
VSI OpenVMS

VSI DECset for OpenVMS
Code Management System Callable
Routines
Reference Manual

Operating System and Version: VSI OpenVMS x86-64 Version 9.2-2 or higher
VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: DECset Version 12.7 for OpenVMS

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI DECset for OpenVMS Code Management System Callable Routines
Reference Manual

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

All other trademarks and registered trademarks mentioned in this document are the property of their respective holders.

ii

VSI DECset for OpenVMS Code Management System Callable Routines Reference Manual

Table of Contents
Preface ... vii

1. About VSI .. vii
2. Intended Audience ... vii
3. Document Structure ... vii
4. Related Documents .. vii
5. References to Other Products .. viii
6. OpenVMS Documentation .. viii
7. VSI Encourages Your Comments ... viii
8. Typographical Conventions .. viii

Chapter 1. Using CMS Callable Routines .. 1
1.1. Generating Interface Descriptions Using SDL ... 1
1.2. Calling CMS Routines ... 2
1.3. Rules for Writing Programs that Call CMS Routines .. 3
1.4. Passing Arguments to CMS Routines ... 3

1.4.1. Data Types .. 5
1.4.2. The Library Data Block ... 6
1.4.3. The Fetch Data Block .. 7
1.4.4. Specifying Flags as Arguments .. 7
1.4.5. Masks ... 9
1.4.6. Output Strings ... 9

1.5. Condition Values Returned .. 10
1.5.1. CMS$_EOF Condition Value .. 10
1.5.2. CMS$_INUSE, CMS$_WAITING, and CMS$_PROCEEDING Messages 10

1.6. Using Callback Routines .. 10
1.6.1. Rules for Writing Callback Routines .. 11
1.6.2. Callback Routines Used by CMS$CMS .. 12

1.6.2.1. The Confirmation Routine .. 12
1.6.2.2. The Prompt Routine .. 12
1.6.2.3. The Output Routine ... 12

1.6.3. Passing Strings Between CMS and Callback Routines .. 13
1.6.3.1. Specifying End of Input ... 13
1.6.3.2. Determining End of Output .. 14

1.6.4. Callback Return Codes ... 14
1.7. Handling Error Conditions ... 14
1.8. Writing an Error-Message Handler ... 15
1.9. Linking with the CMS Image .. 17

Chapter 2. CMS Routine Descriptions ... 19
CMS$ANNOTATE .. 19
CMS$ASYNCH_TERMINATE .. 25
CMS$CMS .. 26
CMS$COPY_CLASS ... 29
CMS$COPY_ELEMENT ... 31
CMS$COPY_GROUP .. 34
CMS$CREATE_CLASS ... 36
CMS$CREATE_ELEMENT ... 38
CMS$CREATE_GROUP .. 44
CMS$CREATE_LIBRARY .. 45
CMS$DELETE_CLASS ... 50
CMS$DELETE_ELEMENT ... 51

iii

VSI DECset for OpenVMS Code Management System Callable Routines Reference Manual

CMS$DELETE_GENERATION ... 53
CMS$DELETE_GROUP .. 56
CMS$DELETE_HISTORY ... 58
CMS$DIFFERENCES .. 63
CMS$DIFFERENCES_CLASS ... 78
CMS$FETCH .. 87
CMS$FETCH_CLOSE ... 92
CMS$FETCH_GET ... 93
CMS$FETCH_OPEN ... 95
CMS$GET_STRING ... 98
CMS$INSERT_ELEMENT .. 99
CMS$INSERT_GENERATION .. 101
CMS$INSERT_GROUP ... 104
CMS$MODIFY_CLASS .. 106
CMS$MODIFY_ELEMENT ... 109
CMS$MODIFY_GENERATION ... 112
CMS$MODIFY_GROUP ... 114
CMS$MODIFY_LIBRARY .. 116
CMS$MODIFY_RESERVATION ... 119
CMS$PUT_STRING .. 121
CMS$REMARK .. 122
CMS$REMOVE_ELEMENT .. 124
CMS$REMOVE_GENERATION .. 126
CMS$REMOVE_GROUP .. 128
CMS$REPLACE .. 130
CMS$RETRIEVE_ARCHIVE .. 136
CMS$REVIEW_GENERATION ... 138
CMS$SET_ACL .. 140
CMS$SET_LIBRARY .. 143
CMS$SET_NOLIBRARY .. 146
CMS$SHOW_ACL .. 147
CMS$SHOW_ARCHIVE ... 150
CMS$SHOW_CLASS .. 155
CMS$SHOW_ELEMENT .. 158
CMS$SHOW_GENERATION .. 163
CMS$SHOW_GROUP ... 170
CMS$SHOW_HISTORY .. 174
CMS$SHOW_LIBRARY ... 180
CMS$SHOW_RESERVATIONS ... 185
CMS$SHOW_REVIEWS_PENDING .. 191
CMS$SHOW_VERSION .. 195
CMS$UNRESERVE .. 196
CMS$VERIFY .. 199

Appendix A. Summary of CMS Entry Points ... 203
Appendix B. Examples of Calling CMS .. 213

B.1. Calling CMS from Ada ... 213
B.2. Calling CMS from Basic ... 218
B.3. Calling CMS from BLISS .. 219
B.4. Calling CMS from C ... 220
B.5. Calling CMS from COBOL ... 221
B.6. Calling CMS from Fortran .. 223

iv

VSI DECset for OpenVMS Code Management System Callable Routines Reference Manual

B.7. Calling CMS from Pascal .. 224
B.8. Calling CMS from PL/I (Alpha and VAX) .. 226
B.9. Calling CMS from SCAN ... 227

v

VSI DECset for OpenVMS Code Management System Callable Routines Reference Manual

vi

Preface
This reference manual describes the set of callable routines for the Code Management System for
OpenVMS (CMS). CMS is an online library system that helps track software development and
maintenance. This manual provides reference information on how to use the CMS Callable Routines.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This reference manual is intended for programmers who have a working knowledge of CMS, the
OpenVMS operating system, and the languages used to call CMS.

3. Document Structure
This reference manual contains the following chapters and appendixes:

● Chapter 1, "Using CMS Callable Routines" provides an overview, general rules, and other
information that you need to know to use the routines.

● Chapter 2, "CMS Routine Descriptions" contains detailed descriptions of each routine. The routines
are listed in alphabetical order with the routine name at the top of every page of each routine
description.

● Appendix A, "Summary of CMS Entry Points" lists each routine name and the arguments that you can
pass to the routine.

● Appendix B, "Examples of Calling CMS" provides examples of calling CMS from different languages.

4. Related Documents
The following documents might also be helpful when using CMS:

● The VSI DECset for OpenVMS Installation Guide contains instructions for installing CMS.

● The Code Management System for OpenVMS Release Notes contain added information on the use and
maintenance of CMS.

● The VSI DECset for OpenVMS Guide to the Code Management System contains introductory and
conceptual information about CMS.

● The CMS Client User's Guide describes the installation and use of the CMS Client software in a
Microsoft Windows environment.

● The VSI DECset for OpenVMS Code Management System Reference Manual describes all the
commands available for CMS.

● The Using VSI DECset for OpenVMS Systems manual contains information on using the other
components of DECset.

vii

Preface

5. References to Other Products
Some older products that DECset components previously worked with might no longer be available or
supported by VSI. Any reference in this manual to such products does not imply actual support, or that
recent interoperability testing has been conducted with these products.

Note

These references serve only to provide examples to those who continue to use these products with
DECset.

Refer to the Software Product Description for a current list of the products that the DECset components
are warranted to interact with and support.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

8. Typographical Conventions
The following typographic conventions may be used in this manual:

Table 1. Typographical Conventions

Convention Description

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

KPn A sequence such as KP1 indicates that you must press the key labeled with
the number or character n on the numeric keypad.

... A horizontal ellipsis in a figure or example indicates the following
possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being described.

() In command format descriptions, parentheses indicate that you must enclose
multiple choices in parentheses.

viii

https://docs.vmssoftware.com

Preface

Convention Description

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement.

{ } In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type Bold type represents the introduction of a new term. It also represents the
name of an argument,an attribute, or a reason.

Example This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies URLs,UNIX commands and
pathnames, PC-based commands and folders, and certain elements of the C
programming language.

italic type Italic type indicates important information, complete titles of manuals or
variables. Variables include information that varies in system output (for
example, Internal error number), in command lines (/PRODUCER=name),
and in command parameters in text (where dd represents the predefined code
for the device type).

UPPERCASE TYPE Uppercase indicates the name of a command, routine, file, file protection
code, or the abbreviation of a system privilege.

- A hyphen at the end of a command format description,command line, or
code line indicates that the command or statement continues on the following
line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

ix

Preface

x

Chapter 1. Using CMS Callable
Routines
The Code Management System for OpenVMS (CMS) provides a set of routines that you can use to access
and manipulate CMS libraries from your programs. You should have an understanding of the basic CMS
concepts and syntax before you use these routines.

To use the CMS routines, follow these steps:

1. Include in your program the appropriate declarations and calls to the routines.

2. Compile the program.

3. Link the compiled code with the CMS image.

4. Run the executable image.

As with the DCL-level interface, you can use files for input to and output from the CMS routines. You
can also write routines that process input, output, and messages. The symbols for status condition codes
are defined in the CMS image and are available for use in your program.

This chapter provides the basic information you need to know to call CMS routines. For descriptions of
each routine, see Chapter Chapter 2, "CMS Routine Descriptions". The examples in Chapters Chapter 1,
"Using CMS Callable Routines" and Chapter 2, "CMS Routine Descriptions" of this manual are written
in Fortran; Appendix B, "Examples of Calling CMS" shows examples of calling CMS from Fortran and
other languages. For more detailed information about using CMS, see the VSI DECset for OpenVMS
Guide to the Code Management System.

1.1. Generating Interface Descriptions Using
SDL
To ease the writing of programs that use the CMS Callable Routines, an OpenVMS Structure
Definition Language (SDL) description of the CMS Callable Routines is available. This programming
language-independent description can be used to generate an interface description for supported
programming languages. The description is contained in the file CMS$ROUTINES.SDL, located in the
SYS$SYSROOT:[SYSHLP.EXAMPLES.CMS] directory.

The supported languages are as follows:

Ada
Basic
Bliss
C
Fortran
Macro
Pascal
PL/I (Alpha and VAX only)

For example, to generate an Ada package specification for the CMS Callable Routines on an OpenVMS
system, use the following command:

1

Chapter 1. Using CMS Callable Routines

$ SDL/LANGUAGE=ADA SYS$SYSROOT:[SYSHLP.EXAMPLES.CMS]CMS$ROUTINES.SDL

This generates an Ada package specification, called CMS$ROUTINES, which includes definitions of the
types, constants, and entry points of the CMS interface.

The SDL output generated from the SDL compiler varies in its comprehensiveness depending on the
programming language being used. Therefore, it might be desirable to manually enhance the output
before use. The examples of code throughout this manual do not assume the use of the SDL compiler;
instead, they show how enhanced interface descriptions are used.

1.2. Calling CMS Routines
There is an entry point into CMS for each DCL-level command. In general, routines have the same
names as the DCL-level commands. (An exception is the CMS RESERVE command, for which there
is no corresponding CMS$RESERVE routine. To reserve an element in the CMS callable interface, you
must specify the reserve argument in a call to the CMS$FETCH routine.)

When your program calls a CMS routine, it must pass arguments that provide CMS with information
about elements, the library history, or whatever part of the CMS library you want to access. In addition
to providing this information,your program must also allocate space for a library data block (LDB). An
LDB is a user-allocated structure that CMS uses to maintain basic information about the library being
accessed. For more information about the LDB, see Section 1.4.2, "The Library Data Block".

Example 1.1, "Calling CMS Routines" shows two calls to CMS from a Fortran program. The first call
creates a library; the second creates a library element from a file named LUCY.DIAMONDS. In this
case, CMS searches for LUCY.DIAMONDS in the current (default) directory at the time of the calls to
CMS.

Example 1.1. Calling CMS Routines

INTEGER*4 LDB(50)
INTEGER*4 STATUS
CHARACTER*14 DIR
CHARACTER*13 ELEMENT

INTEGER*4 CMS$CREATE_LIBRARY
INTEGER*4 CMS$CREATE_ELEMENT

DIR = '[LENNON.SONGS]'
ELEMENT = 'LUCY.DIAMONDS'

STATUS = CMS$CREATE_LIBRARY(LDB,DIR)
IF (.NOT. STATUS) GO TO 50
STATUS = CMS$CREATE_ELEMENT(LDB,ELEMENT)
 .
 .
 .
END

$ CREATE/DIRECTORY [LENNON.SONGS]
$ FORTRAN cmsprogram
$ LINK cmsprogram
$ RUN cmsprogram

Key to Example 1.1, "Calling CMS Routines":

2

Chapter 1. Using CMS Callable Routines

The LDB is declared as an integer array;the library directory and element name variables are
declared as character strings.

The CMS routines are declared as routines returning integer values.

The directory and element names are assigned to the character string variables.

The call to the CMS$CREATE_LIBRARY routine includes arguments for the LDB and the empty
directory to be used for the library.

The call to the CMS$CREATE_ELEMENT routine includes arguments for the LDB and
the element name. Because the element is being created in the library referenced in the
CMS$CREATE_LIBRARY call, it is not necessary to use CMS$SET_LIBRARY.

The execution sequence includes DCL commands that create the library directory and compile,
link, and run the program.

1.3. Rules for Writing Programs that Call CMS
Routines
The following list describes the rules to follow when you write programs that call CMS routines:

● Most of the CMS routines are not AST-reentrant; therefore, you should not call a CMS routine
(except CMS$ASYNCH_TERMINATE) from an AST routine that might currently be interrupting
the execution of a CMS routine.

● If your program uses event flags, you must use the OpenVMS Run-Time Library (RTL) routines
provided for this purpose (LIB$RESERVE_EF, LIB$GET_EF, and LIB$FREE_EF). These routines
coordinate the use of the event flags between your program and CMS.

● Do not modify the contents of the LDB.

● Except for the CMS$ASYNCH_TERMINATE, CMS$GET_STRING, and CMS$PUT_STRING
routines, do not call CMS from within callback or message-handler routines. Doing so can result
in a deadlock condition, where the latest call waits to lock the library that the earlier call is holding
locked. See Section 1.8, "Writing an Error-Message Handler" for information about message routines
and Section 1.6, "Using Callback Routines" for information about callback routines.

1.4. Passing Arguments to CMS Routines
The OpenVMS Procedure Calling and Condition Handling Standard specifies three methods of passing
arguments to routines:

● By reference

● By descriptor

● By immediate value

CMS accepts arguments that are passed by reference or by descriptor, as defined for each routine. CMS
returns status codes by immediate value. For information about the arguments for each call, see the
individual routine descriptions in Chapter 2, "CMS Routine Descriptions".

3

Chapter 1. Using CMS Callable Routines

When you pass an argument by reference, you specify that the address of the argument's storage location
is passed to the CMS routine. CMS expects objects such as the LDB, user-supplied routines, and flag
values to be passed by reference.

When you pass an argument by descriptor, you specify that the address of a descriptor data structure is
passed to the CMS routine. CMS expects character strings to be passed by descriptor.

If you are using callback routines (see Section 1.6, "Using Callback Routines") you must use the
CMS$GET_STRING and CMS$PUT_STRING routines to pass strings between the callback routine and
CMS.

Each argument in a call to a CMS routine is evaluated according to the position that it occupies in the
argument list. Therefore, you must be sure to specify null arguments correctly. If you omit an argument
and do not include a placeholder in the call, CMS cannot correctly interpret the arguments that follow.

For example, the format of a call to the CMS$CREATE_ELEMENT routine is as follows (see Chapter 2,
"CMS Routine Descriptions" for a complete description of the CMS$CREATE_ELEMENT routine):

CMS$CREATE_ELEMENT(library_data_block,
 element_name,
 [remark],
 [history],
 [notes],
 [position],
 [keep],
 [reserve],
 [concurrent],
 [reference_copy],
 [input_file],
 [input_routine],
 [user_arg],
 [msg_routine],
 [review])

The arguments for the LDB and the element name are required; the other arguments, shown in brackets
([]), are optional. For example, the following routine call passes only the required arguments:

CALL CMS$CREATE_ELEMENT(LDB,ELEMENT)

In this case, CMS searches the current default directory for a file with the name specified in the
ELEMENT argument. Instead of using an existing file to create an element, you might want to write a
routine to provide input for CMS$CREATE_ELEMENT. The following example shows a call that uses
an input routine:

CALL CMS$CREATE_ELEMENT(LDB,ELEMENT,,,,,,,,,,INPUT)

This call creates an element with the name specified in the ELEMENT argument and uses data supplied
by the INPUT routine. You must include the intervening commas as placeholders. For example, if you
had used only one comma, CMS would interpret the input routine parameter as the remark argument.

Note that trailing null arguments are not included in the previous examples. You can omit null arguments
when they occur at the end of the argument list, if it is allowed by the programming language you are
using. For example, the CMS$CREATE_CLASS routine can accept four arguments, but it might not
be necessary to include placeholders for the optional (unused) arguments in the call. For example, the
following calls from Fortran have the same result:

CALL CMS$CREATE_CLASS(LDB,CLASS,,)
CALL CMS$CREATE_CLASS(LDB,CLASS)

4

Chapter 1. Using CMS Callable Routines

To omit arguments in a language that does not allow variable-length argument lists, you must pass the
placeholder 0 by value, which CMS treats as a null argument.

1.4.1. Data Types
The routine descriptions in Chapter 2, "CMS Routine Descriptions" indicate the data type of each
argument (or object) you pass to CMS (such as an LDB or element name). Table 1.1, "Data Types of
Objects Passed to CMS Routines" describes the different data types for these objects.

All objects except character strings are passed by reference. Programs that call CMS routines must use
the descriptor mechanism to pass character strings to CMS. CMS uses a string identifier to pass character
strings to callback routines. See Section 1.6, "Using Callback Routines" for information about callback
routines, and Section 1.6.3, "Passing Strings Between CMS and Callback Routines" for information about
string identifiers.

Table 1.1. Data Types of Objects Passed to CMS Routines

Data Type Description

address Indicates a location in memory containing either data or code. String
identifiers are addresses of string descriptors. CMS uses string
identifiers to pass character strings to callback routines. For information
about string identifiers, see Section 1.6.3, "Passing Strings Between CMS
and Callback Routines". For information about callback routines, see
Section 1.6, "Using Callback Routines".

char_string Indicates a character-coded string. Character strings are passed by
descriptor.

cntrlblk Indicates a control block. A control block is a structure that is
interpreted by CMS. The LDB and the FDB are control blocks.

procedure Indicates a procedure (or routine) that you pass to a CMS routine. You
pass callback routines and message routines to CMS by specifying the
entry mask of the routine in the call. When you pass routines to CMS,
the argument list must contain a pointer to the entry mask. (A compiler
normally generates the entry mask as the first word of the routine.)
Usually, you pass routines by reference; for examples of passing routine
addresses to CMS, see Appendix B, "Examples of Calling CMS". For
information about message routines, see Section 1.8, "Writing an Error-
Message Handler". For information about callback routines, see Section
1.6, "Using Callback Routines".

longword_signed Indicates a 32-bit value. Flags (see Section 1.4.4, "Specifying Flags as
Arguments") and signed integer counts are passed as signed longwords.

mask_longword Indicates a longword mask. A mask is a group of flags or a bitmask to
be interpreted by CMS. For example, you can use a mask to specify the
IGNORE values for the CMS$DIFFERENCES routine.

date_time Indicates a quadword system time value. This data type specifies a
time value in the 64-bit system time format. Transaction times and file
creation or revision times are expressed in the date_time data type.

undefined Indicates an argument that CMS does not modify. These are intended
for your use only; CMS passes these arguments to callback routines. For
more information about user-defined arguments,see Section 1.6, "Using
Callback Routines".

5

Chapter 1. Using CMS Callable Routines

Data Type Description

vector_longword_unsigned Indicates a one-dimensional longword array. The signal and
mechanism arrays that CMS passes to message routines are of type
vector_longword_unsigned. For information about message routines,
see Section 1.8, "Writing an Error-Message Handler".

1.4.2. The Library Data Block
The library data block (LDB) is a data structure that CMS uses to maintain information about the state
of a particular CMS library. It is a required argument for most routine calls that access a library.

You must declare an integer array of 57 longwords to be used for an LDB. Then, use either the
CMS$CREATE_LIBRARY or CMS$SET_LIBRARY routine to associate the LDB with one or more
CMS libraries. When you specify the LDB in a call to a CMS routine, CMS accesses that corresponding
library or list of libraries.

The CMS$CREATE_LIBRARY and CMS$SET_LIBRARY commands allocate virtual memory to
maintain the CMS library context. To free virtual memory before your program exits CMS, or before
you initialize a library data block with another CMS$CREATE_LIBRARY or CMS$SET_LIBRARY
routine, you should call CMS$SET_NOLIBRARY. The CMS$SET_NOLIBRARY routine ensures that
any virtual memory is deallocated.

Caution

The LDB is designed to be filled by CMS. You should not modify the contents of the LDB (except for
the fifth and sixth longword; see the following section). Using an LDB that you have modified might
corrupt your library.

Figure 1.1, "A CMS Library Data Block" shows an LDB.

Figure 1.1. A CMS Library Data Block

6

Chapter 1. Using CMS Callable Routines

The first longword in the LDB contains a count of the total number of longwords used in the LDB.
Although this count might be less than the total space allocated for the data block, you should not
use any part of the LDB for your own purposes (except for the fifth and sixth longword). The second
longword contains the return status for the call to CMS (the same value placed in R0). The third and
fourth longwords contain a character string descriptor that points to the library directory specification
for the entire search list of libraries. You can use the fifth longword to pass arguments to your callback
routines. You should do this after entering CMS$SET_LIBRARY, which initializes the library.

If the value you want to pass cannot be represented by a longword, the fifth longword in the LDB should
contain a pointer to the value, rather than the value itself. The sixth longword contains an occlusion
mask containing four occlusion flags. By default, the occlusion mask is set to 0, enabling occlusion for
all CMS objects. You specify occlusion on the CMS command line with the /OCCLUDE qualifier. You
specify occlusion in a callable routine by setting the bit position in the occlusion mask. The following
table shows the symbols defined for the occlusion mask.

Symbol Bit Position Mask Value

CMS$M_OCC_NOCLASS 0 1
CMS$M_OCC_NOELEMENT 1 2
CMS$M_OCC_NOGROUP 2 4
CMS$M_OCC_NOOTHER 3 8

See the VSI DECset for OpenVMS Guide to the Code Management System for more information on
occlusion.

The remaining entries in the LDB are reserved for CMS.

1.4.3. The Fetch Data Block
The fetch data block (FDB) contains status information about the library. It is used as an argument only
in calls to the CMS$FETCH_OPEN, CMS$FETCH_GET, and CMS$FETCH_CLOSE routines. You use
these routines when you want to fetch an element from the library one line at a time. For the descriptions
of these routines, see Chapter 2, "CMS Routine Descriptions".

Each element generation that you fetch with the line-by-line fetch routines requires a separate FDB. You
must declare an array of five longwords to be used for each FDB.

Caution

The FDB is designed to be filled by CMS. You should not modify the contents of the FDB. Using an
FDB that you have modified might corrupt your library.

1.4.4. Specifying Flags as Arguments
Some CMS routines recognize flags that specify certain actions. For example, to reserve an element, you
specify a flag in a call to CMS$FETCH. A flag is a longword integer variable that is set to true (1) or
false (0).You can set these flags to 1 or 0 as necessary, then pass the address of the flag as an argument
to the CMS routine. CMS checks the low-order bit to determine the value of the flag.

Example 1.2, "Passing a Concurrent Flag to CMS$CREATE_ELEMENT" shows a call to
CMS$CREATE_ELEMENT from Fortran. The call contains a flag that directs CMS to create an
element that does not allow concurrent access.

7

Chapter 1. Using CMS Callable Routines

Example 1.2. Passing a Concurrent Flag to CMS$CREATE_ELEMENT

INTEGER*4 LDB(50)
CHARACTER*10 ELEMENT
INTEGER*4 CONCURRENT
 .
 .
 .
STATUS = CMS$SET_LIBRARY(LDB,DIRECTORY)
 .
 .
 .
CONCURRENT = 0
STATUS = CMS$CREATE_ELEMENT(LDB,ELEMENT,,,,,,,CONCURRENT)
 .
 .
 .

Key to Example 1.2, "Passing a Concurrent Flag to CMS$CREATE_ELEMENT":

The concurrent flag is declared as type INTEGER.

The flag is later set to 0.

The concurrent flag is then passed by reference to the CMS$CREATE_ELEMENT routine. (In
Fortran, variables of type INTEGER are passed by reference.)

In Example 1.2, "Passing a Concurrent Flag to CMS$CREATE_ELEMENT", when the
CMS$CREATE_ELEMENT routine is called,the position in the argument list corresponding to the
concurrent flag contains an address of a location containing the value 0. CMS interprets the concurrent
flag as follows: a value of 1 indicates concurrent access and a value of 0 indicates noconcurrent access.
Thus, CMS creates an element that cannot be concurrently reserved.

You must pass flag values by reference for CMS to interpret them correctly. If you use the immediate
value mechanism to pass the value 0 to a CMS routine, CMS interprets the argument list entry of 0 to
mean an unspecified argument. An unspecified, or default, argument might have a different meaning
than you intend; therefore, you must use the correct syntax for the calling language to ensure the correct
representation on the argument stack.

Table 1.2, "Passing Concurrent Flag Values" shows the effects of using different methods to pass the
concurrent flag in a call to CMS$CREATE_ELEMENT.

Table 1.2. Passing Concurrent Flag Values

Call Semantics Argument List Result

Unspecified argument 0 Concurrency allowed
Passing 0 by value 0 Concurrency allowed
Passing 0 by reference Address pointing to location

containing the value 0
Concurrency not allowed

Passing 1 by value 1 Probable access violation
Passing 1 by reference Address pointing to location

containing the value 1
Concurrency allowed

8

Chapter 1. Using CMS Callable Routines

1.4.5. Masks
Some routines (for example, CMS$ANNOTATE, CMS$DIFFERENCES,
CMS$DIFFERENCES_CLASS, and CMS$DELETE_HISTORY) accept some of their arguments in
the form of masks. A mask is a longword value that is interpreted as a bitmask. A bitmask is an integer
value that is interpreted as a set of bits, some of them “on” and some “off.” For each of the masks, CMS
recognizes specific values that determine the action of the routine. Each of these values is defined as a
universal symbol; thus,you have access to them when you link with the CMS image.

Example 1.3, "Using a Bitmask" shows a call to CMS$SHOW_HISTORY from Fortran. The call
contains a transaction mask that directs CMS to produce only reservation and replacement transactions
for a particular element.

Example 1.3. Using a Bitmask

CHARACTER*16 LIBNAME
CHARACTER*10 ELEMENT

INTEGER*4 LDB(50)
INTEGER*4 TRANSACTIONS

EXTERNAL CMS$M_CMD_RESERVE
EXTERNAL CMS$M_CMD_REPLACE
EXTERNAL OUTPUT_ROUTINE

TRANSACTIONS = IOR(%LOC(CMS$M_CMD_RESERVE),%LOC(CMS$M_CMD_REPLACE))
LIBNAME = '[HARRISON.SONGS]'
ELEMENT = 'BROWN.SHOE'
CALL CMS$SET_LIBRARY(LDB,LIBNAME)
CALL CMS$SHOW_HISTORY(LDB,OUTPUT_ROUTINE,,ELEMENT,,,,TRANSACTIONS)
 .
 .
 .

Key to Example 1.3, "Using a Bitmask":

TRANSACTIONS is declared as type (longword) INTEGER for the bitmask argument to be
passed to CMS$SHOW_HISTORY.

External symbols for the bitmask (CMS$M_CMD_RESERVE and CMS$M_CMD_REPLACE)
are declared.

The IOR intrinsic function sets the bits in the TRANSACTIONS mask.

CMS is called; CMS calls OUTPUT_ROUTINE once for each reservation and replacement of the
specified element.

1.4.6. Output Strings
Some routines provide character strings as output. These strings are allocated by the routine and need to
be freed by the caller after use. The outputs are provided using a descriptor mechanism and write access.
To free the allocated space, use the following OpenVMS library routine:

STR$FREE1_DX

9

Chapter 1. Using CMS Callable Routines

Note that this applies only to the outputs from callable routines and not to the arguments passed to
callback routines. The space used for arguments to callback routines is freed by the CMS implementation
and need not be freed by the callback.

1.5. Condition Values Returned
The return value of a call to a CMS routine is a standard 32-bit OpenVMS condition code. CMS returns
the value in register 0, and places it in the second longword of the LDB (see Section 1.4.2, "The Library
Data Block").

The CMS condition codes are declared as universal symbols; therefore, you have access to these symbols
when you link your program with the CMS image. The languages supported for accessing the defined
symbols are: Ada, Basic, Bliss, C, COBOL, DIBOL, Fortran, Macro, Pascal, PL/I (Alpha and VAX
only), and SCAN.

The following example shows a sample Ada statement:

X: CONSTANT UNSIGNED_LONGWORD :=SYSTEM.IMPORT_VALUE(~EXTERNAL_SYMBOL~);

Section 1.8, "Writing an Error-Message Handler" describes how to write routines to handle messages
generated by CMS. See the VSI DECset for OpenVMS Guide to the Code Management System for a
complete listing of CMS diagnostic messages.

1.5.1. CMS$_EOF Condition Value
When you provide a routine to handle input or output,the return value CMS$_EOF is used to indicate
end-of-file. For information about writing routines for input and output, see Section 1.6, "Using Callback
Routines".

1.5.2. CMS$_INUSE, CMS$_WAITING, and
CMS$_PROCEEDING Messages
If another user is accessing a library when your program calls CMS to access the same library, CMS
issues the CMS$_INUSE message and waits until the library is unlocked before executing your
transaction. During this time, CMS periodically issues the CMS$_WAITING message. When the library
is available, CMS issues the CMS$_PROCEEDING message and then executes your transaction.

If, instead of waiting, you prefer to abort the transaction from the message routine, you should have the
message routine call CMS$ASYNCH_TERMINATE. This routine returns control to CMS, so it cleans
up resources and exits properly.

1.6. Using Callback Routines
Typically, CMS uses files for input and output. For example, when you pass an element name to the
CMS$CREATE_ELEMENT routine, CMS searches your default directory for a file that has the same
name as the specified element. However, you can provide callback routines to handle input and output.

A callback routine is a routine that you specify in a call to CMS, and which in turn is invoked by CMS.
You pass callback routines by specifying the entry mask of the routine in the call to the CMS routine.
As a result, the argument list contains the address of the entry mask for the routine (CMS uses the
CALLG and CALLS procedure call instructions to invoke callback routines). Usually, you pass routines
by reference, but the method that you use to pass the routine address is dependent on the language that

10

Chapter 1. Using CMS Callable Routines

you are using. For examples of programs that pass routine addresses to CMS routines, see Appendix B,
"Examples of Calling CMS".

In most cases, you cannot specify both an input file and input routine (or an output file and output
routine) in a single call. (An exception is that you can specify both files and routines in a single call to
CMS$DIFFERENCES.) CMS routines that allow you to provide input routines are as follows:

● CMS$CREATE_ELEMENT

● CMS$DIFFERENCES

● CMS$REPLACE

CMS routines that allow you to provide output routines are as follows:

● CMS$ANNOTATE

● CMS$DELETE_HISTORY

● CMS$DIFFERENCES

● CMS$DIFFERENCES_CLASS

● CMS$SHOW_keyword

The CMS$CMS routine allows you to specify input, output, confirm, and prompt routines. See the
description of the CMS$CMS routine in Chapter 2, "CMS Routine Descriptions" for more information.

1.6.1. Rules for Writing Callback Routines
The following list describes the rules to follow when you write callback routines:

● Every callback routine must return control to CMS. If your routine does not return control to CMS,
CMS cannot finish the transaction and the library remains locked. (If your library becomes locked,
you must use the VERIFY/RECOVER command to unlock it.) In addition, any resources used to
process the command are not released.

● Callback routines must return a defined condition value to CMS. You can use CMS$_NORMAL,
CMS$_EXCLUDE, and CMS$_STOPPED to indicate successful completion of the callback routine,
or you can return a condition code from an OpenVMS system service or other system software.
CMS checks for the CMS$_EXCLUDE and CMS$_STOPPED values, and checks the low-order bit
to determine if the status code indicates success. For information about callback return codes, see
Section 1.6.4, "Callback Return Codes". If the callback routine returns a failure code, CMS exits with
a primary status of CMS$_USERERR.

● CMS$ASYNCH_TERMINATE, CMS$GET_STRING and CMS$PUT_STRING are the only CMS
routines that you can use within a callback routine (see Section 1.6.3, "Passing Strings Between CMS
and Callback Routines").

● When writing callback routines for CMS$DIFFERENCES and CMS$DIFFERENCES_CLASS, you
cannot depend on the order in which CMS calls these callback routines. The calling sequence is not
synchronous.

All routines that allow you to use callback input or output routines also provide an argument in the call
syntax for your own use. CMS does not modify this value; it passes this value to the callback routine.
This argument is labeled user_arg in the syntax of a call to CMS and user_param in the syntax of
a call to a callback routine. (The term argument is used to identify an object that you pass to a CMS

11

Chapter 1. Using CMS Callable Routines

routine. The term parameter is used to identify an object that a CMS routine passes to a callback
routine.)

When you do not specify user_arg in the call to CMS, the call frame entry for user_param points to a
location containing the value 0. In this case, user_param is allocated as read-only storage. You receive
an access violation error if you attempt to modify user_param under these circumstances. CMS allows
you to pass arguments to callback routines by supplying a value in the fifth longword of the LDB. See
Section 1.4.2, "The Library Data Block" for more information.

1.6.2. Callback Routines Used by CMS$CMS
The CMS$CMS routine provides a full command-line level interface into CMS; however, it performs no
I/O to the terminal other than error messages. To perform confirmations, prompting, or display output,
you must supply callback routines. The following sections describe these callback routines.

1.6.2.1. The Confirmation Routine
The CMS$CMS routine uses a caller-supplied callback routine for confirmation messages (for example,
the results of a /CONFIRM qualifier, or when a module is being reserved or replaced with concurrent
reservations in effect).

There are two ways you can set this callback routine:

● By specifying the confirm_routine argument to CMS$CMS, which affects the command being
parsed and executed

● By specifying the confirm_routine argument to CMS$CREATE_LIBRARY or
CMS$SET_LIBRARY, which affects all operations performed using that LDB (until you reinitialize
the LDB by performing another CMS$CREATE_LIBRARY or CMS$SET_LIBRARY operation)

If you do not specify a confirm callback, CMS does not request confirmation. It operates as if a callback
had been specified and had returned the string “YES”. CMS then proceeds with the operation.

For more information on confirmation routines, see the description of the CMS$CMS routine in Chapter
2, "CMS Routine Descriptions".

1.6.2.2. The Prompt Routine
The CMS$CMS routine uses a caller-supplied callback routine to prompt when CMS encounters an
incomplete command line.

You set the address of the prompt routine by specifying the prompt_routine argument to CMS$CMS.

If you do not specify a prompt callback, CMS does not prompt you, but operates as if a callback had
been specified and had returned the status RMS$_EOF (except in the case of prompting for a CMS
remark, where the status is RMS$_NORMAL). The RMS$_EOF return status causes termination of
command parsing (as if the user had pressed Ctrl/Z at the DCL prompt).

For more information on command-line prompting, see the description of the CMS$CMS routine in
Chapter 2, "CMS Routine Descriptions".

1.6.2.3. The Output Routine
The CMS$CMS routine uses a caller-supplied callback routine for all terminal output (for example, the
results of a SHOW or HELP command, or the listing of concurrent reservations for REPLACE and
RESERVE).

12

Chapter 1. Using CMS Callable Routines

There are two ways you can specify this routine:

● By specifying the output_routine argument to CMS$CMS, which affects the command being
parsed and executed

● By specifying the output_routine argument to CMS$CREATE_LIBRARY or
CMS$SET_LIBRARY, which affects all operations performed using that LDB (until you reinitialize
the LDB by performing another CMS$CREATE_LIBRARY or CMS$SET_LIBRARY operation)

CMS directs output to SYS$OUTPUT if the message or output callback routines are not specified.

Note that if /OUTPUT is specified to redirect terminal output to a file, CMS opens, writes to, and closes
the file normally and does not use the output callback routine.

For more information on output routines, see the description of the CMS$CMS routine in Chapter 2,
"CMS Routine Descriptions".

1.6.3. Passing Strings Between CMS and Callback
Routines
CMS provides routines for passing strings between a callback routine and a CMS routine. CMS passes a
string (such as an element name) to a callback routine using a string identifier. A string identifier is the
address of a string descriptor. CMS passes string identifiers by reference. Figure 1.2, "A String Identifier"
shows the relationship between the string identifier and the passed string.

Figure 1.2. A String Identifier

Within callback routines, you use the CMS$GET_STRING routine to process an output string from
CMS, and the CMS$PUT_STRING routine to provide a string for input to CMS. You can manipulate
the descriptors directly if the language allows it (as BLISS or C does, for example). See the descriptions
of CMS$GET_STRING and CMS$PUT_STRING for more information.

1.6.3.1. Specifying End of Input
CMS passes an eof_status parameter to the input callback routines invoked by the
CMS$CREATE_ELEMENT and CMS$REPLACE routines. Every time an input callback routine
returns control to CMS,CMS checks the eof_status parameter for a value of true (1). When CMS
encounters a true value in eof_status, the current input record (passed by CMS$PUT_STRING) is
assumed to be insignificant. Thus, when you pass the last input record to CMS, you must wait until the
next invocation of the callback routine to set eof_status to true.

It is important to specify a true status at the appropriate time during a wildcard or group
CMS$REPLACE transaction. For more information about CMS$REPLACE, see Chapter 2, "CMS
Routine Descriptions".

13

Chapter 1. Using CMS Callable Routines

1.6.3.2. Determining End of Output
CMS sets the eof_status parameter to true after the last record has been passed to the callback routine.
CMS does not set eof_status to true until the next invocation of the callback routine. Thus, when the
callback routine encounters the end of output, the contents of output_record are undefined.

1.6.4. Callback Return Codes
Each time a callback routine returns control to CMS, CMS checks the low-order bit of the callback
return code to determine success or failure. A success code directs CMS to continue processing; if there
is more data for processing, CMS calls the callback routine again. Under certain circumstances, CMS
also checks for CMS$_EXCLUDE and CMS$_STOPPED. CMS$_EXCLUDE directs CMS to continue
processing, but it also indicates that the current record does not meet some requirement established by
the callback routine. CMS$_STOPPED is used to halt a wildcard transaction.

