribute does not support a value of any. If this attribute is set to any, the
OSI transport is established as CLNS. The default value for retransmit threshold should be
suitable for most networks. However, consider increasing the value for networks with a high
probability of losing data.

Set the default local CONS NSAP address for this template. For additional information about
the value to specify for this attribute, see Section 8.8.1, "OSI Transport Over X.25 CONS" and
the VSI DECnet-Plus for OpenVMS Installation and Configuration.

Note

If you have not installed and configured X.25 for OpenVMS software, attempting to use the OSI
transport over X.25 CONS will fail.

You can configure a reachable address to convert OSI NSAPs to DTE addresses, or you can force
OSI applications to use DTE addresses instead of NSAPs.

8.5.2.4. Configuring OSI Transport to Use the Connectionless-
Mode Network Service

By default, DECnet-Plus automatically configures OSI transport to use the Connectionless-Mode
Network Service (CLNS). CLNS is a network service that operates according to a datagram model. Each
message is routed and delivered to its destination independently of any other. When using CLNS, only
transport protocol class TP4 is available in the default configuration.

8.5.2.4.1. Establishing Outbound Connections Using CLNS

To establish an outbound transport connection that uses CLNS as its network service, an application
makes a connection request specifying the following:

● The OSI transport address of the destination host.

● The TSAP-ID of the responding application. A TSAP-ID identifies a transport service access point
(TSAP). A TSAP is a unique identifier for a single transport user.

● Optionally, other transport connection parameters.

The OSI transport address consists of:

● The name of the OSI transport template for CLNS connections to be used in setting up the transport
connection. The specified OSI transport template for CLNS connections must have its network
service attribute set to clns.

127

Chapter 8. Managing DECnet Phase V Communications

● An address that uniquely identifies the destination host. The address can be:

An NSAP (for a transport connection using CLNS/ES-IS)
A LAN address (for a transport connection using CLNS with null internet)

The Routing module selects a routing circuit to be used for the underlying network connection; the basis
for this selection is the area address part of the NSAP address.

8.5.2.4.2. Establishing Inbound Connections Using CLNS

To establish an inbound transport connection that uses CLNS:

1. The Routing module passes an incoming transport connection to OSI transport.

OSI transport must have an OSI transport template for CLNS connections with its inbound attribute
set to true. If the transport connection uses null internet, the OSI transport template for CLNS
connections must also have its clns inactive area address attribute set to the same area address as the
inactive area address attribute of the routing circuit on which the transport connection arrived.

2. If a suitable OSI transport template for CLNS connections is found, an application is found to
process the connection. The application can either accept or reject the connection.

3. If the application accepts the connection, the OSI transport template for CLNS connections is used to
accept the connection.

8.5.2.4.3. Null Internet Information

A CLNS OSI transport template is configured to use either the CLNS/ES-IS or null internet routing
protocol. To configure null internet OSI transport templates, you must configure one outbound-inbound
OSI transport template for each inactive area address used.

A CLNS OSI transport template can specify use of the null internet routing protocol (inactive subset
of CLNS). The null internet protocol only operates over LAN routing circuits. A CLNS OSI transport
template for use with the null internet routing protocol can only use one routing circuit; routing circuit
selection is based on its inactive area address.

The Routing module selects a routing circuit to be used for the underlying network connection; the basis
for this selection is the area address part of the NSAP address.

8.5.2.4.4. Steps for Configuring the Connectionless-Mode Network Service

The following steps show the commands to configure CLNS. The attributes added or set up for OSI
transport in this example are relevant to CLNS. In addition, consider setting some of the more general
attributes shown in Section 8.5.2.1, "Commands for Configuring General OSI Transport Attributes".

For the variables, substitute values appropriate to your configuration. VSI recommends that you accept
the default settings (used in the example) for the various attributes. Change them only if you need
to. Refer to the VSI DECnet-Plus for OpenVMS Network Control Language Reference Guide for more
information about these attributes.

1. The following example creates the OSI Transport module and enables it:

ncl> create osi transport
ncl> set osi transport nsap selector 33

128

Chapter 8. Managing DECnet Phase V Communications

ncl> enable osi transport

The network service access points (NSAP) selector (nsap selector) determines which transport
service is used by a network connection. The default NSAP selector for DECnet’s OSI transport
implementations is 33 (decimal). Other vendors might use different NSAP selectors and might
require that the NSAP selectors match.

You can only change the NSAP selector for OSI transport when OSI transport is disabled. Valid
NSAP selectors are in the range from 2 to 255, with the exception of 32. In order to maintain
interoperability between DNA Phase IV and DECnet-Plus, you cannot use NSP’s NSAP selector, 32.

2. The following example shows how to create the OSI transport template and set its attributes:

ncl> create osi transport template template-name
ncl> set osi transport template template-name -
_ncl> acknowledgment delay time 1, -
_ncl> checksums false, classes {4}, clns inactive area address { } -
_ncl> inbound true, initial retransmit time 15, keepalive time 60, -
_ncl> loopback false, network service clns, retransmit threshold 8, -
_ncl> security empty, use clns error reports false
ncl> enable osi transport template

OSI transport templates are used by OSI transport to supply connection parameters not
provided by the requesting OSI transport application.

An OSI transport template name must contain only alphanumeric characters, underscores (_),
hyphens (-), or dollar ($) signs. OSI transport template names should not be more than 16
characters long.

You can configure two types of OSI transport templates for CLNS connections:

● For outbound transport connections only

You can configure as many outbound OSI transport templates for CLNS connections as
you want.

● For both outbound and inbound transport connections

A CLNS OSI transport template is configured to use either the CLNS/ES-IS or null internet
routing protocol.

If you configure null internet OSI transport templates, you must configure one outbound-
inbound OSI transport template for each inactive area address used.

Including checksums reduces data throughput, so you should use checksums only if you have
reason to believe that data will be corrupted by the network.

Optionally, you can specify a value for the clns inactive area address attribute.

The default initial retransmit time value should be suitable for most networks. It is set to a
relatively high value because a transport connection request TPDU usually has a longer round-
trip delay than a data TPDU. Consider increasing the value if transport connection requests
frequently time out.

The default value for retransmit threshold should be suitable for most networks. However,
consider increasing the value for networks with a high probability of losing data. 129

Chapter 8. Managing DECnet Phase V Communications

OSI transport can recognize the unavailability of a remote node during connection
establishment using CLNS (Routing) error reports.

This feature is disabled for all templates (used by DNA Session Control),
but you can enable it by editing the OSI transport NCL initialization script,
SYS$MANAGER:NET$OSI_TRANSPORT_STARTUP.NCL to set the value to true.

3. Set up routing and routing circuits for end systems using the Connectionless- Mode network service
by following the steps outlined in Section 8.4.2, "Configuring Routing Circuit Information".

4. If you are setting up X.25 routing circuits, see additional information in Section 8.8.2, "Configuring
Routing Over X.25 Circuits".

8.5.2.4.5. Providing Communications Between OSI Transport Systems and VOTS
Systems Using CLNS

For communication between DECnet-Plus and VAX OSI Transport Service (VOTS) using the full
Internet CLNS protocol, DECnet- Plus systems must use an intermediate system (router). DECnet-
Plus systems have no way of finding another end system that does not support ES-IS without using an
intermediate system.

The intermediate system must be configured as a link state router (see Section 8.4.1.2, "Host-Based
Routing").

If the VOTS system and the intermediate system reside on the same LAN subnetwork and the VOTS
system is configured with a DNA-compatible NSAP address, the intermediate system need only be
configured as a level 1 router.

If the VOTS system does not have a DNA-compatible NSAP address, or if the VOTS system and the
intermediate system do not reside on the same LAN subnetwork, the intermediate system must be
configured as a level 2 router.

When using a level 1 router, you must create a manual adjacency on the router for the VOTS system.
When using a level 2 router, you must create a reachable address on the router for the VOTS system. See
Section 8.4.1.2, "Host-Based Routing" for more information about how to configure manual adjacencies
and reachable addresses.

OSI transport systems and VOTS systems on the same LAN can communicate without an intermediate
system, using the null internet CLNS protocol.

8.5.2.5. Configuring OSI Transport to Use RFC 1006 or RFC 1859
You can configure OSI transport to use RFC 1006, allowing use of OSI applications over TCP/IP, and to
use RFC 1859, allowing use of DECnet applications over TCP/IP. For details, see Section 8.5.3, "DECnet
and OSI Applications over TCP/IP".

8.5.2.6. Testing OSI Transport
After configuring OSI transport on an OpenVMS system, you can use the [SYS$TEST]OSIT$IVP OSI
transport installation verification procedure to verify correct operation.

This procedure (the test initiator) communicates with the passive OSI transport application OSIT$IVP
which invokes OSIT$IVPRESP.COM (the test responder) on the target system. The target system may

130

Chapter 8. Managing DECnet Phase V Communications

be either your system or some other system running DECnet-Plus for OpenVMS. (Start the initiator by
executing the SYS$TEST:OSIT$IVPINIT.COM file.)

You must supply the VOTS-address of the target system. A VOTS-address has the form
template%network address, where:

● template is the name of an osi transport template entity.

● network address depends on the network service specified by the template, as described in Table 8.8,
"Network Addresses for VOTS Addresses".

Table 8.8. Network Addresses for VOTS Addresses

Network Service Specified by
Template

Format of Network Address Example of Network
Address

CONS X.25 DTE address 234273412345
CLNS (Null internet) LAN address AA00040001FC
CLNS (Internet/ES-IS) NSAP 49004008002B56870121
RFC1006 IP address 16.20.136.9 or

acme.wolf.phil.com

You can list the OSI transport NSAPs for a system using the following command:

ncl> show osi transport local nsap *

Note

Do not supply a CONS NSAP address to the OSIT$IVP program. If you do, the verification procedure
will fail.

As an alternative to specifying a VOTS-address explicitly, you can specify a logical name defined in the
table OSIT$NAMES.

8.5.2.7. Possible Connection Failure to Non-Conformant Systems
Using OSI Transport

By default, the DECnet-Plus OSI transport sends the preferred maximum tpdu size, request
acknowledgment, and implementation id parameters in its CR TPDU (connect request transport protocol
data unit).

According to ISO 8073, OSI transport providers should ignore unknown parameters while processing
a CR TPDU. However, some vendor implementations do not conform to ISO 8073. Therefore, their
OSI transport does not ignore unknown parameters in a CR TPDU. This nonconformance results in
a connection failure when unknown parameters are detected (such as the three parameters sent by
the DECnet-Plus OSI transport). The following example provides a way to prevent issuance of these
unknown parameters in a CR TPDU:

NCL> set osi transport template template-id -
_NCL> send preferred maximum tpdu size false
NCL> set osi transport template template-id -
_NCL> send request acknowledgment false

131

Chapter 8. Managing DECnet Phase V Communications

NCL> set osi transport template template-id -
_NCL> send implementation id false

8.5.2.8. Avoiding Congestion in Multiprotocol Networks

One feature of OSI transport is the ability to use the Congestion Experienced field in the Connectionless-
Mode Network Service (CLNS) routing header, and to implement a congestion avoidance scheme in
heavily congested networks. The CLNS Congestion Experienced field is used by routers that support this
feature (such as DECNIS) to give an early indication of congestion. When OSI transport receives data
that passed through a network path where the Congestion Experienced bit is set, OSI transport reduces
the transmit rate of the sending end system to help alleviate network congestion.

This feature works well in networks where all protocols support congestion avoidance mechanisms.
However, in heavily congested multiprotocol networks that include network protocols that do not support
the congestion avoidance mechanism, the performance of DECnet can be impaired. VSI recognizes that
most of its customers have multiprotocol networks and that not all network protocols have congestion
avoidance mechanisms. Therefore, VSI has set the default for this attribute to be disabled.

If you operate in an environment where you can take advantage of congestion avoidance mechanisms,
enable this feature.

To change transport congestion avoidance values, invoke NET$CONFIGURE ADVANCED and use
Option 4 (Configure Transports). Answer no to the following question:

Is this System operating in a Multi-Protocol Network? [YES] :.

8.5.2.9. Manually Configuring OSI Transport Network Applications

This section describes how to configure applications to receive connection requests from remote hosts.
One of the attributes of a transport connection request is a transport service access point identifier
(TSAP-ID), which uniquely identifies the transport application on the remote host to which the
connection request is to be passed.

An application that expects to receive a connection request must therefore associate itself with a
particular TSAP-ID, so the transport service knows which application a particular connection request is
intended for.

There are two ways in which an application can associate itself with a TSAP-ID: active association or
passive association.

Active association is entirely under the control of the transport user, and requires no support from you.
Passive association, on the other hand, requires that you configure the osi transport application entities
that describe the association between TSAP-IDs and applications.

In active association, the transport application issues a $qio(io$_acpcontrol) system service call in which
it requests an association with a specified TSAP- ID. When a connection request arrives with that TSAP-
ID, a mailbox message containing details of the connection request is sent to the associated application,
which can then process the request, either accepting or rejecting it.

OSI transport dynamically creates the osi transport port entity so that the active association is available
by means of network management.

In passive association, you create an osi transport application entity, whose characteristics specify:

132

Chapter 8. Managing DECnet Phase V Communications

● A TSAP-ID.

● The name of an image or command file.

● The user name of an account under which the image or command file is to run.

When a connection request arrives with a TSAP-ID that is associated with an osi transport application
entity, the transport service creates a new process in which it runs loginout.exe. loginout.exe validates
any access control information and invokes DCL to execute the image or command file associated with
that TSAP-ID. Details of the connection request are passed in the logical name sys$net.

The following command example shows the commands to configure an osi transport application entity.
For the variables, substitute values appropriate to your configuration. VSI, however, recommends that
you accept the default settings (used in the example) for the various attributes and change these only if
you need to. Refer to the VSI DECnet-Plus for OpenVMS Network Control Language Reference Guide for
more information about these attributes.

ncl> create osi transport ncl> enable osi transport
ncl> create osi transport application application-name
ncl> set osi transport application application-name -
_ncl> called tsels set-of-hex-string,-
_ncl> file name file-spec, user name user-account
ncl> enable osi transport application

called tsels specifies the set of TSAP-IDs with which this entity is to be associated.

file name specifies the name of the command or image file to be executed when a connection
request is received with a TSAP-ID that matches one of the values of the called tsels characteristic.

user name specifies the user account under which the application is to run.

8.5.3. DECnet and OSI Applications over TCP/IP
DECnet-Plus allows OSI and DECnet applications to run over an IP network backbone. The OSI over
TCP/IP (using RFC 1006) software enables OSI applications such as FTAM, Virtual Terminal, and
X.400 to run over TCP/IP. The DECnet over TCP/IP (using RFC 1859) feature allows traditional
DECnet applications to run over TCP/IP. Examples of traditional DECnet applications are mail, cterm,
and fal.

With RFC 1006 and RFC 1859, OSI and DECnet applications can accept IP names and addresses.
These names and addresses are translated by BIND servers. The DECnet and OSI applications include
those supplied by VSI, third-party applications, and user-written applications.

RFC 1006 is a standard of the Internet community. It defines how to implement ISO 8073 Class 0 on
top of TCP. Hosts that implement RFC 1006 are expected to listen on TCP port 102.

DECnet over TCP/IP uses RFC 1859, which defines how to implement ISO 8073, Transport Class 2
Non-Use of Explicit Flow Control on Top of TCP (RFC 1006 Extension). Hosts that implement RFC
1859 are required to listen on well known TCP port 399.

Use DECnet over TCP/IP if you need to:

● Link DECnet nodes using TCP/IP

● Join two existing DECnet networks without renumbering

133

Chapter 8. Managing DECnet Phase V Communications

● Run IP-only traffic in part of the backbone and continue using DECnet applications and user
interfaces without extra costs and retraining.

When running DECnet over TCP/IP, you can use an IP host name such as in the following command
examples. For more information on making connections using DECnet over TCP/IP, see Section 8.5.3.1,
"Examples Establishing Network Connections Using DECnet over TCP/IP".

$ set host remotehst6.acme.com

Both the source and target nodes must support DECnet over TCP/IP for this connection to work. You
can configure your system to allow use of synonyms (Phase IV style names) instead of the IP host full
name. The explicit use of IP addresses on a command line is not supported.

8.5.3.1. Examples Establishing Network Connections Using
DECnet over TCP/IP

The following examples show how you can use DECnet over TCP/IP to connect to any of the remote
hosts on the network shown in Figure 8.7, "Sample Multiprotocol Network", a multiprotocol network that
includes OpenVMS and Tru64 UNIX systems and a PC system.

1. Node green is a DECnet Phase IV OpenVMS node. Node blue is a DECnet- Plus Tru64 UNIX node.
To connect to node green from node blue, issue this command on node blue:

dlogin green

2. Node orange is a DECnet-Plus for OpenVMS node. To connect to node green from node orange,
issue this command on node orange:

$ set host green

3. Both node blue and node orange are DECnet-Plus nodes. To connect to node orange from node blue
(Tru64 UNIX), issue this command on node blue:

dlogin orange.toronto.acme.com

4. To connect to node blue from node orange (OpenVMS), issue this command on node orange:

$ set host orange.toronto.acme.com

5. Node red is a TCP/IP node only. To connect to node red from node orange (OpenVMS), issue this
command on node orange:

$ set host/telnet red.toronto.acme.com

As an alternative, you can use this command:

$ set host/rlogin red.toronto.acme.com

6. To connect to node red from node blue (Tru64 UNIX), issue this command on node blue:

telnet red.toronto.acme.com

As an alternative, you can use this command:

rlogin red.toronto.acme.com

134

Chapter 8. Managing DECnet Phase V Communications

Figure 8.7. Sample Multiprotocol Network

8.5.3.2. Configuring DECnet over TCP/IP (RFC 1859) and OSI over
TCP/IP (RFC 1006)
If you plan to use RFC 1006 and/or RFC 1859 software, TCP/IP software is a prerequisite. The TCP/IP
software used on your system must support the PATHWORKS Internet Protocol (PWIP) interface. For
more information about required TCP/IP software, see the DECnet-Plus for OpenVMS Release Notes.

When DECnet over TCP/IP has successfully completed a listen on the defined rfc1006 listener ports, you
will see the following OPCOM message in the OPERATOR.LOG file for each TCP Listen Port:

%%%%%%%%%%% OPCOM 30-MAR-2019 11:25:46.74 %%%%%%%%%%%
Message from user TPCONS on YPP4
-- TPCONS: Listen to PWIP Done

To configure your system so you can use DECnet over TCP/IP or OSI applications over TCP/IP, use
Option 4 of the advanced configuration procedure (NET$CONFIGURE.COM ADVANCED), as
explained in the VSI DECnet-Plus for OpenVMS Installation and Configuration. You can then create a
new OSI transport NCL script (or replace an old script). You must also include Domain in your session
control naming search path as described in Section 5.1.1, "Determining the Order for Name Service
Searches".

Use Option 4 as well for creating templates in addition to the default RFC 1006 template.

You must rename your node using a Domain secondary node name. Use Option 2 of the advanced
configuration procedure to do this.

For the changes to take effect, either disable the osi transport entity and invoke the new OSI transport
NCL script, or reboot the system.

135

Chapter 8. Managing DECnet Phase V Communications

ncl> disable osi transport
ncl> do sys$manager:net$osi_transport_startup.ncl

When configuring RFC 1006, RFC 1859, or both, each element in the set of rfc1006 listener ports
attribute corresponds to a TCP listener port. By default, NET$CONFIGURE sets the osi transport
rfc1006 listener ports attribute to {102, 399}.

The rfc1006 port number attribute of the osi transport template subentity must contain a TCP port
number that is one of the chosen rfc1006 listener ports.

The default value for the rfc1006 port number attribute is 102. If you create an osi transport template
subentity to use with DECnet over TCP/IP (using RFC 1859), then set the rfc1006 port number attribute
to 399.

8.5.3.3. Disabling DECnet Over TCP/IP
DECnet-Plus will only try to locate TCP/IP if the rfc1006 listener ports attribute set of the osi transport
entity is not empty.

To disable DECnet over TCP/IP, issue the following command:

ncl> set osi transport rfc1006 listener ports {}

8.5.3.4. DECnet over TCP/IP Tracing Support with Common Trace
Facility (CTF)
CTF can be used to trace all PDUs transmitted and received by DECnet over TCP/IP and OSI
applications. See the DECnet/OSI for VMS CTF Use for a list of events that are recognized at this trace
point.

Use the following command to invoke the CTF tracing utility:

$ TRACE START "trace-point"

where trace-point is the trace point to be started, such as "TPCONS TPKT *".

8.5.3.5. Recovering from Problems
If you have problems getting DECnet over TCP/IP to start up properly, check the following:

1. Verify that you have an OSI transport template with network service attribute defined as rfc1006.

Issue the command:

ncl> show osi transport template * with network service = rfc1006

If you do not have a template defined, then you must execute NET$CONFIGURE Option 4 and
replace your OSI transport startup script.

2. Verify that you have your TCP/IP product started and that your product supports the PWIP
interface. If you are running VSI TCP/IP Services for OpenVMS, PWIP can be configured to start
automatically. If PWIP does not start automatically, run TCPIP$CONFIG and enable the PWIP
interface.

3. Verify that the PWIP interface is properly registered. Using the management tool of the installed
TCP/IP product, verify that rfc1006 listener port defined in OSI transport is known by TCP/IP. If
you are running VSI TCP/IP Services for OpenVMS, use the following command:

136

Chapter 8. Managing DECnet Phase V Communications

$ tcpip show device
 Port Remote
Device_socket Type Local Remote Service Host
 bg3 STREAM 23 0 TELNET 0.0.0.0
 bg4 DGRAM 520 0 0.0.0.0
 bg7 STREAM 399 0 0.0.0.0
 bg9 STREAM 102 0 0.0.0.0

In this case, look for the two listener ports 399 and 102.

If IP addresses work but IP names do not, use your TCP/IP management tool to verify that your BIND
server knows about the name.

8.5.3.6. Connection Auditing

You can audit incoming connections for those connections that are made using DECnet over TCP/IP.
The audit alarm is displayed as follows:

%%%%%%%%%%% OPCOM 9-FEB-2019 12:26:11.64 %%%%%%%%%%%
Message from user AUDIT$SERVER on PETERB
Security alarm (SECURITY) and security audit (SECURITY) on PETERB, system
 id:
12
331
Auditable event: DECnet logical link created
Event time: 9-FEB-2019 12:26:11.59
PID: 000000A6
Process name: FAL_14010028
Username: SYSTEM
Process owner: [1,3]
Image name: SYS$COMMON:[SYSEXE]FAL.EXE
Remote node id: 1560286224
Remote node fullname: MYNODE.LKG.ACME.COM
Remote username: CAISSON
DECnet logical link ID: 335609896
DECnet object name: FAL

8.5.3.7. Proxy Access

DECnet over TCP/IP allows you to use fully qualified domain names in your OpenVMS proxy database.
For example:

UAF> add/proxy mynode.lkg.acme.com::caisson caisson/default

A node can have more than one full name for a node. This means that proxy records for each of the
possible node names need to be added using the Authorize utility. For example, if your system is set up
to use both DECdns and BIND (and you can see a remote node’s name as either of these), then you need
to add proxy records for both nodes. To represent the remote node stir, you would need to add these
proxy records: STIR.ENET.ACME.COM and DEC:.ZKO.STIR.

8.6. Managing Session Control
You can manage session control by adding network applications, deleting network connections, and
deleting network entities.

137

Chapter 8. Managing DECnet Phase V Communications

8.6.1. Adding a Session Control Network Application
The following example shows how to add a session control network application (which was known as a
session control object in Phase IV):

ncl> create session control application application-name
ncl> set session control application application-name -
_ncl> image name image-name -
_ncl> user name user-name -
_ncl> data abstraction {message} -
_ncl> accept mode {deferred } -
_ncl> programming interface {Phase IV} -
_ncl> address {number = nn,....}

You can identify an application with an object number. Usually, applications are identified by
network object number 0, but you can optionally assign it a nonzero object number, in the range
from 128 to 255. A nonzero object number can be specified without an application name. Object
numbers 1 through 127 are reserved for use by VSI. Specific network services are identified by
nonzero object numbers; for example, 27 represents the mail utility:

ncl> set session control application mail addresses {number=27}

Table 8.9, "NCP to NCL Command Conversions" maps NCP characteristics to NCL attributes.

Table 8.9. NCP to NCL Command Conversions

NCP Characteristic NCL Attribute

user user name
file image name
number address

8.6.2. Deleting a Connection
You can selectively delete connections on a local system while the network is running. For example:

ncl> delete session control port port-name

8.6.3. Deleting and Recreating the OSI and NSP Entities
If after deleting any transport entities used by session control, such as the osi transport and nsp entities,
you create them again, you must use NCL to notify session control that the previously disabled entities
are available again. Section 8.6.3.1, "Commands Required When Reenabling the OSI Transport Entity"
and Section 8.6.3.2, "Commands Required When Reenabling the NSP Entity" show the commands to use
to notify session control that the osi transport and nsp entities are once again available..

8.6.3.1. Commands Required When Reenabling the OSI Transport
Entity

If the osi transport entity is deleted and subsequently recreated, you must issue the following directives to
inform session control that the OSI transport service is available:

ncl> delete session control transport service osi

138

Chapter 8. Managing DECnet Phase V Communications

ncl> create session control transport service osi protocol %x05

You cannot issue the delete session control transport service osi command while osi transport port
entities exist.

8.6.3.2. Commands Required When Reenabling the NSP Entity
If the nsp entity is deleted and subsequently recreated, you must issue the following directives to inform
session control that the NSP transport service is available:

ncl> delete session control transport service nsp
ncl> create session control transport service nsp protocol %x04

You cannot issue the delete session control transport service nsp command while nsp port entities exist.

8.7. Managing OSAK
Open System Application Kernel (OSAK) is the DECnet-Plus implementation of the OSI upper layers. It
provides OSI session, presentation and application services. These services are used by OSI applications
such as FTAM and VT. You must use NCL to manage the OSAK software on your system. For further
details of the NCL commands to use, refer to the VSI DECnet-Plus for OpenVMS Network Control
Language Reference Guide.

Figure 8.8, "osak Entity" shows the osak entity and its subentities.

Figure 8.8. osak Entity

8.7.1. Managing OSAK Addresses
You can implement your OSI application using either of two types of application address: active or
passive.

An active address is associated with a process that is already started on the system. A passive address
is associated with a process that is started only when a connection request is received for that address.

Note

Passive application functionality requires the OSAK server component.

139

Chapter 8. Managing DECnet Phase V Communications

8.7.1.1. Registering Active and Passive Addresses
You cannot actively manage active addresses; NCL creates the necessary management entities when
OSAK sends or receives an appropriate programming call. You use NCL to register passive addresses.
This section describes how to register active and passive addresses.

Active

An application registers an active address by passing that address on a call to osak_open_responder or
osak_open_initiator. NCL creates the appropriate entities. You can use the NCL show command to show
attributes of these entities.

Passive

You register an application address using Network Control Language (NCL) commands to create an osak
application entity and an osak application invocation entity. Use the startup information attribute of the
osak application invocation entity to specify the values in Table 8.10, "Startup Information Values".

Table 8.10. Startup Information Values

Item Value Description

Mandatory

user name The user name of the process that will respond to
Connect requests received by this application

file pathname The name of the file to run to start up the named
application

Optional

account name The account that is to start the process
max resp integer The highest permissible number of responders, for an

application with the NEW setting for startup policy
password password The user’s password
sversion {1}, {2}, or {1,2} The session version

Further Information

For more information about the OSAK module, refer to the VSI DECnet-Plus for OpenVMS Network
Control Language Reference Guide.

8.7.2. NCL and the OSAK Databases
OSAK maintains two databases: the application database and the port database. You must use NCL
to inspect information held in the OSAK databases and to set attributes of entities in the OSAK
module. Table 8.11, "Mapping Between NCL and OSAK" shows the mapping between NCL and OSAK
management.

Table 8.11. Mapping Between NCL and OSAK

OSAK Database NCL Entity

Application database osak application and osak
application invocation

Port database osak port

140

Chapter 8. Managing DECnet Phase V Communications

8.8. Configuring X.25 Services
DECnet-Plus and X.25 software can be used separately or DECnet-Plus can use X.25 software as a
communications service provider.

DECnet-Plus for OpenVMS supports the following two approaches for configuring and using the
features of X.25 software:

● Configuring the osi transport entity to use the connection-oriented network service (CONS) interface
to X.25, enabling the use of OSI transport classes 0 and 2 (TP0 and TP2).

The Connection-Oriented Network Service (CONS) is an ISO specification for a reliable and
transparent end-to-end data transfer function. OSI transport can use CONS in addition to the
Connectionless-Mode Network Service (CLNS) implemented by DNA routing.

Note that applications using OSI transport (for example, FTAM or Virtual Terminal) need to be
configured to operate over CONS before they can use CONS functionality.

For information about configuring OSI applications over X.25 CONS, see Section 8.8.1, "OSI
Transport Over X.25 CONS".

● Configuring the routing entity, which provides Connectionless-Mode Network Service (CLNS), to
use an X.25 circuit as a data link to a remote network.

Applications using routing over X.25 circuits do not require any special configuration. X.25 serves as
another communications path from the local system to the remote system.

For information about configuring routing over X.25 circuits (frequently referred to as DECnet over
X.25), see Section 8.8.2, "Configuring Routing Over X.25 Circuits".

These approaches are completely optional, but might be desirable for use with certain applications or for
particular network configurations. They can function individually or together on the same system.

Once X.25 has been installed, you can use the DECnet-Plus configuration procedure
(NET$CONFIGURE.COM) to first configure X.25 and then configure DECnet over X.25. You can
use either the BASIC or ADVANCED configuration option. See the VSI DECnet-Plus for OpenVMS
Installation and Configuration for more information about configuring X.25 support on DECnet-Plus for
OpenVMS systems.

This section describes how to configure the X.25 management entities directly referenced by DECnet-
Plus. These entities are mainly in the X25 Access module. Full details on how to configure all the X.25
management entities are provided in the X.25 for OpenVMS documentation. For information about
configuring X.25 on OpenVMS I64 and OpenVMS Alpha systems, see the VSI X.25 for OpenVMS
Configuration. For information about configuring X.25 on OpenVMS VAX systems, see the VSI
DECnet-Plus for OpenVMS Installation and Configuration. For additional management information on all
systems, see the VSI X.25 for OpenVMS Management Guide.

Although you can configure both products together, VSI recommends that you configure and test both
DECnet-Plus and X.25 independently before attempting to configure DECnet-Plus to use X.25.

Figure 8.9, "x25 access and x25 protocol Entities" shows the x25 access and x25 protocol entities and
their subentities.

141

Chapter 8. Managing DECnet Phase V Communications

Figure 8.9. x25 access and x25 protocol Entities

8.8.1. OSI Transport Over X.25 CONS
This section describes issues concerning configuration of X.25 CONS with OSI transport.

8.8.1.1. CONS Addressing Mechanisms

Addressing mechanisms and their uses are significantly different between CONS and CLNS. This
section describes the addressing mechanisms for CONS that you need to understand for configuring OSI
applications using the X.25 CONS protocol stack.

OSI Application Address

An OSI application address is composed of an application process title (AP- Title), a presentation
selector (PSEL), a session selector (SSEL), a transport selector (TSEL), and a network service access
point (NSAP). Each of these parts corresponds to a layer of the OSI protocol stack as shown in Figure
8.10, "OSI Application Address Model". The data link and physical layers are not shown in this figure.
The application does not specify their addresses directly.

142

Chapter 8. Managing DECnet Phase V Communications

Figure 8.10. OSI Application Address Model

Some OSI application entities (such as FTAM) defined in the ISO specifications and described here
include the association control service element (ACSE). DECnet-Plus implements ACSE in its OSAK
component, independently of the rest of the OSI application entity.

An OSI application entity transfers calling and called application process (AP) titles and application
entity (AE) qualifiers in ACSE PDUs. The uses of AP- Titles and AE-Qualifiers are application specific.
For example, the FTAM and VT specifications do not define their use. The ISO specifications do not
define their use. The DECnet-Plus FTAM and VT implementations ignore the AP-Titles and AE-
Qualifiers. Other vendors’ products may check them to ensure they contain specific predefined values.
An OSI application specifies addresses to the Presentation layer in the form of presentation service
access points (PSAPs). The Presentation layer strips the PSEL for transfer in Presentation PDUs. It
passes the remaining portion, the session service access point (SSAP), down to the Session layer. The
Session layer strips the SSEL, leaving the transport service access point (TSAP) for Transport. This
process continues down to the Network layer.

An OSI application entity’s PSEL, SSEL, and TSEL are arbitrary octet strings defined during
configuration. The network service access point (NSAP) represents the address. It is not subdivided for
lower layer addressing. However, it may be derived from a lower layer address to ensure uniqueness.
Section 8.8.1.1, "CONS Addressing Mechanisms" explains the contents of NSAP addresses for X.25
CONS networks. A single node can have more than one NSAP address.

For a successful connection, an OSI application specifies to the Presentation layer the responder’s
PSEL, SSEL, and TSEL along with one of the destination NSAPs. Table 8.12, "OSI Application Address
Components" describes the contents of each part of an OSI application address.

Table 8.12. OSI Application Address Components

Component Size Required Structure Example

AP-Title Unrestricted No Object Identifier {1 3 9999 1 7}
AE-Qualifier 1 - 4 octets No Integer Number 1
PSEL 0 - 4 octets No Hexadecimal string %X’0001’
SSEL 0 - 16 octets No Hexadecimal string %X’0001’
TSEL 0 - 32 octets No Hexadecimal string %X’0001’

143

Chapter 8. Managing DECnet Phase V Communications

Component Size Required Structure Example

NSAP 2 - 20 octets Yes See Section 8.8.1.1,
"CONS Addressing
Mechanisms"

3600234212345678

X.25 CONS Network Connections

This section describes X.25 CONS connections and addressing. Figure 8.11, "X.25 CONS Network"
shows a worldwide network owned and operated by interconnected PTTs and telephone companies.
Connections between nodes resemble telephone calls. VSI’s X.25/WAN products allow OSI client
applications to "call" services anywhere in the worldwide X.25 network (represented by the cloud in
Figure 8.11, "X.25 CONS Network") without management intervention. The data terminal equipment
(DTE) boxes are the initiator and responder nodes shown in Figure 8.10, "OSI Application Address
Model". The Packet Switched Data Network (PSDN) and the PSDN interface software on the DTE’s
together comprise the OSI network layer in an X.25 CONS network.

Figure 8.11. X.25 CONS Network

To initiate a call, a DTE sends a call request packet to the X.25 network. An X.25 call request packet
contains the following fields to support addressing:

● DTE address

● Address extension facilities

● Call user data

DTE Address Fields

The definition of a "DTE address" depends on the context. A DTE address passed at the DCE/DTE
boundary can differ from a DTE address passed between two X.25 networks. In this document, the DTE
address passed between an X.25 service user and an X.25 service provider at the DCE/DTE boundary is
called an "X.25 network address."

The calling and called DTE address fields contain the source and destination X.25 network addresses.
They are usually the only address fields used by public PSDNs to set up a call. An X.25 network address
is a series of decimal digits that resembles a telephone number. A digit is encoded in a four-bit nibble
with values ranging from 0000 to 1001. Two digits fit in each octet. Each address has a corresponding
length field that specifies the length in digits. Some digits represent the country code, others represent
the network code and local network connection. As with telephone numbers, number sequences for
making local calls within a single X.25 network and long distance calls between X.25 networks vary
among various PTTs and telephone companies.

An NSAP can always be mapped to an X.25 network address. Mapping an X.25 network address back to
an NSAP is not always possible. See below for a discussion of address mapping and how to construct an
NSAP address that can be derived from an X.25 network address.

144

Chapter 8. Managing DECnet Phase V Communications

Address Extension Facilities

X.25 supports many optional functions or "facilities" during call setup and clearing. The calling and
called address extension facilities transfer upper layer addresses between X.25 users at each end of a
call. For the X.25 CONS protocol stack, these facilities transfer complete NSAP addresses between the
initiator and responder of a call.

Address extension facilities allow a system manager to assign any NSAP address to a node independently
of the X.25 network address. All DECnet-Plus platforms support address extension facilities. However,
these facilities are not universally supported by all X.25 networks nor by all other X.25 DTE
implementations. Do not rely on them to pass NSAPs across the network, unless you have no other
alternative, and you know that all parties in the connection support them.

The first byte of an address extension facility contains an integer representing the length of the NSAP
in digits. The remaining bytes of an address extension facility contains the NSAP. For example,
the NSAP 36002342123456781234 contains 20 digits. The equivalent address extension facility is
%X14360023421234561234.

Call User Data

Many X.25 DTE implementations can use the call user data field of an incoming call packet to identify
the intended X.25 application. The CCITT

X.224 Annex B standard requires that the call user data field for calls to OSI transport be set to
%x03010100. This value represents the following:

● 03 — Length of PI TPDU

● 01 — Protocol ID code

● 01 — OSI transport

● 00 — No sharing of network

NSAP to X.25 Address Translation

OSI applications use NSAPs to address other nodes. X.25 communicates using X.25 network addresses.
Addressing complications arise because various X.25 network service providers do not use a consistent
X.25 network addressing scheme. CCITT X.121 is the network addressing standard that PSDNs use to
communicate with each other. Some X.25 PSDN service providers use this addressing scheme directly.
Others use an abbreviated form of X.121 for calls within their network.

Figure 8–12 shows the address translation steps taken from an NSAP used by OSI applications to an
X.25 network address in an X.25 call packet. VSI’s X.25 software components provide mechanisms to
handle all these translations.

Figure 8.12. X.25 CONS Address Translations

145

Chapter 8. Managing DECnet Phase V Communications

X.121 Addresses

X.121 describes the international numbering plan for public data networks (X.25 networks). Equivalent
international numbering plans exist for the telephone and telex networks.

X.121 defines a four-digit data network identification code (DNIC) for identifying

X.25 networks. The DNIC is composed of a three-digit data country code (DCC) identifying the country
followed by a single digit to distinguish among multiple networks within a country. X.121 allocates
DCCs to countries, such as 234 and 235 for the United Kingdom, 310 to 316 for the United States of
America, and 505 for Australia. Because 505 is the DCC for Australia, the two DNICs 5052 and 5054
identify two distinct X.25 networks within Australia. DNICs (and DCCs) begin with one of the digits 2
through 7 inclusive. The initial digits 0, 1, and 8 are reserved for other purposes. The maximum length of
an X.121 address is 14 digits.

An X.121 address takes one of two forms:

● A 4-digit DNIC followed by a network terminal number (NTN) of up to 10 digits, as shown in
Figure 8.13, "X.121 Address with Four-Digit DNIC and NTN of up to 10 Digits".

Figure 8.13. X.121 Address with Four-Digit DNIC and NTN of up to 10 Digits

● A 3-digit DCC followed by a national number (NN) of up to 11 digits, as shown in Figure 8.14,
"X.121 Address with Three-Digit DNIC and NN of up to 11 Digits".

Figure 8.14. X.121 Address with Three-Digit DNIC and NN of up to 11 Digits

Local Subaddresses

X.25 Network providers often do not use the full 14 digits allowed for an X.121 address. They typically
leave two digits at the end of the address for assignment by the service subscriber. In configurations
where multiple nodes are attached to a single X.25 line, the Local Subaddress can be used to identify a
particular node. For example, a subscriber to PSS in the United Kingdom with the X.25 network address
234212345678 might set up the configuration shown in Figure 8.15, "Use of Local Subaddresses" with
an X.25 relay or switch.

146

Chapter 8. Managing DECnet Phase V Communications

Figure 8.15. Use of Local Subaddresses

All the nodes share the same PSS X.25 network address of 234212345678, but they each have a
separate local subaddress of 01, 02, and 03. A node attempting to call NODEYY would use the
destination address 23431234567802.

X.25 Network Addresses

Three major types of addressing conventions are used in X.25 networks to describe the conversion
between the globally unique X.121 addresses and the addresses actually used on the network. The three
conventions are X.121 addresses, national number (NN-based) addresses, and national terminal number
(NTN-based) numbers.

● X.121 addresses — The network always uses X.121 addresses for calls within the network and
calls to other networks. PSS in the U.K. uses this addressing scheme. Table 8.13, "X.121 Addresses
and Equivalent X.25 Network Addresses" shows examples of X.121 addresses and the equivalent
addresses a PSS user could call in PSS’s X.25 network address form.

Table 8.13. X.121 Addresses and Equivalent X.25 Network Addresses

Call Destination X.121 Address X.25 Network Address

Within PSS 234212345678 234212345678
Across networks to AUSTPAC 505287654321 505287654321
Across networks to PACNET 530187654321 530187654321

● NN-based addresses — The network uses only the national number for calls within the network or
any network that shares the same DCC. For calls outside the network where the DCC is different,
the X.121 address is preceded by an escape digit (typically 0, 1 or 9). We refer to this digit as the
international prefix. Any X.25 network address without the international prefix is assumed to have
the same DCC as the network. AUSTPAC in Australia uses NN-based addressing. Table 8.14, "NN-
Based Addresses and Equivalent X.25 Network Addresses" shows example X.121 addresses and the
equivalent addresses an AUSTPAC user could call in AUSTPAC’s X.25 network address form. The
DCCs are shown in bold, the NNs in italics.

Table 8.14. NN-Based Addresses and Equivalent X.25 Network Addresses

Call Destination X.121 Address X.25 Network Address

Across networks to PSS 234212345678 0234212345678

147

Chapter 8. Managing DECnet Phase V Communications

Call Destination X.121 Address X.25 Network Address

Within AUSTPAC 505287654321 287654321
Across networks to PACNET 530187654321 0530187654321

● NTN-based addresses — The network uses only the network terminal number for calls within
the network.. As with NN-based addresses, an international prefix must be specified as part of an
address outside the local network. This convention is similar to the NN-based addressing scheme:
just replace mentions of DNIC with DCC in the description of NN-based addressing. PACNET in
New Zealand uses NTN-based addressing. Table 8.15, "NTN-Based Addresses and Equivalent X.25
Network Addresses" shows example X.121 addresses and the equivalent addresses a PACNET user
could call in PACNET’s X.25 network address form. The DNICs are shown in bold, the NTNs in
italics.

Table 8.15. NTN-Based Addresses and Equivalent X.25 Network Addresses

Call Destination X.121 Address X.25 Network Address

Across networks to PSS 234212345678 0234212345678
Across networks to AUSTPAC 505287654321 0505287654321
Within PACNET 530187654321 87654321

NSAP Addresses

The structure of an OSI NSAP address is defined in ISO/IEC 8348:2019 Annex A. Figure 8.16, "NSAP
Address Structure" shows this structure.

Figure 8.16. NSAP Address Structure

Every NSAP address has two primary fields:

● Initial domain part (IDP) — The content of the IDP is standardized and assigned by an allocation
authority. The IDP is further subdivided into the following parts:

○ Authority and format identifier (AFI) — The AFI consists of two decimal digits that identify
the authority that allocated the globally unique IDP, the format of the IDI, and the syntax of
the DSP. The AFI value is 36, 37, 52, or 53 for X.121-based NSAPs. VSI recommends using
AFI 36 for NSAP addresses used over X.25 CONS networks. (A digit is encoded in a four-bit
nibble with values ranging from 0000 to 1001. Two digits fit in each octet. For DSPs with an
odd number of digits, the last octet is padded with the value 1111 to obtain an integral number of
octets.)

○ Initial domain identifier (IDI) — The IDI identifies the subdomain from which DSP values are
allocated and the authority responsible for allocating the DSP values. For X.121-based NSAPs,
the IDI field contains the entire X.121 address of exactly 14 digits. X.121 addresses of less than

148

Chapter 8. Managing DECnet Phase V Communications

14 digits in length are padded on the left with zeros or ones, depending on the first digit and the
AFI value, as shown in Table 8.16, "X.121-Based NSAP Formats".

● Domain specific part (DSP) — The contents and semantics of the DSP are not specified in ISO/IEC
8348:2019. For X.121-based NSAPs, the DSP may be a decimal or binary value up to 24 digits or
12 octets long. The DSP may be null (omitted) when using a decimal format (AFI 36 or 52). VSI
recommends using a null DSP for the X.25 CONS protocol stack.

Table 8.16. X.121-Based NSAP Formats

First X.121 Digit DSP Syntax AFI
Value

IDI Padding Example X.121
Address

Corresponding
IDI

non-zero decimal 36 zeros 234212345678 00234212345678
non-zero binary 37 zeros 234212345678 00234212345678
zero decimal 52 ones 06175750100 11106175750100
zero decimal 53 ones 06175750100 11106175750100

Table 8.17, "Example NSAP Addresses" shows example NSAP addresses using the same X.121 addresses
listed in Table 8.13, "X.121 Addresses and Equivalent X.25 Network Addresses" for PSS, AUSTPAC, and
PACNET. You can use these NSAPs over any X.25 network. The AFI is shown in bold type, the IDI in
italics. The DSP was left null for these NSAPs.

Table 8.17. Example NSAP Addresses

Call Destination X.121 Address NSAP

PSS 234212345678 3600234212345678
AUSTPAC 505287654321 3600505287654321
PACNET 530187654321 3600530187654321

ISO Conversion Rules

ISO/IEC 8878:1987 defines which NSAP/X.25 network address conversions are allowed. Loosely
translated, the calling node can omit the address extension facilities if the NSAP addresses map directly
to X.121 addresses: the DSPs must be null, the AFIs must be those shown in Table 8.16, "X.121-Based
NSAP Formats", and the IDIs must contain the complete X.121 addresses.

The called node must be capable of accepting a call with or without address extension facilities. If the
facilities exist in the call, X.25 passes the NSAP addresses in the facilities up to the Transport layer.
If the facilities do not exist, X.25 must derive the NSAP addresses from the X.121 addresses of the
incoming call.

