
VSI OpenVMS

VSI DECset for OpenVMS
Guide to VSI Digital Test Manager

Operating System and Version: VSI OpenVMS x86-64 Version 9.2-2 or higher
VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: DECset Version 12.7

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI DECset for OpenVMS Guide to VSI Digital Test Manager

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

All other trademarks and registered trademarks mentioned in this document are the property of their respective holders.

ii

VSI DECset for OpenVMS Guide to VSI Digital Test Manager

Table of Contents
Preface ... vii

1. About VSI .. vii
2. Intended Audience ... vii
3. Document Structure ... vii
4. Related Documents ... viii
5. References to Other Products .. viii
6. OpenVMS Documentation .. viii
7. VSI Encourages Your Comments ... viii
8. Conventions ... viii

Chapter 1. Introduction to VSI Digital Test Manager .. 1
1.1. Overview ... 1
1.2. Entering Commands .. 3

1.2.1. Getting Help .. 4
1.2.2. Canceling Commands ... 4

1.3. Getting Started ... 4
Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows
Environment .. 9

2.1. Overview ... 9
2.1.1. Getting Help .. 10
2.1.2. Displaying VSI Digital Test Manager Information in DECwindows 10
2.1.3. VSI Digital Test Manager Command Correlation ... 11

2.2. Sample DECwindows Session .. 11
2.2.1. Creating a Library .. 12
2.2.2. Creating a Test ... 13
2.2.3. Recording a Test .. 14
2.2.4. Creating a Collection .. 16
2.2.5. Executing a Collection .. 17
2.2.6. Displaying Test Results ... 18
2.2.7. Updating a Benchmark File .. 19
2.2.8. Creating a Benchmark Mask ... 20
2.2.9. Removing the Screen Editor .. 22

Chapter 3. Creating Tests .. 23
3.1. VSI Digital Test Manager Libraries .. 23

3.1.1. Creating a VSI Digital Test Manager Library .. 24
3.1.2. Setting a Library .. 24
3.1.3. Displaying VSI Digital Test Manager Library Information 25
3.1.4. VSI Digital Test Manager History .. 26

3.1.4.1. Adding a Remark to the History ... 26
3.1.4.2. Deleting History Information .. 27

3.2. Test Descriptions .. 27
3.2.1. Creating Test Descriptions .. 27
3.2.2. Displaying Test Descriptions .. 29
3.2.3. Copying Test Descriptions ... 29
3.2.4. Modifying Test Descriptions .. 30
3.2.5. Deleting Test Descriptions .. 31

3.3. Creating Noninteractive Tests ... 32
3.3.1. Writing a Noninteractive Test .. 32
3.3.2. Writing a Template File for a Noninteractive Test ... 32

iii

VSI DECset for OpenVMS Guide to VSI Digital Test Manager

3.3.3. Creating a Noninteractive Test Description ... 33
3.4. Creating Interactive Tests ... 33
3.5. Recording Interactive Tests .. 34

3.5.1. Recording Interactive Terminal Tests ... 34
3.5.1.1. Terminal Record Command Keys .. 35
3.5.1.2. Exiting from a Terminal Recording Session .. 36
3.5.1.3. Redefining the Termination Character ... 36

3.5.2. Recording Interactive DECwindows Tests ... 37
3.5.2.1. DECwindows Record Command Keys ... 37
3.5.2.2. Redefining the Command Key .. 38
3.5.2.3. Exiting from a DECwindows Recording Session 38

3.6. Playing Back an Interactive Test ... 38
3.6.1. Playing an Interactive Terminal Test .. 39
3.6.2. Playing an Interactive DECwindows Test .. 39

3.7. Processing Considerations for Interactive Terminal Tests .. 39
3.7.1. Time-Dependent Applications .. 39
3.7.2. Playing Back Applications in Real Time ... 40
3.7.3. Ctrl/C or Ctrl/Y ... 40
3.7.4. Applications That Accept Unsolicited Input .. 41
3.7.5. Device Type and Terminal Characteristics .. 41
3.7.6. Graphics Mode Commands ... 41
3.7.7. Comparison of Scrolled Screens .. 41

Chapter 4. Organizing and Executing Test Collections ... 43
4.1. Creating Collections .. 43
4.2. Executing Collections .. 44

4.2.1. Executing Collections in Batch Mode ... 46
4.2.2. Executing Collections Interactively ... 46
4.2.3. Stopping the Execution of Collections .. 47

4.3. Displaying a Collection Summary ... 47
4.4. Deleting Collections .. 48
4.5. Re-Creating Collections ... 48
4.6. Comparing Test Results ... 48
4.7. Recomparing Partially Compared Collections .. 50

Chapter 5. Reviewing Test Results .. 51
5.1. Review Concepts ... 51

5.1.1. Using Result Descriptions ... 52
5.1.1.1. Output Files .. 52
5.1.1.2. Comparison Status ... 53

5.1.2. Specifying Result Descriptions ... 53
5.2. Examining Test Results .. 55

5.2.1. Using the Review Subsystem ... 55
5.2.1.1. Review Subsystem Overview .. 55
5.2.1.2. Primary and Read-only Reviewers ... 56
5.2.1.3. Canceling Review Subsystem Commands ... 56
5.2.1.4. Locating Test Results in the Review Subsystem .. 56
5.2.1.5. Using the Review Subsystem Keypads ... 57

5.2.2. Displaying Test Results ... 62
5.2.3. Printing Test Results ... 64

5.3. Working with Test Results ... 64
5.3.1. Updating an Existing Benchmark File .. 65
5.3.2. Creating a Benchmark File for a New Test ... 65

iv

VSI DECset for OpenVMS Guide to VSI Digital Test Manager

5.3.3. Reviewing Partially Run Collections ... 67
Chapter 6. Tailoring Your Test System .. 69

6.1. Using Prologue and Epilogue Files ... 69
6.1.1. Test Prologue and Epilogue Files ... 70
6.1.2. Collection Prologues and Epilogues .. 71

6.2. Grouping Tests ... 72
6.2.1. Organizing Tests into Groups .. 73
6.2.2. Displaying a Group Structure .. 74
6.2.3. Removing Tests and Sub-groups from Groups .. 75
6.2.4. Deleting Groups ... 76

6.3. Using Variables ... 76
6.3.1. Modifying and Deleting Variables .. 77
6.3.2. Overriding Variable Default Values .. 78
6.3.3. Using Variables Defined by VSI Digital Test Manager ... 79

6.3.3.1. DTM$COLLECTION_NAME Global Symbol ... 79
6.3.3.2. DTM$TEST_NAME Local Symbol .. 79
6.3.3.3. DTM$RESULT Logical Name ... 80

6.3.4. Using User-Defined Variables to Control VSI Digital Test Manager 80
6.3.4.1. DTM$DELAY_TIMEOUT Logical Variable .. 80
6.3.4.2. DTM$OMIT_PRINTABLE_SCREENS Logical Variable 81
6.3.4.3. DTM$DATE_FILTER_MIN_YEAR Logical Variable 81
6.3.4.4. DTM$DATE_FILTER_MAX_YEAR Logical Variable 81
6.3.4.5. DTM$DATE_FILTER_STRING Logical Variable 82
6.3.4.6. DTM$DATE_FILTER_FIRST Logical Variable 82
6.3.4.7. DTM$DATE_MASK_MIN_YEAR Logical Variable 83
6.3.4.8. DTM$DATE_MASK_MAX_YEAR Logical Variable 83
6.3.4.9. DTM$IGNORE_PROLOGUE_ERRORS Logical Variable 83
6.3.4.10. DTM$RETAIN_RESULTS Logical Variable .. 83
6.3.4.11. DTM$TIME_FILTER_NO_SPACE Logical Variable 83

6.4. Using Filters ... 84
6.4.1. Associating and Disabling Test Filters .. 86
6.4.2. Applying File Filters ... 86
6.4.3. Using Masks .. 86
6.4.4. User Defined Filters ... 88

6.4.4.1. Command Qualifier ... 88
6.4.4.2. Variables for User Filters ... 89
6.4.4.3. Filtering Benchmarks on Recording Interactive Terminal Tests 89
6.4.4.4. Using the Global Replace Procedure ... 90
6.4.4.5. Examples of User Filters .. 90

6.5. Defining Keypad Keys ... 93
6.6. Using Command Files ... 94

6.6.1. Creating and Invoking a Command File ... 95
6.6.2. Creating a VSI Digital Test Manager Initialization Command File 95

6.7. Spawning or Attaching to Another Process .. 96
6.8. Gathering Test Coverage Data .. 96

Chapter 7. Maintaining a VSI Digital Test Manager Library .. 97
7.1. Correcting an Invalid VSI Digital Test Manager Library ... 97
7.2. Storing Files Outside a VSI Digital Test Manager Library ... 98

7.2.1. Setting Benchmark and Template Directories .. 98
7.2.2. Storing Files in CMS Libraries .. 98

7.3. Security Features .. 99

v

VSI DECset for OpenVMS Guide to VSI Digital Test Manager

7.3.1. Assigning UIC Protection .. 100
7.3.2. Assigning ACL Protection ... 101

7.3.2.1. Using ACLs on Library Directories ... 101
7.3.2.2. Using ACLs on Library Files .. 102

Chapter 8. Working with Terminal Session Files .. 105
8.1. Terminal Session Files ... 106

8.1.1. Sample Session File .. 106
8.1.2. Terminal Session File Structure ... 107

8.1.2.1. Record Structure of Session Files .. 109
8.1.2.2. Modifying Session Files Directly ... 111

8.2. Input Files .. 112
8.2.1. Sample Input File ... 112
8.2.2. Special Strings .. 112

8.2.2.1. Types of Special Strings Recognized by VSI Digital Test Manager 113
8.2.2.2. Using Special Strings in Input Files ... 115

8.3. Creating Input Files ... 115
8.3.1. Extracting an Input File from a Session File ... 116
8.3.2. Creating an Input File with a Text Editor ... 117

8.4. Recording a Session File from an Input File .. 117
8.4.1. Using the /INPUT Qualifier .. 117
8.4.2. Using the INSERT Recording Function .. 118
8.4.3. Terminal Characteristics .. 119
8.4.4. Type-Ahead ... 120

8.5. Translation Tables ... 120
Chapter 9. Working with DECwindows Session Files ... 131

9.1. DECwindows Session File Format .. 131
9.1.1. DECwindows Session File Header Information .. 132
9.1.2. DECwindows Session File Records .. 133

9.2. Synchronizing Playback ... 135
9.2.1. Auto Synchronize Option .. 135
9.2.2. Record and Playback Resource File ... 136

Chapter 10. VSI Digital Test Manager Callable Interface .. 137
10.1. Calling Sequence for DTM$DTM ... 137

10.1.1. Command Line (command_line) .. 137
10.1.2. Message Routine (msg_routine) ... 137
10.1.3. Prompt Routine (prompt_routine) .. 137
10.1.4. Confirmation Routine (confirm_routine) ... 138
10.1.5. Output Routine (output_routine) .. 139
10.1.6. Output Width (width) ... 140
10.1.7. Initialization Flag (init_flag) .. 140

10.2. Rules for Writing VSI Digital Test Manager Callback Routines 140
10.3. Handling Error Conditions ... 141
10.4. Writing an Error Message Handler .. 141
10.5. Linking with the VSI Digital Test Manager Image .. 142

vi

Preface
This guide explains how to use VSI Digital Test Manager for OpenVMS as an automated regression test
system. The guide describes how to use the product during the development and maintenance phase of a
software development project.

VSI Digital Test Manager allows you flexibility in organizing tests, selecting tests for execution,
and reviewing and verifying test results. This guide provides examples for both basic and advanced
techniques.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This guide is intended primarily for programmers, software engineers, and project managers who are
responsible for producing fully tested code. Users should be familiar with the OpenVMS operating
system, Digital Command Language (DCL), OpenVMS program development facilities, and OpenVMS
utilities.

3. Document Structure
This guide contains the following chapters:

Chapter 1, "Introduction to VSI Digital Test Manager" explains regression testing, gives an overview of
how VSI Digital Test Manager automates the regression testing process, and briefly explains its major
concepts. It includes a sample, interactive terminal session.

Chapter 2, "Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment" describes
the VSI Digital Test Manager DECwindows interface. It gives an overview and a sample DECwindows
session.

Chapter 3, "Creating Tests" describes the concepts of VSI Digital Test Manager libraries and tests. It
explains how to create noninteractive and interactive terminal and DECwindows tests.

Chapter 4, "Organizing and Executing Test Collections" explains how to organize, execute, display,delete,
recreate, compare, and stop test collections.

Chapter 5, "Reviewing Test Results" explains how to examine test results. Topics include evaluating the
results of a test run, examining and updating test results, and displaying and printing reports of the test
results.

Chapter 6, "Tailoring Your Test System" explains how to add features to your test system to create
a custom testing environment. Topics include prologue and epilogue files, groups, variables, filters,
defining keys for the VSI Digital Test Manager keypads, initialization and command files, and spawning
subprocesses.

Chapter 7, "Maintaining a VSI Digital Test Manager Library" explains the VSI Digital Test Manager
library functions, including how to store files outside the library, verify data in the library, access the
library from a remote node, and set user identification code (UIC) and access control list (ACL) file
protections.

vii

Preface

Chapter 8, "Working with Terminal Session Files" describes session files and input files for terminal-
based tests and discusses how they are used.

Chapter 9, "Working with DECwindows Session Files" describes the format of DECwindows session files
and input files and explains how to edit DECwindows session files.

Chapter 10, "VSI Digital Test Manager Callable Interface" explains how to call VSI Digital Test Manager
from other programs.

4. Related Documents
The following list describes additional documentation related to VSI Digital Test Manager:

● See the VSI DECset for OpenVMS Installation Guide for installation instructions for VSI Digital Test
Manager.

● VSI DECset for OpenVMS Test Manager Reference Manual for complete information on all available
commands.

● See Using VSI DECset for OpenVMS Systems for information on using VSI Digital Test Manager with
other DECset tools.

5. References to Other Products
Some older products that DECset components previously worked with might no longer be available or
supported by VSI. Any reference in this manual to such products does not imply actual support, or that
recent interoperability testing has been conducted with these products.

Note

These references serve only to provide examples to those who continue to use these products with
DECset.

Refer to the Software Product Description for a current list of the products that the DECset components
are warranted to interact with and support.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

8. Conventions
The following conventions may be used in this manual:

viii

https://docs.vmssoftware.com

Preface

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

... A horizontal ellipsis in examples indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

ix

Preface

x

Chapter 1. Introduction to VSI
Digital Test Manager
This chapter describes the VSI Digital Test Manager environment and components, and introduces its
command-line interface. Usage is demonstrated in a sample session.

1.1. Overview
VSI Digital Test Manager is a software development and maintenance tool that organizes and automates
the software regression testing process. You use the product to run, review, and store software regression
tests and test results.

You write tests for one or more of the following reasons:

● To ensure that the introduction of a new software component does not produce a negative impact on
existing software components.

● To ensure that changes to the environment outside of the application do not affect the application
itself. For example, an upgraded operating system or a change in an error message file should not
affect the application (other than to issue new error messages).

● To test error and boundary conditions in the application.

Regression testing is a method of ensuring that an application being developed runs correctly when new
features are added to the application; that is, previously tested features are not affected by new features.
If errors occur when new features are added to an application, the application is said to have regressed.

The following list outlines typical regression testing steps for an application:

1. Create tests for the application.

a. Organize the tests.

b. Create a mechanism to allow ready access to tests.

2. Run the tests.

3. Examine the test results.

a. Compare the test results to those you expected and note any differences.

b. Revise the application code to correct problems that caused incorrect test output. Repeat Steps 2
and 3 until the test output is correct.

4. Save the correct output as the validated test results.

5. Repeat Steps 2 through 4 whenever you modify the application or add new code.

If the current and the previously validated test results match, the application being tested is working
as expected.

If you find unexpected changes in test results, the application being tested might contain errors.

1

Chapter 1. Introduction to VSI Digital Test Manager

VSI Digital Test Manager automates the regression testing steps except for the creation of tests, which
only you can do for your software applications. Figure 1.1, "Regression Testing with VSI Digital Test
Manager" shows the regression testing steps. The shaded area indicates those steps that VSI Digital Test
Manager automates.

Figure 1.1. Regression Testing with VSI Digital Test Manager

VSI Digital Test Manager performs the following actions with minimal or no user assistance:

● Organizes test files.

● Runs tests.

● Compares the current results with the expected results in the benchmark file and logs any
differences found between benchmark and current results. (A benchmark file contains the expected
output for the test's execution.)

● Saves the test results if different from the benchmark.

● Displays the test results for examination.

You can use VSI Digital Test Manager to test software that executes in a variety of common OpenVMS
environments. Table 1.1, "Supported VSI Digital Test Manager Environments" shows the supported
environments.

Table 1.1. Supported VSI Digital Test Manager Environments

Chosen Environment Result

Noninteractive You can use VSI Digital Test Manager with noninteractive tests that
do not have a terminal-oriented or workstation interface. Software that
accepts an input text file and gives you an output text file can be tested as a
noninteractive test.

Interactive Terminal You can use VSI Digital Test Manager with interactive terminal tests for
testing software with an interactive, terminal-oriented interface.

2

Chapter 1. Introduction to VSI Digital Test Manager

Chosen Environment Result

Interactive DECwindows You can use VSI Digital Test Manager with DECwindows tests for testing
software that presents a windowed interface within the DECwindows
environment.

Table 1.2, "VSI Digital Test Manager Terms" further describes the VSI Digital Test Manager environment
by describing specific terms.

Table 1.2. VSI Digital Test Manager Terms

Term
Description

Library VSI Digital Test Manager stores the information it needs to manage a test
system in an OpenVMS directory called a VSI Digital Test Manager library.
Chapter 3, "Creating Tests" describes these libraries in detail.

Test Description A collection of fields that contains the information that VSI Digital Test
Manager needs to run a particular test. A test description requires a template
file and can have other optionally specified test-related entities. A template
file is an OpenVMS command procedure that executes a noninteractive test,
or a session file containing a recorded interactive terminal or DECwindows
session. Chapter 3, "Creating Tests" describes tests and test descriptions in
more detail.

Collection A set of tests selected for execution. You can execute a test only in the
context of a collection. You can select tests for inclusion in a collection by
test name or groups. Chapter 4, "Organizing and Executing Test Collections"
describes collections in detail.

1.2. Entering Commands
You can enter VSI Digital Test Manager commands in several ways:

● From the Digital Command Language (DCL) command line

● From the VSI Digital Test Manager command line

● From the DECwindows interface (see Chapter 2, "Using VSI Digital Test Manager for OpenVMS in a
DECwindows Environment")

● From a program that calls VSI Digital Test Manager directly (see Chapter 10, "VSI Digital Test
Manager Callable Interface")

When you enter a command from the VSI Digital Test Manager command line, do not type the DTM>
prompt shown in the examples. After the command executes, control returns to the VSI Digital Test
Manager subsystem level.

The following example shows how to invoke VSI Digital Test Manager, issue the SHOW VERSION
command, and exit:

$ DTM
DTM> SHOW VERSION
Digital Test Manager Version 3.9
DTM> EXIT
$

3

Chapter 1. Introduction to VSI Digital Test Manager

If you press RETURN before completing a command, you are prompted for all required information for
a command.

If you plan to enter many commands, use VSI Digital Test Manager as a subsystem to avoid the
processing overhead that occurs when you invoke it directly from DCL.

Note

Examples in this manual show prompts from the following process levels:

● The dollar sign prompt ($) indicates DCL level.

● The VSI Digital Test Manager prompt (DTM>) means a command is being issued from the VSI
Digital Test Manager subsystem; examples in this manual typically show commands entered from
this prompt.

● The DTM_REVIEW> prompt means a command is being issued from the Review subsystem of VSI
Digital Test Manager.

1.2.1. Getting Help
To access the VSI Digital Test Manager help system, type the following command at the DCL prompt:

$ HELP DTM

To access help on a specific command, type the command name at the DCL prompt. For example:

$ HELP DTM COPY TEST_DESCRIPTION

You can also access VSI Digital Test Manager help from the DTM> command line or any of the
subsystem command lines. For example:

$ DTM
DTM> HELP COPY TEST_DESCRIPTION

1.2.2. Canceling Commands
If you want to cancel a command before it has completed, press Ctrl/C. If you press Ctrl/C during a
wildcard transaction that updates the library, VSI Digital Test Manager completes the current transaction,
but does not continue.

When you enter a VSI Digital Test Manager command from DCL and then press Ctrl/C during execution
of the command, VSI Digital Test Manager returns control to DCL level. If you enter the command from
a subsystem prompt level, VSI Digital Test Manager retains control as indicated by the DTM> prompt.

1.3. Getting Started
This section shows fundamental VSI Digital Test Manager features. To get you started using the product,
this section shows a sample session with an interactive terminal test. Noninteractive and DECwindows
tests are described later in this manual.

The example in this section is designed so you can re-create a VSI Digital Test Manager session at a
terminal. The example demonstrates the following:

4

Chapter 1. Introduction to VSI Digital Test Manager

● Invoking VSI Digital Test Manager

● Creating a new VSI Digital Test Manager library

● Creating a test

● Showing a test within VSI Digital Test Manager

● Recording a test

● Creating a collection

● Showing a collection within VSI Digital Test Manager

● Executing the test in a collection

● Comparing the test results to the expected output

● Examining the test results

Example 1.1, "Sample Interactive Terminal Session" uses the OpenVMS Mail Utility (MAIL) and shows
you how to use VSI Digital Test Manager to test some of the MAIL commands.

The reverse numbers refer you to the command-line explanation in the list that follows the example.

Phrases enclosed in quotation marks (" ") are remarks associated with the command being issued. For
most commands, VSI Digital Test Manager prompts you for a remark if you do not include one on the
command line. A null remark string is permitted.

Example 1.1. Sample Interactive Terminal Session

$ CREATE/DIRECTORY [.DTMLIB]
$ DTM
DTM> CREATE LIBRARY [.DTMLIB] "New Digital Test Manager Library"
%DTM-S-CREATED, Digital Test Manager library DUA1:[USER01.DTMLIB] created
DTM> CREATE TEST_DESCRIPTION MAIL_TEST/INTERACTIVE
_Remark: Going to record a MAIL test
%DTM-I-DEFAULTED, benchmark file name defaulted to MAIL_TEST.BMK
%DTM-I-DEFAULTED, template file name defaulted to MAIL_TEST.SESSION
%DTM-S-CREATED, test description MAIL_TEST created
DTM> SHOW TEST_DESCRIPTION

Test Descriptions in Digital Test Manager Library DUA1:[USER01.DTMLIB]

MAIL_TEST "Going to record a MAIL test"
 Template = MAIL_TEST.SESSION
 Benchmark = MAIL_TEST.BMK
 Prologue = None Specified
 Epilogue = None Specified
DTM> RECORD MAIL_TEST "Recording Mail on the terminal"
%DTM-I-BEGIN, your interactive test session is now beginning...
Type Ctrl/P twice to terminate the session.

$ SET BROADCAST=NONE
$ MAIL

MAIL> SHOW PERSONAL_NAME
Your personal name is "Digital Test Manager - Project Q41327".

5

Chapter 1. Introduction to VSI Digital Test Manager

MAIL> SET PERSONAL_NAME "Digital Test Manager - Engineer USER01"

MAIL> SHOW PERSONAL_NAME
Your personal name is "Digital Test Manager - Engineer USER01".

MAIL> EXIT
$ set broadcast=all
$ ^P ^P

^P

%DTM-I-BMK_SAVED, benchmark has been saved in file
DUA1:[USER01.DTMLIB]MAIL_TEST.BMK;1
%DTM-S-RECORDED, test MAIL_TEST has been successfully recorded in file
DUA1:[USER01]MAIL_TEST.SESSION

DTM> CREATE COLLECTION MAIL_COLL MAIL_TEST "Creating the MAIL test
 collection"
%DTM-S-CREATED, collection MAIL_COLL created
DTM> SHOW COLLECTION

Collections in Digital Test Manager Library DUA1:[USER01.DTMLIB]

MAIL_COLL 1 test 27-OCT-1998 09:49:38
 Command: CREATE COLLECTION MAIL_COLL MAIL_TEST "Creating the MAIL
 test collection"
 Status: not run

DTM> RUN MAIL_COLL

Starting MAIL_TEST test run...

%DTM-I-BEGIN, your interactive test session is now beginning...
$ SET BROADCAST=NONE
$ MAIL

MAIL> SHOW PERSONAL_NAME
Your personal name is "Digital Test Manager - Engineer USER01".

MAIL> SET PERSONAL_NAME "Digital Test Manager - Engineer USER01"

MAIL> SHOW PERSONAL_NAME
Your personal name is "Digital Test Manager - Engineer USER01".

MAIL> EXIT
$ SET BROADCAST=ALL
$
%DTM-S-CONCLUDED, your interactive test session has concluded

Performing post-run cleanup with comparison...

%DTM-I-UNSUCCESS, the comparison for the test MAIL_TEST was unsuccessful
%DTM-S-COMPARED, collection MAIL_COLL compared
DTM> REVIEW MAIL_COLL
Collection MAIL_COLL with 1 test was created on 27-OCT-1998 09:49:38 by the
command:
 CREATE COLLECTION MAIL_COLL MAIL_TEST "Creating the MAIL test
 collection"

6

Chapter 1. Introduction to VSI Digital Test Manager

 Last Review Status = not previously reviewed
 Success count = 0
 Unsuccessful count = 1
 New test count = 0
 Updated test count = 0
 Comparisons aborted = 0
 Test not run count = 0

Result Description MAIL_TEST Comparison Status : Unsuccessful

DTM_REVIEW> SHOW/DIFFERENCES
 .
 .
 .
DTM_REVIEW> EXIT
%DTM-S-EXIT, leaving Review subsystem
DTM> EXIT
$

Create an empty subdirectory for use as a VSI Digital Test Manager library.

Invoke VSI Digital Test Manager.

Create a new VSI Digital Test Manager library and assign it to the empty subdirectory. When you
create a library, VSI Digital Test Manager automatically sets this as the current library; you do not
need to set the library.

Create the test description called MAIL_TEST and designate it as an interactive terminal test.

If you do no supply a comment to the CREATE TEST_DESCRIPTION command, VSI Digital
Test Manager prompts you for one.

Show the test descriptions in the current library.

Record the MAIL_TEST test. Note that VSI Digital Test Manager spawned to DCL.

Set your terminal to NOBROADCAST so incoming messages do not interfere with the test
recording.

Invoke the Mail Utility.

Show the current personal name. In this case, no personal name was set.

Set the personal name.

Show the personal name again.

Exit from the Mail Utility.

Reset your terminal to receive broadcast messages.

End the recording session by pressing Ctrl/P twice. The ^P characters are not echoed on the
terminal, but a ^P character appears below the end of the recording session.

Create the collection MAIL_COLL and include the MAIL_TEST test in it.

Show the collection information.

7

Chapter 1. Introduction to VSI Digital Test Manager

Run the MAIL_COLL collection interactively.

Note here that when VSI Digital Test Manager issues the SHOW PERSONAL_NAME command
from the session file, the Mail Utility displays the previously stored personal name and not the
message that was displayed when the test was recorded. The result of this command causes the test
to be reported as unsuccessful.

After the collection run ends and the test has been compared, invoke the Review subsystem to
review the MAIL_COLL collection. VSI Digital Test Manager automatically displays collection
statistics for MAIL_COLL.

VSI Digital Test Manager marked the test as unsuccessful because the result file differed from the
benchmark file.

Enter the SHOW/DIFFERENCES command. The screens are omitted from this example but
you can display them by pressing the RETURN key or specifying the NEXT command to view
subsequent difference file records.

Enter the EXIT command to exit from the Review subsystem.

Enter the EXIT command to exit from VSI Digital Test Manager.

8

Chapter 2. Using VSI Digital
Test Manager for OpenVMS in a
DECwindows Environment
This chapter describes how to use VSI Digital Test Manager for OpenVMS in a DECwindows
environment. This chapter also provides a sample DECwindows session.

2.1. Overview
To invoke the VSI Digital Test Manager DECwindows interface, enter the following command from a
terminal emulator window:

$ DTM/INTERFACE=DECWINDOWS

Note

The VSI Digital Test Manager DECwindows interface spawns a subprocess that invokes the product
whenever you record or play a test, review an interactive Terminal or DECwindows test, or run
or compare a collection. If you have defined the command DTM as a symbol such as DTM/
INTERFACE=DECWINDOWS, the subprocess spawned by VSI Digital Test Manager will fail.