For example, the CMS$DELETE_HISTORY routine calls the output callback routine once for each
record to be deleted. The callback routine must return one of two values, CMS$_NORMAL to direct
CMS to delete the record from the history file, or CMS$_EXCLUDE to prevent CMS from deleting the
history record.

The CMS$SHOW_HISTORY routine provides another example of using CMS$_EXCLUDE. CMS
passes a parameter to the callback routine that indicates whether the transaction is unusual. If the
callback routine checks only for unusual transactions and there are none, it returns CMS$_EXCLUDE
each time control is transferred to CMS. As a result, the CMS$SHOW_HISTORY routine returns
CMS$_NOHIS (no history records found).

If the callback routine encounters an error during processing, it should abort the CMS call by returning
an error status. This causes the CMS call to exit using CMS$_USERERR. To abort the transaction
from the message routine without returning an error status, you should have the message routine call
CMS$ASYNCH_TERMINATE to allow CMS to clean up resources.

For a list of the primary return codes, see the description of each routine in Chapter 2, "CMS Routine
Descriptions".

1.7. Handling Error Conditions
CMS handles error conditions in one of two ways:

● If the condition is not fatal, CMS calls a message handler. You can provide a message routine to
handle messages (see Section 1.8, "Writing an Error-Message Handler"). If you do not provide a
message routine, CMS calls its own message handler.

● If the condition is fatal, CMS signals the error. Fatal conditions are those situations where execution
cannot continue. CMS does not call the message routine (if supplied) under these circumstances.

If you have established a condition handler in the calling program and the condition handler encounters
a fatal return value, do not return a value of SS$_CONTINUE from the condition handler or resignal
SS$_CONTINUE, and do not issue additional calls to CMS until you have exited and reentered the
image. The fatal error indicates that CMS cannot continue with the current invocation of the image.

If you supply a routine for input or output (see Section 1.6, "Using Callback Routines") and you establish
a condition handler within this routine, do not exit from the image (through either the condition handler
or the routine itself). In addition, do not unwind the stack beyond the call to the user-supplied routine.

14

Chapter 1. Using CMS Callable Routines

To exit the image, you should return an error (any status with the low bit clear) from your routine,
causing CMS to terminate with CMS$_USERERR status. CMS$_USERERR status indicates that a
callback routine returned an error.

1.8. Writing an Error-Message Handler
By default, CMS directs all diagnostic messages to SYS$OUTPUT and SYS$ERROR. However, you can
write your own routine to handle messages. When you specify the msg_routine argument to any CMS
routine, CMS passes control to your message handler instead of using the default handler. CMS does
not call your message-handler routine if a fatal condition occurs, but instead notifies you by signaling
the condition. If you receive a fatal error message, you should exit and reenter CMS—do not attempt to
recall CMS within the same image invocation if CMS detected a fatal error.

You pass a message routine by specifying the entry mask of the routine in the call to the CMS routine.
This places the address of the routine entry mask in the argument list (CMS uses the CALLG and
CALLS procedure call instructions to invoke message routines). In general, you pass message routines by
reference, but the method you use to pass the routine address depends on the language you are using. For
examples of programs that pass routine addresses to CMS routines, see Appendix B, "Examples of Calling
CMS".

With each call to msg_routine, CMS passes the following parameters in the order shown:

signal_array
Type: vector_longword_unsigned
Access: read
Mechanism: by reference
Specifies a standard OpenVMS signal array.

mechanism_array
Type: vector_longword_unsigned
Access: read
Mechanism: by reference
Specifies a standard OpenVMS mechanism array.

library_data_block
Type: cntrlblk
Access: modify
Mechanism: by reference
Specifies a valid LDB. Although the LDB can be modified, you should not change its contents. If you do
so, you might corrupt your CMS library.

The following list describes rules to follow when you write message-handling routines:

● Do not invoke any CMS routines from a message routine (except CMS$ASYNCH_TERMINATE,
CMS$GET_STRING, or CMS$PUT_STRING).

● Do not unwind the stack, because it might corrupt your library.

● Do not use the LIB$ESTABLISH Run-Time Library routine to enable the message routine as
the exception handler for a CMS call. CMS uses its own exception handlers and calls the user-
supplied message routine under the correct circumstances. (The message routine is only for handling
messages,not for general exception handling during the execution of a CMS routine.)

Example 1.4, "Using a Message-Handler Routine" shows a Fortran program that specifies a message-
handling routine in the call to the CMS$MODIFY_CLASS routine.

15

Chapter 1. Using CMS Callable Routines

Example 1.4. Using a Message-Handler Routine

10 INTEGER*4 LDB(50)
 INTEGER*4 STATUS
 CHARACTER*14 DIR
 CHARACTER*8 CLASS,NEWNAME
C
 INTEGER*4 CMS$MODIFY_CLASS
 INTEGER*4 CMS$SET_LIBRARY
 EXTERNAL MSG
C
100 DIR = '[LENNON.SONGS]'
 CLASS = 'PRE_1968'
 NEWNAME = 'PRE_1970'
C
 STATUS = CMS$SET_LIBRARY(LDB,DIR)
 IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
 STATUS = CMS$MODIFY_CLASS(LDB,CLASS,,NEWNAME,,,MSG)
 IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
C
 END
C

 INTEGER*4 FUNCTION MSG(SIGNAL,MECH,LIBDB)
 INTEGER*4 SIGNAL(16),SIGNAL_COPY(16),MECH(5)
 INTEGER*4 LIBDB(50)
 EXTERNAL CMS$_MODIFIED
 EXTERNAL SYS$PUTMSG

 IF (.NOT. SIGNAL(2)) THEN
 DO I=1,16
 SIGNAL_COPY(I) = SIGNAL(I)
 END DO
 SIGNAL_COPY(1) = SIGNAL_COPY(1) - 2
 CALL SYS$PUTMSG(SIGNAL_COPY)
 ENDIF
 MSG = 1
 RETURN
 END

Key to Example 1.4, "Using a Message-Handler Routine":

The message routine is declared as an external routine.

The call to CMS$MODIFY_CLASS includes the address of the message routine.

The message routine is written as a function so it returns a value to CMS. In this case, 16
longwords are declared for the signal array; however, the size required is dependent on the number
of messages that are generated. An additional array is declared to make a copy of the signal array.
The mechanism array requires five longwords.

The message-handler routine checks the signal array for an error. If the test fails, the message
routine returns control to CMS. If the test is successful, the signal array is copied and the longword
count of the copied signal array is altered (in effect removing the PC and PSL at the end of the
array). The array is then in a form that is compatible with the SYS$PUTMSG routine, which
displays the message on the terminal.

The return value is set to true (1), and control is returned to CMS.

16

Chapter 1. Using CMS Callable Routines

1.9. Linking with the CMS Image
You do not have to specify the CMS shareable image in your LINK command because the
installation procedure inserts CMSSHR.EXE into the default system shareable image library
(SYS$LIBRARY:IMAGELIB.OLB), which is automatically searched by the linker.

Use the following LINK command syntax to link your program with CMS:

LINK filename[,...]

You can explicitly reference the CMS shareable image (SYS$SHARE:CMSSHR.EXE) by specifying
the /SHAREABLE linker option, as follows:

$ LINK filename[,...],SYS$INPUT/OPTIONS Return
CMSSHR/SHAREABLE
Ctrl/Z

17

Chapter 1. Using CMS Callable Routines

18

Chapter 2. CMS Routine
Descriptions
This chapter describes the purpose of each CMS routine, the arguments and parameters used in routine
calls, and the return status. For more information about diagnostic messages, see the VSI DECset for
OpenVMS Code Management System Reference Manual.

An argument in the call syntax represents the object that you pass to a CMS routine. A parameter
in the call syntax represents an object that a CMS routine passes to a callback routine. A comma list
for an object indicates that you can specify more than one of the indicated objects by separating each
object with a comma. Each argument and parameter description lists the data type, access to the object,
and passing mechanism. The data types are standard OpenVMS data types (see Section 1.4.1, "Data
Types"). The access to an object is defined from the perspective of the called routine. The different types
of access to the object are as follows:

● Read access–The routine can only read data.

● Modify access–The routine can both read from and write to the address.

● Write access–The routine writes into the address without reading the contents.

The passing mechanism indicates how the argument list is interpreted. The reference mechanism
indicates that the argument list entry is the address of the object. The descriptor mechanism indicates
that the argument list entry is an address that points to a descriptor containing the address of the object.

Each argument is evaluated according to the position it occupies in the argument list. Therefore, you
must be sure you specify null arguments correctly. If you omit an argument and do not include a
placeholder in the call, CMS cannot correctly interpret the arguments that follow. For more information
about specifying null arguments, see Section 1.4, "Passing Arguments to CMS Routines".

Brackets ([]) surrounding arguments indicate that the enclosed item is optional.

CMS$ANNOTATE
CMS$ANNOTATE — Creates a line-by-line file listing the changes made in each specified element
generation.

Format
CMS$ANNOTATE (library_data_block,
 element_expression,
 [generation_expression],
 [merge_generation_expression],
 [append],
 [full],
 [output_file],
 [output_routine],
 [user_arg],
 [msg_routine],
 [format])

19

Chapter 2. CMS Routine Descriptions

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements, or groups of elements, to be annotated. Wildcards and a comma list are
allowed. CMS creates one output file for each annotated element unless you also specify the append
argument.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and selects elements based on the list of groups established in the library.

generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the generation to be annotated. If you do not provide a generation number or class name, CMS
annotates the latest generation on the main line of descent.

merge_generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the element generation to be merged into the annotated generation.

append

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to append the output to a file. If you set the flag to 1, CMS appends
the output to a file. If you set the flag to 0, CMS creates as many new output files as necessary. CMS
ignores this argument if you provide an output routine.

20

Chapter 2. CMS Routine Descriptions

When you set the append flag to 1, CMS appends the output to an existing file indicated by the
output_file argument. If you do not specify an output file, CMS appends the output to a file with the
same file name as the element file with the file type of .ANN. If no such file exists, CMS creates one.

full

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to produce an annotated listing that indicates the file creation time,
file revision time, and record format for the file used to create each generation, and shows the deletion
history of the element. If you set the flag to 1, CMS produces a full listing. If you set the flag to 0, CMS
produces a normal, annotated listing.

output_file

type: char_string
access: read
mechanism: by descriptor

Specifies the name of the output file. By default, the file name is the element file name with the file type
of .ANN. Use this argument if you want the output file to have a different name, or if you want CMS to
put the file in a directory other than your current, default directory. Wildcards are allowed.

If you provide an output file specification and do not set the append flag to 1, CMS creates one output
file for each element annotated. If more than one element is annotated and you do not include wildcards
in the output file specification, CMS creates successive versions of the specified output file. (Note that if
you provide a directory specification, but no file name or file type, CMS creates one output file for each
element annotated and places each output file in the specified directory. In this case, each output file is
named according to the default naming convention.) If you specify an output file, you cannot also specify
an output routine.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes data output by CMS$ANNOTATE. CMS calls the output
routine once for each line of data. If you specify an output routine, you cannot also specify an output file.
See Section 1.6, "Using Callback Routines" for information about the parameters that CMS passes to the
callback routine.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism that you used to pass it to CMS.

21

Chapter 2. CMS Routine Descriptions

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

format

type: mask_longword
access: read
mechanism: by reference

Specifies the type of formatting to be performed on the data before it is placed in the output file. You
must specify either the output_file or output_routine arguments with this argument. By default, the
flag is set to 1, indicating ASCII output.

The format argument specifies a data format and data partition size. The following table lists recognized
data formats.

Data Format Bit Position Mask Value Action

CMS$M_ASCII 0 1 Specifies that data be presented as
if each byte represents a value in the
ASCII character set. This option is most
useful when files contain text. If no data
partition is specified, data is partitioned
into records. This option is the default.

CMS$M_DECIMAL 1 2 Specifies that each value be displayed
as a decimal numeral. If no data
partition is specified, data is partitioned
into longwords. You cannot specify
both CMS$M_DECIMAL and
CMS$M_RECORDS.

CMS$M_HEXADECIMAL 2 4 Specifies that each value be displayed
as a hexadecimal numeral. If no data
partition is specified, data is partitioned
into longwords. You cannot specify
both CMS$M_HEXADECIMAL and
CMS$M_RECORDS.

CMS$M_OCTAL 3 8 Specifies that each value be displayed
as an octal numeral. If no data
partition is specified, data is
partitioned into longwords. You cannot
specify both CMS$M_OCTAL and
CMS$M_RECORDS.

A data partition is the size that data in each record is to be broken into before it is formatted. The
following table lists the recognized data partitions.

22

Chapter 2. CMS Routine Descriptions

Data Partition Bit Position Mask Value Action

CMS$M_BYTE 16 65,536 Specifies that the data displayed is to
be partitioned into bytes. By default,
records are not partitioned further
unless the data format option indicates
otherwise.

CMS$M_LONGWORD 17 131,072 Specifies that the data displayed
is to be partitioned into longword
values. This is the default partitioning
for CMS$M_DECIMAL,
CMS$M_HEXADECIMAL, and
CMS$M_OCTAL.

CMS$M_RECORDS 18 262,144 Specifies that no further partitioning
of data is to occur beyond the record
partitioning already in the file. This
partitioning is most useful when the
files contain text. You can specify
CMS$M_RECORDS only by itself or
in conjunction with ASCII. It cannot
be used with any other options. This
qualifier is the default.

CMS$M_WORD 19 524,288 Specifies that the data displayed be
partitioned into word values. By
default, data records are not partitioned
further unless the data format indicates
otherwise.

Callback Routine Parameters
When you provide an output routine to process the output of CMS$ANNOTATE, CMS passes the
following parameters in the order shown with each call to output_routine:

first_call, library_data_block, user_param, element_id,
 output_record_id, eof_status

The callback routine must return a value to CMS. CMS checks the low-order bit of that value for success
(1) or failure (0) status. The following parameter descriptions define the access to the object from the
perspective of the callback routine.

first_call

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this flag is set to 0.

library_data_block

type: cntrlblk

23

Chapter 2. CMS Routine Descriptions

access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$ANNOTATE. If you did not specify a user
argument in the call syntax, this parameter points to a read-only storage location containing the value 0.
CMS passes the parameter user_param to your routine using the same mechanism that you used to pass
it to CMS$ANNOTATE.

element_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

output_record_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the line of data produced by CMS$ANNOTATE. Use the
CMS$GET_STRING routine to translate the string identifier. For information about string identifiers,
see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

eof_status

type: longword_signed
access: read
mechanism: by reference

Specifies the end-of-file status. CMS changes the value of eof_status from false (0) to true (1)
after the last record has been passed to the output routine. When eof_status is true, the contents
of output_record_id are undefined. See Section 1.6.3.2, "Determining End of Output" for more
information on determining the end of output.

Description
The CMS$ANNOTATE routine documents the development of an element. This routine creates an
output file that contains an annotated listing. By default, the file name is the same as the element name
with the file type .ANN. The annotated listing file contains two parts:

24

Chapter 2. CMS Routine Descriptions

● A history

● A source-file listing

The history includes the generation number, date, time, user, and remark of the transaction that created
each generation of the element. In addition, if you specify the FULL argument, the history also includes
information about file creation and revision times, and record format and attributes. Element generations
are listed in reverse chronological order. The generation numbers of the specified generation and its
ancestors are marked with an asterisk (*).

The source-file listing contains all the lines inserted or modified from generation 1 to the specified
generation. The listing does not show lines deleted from the file. CMS inserts consecutive line numbers
in the listing unless editor-assigned line numbers already exist. (The line numbers start with 1 for the
first line and increase by 1 for each line.) The generation field starts at the first character position of each
line. It contains the generation number of the most recent generation in which the line was inserted or
modified. The generation field is blank if a line is unchanged since generation 1.

The following table lists the possible return codes for this function.

Return Code Description Status

CMS$_ANNOTATED CMS annotated the element. Success
CMS$_ANNOTATIONS CMS annotated one or more elements. Success
CMS$_ERRANNOTATIONS CMS annotated zero or more elements and

encountered errors during the transaction.
Error

CMS$_NOANNOTATE CMS did not annotate the specified element. Error
CMS$_NOREF Error accessing library. Error
CMS$_USERERR User routine returned an error to CMS. Error

CMS$ASYNCH_TERMINATE
CMS$ASYNCH_TERMINATE — Simulates a keyboard Ctrl/C (cancel). This routine enables calling
programs to specify to the CMS function currently in progress that cancellation has been requested.

Format
CMS$ASYNCH_TERMINATE

Arguments
None.

Description
The CMS$ASYNCH_TERMINATE routine requests CMS to terminate processing at the next
convenient point, just as if the user presses Ctrl/C during command execution. This termination might
not occur immediately and in fact may not occur at all, depending on the operation.

You can call CMS$ASYNCH_TERMINATE from your own Ctrl/C handler, anywhere in your program,
callback routines, and AST routines.

25

Chapter 2. CMS Routine Descriptions

CMS$ASYNCH_TERMINATE sets a flag so CMS can recognize it at a convenient time. This flag is
usable with both CMS$CMS and other lower-level callable CMS routines. CMS clears this flag on entry
to a top-level callable routine.

CMS$CMS
CMS$CMS — Is a high-level entry point that enables calling programs to pass a DCL command line
to CMS for processing. This function parses and executes the command line, then returns to the calling
program.

Format
CMS$CMS ([command_line],
 [msg_routine],
 [prompt_routine],
 [confirm_routine],
 [output_routine],
 [width])

Arguments
command_line

type: char_string
access: read
mechanism: by descriptor

Specifies the address of a string descriptor that contains a command line. If you specify 0, CMS uses the
prompt_routine argument to prompt you for a command line. If you do not specify this argument or a
prompt routine, CMS returns the error RMS$_EOF (end-of-file detected).

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

prompt_routine

type: procedure
access: read
mechanism: by reference

Specifies the address of a callback routine used instead of direct terminal input when a response is
required from the user. This routine is used to handle missing command parameters and command
continuation lines.

26

Chapter 2. CMS Routine Descriptions

If this parameter is not specified, CMS does not prompt for missing command-line components—it
returns RMS$_EOF. This return value causes the command line interpreter (CLI) to terminate command
processing.

The prompt callback routine is called with two parameters:

● string_id—Specifies a string identifier passed by reference for the prompt string, which can then be
displayed to the user. Use CMS$GET_STRING to retrieve the string value.

● flag—Specifies a longword passed by reference, which designates the specific type of information
being requested: 0 indicates a command line, 1 indicates a missing parameter, and 2 indicates are
mark. The caller must determine what to do in each situation.

The prompt_routine argument must use CMS$PUT_STRING to return user input to CMS. Note
that this convention is not compatible with direct use of LIB$GET_INPUT. However, it serves the
same purpose as in other callable CMS routines in that it prevents difficulties due to the differing
string descriptor support of various languages.

confirm_routine

type: procedure
access: read
mechanism: by reference

Specifies the address of a callback routine used instead of direct terminal input when either
the /CONFIRM qualifier is specified, or a module is being reserved, unreserved, or replaced with
concurrent reservations in effect.

This routine can work in either of two modes. It can return a string or the status of whatever operation it
used to obtain the string (for example, LIB$GET_INPUT or $QIO status).

The following table lists the possible return values for this function.

String Meaning

YES, 1, true Indicates positive confirmation
ALL Indicates positive confirmation and that future actions of the current call to

CMS should be carried out without confirmation
NO, 0, false Indicates negative confirmation
QUIT Indicates negative confirmation and that CMS performs no further actions

The routine might return a CMS confirmation status code, as shown in the following table:

Return Code Meaning

CMS$_CONFIRM Yes
CMS$_NOCONFIRM No
CMS$_ALL All
CMS$_STOPPED Quit

If the callback routine returns one of these codes, any string supplied through CMS$PUT_STRING is
ignored.

27

Chapter 2. CMS Routine Descriptions

For confirmations where ALL and QUIT are not meaningful (such as to confirm a concurrent
reservation), ALL is equivalent to YES and QUIT is equivalent to NO.

If an invalid response is given, CMS prompts you again. Note that any response can be abbreviated to
a single character. If a null string is returned, CMS defaults to NO. If a confirm routine is not specified,
CMS does not prompt you; instead, it assumes positive confirmation (YES).

The confirm callback routine is called with the string_idparameter:

● string_id—Specifies a string identifier passed by reference for the prompt string, which can then be
displayed to the user. Use CMS$GET_STRING to retrieve the string value.

The confirm_routine argument should use CMS$PUT_STRING to return the user input string (if any)
to CMS. Note that this convention is not compatible with direct use of LIB$GET_INPUT. However,
it serves the same purpose as in other callable CMS routines in that it prevents difficulties due to the
differing string descriptor support of various languages.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies the address of a callback routine to handle output usually sent to SYS$OUTPUT. For
example, all output from a SHOW command is directed to SYS$OUTPUT by default (in the
absence of an overriding /OUTPUT qualifier). Reporting concurrent reservations or replacements
(for FETCH, RESERVE, REPLACE, and UNRESERVE commands) is always to SYS$OUTPUT.
This callback also receives the output for the commands FETCH/OUTPUT=SYS$OUTPUT:,
DIFFERENCE/OUTPUT=SYS$OUTPUT:, and so forth.

If output_routine is not specified, CMS writes all output to SYS$OUTPUT.

The output callback routine is called with two parameters:

● string_id—Specifies a string identifier passed by reference for the output string, which can then be
displayed to the user. Use CMS$GET_STRING to retrieve the string value.

● flag—Specifies a longword passed by reference, which is set to –1 on the first invocation of the
callback routine for a sequence of output. The flag is 0 for each following record of the sequence.
After the final record of data in the output sequence, a final invocation of the callback sets the flag
to 1, indicating that the output sequence is complete; in this case, the string_id argument is invalid
because the final record has already been processed. The string_id parameter is valid when the flag
is either –1 or 0.

For any call to a CMS entry point, it is possible to have more than one output sequence. For example,
in a call to CMS$CMS with the command string FETCH/OUTPUT=TT: *.*, the text of each file is
a separate output segment. In addition, the listing of concurrent reservations and replacements for
each file is a separate output segment.

width

type: longword_signed
access: read

28

Chapter 2. CMS Routine Descriptions

mechanism: by reference

Specifies the maximum width of text that can be sent to the output callback routine. If this argument is
not specified, the terminal width is used. If this is unavailable, the width defaults to the translation of
CMS$WIDTH (if defined) or to 132 characters.

Description
CMS$CMS can return all CMS return codes and CLI$ errors.

CMS$COPY_CLASS
CMS$COPY_CLASS — Copies an existing class to form a new class. The CMS$COPY_CLASS
transaction preserves all class data and history.

Format
CMS$COPY_CLASS (library_data_block,
 input_class_expression,
 output_class_expression,
 [remark],
 [source_library_data_block],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library in which the copy is to be placed.

input_class_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the class or classes to be copied. Wildcards and a comma list are allowed.

You must include a period (.) in the class expression to select one or more classes from the complete list
of classes in the library. If you do not include a period, CMS interprets the parameter as a group name
and makes selections based on the list of groups established in the library.

output_class_expression

type: char_string
access: read
mechanism: by descriptor

29

Chapter 2. CMS Routine Descriptions

Specifies the name for the new class. The output_class_expression name cannot be the same as any
existing class in the output library.

The output_class_expression value can be the same as the input_class_expression value only if you
also specify a source library data block that points to a different library than the library data block.

You cannot use 00CMS as a class name component because it is reserved for CMS. If you
used a comma list or wildcard in the input_class_expression, a wildcard must be used in the
output_class_expression.

If you specify the source_library_data_block argument, the output_class_expression argument is
optional.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

source_library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library from which the class is to be copied. When the copy is
performed on different libraries and you specify the source_library_data_block argument, the
output_class_expression argument is optional. By default, CMS searches the library associated with
library_data_block.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$COPY_CLASS routine uses an existing library class to create a new class in the same library
or in another library. The original class is left unchanged. The class history, file characteristics, and
attributes are copied in full.

CMS must be able to create one new class for each old class. When you use wildcards in the input class
specification, CMS builds a list of classes to be copied. CMS uses this list as the point of reference
during the copy transactions. If the output class specification does not allow CMS to create a new class
for each class in the input list, the results might not be what you intend.

30

Chapter 2. CMS Routine Descriptions

If the existing class has the reference copy attribute enabled and the target library has a reference copy
directory, CMS creates a reference copy for the new class and assigns the reference copy attribute to the
new class. If there is no reference copy directory for the target library, the new class will not have the
reference copy attribute, even if the existing class does.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_COPIED CMS copied the specified class. Success
CMS$_COPIES CMS copied one or more classes. Success
CMS$_ERRCOPIES CMS copied zero or more classes, but encountered

errors during the transaction.
Error

CMS$_NOCOPY CMS was unable to copy the specified class. Error
CMS$_NOREF Error accessing the library. Error

Example
INTEGER*4 LDB(50)
CHARACTER*50 SOURCE_CLASS_NAME,DESTINATION_CLASS_NAMECALL

CMS$COPY_CLASS(LDB,SOURCE_CLASS_NAME, DESTINATION_CLASS_NAME)

This call to CMS$COPY_CLASS copies a class between libraries. The newly created destination class is
populated with the same element generations as those in the source class.

CMS$COPY_ELEMENT
CMS$COPY_ELEMENT — Copies an existing element to form a new element. The
CMS$COPY_ELEMENT transaction preserves all element data and history.

Format
CMS$COPY_ELEMENT (library_data_block,
 input_element_expression,
 output_element,
 [remark],
 [source_library_data_block],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library in which the copy is to be placed.

input_element_expression

31

Chapter 2. CMS Routine Descriptions

type: char_string
access: read
mechanism: by descriptor

Specifies the element or group of elements to be copied. Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and therefore selects elements based on the list of groups established in the library.

output_element

type: char_string
access: read
mechanism: by descriptor

Specifies the element name for the new element. The output_element name cannot be the same as any
existing element name in the output library.

The output_element name can be the same as input_element_expression only if you also specify a
source library data block that points to a different library than the library data block.

You cannot use 00CMS as the file name component of an element name because it is reserved for CMS.
If you used a comma list or wildcard in the input_element_expression, a wildcard must be used in the
output_element.

If you specify the source_library_data_block argument, the output_element argument is optional.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

source_library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library from which the element is to be copied. When the copy
is performed on different libraries and you specify the source_library_data_block argument,
the output_element argument is optional. By default, CMS searches the library associated with
library_data_block.

msg_routine

type: procedure
access: read
mechanism: by reference

32

Chapter 2. CMS Routine Descriptions

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$COPY_ELEMENT routine uses an existing library element to create a new element in the
same library or in another library. The original element is left unchanged. The generation history, file
characteristics, and element attributes are copied in full.

CMS must be able to create one new element for each old element. When you use wildcards or a group
name in the input element specification, CMS builds a list of elements to be copied. CMS uses this list
as the point of reference during the copy transactions. If the output element specification does not allow
CMS to create a new element for each element in the input list, the results might not be what you intend.

For example, the following combination of wildcard expressions produces only one new element:

input element specification - *.FOR
output element specification - NDATA.*

The first element that matches the input specification (*.FOR) produces one new element named
NDATA.FOR. Each successive element that matches the input specification generates an error message
because CMS can create only one unique element name from the given combination of wildcard
expressions.

If the existing library element has the reference copy attribute enabled and the target library has a
reference copy directory, CMS creates a reference copy for the new element and assigns the reference
copy attribute to the new element. If there is no reference copy directory for the target library, the new
element will not have the reference copy attribute, even if the existing element does.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_COPIED CMS copied the specified element. Success
CMS$_COPIES CMS copied one or more elements. Success
CMS$_ERRCOPIES CMS copied zero or more elements, but

encountered errors during the transaction.
Error

CMS$_NOCOPY CMS was unable to copy the specified element. Error
CMS$_NOREF Error accessing the library. Error

Example
CHARACTER*10 DIR,
SOURCE_DIRCHARACTER*10 ELEMENT
CHARACTER*26 REMARK
INTEGER*4 LDB(50)
INTEGER*4 SOURCE_LDB(50)
INTEGER*4 STATUS
INTEGER*4 CMS$SET_LIBRARY
INTEGER*4 CMS$COPY_ELEMENT

DIR = '[COMP.LIB]'
SOURCE_DIR = '[BASE.LIB]'
ELEMENT = 'TSTDAT.FOR'

33

Chapter 2. CMS Routine Descriptions

REMARK = 'Transfer from base library'
STATUS = CMS$SET_LIBRARY(LDB,DIR)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL (STATUS))
STATUS = CMS$SET_LIBRARY(SOURCE_LDB,SOURCE_DIR)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL (STATUS))
STATUS = CMS$COPY_ELEMENT(LDB,ELEMENT,,REMARK,SOURCE_LDB)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL (STATUS))
END

Key to Example:

Character-string variables are declared for the directory specifications,element name, and remark.

The LDBs are declared as 50–word integer arrays.

The CMS routines are declared external to the program.

The character-string variables are assigned the appropriate values.

The CMS$SET_LIBRARY routine is called once for each library to be accessed.

The destination LDB, element name, remark, and source LDB are passed to the
CMS$COPY_ELEMENT routine.

Two commas are specified between the ELEMENT and the REMARK arguments; the second
comma is required as a placeholder for the omitted argument (the output element name).In this
case, it is not necessary to provide an output element name. Because the source and destination
libraries are different, CMS creates a new element with the same name (as long as the destination
library does not already contain an element with that name).

CMS$COPY_GROUP
CMS$COPY_GROUP — Copies an existing group to form a new group. The CMS$COPY_GROUP
transaction preserves all group data and history.

Format
CMS$COPY_GROUP (library_data_block,
 input_group_expression,
 output_group_expression,
 [remark],
 [source_library_data_block],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library in which the copy is to be placed.

34

Chapter 2. CMS Routine Descriptions

input_group_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the group or groups to be copied. Wildcards and a comma list are allowed.

output_group_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the name for the new group. The output_group_expression name cannot be the same as any
existing group in the output library.

The output_group_expression value can be the same as the input_group_expression value only if you
also specify a source library data block that points to a different library than the library data block.

You cannot use 00CMS as a group name component because it is reserved for CMS. If you
used a comma list or wildcard in the input_group_expression, a wildcard must be used in the
output_group_expression.

If you specify the source_library_data_block argument, the output_group_expression argument is
optional.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

source_library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB for the library from which the group is to be copied. When the copy
is performed on different libraries and you specify the source_library_data_block argument, the
output_group_expression argument is optional. By default, CMS searches the library associated with
library_data_block.

msg_routine

type: procedure
access: read
mechanism: by reference

35

Chapter 2. CMS Routine Descriptions

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$COPY_GROUP routine uses an existing library group to create a new group in the same
library or in another library. The original group is left unchanged. The group history, file characteristics,
and attributes are copied in full.

CMS must be able to create one new group for each old group. When you use wildcards in the input
group specification, CMS builds a list of groups to be copied. CMS uses this list as the point of reference
during the copy transactions. If the output group specification does not allow CMS to create a new group
for each group in the input list, the results might not be what you intend.

If the existing group has the reference copy attribute enabled and the target library has a reference copy
directory, CMS creates a reference copy for the new group and assigns the reference copy attribute to
the new group. If there is no reference copy directory for the target library, the new group will not have
the reference copy attribute, even if the existing group does.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_COPIED CMS copied the specified group. Success
CMS$_COPIES CMS copied one or more groups. Success
CMS$_ERRCOPIES CMS copied zero or more groups, but encountered

errors during the transaction.
Error

CMS$_NOCOPY CMS was unable to copy the specified group. Error
CMS$_NOREF Error accessing the library. Error

Example
CHARACTER*8 SOURCE_GROUP_NAME
CHARACTER*8 DESTINATION_GROUP_NAME
EXTERNAL CMS$COPY_GROUP
SOURCE_GROUP_NAME ='V1'
DESTINATION_GROUP_NAME ='V2'
CALL CMS$COPY_GROUP (LDB, SOURCE_GROUP_NAME,
 DESTINATION_GROUP_NAME)

This call to CMS$COPY_GROUP copies a group between libraries. The newly created destination
group is populated with the same elements as those in the source group.

CMS$CREATE_CLASS
CMS$CREATE_CLASS — Creates an empty class in one or more CMS libraries.

Format
CMS$CREATE_CLASS (library_data_block,
 class_name,
 [remark],

36

Chapter 2. CMS Routine Descriptions

 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

class_name

type: char_string
access: read
mechanism: by descriptor

Specifies the class to be created. Class and group names must be unique; CMS returns an error if you
specify a name currently in use for an existing class or group. If a previously used class or group name
has been removed with the CMS$DELETE_CLASS or CMS$DELETE_GROUP routine, you can use
that name again with CMS$CREATE_CLASS. Wildcards are not allowed, but a comma list is allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file and associated with the class.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$CREATE_CLASS routine establishes a class. Once a class is established, you can place any
set of element generations into that class by using the CMS$INSERT_GENERATION routine. The
CMS$CREATE_CLASS routine does not place any generations in the created class.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_CREATED CMS created the class. Success

37

Chapter 2. CMS Routine Descriptions

Return Code Description Status

CMS$_CREATES CMS created one or more classes. Success
CMS$_ERRCREATES CMS created zero or more classes, but encountered

errors during the transaction.
Error

CMS$_NOCREATE CMS did not create the specified class. Error
CMS$_NOREF Error accessing the library. Error

CMS$CREATE_ELEMENT
CMS$CREATE_ELEMENT — Creates a new element in a CMS library or in the first library of a
search list, if one was specified.

Format
CMS$CREATE_ELEMENT (library_data_block,
 element_name,
 [remark],
 [history],
 [notes],
 [position],
 [keep],
 [reserve],
 [concurrent],
 [reference_copy],
 [input_file],
 [input_routine],
 [user_arg],
 [msg_routine],
 [review])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_name

type: char_string
access: read
mechanism: by descriptor

Specifies the new element to be created. The element_name argument is required. Wildcards and a
comma list are allowed; however, you cannot use wildcards if you specify input_routine.

38

Chapter 2. CMS Routine Descriptions

If you do not specify the input_file argument,the element name must correspond to an existing file in
your current, default directory. The name cannot be the same as any existing element name in the library.
You cannot use the file name 00CMS because it is reserved for CMS.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the creation remark string to be logged in the history file and associated with the element and
the first generation of the element.

history

type: char_string
access: read
mechanism: by descriptor

Specifies the history string. If you include the historyargument in the call, CMS establishes or changes
the history attribute for the element. If an element has a history attribute, its history is included in the file
when it is retrieved by the CMS$FETCH routine. To disable the history attribute, specify a zero-length
string. For a detailed explanation of the history element attribute, see the VSI DECset for OpenVMS
Guide to the Code Management System.

notes

type: char_string
access: read
mechanism: by descriptor

Specifies the notes string. If you include the notes argument in the call, CMS establishes or changes the
notes attribute for the element. If an element has a notes attribute, notes are embedded in the lines of
the file when it is retrieved by the CMS$FETCH routine. To disable the notes attribute, specify a zero-
length string. Any element that has the notes attribute must have the position attribute. For a detailed
explanation of the notes attribute, see the VSI DECset for OpenVMS Guide to the Code Management
System.

position

type: longword_signed
access: read
mechanism: by reference

Specifies the position value to be used with the notes attribute. The position attribute determines the
character position at which the note is to begin on the line. The position value must be an integer greater
than zero. Any element that has the position attribute must have the notes attribute. For a detailed
explanation of the position attribute, see the VSI DECset for OpenVMS Guide to the Code Management
System.

keep

39

Chapter 2. CMS Routine Descriptions

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prevents CMS from deleting copies of the input file after the element is created.
By default, the flag is set to 0, indicating that CMS should delete the copies of the file in your default
directory (or the area indicated by the input_file argument) after creating the new element. Set the flag
to 1 to prevent CMS from deleting the copies of the input file. These settings can also be set library-
wide, as well as by element.

reserve

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to establish a reservation for the new element. By default, the flag is set
to 0,and CMS does not mark the element as reserved. Set the reserve flag to 1 to reserve the element. In
this case, CMS ignores the value of the keepflag and does not delete the file used to create the element.

concurrent

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating the access to the element. By default, the flag is set to 1, and CMS allows
concurrent reservations of the element. Set the concurrent flag to 0 to prohibit concurrent reservations.
These settings can also be set library-wide, as well as by element.

reference_copy

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS is to maintain a reference copy of the element when a new
main-line generation is created.

If you do not specify this argument and a reference copy directory is already established, CMS enables
the reference copy attribute for the element, and creates the reference copy.

If you specify a 0, or if you do not specify this argument and a reference copy directory is not
established, CMS creates the element but does not enable the reference_copy attribute for the element,
and does not create the reference copy.

If you specify a 1 for this argument and the reference copy directory is not established, you get an error.

input_file

type: char_string

40

Chapter 2. CMS Routine Descriptions

access: read
mechanism: by descriptor

Specifies the name of the file to be used to create the element. If you specify an input file, you cannot
also specify an input routine. Wildcards are allowed, but must match the wildcards specified in
element_name.

Use this argument if you want the element to be created from a file with a different name than that
specified by the element_name argument. You can also use this argument to direct CMS to search
a different location other than your current, default directory. When you specify an input file in an
alternate directory, CMS deletes the file from the alternate directory (unless you specify the keep or
reserve argument).

input_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that provides data for the CMS$CREATE_ELEMENT transaction. CMS
calls this routine once for each line of data until the callback routine indicates the end-of-file.

If you specify an input routine, you cannot also specify an input file, nor can you specify wildcards in
the element_name argument. See Section 1.6, "Using Callback Routines" for information about the
parameters that CMS passes to the input routine.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the input_routine argument, using the same
mechanism that you used to pass it to CMS.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

review

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS is to automatically mark new generations as pending review. By
default, the flag is set to 0, and CMS marks new generations of the element as pending review only if

41

Chapter 2. CMS Routine Descriptions

the reserved generation was either rejected or has a review pending. Set the flag to 1 to indicate that new
generations should be marked for review.

Callback Routine Parameters
When you write an input routine to provide data for CMS$CREATE_ELEMENT, CMS passes the
following parameters in the order shown with each call to input_routine:

first_call, library_data_block, user_param, element_id,
 eof_status, sequence_flag, sequence_number

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

first_call

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the input routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this is set to 0.