8.8.1.2. X.25 CONS Management Entities

You cannot configure the X.25 CONS protocol stack on DECnet-Plus end system products using
the configuration tools alone. To successfully configure the stack, you must understand NCL and
the management entities in the X.25 CONS stack. Table 8.18, "Management Entities" shows the
management entities used at each layer of the protocol stack.

The X.25 and LAPB protocols allow many options that vary among X.25 networks. VSI’s products
provide X.25 network profiles that contain all the pertinent network parameters for most PSDNs.

149

Chapter 8. Managing DECnet Phase V Communications

For example, profiles contain the default value and permissible range for the X.25 window size. The
system administrator specifies the profile name during system configuration. Typically, the profile name
corresponds to the name of the PSDN.

The X.25 software components follow instructions from both their user applications and their
management entities. You cannot control the behavior of these components entirely by management. In
some cases, X.25 software ignores certain management parameters, depending on which functions an
X.25 application uses.

Table 8.18. Management Entities

Protocol Layer Management Entity Function in CONS Stack

ACSE, Presentation, and Session osak

osak application

osak application
invocation

Defines the OSI application’s
ACSE, Presentation, and
Session addresses for incoming
connections.

Transport Class 0 osi transport

osi transport
application

osi transport port

osi transport template

Defines which outgoing
connections pass through X.25.
Routes incoming requests to
OSAK based on the TSEL.

X.25 Packet Layer x25 access

x25 access application

x25 access dte class

x25 access filter

x25 access port

x25 access reachable
address

x25 access security
dte class

x25 access security
filter

x25 access template

x25 access protocol

x25 protocol dte

Translates between NSAP
and X.25 network addresses.
Establishes a connection to the
X.25 network service provider.
Routes incoming calls to OSI
transport, based on received X.25
call packet contents. Controls
access from the X.25 network to
the computer system.

LAPB Link Layer lapb

lapb link

lapb port

Controls data link buffers and
timers.

150

Chapter 8. Managing DECnet Phase V Communications

Protocol Layer Management Entity Function in CONS Stack

Modem Connect modem connect

modem connect line

modem connect data
port

Controls physical attributes of the
modem connection.

Example Configuration

The following illustrated configuration and the examples that follow help clarify the interrelationships
among management entities for outgoing and incoming calls using X.25 CONS. Assume the end system
implementations NCOSI and SYBILL are connected to a local X.25 packet switch, which in turn is
connected to an AT&T Accunet line, as shown in Figure 8.17, "Example Configuration".

Figure 8.17. Example Configuration

Accunet addresses are NTN-based, similar to PACNET. All addresses discussed in this section are based
on conversion rules defined in international standards.

NCOSI is set up as the OSI application initiator, SYBILL as the responder. AT&T assigned a range of
addresses to the line from 6171234500 to 6171234599.

The Accunet DNIC is 3134, and the international prefix is 0. NCOSI has a local subaddress of 40, and
SYBILL has a local subaddress of 10. From these subaddresses, the remaining addresses are derived
using the conversion rules explained in Section 8.8.1.1, "CONS Addressing Mechanisms". Table 8.19,
"Example Configuration Addresses" lists these addresses.

Table 8.19. Example Configuration Addresses

 Source: NCOSI Destination: SYBILL

X.25 Profile Accunet Accunet
Accunet DNIC 3134 3134
Accunet International Prefix 0 0
Accunet Line Address 6171234500-99 6171234500-99
X.25 Network Address 61712345 61712345
Local Subaddress 40 10

151

Chapter 8. Managing DECnet Phase V Communications

 Source: NCOSI Destination: SYBILL

X.121 Address 31346171234540 31346171234540
AFI 36 36
NSAP 3631346171234540 3631346171234510
Address Extension Facility 103631346171234540 103631346171234510

Outgoing Connections

Figure 8.18, "Entity Relationships for Outgoing Connections" shows the entity relationships for outgoing
connections. The following actions occur during an outgoing call:

1. The OSI application initiator provides the full OSI stack specification of the destination along
with the osi transport template entity name to OSAK. (Note that no major OSAK management
components are involved in outgoing connections; therefore, they are not shown in Figure 8.18,
"Entity Relationships for Outgoing Connections".) OSAK passes the TSEL and NSAP on down to
OSI transport.

2. OSI transport follows instructions in the OSI transport template to set up a connection over CONS. It
uses the OSI transport CONS NSAP address for the source address.

3. X.25 software follows instructions in the X25 Access template to make the call. The nsap mapping
attribute is true and the dte class attribute is null, forcing NSAP-to-X.25 network address conversions
through X25 Access reachable addresses. The value in the local subaddress causes X.25 software to
provide a calling DTE address in the outgoing X.25 call packet.

4. X.25 software selects the X25 Access reachable address with the longest address prefix that matches
the destination NSAP. X25 Access reachable addresses provide for two types of conversions. X.121
mapping converts an X.121-translatable NSAP to an X.121 address using the rules defined in Section
8.8.1.1, "CONS Addressing Mechanisms". Manual mapping converts from any NSAP address directly
to any specific X.25 network address. Most NSAPs in the transport/X.25 CONS stack are X.121-
translatable and use X25 Access reachable address x121d. The dte class attribute indicates that the
call may be placed on any X25 Protocol DTE line under X25 Access DTE class Accunet.

5. The X25 dte class entity defines how to translate X.121 addresses to the local X.25 network
addresses. X.25 software uses these translation rules only when the original NSAP was converted
through X.121 mapping.

152

Chapter 8. Managing DECnet Phase V Communications

Figure 8.18. Entity Relationships for Outgoing Connections

Incoming Connections

Figure 8.19, "Entity Relationships for Incoming Connections" shows the entity relationships for incoming
connections.

153

Chapter 8. Managing DECnet Phase V Communications

Figure 8.19. Entity Relationships for Incoming Connections

154

Chapter 8. Managing DECnet Phase V Communications

The following initialization actions take place before incoming connections can be accepted.

1. OSAK opens a port to OSI transport for every TSAP required by OSAK applications.

2. OSI transport activates any x25 access filter entities specified in the osi transport cons filters
attribute.

3. X.25 software opens a channel to each LAPB link during initialization, and in turn, each LAPB link
opens channels to its associated modem connect line entity.

The following occurs upon receipt of an incoming call on an X.25 DTE:

1. X.25 software uses the x25 protocol dte inbound dte class attribute to determine which X25 Access
DTE class applies to the call.

2. X.25 software extracts the NSAP address from the address extension facilities, if they exist. If the
facilities do not exist, X.25 software converts the X.25 network addresses to NSAP addresses using
the x25 access dte class attributes.

3. X.25 software searches the X25 Access filters for a match with the attributes of the incoming call. If
a match exists, X.25 software passes the message up to the application that activated the filter.

4. OSI transport searches for an osi transport template entity with the inbound characteristic set to true,
the network service characteristic set to cons, and the cons template having the name of the X25
Access filter. If found, OSI transport accepts the X.25 call with the X25 Access template specified in
the cons template attribute. With this procedure, the x25 access filter and x25 access template entities
must use the same entity name.

5. OSI transport passes the message up to OSAK if the transport connect request PDU’s called TSAP
ID field matches the TSEL specified by OSAK during initialization Step 2.

6. OSAK passes the message up to the OSI application if the SSEL and PSEL match those defined
during initialization Step 1. OSAK ignores the AP-Title and AE-Qualifiers.

● OSAK invokes the OSI application responder using the command file defined in the osak
application invocation entity prior to passing the message up.

8.8.1.3. Configuring X.25 to Provide the CONS Network Service
You can configure OSI transport over X.25 support using the NET$CONFIGURE and the appropriate
X.25 configuration procedure. These procedures do not completely support this configuration; therefore
you have to edit certain NCL startup scripts and perform a few NCL commands manually. The VSI
DECnet-Plus for OpenVMS Installation and Configuration contains an appendix which describes the
process. This section discusses the NCL commands required to configure the X.25 entities needed
for OSI Transport over X.25 CONS. For information about configuring the OSI transport entities,
see Section 8.5.2.3.3, "Steps for Configuring the CONS Network Service". The following steps list the
commands used to configure the X.25 templates and filters required to support OSI transport’s use of the
CONS service provided by X.25.

1. The following example shows how to create the x25 access template and set its characteristics:

 ncl> create x25 access template template-name
 ncl> set x25 access template template-name -
 _ncl> call data hex-string, dte class dte-class-name

Outbound transport connections that use X.25 network connections use X25 Access templates
to supply most of the parameters for setting up the network connection. Inbound transport

155

Chapter 8. Managing DECnet Phase V Communications

connections that use X.25 connections use X25 Access templates to negotiate network
connection parameters.

Each OSI transport template for CONS connections that you configure names an X25 Access
template in its cons template characteristic. You must, therefore, configure each of the X25
Access templates named in your OSI transport templates for CONS connections.

When you create an X25 Access template for use with CONS, set the value of the call data
characteristic to %X03010100. The destination host will recognize this value as indicating that
the call should be passed to CONS.

2. The following example shows how to create the x25 access filter:

ncl> create x25 access filter filter-name
ncl> set x25 access filter filter-name -
_ncl> call data mask mask, call data value value,-
_ncl> inbound dte class dte-class-name,-

If your system is to accept inbound transport connections over X.25 network connections, you
need to configure one or more X25 Access filters. An X25 Access filter listens for incoming
network connection requests and passes these requests to the appropriate destination. One or
more X25 Access filters are required for each X25 Access DTE class that CONS wants to use.

Each outbound-inbound OSI transport template for CONS connections that you configure
specifies the name of an X25 Access template in its cons template characteristic. This X25
Access template will be used to accept an inbound network connection. The name of this X25
Access template must be the same as the name of an X25 Access filter that is used to receive
inbound network connections.

When you create an X25 Access filter for use by CONS, set call data mask to %Xffffffff.

When you create an X25 Access filter for use by CONS, set call data value to %X03010100.

8.8.2. Configuring Routing Over X.25 Circuits
DECnet-Plus supports the following approaches for configuring routing, which provides the
Connectionless-Mode Network Service (CLNS), to use X.25 data links:

● Configuring the routing entity to use an X.25 switched virtual circuit (SVC) as a dynamically-
assigned data link to a remote network. DECnet-Plus waits until an application requests a connection
to the remote network before establishing the link. DECnet-Plus disconnects the link when no
applications have an open connection to the remote network. The remote network is considered
outside the local routing domain. You must manually configure which CLNS addresses are reachable
over the X.25 link. X.25 dynamically-assigned data links cannot be used to access a DECnet phase
IV node.

● Configuring the routing entity to use an X.25 switched virtual circuit (SVC) as a static data link to
a remote network. This approach does not require the X.25 service provider to create a permanent
channel. To establish a link, DECnet-Plus calls or receives an X.25 call from a remote system during
startup. It keeps the link open until disabled by network management commands. DECnet-Plus
autoconfigures itself into the remote DECnet Phase V or DECnet Phase IV network.

● Configuring the routing entity to use an X.25 permanent virtual circuit (PVC) as a data link to a
remote network. PVCs are permanent channels established by the X.25 service provider. DECnet-

156

Chapter 8. Managing DECnet Phase V Communications

Plus establishes a link through the X.25 PVC at startup. It then autoconfigures itself into the remote
DECnet Phase V or DECnet Phase IV network.

To configure routing to use X.25 circuits, use the advanced configuration procedure (invoking
NET$CONFIGURE ADVANCED). If X.25 software is configured, the device configuration section
gives you the option of configuring any WAN devices for DECnet’s use. Be sure to answer none when
NET$CONFIGURE asks you for the WAN line’s protocol. This prohibits DECnet from using the line
directly and allows the X.25 configuration procedure to configure the line for X.25 use.

After configuring all regular routing circuits, the configuration procedure asks if you want to configure
DECnet over X.25. The DECnet over X.25 configuration begins with a list of choices for the type of
X.25 circuit to use:

Types of X.25 circuits:
[1] - X.25 Dynamic Assigned (DA)
[2] - X.25 Static Incoming (IN)
[3] - X.25 Static Outgoing (OUT)
[4] - X.25 Permanent (PVC)
* Which type of X.25 circuit do you want to use?

Select the type of X.25 you want to configure. The procedure then asks you for information about the
circuit, including:

● Routing circuit name to use.

● Template name for the X25 Access template, which X.25 routing circuits use to make outgoing or
accept incoming network connections.

● Filter name for the X25 Access filter, which X.25 routing circuits use to accept incoming network
connections. The filter name is required for static incoming and dynamically-assigned circuits and
specifies the inbound DTE class, call data value, and call data mask.

● Whether you want to configure reachable addresses, and if yes, information about reachable
addresses. If you configure a dynamically-assigned X.25 routing circuit, you must configure one or
more reachable addresses used for managing the circuit. Each reachable address specifies a mapping
of an NSAP address to a DTE address.

For more information about using NET$CONFIGURE to configure DECnet over X.25, see the VSI
DECnet-Plus for OpenVMS Installation and Configuration. The remainder of this section discusses using
NCL commands to create the DECnet over X.25 routing circuits.

8.8.2.1. Commands for Configuring General X.25 Routing Circuit
Information
To use NCL to manually configure X.25 routing circuits, following these steps:

1. Set up and enable routing:

ncl> create routing type endnode
ncl> set routing dna address format true, lifetime 63, -
_ncl> manual network entity titles {}, probe rate 20
ncl> enable routing

2. Create and set up the routing circuit with the appropriate values for its attributes, including the circuit
name, type, data link entity, template, and X.25 filter:

ncl> create routing circuit x25_circuit-1 type type

157

Chapter 8. Managing DECnet Phase V Communications

ncl> set routing circuit x25_circuit-1 data link entity x25 access
ncl> set routing circuit x25_circuit-1 template template-name
ncl> set routing circuit x25_circuit-1 x25 filter { filter-name}
ncl> enable routing circuit x25_circuit-1

Select the type of X.25 routing circuit. For more information about the value to specify for the
type attribute, see the subsection for the type of X.25 routing circuit being configured.

Always set the data link entity attribute to x25 access.

Specify the name of an X25 Access template. See Step 5 for more information.

For X.25 dynamically-assigned and static incoming circuits, specify the name of an X25 Access
filter. See Step 6 for more information.

3. When configuring dynamically-assigned circuits, you must create at least one routing circuit
reachable address entity. See Section 8.8.2.2, "Configuring Routing Over X.25 Dynamically-Assigned
Circuits" for information about setting up routing circuit reachable address entities.

4. Create the X25 Access module and enable it:

ncl> create x25 access
ncl> enable x25 access

5. Create one or more X25 Access templates and set their attributes:

ncl> create x25 access template template-name
ncl> set x25 access template template-name -
_ncl> destination dte address dte-address,-
_ncl> dte class dte-class-name

Each routing circuit that you configure names an X25 Access template in its template attribute. You
must, therefore, configure each of the X25 Access templates named in your X.25 routing circuits.

A routing circuit that invokes outbound X.25 calls uses an X25 Access template to supply most of
the parameters for setting up the call. A routing circuit that receives inbound X.25 calls uses an X25
Access template to negotiate call parameters.

6. If necessary, create one or more X25 Access filters and set their attributes:

ncl> create x25 access filter filter-name
ncl> set x25 access filter filter-name -
_ncl> inbound dte class dte-class-name, -
_ncl> sending dte address dte-address,-
_ncl> call data mask %xff, -
_ncl> call data value %x81
ncl> enable x25 access filter

Each routing circuit that you configure which receives inbound X.25 calls (X.25 static-incoming or
X.25 dynamically-assigned circuits) names one or more X25 Access filters in its x25 filters attribute.
You must, therefore, configure each of the X25 Access filters named in your X.25 routing circuits.

An X25 Access filter listens for incoming calls and passes them to the appropriate destination.

When setting up a filter for an inbound X.25 circuit, specify the following X25 Access filter values:

● call data mask %xff
158

Chapter 8. Managing DECnet Phase V Communications

● call data value %x81

8.8.2.2. Configuring Routing Over X.25 Dynamically-Assigned
Circuits
Dynamically-assigned circuits are used for making infrequent connections to destinations outside
the routing domain of your DECnet-Plus system. (A routing domain is a collection of systems that
automatically configure to each other and exchange network topology information using consistent
Network layer protocols.) Dynamically-assigned circuits are established upon arrival of data and are
cleared when no more data is transmitted or received during a specified time (idle time).

Take the following three steps to configure a dynamically-assigned X.25 circuit:

1. Use the X.25 configuration procedure to define the x25 access template and x25 access filter
entities with the parameters necessary to establish and accept calls with the remote system. See the
appropriate X.25 documentation.

2. Create a routing circuit with the following commands:

NCL> create routing circuit circuit-name type x25 da
NCL> set routing circuit circuit-name template template-name
NCL> set routing circuit circuit-name x25 filter filter-name
NCL> enable routing circuit circuit-name

The routing circuit type must be x25 da.

The routing circuit template attribute must contain the name of the x25 access template entity.

The routing circuit x25 filter attribute must contain the name of the x25 access filter entity.

3. Create one or more routing circuit reachable address entities as discussed in the two subsections that
follows.

Addressing Issues for X.25 Dynamically-Assigned Circuits

When using dynamically-assigned X.25 routing circuits, the sending and receiving nodes must be
in separate routing domains. The routing domain is defined with a unique AFI, IDI, and preDSP
combination in the NSAP address (see Figure 8.16, "NSAP Address Structure"). The format of the CLNS
address must conform to that described in the VSI DECnet-Plus Planning Guide.

The requirement for separate routing domains places two restrictions on addressing:

● The NSAP address used at the Routing layer for the source and destination can be any CLNS address
except ones beginning with AFI 49.

● DECnet Phase IV network traffic cannot span dynamically-assigned X.25 routing circuits. Phase IV
address translations apply only within a single routing domain.

If your DECnet-Plus system is isolated from the network and uses the dynamically-assigned X.25
routing circuit for communication, you may find it convenient to assign an NSAP address to your
system that is based on your X.25 network address. If you do this, you must use the binary format of an
X.121 address (AFI 37 or 53), as opposed to the decimal format described in Section 8.8.1.1, "CONS
Addressing Mechanisms" for X.25 CONS configurations. Section 8.4.1.6, "Configuring End System
Network Addresses for Non-DNA Networks" explains how to use manual network entity titles to define
the NSAP address for your system.

159

Chapter 8. Managing DECnet Phase V Communications

Configuring Routing Reachable Addresses

For each dynamically-assigned X.25 routing circuit, you must configure one or more reachable addresses.
A reachable address defines a mapping between network service access points (NSAPs) and data
terminal equipment (DTE) addresses used in X.25. An NSAP identifies a system in the network and is
used by both the Network and Transport layers of DECnet-Plus. X.25 uses a DTE address to identify the
end point of an SVC. Reachable addresses identify which NSAP or group of NSAPs should be sent over
a particular X.25 circuit.

Note

Use the routing circuit reachable address entity when configuring routing over X.25 dynamically-
assigned circuits. Do not use the x25 access reachable address entity. The x25 access reachable address
entity applies only to OSI transport over X.25 CONS configurations, as described in Section 8.8.1, "OSI
Transport Over X.25 CONS".

Consider the following example of two systems connected by an X.25 network:

 System A System B

NSAP 48::00-5F:08-00-2B-16-A8-72:21 43:15082267643:0045:08002B16DE4F:21
DTE 075527537 18628935742674

The reachable address on System A specifies that if the destination NSAP matches the value
43:15082267643:0045:08002B16DE4F:21, then an X.25 circuit should be created by connecting to
the DTE address 18628935742674. This example is a case of one-to-one NSAP-to-DTE mapping. The
reachable address could also be set up such that any NSAP with the initial digits 43:15082267643 should
be sent over that X.25 circuit, which would potentially cause many different NSAPs to be mapped to that
particular X.25 circuit.

The NCL commands to create and initialize reachable addresses are created in the
SYS$STARTUP:NET$OSI_TRANSPORT_STARTUP.NCL script (for OSI transport using CONS) and
the SYS$STARTUP:NET$ROUTING_STARTUP.NCL script (for Routing using X.25).

The following example shows how to manually create a reachable address for routing using NCL. For
more information on configuring routing, see Section 8.4, "Configuring Routing".

ncl> create routing circuit x25_circuit-1 reachable address ughh_v -
_ncl> address prefix /4145418715004108002b0ed41e
ncl> set routing circuit x25_circuit-1 reachable address ughh_v -
_ncl> dte address { 2267643 }
ncl> set routing circuit x25_circuit-1 reachable address ughh_v -
_ncl> mapping manual
ncl> enable routing circuit x25_circuit-1 reachable address ughh_v

Specify the address prefix when you create the routing circuit entity. You cannot modify this attribute
with the set command.

The X.25 configuration procedure automatically creates the following two X25 Access reachable
addresses:

● X121 with address prefix 37:

● X121D with address prefix 36:

160

Chapter 8. Managing DECnet Phase V Communications

8.8.2.3. Configuring Routing Over X.25 Static Circuits
X.25 static circuits emulate a permanent point-to-point circuit over an X.25 switched virtual circuit. The
underlying X.25 connection is established when DECnet-Plus starts up, and the connection remains until
explicitly terminated (normally at system shutdown).

When two systems communicate using X.25 static circuits, one system must define the circuit as
incoming, while the other system must define it as outgoing. The system with an incoming circuit
establishes communication with the X.25 network provider and waits for a connection from the other
end. The system with the outgoing circuit initiates the X.25 call to the waiting system. If the call fails, the
system keeps retrying until a successful connection is made. After the X.25 connection is established, the
two systems automatically exchange routing layer configuration information, autoconfigure their routing
databases, and begin two-way communications.

8.8.2.3.1. Configuring Outgoing X.25 Static Circuits

Take the following two steps to configure an outgoing X.25 static circuit:

1. Use the X.25 configuration procedure to define an x25 access template entity with the parameters
necessary to establish a call to the destination system. See the appropriate X.25 documentation.

2. Create a routing circuit with the following commands:

NCL> create routing circuit circuit-name type x25 static outgoing
NCL> set routing circuit circuit-name template template-name
NCL> enable routing circuit circuit-name

The routing circuit type must be x25 static outgoing.

The routing circuit template attribute must contain the name of the x25 access template entity.

8.8.2.3.2. Configuring Incoming X.25 Static Circuits

Take the following three steps to configure incoming X.25 static circuits:

1. Use the X.25 configuration procedure to define the x25 access template and x25 access filter entities
with the parameters necessary to accept a call from the source system. See the appropriate X.25
documentation.

2. Create a routing circuit with the following commands:

NCL> create routing circuit circuit-name type x25 static incoming
NCL> set routing circuit circuit-name template template-name
NCL> set routing circuit circuit-name x25 filter {filter-name}
NCL> enable routing circuit circuit-name

The routing circuit type must be x25 static incoming.

The routing circuit template entity must contain the name of the x25 access template entity.

The routing circuit x25 filter entity must contain the name of the x25 access filter entity.

161

Chapter 8. Managing DECnet Phase V Communications

162

Chapter 9. Setting Up an
OpenVMS Cluster Environment for
DECnet-Plus
This chapter provides information about:

● Configuring OpenVMS Cluster satellite nodes

● Setting up an OpenVMS Cluster alias

● Sharing network applications in the OpenVMS Cluster environment

9.1. Configuring OpenVMS Cluster Satellite
Nodes in a DECnet-Plus Environment
The information presented in the following sections supplements the material provided by the VSI
OpenVMS Cluster Systems Manual.

9.1.1. Adding, Modifying, or Deleting an OpenVMS
Cluster Satellite Node
You must have planned your OpenVMS Cluster and have at least one OpenVMS Cluster boot
node set up before using the information in this section. The following information is based on
the CLUSTER_CONFIG.COM procedure found in the SYS$MANAGER directory. The VSI
OpenVMS Cluster Systems Manual describes this procedure. VSI has modified the procedure to
make it compatible with the DECnet-Plus software. In the following sections, only those portions of
CLUSTER_CONFIG.COM that have been modified are discussed in detail.

You should also be familiar with the general concepts of the Maintenance Operations Protocol (MOP),
and, in particular, the MOP client database, as described in Chapter 10, "Downline Loading and Upline
Dumping Remote Systems".

If you are adding a new OpenVMS Cluster satellite node to your OpenVMS Cluster, see Section 9.1.1.1,
"Adding a New Satellite Node to an OpenVMS Cluster Environment".

If you are making the transition from an existing Phase IV DECnet cluster satellite node to DECnet-Plus,
see Section 9.1.2, "Making the Transition from an Existing DECnet Phase IV OpenVMS Cluster Satellite
Node". After you have made the transition, you can invoke CLUSTER_CONFIG.COM to modify its
characteristics.

You can delete a satellite node from the OpenVMS Cluster system with CLUSTER_CONFIG.COM
whether or not the satellite node has made the transition to DECnet-Plus. If the satellite has not made the
transition, a message appears stating that the client could not be removed from the client database. This
will not cause a problem, and all root information will be deleted correctly.

By default, the satellite node information created by CLUSTER_CONFIG.COM or
NET$CONFIGURE.COM is placed in the SYS$MANAGER root directory for the boot node. See
Section 9.1.4, "Customizing Your MOP Client Database for Multiple Boot Nodes" for a discussion about
making this information available to other boot nodes in your OpenVMS Cluster system.

163

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

9.1.1.1. Adding a New Satellite Node to an OpenVMS Cluster
Environment
To add a new OpenVMS Cluster satellite node to an OpenVMS Cluster environment, invoke the
SYS$MANAGER:CLUSTER_CONFIG.COM procedure. This procedure does the following:

● Creates a root directory for the satellite node on the OpenVMS Cluster common disk.

● Creates a MOP client entry for the satellite node in the MOP client database on the boot node.

● Provides the satellite node with a set of SYSGEN parameters sufficient to run the DECnet-Plus
software.

● Enables the node to automatically invoke the NET$CONFIGURE procedure after it boots.

Refer to the VSI OpenVMS Cluster Systems Manual for general information about
CLUSTER_CONFIG.COM. You can enter a "?" at any prompt to display help text that explains what
information is required at the prompt.

Table 9.1, "Information Requested for New OpenVMS Cluster Satellites" explains the information specific
to DECnet-Plus that CLUSTER_CONFIG.COM requests.

Table 9.1. Information Requested for New OpenVMS Cluster Satellites

Item Response

What is the node’s DECnet full
name?

Determine a full name with the help of your
network manager. Enter a string that includes:

● Nickname (optional), ending with a colon (:)

● Root directory, designated by a period (.)

● Zero or more hierarchical directories,
designated by a character string followed by a
period

● Simple name, a character string that, combined
with the directory names, uniquely identifies
the node

For example:

.world.networks.mynode
mega:.indiana.jones
columbus:.flatworld

What is the DECnet Phase IV
compatible synonym name for this
node?

A node synonym is a short name for the node’s
full name. In an OpenVMS Cluster environment,
this name is used as the value of the SYSGEN
parameter SCSNODE. It must also be defined
in the namespace as the synonym name for that
node. Therefore, it must be a string of six or less
alphanumeric characters. By default, it is the first
six characters of the last simple name in the full
name. For example:

164

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

Item Response
Full name —
bigbang:.galaxy.nova.blackhole

Synonym — blackh

Node synonyms greater than six characters
in length are not supported if the node is an
OpenVMS Cluster member.

What is the node’s DECnet node
address?

Enter the node’s DECnet node address. This
address is in the form area.node. Ask your network
manager to help you determine this address.

Does synonym name need to be
registered in the namespace [N]?

Answer YES to this question if the name of the
node you are adding has not been registered with
the namespace. Registration makes your node
"known" to the namespace. You only need to do
this once.

The registration might fail if your namespace has
access control list (ACL) protection. If that occurs,
your network manager must register the node for
you.

What is the cluster alias full
name?

The alias name is the node name of the alias: the
DECdns full name of the object that stores the
address towers for the alias. Do not enter a node
synonym.

If this node will not be participating in an
OpenVMS Cluster alias, press carriage return.

Determine the OpenVMS Cluster alias name with
the help of your network manager. Enter a string
that includes:

● Nickname (optional), ending with a colon (:)

● Root directory, designated by a period (.)

● Zero or more hierarchical directories,
designated by a character string followed by a
period

● Simple name, a character string that, combined
with the directory names, uniquely identifies
the node

For example:

.networks.farout
mega:.proto.quikk

What is the Phase IV address of
the cluster alias?

The node ID of the alias could not be retrieved
from the namespace, so it must be calculated
from the alias’s Phase IV address. Enter the Phase

165

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

Item Response
IV address of the alias in the area.node format
(for example, 63.137), or enter a 6-byte ID in
the format AA-00-04-00-xx-xx, where xx-xx is
calculated from the Phase IV node address. To
determine the Ethernet physical address, proceed
as follows:

1. Convert the Phase IV node address to its
decimal equivalent as follows:

(area-number * 1024) + node-number
 = decimal equivalent

For example:

(12 * 1024) + 139 = 12427 decimal

2. Convert the decimal node address to its
hexadecimal equivalent and reverse the order
of the bytes to form the hexadecimal node
address. For example:

(12427 decimal = 308B hex,
 reversed = 8B30 hexnodeaddress)

3. Incorporate the hexadecimal node address in
the following format:

AA-00-04-00-hexnodeaddress

For example:

AA-00-04-00-8B-30

What selection weight do you
choose for this node? [0 for
satellites]

The selection weight determines the percentage
of incoming connections addressed to the alias
that this node will handle. If the node is a satellite,
take the default value of 0. For larger nodes, select
a value between 5 and 10 (or larger if you want)
according to the size of the node.

The information you enter by means of CLUSTER_CONFIG.COM is automatically entered in the boot
node’s MOP client database and executed. The CLUSTER_CONFIG.COM procedure prompts you for
other information. Then, it tells you when to boot your satellite node. The satellite node will run an
AUTOGEN procedure shortly after booting.

After the satellite reboots, the NET$CONFIGURE procedure executes automatically. When it completes,
the network starts, and the OpenVMS startup procedure continues until completion.

166

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

9.1.2. Making the Transition from an Existing DECnet
Phase IV OpenVMS Cluster Satellite Node
Existing OpenVMS Cluster satellite nodes already have a root directory on the system disk. Because
these satellites are already in the OpenVMS Cluster, you cannot use CLUSTER_CONFIG.COM to
migrate them to DECnet-Plus. However, you can take the following actions to migrate the satellites:

1. Create a MOP client entry for the satellite node in the MOP client database on the boot node.

2. Execute the MOP client script on a boot node.

3. If necessary, edit SYS$SYSTEM:MODPARAMS.DAT in the satellite’s root directory.

4. If the OpenVMS Cluster satellite node is not already running, boot it. A boot node will downline
load it.

5. On the OpenVMS Cluster satellite node, invoke the AUTOGEN procedure to provide the satellite
node with a set of SYSGEN parameters sufficient to run the DECnet-Plus software.

6. After the satellite node has rebooted, invoke the SYS$MANAGER:NET$CONFIGURE procedure
from the satellite and select the menu option to perform a full configuration. The network will start
automatically when NET$CONFIGURE completes.

Each of these steps is fully explained in the following list:

1. Create a MOP client entry for the satellite node.

Your Phase IV DECnet object database on your boot node might already have been converted
to DECnet-Plus. When you invoke the NET$CONFIGURE.COM procedure to perform a full
configuration, you can request that it convert the Phase IV object database. Refer to the VSI DECnet-
Plus for OpenVMS Installation and Configuration for more information about converting your Phase
IV object database.

To determine if your Phase IV DECnet object database has been converted to DECnet-Plus, look at
the contents of the NCL script file, SYS$MANAGER:NET$MOP_CLIENT_STARTUP.NCL. This
is an ASCII file that you can display on your terminal. If the object database has been converted,
you will find information about each OpenVMS Cluster satellite node that existed in the Phase IV
DECnet object database. If some of the information needs to be modified for DECnet-Plus, you can
edit the file.

If the Phase IV DECnet object database was not converted, you can add information for each
OpenVMS Cluster satellite node with SYS$MANAGER:NET$CONFIGURE.COM. Refer to Section
10.2, "Manually Configuring MOP" for more information about the parameters needed to configure
an OpenVMS Cluster satellite.

The following is a sample of the information requested when you choose Option 8 of
NET$CONFIGURE.COM, "Configure MOP Client Database:"

* Which configuration option to perform? [1] : 8
* Do you wish to ADD or DELETE a MOP Client? [ADD] :
* Name of the MOP Client? : tahini
* Circuit for ’TAHINI’? :
* Physical addresses for ’TAHINI’? :
 08-00-2B-07-36-B6
* Secondary Loader for ’TAHINI’? :
* Tertiary Loader for ’TAHINI’? :

167

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

* System Image for ’TAHINI’? : "@net$niscs_laa(disk
$v55:<sys10.>)"
* Diagnostic Image for ’TAHINI’? :
* Management Image for ’TAHINI’? :
* Script File for ’TAHINI’? :
* Dump File for ’TAHINI’? :
* Verification for ’TAHINI’? [%X0000000000000000] :
* Phase IV Client Address (aa.nnnn) for ’TAHINI’? [none] : 63.10
* Phase IV Client Name for ’TAHINI’? [TAHINI] :
* Phase IV Host Address for ’TAHINI’? [63.61] :
* Phase IV Host Name for ’TAHINI’? [CASIDY] : hummus
* Do you wish to generate NCL configuration scripts? [YES] :
%NET$CONFIGURE-I-CHECKSUM, checksumming NCL management scripts
%NET$CONFIGURE-I-CONFIGCOMPLETED, DECnet-Plus for VMS configuration
completed

The information will not take effect until you execute the NCL script
SYS$MANAGER:NET$MOP_CLIENT_STARTUP.NCL. If MOP has not yet been started, starting
MOP executes the script. If MOP is already running, you can stop it and then start it again to execute
the script. Alternatively, if MOP is already running, you can invoke the script at the NCL prompt.

2. Execute the MOP client script on a boot node.

$ run sys$system:ncl
ncl> @sys$manager:net$mop_client_startup.ncl

Note

One line in the file, create mop, generates an error message because the mop entity has already been
created. You can ignore this message.

After the script has been executed, you can downline load the OpenVMS Cluster satellite.

The following example shows the information that network management knows about the client
configured in the previous step:

ncl> show mop client tahini all
Node 0 MOP Client TAHINI
 at 2019-04-21-18:32:38.205-04:00I0.448
 Identifiers
 Name = TAHINI
Characteristics
 Circuit =
 Addresses = {08-00-2B-07-36-B6, AA-00-04-00-0A-FC}
 Secondary Loader = {}
 Tertiary Loader = {sys$system:tertiary_vmb.exe}
 System Image = {"@net$niscs_laa(DISK$V55:<SYS10.>)"}
 Diagnostic Image = {}
 Management Image = {}
 Script File = {}
 Phase IV Host Name = HUMMUS
 Phase IV Host Address = 63.61
 Phase IV Client Name = TAHINI
 Phase IV Client Address = 63.10
 Dump File = {}
 Dump Address = 0
 Verification = %X0000000000000000

168

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

 Device Types = {}

3. If necessary, edit SYS$SYSTEM:MODPARAMS.DAT in the satellite’s root directory. See the VSI
DECnet-Plus for OpenVMS Installation and Configuration for information about when it may be
necessary to edit the SYS$SYSTEM:MODPARAMS.DAT file.

When installing DECnet-Plus for OpenVMS on an OpenVMS cluster, make sure that all cluster
members have the necessary SYSGEN parameters set correctly. If a node in the cluster does not have
the necessary parameters, startup of the network will fail. If the network fails to start for this reason,
the logical NET$STARTUP_STATUS will be set to OFF-AUTOGENREQ. Make any necessary
parameter changes prior to attempting to run NET$CONFIGURE.

Check the release notes for any updates to the SYSGEN parameter recommendations Update these
values by editing the SYS$SYSTEM:MODPARAMS.DAT file.

4. If the OpenVMS Cluster satellite node is not already running, boot it.

If the MOP client database was successfully configured and the script executed, the boot node will
downline load the satellite.

5. On the OpenVMS Cluster satellite node, invoke the AUTOGEN procedure to provide the satellite
node with a set of SYSGEN parameters sufficient to run the DECnet-Plus software.

From the OpenVMS Cluster satellite node, invoke the AUTOGEN procedure as follows:

$ @sys$update autogen getdata reboot nofeedback

This regenerates the satellite node’s SYSGEN parameters and takes into account the new minimum
values.

6. After the satellite node has rebooted, invoke SYS$MANAGER:NET$CONFIGURE.

Invoke this procedure from the satellite and select the menu option to perform a full configuration.
The network will start automatically when NET$CONFIGURE is finished.

9.1.3. Specifying Defaults for Phase IV Prefix and Node
Synonym Directory
By default, a cluster satellite configures its Phase IV Prefix as 49:: and its node synonym directory
as .DNA_Nodesynonym. Some clusters may want to have different values for one or both of these
attributes. To change these defaults for satellites added to the cluster, define the following logicals in
SYS$COMMON:[SYSMGR]NET$LOGICALS.COM before running CLUSTER_CONFIG.COM.

$ define/system/nolog net$phaseiv_prefix "<prefix value>"
$ define/system/nolog decnet_migrate_dir_synonym "<synonym dir>"

To change these values for a satellite that has already been configured, run NET$CONFIGURE from
that satellite.

9.1.4. Customizing Your MOP Client Database for
Multiple Boot Nodes
By default, the file NET$MOP_CLIENT_STARTUP.NCL resides in SYS$SYSROOT:[SYSMGR]. In
this location, however, the MOP client information is only available to the node on which the file resides.
It is up to the system manager to make that information available to more boot nodes, if desired.

169

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

Both CLUSTER_CONFIG.COM and NET$CONFIGURE.COM modify the file
SYS$MANAGER:NET$MOP_CLIENT_STARTUP.NCL for the node on which the procedure is
invoked. If the file is found in SYS$SYSROOT:[SYSMGR], it is modified and left in that location.
Similarly, if the file is found in SYS$COMMON:[SYSMGR], it is modified and left in that location.

One way of allowing more boot nodes to access NET$MOP_CLIENT_STARTUP.NCL is to move it
to SYS$COMMON:[SYSMGR]NET$MOP_CLIENT_STARTUP.NCL. All nodes in the OpenVMS
Cluster then have access to it.

Alternatively, you can create one file for common MOP client information.
Designated boot nodes can execute this file by placing @ncl_script_name in their own
SYS$MANAGER:NET$MOP_CLIENT_STARTUP.NCL file. This method requires more work by
the system manager, however, because the configuration procedures does not modify the common file
directly.

9.2. Using an OpenVMS Cluster Alias
All or some nodes in an OpenVMS Cluster environment can be represented in the network as a single
node by establishing an alias for the OpenVMS Cluster. To the rest of the network, an alias node looks
like a normal node. It has a normal node object entry in the namespace, which provides a standard
address tower. The alias has a single DECnet address that represents the OpenVMS Cluster environment
as a whole. The alias allows access to common resources on the OpenVMS Cluster environment without
knowing which nodes comprise the OpenVMS Cluster.

Using an alias never precludes using an individual node name and address. Thus, a remote node can
address the OpenVMS Cluster as a single node, as well as address any OpenVMS Cluster member
individually.

You decide which nodes participate in an alias. It is not necessary for every member of an OpenVMS
Cluster environment to be part of the alias. Those nodes in the OpenVMS Cluster environment that
have specifically joined the alias comprise the alias members, and connections addressed to the alias are
distributed among these members. You can also have multiple aliases. Multiple aliases allow end nodes
to be members of more than one alias. Multiple aliases also allow a mixed architecture cluster. You can
have one alias for all the nodes, one for I64 systems, and another for the Alpha systems.

You can have a maximum of three aliases. Members of the same alias must be members of the same
OpenVMS Cluster environment. Nodes joining the same alias must be in the same DECnet area.

When creating multiple aliases, the first alias created is used for outgoing connections for any
applications, with the outgoing alias attribute set to TRUE. If this alias is not enabled, the local node
name is used for the outgoing connection.

Finally, nodes that assume the alias should have a common authorization file.

Note

There must be at least one adjacent DECnet Phase V router on a LAN to support an OpenVMS Cluster
alias. A single router can support multiple OpenVMS Cluster environments on a LAN. Providing alias
support does not prevent a router from providing normal routing support.

OpenVMS Cluster environments do not have routers. If all nodes on a LAN that form a complete
network are DECnet Phase V end nodes, no router is required. Any member of the OpenVMS Cluster
can communicate with any system on the LAN. If, however, the LAN is part of a larger network or there

170

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

are Phase IV nodes on the LAN, there must be at least one adjacent DECnet Phase V router on the
LAN. The adjacent DECnet Phase V router allows members of the cluster to communicate with Phase
IV nodes or systems in the larger network beyond the LAN.

9.2.1. Adding a Node to an OpenVMS Cluster Alias
To add a node in an OpenVMS Cluster environment to the alias, use the NET$CONFIGURE.COM
procedure. For information about NET$CONFIGURE.COM, refer to the VSI DECnet-Plus for OpenVMS
Installation and Configuration.

Note

You must run NET$CONFIGURE.COM on each node in the OpenVMS Cluster environment that you
want to become a member of the alias.

9.2.2. Adding an OpenVMS Cluster Alias to the
Namespace
Before an alias can be identified by name, you must create a node object entry for it in the namespace.
Do this only once for each OpenVMS Cluster.

To add an object entry for an OpenVMS Cluster alias in a DECnet Phase V area, you need:

● The DECdns full name (such as .site.group.my_alias)

● The node id (which is a unique Phase IV-style address such as 63.135)

The decnet_register tool converts a Phase IV-style address of the form area.node into a 6-byte address
when registering a Phase IV node (see Section 5.3.5, "Registering or Modifying a Node" and Chapter 5,
"Managing Name Service Searches and Information" for decnet_register). (In Phase IV, an area has a
value in the range of 1–63, and a node has a value in the range of 1–1023. For example, 63.135.) The
converted 6-byte address has the form AA-00-04-00-87-FC.

If you are converting an existing Phase IV OpenVMS Cluster to DECnet Phase V, use the existing Phase
IV alias address for the Node ID when configuring and registering the alias. If you are installing a new
OpenVMS Cluster in a DECnet Phase V network, use any Phase IV-style address that is unique to your
network for the node ID when configuring and registering the alias.

Note

The node ID you use when registering your alias in the namespace must be the same Node ID you use
when configuring the alias module using NET$CONFIGURE.

9.2.3. Configuring Multiple OpenVMS Cluster Aliases
If you want to set a default outgoing alias for particular nodes in an OpenVMS Cluster, use the following
command:

ncl> set alias port port-name outgoing default true

If you want to set an specific outgoing alias for an application, use the following command:

171

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

ncl> set session control application application-name -
_ncl> outgoing alias true, outgoingalias name alias-name

If you define application outgoingalias name, this supersedes the setting of the alias port outgoing default
attribute.

If you set the application’s outgoing alias attribute to true and you do not set the application’s
outgoingalias name attribute, the alias name for which you set the alias port outgoing default attribute to
true is used.

If the alias specified by the application’s outgoingalias name attribute is not enabled, the local node name
is used. If neither alias port outgoing default nor application outgoingalias name is set, the first alias
created is used as the default for the system. If this alias is not enabled, the local node name is used.

9.2.4. Controlling Connect Requests to the OpenVMS
Cluster Alias
When a node tries to connect to an alias node, it does not know that its destination is an alias. It consults
the namespace to translate the alias node name into an address, and uses the address to send data packets
to the alias. Data packets can arrive at any node that is an alias member. When a node in the alias
receives a request for a connection to the alias, that node selects a member node (possibly itself) to own
the connection.

The node makes its selection based on the following criteria:

● First, it checks to see which nodes in the alias are enabled to receive incoming alias connections for
the target application in the session control application entity. For more information about connecting
to network applications, see Section 9.2.4.1, "Controlling Connections to Network Applications".

● Second, it checks that nodes have not exceeded their maximum connections as defined in the NSP
or OSI transport module. For more information about the quota of alias connections, see Section
9.2.4.2, "Controlling the Number of Connections Allowed for an Alias".

● Third, for nodes able to accept incoming connect requests, it checks which nodes have a non-zero
selection weight attribute. The higher the selection weight value, the more alias connections the node
can have. For more information about selection weight, refer to the VSI DECnet-Plus for OpenVMS
Network Control Language Reference Guide.

Once an eligible node is selected, the incoming connect request is forwarded to that node, and the
connection is established.

Note

Each connection to the alias is associated with one node, which is a member of the alias. If there is a
problem with that node, the connection is lost. It is not transferred to another node in the alias.

9.2.4.1. Controlling Connections to Network Applications
If your node is in an OpenVMS Cluster environment using an alias, you can specify which network
applications will use incoming and outgoing connections in the application database. If you are using the
defaults as specified by VSI for the applications that are supplied with DECnet-Plus, the default is that
only the MAIL application is associated with the alias (for outgoing connections). If other applications

172

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

have been added to the database (such as Rdb, DQS, or your supplied application), outgoing alias for the
objects associated with those applications can be enabled.

If you converted from Phase IV to Phase V (or added or changed objects prior to installing DECnet-
Plus), the objects will not change back to the defaults.

When MAIL is associated with the alias, MAIL effectively treats the OpenVMS Cluster as a single node.
Ordinarily, replies to mail messages are directed to the node that originated the message; the reply is not
delivered if that node is not available. If the node is in an OpenVMS Cluster and uses the OpenVMS
Cluster alias, an outgoing mail message is identified by the alias node address rather than the individual
address of the originating node. An incoming reply directed to the alias address is given to any active
node in the OpenVMS Cluster and is delivered to the originator’s mail file.