Figure 2.1, "VSI Digital Test Manager Title Bar and Main Menus" shows the initial VSI Digital Test
Manager title bar and the main menus you can select from the menu bar. The menus are detached from
the menu bar to show you all the main menus at once. You can pull down only one main menu at a time.

Figure 2.1. VSI Digital Test Manager Title Bar and Main Menus

9

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

2.1.1. Getting Help
You can obtain VSI Digital Test Manager Help in a DECwindows environment by pulling down the Help
menu.

You can also get context-sensitive help in one of the following ways:

● Pull-down Menu—Go to a menu selection using the keyboard up-arrow and down-arrow keys, and
press the HELP key (F15).

● Dialog box—Go to a button or text field using the Tab and Shift/Tab keys, and press the HELP key
(F15).

If a help frame is not defined for an artifact, DTM displays a “could not find frame” error.

2.1.2. Displaying VSI Digital Test Manager Information
in DECwindows
You can display files and view information on collections, tests, groups, and variables through views.
The views are the DECwindows equivalent of the character-cell interface SHOW commands.

VSI Digital Test Manager displays the collection view when you invoke the product.

To obtain a view of collections, tests, groups, or variables, do the following:

1. Choose Query Test System... from the View menu. The Query Test System dialog box appears
listing the available views, as shown in Figure 2.2, "Query Test System Dialog Box".

Figure 2.2. Query Test System Dialog Box

1. Select the applicable type of view.

2. Optionally, specify the names of the items to be displayed. The names specified can include
wildcards and commas for lists.

3. Click on OK. The view is displayed in a new window.

Figure 2.3, "Sample Test View" shows a sample test view.

10

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

Figure 2.3. Sample Test View

You can obtain more detail by double clicking on an item (test, group,collection, variable, or library)
inside a view. If an item is expanded fully, double clicking collapses the item to the previous level of
information.

2.1.3. VSI Digital Test Manager Command Correlation
Most VSI Digital Test Manager commands have a corresponding menu path in the DECwindows
interface; however, there is not a complete one-to-one correspondence.

There is no corresponding DECwindows action for the VSI Digital Test Manager SPAWN and ATTACH
commands, because DECwindows enables you to create another process without having to spawn out of
a process.

There is no corresponding DECwindows action for the VSI Digital Test Manager SHOW HISTORY
command. History records can only be accessed from the command-line interface.

2.2. Sample DECwindows Session
This sample session uses the DECwindows Clock application to show you how to use VSI Digital
Test Manager to test a DECwindows application. Although this sample uses a DECwindows test, the
DECwindows interface can be used to control any type of test. This section describes the following
DECwindows topics:

● Creating and opening a library

● Creating a test

● Recording a test

● Creating a collection

11

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

● Running a collection

● Displaying test results

● Updating a benchmark file

● Creating a benchmark mask

● Removing the Screen Editor

Note

Many of the figures in this section show dialog boxes from which you initiate tasks. These figures also
show the menu and menu item from which the dialog box is invoked.

2.2.1. Creating a Library
Figure 2.4, "Creating a VSI Digital Test Manager Library" shows how to create a new VSI Digital Test
Manager library. To open a test library, do the following:

1. Choose Library and then Create from the File menu.

2. Specify the library in the Create Library dialog box. You can also specify default Benchmark and
Template directories, as well as default collection Prologue and Epilogue files in the dialog box.

3. Click on OK.

Note

The VSI Digital Test Manager library you specify is an OpenVMS directory in which library files are
created. Therefore, you must create an empty OpenVMS directory before you can create a VSI Digital
Test Manager library.

12

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

Figure 2.4. Creating a VSI Digital Test Manager Library

2.2.2. Creating a Test
Figure 2.5, "Creating a DECwindows Test" shows how to create a DECwindows test. The test is for the
DECwindows clock application. The command to run the clock application is specified in the Command
field of the Create DECwindows Test dialog box.

13

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

Figure 2.5. Creating a DECwindows Test

2.2.3. Recording a Test
Figure 2.6, "Recording a DECwindows Test" shows a sample DECwindows Record dialog box and how
to invoke it. You can use the Record dialog box to specify parameters or test files associated with the
application being recorded. If you click on the test name before invoking the Record dialog box, the test
name automatically appears in the Test field.

14

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

Figure 2.6. Recording a DECwindows Test

When you record the DECwindows test, ensure that the conditions of the test at its start are the same
as at its end. For example, creating a solid background, making icons of all applications, and placing the
icons in a consistent order all help to ensure that start and end conditions are equal. See Section 3.5.2,
"Recording Interactive DECwindows Tests" for more information about recording DECwindows tests.
See the VSI DECset for OpenVMS Test Manager Reference Manual for more information about the
RECORD command and its qualifiers.

When you click OK in the Record window, a DECterm window appears and a message lets you know
that the recording has started.

Engage the test recording commands by pressing the F9 key and the command key sequentially to
achieve the desired result. For a complete listing and description of the available DECwindows command
keys, see Table 3.3, "DECwindows Record Command Keys". The most commonly used commands are as
follows:

● F9-M — Marks a screen for comparison.

● F9-P — Ends the recording session and saves the session and benchmark files.

At the end of the recording process, press Return to remove the displayed DECterm.

DECterm Window Configuration
For the DECwindows interface to VSI Digital Test Manager, DECterm windows are created during
RECORD, PLAY and RUN operations. You can control the position and size of these DECterm
windows.

15

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

By default, the DECterm windows are created at screen coordinates (20,800) and contain 8 rows of text.
This can be changed by defining logical names, as shown in Table 2.1, "Logical Names for Controlling
DECterm Windows".

Table 2.1. Logical Names for Controlling DECterm Windows

Command Description

DTM_DECTERM_FREE Position of windows will vary (that is, ignore other logical names). The
equivalence value is not used.

DTM_DECTERM_ROWS The equivalence value is interpreted as a string containing the required
number of rows.

DTM_DECTERM_X The equivalence value is interpreted as a string containing the required
X coordinate of the DECterm windows.

DTM_DECTERM_Y The equivalence value is interpreted as a string containing the required
Y coordinate of the DECterm windows.

2.2.4. Creating a Collection
Figure 2.7, "Creating a Collection" shows how to create a collection. In the example, the CLOCK_TEST
test is the only test in the collection. Tests can only be run in the context of a collection.

Figure 2.7. Creating a Collection

Figure 2.8, "Sample DECwindows Collection" shows an expanded view of the newly created collection
and the test it contains.

16

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

Figure 2.8. Sample DECwindows Collection

2.2.5. Executing a Collection
To execute the CLOCK_COLLECTION (as shown in Figure 2.9, "Executing a Collection"), do the
following:

1. Choose Run... from the Testing menu. VSI Digital Test Manager displays the Run dialog box.

2. Specify the collection name and any remarks you have about the collection in the Collection and
Remark fields.

3. Click on OK.

17

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

Figure 2.9. Executing a Collection

Note

Expect warning messages, such as “Timeout looking for string ’time’”.

When the collection process has finished, press Return to remove the displayed DECterm.

2.2.6. Displaying Test Results
In the Collection view, expand the appropriate collection, expand the test to show the benchmark, result,
and difference files, then double click on the file you want to display. VSI Digital Test Manager displays
the Screen Editor with the selected file (as shown in Figure 2.10, "Viewing a Test File").

18

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

Figure 2.10. Viewing a Test File

Note

When using the DECwindows interface to review interactive terminal tests, do not set input focus and
type into the result, benchmark, or differences display window. This will terminate the subprocess
controlling the window. You must interact with the window only via the VSI Digital Test Manager
Display control panel.

2.2.7. Updating a Benchmark File
To update the benchmark image file for the CLOCK_TEST test (as shown in Figure 2.11, "Updating a
Benchmark Image File"), do the following:

1. Create a Collection View.

2. Click on (highlight) the collection whose benchmarks you want to create or update.

3. Pull down the testing menu.

4. Choose the Review menu item and the Open submenu item.

5. Click on the OK button in the resulting Review Collection dialog box.

6. In the collection view, expand the collection by double clicking on the collection name.

7. Click on the result description (preceded by an icon) whose benchmark you want to create or update.

8. Pull down the testing menu.

19

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

9. Choose the Review menu item and the Update... submenu item.

Figure 2.11. Updating a Benchmark Image File

VSI Digital Test Manager automatically creates the first benchmark files from the recorded session's
output for both DECwindows and terminal interactive tests. For noninteractive tests, however, create the
first benchmark file from a result file.

Use the result file to update the benchmark file when results do not match the previous benchmark file,
but are the expected results for a test.

2.2.8. Creating a Benchmark Mask
Several factors can cause a test to fail with undesirable results. For example, if mail is received during
the sample session described in this chapter, the icons in the DECwindows Mail facility can become
altered. To ensure that areas of a DECwindows application that you have no interest in do not affect a
test-result comparison, you can create areas called masks on benchmark images using the VSI Digital
Test Manager Screen Editor. Areas that are masked are not compared when VSI Digital Test Manager
compares the results of a test execution against the benchmark image.

Generally, areas are masked on a benchmark image after recording the test and before executing the test
to mask out run-dependent image data and maximize the chances for successful comparison status for
the test. However, you can create masked areas on a benchmark image at any time.

To access the Screen Editor, click on the DECwindows test, then pull down the Testing menu and choose
the Mask... menu item. The benchmark image is automatically loaded into the Screen Editor.

To create a mask on a benchmark image, perform the following steps:

1. Click the Screen option in the Mask column.

2. Move the pointer to the beginning of the area to mask, and press and hold MB1.

20

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

3. Move the pointer to the opposite corner of the area to mask and release MB1.

Figure 2.12, "Applying Masks to a Benchmark Image" shows a mask (vertical stripes in the rectangle
below the date) being defined for the CLOCK_TEST benchmark image.

Figure 2.12. Applying Masks to a Benchmark Image

Masked areas do not become part of the benchmark image. VSI Digital Test Manager stores the
coordinates of the masked areas in a mask file, but you determine whether to compare the image with
or without the mask. If you create masked areas on a benchmark file, the masks are used by default. If
you do not want previously created mask areas to be applied to a result comparison, you must explicitly
specify ignoring masks on the Create Collection or Compare dialog box. You can delete a mask by
double clicking on a defined mask.

The VSI Digital Test Manager DECwindows Screen Editor does not purge benchmark files when new
versions are created by modifying the masks defined for a benchmark file. You must manually purge the
older versions. This applies even if the benchmark files are located in a VSI Digital Test Manager library.

You can also move a mask by placing the pointer on the mask you want to move, pressing and holding
MB3, and releasing MB3 when you move the mask to the new area.

To save a mask file, choose Save Mask from the File menu. The Screen Editor saves the mask file in the
same location as the test benchmark file. All mask files have the extension .MXK.

The global mask filter is useful when tests fail because of a difference that affects several screens
(e.g., if an unexpected window is present in the test results). By eliminating this area from the screen
comparisons, other reasons for unsuccessful comparisons are more easily detected.

The global mask filter is not included when masks are saved, so it does not affect collection comparisons
involving the test.

21

Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment

2.2.9. Removing the Screen Editor
To dismiss the Screen Editor without saving any defined masks, choose Quit from the File menu. The
file is not updated.

To Exit the Screen editor and save any defined masks, choose Exit from the File menu.

22

Chapter 3. Creating Tests
The three basic components of a VSI Digital Test Manager test system are as follows:

● A VSI Digital Test Manager library

● Tests

● Collections

This chapter describes libraries and tests and provides information on the following topics:

● VSI Digital Test Manager history

● Test descriptions

● Noninteractive tests

● Interactive terminal tests

● Input files created from session files

3.1. VSI Digital Test Manager Libraries
VSI Digital Test Manager stores the information it needs to manage a test system in an OpenVMS
directory called a VSI Digital Test Manager library. Figure 3.1, "Overview of a Custom VSI Digital Test
Manager Library" shows a customized library and its structure, with template files and benchmark files
stored in their own directories instead of in the default directory and VSI Digital Test Manager library
directory.

Figure 3.1. Overview of a Custom VSI Digital Test Manager Library

23

Chapter 3. Creating Tests

3.1.1. Creating a VSI Digital Test Manager Library
To create a VSI Digital Test Manager library, you must first create an OpenVMS directory, invoke VSI
Digital Test Manager, and enter the CREATE LIBRARY command. For example:

$ CREATE/DIRECTORY [.DTMLIB]
$ DTM
DTM> CREATE LIBRARY [.DTMLIB] "New Digital Test Manager library"
%DTM-S-CREATED, Digital Test Manager library DUA0:[USER01.DTMLIB] created
DTM>

The phrase enclosed in quotation marks (" ") following the library specification is a remark that you
associate with the library you are creating. VSI Digital Test Manager prompts you for a remark if you do
not include one on the command line, but a null remark string is permitted.

VSI Digital Test Manager creates a subdirectory in the library for each collection you create. Do not
create subdirectories or files in a directory containing the VSI Digital Test Manager library or any of
its subdirectories. Do not set the default directory as a VSI Digital Test Manager library or any of its
subdirectories.

If you put files in these subdirectories, they are deleted along with the collection files when you instruct
VSI Digital Test Manager to delete the collections.

3.1.2. Setting a Library
When you invoke VSI Digital Test Manager, you must explicitly specify the library you want to use to
store files. You do this by selecting an existing library using the SET LIBRARY command.

The CREATE LIBRARY command performs an implicit SET LIBRARY command so you can use
VSI Digital Test Manager commands with the library just created. However, after you have created one
or more libraries, you must set the default library for subsequent sessions. For example, to select the
library you created in Section 3.1.1, "Creating a VSI Digital Test Manager Library", type the following
command at the DCL prompt:

$ DTM SET LIBRARY [.DTMLIB]
%DTM-S-LIBIS, Digital Test Manager library is DUA0:[USER01.DTMLIB]

After you select a library, all VSI Digital Test Manager commands you enter refer to that library until
you select another library, create another library, or logout.

Setting a Benchmark Directory

VSI Digital Test Manager places benchmark files in the current library. You can specify another
directory using the SET BENCHMARK_DIRECTORY command, as follows:

DTM> SET BENCHMARK_DIRECTORY DUA0:[USER01.BMK]
_Remark: “New default benchmark directory”
%DTM-S-NEWDEF, DUA0:[USER01.BMK] is the new default collection benchmark
directory
DTM>

See Chapter 7, "Maintaining a VSI Digital Test Manager Library" for information about storing files
outside the VSI Digital Test Manager library, such as in a Code Management System (CMS) library.

24

Chapter 3. Creating Tests

Setting a Template Directory

VSI Digital Test Manager places template files in the current directory. You can specify another directory
using the SET TEMPLATE_DIRECTORY command, as follows:

DTM> SET TEMPLATE_DIRECTORY DUA0:[USER01.TMPL]
_Remark: “New default template directory”
%DTM-S-NEWDEF, DUA0:[USER01.TMPL] is the new default
collection template directory
DTM>

See Chapter 7, "Maintaining a VSI Digital Test Manager Library" for information about storing files
outside the VSI Digital Test Manager library.

Note

In a DECwindows environment, you can set default benchmark and template directories, and collection
prologue and epilogue files using the Create Library or Modify Library dialog box.

3.1.3. Displaying VSI Digital Test Manager Library
Information
You can obtain library information in two forms:

● As a directory and file specification

● As a summary

Use the SHOW LIBRARY command to display library directory and file specification information for
the current library. For example:

DTM> SHOW LIBRARY
Your VSI Digital Test Manager library is DUA0:[USER01.DTMLIB]

Use the SHOW ALL command to display library summary information for the current library. For
example:

DTM> SHOW ALL

Description of VSI Digital Test Manager Library DUA0:[USER01.DTMLIB]

Default template directory: DUA0:[USER01.TEMPLATES] ""
Default benchmark directory: DUA0:[USER01.BENCHMARKS] ""
Default collection prologue: None Specified
Default collection epilogue: None Specified
Number of collections: 20
Number of test descriptions: 152
Number of groups: 18
Number of variables: 9

If one of these entities does not exist for the library, the message NONESPECIFIED is displayed. You
can also place the library summary information into a file by specifying the /OUTPUT qualifier.

25

Chapter 3. Creating Tests

3.1.4. VSI Digital Test Manager History
When you create a new library, VSI Digital Test Manager automatically creates a history for that library.
Whenever you issue a command that alters the library, VSI Digital Test Manager enters that command
and its associated remark into the history.

You cannot access these history records from the DECwindows interface. However, you can access
them via the SHOW HISTORY command from the VSI Digital Test Manager command line, the DCL
command line, or the VSI Digital Test Manager callable interface.

The SHOW HISTORY command displays a chronological list of library transactions. You can list all of
the history transactions by entering the following command:

DTM> SHOW HISTORY

History in Digital Test Manager Library DUA0:[USER01.DTMLIB]

25-JAN-1998 12:03:54 USER01 CREATE LIBRARY DUA0:[USER01.DTMLIB]
 "Test library"
25-JAN-1998 12:04:12 USER01 CREATE TEST_DESCRIPTION MAIL_TEST/INTERACTIVE

“Going to record a MAIL test”
25-JAN-1998 12:05:32 USER01 RECORD MAIL_TEST
 "Recording MAIL on the terminal"
 .
 .
 .
DTM>

You can also choose the types of history transactions that you want to display. The following example
instructs VSI Digital Test Manager to display all the RECORD commands for the MAIL_TEST tests that
were made by user USER01.

DTM> SHOW HISTORY MAIL_TEST/TRANSACTION=RECORD/USER=USER01

History in Digital Test Manager Library DUA0:[USER01.DTMLIB]

25-JAN-1998 12:05:32 USER01 RECORD MAIL_TEST "Record MAIL on the terminal"
 .
 .
 .
DTM>

3.1.4.1. Adding a Remark to the History
Use the REMARK command to add a remark to the history; for example,to note an unusual occurrence
or mark a milestone in the testing system. The following example shows a remark being added to the
history:

DTM> REMARK "End of Version 3.3 Testing"
%DTM-S-REMARK, remark added to history file
DTM>

VSI Digital Test Manager enters the remark into the history, as follows:

14-MAY-1998 13:01:32 USER01 REMARK "End of Version 3.3 Testing"

26

Chapter 3. Creating Tests

3.1.4.2. Deleting History Information
You can delete all or part of the history information for a library with the DELETE HISTORY
command. Deleted history information is written to a HISTORY.OUT file in the default directory. Once
history information is deleted from the history, it cannot be replaced. VSI Digital Test Manager enters
the deletion in the history as in the following example:

1-JUN-1998 15:03:55 USER01 REMARK "Deleting the old information"

You can delete the entire history information. VSI Digital Test Manager prompts you with the current
date and time from which to delete the history records back to the first record, as follows:

DTM> DELETE HISTORY "Deleting all the old information"
Confirm DELETE HISTORY/BEFORE=14-Nov-1998 [Y/N] (N): Y
%DTM-S-HISTDEL, 323 history records deleted
DTM>

Also, you can delete a portion of the history information from a specified date and time back to the
beginning of the history, as shown in the following example:

DTM> DELETE HISTORY/BEFORE=1-JUN-1998 "Deleting the old information"
Confirm DELETE HISTORY/BEFORE=1-Jun-1998 [Y/N] (N): Y
%DTM-S-HISTDEL, 150 history records deleted
DTM>

3.2. Test Descriptions
A test description identifies a test and its related files to VSI Digital Test Manager. A test description
consists of a set of fields that identify the files and other entities (filters and variables) associated with
the test;it contains the information VSI Digital Test Manager needs to run that particular test. This
section describes how to create, display, copy, modify, and delete test descriptions.

3.2.1. Creating Test Descriptions
You create a test description by using the CREATE TEST_DESCRIPTION command with qualifiers to
specify the test description fields.

The least amount of information you can provide in a test description is the test name. Table 3.1, "Test
Description Fields" shows all the fields that you can specify in a test description.

Table 3.1. Test Description Fields

Field Field Type Function

Test name Name string Identifies the test description.
Test prologue File specification Identifies a DCL command file that runs

immediately before the template file. You use a
prologue file to set up any special environment that
the test requires. Output from a prologue file does
not appear in the test results.

Test epilogue File specification Identifies a DCL command file that runs
immediately after the template file. You use an
epilogue file to clean up operations, or to apply
user-created filters to the result file. Unlike the

27

Chapter 3. Creating Tests

Field Field Type Function
prologue file, the epilogue file can directly alter the
test results.

Template File specification Identifies a DCL command file for an on
interactive test, or the session file for an interactive
terminal or DECwindows test. This field defaults
to test-name.SESSION for an interactive terminal
or DECwindows test and test-name.COM for
noninteractive tests.

Benchmark File specification Identifies a file that contains the expected test
output. It is the standard against which VSI Digital
Test Manager compares the results of a test run.
This field defaults to test-name.BMK.

Variables Name string and value Identifies the variables and associated values used
with the template, prologue, or epilogue files for
this test.

Groups Name string Identifies the groups to which the test description
belongs.

Test type Boolean flags Identifies the test as either an interactive terminal,
DECwindows, or noninteractive test.

Command DCL command Identifies a DCL command to be spawned when
a DECwindows test is recorded or executed. This
command can be used to invoke applications for
inclusion in the test.

Comparison type Value Identifies the comparison type: screen,record, or
character.

Filters Boolean flags
(One flag per filter type)

Identifies one or more filters to remove run-time-
dependent information from the result file.

Remark Quoted string Identifies a comment that you add to the history.

The following example shows how to create an interactive terminal test, then record the session file for
the test:

DTM> CREATE TEST_DESCRIPTION MAIL_TEST /INTERACTIVE
_Remark: Going to record a MAIL test
%DTM-I-DEFAULTED, benchmark file name defaulted to MAIL_TEST.BMK
%DTM-I-DEFAULTED, template file name defaulted to MAIL_TEST.SESSION
%DTM-S-CREATED, test description MAIL_TEST created
DTM> RECORD MAIL_TEST “Recording MAIL on the terminal”
%DTM-I-BEGIN, your interactive test session is now beginning...
Type Ctrl/P twice to terminate the session.

$

The VSI Digital Test Manager Create Test dialog box in the DECwindows interface does not allow you
to specify variables where the variable value contains commas. For example, you cannot define a variable
X with a value of “A,B,C.” If you require this ability, use the CREATE TEST_DESCRIPTION command
in the VSI Digital Test Manager DCL interface.

28

Chapter 3. Creating Tests

3.2.2. Displaying Test Descriptions
Use the SHOW TEST_DESCRIPTION command to display a test description. The following example
displays the contents of the test description MAIL_TEST:

DTM> SHOW TEST_DESCRIPTION MAIL_TEST

Test descriptions in VSI Digital Test Manager Library DUA0:[USER01.DTMLIB]

MAIL_TEST "MAIL command test"

 Template = MAIL_TEST.COM
 Benchmark = MAIL_TEST.BMK
 Prologue = None Specified
 Epilogue = None Specified

You can display more than one test by specifying test names or group names, or you can use wildcards.

Depending on the qualifiers you specify, the SHOW TEST_DESCRIPTION command displays the
following information about tests:

● Groups to which the test belongs

● Type of test (noninteractive, interactive, or DECwindows)

● Benchmark file specification

● Epilogue file specification

● Prologue file specification

● Template file specification

● Command string

● Filters

● Variables

You can also use qualifiers to display all the test description information or a portion of it; the default
qualifier is /INTERMEDIATE.

3.2.3. Copying Test Descriptions
Use the COPY TEST_DESCRIPTION command to create an exact or modified copy of a test
description in the VSI Digital Test Manager library. This command enables you to create a series of
similar test descriptions without repeatedly entering the CREATE TEST_DESCRIPTION command.
You can modify some of the field values for each new test description.

The following restrictions apply to the COPY TEST_DESCRIPTION command:

● You cannot use wildcards.

29

Chapter 3. Creating Tests

● You cannot specify the value of the benchmark field.

● When you specify the /NOTEMPLATE qualifier, VSI Digital Test Manager uses the default template
file name.

● You cannot change the test type.

Although you can specify new values for some of the fields of a new test description, you must either
copy a test description with its filter, variable,and group field values intact, or eliminate the field values
altogether; you cannot modify these values when you copy the test description. You can eliminate these
field values with the COPY TEST_DESCRIPTION negating qualifiers. (For example, /NOFILTER is a
negating qualifier that disassociates filters from the new test description.)

If you use a negating qualifier, VSI Digital Test Manager either removes the value of the qualifier or
reverts the value to its default value. Example 3.1, "Copying Test Descriptions" shows how to create
several similar test descriptions from a noninteractive test called MAIL_TEST_NONINT.

Example 3.1. Copying Test Descriptions

DTM> CREATE TEST_DESCRIPTION MAIL_TEST_NONINT -
_DTM> /TEMPLATE=MAIL_NONINT.COM/NONINTERACTIVE -
_DTM> /PROLOGUE=NOBROADCAST.COM/EPILOGUE=BROADCAST.COM
_Remark: Creating a MAIL test
%DTM-I-DEFAULTED, benchmark file name defaulted to MAIL_TEST_NONINT.BMK
%DTM-I-DEFAULTED, template file name defaulted to MAIL_TEST_NONINT.COM
%DTM-S-CREATED, test description MAIL_TEST_NONINT created
DTM>
DTM> COPY TEST_DESCRIPTION MAIL_TEST_NONINT SHOW_ALL_TEST -
_DTM> /TEMPLATE=SHOW_ALL_NONINT.COM
_Remark: Copied margin test into SHOW_ALL_TEST with new template file
%DTM-I-DEFAULTED, benchmark file name defaulted to SHOW_ALL_TEST.BMK
%DTM-I-COPIED, test description MAIL_TEST_NONINT copied
-DTM-S-CREATED, test description SHOW_ALL_TEST created
DTM>
DTM> COPY TEST_DESCRIPTION MAIL_TEST_NONINT SEND_MAIL_TEST -
_DTM> /TEMPLATE=MAIL_TEMPLATE.COM
_Remark: Copied margin test into SEND_MAIL_TEST with new template file
%DTM-I-DEFAULTED, benchmark file name defaulted to SEND_MAIL_TEST.BMK
%DTM-I-COPIED, test description MAIL_TEST_NONINT copied
-DTM-S-CREATED, test description SEND_MAIL_TEST created
DTM>

The test description generated by the CREATE TEST_DESCRIPTION command sets up the prologue
and epilogue files. Subsequent COPY TEST_DESCRIPTION commands create new tests using the first
test description, MAIL_TEST_NONINT. By default, the prologue and epilogue files that are associated
with MAIL_TEST_NONINT are copied into the SHOW_ALL_TEST and SEND_MAIL_TEST test
descriptions. However, the MAIL_TEST_NONINT, SHOW_ALL_TEST, and SEND_MAIL_TEST test
descriptions have different template files.

If you do not specify any qualifiers, the value for the test description fields are copied from the existing
test description to the new test description.

3.2.4. Modifying Test Descriptions
Use the MODIFY TEST_DESCRIPTION command to modify a test description to include or exclude a
prologue file, an epilogue file, filters, variables, or other test description attributes.

30

Chapter 3. Creating Tests

You can add or delete all test description fields (except the template field) by using the MODIFY
TEST_DESCRIPTION qualifiers. If you add a field that already exists, the addition overrides the current
value of the existing field. For example, you can replace the current epilogue file with the epilogue file
named NODCL_BROADCAST.COM:

DTM> MODIFY TEST_DESCRIPTION MAIL_TEST/EPILOGUE=NODCL_BROADCAST.COM
_Remark: Using a different epilogue file
%DTM-S-MODIFIED, test_description MAIL_TEST modified
DTM>

If you use a negating qualifier, VSI Digital Test Manager either removes the value of the qualifier, or
reverts the value to its default value.

Modifications remain in effect until you explicitly remove a value from the test description, or modify
the test description again. The following example removes an existing prologue file specification from
a test description called MAIL_TEST. If the prologue file exists in the library, it is deleted; if it exists
outside the library, it is not deleted. VSI Digital Test Manager issues informational messages that inform
you of these conditions. For example:

DTM> MODIFY TEST_DESCRIPTION MAIL_TEST /NOPROLOGUE
_Remark: Deleting the prologue
%DTM-S-MODIFIED, test_description MAIL_TEST modified
DTM>

Only the test description fields you specify with the MODIFY TEST_DESCRIPTION command are
affected when you modify a test description.

VSI Digital Test Manager ignores negating qualifiers specified for fields for which no value was assigned.
For example, the /NOPROLOGUE qualifier is ignored if no prologue file had been previously assigned.

The VSI Digital Test Manager Modify Test dialog box in the DECwindows interface does not allow
you to specify variables where the variable value contains commas. For example, you cannot define a
variable X with a value of “A,B,C.” If you require this ability, use the MODIFY TEST_DESCRIPTION
command in the VSI Digital Test Manager DCL interface.