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$CREATE_ELEMENT. If you did not specify
a user argument, this parameter points to a read-only storage location containing the value 0.
CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$CREATE_ELEMENT.

element_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

eof_status

42

Chapter 2. CMS Routine Descriptions

type: longword_signed
access: modify
mechanism: by reference

Specifies the end-of-file status. The input routine must change the value of eof_status from false (0) to
true (1) to indicate to CMS that input is terminated. When eof_status is true, CMS ignores the contents
of the current input record (passed by CMS$PUT_STRING).

Therefore, you must set eof_status to true in the call following the last significant input record. See
Section 1.6.3.1, "Specifying End of Input" for more information on specifying the end of input.

sequence_flag

type: longword_signed
access: write
mechanism: by reference

Specifies a flag that directs CMS to create a sequenced element file. By default, the flag is set to 0,
indicating that the input is not sequenced. Set the flag to 1 to direct CMS to create a sequenced element
file.

sequence_number

type: longword_signed
access: write
mechanism: by reference

Specifies a signed integer that indicates the sequence number of the input line. A value in the range of 1
to 65,536 characters indicates the sequence number.

When you use a callback routine to provide input for CMS$CREATE_ELEMENT, CMS uses the time
of the CMS$CREATE_ELEMENT transaction as the file creation and revision times associated with
generation 1 of the new element. CMS also uses the following record format and record attributes when
you use a callback input routine. If you provide unsequenced input, generation 1 of the new element
has variable-length records with the carriage return record attribute. If you provide sequenced input, the
element generation has VFC 2-byte records with the carriage return record attribute.

Description
The CMS$CREATE_ELEMENT routine creates the first generation of a new element from a file in
your current, default directory, or from the file specified by the input_file argument. After the element
is created, CMS deletes the file used to create the new element (and any earlier versions of the file in
the same directory, or the entire search list if the file is located in a search list). If you specify either
the keep or reserve argument, CMS does not delete the file. When you create an element, you can
also define the attributes (history, notes,position, concurrent access, reference copy, and review) for the
element or establish a reservation.

CMS stores the creation date and time, format, revision date and time, file revision number, file
characteristics, and any attributes of the file used to create the new element. When you fetch or
reserve an element generation, CMS restores the times and file revision number associated with
the file used to create the element generation. You can also obtain this information by using the
CMS$SHOW_GENERATION routine.

43

Chapter 2. CMS Routine Descriptions

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_CREATED CMS created the specified new element. Success
CMS$_CREATES CMS created one or more elements. Success
CMS$_ERRCREATES CMS created zero or more elements, but

encountered errors during the transaction.
Error

CMS$_NOCREATE CMS did not create the specified element. Error
CMS$_NOREF Error accessing the library. Error
CMS$_USERERR User routine returned an error to CMS. Error

CMS$CREATE_GROUP
CMS$CREATE_GROUP — Creates an empty group in one or more CMS libraries.

Format
CMS$CREATE_GROUP (library_data_block,
 group_name,
 [remark],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

group_name

type: char_string
access: read
mechanism: by descriptor

Specifies the group to be created. Group and class names must be unique; CMS returns an error if you
specify a name currently in use for an existing group or class. However, if a previously used group or
class name has been removed with the CMS$DELETE_GROUP or CMS$DELETE_CLASS routine,
you can use that name again with CMS$CREATE_GROUP. Wildcards are not allowed, but a comma list
is allowed.

remark

type: char_string

44

Chapter 2. CMS Routine Descriptions

access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file and associated with the group.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$CREATE_GROUP routine establishes a group. (For more information about groups, see
the VSI DECset for OpenVMS Guide to the Code Management System.) Once a group is established,
you can place elements or groups into that group by using the CMS$INSERT_ELEMENT or
CMS$INSERT_GROUP routine. The CMS$CREATE_GROUP routine does not place any elements or
groups in the created group.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_CREATED CMS created the specified group. Success
CMS$_CREATES CMS created one or more groups. Success
CMS$_ERRCREATES CMS created zero or more groups, but encountered

errors during the transaction.
Error

CMS$_NOCREATE CMS did not create the group. Error
CMS$_NOREF Error accessing the library. Error

CMS$CREATE_LIBRARY
CMS$CREATE_LIBRARY — Creates a new CMS library in an existing empty directory, and adds that
library to the passed library search list context.

Format
CMS$CREATE_LIBRARY (library_data_block,
 directory,
 [remark],
 [reference_copy_dir],
 [msg_routine],
 [confirm_routine],
 [output_routine],
 [width],
 [position],

45

Chapter 2. CMS Routine Descriptions

 [positional_dir_spec]
 [revision_time],
 [auto_create],
 [concurrent],
 [0],
 [keep],
 [extended_filenames],
 [long_variant_names])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies a valid LDB. The LDB might not be initialized, depending on whether you also specify the
position and positional_dir_spec arguments.

If the position and positional_dir_spec arguments are specified, the library data block must have
already been initialized by a previous call to CMS$CREATE_LIBRARY or CMS$SET_LIBRARY. If
the position and positional_dir_spec arguments are not specified, the library data block is initialized by
this call and points to the specified directory.

directory

type: char_string
access: read
mechanism: by descriptor

Specifies an existing directory. The directory must not contain any files or subdirectories, or be an
eighth-level directory. A directory to be used as a CMS library cannot be your current, default directory.
Wildcards are not allowed, but a comma list is allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

reference_copy_dir

type: char_string
access: read
mechanism: by descriptor

Specifies a valid OpenVMS directory to be used for reference copies of elements. The directory cannot
be a CMS library. Wildcards are not allowed.

msg_routine

46

Chapter 2. CMS Routine Descriptions

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

confirm_routine

type: procedure
access: read
mechanism: by reference

Specifies the address of the entry mask of a confirmation callback routine. For information about
callback routines, see Section 1.6, "Using Callback Routines".

output_routine

type: procedure
access: read
mechanism: by reference

Specifies the address of the entry mask of a terminal output callback routine. For information about
callback routines, see Section 1.6, "Using Callback Routines".

width

type: longword_signed
access: read
mechanism: by reference

Specifies the maximum width of text that can be sent to the output callback routine. If this argument is
not specified, the terminal width is used. If this is unavailable, the width defaults to the translation of
CMS$WIDTH (if defined), or to 132 characters.

position

type: longword_signed
access: read
mechanism: by reference

Specifies the position value to be used with the positional_dir_spec argument. The position value
determines the position in the library search list at which the new library or libraries are to be inserted,
or whether the new library or libraries are to supersede the existing library search list.

The following table shows the possible values and corresponding results. You can specify only one of
these values.

Value Result

0 Indicates that a new library or libraries should supersede the existing library list. This is
the default.

47

Chapter 2. CMS Routine Descriptions

Value Result

1 Indicates that the new library or libraries should be inserted after an existing library in
the library search list specified with the positional_dir_spec argument.

2 Specifies that the new library or libraries should be inserted before an existing library in
the library search list specified with the positional_dir_spec argument.

positional_dir_spec

type: char_string
access: read
mechanism: by descriptor

Specifies the name of a library in the current library search list before or after which the new library or
libraries are to be inserted (depending on the value of the position argument).

If you omit the positional_dir_spec argument and specify a value of 1 for the position argument,
new libraries are appended to the existing library search list. If you omit the positional_dir_spec
argument and specify a value of 2 for the position argument, new libraries are inserted at the
beginning of the existing library search list. If the position argument is specified as 0 or is omitted, the
positional_dir_spec argument is ignored.

revision_time

type: longword_signed
access: read
mechanism: by reference

Controls whether CMS uses the original file revision time or the file storage time when a file is created
in the CMS library. The default flag is set to 0, indicating the use of the original file revision time. Set
the flag to 1 to use the file storage time.

auto_create

type: longword_aligned
access: read
mechanism: by reference

Specifies a flag that directs CMS to automatically create the library directory. A value of 1 tells CMS
to automatically create the library directory. If the value of the flag is 0, CMS will not create the
library directory. If the reference_copy_dir parameter has been set, the reference copy is also created
automatically.

concurrent

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating access to the elements. By default, the flag is set to 0, and CMS allows
concurrent reservations of the elements. Set this flag to 1 to prohibit concurrent reservations across the
library, unless an individual element setting overrides it.

48

Chapter 2. CMS Routine Descriptions

0

type: reserved for CMS
access: reserved for CMS
mechanism: by value

Specifies a required argument reserved for use by CMS. You must either pass a value of 0 or include a
placeholder for this argument in the call to the CMS$CREATE_LIBRARY routine, so the call frame
entry for this argument contains a 0.

keep

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prevents CMS from deleting copies of the input file after the element is created. By
default, the flag is set to 0, indicating that CMS should delete all the copies of the file in your default
directory (or the area indicated by the input_file argument) after creating the new element. Set the flag
to 1 to prevent CMS from deleting input files across the library, unless an individual element setting
overrides it.

extended_filenames

type: longword_signed
access: read
mechanism: by reference

Only valid on OpenVMS versions that support extended file specifications. The default 0 value does not
allow extended file names. The value 1 allows extended file names.

long_variant_names

type: mask_longword
access: read
mechanism: by reference

Specifies whether variant names longer than a single character are allowed. The default value 0 does not
allow long variant names. The value 1 allows variant names up to 255 alphabetic characters in length.

Description
The CMS$CREATE_LIBRARY routine builds CMS control files in a directory so it can be used as a
CMS library. Once you have established a library with the CMS$CREATE_LIBRARY routine,you can
call other CMS routines to manipulate the library using the same LDB now initialized and can be used
by other routines. Your CMS library is set to the library directory specified in the directory argument.

The CMS$CREATE_LIBRARY routine establishes a CMS library search-list context with one or more
CMS library directories. Once the search-list context has been established, you can use the resulting
LDB in calls to other CMS routines.

49

Chapter 2. CMS Routine Descriptions

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_CREATED CMS created the library. Success
CMS$_NOCREATE CMS did not create the library. Error
CMS$_NOEXTENDED This version of CMS does not allow the use of

extended filenames.
Error

CMS$_NOEXTENDEDREF The reference copy directory is located on a disk
that does not allow the use of extended filenames.

Error

CMS$DELETE_CLASS
CMS$DELETE_CLASS — Deletes one or more classes from a CMS library.

Format
CMS$DELETE_CLASS (library_data_block,
 class_expression,
 [remark],
 [msg_routine],
 [remove_contents])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

class_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes to be deleted. Wildcards and a comma list are allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

50

Chapter 2. CMS Routine Descriptions

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

remove_contents

type: longword_signed
access: read
mechanism: by reference

Determines whether CMS removes the current contents of each class specified by class_expression prior
to deletion. By default, the flag is set to 0, and CMS does not remove generations from each class. If you
set the value to 1, CMS removes all element generations from each class prior to deleting the class itself.

Description
The CMS$DELETE_CLASS routine deletes one or more classes from a CMS library. If a class contains
one or more element generations, set remove_contents to 1 to remove the content of the class prior to
deletion. Otherwise, CMS issues an error message and does not delete the class. You cannot delete a
class set to READ_ONLY. (See the CMS$REMOVE_GENERATION and CMS$MODIFY_CLASS
routines for more information.)

Even though a class is deleted, records of transactions that created and used the class are retained in
the project history. You can reuse the deleted class name to create a new class. However, there is no
distinction between the two classes in the project history, except that their transactions are separated by
entries for DELETE CLASS and CREATE CLASS commands.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_DELETED CMS deleted the class. Success
CMS$_DELETIONS CMS deleted one or more classes. Success
CMS$_ERRDELETIONS CMS deleted zero or more classes, but encountered

errors during the transaction.
Error

CMS$_NODELETE CMS did not delete the class. Error
CMS$_NOREF Error accessing the library. Error

CMS$DELETE_ELEMENT
CMS$DELETE_ELEMENT — Deletes one or more elements from a CMS library. The element cannot
be in any groups, have current reservations or reviews pending, and there can be no generations of it in
any classes.

51

Chapter 2. CMS Routine Descriptions

Format
CMS$DELETE_ELEMENT (library_data_block,
 element_expression,
 [remark],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements to be deleted. Wildcards and a comma list are
allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$DELETE_ELEMENT routine deletes one or more elements from a CMS library. If the
element is set to /REFERENCE_COPY and there is a current reference copy directory for the CMS
library, CMS deletes the corresponding file (if it exists) from the reference copy directory. There
cannot be any existing reservations for the element, and the element cannot have any generations with
reviews pending. The element cannot be a member of a group, nor can one of its generations belong

52

Chapter 2. CMS Routine Descriptions

to a class. If it is reserved, you must cancel the reservation (using the CMS$UNRESERVE routine)
or replace the element in the library (using the CMS$REPLACE routine) before you can delete the
element. If the element belongs to any groups or classes, use the CMS$REMOVE_ELEMENT or
CMS$REMOVE_GENERATION routine to remove it. If the element has a review pending, use the
CMS$REVIEW_GENERATION routine to resolve the review pending status.

Even though an element is deleted, records of transactions that created and used the element are retained
in the project history. You can reuse the deleted element name to create a new element. However, there is
no distinction between the two elements in the project history, except that their transactions are separated
by entries for DELETE ELEMENT and CREATE ELEMENT commands.

You cannot restore a deleted element.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_DELETED CMS deleted the element. Success
CMS$_DELETIONS CMS deleted one or more elements. Success
CMS$_ERRDELETIONS CMS deleted zero or more elements, but

encountered errors during the transaction.
Error

CMS$_NODELETE CMS did not delete the element. Error
CMS$_NOREF Error accessing the library. Error

CMS$DELETE_GENERATION
CMS$DELETE_GENERATION — Deletes one or more generations of one or more elements.

Format
CMS$DELETE_GENERATION (library_data_block,
 element_expression,
 [remark],
 [generation_expression]1,
 [after_generation]1,
 [before_generation]1,
 [from_generation]1,
 [to_generation]1,
 [archive_file],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify

1A generation or range of generations must be specified with a combination of one or more of these arguments.

53

Chapter 2. CMS Routine Descriptions

mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose generations are to be deleted. Wildcards
and a comma list are allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the particular generation to be deleted. If you do not specify this argument and do not specify
either from_generation or to_generation, the most recent generation on the main line of descent
(1+) is deleted. You cannot combine generation_expression with any of the following arguments:
from_generation, to_generation, after_generation, and before_generation.

after_generation

type: char_string
access: read
mechanism: by descriptor

Specifies the start of a range of generations to be deleted, excluding the specified generation. You
cannot combine both after_generation and from_generation, or both after_generation and
generation_expression. You must specify the end of the range with either the before_generation or
to_generation argument.

before_generation

type: char_string
access: read
mechanism: by descriptor

Specifies the end of a range of generations to be deleted, excluding the specified generation. You
cannot combine both before_generation and to_generation, or both before_generation and

54

Chapter 2. CMS Routine Descriptions

generation_expression. You must specify the start of the range with either the after_generation or
from_generation argument.

from_generation

type: char_string
access: read
mechanism: by descriptor

Specifies the start of a range of generations to be deleted, including the specified generation. You
cannot combine both from_generation and after_generation, or both from_generation and
generation_expression. You must specify the end of the range with either the before_generation or
to_generation argument.

to_generation

type: char_string
access: read
mechanism: by descriptor

Specifies the end of a range of generations to be deleted, including the specified generation.
You cannot combine both to_generation and before_generation, or both to_generation and
generation_expression. You must specify the start of the range with either the after_generation or
from_generation argument.

archive_file

type: char_string
access: read
mechanism: by descriptor

Specifies that an archive file is to be created for every element specified in the element_expression
argument. A new file is created for each element. By default, if you do not specify the
element_expression argument or if you specify a wildcard, CMS creates an output file with the same
name as the element and the file type .CMS_ARCHIVE, and places the file in your default directory.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$DELETE_GENERATION routine removes information about one or more generations
of elements from the library. Once a generation is deleted, it cannot be restored to the CMS library.
If the generation or range of generations to be deleted has a direct descendant generation (that is, a

55

Chapter 2. CMS Routine Descriptions

descendant generation on the same line of descent), the changes associated with those generations are
combined, and those changes are combined with the changes in the descendant generation. If there is no
descendant generation (that is, the generation or range of generations to be deleted is at the end of the
line of descent), the changes associated with those generations are discarded.

You can specify a single generation with the generation_expression argument. You can also specify
a range of generations with either the after_generation or from_generation arguments to delimit the
beginning of a range, and either the before_generation or to_generation arguments to delimit the end
of a range. These sets of arguments can be paired to specify ranges with inclusive or exclusive endpoints.

If you delete the latest generation on the main line of descent of an element that has the reference copy
attribute, CMS deletes the generation's reference copy and creates a new reference copy that corresponds
to the generation that is now the latest generation on the main line of descent.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_GENDELETED CMS deleted the generation. Success
CMS$_GENDELETIONS CMS deleted one or more generations. Success
CMS$_ERRGENDELETIONS CMS deleted zero or more generations, but

encountered errors during the transaction.
Error

CMS$_NOGENDELETED CMS did not delete the specified generation. Error
CMS$_NOREF Error accessing the library. Error

CMS$DELETE_GROUP
CMS$DELETE_GROUP — Deletes one or more groups from a CMS library. The group cannot be a
member of any other groups.

Format
CMS$DELETE_GROUP (library_data_block,
 group_expression,
 [remark],
 [msg_routine],
 [remove_contents])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

group_expression

56

Chapter 2. CMS Routine Descriptions

type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups to be deleted. Wildcards and a comma list are allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

remove_contents

type: longword_signed
access: read
mechanism: by reference

Determines whether CMS removes the current contents of each group specified by group_expression
prior to deletion. By default, the flag is set to 0, and CMS does not remove elements from each group. If
you set the value to 1, CMS removes all elements from each group prior to deleting the group itself.

Description
The CMS$DELETE_GROUP routine deletes one or more groups from a CMS library. If a group
contains one or more elements, set remove_contents to 1 to remove the content of the group
prior to deletion. Otherwise, CMS issues an error message and does not deletethe group. You
cannot delete a group set to READ_ONLY. For information on changing the READ_ONLY
attribute, see the description of the CMS$MODIFY_GROUP routine. If the group is not empty,
use the CMS$REMOVE_ELEMENT routine to remove any elements from the group, or use the
CMS$REMOVE_GROUP routine to remove any other groups from the group. If the group belongs to
any other groups, use the CMS$REMOVE_GROUP routine to remove it.

Even though a group is deleted, records of transactions that created and used the group are retained in
the project history. You can reuse the deleted group name to create a new group. However, there is no
distinction between the two groups in the project history, except that their transactions are separated by
entries for DELETE GROUP and CREATE GROUP commands.

The following table lists the possible return values for this function.

57

Chapter 2. CMS Routine Descriptions

Return Code Description Status

CMS$_DELETED CMS deleted the group. Success
CMS$_DELETIONS CMS deleted one or more groups. Success
CMS$_ERRDELETIONS CMS deleted zero or more groups, but encountered

errors during the transaction.
Error

CMS$_NODELETE CMS did not delete the group. Error
CMS$_NOREF Error accessing the library. Error

CMS$DELETE_HISTORY
CMS$DELETE_HISTORY — Deletes all or part of the library history.

Format
CMS$DELETE_HISTORY (library_data_block,
 [remark],
 before,
 [transaction_mask],
 [output_routine],
 [user_arg],
 [msg_routine],
 [object],
 [user])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

before

type: date_time
access: read

58

Chapter 2. CMS Routine Descriptions

mechanism: by reference

Specifies a binary date and time value that CMS uses when deleting the library history. This argument is
required.

transaction_mask

type: mask_longword
access: read
mechanism: by reference

Specifies one or more transaction records to be passed to output_routine. When you provide the
transaction-mask argument, CMS passes only the history records for the indicated commands. The
following table shows the symbols defined for the transaction_mask argument.

Symbol Bit Position Mask Value Command

COPY CLASS
COPY ELEMENT

CMS$M_CMD_COPY 0 1

COPY GROUP
CREATE CLASS
CREATE ELEMENT
CREATE GROUP

CMS$M_CMD_CREATE 1 2

CREATE LIBRARY
DELETE CLASS
DELETE ELEMENT
DELETE GENERATION
DELETE GROUP

CMS$M_CMD_DELETE 2 4

DELETE HISTORY
CMS$M_CMD_FETCH 3 8 FETCH

INSERT ELEMENT
INSERT GENERATION

CMS$M_CMD_INSERT 4 16

INSERT GROUP
MODIFY CLASS
MODIFY ELEMENT
MODIFY GENERATION
MODIFY GROUP
MODIFY LIBRARY

CMS$M_CMD_MODIFY 5 32

MODIFY RESERVATION
CMS$M_CMD_REMARK 6 64 REMARK

REMOVE ELEMENT
REMOVE GENERATION

CMS$M_CMD_REMOVE 7 128

REMOVE GROUP
CMS$M_CMD_REPLACE 8 256 REPLACE

59

Chapter 2. CMS Routine Descriptions

Symbol Bit Position Mask Value Command

CMS$M_CMD_RESERVE 9 512 RESERVE
CMS$M_CMD_UNRESERVE 10 1024 UNRESERVE
CMS$M_CMD_VERIFY 11 2048 VERIFY
CMS$M_CMD_SET 14 16,384 SET ACL
CMS$M_CMD_ACCEPT 16 65,536 ACCEPT GENERATION
CMS$M_CMD_CANCEL 17 131,072 CANCEL REVIEW
CMS$M_CMD_MARK 18 262,144 MARK GENERATION
CMS$M_CMD_REJECT 19 524,288 REJECT GENERATION
CMS$M_CMD_REVIEW 20 1,048,576 REVIEW GENERATION

The mask values are defined as universal symbols in the CMS image. You can use OR with these values
to allow combinations of the values. This transaction mask is the same as the transaction mask used for
the CMS$SHOW_HISTORY routine.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes data output by CMS$DELETE_HISTORY. CMS calls the
output routine once for each record to be deleted from the library history. See Section 1.6, "Using
Callback Routines" for information about the parameters that CMS passes to the callback routine.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism that you used to pass it to CMS.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

object

type: char_string
access: read
mechanism: by descriptor

60

Chapter 2. CMS Routine Descriptions

Specifies a string that contains the name of the object whose history is to be deleted.

user

type: char_string
access: read
mechanism: by descriptor

Specifies a string that contains the name of the CMS user whose history is to be deleted.

Callback Routine Parameters
When you provide an output routine to process the output of CMS$DELETE_HISTORY, CMS passes
the following parameters in the order shown with each call to output_routine:

first_call, library_data_block, user_param, time, user_id,
 command_id, object_id, remark_id, unusual

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

first_call

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this is set to 0.

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$DELETE_HISTORY. If you did not specify
a user argument, this parameter points to a read-only storage location containing the value 0.
CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$DELETE_HISTORY.

time

type: date_time

61

Chapter 2. CMS Routine Descriptions

access: read
mechanism: by reference

Specifies a quadword binary date and time value for the time of the transaction.

user_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the user name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

command_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the command name. Use the CMS$GET_STRING routine to translate
the string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

object_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the element, group, or class involved in the transaction. Use the
CMS$GET_STRING routine to translate the string identifier. For information about string identifiers,
see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

remark_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and
Callback Routines".

unusual

type: longword_signed
access: read
mechanism: by reference

62

Chapter 2. CMS Routine Descriptions

Specifies a flag that indicates whether the transaction is unusual. CMS sets the flag to 1 if the transaction
is unusual. Otherwise, this is set to 0.

Description
The CMS$DELETE_HISTORY routine deletes all or part of the library history. Whenever you delete
part of the library history, CMS records two transactions. As with other commands that modify the
contents of the library, CMS records the DELETE HISTORY transaction. In addition, CMS logs a
REMARK transaction at the point in the library that corresponds to the before value. The REMARK
transaction record includes the remark text: “PREVIOUS HISTORYDELETED.” Both the REMARK
and the DELETE HISTORY transactions are unusual transactions. When you use the SHOW HISTORY
command, CMS identifies unusual transactions by displaying an asterisk (*) in the first column of the
transaction record.

You use a callback routine to control the action of the CMS$DELETE_HISTORY routine. To delete
a history record, the callback routine must return a value of CMS$_NORMAL. To prevent CMS from
deleting a history record, the callback routine must return a value of CMS$_EXCLUDE. In addition, you
can use the transaction_mask argument that directs CMS to select for deletion only a specified set of
transaction records.

Therefore, you can controlthe deletion transaction by filtering each history record, or by filtering a
specified set of transaction records.

If you do not provide a callback routine, CMS deletes all history records prior to the specified before
value.

To delete the history record, the callback routine must return a value of CMS$_NORMAL. To prevent
CMS from deleting the history record, the callback routine must return a value of CMS$_EXCLUDE.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_HISTDEL CMS deleted the indicated number of records. Success
CMS$_NODELETE CMS did not delete any history records. Error
CMS$_NOREF Error accessing the library. Error
CMS$_USERERR User routine returned an error to CMS. Error

CMS$DIFFERENCES
CMS$DIFFERENCES — Compares two files, two generations of elements, or a file and a generation.
If the files are different, CMS$DIFFERENCES creates a file containing the lines that differ between the
two files. If the files are the same, it issues a message to that effect and does not create a differences file.

Format
CMS$DIFFERENCES (library_data_block1,
 [user_arg],
 [input_file1],

1This is a required parameter only if you also specify a generation_expression parameter.

63

Chapter 2. CMS Routine Descriptions

 [input_routine1],
 [generation_expression_1],
 [input_file2],
 [input_routine2],
 [generation_expression_2],
 [output_file],
 [output_routine],
 [append],
 [ignore_mask],
 [nooutput],
 [parallel],
 [full],
 [format],
 [width],
 [msg_routine],
 [page_break],
 [skip_lines],
 [begin_sentinel],
 [end_sentinel])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies the LDB for the library to be used in the differences transaction. You specify this argument
only if you specify one or both of the generation_expression_1 or generation_expression_2
arguments.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to a callback routine (input_routine1,
input_routine2, or output_routine) each time the routine is called by CMS.CMS passes the value to
the routine using the same mechanism that you used to pass it to CMS.

input_file1

type: char_string
access: read
mechanism: by descriptor

Specifies the primary input file to be used in the CMS$DIFFERENCES transaction. You can specify
both an input routine and input file (see Section 1.6, "Using Callback Routines"). If you do not specify
a primary input file, you must provide a primary input routine (using the input_routine1 argument)and
either a secondary input file (input_file2) orroutine (input_routine2). You cannot specify wildcards or
a comma list.

64

Chapter 2. CMS Routine Descriptions

input_routine1

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that provides records for the CMS$DIFFERENCES transaction. You must
provide the input_routine1 argument if you do not provide the input_file1 argument.See Section 1.6,
"Using Callback Routines" for information about the parameters that CMS passes to the input routine.

generation_expression_1

type: char_string
access: read
mechanism: by descriptor

Specifies an element generation or a class name in the CMS library indicated by the library_data_block
argument. If you specify this argument, CMS searches for an element with the name specified by
input_file1.

input_file2

type: char_string
access: read
mechanism: by descriptor

Specifies a secondary input file for comparison against the contents of input_file1, or input provided by
input_routine1. You cannot specify wildcards or a comma list.

If you do not specify either input_file2 or input_routine2, CMS uses the next lower version of the
primary input file. If you do not specify input_file2 but you specify generation_expression1, CMS
uses the latest version of input_file1 in your current default directory.

If you specify input_routine2 and you want CMS to use the next lower version of the primary input
file, specify empty brackets ([]) as input_file2.

input_routine2

type: procedure
access: read
mechanism: by reference

Specifies a secondary callback routine that provides records for comparison with the contents of
input_file1, or input provided by input_routine1. See Section 1.6, "Using Callback Routines" for
information about the parameters that CMS passes to the input routine.

generation_expression_2

type: char_string
access: read
mechanism: by descriptor

65

Chapter 2. CMS Routine Descriptions

Specifies an element generation or a class name in the CMS library indicated by the library_data_block
parameter. If you specify this argument, CMS searches for an element with the name specified by
input_file2.

output_file

type: char_string
access: read
mechanism: by descriptor

Specifies the name of the output file. Use this argument if you want to specify a particular name for the
output file, or if you want CMS to put the file in a directory other than your current default directory.
If you do not specify output_file, nooutput, or output_routine, CMS creates a new file with the file
name from input_file1 and the file type .DIF. Wildcards are not allowed.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes the output of CMS$DIFFERENCES. See Section 1.6, "Using
Callback Routines" for information about the parameters that CMS passes to the callback routine.

append

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to append the output to a file. If you set the flag to 1, CMS appends
the output to a file. If you set the flag to 0, CMS creates a new file (input_file1 .DIF). CMS ignores this
argument if you provide an output routine.

When you set the append flag to 1, CMS appends theoutput to an existing file indicated by the
output_fileargument. If you do not specify an output file, CMS appends the output tothe default file
(input_file1.DIF). If no such file exists, CMS creates one.

ignore_mask

type: mask_longword
access: read
mechanism: by reference

Specifies one or more values for /IGNORE. You can specify up to five different actions by setting the
appropriate bits in the mask. The following table shows the symbols defined for the ignore_mask
argument.

Symbol Bit Position Mask Value Action

CMS$M_IGNORE_FORM 0 1 Ignore form-feed characters.

66

Chapter 2. CMS Routine Descriptions

Symbol Bit Position Mask Value Action

CMS$M_IGNORE_LEAD 1 2 Ignore blank or tab characters at
the beginning of nonblank lines.

CMS$M_IGNORE_TRAIL 2 4 Ignore blank or tab characters at
the end of nonblank lines.

CMS$M_IGNORE_SPACE 3 8 Compress all multiple spaces, tabs,
or combinations of spaces or tabs
to single spaces.

CMS$M_IGNORE_CASE 4 16 Ignore differences in case for
characters A to Z.

CMS$M_IGNORE_HISTORY 5 32 Ignore history records found in the
compared files.

CMS$M_IGNORE_NOTES 6 64 Ignore notes text found in the
compared files.

The mask values are defined as universal symbols in the CMS image. You can use OR with these values
to allow combinations of the values. If you omit the ignore_mask argument, CMS does not ignore any
fields during the differences transaction.

nooutput

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prohibits CMS$DIFFERENCES output. By default, the flag is set to 0, and CMS
produces output as designated by the other arguments. If you set the flag to 1, CMS executes a fast
form of the comparison. In this case, CMS exits when it encounters the first difference and returns
CMS$_DIFFERENT. If there are no differences, CMS returns CMS$_IDENTICAL.

parallel

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether the output is in parallel format. By default, the flag is set to 0, and
CMS does not display the output in parallel format. If you set the flag to 1, the differences from the first
file (or input routine) are displayed on the left and differences from the second file (or input routine) are
displayed on the right. This qualifier can only be used with record partitions.

full

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to generate an extended listing that includes identical lines as well
as lines that are different between the two input streams. If you set the flag to 1, CMS generates an

67

Chapter 2. CMS Routine Descriptions

extended listing. If you do not specify this argument or if you set the flag to 0, the output includes only
the differences.

format

type: mask_longword
access: read
mechanism: by reference

Specifies the type of formatting to be performed on the data before it is placed into the output file. You
must specify either the output_file or output_routine arguments with this argument. By default, the
flag is set to 1, indicating formatted output. If you set the flag to 0, CMS produces unformatted output.

The format argument specifies a data format, data partition size, and whether a list of generation
differences should be included in the output. The following table lists the recognized data formats.

Data Format Bit Position Mask Value Action

CMS$M_ASCII 0 1 Specifies that data be presented as
if each byte represents a value in the
ASCII character set. This option is most
useful when files contain text. If no data
partition is specified, data is partitioned
into records. This option is the default.

CMS$M_DECIMAL 1 2 Specifies that each value be displayed
as a decimal numeral. If no data
partition is specified, data is partitioned
into longwords. You cannot specify
both CMS$M_DECIMAL and
CMS$M_RECORDS.

CMS$M_HEXADECIMAL 2 4 Specifies that each value be displayed
as a hexadecimal numeral. If no data
partition is specified, data is partitioned
into longwords. You cannot specify
both CMS$M_HEXADECIMAL and
CMS$M_RECORDS.

CMS$M_OCTAL 3 8 Specifies that each value be displayed
as an octal numeral. If no data
partition is specified, data is
partitioned into longwords. You cannot
specify both CMS$M_OCTAL and
CMS$M_RECORDS.

A data partition is the size that data in each record is to be broken into before it is formatted. The
following table lists the recognized data partitions.

Data Partition Bit Position Mask Value Action

CMS$M_BYTE 16 65,536 Specifies that the data displayed is to
be partitioned into bytes. By default,
records are not partitioned further
unless the data format option indicates
otherwise.

68

Chapter 2. CMS Routine Descriptions

Data Partition Bit Position Mask Value Action

CMS$M_LONGWORD 17 131,072 Specifies that the data displayed
is to be partitioned into longword
values. This is the default partitioning
for CMS$M_DECIMAL,
CMS$M_HEXADECIMAL, and
CMS$M_OCTAL.

CMS$M_RECORDS 18 262,144 Specifies that no further partitioning
of data is to occur beyond the record
partitioning already in the file. This
partitioning is most useful when the
files contain text. You can specify
CMS$M_RECORDS by itself only, or
in conjunction with ASCII. It cannot
be used with any other options. This
qualifier is the default for ASCII.

CMS$M_WORD 19 524,288 Specifies that the data displayed be
partitioned into word values. By
default, data records are not partitioned
further unless the data format indicates
otherwise.

The format argument also contains a bit flag indicating that a list of generation differences is to be
included in the output file. By default, the flag is set to 0, indicating that generation differences are not to
be included. Set the flag to 1 to include generation differences in the output file. You specify the flag as
follows:

Generation Differences Bit Position Mask Value Action

CMS$M_GENERATION_
DIF

23 8,388,608 Specifies that a list of generation
differences is to be displayed. By default,
generation differences are not displayed.

width

type: longword_signed
access: read
mechanism: by reference

Specifies the page width value for CMS$DIFFERENCES output. The value can be from 48 to 500. By
default, the default value is the same as the device page width for terminal devices and 132 otherwise.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

page_break

69

Chapter 2. CMS Routine Descriptions

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating that page breaks are to be included in the output file. By default, the flag is
set to 0, indicating that page breaks are converted to the string “ ” in the output file. Set the flag to 1 to
include page breaks in the output file.

skip_lines

type: longword_signed
access: read
mechanism: by reference

Specifies a positive integer value indicating the number of lines at the beginning of each file to be
ignored during the comparison. By default, no lines are skipped.

begin_sentinel

type: char_string
access: read
mechanism: by descriptor

Specifies a string used to delimit a section of text to be ignored during the comparison. The string must
be shorter than 65,536 characters, must be contained within a single record, and cannot be the same
string as end_sentinel. If this argument is specified, end_sentinel must also be specified.

end_sentinel

type: char_string
access: read
mechanism: by descriptor

Specifies a string used to delimit a section of text to be ignored during the comparison. The string must
be shorter than 65,536 characters, must be contained within a single record, and cannot be the same
string as begin_sentinel. If this argument is specified, begin_sentinel must also be specified.

Callback Routine Parameters
If you write input routines to provide input data to CMS$DIFFERENCES, CMS passes the following
parameters in the order shown with each call to input_routine1 or input_routine2:

first_call, library_data_block, user_param, input_record_id,
 eof_flag, file_name_id, generation_id, action,
 sequence_flag, sequence_number

The action parameter enables you to control the flow of data from the input file to CMS. The callback
routine must return a defined condition code to CMS. The following parameter descriptions define the
access to the object from the perspective of the callback routine.

first_call

70

Chapter 2. CMS Routine Descriptions

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the input routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this is set to 0.

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library. This parameter does not contain any significant information if
input is not being taken from a CMS library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$DIFFERENCES. If you did not specify
a user argument, this parameter points to a read-only storage location containing the value 0.
CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$DIFFERENCES.

input_record_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the line of data being passed to CMS$DIFFERENCES. Use the
CMS$GET_STRING routine to translate the string identifier. For information about string identifiers,
see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

eof_flag

type: longword_signed
access: modify
mechanism: by reference

Specifies a flag that indicates the end-of-file status. If there is no input file for this input stream, CMS
sets eof_flag to false (0). The callback routine must set this flag to true (1) when input is finished.

If there is an input file for this input stream (for example, this input routine is being used as an input
filter), CMS changes the value of eof_flag from false to true when it encounters the end of the input
file. Optionally, the input (filter) routine can change the value to true before the end of the input file is
reached to terminate input prematurely.

71

Chapter 2. CMS Routine Descriptions

When eof_flag is set to true, CMS ignores the contents of the current input record (input_record_id or
the string passed by CMS$PUT_STRING). Therefore, the input routine must set eof_flag to true in the
call following the last significant input record.

file_name_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the input file name. If you do not specify an input file for the data stream,
file_name_id does not contain any meaningful data.

generation_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation number. The string identifier points to a descriptor for a
null string if the input is not coming from a CMS library.

action

type: longword_signed
access: modify
mechanism: by reference

Specifies a value that controls the flow of data to CMS. It does not contain any meaningful information
if the input routine is the only source of data for that input stream (that is, if no input file is specified).

The value of this argument affects the status of the line of data passed in input_record. The following
table shows the possible values and corresponding results.

Value Result

0 Directs CMS to reject the current line of data. If you specify 0, you cannot modify
input_record.

1 Directs CMS to accept the current line of data. In this case, you can modify the input
record by using CMS$PUT_STRING to pass a new string to CMS.

2 Directs CMS to add data to the input stream before including the current line. You must
use CMS$PUT_STRING to pass a new string descriptor to CMS in order to insert
new data lines. (Note that you can call CMS$PUT_STRING only once during a single
execution of the callback routine.) The current data line (input_record) is saved and
passed again with the next call to the user routine.

sequence_flag

type: longword_signed
access: modify

72

Chapter 2. CMS Routine Descriptions

mechanism: by reference

Specifies a flag that directs CMS to create a sequenced element file. By default, the flag is set to 0,
indicating that input is not sequenced. Set the flag to 1 to direct CMS to create a sequenced element
file. If there is no input file, the callback routine can set this flag. If there is no input file, the input is
unsequenced.

sequence_number

type: longword_signed
access: write
mechanism: by reference

Specifies a signed integer that indicates the sequence number of the input line. The sequence number is a
value in the range of 1 to 65,536 characters.

Formatted Output Callback Routine Parameters
When you provide an output routine to process output text from CMS$DIFFERENCES, CMS passes
different parameters depending on the value of the format argument. You must specify either the
output_file or output_routine arguments with the format argument. By default, format is set to 1,
indicating formatted output. If you set the flag to 0, CMS produces unformatted output.