The alias permits you to set a proxy to a remote node for the whole OpenVMS Cluster rather than for
each node in the OpenVMS Cluster. The proxy for the OpenVMS Cluster system can be useful if the
alias node address is used for outgoing connections originated by the application file access listener FAL,
which accesses the file system.

Also, do not allow applications, whose resources are not accessible clusterwide, to receive incoming
connect requests directed to the alias node address. All processors in the OpenVMS Cluster must be able
to access and share all resources (such as files and devices). For more information about sharing files
in an OpenVMS Cluster environment, see Section 9.3, "Sharing Network Applications in an OpenVMS
Cluster Environment".

The following example configures a session control application entity to enable or disable incoming or
outgoing connect requests. Refer to VSI DECnet-Plus for OpenVMS Network Control Language Reference
Guide for more information about these attributes.

ncl> create session control ncl> enable session control
ncl> create session control application mail ncl> create session control
 application foo
ncl> set session control application mail -
_ncl> outgoing alias true
ncl> set session control application foo -
_ncl> incoming alias false
ncl> enable session control application mail ncl> enable session control
 application foo

Specifies that the network application, MAIL, use the OpenVMS Cluster alias rather than the node
address for outgoing connections.

Restricts incoming connections to only those applications that are appropriate. For example, this
command specifies that the network application foo is not allowed to receive incoming connect
requests that are directed to the alias.

Section E.2, "Session Control Application" provides more examples of setting up a session control
application entity.

9.2.4.2. Controlling the Number of Connections Allowed for an
Alias
The number of connections allowed for an alias equals the number of connections you have specified
with the nsp maximum transport connections or osi maximum transport connections characteristic.
For more information about configuring the NSP and OSI transports, refer to the VSI DECnet-Plus for
OpenVMS Installation and Configuration.

173

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

9.2.4.3. Restriction When Using Applications Supported Using
Cluster Aliases
Incoming connections to applications using a cluster alias are forwarded to cluster members differently
depending upon whether the application entity’s address characteristic contains a number parameter
(equivalent to Phase IV’s connect by object number) or a task parameter (equivalent to Phase IV’s
connect by object name).

For incoming connections by object number, the Alias module has access to a cluster-wide object
number table that specifies which object numbers have been defined for each cluster member and the
status of their incoming alias characteristic. The result is that the connection forwarding mechanism
works as expected. Connections are forwarded to cluster members correctly depending on whether the
application exists on the member and on the setting of the application’s incoming alias characteristic.

For incoming connections by object name, the cluster-wide object number table cannot be used.
Therefore, connections are forwarded to cluster members regardless of whether the application exists
on a given member and regardless of the setting of the application’s incoming alias characteristic on the
given member.

If you wish to restrict access to an application supported using a cluster alias (either by not having the
application present on a member or by setting the incoming alias characteristic to false on a member),
you must create the session control application entity using the number keyword for the address
characteristic (that is, supplying the object number), so that the cluster-wide object number table can be
used to direct the connection to the appropriate members.

9.3. Sharing Network Applications in an
OpenVMS Cluster Environment
If your OpenVMS Cluster environment participates in a DECnet Phase V network, you must decide
if you want nodes in the OpenVMS Cluster to share common network definitions for such items as
network applications.

Sharing common network definitions simplifies updates. You change only the shared definitions
rather than changing definitions for each member of the OpenVMS Cluster. To share files, copy
the following script files from SYS$SPECIFIC:[SYSMGR] (where they are normally created) to
SYS$COMMON:[SYSMGR]:

● NET$APPLICATION_STARTUP.NCL

● NET$MOP_CLIENT_STARTUP.NCL

If you do not want certain files shared, keep them in SYS$SPECIFIC:[SYSMGR]. Keep communication-
specific startup scripts, such as the following, that contain hardware-specific information in
SYS$SPECIFIC:[SYSMGR]:

● NET$ROUTING_STARTUP.NCL

● NET$MOP_CIRCUIT_STARTUP.NCL

● NET$CSMACD_STARTUP.NCL

If the application database is identical on every node in an OpenVMS Cluster environment, you can
share those common definitions among all nodes in the OpenVMS Cluster by issuing the following
commands:

174

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

1. Rename (or move) the application database on one node to the common system root, for example:

$ rename sys$specific:[sysmgr]net$application_startup.ncl -
_$ sys$common:[sysmgr]net$application_startup.ncl

or

$ copy sys$specific:[sysmgr]net$application_startup.ncl -
_$ sys$common:[sysmgr]net$application_startup.ncl

2. Delete (or rename) the application database from the private system root on each node in the
OpenVMS Cluster environment, for example:

$ delete sys$specific:[sysmgr]net$application_startup.ncl;*

or

$ rename sys$specific:[sysmgr]net$application_startup.ncl;* -
_$ sys$specific:[sysmgr]net$application_startup_old.ncl;*

Note

You can also use an option of the NET$CONFIGURE procedure to move the files. See the VSI
DECnet-Plus for OpenVMS Installation and Configuration for more information.

175

Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus

176

Chapter 10. Downline Loading
and Upline Dumping Remote
Systems
A system running DECnet-Plus software can act as a host system that performs the following services for
remote client systems:

● Downline load a memory image to a network server, such as a wide area router or DECNIS router,
or an OpenVMS Cluster satellite

● Upline dump memory from a network server

● Use the console carrier on a network server

● Use the configuration monitor

● Run loopback tests (refer to the VSI DECnet-Plus for OpenVMS Problem Solving Guide)

The Maintenance Operations Protocol (MOP) module allows you to do these tasks. You can downline
load or upline dump DECnet Phase IV or Phase V nodes. Table 10.1, "Supported Data Links and
Associated Functions for MOP" lists the data links that MOP supports and the supported functions for
those links.

Table 10.1. Supported Data Links and Associated Functions for MOP

CSMA-CD and
FDDI IEEE 802.3
LAN

CSMA-CD
Ethernet LAN

HDLC Synchronous
DDCMP

LAPB

Loop requester Loop requester Loop requester Loop requester Loop requester
Console requester Console requester Console requester Console requester
Dump server Dump server Dump server Dump server
Load server Load server Load server Load server
Configuration
monitor

Configuration
monitor

Console carrier Console carrier
Query requester
Test requester

10.1. Automatically Configuring MOP
You can automatically set up a basic MOP configuration by running the network configuration
procedure. For more information about the configuration procedure, refer to your installation and
configuration guides.

Either the configuration procedure creates MOP scripts from the information you supply to the prompts
or the software provides a permanent client database:

177

Chapter 10. Downline Loading and Upline Dumping Remote Systems

● The mop client startup script creates and enables the mop entity. Initially, this file does not define
any clients.

sys$manager:net$mop_client_startup.ncl

● The mop circuit startup script creates a mop circuit, links it to a data link station, and then enables
the circuit.

SYS$MANAGER:NET$MOP_CIRCUIT_STARTUP.NCL

If you start MOP (see Section 10.3) after running your configuration procedure, MOP can do its various
tasks provided that you supply all necessary attributes in the NCL command or in the passive load
request. This includes:

● An NCL command that supplies the address of the client, as well as the names of all images to be
loaded

● A passive load request from a device, specifying a file name to be loaded

To downline load an OpenVMS Cluster satellite or to store information about downline loads to specific
network servers, you can use the mop client database. The mop client database stores information, so
you do not have to enter it every time you issue an NCL command.

The mop client database is the NET$MOP_CLIENT_STARTUP.NCL script file. You can add
information to or delete information from it with the NET$CONFIGURE.COM Option 8, "Configure
MOP Client database." If you want to add a client, the procedure prompts you for information about the
client such as the following:

● Client name

● Circuit name

● LAN addresses

● Secondary loader

● Tertiary loader

● System image

● Diagnostic image

● Script file

● Management image

Note

To automatically configure an OpenVMS Cluster satellite, use the cluster configuration command
procedure (CLUSTER_CONFIG.COM). For more information about CLUSTER_CONFIG.COM, refer
to the VSI OpenVMS Cluster Systems Manual.

10.2. Manually Configuring MOP
The following sections show the commands to create the mop entities you need to accomplish the tasks
described in this chapter. For the variables, substitute values appropriate to your configuration. Refer to
the VSI DECnet-Plus for OpenVMS Network Control Language Reference Guide for more information

178

Chapter 10. Downline Loading and Upline Dumping Remote Systems

about these attributes. Section 10.2.2, "Setting Up a MOP Client for a Network Server" shows how to set
up the mop client for a network server, while Section 10.2.3, "Setting Up a MOP Client for an OpenVMS
Cluster Satellite" shows how to set up the mop client for an OpenVMS Cluster satellite.

10.2.1. Configuring MOP and MOP Circuits
This section shows how to create mop and mop circuits entities. Figure 10.1, "mop Entity" shows the
mop entity and its subentities.

Figure 10.1. mop Entity

1. Create and enable the mop entity as follows:

 ncl> create mop
ncl> enable mop

2. Create a mop circuit entity and use the set command to customize the entity definition for the
specified circuit:

ncl> create mop circuit csmacd-0 type csma-cd
ncl> set mop circuit csmacd-0 -
_ncl> link name csma-cd station csmacd-0,
_ncl> known clients only value
ncl> enable mop circuit csmacd-0 -
_ncl> functions (load server, dump server, console requester, -
_ncl> configuration monitor, loop requester, query requester, -

179

Chapter 10. Downline Loading and Upline Dumping Remote Systems

_ncl> test requester)

Specify any name you want for circuit, but for convenience you might want to specify the same
name you used for the station entity (see next callout).

For the data link station name, specify the name of the circuit you used when you created the
csma-cd station entity. (For more information about the csma-cd station, see Section 8.3.1.1,
"Creating CSMA-CD Data Links".)

Specifies whether MOP should attempt to service load requests from remote systems that do
not have a corresponding client entity. Some network servers are designed to request specific
software by name. In such a case, there is no need for a client entity to exist.

By default (false), MOP tries to process requests for named software from unknown clients. Set
this attribute to true if you want MOP to ignore such requests.

Specify one or more functions for which you want to use MOP. For instance, specify console
requester if you want to use the boot mop or load mop commands or the console carrier.

Do not enable the configuration monitor unless you plan to use it, because it consumes
relatively large amounts of system resources.

Note that for each mop circuit entity, DECnet-Plus dynamically creates a mop circuit operation entity for
each ongoing MOP operation. Thus, you can issue the show command for mop circuit entities to display
current values of their characteristics. For example:

ncl> show mop circuit circuit-name operation * all

10.2.2. Setting Up a MOP Client for a Network Server
You can have a variety of network servers on a network. Different kinds of network servers require
different levels of information for downline loading and upline dumping. For instance, a terminal server
requires the hardware address and the system image. A DECnet Phase V router requires the hardware
address, the system image, and the management image or script file, depending on the kind of router you
have.

For information about configuring a mop client for an OpenVMS Cluster satellite, see Section 10.2.3,
"Setting Up a MOP Client for an OpenVMS Cluster Satellite".

The following command example shows how to set up and define the characteristics for the mop
client subentity for a network server. The mop client is a set of characteristics that represents the target
node. These collected characteristics are known as the client database. The example shows all possible
information you might need to provide. Refer to your network server documentation for the exact
information you need to provide.

ncl> create mop client client-name
ncl> set mop client client-name -
_ncl> circuit circuit-name,-
_ncl> addresses {lan-address, hardware-address}, -
_ncl> secondary loader {filename}, -
_ncl> tertiary loader {filename}, -
_ncl> system image {filename}, -
_ncl> diagnostic image {filename}, -
_ncl> script file {filename}, -
_ncl> management image {filename}, -
_ncl> verification octet-string,-

180

Chapter 10. Downline Loading and Upline Dumping Remote Systems

_ncl> device types {device-types}, -
_ncl> phase iv client address phase-iv-address,-
_ncl> phase iv client name phase-iv-name,-
_ncl> phase iv host address phase-iv-address,-
_ncl> phase iv host name phase-iv-name,-
_ncl> dump file {filename}-
_ncl> dump address address

Specifies the name of the MOP circuit over which this client can be reached.

Phase IV nodes can use an extended DECnet LAN address as well as their hardware address, so
you must include both of these addresses in the addresses set.

Note

For clients configured with NET$CONFIGURE, the extended Phase IV DECnet address is
automatically added if you supply the Phase IV client address when prompted. For clients
configured with NCL, you must manually include the additional address.

To calculate the extended Phase IV LAN address, proceed as follows:

1. Convert the Phase IV node address (in the format area-number.node- number) to its decimal
equivalent, using the following conversion algorithm:

(area-number * 1024) + node-number

2. Convert the decimal node address to its hexadecimal equivalent, reversing the order of the bytes
to form the hexadecimal node address.

3. Incorporate the hexadecimal node address in the following format:

aa-00-04-00-hexnodeaddress

For example, to determine the Ethernet physical address of a node whose node address is 63.171,
calculate the following:

(63 * 1024) + 171 = 64683 decimal = FCAB hexadecimal

This calculation results in the following Ethernet physical address of the node:

aa-00-04-00-ab-fc

secondary loader, tertiary loader, system image, diagnostic image, script file, and management
image all specify files that can be used during a downline load.

The load sequence for a client-initiated request is as follows: The first program to run at the target
node is the primary loader. Typically, this program is either executed directly from the client’s
bootstrap ROM, or it is in the microcode of the load device. Usually, the primary loader requests a
secondary loader program, which then might request a tertiary loader, which, in turn, might request
an operating system. The final module to be loaded is the management file or the CMIP script file.
In this sequence, each program or file requests the next one until the management file or CMIP
script file is loaded.

Refer to your network server documentation to find out which of these files you need. In some
cases, the client might specify a file name when it requests to be loaded; in this instance, you do
not have to specify the file when setting up the client.

181

Chapter 10. Downline Loading and Upline Dumping Remote Systems

Fields in these file specifications are defaulted. If the file specification comes from the client
database, the default device and directory are provided by the logical name MOP$LOAD. If
the client specifies a file name in the load request message, the default device and directory
are provided by the logical name MOP$NAMED_LOAD. These logical names are created by
NET$STARTUP, but you can modify them. The default file type is .SYS for the secondary loader,
tertiary loader, system image, and diagnostic image files. It is .DAT for management images and
CMIP script files.

Specifies the verification string. The value is an octet string of up to 16 hexadecimal digits. Enter
the value as "%X" followed by an even number of digits. For more information about specifying a
verification string, see Section 10.2.2.1, "Setting Up MOP Service Passwords on a Network Server".
The default is %X0000000000000000.

Specifies one or more device types associated with this client. Use device types and omit addresses
if you want to set up a generic client entity. The entity will be used for any incoming load or dump
requests that specify a matching communications device type. To discover the communications
device type for a particular network server, refer to your network server documentation, or use the
configuration monitor function of MOP.

Use phase iv client address, phase iv client name, phase iv host address, and phase iv host name
to specify client and host names and addresses for Phase IV systems. Enter these in the area-
number.node-number format.

dump file specifies the file to which MOP writes when it dumps the network server. Refer to your
network server documentation for information about dump support for your server.

The default device and directory are provided by the logical name MOP$DUMP. This logical
name is created by NET$STARTUP but you can modify it. The default file type is .dmp.

dump address specifies the first location of client memory to be dumped. Specifying any value
other than zero might affect your ability to use a dump analysis tool on the dump file. Change the
dump address only if your client documentation suggests such action.

10.2.2.1. Setting Up MOP Service Passwords on a Network Server
To guard against unauthorized access, some network servers require that a 16- digit hexadecimal service
password be present in MOP load, boot, or remote console requests. The way the password is set up
for a particular server depends on the design of that server. For example, a server might use a console
command to change a password held in nonvolatile RAM.

When you attempt to boot the server using the NCL boot or load commands, or to connect to the
server’s remote console using the ccr command, you must specify the correct password, or the server
ignores the request. You can specify the password in the verification client attribute or command
parameter.

When using NCP in a Phase IV network, the service password is interpreted as an unsigned integer of
up to 16 hexadecimal digits. You can omit leading zeros. In keeping with the definition as an integer, the
rightmost digits occupy lower addresses in memory than did the leftmost digits.

When using NCL in a DECnet Phase V network, the service password or verification value is interpreted
as an octet string of up to 16 hexadecimal digits. You can omit trailing (rightmost) zeros on input.
Leftmost digits occupy lower addresses in memory than do rightmost digits.

If a particular network server provides a command to set up the password value, the password syntax
might be like NCP, treating the value as an integer, or it might be like NCL, treating the value as an

182

Chapter 10. Downline Loading and Upline Dumping Remote Systems

octet-string. If the server’s syntax is like NCP, you need to specify the password in different ways on the
server and on the host system.

To convert an NCP-style value to an NCL-style value, do the following:

1. Add leading zeros to make the value exactly 16 digits.

2. Working from right to left on the NCP-style value, copy each pair of digits to the NCL-style value.

3. Prefix the NCL-style value with "%X".

For example, if you have an NCP service password value of:

123456789ABCD

The NCL verification value is:

%XCDAB896745230100

Note

When using the Common Trace Facility (CTF) to trace MOP activity, the trace shows the bytes of the
verification value in the order in which they are transmitted, which corresponds to the order in memory.
For the NCL verification value:

%XCDAB896745230100

you would receive the following trace analysis output:

Verif=CD-AB-89-67-45-23-01-00

10.2.3. Setting Up a MOP Client for an OpenVMS
Cluster Satellite
The following command example shows how to set up and define the characteristics for the mop client
subentity for an OpenVMS Cluster satellite. The mop client represents the target node. You can either
use the commands listed below to set up your OpenVMS Cluster satellite or you can use the command
procedure CLUSTER_CONFIG.COM. For more information about CLUSTER_CONFIG.COM, refer to
the VSI OpenVMS Cluster Systems Manual.

ncl> create mop client client-name
ncl> set mop client client-name -
_ncl> circuit circuit-name,-
_ncl> addresses {lan-address}, -
_ncl> system image {"@net$niscs_laa(dev:[root.])"}, -
_ncl> verification octet-string

Specifies the load assist agent. The load assist agent is an image that supplies MOP with the initial
OpenVMS load image for the OpenVMS Cluster satellite. DEV:[ROOT.] indicates that you should
specify the system root for the OpenVMS Cluster satellite you are loading. For more information
about OpenVMS Cluster satellites, refer to VSI OpenVMS Cluster Systems Manual.

Specifies the verification string. The value is an octet string of up to 16 hexadecimal digits. Enter
the value as "%X" followed by an even number of digits. For more information about specifying a

183

Chapter 10. Downline Loading and Upline Dumping Remote Systems

verification string, see Section 10.2.2.1, "Setting Up MOP Service Passwords on a Network Server".
The default is %X0000000000000000.

Note

OpenVMS Cluster satellites do not use upline dumping; rather, they write their memory image to
the boot server’s disk.

Section E.6, "MOP" provides an example of configuring MOP for either an OpenVMS Cluster satellite or
a network server.

10.2.4. After Configuring MOP
After you have created the entities, defined their characteristics, and enabled the mop client entities and
the mop circuit entities, use the load, boot, loop, query, and test commands to perform MOP operations.
(For information about using the load and boot commands, see Section 10.5.1, "Using the NCL Load
Command" and Section 10.5.2, "Using the NCL Boot Command".) For information about using the loop,
test, and query commands, refer to the VSI DECnet-Plus for OpenVMS Problem Solving Guide. Use the
show command to display information about all aspects of the mop entity and MOP operations.

10.2.5. MOP’s Use of Default Directories
MOP uses logical names to identify directories where it expects to find images or to write dump files.
MOP defines the logical names shown in Table 10.2, "MOP Logical Names and Default Definitions" in
NET$STARTUP.COM.

Table 10.2. MOP Logical Names and Default Definitions

Logical Name Use Default Definition

MOP$LOAD Directory that MOP searches for
files specified for a client in the
MOP client database, if they are
specified without a directory

SYS$SYSROOT:<MOM$SYSTEM>,
SYS$SYSTEM:

MOP$NAMED_LOAD Directory that MOP searches for
files named in the software id
field of a MOP request program
message issued by a network
server requesting a downline load

SYS$SYSROOT:<MOM$SYSTEM>

MOP$DUMP Directory to which MOP writes a
dump file in response to a MOP
request dump message issued by
a network server

SYS$SYSROOT:<MOM$SYSTEM>

Phase IV DECnet used a set of MOM$XXX logical names. Network server software already installed
on your system and network server installation kits that have not yet been updated for DECnet Phase
V expect these MOM$XXX logical names. For backward compatibility, NET$STARTUP.COM defines
these MOM$XXX logical names to their default Phase IV values.

Some network servers, however, create a separate directory for their files. Network server
instructions for a Phase IV DECnet environment tell you to redefine a MOM$XXX logical
name to include that separate directory. For example, the DECserver 700 product places

184

Chapter 10. Downline Loading and Upline Dumping Remote Systems

its files in SYS$SYSROOT:[DECSERVER], and expects MOM$LOAD to be redefined to
SYS$SYSTEM,SYS$SYSROOT:[DECSERVER].

For DECnet-Plus to load such network servers, you must redefine MOP logical names to include the
directories in which their files reside. Network servers that do not have a MOP client database definition
always supply a software id field in the request program message they transmit when requesting a
downline load. For these network servers, redefine the logical name MOP$NAMED_LOAD to include
the directory. For example:

 $ define mop$named_load sys$sysroot:[mom$system],sys$sysroot:[decserver]

For network servers that have a MOP client database definition, either you can modify the MOP$LOAD
logical name, or you can modify the MOP client file specifications to include the directory specification.
For example, if the client files reside in SYS$SYSROOT:[FOODIR], change:

 ncl> set mop client fred system image {foobar.sys}

to

 ncl> set mop client fred system image {sys$sysroot:[foodir]foobar.sys}

You must redefine these logical names after the network is started. If you start your network during
system boot, edit SYS$MANAGER:NET$LOGICALS.COM to include these definitions. VSI
recommends that you do not edit NET$STARTUP.COM, since that file will be replaced by a new
version in future releases of DECnet-Plus.

10.3. Starting MOP
During the system boot operation NET$STARTUP.COM executes. By default, NET$STARTUP.COM
does not start MOP. If you want MOP to start automatically, you can define the logical name
NET$STARTUP_MOP by adding it to SYS$MANAGER:NET$LOGICALS.COM. For example:

$ define net$startup_mop true

If you do not start MOP automatically, you can start MOP manually any time after starting the network
by entering the following command:

$ @sys$system:startup network mop

This command creates the process portion of MOP, NET$MOP, in a detached process. The command
also executes the NET$MOP_CLIENT_STARTUP.NCL and NET$MOP_CIRCUIT_STARTUP.NCL
scripts.

By default, MOP writes status messages to the file SYS$MANAGER:NET$MOP_OUTPUT.LOG.
You can override the default log file by defining a logical name for it before starting
MOP. The following command defines NET$MOP_OUTPUT to the file name
SYS$MANAGER:MOP_APR95_STATUS.LOG:

$ define net$mop_output sys$manager:mop_apr95_status.log

10.3.1. New MOP Receive Buffer Limit
DECnet-Plus implements a MOP receive buffer limit to prevent memory depletion. The receive default
is 100. You can modify this by defining the MOP$RECEIVE_LIMIT logical prior to MOP startup. A
value of zero means no limit.

185

Chapter 10. Downline Loading and Upline Dumping Remote Systems

You must define this logical name after the network is started. If you start your network during system
boot, edit SYS$MANAGER:NET$LOGICALS.COM to include this definition. VSI recommends
that you do not edit NET$STARTUP.COM, since that file will be replaced by a new version in future
releases of DECnet-Plus.

If NET$MOP fails because MOP memory has been exhausted by receive buffers, the next thread
creation failure results in a log file containing a %MOP-F-CRETHDF error, and an OPCOM message
indicates that the MOP process is no longer running. You will have to restart MOP.

10.4. Stopping MOP
You can stop the MOP process as follows:

ncl> disable mop

Determine the process id for NET$MOP, by issuing the following command:

$ show system

Then stop the process:

$ stop/id=process-id

As alternative methods for stopping MOP, you can use the following NCL command:

ncl> delete mop

Make sure you have deleted all subentities before using the delete command.

Stopping the process terminates all MOP operations. It disables and deletes all MOP circuits, and then
disables and deletes the mop entity. You can restart MOP any time.

10.5. Downline Loading a Client System
Downline load operations occur in the following ways:

● The client (network server or OpenVMS Cluster satellite) can initiate the downline load by starting
its bootstrap ROM and sending a program load request to an eligible host. See Section 10.5.3,
"Automated Downline Loading".

● You can downline load a remote client from your host by issuing the NCL load or boot commands.
See Section 10.5.1, "Using the NCL Load Command" and Section 10.5.2, "Using the NCL Boot
Command".

10.5.1. Using the NCL Load Command
If you use the NCL load command, you must issue it at a load host. The NCL load command ensures
that the load host at which you issue the command is the node that performs the downline load. You can
specify parameters on the load mop client command lines to override current values in the load host’s
database. To use the load command, you must enable the console requester and load server functions for
the circuit. For example:

ncl> load mop client client-name

186

Chapter 10. Downline Loading and Upline Dumping Remote Systems

Alternatively, you can use the load mop circuit command, which allows you to load a client system that is
not specified in the client database. For example:

ncl> load mop circuit circuit-name -
_ncl> address lan-address,-
_ncl> secondary loader filename,-
_ncl> tertiary loader filename,-
_ncl> system image filename,-
_ncl> script file filename,-
_ncl> management image filename,-
_ncl> verification octet-string

Specifies the name of the MOP circuit over which this client can be reached.

You must specify circuit, address, and system image on the command line because there is no
client database to supply this information. Note that the other parameters listed are optional, but
that some client systems might require them.

Specifies the verification string. The value is an octet string of up to 16 hexadecimal digits. Enter
the value as "%X" followed by an even number of digits. For more information about specifying a
verification string, see Section 10.2.2.1, "Setting Up MOP Service Passwords on a Network Server".
The default is %X0000000000000000.

After you issue the load command on the load host, the downline load proceeds as follows:

1. The load host sends a mop boot message specifying that the load should occur from the host.

2. When the client receives this message, it sends a mop request program message directly to that load
host.

3. The load host and the client use additional MOP messages to transfer the client’s software image or
images into the client’s memory.

Note

Not all network servers support the NCL load command. If you issue a load command to a server
that does not support it, the server treats the command as if it were a boot command. Refer to your
network server documentation for information about load command support for your server.

10.5.2. Using the NCL Boot Command
If you use the NCL boot command, you can issue it from any supported network management host. This
command simulates the operation that occurs when you push the boot button on the client node. The
boot command allows you to directly start the remote node’s bootstrap ROM, which causes the client
to load itself in whatever manner its primary loader is programmed to operate. Usually the client boots
from the network, but it can also boot from a local disk. To use the boot command, you must enable the
console requester function for the circuit. For example:

ncl> boot mop client client-name

Alternatively, you can use the boot mop circuit command, which allows you to load a client system that
is not specified in the client database. For example:

 ncl> boot mop circuit circuit-name -
_ncl> address lan-address,-

187

Chapter 10. Downline Loading and Upline Dumping Remote Systems

_ncl> verification octet-string,-
_ncl> device device-name,-
_ncl> software id software-id,-
_ncl> script id script-id

Specifies the name of the MOP circuit over which this client can be reached.

Specifies the address to which the boot message is sent. This value is required for LANs, but can
be defaulted from the client entity.

Specifies the verification string. The value is an octet string of up to 16 hexadecimal digits. Enter
the value as "%X" followed by an even number of digits. For more information about specifying a
verification string, see Section 10.2.2.1, "Setting Up MOP Service Passwords on a Network Server".
The default is %X0000000000000000.

Specifies the device from which the remote node is to boot itself. The interpretation and use of this
parameter depends solely on the remote system.

Specifies the name of the software with which the remote node loads itself. The interpretation and
use of this parameter depends solely on the remote system.

Specifies the name of the CMIP script used during the load. The interpretation and use of this
parameter depends solely on the remote system.

After you issue the NCL boot command on one of the network’s management hosts, the downline load
proceeds as follows. (This system can also be one of your load hosts, but it is not required.)

1. The management host sends a mop boot message with the default boot option specified.

2. When the client receives this message, it transmits a mop request program message to all nodes on
the LAN.

If communication is taking place over a synchronous link, the client sends the mop request program
message to the adjacent node on the link. The adjacent node issued the boot command.

3. The first system that responds to the client becomes the client’s load host. The load host and the
client use additional MOP messages to transfer the management host’s software image into the
client’s memory. The client ignores other responders once the load is in progress.

On a synchronous link, the load host transfers the software image to the client.

10.5.3. Automated Downline Loading
Automatic load service is the means by which client systems can request to be loaded with some
software, without involving an operator or network manager on the load host.

The requirements for automatic load service are twofold:

● The load server function must be enabled for the circuit.

● A mop client entity must usually have been created to hold the parameters that are needed during the
load.

You can use the client parameters in the following ways:

● Parameters to map load request to client entity

188

Chapter 10. Downline Loading and Upline Dumping Remote Systems

The circuit and addresses parameters must be set correctly because these parameters from the
incoming request message are used to locate the client entity.

Alternatively, you can create a generic client entity by omitting addresses and using the device types
parameter. Such a client entity will match any load request that specifies a communications device
type that occurs in the device types set.

● Files used during the load

The client system asks for software in generic terms, for example, a load request might ask for "the
operating system." The various file attributes, in this case system image, are used to locate the file to
be loaded. More than one file specification may be given; the first file that can be opened is used.

The design of the client system determines which of the various files (secondary loader, system
image, and so forth) are needed. The configuration information for the client should give you this
information.

● Parameters to be given to the loaded client

These parameters are set by the phase iv client and phase iv host attributes. They are necessary if
the client is to operate with Phase IV DECnet protocols, and they might also be needed for DECnet
Phase V systems. Refer to your network server configuration documentation for more information.

More than one load host can be set up to load the same client system; the first to respond loads the
client.

Certain client systems are designed to ask for software by name. The load request message contains
the file name part of the file specification. For such requests, MOP attempts to satisfy the load even if
no client entity is defined (that is, even if no client matches the incoming message’s circuit and LAN
address).

MOP looks for the requested file using logical name MOP$NAMED_LOAD: as the search path,
and .sys as the file type.

You can prevent MOP from loading unknown clients by setting the circuit parameter known clients only
to true.

You can record MOP events showing a client-initiated downline load with the event dispatcher. To find
out about the events you receive, refer to VSI DECnet-Plus for OpenVMS Network Control Language
Reference Guide. For information about using the event dispatcher to record events, see Chapter 12,
"Monitoring Network Events".

10.5.4. Supported Image Formats for Downline Loading
DECnet-Plus supports the following image formats for downline loading:

● Native OpenVMS system image with header. MOP only loads the first image section. Use the linker
qualifiers /SYSTEM/HEADER to create the file in an appropriate format.

● RSX task image without task header. Use the /-HD when building the task.

● VAX ULTRIX image files, in omagic, nmagic, or zmagic format. These formats correspond to the ld
options -N, -n, and -z, respectively.

● RISC ULTRIX image files, in omagic format only. Use the ld option -N to create a suitable image.

189

Chapter 10. Downline Loading and Upline Dumping Remote Systems

The correct choice of image attributes such as base address and transfer address depends on the
hardware involved and on the primary ROM bootstrap loaders.

Management image and CMIP script files must be in RMS variable-length record format.

10.6. Automated Upline Dumping
Automatic dump service is the means by which client systems can request to be dumped, without
involving an operator or network manager on the dumping host. When a network server detects a system
failure, it sends dump request to the host, or, on the LAN, to a dump assistance multicast address if a
LAN host is not available. After a host responds, the network server dumps its memory. It is a valuable
tool for crash analysis because you can analyze the dump file and determine why the network server
failed.

There are two requirements for automatic dump service:

● The dump server function must be enabled for the circuit.

● A mop client entity must usually have been created to hold the parameters that are needed during the
dump.

The client parameters are used as follows:

● Parameters to map dump request to client entity

The circuit and addresses parameters must be set correctly because these parameters from the
incoming request message locate the client entity.

Alternatively, you can create a generic client entity by omitting addresses and using the device types
parameter. Such a client entity will match any load request that specifies a communications device
type that occurs in the device types set.

● Parameters used during the dump

The dump file parameter names the file to be created to hold the memory dump data; more than one
file can be specified, in which case the first that can be opened is used.

The dump address parameter specifies the first location to be dumped; this should be left at zero, the
default value.

More than one dump host may be set up to dump the same client system; the first to respond dumps the
client.

Refer to your network server documentation for information about upline dump support for your server.

OpenVMS Cluster satellites do not use upline dumping; instead, they write their memory image to the
disk.

10.7. Console Carrier
The console carrier provides access to the remote console subsystem (ASCII console) of a network
server on a LAN. The console carrier interface does not use NCL. Instead, you enter commands at the
operating system to use the console carrier.

For information about the console carrier, see Appendix F, "Using the Console Carrier".

190

Chapter 10. Downline Loading and Upline Dumping Remote Systems

10.8. Using the LAN Configuration Monitor
The LAN configuration monitor listens for system id messages on the LAN and records the results.
VSI-supplied LAN stations transmit a system id message every 10 minutes on average. Therefore, by
listening to these messages for a long enough period of time, the configuration monitor builds a database
containing details about most systems that are operational.

To enable the configuration monitor, specify the function configuration monitor when you enable the
mop circuit. (See Section 10.2, "Manually Configuring MOP".)

The configuration monitor stores data it collects as a set of station subentities, one for each address from
which a system id is received. The name of a station entity is constructed from the LAN address. Use the
show command to view the contents of this database. To show the contents of the database used by the
configuration monitor, use the following command:

ncl> show mop circuit csmacd-0 station * all

191

Chapter 10. Downline Loading and Upline Dumping Remote Systems

192

Chapter 11. Monitoring the
Network
You can use the NCL show command or logical names to monitor the network.

11.1. Using the NCL Show Command to
Monitor the Network
Use the NCL show command to monitor the following network activity:

● Determine the status and characteristics of components in the network.

● Obtain error and performance statistics about current network operations.

The show command allows you to monitor the operation of the running network. For example, if a
circuit fails, the configuration of the running network in terms of reachable and unreachable nodes might
change. NCL allows you to display information about both local and remote network entities and thereby
detect existing or potential problems.

The show command lets you decide what type of information you want NCL to display about the entity
you specify. You can display the following attributes about an entity:

● Characteristics — describe the operating parameters of an entity as they are defined in the database.

● Counters — tabulate the number of times the entity performed a particular operation, or the number
of times a certain condition or event has occurred since the entity was created.

● Identifiers — specify the simple name assigned to an entity when it was created.

● Status attributes — record current conditions of the entity, such as its state. You need
NET$EXAMINE rights to issue the show command.

11.1.1. Using Counters to Evaluate Network Operations
The counters used for the various entities in DECnet-Plus allow you to monitor network traffic. For
example, you can examine the use of data links and perhaps anticipate network bottlenecks or failing
links. This information can also help you plan future network configurations. To use counters effectively,
you need to determine the rate of change in a counter. To do this, use the NCL snapshot command.

The following sequence of examples show how to use snapshot.

● The following command shows the output for all routing circuit counters using the show command
before using snapshot:

ncl> show routing circuit * all counters
Node 0 Routing Circuit CSMACD-0
at 2019-02-26-08:54:51.436-05:00I0.364
Counters
Data PDUs Received = 0
Data PDUs Fragmented = 0
Data PDUs Transmitted = 2772

193

Chapter 11. Monitoring the Network

Circuit Changes = 1
Initialization Failures = 0
Control PDUs Sent = 11694
Control PDUs Received = 0
Corrupted Hello PDUs Received = 0
Creation Time = 2019-02-25-06:29:17.389-05:00Iinf

● The following command shows the output for all routing circuit counters using the snapshot
command. Note that the command displays the current counters.

ncl> snapshot routing circuit * all counters
Node 0 Routing Circuit CSMACD-0
at 2019-02-26-08:59:06.216-05:00I0.389
Counters
Data PDUs Received = 0
Data PDUs Fragmented = 0
Data PDUs Transmitted = 2793
Circuit Changes = 1
Initialization Failures = 0
Control PDUs Sent = 11733
Control PDUs Received = 0
Corrupted Hello PDUs Received = 0
Creation Time = 2019-02-25-06:29:17.389-05:00Iinf

● The following command shows the output for all routing circuit counters using the show command
after issuing the snapshot command. The difference column in the table shows the difference
between the actual value of the counter and the value of the counter when you used the snapshot
command. Until you exit from NCL, the snapshot display appears whenever you issue the show
routing circuit * all counters command.

ncl> show routing circuit * all counters
Node 0 Routing Circuit CSMACD-0
at 2019-02-26-09:01:09.046-05:00I0.402
Counters
 Creation Time = 2019-02-25-06:29:17.389-05:00Iinf
 Snapshot created at 2019-02-26-08:59:06.216-05:00I0.389
 Actual Value Snapshot Value Difference
 ------------ -------------- ----------
Data PDUs Received 0 0 0
Data PDUs Fragmented 0 0 0
Data PDUs Transmitted 2806 2805 1
Circuit Changes 1 1 0
Initialization Failures 0 0 0
Control PDUs Sent 11786 11785 1
Control PDUs Received 0 0 0
Corrupted Hello PDUs Received 0 0 0

Use this information as a baseline for comparisons with later snapshots. It shows you how much time
has elapsed and lets you see how much activity the counters have recorded between show commands.
The information you obtain from counters might be useful either alone or in conjunction with logging
information to measure the performance of a particular entity.

Note

Snapshot information is only retained for the duration of an NCL session. Therefore, you must enter
the snapshot command and subsequent show commands at the NCL> prompt rather than at the DCL
prompt. To gather snapshot information from a remote node, you can either set the NCL default to the

194

Chapter 11. Monitoring the Network

remote node entity or include the node name in each NCL command, as long as the commands are
issued within the same NCL session.

For a complete summary description of all network counters, including the probable causes of particular
types of occurrences, refer to the VSI DECnet-Plus for OpenVMS Network Control Language Reference
Guide.

11.1.2. Displaying Addresses
An address is a tower set that describes the protocols needed to establish a connection with a node.
Tower sets are stored in the namespace. Output is similar to the following display. Each line of a tower
corresponds to a network protocol layer.

ncl> show node 0 address

Node 0
AT 2019-03-14-10:59:41.194-05:00I8.917
Identifiers
Address =
 {
 (
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV3 , number=19] ,
 [DNA_OSItransportV1 , ’DEC0’H] ,
 [DNA_OSInetwork , 49::00-0C:AA-00-04-00-50-30:21]
) ,
 (
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV3 , number=19] ,
 [DNA_NSP] ,
 [DNA_OSInetwork , 49::00-0C:AA-00-04-00-50-30:20]
) ,
 (
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV3 , number=19] ,
 [DNA_OSItransportV1 , ’DEC0’H] ,
 [DNA_IP , 16.20.120.120 (TRUNDY.GROUP.COMPANY.NET)]
)
 }

Application layer protocol.

Session Control layer. Specifies Session Control version 3 and the application to which to connect
(19 = CML).

OSI Transport layer identifier. Specifies OSI Transport version V1.

Network layer. Specifies Routing version used, the node’s DECdns full name, and NSAP.

Transport layer. Specifies that the transport is NSP.

IP Network layer address.

11.1.3. IP Address Backtranslation
NCL attempts to backtranslate all non-zero IP addresses. Backtranslation is not attempted if the IP
address is 0.0.0.0. The IP address is 0.0.0.0 whenever DECnet over TCP/IP has been enabled, but

195

Chapter 11. Monitoring the Network

DECnet has not yet learned its IP address from the PATHWORKS Internet Protocol (PWIP) software.
The IP address becomes non-zero when the first incoming or outgoing DECnet over TCP/IP or OSI over
TCP/IP connection is made.

The following examples show some of the NCL displays affected by this feature:

NCL>show node 0 addr
...
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV3 , number = 19] ,
 [DNA_OSItransportV1 , ’DEC0’H] ,
 [DNA_IP , 161.114.95.148 (TRUNDY.GROUP.COMPANY.NET)]
...
NCL>show osi transport port * remote rfc1006 ip addr ...
...
 Remote RFC1006 IP Address = 161.114.94.41 (TRUE.GROUP.COMPANY.NET)
...
NCL>show osi transport local nsap ip_any remote nsap * ip addr ...
...
 IP Address = 161.114.94.41 (TRUE.GROUP.COMPANY.NET)
...

In some cases, the backtranslation returns only the unqualified name. For example, an NCL show
command might produce the following display:

[DNA_IP , 161.114.95.148 (TRUNDY)]

If you want to display the fully-qualified host name, you may need to make adjustments to your DNS/
BIND server or to your local hosts database. See the documentation for your DNS/BIND server
implementation for information about modifying DNS/BIND information. To modify your local hosts
database, you need to remove and replace node trundy in the database. If you are using VSI TCP/IP
Services for OpenVMS, use commands similar to the following:

$ tcpip set nohost 161.114.95.148
$ tcpip set host trundy.group.company.net -
_$ /addr=161.114.95.148/alias=trundy

To ensure that the new information is used, you must flush the existing out-of- date CDI cache entry so
that the next CDI lookup returns the new value. To flush the CDI cache entry, use the following NCL
command:

$ mcr ncl flush session control naming cache entry "IP$161.114.95.148"

Note that the backtranslation is done in the context of the local node. In other words, if you were to
compare the output for these two commands performed on two different nodes, the two backtranslations
might not be consistent:

HERE> mcr ncl show addr
THERE> mcr ncl show node here addr

If IP backtranslations are inconsistent, it is possible that the nodes are using different DNS/BIND
servers, that their local hosts databases may be out of sync, or that stale CDI cache entries may exist.

If an NCL command displaying backtranslation information appears to hang, the backtranslation
processing may be waiting for a DNS/BIND server. If this becomes problematic, you can turn off
backtranslations by defining the NCL$ENVIRONMENT logical name (include the definition in
SYS$MANAGER:NET$LOGICALS.COM, see Section 6.3, "Defining Logical Names That Modify
Network Operation") as follows:

196

Chapter 11. Monitoring the Network

$ define/system/nolog ncl$environment "NoBackTrans"

Note

Defining the NCL$ENVIRONMENT to "NoBackTrans" disables ALL backtranslations. VSI
recommends avoiding this remedy if at all possible.

11.1.4. More Examples Using the NCL Show Command
The following examples illustrate how the show command displays information about an end node
routing circuit on a LAN. You can display information about other entities in the same way.

● The following example displays an identifier:

ncl> show routing circuit csmacd-0
Node 0 Routing Circuit CSMACD-0
at 2019-02-26-09:56:26.148-05:00I0.368
Identifiers
 Name = CSMACD-0

● The following example displays entity status: ncl> show routing circuit csmacd-0 state Node 0
Routing Circuit CSMACD-0

ncl> show routing circuit csmacd-0 state
Node 0 Routing Circuit CSMACD-0
at 2019-02-26-09:28:15.032-05:00I0.264
Status
 State = On

● The following example displays a characteristic:

ncl> show routing circuit csmacd-0 manual data link sdu size
Node 0 Routing Circuit CSMACD-0
at 2019-02-26-09:30:24.882-05:00I0.277
Characteristics
 Manual Data Link SDU Size = 1492

● The following example displays a counter:

ncl> show routing circuit csmacd-0 circuit changes
Node 0 Routing Circuit CSMACD-0
at 2019-02-26-09:31:29.597-05:00I0.328
Counters
 Circuit Changes = 1

● The following example displays all counters for a named circuit:

ncl> show routing circuit csmacd-0 all counters
Node 0 Routing Circuit CSMACD-0
at 2019-02-26-09:43:23.042-05:00I0.235
Counters
 Data PDUs Received = 0
 Data PDUs Fragmented = 0
 Data PDUs Transmitted = 5075
 Circuit Changes = 1
 Initialization Failures = 0
 Control PDUs Sent = 12134

197

Chapter 11. Monitoring the Network

 Control PDUs Received = 0
 Corrupted Hello PDUs Received = 0
 Creation Time = 2019-02-25-06:29:17.389-05:00Iinf

● The following example displays all information about an entity:

ncl> show routing circuit csmacd-0 all
Node 0 Routing Circuit CSMACD-0
at 2019-02-26-09:46:16.622-05:00I0.253
Identifiers
 Name = CSMACD-0
Status
 UID = 756F4BB0-58F3-CA11-8008-AA000400784D
 State = On
 Data Link SDU Size = 1492
 Data Link Port = CSMA-CD Port ETA
Characteristics
 Type = CSMA-CD
 Template = ""
 Data Link Entity = CSMA-CD Station CSMACD-0
 Enable PhaseIV Address = True
 Manual Data Link SDU Size = 1492
 Manual Routers = {}
 Inactive Area Address = {}
Counters
 Data PDUs Received = 0
 Data PDUs Fragmented = 0
 Data PDUs Transmitted = 5077
 Circuit Changes = 1
 Initialization Failures = 0
 Control PDUs Sent = 12161
 Control PDUs Received = 0
 Corrupted Hello PDUs Received = 0
 Creation Time = 2019-02-25-06:29:17.389-05:00Iinf

11.2. Using Logical Names to Obtain Status
About the Network
Use the following logical names to obtain status about network startup and configuration:

1. NET$STARTUP_STATUS (defined by network startup)

Possible values include:

● boot — The network has just been initialized, but no components have been enabled or loaded.

● off — The network is off; no components have been loaded or configured.

● shutdown — The network was running previously, but has been shut down by the
NET$SHUTDOWN procedure.

● running — The network software is loaded and running. The running substate determines how
much of the software is running.

○ dependent — The dependent software has been loaded, created, and enabled. Dependent
software includes common trace facility, node entity, and session control entity.

198

Chapter 11. Monitoring the Network

○ data_link — The data link entities have been loaded, created, and enabled.