3.2.5. Deleting Test Descriptions
Use the DELETE TEST_DESCRIPTION command to delete a test description from the library. If the
test description has a benchmark file that resides in the library, the benchmark file is also deleted. If the
benchmark file is outside the library, it is unaffected.

The DELETE TEST_DESCRIPTION command does not delete any template, prologue, or epilogue file
associated with the test.

The DELETE TEST_DESCRIPTION command has no effect on any result files or difference files that
were produced for this test during a collection run. VSI Digital Test Manager deletes result and difference
files with the collection rather than with the test description, because these files are associated with the
collection.

The following example deletes the test description SHOW_ALL_TEST. Because the benchmark is in the
library, it also is deleted.

DTM> DELETE TEST_DESCRIPTION SHOW_ALL_TEST
_Remark: Deleting the revised Test for sending mail
Confirm deletion of test_description SHOW_ALL_TEST [Y/N] (N): Y
%DTM-S-DELETED, test_description SHOW_ALL_TEST deleted

31

Chapter 3. Creating Tests

DTM>

You cannot delete a test description while it is a member of any group. Use the REMOVE
TEST_DESCRIPTION command to remove a test description from all groups to which it belongs. Then
use the DELETE TEST_DESCRIPTION command to delete the test description.

3.3. Creating Noninteractive Tests
To create a noninteractive test in VSI Digital Test Manager, you must perform the following steps:

1. Write the test.

2. Write the template file.

3. Create the test description.

3.3.1. Writing a Noninteractive Test
You write a noninteractive test by invoking a text editor outside of VSI Digital Test Manager and
creating a DCL command procedure to run the noninteractive application you want to test. The DCL
command procedure in Example 3.2, "Sample Noninteractive Test File" issues several MAIL utility
commands and sends a message to user USER01.

Example 3.2. Sample Noninteractive Test File

$! *** SEND MAIL TEST ***
$! SEND_MAIL_TEST.COM
$!
$mail
set personal "Digital Test Manager - Project Q"
send/subject="Mail test procedure"
USER01
This test message is sent by Electronic mail using a DCL
procedure to test the MAIL utility.
$mail
show personal_name
exit

3.3.2. Writing a Template File for a Noninteractive Test
The template file for a noninteractive test can be the test itself. For example, the test in Example 3.2,
"Sample Noninteractive Test File" can be executed by itself. If the template file is the test itself, you do
not need to create a new template file to execute your test.

The template file for a noninteractive test can also be a DCL command procedure that executes the
specified test and performs some action before and after the test is executed. In Example 3.3, "Sample
Noninteractive Test Template File", the template file disables the display of broadcast messages before
invoking the test and enables the broadcast messages after the test is run.

Note

You can also use test prologue and epilogue files to perform these actions. Chapter 6, "Tailoring Your
Test System" describes using prologue and epilogue files.

32

Chapter 3. Creating Tests

Example 3.3. Sample Noninteractive Test Template File

$! *** MAIL TEMPLATE ***
$! MAIL_TEMPLATE.COM
$!
$ SET BROADCAST=NONE
$ @SEND_MAIL_TEST
$ SET BROADCAST=ALL

3.3.3. Creating a Noninteractive Test Description
 To create a noninteractive test description for a test, use the CREATE TEST_DESCRIPTION command
(/NONINTERACTIVE is the default qualifier), as shown in the following example:

DTM> CREATE TEST_DESCRIPTION SEND_MAIL_TEST/TEMPLATE=MAIL_TEMPLATE.COM
_Remark: Test for sending mail
%DTM-I-DEFAULTED, benchmark file name defaulted to SEND_MAIL_TEST.BMK
%DTM-S-CREATED, test description SEND_MAIL_TEST created
DTM>

The existence of files is not verified at test creation time. You can specify that the following files be
associated with a test description (the template file is required):

● Template file (defaults to test-name.COM)

● Benchmark file (defaults to test-name.BMK)

● Prologue file

● Epilogue file

3.4. Creating Interactive Tests
You can record two types of tests:

● Interactive terminal tests

● DECwindows tests

Note

The term display device indicates either a terminal screen device or a workstation screen device.
Interactive terminal testing provides support for the VT300 or earlier series terminal. If using a greater
series than that, set the terminal's characteristics to VT300.

During record, VSI Digital Test Manager captures all input and output generated on the display device to
create an interactive terminal or DECwindows test. The basic concept is the same for both terminal and
DECwindows sessions; that is, VSI Digital Test Manager records and places the input into a template file
and the output into a benchmark file.

To create an interactive terminal test description, specify the CREATE TEST_DESCRIPTION command
with the /INTERACTIVE qualifier, as in the following example:

33

Chapter 3. Creating Tests

DTM> CREATE TEST_DESCRIPTION/INTERACTIVE MAIL_TEST
_Remark: Test for sending mail
%DTM-I-DEFAULTED, benchmark file name defaulted to MAIL_TEST.BMK
%DTM-I-DEFAULTED, template file name defaulted to MAIL_TEST.SESSION
%DTM-I-OPENIN, error opening MAIL_TEST.SESSION as input
-DTM-I-CURRTERM, characteristics of current terminal will be used
%DTM-S-CREATED, test description MAIL_TEST created
-DTM-W-FILENOTEXIST, template file DISK:[USER]MAIL_TEST.SESSION does not
 exist

To create a DECwindows test description, specify the CREATE TEST_DESCRIPTION command with
the /DECWINDOWS qualifier, as shown in the following example:

DTM> CREATE TEST_DESCRIPTION/DECWINDOWS CLOCK_TEST
_Remark: Test of clock
%DTM-I-DEFAULTED, benchmark file name defaulted to CLOCK_TEST.BMK
%DTM-I-DEFAULTED, template file name defaulted to CLOCK_TEST.SESSION
%DTM-S-CREATED, test description CLOCK_TEST created

Session Files
A template file has a default file type of .SESSION for both terminal and DECwindows tests, but you
can specify any file type by using the CREATETEST_DESCRIPTION command with the /TEMPLATE
qualifier. The stream of input recorded at an interactive recording session is placed in a test template file
with the .SESSION file type. Specifically, a template file, also called a session file, contains the following
data:

● A description of the type of display device on which you recorded the test

● A record of all input during the recording session

● Additional control and timing information

See Chapter 8, "Working with Terminal Session Files" and Chapter 9, "Working with DECwindows
Session Files" for more information about session files.

Benchmark Files
A benchmark file contains the expected output for the test's execution; it is a standard by which other
test results can be judged. VSI Digital Test Manager compares a benchmark file to the result file, which
is generated using the input from a recorded session file when you run a test within a collection. A
benchmark file has a default file type of .BMK.

3.5. Recording Interactive Tests
VSI Digital Test Manager uses the RECORD command to record input from the display device,
keyboard, and pointer device.

3.5.1. Recording Interactive Terminal Tests
If you specify an input file on the RECORD command line, VSI Digital Test Manager records from the
input file. If you do not specify an input file, VSI Digital Test Manager records input from the display
device, keyboard, and pointer device, as shown in the following example.

DTM> RECORD MAIL_TEST " "

34

Chapter 3. Creating Tests

%DTM-I-BEGIN, your interactive test session is now beginning...
Type CTRL/P twice to terminate the session.

See Chapter 8, "Working with Terminal Session Files" for complete information about session files for
interactive terminal tests.

The template file for an interactive terminal test is the recorded terminal session file that VSI Digital
Test Manager produces when you use the RECORD command. An interactive terminal test requires user
input from a terminal keyboard. For example, an interactive terminal test can be a forms program that
requests information from you.

VSI Digital Test Manager subsequently uses the recorded session file to supply data to applications in
future test runs to ensure that the applications you are testing have not regressed. You can have VSI
Digital Test Manager execute the interactive session file on the screen or in batch mode. Either way, VSI
Digital Test Manager supplies the input data that was recorded.

If your interactive terminal session needs a screen size larger than 24 lines by 132 columns, set the
display device to the largest size it requires during recording before you begin the recording session.

When recording interactive terminal tests from the DCL interface, VSI Digital Test Manager sets
the terminal characteristics to “Application Keypad.” If the test you are recording requires “Numeric
Keypad,” specify the DCL command SET TERM /NOAPP at the start of test recording.

Example 1.1, "Sample Interactive Terminal Session" shows the recording of an interactive terminal
session.

Note

VSI Digital Test Manager can hang when recording or executing interactive terminal tests that contain
mouse input. It is recommended that you do not use interactive terminal testing features to test mouse
input to applications with terminal interfaces.

3.5.1.1. Terminal Record Command Keys
VSI Digital Test Manager provides several recording key sequences, depending on the type of test you
are recording. During a recording session, these key sequences can be used to mark screens, terminate
the recording session, and so on.

To enter record key sequences for terminal tests, first type the termination character (the default
termination character is ^P (Ctrl/P)), then type a valid command character. If you type an invalid
command character, the terminal bell sounds once (unless it is disabled). To override the default
termination character, use the /TERMINATION_CHARACTER qualifier on the RECORD command.
See Section 3.5.1.3, "Redefining the Termination Character" for an example.

Table 3.2, "Terminal Record Command Keys" shows the record command key sequences for terminal
tests.

Table 3.2. Terminal Record Command Keys

Terminal Test Function

Ctrl/P-B Starts automatic screen comparison and ends manual screen comparison for
terminal-based tests.

Ctrl/P-! Invokes an editor so you can enter a comment into the session file. You end the
comment by pressing Ctrl/Z in a terminal session file.

35

Chapter 3. Creating Tests

Terminal Test Function

Ctrl/P-E Ends automatic screen comparison and begins manual screen comparison for
terminal-based tests.

Ctrl/P-Ctrl/P Ends the recording session and returns control to the previous command level.
When you end a recording session this way, VSI Digital Test Manager saves the
session and benchmark files.

Ctrl/P-? Displays the current screen comparison mode and lists the available recording
functions.

Ctrl/P-I Inserts an input file into the session file you are recording. VSI Digital Test
Manager prompts you for the input file specification.

Ctrl/P-C Marks a screen for comparison. VSI Digital Test Manager automatically compares
all screens for terminal-based tests. Use this control key sequence in terminal-
based tests when automatic comparison is disabled.

Ctrl/P-Ctrl/Z Ends an interactive recording session and saves the session file, but does not save
the benchmark file.

Ctrl/P-W Invokes a prompt for you to specify a wait time. You issue this control key
sequence at the place in a session file where you want the wait to occur. When
the session file is subsequently played or executed,the wait time is included in the
session file. Wait times are specified in the dddd hh:mm:ss.cc format.

Ctrl/P-Ctrl/C Aborts an interactive recording session without saving any of the generated files.

When recording interactive terminal tests from the VSI Digital Test Manager DECwindows interface,
you cannot use the Ctrl/P-W and Ctrl/P-C commands to enter wait records and comments. If you require
these capabilities, you must record your interactive terminal tests from the DCL interface.

3.5.1.2. Exiting from a Terminal Recording Session
To exit from a terminal recording session, press Ctrl/P twice. Control returns to the DCL level if you
recorded a test from the DCL prompt, or to the VSI Digital Test Manager level if you recorded a test
from the DTM> prompt.

3.5.1.3. Redefining the Termination Character
The default termination character for interactive terminal tests is Ctrl/P. To redefine the termination
character, use the RECORD command with the /TERMINATION_CHARACTER qualifier.

The termination character can be any single character. To specify a control key sequence, enter a
circumflex (^) followed by the character you want to use. For example, to enter the termination character
^D (Ctrl/D), enter a circumflex followed by a D, as shown in the following example:

DTM> RECORD MAIL_TEST/TERMINATION_CHARACTER=^D “”
Type Ctrl/D twice to terminate the session.
 .
 .
 .

You can also specify a termination character with a decimal value that translates into an ASCII character.
For example, decimal 12 translates to ^L(Ctrl/L); using 12 produces the following results:

DTM> RECORD MAIL_TEST/TERMINATION_CHARACTER=12
“”

36

Chapter 3. Creating Tests

Type Ctrl/L twice to terminate the session.
 .
 .
 .

3.5.2. Recording Interactive DECwindows Tests
An interactive DECwindows test records DECwindows environment input from the keyboard and
pointer device. Perform tests in the DECwindows environment by specifying the RECORD command.
Alternatively, you can pull down the Testing menu, choose the Record menu item, and choose the
DECwindows... submenu item. VSI Digital Test Manager uses the recorded session file to supply the
input data when you subsequently test applications, the same as with interactive terminal tests. For
example:

DTM> RECORD CLOCK_TEST " "
%DTM-I-XTRAPVERSION, Display SDCW01::0 is running XTrap V0.3-0
%DTM-I-RECORDING, Recording to file DISK:[USER]CLOCK_TEST.SESSION at line 0

Before recording a DECwindows test, ensure that the testing environment has been initialized so
conditions remain the same at the start of the test and at the end. This enables you to play several
DECwindows session files without interruption.

For example, iconizing all windows and ordering the icons at the start of a test enables you to reproduce
the start condition of a test. It also enables you to mask out small portions of the workstation screen
using the Screen Editor. See Section 2.2.8, "Creating a Benchmark Mask" for information about masking
portions of the workstation screen.

To significantly reduce the size of benchmark and result files, set the workstation background to a solid
color during recording and testing. VSI Digital Test Manager uses compression techniques to minimize
the size of a benchmark file. VSI Digital Test Manager converts the screen image to bitonal. To ensure
proper image comparison, the colors displayed on the screen must be of sufficiently high and low
intensity (bright and dark) so they are converted to black and white as expected.

Note

There is no automatic comparison in a DECwindows recording session. Screens must be explicitly
marked for comparison.

See Chapter 2, "Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment" for a
sample, interactive recording session using DECwindows.

3.5.2.1. DECwindows Record Command Keys
VSI Digital Test Manager provides several recording key sequences, depending on the type of test
you are recording. During a recording session, these key sequences can be used to mark screens for
comparison, terminate the recording session, and so on.

To enter record key sequences for DECwindows tests, press and release the command key, then press
and release a valid command character. The default command key is the F9 key.

To override the default command key, use the /KEYSYM qualifier with the RECORD command, as
described in the Section 3.5.2.2, "Redefining the Command Key" section. Table 3.3, "DECwindows
Record Command Keys" shows the record command key sequences for DECwindows tests.

37

Chapter 3. Creating Tests

Table 3.3. DECwindows Record Command Keys

DECwindows Test Function

F9-P Ends the recording session and returns control to the previous command level.
When you end a recording session this way, VSI Digital Test Manager saves the
session and benchmark files.

F9-M Marks a screen for comparison. This is the only way to mark screens for
DECwindows tests.

F9-Z Ends an interactive recording session and saves the session file, but does not save
the benchmark file.

F9-C Aborts an interactive recording session without saving any of the generated files.
F9-A Pauses the DECwindows recording session.
F9-B Resumes the DECwindows recording session.
F9-H Shows the status.
F9-W Displays a Record Tool window.1

1Warning: If you click on any buttons in the Record Tool window, those mouse movements are also recorded. Obviously, this will affect the
integrity of the recording process.

3.5.2.2. Redefining the Command Key
You can redefine the command key for a DECwindows test by using the RECORD command with the /
KEYSYM qualifier.

The command key must be in the DECwindows Latin-1 KEYSYM encodings. Display the file DECW
$INCLUDE:KEYSYMDEF.H with the DCL TYPE command to view the list of Latin-1 KEYSYM
keys.

The following examples show how to redefine the command key symbol to use F7, the letter a, or the
comma key, respectively:

DTM> RECORD test-name/KEYSYM=F7
DTM> RECORD test-name/KEYSYM=a
DTM> RECORD test-name/KEYSYM="comma"

3.5.2.3. Exiting from a DECwindows Recording Session
To exit from a DECwindows session, press F9-P. Control returns to the DECwindows interface.

3.6. Playing Back an Interactive Test
VSI Digital Test Manager provides two methods for playing back an interactive terminal or
DECwindows test:

● Use the PLAY command to playback a session file interactively.

● Use the CREATE COLLECTION and RUN commands to execute a test.

The PLAY command executes a specific session file. The file is not played back as part of a collection
and the results of the playback are not compared. The RUN command executes a collection of tests
interactively; results can be compared.

Chapter 4, "Organizing and Executing Test Collections" describes how to create collections and run tests.

38

Chapter 3. Creating Tests

3.6.1. Playing an Interactive Terminal Test
To play an interactive terminal session file, use the PLAY command with the /INTERACTIVE qualifier.
For example:

DTM> PLAY MAIL_TEST.SESSION/INTERACTIVE
%DTM-I-BEGIN, your interactive test session is now beginning
 .
 .
 .
%DTM-S-CONCLUDED, your interactive test session has concludedDTM>

A session file is executed as if it were being run on the same type of display device on which it was
recorded. If the display device characteristics differ from those for the recording display device, the
output might not appear as you expect.

3.6.2. Playing an Interactive DECwindows Test
To play an interactive DECwindows session file, use the PLAY command with the /DECWINDOWS
qualifier. For example:

DTM> PLAY CLOCK_TEST.SESSION/DECWINDOWS
 .
 .
 .
DTM>

If the test corresponding to the session file has a DCL command associated with it, specify the DCL
command with the /COMMAND qualifier.

You must ensure that the DECwindows environment is in the same state for a play as it was when the
session file was recorded. Factors that might affect the environment include applications with windows
displayed, window positions, and so on.

Note

To play a DECwindows session file, VSI Digital Test Manager requires a physical workstation and its
DECwindows server. Do not use the mouse or keyboard while a DECwindows session file is being
played. This might cause the session file to be played incorrectly.

3.7. Processing Considerations for Interactive
Terminal Tests
The following sections describe processing considerations and restrictions on the types of interactive
terminal applications you can test when using VSI Digital Test Manager.

3.7.1. Time-Dependent Applications
By default, VSI Digital Test Manager does not execute the test at the same speed at which it was
recorded; therefore, time-dependent screens marked for comparison usually do not match, and the
comparison of the test results are usually unsuccessful. For example, you cannot test the OpenVMS

39

Chapter 3. Creating Tests

Phone Utility because your input as the person initiating the call depends on the person you are calling to
answer your call. These two, time-dependent events cannot be consistently duplicated.

Other examples of timing-dependent applications are those submitted as batch jobs or executed as
subprocesses. You cannot test timing-dependent applications unless the application is a submitted batch
job with the DCL SYNCHRONIZE command. Using the SYNCHRONIZE command, you have the
choice of either waiting for the batch job or subprocess to finish, or performing other operations with the
application. The Language-Sensitive Editor (LSE) COMPILE command is an example of this type of
timing-dependent application.

3.7.2. Playing Back Applications in Real Time
In the VSI Digital Test Manager interactive terminal environment, most applications are simple input
processing loops that are coded to do the following:

1. Read input from a terminal device.

2. Determine what to do with the input.

3. Execute code that results in the input being sent to a display device.

4. Issue another read and wait for the next round of input.

By default, VSI Digital Test Manager plays back tests at a rate faster than the speed at which they were
recorded. Regulation of playback speed is governed solely by the rate at which the application reads
input from a terminal device.

Conversely, some applications are more than simple input-processing loops,and might not play back
correctly if input is sent to them faster than they can read it. In this sense, these types of applications are
time dependent, for which VSI Digital Test Manager does not guarantee accurate playback.

However, to accommodate testing of time-dependent applications, VSI Digital Test Manager provides
a /REALTIME qualifier that you can specify with the RECORD, PLAY, or CREATE COLLECTION
commands. When you specify the /REALTIME qualifier, all input time delays that occur during an
interactive recording session are preserved during playback.

When specified with the RECORD command, the /REALTIME qualifier forces time delays to be
recorded as WAIT records in the session file. When used with the PLAY and CREATE COLLECTION
command, the /REALTIME qualifier forces recorded timing information to be interpreted as input
time delays and test synchronization (based on application read detection) is disabled. This enables VSI
Digital Test Manager to send input to the application at a rate determined only by the speed at which the
test was recorded.

Use the /REALTIME qualifier sparingly because it slows down the execution of your tests. Although
time delays are preserved during playback, VSI Digital Test Manager cannot absolutely guarantee
accurate playback of time-dependent applications. For such applications, the readiness of the application
to accept input can be highly dependent on the current system performance and load. When executing
such tests, it is recommended that you run these tests on a system where processing demands are strictly
regulated.

3.7.3. Ctrl/C or Ctrl/Y
While recording a test, do not press Ctrl/C or Ctrl/Y except at a point where the application being tested
is expecting input. Pressing Ctrl/C or Ctrl/Y at a point other than where the application is expecting

40

Chapter 3. Creating Tests

input terminates the application at a random point that generally cannot be duplicated when you run the
test. For example, if you press Ctrl/C or Ctrl/Y while output is being displayed during testing of the DCL
DIRECTORY command,you create a screen that cannot be consistently duplicated; the comparison of
the test results is usually unsuccessful.

3.7.4. Applications That Accept Unsolicited Input
You can use VSI Digital Test Manager to test only those applications that accept input after prompting
for it. You cannot test programs such as the OpenVMS Monitor Utility (MONITOR) with VSI Digital
Test Manager. MONITOR displays screen after screen of continuously changing statistical information
about the system. After you invoke MONITOR, it does not prompt you for input; it displays information
until you terminate it by pressing Ctrl/Z. The termination occurs in a way that cannot be consistently
duplicated; thus, the comparison of the test results usually is unsuccessful.

3.7.5. Device Type and Terminal Characteristics
 If VSI Digital Test Manager does not recognize the device type of the terminal you are using to
record the interactive terminal session, it defaults to a VT100-compatible terminal. Chapter 8, "Working
with Terminal Session Files" describes the significance of device type and terminal characteristics when
recording an interactive terminal session.

3.7.6. Graphics Mode Commands
You can compare tests that contain graphics mode (sixel and ReGIS) commands. For tests where screen
comparison is specified, VSI Digital Test Manager ignores graphics-mode commands. Only differences
in the text mode sections of the test are found.

3.7.7. Comparison of Scrolled Screens
Screen comparison is performed at the completion of the previous operation. If the previous operation
causes information to scroll off the screen, only the information visible at the completion of the
operation is captured and compared. To ensure that scrolling occurs page by page, use the TYPE/PAGE
command.

41

Chapter 3. Creating Tests

42

Chapter 4. Organizing and
Executing Test Collections
This chapter describes how to use VSI Digital Test Manager for OpenVMS to organize and run test
collections. It provides information on the following topics:

● Selecting tests to execute and organizing them into collections

● Executing collections in batch mode

● Executing collections interactively at a terminal or DECwindows workstation

● Stopping collections

● Displaying the collection summary

● Deleting collections

● Re-creating collections

● Comparing test results

4.1. Creating Collections
A collection is a snapshot of specified test descriptions and the VSI Digital Test Manager library as
they exist at the time you create the collection. You must organize tests into collections before you can
execute them to produce result files for comparison.

Collections are stored in a VSI Digital Test Manager library. They can have prologue files, epilogue files,
and variables associated with them, but the prologue and epilogue files must be stored in locations other
than the VSI Digital Test Manager library. For example, you could use Code Management System (CMS)
libraries. See Chapter 7, "Maintaining a VSI Digital Test Manager Library" for more information on
libraries.

You create a collection by using the CREATE COLLECTION command. It generates a command file
that contains information about the specified set of tests and their related files. When the collection is
executed, VSI Digital Test Manager executes this command file, which runs each test alphabetically by
name.

The test-group expression selects the tests to be placed in the collection. Valid test-group expressions are
test names, group names (to indicate that all the test descriptions in the group are part of the collection),
or a list containing any combination of these. You must use the /GROUP qualifier to label group names
and group expressions in a test-group expression. You can use wildcards. You can include a test in more
than one collection.

The following example shows how to create the collection MAIL_COLL and include all tests that begin
with the string “MAIL:”

DTM> CREATE COLLECTION MAIL_COLL MAIL* “Tests of MAIL commands”
%DTM-S-CREATED, collection MAIL_COLL created

If you modify test descriptions or the contents of groups after including them in a collection, those
changes are not reflected in the collection unless you re-create it using the RECREATE command.

43

Chapter 4. Organizing and Executing Test Collections

For example, if you delete the MAIL_SHOW_ALL_TEST test description after you create the
MAIL_COLL collection, the MAIL_COLL collection still contains pointers to the files associated with
MAIL_SHOW_ALL_TEST. If you then try to run this collection, it will not run properly because VSI
Digital Test Manager will try to find the deleted test.

You do not have to re-create a collection for benchmark files because you can update them. This is the
only exception. Section 4.5, "Re-Creating Collections" describes the RECREATE command.

When you create a collection, VSI Digital Test Manager attempts to resolve all the file specifications in
each test description and any file specifications included with the CREATE COLLECTION command.
If VSI Digital Test Manager fails to find one or more of the required files, it lists the files and does
not create the collection. However, if the only file that VSI Digital Test Manager cannot find is the
benchmark file for a test, it creates the collection and treats the test with the missing benchmark file as a
new test.

If you specify the CREATE COLLECTION command with the /NOVERIFY qualifier, VSI Digital Test
Manager creates the collection, but resolves only those file specifications included on the command line.

Collection prologue and epilogue files are command files run before and after (respectively) a collection
is executed. They can be used to set up an environment for the entire collection; they are similar to test
prologue and epilogue files. VSI Digital Test Manager also provides collection-wide variables to tailor the
test environment (see Chapter 6, "Tailoring Your Test System").

The following example creates a collection containing one test description and immediately submits it to
the batch queue:

DTM> CREATE COLLECTION RUN_MAIL RMTEST/NOVERIFY/SUBMIT=(NOTIFY) -
_DTM> /PROLOGUE=SETUP.COM “First run of test RMTEST”

In this example:

● The first parameter identifies the collection name as RUN_MAIL.

● The second parameter, RMTEST, identifies the test you want to include in the collection and to run.

● The /NOVERIFY qualifier specifies that VSI Digital Test Manager is to create the collection without
verifying the existence of any files associated with the test description.

● The /SUBMIT qualifier specifies that VSI Digital Test Manager is to submit the collection to the
batch queue as soon as the collection is created. The NOTIFY keyword specifies that you will be
notified when the batch job has completed.

● The /PROLOGUE=SETUP.COM qualifier specifies that SETUP.COM is the collection prologue.
Because the collection prologue file SETUP.COM is issued with the CREATE COLLECTION
command (it is associated with the collection), VSI Digital Test Manager verifies the existence of this
file even if you specify the /NOVERIFY qualifier.

● Note that collection names cannot begin with the characters DTM$.

4.2. Executing Collections
When you execute a collection, VSI Digital Test Manager sets up the test environment and executes
all the tests in the collection. Each test in a collection generates a separate result file. The result file
contains the output generated by the template file. The result file is used for comparison against a test's
benchmark file. Section 4.6, "Comparing Test Results" describes comparing test results. See Chapter

44

Chapter 4. Organizing and Executing Test Collections

2, "Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment" for information on
executing collections in a DECwindows environment.

VSI Digital Test Manager associates the result file with a test by adding its name to the result
description for the test. Result descriptions are described in Chapter 5, "Reviewing Test Results".

You can have VSI Digital Test Manager execute collections interactively or in batch mode. Although
DECwindows tests can be executed in batch mode, they must still be played on a physical workstation
and its DECwindows server.

Note

When you interactively execute the tests in a large collection, you can occupy the display device for a
long time. Consider executing large collections in batch mode; the results are the same, provided the
batch and interactive environments are the same.

If your login command file sets up your interactive environment differently than it sets up your batch
environment, the results might vary for the same test executed both interactively and in batch mode. For
more information, see the Guide to Using DCL and Command Procedures on OpenVMS.

All tests in a collection are executed during the collection run. After the collection has executed and
has been compared, you can examine the test results by using the Review subsystem (see Chapter 5,
"Reviewing Test Results").

Whether you submit a collection for execution in batch mode or execute it interactively, VSI Digital Test
Manager performs the following tasks:

1. Defines the DTM$COLLECTION_NAME variable (defined by VSI Digital Test Manager as the
collection name)

2. Defines any global variables

3. Executes the collection prologue file, if one exists

4. Calls a generic command file in the library that performs the following tasks on each test:

a. Defines any local variables

b. Defines the DTM$TEST_NAME logical name (defined by VSI Digital Test Manager as the test
name of the current test)

c. Executes the test prologue, if one exists

d. Executes the test template

e. Defines the DTM$RESULT logical name (defined by VSI Digital Test Manager as the test result
file name of the current test)

f. Executes the test epilogue, if one exists

g. Executes VSI Digital Test Manager-provided filters, if any are associated with the test

h. Undefines local variables

i. Undefines the DTM$RESULT logical name

45

Chapter 4. Organizing and Executing Test Collections

5. Compares the result file with the benchmark file

6. Executes the collection epilogue, if one exists

4.2.1. Executing Collections in Batch Mode
VSI Digital Test Manager provides two ways to execute a collection in batch mode:

● Use the CREATE COLLECTION command with the /SUBMIT qualifier to automatically submit the
collection to the batch queue after creating it. You can also specify any of the SUBMIT command
qualifiers.