When you do not specify the format argument in the original call to CMS$DIFFERENCES, CMS
produces formatted output as records of ASCII text. CMS passes the following parameters in the order
shown with each call to output_routine:

first_call, library_data_block, user_param, output_record_id,
 eof_flag, file_name_id, action

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

first_call

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this is set to 0.

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library. This parameter does not contain any significant information if
input is not being taken from a CMS library.

user_param

73

Chapter 2. CMS Routine Descriptions

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$DIFFERENCES. If you did not specify
a user argument, this parameter points to a read-only storage location containing the value 0.
CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$DIFFERENCES.

output_record_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the line of data being passed from CMS$DIFFERENCES. Use the
CMS$GET_STRING routine to translate the string identifier. For information about string identifiers,
see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

eof_flag

type: longword_signed
access: read
mechanism: by reference

Specifies the end-of-file status. CMS changes the value of eof_flag from false (0) to true (1) after the last
record has been passed to the output routine. When eof_flag is true, the contents of output_record_id
are undefined. See Section 1.6.3.2, "Determining End of Output" for more information on determining
the end of output.

file_name_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the output file name. Use the CMS$GET_STRING routine to translate
the string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

action

type: longword_signed
access: modify
mechanism: by reference

Specifies a value that controls the flow of data from CMS. The value of this argument affects the status
of the line of data referenced by output_record_id.

The following table shows the possible values and corresponding results.

74

Chapter 2. CMS Routine Descriptions

Value Result

0 Directs CMS to reject the current line of data. If you specify 0, you cannot modify the
output_record.

1 Directs CMS to accept the current line of data. In this case, you can modify the output
record by using CMS$PUT_STRING to pass a new string to CMS.

2 Directs CMS to add data to the output stream before including the current line. You
must use CMS$PUT_STRING to pass a new string to CMS in order to insert new data
lines. (Note that you can call CMS$PUT_STRING only once during a single execution
of the callback routine.) The current data line (output_record) is saved and passed
again with the next call to the user routine.

Unformatted Output Callback Routine Parameters
When you specify the format argument in the original call to CMS$DIFFERENCES by setting format
to 0, CMS produces unformatted output. CMS passes the following parameters in the order shown with
each call to output_routine:

first_call, library_data_block, user_param, output_record_id,
 eof_flag, line_number1, line_number2

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

first_call

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this is set to 0.

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library. This parameter does not contain any significant information if
input is not being taken from a CMS library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$DIFFERENCES. If you did not specify
a user argument, this parameter points to a read-only storage location containing the value 0.
CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$DIFFERENCES.

75

Chapter 2. CMS Routine Descriptions

output_record_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the line of data being passed from CMS$DIFFERENCES. Use the
CMS$GET_STRING routine to translate the string identifier. For information about string identifiers,
see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

eof_flag

type: longword_signed
access: read
mechanism: by reference

Specifies the end-of-file status. CMS changes the value of eof_flag from false (0) to true (1) after the last
record has been passed to the output routine. When eof_flag is true, the contents of output_record_id
are undefined. See Section 1.6.3.2, "Determining End of Output" for more information on determining
the end of output.

line_number1

type: longword_signed
access: read
mechanism: by reference

Specifies the sequence number (if the input is sequenced), or the record number if the line originated
from the first input stream (input_file1 or input_routine1.) This is –1 if the line did not originate in the
first input stream.

line_number2

type: longword_signed
access: read
mechanism: by reference

Specifies the sequence number (if the input is sequenced) or the record number if the line originated
from the second input stream (input_file2 or input_routine2.) This is –1 if the line did not originate in
the second input stream.

Description
The CMS$DIFFERENCES routine compares the contents of two files. If CMS finds differences, it
creates a file containing a listing of those differences. If the files are the same, it issues a message to that
effect and does not create a differences file. By default, CMS compares two files not located in a CMS
library. However, you can direct CMS to use element generations from a CMS library.

A difference is defined as one of the following:

● A line or lines in one file and not in the other.

76

Chapter 2. CMS Routine Descriptions

● N lines in one file that replace M lines in the other file. N and M might not be equal.

CMS outputs only the lines that differ, unless you set the fullargument to 1.

There is a heading at the beginning of the differences file that includes the name of the user that
issued the command, the date and time the command was issued, and the file specifications of
the two files being compared. If you direct CMS to use element generations and if you set the
CMS$M_GENERATION_DIF flag bit in the format argument to 1, the differences listing contains a
section labeled “Generation Differences” that contains the replacement history for the element. Each
generation used in the comparison is identified by an asterisk (*) in the first column of the transaction
record. The differences between the files are contained in a section labeled “Text Differences.” By
default, each difference is formatted with the line or lines from the first file followed by the differing line
or lines from the second file. If a difference consists of a line or lines that exist in one file but not in the
other, only the lines from the file containing the additional text are displayed.

CMS$DIFFERENCES establishes two input streams for comparison of data. You can use any
combination of input files and input routines to provide data for the CMS$DIFFERENCES routine:

● You can use input files to provide data for one or both input streams.

● You can use input routines to provide data for one or both input streams.

● You can use input routines to filter one or both of the input streams coming from files. When you
use an input routine to filter data from an input file, CMS provides a means of specifying the action
to be taken for each line of input data.

In addition, you can use an output routine to process the output of the differences transaction.

Note

If you supply two input routines, CMS does not necessarily call them in a synchronous fashion.
Therefore, you cannot rely on any established order for the calls to the input routines. In addition, if you
supply an output routine, you cannot rely on a particular sequence of calls to the output routine relative
to the calls to the input routines.

When using CMS$DIFFERENCES with a CMS library search list, if both input_file_1and input_file_2
are element generation specifications, both of the elements must reside in the same library of the library
search list.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_BADFORMAT Invalid format specification. Error
CMS$_DIFFERENT Input streams are different. Informational
CMS$_IDENTICAL Input streams are identical. Success
CMS$_NOACCESS User does not have the required access to the

library.
Error

CMS$_NOFILE No input file found. Error
CMS$_NOREF Error accessing the library. Error
CMS$_OPENIN1 Error opening the first input file. Error
CMS$_OPENIN2 Error opening the second input file. Error

77

Chapter 2. CMS Routine Descriptions

Return Code Description Status

CMS$_OPENOUT Error opening the output file. Error
CMS$_QUALCONFLICT Cannot specify both output file and no output. Error
CMS$_READIN Error reading the input stream. Error
CMS$_UNFOUT Cannot specify unformatted output. Error
CMS$_UNSUPFRMT Error appending to file of this format. Error
CMS$_USERERR User routine returned an error to CMS. Error

Examples
1. CHARACTER*12 FILE1

EXTERNAL CMS$DIFFERENCES

FILE1 = 'COMTRANS.COM'
CALL CMS$DIFFERENCES(,,FILE1)
END

This call to CMS$DIFFERENCES includes one file specification; CMS searches for the latest
two versions of COMTRANS.COM in the current default directory. Note that the placeholders are
required for the optional LDB and user-defined arguments.

2. CALL CMS$DIFFERENCES(LDB,,FILE1,,GEN1)

This example shows a call to CMS$DIFFERENCES that uses a library element and the
corresponding file in the current, default directory. Because a second file is not provided, CMS uses
the latest version of the file specified by FILE1 in the default directory.

CMS$DIFFERENCES_CLASS
CMS$DIFFERENCES_CLASS — Compares the member generations in two classes. If the members
differ between classes, CMS$DIFFERENCES_CLASS creates a file listing the differences. If the
members in both classes are the same, CMS issues a message to that effect and does not create a
differences file.

Format
CMS$DIFFERENCES_CLASS (library_data_block,
 class_expression1,
 class_expression2,
 [append],
 [format],
 [full],
 [ignore_mask],
 [nooutput],
 [parallel],
 [show_mask],
 [width],
 [output_file],
 [output_routine],
 [user_arg],
 [msg_routine])

78

Chapter 2. CMS Routine Descriptions

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies the LDB for the library to be used in the differences transaction.

class_expression1

type: char_string
access: read
mechanism: by descriptor

Specifies the primary class name to be used in the CMS$DIFFERENCES_CLASS transaction. You
cannot specify wildcards or a comma list.

class_expression2

type: char_string
access: read
mechanism: by descriptor

Specifies a secondary class name to be used in the CMS$DIFFERENCES_CLASS transaction. You
cannot specify wildcards or a comma list.

append

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to append the output to a file. If you set the flag to 1, CMS appends
the output to a file. If you set the flag to 0, CMS creates a new file (output_file1.DIF). CMS ignores this
argument if you provide an output routine.

format

type: mask_longword
access: read
mechanism: by reference

Specifies the type of formatting to be performed on the data before it is placed into the output file. You
must specify either the output_file or output_routine arguments with this argument. By default, the
flag is set to 1, indicating formatted output. If you set the flag to 0, CMS produces unformatted output.

The format argument specifies a data format, data partition size, and whether a list of generation
differences should be included in the output. The following table lists the recognized data formats.

79

Chapter 2. CMS Routine Descriptions

Data Format Bit Position Mask Value Action

CMS$M_ASCII 0 1 Specifies that data be presented as
if each byte represents a value in the
ASCII character set. This option is most
useful when files contain text. If no data
partition is specified, data is partitioned
into records. This option is the default.

CMS$M_DECIMAL 1 2 Specifies that each value be displayed
as a decimal numeral. If no data
partition is specified, data is partitioned
into longwords. You cannot specify
both CMS$M_DECIMAL and
CMS$M_RECORDS.

CMS$M_HEXADECIMAL 2 4 Specifies that each value be displayed
as a hexadecimal numeral. If no data
partition is specified, data is partitioned
into longwords. You cannot specify
both CMS$M_HEXADECIMAL and
CMS$M_RECORDS.

CMS$M_OCTAL 3 8 Specifies that each value be displayed
as an octal numeral. If no data
partition is specified, data is
partitioned into longwords. You cannot
specify both CMS$M_OCTAL and
CMS$M_RECORDS.

A data partition is the size that data in each record is to be broken into before it is formatted. The
following table lists the recognized data partitions.

Data Partition Bit Position Mask Value Action

CMS$M_BYTE 16 65,536 Specifies that the data displayed is to
be partitioned into bytes. By default,
records are not partitioned further
unless the data format option indicates
otherwise.

CMS$M_LONGWORD 17 131,072 Specifies that the data displayed
is to be partitioned into longword
values. This is the default partitioning
for CMS$M_DECIMAL,
CMS$M_HEXADECIMAL, and
CMS$M_OCTAL.

CMS$M_RECORDS 18 262,144 Specifies that no further partitioning
of data is to occur beyond the record
partitioning already in the file. This
partitioning is most useful when the
files contain text. You can specify
CMS$M_RECORDS by itself only, or
in conjunction with ASCII. It cannot
be used with any other options. This
qualifier is the default for ASCII.

80

Chapter 2. CMS Routine Descriptions

Data Partition Bit Position Mask Value Action

CMS$M_WORD 19 524,288 Specifies that the data displayed be
partitioned into word values. By
default, data records are not partitioned
further unless the data format indicates
otherwise.

The format argument also contains a bit flag indicating that a list of generation differences is to be
included in the output file. By default, the flag is set to 0, indicating that generation differences are not to
be included. Set the flag to 1 to include generation differences in the output file.

You specify the flag as follows:

Generation Differences Bit Position Mask Value Action

CMS$M_GENERATION_
DIF

23 8,388,608 Specifies that a list of generation
differences is to be displayed. By default,
generation differences are not displayed.

full

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to generate an extended listing that includes identical lines as well
as lines that are different between the two input streams. If you set the flag to 1, CMS generates an
extended listing. If you do not specify this argument or if you set the flag to 0, the output includes only
the differences.

ignore_mask

type: mask_longword
access: read
mechanism: by reference

Specifies whether CMS ignores the first variant of a generation. The value
CMS$M_IGNORE_FIRST_VARIANT directs CMS to ignore any differences where the generation in
one class is the first variant of the generation in the second class. Specify the value 0 to have CMS treat
the first variant as a difference. If you omit the ignore_mask argument, CMS does not ignore any fields
during the differences transaction.

nooutput

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prohibits CMS$DIFFERENCES_CLASS output. By default, the flag is set to 0, and
CMS produces output as designated by the other arguments. If you set the flag to 1, CMS executes a
fast form of the comparison. In this case, CMS exits when it encounters the first difference and returns
CMS$_DIFFERENT. If there are no differences, CMS returns CMS$_IDENTICAL.

81

Chapter 2. CMS Routine Descriptions

parallel

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether the output is in parallel format. By default, the flag is set to 0, and
CMS does not display the output in parallel format. If you set the flag to 1, the differences from the first
file (or input routine) are displayed on the left and differences from the second file (or input routine) are
displayed on the right. This qualifier can only be used with record partitions.

show_mask

type: mask_longword
access: read
mechanism: by reference

Specifies one or more values for /SHOW. You can specify up to five different actions by setting the
appropriate bits in the mask. The following table shows the symbols defined for the show_mask
argument.

Symbol Bit Position Mask Value Action

CMS$M_ELEMENT_DIF 0 1 Include differences where an
element is in one class but not the
other.

CMS$M_GENERATIONAL_DIF 1 2 Include differences where one
member generation differs from
the other by more than just its
variant. Directs CMS to show the
difference if the generation in one
class differs from the generation
in the other class and the primary
generation is not a variant of the
other.

CMS$M_VARIANT_DIF 2 4 Include differences where one
member generation differs from
the other by its variant. Directs
CMS to show the difference if the
generation in one class differs from
the generation in the other class
and the primary generation is a
variant of the other.

The mask values are defined as universal symbols in the CMS image. You can use OR with these values
to allow combinations of the values. A null parameter or a 0 value directs CMS to show all types of
differences by default.

width

type: longword_signed

82

Chapter 2. CMS Routine Descriptions

access: read
mechanism: by reference

Specifies the page width value for CMS$DIFFERENCES_CLASS output. The value can be from 48
to 500. By default, the default value is the same as the device page width for terminal devices and 132
otherwise.

output_file

type: char_string
access: read
mechanism: by descriptor

Specifies the name of the output file. Use this argument if you want to specify a particular name for the
output file, or if you want CMS to put the file in a directory other than your current default directory.
If you do not specify output_file, nooutput, or output_routine, CMS creates a new file with the file
name output_file1 and the file type .DIF. Wildcards are not allowed.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes the output of CMS$DIFFERENCES_CLASS. See Section 1.6,
"Using Callback Routines" for information about the parameters that CMS passes to the callback routine.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to a callback routine (input_routine1,
input_routine2, or output_routine) each time the routine is called by CMS.CMS passes the value to
the routine using the same mechanism that you used to pass it to CMS.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Unformatted Output Callback Routine Parameters
When you specify the format argument in the original call to CMS$DIFFERENCES_CLASS by setting
format to 0, CMS produces unformatted output. CMS passes the following parameters in the order
shown with each call to output_routine:

83

Chapter 2. CMS Routine Descriptions

first_call, library_data_block, user_param, eof_flag,
 diff_flag, output_record_id1, output_record_id2,
 entry_number1, entry_number2

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

first_call

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this is set to 0.

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library. This parameter does not contain any significant information if
input is not being taken from a CMS library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$DIFFERENCES_CLASS. If you did not
specify a user argument, this parameter points to a read-only storage location containing the value
0. CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$DIFFERENCES_CLASS.

eof_flag

type: longword_signed
access: read
mechanism: by reference

Specifies the end-of-file status. CMS changes the value of eof_flag from false (0) to true (1) after the
last record has been passed to the output routine. When eof_flag is true, the contents of diff_flag,
output_record_id1, output_record_id2, entry_number1, and entry_number2 are undefined.

diff_flag

type: longword_signed
access: read
mechanism: by reference

84

Chapter 2. CMS Routine Descriptions

Specifies whether the two records are different. If diff_flag value is false (0), the two records are the
same, even though they may differ textually. This can occur when a full listing is requested, there are
generation members that differ between the two classes, but the members are not flagged as different due
to the values of the show mask and ignore_mask arguments to CMS$DIFFERENCES_CLASS.

If diff_flag value is true (1), the output_record_id1, entry_number1, output_record_id2, and
entry_number2 describe generation members for the same element whose generation number differs
between the two classes. In addition, if the value of one of the entry numbers is –1, it means that this
element exists in one class but not the other.

output_record_id1

type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation member being passed from
CMS$DIFFERENCES_CLASS() for class_expression1. This parameter is only valid if
entry_number1 contains a value other than –1.

The string has the following format:

element-name(generation-name) "generation comment"

If both output_record_id1 and output_record_id2 are supplied on the same call, they identify
different generations of the same element. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and
Callback Routines".

output_record_id2

type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation member being passed from
CMS$DIFFERENCES_CLASS() for class_expression2. This parameter is only valid if
entry_number1 contains a value other than –1.

The string has the following format:

element-name(generation-name) "generation comment"

If both output_record_id1 and output_record_id2 are supplied on the same call, they identify
different generations of the same element. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and
Callback Routines".

entry_number1

type: longword_signed
access: read
mechanism: by reference

85

Chapter 2. CMS Routine Descriptions

Specifies the position of the generation member in the list of members for class_expression1. The
generation members are labeled from 1- n.

If a particular element is a member of one class but not the other, the element has a different entry
number in each class. This parameter is –1 if an entry from class_expression1 is not being specified by
this call. Meaning, the element is in class_expression2 but not class_expression1.

entry_number2

type: longword_signed
access: read
mechanism: by reference

Specifies the position of the generation member in the list of members for class_expression2. The
generation members are labeled from 1-n.

If a particular element is a member of one class but not the other, the element has a different entry
number in each class. This parameter is –1 if an entry from class_expression2 is not being specified by
this call. Meaning, the element is in class_expression1 but not class_expression2.

Description
The CMS$DIFFERENCES_CLASS routine compares the contents of two classes. If CMS finds
differences between class membership, it creates a file containing a listing of those differences. If the
classes are the same, it issues a message to that effect and does not create a differences file.

CMS outputs only the lines that differ, unless you set the fullargument to 1.

There is a heading at the beginning of the differences file that includes the name of the user that issued
the command, the date and time the command was issued, and the specifications of the two classes being
compared.

Each element generation used in the comparison is identified by an asterisk (*) in the first column of the
transaction record. The differences between the classes are contained in a section labeled “Differences.”

In addition, you can use an output routine to process the output of the differences transaction.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_BADFORMAT Invalid format specification. Error
CMS$_DIFFCLASS Differences between the compared classes were

detected.
Informational

CMS$_IDENTCLASS The classes being compared are identical. Success
CMS$_NOACCESS User does not have the required access to the

library.
Error

CMS$_NOREF Error accessing the library. Error
CMS$_OPENOUT Error opening the output file. Error
CMS$_QUALCONFLICT Cannot specify both output file and no output. Error
CMS$_UNFOUT Cannot specify unformatted output. Error
CMS$_UNSUPFRMT Error appending to file of this format. Error

86

Chapter 2. CMS Routine Descriptions

Return Code Description Status

CMS$_USERERR User routine returned an error to CMS. Error

Examples
1. INTEGER*4 CMS$SET_LIBRARY,

1 CMS$DIFFERENCES_CLASS,
1 LDB(50)CHARACTER*9 DIR
CHARACTER*5 F_CLASS
CHARACTER*6 S_CLASS
 DIR = '[.CMSLIB]'
F_CLASS = 'FIRST'
S_CLASS = 'SECOND'
STATUS = CMS$SET_LIBRARY (LDB, DIR)
 IF (STATUS) THEN
MEMBER_FLAG = 1
STATUS = CMS$DIFFERENCES_CLASS (LDB,F_CLASS,S_CLASS)
ENDIF

This call to CMS$DIFFERENCES_CLASS shows difference between the two classes (FIRST and
SECOND) in a CMS library. It creates a differences file (FIRST.DIF) that contains the names of the
generations that differ between the two classes.

If the elements each class are the same, CMS issues a message to that effect and does not create a
differences file.

2. CALL CMS$DIFFERENCES_CLASS (LDB,F_CLASS,S_CLASS,,,,,,, CMS$M_ELEM)

This call to CMS$DIFFERENCES_CLASS shows differences where an element is in one class but
not the other. It ignores the elements which are same in both classes but have different generations.

CMS$FETCH
CMS$FETCH — Retrieves a copy of an element from a CMS library. You can also specify the reserve
argument to direct CMS to establish a reservation for a generation of the element.

Format
CMS$FETCH (library_data_block,
 element_expression,
 [remark],
 [generation_expression],
 [merge_generation_expression],
 [reserve],
 [nohistory],
 [nonotes],
 [concurrent],
 [output_file],
 [msg_routine],
 [nooutput],
 [history],
 [notes],
 [position])

87

Chapter 2. CMS Routine Descriptions

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements to be fetched (or reserved). Wildcards and a
comma list are allowed.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and selects elements based on the list of groups established in the library.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command. If you do not specify a
remark and you do not establish a reservation, CMS does not record the transaction in the library history.

generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the generation to be retrieved. If you do not specify a generation number or class name, CMS
fetches the latest generation on the main line of descent.

merge_generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the element generation to be merged into the fetched generation. This argument can be a
generation number or class name.

reserve

88

Chapter 2. CMS Routine Descriptions

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to establish a reservation for the fetched element. By default, the flag is
set to 0, and CMS fetches the element without establishing a reservation. Set this flag to 1 to reserve the
element.

nohistory

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to suppress the element history. By default, the flag is set to 0, and
CMS provides the element history in the output file only if the history attribute is established for the
element. If you set this flag to 1, CMS does not include the element history in the output file.

nonotes

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to suppress generation notes. By default, the flag is set to 0, and the file
contains generation notes only if the notes attribute is established for the element. If you set this flag to
1, CMS does not include generation notes in the output file.

concurrent

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating the access to the element. By default, the flag is set to 1, and CMS allows
concurrent reservations of the element. Set the concurrent flag to 0 to prohibit concurrent reservations.

output_file

type: char_string
access: read
mechanism: by descriptor

Specifies the name of the output file. Use this argument if you want the output file to have a different
name than the element, or if you want CMS to put the file in a directory other than your default
directory. Wildcards are allowed. If you do not specify an output file name, CMS gives the file the same
name as the element. This parameter is ignored if nooutput is specified as true.

Use caution when providing output file specifications. For example, if you fetch a group of elements and
you provide an output file specification that does not allow CMS to assign a unique name to each fetched
element file, CMS creates as many files with the same name as necessary.

89

Chapter 2. CMS Routine Descriptions

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

nooutput

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates that CMS should execute the fetch or reserve operation without creating
an output file. By default, the flag is set to 0 and CMS creates an output file. When you specify this
argument, CMS does not perform file I/O; this causes CMS to operate faster than if you specify the null
device (NLA0: or NL:) as the output file. This argument is useful for reserving an element that you will
not use as the replacement file.

history

type: char_string
access: read
mechanism: by descriptor

Specifies the history string. If you include this argument in the call, CMS includes the history in the
retrieved file. If you specify history and reserve, CMS establishes the history string for the reservation.
If you do not specify history, CMS uses the value of the element's current history attribute. This
argument is useful to temporarily override an existing history format string. If an element has a history
attribute, its history is included in the file when it is retrieved by CMS$FETCH. To disable the history
attribute, specify a zero-length string. For a detailed explanation of the history attribute, see the VSI
DECset for OpenVMS Guide to the Code Management System.

notes

type: char_string
access: read
mechanism: by descriptor

Specifies the notes string. If you include this argument in the call, CMS includes the notes in the
retrieved file. If you specify notes and reserve, CMS establishes the notes string for the reservation. If
you do not specify notes, CMS uses the value of the element's current notes attribute. This argument is
useful to temporarily override an existing notes format string. If an element has a notes attribute, notes
are added to the ends of the lines of the file when it is retrieved by CMS$FETCH. To disable the notes
attribute, specify a zero-length string. Any element that has the notes attribute must have the position
attribute. For a detailed explanation of the notes attribute, see the VSI DECset for OpenVMS Guide to the
Code Management System.

position

90

Chapter 2. CMS Routine Descriptions

type: longword_signed
access: read
mechanism: by reference

Specifies the position value to be used with the notes attribute. The position attribute determines the
character position at which the note is to begin on the line. The position value must be an integer greater
than zero. If you specify notes and the element does not already have the position attribute established,
you must also specify the position argument. For a detailed explanation of the position attribute, see the
VSI DECset for OpenVMS Guide to the Code Management System.

Description
The CMS$FETCH routine delivers a copy of the specified element generation to your current, default
directory or to the file specified in the output_file parameter. If you did not specify a value of 1 for the
reserve argument, CMS does not allow you to replace a fetched element.

The presence or absence of a remark determines whether the CMS FETCH transaction is recorded in the
library history. If you do not specify a remark and do not establish a reservation, CMS does not record
the transaction.

When you retrieve an element from a CMS library, CMS restores the file creation and revision times.
The file placed in your directory has the same creation and revision times as the file used to create the
generation you are fetching. CMS does not restore the file expiration date or file backup date.

If you specify the reserve argument, each element indicated by the element_expression argument is
marked reserved in the library database. Usually, after you have modified the element, you return a
reserved element to the library with the CMS$REPLACE routine. Alternatively, you can cancel the
reservation with the CMS$UNRESERVE routine.

CMS marks the reserved generation as a predecessor generation. This information is used to determine
the generation number of the successor created by the REPLACE command. For more information on
creating successive generations with the RESERVE and REPLACE commands, see the VSI DECset for
OpenVMS Guide to the Code Management System.

If a version of the element file already exists in your default directory when you call CMS$FETCH,
CMS creates a new version with the next higher version number.

If CMS encounters an element data file that has a bad checksum or was not closed by CMS, it retrieves
the file but changes the success status to a warning status. If you want to know only if the file was
retrieved, use the LIB$MATCH_COND routine to compare the returned status to the CMS return codes.

When fetching a concurrent reservation, you must specify the confirm_routineargument in the call to
CMS$SET_LIBRARY or CMS$CREATE_LIBRARY (before calling CMS$FETCH), or you are not
warned of any concurrent reservations, and the fetch transaction continues. To receive a confirmation
prompt when there are existing concurrent reservations, you must specify the routine in the call to
CMS$SET_LIBRARY or CMS$CREATE_LIBRARY.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_FETCHED CMS fetched the element. Success
CMS$_FETCHES CMS fetched one or more elements. Success

91

Chapter 2. CMS Routine Descriptions

Return Code Description Status

CMS$_ERRFETCHES CMS fetched zero or more elements, but
encountered errors during the transaction.

Error

CMS$_ERRESERVATIONS CMS reserved zero or more elements, but
encountered errors during the transaction.

Error

CMS$_NOFETCH CMS did not fetch the element. Error
CMS$_NOREF Error accessing the library. Error
CMS$_NORESERVATION CMS did not reserve the element. Error
CMS$_RESERVATIONS CMS reserved one or more elements. Success
CMS$_RESERVED CMS reserved the element. Success

CMS$FETCH_CLOSE
CMS$FETCH_CLOSE — Terminates a fetch transaction initiated by CMS$FETCH_OPEN. Use the
CMS$FETCH_CLOSE routine with the CMS$FETCH_GET and CMS$FETCH_OPEN routines.

Format
CMS$FETCH_CLOSE (fetch_data_block,
 [msg_routine])

Arguments
fetch_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an open FDB.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$FETCH_CLOSE routine terminates a line-by-line fetch transaction. You use this routine
after a combination of CMS$FETCH_OPEN and CMS$FETCH_GET calls. If you do not end the fetch
transaction with a call to CMS$FETCH_CLOSE, the library is left in a locked state.

92

Chapter 2. CMS Routine Descriptions

For an example of a line-by-line fetch transaction, see the description of the CMS$FETCH_GET routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_INVFETDB Invalid fetch data block Error

CMS$FETCH_GET
CMS$FETCH_GET — Retrieves one line of data from an element. Use this routine with the
CMS$FETCH_OPEN and CMS$FETCH_CLOSE routines.

Format
CMS$FETCH_GET (fetch_data_block,
 output_record,
 [sequence_number],
 [generation_number],
 [msg_routine])

Arguments
fetch_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an open FDB.

output_record

type: char_string
access: write
mechanism: by descriptor

Specifies a string descriptor that CMS fills in with the line of data retrieved from the library element.
If the notes attribute is established for the element and you do not suppress notes in the call to
CMS$FETCH_OPEN, the output record includes the notes string.

sequence_number

type: longword_signed
access: write
mechanism: by reference

Specifies a location that CMS fills in with the sequence number of the data line, if any. CMS sets the
value to –1 if there is no sequencing. If the value is in the range of 0 to 65,535, it is the sequence number
of the data line. By default, CMS does not attempt to provide any sequence information.

93

Chapter 2. CMS Routine Descriptions

generation_number

type: char_string
access: write
mechanism: by descriptor

Specifies a string descriptor to be filled in by CMS.CMS uses this argument to provide the generation
number associated with the line of data. By default, CMS does not provide the generation information.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$FETCH_GET routine retrieves a single line of data from an element that you have opened
with a call to CMS$FETCH_OPEN. After you have completed the series of CMS$FETCH_GET
calls required to retrieve the entire element, you must end the fetch transaction with a call to
CMS$FETCH_CLOSE.

CMS returns RMS$_EOF after the last record of the element has been fetched. When
CMS$FETCH_GET returns RMS$_EOF, the contents of output_record are undetermined. You must
invoke CMS$FETCH_GET as a function in order to determine end-of-file.

You should call CMS$FETCH_GET using the exact same FDB previously used by the last call to
CMS$FETCH_GET.

When you execute a line-by-line transaction, you cannot reserve an element, and CMS does not enter the
transaction in the library history.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_INVFETDB Invalid fetch data block Error
RMS$_EOF End-of-file Warning

Example
 CHARACTER*11 LIBNAME
 CHARACTER*9 ELE1,ELE2
 CHARACTER*80 LINE
 INTEGER STATUS,STATUS1,STATUS2
 INTEGER*4 CMS$FETCH_GET
 INTEGER*4 CMS$FETCH_OPEN
 INTEGER*4 CMS$FETCH_CLOSE
 EXTERNAL CMS$_EOF

94

Chapter 2. CMS Routine Descriptions

 DIMENSION FDB1(5),FDB2(5)

 LIBNAME = '[DBASE.LIB]'
 ELE1 = 'TEST1.TST'
 ELE2 = 'TEST2.TST'

 STATUS = CMS$FETCH_OPEN(FDB1,LIBNAME,ELE1)
 IF (.NOT. STATUS) GOTO 60
 STATUS = CMS$FETCH_OPEN(FDB2,LIBNAME,ELE2)
 IF (.NOT. STATUS) GOTO 6030
 STATUS1 = CMS$FETCH_GET(FDB1,LINE)
 IF (STATUS1) CALL PRINTLINE(LINE)40
 STATUS2 = CMS$FETCH_GET(FDB2,LINE)
 IF (STATUS2) CALL PRINTLINE(LINE)
 IF (STATUS1) GOTO 30
 IF (STATUS2) GOTO 40
 STATUS = CMS$FETCH_CLOSE(FDB1)
 STATUS = CMS$FETCH_CLOSE(FDB2)60
 END

C routine to handle output string

 INTEGER FUNCTION PRINTLINE(STRING)
 CHARACTER*80 STRING
 PRINT 90,STRING
 RETURN90
 FORMAT(' ',A)
 END

Key to Example:

CMS$FETCH_OPEN is called once for each file to be fetched. Because the program uses two
FDBs, it can fetch parallel lines from the elements without reinitializing the FDB each time the
element is changed.

CMS$FETCH_GET is called for the first element. The fetched data line is displayed until CMS
returns RMS$_EOF (severity level warning).

CMS$FETCH_GET is called for the second element, until end-of-file is encountered.

The tests for end-of-file transfer control.

Once end-of-file is encountered for both elements, CMS$FETCH_CLOSE is called for each
element.

CMS$FETCH_OPEN
CMS$FETCH_OPEN — Begins a line-by-line fetch transaction. Use the CMS$FETCH_OPEN routine
with the CMS$FETCH_GET and CMS$FETCH_CLOSE routines.

Format
CMS$FETCH_OPEN (fetch_data_block,

95

Chapter 2. CMS Routine Descriptions

 directory,
 element_name,
 [generation_expression],
 [nohistory],
 [nonotes],
 [actual_generation],
 [msg_routine])

Arguments
fetch_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an FDB to be opened.

directory

type: char_string
access: read
mechanism: by descriptor

Specifies an existing directory that contains the CMS library where the element is located. Wildcards
and comma lists are not allowed.

Note

The directory argument has the following restrictions:

● Cannot contain wildcard characters

● Cannot be a comma list of directory specifications

● Cannot be a search list logical name

element_name

type: char_string
access: read
mechanism: by descriptor

Specifies the element to be fetched. Wildcards are not allowed.

generation_expression

type: char_string
access: read

96

Chapter 2. CMS Routine Descriptions

mechanism: by descriptor

Specifies the generation of the element to be fetched. By default, CMS fetches the latest generation on
the main line of descent.

nohistory

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to suppress the element history. By default, the flag is set to 0, and
CMS provides the element history in the output file only if the history attribute is established for the
element. If you set this flag to 1, CMS does not include the element history in the output file.

nonotes

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to suppress generation notes. By default, the flag is set to 0, and the file
contains generation notes only if the notes attribute is established for the element. If you set this flag to
1, CMS does not include generation notes in the output file.

actual_generation

type: char_string
access: write
mechanism: by descriptor

Specifies a string descriptor to be filled in by CMS.CMS uses this argument to provide the number of
the generation accessed by calls to CMS$FETCH_GET. This is useful when you use a class name as the
generation expression and want to know the generation number.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$FETCH_OPEN routine initiates a line-by-line fetch transaction. You use this routine with
CMS$FETCH_CLOSE and CMS$FETCH_GET calls. You can execute concurrent fetch transactions
by issuing multiple calls to CMS$FETCH_OPEN. You must define a unique FDB for each call to
CMS$FETCH_OPEN. The FDB identifies the data stream to be processed by CMS$FETCH_GET.

97

Chapter 2. CMS Routine Descriptions

When you execute a line-by-line fetch transaction, you cannot reserve an element or merge element
generations. CMS does not enter the transaction in the library history.

The CMS$FETCH_OPEN routine locks the CMS library for read access. This lock is held until
CMS$FETCH_CLOSE is called or your program exits. Therefore, to prevent CMS from locking your
library longer than necessary, call CMS$FETCH_OPEN in your source program as close as possible to
the calls to CMS$FETCH_GET. Similarly, call CMS$FETCH_CLOSE as soon as possible after the calls
to CMS$FETCH_GET.

Note

Do not use CMS$FETCH_OPEN with a library search list.

The directory argument has the following restrictions:

● Cannot contain wildcard characters

● Cannot be a comma list of directory specifications

● Cannot be a search list logical name

For an example of a line-by-line fetch transaction, see the description of the CMS$FETCH_GET routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_INVFETDB Invalid fetch data block. Error
CMS$_NOFETCH CMS could not fetch the element. Error
CMS$_NOREF Error accessing the library. Error
CMS$_SEQUENCED The retrieved element is sequenced. Success

CMS$GET_STRING
CMS$GET_STRING — Translates a string identifier.

Format
CMS$GET_STRING (string_id,
 string)

Arguments
string_id

type: address
access: read
mechanism: by reference

98

Chapter 2. CMS Routine Descriptions

Specifies a string identifier. This is the address of the string descriptor containing the string that CMS
passes to the callback routine.

string

type: char_string
access: write
mechanism: by descriptor

Specifies a string descriptor that CMS fills in with the character string indicated by string_id. The
method you use to provide this argument depends on the language from which you are calling CMS. For
examples of calling CMS from different languages, see Appendix B, "Examples of Calling CMS".

Description
The CMS$GET_STRING routine translates a string_id that CMS passes to a callback routine.
To use CMS$GET_STRING, you supply a character string variable, which is then filled by CMS.
CMS$GET_STRING can return the same condition codes as the STR$COPY_DX function. For
information about the STR$ condition codes, see the description of the STR$COPY_xx routines in the
OpenVMS Run-Time Library (RTL) documentation. For examples of programs that contain calls to the
CMS$GET_STRING routine, see Appendix B, "Examples of Calling CMS".

CMS$INSERT_ELEMENT
CMS$INSERT_ELEMENT — Places one or more elements in the specified group or groups.

Format
CMS$INSERT_ELEMENT (library_data_block,
 element_expression,
 group_expression,
 [remark],
 [if_absent],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

99

Chapter 2. CMS Routine Descriptions

Specifies the name of the element or group of elements to be inserted into group_name. Wildcards and
a comma list are allowed.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and selects elements based on the list of groups established in the library.

group_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups into which the elements, indicated by element_expression, are being
inserted. Wildcards and a comma list are allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

if_absent

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to insert the element only if that element does not already belong to the
group. If you do not specify this argument and the group already contains the element, CMS returns an
error. Set the flag to 1 to direct CMS to insert the element only if it is absent. If the element is already in
the group, CMS takes no action and returns CMS$_NORMAL.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$INSERT_ELEMENT routine places one or more elements into one or more existing groups
(see the description of the CMS$CREATE_GROUP routine). If you use the CMS$INSERT_ELEMENT
routine to insert group A into group B, group B contains all the elements that belong to group A when
the insertion transaction completes. If the contents of group A change at a later time, the contents of
group B are not affected.

100

Chapter 2. CMS Routine Descriptions

You cannot insert any elements into a group that has the READ_ONLY attribute. For information on the
READ_ONLY and NOREAD_ONLY attributes, see the description of the CMS$MODIFY_GROUP
routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRINSERTIONS CMS inserted zero or more elements, but
encountered errors during the transaction.

Error

CMS$_INSERTED CMS inserted the element. Success
CMS$_INSERTIONS CMS inserted one or more elements. Success
CMS$_NOINSERT CMS did not insert the element. Error
CMS$_NOREF Error accessing the library. Error

CMS$INSERT_GENERATION
CMS$INSERT_GENERATION — Places one or more element generations in the specified class or
classes.

Format
CMS$INSERT_GENERATION (library_data_block,
 element_expression,
 class_expression,
 [remark],
 [generation_expression],
 [always],
 [supersede],
 [if_absent],
 [msg_routine],
 [before])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

101

Chapter 2. CMS Routine Descriptions

Specifies one or more elements or groups of elements whose generations are to be inserted into the class
or classes. Only one generation of a given element can belong to a specific class. Wildcards and a comma
list are allowed.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and selects elements based on the list of groups established in the library.

class_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes into which the element generation is to be inserted. Wildcards and a
comma list are allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the generation expression indicating which generation of the element is to be inserted into the
class or classes. By default, CMS inserts the latest generation on the main line of descent.

always

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to insert the element generation into the class, regardless of whether it
already belongs to the class. To always insert the element generation, set this flag to 1. By default (and
if you do not specify other arguments that affect the insertion transaction), CMS inserts the element
generation only if the class does not already contain a generation from that element.