○ major — All remaining entities have been loaded, created, and enabled, except for event
dispatcher, loopback application, mop, and session control application.

○ all — All components have been loaded, created, and enabled unless they have been disabled
by logical names that can control their operation.

○ off-autogenreq — The network cannot be started until AUTOGEN has been run to tune the
system with the appropriate parameters.

To display status, use the show logical command. For example, to show the status of the network
startup and configuration, enter the following command:

$ show logical net$startup_status
 "NET$STARTUP_STATUS" = "RUNNING-ALL" (LNM$SYSTEM_TABLE)

This command returns with a display indicating that all network software is loaded and running.

2. SYS$NODE (defined by network startup) — Returns the node’s synonym name.

3. SYS$NODE_FULLNAME (defined by network startup) — Returns the node’s full name.

11.3. Monitoring the OSAK Component of
DECnet-Plus
This section describes how you can check that the OSAK component of DECnet-Plus is working
correctly and support OSI applications that are running over this component.

Note

To check whether an OSI application runs over the OSAK component of DECnet-Plus, refer to the
documentation for that application.

The best indication that the OSAK component is working normally is when any OSI application you
are running behaves predictably and efficiently. However, there are tasks you can complete at convenient
intervals to monitor the working of the software:

● Check the numbers of connections, aborts, and releases that occur by examining the OSAK counters
(see Section 11.3.1, "Counting Connections, Releases, and Aborts")

● Check the occurrence of upper layer events by using the DECnet-Plus event dispatching facility (see
Chapter 12, "Monitoring Network Events")

● Check which ports and addresses are active (see Section 11.3.3, "Checking Ports and Addresses")

11.3.1. Counting Connections, Releases, and Aborts
To check the number of connections, releases, and aborts that occur while your application is running,
look at the values of the OSAK counters. You can discover what is normal for your application over a
period of time; abnormal values may then be an indication that something is going wrong.

You can display the values of all the OSAK counters by using the following NCL command:

199

Chapter 11. Monitoring the Network

ncl> show [node node_id] osak all counters

You can display the value of a specified OSAK counter by using the following command:

ncl> show [node node_id] osak counter_name

where

node_id The identifier of the node on which the osak entity
resides

counter_name The name of the counter whose value you want to
check

11.3.2. Monitoring Upper Layer Events
You can monitor the occurrence of events, and find out the rate of occurrence that is normal and
acceptable for the application you are running. A more frequent occurrence might be an indication that
the application you are running is not working properly.

See Chapter 12, "Monitoring Network Events" for information about the DECnet-Plus event dispatching
facility.

11.3.3. Checking Ports and Addresses
You can display the following information, which may help you to check that your application is running
as you expect it to:

1. A list of open ports, which includes the following information:

● Whether a port is being used for an inbound or an outbound connection. The direction status
attribute gives you this information.

● Presentation address (if any) to which the port is connected. The local paddress status attribute
gives you this information.

● The state of the port. The connection state status attribute gives you this information.

Use the following NCL commands to get this information:

○ Display a list of open ports:

ncl> show [node node_id] osak port *

○ Select the port in which you are interested and display all the attributes:

ncl> show [node node_id] osak port port_id all

Here, port_id is the identifier of the port in which you are interested.

2. A list of the upper-layer addresses that are waiting for inbound associations. Use the following NCL
command to get this information:

ncl> show [node node_id] osak port *, -
_ncl> with connection state = awaiting_inbound_connection

200

Chapter 12. Monitoring Network
Events
The DECnet-Plus software reports significant events that occur during network operation. An event is an
occurrence of a normal or abnormal condition detected by an entity. You can control the types of events
that DECnet-Plus records for specific or general categories of events by using NCL. These event records
help you track the status of network components.

Many events are informational. They record changes to network components on both local and remote
systems. Other events report potential or current problems in the physical parameters of the network.

An event report identifies the originating entity and the time when the event occurred. For those entities
that report events, the VSI DECnet-Plus for OpenVMS Network Control Language Reference Guide lists
the events, the reason the event occurred, and any arguments reported to the event dispatcher.

You can set up event dispatching on a particular system, between two systems, or across multiple,
distributed systems. Events that occur on systems running DECnet Phase IV or Phase V software can be
reported by the DECnet-Plus event dispatching function.

12.1. Event Dispatching Concepts
When an entity notices that a condition has occurred, it generates an event message. The entity posts the
event message and the local event dispatcher picks it up. The event dispatcher examines the user-defined
event filters for each outbound stream created on the system. The event filter lets you selectively disable
or enable the reporting of events based on the entity class and event type, or the specific entity instance
and event type. If the event message passes the event filter, the message is given to the corresponding
outbound stream.

An outbound stream maintains a queue of event messages waiting to be sent to their destination. After
passing through the filter defined for the outbound stream, the event message is sent to an event logging
component, called an event sink. An event sink can be on the same system, or a different system, as
the outbound streams. When the event source and the event sink are on the same system, the outbound
stream forwards the event report directly to the event sink. When the event sink is on a different
system, the outbound stream encodes the event report in the form of Network Architecture Common
Management Information Protocol (NA CMIP) calls, and forwards the NA CMIP message to the
corresponding event sink on the designated remote system.

For each outbound stream, there is a single associated event sink. However, a single event sink might
process incoming event messages from more than one outbound stream. Systems can have a combination
of outbound streams and event sinks (see Figure 12.1, "Relationship of Outbound Streams and Event
Sinks"). You determine the actual event dispatching configuration established in your network.

201

Chapter 12. Monitoring Network Events

Figure 12.1. Relationship of Outbound Streams and Event Sinks

The event sink accepts the incoming connection and creates an inbound stream entity to represent the
connection. A sink can have multiple inbound streams, one for every outbound steam associated with
the sink. The inbound stream remains for the life of the association between the outbound stream and
the event sink. This connection can receive many event messages. Inbound streams are deleted when the
connection between the outbound stream and the event sink is deleted.

An event sink maintains a queue of events waiting to be processed by another event logging component
called the event sink client. Event sink clients are applications that process the event messages for you.
The event dispatcher provides default event sink clients.

You can record events that occur on systems running Phase IV software by defining a relay on a DECnet
Phase V system.

Figure 12.2, "Sample Event Dispatching Sequence" follows the path of a sample event report from
a source, the routing entity on the .admin.finance system, to a sink on the .admin.netmgr1 system.
A numbered list follows Figure 12.2, "Sample Event Dispatching Sequence" and explains the event
dispatching sequence.

202

Chapter 12. Monitoring Network Events

Figure 12.2. Sample Event Dispatching Sequence

1. On the .admin.finance system, the routing entity detects a corrupted link state packet (LSP). The
routing entity posts a corrupted lsp detected event. The system’s event dispatcher picks up the
message.

2. The event dispatcher checks the filters associated with the outbound streams to see if the event
message should be made available to the outbound streams.

3. Outbound stream obs_1 includes a filter setting that lets the routing corrupted lsp detected event pass
onto its event stream. The filters associated with obs_2 and obs_3 block the entry of this event onto
their streams. After filtering, the event report is encoded in DNA CMIP because the outbound stream
defines a sink on remote system .admin.netmgr1.

4. The event message waits on a queue to be transmitted to system .admin.netmgr1.

5. On system .admin.netmgr1, the event sink, sink_a, creates an inbound stream when the outbound
stream from node .admin.finance connects to the sink. The inbound stream remains until the event
stream between obs_1 and sink_a is deleted by means of network management commands or
connection timer expiration.

6. The inbound stream passes the routing corrupted lsp detected event message to event sink, sink_a. At
sink_a the event can be filtered out of the event stream or passed to the sink client.

7. A sink client uses ASCII data to format the event message into the kind of event report that you
want.

203

Chapter 12. Monitoring Network Events

8. The sink client delivers the event report to the defined output destination.

12.2. Using Event Filters
You can define event filters with outbound streams, event sinks, or both outbound streams and event
sinks. This section explains how the filtering process works.

Event filters let you:

● Restrict event records to only those events that you consider important to your network management
tasks. Those events that you exclude still occur, but information about them does not appear in the
event stream’s report.

● Categorize event messages into separate event streams and, consequently, each stream’s report. For
example, you can use event filters on an outbound stream that only accept routing circuit events and
pass it along to its event sink and the stream’s report.

You can establish filters:

● At a source node by defining them with each outbound stream entity. (VSI recommends that you
establish filters at the outbound stream to avoid unnecessary system overhead and network traffic.)

● At a destination (sink) node by defining the filters with the event sink entity.

● At both source nodes and sink nodes.

Event filters have three settings, which DECnet-Plus searches through in this order: first, specific filter
setting; then, global filter setting; and finally, catch-all filter setting. The first filter that applies to an
event is used to discard the event or enter it into the dispatching stream.

1. Specific filter setting

Contains one or more entries, each specifying what action to take if the current event matches a full
event string specified in this filter. A full event string consists of a global entity instance, an event
name, or all events. For example:

((node node-id routing circuit circuit-id), corrupted lsp received).

2. Global filter setting

The global filter is searched when no match is found in the specific filter setting, or if a match is
found, but the action specified is ignore. The global filter setting contains one or more entries. Each
entry specifies what action to take if the current event matches a defined global entity class, an event
name, or all events. For example:

((routing, circuit), corrupted lsp received).

3. Catch-all filter setting

The catch-all filter is searched only when no matches are found in the specific and global filter
settings, or if a match is found, but the action specified is ignore. The catch-all filter declares the
single action (pass or block) that should be taken for any events that filter down to this category.

The options (from the perspective of the outbound stream entity) are to:

● Prevent an event message from entering the event stream by using the block filter action.

204

Chapter 12. Monitoring Network Events

● Forward the event message to the event sink associated with this outbound stream, by using the pass
filter action.

● Ignore the event message and pass it to the next filter level, by using the ignore filter action. You can
use the ignore filter action only with the filter’s top-level specific setting or with the filter’s second-
level global filter setting.

To see which filters are currently in place, check the following files:

SYS$STARTUP:NET$EVENT_STARTUP.NCL
SYS$MANAGER:NET$EVENT_LOCAL.NCL

You may not need to change the event filters at all, unless you want to handle them differently than the
defaults shown in that file.

If an entity is not included in the specific or global filter display, this means that the event action for all
events of that entity (instance or class) is ignore.

Figure 12.3, "Sequence of Event Filtering" shows the sequence of filtering through the hierarchy of event
filters.

Figure 12.3. Sequence of Event Filtering

Note

You cannot use wildcard characters with the entity class name or instance name in the definition of a
filter’s specific setting.

See Section 12.3.14, "Setting Up Outbound Stream Event Filters" for examples of using filtering with
outbound stream entities, and Section 12.3.5, "Setting Up Event Sink Filters" for filtering examples for
event sink entities.

12.3. Setting Up and Using Event Dispatching
The following sections describe how to set up and use the event dispatcher.

205

Chapter 12. Monitoring Network Events

Section E.1, "Event Dispatcher" provides a simple example that takes the defaults of setting up the event
dispatcher. Figure 12.4, "event dispatcher Entity" shows the event dispatcher entity and subentities.

Figure 12.4. event dispatcher Entity

12.3.1. Creating the Event Dispatcher
By default, the event dispatcher entity is created and enabled on the local system in its script file. Thus,
you may not need to start it yourself.

Use the NET$CONFIGURE.COM procedure to configure the event dispatcher. The event dispatcher
usually starts as part of the NET$STARTUP procedure. If

the NET$EVENT_STARTUP.NCL script file exists, the software creates the event dispatcher, invokes
the event dispatcher script file (which creates and enables outbound streams, sinks, and relay), and
enables the event dispatcher.

VSI recommends that you do not disable the event dispatcher at startup. If you do not wish to receive
events, you can add the following command to SYS$MANAGER:NET$EVENT_LOCAL.NCL:

set event dispatcher outbound stream * catch all filter block

This NCL script is described in Section 6.2.3, "Using User-Defined NCL Scripts".

Note

Before the event dispatcher is enabled, event messages are queued. The messages wait for the event
dispatcher to process them. After the event dispatcher is enabled, it can begin processing events.

You can use the following commands to check if the event dispatcher and its associated outbound
streams and sinks states are enabled:

ncl> show event dispatcher state
ncl> show event dispatcher outbound stream * state
ncl> show event dispatcher sink * state

If you attempt to use the event dispatcher, an outbound stream, or a sink that is not available, you will
receive an error indicating that the command failed for the following reason:

no such object instance No such Entity instance exists

You can start the event dispatcher after running NET$STARTUP with the following command:

206

Chapter 12. Monitoring Network Events

$ @sys$system:startup network evd

12.3.2. Setting Up Outbound Streams and Event Sinks
Each event generated on a system is filtered through each outbound stream. The stream delivers the
event to a particular event sink that exists on the local system or a remote system. If you set up more than
one outbound stream, each outbound stream is affiliated with one sink. An event sink can accept event
reports from one or more outbound streams, which can reside on the same or different system as the
event sink.

Each outbound stream is represented by an event dispatcher outbound stream entity. Each event sink is
represented by an event dispatcher sink entity.

When you establish outbound streams and event sinks, you:

● Indicate in the outbound stream definition which event sink will be associated with this outbound
stream.

● Indicate in the outbound stream definition which events you will allow to be forwarded to the event
sink.

● Indicate in the event sink definition which events the sink will accept. Usually, the event sink permits
all the incoming events because the selection criteria was already established on the source system by
the outbound streams.

Subsequent sections describe the steps you need to take to set up outbound streams and event sinks.

12.3.3. Identifying the Sink for an Outbound Stream
Before setting up the outbound stream, decide how you want to identify the associated local or remote
event sink. The sink’s identifying characteristics can be any of the following parameters to the set
command:

● The full DECdns object name of the sink object associated with this outbound stream.

● The full DECdns node name of the sink associated with this outbound stream, and the end-user
specification of the associated sink.

● The protocol tower of the sink associated with this outbound stream.

Note

The event sink identified in the set command need not exist when you associate the outbound
stream with its sink. If the event sink does not exist, the NCL commands used to create and test the
outbound streams work; however, no event messages are sent from the outbound stream until the
sink exists and a connection is established.

DECdns Object Name

If .ADMIN.EVENT_SINKS.SINK_A is the DECdns object name for the sink associated with the
netmgr1_obs outbound stream, the following example shows the set command used to form the
affiliation:

207

Chapter 12. Monitoring Network Events

ncl> set event dispatcher outbound stream netmgr1_obs -
_ncl> sink object .admin.event_sinks.sink_a

You should identify network components by their DECdns object name. If the location of a sink
object defined in the DECdns namespace changes, the namespace administrator can easily update
information about the change by modifying the object’s single entry in the DECdns namespace. For
more information, see the VSI DECnet-Plus for OpenVMS DECdns Management Guide. Also see Section
12.3.9, "Using a DECdns Namespace Object Name with a Sink" for related information about the set
object name command used with the corresponding event sink.

DECdns Node Name
If you choose not to define a DECdns object entry for a sink, use the sink node name and end-user
specification, or use the sink address. For example:

ncl> set event dispatcher outbound stream netmgr1_obs -
_ncl> sink node 0, sink end user number = 82

In the previous example, leaving sink node 0 (zero) indicates that the event sink resides on the local
system. If the event sink resides on a system that is different from the outbound stream’s system, specify
the full DECdns node name.

The end-user specification for the sink consists of one of the following:

● number = number (default = 82)

● name = name

● uic= [uic-identifier]username

● fullname = full-name

The end-user specification corresponds to the object number or name, and defaults to the standard event
sink supplied on the node.

You must specify a matching end-user specification on the event sink to associate the outbound stream
and the event sink. For more information about matching end-user specifications for outbound streams
and sinks, see Section 12.3.10, "Setting an End-User Specification for a Sink".

Session Control Towers
If the event sink resides on a system that is different from the outbound stream’s system, you can specify
the remote sink by specifying the session control towers (sink address) of the remote node.

To find the towers of the destination sink node, enter the following NCL command on that node:

ncl> show node 0 address

If the event sink resides on the same (local) node as the outbound stream, set the sink node using either
the node’s full DECdns node name, or enter 0, which indicates the local node. For example:

ncl> set event dispatcher outbound stream netmgr1_obs sink node 0

If neither the sink node nor sink address attributes has been set, the events for this outbound stream will
be logged to the local node sink by default.

208

Chapter 12. Monitoring Network Events

12.3.4. Creating an Event Sink
The following example creates an event sink named netmgr1_sink_a:

ncl> create event dispatcher sink netmgr1_sink_a -
_ncl> maximum buffer size size

Allows you to assign a maximum buffer size. The default maximum buffer size is 16384 bytes.

The buffer size must be large enough to hold the event dispatcher sink entity’s events lost event.
NCL returns an insufficient resources exception if the value is too low.

If you notice that you receive a high events lost count, this might indicate that the maximum buffer
size is too small.

If over time you notice that the maximum buffer size value seems inadequate, you must delete the
event sink and redefine it with a higher value. See Section 12.6.2, "Disabling and Deleting an Event
Sink" for the steps involved in deleting an event sink.

12.3.5. Setting Up Event Sink Filters
In most cases, the event filters defined on outbound streams sufficiently manage event reports sent to an
event sink. By default, the specific and global filters are defined to pass this sink’s pseudo-events and the
catch-all filter is set to pass. VSI recommends that you define the filters at each source node where the
outbound streams reside because, in cases where the source and sink reside on different nodes, setting up
filters at the source avoids unnecessary network traffic between the source node and the sink node. Also,
a consistent network management policy about where event filtering will occur can avoid confusion,
especially when several network managers work throughout the network.

You have the option of defining event filters for an event sink. The filters apply to event messages
received from all outbound streams that use this sink. That is, you cannot designate selected filter entries
corresponding to incoming events from a specific outbound stream. The definition of event filters for
event sinks is similar to the process used with outbound streams. See Section 12.2, "Using Event Filters"
and Section 12.3.14, "Setting Up Outbound Stream Event Filters" for related information.

In the following example, assume that 10 outbound streams from 10 different systems let the station
running event from all hdlc link logical station entities pass into the event stream sent to a sink called
netmgr1_sink_b. If you decide this information is not important for the final report, you can filter it out.
For example:

ncl> block event dispatcher sink -
_ncl> netmgr1_sink_b global filter = -
_ncl> ((hdlc, link, logical station), station running)

12.3.6. Testing Event Sink Filters
Once you have set up the event filter for an event sink, use the testevent command to check that the filter
works according to your plan. The testevent command returns a message specifying the action of the
filter used. See the following example:

ncl> testevent event dispatcher sink -
_ncl> netmgr1_sink_b event = -
_ncl> ((node usa:.admin.artist hdlc link link-id -
_ncl> logical station station-id), station running)

209

Chapter 12. Monitoring Network Events

Action = Block
Filter = Global filter

Note

You cannot use a wildcard character with the testevent command’s event argument.

The testevent command might reveal an error in your logic about event filtering for this event sink. If this
occurs, see Section 12.3.7, "Modifying an Event Sink Filter".

12.3.7. Modifying an Event Sink Filter
The specific and global filter trees can only be modified by the pass, block and ignore directives. You
can enter a new definition for the event. The new definition supersedes any previous definitions.

To delete the previous filter values you set and reinitialize them to their default values when the event
sink was created, use the following command:

ncl> reset event dispatcher sink netmgr1_sink_b

See Section 12.3.15.1, "Correcting Outbound Stream Event Filters" for related information.

Note

Modifications in the sink filters affect subsequently created inbound streams (connections from remote
nodes) and not inbound streams already created.

12.3.8. Specifying the Event Report Destination
After a sink receives and filters an event, the event message is queued to the sink client. The sink client
delivers the event message as an event report to a specified destination.

The client type characteristic can be set only when the event dispatcher sink entity is disabled (that is,
when the sink state is off). Attempts to set the characteristic when the sink state is on result in an error
message.

DECnet-Plus provides three types of sink clients or destinations:

1. Console sink client

Sends ASCII-formatted event reports to the system console, which is a system process that receives
input from processes (like EVD) that want to inform a system operator or network manager of a
particular status. Console sink client is the default.

The sink client sends ASCII-formatted event reports to OPCOM. Sometimes, events are split
into two OPCOM messages when only one OPCOM message is necessary for the event. All
network operator terminals (terminals enabled through specification of the DCL command reply/
enable=network) display these events.

The following example specifies the console sink client. (See Figure 12.4, "event dispatcher Entity"
for the relationship of the sink subentity in the event dispatcher entity hierarchy.)

210

Chapter 12. Monitoring Network Events

ncl> set event dispatcher sink netmgr1_sink_a -
_ncl> client type console

2. Device sink client

Sends ASCII-formatted event reports to devices such as terminals or line printers. The following
example specifies the device sink client:

ncl> set event dispatcher sink netmgr1_sink_a -
_ncl> client type device
ncl> set event dispatcher sink netmgr1_sink_a -
_ncl> device name "full-device-name"

3. Formatted file sink client

Sends ASCII-formatted event reports to a file. To execute this command, you must be logged in as
SYSTEM. The following example renames the default sink client file to a nondefault file name:

ncl> set event dispatcher sink netmgr1_sink_a -
_ncl> client type file
ncl> set event dispatcher sink netmgr1_sink_a -
_ncl> file name file-specification

You should set the sink client type before the sink is enabled and inbound streams are created.

12.3.9. Using a DECdns Namespace Object Name with
a Sink
The DECdns namespace administrator can use option 10 of the decnet_register utility to register each
event sink as an object in the namespace. For more information about the registration process, refer to
the VSI DECnet-Plus for OpenVMS DECdns Management Guide.

Once the event sink is defined as an object in the namespace, you can use the set command
so that the DECnet-Plus Session Control layer on the sink node can deliver incoming event
messages sent by outbound streams that used the DECdns object name for the sink. For example,
if .admin.event_sinks.primary_sink is the object name in the namespace for an event dispatcher sink
netmgr1_sink_a entity:

ncl> set event dispatcher sink netmgr1_sink_a -
_ncl> object name .admin.event_sinks.primary_sink

12.3.10. Setting an End-User Specification for a Sink
For the event sink, you must set an end-user specification, which can be one of the following:

● number = number

● name = name

● uic= [uic-identifier]username

● fullname = full-name

The default is number = 82.

211

Chapter 12. Monitoring Network Events

Make sure that the end-user specification for both the sink and outbound stream match.

If you issue the following command on system .admin.finance, you need to issue an additional command
to associate the sink and the outbound stream when setting up the outbound stream.

ncl> set event dispatcher sink netmgr1_sink end user name = accounting

The following example shows how to issue the additional command. Specify the system where the sink
is located and the same end-user name as specified for the sink.

ncl> set event dispatcher outbound stream netmgr1_obs -
_ncl> sink node .admin.finance, sink end user name = accounting

12.3.11. Modifying the Display of Event UIDs
You can disable the display of UIDs as part of an event message by setting the displayUIDs attribute to
false. For example:

ncl> set event dispatcher sink netmgr displayuids false

Use the following command to enable the display of UIDs:

ncl> set event dispatcher sink netmgr displayuids true

12.3.12. Enabling an Event Sink
Use the enable command to start an event sink that is ready to accept event messages from its outbound
streams.

ncl> enable event dispatcher sink netmgr1_sink_a

If you receive an invalid name exception while attempting to enable an event sink, it indicates a problem
with the defined object name characteristic. Compare the value of this parameter (using a show
command in NCL) with the actual object’s name in the DECdns namespace.

Use Option 10 of decnet_register to examine the namespace (for more information, refer to the VSI
DECnet-Plus for OpenVMS DECdns Management Guide).

The event sink generates events when it is enabled. By default, all events generated by some event
dispatcher subentities, such as event sinks and outbound streams, are blocked by the sink’s global filters
(as is the case with outbound stream global filters). On the other hand, the specific filter for subentities
such as the sink or outbound stream pass events from only that instance of the sink or outbound stream.
That is, netmgr1_sink_a passes events from netmgr1_sink_a, but from no other sink. If you have set up
your sink’s filters to pass all event dispatcher sink events you might see various events posted when you
enable the sink.

A sink always posts events directly to its sink client even if you do not have an outbound stream defined.
If you have both sides of an event stream on the same node, you might see sink events posted twice:
Once when the sink posts them to the client and again when the outbound stream delivers the event to
the sink.

The sink probably will not generate many events. You can, however, eliminate redundant events by
blocking the sink events at the outbound stream. For example:

ncl> block event dispatcher outbound stream netmgr1_obs -

212

Chapter 12. Monitoring Network Events

_ncl> global filter=((node, event dispatcher, sink), all)

You should block sink events at the outbound stream because:

● Local sink events are reported directly by the sink.

● Only events from the local sink are blocked. Any events received from remote systems are reported.

● It reduces system and network overhead when you block events at the outbound stream.

12.3.13. Creating an Outbound Stream Entity
The following example creates a user-specified outbound stream named netmgr1_obs.

ncl> create event dispatcher outbound stream netmgr1_obs -
_ncl> maximum buffer size size

Allows you to assign a maximum buffer size. The default maximum buffer size is 16384 bytes.

The buffer size must be large enough to hold the event dispatcher outbound stream entity’s events
lost event. NCL returns an insufficient resources exception if the value is too low.

If you notice that you receive a high events lost count, this might indicate that the maximum buffer
size is too small.

If over time you notice that the maximum buffer size value seems inadequate, you must delete the
outbound stream and redefine it with a higher value. See Section 12.6.1, "Disabling an Outbound
Stream and Its Connection" for the steps involved in deleting an outbound stream.

12.3.14. Setting Up Outbound Stream Event Filters
If you create an outbound stream and accept all the default settings, the filter’s specific setting is set to
pass events generated by that outbound stream. The global setting is set to block for all events generated
by event dispatcher entities. The filter’s catch-all setting is set to pass. For more information about using
event filters, see Section 12.2, "Using Event Filters".

To identify events to filter for specific entity instances, define entries at the specific level. Define entries
at the global level to filter for certain events, or all events, for an entity class. See the following example:

ncl> block event dispatcher outbound stream -
_ncl> netmgr1_obs specific filter = -
_ncl> ((node usa:.admin.art routing circuit ether-1), circuit change)
ncl> pass event dispatcher outbound stream -
_ncl> netmgr1_obs global filter = -
_ncl> ((routing, circuit), all)
ncl> block event dispatcher outbound stream -
_ncl> netmgr1_obs specific filter = -
_ncl> ((node usa:.admin.art mop circuit una-0), all)
ncl> ignore event dispatcher outbound stream -
_ncl> netmgr1_obs specific filter = -
_ncl> ((node usa:.admin.art mop circuit una-0), load request completed)
ncl> pass event dispatcher outbound stream -
_ncl> netmgr1_obs global filter = -
_ncl> ((mop, circuit), all)
ncl> pass event dispatcher outbound stream -

213

Chapter 12. Monitoring Network Events

_ncl> netmgr1_obs global filter = -
_ncl> ((session control, application), all)
ncl> set event dispatcher outbound stream -
_ncl> netmgr1_obs catch all filter = block

All events generated by all routing circuit entities, except for any circuit change events reported by
the routing circuit ether-1 entity, are passed on to the event stream.

With one exception, all events reported by the mop circuit una-0 entity are not allowed to pass.
The defined exception is that any load request completed events reported by the mop circuit una-0
entity can pass, because:

● The mop circuit una-0 load request completed events were ignored on the specific setting,
causing the event dispatcher to examine filter entries at the next level, the global setting.

● The filter’s global setting entry specifies that events reported by any mop circuit entities,
including the single mop circuit una-0 load request completed event that was ignored in the
preceding specific setting, plus any other mop circuit entities (for example, mop circuit una-1
events), can pass.

All events reported by all session control application entities can pass.

Every event reported by all other entities on this system cannot pass on to the event stream
managed by outbound stream netmgr1_obs. Remember, however, that additional outbound
streams can be defined on this system and one or more of those outbound streams might permit
the forwarding of event messages disallowed by netmgr1_obs. The event dispatcher checks all
outbound streams that are enabled on its system.

The following is another example of filtering. It defines an additional outbound stream on the system and
reports events from OSI transport entities.

ncl> pass event dispatcher outbound stream -
_ncl> netmgr1_obs2 specific filter = -
_ncl> ((node usa:.admin.artist osi transport local nsap aaaa), all)
ncl> pass event dispatcher outbound stream -
_ncl> netmgr1_obs2 specific filter = -
_ncl> ((node usa:.admin.artist osi transport local nsap remote nsap dddd),
 -
_ncl> all)
ncl> ignore event dispatcher outbound stream -
_ncl> netmgr1_obs2 specific filter = -
_ncl> ((node usa:.admin.artist osi transport local nsap remote nsap dddd),
 -
_ncl> reject sent)
ncl> block event dispatcher outbound stream -
_ncl> netmgr1_obs2 global filter = -
_ncl> ((osi transport, local nsap), all)
ncl> block event dispatcher outbound stream -
_ncl> netmgr1_obs2 global filter = -
_ncl> ((osi transport, local nsap, remote nsap), all)
ncl> set event dispatcher outbound stream netmgr1_obs2 -
_ncl> catch all filter = block

Passes all events generated by the osi transport local nsap aaaa onto the event stream.

Passes all events generated by the osi transport local nsap remote nsap dddd, except for the reject
sent event, because in the next step it is sent to the global filter.

214

Chapter 12. Monitoring Network Events

Ignores the event, osi transport local nsap remote nsap dddd reject sent, causing the event
dispatcher to next check the global filter setting.

Blocks all osi transport local nsap events. The osi transport local nsap aaaa events have already
been passed in Step 1.

Blocks all osi transport local nsap remote nsap events. The osi transport local nsap remote nsap
dddd events, except reject sent, have already been passed in Step 2.

All other events reported by all other entities on this system cannot pass onto the event stream
managed by outbound stream netmgr1_obs2.

12.3.15. Testing Outbound Stream Event Filters
Once you have set up the event filter for an outbound stream, use the testevent command to check that
the filter works according to your plan. The testevent command returns a message specifying the action
of the filter used. For example:

ncl> testevent event dispatcher outbound stream netmgr1_obs -
_ncl> event = ((node usa:.admin.artist routing circuit ether-1), -
_ncl> adjacency state change)

Action = Pass
Filter = Specific filter

If successful, this command returns an informational message showing which filter will be used and what
action will be taken if the given event is posted.

Note

You cannot use a wildcard character with the testevent command’s event argument.

The testevent command only analyzes the filter definitions for the outbound stream entity. It does not
attempt to establish a connection to the event sink that will actually accept events from the specified
outbound stream. Therefore, you can use the testevent command any time after you define a filter, even
if the event sink does not yet exist.

The testevent command might reveal an error in your logic about event filtering for this outbound
stream. If this occurs, see Section 12.3.15.1, "Correcting Outbound Stream Event Filters".

12.3.15.1. Correcting Outbound Stream Event Filters
You cannot directly modify an event filter definition entry. If the testevent command described in the
preceding section reveals that your filtering scheme is behaving differently from your intentions, you
have four options:

1. In limited cases, you can add a new filter definition that overrides an unwanted action at a lower level
in the filtering scheme. For example, add a specific filter entry that performs the desired action, and
the unwanted definition at the global filter will never be used for the event. However, this option may
result in a cluttered outbound stream filter definition.

2. Define additional filtering on this outbound stream’s event sink. This option also may be undesirable
because the event sink filters apply to the event reports from all the outbound streams associated
with the sink.

215

Chapter 12. Monitoring Network Events

3. Record the current valid outbound stream event filter definitions and other outbound stream
parameter values, delete the outbound stream, and redefine it.

4. Use the reset directive to reset all three types of filters to their default values and then set the correct
filter actions.

Option 1

You cannot use this option to fix filter definition logic errors made in the specific filter. Corrections for
the first option cover the simple cases and apply only to overriding logic errors made in the global filter
and, to a lesser extent, in the catch-all filter’s single value, pass or block. The following example shows
one such definition:

ncl> block event dispatcher outbound stream netmgr1_obs -
_ncl> global filter = ((routing, circuit), circuit change)
ncl> set event dispatcher outbound stream netmgr1_obs catch all filter
 pass

If your actual intent was to block all routing circuit ether-2 circuit change events and let all other routing
circuit events pass, you could enter the following subsequent commands:

ncl> block event dispatcher outbound stream netmgr1_obs -
_ncl> specific filter = (node usa:.admin.artist routing circuit ether-2, -
_ncl> circuit change)
ncl> pass event dispatcher outbound stream netmgr1_obs -
_ncl> global filter = ((routing, circuit), all)

Option 2

See Section 12.3.5, "Setting Up Event Sink Filters" for information about defining filters on event sinks.

Option 3

For cases where the defined filter performs an undesired action, especially at the specific filter, your best
option is to record the current, valid outbound-stream event filter definitions, record the other outbound
stream parameter values, delete the outbound stream, and redefine it.

Use the NCL command-logging function and the show command to record the outbound stream entity
definitions you want to use again in the redefined entity. For example:

 ncl> set ncl logfile netmgr1_obs.ncl
ncl> enable ncl logging
ncl> show event dispatcher outbound stream netmgr1_obs all characteristics
 .
 .
 .
 [output]
 .
 .
 .
ncl> disable ncl logging ! Close the output file.

Confirm that the outbound-stream state status attribute is set to OFF:

ncl> show event dispatcher outbound stream netmgr1_obs state
node 0 event dispatcher outbound stream netmgr1_obs
state = off

216

Chapter 12. Monitoring Network Events

ncl>

If the state is set to ON, select an appropriate time when the outbound stream can be temporarily turned
off and use the shutdown command, which is described in more detail in Section 12.5.3, "Shutting Down
a Connection".

If the state is set to on connected, on connecting, or on shutdown requested, select an appropriate time
when the outbound stream can be temporarily turned off and use the disable command described in
Section 12.6.1, "Disabling an Outbound Stream and Its Connection".

When the outbound stream entity’s state is OFF, delete the outbound stream. For example:

ncl> delete event dispatcher outbound stream netmgr1_obs

Finally, use a text editor to modify the former outbound-stream characteristics that were recorded in the
output NCL command file. Correct the event filter definitions and run the updated command file. For
example:

ncl> netmgr1_obs.ncl

Option 4

To delete the old filter values and reinitialize them to their original default values when the outbound
stream was created, use the following command:

ncl> reset event dispatcher outbound stream netmgr1_obs

New filter values take effect for the next event message sent by the event dispatcher to the outbound
stream.

12.3.16. Enabling an Outbound Stream Entity
The following example enables a user-specified outbound stream named netmgr1_obs:

ncl> enable event dispatcher outbound stream netmgr1_obs

12.3.17. Modifying Outbound Stream Characteristics
You can modify all outbound stream characteristics at any time by using the set command. Other
changes, such as changing the sink node, require you to disable and then re-enable the outbound stream
before the change takes effect. The following example uses set commands to change several parameters
for outbound stream netmgr1_obs. You can enter consecutive set commands or include any combination
of modifiable characteristics, separating each item with a comma.

ncl> set event dispatcher outbound stream netmgr1_obs -
_ncl> connect retry timer 240, -
_ncl> connect timer enabled true, -
_ncl> disconnect timer 3600
ncl> set event dispatcher outbound stream netmgr1_obs -
_ncl> catch all filter pass
ncl> set event dispatcher outbound stream netmgr1_obs -
_ncl> template port_1_osi_tp_template

In the previous example, the set command performed the following on the existing definition of the
netmgr1_obs outbound stream:

217

Chapter 12. Monitoring Network Events

Doubled the connect retry timer value from its default value of 120 seconds to 240 seconds.

Changed the connect timer enabled from false to true. The default value is true.

Increased the disconnect timer value from the default of 0 (which signifies that the connection
between this outbound stream and its sink partner are never disconnected automatically) to 3600
seconds. This means that the connection is disconnected whenever it has been idle for one hour.

The disconnect timer disconnects the link between nodes when there are no events to transmit,
thus reducing network overhead. When the outbound stream has another event to send, it re-
establishes the connection to the sink.

Changed the catch-all filter value from block to pass.

Identifies an OSI transport template used by this outbound stream’s connections.

The set command also can modify the sink address, sink end user, sink node, and sink object
characteristics.

12.3.18. Enabling an Outbound Event Stream
When the outbound stream is created and its characteristics set to your satisfaction, and the
corresponding event sink is created, defined, and enabled, you can enable the event stream, as the
following example shows:

ncl> enable event dispatcher outbound stream netmgr1_obs

The outbound stream immediately tries to connect to the sink when you enable the outbound stream.
If you cannot establish the connection to the sink, the outbound stream tries again after the connect
retry timer expires. By default, the connect retry timer is enabled, and its value is 120 seconds. You can
attempt an immediate connection with the connect command.

The sink can now receive event messages from the outbound stream and report them to the sink client.

12.4. Sample Event Report
The following example shows a typical event report. Note that event reports can differ because of the
information they contain.

Event: PhaseIV Translation Failure
 from: Node ADMIN:.Finance Routing,
 at: 2019-02-26-09:17:11.950-05:00Iinf
 PDU Header=
%X812201361C004500000A490013AA000400774D410A490004AA000400451320C301C0

 eventUid AE559D4F-39F4-CA11-80E8-AA000400904C
 entityUid 359ABCC9-ACF2-CA11-8005-AA000400904C
 streamUid D57DB0E8-ACF2-CA11-8005-AA000400904C

Specifies the event.

Specifies the entity instance.

Specifies when the event occurred.

Specifies the argument for the event.

218

Chapter 12. Monitoring Network Events

Specifies unique identification (UID) values for the various components involved.

12.5. Managing a Connection Between an
Outbound Stream and an Event Sink
You have the option of manually controlling the connection between an outbound stream and its event
sink. Three NCL commands allow you to manage connections:

● connect

● disconnect

● shutdown

12.5.1. Establishing a Connection
After the outbound stream is enabled, the event dispatcher automatically attempts to establish a
connection to the sink when the connect timer enabled characteristic is set to its default value of true. Set
this value to false if you want to manually create the connection between an outbound stream and its sink
partner. When the connect timer enabled characteristic is set to false, the connect retry timer is not used,
as the following example shows:

ncl> set node node-id event dispatcher outbound stream netmgr1_obs -
_ncl> connect timer enabled false
ncl> connect node node-id event dispatcher outbound stream netmgr1_obs

Note

Remember that the node-id you specify represents the node that is running the outbound stream. The
node running the outbound stream might not have any association with the node running the event sink
or the node upon which you are executing the connect command.

When the event dispatcher executes the connect command, it looks up the values of the following
outbound stream characteristics in the order shown below and uses the first value that is not null.

● The value of the sink object characteristic is used as the full DECdns namespace object name for the
sink.

● The values for the sink node and sink end user characteristics are used as the sink address.

● The value of the sink address characteristic is used as the sink address.

If the sink object, sink node, and sink address are all null, the event dispatcher assumes the sink is on the
local system and uses the sink end user characteristic when attempting a local connection.

12.5.2. Terminating a Connection
If you want idle connections disconnected automatically, assign a non-zero value to the disconnect timer
attribute for the outbound stream. You can terminate the connection at any time by using the disconnect
command. Note that the disconnect command deletes the connection immediately. This might cause
events in transit to be lost. Issue this command only if you have problems with the sink node and want to
specify an event sink on a different, functioning node.

219

Chapter 12. Monitoring Network Events

For example, assume that the event sink for outbound stream netmgr1_obs is located on .admin.netmgr1.
With little advance notice, you learn that the sink node will be unavailable starting in approximately 5
minutes. You can use an already existing event sink that resides on a different system.

This event sink can be located by DECdns using the .admin.event_sinks.alternate_sink object name, as
the following example shows:

ncl> disconnect event dispatcher -
_ncl> outbound stream netmgr1_obs
ncl> set event dispatcher outbound stream netmgr1_obs -
_ncl> sink object .admin.event_sinks.alternate_sink
ncl> connect event dispatcher outbound stream netmgr1_obs

You can also locate this event sink by using the .admin.netman2 sink node name, as the following
example shows:

ncl> disconnect event dispatcher outbound stream netmgr1_obs
ncl> set event dispatcher outbound stream netmgr1_obs -
_ncl> sink node .admin.netman2
ncl> connect event dispatcher outbound stream netmgr1_obs

12.5.3. Shutting Down a Connection
To perform an orderly shutdown of a connection between an outbound stream and its sink partner, use
the shutdown command:

ncl> shutdown event dispatcher outbound stream netmgr1_obs

An orderly shutdown ensures the following:

● All events posted prior to the shutdown are sent.

● No events are lost in transit because of the shutdown.

● The sink receives all events throughout the shutdown of an associated outbound stream.

There might be a delay before the shutdown completes. The outbound stream enters the "On Shutdown
Requested" state and finishes transmitting all events on its queue to the event sink before shutting down.

An outbound stream remains enabled when there is no connection to an event sink. The absence of a
connection might be caused by the following:

● Issuance of a disconnect or shutdown command

● Communication failures

● Absence of an event sink

● Connection not yet established

Because the outbound stream is enabled, it will read event messages from the event dispatcher queue,
filter events, and perform all its functions when a connection is not established. Event messages queued
to the outbound stream might exceed the buffers used by the outbound stream and might result in events
being lost.

A special event called an events lost event is inserted into the event stream to indicate that one or more
events could not be posted due to buffer overload at the outbound stream. The event dispatcher and event
sink also use events lost. Examine event message to determine the source.

220

Chapter 12. Monitoring Network Events

Use the shutdown command as part of the system’s orderly shutdown process.

12.6. Shutting Down Event Dispatching
The following sections describe how to disable and delete event dispatcher entities.

To disable the event dispatcher entity, first disable all the children/subentities, that is, outbound
stream, phase IV relay and sink subentities. If any one of these subentities is enabled, the disable event
dispatcher directive fails. An error message might state that the outbound stream entities are still enabled.
Other subentities might be enabled besides the outbound stream entity.

12.6.1. Disabling an Outbound Stream and Its
Connection
Using the disconnect (see Section 12.5.2, "Terminating a Connection") or shutdown (see Section 12.5.3,
"Shutting Down a Connection") command with an outbound stream deletes only the connection between
an outbound stream and its sink partner. The outbound stream is still enabled. To disable the outbound
stream, use the disable command, as the following example shows:

ncl> disable event dispatcher outbound stream netmgr1_obs

When you enter the disable command, an existing connection between the outbound stream and its event
sink is deleted. Simultaneously, the inbound stream is also deleted. By default, the system performs an
orderly shutdown. Whenever possible, VSI recommends that you perform orderly shutdowns of event
stream connections.

If necessary you can abort the connection immediately with the following command:

ncl> disable event dispatcher outbound stream -
_ncl> netmgr1_obs method abort

When the disable command completes, the outbound stream’s state status attribute is set to OFF. Once
this condition exists, you can activate the outbound stream again by issuing enable command, or you can
delete the outbound stream.

To delete an outbound stream, its state status has to be set to OFF. Then you can issue the following
command:

ncl> delete event dispatcher outbound stream netmgr1_obs

12.6.2. Disabling and Deleting an Event Sink
Before deleting an event sink, use the disable command to set the sink’s state status attribute to OFF:

ncl> disable event dispatcher sink netmgr1_sink_a

Disabling a sink terminates any existing connections with outbound streams. It also deletes all the
inbound stream subentities corresponding to this sink. After disabling a sink, you can activate the event
sink again by issuing the enable command. Or you can delete the event sink.

To delete an event sink, its state status has to be set to OFF. Then you can issue the following command:

ncl> delete event dispatcher sink netmgr1_sink_a

221

Chapter 12. Monitoring Network Events

12.7. Collecting Event Reports from Phase IV
Systems
To record events from a Phase IV system on a DECnet-Plus system, you need to define the relay entity
and its logging subentities. The relay entity receives the events from a Phase IV node, encapsulates them,
and posts them in the DECnet-Plus system event dispatcher.

To see the relayed events, you must also have created and enabled the event dispatcher entity, an
outbound stream, and a sink on the DECnet-Plus system.

12.7.1. Creating and Enabling the Relay Entity
The following example creates and enables the relay entity. (See Figure 12.4, "event dispatcher Entity"
for the relationship of the relay subentity in the event dispatcher entity hierarchy.)

ncl> create event dispatcher relay
ncl> enable event dispatcher relay

Note

The relay entity is created and enabled by default when DECnet-Plus is started.

12.7.2. Disabling and Deleting the Relay Entity
To set the relay entity’s state status to OFF, use the disable command:

ncl> disable event dispatcher relay

To delete the relay entity, use the delete command:

ncl> delete event dispatcher relay

12.7.3. Enabling and Disabling Logging Entities
logging entity types can be console, file, or monitor logging. They are created and enabled by the relay.
You can also explicitly enable them by using the enable command, as the following example shows:

ncl> enable event dispatcher relay logging console

logging entities are disabled and deleted by the parent relay entity. You can also explicitly disable them
by using the disable command. See the following example:

ncl> disable event dispatcher relay logging console

12.7.4. Using NCP Event Logging Commands on the
Phase IV Systems
Use Phase IV NCP commands (from the Phase IV local system, or from a DECnet Phase V system) to
direct the event messages from a Phase IV source node to a DECnet Phase V sink node. For example:

ncp> set logging console known events sink node decnet-osi-system

222

Chapter 12. Monitoring Network Events

For information about using NCP event logging, refer to your Phase IV documentation.