● Use the SUBMIT command to submit the collection.

If you use the CREATE COLLECTION command with the default qualifier /NOSUBMIT, you must use
the SUBMIT command to execute the collection in batch. The following example shows how to submit a
collection:

DTM> SUBMIT MAIL_COLL/NOTIFY/LOG_FILE=[]/QUEUE=SYS$LARGE
%DTM-S-SUBMITTED, collection MAIL_COLL submitted
-DTM-I-TEXT, Job MAIL_COLL (queue SYS$LARGE entry 1000) started on
 SYS$LARGE

You can submit a collection to a batch queue more than once. However, if you attempt to resubmit
a collection that you have executed and not reviewed, VSI Digital Test Manager prompts you to
confirm that you want to resubmit the collection without reviewing it. To eliminate the confirmation
prompt when resubmitting a collection without reviewing it, specify the SUBMIT command with
the /NOCONFIRM qualifier.

4.2.2. Executing Collections Interactively
You can execute a collection interactively using the RUN command. The collection you execute can
contain any combination of noninteractive, interactive terminal, and DECwindows tests.

If you specify a test name rather than an existing collection name as the parameter for the RUN
command, VSI Digital Test Manager prompts you for automatic collection creation. Collections created
this way contain only the specified test and have the same collection name as the test name.

The RUN command displays the output of each test on the screen. If you want to see messages from the
prologue or epilogue file, specify the /LOG_FILE qualifier.

The following example runs the collection SEND_MAIL_COLL on your display device (Example 3.2,
"Sample Noninteractive Test File" shows the SEND_MAIL_TEST test):

DTM> RUN SEND_MAIL_COLL "running the send mail test"
Starting SEND_MAIL_TEST test run...

Your personal name is "Digital Test Manager - Project Q"

Performing post-run cleanup with comparison...

%DTM-I-NEWTEST, test SEND_MAIL_TEST is a New test
%DTM-S-COMPARED, collection SEND_MAIL_COLL compared
DTM>

Section 4.6, "Comparing Test Results" describes how to compare the results of the execution of tests in a
collection with the benchmark files of each test in a collection.

46

Chapter 4. Organizing and Executing Test Collections

4.2.3. Stopping the Execution of Collections
Use the STOP command to terminate a collection executing in batch; this command stops execution of
the collection and cleans up the VSI Digital Test Manager library.

Press Ctrl/C (rather than Ctrl/Y) to terminate a collection running interactively.

If you stop an executing collection with a command other than the STOP command or Ctrl/C, or if
the system crashes while a collection is executing, errors will occur and you will not be able to review
the collection. Pressing Ctrl/C or typing the STOP command to terminate a collection run enables VSI
Digital Test Manager to restore its library to a consistent state and to perform necessary post-run cleanup
after the collection run stops. See Chapter 7, "Maintaining a VSI Digital Test Manager Library" for
instructions on how to recover the library, review the executed tests,and rerun the tests that did not
execute.

The following example stops the execution of the collection MSGTEST. Note that the /CONFIRM
qualifier is specified to have VSI Digital Test Manager issue a confirmation message (/NOCONFIRM is
the default qualifier).

DTM> STOP MSGTEST /CONFIRM “Stopping collection run”
Confirm stop of collection MSGTEST [Y/N] (N): Y
%DTM-S-STOPPED, collection MSGTEST stopped
DTM>

4.3. Displaying a Collection Summary
Use the SHOW COLLECTION command to display a brief listing of the attributes of a collection.

You can specify qualifiers to determine the amount of information to be displayed about a collection.
With the default /INTERMEDIATE qualifier, the collection summary displays the following information:

● The collection name

● The number of tests in the collection

● The time the collection was created

● The command that created the collection and the remark associated with it

● The collection's status—whether it has been run, compared, reviewed,rerun, or stopped

● The status of the tests in the collection—how many are successful,unsuccessful, new, updated, not
run, or which comparison aborted

The following example displays a summary of information for the collection MSGTEST.

DTM> SHOW COLLECTION MSGTEST
Collections in VSI Digital Test Manager Library DUA0:[USER01.DTMLIB]

MSGTEST 4 test 21-MAY-1998 11:09:17 "Group of message tests"
 Command: CREATE COLLECTION MSGTEST INFOMSGTEST/GROUP
 "Messages"
 Status: has been run, compared, not reviewed
 Successful count: 0 Unsuccessful count: 0
 New test count: 4 Updated test count: 0
 Test not run count: 0 Comparisons Aborted: 0

47

Chapter 4. Organizing and Executing Test Collections

DTM>

4.4. Deleting Collections
Use the DELETE COLLECTION command to delete a collection. You should delete a collection after
you review it and no longer need the results. When you delete a collection, all collection-related files are
deleted. Benchmark files, test descriptions, and groups, including any groups created during a Review
session, are not deleted.

You can delete several collections at a time by using wildcards, or use commas to separate collection
names in a list.

You cannot delete a collection while it is running or in use.

When you issue the DELETE COLLECTION command, VSI Digital Test Manager displays each
collection name before it is deleted and prompts you for confirmation. The following example deletes the
collection MSGTEST:

DTM> DELETE COLLECTION MSGTEST "no longer needed"
Confirm deletion of collection MSGTEST [Y/N] (N): Y
%DTM-S-DELETED, collection MSGTEST deleted
DTM>

Note

Your ability to delete a collection depends on the protection of the files in the collection and your
OpenVMS privileges. See Section 7.3, "Security Features" for more information about file protection.

4.5. Re-Creating Collections
Use the RECREATE command to re-create a collection. You need tore-create a collection if you
have changed one or more of the files required by tests in the collection, or if you have changed other
information in the library since you created the collection. You cannot re-create a collection after you
have deleted it.

Caution

Ensure that the prologue and epilogue files associated with the collection and template, prologue,
and epilogue files associated with the tests in the collection exist in their proper directories. If VSI
Digital Test Manager cannot find one or more of these files, the original collection is deleted, but a new
collection is not created.

When you create a collection, VSI Digital Test Manager stores the command in the VSI Digital Test
Manager database. When you re-create a collection using the RECREATE command, VSI Digital Test
Manager uses the command stored in the database so none of the file specifications or qualifiers are
changed.

4.6. Comparing Test Results
For every test in a collection that runs to completion, VSI Digital Test Manager compares the result
file against the benchmark file (if it exists), saves the comparison status for the test, and saves any

48

Chapter 4. Organizing and Executing Test Collections

differences in a difference file. If the benchmark file and result file match, VSI Digital Test Manager
deletes the result file.

If you specify the CREATE COLLECTION command with the /NOCOMPARE qualifier,or if a
collection is only partially run, you must use the COMPARE command to manually compare the existing
result files with the appropriate benchmark files.

A collection might only partially run for one of the following reasons:

● You press Ctrl/C to abort an interactive execution.

● You use the STOP command to stop a collection you submitted to batch mode.

● VSI Digital Test Manager terminates abnormally.

VSI Digital Test Manager applies a default comparison type to each test when it is compared. You can
override the default with the /COMPARISON_TYPE qualifier on the CREATE TEST_DESCRIPTION
or MODIFY TEST_DESCRIPTION command. You can override the default comparison type for all
tests in a collection by specifying the /COMPARISON_TYPE with the CREATECOLLECTION and
COMPARE commands. If you override the default comparison type on a test, you cannot override it
again at the collection level. You must compare the results of a test before you can review them. You can
specify one of three types of test comparison:

● Screen comparison (using the COMPARE command with the /SCREENS qualifier; available for
interactive terminal and DECwindows tests only)

● Record comparison (using the COMPARE command with the /RECORDS qualifier; available for
noninteractive and interactive terminal tests only)

● Character comparison (using the COMPARE command with the /CHARACTERS qualifier;
available for noninteractive and interactive terminal tests only)

Note

For character and record comparison, the record size limit is 65,536 characters.

Table 4.1, "Comparison Status Values" lists the comparison status reported by VSI Digital Test Manager
for each test.

Table 4.1. Comparison Status Values

Comparison
Status

Meaning

Comparison
aborted

A test whose comparison cannot be completed. The benchmark file exists, but the
result file and difference file might not.

New test A test that does not have a benchmark file. A result file was produced, but no
difference file exists.

Not run A test that did not run in a partially run collection. A benchmark file might exist.
No result file or difference file exists.

Successful A test whose benchmark and result files match. The result file was deleted and no
difference file exists.

Unsuccessful A test whose benchmark and result files do not match. A difference file exists.

49

Chapter 4. Organizing and Executing Test Collections

Comparison
Status

Meaning

Updated A test whose benchmark file was updated after the comparison was performed for
a collection. No result file or difference file exists.

For comparison types of RECORDS and CHARACTERS, use the /IGNORE qualifier to specify types of
special characters that VSI Digital Test Manager should ignore during a comparison. You can use the /
FULL qualifier to specify that both identical and different data be included in the comparison report of
the difference file.

The VSI Digital Test Manager character comparison facility might incorrectly detect result and
benchmarks that contain identical characters but grouped on different character boundaries as being
different. This primarily is a problem when specifying character comparison for interactive terminal tests.
It is recommended that you specify a comparison type of SCREENS for interactive terminal tests.

After running and comparing a collection, you can review the test results and comparison status with VSI
Digital Test Manager. Reviewing a collection gives you access to the results of a collection run and to
other collection information. The Review subsystem is described in Chapter 5, "Reviewing Test Results".

4.7. Recomparing Partially Compared
Collections
If the comparison of a collection is terminated abnormally before comparing the whole collection, you
can recompare the collection using the COMPARE command.

VSI Digital Test Manager does not recompare previously compared tests with a successful comparison
status.

Note

If you need to recompare a collection, do not review the partially compared collection. You cannot
compare a collection that has been reviewed.

50

Chapter 5. Reviewing Test Results
This chapter describes how to review test results in the terminal environment and in the DECwindows
environment. It provides information on the following topics:

● Review concepts

○ Output files

○ Comparison status

○ Specifying result descriptions

● Examining test results

○ Using the Review subsystem

○ Displaying test results

○ Printing test results

● Working with test results

○ Updating and creating benchmark files

○ Reviewing partially run collections

5.1. Review Concepts
When you execute a collection, VSI Digital Test Manager compares the test results with the benchmark
file for each test that has been run. If the comparison is unsuccessful (differences are detected), VSI
Digital Test Manager creates a difference file. If the comparison is successful (no differences are
detected), the result file is deleted and no difference file is created.

You can then review the differences using the Review subsystem, which gives you access to the results
obtained by executing the collection, as well as other information about the collection. It also enables you
to invoke the Performance and Coverage Analyzer (PCA) to gather performance and coverage data for
the test. Section 5.2, "Examining Test Results" describes the Review subsystem. Using VSI DECset for
OpenVMS Systems describes using VSI Digital Test Manager with PCA.

You must execute and compare a collection before it can be reviewed. See Section 5.3.3, "Reviewing
Partially Run Collections" for instructions for reviewing a partially run collection.

In a DECwindows environment, you can review test results by direct manipulation in the collection
view. However, if you need to update benchmark files, you must pull down the Testing menu, choose the
Review menu item, and choose the Open menu item to lock the collection so only you can perform an
update operation.

The following sections describe result descriptions, test output files, and comparison status. These
concepts apply to both the terminal and the DECwindows environments.

51

Chapter 5. Reviewing Test Results

5.1.1. Using Result Descriptions
Result descriptions contain information about test output and comparison status. In the same way
that a test description contains information about test files, VSI Digital Test Manager creates a result
description that summarizes information about the test results (see Section 5.1.1.1, "Output Files").

The result description name for a test is the same as its test name. Each result description corresponds
to a test description. A result description contains the following information:

● The result description name

● The comparison status of the test

● The names of the result, benchmark, and difference files, if they exist

The following example shows the result description format in a terminal environment:

DTM_REVIEW> SHOW MAIL_TEST
Result Description MAIL_TEST Comparison Status : Successful

 Benchmark File MAIL_TEST.BMK
 Result file does not exist
 Difference file does not exist

DTM_REVIEW>

5.1.1.1. Output Files
When VSI Digital Test Manager records, or executes and compares a collection, it might generate one
to three output files, depending on its comparison status. Table 5.1, " VSI Digital Test Manager Output
Files" shows the possible output files.

Table 5.1. VSI Digital Test Manager Output Files

Output File
Description

Contains the expected output for the test.Benchmark
For an interactive terminal test that has a benchmark file, VSI Digital Test
Manager also creates the file test-name.BMK_SCREENS. This file contains
printable copies of the interactive screen images corresponding to the information
in the benchmark file.
Contains the results of a test's execution within a collection.Result
For an interactive terminal test that has a result file, VSI Digital Test Manager also
creates the file test-name.RES_SCREENS. This file contains printable copies of
the interactive screen images corresponding to the information in the result file.
Contains the differences between the benchmark and result files.Difference
This file is created during comparison of the benchmark and result files. A
difference file is created only if differences exist between the benchmark and result
files.

Duplicate screen images are defined as any two consecutive screen images that are completely
identical. This occurs, for example, when input causes the same screen image to be displayed more than

52

Chapter 5. Reviewing Test Results

once. During the generation of a screen file, if the screen image is identical to the previous screen image,
another copy of that screen image is not placed in the printable screen file.

Each individual screen in both the benchmark or result file is consecutively numbered and each screen
image placed in the screen file is associated with this screen number. The screen numbers in the
printable screen file might not be in consecutive order; that is, the missing screen numbers correspond
to the duplicate screen images that have been eliminated from the screen file. This technique is used for
generating both the benchmark and results screen files.

Elimination of duplicate screen images does not affect the functionality of VSI Digital Test Manager and
results in the generation of smaller, printable screen files.

Note

For interactive tests, VSI Digital Test Manager by default generates the files test-name.BMK_SCREENS
and test-name.RES_SCREENS during comparison. These files contain printable copies of the screen
images in the benchmark and result files respectively. These files are to be used strictly for printing
purposes. They are not used as input to any VSI Digital Test Manager functions. The creation of these
files can be prevented by using the DTM$OMIT_PRINTABLE_SCREENS logical variable, as defined
in Section 6.3.4.2, "DTM$OMIT_PRINTABLE_SCREENS Logical Variable". Use this logical variable if
disk space usage is critical.

5.1.1.2. Comparison Status
For every test in a collection that runs to completion, VSI Digital Test Manager compares the result file
with the benchmark file (if it exists) and reports the result as the comparison status for the test. Chapter
4, "Organizing and Executing Test Collections" describes comparison status. The possible values are as
follows:

● Comparison aborted

● New test

● Not run

● Successful

● Unsuccessful

● Updated

5.1.2. Specifying Result Descriptions
When reviewing the results for a collection of tests in the Review subsystem, you should note the
following general concepts:

● You can specify each result description both by its result description name and its comparison status.
You can organize sets of result descriptions that have similar characteristics in the following ways:

○ By specifying a result description expression (result description names containing wildcards). For
example:

DTM_REVIEW> SHOW MAIL*

53

Chapter 5. Reviewing Test Results

○ By specifying one or more comparison-status qualifiers. For example:

DTM_REVIEW> SHOW/UNSUCCESSFUL

○ By specifying a result description expression with one or more comparison-status qualifiers. For
example:

DTM_REVIEW> SHOW MAIL* /UNSUCCESSFUL

● For the SHOW and PRINT commands, you can also specify output file qualifiers to print or display
output files. For example, you can enter the SHOW * /SUCCESS/BENCHMARK command to
display the benchmark files for all successful tests.

● When you enter a Review subsystem command that accepts the result description expression and
the comparison status qualifiers, the information in Table 5.2, "Result Descriptions and Comparison-
Status Qualifier Variations for the SHOW Command" applies.

Table 5.2. Result Descriptions and Comparison-Status Qualifier Variations for the SHOW
Command

Result
Descriptions

Comparison-
Status Qualifiers

Result of the Command

None None Shows the current result description.
None One or more Shows all result descriptions with the specified comparison

status. VSI Digital Test Manager interprets the result
description parameter of the SHOW command as the
wildcard parameter. For example, you can enter SHOW/
FILES/SUCCESS/NEW to display the comparison status and
whether output files exist for all successful and new result
descriptions. The current result description position remains
unchanged when you specify the SHOW command without
specifying a result description.

One None Shows the specified result description and makes it the
current result description. For example, you can enter SHOW
RMTEST to display the result file for result description
RMTEST, then make RMTEST the current result description.

One One or more Shows the specified result description, makes it the current
result description, and ignores the comparison-status
qualifiers. For example, you can enter SHOW/SUCCESS
RMTEST to display the result file for result description
RMTEST, then make RMTEST the current result description.
VSI Digital Test Manager ignores the /SUCCESS qualifier
with this command and displays the result file.

One or more (using
wildcards)

None Shows all result descriptions matching the result description
expression, but does not change the review position of the
current result description. For example, you can make the
current position the RMTEST result description, then enter
SHOW/RESULT *RM*to display the result files for all result
descriptions matching *RM*; the review position remains on
RMTEST.

One or more One or more Shows all result descriptions that match both the result
description expression and any of the comparison status

54

Chapter 5. Reviewing Test Results

Result
Descriptions

Comparison-
Status Qualifiers

Result of the Command

qualifiers. For example, if you enter INSERT/UNSUCCESS/
NOT_RUN *RM*, all test descriptions that match *RM*
and have the unsuccessful or not run comparison status are
marked for insertion into a group when you exit from the
Review subsystem.

5.2. Examining Test Results
The procedure for examining test results after executing test collections is as follows:

1. Invoke the Review subsystem.

2. Examine the collection summary information.

3. Examine the results for each test.

4. Examine one or more of the output files referenced in the result description: the result, difference,
and benchmark files.

You can examine test results by issuing the SHOW and PRINT commands. The SHOW command
displays information about result descriptions and displays their output files on the display device. The
PRINT command prints copies of specified output files.

5.2.1. Using the Review Subsystem
This section provides an overview of the Review subsystem and shows how to use it to locate test results
in a terminal environment. The Review subsystem exists only in a terminal environment; DECwindows
tests cannot be reviewed in a terminal environment. You review DECwindows test results using views
in the DECwindows environment (see Chapter 2, "Using VSI Digital Test Manager for OpenVMS in a
DECwindows Environment").

5.2.1.1. Review Subsystem Overview

The REVIEW command invokes the Review subsystem, which you use to examine the test results
of a collection execution. In a terminal environment, the Review subsystem is indicated by the
DTM_REVIEW> prompt.

When you use the REVIEW command with the name of a collection, as in the following example, VSI
Digital Test Manager automatically displays a summary of the specified collection. If you specify the
REVIEW command without a collection name, VSI Digital Test Manager prompts you for one. The
following example shows how to invoke the Review subsystem for the MSGTEST collection.

DTM> REVIEW MSGTEST
Collection MSGTEST with 4 tests was created on 20-MAY-1998 10:46:34 by the
 command:
 CREATE COLLECTION MSGTEST MSGTEST/GROUP "Creating collection
 MSGTEST"
 Last Review Date = 23-MAY-1998 10:04:45
 Success count = 0
 Unsuccessful count = 0

55

Chapter 5. Reviewing Test Results

 New test count = 4
 Updated test count = 0
 Comparisons aborted = 0
 Test not run count = 0

Result Description MESSAGE_1 Comparison Status : New Test

DTM_REVIEW>

To exit from the Review subsystem, type EXIT at the DTM_REVIEW> prompt, or press Ctrl/Z. Control
returns to the DCL level if you invoked the Review subsystem from the DCL prompt ($); control returns
to the VSI Digital Test Manager level if you invoked the Review subsystem from the DTM> prompt.

5.2.1.2. Primary and Read-only Reviewers

The primary reviewer can insert tests into groups and update benchmarks in a DECwindows
environment. Only one person at a time can be the primary reviewer of a collection. If you try to access
a collection as a primary reviewer while it is already being reviewed by another primary reviewer,
you receive an error message. You are designated a primary reviewer of a collection if you enter the
REVIEW command without the /READ_ONLY qualifier.

You are designated a read-only reviewer of a collection by entering the REVIEW command with
the /READ_ONLY qualifier. You can view the result descriptions (see Section 5.1.1, "Using Result
Descriptions") and print files, but you cannot make any changes to the result descriptions. Read-only
reviewers cannot update benchmarks or insert tests into groups. VSI Digital Test Manager allows
multiple, read-only reviewers.

As a read-only reviewer, you might obtain inaccurate information if you enter a SHOW command
when the primary reviewer is updating benchmark files. Under the same circumstances, the Collection
Summary Information also might be incorrect and files queued for printing may disappear.

As a read-only reviewer, you can use the PRINT/NOW command to avoid having files you select for
printing disappear.

5.2.1.3. Canceling Review Subsystem Commands

Press Ctrl/C to cancel a transaction while it is being processed and to return control to the
DTM_REVIEW> prompt.

If you press Ctrl/C during a wildcard transaction that updates the library, VSI Digital Test Manager
finishes updating the file it is processing before it returns to the DTM_REVIEW> prompt.

If you press Ctrl/C at the DTM_REVIEW> prompt, VSI Digital Test Manager terminates the Review
session as if you had entered the EXIT command with the /NOPRINT and /NOINSERT qualifiers.

5.2.1.4. Locating Test Results in the Review Subsystem

When you enter the Review subsystem, the first result description of a collection is set as the current
location. Test results are arranged sequentially by result description name.

To place a result description in the current review location,use one of the Review subsystem commands
from Table 5.3, "Locating Test Results", or press the RETURN key to move to the next result
description.

56

Chapter 5. Reviewing Test Results

Table 5.3. Locating Test Results

Command Description

FIRST Moves you to the first result description in the collection.
LAST Moves you to the last result description in the collection.
NEXT Moves you to the next result description in the collection. You can use the

comparison status to move to the next test with the specified comparison status.
For example, to move to the next unsuccessful test in a collection, specify NEXT/
UNSUCCESSFUL. You can also move forward a specified number of tests in a
collection; for example, NEXT 3 moves you forward three tests in the collection.
Further, you can combine the comparison status and count parameters to move
forward to specific tests.

BACK Moves you to the previous result description in the collection. You can use the
comparison status to move to the previous test with the specified comparison
status. For example, to move to the previous unsuccessful test in a collection,
specify BACK/UNSUCCESSFUL. You can also move backward a specified
number of tests in a collection; for example, BACK 3 moves you backward three
tests in the collection. Further, you can combine the comparison status and count
parameters to move backward to specific tests.

SELECT Moves you to a specific result description that you specify by its result description
name. For example:

DTM_REVIEW> SELECT INFOMSGTEST

You can use the comparison status to locate a set of result descriptions. For example, you can show all of
the unsuccessful tests in a collection as shown in the following example:

DTM_REVIEW> SHOW/UNSUCCESSFUL
Result Description MSGTEST Comparison Status : Unsuccessful

 Benchmark File is DUA0:[USER01.DTMLIB]MSGTEST.BMK
 Result file is present
 Difference file is present

Result Description INFOMSGTEST Comparison Status : Unsuccessful

 Benchmark File is DUA0:[USER01.DTMLIB]INFOMSGTEST.BMK
 Result file is present
 Difference file is present

DTM_REVIEW>

Locating Test Results with DECwindows

You can expand a view to access the information you want by performing the following steps:

1. Ensure you have a collection view displayed.

2. Double click on the collection you want to review.

5.2.1.5. Using the Review Subsystem Keypads
The Review subsystem has several default keypads that you can use to issue commands in the command-
line interface. The keypads are intended for use in the terminal environment. You can redefine these

57

Chapter 5. Reviewing Test Results

keypads to create custom keypads. Chapter 6, "Tailoring Your Test System" shows how to redefine the
keypad keys for any of the default keypads. This section describes the following default keypads:

● Review subsystem

● SHOW/BENCHMARK and SHOW/RESULT

● SHOW/DIFFERENCES

In the following illustrations, the white area of a key indicates that you can issue the command by
pressing only the key. The shaded area of a key indicates that you can issue the command by pressing
PF1, then the shaded key.

For example, to display a benchmark file using the Review subsystem keypad (Figure 5.1, "Review
Subsystem Default Keypad"), press KP9. To print a benchmark file, press PF1, then KP9.

Note

The number keys on the keyboard give you the same movement as the numbers on the keypad.

Within the Review subsystem, Ctrl/H displays HELP, Ctrl/W refreshes the screen, and Ctrl/Z terminates
display of the result,benchmark, or difference file and returns control to the Review subsystem.

Figure 5.1, "Review Subsystem Default Keypad" shows the default Review subsystem keypad, which has
most of the keypad keys defined.

Figure 5.1. Review Subsystem Default Keypad

58

Chapter 5. Reviewing Test Results

Table 5.4, "Key Definitions for the Review Subsystem Keypad" describes the key definitions shown in
Figure 5.1, "Review Subsystem Default Keypad".

Table 5.4. Key Definitions for the Review Subsystem Keypad

Key Sequence Key Definition

KP0 Displays the next test in a collection.
PF1-KP0 Displays the previous test in a collection.
KP1 Displays the next unsuccessful test in a collection.
PF1-KP1 Displays the previous unsuccessful test in a collection.
KP2 Displays the next new test in a collection.
PF1-KP2 Displays the previous new test in a collection.
KP3 Displays the next updated test in a collection.
PF1-KP3 Displays the previous updated test in a collection.
KP4 Places the currently selected files for printing on the print queue immediately.
KP5 Marks the test description and inserts into a group.
KP6 Updates the current test in a collection.
KP7 Issues the SHOW command with the /DIFFERENCES qualifier and displays the

differences.
PF1-KP7 Prints the difference file.
KP8 Issues the SHOW/RESULTS command and displays the result file.
PF1-KP8 Prints the result file.
KP9 Issues the SHOW/BENCHMARK command and displays the benchmark file.
PF1-KP9 Prints the benchmark file.
period (KP.) Displays the first test.
PF1-period (KP.) Displays the last test.
comma (KP,) Issues the SPAWN command, causing you to temporarily exit from VSI Digital

Test Manager.
PF1-comma (KP,) Issues the ATTACH command to attach you to the parent process (return to the

VSI Digital Test Manager Review subsystem).
Dash (KP-) Displays the collection summary.
PF1-PF2 Displays help for review subsystem.
PF2 Displays review subsystem Keypad.

Figure 5.2, "Review Subsystem SHOW/RESULT, SHOW/BENCHMARK, and DISPLAY/BENCHMARK
Keypad" shows the default SHOW/BENCHMARK, SHOW/RESULT, and DISPLAY/BENCHMARK
keypad. This keypad is enabled under the following circumstances:

● When you press either KP8 or KP9 on the default Review subsystem keypad (see Figure 5.1,
"Review Subsystem Default Keypad")

● When you issue the SHOW command with the /BENCHMARK or /RESULT qualifier from the
Review subsystem command line

● When you specify the DISPLAY/BENCHMARK command from the DTM> command line

59

Chapter 5. Reviewing Test Results

Figure 5.2. Review Subsystem SHOW/RESULT, SHOW/BENCHMARK, and DISPLAY/
BENCHMARK Keypad

Table 5.5, "Key Definitions for the SHOW/RESULT, SHOW/BENCHMARK, and DISPLAY/BENCHMARK
Keypad" describes the key definitions shown in Figure 5.2, "Review Subsystem SHOW/RESULT, SHOW/
BENCHMARK, and DISPLAY/BENCHMARK Keypad".

Table 5.5. Key Definitions for the SHOW/RESULT, SHOW/BENCHMARK, and
DISPLAY/BENCHMARK Keypad

Key Sequence Key Definition

KP0 Displays the next screen.
KP1 Displays the previous screen.
KP5 Displays the first screen in the file.
KP7 Toggles the screen number display. If the screen number display is on the screen,

pressing KP7 removes it. If the screen number display is not on the screen,
pressing KP7 displays it.

PF2 Displays review subsystem Keypad.

Figure 5.3, "Review Subsystem SHOW/DIFFERENCES Default Keypad" shows the SHOW/
DIFFERENCES keypad. When you press KP7 on the Review keypad, or issue the SHOW command
with the /DIFFERENCES qualifier from the Review subsystem command line, the default Review
subsystem SHOW/DIFFERENCES keypad becomes available.