When you specify always and the class already contains a generation of the given element, the existing
element generation is removed from the class and the new generation takes its place.

supersede

type: longword_signed
access: read

102

Chapter 2. CMS Routine Descriptions

mechanism: by reference

Specifies a flag indicating whether CMS inserts the element generation if the class already contains
another generation of that element. By default, the flag is set to 0, and CMS does not supersede any
existing class association for the element. If you set the flag to 1, CMS supersedes the previous class
association for that element. When you set this flag, and the class does not contain a generation from the
specified element, CMS returns an error.

if_absent

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to insert the generation only if a generation of the element does
not already belong to the class. If you do not specify this argument and the class already contains
a generation from that element, CMS returns an error. Set the flag to 1 to direct CMS to insert the
generation only if it is absent. If the generation is already in the class, CMS takes no action and returns
an error.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

before

type: date_time
access: read
mechanism: by reference

Specifies a binary date and time value that CMS uses to select the generation to insert into the class.

Description
The CMS$INSERT_GENERATION routine places one or more specified element generations
into one or more classes. The class or classes must already exist. (See the description of the
CMS$CREATE_CLASS routine.) A class can contain only one generation of an element. You cannot
insert any generations into a class that has the READ_ONLY attribute. For information on the
READ_ONLY and NOREAD_ONLY attributes, see the description of the CMS$MODIFY_CLASS
routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRINSERTIONS CMS inserted zero or more generations,but
encountered errors during the transaction.

Error

103

Chapter 2. CMS Routine Descriptions

Return Code Description Status

CMS$_GENINSERTED CMS inserted the generation. Success
CMS$_GENNOINSERT CMS did not insert the generation. Error
CMS$_INSERTIONS CMS inserted one or more generations. Success
CMS$_NOREF Error accessing the library. Error

CMS$INSERT_GROUP
CMS$INSERT_GROUP — Places one or more groups into the specified group or groups.

Format
CMS$INSERT_GROUP (library_data_block,
 sub_group_expression,
 group_expression,
 [remark],
 [if_absent],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

sub_group_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups to be inserted into group_expression. Wildcards and a comma list are
allowed.

group_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups into which sub_group_expression is to be inserted. Wildcards and a
comma list are allowed.

104

Chapter 2. CMS Routine Descriptions

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

if_absent

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to insert the group only if that group does not already belong to the
group. If you do not specify this argument and the group already contains the group, CMS returns an
error. Set the flag to 1 to direct CMS to insert the group only if it is absent. If the group is already in the
group, CMS takes no action and returns an error.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$INSERT_GROUP routine inserts one or more existing groups into one or more other
existing groups. (See the description of the CMS$CREATE_GROUP routine.) When you use the
CMS$INSERT_GROUP routine to insert group A into group B,the elements that can be accessed
through group B change as the contents of group A change. CMS does not allow you to define recursive
groups. For example, you cannot insert group A into group B if group A already contains group B.

You cannot insert any groups into a group that has the READ_ONLY attribute. For information on the
READ_ONLY and NOREAD_ONLY attributes, see the description of the CMS$MODIFY_GROUP
routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRINSERTIONS CMS inserted zero or more groups, but
encountered one or more errors during the
transaction.

Error

CMS$_INSERTED CMS inserted the groups. Success
CMS$_INSERTIONS CMS inserted one or more groups. Success
CMS$_NOINSERT CMS did not insert the group. Error
CMS$_NOREF Error accessing the library. Error

105

Chapter 2. CMS Routine Descriptions

CMS$MODIFY_CLASS
CMS$MODIFY_CLASS — Changes the characteristics of the specified class or classes.

Format
CMS$MODIFY_CLASS (library_data_block,
 class_expression,
 [remark],
 [new_name]1,
 [new_remark]1,
 [read_only]1,
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

class_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes to be modified. Wildcards and a comma list are allowed, unless you
specify new_name.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

new_name

type: char_string
access: read
mechanism: by descriptor

1At least one of these arguments is required.

106

Chapter 2. CMS Routine Descriptions

Specifies the new class name. Class names and group names must be unique; CMS returns an error if
you specify a name already used for an existing class or group. If a previously used class or group name
has been removed by a DELETE CLASS or DELETE GROUP transaction, you can use that name again.
You cannot specify wildcards or a comma list. In addition, if you specify the new_name argument,you
cannot specify wildcards or a comma list in the class_expression argument.

new_remark

type: char_string
access: read
mechanism: by descriptor

Specifies a new remark to be substituted for the existing creation remark for the class.

read_only

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that changes the access to the class. If you set the flag to 1, CMS sets the class to
READ_ONLY. If you set the flag to 0, CMS sets the class to NOREAD_ONLY. By default, the existing
access is not changed.

If you want to change the attributes of a READ_ONLY class,you can set the read_only flag to 0 in
the same call that you use to change other attributes. In addition,you can change the attributes of a
NOREAD_ONLY class and set the class to READ_ONLY in the same call.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$MODIFY_CLASS routine changes the characteristics of one or more classes. You can change
the following characteristics:

● The name of the class.

● The remark associated with the CMS CREATE CLASS command for the specified class.

● The access to the class (READ_ONLY or NOREAD_ONLY). You cannot change the contents or
the name of a class that has been set to READ_ONLY.

You must specify one or more of the new_name, new_remark, or read_only arguments in the call to
CMS$MODIFY_CLASS. If a class is set to READ_ONLY, you must change it to NOREAD_ONLY to
change any other characteristics.

107

Chapter 2. CMS Routine Descriptions

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODIFIES CMS modified zero or more classes, but
encountered one or more errors during the
transaction.

Error

CMS$_MODIFICATIONS CMS modified one or more classes. Success
CMS$_MODIFIED CMS modified the class. Success
CMS$_NOMODIFY CMS did not modify the class. Error
CMS$_NOREF Error accessing the library. Error

Example
CHARACTER*14 DIR
CHARACTER*8 CLASS
CHARACTER*8 NEWNAME

INTEGER*4 READONLY
INTEGER*4 LDB(50)

INTEGER*4 CMS$SET_LIBRARY
INTEGER*4 CMS$MODIFY_CLASS

DIR = '[LENNON.SONGS]'
CLASS = 'PRE_1968'
NEWNAME = 'PRE_1970'
READONLY = 1
STATUS = CMS$SET_LIBRARY(LDB,DIR)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
STATUS = CMS$MODIFY_CLASS(LDB,CLASS,,NEWNAME,,READONLY)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
END

Key to Example:

Character string variables are declared for the directory specification,existing class name, and new
class name.

A longword integer variable is declared for the read_only flag.

The LDB is declared as a 50–word integer array.

The CMS routines are declared external to the program.

The character string variables are assigned values and the read_only flag is set to change the
access to the class.

CMS$SET_LIBRARY is called to initialize the LDB.

CMS$MODIFY_CLASS is called with the library_data_block, class_expression, new_name,
and read_only arguments. Extra commas are used as placeholders for the omitted arguments.
Note that you can change the access to the class in the same call that you use to change the
characteristics (in this case, the class name).

108

Chapter 2. CMS Routine Descriptions

CMS$MODIFY_ELEMENT
CMS$MODIFY_ELEMENT — Changes the characteristics of each specified element.

Format
CMS$MODIFY_ELEMENT (library_data_block,
 element_expression,
 [remark],
 [new_name]1,
 [new_remark]1,
 [history]1,
 [notes]1,
 [position]1,
 [concurrent]1,
 [reference_copy]1,
 [msg_routine],
 [review]1)

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements to be modified. Wildcards and a comma list are
allowed, unless you specify new_name.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and selects elements based on the list of groups established in the library.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

1At least one of these arguments is required.

109

Chapter 2. CMS Routine Descriptions

new_name

type: char_string
access: read
mechanism: by descriptor

Specifies the new element name. You cannot use 00CMS as the file name component of an element
name because it is reserved for CMS. If you specify this argument, you cannot specify wildcards or a
comma list in the element_expression argument.

new_remark

type: char_string
access: read
mechanism: by descriptor

Specifies a new remark to be substituted for the existing creation remark for the element. If you change
this remark, the remark associated with generation 1 of the element is not altered. To change the remark
associated with generation 1 of the element, use CMS$MODIFY_GENERATION.

history

type: char_string
access: read
mechanism: by descriptor

Specifies the history string. If you include the historyargument in the call, CMS establishes or changes
the history attribute for the element. By default, CMS does not alter the existing history attribute (if
any). If an element has a history attribute, its history is included in the file when it is retrieved by the
CMS$FETCH routine. To disable the history attribute, specify a zero-length string. For a detailed
explanation of the history attribute, see the VSI DECset for OpenVMS Guide to the Code Management
System.

notes

type: char_string
access: read
mechanism: by descriptor

Specifies the notes string. If you include the notes argument in the call, CMS establishes or changes the
notes attribute for the element. By default, CMS does not alter the existing notes attribute (if any). If an
element has a notes attribute, notes are added to the ends of the lines of the file when it is retrieved by
the CMS$FETCH routine. To disable the notes attribute, specify a zero-length string. Any element that
has the notes attribute must have the position attribute. For a detailed explanation of the notes attribute,
see the VSI DECset for OpenVMS Guide to the Code Management System.

position

type: longword_signed
access: read
mechanism: by reference

110

Chapter 2. CMS Routine Descriptions

Specifies the position value to be used with the notes attribute. The position attribute determines the
character position at which the note is to begin on the line. The position value must be an integer greater
than zero. Any element that has the position attribute must have the notes attribute. For a detailed
explanation of the position attribute, see the VSI DECset for OpenVMS Guide to the Code Management
System.

concurrent

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating the access to the element. Set the flag to 1 to allow concurrent reservations
of the element. Set the concurrent flag to 0 to prohibit concurrent reservations. By default, the existing
concurrency characteristic is not changed.

reference_copy

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS is to maintain a reference copy of the element when a new main
line generation is created. If you set the flag to 1, CMS creates a reference copy for the element and
enables the reference_copy attribute for the element. If you set the flag to 0, CMS deletes the reference
copy and disables the reference copy attribute from the element.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

review

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS is to automatically mark new generations as pending review. By
default, the flag is set to 0, and CMS marks new generations of the element as pending review only if the
reviewed generation was either rejected or has a review pending. Set the flag to 1 to indicate that new
generations should be marked for review.

Description
The CMS$MODIFY_ELEMENT routine changes the characteristics of one or more elements. You can
alter the following characteristics:

111

Chapter 2. CMS Routine Descriptions

● Concurrent access to the element

● The history string inserted in the element historywhen the element is reserved or fetched

● The notes string and related position attribute

● The element name

● The creation remark stored in the library history

● The reference copy attribute of the element

● The review attribute of the element

You must specify one or more of the new_name, new_remark, concurrent, history, notes, position,
reference_copy, or review arguments in the call to CMS$MODIFY_ELEMENT. If a generation of the
element is currently reserved, you can change only the remark, reference copy, and review attributes of
the element.

If you specify the new_name, notes and position, or history arguments, the reference copy directory is
updated (provided the reference copy attribute is set).

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODIFIES CMS modified zero or more elements, but
encountered one or more errors during the
transaction.

Error

CMS$_MODIFICATIONS CMS modified one or more elements. Success
CMS$_MODIFIED CMS modified the element. Success
CMS$_NOMODIFY CMS did not modify the element. Error
CMS$_NOREF Error accessing the library. Error

CMS$MODIFY_GENERATION
CMS$MODIFY_GENERATION — Alters information associated with one or more generations of an
element.

Format
CMS$MODIFY_GENERATION (library_data_block,
 element_expression,
 [remark],
 [generation_expression],
 new_remark,
 [msg_routine])

Arguments
library_data_block

112

Chapter 2. CMS Routine Descriptions

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose generations are to be modified. Wildcards
and a comma list are allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the particular generation to be modified. By default, the most recent generation on the main
line of descent is modified.

new_remark

type: char_string
access: read
mechanism: by descriptor

Specifies a new remark to be stored with the generation being modified. You must specify this
argument. The remark associated with the element is not altered, even if you modify the remark for
generation 1. To change the remark associated with the element, use the CMS$MODIFY_ELEMENT
routine. If you change this remark, the remark associated with the element is not altered. To change the
remark associated with the element, use the routine CMS$MODIFY_ELEMENT.

msg_routine

type: procedure
access: read
mechanism: by reference

113

Chapter 2. CMS Routine Descriptions

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$MODIFY_GENERATION routine enables you to change the remark associated with each
generation of an element in the library.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODIFIES CMS modified zero or more generations, but
encountered errors during the transaction.

Error

CMS$_MODIFICATIONS CMS modified one or more generations. Success
CMS$_MODIFIED CMS modified the generation. Success
CMS$_NOMODIFY CMS did not modify the specified generation. Error
CMS$_NOREF Error accessing the library. Error

CMS$MODIFY_GROUP
CMS$MODIFY_GROUP — Alters the information associated with one or more groups.

Format
CMS$MODIFY_GROUP (library_data_block,
 group_expression,
 [remark],
 [new_name]1,
 [new_remark]1,
 [read_only]1,
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

group_expression

type: char_string
access: read

1At least one of these arguments is required.

114

Chapter 2. CMS Routine Descriptions

mechanism: by descriptor

Specifies one or more groups to be modified. Wildcards and a comma list are allowed, unless you
specify new_name.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

new_name

type: char_string
access: read
mechanism: by descriptor

Specifies the new name of the group. You cannot specify wildcards or a comma list. If you specify this
argument, you cannot specify wildcards or a comma list in the group_name argument.

new_remark

type: char_string
access: read
mechanism: by descriptor

Specifies a new remark to be substituted for the existing creation remark for the group.

read_only

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that changes the access to the group. If you set the flag to 1, CMS sets the group to
READ_ONLY. If you set the flag to 0, CMS sets the group to NOREAD_ONLY. By default, the
existing access is not changed.

If you want to change the attributes of a READ_ONLY group,you can set the read_only flag to 0 in
the same call that you use to change other attributes. In addition,you can change the attributes of a
NOREAD_ONLY group and set the group to READ_ONLY in the same call.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

115

Chapter 2. CMS Routine Descriptions

Description
The CMS$MODIFY_GROUP routine changes the characteristics of one or more groups. You can alter
the following characteristics:

● The name of the group.

● The remark associated with the CREATE GROUP command for the specified group.

● The access to the group (READ_ONLY or NOREAD_ONLY). You cannot change the contents of a
group set to READ_ONLY access.

You must specify one or more of the new_name, new_remark, or read_only arguments in the call to
CMS$MODIFY_GROUP. If a group is set to NOREAD_ONLY, you must change it to READ_ONLY
to change any other characteristics.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODIFIES CMS modified zero or more groups, but
encounteredone or more errors during the
transaction.

Error

CMS$_MODIFICATIONS CMS modified one or more groups. Success
CMS$_MODIFIED CMS modified the group. Success
CMS$_NOMODIFY CMS did not modify the group. Error
CMS$_NOREF Error accessing the library. Error

CMS$MODIFY_LIBRARY
CMS$MODIFY_LIBRARY — Changes the characteristics of a CMS library.

Format
CMS$MODIFY_LIBRARY (library_data_block,
 [remark],
 reference_copy_dir,
 [msg_routine],
 [revision_time],
 [concurrent],
 [0],
 [keep],
 [extended_filenames],
 [long_variant_names])

Arguments
library_data_block

type: cntrlblk

116

Chapter 2. CMS Routine Descriptions

access: modify
mechanism: by reference

Specifies an initialized LDB.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

reference_copy_dir

type: char_string
access: read
mechanism: by descriptor

Specifies a valid OpenVMS directory to be used for reference copies of elements, or a zero-length
string to disable the reference copy directory. The directory cannot be a CMS library. Wildcards are not
allowed. This argument is required.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

revision_time

type: longword_signed
access: read
mechanism: by reference

Controls whether CMS uses the original file revision time or the file storage time when a file is created
in the CMS library. The default flag is set to 0, indicating the use of the original file revision time. Set
the flag to 1 to use the file storage time.

concurrent

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating access to the elements. By default, the flag is set to 0, and CMS allows
concurrent reservations of the elements. Set the concurrent flag to 1 to prohibit concurrent reservations
across the library, unless an individual element setting overrides it.

117

Chapter 2. CMS Routine Descriptions

0

type: reserved for CMS
access: reserved for CMS
mechanism: by value

Specifies a required argument reserved for use by CMS. You must either pass a value of 0, or include a
placeholder for this argument in the call to the CMS$CREATE_LIBRARY routine, so that the call frame
entry for this argument contains a 0.

keep

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prevents CMS from deleting copies of the input file after the element is created.
By default, the flag is set to 0,indicating that CMS should delete all the copies of the file in your default
directory (or the area indicated by the input_file argument) after creating the new element. Set the flag
to 1 to prevent CMS from deleting input files across the library, unless an individual element setting
overrides it.

extended_filenames

type: longword_signed
access: read
mechanism: by reference

Only valid on OpenVMS versions that support extended file specifications. The default 0 value does not
allow extended file names. The value 1 allows extended file names.

long_variant_names

type: mask_longword
access: read
mechanism: by reference

Specifies whether variant names longer than a single character are allowed. The default value 0 does not
allow long variant names. The value 1 allows variant names up to 255 alphabetic characters in length.

Description
The CMS$MODIFY_LIBRARY routine alters the connection between the reference copy directory and
the CMS library.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_MODIFIED CMS modified the library. Success
CMS$_NOMODIFY CMS did not modify the library. Error

118

Chapter 2. CMS Routine Descriptions

Return Code Description Status

CMS$_NOREF Error accessing the specified library. Error
CMS$_NOEXTENDED This version of CMS does not allow the use of

extended file names.
Error

CMS$_NOEXTENDEDREF The reference copy directory is located on a disk
that does not allow the use of extended file names.

Error

CMS$_EXTFOUND The library contains extended file names and
cannot be set to no extended file names.

Error

CMS$MODIFY_RESERVATION
CMS$MODIFY_RESERVATION — Alters the remark information associated with one or more
reservations.

Format
CMS$MODIFY_RESERVATION (library_data_block,
 element_expression,
 [generation_expression],
 [identification_number],
 [modify_command_remark],
 new_remark_for_reservation,
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose reservation remarks are to be changed.
Wildcards and a comma list are allowed.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and selects elements based on the list of groups established in the library.

generation_expression

119

Chapter 2. CMS Routine Descriptions

type: char_string
access: read
mechanism: by descriptor

Specifies the generation of an element reservation that is to be changed.

identification_number

type: longword_signed
access: read
mechanism: by reference

Specifies the reserved generation of the element whose remark is to be changed. CMS assigns a unique
reservation identification number to each element when it is reserved. If an element generation has only
one reservation, you can replace that reservation by specifying the generation expression. However, if
multiple reservations exist for the element generation, you must specify the identification number of
the exact reservation to be replaced. Use the CMS$SHOW_RESERVATIONS routine to determine the
reservation number of a generation.

modify_command_remark

type: char_string
access: read
mechanism: by descriptor

Specifies the new remark string to be logged in the history file along with the command.

new_remark_for_reservation

type: char_string
access: read
mechanism: by descriptor

Specifies the new remark string to replace the remark string currently associated with the reservation.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$MODIFY_RESERVATION routine alters the remark string currently associated with one or
more reservations. new_remark_for_reservation contains a string that is used to replace the remark
currently associated with the reservation identified by element_expression, generation_expression, and
identification_number.

120

Chapter 2. CMS Routine Descriptions

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODIFIES CMS modified zero or more element reservations
but encountered one or more errors during the
transaction.

Error

CMS$_MODIFICATIONS CMS modified one or more element reservations. Success
CMS$_MODIFIED CMS modified the specified element reservation. Success
CMS$_NOMODIFY CMS did not modify the element reservation. Error
CMS$_NOREF Error accessing the library. Error

Example
INTEGER*4 LDB(50)
CHARACTER*50 ELEMENTNAME
 NEWREMARKELEMENTNAME='SAMPLE.C'
NEWREMARK='FIXING PROBLEM REPORT 154'
CALL CMS$MODIFY_RESERVATION(LDB, ELEMENTNAME,,,, NEWREMARK,)

This call to CMS$MODIFY_RESERVATION finds the latest generation of the element sample.c in
the library specified by CMS$LIB. It then checks the reservation for the current user and replaces the
original reservation remark with the new remark value, as declared by NEWREMARK.

CMS$PUT_STRING
CMS$PUT_STRING — Passes a string from a callback routine to CMS.

Format
CMS$PUT_STRING (string)

Arguments
string

type: char_string
access: read
mechanism: by descriptor

Specifies a string to be passed to CMS.

Description
The CMS$PUT_STRING routine provides the method of passing strings to CMS from within a
callback routine. You must use this routine within the callback routines that provide input for the
CMS$CREATE_ELEMENT, CMS$DIFFERENCES, and CMS$REPLACE routines.

CMS accepts only one input string during a single execution of an input callback routine. Thus, you
should call CMS$PUT_STRING only once during a single execution of a callback routine. CMS returns
CMS$_NORMAL after the first call to CMS$PUT_STRING. If you call CMS$PUT_STRING again

121

Chapter 2. CMS Routine Descriptions

before the callback routine returns control to CMS, the string buffer is overwritten with the new string.
In this case, CMS returns CMS$_MULTCALL with a warning severity level.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_MULTCALL You have called CMS$PUT_STRING more than
once during a single invocation of an input callback
routine.

Warning

Example
INTEGER*4 FUNCTION INPUT_ROUTINE (FIRST_CALL,LIBDB,USER_PARAM,
1 ELEMENT_ID,EOF_STATUS,SEQUENCE_FLAG,SEQUENCE_NUM)

 IMPLICIT INTEGER*4 (A-Z)
 EXTERNAL CMS$PUT_STRING
 INTEGER*4 LIBDB(50)
 CHARACTER*80 DATA_LINE
 LOGICAL FIRST_CALL

 IF (FIRST_CALL) CALL OPEN_FILE
 READ (1,END=100) DATA_LINE
 CALL CMS$PUT_STRING(DATA_LINE)
 INPUT_ROUTINE = 1
 GO TO 200

100 EOF_STATUS = %LOC(CMS$_EOF)
 CALL CLOSE_FILE
 INPUT_ROUTINE = 1
 RETURN
200
 END

Key to Example:

During the first invocation of the input routine, a routine is called to open the input file.

The string supplied by the READ statement is passed to CMS with the CMS$PUT_STRING
routine.

When end-of-file is encountered by the READ statement, eof_status is set, the input file is closed,
and control is transferred back to CMS.

For additional examples of programs that contain calls to the CMS$PUT_STRING routine, see Appendix
B, "Examples of Calling CMS".

CMS$REMARK
CMS$REMARK — Places a remark in the library history.

Format
CMS$REMARK (library_data_block,

122

Chapter 2. CMS Routine Descriptions

 remark,
 [msg_routine],
 [unusual])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command. This argument is required.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

unusual

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the transaction is unusual, and marks it as an unusual occurrence
in the history file with the command. Set the flag to 1 if the transaction is unusual. Otherwise, set it to 0.
By default, the remark is not an unusual occurrence.

Description
The CMS$REMARK routine adds a remark to the library history. You can include up to 1,000
characters in a remark string. The remark is recorded in the library history in the following format:

date time username REMARK "remark"

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_NOREF Error accessing the library. Error

123

Chapter 2. CMS Routine Descriptions

Return Code Description Status

CMS$_NOREMARK CMS did not enter the remark in the library
history.

Error

CMS$_REMARK CMS entered the remark in the library
history.

Success

CMS$REMOVE_ELEMENT
CMS$REMOVE_ELEMENT — Removes one or more elements from each specified group.

Format
CMS$REMOVE_ELEMENT (library_data_block,
 element_expression,
 group_expression,
 [remark],
 [if_present],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements to be removed. Wildcards and a comma list are
allowed.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and selects elements based on the list of groups established in the library.

group_expression

type: char_string
access: read
mechanism: by descriptor

124

Chapter 2. CMS Routine Descriptions

Specifies one or more groups from which the elements (indicated by element_expression) are to be
removed. Wildcards and a comma list are allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

if_present

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to remove the element from the group only if it already belongs
to the group. If you set the flag to 1 and the element does not belong to the group, CMS returns
CMS$_NORMAL. If you use wildcards in the element_expression argument, CMS ignores the value
of the if_present flag and assumes the value to be 1. If you specify a single element, do not specify
if_present (or if you set the flag to 0), and the element does not belong to the group, CMS returns an
error.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$REMOVE_ELEMENT routine removes one or more elements from each specified group.
The routine does not delete the elements from the library, but there is no longer any association between
the elements and the groups. You cannot remove any elements from agroup that has the READ_ONLY
attribute. For information on the READ_ONLY and NOREAD_ONLY attributes, see the description of
the CMS$MODIFY_GROUP routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERREMOVALS CMS removed zero or more elements, but
encountered one or more errors during the
transaction.

Error

CMS$_NOREF Error accessing the library. Error
CMS$_NOREMOVAL CMS did not remove the element. Error
CMS$_REMOVALS CMS removed one or more elements. Success

125

Chapter 2. CMS Routine Descriptions

Return Code Description Status

CMS$_REMOVED CMS removed the element. Success

CMS$REMOVE_GENERATION
CMS$REMOVE_GENERATION — Removes one or more element generations from each specified
class.

Format
CMS$REMOVE_GENERATION (library_data_block,
 element_expression,
 class_expression,
 [remark],
 [if_present],
 [msg_routine],
 [generation])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose generations are to be removed. Wildcards
and a comma list are allowed.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and selects elements based on the list of groups established in the library.

class_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes from which the element generation is to be removed. Wildcards and a
comma list are allowed.

126

Chapter 2. CMS Routine Descriptions

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

if_present

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to remove the element generation from the class only if it already
belongs to the class. If you set the flag to 1 and the class does not contain a generation from the element,
CMS returns CMS$_NORMAL. If you use wildcards in the element_expression argument, CMS
ignores the value of the if_present flag and assumes the value to be 1. If you specify a single element,
do not specify if_present (or if you set the flag to 0), and the element does not belong to the class, CMS
returns an error.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

generation

type: char_string
access: read
mechanism: by descriptor

Specifies a string descriptor containing the generation to be removed. CMS returns an error if the
generation is not located in the class, and if the element_expression argument does not contain a
wildcard or a group.

Description
The CMS$REMOVE_GENERATION routine removes one or more element generations from each
specified class. The routine does not delete the element or the generation from the library, but the
generation is no longer associated with the class. You cannot remove any generations from a class that
has the READ_ONLY attribute.

For information on the READ_ONLY and NOREAD_ONLY attributes, see the description of the
CMS$MODIFY_CLASS routine.

To remove one element generation from a class and replace it with another generation of the same
element, specify the supersede argument to the CMS$INSERT_GENERATION routine.

127

Chapter 2. CMS Routine Descriptions

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERREMOVALS CMS removed zero or more generations, but
encountered one or more errors during the
transaction.

Error

CMS$_GENNOREMOVE CMS did not remove the generation. Error
CMS$_GENREMOVED CMS removed the generation. Success
CMS$_NOREF Error accessing the library. Error
CMS$_REMOVALS CMS removed one or more generations. Success

CMS$REMOVE_GROUP
CMS$REMOVE_GROUP — Removes one or more groups from another group or groups.

Format
CMS$REMOVE_GROUP (library_data_block,
 sub_group_expression,
 group_expression,
 [remark],
 [if_present],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

sub_group_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups to be removed from group_expression. Wildcards and a comma list are
allowed.

group_expression

type: char_string
access: read

128

Chapter 2. CMS Routine Descriptions

mechanism: by descriptor

Specifies one or more groups from which sub_group_expressionis to be removed. Wildcards and a
comma list are allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

if_present

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to remove sub_group_expression from group_expression
only if it belongs to the group. If you set the flag to 1 and group_expression does not contain
sub_group_expression, CMS returns CMS$_NORMAL. When either group name contains wildcards,
CMS ignores the value of the if_present flag and assumes the value to be 1. If you specify a single
group, do not specify if_present (or if you set the if_present flagto 0), and sub_group_expression
does not belong to group_expression, CMS returns an error.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$REMOVE_GROUP routine removes one or more groups from another group or groups. The
routine does not delete the group from the library, but there is no longer any association between the
respective groups. You cannot remove any groups from a group that has the READ_ONLY attribute.
For information on the READ_ONLY and NOREAD_ONLY attributes, see the description of the
CMS$MODIFY_GROUP routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERREMOVALS CMS removed zero or more groups, but
encountered one or more errors during the
transaction.

Error

CMS$_NOREF Error accessing the library. Error

129

Chapter 2. CMS Routine Descriptions

Return Code Description Status

CMS$_NOREMOVAL CMS did not remove the group. Error
CMS$_REMOVALS CMS removed one or more groups. Success
CMS$_REMOVED CMS removed the group. Success

CMS$REPLACE
CMS$REPLACE — Returns one or more reserved generations to the library and creates a new
generation of one or more elements to identify the changes.

Format
CMS$REPLACE (library_data_block,
 element_expression,
 [remark],
 [variant],
 [reserve],
 [keep],
 [input_file],
 [input_routine],
 [user_arg],
 [msg_routine],
 [if_changed],
 [generation_expression],
 [identification_number],
 [insert_into_class])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more reserved elements or groups of elements to be replaced. Wildcards and a comma
list are allowed.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and selects elements based on the list of groups established in the library.

130

Chapter 2. CMS Routine Descriptions

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

variant

type: char_string
access: read
mechanism: by descriptor

Specifies an alphabetic character used to label the variant line of descent. If you specify this argument,
CMS starts a variant line of descent. The number of the new generation is the predecessor's number,
followed by the variant letter, followed by the numeral 1.

If an element generation is reserved more than once, the replaced generations cannot be on the same line
of descent. Thus, one can be replaced as a direct descendant of the reserved generation and the rest must
be replaced as variants.

reserve

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to extend the reservation established for the generation. By default,
the flag is set to 0,and CMS does not reserve the new generation. Set the reserve flag to 1 to extend
the reservation. In this case, CMS ignores the value of the keep flag and does not delete the file used to
create the new generation.

keep

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that prevents CMS from deleting the input files. If you set the value of the flag to 1,
CMS does not delete the files. By default, the flag is set to 0 and CMS deletes the files across the library,
unless an individual element setting overrides it.

Note that if you set the reserve flag to 1, CMS does not delete the file, regardless of the value of the
keep flag.

input_file

type: char_string
access: read

131

Chapter 2. CMS Routine Descriptions

mechanism: by descriptor

Specifies the location of the file whose contents are used to create anew generation of the element
whose reservation is being replaced. If you specify an input file, you cannot also specify an input routine.
Wildcards are allowed.

Use this argument if the input file name is different from the name of the reserved generation's element,
or if the file is in some directory other than your current, default directory. If you provide a directory
specification, but no file name or file type, CMS searches the specified directory for a file with the same
name as the element whose generation is being replaced. When you specify an input file in an alternate
directory, CMS deletes the file from the alternate location (unless you specify the keep or reserve
argument).

input_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that provides data for the CMS$REPLACE transaction. CMS calls this
routine once for each line of data until the callback routine indicates the end of the file. If you specify
an input routine, you cannot also specify an input file. See Section 1.6, "Using Callback Routines" for
information about the parameters that CMS passes to the input routine.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the input_routine argument, using the same
mechanism that you used to pass it to CMS.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

if_changed

type: longword_signed
access: read
mechanism: by reference

Specifies that a new generation is to be created only if the input file is different from the generation
that was reserved. If there are no changes, the reservation is canceled (the generation is unreserved) and

132

Chapter 2. CMS Routine Descriptions

the input file is not deleted. By default, a new generation is created, regardless of the existence of any
differences.

generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the reserved generation of the element to be replaced into the library. This argument can
be used when you have multiple reservations on the same element, but not on the same generation
of the same element. If multiple reservations exist for the element generation, you must specify the
identification number of the exact reservation to be unreserved (canceled).

identification_number

type: longword_signed
access: read
mechanism: by reference

Specifies the reserved generation of the element to be replaced into the library. CMS assigns a unique
reservation identification number to each element when it is reserved. If an element generation has only
one reservation, you can replace that reservation by specifying the generation expression. However, if
multiple reservations exist for the element generation, you must specify the identification number of
the exact reservation to be replaced. Use the CMS$SHOW_RESERVATIONS routine to determine the
reservation number of a generation.

insert_into_class

type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes into which newly created generations are to be inserted. Wildcards and a
comma list are allowed.

Callback Routine Parameters
When you write an input routine to provide data for CMS$REPLACE, CMS passes the following
parameters in the order shown with each call to input_routine:

first_call, library_data_block, user_param, element_id,
 eof_status, sequence_flag, sequence_number

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

first_call

type: longword_signed
access: read
mechanism: by reference

133

Chapter 2. CMS Routine Descriptions

Specifies a flag that indicates whether the current call to the input routine is the first call. CMS sets the
flag to 1 if it is the first call. Otherwise, it is set to 0.

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$REPLACE. If you did not specify a user argument,
this parameter points to a read-only storage location containing the value 0. CMS passes user_param to
your routine using the same mechanism that you used to pass it to CMS$REPLACE.

element_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

When you use a callback routine to replace an element, CMS passes the name of the element in this
parameter. If you are replacing more than one element (by specifying a group name, wildcards, or a
comma list in the element_expression argument in the call to CMS$REPLACE), CMS advances to the
next reservation each time you set the eof_status parameter to true (1).

eof_status

type: longword_signed
access: modify
mechanism: by reference

Specifies the end-of-file status. The input routine must change the value of eof_status from false (0) to
true (1) to indicate to CMS that input is terminated. When eof_status is true, CMS ignores the contents
of the current input record (passed by CMS$PUT_STRING). Therefore, you must set eof_status to true
in the call following the last significant input record. See Section 1.6.3.1, "Specifying End of Input" for
more information on specifying the end of input.

When you indicate that you are replacing more than one element (by using a group name or wildcard
expression), CMS builds the list of elements to be replaced by comparing the element expression with
the list of elements that you have reserved. As the transaction progresses, you must set eof_statusat

134

Chapter 2. CMS Routine Descriptions

the appropriate time to direct CMS to finish the current element replacement and continue to the next
element on the list.

sequence_flag

type: longword_signed
access: write
mechanism: by reference

Specifies a flag that directs CMS to create a sequenced element generation. By default, the flag is set to
0, indicating that input is not sequenced. Set the flag to 1 to direct CMS to create a sequenced element
generation.

sequence_number

type: longword_signed
access: write
mechanism: by reference

Specifies a location that you fill in with a signed integer that indicates the sequence number of the line
being replaced. This is a value in the range 1 to 65,536.

Description
The CMS$REPLACE routine transfers the latest version of a file corresponding to a reserved element
generation from your current, default directory to your CMS library, thus creating a new generation.
You can direct CMS to use a file in a different location by specifying the input_file argument. After
the reservation is replaced, CMS deletes the file used to create the new generation (and any earlier
versions of the file in the same directory). If you specify either the keep or the reserve argument,
CMS does not delete the file. The element must have been reserved by the user who is replacing it,
unless you have BYPASS access to the element (see the VSI DECset for OpenVMS Guide to the Code
Management System). After the replace transaction is completed, the reservation is ended. CMS stores
the creation date and time, revision date and time, and file revision number of the file used to create
the new generation. When you fetch or reserve an element generation, CMS restores the times and file
revision number associated with the file used to create the element generation. You can also obtain this
information by using the CMS$SHOW_GENERATION routine.

By default, the number of the new generation is the number of its predecessor with the rightmost level
number increased by 1.

When making a concurrent replacement, you must specify the confirm_routine argument in the call to
CMS$SET_LIBRARY or CMS$CREATE_LIBRARY (before calling CMS$REPLACE), or you are not
warned of any concurrent reservations, and the replace transaction continues. To receive a confirmation
prompt when there are existing concurrent reservations, you must specify the routine in the call to
CMS$SET_LIBRARY or CMS$CREATE_LIBRARY.

When you use a callback routine to provide input for CMS$REPLACE, CMS uses the time of the
replacement transaction as the file creation and revision times associated with the new generation of
the element. CMS also uses the following record format and record attributes when you use a callback
input routine. If you provide unsequenced input, the new generation of the element has variable-length
records with the carriage return record attribute. If you provide sequenced input, the element generation
has VFC 2-byte records with the carriage return record attribute (contains variable-length records–first
two bytes are the length of the record).

135

Chapter 2. CMS Routine Descriptions

If the element you are replacing has the reference copy attribute enabled, CMS updates the reference
copy for the element in the reference copy directory.

Replacing an Element Generation with the History or Notes
Attribute
If you reserve a generation of an element with the history attribute and then replace it, the REPLACE
command strips the history records from the input file before creating the new generation. That is,
it does not copy the history into your CMS library. If you add text to the file in or above the history
(relative to #B), or in or below the history (relative to #H), the REPLACE command issues an error
message and the command is not executed.

If you reserve a file with embedded notes and then replace it, the REPLACE command does not copy
the notes to the CMS library. If, while editing the file,you insert text that looks like an embedded note, it
is deleted when the file is replaced.

For more information about concurrent reservations and replacements, and for information on embedded
histories and notes, see the VSI DECset for OpenVMS Guide to the Code Management System.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERREPLACEMENTS CMS replaced zero or more elements, but
encountered one or more errors during the
transaction.

Error

CMS$_GENCREATED CMS replaced the element. Success
CMS$_NOCHANGE CMS did not change the element, but did

reserve it.
Success

CMS$_NOREF Error accessing the library. Error
CMS$_NOREPLACE CMS did not replace the element. Error
CMS$_REPLACEMENTS CMS replaced one or more elements. Success
CMS$_USERERR User routine returned an error to CMS. Error

CMS$RETRIEVE_ARCHIVE
CMS$RETRIEVE_ARCHIVE — Retrieves one or more generations from one or more archive files.