12.7.5. Sample Relayed Phase IV Event
The following example shows a typical event relayed from a Phase IV system.

Event: Event Relayed from: Node ADMIN:.NetMgr Event Dispatcher RELAY
LOGGING Console,
 at: 2019-02-28-15:33:11.909-05:00I0.405
 Formatted NICE Data=
DECnet event 0.9, counters zeroed
From node 1.234 (PHASE4), 28-FEB-1992 16:31:18.08
Circuit QNA-0,
 65535 seconds since last zeroed
 977346 arriving packets received
 1087487 departing packets sent
 0 arriving congestion loss
 0 transit packets received
 0 transit packets sent
 0 transit congestion loss
 2 line down
 0 initialization failure
 309 Unknown counter type 822
 1 Unknown counter type 900
 2432065 data blocks sent
 536847580 bytes sent
 2552820 data blocks received
 221074963 bytes received
 0 Multicast received for disabled protocol
 541 user buffer unavailable
eventUid 96486342-D6F5-CA11-8043-AA000400804D
entityUid B677CFE1-D5F5-CA11-8042-AA000400804D
streamUid 0691473F-D3F5-CA11-8042-AA000400804D

Specifies the event and entity instance.

Specifies when the event occurred.

Specifies the event generated by the Phase IV system.

Specifies unique identification (UID) values for the various components involved.

223

Chapter 12. Monitoring Network Events

224

Appendix A. DECnet Phase IV
Components and Corresponding
Phase V Entities
Table A.1, "NCP-NCL Equivalents" lists the Phase IV components and parameters with their
corresponding DECnet Phase V entities and attributes.

Table A.1. NCP-NCL Equivalents

Phase IV Component Phase IV Parameter DECnet Phase V
Entity

DECnet Phase V
Attribute

Executor Incoming Timer Session Incoming Timer

Executor Outgoing Timer Session Outgoing Timer

Executor Incoming Proxy Session Incoming Proxy

Executor Outgoing Proxy Session Outgoing Proxy

Executor Maximum Links NSP Max Transport
Connections

Executor Delay Factor NSP Delay Factor

Executor Delay Weight NSP Delay Weight

Executor Inactivity Timer NSP KeepAlive Time

Executor Retransmit Timer NSP Retransmit
Threshold

Executor Type Routing Type

Executor Broadcast
Routing Timer

Routing PhaseIV
Broadcast
Routing Timer

Executor Maximum Address Routing PhaseIV Maximum
Address

Executor Maximum Circuits Routing Maximum Circuits

Executor Maximum Cost Routing PhaseIV Maximum
Cost

Executor Maximum Hops Routing PhaseIV Maximum
Hops

Executor Maximum Visits Routing PhaseIV Maximum
Visits

Executor Maximum Area Routing PhaseIV Maximum
Area

Executor Area Maximum
Cost

Routing PhaseIV Area
Maximum Cost

Executor Area Maximum
Hops

Routing PhaseIV Area
Maximum Hops

Executor Maximum Buffers Routing Maximum Buffers

225

Appendix A. DECnet Phase IV Components and Corresponding Phase V Entities

Phase IV Component Phase IV Parameter DECnet Phase V
Entity

DECnet Phase V
Attribute

Executor Buffer Size Routing PhaseIV Buffer
Size

Executor Segment Buffer
Size

Routing PhaseIV Segment
Buffer Size

Executor Maximum Path
Splits

Routing Maximum Path
Splits

Executor Pipeline Quota1
Node Service Circuit MOP Client Circuit
Node Service Password MOP Client Verificationb

Node Hardware Address MOP Client Addresses
Node Load File MOP Client System Image
Node Secondary Loader MOP Client Secondary Loader
Node Tertiary Loader MOP Client Tertiary Loader
Node Diagnostic File MOP Client Diagnostic Image
Node Management File MOP Client Management Image
Node Load Assist Agent MOP Client System Imagec

Node Load Assist Parameter MOP Client System Imagec

Node Dump File MOP Client Dump File
Node Dump Address MOP Client Dump Address
Node Dump Count1

Node Host MOP Client PhaseIV Host Name and
Address

Node Receive Password Routing Permitted Neighbor
Verifier

Node Loop Assistant MOP Circuit Assistant System
Node Loop Help MOP Circuit Assistance Type
Line Receive Buffers CSMA-CD Station Receive Buffers
Line Receive Buffers DDCMP Link Receive Buffers
Line Service Timer MOP Circuit Retransmit Timer
Line Duplex Modem Connect Line Duplex
Line Clock Modem Connect Line Clock
Line Retransmit Timer DDCMP Link Retransmit Timer
Line Line Speed Modem Connect Line Speed
Line Protocol DDCMP Link Protocol
Object File ID Session Application Image Name
Object User ID Session Application User Name
Object Alias Outgoing Session Application Outgoing Alias
Object Alias Incoming Session Application Incoming Alias

226

Appendix A. DECnet Phase IV Components and Corresponding Phase V Entities

Phase IV Component Phase IV Parameter DECnet Phase V
Entity

DECnet Phase V
Attribute

Object Proxy Session Application Incoming Proxy
Object Proxy Session Application Outgoing Proxy
Circuit Service MOP Circuit Function

Circuit Cost Routing Circuit L1/L2 Cost

Circuit Router Priority Routing Circuit L1/L2 Router
Priority

Circuit Hello Timer Routing Circuit Hello Timer

Circuit Maximum Recalls Routing Circuit Maximum Call
Attempts

Circuit Recall Timer Routing Circuit Recall Timer

Circuit Number Routing Circuit Neighbor DTE
Address

Circuit Transmit Timer Routing Circuit Transmit Timer

Circuit Transmit Timer DDCMP Logical
Station

Transmit Timer

Circuit Verification Routing Circuit Transmit
Verifier

1No equivalent; not applicable.
bSee Section 10.2.2.1, "Setting Up MOP Service Passwords on a Network Server".
cSpecial form of SYSTEM IMAGE set by CLUSTER_CONFIG.COM for OpenVMS.

227

Appendix A. DECnet Phase IV Components and Corresponding Phase V Entities

228

Appendix B. delay factor and
delay weight for NSP and OSI
Transport
The following sections provide information about using the delay factor and delay weight attributes when
configuring NSP and OSI transport.

B.1. delay factor and delay weight
On class 4 transport connections, the transport service retransmits transport protocol data units
(TPDUs) if the remote host does not acknowledge them within a certain period; this period is known
as the retransmission time. If the remote host fails to acknowledge a TPDU after a certain number
of retransmissions, the local transport service assumes that the network connection has failed, and
disconnects the transport connection.

The transport service controls this aspect of its operation by using a retransmission timer. The values
of the delay factor and delay weight attributes are used in the algorithm for calculating the value of the
retransmission timer.

● delay factor — This attribute affects the retransmission time. For example, when you increase the
value of the delay factor attribute, you increase the average round-trip delay time, thus increasing
network delay.

● delay weight — This attribute determines the value of the weighting factor. The delay weight value
determines how quickly the retransmission timer responds to variations in actual round-trip delay
times. A low value of delay weight means that the retransmission timer responds very quickly to
each sample of the round-trip delay time; a delay weight of 0 means that an estimate will be nearly
the same as the last actual sample of the round-trip delay. A high value for delay weight reduces the
impact of recent variations in network delay; the higher the value, the closer each estimate of round-
trip delay will be to the average of all estimates.

The default values of delay factor and delay weight should be suitable for most networks. However,
consider increasing their values if wide variations in round-trip delay times exist on your network.

The transport service uses the following algorithm to calculate the value of the retransmission timer:

1. Calculate an average round-trip delay for each TPDU. The round-trip delay is the time that elapses
between sending a TPDU and receiving an acknowledgment of that TPDU from the remote host.

See Section B.2, "Estimating the Round-Trip Delay" for information on how the average round-trip
delay is calculated.

2. Calculate the retransmission timer value using the formula:

retransmission timer = (average round-trip delay * delay factor) +
 remote acknowledgment time

The effect of delay factor is to increase the retransmission time by increasing the average round-trip
delay time, thus allowing for additional network delay. The default value of delay factor is suitable for

229

Appendix B. delay factor and delay weight for NSP and OSI Transport

most networks. You might want to increase its value if there is considerable variation in round-trip delay
from one TPDU to another.

The remote acknowledgment time is the maximum time for which the remote transport service will wait
before acknowledging a TPDU that it has received. The remote transport service tells the local transport
service the value of its acknowledgment time when the transport connection is established.

The value of the retransmission timer is, therefore, the sum of the estimated round-trip delay (weighted
by the delay factor) plus the time taken for the remote transport service to acknowledge a TPDU.

B.2. Estimating the Round-Trip Delay
The transport service continuously recalculates its estimate of the average round- trip delay by taking
into consideration recent samples of actual round-trip delay. This ensures that the retransmission timer is
adjusted to suit current network conditions. The factors used in the calculation are:

● An actual sample of a round-trip delay

● The most recent calculated estimate of average round-trip delay

● A weighting factor, which determines how much effect the most recent actual sample of round-trip
delay has on the new estimate for average round-trip delay

When a transport connection is being set up, the initial value for an actual sample of round-trip delay is
provided by the initial retransmit time attribute of the transport template used to set up the connection.

The value of the weighting factor is given by the delay weight attribute. Basically, delay weight
determines how quickly the retransmission timer responds to variations in actual round-trip delay times.
A low value of delay weight means that the retransmission timer responds very quickly to each sample
of round-trip delay time; a delay weight of 0 means that an estimate will be nearly the same as the last
actual sample of round-trip delay. A high value for delay weight reduces the impact of recent variations
in network delay; the higher the value, the closer each estimate of round-trip delay will be to the average
of all estimates.

The default value of delay weight should be suitable for most networks. However, consider increasing its
value if there are wide variations in round-trip delay times on your network.

230

Appendix C. decnet_migrate
Commands
This appendix provides an alphabetical command reference for the following decnet_migrate commands:

collect
convert
convert dcl_file
convert ncp_file
create_ipl_initialization_file
edit
report
show path

C.1. Running decnet_migrate on Your System
Invoke decnet_migrate by entering the following command:

$ run sys$update:decnet_migrate

collect
collect — The collect command collects information from network nodes and places that information
in a data file, which is later used by the report command. The collect command collects information
from only those nodes that are currently reachable. You can use this command to determine the
current configuration of the network, or to track the configuration changes during transition. You
must have network management privileges that allow you to display information about remote
systems. Each time you use the collect command, a data file is created. To consolidate multiple data
files into one data file, use the convert system utility command as follows: $ convert /merge
input_file_1[,input_file_n] output_file. The input_files argument specifies the files
to be consolidated, and the output_file argument specifies the name of the consolidated file. Doing this is
most useful when you are consolidating data from different areas.

Syntax
collect data_file [routing_type=routing_type | areas=area_id | nodes=node_list_ file |
status=status_report_count | retry=connection_retry_count | recover]

Arguments
data_file

Specifies the name of the collection data file.

The disk and directory names default to their current values, and the file extension defaults to .DAT.

routing_type=routing_type

Optional. Specifies the routing type of the nodes from which you want to collect information. You
can specify one or more of the following:

231

Appendix C. decnet_migrate Commands

L1_routers Only level 1 routers
L2_routers Only level 2 routers
routers All routers
all All nodes, including routers and end nodes (the default)

areas=area_id

Optional. Specifies the area or areas from which you want to collect information. You can specify
one or more of the following:

node node_name The area containing the node you specify by node_name. Use
either the node’s full name or its Phase IV synonym. If you do
not want to use the default namespace, specify a namespace name
before the node name. If you do not use the default namespace,
the tool may not be able to determine the correct full name for
every node.

local The area in which your node resides.
all All areas (the default)

The use of all is not recommended for large networks.

If you specify areas, you cannot also specify the nodes parameter. If you specify neither areas nor
nodes, the default is areas=all.

nodes=node_list_file

Optional. Names a file with a list of specific nodes from which you want to collect information.
Format this file so that:

1. The nodes are listed one node per line.

2. For each node, you can use its full name, its Phase IV synonym, its network entity title (NET), or
its Phase IV address.

The disk and directory for the node-list-file parameter default to the same disk and directory you
specify for the collection file. The file extension defaults to .INP.

If you specify nodes, you cannot also specify the areas parameter. If you specify neither nodes nor
areas, the default is areas=all.

status=status_report_count

Optional. Specifies the number of nodes from which to collect information before displaying a
collection status message. The collection status message provides information on the number of areas
and nodes from which collect is obtaining information.

By default, collect provides a status message after every node. If you do not want a status report,
specify status=none for this parameter.

retry=connection_retry_count

Optional. Specifies the number of times the collect command attempts to connect to a node.

By default, collect makes two connection attempts. If you do not want the collect command to retry
connections, specify retry=none for this parameter.

232

Appendix C. decnet_migrate Commands

Retrying connections is most useful when nodes might have network resource constraints. When
collect retries connections, it waits one minute between connect attempts. If a connection cannot be
made within the specified number of attempts, collect assumes that it cannot connect to the node.
The collect command retries a connection only if the connection error might be transient in nature,
such as resource errors. Other types of errors, such as privilege violations, are not retried.

recover

Optional. Continues an interrupted collection operation. Any parameters for nodes and areas that
you specified for the interrupted operation are still in effect.

You must specify the data_file, and you cannot specify any of the other parameters.

Some interrupted collection operations cannot be recovered because the interruption corrupted the
output file. In this case, you receive an error message and the recovery does not complete.

Examples
1. The following command collects information on all nodes in all areas of the network and puts the

information in a file called netinfo.dat.

decnet_migrate> collect netinfo.dat

2. The following command collects information on all level 2 routers in the area containing the node
boston and puts the information into a file called netinfo.dat.

decnet_migrate> collect netinfo.dat routing_type=l2 -
_decnet_migrate> area=node:boston

3. The following command continues a collecting operation that was previously interrupted.

decnet_migrate> collect netinfo.dat recover

4. The following command collects information on the nodes listed in a file called
decnet_vax_nodes.inp.

decnet_migrate> collect config_1_2_92.dat nodes=decnet_vax_nodes.inp

The contents of decnet_vax_nodes.inp is as follows:

net:.123.boeham
netman
fafnir
.123.zamphir
NET:.123.amaze
49::00-0C:AA-00-04-00-1D-30:00
49::00-0C:AA-00-04-00-22-30:00
49::00-0C:AA-00-04-00-0B-30:00
NET:.123.skgns1
NET:.123.mipsbx
NET:.123.mouans
4.56

convert command
convert command — Converts a specified NCP command to its closest NCL equivalent. The output
might consist of one or more NCL commands. See Section 2.1.1.4, "Editing a Command File That

233

Appendix C. decnet_migrate Commands

Contains NCL Commands" for a list of the NCP commands that the decnet_migrate convert commands
can convert to NCL.

Syntax
convert command "ncp-command"

Arguments
"ncp-command"

Specifies the NCP command you are converting. Specify the command exactly as if it were entered
at an NCP> prompt and enclose the command in quotation marks.

Example
1. In the following example, the convert command converts the NCP command show executor

characteristics to its NCL equivalent:

decnet_migrate> convert command "show executor char"
! * Converting the command:
! show executor char
show node 0 session all char
show node 0 nsp all char
show node 0 routing all char

2. The following example shows how to convert a command for setting a circuit’s cost:

decnet_migrate> convert command "set circuit una-0 cost 20"
! *** Converting the following NCP command to NCL:
! set circuit una-0 cost 20
create node 0 session control
enable node 0 session control
create node 0 nsp
enable node 0 nsp
create node 0 routing
enable node 0 routing
create node 0 routing circuit {{{una-0}}}
enable node 0 routing circuit {{{una-0}}}
set node 0 routing circuit {{{una-0}}} l1 cost=20

The first create and enable commands are included to show how the DECnet Phase V circuit would
be created and enabled. Usually, circuits are created and enabled when you bring up a DECnet Phase
V node.

convert dcl_file
convert dcl_file — Converts NCP commands in a DCL command file to their closest NCL equivalents.
Both the NCP and NCL commands are written to an output file.

Syntax
convert dcl_file input_file [to output_file]

Description
The NCP commands in your DCL command file must appear in one of these formats:

234

Appendix C. decnet_migrate Commands

$ ncp ncp-command
$ mcr ncp ncp-command
$ run device:[directory]ncp
ncp-command
.
.
.
ncp-command
$
$ ncp
ncp-command
.
.
.
ncp-command
$
$ mcr ncp
ncp-command
.
.
.
ncp-command
$

Anything else in your DCL command file is copied directly to the output file.

Arguments
input_file

Specifies the name of the DCL command file you are converting. The disk and directory names
default to their current values. If you do not give a file extension, it defaults to .COM.

output_file

Optional. Specifies the name of the command file to contain the converted commands. If you do
not specify an output file, the disk, directory name, file name, and file extension all default to those
specified for input_file.

Example
1. The following command converts the NCP commands in NCPSETUP.COM to their nearest NCL

equivalents and puts the results in a file called NCLSETUP.COM. See the convert command
description for examples of how the converted commands appear in the output file.

decnet_migrate> convert dcl_file ncpsetup.com to nclsetup.com

2. The following command converts the NCP commands in NETSTART.COM to their nearest NCL
equivalents and puts the results in a file with the same name:

decnet_migrate> convert dcl_file netstart.com

convert ncp_file
convert ncp_file — Converts NCP commands in an NCP command file to their nearest NCL
equivalents. Each NCP command is converted to an NCL command and both the NCP and NCL

235

Appendix C. decnet_migrate Commands

commands are written to an output file. The NCP commands are included as comments. The commands
in your NCP command file must appear exactly as they would be entered at the NCP> prompt.

Syntax
convert ncp_file input_file [to output_file]

Arguments
input_file

Specifies the name of the command file you are converting. The disk and directory names default to
their current values. The file extension defaults to .COM.

output_file

Optional. Specifies the name of the command file to contain the converted commands. The disk,
directory name, file name, and file extension all default to those of input_file.

Example
1. The following command converts the NCP commands in the file NCPSETUP.COM to their nearest

NCL equivalents and puts the results in a new file called NCLSETUP.COM. See the convert
command description for examples of how the converted commands appear in the output file.

decnet_migrate> convert ncp_file ncpsetup.com to nclsetup

2. The following command converts the NCP commands in NETSTART.COM to their nearest NCL
equivalents and puts the results in a new file with the same name:

decnet_migrate> convert ncp_file netstart

create ipl_initialization_file
create ipl_initialization_file — Creates a command file that the manager of a DECnet Phase V router
product can use to create interphase link entries in the DECnet Phase V router’s reachable address table.
Interphase links enable a DECnet Phase V router running the DECnet Phase V link state protocol at
level 2 to communicate with adjacent routers running the Phase IV routing vector protocol at level 2.
Whenever the level 2 network configuration changes, use this command to update the reachable address
table on every DECnet Phase V level 2 router that has interphase links.

Syntax
create ipl_initialization_file output_file for node_name

Description
When you issue create ipl_initialization_file, the target DECnet Phase V routing node must be accessible
and have a communication path to all areas in the level 2 link-state network. Additionally, the adjacent
level 2 routers running the Phase IV routing vector protocol must have communication paths to all areas
in their respective level 2 routing-vector networks.

The create ipl_initialization_file command creates three files:

236

Appendix C. decnet_migrate Commands

● A DCL command file (named output_file) that contains a description of all the routing information
gathered when you ran the create ipl_initialization_file command. When you run this command file,
you are asked if you want to create or delete interphase link entries. Depending on your answer, the
command file executes one of the other two files.

● An NCL command file script that creates interphase link entries in the reachable address table on the
target routing node. This file is named output_file_cre.

● An NCL command file script that deletes interphase link entries from the reachable address table on
the target routing node. This file is named output_file_del.

The following is one method for using the resulting NCL command file to set up interphase links on, for
example, a DECnet Phase V router product:

1. Run the DECnet-Plus router configuration program to create the NCL script for the router’s
configuration.

2. Run the create ipl_initialization_file to create the NCL script for setting up interphase links.

3. Append the second NCL file to the first.

4. Compile the resulting NCL file into a CMIP file for loading into the router at reboot.

Before running the command file, you can edit output_file_cre to modify which interphase links are
created. If you do this, you should make equivalent changes in output_file_del.

Arguments
output_file

Specifies the name of the command file you are creating.

The disk and directory names default to their current values; the file extension defaults to .COM.

node_name

Specifies the full name (including any directories) or the Phase IV synonym of the level 2 routing
node on which the interphase link entries are to be created.

Example
In the following example, the create ipl_initialization_file command creates files called
ROUTER_INI.COM, ROUTER_INI.COM_CRE, and ROUTER_INI.COM_DEL for the area09 router.

decnet_migrate> create ipl_init router_ini for area09

edit
edit — Edits a command file containing NCL commands, using the Language-Sensitive Editor (LSE)
with an NCL template. The LSE layered product must be installed and licensed on your system. For
more information about LSE, see the Guide to Language-Sensitive Editor. You automatically set up
the language-sensitive editing features by specifying .COM or .NCL as the file extension of the file
your are editing. If you do not specify one of these file extensions, you can use the LSE command
set language ncl to set up the language-sensitive editing features. Syntax support is included for verbs,
entities, attributes, arguments, and prepositional clauses. Menu support is included for frequently used

237

Appendix C. decnet_migrate Commands

verb, entity, attribute, argument, and preposition keywords. This support is limited to the keywords used
with the DECnet Phase V NODE global entity. Some semantic support is provided in that the keywords
listed in a menu depend on the previous keywords selected. If you manually enter a keyword instead of
selecting from a menu, the semantic capability is lost. The initial placeholder used to start expanding a
command is {NCL_SCRIPT}.

Syntax
edit ncl-command-file

Arguments
ncl-command-file

Specifies the name of the NCL command file to edit. The disk and directory names default to their
current values; the file extension defaults to .NCL.

Example
In the following example, the edit command invokes LSE to edit the NCL command file
nclcommands.ncl.

decnet_migrate> edit nclcommands.ncl

report
report — Reports information that was collected with the collect command. To generate one report
from multiple collect data files, combine the data files into one file and run report on that one file. You
can use the convert system utility command as follows to merge multiple data files: $ convert /
merge input_file_1[,input_file_n] output_file, where the input_files are the files
to be combined, and the output_file is the name of the resulting data file. Doing this is most useful when
you are consolidating data from different areas.

Syntax
report report_file data=data_file [types=node_types |
routing_type=routing_type | areas=area_id | information=info_types |
format=format_type]

For OpenVMS systems, data=data_file is optional.

Arguments
report_file

Specifies the name of the output file to contain the network configuration report.

The disk and directory default to their current values. If you do not give a file extension, it defaults
to .LIS.

data=data_file

Specifies the name of the file that contains the collected network configuration data, as created by
the collect command.

238

Appendix C. decnet_migrate Commands

The disk, directory, and file names default to the values specified for report_file. The file extension
defaults to .DAT.

types=node_types

Optional. Specifies the types of nodes to be contained in report_file. You can specify one or more of
the following:

L1_routers Only level 1 routers
L2_routers Only level 2 routers
routers All routers
all All nodes, including routers and end nodes (the default)

If you specify a routing type for which the collect command collected no information, the report
contains a "no information" error message.

areas=area_id

Optional. Specifies the area or areas to be contained in report_file. You can specify one or more of
the following:

node node_name The area containing the node you specify by node_name. Use
either the node’s full name or its Phase IV synonym. If you do
not want to use the default namespace, specify a namespace name
before the node name.

local The area in which your node resides
all All areas (the default)

information=info_types

Optional. Specifies the information to report for each node. You can specify one or more of the
following:

basic Reports the name, address, phase, routing type, and node
identification string for each node. The report command always
reports this information whether or not you specify basic (the
default).

adjacencies Reports adjacent nodes for each node.
applications Called objects in Phase IV terminology. Reports defined target

network applications for each node.
circuits Reports circuit IDs and circuit costs for each node.
routing Reports maximum hops, maximum cost, and network buffer size.
areas Reports areas that are known to the level 2 routers. This

information is reported once for the network as a whole and not
for each node.

all Reports information from all info_types.

You can specify more than one info_types by placing the info_types in parentheses and separating
them with commas.

This parameter defaults to basic.

239

Appendix C. decnet_migrate Commands

format=format_type

Optional. Specifies the format for the report. You can specify either of two formats:

full Formats the data using multiple lines for each node (the default).
brief Formats the data using one line for each node, putting the reported

information in columns.

The full format provides the most information, whereas the brief format is useful for quick searches
and sorting. If you specify brief, only basic information can be reported; you cannot use the brief
format if you have specified, for example, routing.

Example
1. The following command reports, in a file called netinfo.lis, all information contained in the collect

data file netinfo.dat:

decnet_migrate> report netinfo.lis

2. The following command reports information from the collect data file netinfo_1_19_92.dat; the
resulting report file is named netinfo.txt. The report covers all level 2 routers. The format and
information parameters default to full and basic.

decnet_migrate> report netinfo.txt data=netinfo_1_19_92.dat -
_decnet_migrate> routing_type=l2_routers

3. The following command uses the brief format to report only basic information gathered with the
collect command. The report has information about two nodes, a DECnet Phase V intermediate
system and a Phase IV end node.

decnet_migrate> report netinfo.lis format=brief data=netinfo.dat
decnet_migrate> exit
$ type netinfo.lis
MCNS:.Nodes.Crumb 49::00-0C:AA-00-04-00-05-30:00 12.0005 Ph5 L2 ""
BREAD 49::00-0C:AA-00-04-00-0A-30:00 12.0010 Ph4 NR "VMS
 5.4"

4. The following example creates a report file node_info.lis from information previously collected from
the collect data file netinfo_1_19_92.dat. The report provides selected information on all nodes in all
areas that were specified in the collect command.

decnet_migrate> report node_info.lis data=netinfo_1_19_92.dat -
_decnet_migrate> format=full info=(adjacencies,circuits,routing)

5. The following example shows a typical default report:

Network Configuration Report - Generated 8-AUG-2019 11:14:46.85
Collection Data File: $DISK1:[NET_MANAGER]NETINFO.DAT;1
Parameters Applied:
COLLECTION
Nodes = ALL
Areas = LOCAL (49::00-0C)
REPORT
Information = BASIC
Nodes = ALL (Phase III) (Phase IV) (Phase V)
Areas = ALL
===

240

Appendix C. decnet_migrate Commands

Node information as of 8-AUG-2019 11:14:09.72
Node MEK_NS:.zzz.phase5
Phase: V
Description:
Type: Level 2 Router
Routing
Address: 41:45418715:00-41:08-00-2B-0F-31-8D:20
Address: 49::00-0C:AA-00-04-00-05-30:20 (12.5)
===
Node information as of 8-AUG-2019 11:14:23.29
Node COOCOO
Phase: IV
Description: DECnet-VAX V5.5, VMS V5.5
Routing
Address: 49::00-0C:AA-00-04-00-0A-30:20 (12.10)
Type: Non-Routing
===

show path
show path — The show path command displays the possible paths that node-to-node communication
might take through the network. This information helps determine the effect of the transition from
DECnet Phase IV to DECnet Phase V on the network’s communication paths. Using information
obtained from the starting node and from the routers in the path, show path dynamically determines
what nodes might be traversed when a packet is sent from a source node to a destination node. The
command then displays the identified list or lists of nodes, as more than one possible path might be
displayed. All the nodes in the path must be able to respond to either NICE or DNA CMIP network
management requests. You must have network management privileges that allow you to display
information about remote systems.

Syntax
show path { from=start_node | to=terminating_node } [format=format_type |
output_file=file_name]

Arguments
from=start_node

Specifies the starting node for when the command determines paths. As start_ node, you can specify
one of the following:

1. The name of the node. You can specify either the node’s full DECdns name or its Phase IV
synonym name, for example:

.usa.boston
boston

2. One of the node’s network entity titles (NETs), entered in the format:

afi:idi:predsp-locarea:node-id:sel.
Example: 43:15084745192:00-0C:aa-00-04-00-50-30:00

3. One of the node’s network areas. The first node found in the area becomes the starting node.
Enter the area in the format: afi:idi:predsp-locarea. Example: 43:15084745192:00-0C

241

Appendix C. decnet_migrate Commands

4. The node’s Phase IV network address, entered in the format: area.node-id. Example: 12.102

5. The node’s Phase IV network area. The first node that the command finds in the area becomes
the starting node. Use this format: area.*.

Example: 12.*

If you do not specify from, show path uses the local node as the starting node. You must specify at
least from or to; you can specify both.

to=terminating_node

Specifies the terminating node for when the command determines paths. As the terminating node,
you can specify one of the following:

1. The name of the node. You can specify either the node’s full DECdns name or its Phase IV
synonym name, for example:

.usa.boston
boston

2. One of the node’s network entity titles (NETs), entered in the format:

afi:idi:predsp-locarea:node-id:sel.

Example: 43:15084745192:00-0C:aa-00-04-00-50-30:00

3. One of the node’s network areas. The first node found in the area becomes the starting node.
Enter the area in the format: afi:idi:predsp-locarea. Example: 43:15084745192:00-0C

4. The node’s Phase IV network address, entered in the format: area.node-id. Example: 12.102

5. The node’s Phase IV network area. The first node that the command finds in the area becomes
the starting node. Use this format: area.*.

Example: 12.*

If you do not specify to, the command uses the local node as the terminating node. You must specify
at least from or to; you can specify both.

format=format_type

Optional. Specifies the format of the output. You can specify one of these:

brief Displays only the names of the nodes in the path (the default).
full Displays the node type and the NETs for each node in the path.

output_file=file_name

Optional. Specifies a file in which to output the path information, in place of a terminal display.

Example
1. The following command produces a display of possible paths for packets, starting with

node .USA.Boston and ending with node .FR.Cannes. These two nodes are specified by node name.

decnet_migrate> show path from .USA.Boston to .FR.Cannes

242

Appendix C. decnet_migrate Commands

2. The following command produces a display of possible paths for packets, starting with a specified
node and, by default, ending with the local node. The start node is specified by using one of the
node’s network entity titles (NETs).

decnet_migrate> show path from -
_decnet_migrate> 43:15084745192:00-0C:AA-00-04-00-50-30:00

3. The following command produces a display of possible paths for packets, starting with the local node
and ending with the node specified by using one of the node’s network areas. The first node found in
the area becomes the terminating node.

decnet_migrate> show path to 43:15084745192:00-0C

4. The following command produces a display of possible paths for packets, starting with the local node
and ending with the node specified by using the node’s Phase IV area. The first node found in the
area becomes the terminating node.

decnet_migrate> show path to 63.*

5. The following command produces a display of possible paths for packets, starting with node metrix
and ending with node book. The format of the display (shown) is full.

% /usr/bin/decnet_migrate
decnet_migrate> show path from metrix to book format full

Obtaining local Phase IV address prefix
Communication opened (node NET:.skg.book)
Communication opened (node NET:.skg.metrix)
Communication opened (node NET:.skg.phz5g8)
Communication opened (node NET:.skg.phz4g8)
Communication opened (node NET:.skg.lktnr7)
Communication opened (node NET:.skg.lktnr4)

Path Number 1 (path to last node is complete)
First node: NET:.skg.metrix (METRIX)
 DECnet-Plus end node
 49::00-0C:AA-00-04-00-50-30:00 (12.80)
 41:45418715:00-41:08-00-2B-16-A8-72:00
Next node: NET:.skg.phz5g8
 DECnet-Plus router (level 2)
 41:45418715:00-41:08-00-2B-0F-31-8D:00
 49::00-0C:AA-00-04-00-05-30:00 (12.5)
Next node: NET:.skg.phz4g8 (PHZ4G8)
 DECnet Phase IV router (level 2)
 49::00-04:AA-00-04-00-04-10:00 (4.4)
Last node: NET:.skg.book (BOOK)
 DECnet Phase IV end node
 49::00-04:AA-00-04-00-3A-11:00 (4.314)

Path Number 2 (path to last node is complete)
First node: NET:.skg.metrix (METRIX)
 DECnet-Plus end node
 49::00-0C:AA-00-04-00-50-30:00 (12.80)
 41:45418715:00-41:08-00-2B-16-A8-72:00
Next node: NET:.skg.lktnr7
 DECnet-Plus router (level 1)
 41:45418715:00-41:08-00-2B-06-9E-D7:00
 49::00-0C:AA-00-04-00-62-30:00 (12.98)

243

Appendix C. decnet_migrate Commands

Next node: NET:.skg.lktnr4
 DECnet-Plus router (level 2)
 49::00-0C:AA-00-04-00-60-30:00 (12.96)
 41:45418715:00-41:08-00-2B-0D-CA-F4:00
Next node: NET:.skg.phz5g8
 DECnet-Plus router (level 2)
 41:45418715:00-41:08-00-2B-0F-31-8D:00
 49::00-0C:AA-00-04-00-05-30:00 (12.5)
Next node: NET:.skg.phz4g8 (PHZ4G8)
 DECnet Phase IV router (level 2)
 49::00-04:AA-00-04-00-04-10:00 (4.4)
Last node: NET:.skg.book (BOOK)
 DECnet Phase IV end node
 49::00-04:AA-00-04-00-3A-11:00 (4.314)

Path Number 3 (path to last node is complete)
First node: NET:.skg.metrix (METRIX)
 DECnet-Plus end node
 49::00-0C:AA-00-04-00-50-30:00 (12.80)
 41:45418715:00-41:08-00-2B-16-A8-72:00
Next node: NET:.skg.lktnr4
 DECnet-Plus router (level 2)
 49::00-0C:AA-00-04-00-60-30:00 (12.96)
 41:45418715:00-41:08-00-2B-0D-CA-F4:00
Next node: NET:.skg.phz5g8
 DECnet-Plus router (level 2)
 41:45418715:00-41:08-00-2B-0F-31-8D:00
 49::00-0C:AA-00-04-00-05-30:00 (12.5)
Next node: NET:.skg.phz4g8 (PHZ4G8)
 DECnet Phase IV router (level 2)
 49::00-04:AA-00-04-00-04-10:00 (4.4)
Last node: NET:.skg.book (BOOK)
 DECnet Phase IV end node
 49::00-04:AA-00-04-00-3A-11:00 (4.314)

decnet_migrate> exit
%

6. The following command produces lists of possible paths for packets, starting with node metrix and
ending with node book. The format is brief by default. Instead of a terminal display, the lists are
placed in a text file called pages_path.txt.

decnet_migrate> show path from metrix to book output=pages_path.txt
Communication opened (node NET:.skg.book)
Communication opened (node NET:.skg.metrix)
Communication opened (node NET:.skg.phz5g8)
Communication opened (node NET:.skg.phz4g8)
Communication opened (node NET:.skg.lktnr7)
Communication opened (node NET:.skg.lktnr4)

decnet_migrate> exit
$ type pages_path.txt
Path Number 1 (path to last node is complete)
First node: NET:.skg.metrix (METRIX)
Next node: NET:.skg.phz5g8
Next node: NET:.skg.phz4g8 (PHZ4G8)
Last node: NET:.skg.book (BOOK)
Path Number 2 (path to last node is complete)

244

Appendix C. decnet_migrate Commands

First node: NET:.skg.metrix (METRIX)
Next node: NET:.skg.lktnr7
Next node: NET:.skg.lktnr4
Next node: NET:.skg.phz5g8
Next node: NET:.skg.phz4g8 (PHZ4G8)
Last node: NET:.skg.book (BOOK)
Path Number 3 (path to last node is complete)
First node: NET:.skg.metrix (METRIX)
Next node: NET:.skg.lktnr4
Next node: NET:.skg.phz5g8
Next node: NET:.skg.phz4g8 (PHZ4G8)
Last node: NET:.skg.book (BOOK)

245

Appendix C. decnet_migrate Commands

246

Appendix D. decnet_register
Commands
This appendix describes decnet_register, the DECnet-Plus node registration tool, and its command
line interface. Using decnet_register you can register and manage DECnet Phase V node names in the
DECdns distributed name service, the local namespace, and the Phase IV node database. See Chapter
5, "Managing Name Service Searches and Information" for information about using decnet_register to
perform tasks and about the decnet_register forms interface.

D.1. The Command Line Interface
The decnet_register command line interface supports the following commands:

add
attach
deregister
do
exit
export
import
manage
modify
register
remove
rename
repair
reset
set
show
spawn
update

D.1.1. Running decnet_register
There are several ways to invoke decnet_register:

● From a video terminal, enter RUN SYS$SYSTEM:DECNET_REGISTER at the system prompt:

$ run sys$system:decnet_register

By default from a video terminal, decnet_register starts in forms mode.

● From a hardcopy terminal, enter RUN SYS$SYSTEM:DECNET_REGISTER at the system prompt:

$ run sys$system:decnet_register

By default from a hardcopy terminal, decnet_register starts in command mode. Once invoked in this
manner, decnet_register continues to accept commands until you exit the tool.

● Define a symbol at the system prompt (or insert the symbol in your login file) and then type the
symbol name at the system prompt, as in the following example, which defines the symbol netreg:

247

Appendix D. decnet_register Commands

$ netreg :== syssystem:decnet_register
$ netreg
netreg>

● If you have defined a foreign command symbol as described above, you can enter a decnet_register
command line at the system prompt:

$ netreg show node MyNode

After the command executes, you return to the system prompt.

● When you invoke decnet_register from a command file, it runs in command mode until it encounters
an exit command.

You can change this startup behavior in two ways:

● Permanently, by defining a logical name.

● For one invocation only, by using the /c and /f qualifiers on the command line.

To change the default behavior permanently, define one of the following logical names:

● The following command forces default use of the command line interface until you remove the
logical name:

$ define decnet_register_commands 1

● The following command forces default use of the forms interface until you remove the logical name:

 $ define decnet_register_forms 1

To change the default behavior for the current invocation only, use one of the following qualifiers:

● The following command forces use of the command line interface for the current invocation only:

$ decnet_register /c

● The following command forces use of the forms interface for the current invocation only.

$ /usr/sbin/decnet_register /f

Note

The decnet_register tool is not supported on a system booted MINIMUM.

add
add — The add command adds a new address tower to a node registration. When a new address tower
is available for a node, this command adds the addressing information to the node registration in the
specified name service.

Syntax

add node node-name towers {t-set} [directory_service dir-service |
phaseIV_prefix addr-prefix | reverse_directory r-dir-name]

248

Appendix D. decnet_register Commands

Arguments

node-name

Specifies the fully specified name (full name) of the node whose address towers are to be added.
(The full name includes any directories.) The syntax for a full name depends on the name service
used by the node:

Name Service Node Full Name

DECdns MyCo:.Sales.MailHub
Local file MailHub
Phase IV MLHUB

t-set

Specifies the set of one or more address towers to add to the node registration. Separate multiple
address towers with commas. Include the set of address towers within braces.

Each address tower in the set has the following format: transport/address You can omit fields from
left to right, and assume a default value as follows:

Field Possible Values Default Value

transport TP4, TP4=tsel, or NSP For an N-Sel value of 20, the
default is NSP. Otherwise, the
default is TP4.

address NSAP value or Phase IV
address value

For a Phase IV address, an
NSAP is constructed using the
specified address and the Phase
IV prefix value. The N-Sel value
is always 20.

For a Phase IV address prefix value of 49::, example address towers follow:

Abbreviated Address Tower Fully Specified Address Tower

1.5 NSP/49::01:AA0004000504:20
1.5+39:840 NSP/39:840:01:AA0004000504:20
39:840:01:AA0004000504:20 NSP/39:840:01:AA0004000504:20
39:840:01:AA0004000504:21 TP4=DEC0/39:840:01:AA0004000504:21
TP4/39:840:01:AA0004000504:21 TP4=DEC0/39:840:01:AA0004000504:21
TP4=A1/39:840:01:AA0004000504:21 TP4=A1/39:840:01:AA0004000504:21

An example address tower for a DECnet Phase IV node using normal default values follows:

TOWERS={1.5}

An example address tower for a DECnet Phase V node using normal default values follows:

TOWERS={2.54, 39:840:01:080043A751F4:20, 39:840:01:080043A751F4:21}

dir-service

Optional. Specifies the name service that contains the node registration. The dir-service must be one
of the following:

249

Appendix D. decnet_register Commands

Name Service Keyword

DECdns decdns
Local file local
Phase IV phaseiv

If you do not specify a name service, the default name service specified with the set default
command is used.

addr-prefix

Specifies the AFI, IDI, and preDSP to use when constructing an NSAP from a Phase IV address.
The addr-prefix is used when a Phase IV address is specified in an address tower.

If you do not specify a phaseiv_prefix, the default Phase IV prefix specified with the set default
command is used.

r-dir-name

Optional. Specifies the base directory or name entry to use when creating the reverse address
mapping links to the node_name. (Reverse address mapping links are also referred to as
backtranslation links.) The links created under this directory are used to map NSAP values to their
respective node names (node-name). These directories are used only for the DECdns name service.

If you do not specify a reverse_directory, the default reverse directory specified with the set default
command is used.

attach
attach — The attach command attaches the terminal to another process. This transfers control from
your current process (running decnet_register) to the specified process. Your current process is placed in
a hibernation state.

Syntax

attach [process-name]

Arguments

process-name

Optional. Specifies a process to attach to. You can use the OpenVMS show process and show
system commands to determine process names.

If you do not specify a process-name, the terminal is attached to the parent (owner) process for the
current process.

deregister
deregister — The deregister command removes a node registration from a name service. When a node
is no longer available on the network, use the deregister command to remove the node registration from
the name service.

250

Appendix D. decnet_register Commands

Syntax

deregister node node-id [directory_service dir-service | phaseiv_prefixaddr-prefix |
reverse_directory r-dir-name | synonym_directory s-dir-name]

Arguments

node-id

Identifies the node to deregister. The node-id can be one of the following:

● The fully specified name for the node in the name service. The syntax for a fully specified node
name depends on the name service where the name is registered.

● The Phase IV synonym for the node.

● One of the NET or NSAP addresses for the node.

● The Phase IV address (and optional Phase IV prefix) for the node.

The syntax for a fully specified name (full name) depends on the name service where the node is
registered:

Name Service Node Full Name

DECdns MyCo:.Sales.MailHub
Local file MailHub
Phase IV MLHUB

An example Phase IV synonym for all the previously mentioned full names follows: MLHUB.

You can use a single asterisk (*) wildcard character anywhere in the last part of the name as follows:

Name Service Node Full Name with Wildcard Character

DECdns MyCo:.Sales.Mail*
Local file node Mail*
Phase IV node ML*

You can specify a node’s address by using one of its NETs or NSAPs, or its Phase IV address.

A NET is an NSAP address value with an N-Sel value of "00" (indicating that it is independent of
the type of transport service in use on the node). If you specify an NSAP instead of a NET, it is
converted to an NET before it is used.

DNA format: <afi>:<idi>:<predsp>-<locarea>:<nodeid>:00

OSI format: <afi><idi>+<predsp><locarea><nodeid>00

If the node has a Phase IV address, you can use it instead of a NET: Format: <area>.<nodeid>

<area>.<nodeid>+<prefix>

The Phase IV address is internally converted to a NET, using the Phase IV prefix value. The Phase
IV prefix value can be specified with the Phase IV address or the PhaseIV_prefix parameter, or set
using the set default command.

251

Appendix D. decnet_register Commands

You can use the asterisk (*) wildcard character in the NET or Phase IV address. The wildcard
character must replace either the node-id or the local area and the node-id. If you specify a NET
containing a wildcard character, do not also specify an N-Sel value.

NET Wildcard the node-id:

Wildcard the local area and

node-id:

39:840:0001:*

39:840:*

Phase IV Wildcard the node-id:

Wildcard the area and node-id:

1.*

.

dir-service

Optional. Specifies the name service from which the node is to be removed. The dir-service must be
one of the following:

Name Service Keyword

DECdns decdns
Local file local
Phase IV phaseiv

If you do not specify dir-service, the default name service specified with the set default command is
used.

addr-prefix

Optional. Specifies the AFI, IDI, and preDSP to use when constructing an NSAP from a Phase IV
address. The addr-prefix is used only when a Phase IV address is specified for the node-id.

As an alternative, you can add the Phase IV prefix to the Phase IV address specification.

If you do not specify a phaseiv_prefix, the default Phase IV prefix specified with the set default
command is used.

r-dir-name

Optional. Specifies the base directory or name entry to use when deleting the reverse address
mapping links to the node name.

s-dir-name

Optional. Specifies the base directory or name entry to use when deleting the synonym mapping link
to the node name.

If you do not specify a s-dir-name, the default synonym directory specified with the set default
command is used.

do
do — The do command executes a named file containing decnet_register commands. Within the
command file, the commands must appear as if entered at the decnet_register> prompt. One command

252

Appendix D. decnet_register Commands

file can reference another command file. Commands are processed in order until the end of the file is
reached or until a command error occurs.

Syntax

do command-file-name

An alternative form of the do command is:

@command-file-name

Arguments

command-file-name

Specifies the name of the file containing decnet_register commands to execute.

exit
exit — The exit command exits the decnet_register utility. You can also use the quit command.

Syntax

exit

You can also use the following key sequence: Ctrl/Z

export
export — The export command extracts node registration information for a specified set of nodes and
writes it to a text file, the export/import file.

Syntax

export node node-id file file-name [directory_service dir-service | phaseiv_prefix
addr-prefix | reverse_directory r-dir-name | synonym_directory s-dir-name | nsap_format addr-format]

Description

Once the information has been extracted to the export/import file, it can be:

● Used for reporting or database maintenance.

● Used to make networkwide changes, such as modifying the NSAP IDP value by first editing the
export/import file and then using the MODIFY feature of the import command.

● Used to move node information from one name service to another using the REGISTER or
UPDATE features of the import command.

● Used to verify that the addressing information in one name service is the same as in another name
service, using the VERIFY feature of the import command.

● Used to remove node information from a name service, using the DEREGISTER feature of the
import command.

253

Appendix D. decnet_register Commands

Arguments

node-id

Identifies the nodes to export. The node-id can be one of the following:

● The fully specified name for the node in the name service

● The Phase IV synonym for the node

● One of the NET or NSAP addresses for the node, or its Phase IV address

● The Phase IV address (and optional Phase IV prefix) for the node

The syntax for a fully specified name depends on the name service where the node is registered.
Example formats for fully specified names follow:

Name Service Node Full Name

DECdns MyCo:.Sales.MailHub
Local file node MailHub
Phase IV node MLHUB

An example Phase IV synonym for all the previously mentioned full names follows: node MLHUB.