60

Chapter 5. Reviewing Test Results

Figure 5.3. Review Subsystem SHOW/DIFFERENCES Default Keypad

Table 5.6, "Key Definitions for the SHOW/DIFFERENCES Keypad" describes the key definitions shown
in Figure 5.3, "Review Subsystem SHOW/DIFFERENCES Default Keypad".

Table 5.6. Key Definitions for the SHOW/DIFFERENCES Keypad

Key Sequence Key Definition

KP0 Displays the next screen.
KP1 Displays the previous screen.
KP3 Shifts split-screen mode. If the top (or bottom) half of the result and benchmark

files is displayed, pressing KP3 displays the other half of the two screens. If the
right (or left) half of the result and benchmark screens is displayed, pressing KP3
displays the other half of the two screens.

KP4 Changes highlighting of differences for screens that have not been displayed.
Differences are highlighted in bold reverse video. You can change this so
differences are underlined. Pressing KP4 changes highlighting for the screens that
have not been displayed. After a screen is displayed, you cannot change the way its
differences are highlighted.

KP5 Displays the first screen in the file.
KP7 Toggles the screen number. If the screen number is on the screen, pressing KP7

removes it. If the screen number is not displayed,pressing KP7 displays it.

61

Chapter 5. Reviewing Test Results

Key Sequence Key Definition

KP8 Toggles split-screen mode. If you are in full-screen mode,pressing KP8 puts you
in split-screen mode. If you are in split-screen mode,pressing KP8 switches you
between horizontal split-screen mode and vertical,split-screen mode.

KP9 Toggles full-screen mode. If you are in split-screen mode,pressing KP9 puts you
in full-screen mode. If you are in full-screen mode,pressing KP9 switches you
between displaying full screens from the result and benchmark files.

PF2 Displays review subsystem Keypad.

5.2.2. Displaying Test Results
This section describes how to display test results in the terminal environment. See Chapter 2, "Using VSI
Digital Test Manager for OpenVMS in a DECwindows Environment" for information about displaying
tests in a DECwindows environment.

The Review subsystem SHOW command displays information about result descriptions and displays the
output files associated with result descriptions to the display device (SYS$OUTPUT).

You can specify a result description expression with the SHOW command, which identifies the result
descriptions about which information is displayed. If you do not specify a result description, VSI Digital
Test Manager displays information about the current result description.

The following qualifiers enable you to display specified output files individually or in groups:

/BENCHMARK
/DIFFERENCE
/RESULT

If you do not include an output-file qualifier, VSI Digital Test Manager displays information about the
specified result descriptions rather than an output file.

The following qualifiers enable you to display groups of result descriptions that have the same
comparison status:

/COMPARISON_ABORTED
/NEW
/NOT_RUN
/SUCCESSFUL
/UNSUCCESSFUL
/UPDATED

The SHOW command also takes the following qualifiers:

● /FILES–Displays the comparison status for result descriptions and states whether each output file
exists. You cannot use the /FILES qualifier with the /SUMMARY qualifier.

● /OUTPUT–Directs the output to the specified file.

● /SUMMARY–Displays the collection summary information; the information displayed when you
invoke the Review subsystem. You cannot use the /SUMMARY qualifier with the comparison status
or the /FILES qualifier.

When you enter the SHOW command to display an output file for any type oftest, VSI Digital Test
Manager automatically recognizes the test as a noninteractive or interactive terminal test and displays it
accordingly. The following example shows the output for a noninteractive terminal test.

62

Chapter 5. Reviewing Test Results

DTM_REVIEW> SHOW/BENCHMARK
Benchmark File DUA0:[USER01.DTMLIB]MSGTEST.BMK For Result Description
MSGTEST
 .
 .
 .
DTM_REVIEW>

When you enter a SHOW command with an output file qualifier for an interactive terminal test, VSI
Digital Test Manager displays the result or benchmark files screen by screen, record by record, or
character by character (depending on the comparison type).

For a comparison using the /SCREENS qualifier, the differences are displayed in split-screen mode;
the top half of a result file screen is displayed on the top half of the screen, and the top half of the
corresponding benchmark screen is displayed on the bottom half of the screen. You can also view the
differences in full-screen mode.

When you enter the SHOW command with the /RESULT or /BENCHMARK qualifiers, an initial
banner screen (Screen 0) is displayed. Subsequent screens are numbered for easy referencing. Press
RETURN to access the next screen.

When you display a result or benchmark file, the specified file is displayed screen by screen. The screen
number, initially on the top right corner of the screen, shows the number of the screen and type of file
currently displayed.

To view other screens in the result and benchmark files, you must use the default keypad for the SHOW/
RESULT and SHOW/BENCHMARK screens. Section 5.2.1.5, "Using the Review Subsystem Keypads"
describes the SHOW/RESULT or SHOW/BENCHMARK keypad keys and their associated functions.

When you enter the SHOW command with the /DIFFERENCE qualifier, an initial banner screen
(Screen 0) is displayed, as shown in Figure 5.4, "VSI Digital Test Manager Difference File Screen 0".

Figure 5.4. VSI Digital Test Manager Difference File Screen 0

When you display a difference file, you are in horizontal split-screen mode by default; the terminal
screen is divided horizontally into two windows. The top window displays the top half of a screen

63

Chapter 5. Reviewing Test Results

from the result file, and the bottom window displays the top half of the corresponding screen from the
benchmark file.

When you display a difference file for a failed, interactive terminal test from its DECwindows interface,
VSI Digital Test Manager attempts to create a 49-line DECterm screen. This is too large for some
monitors. If you cannot examine the full contents of an interactive terminal test's difference file from the
DECwindows interface, you will need to use the DCL interface.

To view other screens in the result or benchmark file, you must use the default keypad for the
SHOW/DIFFERENCES screen. Section 5.2.1.5, "Using the Review Subsystem Keypads"describes the
SHOW/DIFFERENCES keypad keys and their associated functions.

5.2.3. Printing Test Results
The Review subsystem PRINT command marks the specified output files for placement in the default
printer queue.

Note

The PRINT command does not apply to DECwindows files. DECwindows result,benchmark, and
difference files are stored in DDIF format. They require conversion to another format for printing.

The PRINT command does not queue the selected files for printing until after you exit from the Review
subsystem with the EXIT command, or by pressing Ctrl/Z. If you leave the Review subsystem by
pressing Ctrl/C, or entering the EXIT/NOPRINT/NOINSERT command, the selected files are not
printed.

If you do not include an output file qualifier, VSI Digital Test Manager prints the result file associated
with the current result description.

In addition to the output file and comparison status qualifiers, and the standard print qualifiers, the
PRINT command also takes the following qualifiers:

● /[NO]LOG–Controls whether VSI Digital Test Manager displays informational and success messages
on the display device. The /LOG qualifier is the default.

● /NOW–Places all specified files immediately in the print queue.

● /SELECTED–Concatenates all files already selected for printing with the currently specified files and
immediately places them in the print queue.

Note

If you select a result file for printing and subsequently update the benchmark file for that test before the
result file has been queued for printing, the result file is deleted and is no longer printable.

5.3. Working with Test Results
This section summarizes the procedures for working with test results in the Review subsystem. You must
be the primary reviewer of a collection before you can update any benchmark files.

While in the Review subsystem, you can use the UPDATE command to create or replace a benchmark
file for a test. The UPDATE command makes the new benchmark file from the current result file for

64

Chapter 5. Reviewing Test Results

the specified result descriptions. VSI Digital Test Manager also provides DECwindows menu access for
updating functions.

If a benchmark file already exists in the library, it is deleted when you enter the UPDATE command. If a
benchmark file already exists but is outside the library, VSI Digital Test Manager informs you of this and
replaces it as the benchmark file; it does not delete the old file.

Section 5.3.1, "Updating an Existing Benchmark File" shows how to use Review subsystem commands to
replace a test's benchmark file. Section 5.3.2, "Creating a Benchmark File for a New Test" shows how to
use Review subsystem commands to create a benchmark file for a new test.

See Chapter 2, "Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment" for
information on updating a benchmark file in a DECwindows environment.

5.3.1. Updating an Existing Benchmark File
You might want to update an existing benchmark file if you have changed an application in a way that
changes the expected results for a test.

Example 5.1, "Updating a Benchmark File" assumes that you previously examined the result file or
difference file and determined that the result file should replace the old benchmark file. First, locate the
result description for the test by entering the SELECT command in the Review subsystem. Then, enter
the UPDATE command.

Example 5.1. Updating a Benchmark File

DTM_REVIEW> SELECT MSGTEST
Result Description MSGTEST Comparison Status : Unsuccessful

DTM_REVIEW> UPDATE
%DTM_I_UPDATED, the benchmark for test MSGTEST has been updated

DTM_REVIEW>

The result file is renamed as the benchmark file and the reference to the former benchmark file is
removed. If the former benchmark file is in the library, it is deleted.

When you update a benchmark file that is stored in a Code Management System (CMS) library, VSI
Digital Test Manager reserves the existing benchmark element in the CMS library and replaces it with
the result file from the current test run. If you specified a CMS generation for the existing benchmark
file with the CREATECOLLECTION/CLASS command, VSI Digital Test Manager inserts the updated
benchmark file as the new generation in the specified CMS class.

If you update the benchmark file for an interactive terminal test, the file containing benchmark screens
is also updated. If you update the benchmark file for a DECwindows test, any masks in the existing
benchmark are transferred to the new benchmark.

5.3.2. Creating a Benchmark File for a New Test
This section shows you how to create a benchmark file for a new test in the Review Subsystem.

To create a benchmark file for a new test in a terminal environment, do the following:

● Invoke the Review subsystem to review a collection.

65

Chapter 5. Reviewing Test Results

● Locate the result description for a test.

● Display the result file.

● Create the benchmark file for the test by renaming the result file as the benchmark file (using
UPDATE).

● Show the collection summary.

● Print the newly created benchmark file.

In Example 5.2, "Creating a Benchmark File", the reverse numbers refer to the explanations of the
command lines in the list. Note that when you omit the result description expression, the SHOW,
UPDATE, and PRINT commands all refer to the current result description.

Example 5.2. Creating a Benchmark File

DTM> REVIEW MAIL_COLL
Collection MAIL_COLL with 1 test was created on 31-OCT-1998 07:19:16
by the command:
 CREATE COLLECTION MAIL_COLL MAIL_TEST "Creating the MAIL test
 collection"
 Last Review Status = not previously reviewed
 Success count = 0
 Unsuccessful count = 0
 New test count = 1
 Updated test count = 0
 Comparisons aborted = 0
 Test not run count = 0

Result Description MAIL_TEST Comparison status : New test

DTM_REVIEW> SHOW/RESULT
 .
 .
 .
DTM_REVIEW> UPDATE
%DTM-I-UPDATED, the benchmark file for test MAIL_TEST has been updated
DTM_REVIEW> SHOW/SUMMARY
Collection MAIL_COLL with 1 test was created on 31-OCT-1998 07:19:16
by the command:
 CREATE COLLECTION MAIL_COLL MAIL_TEST "Creating the MAIL test
 collection"
 Last Review Date = 02-NOV-1998 08:19:20
 Success count = 0
 Unsuccessful count = 0
 New test count = 0
 Updated test count = 1
 Comparisons aborted = 0
 Test not run count = 0

DTM_REVIEW> PRINT/BENCHMARK
%DTM-S-PRINT, file DUA0:[USER01.DTMLIB]MAIL_TEST.BMK of test MAIL_TEST
selected for printing
DTM_REVIEW> EXIT
%DTM-S-PRINTQD, print job has been sent to the print queue
-DTM-I-TEXT, Job MAIL_TEST(queue SYS$PRINT, entry 710)started on SYS$PRINT
%DTM-EXIT, leaving Review subsystem

66

Chapter 5. Reviewing Test Results

DTM>

Invoke the Review subsystem to review the MAIL_COLL collection. Note that the collection was
not reviewed previously and it contains one new test,MAIL_TEST.

Display a result file to determine whether the results are correct. It is unnecessary to specify the
result description name, because MAIL_TEST is the current result description. If the results are
correct, you can then make this file the benchmark file for the test. Because MAIL_TEST is a
noninteractive test, VSI Digital Test Manager displays the result file on the screen.

Use the UPDATE command to create a benchmark file for the test by renaming the result file as
the benchmark file. This command creates a benchmark file for MAIL_TEST from its result file,
deletes the result file, and changes the comparison status of the test from new to updated. VSI
Digital Test Manager stores the benchmark file in the library and uses it as the benchmark file for
MAIL_TEST when the test is run in future collections.
If you are creating the benchmark file for an interactive test, the file containing benchmark screens
(test-name.BMK_SCREENS) is also created. These files are printable for interactive terminal tests.

Show the collection summary. Note that the New test count field value is 0 and the Updated test
count field value is 1.

Print the newly created benchmark file with the PRINT command.

Exit from the Review subsystem.

Note

When you create a new benchmark file in a CMS library, VSI Digital Test Manager creates a new
benchmark element in the specified CMS library. If you specify a CMS class with the CREATE
COLLECTION/CLASS command, VSI Digital Test Manager inserts the new benchmark file as a
generation in the class. See Chapter 7, "Maintaining a VSI Digital Test Manager Library" for more
information about using CMS with VSI Digital Test Manager.

5.3.3. Reviewing Partially Run Collections
A partially run collection can occur for one of the following reasons:

● You stopped a collection by typing the STOP command if the collection was executing in batch
mode, or by pressing Ctrl/C or Ctrl/Y if the collection was running interactively.

● Your collection terminated abnormally during execution.

● You used the DCL DELETE command with the /ENTRY qualifier to stop a collection of tests
running in batch mode.

● Another user stopped the process executing the collection.

Issuing the STOP command is the recommended way to terminate a collection executing in batch mode.
Pressing Ctrl/C is the recommended way to stop a collection that is running interactively. Taking either
of these actions causes VSI Digital Test Manager to clean up the VSI Digital Test Manager library, after
which you must enter the COMPARE command to compare the partially run collection before reviewing
it.

If you do not use the STOP command or press Ctrl/C to stop a collection,errors might occur and you
will not be able to compare or review the collection. Before using the collection, you must enter the

67

Chapter 5. Reviewing Test Results

VERIFY/RECOVER command to cleanup the library, correct the errors, and mark the tests that did not
run.

Ensure that no other VSI Digital Test Manager operations are in process before performing a VERIFY/
RECOVER operation. Then, enter the COMPARE command to compare the partially run collection.
Finally, enter the REVIEW command to initiate a Review session for the partially run collection.

Note

For partially run or partially compared collections, all tests that did not run are marked with the not run
comparison status. In both cases, you must perform a comparison before reviewing the collection.

If you review the collection before comparing it, VSI Digital Test Manager will not allow you to
compare the collection later. If the collection is stopped after several tests have been compared, those
tests will retain the correct comparison status.

Reviewing a partially run collection is especially important if the collection is large. Following the
instructions described, prepare the partially run collection for review. Then, from the Review subsystem,
examine the tests that ran and use the INSERT/NOT_RUN command to create a group containing all the
tests that did not run. This group can then be included in a collection, executed, and reviewed. Creating a
group while reviewing a collection is described in Chapter 6, "Tailoring Your Test System".

68

Chapter 6. Tailoring Your Test
System
This chapter describes features of VSI Digital Test Manager that you can use to tailor your test system to
suit your testing needs. It provides information on the following topics:

● Using prologue and epilogue files

● Creating and using groups

● Using variables

● Using filters

● Using masks

● Defining keypad keys

● Using command files

● Creating initialization files

● Spawning and attaching processes

6.1. Using Prologue and Epilogue Files
Prologue and epilogue files are command files that enable you to control the environment in which VSI
Digital Test Manager runs your tests. You store prologues and epilogues outside the VSI Digital Test
Manager library, in OpenVMS directories or Code Management System (CMS) libraries.

You use prologues to set up test conditions before executing a test in a collection, or before executing the
collection as a whole. You use epilogues to clean up or filter files after executing a test in a collection, or
after executing the collection as a whole.

Table 6.1, "Prologue and Epilogue Files" describes the various prologue and epilogue files.

Table 6.1. Prologue and Epilogue Files

File Description

Test prologue Associated with a specific test description, it is executed before the test
template file is executed.

Test epilogue Associated with a specific test description, it is executed after the test
template executes and DTM$RESULT is defined, but before the VSI Digital
Test Manager-provided filters are run.

Collection prologue Associated with a collection, it is executed whenever the collection is
executed after the global variables and DTM$COLLECTION_NAME are
defined, but before any tests are executed.

Collection epilogue Associated with a collection, it is executed after the collection is executed and
is the last file executed.

69

Chapter 6. Tailoring Your Test System

6.1.1. Test Prologue and Epilogue Files
You create test prologue and epilogue files using a text editor and associate them with tests using one of
the following commands with the /PROLOGUE and /EPILOGUE qualifiers:

● CREATE TEST_DESCRIPTION

● MODIFY TEST_DESCRIPTION

In a DECwindows environment, you specify test prologue and test epilogue files in text entry fields on
the Create Test... or Modify Test... dialog box.

Test prologue and epilogue files are associated with a specific test description and are executed whenever
the test is executed.

A prologue file can set up an environment for the test template file. For example, a test prologue file can
define local variables, retrieve elements from a CMS library (using the FETCH command), or set default
values.

An epilogue file can clean up the environment after the template file is run. Test epilogue files can
also remove run-dependent data from a test's result file. By running a test once and checking for run-
dependent data in the result file, you can determine the need to filter run-dependent data with an
epilogue file. See Section 6.3.3.3, "DTM$RESULT Logical Name" and Section 6.4, "Using Filters" for
more information.

You can disassociate a prologue or epilogue file from a test description by specifying the MODIFY
TEST_DESCRIPTION command with the /NOPROLOGUE or /NOEPILOGUE qualifier. This does not
delete the prologue or epilogue file.

Example 1.1, "Sample Interactive Terminal Session" shows the disabling and enabling of broadcast
messages as part of a recorded test. However, it is possible that broadcast messages can appear
in the recording before the SET BROADCAST=NONE command is entered, or after the
SETBROADCAST=ALL command is entered and before the test recording is terminated. By placing
these commands into test prologue and epilogue files, you eliminate that possibility. The following
sections show how to place these commands into test prologue and epilogue files.

Example 6.1, "Sample Test Prologue File" shows a simple test prologue file used to disable broadcast
messages before test recording begins.

Example 6.1. Sample Test Prologue File

$! DTMNOBROADCAST.COM
$!
$! Disable broadcast messages before recording.
$!
$ SET BROADCAST=NONE$!

To establish this test prologue file for the MAIL_TEST test, specify the following command:

DTM> MODIFY TEST_DESCRIPTION MAIL_TEST -
_DTM> /PROLOGUE=DUA0:[USER01.PROLIB]DTMNOBROADCAST.COM
_Remark: Adding the prologue to disable broadcast messages
%DTM-S-MODIFIED, test description MAIL_TEST modified
DTM>

Example 6.2, "Sample Test Epilogue File" shows a simple test epilogue file to enable broadcast messages
after test recording concludes.

70

Chapter 6. Tailoring Your Test System

Example 6.2. Sample Test Epilogue File

$! RESETBROADCAST.COM
$!
$! Re-enable broadcast messages after recording.
$!
$ SET BROADCAST=ALL$!

To establish this test epilogue file for the MAIL_TEST test, specify the following command:

DTM> MODIFY TEST_DESCRIPTION MAIL_TEST -
_DTM> /EPILOGUE=DUA0:[USER01.EPILIB]RESETBROADCAST.COM
_Remark: Adding the epilogue to re-enable broadcast messages
%DTM-S-MODIFIED, test description MAIL_TEST modified
DTM>

6.1.2. Collection Prologues and Epilogues
You create collection prologue and epilogue files using a text editor and set up the default collection
command file specifications for the VSI Digital Test Manager library using one of the following
commands:

● SET PROLOGUE

● SET EPILOGUE

To set collection prologue and epilogue files in a DECwindows environment, perform the following
steps:

1. Pull down the Library menu.

2. Choose the Create... or Modify... menu item.

3. Fill in the Prologue and Epilogue text entry fields.

When you associate prologue and epilogue files with a library using the SETPROLOGUE and SET
EPILOGUE commands, those files become the default prologue and epilogue files for any collections
you create. The default prologue and epilogue files are invoked whenever you execute one of those
collections.

To cancel the default files, specify the SET NOPROLOGUE and SET NOEPILOGUE commands.

To associate different prologue and epilogue files when creating subsequent collections, specify new files
with the CREATE COLLECTION command and the /PROLOGUE and /EPILOGUE qualifiers.

In a DECwindows environment, you specify collection prologue and collection epilogue files in text
entry fields on the Create Collection... dialog box.

To create a collection that does not use the default collection prologue and epilogue files, specify the
CREATE COLLECTION command with the /NOPROLOGUE and /NOEPILOGUE qualifiers.

Example 6.3, "Sample Collection Prologue File" shows a sample collection prologue file that does two
things:

1. Tests the variable USE_PCA to determine whether to process the Performance and Coverage
Analyzer (PCA) Collector initialization file.

71

Chapter 6. Tailoring Your Test System

2. Defines the Collector initialization file according to the variable USE_PCA_INIT_FILE. Running
the PCA Collector during a test is especially useful for determining which code paths are being
exercised by the tests themselves. See the Guide to Performance and Coverage Analyzer for
OpenVMS Systems for information about PCA. See Using VSI DECset for OpenVMS Systems for
information about using VSI Digital Test Manager with PCA.

Example 6.3. Sample Collection Prologue File

$! –-- COLLECTION_PROLOGUE.COM –--
$! Collection prologue file for running the Collector in batch mode
$!
$ SET VERIFY$
!$ TRANSLIT:==$'F$LOGICAL("TRANSLIT")'
$!
$! Test DTM variable to determine whether or not to run PCA prologue
$!
$ IF USE_PCA .EQS. "FALSE" THEN EXIT
$!
$! Define the Collector initialization file
$!
$ DEFINE PCAC$INIT USE_PCA_INIT_FILE
$!
$! End of collection prologue file

To establish this collection prologue file as the default prologue file for subsequently created test
collections, specify the following command:

DTM> SET PROLOGUE DUA0:[USER01.DTM_CMSLIB]COLLECTION_PROLOGUE.COM

In this example, the prologue file exists in the CMS library.

Example 6.4, "Sample Collection Epilogue File" shows an epilogue file that sends the results of the tests
in a collection to the project leader through the OpenVMS Mail Utility (MAIL). The collection name is
identified by the logical name DTM$COLLECTION_NAME; the project leader is identified with the
mail address, USER87.

Example 6.4. Sample Collection Epilogue File

$! –-- COLLECTION_EPILOGUE.COM –--
$! Collection epilogue file for mailing test results to USER87,
$! upon completion of the test run.
$!
$ DTM SHOW COLLECTION 'DTM$COLLECTION_NAME'/FULL-
$ /OUTPUT='DTM$COLLECTION_NAME'.REPORT
$!
$ MAIL 'DTM$COLLECTION_NAME'.REPORT/SUBJECT="Collection summary" USER87
$!
$! End of collection epilogue file

To establish this epilogue file as the default epilogue file for subsequently created test collections, specify
the following command:

DTM> SET EPILOGUE DUA0:[USER01.DTM_CMSLIB]COLLECTION_EPILOGUE.COM

In this example, the epilogue file exists in the CMS library.

6.2. Grouping Tests

72

Chapter 6. Tailoring Your Test System

You can classify test descriptions by placing them into categories called groups. You identify each
group in the library with a group name, which is unique in the current library. As a result,you need only
specify a group name, rather than a long list of individual test descriptions when referencing the tests in a
group.

This section describes the VSI Digital Test Manager commands that perform the following actions:

● Create a group.

● Change the contents of a group.

● Delete a group.

● Build a hierarchy of groups.

Table 6.2, "Group Commands" shows the commands that operate on groups.

Table 6.2. Group Commands

Command Description

CREATE GROUP Creates an empty group into which you can insert tests or groups.
DELETE GROUP Deletes an existing group. A group must be empty before it can be

deleted.
INSERT GROUP Places a group inside another group.
INSERT
TEST_DESCRIPTION

Places a test inside an existing group.

MODIFY GROUP Replaces the remark associated with an existing group.
REMOVE GROUP Removes a group from another group.
REMOVE
TEST_DESCRIPTION

Removes a test from an existing group.

SHOW GROUP Lists the group's name, its contents, and its creation remark.

6.2.1. Organizing Tests into Groups
After you create a group name with the CREATE GROUP command, you can insert one or more tests
by listing the test names with the INSERT TEST_DESCRIPTION command. You can use wildcards
when you specify test names to be inserted into a group. Tests are associated together by group name
only; they are not relocated or copied.

Example 6.5, "Creating Groups" shows how to create several groups in a terminal environment; it uses
CREATE GROUP, INSERT TEST_DESCRIPTION, and INSERT GROUP commands.

Example 6.5. Creating Groups

DTM> CREATE GROUP BOUNDARIES "Creating Group BOUNDARIES"
%DTM-S-CREATED, group BOUNDARIES created
DTM> CREATE GROUP LMARGIN "Creating Group LMARGIN"
%DTM-S-CREATED, group LMARGIN created
DTM> CREATE GROUP RMARGIN "Creating Group RMARGIN"
%DTM-S-CREATED, group RMARGIN created
DTM> CREATE GROUP MARGINS "Creating Group MARGINS"

73

Chapter 6. Tailoring Your Test System

%DTM-S-CREATED, group MARGINS created

DTM> INSERT TEST_DESCRIPTION LMTEST1,LMTEST2,LMTEST3 LMARGIN
_Remark: Grouping the left margin tests
%DTM-I-INSERTED, test description LMTEST1 inserted into group LMARGIN
%DTM-I-INSERTED, test description LMTEST2 inserted into group LMARGIN
%DTM-I-INSERTED, test description LMTEST3 inserted into group LMARGIN
%DTM-S-INSERTIONS, 3 insertions completed

DTM> INSERT TEST_DESCRIPTION RMTEST1,RMTEST2,RMTEST3,RMTEST4 RMARGIN
_Remark: Grouping the right margin tests
%DTM-I-INSERTED, test description RMTEST1 inserted into group RMARGIN
%DTM-I-INSERTED, test description RMTEST2 inserted into group RMARGIN
%DTM-I-INSERTED, test description RMTEST3 inserted into group RMARGIN
%DTM-I-INSERTED, test description RMTEST4 inserted into group RMARGIN
%DTM-S-INSERTIONS, 4 insertions completed

DTM> INSERT GROUP LMARGIN,RMARGIN MARGINS
_Remark: Grouping the margin tests together under MARGINS
%DTM-I-INSERTED, group LMARGIN inserted into group MARGINS
%DTM-I-INSERTED, group RMARGIN inserted into group MARGINS
%DTM-S-INSERTIONS, 2 insertions completed

DTM> INSERT GROUP MARGINS BOUNDARIES
_Remark: Grouping the margin groups into a boundaries group
%DTM-I-INSERTED, group MARGINS inserted into group BOUNDARIES DTM>

Create four empty groups: BOUNDARIES, LMARGIN, RMARGIN, and MARGINS.

Insert three left-margin tests into the LMARGIN group.

Insert four right-margin tests into the RMARGIN group.

Insert the two groups LMARGIN and RMARGIN into the group MARGINS.

Insert the group MARGINS into the group BOUNDARIES.

When you insert a group into another group, you create a group hierarchy. Figure 6.1, "Sample Group
Hierarchy" shows the BOUNDARIES groups hierarchy.

Figure 6.1. Sample Group Hierarchy

6.2.2. Displaying a Group Structure
Use the SHOW GROUP command to display the structure of groups for the current library by specifying
the SHOW GROUP command. You can display different amounts of information about the groups in
a library with the SHOWGROUP qualifiers. The following example shows the output for the SHOW
GROUP command with the /FULL qualifier for the project library:

DTM> SHOW GROUP/FULL

74

Chapter 6. Tailoring Your Test System

Groups in Digital Test Manager Library DUA0:[USER01.PROJECT]

BOUNDARIES "Creating Group BOUNDARIES"
 MARGINS/Group
 LMARGIN/Group
 LMTEST1
 LMTEST2
 LMTEST3
 RMARGIN/Group
 RMTEST1
 RMTEST2
 RMTEST3
 RMTEST4

LMARGIN "Creating Group LMARGIN"
 LMTEST1
 LMTEST2
 LMTEST3

MARGINS "Creating Group MARGINS"
 LMARGIN/Group
 LMTEST1
 LMTEST2
 LMTEST3
 RMARGIN/Group
 RMTEST1
 RMTEST2
 RMTEST3
 RMTEST4

RMARGIN "Creating Group RMARGIN"
 RMTEST1
 RMTEST2
 RMTEST3
 RMTEST4
DTM>

6.2.3. Removing Tests and Sub-groups from Groups
Use the REMOVE TEST_DESCRIPTION command to disassociate tests from a group. Use the
REMOVE GROUP command to disassociate groups from a group. These commands reverse the actions
of the INSERT TEST_DESCRIPTION and INSERT GROUP commands. The remove commands do not
delete any tests or groups.