Format
CMS$RETRIEVE_ARCHIVE ([library_data_block],
 archive_file_spec,
 [generation_spec],
 [output_file_spec],
 [msg_routine])

Arguments
library_data_block

136

Chapter 2. CMS Routine Descriptions

type: cntrlblk
access: modify
mechanism: by reference

Specifies the LDB for the current library. This argument is optional.

archive_file_spec

type: char_string
access: read
mechanism: by descriptor

Specifies the address of a string descriptor containing the name of the archive file. Wildcards and a
comma list are allowed.

generation_spec

type: char_string
access: read
mechanism: by descriptor

Specifies the address of a string descriptor containing the number of the generation to be retrieved from
the archive file. Wildcards are allowed. By default, if you do not specify a generation number on this
argument, CMS retrieves the latest generation of the archived element.

output_file_spec

type: char_string
access: read
mechanism: by descriptor

Specifies the address of a string descriptor containing the file specification of an output file into
which CMS retrieves the archived generations. Wildcards are allowed. One version of the output file
specification is created for each generation retrieved.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$RETRIEVE_ARCHIVE routine retrieves one or more generations of an element from
one or more archive files. By default, CMS restores the latest generation of an existing element that
has been archived. CMS puts the generation into a file in your default directory and gives it the same
name as the element from which it was archived. You can override this default behavior by using the
output_file_spec argument.

137

Chapter 2. CMS Routine Descriptions

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRETRIEVALS CMS retrieved zero or more generations, but one
or more errors occurred.

Error

CMS$_NORETRIEVE Error retrieving generation. Error
CMS$_NOTFOUND CMS could not find the specified object. Error
CMS$_RETRIEVALS CMS retrieved one or more generations. Success
CMS$_RETRIEVED Generation retrieved from archive file. Success

CMS$REVIEW_GENERATION
CMS$REVIEW_GENERATION — Associates a review comment with each specified element
generation currently under review, and enables you to change the review status of each specified
generation.

Format
CMS$REVIEW_GENERATION (library_data_block,
 element_expression,
 action,
 [remark],
 [generation_expression],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose generations are to be reviewed. Wildcards
and a comma list are allowed.

action

type: longword_signed
access: read

138

Chapter 2. CMS Routine Descriptions

mechanism: by reference

Specifies the review action to be taken. The following table lists the possible actions.

Action Description

CMS$K_ACCEPT = 0 Specifies that the generation, which must currently have a review pending,is
to be accepted and removed from the pending review list.

CMS$K_CANCEL = 1 Specifies that the pending review for this generation is to be canceled.
CMS$K_MARK = 2 Specifies that this generation is to be marked as pending review, and placed

on the review pending list.
CMS$K_REJECT = 3 Specifies that the generation, which must currently have a review pending,is

to be rejected and removed from the review pending list.
CMS$K_REVIEW = 4 Specifies that the remark be associated as a review remark with the specified

generation, which must currently have a review pending.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file, and,if you specified CMS$K_REVIEW as the
action argument, the remark string is associated with the generation.

generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies which generation is to be reviewed. If you do not specify this argument, the element's
most recently created generation that has a review pending will be reviewed, unless the action was
CMS$K_MARK, in which case the most recent generation on the main line of descent (1+) is marked.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$REVIEW_GENERATION routine causes a generation of an element to undergo review,
be placed on the library's review pending list, or be removed from the list and marked as accepted or
rejected.

The following table lists the possible return values for this function.

139

Chapter 2. CMS Routine Descriptions

Return Code Description Status

CMS$_ACCEPTANCES CMS accepted one or more generations. Success
CMS$_ACCEPTED CMS accepted the generation. Success
CMS$_CANCELATIONS CMS canceled one or more reviews. Success
CMS$_CANCELED CMS canceled the review. Success
CMS$_ERRACCEPTANCES CMS accepted zero or more generations, but

encountered errors during the transaction.
Error

CMS$_ERRCANCELATIONS CMS canceled zero or more reviews, but
encountered errors during the transaction.

Error

CMS$_ERRMARKS CMS marked zero or more generations, but
encountered errors during the transaction.

Error

CMS$_ERRREJECTIONS CMS rejected zero or more generations, but
encountered errors during the transaction.

Error

CMS$_ERRREVIEWS CMS associated the review remark with zero or
more generations, but encountered errors during
the transaction.

Error

CMS$_ILLACT Illegal review action specified. Error
CMS$_MARKED CMS marked the generation for review. Success
CMS$_MARKS CMS marked one or more generations for

review.
Success

CMS$_NOACCEPT CMS did not accept the specified generation. Error
CMS$_NOCANCEL CMS did not cancel the specified review. Error
CMS$_NOMARK CMS did not mark the specified generation. Error
CMS$_NOREF Error accessing the library. Error
CMS$_NOREJECT CMS did not reject the specified generation. Error
CMS$_NOREVIEW CMS did not associate the review remark with

the generation.
Error

CMS$_REJECTED CMS rejected the generation. Success
CMS$_REJECTIONS CMS rejected one or more generations. Success
CMS$_REVIEWED CMS associated the review remark with the

generation.
Success

CMS$_REVIEWS CMS associated the review remark with one or
more generations.

Success

CMS$SET_ACL
CMS$SET_ACL — Manipulates the access control list (ACL) on various objects in the CMS library.

Format
CMS$SET_ACL (library_data_block,
 object_type,

140

Chapter 2. CMS Routine Descriptions

 object_expression,
 [remark],
 [acl],
 [after],
 [default],
 [delete],
 [like],
 [new],
 [replace],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

object_type

type: longword_signed
access: read
mechanism: byreference

Specifies a value indicating what type of object is represented by object_expression. There is no default
type. The object type must be one of the following values:

● CMS$K_ACL_ELEMENT = 1

● CMS$K_ACL_CLASS = 2

● CMS$K_ACL_GROUP = 3

● CMS$K_ACL_LIBRARY = 4

● CMS$K_ACL_COMMAND = 5

object_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more objects whose ACLs are to be modified. Wildcards and a comma list are allowed.

remark

type: char_string
access: read
mechanism: by descriptor

141

Chapter 2. CMS Routine Descriptions

Specifies the remark string to be logged in the history file with the command.

acl

type: char_string
access: read
mechanism: by descriptor

Specifies an ACL to be associated with the object.

after

type: char_string
access: read
mechanism: by descriptor

A string specifying the ACL in the existing ACL after which this new list (specified by the acl argument)
is to be added.

default

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates that the ACL to be placed on the object is the default for objects of that
type. By default, the flag is set to 0. You must set the flag to 1 to place the default ACL on the objects.

delete

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates that the ACL entry or entries (specified by the acl argument) are to be
removed from the object. If the acl argument is not specified and delete is set to 1, the entire ACL is
deleted. By default, the flag is set to 0, indicating that the ACL entry remains on the object. You must set
the flag to 1 to remove the ACL from the object.

like

type: char_string
access: read
mechanism: by descriptor

A string specifying the object whose ACL is to be copied tothis object. You do not need to pass the acl
argument if a value for like is passed. The object specified by the like argument must be the same type
as the object being modified.

new

142

Chapter 2. CMS Routine Descriptions

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates that the ACL (specified by the acl argument) is to supersede any existing
ACL on the object.

replace

type: char_string
access: read
mechanism: by descriptor

A string specifying the ACL entry or entries that should replace the access control entries (ACEs)
specified on the acl argument. Any ACEs specified on the acl argument must be listed in the order in
which they appear in the ACL.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$SET_ACL routine manipulates the ACL associated with the specified object. The action
taken on the ACL depends on the parameters specified. The after, default, delete, like, new, and
replace arguments cannot be specified in the same call.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRMODACLS CMS modified zero or more ACLs, but
encountered errors during the transaction.

Error

CMS$_MODACL CMS modified the ACL. Success
CMS$_MODACLS CMS modified one or more ACLs. Success
CMS$_NOMODACL CMS did not modify the specified ACL. Error
CMS$_NOREF Error accessing the library. Error

CMS$SET_LIBRARY
CMS$SET_LIBRARY — Enables access to an existing CMS library. This routine initializes a library
data block for use with other CMS callable routines.

143

Chapter 2. CMS Routine Descriptions

Format
CMS$SET_LIBRARY (library_data_block,
 directory,
 [msg_routine],
 [verify],
 [confirm_routine],
 [output_routine],
 [width],
 [position],
 [positional_dir_spec])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies a valid LDB. The LDB might not be initialized, depending on whether you also specify the
position and positional_dir_spec arguments.

If the position and positional_dir_spec arguments are specified, the LDB must have already been
initialized by a previous call to CMS$CREATE_LIBRARY or CMS$SET_LIBRARY. If the position
and positional_dir_spec arguments are not specified, the LDB is initialized by this call and points to the
specified directory.

directory

type: char_string
access: read
mechanism: by descriptor

Specifies a single directory, or a list of directories separated by commas. Each must contain a valid CMS
library. If the directory argument specifies a logical name, it must translate into one or more library
directory specifications. Wildcards are not allowed.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

verify

type: longword_signed
access: read
mechanism: by reference

144

Chapter 2. CMS Routine Descriptions

Specifies a flag that causes CMS to perform validity checking on the CMS library. If you do not specify
this argument, the flag is set to 1, and CMS performs validity checking. If you set the flag to 0, CMS
suppresses validity checking. Validity checking improves performance and avoids the possibility of
waiting for a locked library.

confirm_routine

type: procedure
access: read
mechanism: by reference

Specifies the address of the entry mask of a confirmation callback routine. Specify this argument to
confirm an action such as a delete or replace transaction.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies the address of the entry mask of a terminal output callback routine.

width

type: longword_signed
access: read
mechanism: by reference

Specifies the maximum width of text that can be sent to the output callback routine. If this argument is
not specified, the terminal width is used. If this is unavailable, the width defaults to the translation of
CMS$WIDTH (if defined), or to 132 characters.

position

type: longword_signed
access: read
mechanism: by reference

Specifies the position value to be used with the positional_dir_spec argument. The position value
determines the position in the library search list at which the new library or libraries are to be inserted,
or whether the new library or libraries are to supersede the existing library search list.

The following table shows the possible values and corresponding results. You can specify only one of the
following values.

Value Result

0 Indicates that a new library or libraries should supersede the existing library list. This is
the default.

1 Indicates that the new library or libraries should be inserted after an existing library in
the library search list specified with the positional_dir_spec argument.

145

Chapter 2. CMS Routine Descriptions

Value Result

2 Specifies that the new library or libraries should be inserted before an existing library in
the library search list specified with the positional_dir_spec argument.

positional_dir_spec

type: char_string
access: read
mechanism: by descriptor

Specifies the name of a library in the current library search list before or after which the new library or
libraries are to be inserted (depending on the value of the position argument).

If you omit the positional_dir_spec argument and specify a value of 1 for the position argument,
new libraries are appended to the existing library search list. If you omit the positional_dir_spec
argument and specify a value of 2 for the position argument, new libraries are inserted at the
beginning of the existing library search list. If the position argument is omitted or has the value 0, the
positional_dir_spec argument is ignored.

Description
The CMS$SET_LIBRARY routine establishes a CMS library search list context with one or more
CMS library directories. You should call CMS$SET_LIBRARY before you make calls to any other
routines. Once the search list context has been established, you can use the resulting LDB in calls to
other CMS routines. The specified directories must contain valid CMS libraries that were created with
the CMS$CREATE_LIBRARY routine.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_CONTROLC Ctrl/C interrupt has been handled. Warning
CMS$_LIBSET Successful completion. (This message is not passed

to the message handler.)
Success

CMS$_NOREF Error accessing the library. Error

CMS$SET_NOLIBRARY
CMS$SET_NOLIBRARY — Removes one or more libraries from the current library search list.

Format
CMS$SET_NOLIBRARY (library_data_block,
 [directory])

Arguments
library_data_block

146

Chapter 2. CMS Routine Descriptions

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

directory

type: char_string
access: read
mechanism: by descriptor

Specifies a single directory, or a list of directories separated by commas. Each must contain a valid CMS
library. If this argument specifies a logical name, it must translate into one or more library directory
specifications. Wildcards are not allowed.

Description
The CMS$SET_NOLIBRARY routine removes one or more libraries from the current library search
list (see the VSI DECset for OpenVMS Guide to the Code Management System for more information on
library search lists). This routine should be called after all other calls to CMS routines have been made to
deallocate the virtual memory used to store the CMS library search list context.

If you do not specify a directory, all the libraries in the library search list are removed from
the search list and the LDB becomes invalid. In this case, you must reinitialize the LDB with a
CMS$CREATE_LIBRARY or CMS$SET_LIBRARY command before reusing it in subsequent calls to
other CMS routines.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_LIBLISMOD One or more libraries have been removed from the
library list.

Informational

CMS$_LIBLISNOTMOD One or more libraries have not been removed from
the library list.

Informational

CMS$SHOW_ACL
CMS$SHOW_ACL — Displays the ACL associated with one or more specified objects.

Format
CMS$SHOW_ACL (library_data_block,
 output_routine,
 object_type,
 [user_arg],
 [object_expression],
 [msg_routine])

147

Chapter 2. CMS Routine Descriptions

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine to process the output of CMS$SHOW_ACL. You must specify this routine.
See Section 1.6, "Using Callback Routines" for information about the parameters that CMS passes to the
output routine.

object_type

type: longword_signed
access: read
mechanism: by reference

A value indicating what type of object is represented by object_expression. There is no default type.
The object type must be one of the following values:

● CMS$K_ACL_ELEMENT = 1

● CMS$K_ACL_CLASS = 2

● CMS$K_ACL_GROUP = 3

● CMS$K_ACL_LIBRARY = 4

● CMS$K_ACL_COMMAND = 5

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism you used to pass it to CMS.

object_expression

type: char_string

148

Chapter 2. CMS Routine Descriptions

access: read
mechanism: by descriptor

Specifies one or more objects whose ACLs are to be displayed. Wildcards and a comma list are allowed.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_ACL. CMS passes the
following parameters in the order shown with each call to output_routine:

first_call, library_data_block, user_param, object_id, ace_id

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

first_call

type: longword_unsigned
access: read
mechanism: by reference

Indicates whether the current call to the output routine contains information about a new ACL. The
value of this parameter also indicates whether it is the first call to the output routine. The following table
shows the possible values of this argument:

Value Result

0 Indicates that the call contains the first ACE of a new ACL (after the first call).
1 Indicates the first call to the output routine. The ace_id argument contains the first

ACE of the first ACL.
2 Indicates that the call contains the next ACE in the current ACL.

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param

type: undefined

149

Chapter 2. CMS Routine Descriptions

access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_ACL. If you did not specify a user
argument, this parameter points to a read-only storage location containing the value 0. CMS passes
user_param to your routine using the same mechanism that you used to pass it to CMS$SHOW_ACL.

object_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the object name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

ace_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the object's ACL entry. Use the CMS$GET_STRING routine to translate
the string identifier.

Description
The CMS$SHOW_ACL routine retrieves and passes the ACL for the specified object to the output
routine one ACE at a time.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing element expression. Error
CMS$_ILLOBJTYP Illegal object type. Error
CMS$_NOCLS No classes found. Warning
CMS$_NOCMD No commands found. Warning
CMS$_NOELE No elements found. Warning
CMS$_NOGRP No groups found. Warning
CMS$_NOOBJ No objects found. Warning
CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified object. Error
CMS$_NOWLDCARD Wildcards are not allowed in generation

expressions.
Error

150

Chapter 2. CMS Routine Descriptions

CMS$SHOW_ARCHIVE
CMS$SHOW_ARCHIVE — Displays information about the contents of one or more archive files.

Format
CMS$SHOW_ARCHIVE (archive_file_spec,
 output_routine,
 [user_arg],
 [msg_routine])

Arguments
archive_file_spec

type: char_string
access: read
mechanism: by descriptor

Specifies the address of a string descriptor containing the name of one or more archive files. Wildcards
and a comma list are allowed.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine to process the output of CMS$SHOW_ARCHIVE.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism you used to pass it to CMS.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_ARCHIVE. CMS passes the
following parameters in the order shown with each call to output_routine:

151

Chapter 2. CMS Routine Descriptions

new_file, user_param, archive_history_id, generation_id,
 user_name_id, trans_time, creation_time, revision_time,
 remark_id, format, attributes, revision_number,
 record_size, review_status

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

new_file

type: longword_signed
access: read
mechanism: by reference

Indicates whether the current call to the output routine contains information about a new archive file.
The value of this parameter also indicates whether it is the first call to the output routine. The following
table shows the possible values of this argument.

Value Result

0 Indicates that the call contains generation information about a new archive file (after the
first call).

1 Indicates the first call to the output routine.
2 Indicates that the call contains information about the same file as the previous call.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_ARCHIVE. If you did not specify
a user argument, this parameter points to a read-only storage location containing the value 0.
CMS passes this argument to your routine using the same mechanism that you used to pass it to
CMS$SHOW_ARCHIVE.

archive_history_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the archive history line, which contains the element and date the archive
file was created. Use the CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

generation_id

type: address
access: read
mechanism: by reference

152

Chapter 2. CMS Routine Descriptions

Specifies a string identifier for the generation number. Use the CMS$GET_STRING routine to translate
the string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

user_name_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the name of the user who created the element generation. Use the
CMS$GET_STRING routine to translate the string identifier. For information about string identifiers,
see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

trans_time

type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the date and time of the transaction that created the generation.

creation_time

type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the creation date and time of the file used to create the generation.

revision_time

type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the date and time the file used to create the generation was revised.

remark_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and
Callback Routines".

format

type: longword_signed

153

Chapter 2. CMS Routine Descriptions

access: read
mechanism: by reference

Specifies the record format of the file used to create the element generation. The value of the longword
corresponds to the record format field (FAB$B_RFM) in the file access block. The value is contained
in the low-order byte of the passed longword. For more information about the RFM field, see the VSI
OpenVMS Record Management Services Reference Manual.

attributes

type: longword_signed
access: read
mechanism: by reference

Specifies the record attributes of the file used to create the element generation. The value of the
longword corresponds to the record attributes field (FAB$B_RAT) in the file access block. The value
is contained in the low-order byte. For more information about the RAT field, see the VSI OpenVMS
Record Management Services Reference Manual.

revision_number

type: longword_signed
access: read
mechanism: by reference

Specifies the revision number of the file used to create the element generation.

record_size

type: longword_signed
access: read
mechanism: by reference

Specifies the record size for files with fixed-length records. The low-order two bytes of this parameter
contain the maximum record size for the generation(regardless of record format). This value corresponds
to the FAB$W_MRS field in the file access block. A record size of zero indicates that no maximum
record size was stored when this generation was created.

review_status

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates the review status for the element generation. The following table shows the
possible values of this argument.

Value Result

0 Indicates that the generation has been accepted

154

Chapter 2. CMS Routine Descriptions

Value Result

1 Indicates that the generation does not have a review pending
2 Indicates that the generation does have a review pending
3 Indicates that the generation was rejected

Description
The CMS$SHOW_ARCHIVE routine provides information about one or more specified archive files.
The following table lists the possible return values for this function.

Return Code Description Status

CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified object. Error
CMS$_NULLSTR Null string is not allowed. Error
CMS$_OPENARC Error opening archive file. Error
CMS$_READERR Error reading archive file. Error
CMS$_USERERR User routine returned an error to CMS. Error

CMS$SHOW_CLASS
CMS$SHOW_CLASS — Provides information about one or more classes in a CMS library.

Format
CMS$SHOW_CLASS (library_data_block,
 output_routine,
 [user_arg],
 [class_expression],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine

type: procedure
access: read
mechanism: by reference

155

Chapter 2. CMS Routine Descriptions

Specifies a callback routine to process the output of CMS$SHOW_CLASS.CMS calls this routine
once for each class that matches the class argument. See Section 1.6, "Using Callback Routines" for
information about the parameters that CMS passes to the output routine.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism that you used to pass it to CMS.

class_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more classes to be displayed. Wildcards and a comma list are allowed. By default, CMS
produces a list of all classes in the library.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_CLASS.CMS passes the
following parameters in the order shown with each call to output_routine:

first_call, library_data_block, user_param, class_id, remark_id,
 read_only

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

first_call

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current callt o the output routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this is set to 0.

library_data_block

156

Chapter 2. CMS Routine Descriptions

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_CLASS. If you did not specify
a user argument, this parameter points to a read-only storage location containing the value 0.
CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$SHOW_CLASS.

class_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the class name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about interpreting strings passed to callback routines, see Section 1.6.3,
"Passing Strings Between CMS and Callback Routines".

remark_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and
Callback Routines".

read_only

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether the contents of the class list can be modified. CMS sets the flag to 1
if the class list is set to READ_ONLY access. If the flag is set to 0, the class list can be modified.

Description
The CMS$SHOW_CLASS routine provides information about one or more established classes. If you
specify more than one class, CMS processes the class list in alphabetical order. CMS calls the output
routine once for each class that you specify.

157

Chapter 2. CMS Routine Descriptions

The following information is passed in each call to the output routine:

● Class name

● Creation remark

● Read-only status

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing class. Error
CMS$_NOCLS No classes found. Warning
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified class. Error
CMS$_USERERR User routine returned an error to CMS. Error

CMS$SHOW_ELEMENT
CMS$SHOW_ELEMENT — Provides information about one or more elements in a CMS library.

Format
CMS$SHOW_ELEMENT (library_data_block,
 output_routine,
 [user_arg],
 [element_expression],
 [member_list],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes the output of CMS$SHOW_ELEMENT.CMS calls this
routine once for each element described by the element_expression argument. See Section 1.6, "Using
Callback Routines" for information about the parameters that CMS passes to the output routine.

158

Chapter 2. CMS Routine Descriptions

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism that you used to pass it to CMS.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements. Wildcards and a comma list are allowed. If you
do not explicitly specify one or more elements, CMS produces a list of all elements in the library.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and therefore selects elements based on the list of groups established in the library.

member_list

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to produce a list of the groups to which the element belongs (see the
description of the group_list_id callback parameter). If you set the flag to 0, CMS does not generate a
group list. Set the flag to 1 to direct CMS to generate the list.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_ELEMENT.CMS passes the
following parameters in the order shown with each call to output_routine:

first_call, library_data_block, user_param, element_id,
 remark_id, history_string_id, notes_string_id, position,
 concurrent, reference_copy, group_list_id, review

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

159

Chapter 2. CMS Routine Descriptions

first_call

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this is set to 0.

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_ELEMENT. If you did not specify
a user argument, this parameter points to a read-only storage location containing the value 0.
CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$SHOW_ELEMENT.

element_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

remark_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and
Callback Routines".

history_string_id

160

Chapter 2. CMS Routine Descriptions

type: address
access: read
mechanism: by reference

Specifies a string identifier for the history string. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

notes_string_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the notes string. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

position

type: longword_signed
access: read
mechanism: by reference

Specifies the position value for the generation notes.

concurrent

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates the concurrent access to the element. CMS sets the flag to 1 if concurrent
reservations of the element are allowed. Otherwise, this is set to 0.

reference_copy

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates the reference copy attribute. CMS sets the flag to 1 if a reference copy is
being maintained inthe current reference copy directory (if any). Otherwise, this is set to 0.

group_list_id

type: address
access: read
mechanism: by reference

161

Chapter 2. CMS Routine Descriptions

Specifies a string identifier for the list of groups to which the element belongs. Use the
CMS$GET_STRING routine to translate the string identifier. For information about string identifiers,
see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

This parameter is significant only if you specify the member_list argument in the call to
CMS$SHOW_ELEMENT. If you do not specify the member_list argument,the group list is a null
string.

review

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS is to automatically mark new generations as pending review.
CMS sets the flag to 1 if newly created generations are automatically marked for review. Otherwise, this
is set to 0.

Description
The CMS$SHOW_ELEMENT routine provides information about one or more elements. If you specify
more than one element, CMS processes the element list in alphabetical order. CMS calls the output
routine once for each element that you specify. The following information is passed in each call to the
output routine:

● Element name

● Creation remark

● Member list

● History

● Notes

● Position

● Concurrent attribute

● Reference copy attribute

● Review attribute

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing element expression. Error
CMS$_NOELE No elements found. Warning
CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified element. Error
CMS$_USERERR User routine returned an error to CMS. Error

162

Chapter 2. CMS Routine Descriptions

CMS$SHOW_GENERATION
CMS$SHOW_GENERATION — Displays information about one or more element generations in a
CMS library.

Format
CMS$SHOW_GENERATION (library_data_block,
 output_routine,
 [user_arg],
 [element_expression],
 [generation_expression],
 [from_generation_expression],
 [ancestors],
 [descendants],
 [member_list],
 [msg_routine],
 [before],
 [since])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes the output of CMS$SHOW_GENERATION. CMS calls this
routine once for each generation indicated in the call to this function. When you specify ancestors or
descendants, CMS calls the output routine once for each generation included in the specified range
of ancestors or descendants for the particular element. See Section 1.6, "Using Callback Routines" for
information about the parameters that CMS passes to the output routine.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism that you used to pass it to CMS.

163

Chapter 2. CMS Routine Descriptions

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements. Wildcards and a comma list are allowed. If you
do not explicitly specify one or more elements, CMS produces generation information about all elements
in the library.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and selects elements based on the list of groups established in the library.

generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the particular generation of the element to be displayed. By default, CMS displays information
about the latest generation (1+) on the main line of descent.

from_generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the generation that begins the list of ancestors. If you specify this argument in a call to
CMS$SHOW_GENERATION, you must also specify the ancestors argument in the same call.

ancestors

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to output information about the ancestors of the specified generation.
By default, the flag is set to 0, and CMS outputs information only about the specified generation. If you
set the flag to 1, CMS outputs information about the ancestors of the specified generation in addition to
the specified generation. You cannot specify both ancestors and descendants in the same call.

descendants

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to output information about the descendants of the specified
generation. By default, the flag is set to 0, and CMS outputs information about only the specified

164

Chapter 2. CMS Routine Descriptions

generations. If you set the flag to 1, CMS outputs information about both the generation and the
descendants of the specified generation. In this case, the default for generation_expression is generation
1. You cannot specify both descendants and ancestors in the same call.

member_list

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to produce a list of the classes to which the element generation
belongs. By default, the flag is set to 0, and CMS does not generate the list. If you set the flag to 1, CMS
generates the list (see Section 1.6, "Using Callback Routines" for information about the class_list_id
parameter).

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

before

type: date_time
access: read
mechanism: by reference

Specifies the quadword date and time value that CMS uses to select generation information for output.
CMS outputs information about element generations that occurred before the specified date and time.
This value must be specified in the absolute time value format. If a date and time value of 0 is specified,
CMS outputs a list of element generations up to the present date and time.

since

type: date_time
access: read
mechanism: by reference

Specifies the quadword date and time value that CMS uses to select generation information for output.
CMS outputs information about element generations that occurred after the specified date and time. This
value must be specified in the absolute time value format. If a date and time value of 0 is specified, CMS
outputs a list of element generations for the present date, up to the current time.

Callback Routine Parameters
You must provide an output routine to process the output ofCMS$SHOW_GENERATION; CMS passes
the following parameters in the ordershown with each call to output_routine:

new_element, library_data_block, user_param, element_id,

165

Chapter 2. CMS Routine Descriptions

 generation_id, user_name_id, trans_time, creation_time,
 revision_time, remark_id, class_list_id, format,
 attributes, revision_number, reservations, record_size,
 review_status

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

new_element

type: longword_signed
access: read
mechanism: by reference

Indicates whether the current call to the output routine contains information about a generation of a new
element. When you specify ancestors or descendants in the call to CMS$SHOW_GENERATION,
CMS calls the output routine once for each generation included in the specified range of ancestors or
descendants for the particular element. The value of this parameter also indicates whether it is the first
call to the output routine. The following table shows the possible values of this argument.

Value Result

0 Indicates that the call contains generation information about a new element (after the
first call)

1 Indicates the first call to the output routine
2 Indicates that the call contains information about the same element as the previous call

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_GENERATION. If you did not
specify a user argument, this parameter points to a read-only storage location containing the value
0. CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$SHOW_GENERATION.

element_id

type: address
access: read
mechanism: by reference

166

Chapter 2. CMS Routine Descriptions

Specifies a string identifier for the element name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

generation_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation number. Use the CMS$GET_STRING routine to translate
the string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

user_name_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the name of the user who created the element generation. Use the
CMS$GET_STRING routine to translate the string identifier. For information about string identifiers,
see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

trans_time

type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the date and time of the transaction that created the element generation.

creation_time

type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the creation date and time of the file used to create the element
generation.

revision_time

type: date_time
access: read
mechanism: by reference

Specifies a quadword containing the revision date and time of the file used to create the element
generation.

remark_id

167

Chapter 2. CMS Routine Descriptions

type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and
Callback Routines".

class_list_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the list of classes to which the generation belongs. Use the
CMS$GET_STRING routine to translate the string identifier. For information about string identifiers,
see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

This parameter is significant only if you specify the member_list argument in the call to
CMS$SHOW_GENERATION. If you do not specify member_list, the class_list_id parameter is a null
string.

format

type: longword_signed
access: read
mechanism: by reference

Specifies the record format of the file used to create the element generation. The value of the longword
corresponds to the record format field (FAB$B_RFM) in the file access block. The value is contained
in the low-order byte of the passed longword. For more information about the RFM field, see the VSI
OpenVMS Record Management Services Reference Manual.

attributes

type: longword_signed
access: read
mechanism: by reference

Specifies the record attributes of the file used to create the element generation. The value of the
longword corresponds to the record attributes field (FAB$B_RAT) in the file access block. The value
is contained in the low-order byte. For more information about the RAT field, see the VSI OpenVMS
Record Management Services Reference Manual.

revision_number

type: longword_signed
access: read
mechanism: by reference

Specifies the revision number of the file used to create the element generation.

168

Chapter 2. CMS Routine Descriptions

reservations

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether any current reservations are established for the element
generation. If the flag is set to 1, the element generation is reserved.

record_size

type: longword_signed
access: read
mechanism: by reference

Specifies the record size for files with fixed-length records. The low-order two bytes of this parameter
contain the maximum record size for the generation (regardless of record format). This value
corresponds to the FAB$W_MRS field in the file access block. A record size of zero indicates that no
maximum record size was stored when this generation was created.

review_status

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates the review status for the element generation. The following table shows the
possible values of this argument.

Value Result

0 Indicates that the generation has been accepted
1 Indicates that the generation does not have a review pending
2 Indicates that the generation has a review pending
3 Indicates that the generation has been rejected

Description
The CMS$SHOW_GENERATION routine provides information about one or more element generations.
If you specify more than one element, CMS processes the element list in alphabetical order. CMS calls
the output routine once for each element that you specify. When you specify ancestors or descendants,
CMS produces a list of generations in reverse chronological order. (In this case, CMS calls the output
routine once for each generation included in the specified range of ancestors or descendants for the
particular element.) The following information is passed in each call to the output routine:

● Element name

● Generation number

● User name

● Transaction date and time (quadword)

169

Chapter 2. CMS Routine Descriptions

● Creation date and time of the file used in the replace transaction(quadword)

● Revision date and time of the file used in the replace transaction(quadword)

● Creation remark

● Class list

● Reservation status

● File characteristics

● Review status

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_GENNOTFOUND Specified generation not found. Error
CMS$_ERRPAREXP Error parsing element expression. Error
CMS$_ILLCHAR Illegal character in generation expression. Error
CMS$_NOELE No elements found. Warning
CMS$_NOGEN No generation match. Error
CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified element. Error
CMS$_NOWLDCARD Wildcards are not allowed in generation

expressions.
Error

CMS$_USERERR User routine returned an error to CMS. Error

CMS$SHOW_GROUP
CMS$SHOW_GROUP — Provides information about one or more groups in a CMS library.

Format
CMS$SHOW_GROUP (library_data_block,
 output_routine,
 [user_arg],
 [group_expression],
 [msg_routine],
 [contents])

Arguments
library_data_block

type: cntrlblk
access: modify

170

Chapter 2. CMS Routine Descriptions

mechanism: by reference

Specifies an initialized LDB.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes the output of CMS$SHOW_GENERATION.CMS calls this
routine once for each group indicated in the call to CMS$SHOW_GROUP. See Section 1.6, "Using
Callback Routines" for information about the parameters that CMS passes to the output routine.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism that you used to pass it to CMS.

group_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more groups. Wildcards and a comma list are allowed. If you do not explicitly specify
one or more groups, CMS produces a list of all groups in the library.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

nohead
contents

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to produce a list of the elements and groups contained in this group.
You can specify an integer value (n) that directs CMS to display nested groups down to and including the

171

Chapter 2. CMS Routine Descriptions

level indicated by n. For example, a value of 1 displays one nested level of contents; a value of 2 displays
two nested levels of contents. You can also specify a value of –1 to display all levels of contained groups
or elements.

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_GROUP.CMS passes the
following parameters in the order shown with each call to output_routine:

first_call, library_data_block, user_param, group_id,
 remark_id, read_only, level, contents_id

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

first_call

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this is set to 0.

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_GROUP. If you did not specify
a user argument, this parameter points to a read-only storage location containing the value 0.
CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$SHOW_GROUP.

group_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the group name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

172

Chapter 2. CMS Routine Descriptions

remark_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and
Callback Routines".

read_only

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether the contents of the group list can be modified. CMS sets the flag to 1
if the group list is set to READ_ONLY access. If the flag is set to 0, the group list can be modified.

level

type: longword_signed
access: read
mechanism: by reference

Specifies a value indicating the current level of contents information passed through the contents_id
parameter. The level argument is significant only if you also specified the contents argument in the call
to CMS$SHOW_GROUP.

contents_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the list of elements or groups of elements contained in this group. Use the
CMS$GET_STRING routine to translate the string identifier. For information about string identifiers,
see Section 1.6.3, "Passing Strings Between CMS and Callback Routines". This parameter is significant
only if you specified the contents argument in the call to CMS$SHOW_GROUP. Otherwise, this
parameter points to a null descriptor.

Description
The CMS$SHOW_GROUP routine provides information about one or more established groups. If you
specify more than one group, CMS processes the group list in alphabetical order. CMS calls the output
routine once for each group that you specify. The following information is passed in each call to the
output routine:

● Group name

● Creation remark

173

Chapter 2. CMS Routine Descriptions

● Read-only status

● Contents

● Member list

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing group. Error
CMS$_NOGRP No groups found. Warning
CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified class. Error
CMS$_USERERR User routine returned an error to CMS. Error

CMS$SHOW_HISTORY
CMS$SHOW_HISTORY — Provides (in chronological order) records of transactions performed on
aCMS library.

Format
CMS$SHOW_HISTORY (library_data_block,
 output_routine,
 [user_arg],
 [object_name],
 [user],
 [before],
 [since],
 [transaction_mask],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine

type: procedure
access: read
mechanism: by reference

174

Chapter 2. CMS Routine Descriptions

Specifies a callback routine that processes the output of CMS$SHOW_HISTORY. CMS calls this
routine once for each history record that meets the criteria imposed by the arguments passed to this
function. See Section 1.6, "Using Callback Routines" for information about the parameters that CMS
passes to the output routine.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism that you used to pass it to CMS.

object_name

type: char_string
access: read
mechanism: by descriptor

Specifies the name of the element, group, or class. Wildcards and a comma list are allowed.

If you include a period (.) in the object_name string, CMS selects history records based on the element
or class names that match the string. If you do not include a period, CMS selects history records based
on group or class names that match the object_name string.

user

type: char_string
access: read
mechanism: by descriptor

Specifies the name of the user about whom CMS is to output information. By default, CMS outputs
information about all library users.

before

type: date_time
access: read
mechanism: by reference

Specifies the quadword binary date and time value that CMS uses to select transactions for output.
CMS outputs information about transactions that occurred before the specified date and time. You must
specify this argument in the absolute time value format. If you specify a date and time value of 0, CMS
outputs a list of transactions up to the present day and time.

since

type: date_time
access: read
mechanism: by reference

175

Chapter 2. CMS Routine Descriptions

Specifies the quadword binary date and time value that CMS uses to select transactions for output. CMS
outputs information about transactions that occurred after the specified date and time. You must specify
this argument in the absolute time value format. If you specify a date and time value of 0, CMS outputs a
list of transactions up to the present day and time.

transaction_mask

type: mask_longword
access: read
mechanism: by reference

Specifies one or more transactions records to be passed to output_routine. When you provide the
transaction_mask argument, CMS passes only the history records for the indicated commands. The
following table shows the symbols defined for this argument.

Symbol Bit Position Mask Value Command

COPY CLASS
COPY ELEMENT

CMS$M_CMD_COPY 0 1

COPY GROUP
CREATE CLASS
CREATE ELEMENT
CREATE GROUP

CMS$M_CMD_CREATE 1 2

CREATE LIBRARY
DELETE CLASS
DELETE ELEMENT
DELETE GROUP

CMS$M_CMD_DELETE 2 4

DELETE HISTORY
CMS$M_CMD_FETCH 3 8 FETCH

INSERT ELEMENT
INSERT GENERATION

CMS$M_CMD_INSERT 4 16

INSERT GROUP
MODIFY CLASS
MODIFY ELEMENT
MODIFY GROUP
MODIFY LIBRARY

CMS$M_CMD_MODIFY 5 32

MODIFY RESERVATION
CMS$M_CMD_REMARK 6 64 REMARK

REMOVE ELEMENT
REMOVE GENERATION

CMS$M_CMD_REMOVE 7 128

REMOVE GROUP
CMS$M_CMD_REPLACE 8 256 REPLACE
CMS$M_CMD_RESERVE 9 512 RESERVE
CMS$M_CMD_UNRESERVE 10 1024 UNRESERVE

176

Chapter 2. CMS Routine Descriptions

Symbol Bit Position Mask Value Command

CMS$M_CMD_VERIFY 11 2048 VERIFY
CMS$M_CMD_SET 14 16,384 SET ACL
CMS$M_CMD_ACCEPT 16 65,536 ACCEPT GENERATION
CMS$M_CMD_CANCEL 17 131,072 CANCEL REVIEW
CMS$M_CMD_MARK 18 262,144 MARK GENERATION
CMS$M_CMD_REJECT 19 524,288 REJECT GENERATION
CMS$M_CMD_REVIEW 20 1,048,576 REVIEW GENERATION

The mask values are defined as universal symbols in the CMS image. You can use OR with these values
to enable combinations of the values. This transaction mask is the same as the transaction mask used by
the CMS$DELETE_HISTORY routine.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_HISTORY.CMS passes the
following parameters in the order shown with each call to output_routine:

first_call, library_data_block, user_param, time, user_id,
 command_id, object_id, remark_id, unusual

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

first_call

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this is set to 0.

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

177

Chapter 2. CMS Routine Descriptions

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_HISTORY. If you did not specify
a user argument, this parameter points to a read-only storage location containing the value 0.
CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$SHOW_HISTORY.

time

type: date_time
access: read
mechanism: by reference

Specifies a quadword binary date and time value for the time of the transaction.

user_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the user name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

command_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the command name. Use the CMS$GET_STRING routine to translate
the string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

object_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the element, group, or class involved in the transaction. Use the
CMS$GET_STRING routine to translate the string identifier. For information about string identifiers,
see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

remark_id

178

Chapter 2. CMS Routine Descriptions

type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and
Callback Routines".

unusual

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the transaction is unusual. CMS sets the flag to 1 if the transaction
is unusual. Otherwise, this is set to 0.