You can use a single asterisk (*) wildcard character anywhere in the last part of the name as follows:

Name Service Node Full Name with Wildcard Character

DECdns MyCo:.Sales.Mail*
Local file node Mail*
Phase IV node ML*

You can specify a node’s address by using one of its NETs or NSAPs, or its Phase IV address.

A NET is an NSAP address value with an N-Sel value of "00" (indicating that it is independent of
the type of transport service in use on the node). If you specify an NSAP instead of a NET, it is
converted to an NET before it is used.

DNA format: <afi>:<idi>:<predsp>-<locarea>:<nodeid>:00 OSI format: <afi><idi>
+<predsp><locarea><nodeid>00

If the node has a Phase IV address, you can use it instead of a NET:

Format: <area>.<nodeid>

<area>.<nodeid> +<prefix>

The Phase IV address is internally converted to a NET, using the Phase IV prefix value. The Phase
IV prefix value can be specified with the Phase IV address or the PhaseIV_prefix parameter, or set
using the set default command.

You can use the asterisk (*) wildcard character in the NET or Phase IV address. The wildcard
character must replace either the node-id or the local area and the node-id. If you specify a NET
containing a wildcard character, do not also specify an N-Sel value.

254

Appendix D. decnet_register Commands

NET Wildcard the node-id:

Wildcard the local area and
node-id:

39:840:0001:*

39:840:0001:*

Phase IV Wildcard the node-id:

Wildcard the area and node-id:

1.*

.

file-name

Names the text file to contain the exported information.

dir-service

Optional. Specifies the name service from which node information is to be exported. The dir-service
must be one of the following:

Name Service Keyword

DECdns decdns
Local file local
Phase IV phaseiv

If you do not specify dir-service, the default service specified with the set default command is used.

addr-prefix

Optional. Specifies the AFI, IDI, and preDSP to use when constructing an NSAP from a Phase IV
address. The addr-prefix is used only when a Phase IV address is specified for the node-id.

As an alternative, you can add the Phase IV prefix to the Phase IV address specification.

If you do not specify a phaseiv_prefix, the default Phase IV prefix specified with the set default
command is used.

r-dir-name

Optional. Specifies the base directory or name entry to use when exporting the reverse address
mapping links to the node name. (These links are also called the backtranslation links.)

The links under this directory are used to map NSAP values to their respective node names. Reverse
address mapping links are used only by the DECdns name service.

If you do not specify a reverse_directory, the default reverse_directory specified with the set default
command is used.

s-dir-name

Optional. Specifies the base directory or name entry to use when exporting the synonym mapping
link to the node name. The links under this directory are used to map Phase IV synonyms to their
respective node names. Synonym mapping links are used only by the DECdns name service.

If you do not specify a synonym_directory, the default synonym directory specified with the set
default command is used.

255

Appendix D. decnet_register Commands

addr-format

Optional. Specifies the format to use when converting NSAP addresses to their text representation in
the export file.

The addr-format must be one of the following:

For DNA: dna
For OSI: osi

This causes the appropriate format to be used:

DNA format: <afi>:<idi>:<predsp>-<locarea>:<nodeid>:00
OSI format: <afi><idi>+<predsp><locarea><nodeid>00

If you do not specify an nsap_format, the default nsap_format specified with the set default
command is used.

import
import — The import command uses exported node registration information contained in an export/
import file to help maintain a name service. You can create an export/import file using the export
command or using a text editor.

Syntax

import file file-name [function | error_file error-file-name | name_template template-name
| directory_service dir-service | phaseiv_prefix addr-prefix | reverse_directory r-dir-name |
synonym_directory s-dir-name]

Description

Using the import command and an existing export/import file, you can:

● Register nodes into a name service.

● Modify the node information contained in a name service.

● Register nodes in a name service if they do not already exist there, or modify them if they do exist.

● Replace a number of node names in one operation.

● Check whether or not the information in a name service matches the listed nodes.

● Deregister nodes from a name service.

Arguments

file-name

Names the text file that contains the node information to import.

function

Optional. Specifies one of the following import command functions:

256

Appendix D. decnet_register Commands

register Registers the listed nodes into the specified name service.
modify Makes changes to the node information in the name service. This

makes it possible to make a large number of synonym or tower
changes at one time.

update Registers the listed nodes into the name service if they do not already
exist, or modifies them if they do exist. This makes it possible to make
changes in one name service based on the information from another
name service.

replace Deregisters any nodes that use the same synonyms or towers as the
listed nodes. Then registers the listed nodes in the name service. This
makes it possible to make a number of name changes at one time.

verify Checks whether or not the information in the name service matches
the listed nodes.

deregister Deregisters the listed nodes from the name service.

If you do not specify import command keyword, the import update function is performed.

error-file-name

Optional. Specifies the name of the file to receive any error reports. An error file is useful since the
import command is performing bulk operations that can result in errors scrolling off the screen.

Errors are written into the file as comments with each error followed by the line from the input file
that resulted in the error. After correcting each error, you can use the edited error file as an export
file. Using this method, only those operations that resulted in an error will be re-tried.

If you do not specify an error file, all errors are sent to the screen.

template-name

Optional. Specifies how the import command is to use the node registration information contained
in the export file name field.

The node registration information contained in the export file includes each node’s terminating
name. Generally, a node’s terminating name is that part of the node name that is the same regardless
of the name service. For example, MailHub is the terminating name for both of the following nodes:

For DECdns: MyCo:.Sales.MailHub

For local file: MailHub

The name template is a string that illustrates how to construct a fully specified name for a node in a
specified name service. To convert a terminating name to a fully specified name for the target name
service, it is combined with the name template. The name template is a string that indicates what
the fully specified name is to look like, with an asterisk (*) where the terminating name goes. For
example:

For DECdns: MyCo:.Sales.*

Local: *

If not specified, the name template defined in the export file for the target name service is used. If
the export file does not contain a valid name template for the target name service, errors result.

257

Appendix D. decnet_register Commands

dir-service

Optional. Specifies the target name service for the import function. The dir-service must be one of
the following:

Name Service Keyword

DECdns decdns
Local file local
Phase IV phaseiv

If you do not specify directory_service, the default service specified with the set default command is
used.

addr-prefix

Optional. Specifies the AFI, IDI, and preDSP to use when constructing an NSAP from a Phase IV
address. The addr-prefix is used only when a Phase IV address is specified in an address tower.

If you do not specify a phaseiv_prefix, the Phase IV prefix specified in the export file is used. If the
export file does not contain a phaseiv_prefix definition, the default Phase IV prefix specified with
the set default command is used.

r-dir-name

Optional. Specifies the base directory or name entry to use when creating reverse address mapping
links for the node name. (These links are also called the back translation links.)

The links under this directory are used to map NSAP values to their respective node names. Reverse
address mapping links are used only by the DECdns name service.

If you do not specify a reverse_directory, the reverse_directory defined in the export file is used. If
the export file does not contain a reverse_directory name definition for the target name service, the
default reverse_directory specified with the set default command is used.

s-dir-name

Optional. Specifies the base directory or name entry to use when creating the synonym mapping
links for the node name. The links under this directory are used to map Phase IV synonyms to their
respective node names. Synonym mapping links are used only by the DECdns name service.

If you do not specify a synonym_directory, the synonym directory name defined in the export file
is used. If the export file does not contain a synonym_directory name definition for the target name
service, the default synonym_directory specified with the set default command is used.

manage
manage — The manage command executes the directory management procedure for a specified name
service. The management procedure invoked by the manage command manages only those aspects
of the name service that affect how node names are stored and used. It does not provide for general
management of the name service. The management procedure is executed as a child process. Control
returns to decnet_register when the execution is complete. The Phase IV nodes database and the local
namespace do not require management for storage and use of names. This command does not apply
to these name services. For the DECdns name service, the decnet_register manage command invokes
DECNET_REGISTER_DECDNS.COM.

258

Appendix D. decnet_register Commands

Syntax

manage [directory_service dir-service]

Arguments

dir-service

Optional. Specifies the name service that contains the node registration. The name service must be
DECdns (specify decdns). If you do not specify a directory_ service, the default service specified
with the set default command is used. Use the show default command to display the default service
type.

modify
modify — The modify command changes a node’s registered address tower or Phase IV synonym
information.

Syntax

modify node node-name [directory_service dir-service | synonym synonym-name | towers {t-
set} | phaseiv_prefix addr-prefix | reverse_directory r-dir-name | synonym_directory s-dir-name]

Arguments

node-name

Specifies the full name (including any directories) of the node whose address towers are to be
modified in the name service. The node name must be the fully specified name for the node in the
name service:

Name Service Node Full Name

DECdns MyCo:.Sales.MailHub
Local file node MailHub
Phase IV node MLHUB

dir-service

Optional. Specifies the name service in which the node is to be registered. The dir-service must be
one of the following:

Name Service Keyword

DECdns decdns
Local file local
Phase IV phaseiv

If you do not specify directory_service, the default service specified with the set default command is
used.

synonym-name

Optional. Specifies a new Phase IV synonym for the node. This replaces any current Phase IV
synonym value in the node registration.

259

Appendix D. decnet_register Commands

You can use a Phase IV synonym in place of a fully specified node-name, especially with
applications that do not support full node names.

The synonym-name must be from one to six letters (A to Z) or digits (0 to 9). The synonym-name
must contain at least one letter. To explicitly specify that a node has no Phase IV node name, specify
two quotation marks ("") for the Phase IV synonym-name.

Synonym Description

MLHUB Specifies the Phase IV synonym MLHUB
"" Specifies that the node has no Phase IV

synonym.

If you omit the synonym parameter, the current synonym-name for the node is not modified.

t-set

Optional. Specifies the set of one or more address towers for the node registration. This replaces any
current tower information in the node registration.

Separate multiple address towers with commas. Include the set of address towers within braces.

Each address tower in the set has the following format: transport/address You can omit fields from
left to right, and assume a default value as follows:

Field Possible Values Default Value

transport TP4, TP4=tsel, or NSP For an N-Sel value of 20, the
default is NSP. Otherwise, the
default is TP4.

address NSAP value or Phase IV
address value

For a Phase IV address, an
NSAP is constructed using the
specified address and the Phase
IV prefix value. The N-Sel value
is always 20.

For a Phase IV address prefix value of 49::, example address towers follow:

Abbreviated Address Tower Fully Specified Address Tower

1.5 NSP/49::01:AA0004000504:20
1.5+39:840 NSP/39:840:01:AA0004000504:20
39:840:01:AA0004000504:20 NSP/39:840:01:AA0004000504:20
39:840:01:AA0004000504:21 TP4=DEC0/39:840:01:AA0004000504:21
TP4/39:840:01:AA0004000504:21 TP4=DEC0/39:840:01:AA0004000504:21
TP4=A1/39:840:01:AA0004000504:21 TP4=A1/39:840:01:AA0004000504:21

An example address tower for a DECnet Phase IV node using normal default values follows:

TOWERS={1.5}

An example address tower for a DECnet Phase V node using normal default values follows:

260

Appendix D. decnet_register Commands

TOWERS={2.54, 39:840:01:080043A751F4:20, 39:840:01:080043A751F4:21}

addr-prefix

Optional. Specifies the AFI, IDI, and preDSP to use when constructing an NSAP from a Phase IV
address. The addr-prefix is used when a Phase IV address is specified in an address tower.

If you do not specify a phaseiv_prefix, the default Phase IV prefix specified with the set default
command is used.

r-dir-name

Optional. Specifies the base directory or name entry to use when creating the reverse address
mapping links to the node name. The links created under this directory are used to map NSAP
values to their respective node names. These directories are used only for the DECdns name service.

If you do not specify a reverse_directory, the default reverse directory specified with the set default
command is used.

s-dir-name

Optional. Specifies the base directory or name entry to use when creating the synonym mapping
link to the node name. The links created under this directory are used to map Phase IV synonyms to
their respective node names. These directories are used only for the DECdns name service.

If you do not specify a synonym_directory, the default synonym directory specified with the set
default command is used.

register
register — The register command adds a node registration to a name service. When a new node is
available on the network, use the register command to add the new node registration to the name service.

Syntax

register node node-name [directory_service dir-service | synonym synonym-name | towers {t-
set} | phaseiv_prefix addr-prefix | reverse_directory r-dir-name | synonym_directory s-dir-name]

Arguments

node-name

Specifies the full name (including any directories) of the new node to be registered in the name
service. The node name must be the fully specified name for the node in the name service:

Name Service Node Full Name

DECdns MyCo:.Sales.MailHub
Local file node MailHub
Phase IV node MLHUB

dir-service

Optional. Specifies the name service in which the node is to be registered. The dir-service must be
one of the following:

261

Appendix D. decnet_register Commands

Name Service Keyword

DECdns decdns
Local file local
Phase IV phaseiv

If you do not specify service, the default service specified with the set default command is used.

synonym-name

Optional. Specifies the Phase IV synonym for the node. You can use a Phase IV synonym in place
of a fully specified node-name, especially with applications that do not support full node names.

The synonym-name must be from one to six letters (a to z) or digits (0 to 9). The synonym-name
must contain at least one letter. To explicitly specify that a node has no Phase IV node name, specify
two quotation marks ("") for the synonym-name.

Synonym Description

MLHUB Specifies the Phase IV synonym MLHUB
"" Specifies that the node has no Phase IV

synonym.

If you omit the synonym parameter, a synonym name is not registered for the node.

t-set

Optional. Specifies the set of one or more address towers for the node.

Separate multiple address towers with commas. Include the set of address towers within braces.

Each address tower in the set has the following format: transport/address You can omit fields from
left to right, and assume a default value as follows:

Field Possible Values Default Value

transport TP4, TP4=tsel, or NSP For an N-Sel value of 20, the
default is NSP. Otherwise, the
default is TP4.

address NSAP value or Phase IV
address value

For a Phase IV address, an
NSAP is constructed using the
specified address and the Phase
IV prefix value. The N-Sel value
is always 20.

For a Phase IV address prefix value of 49::, example address towers follow:

Abbreviated Address Tower Fully Specified Address Tower

1.5 NSP/49::01:AA0004000504:20
1.5+39:840 NSP/39:840:01:AA0004000504:20
39:840:01:AA0004000504:20 NSP/39:840:01:AA0004000504:20
39:840:01:AA0004000504:21 TP4=DEC0/39:840:01:AA0004000504:21
TP4/39:840:01:AA0004000504:21 TP4=DEC0/39:840:01:AA0004000504:21

262

Appendix D. decnet_register Commands

Abbreviated Address Tower Fully Specified Address Tower

TP4=A1/39:840:01:AA0004000504:21 TP4=A1/39:840:01:AA0004000504:21

An example address tower for a DECnet Phase IV node using normal default values follows:

TOWERS={1.5}

An example address tower for a DECnet Phase V node using normal default values follows:

TOWERS={2.54, 39:840:01:080043A751F4:20, 39:840:01:080043A751F4:21}

addr-prefix

Optional. Specifies the AFI, IDI, and preDSP to use when constructing an NSAP from a Phase IV
address. The addr-prefix is used when a Phase IV address is specified in an address tower.

If you do not specify a phaseiv_prefix, the default Phase IV prefix specified with the set default
command is used.

r-dir-name

Optional. Specifies the base directory or name entry to use when creating the reverse address
mapping links to the node name. The links created under this directory are used to map NSAP
values to their respective node names. These directories are used only for the DECdns name service.

If you do not specify a reverse_directory, the default reverse directory specified with the set default
command is used.

s-dir-name

Optional. Specifies the base directory or name entry to use when creating the synonym mapping
link to the node name. The links created under this directory are used to map Phase IV synonyms to
their respective node names. These directories are used only for the DECdns name service.

If you do not specify a synonym_directory, the default synonym directory specified with the set
default command is used.

remove
remove — The remove command removes address towers from a node registration. This command is
used when an address tower is no longer available on a node and the addressing information needs to be
removed from the node registration in a name service.

Syntax

remove node node-name towers {t-set} [directory_service dir-service | phaseiv_ prefix
addr-prefix | reverse_directory r-dir-name | | synonym_directory s-dir- name]

Arguments

node-name

Specifies the full name (including any directories) of the node whose address towers are to be
removed from the name service. The node name must be the fully specified name for the node in the
name service:

263

Appendix D. decnet_register Commands

Name Service Node Full Name

DECdns MyCo:.Sales.MailHub
Local file node MailHub
Phase IV node MLHUB

dir-service

Optional. Specifies the name service in which the node is to be registered. The dir-service must be
one of the following:

Name Service Keyword

DECdns decdns
Local file local
Phase IV phaseiv

If you do not specify directory_service, the default service specified with the set default command is
used.

t-set

Optional. Specifies the set of one or more address towers for the node registration. This replaces any
current tower information in the node registration.

Separate multiple address towers with commas. Include the set of address towers within braces.

Each address tower in the set has the following format: transport/address You can omit fields from
left to right, and assume a default value as follows:

Field Possible Values Default Value

transport TP4, TP4=tsel, or NSP For an N-Sel value of 20, the
default is NSP. Otherwise, the
default is TP4.

address NSAP value or Phase IV
address value

For a Phase IV address, an
NSAP is constructed using the
specified address and the Phase
IV prefix value. The N-Sel value
is always 20.

For a Phase IV address prefix value of 49::, example address towers follow:

Abbreviated Address Tower Fully Specified Address Tower

1.5 NSP/49::01:AA0004000504:20
1.5+39:840 NSP/39:840:01:AA0004000504:20
39:840:01:AA0004000504:20 NSP/39:840:01:AA0004000504:20
39:840:01:AA0004000504:21 TP4=DEC0/39:840:01:AA0004000504:21
TP4/39:840:01:AA0004000504:21 TP4=DEC0/39:840:01:AA0004000504:21
TP4=A1/39:840:01:AA0004000504:21 TP4=A1/39:840:01:AA0004000504:21

An example address tower for a DECnet Phase IV node using normal default values follows:

264

Appendix D. decnet_register Commands

TOWERS={1.5}

An example address tower for a DECnet Phase V node using normal default values follows:

TOWERS={2.54, 39:840:01:080043A751F4:20, 39:840:01:080043A751F4:21}

addr-prefix

Optional. Specifies the AFI, IDI, and preDSP to use when constructing an NSAP from a Phase IV
address. The addr-prefix is used when a Phase IV address is specified in an address tower.

The advantage of specifying a phaseiv_prefix is that you specify the address prefix once and it is
applied to all Phase IV addresses. You do not have to specify the phaseiv_prefix individually for
each address.

If you do not specify a phaseiv_prefix, the default Phase IV prefix specified with the set default
command is used.

r-dir-name

Optional. Specifies the base directory or name entry to use when deleting the reverse address
mapping links to the node name. These directories are used only for the DECdns name service.

If you do not specify a reverse_directory, the default reverse directory specified with the set default
command is used.

s-dir-name

Optional. Specifies the base directory or name entry to use when deleting the synonym mapping link
to the node name. These directories are used only for the DECdns name service.

If you do not specify a synonym_directory, the default synonym directory specified with the set
default command is used.

rename
rename — The rename command changes the registered name for a node within a specified name
service. Use the rename command when a node’s name has been changed and that change needs to be
reflected in a name service. The attribute values stored under the node name remain unchanged. You can
rename a node only within a name service. You cannot rename a node from one type of name service
to another. The rename command only changes the name stored in the name service; it does not directly
affect the name on the node itself. Use the node’s network configuration utility to change the name on
the node itself.

Syntax

rename node node-name new_name new-node-name [directory_service dir-service |
synonym synonym-name | reverse_directory r-dir-name | synonym_directory]

Arguments

node-name

Specifies the current name of the node to be renamed. The current node-name must be the fully
specified name for the node in the name service:

265

Appendix D. decnet_register Commands

Name Service Node Full Name

DECdns MyCo:.Sales.MailHub
Local file node MailHub
Phase IV node MLHUB

new-node-name

Specifies the new name for the node to be renamed. The new-node-name must be the fully specified
name for the node in the name service:

Name Service Node Full Name

DECdns MyCo:.Sales.MailHub
Local file node MailHub
Phase IV node MLHUB

dir-service

Optional. Specifies the name service that contains the node to be renamed. The dir-service must be
one of the following:

Name Service Keyword

DECdns decdns
Local file local
Phase IV phaseiv

If you do not specify directory_service, the default service specified with the set default command is
used.

synonym-name

Optional. Specifies the new Phase IV synonym for the node. You can use a Phase IV synonym
in place of a fully specified node-name. They are particularly useful with applications that do not
support full node names.

The synonym-name must be from one to six letters (a to z) or digits (0 to 9). The synonym-name
must contain at least one letter. To explicitly specify that a node has no Phase IV node name, specify
two quotation marks ("") for the synonym-name.

Synonym Description

MLHUB Specifies the Phase IV synonym MLHUB
"" Specifies that the node has no Phase IV

synonym.

If you omit the synonym parameter, a synonym name is not registered for the node.

r-dir-name

Optional. Specifies the base directory or name entry to use when redirecting the reverse address
mapping links from the old node name to the new node name. The links created under this directory

266

Appendix D. decnet_register Commands

are used to map NSAP values to their respective node names. These directories are used only for the
DECdns name service.

If you do not specify a reverse_directory, the default reverse directory specified with the set default
command is used.

s-dir-name

Optional. Specifies the base directory or name entry to use when redirecting the synonym mapping
link from the old node name to the node name. The links created under this directory are used to
map Phase IV synonyms to their respective node names. These directories are used only for the
DECdns name service.

If you do not specify a synonym_directory, the default synonym directory specified with the set
default command is used.

repair
repair — The repair command repairs the synonym and reverse address mapping links for nodes in a
distributed name service. Use the repair command when a nodes synonym and reverse address mapping
links are accidentally deleted or otherwise changed so that they no longer map to the correct node
name. Use the Show command with the full keyword to determine whether or not a nodes synonym and
reverse address mapping links are correct.

Syntax

repair node node-name [directory_service dir-service | reverse_directory r-dir- name |
synonym_directory s-dir-name]

Arguments

node-name

Specifies the name of the node whose links are to be repaired. The node-name must be the fully
specified name for the node in the name service:

Name Service Node Full Name

DECdns MyCo:.Sales.MailHub
Local file node MailHub
Phase IV node MLHUB

You can use the asterisk (*) wildcard character in node names as follows:

Name Service Node Full Name with Wildcard Character

DECdns NODE MyCo:.Sales.Mail.*

The wildcard character can be used anywhere in the terminating part of the name. You can use only
a single wildcard character.

The local and Phase IV databases do not require or use synonym or reverse address mapping links.
This command does not apply to these name services.

267

Appendix D. decnet_register Commands

directory-service

Optional. Specifies the name service whose links are to be repaired. The dir-service must be one of
the following:

Name Service Keyword

DECdns decdns
Local file local
Phase IV phaseiv

The local and Phase IV databases do not require or use synonym or reverse address mapping links.
This command does not apply to these name services.

If you do not specify directory_service, the default service specified with the set default command is
used.

r-dir-name

Optional. Specifies the base directory or name entry to use when repairing the reverse address
mapping links (also called backtranslation links). The links created under this directory are used to
map NSAP values to their respective node names. These directories are used only for the DECdns
name service.

If you do not specify a reverse_directory, the default reverse directory specified with the set default
command is used.

s-dir-name

Optional. Specifies the base directory or name entry to use when repairing the synonym mapping
links. The links created under this directory are used to map Phase IV synonyms to their respective
node names. These directories are used only for the DECdns name service.

If you do not specify a synonym_directory, the default synonym directory specified with the set
default command is used.

reset
reset — The reset command resets the default values for optional parameters to their original values.

Syntax

reset default [all | directory_service | display_mode | nsap_format | phaseiv_ prefix |
reverse_directory | synonym_directory]

Arguments

default

Required. Specifies that the default parameter values are being modified.

all

Optional. Resets the default values for all optional parameters to their original values.

268

Appendix D. decnet_register Commands

directory_service

Optional. Resets the default name service to its original value.

display_mode

Optional. Resets the default display style to its original value.

nsap_format

Optional. Resets the default NSAP display style to its original value.

phaseiv_prefix

Optional. Resets the default Phase IV prefix value to its original value. This specifies the default
AFI, IDI, and preDSP to use when constructing an NSAP from a Phase IV address.

reverse_directory

Optional. Resets the default base directory or name entry to use for the reverse address mapping
links to the node name to its original value for all name services.

synonym_directory

Optional. Resets the default base directory or name entry to use for the synonym mapping links to
its original value for all name services.

set default
set default — The set default command establishes or modifies the default values for optional
parameters. This command is particularly useful when used in a decnet_register initialization command
procedure or script file.

Syntax

set default [directory_service dir-service | display display-mode | phaseiv_prefix addr-prefix |
reverse_directory r-dir-name | synonym_directory s-dir-name | nsap_format addr-format]

Arguments

dir-service

Optional. Specifies the name service to use by default when a decnet_register command does not
specify a name service. The dir-service must be one of the following:

Name Service Keyword

DECdns decdns
Local file local
Phase IV phaseiv

display-mode

Optional. Specifies the extent of node information to display by default when a decnet_register
command does not specify a display-mode keyword. The following display-mode keywords display
the indicated information:

269

Appendix D. decnet_register Commands

Keyword Information Displayed

names The node full name.
brief The node full name

The name of the link (if any) used to access the node information
The Phase IV synonym name
The NSAP addresses for the node

full The node full name
The name of the link (if any) used to access the node information
The Phase IV synonym name
The NSAP addresses for the node
The address tower information for the node
The link name mapping the synonym to the node name (if any)
The link names mapping NSAP addresses to the node name (if any)

The full mode also provides consistency checking, and prints messages
describing any inconsistencies it finds. For example, a missing
synonym or NSAP address link, or a link that points at an incorrect
name.

s-dir-name

Optional. Specifies the default base directory or name entry to use for the synonym mapping
link to the node name. This default is used when a decnet_ register command does not specify a
synonym_directory. The links under this directory are used to map Phase IV synonyms to their
respective node names. These directories are used only for the DECdns name service.

r-dir-name

Optional. Specifies the default base directory or name entry to use for the reverse address mapping
links to the node name. This default is used when a decnet_ register command does not specify
a reverse_directory. The links created under this directory are used to map NSAP values to their
respective node names.

These directories are used only for the DECdns name service.

addr-prefix

Optional. Specifies the default AFI, IDI, and preDSP to use when constructing an NSAP from a
Phase IV address. The addr-prefix is used when a Phase IV address is specified for the node-id. This
default is used when a decnet_register command does not specify a addr-prefix.

addr-format

Optional. Specifies default format to use when the format is not specified in a decnet_register
command.

The addr-format must be one of the following:

Address Format Keyword

DNA dna
OSI osi

This causes the appropriate format to be used:

270

Appendix D. decnet_register Commands

DNA format: <afi>:<idi>:<predsp>-<locarea>:<nodeid>:00

OSI format: <afi><idi>+<predsp><locarea><nodeid>00

show default
show default — The show default command displays the current default values for all optional
parameters. All default parameter settings are displayed. This command takes no other parameters.

Syntax

show default

show node
show node — The show node command reads node registration information from a name service and
displays it on the screen or writes it to a file. If you specify the FULL display keyword, show node also
verifies that all reverse address mapping and synonym links are set up properly for the node.

Syntax

show node node-id

Arguments

node-id

Identifies one or more nodes whose registration information to display. The node-id can be one of
the following:

● The fully specified name (full name) for the node.

● The Phase IV synonym for the node.

● One of the NET or NSAP addresses for the node.

● The Phase IV address (and optional Phase IV prefix) for the node.

The syntax for a full name depends on the name service where the node is registered:

Name Service Node Full Name

DECdns MyCo:.Sales.MailHub
Local file MailHub
Phase IV MLHUB

An example Phase IV synonym for all the previously mentioned full names follows: MLHUB.

You can use a single asterisk (*) wildcard character anywhere in the last part of the name as follows:

Name Service Node Full Name with Wildcard Character

DECdns MyCo:.Sales.Mail*
Local file node Mail*

271

Appendix D. decnet_register Commands

Name Service Node Full Name with Wildcard Character

Phase IV node ML*

You can specify a node’s address by using one of its NETs or NSAPs, or its Phase IV address.

A NET is an NSAP address value with an N-Sel value of "00" (indicating that it is independent of
the type of transport service in use on the node). If you specify an NSAP instead of a NET, it is
converted to an NET before it is used.

DNA format: <afi>:<idi>:<predsp>-<locarea>:<nodeid>:00

OSI format: <afi><idi>+<predsp><locarea><nodeid>00

If the node has a Phase IV address, you can use it instead of a NET:

Format: <area>.<nodeid>

<area>.<nodeid> +<prefix>

The Phase IV address is internally converted to a NET, using the Phase IV prefix value. The Phase
IV prefix value can be specified with the Phase IV address or the Phaseiv_prefix parameter, or set
using the set default command.

You can use the asterisk (*) wildcard character in the NET or Phase IV address. The wildcard
character must replace either the node’s terminating name (or simple name) or its local area plus
terminating name. If you specify a NET containing a wildcard character, do not also specify an N-
Sel value.

NET Wildcard the node-id:

Wildcard the local area and
node-id:

39:840:0001:*

39:840:0001:*

Phase IV Wildcard the node-id:

Wildcard the area and node-id:

1.*

.

spawn
spawn — The spawn command executes a single DCL command in a subprocess, or creates an
interactive subprocess in which you can enter multiple DCL commands.

Syntax

spawn [dcl-command]

Arguments

dcl-command

Optional. Specifies a DCL command to execute. The DCL command executes and then control
returns to the decnet_register when command execution is complete.

If you do not specify a dcl-command, you are placed in an interactive subprocess and presented with
the DCL prompt. When you log out of the subprocess, control returns to decnet_register.

272

Appendix D. decnet_register Commands

update
update — The update command updates a node’s addressing information in a name service. The update
command reads a node’s addressing information directly from the node using network management
and modifies the node registration to contain the correct addresses. You must specify a usable address-
value in the update command in order for the command to establish the network connection to obtain the
remainder of the addressing information. See Section 5.3.6, "Updating Registered Node Addresses" for
important restrictions when using this command.

Syntax

update node node-name [directory_service dir-service | address addr-value | phaseiv_prefix
addr-prefix | reverse_directory r-dir-name]

Arguments

node-name

Identifies the name of the node to be updated. The node identification can be one of the following:

● The fully specified name for the node in the name service.

● The Phase IV synonym for the node.

The syntax of the fully specified name depends on the name service being used. Examples of fully
specified names follow:

Name Service Node Full Name

DECdns node MyCo:.Sales.MailHub
Local file node MailHub
Phase IV MLHUB

An example of a Phase IV synonym for any of the above names is MLHUB.

dir-service

Optional. Specifies the name service in which the node is to be updated. The directory_service must
be one of the following:

Name Service Keyword

DECdns decdns
Local file local
Phase IV phaseiv

If you do not specify directory_service, the default service specified with the set default command is
used.

addr-value

Optional. Specifies an address to use to establish a network management connection to the node.
Once the connection is established, the node’s tower set is obtained and used to update the node’s
name service entry. The address you supply can be any one of the following:

● One of the node’s NET or NSAP addresses

273

Appendix D. decnet_register Commands

● The node’s Phase IV address

● The keyword Local (or 0)

A NET is an NSAP address value with an N-SEL value of "00" (indicating that it is independent
of the type of transport service in use on the node). If you specify an NSAP instead of a NET, it is
converted to a NET before it is used.

DNA format: <afi>:<idi>:<predsp>-<locarea>:<nodeid>:00

OSI format: <afi><idi>+<predsp><locarea><nodeid>00

Examples of NETs follow:

DNA format: address 39:840:0001:AA-00-04-00-05-04:00

OSI format: address 39840+0001AA000400050400

If the node has a Phase IV address, that can be used instead of a NET:

Format: <area>.<nodeid>

<area>.<nodeid>+<prefix>

This is internally converted to a NET, using the Phase IV prefix value. The Phase IV prefix value
can be specified with the Phase IV address or the phaseiv_prefix parameter, or set using the set
default command.

Example Phase IV addresses follow:

address 1.5 Default Phase IV prefix

address 1.5+39:840 Explicit Phase IV prefix address 1.5 phaseiv_prefix 39:840 Explicit Phase IV
prefix

If the node whose name service entry is to be updated is the local node, use LOCAL (or 0). This
will force the use of the local network management connection. For example, use address LOCAL or
address 0.

addr-prefix

Optional. Specifies the AFI, IDI, and preDSP to use when constructing an NSAP from a Phase IV
address. The addr-prefix is used when a Phase IV address is specified in the address parameter. For
example, address 1.5 phaseiv_prefix 39:840:800AB738 results in the following NSAP representing
the Phase IV address:

39:840:800AB738-0001:AA-00-04-00-05-04:20

Another way to express this address is address 1.5+39:840:800AB738.

If you do not specify a phaseiv_prefix, the default Phase IV prefix specified with the set default
command is used.

r-dir-name

Optional. Specifies the base directory or name entry to use when creating the reverse address
mapping links to the node name. The links created under this

274

Appendix D. decnet_register Commands

directory are used to map NSAP values to their respective node names. These directories are used
only for the DECdns name service.

If you do not specify a reverse_directory, the default reverse directory specified with the set default
command is used.

275

Appendix D. decnet_register Commands

276

Appendix E. Examples of Network
Management Tasks
This appendix provides additional examples for some common management tasks. It includes scripts for
the following tasks:

● Event dispatcher

● Session control application

● NSP

● OSI Transport

● Routing initialization password

● MOP

E.1. Event Dispatcher
The following NCL script sets up the event dispatcher. The following example creates the event
dispatcher.

ncl> create event dispatcher

The following example creates and enables the default local event sink.

ncl> create event dispatcher sink local_sink
ncl> enable event dispatcher sink local_sink

The following example creates and enables the default local outbound stream.

ncl> create event dispatcher outbound stream local_stream
ncl> enable event dispatcher outbound stream local_stream

The following example creates and enables an additional sink on the local node. Note that
sales_sink_device is a logical name that corresponds to printer lpa0:. The logical name was defined with
a standard DCL define/system command.

ncl> create event dispatcher sink sales_sink
ncl> set event dispatcher sink sales_sink end user = number = 200
ncl> set event dispatcher sink sales_sink client type = device
ncl> set event dispatcher sink sales_sink device -
_ncl> name = "sales_sink_device"
ncl> enable event dispatcher sink sales_sink

The following example creates an outbound stream to node usa.sales.admin by means of the end-user
name, admin_sink.

ncl> create event dispatcher outbound stream admin_obs
ncl> set event dispatcher outbound stream admin_obs sink node -
_ncl> usa.sales.admin
ncl> set event dispatcher outbound stream admin_obs sink end user -
_ncl> = name = admin_sink
ncl> enable event dispatcher outbound stream admin_obs

277

Appendix E. Examples of Network Management Tasks

E.1.1. Event Dispatcher
The following example creates a sink corresponding to the outbound stream admin_obs on node
usa.sales.admin. Note that the end-user name of both the sink and the outbound stream must correspond.

ncl> create event dispatcher sink admin_sink
ncl> set event dispatcher sink admin_sink end user -
_ncl> = name = admin_sink
ncl> enable event dispatcher sink admin_sink

The following example creates an outbound stream to a node identified by the DECdns object name,
usa.sales.finance_sink.

ncl> create event dispatcher outbound stream finance_obs
ncl> set event dispatcher outbound stream finance_obs sink object -
_ncl> usa.sales.finance_sink
ncl> enable event dispatcher outbound stream finance_obs

The following example creates an outbound stream to a node by means of an address. The example first
creates an outbound stream on route66.

ncl> create node route66 event dispatcher outbound stream sales_obs
ncl> set node route66 event dispatcher outbound stream sales_obs -
_ncl> sink address -
_ncl> { -
_ncl> (-
_ncl> [DNA_CMIP-MICE], -
_ncl> [DNA_sessioncontrolV3, number = 82], -
_ncl> [DNA_nsp], -
_ncl> [DNA_osinetwork, 49::00-13:aa-00-04-00-8a-4f:20 (dec:.zk0.ilium)] -
_ncl>) -
_ncl> }
ncl> enable node route66 event dispatcher outbound stream sales_obs

The following example enables the event dispatcher.

ncl> enable event dispatcher

E.2. Session Control Application
The following NCL script creates and sets up several applications.

ncl> create session control application fal
ncl> set session control application fal addresses = {number=17}, -
_ncl> client, -
_ncl> incoming alias true, -
_ncl> incoming proxy true, -
_ncl> outgoing alias true, -
_ncl> outgoing proxy true, -
_ncl> node synonym true, -
_ncl> image name sys$system:fal.exe, -
_ncl> incoming osi tsel
ncl> create session control application mail
ncl> set session control application mail addresses {number=27} -
_ncl> client, -
_ncl> incoming alias true, -
_ncl> incoming proxy true, -

278

Appendix E. Examples of Network Management Tasks

_ncl> outgoing alias true, -
_ncl> outgoing proxy true, -
_ncl> node synonym true, -
_ncl> image name sys$system:mail_server.exe, -
_ncl> user name "mail$server", -
_ncl> incoming osi tsel
ncl> create node 0 session control application task
ncl> set node 0 session control application task addresses {name=task} -
_ncl> client, -
_ncl> incoming alias true, -
_ncl> incoming proxy true, -
_ncl> outgoing alias true, -
_ncl> outgoing proxy true, -
_ncl> node synonym true, -
_ncl> incoming osi tsel

E.3. NSP
The NCL script example creates and sets up nsp.

ncl> create nsp
ncl> set nsp maximum window 8
ncl> set nsp maximum transport connections 200
ncl> set nsp maximum receive buffers 2000
ncl> enable nsp
ncl> create session control transport service nsp protocol %x04

E.4. OSI Transport
The following NCL script creates and sets up OSI Transport, including connection-oriented (CONS) and
connectionless (CLNS) services.

ncl> create osi transport
ncl> set osi transport cons filters {}
ncl> create osi transport application osit_ivp
ncl> set osi transport application osit_ivp -
_ncl> image name sys$test:osit$ivpresp.com, -
_ncl> user name "systest", -
_ncl> called tsels {%x564F5453495650}
ncl> create osi transport template osi_loop_clns
ncl> set osi transport template osi_loop_clns -
_ncl> network service clns, -
_ncl> classes {4}, -
_ncl> cons template "", -
_ncl> expedited data true, -
_ncl> checksums false, -
_ncl> inbound false, -
_ncl> loopback true
ncl> create osi transport template osi_loop_cons
ncl> set osi transport template osi_loop_cons -
_ncl> network service cons, -
_ncl> classes {4,2,0}, -
_ncl> cons template "", -
_ncl> expedited data true, -
_ncl> checksums false, -
_ncl> inbound false, -

279

Appendix E. Examples of Network Management Tasks

_ncl> loopback true
ncl> enable osi transport

E.5. Routing Initialization Password
The following NCL script shows the commands you need to set up a routing initialization password.

ncl> create routing type endnode
ncl> enable routing
ncl> create routing circuit hdlc-0 -
_ncl> type hdlc
ncl> set routing circuit hdlc-0 -
_ncl> transmit verifier %x2222222 -
_ncl> explicit receive verification false -
_ncl> receive verifier %x5555555
ncl> enable routing circuit hdlc-0
ncl> create routing permitted neighbor -
_ncl> boston id 08-00-2b-12-34-56
ncl> set routing permitted neighbor -
_ncl> boston verifier %x5555555

E.6. MOP
The following NCL script sets up MOP on a VAXstation 3100 with an integral Ethernet adapter. This
example assumes that the entity csma station sva-0 has already been created and enabled. For the
example, the mop circuit name is identical to the csma station name, but this is not necessary. The circuit
is enabled for downline loading (load server), upline dumping (dump server), and for the use of the load
and boot directives (console requester).

ncl> create mop
ncl> enable mop
ncl> create mop circuit sva-0 type csma
ncl> set mop circuit sva-0 link name csma station sva-0
ncl> enable mop circuit sva-0 function {load server, dump server, -
_ncl> console requester}

The following NCL commands configure an OpenVMS Cluster satellite client. Only the system image
file specification characteristic is needed, and this is given in the special quoted form for an OpenVMS
Cluster load. The characteristics phase iv client name, phase iv client address, phase iv host name, and
phase iv host address are not required, but they are used to display information in the OpenVMS Cluster
satellite banner when the downline load of the system image completes.

ncl> create mop client mopsy
ncl> set mop client mopsy -
_ncl> circuit sva-0, -
_ncl> system image {"@net$niscs_laa(sys$sysdevice:<sys10.>)"}, -
_ncl> address {08-00-2b-0d-b9-81}, -
_ncl> phase iv client name valis, -
_ncl> phase iv client address 4.620, -
_ncl> phase iv host name mu, -
_ncl> phase iv host address 4.260

The following NCL commands configure a DECnet/SNA Gateway-CT client node. The gateway runs
DECnet Phase IV software, so the Phase IV client characteristics are needed. Also, the example uses two
Ethernet addresses: the hardware address, and the Phase IV extended DECnet address.

280

Appendix E. Examples of Network Management Tasks

ncl> create mop client valis
_ncl> set mop client valis -
_ncl> circuit sva-0, -
_ncl> phase iv client name valis, -
_ncl> phase iv client address 4.620, -
_ncl> phase iv host name mu, -
_ncl> phase iv host address 4.260, -
_ncl> system image {sys$common:<sna$csv>snacsa021.sys}, -
_ncl> diagnostic image {mop$load:snacsa$desnx.sys}, -
_ncl> dump file {sys$common:<sna$csv>valis.dmp}, -
_ncl> address {08-00-2b-0f-9e-ca, aa-00-04-00-6c-12}

281

Appendix E. Examples of Network Management Tasks

282

Appendix F. Using the Console
Carrier
The console carrier provides access to the remote console subsystem (ASCII console) of a network
server on a LAN. The console carrier interface does not use NCL. Instead, you enter commands at the
operating system to use the console carrier.

F.1. Using the Console Carrier
To use the console carrier, specify the console requester function when you enable the mop circuit
(discussed in Section 10.2, "Manually Configuring MOP".). The console carrier user interface does
not use NCL. Instead, DECnet-Plus uses the DCL command, set host/mop, to run the console carrier
requester program.

In addition, the target system must support remote console access. See your network server
documentation for information about remote console access support.

The following command examples show how to invoke the set host/mop command:

 $ set host/mop client-name -
_$ /disconnect = disconnect-character -
_$ /break = break-character

Specifies the disconnect character. The default is the backslash (\). To disconnect from the remote
console, press and hold down the Control (Ctrl) key while pressing the disconnect character.

Choose the disconnect character from the set a-z (except for s and q), @, [, \,], ^, _. Other
characters might work, depending on the terminal keyboard. Enclose special characters in quotes to
prevent DCL from misinterpreting them.

Specifies the break character. The default is the right bracket (]). To send a break condition to the
remote console, press and hold down the Control (Ctrl) key while pressing the break character.

Choose the break character from the set a-z (except for s and q), @, [, \,], ^, _. Other characters
might work, depending on the terminal keyboard. Enclose special characters in quotes to prevent
DCL from misinterpreting them.

Alternatively, you can use the following format to access a client system that is not defined in the client
database. For example:

$ set host/mop -
_$ /circuit = circuit-name -
_$ /address = lan-address -
_$ /verification = octet-string -
_$ /disconnect = disconnect-character -
_$ /break = break-character

Specifies the name of the MOP circuit over which the target system can be reached.

Specifies the LAN hardware address associated with this client.

Specifies the verification string. The value is an octet string of up to 16 hexadecimal digits. Enter
the value as "%X" followed by an even number of digits. For more information about specifying a

283

Appendix F. Using the Console Carrier

verification string, see Section 10.2.2.1, "Setting Up MOP Service Passwords on a Network Server".
The default is %X0000000000000000.

The console prompt for the network server to which you have connected appears on your terminal. For
example:

>>>

At the server prompt, you can enter commands appropriate to your server. For information about what
commands your network server supports, see your server documentation.

For example:

$ set host/mop slug /address=aa-00-04-00-33-30
Connection established to remote system AA-00-04-00-33-30
Press Ctrl/\ to disconnect, Ctrl/] to send break
DEMSA Console
ROM Firmware Version: 8-AUG-2019 16:08
Processor State: *RUNNING*
Software state : Running
>>>

Note

OpenVMS Cluster satellites do not provide remote console support.

284

Appendix G. Migration Guidelines
for VAX P.S.I.
This appendix describes the correspondence between DECnet Phase IV (NCP) network management
commands for VAX P.S.I. and DECnet Phase V (NCL) network management commands for X.25
software. It is intended for network managers who currently use VAX P.S.I. in their DECnet Phase IV
networks.

The material is organized from the Phase IV network manager’s viewpoint. Each section describes the
changes made in a specific area of Phase IV network management to support DECnet Phase V. For more
information about DECnet Phase V network management, refer to the VSI DECnet-Plus for OpenVMS
Network Control Language Reference Guide.

G.1. Terminology
The terminology used in the VAX P.S.I. product has been replaced by the terminology used in the VSI
X.25 for OpenVMS product. The table below shows the correlation between VAX P.S.I. terms and their
X.25 for OpenVMS counterparts.

VAX P.S.I. X25 for OpenVMS

VAX P.S.I. X.25 for OpenVMS
Access system X.25 Client system
Native system X.25 Direct Connect system
Multihost system X.25 Connector system
Gateway system X.25 Connector system

G.2. Phase IV Databases and DECnet Phase V
Entities
For Phase IV VAX P.S.I. network managers, the major manageable structures are:

● X25-ACCESS

● X25-PROTOCOL

● X25-SERVER

● X29-SERVER

● LINE

● CIRCUIT

In DECnet Phase V, network management operates on manageable entities. These entities are organized
in a hierarchical structure. The topmost entity in this structure is the node entity. Below this entity is a
series of modules, each of which provides a particular network service. The following DECnet Phase V
modules are used by X.25:

285

Appendix G. Migration Guidelines for VAX P.S.I.