The following example removes a single test from the LMARGIN group:

DTM> REMOVE TEST_DESCRIPTION LMTEST2 LMARGIN
_Remark: Removing test 2 from LMARGIN
Confirm removal of test description LMTEST2 from group LMARGIN [Y/N] (N): Y
%DTM-I-REMOVED, test description LMTEST2 removed from group LMARGIN
DTM>

The following example removes the RMARGIN subgroup from the MARGINS group:

DTM> REMOVE GROUP RMARGIN MARGINS "Removing RMARGIN from MARGINS"
Confirm removal of group RMARGIN from group MARGINS [Y/N] (N): Y

75

Chapter 6. Tailoring Your Test System

%DTM-I-REMOVED, group RMARGIN removed from group MARGINS
DTM>

6.2.4. Deleting Groups
When you create a group, VSI Digital Test Manager continues to associate that name with a group,
even if the group no longer contains tests. You can delete the associated group name by specifying the
DELETE GROUP command.

Before you can delete a group, you must remove all test or group associations from that group, using the
REMOVE TEST_DESCRIPTION and REMOVEGROUP commands, as described in Section 6.2.3,
"Removing Tests and Sub-groups from Groups". The following example removes all the tests from the
RMARGIN group, then deletes the RMARGIN group.

DTM> REMOVE TEST_DESCRIPTION * RMARGIN
_Remark: Preparing to delete group RMARGIN
Confirm removal of test description RMTEST1 from group RMARGIN [Y/N] (N): Y
%DTM-I-REMOVED, test description RMTEST1 removed from group RMARGIN
 .
 .
 .
Confirm removal of test description RMTEST4 from group RMARGIN [Y/N] (N): Y
%DTM-I-REMOVED, test description RMTEST4 removed from group RMARGIN
%DTM-S-REMOVALS, 4 removals completed
DTM> DELETE GROUP RMARGIN “Deleting the RMARGIN group”
Confirm deletion of group RMARGIN [Y/N] (N): Y
%DTM-S-DELETED, group RMARGIN deleted
DTM>

6.3. Using Variables
A VSI Digital Test Manager variable is a user-defined OpenVMS symbol or logical name that you use
in tests, prologue files, and epilogue files.

Use the CREATE VARIABLE command to add a variable to the VSI Digital Test Manager library. Use
the MODIFY VARIABLE to change attributes of a variable.

Note

P1 through P8 and any variable name with the prefix DTM$ are reserved for exclusive use by VSI
Digital Test Manager, except for those variables described in Section 6.3.4, "Using User-Defined
Variables to Control VSI Digital Test Manager". You receive a warning if you attempt to create a variable
with these names.

A VSI Digital Test Manager variable can be global or local in scope. A global variable is associated
with all tests in a collection; a local variable is defined only during a specific test execution. Local
variables must be associated with specific test descriptions by using the CREATE TEST_DESCRIPTION
or MODIFY TEST_DESCRIPTION command with the /VARIABLE qualifier. When you create a
collection, VSI Digital Test Manager associates all existing global variables with the collection and
defines them at the start of every collection.

If you redefine a global variable or create a new global variable in the VSI Digital Test Manager library,
use the RECREATE command to re-create the collection and associate it with the new global variables.

76

Chapter 6. Tailoring Your Test System

The following example shows how to use the CREATE VARIABLE command to create a global
variable. If you have a test that issues many SUBMIT commands and you do not want to print all the
LOG files that the test generates, you can create a variable with variable name SUBMIT and give it the
variable value SUBMIT/NOPRINTER, as shown in this example.

DTM> CREATE VARIABLE SUBMIT "SUBMIT/NOPRINTER"/GLOBAL/SYMBOL
_Remark: "Redefine the SUBMIT command"

Any test that uses the SUBMIT command subsequent to this command uses the new definition, as if you
had entered the following command before executing the test:

$ SUBMIT :== SUBMIT/NOPRINTER

Note

Avoid assigning values to global variables from within template, prologue, or epilogue files. Instead, let
VSI Digital Test Manager assign the indicated value before the template, prologue, or epilogue file is
executed.

Global variable values can be overridden for an individual test that requires special handling. See Section
6.3.2, "Overriding Variable Default Values" for more information.

A local variable can be accessed by a single test when you include that variable in the test description. To
use a local variable, you must do the following:

1. Specify the CREATE VARIABLE or MODIFY VARIABLE command with the /LOCAL qualifier
to define the variable as a local variable.

2. Specify the variable using the CREATE TEST_DESCRIPTION or MODIFYTEST_DESCRIPTION
command with the /VARIABLE qualifier, as shown in the following example:

DTM> CREATE TEST_DESCRIPTION MECHANIX -
_DTM> /VARIABLE=(SUBMIT="SUBMIT/NOPRINTER")

3. Use the variable in the template file, prologue file, or epilogue file of specific test descriptions.

Wherever the SUBMIT variable is used in the MECHANIX test, VSI Digital Test Manager translates the
variable to SUBMIT/NOPRINTER. Other tests are unaffected by this local definition of the SUBMIT
variable.

You can disassociate variables from an existing test description by using the MODIFY
TEST_DESCRIPTION command with the /NOVARIABLE qualifier.

6.3.1. Modifying and Deleting Variables
You can modify one or more variable characteristics and delete variables.

To modify variable characteristics, use the MODIFY VARIABLE command with one or more of
its qualifiers. For example, you can change the default value of a variable, as shown in the following
example:

DTM> MODIFY VARIABLE INPUT_FILE/VALUE=INPUT.RNO
_Remark: "Replacing value of INPUT_FILE with INPUT.RNO"
%DTM-S-MODIFIED, variable INPUT_FILE modified.

77

Chapter 6. Tailoring Your Test System

The variable expression parameter can be a variable name, a wildcard character, a wildcard in
combination with a variable name, or a list of these separated by commas.

To delete a variable from the VSI Digital Test Manager library, use the DELETEVARIABLE command,
as shown in the following example:

DTM> DELETE VARIABLE INPUT_FILE "Deleting the INPUT_FILE variable"
Confirm deletion of variable INPUT_FILE [Y/N] (N): Y
%DTM-S-DELETED, variable INPUT_FILE deleted.

Note

VSI Digital Test Manager will not delete a variable that is associated with a test description. If you
attempt to delete several variables with a variable expression and one or more of them is associated
with a test description, VSI Digital Test Manager deletes only those variables not associated with a
test description. Use the MODIFY TEST_DESCRIPTION/NOVARIABLE command to disassociate
variables from test descriptions.

6.3.2. Overriding Variable Default Values
Most tests use a variable's default value. However, certain tests might require special handling and
variable values. For example, you might want to use one template file to run several tests. You can do
this by using a variable in the template file to override the variable's value for each test description.

Example 6.6, "Overriding Variables" performs the following actions:

● Creates the variable TEMPLDIR, with DUA0:[USER01.TMP] as its value

● Modifies the variable's value so when it is used with the test description MECHANIX, its value is
DUA0:[USER01.PROJECT.TMP]

Example 6.6. Overriding Variables

DTM> CREATE VARIABLE TEMPLDIR DUA0:[USER01.TMP]/GLOBAL
_Remark: Template Directory
%DTM-S-CREATED, logical variable TEMPLDIR created
DTM> MODIFY TEST_DESCRIPTION MECHANIX -
_DTM> /VARIABLE=(TEMPLDIR=DUA0:[USER01.PROJECT.TMP])
_Remark: "Change variable value when used in MECHANIX"
%DTM-S-MODIFIED, test description MECHANIX modified
DTM>

You can override the default value of a global variable when you create a collection. To do this,
use the CREATE COLLECTION/VARIABLE command. The following example creates the
collection KEYTESTS and, for this collection only, changes the value of TEMPLDIR to DUA0:
[USER01.TEST.TMP]:

DTM> CREATE COLLECTION KEYTESTS * -
_DTM> /VARIABLE=(TEMPLDIR="DUA0:[USER01.TEST.TMP]")-
_Remark: New template directory for this collection

The test descriptions in collection KEYTESTS that are explicitly associated with the variable
TEMPLDIR are not permanently affected by the override value. For example, MECHANIX in
KEYTESTS will still have the value DUA0:[USER01.PROJECT.TMP], despite the collection override
value.

78

Chapter 6. Tailoring Your Test System

Note

You should override variables sparingly because you are changing the variable's value from earlier test
runs. This might cause the actual test output to differ from the expected test output. In addition, any
changes invariable values might affect the prologue and epilogue files. As a result, you must examine the
differences and result files to discover whether the actual test output is what you expected.

6.3.3. Using Variables Defined by VSI Digital Test
Manager
VSI Digital Test Manager supplies built-in variables that you can use in template, prologue, and epilogue
files. The following sections describe these built-in variables and provide examples of how to use each
one.

6.3.3.1. DTM$COLLECTION_NAME Global Symbol
VSI Digital Test Manager defines the OpenVMS global symbol DTM$COLLECTION_NAME as
the current collection name before the collection prologue file executes. It is available for use in any
prologue, epilogue, or template file in the collection.

For example, you can obtain a quick report of the status of a collection at the end of the run, and you can
be informed when the collection is finished, by having the collection epilogue file do the following:

1. Invoke VSI Digital Test Manager.

2. Enter the SHOW COLLECTION command with the /FULL qualifier using DTM
$COLLECTION_NAME to specify the collection name.

3. Invoke the OpenVMS Mail Utility (MAIL) to send you the output of this command.

See Example 6.4, "Sample Collection Epilogue File" for the sample collection epilogue file.

6.3.3.2. DTM$TEST_NAME Local Symbol
VSI Digital Test Manager establishes the OpenVMS local symbol DTM$TEST_NAME as the test name
field of the test description. You can use DTM$TEST_NAME in template files, test epilogue files, and
test prologue files.

Example 6.7, "Using the DTM$TEST_NAME Local Symbol" shows how to write the file
MAIL_TEMPLATE.COM (the template file associated with test description SEND_MAIL_TEST)
using DTM$TEST_NAME. If you create a modified copy of SEND_MAIL_TEST (the test
description that previously used template file MAIL_TEMPLATE.COM) and call the modified
copy REPLY_MAIL_TEST, you can generalize MAIL_TEMPLATE.COM to run with both
SEND_MAIL_TEST and REPLY_MAIL_TEST by using DTM$TEST_NAME in the template file.
Example 6.7, "Using the DTM$TEST_NAME Local Symbol" shows the more general template file.

Example 6.7. Using the DTM$TEST_NAME Local Symbol

$! –-- MAIL_TEMPLATE.COM –--
$! TEMPLATE file for MAIL message sending commands
$!
$ @'dtm$test_name'.COM
$!
$! This new template file can be used with any test whose test

79

Chapter 6. Tailoring Your Test System

$! name is the same as that of the input file.

6.3.3.3. DTM$RESULT Logical Name
VSI Digital Test Manager establishes the OpenVMS logical name DTM$RESULT as the logical
equivalent to the file specification for the test result file. VSI Digital Test Manager defines DTM
$RESULT immediately after the test template file executes and just before the test epilogue file executes.
It is deassigned after the test epilogue file executes and therefore exists only during test epilogue file
execution.

DTM$RESULT enables you to create the epilogue file to filter run-dependent information from the
result file. To do this, the epilogue file runs the result file through a text editor, such as EDT.

Example 6.8, "Using the DTM$RESULT Logical Name" shows an epilogue file that invokes EDT to
remove from the result file all lines that contain OpenVMS run information on the amount of memory
used. The epilogue file deletes all lines containing the phrase Memory Used:.

Note

VSI Digital Test Manager DECwindows result files are in DDIF format. Attempts to alter these files can
corrupt them.

Example 6.8. Using the DTM$RESULT Logical Name

$! MEM.FIL -- Eliminate any "Memory Used:"
$! messages from .RES files.
$ EDIT/EDT DTM$RESULT
c;32767('Memory Used:' dl) ex
EXIT
$ PURGE DTM$RESULT

6.3.4. Using User-Defined Variables to Control VSI
Digital Test Manager
The VSI Digital Test Manager record, play, compare, and filter functions check specific OpenVMS
logicals as a mechanism for enabling you to control their behavior. You can define these logicals in test
and collection prologue and epilogue files, or in DCL prior to invoking VSI Digital Test Manager.

Note

VSI Digital Test Manager does not propagate logicals to batch jobs created with the SUBMIT command.

Alternatively, you can define VSI Digital Test Manager variables and have the logicals automatically
defined when recording tests or running collections. The following sections describe these variables and
provide examples.

6.3.4.1. DTM$DELAY_TIMEOUT Logical Variable
During interactive terminal test playback, VSI Digital Test Manager sends terminal input to an
application as fast as the application will accept it. Under some circumstances, an application might never
directly request input (with a QIO), but can check input queues periodically for the presence of input.

For interactive terminal test playback, VSI Digital Test Manager waits 7 seconds for the application to
reach an input point, then sends more input allowing the test to continue.

80

Chapter 6. Tailoring Your Test System

For DECwindows tests, test synchronization can be accomplished by editing an input file.. VSI Digital
Test Manager waits for a specified DECwindows display event to occur before continuing to send input.
VSI Digital Test Manager waits 3 minutes by default, but you can specify another timeout value.

You can use the DTM$DELAY_TIMEOUT variable to specify your own delay timeout value. The value
must be defined as a standard OpenVMS delta time. For example, to set a timeout value of 15 seconds
for a test, do the following:

DTM> CREATE VARIABLE /LOGICAL DTM$DELAY_TIMEOUT "0 00:00:15.0" -
_DTM> "MY TIMEOUT"
DTM> MODIFY TEST MAIL /VARIABLE=DTM$DELAY_TIMEOUT "NEW TIMEOUT"

6.3.4.2. DTM$OMIT_PRINTABLE_SCREENS Logical Variable
When VSI Digital Test Manager compares interactive tests while running a collection,it can optionally
create printable versions of the result (.RES_SCREENS) and the benchmark (.BMK_SCREENS) files.
These files are only used for printing by the PRINT command with the /RESULT or /BENCHMARK
qualifiers during the subsequent REVIEW of the collection test results. The files can become quite large
depending on the quantity of screens compared during the collection run.

VSI Digital Test Manager uses the value specified for the DTM$OMIT_PRINTABLE_SCREENS
logical variable to determine whether to create printable screens files. If the logical variable is not
defined or set to a value of 0, the default action is to create the printable screens. If the logical variable
is defined and set to a value of 1, the printable screens are not created during the comparison of the test
results. Enter the following logical definition to omit the creation of the printable screens:

DTM> CREATE VARIABLE /LOGICAL /GLOBAL DTM$OMIT_PRINTABLE_SCREENS "1"

Note

The variable DTM$OMIT_PRINTABLE_SCREENS works only if the collection is compared as part of
the run. For collections created using /NOCOMAPARE qualifier will have the same effect, if the logical
name is defined before the COMPARE command as follows:

$ DEFINE DTM$OMIT_PRINTABLE_SCREENS "1"
$ DTM COMPARE collection_name

6.3.4.3. DTM$DATE_FILTER_MIN_YEAR Logical Variable
You can use the DTM$DATE_FILTER_MIN_YEAR variable to define the first year in the range when
filtering dates in test results. The default year is 1858

The following example shows how to use the DTM$DATE_FILTER_MIN_YEAR variable to define the
year 1998 as the first year in a filter range:

DTM> CREATE VARIABLE /LOGICAL DTM$DATE_FILTER_MIN_YEAR "1998" -
_DTM> "FIRST YEAR IN FILTER RANGE"
DTM> MODIFY TEST MAIL /VARIABLE=DTM$DATE_FILTER_MIN_YEAR "1998" -
_DTM> "NEW FILTER RANGE START DATE"

6.3.4.4. DTM$DATE_FILTER_MAX_YEAR Logical Variable
You can use the DTM$DATE_FILTER_MAX_YEAR variable to define the last year in a filter range
when filtering dates in test results. The default year is 2500.

81

Chapter 6. Tailoring Your Test System

The following example shows how to use the DTM$DATE_FILTER_MAX_YEAR variable to define
1998 as the last date in a filter range.

DTM> CREATE VARIABLE /LOGICAL DTM$DATE_FILTER_MAX_YEAR "1998" -
_DTM> "LAST DATE IN FILTER RANGE"
DTM> MODIFY TEST MAIL /VARIABLE=DTM$DATE_FILTER_MAX_YEAR "1998" -
_DTM> "NEW FILTER RANGE END DATE"

6.3.4.5. DTM$DATE_FILTER_STRING Logical Variable
You can use the DTM$DATE_FILTER_STRING variable to specify a string that VSI Digital Test
Manager uses to replace all valid dates when filtering test results. For a list of date filters, see Table 6.3,
"Keywords Used with the /FILTER Qualifier". The string specified by DTM$DATE_FILTER_STRING
overrides the default replacements that the VSI Digital Test Manager DATE filter uses.

For example, you might want to replace all dates in the result file of the MAIL test with the string
DATE. You can do this by specifying the following commands:

DTM> CREATE VARIABLE /LOGICAL DTM$DATE_FILTER_STRING "DATE" -
_DTM> "STRING USED TO REPLACE DATES"
DTM> MODIFY TEST MAIL /VARIABLE=DTM$DATE_FILTER_STRING -
_DTM> "NEW DATE FILTER STRING"

6.3.4.6. DTM$DATE_FILTER_FIRST Logical Variable
You can use the DTM$DATE_FILTER_FIRST variable to provide control over how ambiguity in date
filtering should be resolved. Because the two-digit numbers 32–99 and 00 can only be a year, not a day,
this ambiguity occurs only when the affected number is the range 01 to 31.

In date formats where the year is represented as a two-digit number, dates in the range 1-JAN-2001
to 31-DEC-2031 are ambiguous. For example,03-JUN-04 could be 3-JUN-2004 or 4-JUN-2003.
Therefore, tests that use the date filter on dates in the affected formats might fail to match their
benchmarks when these dates occur in the result.

Using the default date filtering where the year is not assumed first, the affected date formats are those
in which the year comes first. For example, the date 98-JUN-02 is filtered into yy-mmm-dd, but 01-
JUN-02 is filtered into dd-mmm-yy. However, formats where the year comes last are not affected. For
example, both 02-JUN-98 and 02-JUN-01 are filtered into dd-mmm-yy.

The affected date formats, with their allowed punctuation characters, are the following:

yy-mm-dd — yy.mm.dd — yy/mm/dd
yy-mmm-dd — yy.mmm.dd — yy mmm dd
year-month-day — year.month.day — year month day

The alternative punctuation characters can be used in either or both positions, such as yy-mm/dd.

The year occurs first if you use the DTM$DATE_FILTER_FIRST variable defined to the value
“YEAR,” as follows:

DTM> CREATE VARIABLE /LOGICAL DTM$DATE_FILTER_FIRST "YEAR"
DTM> MODIFY TEST MAIL /VARIABLE=DTM$DATE_FILTER_FIRST

The only value allowed with this variable is “YEAR.” If the variable is not defined or the value “YEAR”
was not specified, then ambiguities are resolved so that the day or month occurs first.

82

Chapter 6. Tailoring Your Test System

6.3.4.7. DTM$DATE_MASK_MIN_YEAR Logical Variable
You can use the DTM$DATE_MASK_MIN_YEAR variable to define the first year in the range when
masking dates in test results. The default year is 1858.

The following example shows how to use the DTM$DATE_MASK_MIN_YEAR variable to define the
year 1998 as the first year in a mask range:

DTM> CREATE VARIABLE /LOGICAL DTM$DATE_MASK_MIN_YEAR "1998" -
_DTM> "FIRST YEAR IN MASK RANGE"
DTM> MODIFY TEST MAIL /VARIABLE=DTM$DATE_MASK_MIN_YEAR "1998" -
_DTM> "NEW MASK RANGE START DATE"

6.3.4.8. DTM$DATE_MASK_MAX_YEAR Logical Variable
You can use the DTM$DATE_MASK_MAX_YEAR variable to define the last year in a mask range
when masking dates in test results. The default year is 2500.

The following example shows how to use the DTM$DATE_MASK_MAX_YEAR variable to define
1998 as the last date in a mask range:

DTM> CREATE VARIABLE /LOGICAL DTM$DATE_MASK_MAX_YEAR "1998" -
_DTM> "LAST DATE IN MASK RANGE"
DTM>
MODIFY TEST MAIL /VARIABLE=DTM$DATE_MASK_MAX_YEAR "1998" -
_DTM> "NEW MASK RANGE END DATE"

6.3.4.9. DTM$IGNORE_PROLOGUE_ERRORS Logical Variable
If the status returned by the test prologue is Error or Severe Error, the test template is not executed. The
test status is set to Not Run.

If DTM$IGNORE_PROLOGUE_ERRORS logical is not defined or has the value zero, an error status
returned by the test prologue causes the test template to be skipped. If this logical has the value "1",
errors in the test prologue are ignored.

Note that Warning and Informational states do not prevent the test running. Also, collection prologue
errors and test and collection epilogue errors continue to be ignored.

6.3.4.10. DTM$RETAIN_RESULTS Logical Variable
When this logical is not defined or is set to a value of zero, the result file is purged. If the logical is
defined and set to a value of "1", the result file is not purged.

The option to retain the original result may be useful in cases where the reason for a failure is obscured
by filtering of the result file.

Note that all result files are still deleted if the test is successful.

6.3.4.11. DTM$TIME_FILTER_NO_SPACE Logical Variable
DTM$TIME_FILTER_NO_SPACE is used to provide control over the TIME filter.

If this logical is not defined or the value is zero, a space preceding a single digit hour is absorbed by the
filter. If the logical is defined with the value "1", a space preceding a single digit hour is not absorbed.

83

Chapter 6. Tailoring Your Test System

This logical can be used in situations where no space is added before a time value when the hour is a
single digit. It allows the full range of hours to be filtered to the same string. For example, the following
strings are filtered differently by default, but in the same way if DTM$TIME_FILTER_NO_SPACE is
defined as "1":

 Transaction complete at 4.34
 Transaction complete at 11.47

6.4. Using Filters
VSI Digital Test Manager enables you to filter data that varies in test results from one test run to the
next. VSI Digital Test Manager also enables you to filter data during the recording of a test to produce a
filtered benchmark file.

VSI Digital Test Manager filters operate by changing specified data types (like timestamps) to ASCII
characters of a standard format. For example, an OpenVMS time stamp of 13:20:23.0002 can be
changed to hh:mm:ss.xxxx. To be recognized by VSI Digital Test Manager, filter patterns must appear
contiguously in the file you want to filter.

The following commands provide ways to specify filtering:

● CREATE TEST_DESCRIPTION/FILTER=keyword MODIFY TEST_DESCRIPTION/
FILTER=keyword

Using the CREATE TEST_DESCRIPTION or MODIFY TEST_DESCRIPTION command with
the /FILTER qualifier, the specified filters apply only to the test being created (see Section 6.4.1,
"Associating and Disabling Test Filters"). When a test is run in a collection, the filters associated with
it apply to the result file.

● RECORD testname/FILTERS

Using the RECORD command with the /FILTERS qualifier when the test is recorded causes VSI
Digital Test Manager to apply the filters associated with the test description to the benchmark file (if
a benchmark file is produced).

● FILTER file-specification/qualifier

Using the FILTER command, the specified filters apply to the specified file, which can be any
OpenVMS file and does not necessarily need to be applied to VSI Digital Test Manager files (see
Section 6.4.2, "Applying File Filters").

Test result files are filtered when the test is run in a collection. The filtering is performed after the test
epilogue file has run. Table 6.3, "Keywords Used with the /FILTER Qualifier" lists the keywords that you
can specify as arguments to the /FILTER qualifier.

Table 6.3. Keywords Used with the /FILTER Qualifier

Keyword Description

ALL Specifies that all filters be used.
DATE Where the date form is abbreviated, the date filter replaces date stamps by

substituting a d for each displayed number of the day of the month, an m
for each displayed letter of the month, and a y for each displayed number of
the year. Where the date form is spelled out, the month name is replaced by
month, the numeric day is replaced by day, and the year is replaced by year.

84

Chapter 6. Tailoring Your Test System

Keyword Description
The following list shows examples of the date filtering functions. Note that
this list is not all-inclusive.

17-OCT-1998 with dd-mmm-yyyy
17 OCT 98 with dd mmm yy
98.OCT.17 with yy.mmm.dd
10/17/98 with mm/dd/yy
1998/10/17 with yyyy/mm/dd
October 17, 1998 with month day, year
Oct. 17, 1998 with month day, year
17.October.1998 with day.month.year

TIME Replaces time stamps with the following forms:

15:37:53.22 with hh:mm:ss.xxxx
15:37:53 with hh:mm:ss
15:37 with hh:mm
3:37 PM with hh:mm xm
15H37m with hhHmmm
15H37' with hhHmm'
15.37 h with hh.mm h
15 h 37"53 s with hh h mm"ss s
15 h 37 min with hh h mm min
kl 15.37 with kl hh.mm
h 15.37 with h hh.mm

FILE_NAMES Replaces the file names with FILENAME.EXT.
DIRECTORIES Replaces the directory specification field in the file specification with DISK:

[DIRECTORY].
TRACE_BACK Replaces 32-bit memory addresses with xxxxxxxx and 64-bit memory

addresses with xxxxxxxx xxxxxxxx.
VERSION Replaces file versions with VERSION.
USER_FILTER Specifies a user defined TPU filter file.
NOUSER_FILTER Removes any user filter that had been specified earlier with /USER_FILTER

qualifier.

If you specify more than one keyword, separate the keywords with commas and enclose the list in
parentheses. If you specify only one keyword, omit the parentheses.

You can define three logical variables to control how VSI Digital Test Manager filters dates, as described
in Table 6.4, " VSI Digital Test Manager Logical Variables Used to Filter Dates".

Table 6.4. VSI Digital Test Manager Logical Variables Used to Filter Dates

Logical Variable Description

DTM$DATE_FILTER_MIN_YEAR Used to specify the first year in a filter range. The default
year is 1858.

DTM$DATE_FILTER_MAX_YEAR Used to specify the last year in a filter range. The default year
is 2500.

DTM$DATE_FILTER_STRING Used to specify a string of your choice that replaces all
filtered dates.

85

Chapter 6. Tailoring Your Test System

DECwindows tests cannot have filters associated with them. DECwindows tests use the Mask Editor
to create areas that cause VSI Digital Test Manager to ignore image data in screen comparisons.
See Chapter 2, "Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment" for
information on filtering DECwindows result and benchmark files.

Note

Use caution with filters because the original, unfiltered result file is deleted after the filtering occurs,
leaving only the filtered file. Using filters on interactive tests that contain escape sequences can delete
information that is essential to the test.

6.4.1. Associating and Disabling Test Filters
Use the CREATE TEST_DESCRIPTION or MODIFY TEST_DESCRIPTION command with
the /FILTER qualifier to associate filters with a specific test description.

When the test is executed, VSI Digital Test Manager filters the result file (after the epilogue file is run).

Use the MODIFY TEST_DESCRIPTION command with the /NOFILTER qualifier to disable any
specified filter from a specific test. The following example shows how to remove the DATE filter from
the MAIL_TEST test description:

DTM> MODIFY TEST_DESCRIPTION MAIL_TEST/NOFILTER=DATE
_Remark: Disabling the DATE filter

Note

If you modify filters for a test description, you must subsequently use the RECREATE command to re-
create any collections containing the test.

The SHOW TEST_DESCRIPTION with the /FULL or /FILTER qualifier lists the filters associated with
a specific test description.

6.4.2. Applying File Filters
To apply any or all of the filters to a file (inside or outside of a VSI Digital Test Manager library), use
the FILTER command. The following command filters the time and date from the benchmark file of the
MAIL_TEST test:

DTM> FILTER MAIL_TEST.BMK/TIME/DATE "Filter out time and date stamps"

6.4.3. Using Masks
For interactive terminal test results and benchmark screens comparison, VSI Digital Test Manager
enables you to mask, or ignore, particular data that varies from one test run to the next. Masking is
performed in the comparison phase of a collection run when interactive test screens are being compared.