Description
The CMS$SHOW_HISTORY routine provides information about library transactions. CMS calls the
output routine once for each transaction record. The following information is passed in each call to the
output routine:

● Transaction time

● User name associated with the transaction

● Command as entered (command name, subcommand name, option, qualifiers,and parameters)

● Remark entered with the command

● Unusual status

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ABSTIM Absolute date-time value required. Error
CMS$_NOHIS No history records found. Warning
CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOSINCE Error executing a since operation. Error
CMS$_TIMEORDER BEFORE and since time values cannot be resolved. Error
CMS$_USERERR User routine returned an error to CMS. Error

Example
 IMPLICIT INTEGER*4 (A-Z)
 INTEGER*4 LDB(50)
 CHARACTER*14 DIR

179

Chapter 2. CMS Routine Descriptions

 EXTERNAL CMS$_NOHIS
 INTEGER*4 CMS$SET_LIBRARY
 INTEGER*4 CMS$SHOW_HISTORY
 INTEGER*4 OUTPUT_ROUTINE

 DIR = '[LENNON.SONGS]'

 STATUS = CMS$SET_LIBRARY(LDB,DIR)
 IF (.NOT. STATUS) GO TO 1000
 STATUS = CMS$SHOW_HISTORY(LDB,OUTPUT_ROUTINE)
 IF (STATUS .EQ. %LOC(CMS$_NOHIS)) GO TO 1000
 .
 .
 .
1000 END
C

 INTEGER*4 FUNCTION OUTPUT_ROUTINE
 (FIRST_CALL,LIBDB,USER_PARAM,1
 TIME,USER_ID,COMMAND_ID,2
 OBJECT_ID,REMARK_ID,UNUSUAL)
 INTEGER*4 UNUSUAL
 EXTERNAL CMS$_NORMAL
 EXTERNAL CMS$_EXCLUDE
 OUTPUT_ROUTINE = %LOC(CMS$_NORMAL)
 IF (.NOT. UNUSUAL) THEN
 OUTPUT_ROUTINE = %LOC(CMS$_EXCLUDE)
 ENDIF
 RETURN
 END

This example checks only for unusual transactions; if there are no unusual transactions, the callback
routine returns CMS$_EXCLUDE each time control is transferred to CMS. As a result, the
CMS$SHOW_HISTORY routine returns CMS$_NOHIS (no history records found) and the routine
transfers control elsewhere.

CMS$SHOW_LIBRARY
CMS$SHOW_LIBRARY — Provides information about the current library.

Format
CMS$SHOW_LIBRARY (library_data_block,
 [reference_copy_dir],
 [statistics],
 [msg_routine],
 [verify],
 [output_routine],
 [user_arg])

Arguments
library_data_block

type: cntrlblk

180

Chapter 2. CMS Routine Descriptions

access: modify
mechanism: by reference

Specifies an initialized LDB.

reference_copy_dir

type: char_string
access: write
mechanism: by descriptor

Specifies a descriptor that CMS fills in with the specification for the reference copy directory (if any).

statistics

type: vector_longword_unsigned
access: write
mechanism: by reference

Specifies an array of 10 longwords that CMS fills in with information about the library. Figure 2.1,
"Statistics Array" shows the content of the statistics array. Each entry in the array is an integer count of
the number of indicated objects (elements, groups, classes, and so on).

Figure 2.1. Statistics Array

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

181

Chapter 2. CMS Routine Descriptions

verify

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that causes CMS to lock the library as part of the CMS$SHOW_LIBRARY routine. By
default, the flag is set to 1, indicating that locking is performed. The library must be locked for CMS to
fill in the reference_copy_dir and statistics parameters. If verify is specified as 0, CMS returns zeros
in these parameters. Library locking is also necessary for CMS to determine basic library integrity. If
recovery is necessary, it is not detected until another operation is performed.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes output of CMS$SHOW_LIBRARY. See Section 1.6, "Using
Callback Routines" for information about the parameters that CMS passes to the output routine.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism that you used to pass it to CMS.

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_LIBRARY. CMS passes the
following parameters in the order shown with each call to output_routine:

verify, first_call, user_param, library_spec_id,
 reference_copy_id, statistics_block, revision_time,
 concurrent, 0, keep, extended_filenames

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

verify

type: longword_signed
access: read
mechanism: by reference

Specifies the value passed to the CMS$SHOW_LIBRARY routine. This value is passed to the output
routine to determine if the reference_copy_id and statistics_block contents are valid.

first_call

182

Chapter 2. CMS Routine Descriptions

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that indicates whether the current call to the output routine is the first call. CMS sets the
flag to 1 if the current call is the first call. Otherwise, this is set to 0.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_RESERVATIONS. If you did not
specify a user argument, this parameter points to a read-only storage location containing the value
0. CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$SHOW_RESERVATIONS.

library_spec_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for a library directory specification. If the current library search list consists
of more than one library, successive calls to output_routine return all individual library directory
specifications, one at a time. Use the CMS$GET_STRING routine to translate the string identifier.
For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and Callback
Routines".

reference_copy_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the reference copy directory specification. If there is no reference copy
directory, the length of the string is 0.

statistics_block

type: vector_longword_unsigned
access: read
mechanism: by reference

Specifies an array of 10 longwords that CMS fills with information about the library. See Figure 2.1,
"Statistics Array" for information about the content of the statistics array. Each entry in the array is an
integer count of the number of indicated objects (elements, groups, classes, and so on).

revision_time

183

Chapter 2. CMS Routine Descriptions

type: longword_signed
access: read
mechanism: by reference

Indicates whether CMS used the file revision time, or the original file storage time, when the element
was created or modified. The value 1 indicates the file revision time, whereas the value 0 indicates the
original file storage time.

concurrent

type: longword_signed
access: read
mechanism: by reference

Contains a value indicating the access to the object. The value 1 indicates no concurrent reservations are
allowed, whereas the value 0 indicates concurrent reservations are allowed.

0

type: reserved for CMS
access: reserved for CMS
mechanism: by value

Specifies a required parameter reserved for use by CMS. You must either pass a value of 0 or include a
placeholder for this argument in the call to the CMS$SHOW_LIBRARY routine.

keep

type: longword_signed
access: read
mechanism: by reference

Contains the value of the KEEP attribute, which prevents CMS from deleting copies of the input file.
The value 0 indicates that CMS should delete all the copies of the file, whereas the value 1 indicates that
CMS should keep all the input files.

extended_filenames

type: longword_signed
access: read
mechanism: by reference

Only valid on OpenVMS versions supporting extended file specifications. The default 0 value does not
allow extended file names. The value 1 allows extended file names.

Description
The CMS$SHOW_LIBRARY routine identifies the reference copy directory (if any) for the current
library. This routine also provides information about the number of elements, current reservations,
concurrent replacements, reviews pending, and classes and groups in the library.

184

Chapter 2. CMS Routine Descriptions

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success

CMS$SHOW_RESERVATIONS
CMS$SHOW_RESERVATIONS — Provides information about all current reservations and concurrent
replacements in effect at the time the routine is called.

Format
CMS$SHOW_RESERVATIONS (library_data_block,
 output_routine,
 [user_arg],
 [element_expression],
 [generation_expression],
 [user],
 [msg_routine],
 [identification_number])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine that processes CMS$SHOW_RESERVATIONS output. CMS calls this
routine once for each reservation or concurrent replacement in effect for each element generation
indicated in the call to CMS$SHOW_RESERVATIONS. This argument is required. See Section 1.6,
"Using Callback Routines" for information about the parameters that CMS passes to the output routine.

user_arg

type: undefined
access: read
mechanism: undefined

185

Chapter 2. CMS Routine Descriptions

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism that you used to pass it to CMS. See Section 1.6, "Using Callback Routines" for information
about the parameters that CMS passes to the output routine.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements. Wildcards and a comma list are allowed. By
default, CMS outputs information about any existing reservations for generations of all elements in the
library.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as a
group name and selects elements based on the list of groups established in the library.

generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the particular generation of the element to be displayed. By default, CMS displays information
about any existing reservations for all generations of the elements indicated by element_expression.

user

type: char_string
access: read
mechanism: by descriptor

Specifies the user name that CMS uses to select reservation information for output. By default, CMS
outputs information about any existing reservations for all library users.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

identification_number

type: longword_signed
access: read
mechanism: by reference

186

Chapter 2. CMS Routine Descriptions

Specifies the reserved generation of the element to be displayed. CMS assigns a unique reservation
identification number to each element when it is reserved.

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_RESERVATIONS.CMS
passes the following parameters in the order shown with each call to output_routine:

new_element, library_data_block, user_param, element_id,
 generation_id, time, user_id, remark_id, concurrent,
 merge_generation_id, nonotes, nohistory, access,
 reservation_id

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

new_element

type: longword_signed
access: read
mechanism: by reference

Indicates whether the current call to the output routine contains information about a generation of a
new element. If there are any concurrent reservations or concurrent replacements for a given element,
CMS calls the output routine once for each concurrent reservation and replacement. The value of this
parameter also indicates whether it is the first call to the output routine.

The following table shows the possible values of this argument.

Value Result

0 Indicates that the call contains reservation information about the next element in the list
of elements specified by the element_expression argument (after the first call)

1 Indicates the first call to the output routine
2 Indicates that the call contains information about the same element as the previous call

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_RESERVATIONS. If you did not
specify a user argument, this parameter points to a read-only storage location containing the value

187

Chapter 2. CMS Routine Descriptions

0. CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$SHOW_RESERVATIONS.

element_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

generation_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the generation number. Use the CMS$GET_STRING routine to translate
the string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

time

type: date_time
access: read
mechanism: by reference

Specifies a quadword binary date and time value for the time of the transaction.

user_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the user name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

remark_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark. Use the CMS$GET_STRING routine to translate the string
identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and
Callback Routines".

188

Chapter 2. CMS Routine Descriptions

concurrent

type: longword_signed
access: read
mechanism: by reference

Specifies a value that indicates the status of the transaction. The following table shows the possible
values for this argument.

Value Result

–1 Concurrent replacement
0 Current reservation
1 Concurrent reservation

merge_generation_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the merge generation. Use the CMS$GET_STRING routine to translate
the string identifier. If there is no merge generation, the length of the string is 0. For information about
string identifiers, see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

nonotes

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS suppressed notes in the reservation transaction. If the flag is set
to 1, notes were suppressed; if the flag is set to 0, notes were not suppressed.

nohistory

type: longword_signed
access: read
mechanism: by reference

Specifies a flag indicating whether CMS suppressed the element history in the reservation transaction.
If the flag is set to 1, the history was not included in the output file; if the flag is set to 0, the element
history was included.

access

type: longword_signed
access: read
mechanism: by reference

189

Chapter 2. CMS Routine Descriptions

Specifies a flag that indicates the access allowed to the element. The following table shows the possible
values for this argument.

Value Result

0 Concurrent reservations are allowed.
1 Concurrent reservations are not allowed.
3 The existing reservation does not allow other reservations.

reservation_id

type: longword_signed
access: read
mechanism: by reference

Returns the identification number of the reservation.

Description
The CMS$SHOW_RESERVATIONS routine provides information about the reservations and
concurrent replacements in effect for one or more elements in a library. If you specify more than one
element, CMS processes the element list in alphabetical order. CMS calls the output routine once for
each reservation.

The following reservation information is passed in each call to the output routine:

● Element name

● Generation number

● Time of reservation or replacement

● User name

● Remark

● Concurrent status

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing element expression. Error
CMS$_ILLCHAR Illegal character in generation expression. Error
CMS$_NOREF Error accessing the library. Error
CMS$_NORES No reservations found. Warning
CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified element. Error
CMS$_NOWLDCARD Wildcards are not allowed in generation

expression.
Error

CMS$_USERERR User routine returned an error to CMS. Error

190

Chapter 2. CMS Routine Descriptions

CMS$SHOW_REVIEWS_PENDING
CMS$SHOW_REVIEWS_PENDING — Displays a list of element generations that currently have
review pending status. This routine also displays any review remarks that have been associated with the
generation currently under review.

Format
CMS$SHOW_REVIEWS_PENDING (library_data_block,
 output_routine,
 [user_arg],
 [element_expression],
 [generation_expression],
 [user],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

output_routine

type: procedure
access: read
mechanism: by reference

Specifies a callback routine to process the output of CMS$SHOW_REVIEWS_PENDING. This
argument is required. See Section 1.6, "Using Callback Routines" for information about the parameters
that CMS passes to the output routine.

user_arg

type: undefined
access: read
mechanism: undefined

Specifies a value that you supply and that CMS passes to the output_routine argument, using the same
mechanism that you used to pass it to CMS. See Section 1.6, "Using Callback Routines" for information
about the parameters that CMS passes to the output routine.

element_expression

type: char_string

191

Chapter 2. CMS Routine Descriptions

access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements whose generations with reviews pending are to
be displayed. Wildcards and a comma list are allowed. If you do not specify this argument, all element
generations pending review in the library are displayed.

generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the particular generation of the element to be displayed. By default, reviews pending for all of
the element's generations are displayed.

user

type: char_string
access: read
mechanism: by descriptor

Specifies the name of the user whose generations with pending reviews are to be displayed. By default,
pending reviews for generations created by all users are displayed.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Callback Routine Parameters
You must provide an output routine to process the output of CMS$SHOW_REVIEWS_PENDING.
CMS passes the following parameters in the order shown with each call to output_routine:

new_element, library_data_block, user_param, element_id,
 generation_id, generation_time, generation_user_id,
 generation_remark_id, review_time, review_user_id,
 review_remark_id

The callback routine must return a defined condition code to CMS. The following parameter descriptions
define the access to the object from the perspective of the callback routine.

new_element

type: longword_unsigned
access: read

192

Chapter 2. CMS Routine Descriptions

mechanism: by reference

Indicates whether the current call to the output routine contains information about a generation of a new
element. If more than one generation of an element has a review pending, CMS calls the output routine
for each pending review. If the CMS$SHOW_REVIEWS_PENDING routine is called multiple times
with information about the same generation of the same element, these calls contain review remark
information. The following table shows the possible values of this argument.

Value Result

0 Indicates that the call contains information about a different element than the previous
call

1 Indicates the first call to the output routine
2 Indicates that the call contains information about a different generation of the same

element as the previous call
3 Indicates that the call contains information about the same generation of the same

element as the previous call

library_data_block

type: cntrlblk
access: read
mechanism: by reference

Specifies the LDB for the current library.

user_param

type: undefined
access: modify
mechanism: undefined

Specifies the user argument as it was passed to CMS$SHOW_REVIEWS_PENDING. If you did not
specify a user argument, this parameter points to a read-only storage location containing the value
0. CMS passes user_param to your routine using the same mechanism that you used to pass it to
CMS$SHOW_REVIEWS_PENDING.

element_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the element name. Use the CMS$GET_STRING routine to translate the
string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

generation_id

type: address
access: read

193

Chapter 2. CMS Routine Descriptions

mechanism: by reference

Specifies a string identifier for the generation number. Use the CMS$GET_STRING routine to translate
the string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings Between
CMS and Callback Routines".

generation_time

type: date_time
access: read
mechanism: by reference

Specifies a binary quadword date-time value representing the time the generation was created.

generation_user_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the name of the user who created the generation.

generation_remark_id

type: address
access: read
mechanism: by reference

Specifies the remark entered when the generation was replaced. Use the CMS$GET_STRING routine to
translate the string identifier. For information about string identifiers, see Section 1.6.3, "Passing Strings
Between CMS and Callback Routines".

review_time

type: date_time
access: read
mechanism: by reference

Specifies a binary quadword date-time value representing the time the generation was placed under
review, or the date and time the review remark was entered.

review_user_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the name of the user who marked the generation for review or the user
who entered the review remark. Use the CMS$GET_STRING routine to translate the string identifier.
For information about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and Callback
Routines".

194

Chapter 2. CMS Routine Descriptions

review_remark_id

type: address
access: read
mechanism: by reference

Specifies a string identifier for the remark entered when the generation or the review of the generation
was marked. Use the CMS$GET_STRING routine to translate the string identifier. For information
about string identifiers, see Section 1.6.3, "Passing Strings Between CMS and Callback Routines".

Description
The CMS$SHOW_REVIEWS_PENDING routine retrieves information about generations with
reviews pending and passes that information to the output routine. If this routine is called multiple times
with information about the same generation of the same element, these calls contain review remark
information.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRPAREXP Error parsing element expression. Error
CMS$_ILLCHAR Illegal character in generation expression. Error
CMS$_NOREF Error accessing the library. Error
CMS$_NOREV No pending reviews were found for the

generations.
Error

CMS$_NORMAL Normal successful completion. Success
CMS$_NOTFOUND CMS could not find the specified element. Error
CMS$_NOWLDCARD Wildcards are not allowed in generation

expression.
Error

CMS$_USERERR User routine returned an error to CMS. Error

CMS$SHOW_VERSION
CMS$SHOW_VERSION — Provides version identification of the CMS system currently in use.

Format
CMS$SHOW_VERSION ([full]1,
 [brief]1,
 [absolute]1)

Arguments
full

1At least one of these arguments is required.

195

Chapter 2. CMS Routine Descriptions

type: char_string
access: write
mechanism: by descriptor

Specifies a descriptor to be filled in by CMS. The full form of the version identification includes the
product identification string and the version number.

brief

type: char_string
access: write
mechanism: by descriptor

Specifies a descriptor to be filled in by CMS. The brief form of version identification includes only the
version number.

absolute

type: longword_unsigned
access: write
mechanism: by reference

Specifies a longword to receive the monotonic version number for the current version of CMS. This
value will be higher with each successive release of CMS. For example, the following are sample version
numbers returned by this parameter:

Literal Version Number Absolute Version Number

3.7 100177
3.8 100184
3.9 100189
4.0 100191
4.1 100194
4.2 100205
4.3 100209

Description
The CMS$SHOW_VERSION routine identifies the version of CMS currently in use.

Example
 CHARACTER*8 SHORTVER
 EXTERNAL CMS$SHOW_VERSION
 CALL CMS$SHOW_VERSION(,SHORTVER)
 PRINT 50,SHORTVER
50 FORMAT (' ',A)
 END

This passes only the argument for the brief form of version identification.

196

Chapter 2. CMS Routine Descriptions

CMS$UNRESERVE
CMS$UNRESERVE — Cancels a reservation for one or more generations.

Format
CMS$UNRESERVE (library_data_block,
 element_expression,
 [remark],
 0,
 [delete_file],
 [msg_routine],
 [generation_expression],
 [identification_number],
 [delete_file_spec])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements with a reservation to be canceled.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as
a group name and selects elements based on the list of groups established in the library. Wildcards and a
comma list are allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

0

type: reserved for CMS
access: reserved for CMS

197

Chapter 2. CMS Routine Descriptions

mechanism: by value

Specifies a required argument reserved for use by CMS. You must either pass 0 by value, or include a
placeholder for this argument in the call to the CMS$UNRESERVE routine, so the call frame entry for
this argument contains a 0.

delete_file

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to delete the files with the same file name and file type in your default
directory (unless you specify another location by also specifying the delete_file_spec argument). By
default, the flag is set to 0,and CMS does not delete any files. If you set the flag to 1, CMS deletes the
corresponding files from your default directory.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

generation_expression

type: char_string
access: read
mechanism: by descriptor

Specifies the reserved generation of the element to be unreserved. This argument can be used when you
have multiple reservations on the same element, but not on the same generation of the same element. If
multiple reservations exist for the element generation, you must specify the identification number of the
exact reservation to be unreserved (canceled).

identification_number

type: longword_signed
access: read
mechanism: by reference

Specifies the reserved generation of the element to be unreserved. CMS assigns a unique reservation
identification number to each element when it is reserved. If an element generation has only one
reservation, you can unreserve (cancel) that reservation by specifying the generation expression.
However, if multiple reservations exist for the element generation, you must specify the identification
number of the exact reservation to be unreserved (canceled). Use the CMS$SHOW_RESERVATIONS
routine to determine the reservation number of a generation.

delete_file_spec

198

Chapter 2. CMS Routine Descriptions

type: char_string
access: read
mechanism: by descriptor

Specifies the files to be deleted and their location. All the versions of the specified file are deleted. Any
valid OpenVMS file specification can be used; however, it cannot contain a node name or file version
number. By default, CMS uses the current default device and directory. If the delete_file_spec argument
is omitted or contains a zero, CMS uses the delete_file argument (if specified) to determine what
files should be deleted. If the delete_file_spec argument contains a file specification, the delete_file
argument is ignored. If none of these arguments is specified, no files are deleted.

Description
The CMS$UNRESERVE routine cancels an existing reservation.

Each reservation of an element is assigned a unique reservation identification number. If an element
generation has only one reservation, you can unreserve (cancel) that reservation by specifying the
generation expression. If multiple reservations exist for the element generation, you must specify the
identification number of the reservation to be unreserved (canceled).

When canceling a concurrent reservation, you must specify the confirm_routine argument in the call
to CMS$SET_LIBRARY or CMS$CREATE_LIBRARY (before calling CMS$UNRESERVE), or you
are not warned of any concurrent reservations, and the unreserve transaction continues. To receive a
confirmation prompt when there are existing concurrent reservations, you must specify the routine in the
call to CMS$SET_LIBRARY or CMS$CREATE_LIBRARY.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_ERRUNRESERVES CMS canceled zero or more reservations and
encountered one or more errors during the
transaction.

Error

CMS$_NOREF Error accessing the library. Error
CMS$_NORMAL Normal successful completion. Success
CMS$_NOUNRESERVE CMS did not cancel the reservation. Error
CMS$_UNRESERVED CMS canceled the reservation. Success
CMS$_UNRESERVES CMS canceled one or more reservations. Success

CMS$VERIFY
CMS$VERIFY — Performs a series of checks on your CMS library to confirm that the library structure
and library files are in a valid form.

Format
CMS$VERIFY (library_data_block,
 [element_expression],

199

Chapter 2. CMS Routine Descriptions

 [remark],
 [recover],
 [repair],
 [msg_routine])

Arguments
library_data_block

type: cntrlblk
access: modify
mechanism: by reference

Specifies an initialized LDB.

element_expression

type: char_string
access: read
mechanism: by descriptor

Specifies one or more elements or groups of elements to be verified.

You must include a period (.) in the element expression to select one or more elements from the
complete list of elements in the library. If you do not include a period, CMS interprets the parameter as
a group name and selects elements based on the list of groups established in the library. Wildcards and a
comma list are allowed.

remark

type: char_string
access: read
mechanism: by descriptor

Specifies the remark string to be logged in the history file with the command.

recover

type: longword_signed
access: read
mechanism: by reference

Specifies a flag that directs CMS to execute a recovery transaction. By default, the flag is set to 0, and
CMS does not execute the recovery procedure. Set the flag to 1 to recover the library. You cannot use
both the recover and the repair arguments in the same call to CMS$VERIFY.

repair

type: longword_signed
access: read
mechanism: by reference

200

Chapter 2. CMS Routine Descriptions

Specifies a flag that directs CMS to execute a repair transaction. By default, the flag is set to 0,and CMS
does not execute the repair procedure. Set the flag to 1 to repair the library or the elements indicated by
the element_expression argument. You cannot use both the recover and the repair arguments in the
same call to CMS$VERIFY.

msg_routine

type: procedure
access: read
mechanism: by reference

Specifies a message-handler routine. For information about writing a message-handler routine, see
Section 1.8, "Writing an Error-Message Handler".

Description
The CMS$VERIFY routine performs a series of consistency checks on your library. If you call
CMS$VERIFY under normal conditions,the routine executes successfully, indicating that the
information in your library is correct. However, if the data in the library is invalid, the routine returns an
error message saying that there is an error in the verification of the library. In this case, you must recover
or repair the library as indicated by the error message. You cannot use both the recover and the repair
arguments in the same call to CMS$VERIFY.

Recovery and repair transactions are marked as unusual occurrences in the library history. For
more information about the verify transaction, see the VSI DECset for OpenVMS Guide to the Code
Management System.

The following table lists the possible return values for this function.

Return Code Description Status

CMS$_NORECOVER CMS did not recover the library. Error
CMS$_NOREF Error accessing the library. Error
CMS$_NOREPAIR CMS did not repair the library. Error
CMS$_NOVERIFY CMS did not verify the library. Error
CMS$_RECOVERED CMS recovered the library. Success
CMS$_REPAIRED CMS repaired the library. Success
CMS$_VERIFY CMS verified the library. Success

201

Chapter 2. CMS Routine Descriptions

202

Appendix A. Summary of CMS
Entry Points
This appendix summarizes the arguments and parameters of each CMS routine.

CMS$ANNOTATE (library_data_block,
 element_expression,
 [generation_expression],
 [merge_generation_expression],
 [append],
 [full],
 [output_file],
 [output_routine],
 [user_arg],
 [msg_routine],
 [format])

CMS$ASYNCH_TERMINATE

This routine has no arguments.

CMS$CMS ([command_line],
 [msg_routine],
 [prompt_routine],
 [confirm_routine],
 [output_routine],
 [width])

CMS$COPY_CLASS (library_data_block,
 input_class_expression,
 output_class_expression,
 [remark],
 [source_library_data_block],
 [msg_routine])

CMS$COPY_ELEMENT (library_data_block,
 input_element_expression,
 output_element,
 [remark],
 [source_library_data_block],
 [msg_routine])

CMS$COPY_GROUP (library_data_block,
 input_group_expression,
 output_group_expression,
 [remark],
 [source_library_data_block],
 [msg_routine])

CMS$CREATE_CLASS (library_data_block,
 class_name,
 [remark],
 [msg_routine])

203

Appendix A. Summary of CMS Entry Points

CMS$CREATE_ELEMENT (library_data_block,
 element_name,
 [remark],
 [history],
 [notes],
 [position],
 [keep],
 [reserve],
 [concurrent],
 [reference_copy],
 [input_file],
 [input_routine],
 [user_arg],
 [msg_routine],
 [review])

CMS$CREATE_GROUP (library_data_block,
 group_name,
 [remark],
 [msg_routine])

CMS$CREATE_LIBRARY (library_data_block,
 directory,
 [remark],
 [reference_copy_dir],
 [msg_routine],
 [confirm_routine],
 [output_routine],
 [width],
 [position],
 [positional_dir_spec]
 [revision_time],
 [auto_create],
 [concurrent],
 [0],
 [keep],
 [extended_filenames],
 [long_variant_names])

CMS$DELETE_CLASS (library_data_block,
 class_expression,
 [remark],
 [msg_routine],
 [remove_contents])

CMS$DELETE_ELEMENT (library_data_block,
 element_expression,
 [remark],
 [msg_routine])

204

Appendix A. Summary of CMS Entry Points

CMS$DELETE_GENERATION (library_data_block,
 element_expression,
 [remark],
 [generation_expression],
 [after_generation],
 [before_generation],
 [from_generation],
 [to_generation],
 [archive_file],
 [msg_routine])

A generation or range of generations must be specified with a combination of one or more of the
after_generation, before_generation, from_generation, or to_generation arguments.

CMS$DELETE_GROUP (library_data_block,
 group_expression,
 [remark],
 [msg_routine],
 [remove_contents])

CMS$DELETE_HISTORY (library_data_block,
 [remark],
 before,
 [transaction_mask],
 [output_routine],
 [user_arg],
 [msg_routine],
 [object],
 [user])

CMS$DIFFERENCES (library_data_block,
 [user_arg],
 [input_file1],
 [input_routine1],
 [generation_expression_1],
 [input_file2],
 [input_routine2],
 [generation_expression_2],
 [output_file],
 [output_routine],
 [append],
 [ignore_mask],
 [nooutput],
 [parallel],
 [full],
 [format],
 [width],
 [msg_routine],
 [page_break],
 [skip_lines],
 [begin_sentinel],
 [end_sentinel])

The library_data_block argument is a required parameter only if you also specify a
generation_expression parameter.

205

Appendix A. Summary of CMS Entry Points

CMS$DIFFERENCES_CLASS (library_data_block,
 class_expression1,
 class_expression2,
 [append],
 [format],
 [full],
 [ignore_mask],
 [nooutput],
 [parallel],
 [show_mask],
 [width],
 [output_file],
 [output_routine],
 [user_arg],
 [msg_routine])

CMS$FETCH (library_data_block,
 element_expression,
 [remark],
 [generation_expression],
 [merge_generation_expression],
 [reserve],
 [nohistory],
 [nonotes],
 [concurrent],
 [output_file],
 [msg_routine],
 [nooutput],
 [history],
 [notes],
 [position])

CMS$FETCH_CLOSE (fetch_data_block,
 [msg_routine])

CMS$FETCH_GET (fetch_data_block,
 output_record,
 [sequence_number],
 [generation_number],
 [msg_routine])

CMS$FETCH_OPEN (fetch_data_block,
 directory,
 element_name,
 [generation_expression],
 [nohistory],
 [nonotes],
 [actual_generation],
 [msg_routine])

CMS$GET_STRING (string_id,
 string)

CMS$INSERT_ELEMENT (library_data_block,
 element_expression,
 group_expression,
 [remark],
 [if_absent],
 [msg_routine])

206

Appendix A. Summary of CMS Entry Points

CMS$INSERT_GENERATION (library_data_block,
 element_expression,
 class_expression,
 [remark],
 [generation_expression],
 [always],
 [supersede],
 [if_absent],
 [msg_routine],
 [before])

CMS$INSERT_GROUP (library_data_block,
 sub_group_expression,
 group_expression,
 [remark],
 [if_absent],
 [msg_routine])

CMS$MODIFY_CLASS (library_data_block,
 class_expression,
 [remark],
 [new_name],
 [new_remark],
 [read_only],
 [msg_routine])

At least one of the new_name, new_remark, or read_only arguments is required.

CMS$MODIFY_ELEMENT (library_data_block,
 element_expression,
 [remark],
 [new_name],
 [new_remark],
 [history],
 [notes],
 [position],
 [concurrent],
 [reference_copy],
 [msg_routine],
 [review])

At least one of the new_name, new_remark, history, notes, position, concurrent, reference_copy, or
review arguments is required.

CMS$MODIFY_GENERATION (library_data_block,
 element_expression,
 [remark],
 [generation_expression],
 new_remark,
 [msg_routine])

CMS$MODIFY_GROUP (library_data_block,
 group_expression,
 [remark],
 [new_name],
 [new_remark],
 [read_only],
 [msg_routine])

207

Appendix A. Summary of CMS Entry Points

At least one of the new_name, new_remark, or read_only arguments is required.

CMS$MODIFY_LIBRARY (library_data_block,
 [remark],
 reference_copy_dir,
 [msg_routine],
 [revision_time],
 [concurrent],
 [0],
 [keep],
 [extended_filenames],
 [long_variant_names])

CMS$MODIFY_RESERVATION (library_data_block,
 element_expression,
 [generation_expression],
 [identification_number],
 [modify_command_remark],
 new_remark_for_reservation,
 [msg_routine])

CMS$PUT_STRING (string)

CMS$REMARK (library_data_block,
 remark,
 [msg_routine],
 [unusual])

CMS$REMOVE_ELEMENT (library_data_block,
 element_expression,
 group_expression,
 [remark],
 [if_present],
 [msg_routine])

CMS$REMOVE_GENERATION (library_data_block,
 element_expression,
 class_expression,
 [remark],
 [if_present],
 [msg_routine],
 [generation])

CMS$REMOVE_GROUP (library_data_block,
 sub_group_expression,
 group_expression,
 [remark],
 [if_present],
 [msg_routine])

CMS$REPLACE (library_data_block,
 element_expression,
 [remark],
 [variant],
 [reserve],
 [keep],
 [input_file],
 [input_routine],
 [user_arg],

208

Appendix A. Summary of CMS Entry Points

 [msg_routine],
 [if_changed],
 [generation_expression],
 [identification_number],
 [insert_into_class])

CMS$RETRIEVE_ARCHIVE ([library_data_block],
 archive_file_spec,
 [generation_spec],
 [output_file_spec],
 [msg_routine])

CMS$REVIEW_GENERATION (library_data_block,
 element_expression,
 action,
 [remark],
 [generation_expression],
 [msg_routine])

CMS$SET_ACL (library_data_block,
 object_type,
 object_expression,
 [remark],
 [acl],
 [after],
 [default],
 [delete],
 [like],
 [new],
 [replace],
 [msg_routine])

CMS$SET_LIBRARY (library_data_block,
 directory,
 [msg_routine],
 [verify],
 [confirm_routine],
 [output_routine],
 [width],
 [position],
 [positional_dir_spec])

CMS$SET_NOLIBRARY (library_data_block,
 [directory])

CMS$SHOW_ACL (library_data_block,
 output_routine,
 object_type,
 [user_arg],
 [object_expression],
 [msg_routine])

CMS$SHOW_ARCHIVE (archive_file_spec,
 output_routine,
 [user_arg],
 [msg_routine])

209

Appendix A. Summary of CMS Entry Points

CMS$SHOW_CLASS (library_data_block,
 output_routine,
 [user_arg],
 [class_expression],
 [msg_routine])

CMS$SHOW_ELEMENT (library_data_block,
 output_routine,
 [user_arg],
 [element_expression],
 [member_list],
 [msg_routine])

CMS$SHOW_GENERATION (library_data_block,
 output_routine,
 [user_arg],
 [element_expression],
 [generation_expression],
 [from_generation_expression],
 [ancestors],
 [descendants],
 [member_list],
 [msg_routine],
 [before],
 [since])

CMS$SHOW_GROUP (library_data_block,
 output_routine,
 [user_arg],
 [group_expression],
 [msg_routine],
 [contents])

CMS$SHOW_HISTORY (library_data_block,
 output_routine,
 [user_arg],
 [object_name],
 [user],
 [before],
 [since],
 [transaction_mask],
 [msg_routine])

CMS$SHOW_LIBRARY (library_data_block,
 [reference_copy_dir],
 [statistics],
 [msg_routine],
 [verify],
 [output_routine],
 [user_arg])

CMS$SHOW_RESERVATIONS (library_data_block,
 output_routine,
 [user_arg],
 [element_expression],
 [generation_expression],
 [user],
 [msg_routine],
 [identification_number])

210

Appendix A. Summary of CMS Entry Points

CMS$SHOW_REVIEWS_PENDING (library_data_block,
 output_routine,
 [user_arg],
 [element_expression],
 [generation_expression],
 [user],
 [msg_routine])

CMS$SHOW_VERSION ([full],
 [brief],
 [absolute])

At least one of these arguments is required.

CMS$UNRESERVE (library_data_block,
 element_expression,
 [remark],
 0,
 [delete_file],
 [msg_routine],
 [generation_expression],
 [identification_number],
 [delete_file_spec])

CMS$VERIFY (library_data_block,
 [element_expression],
 [remark],
 [recover],
 [repair],
 [msg_routine])

211

Appendix A. Summary of CMS Entry Points

212

Appendix B. Examples of Calling
CMS
This appendix shows examples of calling the CMS$SHOW_ELEMENT routine from the Ada, Basic,
BLISS, C, COBOL, Fortran, Pascal, PL/I, and SCAN languages. Each program uses an output routine to
display a list of the library elements and the groups to which each element belongs.

B.1. Calling CMS from Ada
Example B.1, "Ada Example" shows a call to CMS$SHOW_ELEMENT from Ada.