● X25 Access

● X25 Client

● X25 Server

● X25 Relay

● X25 Protocol

● LAPB

● LLC2

● Modem Connect

● XOT (OpenVMS I64 and Alpha only)

G.2.1. X25 Access
The X25 Access module provides management directives for creating and deleting the entity and starting
and stopping its operation.

The x25 access entity has the following subordinate entities:

● template — Specifies outgoing call parameters.

● filter — Defines discrimination criteria for incoming calls received by the X25 Protocol module or a
local X25 Client module.

● reachable address — Supports the mapping between OSI NSAP addresses and DTE addresses when
using OSI Connection-Oriented Network Service (CONS).

● port — Represents status information relevant to each X.25 virtual circuit currently in use.

● dte class — Categorizes dte entities.

● application — Specifies applications that wish to receive incoming calls.

● security dte class — Controls incoming and outgoing calls. The security dte class entity has a
subordinate entity, remote dte. An x25 access security dte class remote dte is a collection of access
control attributes that control incoming calls from and outgoing calls to a particular remote DTE.

● security filter — Defines access control information that can be applied to one or more filters. The
value of the security filter attribute in an x25 access filter entity determines the required x25 access
security filter.

G.2.1.1. Configuring X25 Access Filters for Use by OSI Transport
(VAX Only)
You can create X25 Access filters with the X.25 configuration procedure. Use the ‘‘Declaring a Network
Process Section’’, as follows:

1. On the introduction screen to Declaring a Network Process Section, answer YES to the question:

Do you want X.25 or X.29 programs to specify filter names in $QIO(IO
$_ACPCONTROL) calls?

286

Appendix G. Migration Guidelines for VAX P.S.I.

2. On the next screen, answer NO to the question:

Do you want IO$_ACPCONTROL calls issued by your programs to name any
 dynamic filters?

3. On the next screen, answer NO to the question:

Do you want IO$_ACPCONTROL calls issued by your programs to name any
 dynamic filters?

4. On the next screen, answer YES to the question:

Do you want IO$_ACPCONTROL calls issued by your programs to name any
 static filters?

5. On the following two screens you can set up the attributes for the X25 Access filter. You will be
prompted to enter network process filter information. You must complete the following fields:

● Filter name: OSI transport

● Call data value: for example, %X03010100

● Call data Mask: for example, %XFFFFFFFF

The filter name can be set to any name. However the name used must match the name entered as
the X25 Access template name and as the OSI transport CONS template name. The OSI transport
template attribute cons template is case sensitive and must match the OSI transport attribute cons
filters exactly.

The call data value and call data mask entries are used by X.25 software to determine whether an
inbound network connect should be passed to transport.

For other fields, use the default value provided.

You can set up a security filter corresponding to this X25 Access filter in the Incoming Security for
Network Processes Section of the X.25 configuration procedure.

Note

On OpenVMS I64 and OpenVMS Alpha systems, the entities needed for OSI transport over X.25
are created automatically by the X.25 configuration utility.

G.2.2. X25 Client
The X25 Client module provides management directives for creating and deleting the entity and starting
and stopping its operation.

The x25 client entity has no subordinate entities.

G.2.3. X25 Server
The X25 Server module provides management directives for creating and deleting the entity and starting
(or restarting) its operation.

The x25 server entity has the following subordinate entities:

287

Appendix G. Migration Guidelines for VAX P.S.I.

● client — Describes an X.25 Client system that might use this X25 server.

● security nodes — Defines a set of rights identifiers associated with calls issued by the X25 Server
module (on behalf of the X.25 Client system) to the X25 Access module at the X.25 Connector
system. These rights identifiers are used when making access control checks on the DTE class
specified when a call is made.

G.2.4. X25 Relay (OpenVMS I64 and OpenVMS Alpha)
The X25 Relay module provides management directives for creating and deleting the entity and starting
(or restarting) its operation.

The x25 relay entity has the following subordinate entities:

● client — Defines a set of values used to set up a relay between an inbound and outbound call.

● pvc — Defines a set values used to establish a connection between two permanent virtual cicuits
(PVCs).

This entity represents new functionality not found in Phase IV; therefore, no migration information is
provided in this appendix.

G.2.5. X25 Protocol
The X25 Protocol module provides management directives for creating and deleting the entity. Because
it is essentially a collection of dte entities, it does not provide directives for starting and stopping the
module as a whole.

The x25 protocol entity has the following subordinate entities:

● dte — Defines the attributes of each DTE in the system that is connected to an X.25 network. The
dte entity has the subordinate entity, pvc, that defines the attributes of an X.25 permanent virtual
circuit in use at this DTE.

● group — Defines a closed user group (CUG) used by this system.

G.2.6. LAPB
The LAPB module provides management directives for creating and deleting the entity.

The lapb entity has the following subordinate entities:

● link — Defines LAPB attributes for use over a physical line.

● port — Represents status information about each access point to the Data Link layer currently
provided by the LAPB module.

G.2.7. LLC2
The LLC2 module provides management directives for creating and deleting the entity.

The llc2 entity has the following subordinate entities :

● sap — Defines LLC2 attributes for use over a LAN station. The sap entity has a subordinate entity,
link, that defines the LLC2 attributes of a link that uses this SAP.

288

Appendix G. Migration Guidelines for VAX P.S.I.

● port — Represents status information about each access point to the Data Link layer currently
provided by the LLC2 module.

G.2.8. Modem Connect
The Modem Connect module provides management directives for creating and deleting the entity.

The modem connect entity has the following subordinate entities:

● data port — Represents status information about each access point to the Physical layer currently
provided by the Modem Connect module.

● line — Defines attributes for the control and monitoring of a physical line.

G.2.9. XOT (OpenVMS I64 and OpenVMS Alpha Only)
The XOT module provides management directives for creating and deleting the entity. The XOT module
allows X.25 communication over existing TCP/IP connections.

The xot entity has the following subordinate entities :

● sap — Defines the TCP/IP interface service access point (SAP) to use when connecting with another
system. The sap entity has a subordinate entity, link, that defines the attributes of a remote system
with which XOT can communicate.

G.3. Attribute Mapping
The following sections show the association between Phase IV network management parameters and
their equivalent DECnet Phase V attributes.

Each section contains a table listing the parameters that could be set by Phase IV network management.
The columns in the table denote the following:

1. Phase IV Name — The name of a Phase IV network management parameter.

2. DECnet Phase V entity — The DECnet Phase V entity that contains the attribute that maps most
closely to this parameter.

3. attribute — The name of the attribute that maps most closely to the Phase IV network management
parameter.

4. type — The DECnet Phase V data type of this attribute. (Refer to the VSI DECnet-Plus for OpenVMS
Network Control Language Reference Guide for a description of common data types for NCL.)

The footnotes describe additional points to consider when converting from DECnet Phase IV to DECnet
Phase V network management.

G.3.1. X25-ACCESS NETWORK Database
The X25-ACCESS NETWORK database points to the X.25 protocol networks on remote X.25 Direct
Connect systems. It also contains session control access control information. Table G.1, "X25-ACCESS
NETWORK Database" shows the parameter mapping rules.

289

Appendix G. Migration Guidelines for VAX P.S.I.

Table G.1. X25-ACCESS NETWORK Database

Phase IV Name Phase V Entity Attribute Type

NETWORK x25 access dte class1 Identifier Simple name
NODE x25 access dte class nodeb Full name
USERc x25 access dte class userd Latin1String
PASSWORDc x25 access dte class passwordd Latin1String
ACCOUNTc x25 access dte class accountd Latin1String

1Of type remote. The DTE class type is specified on creation.
bOpenVMS VAX only. Use the service nodes attribute on OpenVMS I64 and OpenVMS Alpha systems.
cOptional parameter.
dNot supported.

Phase IV example:

NCP> set x25-access network MYNET node GWYNOD

Phase V example:

ncl> create x25 access dte class MYNET type remote
ncl> set x25 access dte class MYNET node LOCAL:.GWYNOD

G.3.2. X25-PROTOCOL NETWORK Database
The X25-PROTOCOL NETWORK database defines the base operating characteristics (including default
values) for a collection of DTEs and their associated lines. The same profile can be used by more than
one network name. Table G.2, "X25-PROTOCOL NETWORK Database" shows the parameter mapping
rules.

Table G.2. X25-PROTOCOL NETWORK Database

Phase IV Name Phase V Entity Attribute Type

NETWORK x25 access dte class1 Identifier Simple Name
PROFILE x25 protocol dte lapb

link
profileb 2

profileb

Latin1String
Latin1String

1Of type local. The DTE class type is specified on creation.
bAll DTEs in this network must use the same profile name as the profile attribute of both the X25 Protocol DTE and LAPB Link entities.

G.3.3. X25-PROTOCOL DTE Database
The X25-PROTOCOL DTE database contains the operating characteristics of each connection to the
PSDN at X.25 level 3 (packet level). Default values are taken mostly from the profile; customers can
modify these values so that their system configurations match their PSDN subscription options. Table
G.3, "X25-PROTOCOL DTE Database" shows the parameter mapping rules.

Table G.3. X25-PROTOCOL DTE Database

Phase IV Name Phase V Entity Attribute Type

DTE x25 protocol dte x25 address DTE address
NETWORK x25 access dte

class
Identifier Simple name

290

Appendix G. Migration Guidelines for VAX P.S.I.

Phase IV Name Phase V Entity Attribute Type

x25 protocol dte inbound dte
class1

Simple name

x25 protocol dte profile Latin1String
LINE x25 protocol dte link service

providerb
Local entity name

CALL TIMERc x25 protocol dte call timer Unsigned
CHANNELSc x25 protocol dte outgoing list Set of range of unsigned
CLEAR TIMERc x25 protocol dte clear timer Unsigned
COUNTER TIMERc N/A
DEFAULT DATAc x25 protocol dte default packet size Unsigned
DEFAULT WINDOWc x25 protocol dte default window size Unsigned
INTERFACEc x25 protocol dte interface type Enumerated {[DTE],

DCE, negotiated}
INTERRUPT TIMERc x25 protocol dte interrupt timer Unsigned
MAXIMUM
CIRCUITSc

x25 protocol dte maximum active circuits Unsigned

MAXIMUM CLEARSc x25 protocol dte maximum clear attempts Unsigned
MAXIMUM DATAc x25 protocol dte maximum packet size Unsigned
MAXIMUM RESETSc x25 protocol dte maximum reset attempts Unsigned
MAXIMUM
RESTARTSc

x25 protocol dte maximum restart
attempts

Unsigned

MAXIMUM
WINDOWc

x25 protocol dte maximum window size Unsigned

RESET TIMERc x25 protocol dte reset timer Unsigned
RESTART TIMERc x25 protocol dte restart timer Unsigned
STATEc x25 protocol dte N/Ad

1All DTEs must have a valid inbound DTE class attribute.
bThe LINE qualifier points to an entry in the LINE database. The link service provider might be LAPB Link or LLC2 SAP Link.
cOptional parameter.
dNow controlled by the enable or disable directives.

Phase IV example:

NCP> set x25-protocol network mynet profile iso8208
NCP> set x25-protocol dte 123456789 network mynet line dsv-0-0 state off
NCP> set x25-protocol dte 123456789 network mynet channels 1024-1
NCP> set dte 123456789 net mynet state on

Phase V example:

ncl> create x25 access dte class mynet type local
ncl> set x25 access dte class mynet local dte {dte-0}
ncl> create x25 protocol dte dte-0 profile "ISO8208"
ncl> set x25 protocol dte dte-0 x25 address 123456789,inbound dte class
 mynet
ncl> set x25 protocol dte dte-0 link service provider LAPB link dsv-0
ncl> set x25 protocol dte dte-0 outgoing list {[1..1024]}

291

Appendix G. Migration Guidelines for VAX P.S.I.

ncl> enable x25 protocol dte dte-0

G.3.4. X25-PROTOCOL GROUP Database
The X25-PROTOCOL GROUP database associates individual local DTEs (qualified by their network)
with an X.25 closed user group. The Phase IV database design is less flexible than the Phase V one
(which allows complicated groups to be configured as one entity). Table G.4, "X25-PROTOCOL GROUP
Database" shows the parameter mapping rules.

Table G.4. X25-PROTOCOL GROUP Database

Phase IV Name Phase V Entity Attribute Type

GROUP x25 protocol group Identifier Simple name
NETWORK N/A
DTE x25 protocol group members CUG member
NUMBER x25 protocol group members CUG member
TYPE1 x25 protocol group type Enumeration {CUG,

BCUG}
1Optional parameter.

Phase IV example:

NCP> set x25-protocol group secret dte 123456789 network mynet type
 bilateral -
_ number 99

Phase V example:

ncl> create x25 protocol group secret
ncl> set x25 protocol group secret type bcug,members
 {(dte=dte-0,index=99)}

G.3.5. X25-SERVER Database
The X25-SERVER database serves as the incoming call handler and controls the total number of
connections on the system. In DECnet Phase V, it is replaced by three distinct modules. Table G.5, "X25-
SERVER Database" shows the parameter mapping rules.

Table G.5. X25-SERVER Database

Phase IV Name Phase V Entity Attribute Type

MODULE X25-
SERVER

N/A

COUNTER TIMER1 N/A
x25 access maximum active

ports
Unsigned

x25 server maximum session
connections

Unsigned

MAXIMUM
CIRCUITS1

x25 client maximum session
connections

Unsigned

x25 access N/Ab STATE1

x25 server N/Ab

292

Appendix G. Migration Guidelines for VAX P.S.I.

Phase IV Name Phase V Entity Attribute Type

x25 client N/Ab
1Optional parameter.
bNow controlled by the enable or disable directives.

G.3.6. X25-SERVER Local Destination Database
The local destinations in the X25-SERVER database are identified by the lack of a NODE qualifier.

Each destination points to an entry in the Phase IV OBJECT database, which identifies a command
procedure to invoke. (VAX P.S.I. does not support executable images.)

In DECnet Phase V, objects are replaced by x25 access application entities. Each application specifies
a set of filters to listen for incoming calls by using the filters attribute. The file attribute identifies a
command procedure to invoke when a call is received. The type attribute for these applications should be
set to X25.

Table G.6, "X25-SERVER Local Destination Database" shows the parameter mapping rules.

Table G.6. X25-SERVER Local Destination Database

Phase IV Name Phase V Entity Attribute Type

x25 access
filter1

Identifier Simple name

x25 access
application1

filters Set of simple name

DESTINATION

x25 access
application

type X25b

OBJECT x25 access
application

Identifier Simple name

USERc x25 access
application

user Latin1String

PASSWORDc N/A N/A N/A
ACCOUNTc x25 access

application
accountd Latin1String

CALL MASKc x25 access
filter

call data mask Octet string

CALL VALUEc x25 access
filter

call data value Octet string

CALLED ADDRESSc x25 access
filter

originally
called address

DTE address

EXTENSION MASKc x25 access
filter

called address
extension mask

Octet string

EXTENSION VALUEc x25 access
filter

called address
extension value

Octet string

GROUPc x25 access
filter

group Simple name

INCOMING
ADDRESSc

x25 access
filter

incoming dte
address

DTE address

293

Appendix G. Migration Guidelines for VAX P.S.I.

Phase IV Name Phase V Entity Attribute Type

NETWORKc x25 access
filter

inbound dte
class

Simple name

PRIORITYc x25 access
filter

priority Unsigned

RECEIVING DTEc x25 access
filter

receiving dte
address

DTE address

REDIRECT REASONc x25 access
filter

redirect reason Enumerated {[Not
Specified], Busy, Out of
Order, Systematic}

SENDING ADDRESSc x25 access
filter

sending dte
address

DTE address

SUBADDRESSESc x25 access
filter

subaddress
rangee

Set of range of unsigned

1Used for more than one attribute, due to a split of function between the X25 Access module and the X25 Access Application entity.
bX25 Access application type should be X25 for this type of destination.
cOptional parameter.
dNot supported in all implementations.
eOpenVMS VAX only. Use the incoming dte address attribute on OpenVMS I64 and OpenVMS Alpha systems.

Phase IV example:

NCP> define object psi_mail number 0 file sys$system:psi$mail -
_ user username password secret
NCP> define module x25-server destination psi_mail object psi_mail -
_ call mask ffffffffffffffffffffffffffffffff -
_ call value ff00000056332e30204d41494c2d3131

Phase V example:

ncl> create x25 access filter PSI_MAIL
ncl> set x25 access filter PSI_MAIL priority 3000 , -
_ncl> call data value %XFF00000056332E30204D41494C2D3131 , -
_ncl> call data mask %XFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
ncl> create x25 access application PSI_MAIL
ncl> set x25 access application PSI_MAIL type X25, -
_ncl> file sys$system:psi$mail.com , user "mail$server", filters
 {PSI_MAIL}

G.3.7. X25-SERVER Remote Destination Database
Remote destinations are used when operating as an X.25 Connector system. They contain a NODE
qualifier, point to the X.25 Client application at the remote X.25 Client system, and might include access
control information.

Table G.7, "X25-SERVER Remote Destination Database" shows the parameter mapping rules.

Table G.7. X25-SERVER Remote Destination Database

Phase IV Name Phase V Entity Attribute Type

DESTINATION x25 access
filter1

Identifier Simple name

294

Appendix G. Migration Guidelines for VAX P.S.I.

Phase IV Name Phase V Entity Attribute Type

x25 server
client1

Identifier Simple name

x25 server
client1

filters Set of simple nameb

NODE x25 server
client

nodec full name

OBJECTd x25 server
client

application End-user specification

USERd x25 server
client

user Latin1String

PASSWORDd x25 server
client

password Latin1String

ACCOUNTd x25 server
client

account Latin1String

CALL MASKd x25 access
filter

call data mask Octet String

CALL VALUEd x25 access
filter

call data value Octet String

CALLED ADDRESSd x25 access
filter

originally
called address

DTE address

EXTENSION MASKd x25 access
filter

called address
extension mask

Octet string

EXTENSION VALUEd x25 access
filter

called address Octet string

GROUPd x25 access
filter

group Simple name

INCOMING
ADDRESSd

x25 access
filter

incoming dte
address

DTE address

NETWORKd x25 access
filter

inbound dte
class

Simple name

PRIORITYd x25 access
filter

priority Unsigned

RECEIVING DTEd x25 access
filter

receiving dte
address

DTE address

REDIRECT REASONd x25 access
filter

redirect reason Enumerated {[Not
Specified], Busy, Out of
Order, Systematic}

SENDING ADDRESSd x25 access
filter

sending dte
address

DTE address

SUBADDRESSESd x25 access
filter

subaddress range Set of range of unsigned

1Used for more than one attribute, due to a split of function between the x25 access and x25 server client entities.
bNote that this is a set of filters, not a single value.
cOpenVMS VAX only. Use the service nodes attribute on OpenVMS I64 and OpenVMS Alpha systems.
dOptional parameter.

295

Appendix G. Migration Guidelines for VAX P.S.I.

Phase IV example:

NCP> set x25-server destination host node mynode object 36 priority 200 -
_ subaddresses 33-34

Phase V example:

ncl> create x25 access filter host
ncl> set x25 access filter host priority 200,subaddress range {[33..34]}
ncl> create x25 server client host
ncl> set x25 server client host filters {host} , -
_ncl> node LOCAL:.mynode

G.3.8. LINE Database
The LINE database contains information about all types of lines used in DECnet Phase IV. The X.25-
related information is for those lines whose protocol parameter is LAPB or LAPBE.

The X.25 entries in the LINE database contain the operating characteristics of each individual
connection to the PSDN at X.25 level 2 (frame level). Default values are taken mostly from the profile.
Users can modify these values so that their system configurations match their PSDN subscription
options. Table G.8, "LINE Database" shows the parameter mapping rules.

Table G.8. LINE Database

Phase IV Name Phase V Entity Attribute Type

modem connect
line

communications
port

Simple nameLINE

lapb link Identifier Simple name
CONTROLLER1 modem connect

line
N/Ab

COUNTER TIMER1 N/A
HOLDBACK TIMER1 lapb link holdback timer Unsigned
INTERFACE1 lapb link interface type Enumerated {[DTE],

DCE}
MAXIMUM BLOCK1 lapb link maximum data

size
Unsigned

MAXIMUM
RETRANSMITS1

lapb link retry maximum Unsigned

MAXIMUM
WINDOW1

lapb link window size Unsigned

NETWORK lapb link profile cd Simple name
PROTOCOL lapb link sequence modulus UNSIGNED 8(LAPB)

or 128(LAPBE)
RECEIVE BUFFERS1 lapb link receive buffers Unsigned
RETRANSMIT
TIMER1

lapb link acknowledge
timer

Unsigned

STATE1 lapb link N/Ae
1Optional parameter.
bIf the CONTROLLER mode is LOOPBACK, then the startloop directive may be issued on the modem connect line using the mode attribute.
cSee notes for X25-PROTOCOL NETWORK databases.

296

Appendix G. Migration Guidelines for VAX P.S.I.

dSee note on NETWORK for the X25-PROTOCOL DTE database.
eNow controlled by the enable or disable directives.

Phase IV example:

NCP> define line dsv-0-0 network mynet protocol lapb state on

Phase V example:

ncl> create modem connect line dsv-0 communication port DSV-0-0 -
_ncl> , profile "NORMAL"
ncl> set modem connect line dsv-0 -
_ncl> modem control full, speed 9600 , suppress test indicator true
ncl> create lapb link dsv-0 profile "ISO8208"
ncl> set lapb link dsv-0 physical line modem connect line dsv-0 , -
_ncl> acknowledge timer 2718 , holdback timer 1359 , maximum data size 1031
 -
_ncl> , window size 7

G.3.9. X29-SERVER Database
The X29-SERVER database serves as the incoming X.29 call handler and controls the number of
incoming X.29 connections on the system. In DECnet Phase V, it is merged with the X.25 call handler
(X25 Access module and x25 access application entity). Table G.9, "X29-SERVER Database" shows the
parameter mapping rules.

Table G.9. X29-SERVER Database

Phase IV Name Phase V Entity

MODULE X29-SERVER N/A
COUNTER TIMER1 N/A
MAXIMUM CIRCUITS1 N/A
STATE1 x25 access application x29_login

1Optional parameter.

G.3.10. X29-SERVER Destination Database
Each destination either points to an entry in the DECnet-VAX OBJECT database or it contains no object
record. In the former case, the object identifies a command procedure to invoke. (VAX P.S.I. does not
support executable images.) In the latter case, the call is considered to be for LOGINOUT.

In DECnet Phase V, objects are replaced by x25 access application entities. Each application specifies
a set of filters to listen for incoming calls by using the filters attribute. The file attribute identifies a
command procedure to invoke when a call is received. The type attribute for these applications should be
set to X29 or X29 login if the call goes to LOGINOUT.

Table G.10, "X29-SERVER Destination Database" shows the parameter mapping rules.

Table G.10. X29-SERVER Destination Database

Phase IV Name Phase V Entity Attribute Type

x25 access
filter1

Identifier Simple nameDESTINATION

x25 access
application1

filters Set of simple name

297

Appendix G. Migration Guidelines for VAX P.S.I.

Phase IV Name Phase V Entity Attribute Type

x25 access
application

type X29 or X29 loginb

OBJECTc x25 access
application

Identifier Simple name

USER x25 access
application

user Latin1String

PASSWORD N/A N/A N/A
ACCOUNTc x25 access

application
accountd Latin1String

CALL MASKc x25 access
filter

call data mask Octet string

CALL VALUEc x25 access
filter

call data value Octet string

CALLED ADDRESSc x25 access
filter

originally
called address

DTE address

EXTENSION MASKc x25 access
filter

called address
extension mask

Octet string

EXTENSION VALUEc x25 access
filter

called address
extension value

Octet string

GROUPc x25 access
filter

group Simple name

INCOMING
ADDRESSc

x25 access
filter

incoming dte
address

DTE address

NETWORKc x25 access
filter

inbound dte
class

Simple name

PRIORITYc x25 access
filter

priority Unsigned

RECEIVING DTEc x25 access
filter

receiving dte
address

DTE address

REDIRECT REASONc x25 access
filter

redirect reason Enumerated {[Not
Specified], Busy, Out of
Order, Systematic}

SENDING ADDRESSc x25 access
filter

sending dte
address

DTE address

SUBADDRESSESc x25 access
filter

subaddress
rangee

Set of range of unsigned

1Used for more than one attribute, due to a split of function between the x25 access filter and x25 access application entities.
bX25 Access Application type should be X29 for this type of destination unless no object is specified, in which case it is X29 login.
cOptional parameter.
dNot supported in all implementations.
eOpenVMS VAX only. Use the incoming dte address attribute on OpenVMS I64 and OpenVMS Alpha systems.

298

Appendix G. Migration Guidelines for VAX P.S.I.

G.3.11. X.25 Information in the CIRCUIT Database
The CIRCUIT database contains information on several distinct types of X.25 circuits. There are two
major types: those used by Routing (DLM circuits) and those used by X.25 applications ("native"
PVCs).

● Routing circuits have the OWNER qualifier set to EXECUTOR and the TYPE qualifier set to
PERMANENT, OUTGOING, or INCOMING. There are three separate types of routing circuits over
X.25 in DECnet Phase IV.

○ Permanent: Use an X.25 permanent virtual circuit (PVC) to provide a data link service analogous
to a leased line. Section G.3.11.3, "DLM PVC Circuit" covers this type of circuit.

○ Outgoing: Use an X.25 switched virtual circuit (SVC) to provide the data link service. Calls
are initiated to a remote system that is identified by the NETWORK and NUMBER qualifiers.
Section G.3.11.1, "DLM Outgoing Circuit" covers this type of circuit.

○ Incoming: Use an X.25 switched virtual circuit (SVC) to provide the data link service. Calls
are received from one or more remote systems, with access controlled by the NETWORK and
NUMBER qualifiers. Section G.3.11.2, "DLM Incoming Circuit" covers this type of circuit.

● X.25 application PVC circuits should have the TYPE qualifier set to PERMANENT and have no
OWNER qualifier specified. Section G.3.11.4, "PVC Circuit for X.25 Application" covers this type of
circuit.

Although the PVC entities in Phase IV management are contained in the CIRCUIT database, they are
invalid unless they can use an X25-PROTOCOL DTE database. This fact is important in DECnet Phase
V because PVCs are child entities of x25 protocol dte entities.

Phase IV DLM circuits correspond to the X.25 static incoming, static outgoing, and permanent circuits
used by DECnet Phase V routing over the Connectionless- Mode Network Service (CLNS). The
following sections describe how these circuit types are configured for DECnet Phase V.

Refer to Chapter 8, "Managing DECnet Phase V Communications" for a more detailed description of
how DECnet Phase V routing uses X.25.

G.3.11.1. DLM Outgoing Circuit
Phase IV DLM circuits of type OUTGOING are replaced by routing circuits of type x25 static outgoing
in DECnet Phase V. The circuit’s data link entity characteristic is set to X25 access. There is an
additional parameter, initial minimum timer, that clears the circuit if no adjacency has been established
when this timer expires.

Parameters for the outgoing call are defined by an associated X25 Access template which is specified by
the routing circuit template attribute.

Table G.11, "DLM Outgoing Circuit DLM Database" shows the parameter mapping rules.

Table G.11. DLM Outgoing Circuit DLM Database

Phase IV Name Phase V Entity Attribute Type

CIRCUIT routing circuit Identifier Simple name
COST1 N/Ab
COUNTER TIMER1 N/A

299

Appendix G. Migration Guidelines for VAX P.S.I.

Phase IV Name Phase V Entity Attribute Type

DTE1 N/A
HELLO TIMER1 N/Ab
MAXIMUM DATA1 x25 access

templatec
packet size Unsigned

MAXIMUM
RECALLS1

routing circuit maximum call
attempts

Unsigned

MAXIMUM
WINDOW1

x25 access
templatec

window size Unsigned

NETWORK x25 access
templatec

dte class Simple name

NUMBER x25 access
templatec

destination dte
address

DTE address

OWNER N/A
RECALL TIMER1 routing circuit recall timer Unsigned
STATE1 routing circuit N/Ad
TYPE N/A
USAGE routing circuit typee 25 static

outgoing

routing circuit receive
verifierf

Hex stringVERIFICATION1

routing circuit transmit
verifierf

Hex string

1Optional parameter.
bNot currently supported.
cUsing the template identified by the routing circuit template attribute.
dNow controlled by the enable or disable directives.
eThis attribute is for the create directive.
fShould be set if the Phase IV parameter VERIFICATION is enabled.

Phase IV example:

NCP> set circuit x25-out usage outgoing network mynet number 12345678920 -
_ maximum data 256 maximum window 7 maximum recalls 10 recall timer 60 -
_ state on

Phase V example:

ncl> create x25 access template rou_temp
ncl> set x25 access template rou_temp dte class mynet,destination dte -
_ncl> address 12345678920
ncl> set x25 access template rou_temp packet size 512,window size 7
ncl> create routing circuit x25-out type x25 static outgoing
ncl> set routing circuit x25-out maximum call attempts 10, recall timer 60
ncl> set routing circuit x25-out template rou_temp
ncl> enable routing circuit x25-out

G.3.11.2. DLM Incoming Circuit
Phase IV DLM circuits of type INCOMING are replaced by routing circuits of type x25 static incoming
in DECnet Phase V. The circuit’s data link entity characteristic is set to X25 access. There is an

300

Appendix G. Migration Guidelines for VAX P.S.I.

additional parameter, initial minimum timer, that clears the circuit if no adjacency has been established
when this timer expires.

Parameters for call negotiation can be defined by an associated X25 Access template which is specified
by the routing circuit template attribute.

Parameters for incoming call capture are defined by one or more X25 Access filters which are
determined by the routing circuit x25 filters attribute.

When setting up an X25 Access filter for use with this type of circuit, specify the following filter
characteristics for calls originating from DECnet Phase V systems:

● call data mask %xff

● call data value %x81

For calls originating from a Phase IV DLM system, use the subaddress range filter characteristic to select
calls on the basis of the DTE subaddress or the call data value filter characteristic to select calls on the
basis of the call data string DECNET_DLM.

Table G.12, "DLM Incoming Circuit Database" shows the parameter mapping rules.

Table G.12. DLM Incoming Circuit Database

Phase IV Name Phase V Entity Attribute Type

CIRCUIT routing circuit Identifier Simple name
COST1 routing circuit N/Ab
COUNTER TIMER1 N/A
DTE1 x25 access

filterc
N/A

HELLO TIMER1 routing circuit N/Ab
MAXIMUM DATA1 x25 access

templated
packet size Unsigned

MAXIMUM
WINDOW1

x25 access
templated

window size Unsigned

NETWORK1 x25 access
filterc

inbound dte
class

Simple name

NUMBER1 x25 access
filter

sending dte
addressc

DTE address

OWNER N/A
STATE1 N/Ae
TYPE N/A
USAGE routing circuit type x25 static

incoming

routing circuit receive
verifierf

Hex stringVERIFICATION1

routing circuit transmit
verifierf

Hex string

1Optional parameter.

301

Appendix G. Migration Guidelines for VAX P.S.I.

bNot currently supported.
cUsing the X.25 filter identified by the routing circuit template attribute.
dUsing the template identified by the routing circuit template attribute.
eNow controlled by the enable or disable directives.
fShould be set if the Phase IV parameter VERIFICATION is enabled.

Phase IV example:

NCP> set executor subaddresses 20-30
NCP> set circuit x25-inc usage incoming network mynet -
_ maximum data 256 maximum window 7 NCP> set circuit x25-inc sta on

Phase V example:

ncl> create x25 access filter rou_filt
ncl> set x25 access filter rou_filt subaddress range {[20..30]}, inbound
 dte -
_ncl> class mynet
ncl> create routing circuit x25-inc type x25 static incoming
ncl> set routing circuit x25-inc x25 filters {rou_filt},template rou_temp
ncl> enable routing circuit x25-inc

G.3.11.3. DLM PVC Circuit

Phase IV DLM circuits of type PERMANENT are replaced by routing circuits of type x25 permanent in
DECnet Phase V. The circuit’s data link entity characteristic is set to X25 access.

The circuit’s template characteristic is set to the name of the X25 Protocol DTE PVC that will be used
by this routing circuit.

Table G.13, "DLM PVC Database" shows the parameter mapping rules.

Table G.13. DLM PVC Database

Phase IV Name Phase V Entity Attribute Type

CIRCUIT routing circuit Identifier Simple name
routing circuit template Simple namebcCHANNEL1

x25 protocol dte pvc xc channel Unsigned
COST1 N/Ad
COUNTER TIMER1 N/A
DTE x25 protocol dte Identifierc Simple name
HELLO TIMER1 N/Ad
MAXIMUM DATA1 x25 protocol dte pvc x packet size Unsigned
MAXIMUM
WINDOW1

x25 protocol dte pvc x window size Unsigned

NETWORK N/A
OWNER N/Ae

STATE1 routing circuit N/Af

TYPE N/A
USAGE routing circuit type x25 permanent

302

Appendix G. Migration Guidelines for VAX P.S.I.

Phase IV Name Phase V Entity Attribute Type

VERIFICATION1 routing circuit routing
circuit

receive verifierg

transmit verifierg 6

Hex string Hex string

1Optional parameter.
bThis is the name of an X25 Protocol dte pvc entity.
cThe PVC name must be unique even though PVC is a subentity of the X25 Protocol module dte entity.
dNot currently supported.
eThis qualifier is only used to differentiate between CIRCUIT databases used for routing and those used for X.25 applications. It is not needed
in DECnet Phase V.
fNow controlled by the enable or disable directives.
gShould be set if the Phase IV parameter VERIFICATION is enabled.

Phase IV example:

NCP> set circuit x25-perm usage permanent network mynet -
_ dte 123456789 channel 9
NCP> set circuit x25-perm maximum data 256 maximum window 7
NCP> set circuit x25-perm state on owner executor

Phase V example:

ncl> create x25 protocol dte dsv-0 pvc x25-perm channel 9,packet size 256,
 -
_ncl> window size 7
ncl> create routing circuit x25-perm type x25 permanent
ncl> set routing circuit x25-perm template x25-perm
ncl> enable routing circuit x25-perm

G.3.11.4. PVC Circuit for X.25 Application
Phase IV user PVCs are equivalent to the pvc subordinate entities belonging to x25 protocol dte entities
in DECnet Phase V. Table G.14, "Application PVC Database" shows the parameter mapping rules.

Table G.14. Application PVC Database

Phase IV Name Phase V Entity Attribute Type

CIRCUIT x25 protocol dte pvc x1 Identifier Simple name
CHANNELb x25 protocol dte pvc x1 channelc Unsigned
COUNTER TIMERb N/A
DTE x25 protocol dte Identifier1 Simple name
MAXIMUM DATAb x25 protocol dte

pvc x1
packet sizec Unsigned

MAXIMUM
WINDOWb

x25 protocol dte
pvc x1

window sizec Unsigned

NETWORK x25 protocol dte Identifier Simple name
OWNER N/Ad
STATEb x25 protocol dte

pvc x1
N/A

TYPE N/A
USAGE N/A

1The PVC name must be unique (for backward compatibility) even though pvc is a subentity of the X25 Protocol module dte entity.

303

Appendix G. Migration Guidelines for VAX P.S.I.

bOptional parameter.
cThis attribute must be specified for the create directive.
dThis qualifier is only used to differentiate between CIRCUIT databases used for routing and those used for X.25 applications. It is not needed
in DECnet Phase V.

Phase IV example:

NCP> set circuit x25-perm usage permanent network mynet -
_ dte 123456789 channel 9
NCP> set circuit x25-perm maximum data 256 maximum window 7
NCP> set circuit x25-perm state on

Phase V example:

ncl> create x25 protocol dte dsv-0 pvc x25-perm channel 9,packet size 256,
 -
_ncl> window size 7

G.4. Security
The basic mechanism for security is the same in both DECnet Phase IV and Phase V.

● Each incoming call acquires a set of rights identifiers based on the address of the remote DTE from
which the call was received.

● Each user (or user process) has a set of rights identifiers acquired from the OpenVMS rights
database.

● Each outgoing call to an X.25 Connector system acquires a set of rights identifiers based on the
identity of the X.25 Client system’s node.

Rights identifiers are then used to determine the level of access allowed to a particular X.25 object (for
example, a remote DTE). The access level is defined by access control lists (ACLs).

In DECnet Phase V, an ACL is always defined as an attribute of some network management entity. The
syntax of an ACL is defined as a set of access control entries (ACEs). An ACE has the following format:

{Identifiers = {simplename1,simplename2,...},Access = access level}

where the simplename1,... strings are valid OpenVMS system rights identifiers.

G.4.1. X.25-Specific Rights Identifiers
In Phase IV, VAX P.S.I. security defines the following rights identifiers:

● PSI$X25_USER — The rights identifier that must be granted to any user or process that is allowed
to issue an IO$_ACCESS QIO

● PSI$DECLNAME — The rights identifier that must be granted to any process that is allowed to
declare itself as a network process by issuing an IO$_ACPCONTROL QIO

System managers can add other identifiers by the normal means.

DECnet Phase V X.25 security still uses the PSI$X25_USER and PSI$DECLNAME rights identifiers.
Other identifiers are defined automatically by the configuration procedures. System managers can add
other identifiers by the normal means.

304

Appendix G. Migration Guidelines for VAX P.S.I.

G.4.2. Security Access Actions
In Phase IV, VAX P.S.I. allows the following access actions:

● NONE — No access to VAX P.S.I.

● INCOMING — Allow incoming, non-reverse charge calls

● INCOMING+REVERSE_CHARGE — Allow all incoming calls, including reverse charge calls

● OUTGOING — Allow outgoing reverse charge calls

● OUTGOING+CHARGE — Allow all outgoing calls, including reverse charge calls

DECnet Phase V uses the following access levels:

● NONE — No access permitted.

● REMOTE CHARGE — For outgoing calls, permit only those that use the reverse charge facility. For
incoming calls, permit only those that do not use the reverse charge facility.

● ALL — Permit all calls, whether or not they use the reverse charge facility. Since separate ACLs are
used for incoming or outgoing calls, it is possible to specify different controls for each direction.

G.4.3. Database Mapping
This section discusses database mapping.

G.4.3.1. The Remote DTE Rights Database
The Phase IV remote DTE rights database contains the rights identifiers associated with remote DTEs
that want to make incoming calls to your system.

In DECnet Phase V, this information is distributed among the set of x25 access security dte class remote
dte entities. Each x25 access security dte class remote dte entity has a rights identifiers attribute that is
the set of rights identifiers possessed by a remote DTE. These identifiers are used by X.25 security when
checking the ACL against an incoming call from the remote DTE.

For example:

ncl> create x25 access security dte class default remote dte MATCHALL -
_ncl> remote address prefix *
ncl> set x25 access security dte class default remote dte MATCHALL -
_ncl> rights identifiers (PSI$OPEN_SECURITY)

G.4.3.2. The Access Node Rights Database

Note

The following security information is relevant only to X.25 Connector nodes.

The Phase IV access node rights database contains the rights identifiers associated with X.25 Client
nodes that are allowed to make outgoing calls through an X.25 Connector node.

305

Appendix G. Migration Guidelines for VAX P.S.I.

In DECnet Phase V, this information is distributed among the set of x25 server security nodes entities at
the X.25 Connector node. Each x25 server security nodes entity has a rights identifiers attribute that is
the set of rights identifiers possessed by one or more X.25 Client system nodes, as defined by the nodes
attribute. These identifiers are used by X.25 security when checking the ACL against an outgoing call
from the X.25 Client node.

For example:

ncl> create x25 server security nodes clients
ncl> set x25 server security nodes clients nodes { ORG:.mynode }
ncl> set x25 server security nodes clients rights identifiers -
_ncl> { PSI$OPEN_SECURITY }

G.4.3.3. The Local DTE Access Control Database
DECnet Phase V does not have an entity corresponding to the local DTE access control database used in
Phase IV.

G.4.3.4. The Remote DTE Access Control Database
The Phase IV Remote DTE Access Control Database contains the ACLs that control the access actions
associated with outgoing calls to remote DTEs.

In DECnet Phase V, this information is distributed among the set of x25 access security dte class remote
dte entities. Each x25 access security dte class remote dte entity has an acl attribute that is the set of
ACEs used by X.25 security when checking outgoing calls to the remote DTE.

For example:

ncl> create x25 access security dte class default remote dte MATCHALL -
_ncl> remote address prefix *
ncl> set x25 access security dte class default remote dte MATCHALL -
_ncl> acl ((identifier = (*), access = ALL))

G.4.3.5. The Destination Access Control Database
The Phase IV Destination Access Control Database contains the ACLs that control the access actions
associated with incoming calls to an X.25 destination.

In DECnet Phase V, this information is distributed among the set of x25 access security filter entities.
Each x25 access security filter entity has an acl attribute that is the set of ACEs used by X.25 security
when checking incoming calls for any filter that is using this X.25 access security filter.

For example:

ncl> create x25 access security filter DEFAULT
ncl> set x25 access security filter DEFAULT acl ((identifier =(*), -
_ncl> access = ALL))

G.4.3.6. PVC and Closed User Group Security
X.25 security for DECnet Phase V allows protection for the x25 protocol dte pvc and x25 protocol
group entities.

Each x25 protocol dte pvc has an acl attribute that is the set of ACEs used by X.25 security when
checking access to this PVC. For example:

306

Appendix G. Migration Guidelines for VAX P.S.I.

ncl> set x25 protocol dte dsv-0 pvc x25-perm acl { -
_ncl> (identifier =(*), access = ALL) -
_ncl> }

Each bilateral closed user group (BCUG) has a remote dte attribute. This DTE address is associated with
this entity for matching x25 access security dte class remote dte entities for both incoming and outgoing
calls.

For example:

ncl> set x25 protocol group secret remote dte address 123456788

307

Appendix G. Migration Guidelines for VAX P.S.I.

308

Appendix H. Network
Management Graphical User
Interface (NET$MGMT)
A graphical user interface is available for network management on OpenVMS systems. This interface is
a Motif application that is located at SYS$SYSTEM:NET$MGMT.EXE.

H.1. Network Management Graphical User
Interface (NET$MGMT)
The NET$MGMT utility provides a hierarchical graphical approach to the management of DECnet
Phase V. The manageable components of DECnet Phase V (modules, entities and subentities) are
represented in a tree-like structure below the icon that represents the node you are managing. The
NET$MGMT utility provides an easy way to familiarize yourself with the organization of these
manageable entities. If you choose to enable the displaying of NCL commands from the Default Actions
pulldown, NET$MGMT can also help familiarize you with NCL syntax.

In addition to issuing NCL commands on your behalf, NET$MGMT can also perform task-oriented
functions which involve many NCL commands or are complex in some way. The currently supported
NET$MGMT tasks are:

SHOW KNOWN LINKS
SHOW KNOWN NODE COUNTERS
CHECK TRANSPORTS

NET$MGMT also checks to ensure that the system display has the proper fonts available. The required
font is -*-helvetica-Bold-R-Normal–12-120-75-75-P-70- ISO8859-1. If this font is not available, a
message is displayed and NET$MGMT exits.

H.2. Rights Required to Run NET$MGMT
The same rights required to run NCL are also required to run NET$MGMT. The process invoking
NET$MGMT must have at least one of the following rights enabled, or the process must possess
BYPASS privilege:

● NET$EXAMINE — Grants read access only

● NET$MANAGE — Grants read and write access

● NET$SECURITY — Grants the ability to modify default access control information for session
control applications

H.3. How to Run NET$MGMT
The NET$MGMT utility is based on Motif. As such, it can be invoked using the same methods you
use to invoke any other Motif application. Refer to the OpenVMS DECwindows Users Guide for
information about how to run this application remotely. You can also run it locally by issuing the
following command:

309

Appendix H. Network Management Graphical User Interface (NET$MGMT)

$ run sys$system:net$mgmt

The application will check for and load the Helvetica 12-point 75-pitch font. In the unlikely event that
this font is not present, the application will exit with an error message.

Once you have started NET$MGMT, you can refer to the Help pull-down menus for more information.

H.4. Managing Other DECnet Phase V Nodes
You can use the NET$MGMT Set/Change Node option to manage a remote DECnet Phase V node. You
have the option of providing explicit access control information. The remote account must have at least
the NET$EXAMINE right in order to successfully switch management control to the remote node.

If you do not provide explicit access control information, your rights on the remote node will be
determined by the rights granted to the account associated with the remote node’s session control
application CML. Generally, this account will be the CML$SERVER account which will have the
NET$EXAMINE right. Therefore, you will usually need to supply explicit access control information to
an account having NET$MANAGE right in order to make network configuration changes on a remote
node.

When you wish to return to managing the local node, it is not necessary to provide explicit access control
information. Simply choose the default "0" as the node name, and your previous rights will be restored.

310

Appendix I. Configuring
Asynchronous Connections
(OpenVMS VAX)
This appendix describes how to configure asynchronous connections, which give you the option of
connecting your OpenVMS system to another system by means of a low-cost, low-speed asynchronous
line. Asynchronous connections are implemented in software and can be run over any directly connected
terminal line that the OpenVMS system supports.

The asynchronous protocol provides for a full-duplex connection and can be used for remote
asynchronous communications over a telephone line using a modem. Asynchronous connections are not
supported for maintenance operations or for controller loopback testing.