The method VSI Digital Test Manager uses to mask files is similar to the method it uses to filter data
from files. However, unlike filtering, masking does not alter the contents of result and benchmark files
in any way. You can use the following commands to specify how interactive screens are to be masked
during the comparison phase of a test.

● CREATE COLLECTION /MASK=keyword

86

Chapter 6. Tailoring Your Test System

● COMPARE /MASK=keyword

When you specify the /MASK qualifier with the CREATE COLLECTION or COMPARE commands,
VSI Digital Test Manager applies the specified mask to all comparisons of interactive test screens for a
named collection. Table 6.5, "Keywords Used with the /MASK Qualifier"lists the keywords that you can
specify as arguments to the /MASK qualifier.

Table 6.5. Keywords Used with the /MASK Qualifier

ALL Specifies that all the masks in this table be used.
DATE The date mask ignores comparison of date stamps. The following list shows

examples of the date patterns that you can mask. Note that this list is not all-
inclusive.

dd-mmm-yyyy (example: 17-OCT-1998)
dd mmm yy (example: 17 OCT 98)
yy.mmm.dd (example: 98.OCT.17)
mm/dd/yy (example: 10/17/98)
yyyy/mm/dd (example: 1998/10/17)
month day, year (example: October 17, 1998)
month day, year (example: Oct. 17, 1998)
day.month.year (example: 17.October.1998)
year-month-day (example: 98-October-17)

TIME Ignores time stamps with the following forms:

hh:mm:ss.xxxx (example: 15:37:53.22)
hh:mm:ss (example: 15:37:53)
hh:mm (example: 15:37)
hh:mm xm (example: 3:37 PM)
hhHmmm (example: 15H37m)
hhHmm' (example: 15H37')
hh.mm h (example: 15.37 h)
hh h mm"ss s (example: 15 h 37"53 s)
hh h mm min (example: 15 h 37 min)
kl hh.mm (example: kl 15.37)
h hh.mm (example: h 15.37)

FILE_NAMES Ignores file names of the form FILENAME.EXT.
VERSION Ignores file versions on file names.
DIRECTORIES Ignores directory specification fields of the form DISK:[DIRECTORY].

If you specify more than one keyword, separate the keywords with commas and enclose the list in
parentheses. If you specify only one keyword, omit the parentheses. Masking is performed in the order
of the keywords shown above.

You can also define two logical variables that enable you to control how VSI Digital Test Manager masks
dates, as described in Table 6.6, " VSI Digital Test Manager Logical Variables Used to Mask Dates".

Table 6.6. VSI Digital Test Manager Logical Variables Used to Mask Dates

Logical variable Description

DTM$DATE_MASK_MIN_YEAR Used to specify the first year in the masking range. The
default is 1858.

87

Chapter 6. Tailoring Your Test System

Logical variable Description

DTM$DATE_MASK_MAX_YEAR Used to specify the last year in the masking range. The
default is 2500.

6.4.4. User Defined Filters
The user defined filter facility provides a mechanism whereby filters written as DEC Text Processing
Utility (DECTPU) programs are automatically executed when tests are run. These filters are referred to
as user filters.

This enables users to solve easily many filtering problems, often with a single-line program, while
allowing full access to the facilities of DECTPU to solve more complex cases.

To implement a new filter, a file containing the required DECTPU commands is created. There are a
number of predefined patterns and a global replace procedure provided which can be used to build the
commands. For example, the following command replaces device names that precede a directory with
the string "DEVICE":

global_replace(identifier + ':[' , 'DEVICE:[')
Usage:
DTM> FILTER/USER_FILTER=DEVICE.TPU TEST.DAT

Alternatively, filters can be developed using the TPU pattern style feature of Language-Sensitive Editor
for OpenVMS.

To associate a user filter with a test, a logical variable starting with the characters "DTM$UF_" is
created. The value of the variable is the file specification of the file containing the DECTPU commands.
For example:

DTM> CREATE VARIABLE /LOGICAL DTM$UF_DEVICE
"DISK1:[TEST.FILTERS]DEVICE.TPU"

The variable is then associated with the test in the usual way, for example:

DTM> MODIFY TEST /VARIABLE=DTM$UF_DEVICE

When the test is run, as part of a collection, the filter is applied.

6.4.4.1. Command Qualifier

The qualifier /USER_FILTER for FILTER command are described below:

FILTER
 /USER_FILTER
 /USER_FILTER=filename
 /USER_FILTER=(filename[,...])
 /NOUSER_FILTER (D)

The specified files are executed by DEC Text Processing Utility (DECTPU). If more than one file is
specified they are executed in the order given. The user filters are applied before any built-in filters that
are also specified on the command line.

User filter files can be located either in OpenVMS directories or in Code Management System for
OpenVMS libraries. Files may be specified using logical names that include search lists. Wildcards

88

Chapter 6. Tailoring Your Test System

cannot be used. For files in CMS libraries, the most recent generation on the main line of descent is
used.

Before the first file is executed, the file to be filtered is read into the DECTPU buffer "filter_buffer".
Next, the file specified by the logical name DTM$UFDEFINES is executed. The system logical name
DTM$UFDEFINES references the file SYS$LIBRARY:DTM$UFDEFINES.TPU, which contains
definitions of a global replace procedure and patterns which can be used in building filters. This logical
can be redefined to point to a custom file.

Any errors in accessing the user filter files or in executing the DECTPU commands are reported.
However, they do not cause the FILTER command to fail, and any remaining user and built-in filters are
applied.

6.4.4.2. Variables for User Filters
Variables with names beginning with the string "DTM$UF_" may now be defined. These variables must
be logical variables but can be global or local.

When tests are run that have associated variables whose names begin with the string "DTM$UF_", DTM
applies the user filters contained in the files referenced by the value of those variables. Only a single file
may be referenced by each variable.

The specified files are executed by DEC Text Processing Utility (DECTPU). If more than one user filter
variable is associated with a test, the files are executed in the lexicographic order of the variable names.
The user filters are applied before any built-in filters that are also specified for the test.

User filter files can be located either in OpenVMS directories or in CMS libraries. Files may be specified
using logical names including logical names that specify search lists. Wildcards cannot be used. For files
in CMS libraries, the most recent generation on the main line of descent is used.

Before the first file is executed the file to be filtered is read into the DECTPU buffer "filter_buffer".
Next, the file specified by the logical name DTM$UFDEFINES is executed. The system logical name
DTM$UFDEFINES references the file SYS$LIBRARY:DTM$UFDEFINES.TPU, which contains
definitions of a global replace procedure and patterns which can be used in building filters. This logical
can be redefined to point to a custom file.

Any errors in accessing the user filter files or in executing the DECTPU commands are reported.
However, they do not cause the filter operation to fail, and any remaining user and built-in filters are
applied.

After all the user filters have been applied, the file being filtered is written out. If any built-in filters are
also specified, they are applied to the newly created file, resulting in a second new version.

To disable a user filter that is defined with a global variable for a particular test, define the value of the
variable for the test as a string containing only spaces. For example:

DTM> MODIFY TEST CHECK_DEVICES /VARIABLE=DTM$UF_DEVICE=" "

6.4.4.3. Filtering Benchmarks on Recording Interactive Terminal
Tests
When using the RECORD/FILTER command to filter the benchmark produced by recording an
interactive terminal test, user filters associated with the test are applied, provided that the /VARIABLES
qualifier is also used. For example:

DTM> RECORD /FILTER /VARIABLES TERMINAL_TEST1

89

Chapter 6. Tailoring Your Test System

6.4.4.4. Using the Global Replace Procedure

The supplied file SYS$LIBRARY:DTM$UFDEFINES.TPU contains a global replace procedure and
some predefined patterns that can be used to build filters. The specification of procedure global_replace
is as follows:

PROCEDURE global_replace (pattern_to_replace,
 replacement_string;
 search_mode,
 evaluate_replacement,
 convert_linefeeds)DESCRIPTION:
 Replace all occurrences of a given pattern with a
 given string in the buffer "filter_buffer".

Table 6.7. Parameters Used with the global_replace Procedure

pattern_to_replace The pattern to be replaced.
replacement_string The string to be substituted.
search_mode (optional) The mode of pattern matching to be used when searching for the

pattern. The following lists the mode of pattern:

NO_EXACT (default)
EXACT
TPU$K_SEARCH_CASE
TPU$K_SEARCH_DIACRITICAL

evaluate_replacement
(optional)

Specifies whether the replacement string is to be evaluated.

OFF, 0 (default)
ON, 1

If specified as ON or 1, the replacement string is evaluated before use.
This is needed if the replacement string contains any partial pattern
variables. In this case, any string literals in the replacement string must
be specified as nested strings and partial pattern variables converted to
strings using STR.

convert_linefeeds (optional) Specifies whether any linefeed characters in the replacement string are
to be converted into line breaks.

OFF, 0 (default)
ON, 1

6.4.4.5. Examples of User Filters

Example 1: Simple Use of procedure global_replace

The following example assumes that the disks are named UDISK{n} where {n} is a number, for
example UDISK1, UDISK13. This filter replaces such disk names with the string "DISK_NAME":

global_replace ('UDISK' + number, 'DISK_NAME')

The pattern to replace is built from a string literal ('UDISK'), the concatenation operator (+) and the
pattern "number" included in the supplied definitions file. The pattern "number" matches a sequence of
digits.

90

Chapter 6. Tailoring Your Test System

The replacement string is the string literal 'DISK_NAME'.

Example 2: Using the Null Pattern

This example uses the supplied "null" pattern with the DECTPU alternation operator to include an
optional element in a pattern.

In the previous example, some of the disk names do not include the leading "U", for example DISK7.
The following filter replaces disk names with or without the leading "U":

global_replace (("U"|null) + "DISK" + number, "DISK_NAME")

Example 3: Using Pattern Variables

The following example filters dates in the form DD-MMM-YYYY, for example 11-OCT-1999. Because
it only filters this one form of date, it is quicker than the built-in date filter which filters many different
date formats. Note that the filter described here is not as robust as the built-in filter. For example, it treats

 37-NOV-0999 as a valid date.
 day := any(" 123") + digit;
 month := "JAN" | "FEB" | "MAR" | "APR" |
 "MAY" | "JUN" | "JUL" | "AUG" |
 "SEP" | "OCT" | "NOV" | "DEC";
 year := any(digits,4);
 date := day + "-" + month + "-" + year;
 global_replace(date, "dd-mmm-yyyy");

This filter defines the pattern variables "day", "month" and "year" which are then used to define the
pattern variable "date" used in the call to global_replace.

The "day" pattern uses the DECTPU function "any" to match either a space or one of the characters "1",
"2" or "3", followed by a digit.

The "month" pattern uses the DECTPU pattern alternation operator "|" to specify a list of alternative
string literals.

The "year" pattern uses the DECTPU function "any" with the supplied pattern "digits". The "4"
parameter indicates that exactly 4 digits are to be matched.

The "date" pattern concatenates these patterns and linking punctuation.

Example 4: Removing Blank Lines

This filter removes blank lines using the DECTPU keywords LINE_BEGIN and LINE_END.

global_replace(LINE_BEGIN + LINE_END, '');

The LINE_END keyword absorbs the new line.

The above filter only replaces lines containing no characters. The following filter also replaces lines
containing only spaces and tab characters:

global_replace(LINE_BEGIN + (white_space|null) + LINE_END, '');

Example 5: Using Partial Pattern Variables to Retain Context

The following filter replaces the month part of a date with the string "mmm". For example, the string
"14-OCT-1999" will be replaced by the string "14-mmm-1999":

day := any(" 123") + digit;

91

Chapter 6. Tailoring Your Test System

 month := "JAN" | "FEB" | "MAR" | "APR" |
 "MAY" | "JUN" | "JUL" | "AUG" |
 "SEP" | "OCT" | "NOV" | "DEC";
 year := any(digits,4);
 date := (day + "-"@day_part) + month +
 ("-" + year@year_part);
global_replace(date, 'str(day_part) + "mmm" + str(year_part)',,ON);

The day part of the date and the "-" character are assigned to the partial pattern variable day_part and
the year part of the date and preceding "-" assigned to year_part. These partial pattern variables are then
included in the replacement string.

When partial pattern variable are used in the replacement string they must be evaluated for each
replacement. To do this, set the parameter evaluate_replacement to ON, as shown above.

When the replacement string is to be evaluated, string literals must be nested inside further quotes. This
is most easily done by using single quotes for the outer string and double quotes for any nested string
literals,or vice-versa. Also, any partial pattern variables must be converted to strings using the DECTPU
procedure STR.

Note that including LINE_END in the definition of a partial pattern variable does not have the effect of
retaining the line break. See the following example for a resolution of this problem.

Example 6: Using LINE_END for Context

If the search pattern contains LINE_END, the matched line break is removed, causing the next line to be
appended to the current line. To use LINE_END to only provide context for the search, the line break
must be reinserted. This is done using the parameter convert_linefeeds.

If the convert_linefeeds parameter is specified as ON, any linefeed characters appearing in the
replacement string are removed and the built-in DECTPU procedure SPLIT_LINE is called at the point
of the linefeed character.

The following filter replaces any numbers that are the last characters on a line with the string "x":

global_replace (number+LINE_END, "x"+lf,,,ON)

The "lf" pattern is defined as a linefeed character in the supplied definitions file.

If a LINE_END is included in a partial pattern variable, the line break can be retained by specifying the
second optional parameter to the DECTPU STR procedure as a linefeed character, for example:

global_replace (number+(LINE_END@sep),'"x"+STR(sep,lf)',,ON,ON)

The second parameter to STR specifies the string that line breaks occurring in the first parameter should
be converted to. Line breaks are retained by specifying the linefeed character and setting the parameter
convert_linefeeds to ON.

Example 7: Using UNANCHOR to Replace Sections

The DECTPU keyword UNANCHOR can be used to replace sections of text delimited by specified
strings. The following replaces all text between the strings "/*" and "*/" with the string "/* Deleted */".
The text may run across line boundaries:

global_replace ("/*" + UNANCHOR + "*/", "/* Deleted */")

Note that while a similar effect is possible using the COMPARE/SENTINEL command, the filter can be
applied to individual tests, whereas the /SENTINEL qualifier applies only to collections.

92

Chapter 6. Tailoring Your Test System

Example 8: Using Other DECTPU Commands

The global_replace procedure can be used for many filtering tasks. However any DECTPU commands
can be used to build filters. The file being filtered is read into the buffer "filter_buffer" before the user
filters are applied and written out afterwards.

The following filter uses the DECTPU EDIT procedure to convert all characters to upper case:

EDIT(filter_buffer, UPPER, OFF)

Note that while a similar effect is possible using the COMPARE/IGNORE=CASE command, the filter
can be applied to individual tests, whereas the IGNORE qualifier applies only to collections.

The following filter searches for numbers and replaces them only if they are in a specified range:

POSITION (BEGINNING_OF (filter_buffer));
 LOOP
 found_range := SEARCH_QUIETLY (number, FORWARD);
 EXITIF found_range = 0;
 POSITION (END_OF(found_range));
 MOVE_HORIZONTAL(1);
 value := INT(STR(found_range));
 IF (value>350) AND (value<570)
 THEN
 COPY_TEXT ("XXX");
 ERASE (found_range);
 ENDIF;
 ENDLOOP;

The initial POSITION is required to ensure that the whole of the filter_buffer is processed, because the
editing point is undefined at the start of each filter. Then, as each number is processed, the editing point
is moved to the end of the number. The MOVE_HORIZONTAL procedure call is necessary because the
previous POSITION leaves the editing point at the last character of the number, which would result in an
immediate match on the next call to SEARCH_QUIETLY.

6.5. Defining Keypad Keys
VSI Digital Test Manager supplies you with four, default operations keypads for the terminal
environment, depending on the subsystem that you are using. Keypad definitions are not recognized by
the DECwindows interface. This section describes the VSI Digital Test Manager system default keypad.
The other keypads are described in Chapter 5, "Reviewing Test Results".

The keypad is available when you invoke VSI Digital Test Manager. The GOLD key (PF1), HELP
key (PF2), and ENTER (RETURN) keys are already defined; the rest of the keys on the keypad are
undefined. You can define a key to execute up to two VSI Digital Test Manager commands by specifying
one command to execute when you press the defined key, and specifying another command to execute
when you press the GOLD key and then the defined key. You can create a custom keypad by defining
keys to execute frequently used commands, or command strings that are very long.

When you create key definitions with the DEFINE/KEY command, these definitions are in effect
only for the current session. The next time you invoke VSI Digital Test Manager, only the default key
definitions will be in effect. To save key definitions to use in every VSI Digital Test Manager session you
initiate, include the key definitions in a VSI Digital Test Manager initialization file. This file is executed
whenever you invoke VSI Digital Test Manager. For more information on initialization files, see Section
6.6.2, "Creating a VSI Digital Test Manager Initialization Command File".

93

Chapter 6. Tailoring Your Test System

If you have key definitions that you want to save, but do not necessarily want to use every time you
invoke VSI Digital Test Manager, store them in a command file.

Use the DEFINE/KEY command to define the keypad keys to execute VSI Digital Test Manager
commands in a single keystroke. The command you associate with a keypad key must be appropriate for
the prompt, DTM> or DTM_REVIEW>, at which it will be entered. You cannot define keypad keys for
the recording key sequences.

The following example defines KP5 to set the default VSI Digital Test Manager library:

DTM> DEFINE/KEY KP5 "SET LIBRARY DUA0:[USER01.LIB_A]"/TERMINATE
DTM>

Then, when you press KP5, the following text is displayed:

DTM> SET LIBRARY DUA0:[USER01.LIB_A]
%DTM-S-LIBIS, VSI Digital Test Manager library is DUA0:[USER01.LIB_A]
DTM>

GOLD command keys are the same as regular command keys except you must press the GOLD key
(PF1) before pressing the command key. This enables you to have two commands associated with one
keypad key. You can define the GOLD keypad keys to execute VSI Digital Test Manager commands in
two keystrokes by using the DEFINE/KEY command with the /SET_STATE=GOLD_DTM qualifier.
The following example defines GOLD KP5 to set the default VSI Digital Test Manager library to a
different library from the one in the previous example:

DTM> DEFINE/KEY KP5 /IF_STATE=GOLD_DTM/TERM -
_DTM> "SET LIBRARY DUA0:[USER01.LIB_B]"/TERMINATE
DTM>

Then, when you press GOLD KP5, the following text is displayed:

DTM> SET LIBRARY DUA0:[USER01.LIB_B]
%DTM-S-LIBIS, VSI Digital Test Manager library is DUA0:[USER01.LIB_B]
DTM>

6.6. Using Command Files
A VSI Digital Test Manager command file contains one or more commands. The command file has a
file type of .COM and is executed by using the @ character. The format for executing a command file is
as follows:

DTM> @file-specification

When you invoke a command file, its commands execute in sequence. You can nest command files
within command files. When a command file encounters a nested command file, VSI Digital Test
Manager stops processing the original command file and begins executing the newly encountered
command file. When VSI Digital Test Manager completes the nested command file, it resumes the
processing of the original command file.

Note

VSI Digital Test Manager does not check for recursive command files. If you have a command file that
invokes itself, or invokes another command file that invokes the original command file, you will create an
infinite loop.

94

Chapter 6. Tailoring Your Test System

An EXIT command in a command file causes VSI Digital Test Manager to terminate the subsystem
that is running. It does not necessarily terminate execution of the command file. For example, if the
command file issues the EXIT command from the Review subsystem, control returns to the VSI Digital
Test Manager level. If an EXIT command terminates the session, execution of the command file
terminates.

If the command file causes an error or warning to occur, execution of the command file stops and no
subsequent commands are executed.

6.6.1. Creating and Invoking a Command File
You create command files with a text editor and invoke them from the VSI Digital Test Manager
subsystem level, from the Review subsystem level, or from within another command file. If you include
only a file name with the @file-specification command, VSI Digital Test Manager assumes a file type
of .COM.

If you specify a command but omit a required parameter, VSI Digital Test Manager prompts you for the
missing parameter.

When you invoke VSI Digital Test Manager from a DCL command procedure, be sure to supply all
required command parameters. If you omit a required parameter for which you would be prompted if
you entered the command interactively, DCL reads the next line in the command file as the missing
parameter rather than as a separate command. The second command is lost.

6.6.2. Creating a VSI Digital Test Manager Initialization
Command File
Use the DCLDEFINE command to define an initialization command file. VSI Digital Test Manager
provides the OpenVMS logical name DTM$INIT that you define to identify a command file that you
want VSI Digital Test Manager to execute each time you invoke it. The command file specified by DTM
$INIT is not executed when you invoke VSI Digital Test Manager using the DTM/DECWINDOWS
command.

The following example shows how to use the DEFINE command to associate an initialization command
file with the OpenVMS logical name DTM$INIT.

$ DEFINE DTM$INIT SAMPLE_STARTUP.COM

A typical initialization command file contains the commands you enter every time you invoke VSI
Digital Test Manager. For example, it can contain the command to select a library and the commands to
define keys on the keypad. Example 6.9, "Sample Initialization Command File" sets the VSI Digital Test
Manager library as [USER01.DTMLIB] and issues the DEFINE command to define several keypad keys
on the VSI Digital Test Manager keypad.

Example 6.9. Sample Initialization Command File

!Initialization file to set library and define keys
!
!Establish the library! SET LIBRARY DUA0:[USER01.DTMLIB]
!
!Define keypad keys!
 DEFINE/KEY KP3/IF_STATE=DTM "SHOW COLLECTION */FULL"/TERMINATE
 DEFINE/KEY PF4/IF_STATE=GOLD_DTM "SET LIBRARY DUA0:[USER01.LIB_A]"/
TERMINATE

95

Chapter 6. Tailoring Your Test System

 DEFINE/KEY KP1/IF_STATE=REVIEW "NEXT/SUCCESSFUL"/TERMINATE
 DEFINE/KEY KP1/IF_STATE=GOLD_REVIEW "BACK/SUCCESSFUL"/TERMINATE

You can suppress the initialization command file execution by invoking VSI Digital Test Manager with
the /NOINIT qualifier, as shown in the following example:

$ DTM/NOINIT

6.7. Spawning or Attaching to Another
Process
You can use the SPAWN or ATTACH commands at both the VSI Digital Test Manager prompt
(DTM>) and the Review prompt (DTM_REVIEW>). These commands enable you to create one or more
subprocesses of your parent process, and to move between these processes.

Note

The SPAWN and ATTACH commands have no corresponding actions in a DECwindows environment.

The SPAWN command enables you to create (spawn) a subprocess and to attach your terminal or
workstation to the subprocess. You can create a subprocess to issue DCL commands, read an electronic
mail message, or create another VSI Digital Test Manager session. The ATTACH command enables you
to switch to other subprocesses.

If you specify a DCL command as a parameter to the SPAWN command, the DCL command is
executed and control is returned immediately to the VSI Digital Test Manager session. If you do not
include a DCL command, the DCL prompt displays, and you can then issue DCL commands. As each
command terminates, the DCL prompt is displayed. You can return to the parent process by logging out
of the subprocess or by issuing the ATTACH command.

6.8. Gathering Test Coverage Data
VSI Digital Test Manager can be used in conjunction with the Performance and Coverage Analyzer
to gather data on how thoroughly your test system exercises your application. This data can aid in
identifying those pieces that are not being tested.

For more information on using VSI Digital Test Manager with the Performance and Coverage Analyzer,
see Using VSI DECset for OpenVMS Systems.

96

Chapter 7. Maintaining a VSI
Digital Test Manager Library
This chapter describes methods and commands for maintaining a VSI Digital Test Manager library. It
provides information on the following topics:

● Correcting an invalid library

● Storing files outside a library

● How to set up security features for a library and its files

7.1. Correcting an Invalid VSI Digital Test
Manager Library
If an abrupt process termination or system failure occurs while a library-altering command is executing,
the library is considered invalid. During the processing of a command, if VSI Digital Test Manager
detects that a library is invalid, it stops the processing of the command and issues an error message
stating that the library needs to be recovered.

To recover a library, use the VERIFY/RECOVER command. If you want to check if a library is valid,
use the VERIFY command without the /RECOVER qualifier.

When you enter the VERIFY command, VSI Digital Test Manager performs an evaluation on the
current library to determine whether the library and its files have a valid structure.

When you enter the VERIFY/RECOVER command, VSI Digital Test Manager attempts to repair any
damage to the library and the files it detects. If you specify the VERIFY/RECOVER command and VSI
Digital Test Manager fails to return the library to a valid state, you must restore it from backup.

If VSI Digital Test Manager encounters subdirectories that are not associated with a current collection
while recovering the library, you are prompted for confirmation of deletion of these subdirectories. Do
not create subdirectories in any library.

Note

Do not attempt to recover a library while the library is in use. It could have adverse effects on other users
of the library.

If a collection run is terminated other than with the STOP command or by pressing Ctrl/C, that
collection is locked and you are not able to review it. In this case, the VERIFY/RECOVER command
unlocks the library and marks the tests that did not run.

You can now compare and review the collection. While reviewing the collection, you can create a group
containing the tests that did not run. After leaving the Review subsystem, you can execute that group of
tests.

The VERIFY/REPAIR command attempts to reclaim loose blocks in the current library and deletes
illegal files found in the library.

97

Chapter 7. Maintaining a VSI Digital Test Manager Library

7.2. Storing Files Outside a VSI Digital Test
Manager Library
You must store template files, test prologue and epilogue files, and collection prologue and epilogue
files outside the VSI Digital Test Manager library, in OpenVMS directories, Code Management System
(CMS) libraries, or both. You can store benchmark files inside or outside a VSI Digital Test Manager
library.

7.2.1. Setting Benchmark and Template Directories
Use the SET BENCHMARK_DIRECTORY and SET TEMPLATE_DIRECTORY commands to
establish default benchmark and template directories for the current VSI Digital Test Manager library.
VSI Digital Test Manager processes files faster when you use default benchmark and template directories
rather than specifying a directory with each file name.

If you do not specify default benchmark and template directories, VSI Digital Test Manager uses your
current default directory (SYS$DISK:[]) for template files and the VSI Digital Test Manager library
(DTM$LIB) for benchmark files.

In a DECwindows environment, default benchmark and template directories are specified on the Create
Library or Modify Library dialog box. The Create Library dialog box is shown in Chapter 2, "Using VSI
Digital Test Manager for OpenVMS in a DECwindows Environment".

After you create or modify a test description, you can override the default directories for the current
VSI Digital Test Manager library (if defaults exist) by using the CREATE COLLECTION command
with the /BENCHMARK_DIRECTORY and /TEMPLATE_DIRECTORY qualifiers. The specified
directories are used for the benchmark and template files for the collection being created.

To remove a default benchmark or template directory without replacing it, enter the SET
NOBENCHMARK_DIRECTORY or the SET NOTEMPLATE_DIRECTORY command. These
commands return the benchmark directory to DTM$LIB and the template directory to SYS$DISK:[].

7.2.2. Storing Files in CMS Libraries
VSI Digital Test Manager enables you to store your benchmark and template files in one or more CMS
libraries. To do this, you must create the CMS libraries, then use their directory specifications in VSI
Digital Test Manager commands, as follows:

● Create a directory and make it a CMS library. This directory cannot be a subdirectory of the VSI
Digital Test Manager library. See the VSI DECset for OpenVMS Code Management System Reference
Manual for information about setting up a CMS library.

● Include the directory specification for the CMS library in the appropriate VSI Digital Test Manager
command (any command where you can specify a directory specification for a file).

Table 7.1, "VSI Digital Test Manager Action in CMS Libraries" describes VSI Digital Test Manager
action in CMS libraries.

Table 7.1. VSI Digital Test Manager Action in CMS Libraries

User Action VSI Digital Test Manager Action in CMS

Specify benchmark and
template files.

VSI Digital Test Manager always evaluates directory specifications to
determine whether the directory specifications refer to CMS libraries. If

98

Chapter 7. Maintaining a VSI Digital Test Manager Library

User Action VSI Digital Test Manager Action in CMS
a directory name is a CMS library, VSI Digital Test Manager issues the
appropriate CMS commands to access the files.
VSI Digital Test Manager translates the file name into a CMS element name
and accesses the appropriate element. If a CMS class is also specified with
the /CLASS qualifier with the CREATE COLLECTION command, VSI
Digital Test Manager accesses the indicated generation of the element. If you
specify a class for TEMPLATE files, then for every specified test, the test's
template file (if stored in a CMS library) must be in the specified class.

Execute a collection. VSI Digital Test Manager fetches a copy of the template element from the
CMS library and deletes the copy after using it.