Example B.1. Ada Example

with SYSTEM;
use SYSTEM;

package CONDITION_HANDLING_UTILITIES is

 type COUNT is new INTEGER;
 type STATUS_TYPE is
 record
 SEVERITY : COUNT range 0..2**3-1;
 CODE : COUNT range 0..2**12-1;
 FAC_SP : BOOLEAN;
 FAC_NO : COUNT range 0..2**12-1;
 INHIB_MSG : BOOLEAN;
 FILLER_1 : COUNT range 0..2**3-1;
 end record;

 function SS_NORMAL return STATUS_TYPE;
 pragma INLINE(SS_NORMAL);

 type SIGARG_TYPE(ARGS : NATURAL) is
 record
 NAME : STATUS_TYPE;
 ARGn : UNSIGNED_LONGWORD_ARRAY(2..ARGS);
 end record;

 package MCHARG_PKG is
 type COUNT is new INTEGER;

 subtype COUNT_NATURAL is COUNT range 0..COUNT'last;
 subtype COUNT_POSITIVE is COUNT range 1..COUNT'last;

 FRAME : constant COUNT := COUNT_NATURAL'first;
 DEPTH : constant COUNT := FRAME + 1;
 SAVR0 : constant COUNT := DEPTH + 1;
 SAVR1 : constant COUNT := SAVR0 + 1;

 type MCHARG_COMPONENT_ARRAY is
 array(COUNT_POSITIVE range <>) of SYSTEM.UNSIGNED_LONGWORD;

 type MCHARG_TYPE(ARGS : COUNT_NATURAL) is
 record

213

Appendix B. Examples of Calling CMS

 ARGn : MCHARG_COMPONENT_ARRAY(1..ARGS);
 end record;
 private
 for MCHARG_TYPE use
 record
 ARGS at 0 range 0..31;
 -- ARGn at 4 range 0...;
 end record;
 end;

 subtype MCHARG_TYPE is MCHARG_PKG.MCHARG_TYPE;
 procedure PUTMSG (
 MSGVEC : in SIGARG_TYPE;
 ACTRTN : in SYSTEM.ADDRESS := ADDRESS_ZERO;
 FACNAM : in STRING := STRING'NULL_PARAMETER;
 ACTPRM : in SYSTEM.UNSIGNED_LONGWORD := 0);
 private for STATUS_TYPE use
 record
 SEVERITY at 0 range 0..2;
 CODE at 0 range 3..14;
 FAC_SP at 0 range 15..15;
 FAC_NO at 0 range 16..27;
 INHIB_MSG at 0 range 28..28;
 FILLER_1 at 0 range 29..31;
 end record;

 for SIGARG_TYPE use
 record
 ARGS at 0 range 0..31;
 NAME at 4 range 0..31;
 -- ARGn at 8 range 0...;
 end record;

 pragma INTERFACE(SYS, PUTMSG);
 pragma IMPORT_PROCEDURE(PUTMSG,
 external => "SYS$PUTMSG",
 mechanism => (REFERENCE,
 VALUE,
 DESCRIPTOR(S),
 VALUE));
 end;

 package body CONDITION_HANDLING_UTILITIES is
 function SS_NORMAL return STATUS_TYPE is
 begin
 return STATUS_TYPE'(SEVERITY => 1, CODE => 0, FAC_SP => FALSE,
 FAC_NO => 0, INHIB_MSG => FALSE, FILLER_1 =>
 0);
 end;
 end;

 with CONDITION_HANDLING_UTILITIES, SYSTEM;
 use CONDITION_HANDLING_UTILITIES, SYSTEM;
 package CMS is
 type LDB_TYPE is
 limited private;
 type FDB_TYPE is
 limited private;

214

Appendix B. Examples of Calling CMS

 type FLAG_TYPE is
 new BOOLEAN;
 procedure GET_STRING(
 STATUS : out STATUS_TYPE;
 STRING_ID : in ADDRESS;
 STRING : out STANDARD.STRING);
 procedure SET_LIBRARY(
 STATUS : out STATUS_TYPE;
 LIBRARY_DATA_BLOCK : in out LDB_TYPE;
 DIRECTORY : in STRING;
 MSG_ROUTINE : in ADDRESS := ADDRESS_ZERO);
 procedure SHOW_ELEMENT(
 STATUS : out STATUS_TYPE;
 LIBRARY_DATA_BLOCK : in out LDB_TYPE;
 OUTPUT_ROUTINE : in ADDRESS;
 USER_ARG : in UNSIGNED_LONGWORD := 0;
 ELEMENT_EXPRESSION : in STRING := "*.*";
 MEMBER_FLAG : in FLAG_TYPE := FALSE;
 MSG_ROUTINE : in ADDRESS := ADDRESS_ZERO);
 -- Examples of OUTPUT_ROUTINE and MESSAGE_ROUTINE declarations
 --
 -- procedure OUTPUT_ROUTINE(
 -- STATUS : out STATUS_TYPE;
 -- FIRST_CALL : in FLAG_TYPE;
 -- LDB : in out LDB_TYPE;
 -- USER_PARAM : in UNSIGNED_LONGWORD;
 -- ELEMENT_ID : in ADDRESS;
 -- REMARK_ID : in ADDRESS;
 -- HISTORY_STRING_ID : in ADDRESS;
 -- NOTES_STRING_ID : in ADDRESS;
 -- POSITION : in INTEGER;
 -- CONCURRENT : in FLAG_TYPE;
 -- REFERENCE_COPY : in FLAG_TYPE;
 -- GROUP_LIST_ID : in ADDRESS
 -- REVIEW : in FLAG_TYPE);
 -- pragma EXPORT_VALUED_PROCEDURE(OUTPUT_ROUTINE,
 -- external => "<some unique symbol>");
 --
 -- procedure MSG_ROUTINE(
 -- STATUS : out STATUS_TYPE;
 -- SIGNAL_ARRAY : in SIGARG_TYPE;
 -- MECHANISM_ARRAY : in MCHARG_TYPE;
 -- LIB_DB : in out LDB_TYPE);
 -- pragma EXPORT_VALUED_PROCEDURE(MSG_ROUTINE,
 -- external => "<some unique symbol>");

 private
 -- Library Data Block
 -- type LDB_TYPE is
 record
 LENGTH : INTEGER;
 RETURN_STATUS : STATUS_TYPE;
 LIB_DIR_LEN : NATURAL range 0..65_535;
 LIB_DIR_DTYPE : UNSIGNED_BYTE;
 LIB_DIR_CLASS : UNSIGNED_BYTE;
 LIB_DIR_ADDRESS : ADDRESS;
 PRIVATE_PART : UNSIGNED_LONGWORD_ARRAY(1..46);
 end record;

215

Appendix B. Examples of Calling CMS

 for LDB_TYPE use
 record
 LENGTH at 0 range 0..31;
 RETURN_STATUS at 4 range 0..31;
 LIB_DIR_LEN at 8 range 0..15;
 LIB_DIR_DTYPE at 10 range 0..7;
 LIB_DIR_CLASS at 11 range 0..7;
 LIB_DIR_ADDRESS at 12 range 0..31;
 PRIVATE_PART at 16 range 0..46*32-1;
 end record;

 for LDB_TYPE'size use 32*50;
 -- Fetch Data Block
 -- type FDB_TYPE is
 new SYSTEM.UNSIGNED_LONGWORD_ARRAY(1..5);
 for FDB_TYPE'size use 32*5;
 -- The FLAG_TYPE must occupy a whole longword
 -- for FLAG_TYPE'size use 32;
 -- Routines
 -- pragma INTERFACE(CMS, GET_STRING);
 pragma IMPORT_VALUED_PROCEDURE(GET_STRING,
 external => "CMS$GET_STRING",
 mechanism => (VALUE,
 REFERENCE,
 DESCRIPTOR(S)));
 pragma INTERFACE(CMS, SET_LIBRARY);
 pragma IMPORT_VALUED_PROCEDURE(SET_LIBRARY,
 external => "CMS$SET_LIBRARY",
 mechanism => (VALUE,
 REFERENCE,
 DESCRIPTOR(S),
 VALUE));
 pragma INTERFACE(CMS, SHOW_ELEMENT);
 pragma IMPORT_VALUED_PROCEDURE(SHOW_ELEMENT,
 external => "CMS$SHOW_ELEMENT",
 mechanism => (VALUE,
 REFERENCE,
 VALUE,
 REFERENCE,
 DESCRIPTOR(S),
 REFERENCE,
 VALUE));
 end;

 function LAST_NON_BLANK(STRING : STANDARD.STRING) return NATURAL is
 L : NATURAL := STRING'last;
 begin
 loop
 exit when L < STRING'first or else STRING(L) /= ' ';
 L := L - 1;
 end loop;
 return L;
 end;

 with LAST_NON_BLANK;
 function TRIM(STRING : STANDARD.STRING) return STANDARD.STRING is
 begin

216

Appendix B. Examples of Calling CMS

 return STRING(STRING'first..LAST_NON_BLANK(STRING));
 end;

 with CMS, CONDITION_HANDLING_UTILITIES, SYSTEM, TEXT_IO, TRIM;
 use CMS, CONDITION_HANDLING_UTILITIES, SYSTEM, TEXT_IO;
 procedure OUTPUT_ROUTINE(
 STATUS : out STATUS_TYPE;
 FIRST_CALL : in FLAG_TYPE;
 LDB : in out LDB_TYPE;
 USER_PARAM : in UNSIGNED_LONGWORD;
 ELEMENT_ID : in ADDRESS;
 REMARK_ID : in ADDRESS;
 HISTORY_STRING_ID : in ADDRESS;
 NOTES_STRING_ID : in ADDRESS;
 POSITION : in INTEGER;
 CONCURRENT : in FLAG_TYPE;
 REFERENCE_COPY : in FLAG_TYPE;
 GROUP_LIST_ID : in ADDRESS;
 REVIEW : in FLAG_TYPE)
 is GET_STATUS : STATUS_TYPE;
 STRING : STANDARD.STRING(1..65_535);
 begin
 GET_STRING(GET_STATUS, ELEMENT_ID, STRING);
 PUT_LINE(TRIM(STRING));
 GET_STRING(GET_STATUS, GROUP_LIST_ID, STRING);
 PUT_LINE(TRIM(STRING));
 STATUS := SS_NORMAL;
 end;
 pragma EXPORT_VALUED_PROCEDURE(OUTPUT_ROUTINE,
 external=>"OUTPUT_ROUTINE");

 with CMS, CONDITION_HANDLING_UTILITIES, STARLET, SYSTEM;
 use CMS, CONDITION_HANDLING_UTILITIES, STARLET, SYSTEM;
 procedure MSG_ROUTINE(
 STATUS : out STATUS_TYPE;
 SIGNAL_ARRAY : in SIGARG_TYPE;
 MECHANISM_ARRAY : in MCHARG_TYPE;
 LIB_DB : in out LDB_TYPE)
 is
 begin
 case SIGNAL_ARRAY.NAME.SEVERITY is
 when STS_K_WARNING | STS_K_ERROR | STS_K_SEVERE =>
 declare
 COPY : SIGARG_TYPE(SIGNAL_ARRAY.ARGS) := SIGNAL_ARRAY;
 begin
 COPY.NAME.SEVERITY := STS_K_INFO;
 PUTMSG(COPY);
 end;
 when others =>
 null;
 end case;
 STATUS := CONDITION_HANDLING_UTILITIES.SS_NORMAL;
 end;
 pragma EXPORT_VALUED_PROCEDURE(MSG_ROUTINE,
 external=>"MSG_ROUTINE");

 with CMS, CONDITION_HANDLING_UTILITIES, MSG_ROUTINE, OUTPUT_ROUTINE,
 TRIM;

217

Appendix B. Examples of Calling CMS

 use CMS, CONDITION_HANDLING_UTILITIES;
 procedure SHOW_ELEMENT_EXAMPLE is
 LDB : LDB_TYPE;
 STATUS : STATUS_TYPE;
 begin
 SET_LIBRARY(STATUS, LDB, "CMS$LIB",
 MSG_ROUTINE => MSG_ROUTINE'address);
 SHOW_ELEMENT(STATUS, LDB, OUTPUT_ROUTINE'address,
 MEMBER_FLAG => TRUE, MSG_ROUTINE => MSG_ROUTINE'address);
 end;

Key to Example B.1, "Ada Example":

This section sets up and establishes the message-handling package.

This section sets up and establishes the CMS interface package.

The TRIM routine is created, which trims blank spaces off the ends of strings.

The callback output routine (which will get passed to CMS$SHOW_ELEMENT) is declared.

The callback message routine is declared.

B.2. Calling CMS from Basic
Example B.2, "Calling CMS$SHOW_ELEMENT from Basic" shows a call to CMS$SHOW_ELEMENT
from Basic.

Example B.2. Calling CMS$SHOW_ELEMENT from Basic

DIM LONG LIB_DB(50) ! Declaration for the library data block
! EXTERNAL declarations for CMS routines and the output routine
!
EXTERNAL LONG FUNCTION CMS$SET_LIBRARY (LONG, STRING)
EXTERNAL LONG FUNCTION CMS$SHOW_ELEMENT (LONG, LONG, STRING, STRING,
 LONG, LONG)
EXTERNAL LONG OUTPUT_ROUTINE ! Declare OUTPUT_ROUTINE as an external
 ! long integer, so the starting address
 ! of the routine can be passed as a
 ! parameter.

DECLARE LONG RETURN_STATUS, MEMBER_FLAG
RETURN_STATUS = CMS$SET_LIBRARY (LIB_DB(0), "CMS$LIB")
MEMBER_FLAG = 1

RETURN_STATUS = CMS$SHOW_ELEMENT (LIB_DB(0), OUTPUT_ROUTINE, , ,
 MEMBER_FLAG,)
END

! The output routine
!
SUB OUTPUT_ROUTINE (LONG F_FIRST, &
 RFA LDB, USR_PARAM, &
 LONG ELEMENT_ID, REMARK_ID, HISTORY_ID, &
 NOTES_ID, POSITION, CONCURRENT, &
 REF_COPY, GROUP_LIST_ID, REVIEW)

DECLARE STRING ELEMENT_NAME, GROUP_LIST_NAMES, LONG RETURN_STATUS

218

Appendix B. Examples of Calling CMS

! EXTERNAL declaration for CMS$GET_STRING (used to translate string
! identifiers into a form that Basic can understand)
!
EXTERNAL LONG FUNCTION CMS$GET_STRING (LONG, STRING)
! Display the results
!
RETURN_STATUS = CMS$GET_STRING (ELEMENT_ID, ELEMENT_NAME)
RETURN_STATUS = CMS$GET_STRING (GROUP_LIST_ID, GROUP_LIST_NAMES)
PRINT ,ELEMENT_NAME
PRINT ,GROUP_LIST_NAMES
END SUB

B.3. Calling CMS from BLISS
Example B.3, "Calling CMS$SHOW_ELEMENT from BLISS" shows a call to
CMS$SHOW_ELEMENT from BLISS.

Example B.3. Calling CMS$SHOW_ELEMENT from BLISS

MODULE SHOWELE (MAIN = MAIN, ADDRESSING_MODE (EXTERNAL = GENERAL)) =
BEGIN

FORWARD ROUTINE
 MAIN,
 OUTPUT_ROUTINE;

EXTERNAL ROUTINE
 CMS$SET_LIBRARY, ! EXTERNAL declarations for CMS routines
 CMS$SHOW_ELEMENT, ! and LIB$ routine for output
 LIB$PUT_OUTPUT;

GLOBAL ROUTINE MAIN =
 BEGIN

 LOCAL LDB : VECTOR[50], ! Declaration for library data block
 and
 STATUS; ! a variable for return value from
 calls

 STATUS = CMS$SET_LIBRARY (LDB, %ASCID 'CMS$LIB');
 IF NOT .STATUS
 THEN ! Exit with error code if
 RETURN .STATUS; ! unable to set library
 STATUS = CMS$SHOW_ELEMENT (LDB, OUTPUT_ROUTINE, 0, 0, %REF(1));
 IF NOT .STATUS
 THEN ! Exit with error code if call
 RETURN .STATUS; ! to CMS$SHOW_ELEMENT fails
 RETURN 1; ! Exit with success value
 END;

ROUTINE OUTPUT_ROUTINE (FIRST_CALL, LIBDB, USER_PARAM, ELEMENT_ID,
 REMARK_ID, HISTORY_ID, NOTES_ID, POSITION,
 ACCESS, REF_COPY, GROUP_LIST_ID, REVIEW) =
 BEGIN

 BIND

219

Appendix B. Examples of Calling CMS

 ELEMENT_NAME = ..ELEMENT_ID, ! BIND declaration for
 GROUP_LIST_NAME = ..GROUP_LIST_ID; ! string identifiers
 LIB$PUT_OUTPUT (ELEMENT_NAME);
 LIB$PUT_OUTPUT (GROUP_LIST_NAME);
 RETURN 1;
 END;
ENDELUDOM

Key to Example B.3, "Calling CMS$SHOW_ELEMENT from BLISS":

The member list flag is set to true (1) in the call to CMS$SHOW_ELEMENT. By using the %REF
function, the call frame contains the address of a temporary data segment containing the value 1.

Within the callback routine it is not necessary to use the CMS$GET_STRING routine to
manipulate string identifiers. BLISS allows you to use the dot operator to specify the address path.
The BIND declaration is used as a more concise method of handling the string identifiers that
CMS passes to the output routine.

B.4. Calling CMS from C
Example B.4, "Calling CMS$SHOW_ELEMENT from C" shows a call to CMS$SHOW_ELEMENT
from C.

Example B.4. Calling CMS$SHOW_ELEMENT from C

#include stdio
#include descrip /* OPENVMS DESCRIPTOR DEFINITIONS */
/* DESCRIPTOR MACROS */
#define builddesc(name) \
struct dsc$descriptor name = {0, DSCK_DTYPE_T, DSCK_CLASS_D, 0}

#define filldesc(name, str) \
 name.dsc$w_length = strlen(str); \
 name.dsc$a_pointer = str

main()
{
 int lib_db[50];
 int output_routine ();
 int f_member_list = 1;
 char *lib_name = "CMS$LIB";

 builddesc (d_lib); /* BUILD A DESCRIPTOR FOR THE LIBRARY NAME */
 filldesc (d_lib, lib_name); /* FILL IN THE DESCRIPTOR */

 /* PASS THE LIBRARY DATA BLOCK AND THE LIBRARY NAME DESCR. BY
 REFERENCE */
 cms$set_library (&lib_db, &d_lib);
 /* PASS THE LDB, entry point, AND FLAG FOR THE MEMBER LIST BY
 REFERENCE */
 cms$show_element (&lib_db, output_routine, 0, 0, &f_member_list, 0);
}
/* THE OUTPUT ROUTINE */
output_routine (a_f_first_call, a_lib_db, a_user_param, element_id,
 remark_id, history_string_id, notes_string_id,
 position, concurrent, ref_copy, group_list_id, review)

220

Appendix B. Examples of Calling CMS

int *a_f_first_call, *a_lib_db, *a_user_param, **remark_id,
 **history_string_id,
 **notes_string_id, *position, *concurrent, *ref_copy, *review;
struct dsc$descriptor **element_id, **group_list_id;
{
 char *string_from_cms; /* TO HOLD STRING EXTRACTED FROM
 DESCRIPTOR */
 struct dsc$descriptor_s *descriptor; /* VARIABLE TO HANDLE STRING
 IDs */
 char *calloc();
 descriptor = *element_id;
 string_from_cms = calloc (1, descriptor -> dsc$w_length + 1);
 strncpy (string_from_cms, descriptor -> dsc$a_pointer,
 descriptor -> dsc$w_length);
 printf ("%s\n", string_from_cms);
 descriptor = *group_list_id;
 string_from_cms = calloc (1, descriptor -> dsc$w_length + 1);
 strncpy (string_from_cms, descriptor -> dsc$a_pointer,
 descriptor -> dsc$w_length);
 printf ("%s\n", string_from_cms);
 return (1);
}

Because C enables you to manipulate addresses directly,it is not necessary to use the
CMS$GET_STRING routine when you are calling CMS from the C language. This example illustrates
one way to handle the string identifiers.

Key to Example B.4, "Calling CMS$SHOW_ELEMENT from C":

The strings containing the element name and the group list are passed by string identifier. To
handle the extra level of indirection, the element_id and group_list_id parameters are declared
with two asterisk operators.

The address of the element name descriptor is put in the contents of descriptor.

Descriptor is then used as an argument to the calloc and strncpy functions to provide the string for
output.

The same steps are used to handle the group list string.

B.5. Calling CMS from COBOL
Example B.5, "Calling CMS$SHOW_ELEMENT from COBOL" shows a call to
CMS$SHOW_ELEMENT from COBOL.

Example B.5. Calling CMS$SHOW_ELEMENT from COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. SHOELE.
*
* SHOW ELEMENT
*
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 LIB_DB PIC X(200).
01 LIBRARY PIC X(21) VALUE "CMS$LIB".

221

Appendix B. Examples of Calling CMS

* The flag signaling /MEMBER
*
01 MEM PIC S9 VALUE 1.
* The user-supplied output routine.
*
01 OUT_ROUT PIC S9(9) COMP VALUE EXTERNAL OUTP.
/
PROCEDURE DIVISION.
0.
 CALL "CMS$SET_LIBRARY" USING BY REFERENCE LIB_DB
 BY DESCRIPTOR LIBRARY.
 CALL "CMS$SHOW_ELEMENT" USING BY REFERENCE LIB_DB
 BY VALUE OUT_ROUT
 BY VALUE 0
 BY VALUE 0
 BY REFERENCE MEM.
 EXIT PROGRAM.

The program SHOELE contains a declaration for the callback routine(named OUTP) that handles output
from CMS$SHOW_ELEMENT. The following example shows this subroutine. You must compile
OUTP separately to pass the address of the routine to CMS.

In the following example, the callback routine OUTP must be located in a separate module to allow the
main program SHOELE to reference its address.

IDENTIFICATION DIVISION.
PROGRAM-ID. OUTP.
*
* Output subroutine for SHOW ELEMENT
*

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
* Strings to hold the data extracted from the descriptors;
* status to be returned to CMS.
*
01 ELEMENT_NAME PIC X(15).
01 GROUP_LIST_NAMES PIC X(100).
01 CALL_STATUS_VAL COMP PIC 9(9).
01 RET_STATUS_VAL COMP PIC 9(9).
LINKAGE SECTION.

01 F_FIRST_CALL PIC 99.
01 LIB_DATA_BLOCK PIC X(200).
01 USER_PARAM PIC 99.
01 ELEMENT_ID PIC 9(9).
01 REMARK_ID PIC 9(9).
01 HISTORY_ID PIC 9(9).
01 NOTES_ID PIC 9(9).
01 POSITION_VAL PIC 9(9).
01 CONCURRENT_FLAG PIC 9(9).
01 REF_COPY PIC 9(9).
01 GROUP_LIST_ID PIC 9(9).
01 REVIEW PIC 9(9).
/
PROCEDURE DIVISION USING F_FIRST_CALL
 LIB_DATA_BLOCK

222

Appendix B. Examples of Calling CMS

 USER_PARAM
 ELEMENT_ID
 REMARK_ID
 HISTORY_ID
 NOTES_ID
 POSITION_VAL
 CONCURRENT_FLAG
 REF_COPY
 GROUP_LIST_ID
 REVIEW
 GIVING RET_STATUS_VAL.
0.
* Extract the string data from the descriptors.
*
 MOVE 1 to CALL_STATUS_VAL.
 CALL "CMS$GET_STRING" USING ELEMENT_ID
 BY DESCRIPTOR ELEMENT_NAME
 GIVING CALL_STATUS_VAL.
 IF (CALL_STATUS_VAL = 1)
 DISPLAY ELEMENT_NAME
 CALL "CMS$GET_STRING" USING GROUP_LIST_ID
 BY DESCRIPTOR GROUP_LIST_NAMES
 GIVING CALL_STATUS_VAL
 IF (CALL_STATUS_VAL = 1)
 DISPLAY GROUP_LIST_NAMES
 END-IF
 END-IF
* Return the call status to CMS.
*
 MOVE CALL_STATUS_VAL TO RET_STATUS_VAL.
 EXIT PROGRAM.

B.6. Calling CMS from Fortran
Example B.6, "Calling CMS$SHOW_ELEMENT from Fortran" shows a call to
CMS$SHOW_ELEMENT from Fortran.

Example B.6. Calling CMS$SHOW_ELEMENT from Fortran

 IMPLICIT INTEGER*4 (A-Z)
 INTEGER*4 CMS$SET_LIBRARY,
 1 CMS$SHOW_ELEMENT,
 1 LDB(50),
 1 MEMBER_FLAG
 EXTERNAL OUTPUT_ROUTINE

 STATUS = CMS$SET_LIBRARY (LDB, 'CMS$LIB')
 IF (STATUS) THEN
 MEMBER_FLAG = 1
 STATUS = CMS$SHOW_ELEMENT (LDB, OUTPUT_ROUTINE, , ,
 MEMBER_FLAG)
 END IF
 END

 INTEGER*4 FUNCTION OUTPUT_ROUTINE (FIRST_CALL, LIBDB,
 USER_PARAM,
 1 ELEMENT_ID, REMARK_ID, HISTORY_ID,

223

Appendix B. Examples of Calling CMS

 1 NOTES_ID, POSITION, ACCESS,
 1 REF_COPY, GROUP_LIST_ID, REVIEW)
 IMPLICIT INTEGER*4 (A-Z)
 INTEGER*4 LIBDB(50)
 CHARACTER ELEMENT_NAME*80,
 1 GROUP_LIST_NAMES*80
 EXTERNAL CMS$GET_STRING
 CALL CMS$GET_STRING (ELEMENT_ID, ELEMENT_NAME)
 CALL CMS$GET_STRING (GROUP_LIST_ID, GROUP_LIST_NAMES)
 PRINT *, ELEMENT_NAME
 PRINT *, GROUP_LIST_NAMES
 OUTPUT_ROUTINE = 1
 RETURN
 END

Key to Example B.6, "Calling CMS$SHOW_ELEMENT from Fortran":

The CMS routines are declared as INTEGER*4 so the return status is available for error checking.

The output routine is declared EXTERNAL to pass the address of the routine to CMS.

The output routine is written as a function because it must return a value to CMS.

CMS$GET_STRING is used to translate the string identifier and provide access to the element
name and group list strings.

B.7. Calling CMS from Pascal
Example B.7, "Calling CMS$SHOW_ELEMENT from Pascal" shows a call to
CMS$SHOW_ELEMENT from Pascal.

Example B.7. Calling CMS$SHOW_ELEMENT from Pascal

PROGRAM SHOELE (INPUT, OUTPUT); (* SHOW ELEMENT *)

TYPE
 LDB = ARRAY [1..50] OF INTEGER;
 STRING = VARYING [256] OF CHAR;
VAR
 LIB_DB : LDB;
 LIBNAM : STRING;
 MEMBER_FLAG : INTEGER;

(* External CMS routines *)
PROCEDURE CMS$SET_LIBRARY
 (%REF LIB_DB : LDB;
 %DESCR LIBDIR : STRING);
 EXTERNAL;

PROCEDURE CMS$SHOW_ELEMENT
 (%REF LIB_DB : LDB;
 FUNCTION OUTPUT_ROUTINE
 (VAR FIRST : INTEGER;
 VAR LIB : LDB;
 VAR PARAM : INTEGER;
 VAR ELEMENT : INTEGER;
 VAR REMARK : INTEGER;
 VAR HISTORY : INTEGER;

224

Appendix B. Examples of Calling CMS

 VAR NOTES : INTEGER;
 VAR POSITION : INTEGER;
 VAR CONCURRENT : INTEGER;
 VAR REF_COPY : INTEGER;
 VAR GROUP_LIST : INTEGER;
 VAR REVIEW : INTEGER) : INTEGER;
 %IMMED USER_PARAM : INTEGER := 0;
 %IMMED ELEMENT_EXP : INTEGER := 0;
 %REF MEMBER_FLAG : INTEGER;
 %IMMED MSG_ROUTINE : INTEGER := 0);
 EXTERNAL;

PROCEDURE CMS$GET_STRING
 (%REF DATA : INTEGER;
 %DESCR DEST : STRING);
 EXTERNAL;

(* The output routine *)
FUNCTION OUTPUT_ROUTINE
 (VAR FIRST : INTEGER;
 VAR LIB : LDB;
 VAR PARAM_ID : INTEGER;
 VAR ELEMENT_ID : INTEGER;
 VAR REMARK_ID : INTEGER;
 VAR HISTORY_ID : INTEGER;
 VAR NOTES_ID : INTEGER;
 VAR POSITION : INTEGER;
 VAR CONCURRENT : INTEGER;
 VAR REF_COPY : INTEGER;
 VAR GROUP_LIST_ID : INTEGER;
 VAR REVIEW : INTEGER) : INTEGER;
VAR
 ELEMENT_NAME : STRING;
 GROUP_LIST_NAMES : STRING;
 BEGIN
 (* NOTE: this routine must return a value equivalent to
 true, or CMS will assume the user is returning an error. *)

 (* write out the actual data *)
 CMS$GET_STRING (ELEMENT_ID, ELEMENT_NAME);
 WRITELN (ELEMENT_NAME);
 CMS$GET_STRING (GROUP_LIST_ID, GROUP_LIST_NAMES);
 WRITELN (GROUP_LIST_NAMES);
 OUTPUT_ROUTINE := 1;
 END; (* end of output routine *)

(* Main program body - Set the CMS library, set the member flag to true,
 and call CMS$SHOW_ELEMENT *)

BEGIN

LIBNAM := 'CMS$LIB';
CMS$SET_LIBRARY (LIB_DB, LIBNAM);
MEMBER_FLAG := 1;
CMS$SHOW_ELEMENT (LIB_DB, %IMMED OUTPUT_ROUTINE, , , MEMBER_FLAG);

END.

225

Appendix B. Examples of Calling CMS

Key to Example B.7, "Calling CMS$SHOW_ELEMENT from Pascal":

The formal parameter list for the CMS$SHOW_ELEMENT routine includes declarations for all of
the actual parameters that you can pass to the routine. The list includes several %IMMED declarations
that assign a value of zero to the parameter. Because the actual parameter list does not override these
declarations, the call frame contains a zero in the position allocated for each of these unused parameters.
The zero serves as a placeholder;thus, the member flag argument is interpreted as being in the correct
position.

Note that the actual parameter list in the call to CMS$SHOW_ELEMENT specifies the %IMMED
passing mechanism for the callback routine argument. This is necessary to generate the address of the
entry point in the call frame.

B.8. Calling CMS from PL/I (Alpha and VAX)
Example B.8, "Calling CMS$SHOW_ELEMENT from PL/I (Alpha and VAX Only)" shows a call to
CMS$SHOW_ELEMENT from PL/I. Note that PL/I is not supported on the OpenVMS I64 platform.

Example B.8. Calling CMS$SHOW_ELEMENT from PL/I (Alpha and VAX Only)

SHOELMEM: PROCEDURE OPTIONS (MAIN);

/* SHOW ELEMENT/MEMBER */

DECLARE MEMBER_FLAG FIXED BINARY (31);
DECLARE LIB_DB(50) FIXED BINARY (31);
DECLARE LIBDIR CHARACTER(50) VARYING;

DECLARE CMS$SET_LIBRARY ENTRY ((50) FIXED BINARY (31),
 CHARACTER(*) VARYING);

DECLARE CMS$SHOW_ELEMENT ENTRY ((50) FIXED BINARY (31), /* ldb */
 ENTRY VALUE, /* routine */
 FIXED BINARY (31), /* user param */
 CHARACTER (*), /* elem-expr */
 FIXED BINARY (31), /* group-list
 flag */
 ENTRY VALUE) /* msg routine*/
 OPTIONS (VARIABLE);

DECLARE CMS$GET_STRING ENTRY (FIXED BINARY(31),
 CHARACTER(*) VARYING);
LIBDIR = 'CMS$LIB';
MEMBER_FLAG = 1;
CALL CMS$SET_LIBRARY (LIB_DB, LIBDIR);
CALL CMS$SHOW_ELEMENT (LIB_DB, OUTPUT_ROUTINE, , , MEMBER_FLAG);

/* the output routine */

OUTPUT_ROUTINE : PROCEDURE (FIRST, LDB, PARAM, ELEMENT, COMM, HIST,
 NOTES, POS, CONC, REFCOP, GROUP_LIST, REVIEW)
 RETURNS (FIXED BINARY(31) VALUE);

 DECLARE FIRST FIXED BINARY(1),
 LDB (50) FIXED BINARY(31),
 (PARAM, ELEMENT, COMM, HIST, NOTES, POS,
 CONC, REFCOP, GROUP_LIST, REVIEW) FIXED BINARY(31);

226

Appendix B. Examples of Calling CMS

 DECLARE ELEMENT_NAME CHARACTER(79) VARYING;
 DECLARE GROUP_LIST_NAMES CHARACTER(120) VARYING;

 /* write the lines of data */
 CALL CMS$GET_STRING (ELEMENT, ELEMENT_NAME);
 PUT SKIP LIST (ELEMENT_NAME);
 CALL CMS$GET_STRING (GROUP_LIST, GROUP_LIST_NAMES);
 PUT SKIP LIST (GROUP_LIST_NAMES);
 RETURN (1);

 END OUTPUT_ROUTINE;
END;

Key to Example B.8, "Calling CMS$SHOW_ELEMENT from PL/I (Alpha and VAX Only)":

The output routine must be passed by value to place the address of the entry point in the call frame.

If you specify the OPTIONS (VARIABLE) attribute in the routine declaration,you can omit
unnecessary arguments from the call to the CMS routine.

Although the OPTIONS(VARIABLE) attribute is used,you must use commas as placeholders for
intermediate arguments. You do not need to include placeholders for trailing default arguments.

B.9. Calling CMS from SCAN
Example B.9, "SCAN Example" shows the use of CMS$FETCH_OPEN, CMS$FETCH_GET, and
CMS$FETCH_CLOSE to retrieve the latest generation of an element and replace all white space with a
single space. The file is then written to SYS$OUTPUT.

Example B.9. SCAN Example

MODULE cms_example;
!+

 ! This example program accesses the CMS library pointed to by the
 CMS$LIB
 ! logical name. It prompts for an element name, and then displays
 its
 ! contents.
 !-

 !+
 ! Declarations.
 !-
 TYPE cms_fdb : FILL (20);

 CONSTANT cms$_normal EXTERNAL INTEGER;
 CONSTANT rms$_eof EXTERNAL INTEGER;
 CONSTANT scn$_endinpstm EXTERNAL INTEGER;
 CONSTANT ss$_normal EXTERNAL INTEGER;

 EXTERNAL PROCEDURE cms$fetch_open
 (REFERENCE cms_fdb,
 DESCRIPTOR DYNAMIC STRING,
 DESCRIPTOR DYNAMIC STRING,
 DESCRIPTOR DYNAMIC STRING,
 REFERENCE BOOLEAN,
 REFERENCE BOOLEAN,

227

Appendix B. Examples of Calling CMS

 DESCRIPTOR DYNAMIC STRING,
 REFERENCE INTEGER) OF INTEGER;

 EXTERNAL PROCEDURE cms$fetch_get
 (REFERENCE cms_fdb,
 DESCRIPTOR DYNAMIC STRING,
 REFERENCE INTEGER,
 DESCRIPTOR DYNAMIC STRING,
 REFERENCE INTEGER) OF INTEGER;

 EXTERNAL PROCEDURE cms$fetch_close
 (REFERENCE cms_fdb,
 REFERENCE INTEGER) OF INTEGER;

 !+
 ! Global values shared between the procedures.
 !-
 DECLARE fdb : cms_fdb;
 DECLARE status : INTEGER;
 DECLARE buffer : DYNAMIC STRING;

 !+
 ! Simple token and macro to compress a sequence of blanks and tabs
 ! to a single blank.
 !-
 TOKEN space { { ' ' | s'ht' }... };
 MACRO compress TRIGGER { space };
 ANSWER ' ';
 END MACRO /* compress */;

 !+
 ! Input procedure to read the lines of the CMS element.
 !-
 PROCEDURE read_line
 (buffer_length : INTEGER,
 buffer_ptr : POINTER TO FIXED STRING (132)) OF INTEGER;
 status = cms$fetch_get(fdb, buffer, *, *, *);
 IF status = rms$_eof
 THEN
 RETURN scn$_endinpstm;
 ELSE
 buffer_length = LENGTH(buffer);
 buffer_ptr -> = buffer;
 RETURN ss$_normal;
 END IF;
 END PROCEDURE /* read_line */;

 !+
 ! Main procedure that "opens" the cms element, scans the input
 ! stream, and "closes" the cms element.
 !-
 PROCEDURE main MAIN;
 DECLARE element_name : DYNAMIC STRING;
 READ PROMPT ('element name: ') element_name;
 status = cms$fetch_open (fdb, 'CMS$LIB', element_name,
 *, TRUE, TRUE, *, *);
 START SCAN
 INPUT PROCEDURE read_line

228

Appendix B. Examples of Calling CMS

 OUTPUT FILE 'sys$output';

 status = cms$fetch_close(fdb, *);
 END PROCEDURE /* main */;
END MODULE /* cms_example */;

Key to Example B.9, "SCAN Example":

A fetch data block of 20 bytes (five longwords) is declared.

The compress macro performs the space compression.

Procedure read_line calls CMS$FETCH_GET to read the lines.

At the end of the input, the program returns SCN$_ENDINPSTM to indicate that there is no more
data.

This line prompts the user to provide an element name.

Asterisks mean that these parameters are being omitted.

229

Appendix B. Examples of Calling CMS

230

	VSI DECset for OpenVMS Code Management System Callable Routines Reference Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. References to Other Products
	6. OpenVMS Documentation
	7. VSI Encourages Your Comments
	8. Typographical Conventions

	Chapter 1. Using CMS Callable Routines
	1.1. Generating Interface Descriptions Using SDL
	1.2. Calling CMS Routines
	1.3. Rules for Writing Programs that Call CMS Routines
	1.4. Passing Arguments to CMS Routines
	1.4.1. Data Types
	1.4.2. The Library Data Block
	1.4.3. The Fetch Data Block
	1.4.4. Specifying Flags as Arguments
	1.4.5. Masks
	1.4.6. Output Strings

	1.5. Condition Values Returned
	1.5.1. CMS$_EOF Condition Value
	1.5.2. CMS$_INUSE, CMS$_WAITING, and CMS$_PROCEEDING Messages

	1.6. Using Callback Routines
	1.6.1. Rules for Writing Callback Routines
	1.6.2. Callback Routines Used by CMS$CMS
	1.6.2.1. The Confirmation Routine
	1.6.2.2. The Prompt Routine
	1.6.2.3. The Output Routine

	1.6.3. Passing Strings Between CMS and Callback Routines
	1.6.3.1. Specifying End of Input
	1.6.3.2. Determining End of Output

	1.6.4. Callback Return Codes

	1.7. Handling Error Conditions
	1.8. Writing an Error-Message Handler
	1.9. Linking with the CMS Image

	Chapter 2. CMS Routine Descriptions
	CMS$ANNOTATE
	CMS$ASYNCH_TERMINATE
	CMS$CMS
	CMS$COPY_CLASS
	CMS$COPY_ELEMENT
	CMS$COPY_GROUP
	CMS$CREATE_CLASS
	CMS$CREATE_ELEMENT
	CMS$CREATE_GROUP
	CMS$CREATE_LIBRARY
	CMS$DELETE_CLASS
	CMS$DELETE_ELEMENT
	CMS$DELETE_GENERATION
	CMS$DELETE_GROUP
	CMS$DELETE_HISTORY
	CMS$DIFFERENCES
	CMS$DIFFERENCES_CLASS
	CMS$FETCH
	CMS$FETCH_CLOSE
	CMS$FETCH_GET
	CMS$FETCH_OPEN
	CMS$GET_STRING
	CMS$INSERT_ELEMENT
	CMS$INSERT_GENERATION
	CMS$INSERT_GROUP
	CMS$MODIFY_CLASS
	CMS$MODIFY_ELEMENT
	CMS$MODIFY_GENERATION
	CMS$MODIFY_GROUP
	CMS$MODIFY_LIBRARY
	CMS$MODIFY_RESERVATION
	CMS$PUT_STRING
	CMS$REMARK
	CMS$REMOVE_ELEMENT
	CMS$REMOVE_GENERATION
	CMS$REMOVE_GROUP
	CMS$REPLACE
	CMS$RETRIEVE_ARCHIVE
	CMS$REVIEW_GENERATION
	CMS$SET_ACL
	CMS$SET_LIBRARY
	CMS$SET_NOLIBRARY
	CMS$SHOW_ACL
	CMS$SHOW_ARCHIVE
	CMS$SHOW_CLASS
	CMS$SHOW_ELEMENT
	CMS$SHOW_GENERATION
	CMS$SHOW_GROUP
	CMS$SHOW_HISTORY
	CMS$SHOW_LIBRARY
	CMS$SHOW_RESERVATIONS
	CMS$SHOW_REVIEWS_PENDING
	CMS$SHOW_VERSION
	CMS$UNRESERVE
	CMS$VERIFY

	Appendix A. Summary of CMS Entry Points
	Appendix B. Examples of Calling CMS
	B.1. Calling CMS from Ada
	B.2. Calling CMS from Basic
	B.3. Calling CMS from BLISS
	B.4. Calling CMS from C
	B.5. Calling CMS from COBOL
	B.6. Calling CMS from Fortran
	B.7. Calling CMS from Pascal
	B.8. Calling CMS from PL/I (Alpha and VAX)
	B.9. Calling CMS from SCAN