I.1. Asynchronous DECnet Connections
Normally, the OpenVMS system controls lines connected to terminal ports, as in interactive logins.
You can, however, switch the line so the DECnet-Plus software can use the line for an asynchronous
connection to another system. You can establish two types of asynchronous DECnet connections:

● A static asynchronous connection, which creates a permanent DECnet link to a single remote node.
Two nodes are connected by either a dialup line or by a physical line attached to a terminal port
at each end. Before the DECnet connection is made, the terminal lines must be converted to static
asynchronous DDCMP lines. (See Section I.1.1.)

● A dynamic asynchronous connection, which provides a temporary DECnet link. A dynamic
asynchronous line is normally switched on for network use only for the duration of a dialup
connection between two nodes. When the telephone is hung up, the line reverts to being a terminal
line. You can establish dynamic connections to different remote nodes at different times. When
using a dynamic connection, you can have the terminal line switched automatically to a DECnet
line, or you can switch it to a DECnet line manually. (See Section I.1.2, "Establishing a Dynamic
Asynchronous Connection".)

The asynchronous software is optional. You can load and configure it by using the
NET$CONFIGURE.COM, NET$STARTUP.COM, and WANDD$STARTUP.COM procedures.

Note

The NET$CONFIGURE.COM, NET$STARTUP.COM, and WANDD$STARTUP.COM procedures
automatically set up static asynchronous connections for you.

The information in Section I.1.1, "Establishing a Static Asynchronous Connection" is necessary only if
you want to set up a configuration outside of the configuration provided by the procedures.

The NET$CONFIGURE.COM, NET$STARTUP.COM, and WANDD$STARTUP.COM procedures
load all the necessary images and NCL files to preconfigure your system for dynamic asynchronous
connections. The user making the dynamic connection needs only to log in and invoke the dynamic
switch.

Most of the information in Section I.1.2, "Establishing a Dynamic Asynchronous Connection" is necessary
only if you want to set up a configuration outside of the configuration provided by the procedures.

311

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

Section I.1.2.2, "Switching on Dynamic Asynchronous Connections" provides information about the
dynamic switch.

The asynchronous software consists of three pieces:

● asydriver

● asyswitch

● asydynswitch

To switch a terminal line to a DECnet line or a DECnet line back to a terminal line, you use DCL set
commands such as the following:

● To switch a DECnet line back to ttdriver:

$ set terminal/nonetwork terminal-port

● To switch a terminal line to a static asynchronous line (asydriver):

$ set terminal/network terminal-port

● To switch a terminal line to a dynamic asynchronous line (asydriver):

$ set terminal/network/switch=decnet

● To switch a terminal line to a dynamic manual asynchronous line (asydriver):

$ set terminal/network/switch=decnet/manual

Switching the line is only one step in setting up asynchronous communications. You must also configure
your DECnet lines, links, and circuits. Setting up a link and circuit for asynchronous connections is the
same as when you set up a synchronous link and circuit. The difference occurs when you configure your
line in the Modem Connect module. The communications port attribute for the modem connect line has
special significance.

To set up a dynamic asynchronous connection, you need to preconfigure the protocol stack. This means
that you need to map a routing circuit to a DDCMP logical station. The logical station, in turn, uses
a line created with the Modem Connect module that specifies a communications port with either a
"floating" line or an explicit line for your dynamic connection. A "floating" line is not tied to a specific
terminal device, while an explicit line is tied to a specific device. You must configure the protocol stack
(at both ends of the link when using two DECnet-Plus for OpenVMS systems) before you set host to the
remote system and switch the dynamic asynchronous line into operation.

Note

Non OpenVMS systems that support OSI standards can make asynchronous DECnet-Plus connections to
OpenVMS systems. The asynchronous connection can be between two routers, a router and an end node,
or two end nodes.

I.1.1. Establishing a Static Asynchronous Connection
A static asynchronous DECnet connection is a permanent connection between two nodes. This type of
connection can be made in one of two ways:

312

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

● The nodes can be connected by a physical line (a null modem cable) attached to a terminal port at
each system. No modems are required. You can communicate with the other system at any time.

● The connection can be made over a dialup line using modems at both ends of the line. For example,
your OpenVMS system can establish a static asynchronous connection to a remote node over a
telephone line.

Follow the steps outlined in this section to manually establish a static asynchronous connection. For the
connection to be successful, the node with which you are creating a DECnet link must also establish an
asynchronous DECnet connection with your node. (The line speeds at each end of the connection must
be the same.)

Note

If you use the NET$CONFIGURE.COM procedure to set up your static asynchronous lines, then the
NET$STARTUP.COM and WANDD$STARTUP.COM procedures load asydriver and configure
the lines for you.

1. Log in to the SYSTEM account on your OpenVMS system.

2. DECnet must be running on both nodes for the remaining steps. If not already done, you and the
remote system manager must start up the network by entering the following command:

$ @sys$startup:net$startup

3. Load the asynchronous driver, asydriver.

Enter the following commands at your terminal (or include them in the
SYS$MANAGER:SYSTARTUP_VMS.COM command procedure before you boot the system):

$ run sys$system:sysgen
SYSGEN> connect asy0/noadapter/driver=asydriver
SYSGEN> exit

The asynchronous driver must be loaded before any asynchronous connection can be made.

4. Next, install the asynchronous shareable images required for a static asynchronous connection. Use
the following command:

$ install add sys$library:asyswitch.exe/open/head/share

5. To change a terminal line into a static asynchronous DECnet line, use the DCL command set
terminal terminal-port-name with the appropriate qualifiers, where terminal-port-name represents the
device where you want to connect the static asynchronous DECnet line (see examples a and b.) If
you have more than one terminal attached to your OpenVMS system, you must specify a set terminal
command for each terminal line used for a static asynchronous DECnet connection.

a. Nondialup line: The following command converts the terminal line connected to the port into a
DECnet line with no modem control:

$ set terminal/permanent/nomodem/notype_ahead -
_$ /network terminal-port-name

The terminal-port-name, for instance, could be tta0.

b. Dialup line: The following command converts the terminal line connected to the port (which
can be used as a dialup line) into a DECnet line with modem control:

313

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

$ set terminal/permanent/notype_ahead/network/modem -
_$ /noautobaud/nohangup terminal-port-name

The terminal-port-name, for instance, could be ttb0.

You can change the line speed by resetting the line to non-network mode with the set terminal/
nonetwork command. After you do this, switch the line back to network mode with the set terminal/
network command. You cannot use the set command to change the line speed or any other
parameters while the line is in network mode.

You can ensure that these set terminal commands execute automatically each time the network
is started in the future. Modify your SYS$MANAGER:SYSTARTUP_VMS.COM command
procedure to include all required set terminal commands after the network starts up but before
executing the commands in the next step that configure the modem connect line.

6. Next, configure your line. If the configuration procedures have not already created the Modem
Connect module, create it manually before configuring the line. Use the following example to set up
the necessary modem connect entities.

$ run sys$system:ncl
ncl> create modem connect line static_asynch -
_ncl> communications port async_port_name
ncl> set modem connect line static_asynch speed 2400
ncl> enable modem connect line static_asynch

1. For an asynchronous line or circuit, the communications port attribute, (async_port_name),
has one of two formats:

● devcu as in txa0:

● dev-c-u as in tx-0-0

where dev-c-u is defined as follows:

dev The first two letters of the asynchronous device name (possible
values are tt and tx).

c A decimal number (0 or a positive integer) designating a device’s
hardware controller. If the third letter of the device name is A, c
equals 0. If the third letter of the device name is B, c equals 1, and
so on.

u The unit number of the device name; u is always equal to 0 or a
positive integer.

For example, dev-c-u would be tx-0-0 for unit txa0:.

The line speeds at both sides of the connection should be the same.

7. Next, configure your data link and routing circuit. For information about configuring your data link
and routing circuit, see the chapters on managing network security and network management tasks in
the VSI DECnet-Plus for OpenVMS Network Management Guide.

8. For security over a dialup connection, run NCL and establish optional routing initialization
passwords. For more information about using verifiers, refer to the VSI DECnet-Plus for OpenVMS
Network Management Guide.

314

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

I.1.1.1. Terminating a Static Asynchronous Connection
Use the following steps to terminate a static asynchronous connection:

1. Use NCL to disable (turn off) and delete the routing circuit and the static asynchronous line, as
follows:

$ run sys$system:ncl
ncl> disable modem connect line static_asynch
ncl> disable ddcmp link static_asynch -
_ncl> logical station static_asynch
ncl> disable ddcmp link static_asynch
ncl> disable routing circuit static_asynch
ncl> delete modem connect line static_asynch
ncl> delete ddcmp link static_asynch -
_ncl> logical station static_asynch
ncl> delete ddcmp link static_asynch
ncl> delete routing circuit static_asynch ncl> exit

2. The following command switches your asynchronous line back to a terminal line:

$ set terminal/permanent/nonetwork/typeahead terminal_port_name

I.1.1.2. Reasons for Failure of Static Asynchronous Connections
If the initial set terminal command fails, check that:

● WANDD started up.

● The asydriver loaded (the asy0 device must be present).

● The asyswitch installed.

If the logical station is in the on-starting state, check that:

● The line speeds at both ends of the connection are set to the same value.

● The modem control characteristic of the modem connect line at both ends of the link are the same.

● The routing circuits configured correctly.

● The parity is correct. Asynchronous DECnet requires the parity on the asynchronous line be set
to none and the terminal line be set to use 8-bit characters. If you are using a system other than
OpenVMS, the terminal line must be set to the correct parity.

If your terminal line cannot be set up as a static asynchronous DDCMP line, check whether the following
condition exists:

● If data is stored in a type-ahead buffer, the line appears as a terminal line even if a startup command
procedure attempts to set it up as a DDCMP line. This generally occurs when the remote node is
running and its asynchronous DDCMP line is on. The DDCMP start messages being transmitted are
stored in the type-ahead buffer associated with your terminal line. Before you can start up your line
in DDCMP mode, terminate the process that owns your terminal line.

To verify that the asynchronous line is connected properly, check the following:

● For local connections, verify that the cable is a null modem cable.

315

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

● For modem connections, verify that the cable is a straight-through cable and that if the modem is put
in analog loopback, the circuit comes up with the local node as the adjacent node.

● For both types of connections, verify that the port is operational by resetting it to terminal-type
characteristics and plugging in a terminal and logging in.

If your connection is timing out or losing DDCMP packets, you might not have a sufficient number of
receive buffers set up on the DDCMP link for the asynchronous line.

For more information about solving problems in your DECnet-Plus network, refer to the VSI DECnet-
Plus for OpenVMS Problem Solving Guide.

I.1.2. Establishing a Dynamic Asynchronous
Connection
A dynamic asynchronous DECnet connection is a temporary connection between two nodes, usually over
a telephone line through the use of modems. You can switch the line at each end of the connection from
a terminal line to a dynamic asynchronous DECnet line. A dynamic asynchronous connection is usually
maintained only for the duration of a telephone call.

Dynamic switching of terminal lines to asynchronous DDCMP lines can occur between DECnet-Plus
systems or between a DECnet-Plus system and a non DECnet-Plus system. Assuming that both the
remote node and the local node are OpenVMS operating systems, the system manager at each node
must have loaded the asynchronous driver, asydriver, and installed the shareable images asyswitch and
asydynswitch. (If the local node is a personal computer, there is no need to load asydriver and install
asydynswitch.) The system manager at the remote node must have enabled the use of virtual terminals on
the system. First, the system manager must have enabled virtual terminals by issuing the sysgen connect
command. The system manager must also have enabled virtual terminals on the system. The terminal
devices, which you plan to use for dynamic connections, should be set up with the /disconnect qualifier.

Note

Any OpenVMS node that supports DECnet asynchronous connections can initiate a dynamic
asynchronous connection to an OpenVMS node.

Setting up a dynamic asynchronous connection involves two distinct sets of steps.

1. At some point, you must configure your dynamic asynchronous line. See Section I.1.2.1, "Setting Up
Dynamic Asynchronous Connections" for more information about this.

2. You dynamically switch the line to a DECnet line. See Section I.1.2.2, "Switching on Dynamic
Asynchronous Connections" for more information about this.

I.1.2.1. Setting Up Dynamic Asynchronous Connections
Use the following steps to manually set up your dynamic asynchronous line any time prior to the
dynamic switch. This example assumes the local OpenVMS node is originating the connection and
switching the terminal line on for DECnet use. The connection must be to an OpenVMS node on which
you have an account with net$decnetaccess rights.

To set up a dynamic asynchronous connection, you must execute the instructions discussed in this section
at both the local and remote OpenVMS systems. If the remote system is a system other than OpenVMS,
refer to the remote system’s documentation for information about setting up a dynamic asynchronous
connection.

316

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

Note

If you use the NET$CONFIGURE.COM procedure to set up your dynamic asynchronous lines, then
the NET$STARTUP.COM and WANDD$STARTUP.COM procedures load the asydriver, install the
asynchronous shareable images, and configure the lines for you.

1. Log in to the SYSTEM account on your OpenVMS node.

2. DECnet must be running on both nodes for the remaining steps. If not already done, you and the
remote system manager must start up the network by entering the following command:

$ @sys$startup:net$startup

3. Load the asynchronous driver, asydriver.

Enter the following commands at your terminal (or include them in the
SYS$MANAGER:SYSTARTUP_VMS.COM command procedure before you boot the system):

$ run sys$system:sysgen
SYSGEN> connect asy0/noadapter/driver=asydriver
SYSGEN> exit

The asynchronous driver must be loaded before you can make any asynchronous connection.

4. Next, install the asynchronous shareable images. Use the following command:

$ install add sys$library:asyswitch.exe/open/head/share
$ install add sys$library:asydynswitch.exe/open/head/share/protected

The following commands enable the use of virtual terminals for the terminal line that is to
be switched, and set the disconnect characteristic for the terminal line. (The virtual terminal
capability permits the process to continue running if the physical terminal you are using becomes
disconnected.)

$ run sys$system:sysgen
SYSGEN> connect vta0/noadapter/driver=ttdriver
SYSGEN> exit
$ set terminal/eight_bit/permanent/modem/disconnect terminal-port-name:

terminal-port-name is the name of the terminal port on the remote node to which the dynamic
asynchronous connection is made. The terminal-port-name, for instance, could be txa3.

5. After you load asydriver and install the asynchronous shareable images, you need to preconfigure
the protocol stack for the dynamic asynchronous line. A protocol stack for a dynamic asynchronous
connection is a routing circuit that is mapped to a ddcmp logical station. The ddcmp logical station
uses a modem connect line created with the communications port attribute specified as either
async or async-terminal_name (for example: async-tx-0-3). You must configure the protocol stack
before you switch the dynamic asynchronous line into operation by means of the DCL set terminal
command. The following steps explain how to do this.

If the configuration procedures have not already created the Modem Connect module, create it
manually before configuring the line. Use the following example to set up the necessary modem
connect entities:

$ run sys$system:ncl
ncl> create modem connect line dynamic_asynch -
_ncl> communications port async_port_name

317

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

ncl> set modem connect line dynamic_asynch speed 2400
ncl> enable modem connect line dynamic_asynch

In dynamic asynchronous connections, you can specify the communications port attribute
(async_port_name) in one of two ways when creating the modem connect line entity:

● async — When you specify async, a unique number is given to the modem connect
line as an "-n" extension to the async name each time a modem connect line with a
communications port attribute of ASYNC is created. This creates a "floating" modem
connect line, which is not tied to a specific terminal device or unit. For example:

ncl> create modem connect line dynamic_asynch -
_ncl> communications port async

If you now display information about the port, you will see that the line has a new
communications port name of async-n. For example:

ncl> show modem connect line dynamic_asynch communications port

● async-dev-c-u — Specifying async-dev-c-u allows you to set up a dynamic protocol tower
on an explicit line.

For a dynamic line or circuit, the communications port has one of two formats:

○ devcu as in txa0:

○ dev-c-u as in tx-0-0

where dev-c-u is defined as follows:

dev The first two letters of the asynchronous device name (possible
values are tt and tx).

c A decimal number (0 or a positive integer) designating a
device’s hardware controller. If the third letter of the device
name is A, c equals 0. If the third letter of the device name is B,
c equals 1, and so on.

u The unit number of the device name; u is always equal to 0 or a
positive integer.

ncl> create modem connect line dynamic_asynch -
_ncl> communications port async-tx-0-3

If you request a specific device, txa3 (with the set terminal command; see Section I.1.2.2, "Switching
on Dynamic Asynchronous Connections"), for a dynamic asynchronous connection, the asydriver
first searches for an available modem connect line with a communications port attribute of async-
tx-0-3. If this search fails, the asydriver then searches for a "floating" modem connect line with
a communications port attribute of async-n. If asydriver finds a "floating" line, it uses it. For the
duration of this connection, the communications port attribute is modified to async-tx-0-3 so you can
tell which terminal devices are actively running dynamic asynchronous connections.

If asydriver does not find a "floating" line, the dynamic switch fails. Either you have set up the
protocol stack incorrectly, or else all modem connect lines are in use.

318

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

6. Next, configure your data link and routing circuit. For information about configuring your data link
and routing circuit, see the chapters on managing network security and network management tasks in
the VSI DECnet-Plus for OpenVMS Network Management Guide.

7. For security over a dialup connection, run NCL and establish optional routing initialization
passwords. For more information about using verifiers, refer to the VSI DECnet-Plus for OpenVMS
Network Management Guide.

I.1.2.2. Switching on Dynamic Asynchronous Connections
This section explains how to dynamically switch your line for communication.

Figure I.1, "Dynamic Switching of Asynchronous DDCMP Lines" shows a typical configuration in which
dynamic asynchronous switching occurs over a dialup line. The local node in Figure I.1, "Dynamic
Switching of Asynchronous DDCMP Lines" is a standalone VAXstation 3100 system; the remote node is
a VAX 8800. After the user at the local node dials in to the remote node, he or she can switch the lines
connected to terminal ports tta2 and txb1 to dynamic asynchronous DDCMP.

1. The following steps can be performed by any OpenVMS user.

2. Log in to your local OpenVMS system. This login creates a process (identified by Process_L in
Figure I.1, "Dynamic Switching of Asynchronous DDCMP Lines").

3. Enter the following DCL command:

$ set host/dte terminal-port-name:

Figure I.1. Dynamic Switching of Asynchronous DDCMP Lines

terminal-port-name is the name of your local terminal port that is connected to the modem. If both
systems use modems with autodial capabilities (for example, DF03, DF112, or DF224 modems), you
can optionally include the /dial qualifier on the set host/dte command to cause automatic dialing of
the modem on the remote node, as follows:

$ set host/dte/dial=number:number terminal-port-name:

319

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

4. If you do not specify the /dial qualifier in the previous step, dial the remote system manually. After
the dialup connection is made and you receive the remote system welcome message, log in to your
account on the remote node. In this case, you supply your user name and password to the remote
OpenVMS operating system.

5. If you are not using automatic dialing, dial in to the remote node manually.

6. Once the dialup connection is made and you receive the remote OpenVMS system welcome
message, log in to your account on the remote node. This process is identified by Process_R in
Figure I.1, "Dynamic Switching of Asynchronous DDCMP Lines".

7. You can initiate the dynamic switch by specifying the following DCL command on the remote node:

$ set terminal/network/switch=decnet

The set terminal command is an OpenVMS DCL command. If you are on a node other than an
OpenVMS node, specify the equivalent function for your system.

8. When the SET image on the remote system recognizes the /NETWORK and /switch=decnet
qualifiers, it calls the shareable image asydynswitch (see Figure I.1, "Dynamic Switching of
Asynchronous DDCMP Lines"). The asydynswitch image verifies the link and sends an escape
sequence to the terminal emulator on the local system. The escape sequence notifies the local
terminal emulator that the line connected to the remote system is becoming a dynamic asynchronous
line.

9. When the terminal emulator at the local system receives the escape sequence, it calls the
asydynswitch image (see Figure I.1, "Dynamic Switching of Asynchronous DDCMP Lines") on the
local system. The asydynswitch image verifies the line on the local system and switches it to an
asynchronous DECnet line.

10. When the switch occurs on the local system, asydriver first searches for an explicitly named
dynamic asynchronous line. For example, if the switch is on device tta1:, it searches for a line with
a communications port attribute of async-tt-0-1. If asydriver cannot find that line, it searches for a
"floating" line (created with a communications port attribute of async). Because a protocol stack
previously had been preconfigured over this line, the data link protocol now attempts to start the link.

11. The local system then sends a ddcmp start message (see Figure I.1, "Dynamic Switching of
Asynchronous DDCMP Lines") to the remote system that initiated the dynamic switch. When
asydynswitch on the remote system detects the start message, it activates the preconfigured local
protocol stack. (For information about the protocol stack, see Section I.1.2.1, "Setting Up Dynamic
Asynchronous Connections", Steps 5–7.)

The remote system first searches for an explicitly named dynamic asynchronous line. When it
searches for an explicitly named dynamic line, it searches for one that refers to the physical terminal
over which the original switch was made. In Figure I.1, "Dynamic Switching of Asynchronous
DDCMP Lines", the remote system searches for a line associated with port txb1. Therefore, it looks
for a line with a communications port attribute of async-tx-1-1. If it does not find one, it uses a
"floating" async-n line. If this fails, the dynamic switch fails.

12. Since both ends of the link have a preconfigured protocol stack, the DECnet link comes up over both
circuits. Any preconfigured security checks also occur at this time.

The following message indicates that the terminal emulator on the local system has exited and that
the DECnet link is being established:

%REM-S-END - control returned to local-nodename::

320

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

$

To check whether the communications link has come up, specify the following command on the
local system:

$ run sys$system:ncl
ncl> show routing circuit dynamic_asynch adjacency adjacent-node all
ncl> exit

If there is an adjacency, you can start to communicate with the remote system over the asynchronous
DECnet connection.

13. As an alternative to switching the terminal line to a DECnet line automatically, you can switch the
line manually. If you originate a dynamic connection to an OpenVMS node from a system other
than OpenVMS, manual switching is required; from an OpenVMS system, it is optional. If you are
originating the connection from a node other than OpenVMS, follow system- specific procedures to
log in to the remote OpenVMS node by means of terminal emulation.

Once you are logged in to the remote node, two steps are required for manual switching:

a. Using your account on the remote OpenVMS node, specify the set terminal command described
in Step 7, but add the /manual qualifier. For more information see Section I.1.2.1, "Setting Up
Dynamic Asynchronous Connections", Step 5.

$ set terminal/network/switch=decnet/manual

You will receive the following message from the remote node indicating the remote system is
switching its line to DECnet use:

%SET-I-SWINPRG The line you are currently logged over is becoming a
 DECnet line

b. You should exit from the terminal emulator and switch your line manually to a DECnet line. The
procedure depends on the specific operating system on which you are logged in.

The following example shows how an OpenVMS user originating a dynamic connection exits
from the terminal emulator and turns on the DECnet line.

1. Exit from the terminal emulator: Press and hold down the Control key while you press the \
(backslash) key on your OpenVMS system.

2. Enter the following command to switch your terminal line to a DECnet line manually:

$ set terminal/network tta0:

tta0 is the name of the terminal port on the local node.

3. Next, you must manually turn on the lines, data links, and routing circuits connected to your
terminal port. See Steps 5 through 7 in Section I.1.1, "Establishing a Static Asynchronous
Connection" for information about setting up your static asynchronous link.

Asynchronous DECnet is then started on the local OpenVMS node.

I.1.2.3. Managing Dynamic Asynchronous Resources
You can define the following system logical names in SYS$MANAGER:NET$LOGICALS.COM to
manage the resources used by a dynamic asynchronous connection:

321

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

● asy$dynamic_maxlines

Specifies the maximum number of dynamic asynchronous modem connect lines that can be active
on a system at any one time. You can specify values in the range of 0–65534 lines. The default is 16
lines. For example:

$ define/system asy$dynamic_maxlines 16

● asy$dynamic_line_timeout

Specifies the amount of time in seconds that a dynamic asynchronous line waits before deciding
that a dynamic connection has broken. When the dynamic asynchronous line decides that a link is
broken, the line is automatically switched back to a terminal line. You can specify values in the range
of 10–65535 seconds. The default is 300 seconds. For example:

$ define/system asy$dynamic_line_timeout 300

I.1.2.4. Terminating a Dynamic Asynchronous Connection
Take the following steps to terminate a dynamic asynchronous connection:

1. Disable the modem connect line and then re-enable it. For example:

$ run sys$system:ncl
ncl> disable modem connect line dynamic_asynch
ncl> enable modem connect line terminal_line
ncl> exit

2. Switch your asynchronous line back to a terminal line.

$ set terminal/permanent/nonetwork/typeahead terminal_port_name

The dynamic asynchronous connection can also terminate, if the time specified by the logical name asy
$dynamic_line_timeout expires. The link is considered idle if it has no input or output for the timeout
interval. When this occurs, the link is broken and the line automatically switches from a DECnet line
back to a terminal line. For more information about asy$dynamic_line_timeout, see Section I.1.2.3,
"Managing Dynamic Asynchronous Resources".

I.1.2.5. Reasons for Failure of Dynamic Asynchronous Connections
If you are using dynamic switching and the asynchronous DECnet connection is not made, check that:

● DECnet-Plus has been started.

● WANDD has been started.

● The asydriver has been loaded (the asy0 device is present).

● The asyswitch has been installed.

● The asydynswitch has been installed.

● The modem connect lines have been configured correctly.

● Virtual terminals must be enabled both on the remote node and, in particular, for the terminal at
which you are logged in. The terminal line at the remote node must have the attribute disconnect set.

322

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

● After you enter a set terminal command with the /manual qualifier, you must specify NCL
commands to turn on the DECnet line within approximately 2 minutes or the line returns to terminal
mode.

If the logical station is in the on-starting state, check that:

● The routing circuits have been configured correctly.

● The routing initialization passwords on each node must be set correctly. (Refer to the VSI DECnet-
Plus for OpenVMS Network Management Guide.)

● The parity is correct. Asynchronous DECnet requires the parity on the asynchronous line to be set
to none and the terminal line to be set up to use 8-bit characters. If you are using a non OpenVMS
system, you must check that the terminal line is set to the correct parity.

For more information about solving problems in your DECnet-Plus network, refer to the VSI DECnet-
Plus for OpenVMS Problem Solving Guide.

323

Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)

324

	VSI DECnet-Plus for OpenVMS Network Management Guide
	Table of Contents
	Preface
	1. About VSI
	2. About This Manual
	3. Intended Audience
	4. Related Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Introduction to DECnet-Plus Network Management
	1.1. What Is Network Management?
	1.2. Identifying Manageable Network Components
	1.3. Modules and Entities
	1.4. DECnet Phase V Configurations
	1.4.1. DECnet Phase V Configurations

	Chapter 2. Transitioning from NCP to NCL
	2.1. Using decnet_migrate to Convert NCP Commands to NCL Commands
	2.1.1. Running decnet_migrate on Your System
	2.1.1.1. Converting an NCP Command to an NCL Command
	2.1.1.2. Converting NCP Commands in a DCL Command File to NCL
	2.1.1.3. Converting NCP Commands in an NCP Command File to NCL
	2.1.1.4. Editing a Command File That Contains NCL Commands

	2.2. Using the Graphical User Interface for DECnet Phase V Network Management
	2.3. Using the NCP Emulator to Convert NCP Commands to NCL
	2.3.1. Information About Supported NCP Commands
	2.3.2. Information About Supported NCP Components
	2.3.3. Running the NCP Emulator on Your System
	2.3.4. Remotely Managing DECnet Phase IV Nodes

	Chapter 3. Checking the Network’s Configuration
	3.1. Determining Your Network Topology
	3.1.1. Determining Your Network Topology
	3.1.2. Determining the DECnet Version of Your System

	Chapter 4. Managing Routing Between DECnet Phase IV and Phase V Areas
	4.1. Setting Up Interphase Links
	4.2. Configurations That Do Not Require Manually Created Interphase Links
	4.3. Configurations That Require Manually Created Interphase Links
	4.4. Configurations That Require Multiple Interphase Links
	4.5. Configurations with Multiple Interphase Links Between Two Subnetworks
	4.6. Special Considerations Regarding Network Costs

	Chapter 5. Managing Name Service Searches and Information
	5.1. The Naming Search Path
	5.1.1. Determining the Order for Name Service Searches
	5.1.2. Using the Naming Search Path to Interpret Abbreviated Node Names
	5.1.3. Displaying and Modifying Search Path Information
	5.1.3.1. Displaying the Naming Search Path
	5.1.3.2. Displaying the Backtranslation Search Path
	5.1.3.3. Modifying the Naming and Backtranslation Search Paths
	5.1.3.4. Using Backtranslation to Track Namespace Changes

	5.1.4. Changing the Default Namespace Name
	5.1.5. Defining an Alternate Node Synonym Directory
	5.1.6. Managing the DECdns Clerk

	5.2. Resolving Names and Addresses with the Naming Cache
	5.2.1. The CDI Naming Cache and DECdns
	5.2.2. Managing the CDI Naming Cache
	5.2.2.1. Checkpoint Interval
	5.2.2.2. Timeout Period
	5.2.2.3. Tracing Naming Information in the CDI Cache
	5.2.2.4. Using the CDI$SYSTEM_TABLE To Define Node Synonyms
	5.2.2.5. Using CDI Enhancements To Resolve IP Fully-Qualified Names
	5.2.2.6. Using CDI_CACHE_DUMP To Analyze a CDI Cache Checkpoint
	5.2.2.7. Controlling CDI’s Use of the Local Namespace Database
	5.2.2.8. Automated CDI Cache Flushing

	5.3. Managing DECdns and Local Namespace Information with decnet_register
	5.3.1. Invoking decnet_register
	5.3.2. Using decnet_register
	5.3.3. Using an Initialization Command File for Preset Values
	5.3.4. Showing the Information Registered for a Node in the Namespace
	5.3.5. Registering or Modifying a Node
	5.3.6. Updating Registered Node Addresses
	5.3.7. Renaming a Registered Node
	5.3.8. Repairing a Node’s Synonym and Reverse Address Links
	5.3.9. Deregistering a Node from the Namespace
	5.3.10. Exporting and Importing Node Information Between Name Services
	5.3.10.1. Exporting Node Information from a Name Service
	5.3.10.2. Importing Node Information from an Export/Import File to a Name Service
	5.3.10.3. Converting an Existing LNO Text File to a Local Namespace

	5.3.11. Setting Preferences and Network Values
	5.3.12. Managing the DECdns Directory Service
	5.3.12.1. Initializing the DECdns Namespace for DECnet
	5.3.12.2. Using the Manage Option
	5.3.12.3. Creating Directories for Registering Node Names
	5.3.12.4. Creating Backtranslation Directories for New IDPs, PreDSPs, and Network Areas
	5.3.12.5. Creating an Access Control Group
	5.3.12.6. Adding Members to an Access Control Group
	5.3.12.7. Removing Members from an Access Control Group

	5.3.13. Spawning to DCL

	Chapter 6. Modifying Your Network
	6.1. Using the Configuration Procedure
	6.2. Network Control Language
	6.2.1. Using Interactive NCL
	6.2.2. Editing NCL Scripts
	6.2.3. Using User-Defined NCL Scripts

	6.3. Defining Logical Names That Modify Network Operation
	6.4. Creating DECnet-Plus Network Server Processes
	6.5. Deleting Network Entities

	Chapter 7. Managing Network Security
	7.1. Required Rights Identifiers
	7.2. Network Management Security
	7.3. Access Control
	7.3.1. Using Explicit Access Control to Manage Remote Systems
	7.3.2. Using Proxy Login
	7.3.2.1. Setting Up a Proxy Database
	7.3.2.2. Enabling or Disabling Incoming Proxy
	7.3.2.3. Removing Proxy Access

	7.3.3. Specifying Default Access Control Information for Applications
	7.3.4. Specifying a Default Nonprivileged DECnet Account

	7.4. Specifying Routing Initialization Passwords

	Chapter 8. Managing DECnet Phase V Communications
	8.1. Managing a Node
	8.1.1. Reconfiguring DECnet-Plus
	8.1.2. Starting Up DECnet-Plus
	8.1.2.1. Using the NET$STARTUP_QUIET_NCL Logical Name
	8.1.2.2. Using the SYSGEN STARTUP_P2 Parameter

	8.1.3. Shutting Down DECnet-Plus
	8.1.3.1. Creating a User-Defined Network Shutdown Procedure

	8.1.4. Enabling a Node
	8.1.5. Renaming a Node
	8.1.6. Managing a Phase IV Node

	8.2. Managing Physical Layer Devices and Modem Connect Lines
	8.2.1. Managing WAN Communications Device Firmware
	8.2.2. Managing Modem Connect Lines
	8.2.2.1. Entities Created Automatically That Might Compete for Needed Resources
	8.2.2.2. Creating Modem Connect Lines

	8.3. Managing Data Links
	8.3.1. Creating LAN Data Links
	8.3.1.1. Creating CSMA-CD Data Links
	8.3.1.2. Creating FDDI Data Links
	8.3.1.3. Creating LLC2 and XOT Data Links

	8.3.2. Creating WAN Data Links
	8.3.2.1. Creating HDLC Data Links
	8.3.2.2. Creating DDCMP Data Links
	8.3.2.3. Creating LAPB Data Links

	8.4. Configuring Routing
	8.4.1. Configuring Routing Type, Mode, and Routing Addresses
	8.4.1.1. Routing Type
	8.4.1.2. Host-Based Routing
	8.4.1.3. Segregated Mode Routing and Integrated Mode Routing
	8.4.1.4. Autoconfiguring Network Addresses
	8.4.1.5. Configuring a Phase IV Network Address
	8.4.1.6. Configuring End System Network Addresses for Non-DNA Networks

	8.4.2. Configuring Routing Circuit Information
	8.4.2.1. Configuring Multiple Circuits for End Systems
	8.4.2.2. Sample NCL Script for Configuring Multiple Routing Circuits

	8.4.3. Setting Up Network Routes
	8.4.3.1. Configuring CLNS with Null Internet
	8.4.3.2. Configuring Routing Reachable Addresses
	8.4.3.3. Routing Use of the End System Cache
	8.4.3.4. Configuring Network Adjacencies to Non-DNA Routers

	8.5. Managing Transport Services
	8.5.1. Configuring NSP
	8.5.2. Configuring and Managing OSI Transport
	8.5.2.1. Commands for Configuring General OSI Transport Attributes
	8.5.2.2. Defining OSI Transport Templates
	8.5.2.3. Configuring OSI Transport to Use CONS
	8.5.2.3.1. Establishing Outbound Connections Using CONS
	8.5.2.3.2. Establishing Inbound Connections Using CONS
	8.5.2.3.3. Steps for Configuring the CONS Network Service

	8.5.2.4. Configuring OSI Transport to Use the Connectionless-Mode Network Service
	8.5.2.4.1. Establishing Outbound Connections Using CLNS
	8.5.2.4.2. Establishing Inbound Connections Using CLNS
	8.5.2.4.3. Null Internet Information
	8.5.2.4.4. Steps for Configuring the Connectionless-Mode Network Service
	8.5.2.4.5. Providing Communications Between OSI Transport Systems and VOTS Systems Using CLNS

	8.5.2.5. Configuring OSI Transport to Use RFC 1006 or RFC 1859
	8.5.2.6. Testing OSI Transport
	8.5.2.7. Possible Connection Failure to Non-Conformant Systems Using OSI Transport
	8.5.2.8. Avoiding Congestion in Multiprotocol Networks
	8.5.2.9. Manually Configuring OSI Transport Network Applications

	8.5.3. DECnet and OSI Applications over TCP/IP
	8.5.3.1. Examples Establishing Network Connections Using DECnet over TCP/IP
	8.5.3.2. Configuring DECnet over TCP/IP (RFC 1859) and OSI over TCP/IP (RFC 1006)
	8.5.3.3. Disabling DECnet Over TCP/IP
	8.5.3.4. DECnet over TCP/IP Tracing Support with Common Trace Facility (CTF)
	8.5.3.5. Recovering from Problems
	8.5.3.6. Connection Auditing
	8.5.3.7. Proxy Access

	8.6. Managing Session Control
	8.6.1. Adding a Session Control Network Application
	8.6.2. Deleting a Connection
	8.6.3. Deleting and Recreating the OSI and NSP Entities
	8.6.3.1. Commands Required When Reenabling the OSI Transport Entity
	8.6.3.2. Commands Required When Reenabling the NSP Entity

	8.7. Managing OSAK
	8.7.1. Managing OSAK Addresses
	8.7.1.1. Registering Active and Passive Addresses

	8.7.2. NCL and the OSAK Databases

	8.8. Configuring X.25 Services
	8.8.1. OSI Transport Over X.25 CONS
	8.8.1.1. CONS Addressing Mechanisms
	8.8.1.2. X.25 CONS Management Entities
	8.8.1.3. Configuring X.25 to Provide the CONS Network Service

	8.8.2. Configuring Routing Over X.25 Circuits
	8.8.2.1. Commands for Configuring General X.25 Routing Circuit Information
	8.8.2.2. Configuring Routing Over X.25 Dynamically-Assigned Circuits
	8.8.2.3. Configuring Routing Over X.25 Static Circuits
	8.8.2.3.1. Configuring Outgoing X.25 Static Circuits
	8.8.2.3.2. Configuring Incoming X.25 Static Circuits

	Chapter 9. Setting Up an OpenVMS Cluster Environment for DECnet-Plus
	9.1. Configuring OpenVMS Cluster Satellite Nodes in a DECnet-Plus Environment
	9.1.1. Adding, Modifying, or Deleting an OpenVMS Cluster Satellite Node
	9.1.1.1. Adding a New Satellite Node to an OpenVMS Cluster Environment

	9.1.2. Making the Transition from an Existing DECnet Phase IV OpenVMS Cluster Satellite Node
	9.1.3. Specifying Defaults for Phase IV Prefix and Node Synonym Directory
	9.1.4. Customizing Your MOP Client Database for Multiple Boot Nodes

	9.2. Using an OpenVMS Cluster Alias
	9.2.1. Adding a Node to an OpenVMS Cluster Alias
	9.2.2. Adding an OpenVMS Cluster Alias to the Namespace
	9.2.3. Configuring Multiple OpenVMS Cluster Aliases
	9.2.4. Controlling Connect Requests to the OpenVMS Cluster Alias
	9.2.4.1. Controlling Connections to Network Applications
	9.2.4.2. Controlling the Number of Connections Allowed for an Alias
	9.2.4.3. Restriction When Using Applications Supported Using Cluster Aliases

	9.3. Sharing Network Applications in an OpenVMS Cluster Environment

	Chapter 10. Downline Loading and Upline Dumping Remote Systems
	10.1. Automatically Configuring MOP
	10.2. Manually Configuring MOP
	10.2.1. Configuring MOP and MOP Circuits
	10.2.2. Setting Up a MOP Client for a Network Server
	10.2.2.1. Setting Up MOP Service Passwords on a Network Server

	10.2.3. Setting Up a MOP Client for an OpenVMS Cluster Satellite
	10.2.4. After Configuring MOP
	10.2.5. MOP’s Use of Default Directories

	10.3. Starting MOP
	10.3.1. New MOP Receive Buffer Limit

	10.4. Stopping MOP
	10.5. Downline Loading a Client System
	10.5.1. Using the NCL Load Command
	10.5.2. Using the NCL Boot Command
	10.5.3. Automated Downline Loading
	10.5.4. Supported Image Formats for Downline Loading

	10.6. Automated Upline Dumping
	10.7. Console Carrier
	10.8. Using the LAN Configuration Monitor

	Chapter 11. Monitoring the Network
	11.1. Using the NCL Show Command to Monitor the Network
	11.1.1. Using Counters to Evaluate Network Operations
	11.1.2. Displaying Addresses
	11.1.3. IP Address Backtranslation
	11.1.4. More Examples Using the NCL Show Command

	11.2. Using Logical Names to Obtain Status About the Network
	11.3. Monitoring the OSAK Component of DECnet-Plus
	11.3.1. Counting Connections, Releases, and Aborts
	11.3.2. Monitoring Upper Layer Events
	11.3.3. Checking Ports and Addresses

	Chapter 12. Monitoring Network Events
	12.1. Event Dispatching Concepts
	12.2. Using Event Filters
	12.3. Setting Up and Using Event Dispatching
	12.3.1. Creating the Event Dispatcher
	12.3.2. Setting Up Outbound Streams and Event Sinks
	12.3.3. Identifying the Sink for an Outbound Stream
	12.3.4. Creating an Event Sink
	12.3.5. Setting Up Event Sink Filters
	12.3.6. Testing Event Sink Filters
	12.3.7. Modifying an Event Sink Filter
	12.3.8. Specifying the Event Report Destination
	12.3.9. Using a DECdns Namespace Object Name with a Sink
	12.3.10. Setting an End-User Specification for a Sink
	12.3.11. Modifying the Display of Event UIDs
	12.3.12. Enabling an Event Sink
	12.3.13. Creating an Outbound Stream Entity
	12.3.14. Setting Up Outbound Stream Event Filters
	12.3.15. Testing Outbound Stream Event Filters
	12.3.15.1. Correcting Outbound Stream Event Filters

	12.3.16. Enabling an Outbound Stream Entity
	12.3.17. Modifying Outbound Stream Characteristics
	12.3.18. Enabling an Outbound Event Stream

	12.4. Sample Event Report
	12.5. Managing a Connection Between an Outbound Stream and an Event Sink
	12.5.1. Establishing a Connection
	12.5.2. Terminating a Connection
	12.5.3. Shutting Down a Connection

	12.6. Shutting Down Event Dispatching
	12.6.1. Disabling an Outbound Stream and Its Connection
	12.6.2. Disabling and Deleting an Event Sink

	12.7. Collecting Event Reports from Phase IV Systems
	12.7.1. Creating and Enabling the Relay Entity
	12.7.2. Disabling and Deleting the Relay Entity
	12.7.3. Enabling and Disabling Logging Entities
	12.7.4. Using NCP Event Logging Commands on the Phase IV Systems
	12.7.5. Sample Relayed Phase IV Event

	Appendix A. DECnet Phase IV Components and Corresponding Phase V Entities
	Appendix B. delay factor and delay weight for NSP and OSI Transport
	B.1. delay factor and delay weight
	B.2. Estimating the Round-Trip Delay

	Appendix C. decnet_migrate Commands
	C.1. Running decnet_migrate on Your System
	collect
	convert command
	convert dcl_file
	convert ncp_file
	create ipl_initialization_file
	edit
	report
	show path

	Appendix D. decnet_register Commands
	D.1. The Command Line Interface
	D.1.1. Running decnet_register
	add
	attach
	deregister
	do
	exit
	export
	import
	manage
	modify
	register
	remove
	rename
	repair
	reset
	set default
	show default
	show node
	spawn
	update

	Appendix E. Examples of Network Management Tasks
	E.1. Event Dispatcher
	E.1.1. Event Dispatcher

	E.2. Session Control Application
	E.3. NSP
	E.4. OSI Transport
	E.5. Routing Initialization Password
	E.6. MOP

	Appendix F. Using the Console Carrier
	F.1. Using the Console Carrier

	Appendix G. Migration Guidelines for VAX P.S.I.
	G.1. Terminology
	G.2. Phase IV Databases and DECnet Phase V Entities
	G.2.1. X25 Access
	G.2.1.1. Configuring X25 Access Filters for Use by OSI Transport (VAX Only)

	G.2.2. X25 Client
	G.2.3. X25 Server
	G.2.4. X25 Relay (OpenVMS I64 and OpenVMS Alpha)
	G.2.5. X25 Protocol
	G.2.6. LAPB
	G.2.7. LLC2
	G.2.8. Modem Connect
	G.2.9. XOT (OpenVMS I64 and OpenVMS Alpha Only)

	G.3. Attribute Mapping
	G.3.1. X25-ACCESS NETWORK Database
	G.3.2. X25-PROTOCOL NETWORK Database
	G.3.3. X25-PROTOCOL DTE Database
	G.3.4. X25-PROTOCOL GROUP Database
	G.3.5. X25-SERVER Database
	G.3.6. X25-SERVER Local Destination Database
	G.3.7. X25-SERVER Remote Destination Database
	G.3.8. LINE Database
	G.3.9. X29-SERVER Database
	G.3.10. X29-SERVER Destination Database
	G.3.11. X.25 Information in the CIRCUIT Database
	G.3.11.1. DLM Outgoing Circuit
	G.3.11.2. DLM Incoming Circuit
	G.3.11.3. DLM PVC Circuit
	G.3.11.4. PVC Circuit for X.25 Application

	G.4. Security
	G.4.1. X.25-Specific Rights Identifiers
	G.4.2. Security Access Actions
	G.4.3. Database Mapping
	G.4.3.1. The Remote DTE Rights Database
	G.4.3.2. The Access Node Rights Database
	G.4.3.3. The Local DTE Access Control Database
	G.4.3.4. The Remote DTE Access Control Database
	G.4.3.5. The Destination Access Control Database
	G.4.3.6. PVC and Closed User Group Security

	Appendix H. Network Management Graphical User Interface (NET$MGMT)
	H.1. Network Management Graphical User Interface (NET$MGMT)
	H.2. Rights Required to Run NET$MGMT
	H.3. How to Run NET$MGMT
	H.4. Managing Other DECnet Phase V Nodes

	Appendix I. Configuring Asynchronous Connections (OpenVMS VAX)
	I.1. Asynchronous DECnet Connections
	I.1.1. Establishing a Static Asynchronous Connection
	I.1.1.1. Terminating a Static Asynchronous Connection
	I.1.1.2. Reasons for Failure of Static Asynchronous Connections

	I.1.2. Establishing a Dynamic Asynchronous Connection
	I.1.2.1. Setting Up Dynamic Asynchronous Connections
	I.1.2.2. Switching on Dynamic Asynchronous Connections
	I.1.2.3. Managing Dynamic Asynchronous Resources
	I.1.2.4. Terminating a Dynamic Asynchronous Connection
	I.1.2.5. Reasons for Failure of Dynamic Asynchronous Connections