Compare a collection. VSI Digital Test Manager compares the result file with the specified
benchmark element in the CMS library. If a CMS class is specified for the
benchmark element, VSI Digital Test Manager compares the result file with
the appropriate generation of the benchmark element.
VSI Digital Test Manager retrieves and reserves the specified benchmark
element from the CMS library. VSI Digital Test Manager then replaces the
reserved benchmark element with the result file from the current test run.

Update an existing
benchmark file from the
Review subsystem.

If you specify a CMS class for the benchmark file, VSI Digital Test Manager
places the result file in the appropriate benchmark generation. If you update a
benchmark generation other than the latest, a variant line D is created. If the
variant line D already exists, the update fails and VSI Digital Test Manager
unreserves the benchmark element.

Create a new benchmark
file.

VSI Digital Test Manager creates anew benchmark element in the CMS
library.

Print or display a
benchmark file.

VSI Digital Test Manager fetches a copy of the benchmark element from the
CMS library and deletes the benchmark file copy after printing or displaying
it.

Record an interactive
test whose template and
benchmark files are
stored in CMS libraries.

VSI Digital Test Manager creates new elements for new benchmark and
template files if the files do not already exist. If they do exist, VSI Digital
Test Manager replaces them with new benchmark and template files.

If the directory specification portion of the file specification identifies a CMS library, VSI Digital Test
Manager fetches a copy of the latest generation of the specified prologue or epilogue file from the CMS
library. You cannot specify CMS classes for prologue and epilogue files.

Note

VSI Digital Test Manager retrieves files from CMS libraries by fetching them to SYS$SCRATCH.
When using CMS libraries with VSI Digital Test Manager, SYS$SCRATCH must be defined to a valid
directory where the user has both read and write access.

7.3. Security Features
You can protect VSI Digital Test Manager files and libraries with two mechanisms: user identification
code (UIC)-based protection and access control list (ACL) protection. You protect the files and
libraries; VSI Digital Test Manager does not define protection for library directories or library files.

99

Chapter 7. Maintaining a VSI Digital Test Manager Library

UIC protection grants or denies access based on a user's UIC code. ACL protection grants or denies
access based on a list of users. With ACLs you can specify access for a set of users who are not in the
same UIC group.

The following procedure shows the steps OpenVMS performs in determining access to a library
directory or library file:

1. Evaluate the ACL (if present).

2. If no ACL is present, or the ACL does not prohibit access, evaluate the UIC.

3. Evaluate the privileges. If a user has GRPPRV, READALL, and SYSPRV privileges, or if a user has
BYPASS privileges, OpenVMS grants access, even if the ACL and UIC protections deny access.

7.3.1. Assigning UIC Protection
Every file has a user identification code protection associated with it. UIC protection is determined by
an owner UIC and a protection code. UIC protection controls access to directories and files. When you
attempt to gain access to a directory or file, the system checks for existing ACLs; it then checks the UIC
protection code.

See VSI OpenVMS DCL Dictionary for more information about UIC protection.

You can use the DCL command SET PROTECTION to specify a particular protection setting for the
library directory and for other VSI Digital Test Manager files. The following example sets the protection
to allow system, owner, and group access to a library, but deny world access to the library contained in
the [PROJ.TESTING] directory:

$ SET PROTECTION=(S:RWE,O:RWE,G:RWE,W) [PROJ]TESTING.DIR

The following example uses the SET PROTECTION command to set the protection for an individual file
within the library directory:

$ SET PROTECTION=(S:RWED,O:RWED,G:RW,W) [PROJ.TESTING]00DTM.CON

To use all VSI Digital Test Manager commands in a library, you must have the minimum access
privileges (shown in Table 7.2, "Privileges Required for VSI Digital Test Manager Library Users") defined
for your process.

Table 7.2. Privileges Required for VSI Digital Test Manager Library Users

Object Privilege

Library directory RW
Control file (00DTM.CON) RW
History file (00DTM.HIS) RW
All collection subdirectories (collection-name.DIR) RWD
All collection control files (collection-name.CON) in the
collection subdirectories

RWD

Generic command file (DTM$$TEST_RECORD.COM) used
to record collections

RD

Generic command file (DTM$$TEST_RUN.COM) used to
run collections

RD

100

Chapter 7. Maintaining a VSI Digital Test Manager Library

Object Privilege

All other files in the library directory RD
All other files in the collection subdirectories RD
VSI Digital Test Manager images (SYS
$SYSTEM:DTM.EXE, DTMSHR.EXE, and DTM
$XTRAP.EXE)

E

If you enable read-only access to a library directory or to the library control file, users cannot make
changes to the contents of the library, execute tests, review tests, or perform comparisons. If you do not
enable write access to the collection control files, users cannot review collections. Therefore, you should
enable group read and write access to these files.

When you create the library, enable read, write, and delete access to every file in the library for at least
one user. The three types of access are needed to execute the VERIFY command with the /RECOVER
qualifier.

Note

If you have SYSPRV privileges, file protection problems can occur when you issue a VSI Digital Test
Manager command that creates files in a directory or library owned by another user, because having
SYSPRV privileges changes the ownership of files created in a directory owned by another user.

You can restrict a person's access to library files by using a UIC protection or ACL. If you do not use
ACLs, all users of a particular VSI Digital Test Manager library must be in the same user group. If you
want to define more selective protection (where various individuals in the user group have differing
access), you can use ACLs for the library directory and its files and subdirectories.

The following sections summarize the procedures you can use to define the access to a VSI Digital Test
Manager library. For more information, see the VSI OpenVMS DCL Dictionary and the VSI OpenVMS
Guide to System Security.

7.3.2. Assigning ACL Protection
An ACL consists of access control entries (ACEs) that grant or deny access by specific users to a library
directory file or library file. ACLs, used with library directory files, enable you to define access to an
entire library. ACL sused with library files enable you to establish specific control over access to library
contents. Generally, OpenVMS ACLs are used in conjunction with the standard UIC-based protection as
a way to fine-tune protection.

See the VSI OpenVMS DCL Dictionary for more information on these commands. See the VSI OpenVMS
Guide to System Security for more information on using ACLs and ACEs.

7.3.2.1. Using ACLs on Library Directories
Directory ACLs provide three ways to control access to a VSI Digital Test Manager library:

● By controlling access to the directory file itself, as shown in the following example:

$ SET FILE/ACL=(IDENTIFIER=DBASEGRP,ACCESS=READ+WRITE) DTMLIB.DIR

This ACE grants READ and WRITE access to the directory file DTMLIB.DIR to users who have
the DBASEGRP identifier.

101

Chapter 7. Maintaining a VSI Digital Test Manager Library

● By specifying a default UIC protection to be assigned to each new file created in the directory. To set
a specific UIC protection, use the DEFAULT_PROTECTION keyword as the first field of an ACE,
as shown in the following example:

$ SET FILE/ACL=(DEFAULT_PROTECTION,S:RWED,O:RWED,G:RWED) DTMLIB.DIR

This ACE specifies that the UIC protection (S:RWED,O:RWED,G:RWED) be applied to each new
file created in the directory. (It does not affect any files that might already exist in the directory.) If
no other ACEs impose stricter limitations, the system, owner, and group users are granted full use of
the library.

● By specifying a default identifier-based protection to be assigned to each file created in the directory.
To specify a default identifier ACE, use the OPTIONS=DEFAULT keyword in the second field of an
ACE that is applied to a directory file, as shown in the following example:

$ SET FILE/ACL=(IDENTIFIER=DBASEGRP,OPTIONS=DEFAULT,ACCESS=READ+WRITE
+DELETE)

The OPTIONS=DEFAULT keyword directs the operating system to duplicate this ACE in the ACL
of every new file created in the directory. This ACE grants read, write, and delete access to users
who have the DBASEGRP identifier.

7.3.2.2. Using ACLs on Library Files
To control library access further, you can set the file protection for each file in the library.

Table 7.3, "Privileges Required for Individual VSI Digital Test Manager Commands" shows a list of the
VSI Digital Test Manager commands and the protection required for each object that the command
accesses. Not all the commands are shown, because they do not all require access privileges.

Table 7.3. Privileges Required for Individual VSI Digital Test Manager Commands

Command Library
Directory

Library
Control
File

Collection
Subdirectories

Library
Files

Collection
Files

COMPARE RW RW RW RW RWD
COPY TEST_DESCRIPTION RW RW RW
CREATE COLLECTION RW RW RW RW RWD
CREATE GROUP RW RW W
CREATE LIBRARY RW1 RW W
CREATE TEST_DESCRIPTION RW RW RW
CREATE VARIABLE RW RW W
DELETE COLLECTION RW RW RD RW RD
DELETE GROUP RW RW W
DELETE HISTORY RW R RWD
DELETE TEST_DESCRIPTION RW RW RWD
DELETE VARIABLE RW RW W
DISPLAY RW RW R
EXIT (REVIEW) RW RW RW R
INSERT GROUP RW RW W

102

Chapter 7. Maintaining a VSI Digital Test Manager Library

Command Library
Directory

Library
Control
File

Collection
Subdirectories

Library
Files

Collection
Files

INSERT TEST_DESCRIPTION RW RW W
MODIFY GROUP RW RW W
MODIFY TEST_DESCRIPTION RW RW RWD
MODIFY VARIABLE RW RW W
RECORD RW RW W
RECREATE RW RW RWD RWD RWD
REMARK RW W
REMOVE GROUP RW RW W
REMOVE TEST_DESCRIPTION RW RW W
REVIEW RW RW R RWD RWD
RUN RW RW RW RW RWD
SET BENCHMARK_DIRECTORY RW RW RW
SET EPILOGUE RW RW RW
SET LIBRARY R R RW
SET PROLOGUE RW RW RW
SET TEMPLATE_DIRECTORY RW RW RW
SHOW ALL R R
SHOW
BENCHMARK_DIRECTORY

R R

SHOW COLLECTION/FULL R R R R R
SHOW EPILOGUE R R
SHOW GROUP R R
SHOW HISTORY R R
SHOW LIBRARY R R
SHOW PROLOGUE R R
SHOW TEMPLATE_DIRECTORY R R
SHOW TEST_DESCRIPTION R R
SHOW VARIABLE R R
SHOW VERSION R R
STOP RW RW RW W RW
SUBMIT RW RW RW RW RWD
VERIFY RW R R W R
VERIFY/RECOVER RW RW RD RW RWD

1The directory must be empty.

To propagate a UIC protection, use the DEFAULT_PROTECTION keyword in the first field of a
directory ACE, as shown in the following example:

IDENTIFIER=TESTGRP,OPTIONS=DEFAULT,S:RWED,O:RWED,G:RWED

103

Chapter 7. Maintaining a VSI Digital Test Manager Library

This ACE specifies that the UIC protection (S:RWED,O:RWED,G:RWED) is applied to each new file
created in the directory. (It does not affect any files that might already exist in the directory.) If no ACEs
impose stricter limitations,the system, owner, and group users (as defined by the UIC) are granted full
use of the library.

To propagate an identifier-based protection mask, use the OPTIONS=DEFAULT keyword in the second
field of a directory ACE. For example:

IDENTIFIER=TESTGRP,OPTIONS=DEFAULT,ACCESS=READ+WRITE+DELETE

The OPTIONS=DEFAULT keyword directs the operating system to duplicate this ACE in the ACL of
every new file created in the library. This ACE then grants read, write, and delete access to users who
have the TESTGRP identifier.

104

Chapter 8. Working with Terminal
Session Files
This chapter describes session files and input files for terminal-based tests and describes how they are
used. The material in this chapter applies only to session files for interactive terminal tests. It presents
information on the following topics:

● The format of session files

● The format of input files

● Creating an input file

• From an existing session file

• Using an editor

● Recording a session file from an input file

A terminal session file contains a record of an interactive terminal session recorded for the purpose
of interactively testing a program with VSI Digital Test Manager. A session file has the default file
type .SESSION and contains a description of the type of terminal on which you recorded a terminal
session, a record of all keystrokes you input during the terminal session, a record of all system output
during the terminal session, and additional control and timing information.

An input file contains a textual representation of all or part of an interactive terminal session. You can
read input files and edit them with any editor. An input file has the default file type .INP and contains
a record of all characters you input during an interactive terminal session, and all special strings,
which are textual representations of nonprinting actions (such as a backspace) and recording functions
contained in session files. An input file does not contain a record of characters output for the system
during the terminal session.

Input files can be used in place of manually recording a test. By editing an input file, you can change the
input sent to an application during the test. You can also add wait records to control synchronization, or
mark additional screens for comparison.

Input files for interactive terminal tests can be used to repeat a sequence of input that might be required
in multiple tests; they can also be used to perform common setup or cleanup operations. For example:

DTM> RECORD testname/INPUT=SETUP.INP/APPEND

The previous command directs VSI Digital Test Manager to record the test by taking input from the file
SETUP.INP and, when the file is empty, by taking input from the user.

You can also use an input file while a terminal recording session is in progress by pressing Ctrl/P-I.
VSI Digital Test Manager prompts you for the name of the input file. When the input file has been
exhausted, you can continue recording. See Chapter 3, "Creating Tests" for more information on entering
commands during a recording session.

Note

VSI Digital Test Manager works only with session files produced from properly generated input files and
with unmodified session files it creates. If you write programs to create session files, or if you edit or
otherwise modify session files, do so using input files as described in this chapter.

105

Chapter 8. Working with Terminal Session Files

Session files created or modified outside of VSI Digital Test Manager might not be upwardly compatible
with future versions of VSI Digital Test Manager. Session files from properly generated input files are
upwardly compatible.

8.1. Terminal Session Files
A terminal session file consists of a record containing a 12-byte terminal characteristics block
followed by a sequence of records,each beginning with a 1-character record type. Section 8.1.2.1,
"Record Structure of Session Files"describes the record structure of a session file.

8.1.1. Sample Session File
The following example shows the session file from recording a terminal session where the DCL
command SHOW DEFAULT is entered. Entering the RECORD command to record the session file
results in the following terminal session:

$ DTM
DTM> CREATE TEST_DESCRIPTION
_test name: test1
_Remark: Creating a simple session file
DTM> RECORD test1
%DTM-I-DEFAULTED, benchmark file name defaulted to TEST1.BMK
%DTM-I-DEFAULTED, template file name defaulted to TEST1.SESSION
%DTM-I-BEGIN, your interactive test session is now beginning...
Type Ctrl/P twice to terminate the session.

$ SHOW DEFAULT
 DUA0:[USER01.DTMLIB]
$ ^P^P

^P

%DTM-I-BMK_SAVED, benchmark has been saved in file
 DUA0:[USER01.DTMLIB]TEST1.BMK;1
%DTM-S-RECORDED, test TEST1 has been successfully recorded in
 DUA0:[USER01.DTMLIB]TEST1.SESSION
DTM>

Example 8.1, "Sample Session File" shows the session file, TEST1.SESSION, which was produced by
VSI Digital Test Manager for this interactive terminal session. Records beginning with an I indicate the
input received; an O indicates the output being generated.

Example 8.1. Sample Session File

 B‘P^@<XA0>^S^A^X^D^P<X82>)
 ! DTM V3.9 RECORD V3.9

O<CR>
O<KEY>(LF\TEXT)
O^@
O$
O
 O^A

Is
Os

106

Chapter 8. Working with Terminal Session Files

Ih
Oh
Io
Oo
Iw
Ow
T0 :00:01.0
I
O
Id
Od
Ie
Oe
If
Of
Ia
Oa
Iu
Ou
Il
Ol
It
Ot
I<CR>
O<CR>
O<KEY>(LF\TEXT)
O<CR>
O DUA0:[USER01.DTMLIB]
O<CR>
O<KEY>(LF\TEXT)
O<CR>
O<CR>
O<KEY>(LF\TEXT)
O^@
O$
O
 O^A

The indicated records contain the following:

Terminal characteristics block

Comment record

Ctrl/A, indicating that VSI Digital Test Manager will compare this screen

8.1.2. Terminal Session File Structure
Because both timing and system load can affect the performance of the system and the application
being tested, two or more session files recorded independently might result in completely different, yet
valid, session files. This occurs even though you typed exactly the same keystrokes when recording
both terminal sessions. Thus, performing a source comparison on two session files yields no useful
information.

Because most OpenVMS terminal drivers are full duplex, when dealing with session files you should
consider input and output to be asynchronous events. You can be typing input while the system is
simultaneously writing output. As a result,input and output can appear mixed in a session file.

107

Chapter 8. Working with Terminal Session Files

For example, if you were to type input such as ABCDEF, first you would type A and a few milliseconds
later the system would output A. Then you would type B and the system would output B, and so on. The
corresponding session file contains a record showing that you typed A, followed by records showing
that the system output A, you typed B, the system output B, and so on. This sequence is shown in the
following partial session file:

 .
 .
 .
Ia
Oa
Ib
Ob
Ic
Oc
Id
Od
Ie
Oe
If
Of
 .
 .
 .

Both the speed at which you type and system response time affect the session file. If you type quickly
or if system response is slow, for example, the session file will be different from a session file recorded
under different conditions. For the same input (ABCDEF), another session file recorded under different
conditions might contain a record showing that you entered AB,followed by A from the system, C from
you, then BC from the system, and so on. This sequence is shown in the following partial session file:

 .
 .
 .
Iab
Oa
Ic
Obc
Ide
Ode
If
Of
 .
 .
 .

Although you typed the same input, ABCDEF, both times and the system echoed back the same letters,
the two session files are different. Session files recorded under different circumstances will vary, but all
session files are equally valid.

The session file will be further varied if the program outputs something to the screen other than what
you type. For example, the program might output X whenever you type A, or it might output nothing at
all. Asynchronous events, for example, entering Ctrl/T or a broadcast write that occurs while the system
is echoing input, will change the session file.

The terminal driver might also arbitrarily place text in a buffer, or split it into groups before generating
output. Even though a program might have issued a six-character QIO to output ABCDEF, the terminal

108

Chapter 8. Working with Terminal Session Files

driver might output the text as two groups, ABCD followed by EF; or as six separate characters; or as a
single six-character string. The terminal driver might even output the text appended to some previously
entered text that has not yet been output. Each elementary operation of the terminal driver results in a
separate record being written to the session file. Thus, each record in the session file describes a single
terminal-driver operation.

VSI Digital Test Manager also writes additional timing and control information to the session file.

8.1.2.1. Record Structure of Session Files

The record structure of a session file is extremely important. You must not change it except as described
in this section.

Terminal Characteristics Block

The first record in a session file is a 12-byte (12-character) information block called a terminal
characteristics block. This block of information describes the type of terminal on which the terminal
session was recorded and the characteristics of that terminal. The terminal characteristics block is
described in the OpenVMS I/O User's Reference Manual: Part 1 and is shown in Figure 8.1, "Format of
the Terminal Characteristics Block".

Figure 8.1. Format of the Terminal Characteristics Block

The 12 bytes in the record are stored low order to high order as three longwords. The record conforms
to the structure returned by a sense mode terminal QIO with a P2 parameter of 12. The first byte has the
value DC$_TERM.

Note

You must not change the terminal characteristics block in any way. Any change to this record can
invalidate the entire file. Do not add bytes to this record or delete bytes from it. This record must contain
exactly 12 bytes.

Subsequent Records

All subsequent records in the session file begin with a record type, which is a one-byte indicator
that describes the contents of the record. The record type is a number, usually represented by its
corresponding ASCII character. For example, the decimal number 66 is referred to by the letter B. Table
8.1, "Session File Record Types" shows the formats for all possible record types.

109

Chapter 8. Working with Terminal Session Files

Table 8.1. Session File Record Types

Record Type Meaning Description

B BEGIN_COMPARE Restarts automatic screen compare terminated
by a previous E record. When an input point is
reached, VSI Digital Test Manager automatically
marks the current screen for comparison with the
corresponding screen in the benchmark file.

C COMPARE_SCREEN Marks the current screen for comparison, even
though automatic screen comparison is turned off.

E END_COMPARE Terminates automatic screen compare. When an
input point is reached, VSI Digital Test Manager
automatically marks the current screen for
comparison with the corresponding screen in the
benchmark file.

I INPUT Contains characters you input, that is, characters
you type at the terminal. This record usually
contains only one character. These characters do
not automatically echo to the screen unless the
terminal is set in half-duplex mode. This input is
usually echoed in a subsequent O record.

O OUTPUT Labels the record as containing characters output
by the system and displayed on the terminal.

T TIMING Contains a standard OpenVMS delta time
specification. This time interval represents
the clock time elapsed between the previous I
(INPUT) record and the next I record.

W WAIT Contains a standard OpenVMS delta time
specification in the following format: dddd
hh::mm:ss.cc. It produces a pause of the
specified length in the input stream when the
terminal session is played back. A sample time
interval of 10 seconds appears as follows:

{WAIT} 0000 00:00:10.00

! BEGIN_COMMENT Contains a comment. This record is ignored.
0 Null or OUTPUT This record type is supported for

compatibility,though its use is not recommended.
VSI Digital Test Manager interprets this as an O
record.

1 Ctrl/A or INPUT This record type is supported for compatibility,
though its use is not recommended. VSI Digital
Test Manager interprets this as an I record.

The T and W (TIMING and WAIT) records contain standard OpenVMS delta time specifications. A
sample time interval of 2.3 seconds appears in a T record as follows:

T0 :00:02.3

It appears in a W record as follows:

110

Chapter 8. Working with Terminal Session Files

W0 :00:02.3

In T records, the time interval represents the elapsed clock time between the previous and next I records.
VSI Digital Test Manager does not normally record timing intervals of less than one second.

When VSI Digital Test Manager replays a terminal session, T records cause a time delay on the input
stream when VSI Digital Test Manager replays the session at the speed at which it was recorded.

In W records, this time interval causes a pause in the input stream of the specified duration.

8.1.2.2. Modifying Session Files Directly
Seemingly harmless changes, such as changing the case of letters in a session file to all uppercase or
all lowercase, can invalidate the entire file; this action changes the case and, therefore, the meaning of
characters inside control and escape sequences.

Passing a session file through some editors might change the record structure, or add or remove new line
characters such as line feed or return characters. These changes invalidate the session file.

In general, splitting a record or combining two consecutive records can invalidate the entire session file.
If you modify the records in a session file directly, observe the guidelines in the following sections.
It is recommended that you modify session files indirectly using input files. Section 8.2, "Input Files"
describes input files.

Modifying O Records

You can combine two consecutive O records into a single O record. When you do this, drop the O
character from the second record.

You can split an O record into multiple O records. When you do this, begin each new record with an O
record type.

You must preserve the number of Ctrl/A characters in the output stream. A single Ctrl/A character
represents a point where the program is requesting input and where VSI Digital Test Manager compares
screens. Two consecutive Ctrl/A characters represent an input point where automatic screen comparison
is suppressed.

The terminal driver inserts a Ctrl/A character into the output stream whenever the program issues
an input QIO. If the program prompts for the input,the Ctrl/A character appears after the prompt.
Additionally, VSI Digital Test Manager sometimes inserts Ctrl/A characters into the session file to mark
input points for comparison.

Modifying I Records

You can combine two consecutive I records into a single I record. When you do this, drop the I character
from the second record.

You can split an I record into multiple I records. When you do this, begin each new record with an I
record type.

Modifying B, C, and E Records

The B, C, and E (BEGIN_COMPARE, COMPARE_SCREEN, and END_COMPARE) records can
occur in the session file only as the next record immediately following an O record that ends with a Ctrl/
A character. The one exception to this is a B,C, or E record that is the first noncomment record in the
file immediately following the terminal characteristics block. If a B, C, or E record occurs in a session
file, that file must also contain at least one O record. The number of Ctrl/A characters in the file must

111

Chapter 8. Working with Terminal Session Files

agree with the number of Ctrl/A characters output by the interactive terminal session when it is run with
the PLAY command.

Modifying T and W Records

You can modify T and W records, or you can delete them to change or remove timing information.
When modifying this record, you must enter the delta time in a valid format as specified in the VSI
OpenVMS System Services Reference Manual. This is not necessarily in the format that VSI Digital Test
Manager uses. Do not omit any required punctuation.

The behavior of some programs varies depending on the speed of user input. Removing or modifying
timing information for such programs can adversely affect the way these programs run.

8.2. Input Files
Input files contain a textual representation of an interactive terminal session as recorded by VSI Digital
Test Manager in a session file. Input files contain the following information:

● Input for the terminal session—the characters that were typed when you recorded the terminal
session

● All nonprinting characters and recording functions represented as special strings

You can create input files in several ways. You can record an input file from an existing session file
using the EXTRACT command, or you can create an input file using any text editor. You can also use
a combination of these techniques. For example, you can edit an existing test script to reformat it as an
input file.

8.2.1. Sample Input File
The following example shows the input file generated from the session fileTEST1.SESSION, recorded in
Section 8.1.1, "Sample Session File". Enter the EXTRACT command to generate the input file. Supply
the name of the session file from which the input file will be extracted, and designate a name for the
input file. For example:

DTM> EXTRACT
_session file: TEST1.SESSION
_input file: TEST1.INP

%DTM-S-EXTRACTED, input file DUA0:[USER01.DTMLIB]TEST1.INP created
DTM>

The following input file, TEST1.INP, was produced by the EXTRACT command:

SHOW DEFAULT{<CR>}

The input file TEST1.INP contains the text entered during the terminal session (the DCL command
SHOW DEFAULT) and the special string {<CR>}, which terminates the entered text. Note that output
supplied by the system is not included in the input file. You can edit this input file and then use it to
generate a new session file.

8.2.2. Special Strings
All nonprinting characters and recording functions found in session files are replaced in input files by
special strings, which have the following format: {special-string}

112

Chapter 8. Working with Terminal Session Files

Special strings are textual representations for nonprinting characters and recording functions. They are
enclosed within braces ({}).

8.2.2.1. Types of Special Strings Recognized by VSI Digital Test
Manager

VSI Digital Test Manager recognizes the following types of special strings:

● Control and nonprinting characters—Mnemonic control-character names and decimal integer values
for control characters available in both 7-bit and 8-bitenvironments

● Common names for nonprinting characters

● 8-bit control characters—Mnemonic control-character names and decimal integer values for control
characters available only in 8-bit environments

● Key names

• Names written on keyboard keys (with underscores substituted for spaces)

• Names for the arrow keys

• Names for the editing keys

• Names for the keypad keys

• Names for the function keys

● Names for the recording functions

When you extract an input file from a session file, VSI Digital Test Manager translates each nonprinting
character and recording function in the session file into the appropriate special string. When you
generate a session file from an input file, VSI Digital Test Manager retranslates the special strings.
Table 8.2, "Translation of Nonprinting Characters and Control Codes When Extracting an Input File
from a Session File" lists the translations performed when extracting an input file from a session file.
Tables Table 8.3, "Translation of Special Strings Representing Control and Nonprinting Characters
When Recording a Session File from an Input File" through Table 8.9, "Translation of Special Strings
Representing the Recording Functions When Recording a Session File from an Input File" list the
translations performed when recording a session file from an input file.

Control Characters and Common Names of Nonprinting Characters

VSI Digital Test Manager recognizes the following formats for control characters and nonprinting
characters:

● Special strings for control characters of the forms {Ctrl/X} and {^x}

For example, VSI Digital Test Manager interprets both {Ctrl/A} and {^A} as the same control
character.

● Special strings for all mnemonic control-character names listed in the ASCII 7-bit and 8-bit character
tables surrounded by angle brackets (< >)

For example, VSI Digital Test Manager interprets {<SOH>} and {<IND>}.

113

Chapter 8. Working with Terminal Session Files

● Special strings for all integer decimal values for control characters listed in the ASCII 7-bit and 8-bit
character tables

For example, VSI Digital Test Manager interprets {27} as ESC.

VSI Digital Test Manager ignores leading zeros on integer decimal values.

● Special strings for common names for nonprinting characters, as follows:

{<BACK_SPACE>}
{<DELETE>}
{<ENTER>}
{<ESC>}
{<ESCAPE>}
{<FORM_FEED>}
{<LINE_FEED>}
{<PAGE>}
{<RETURN>}
{SPACE}, {<SP>}, {32}, and regular spaces {}are all recognized as the space character
{<KEY>(TAB\TEXT)}

Tables Table 8.3, "Translation of Special Strings Representing Control and Nonprinting Characters When
Recording a Session File from an Input File" and Table 8.4, "Translation of Special Strings Representing
8-Bit Control Characters When Recording a Session File from an Input File" list the special string
translations that VSI Digital Test Manager performs for control characters. Table 8.3, "Translation of
Special Strings Representing Control and Nonprinting Characters When Recording a Session File from an
Input File" also lists the special string translations for common names for nonprinting characters. Consult
a terminal manual for tables on ASCII 7-bit and 8-bit codes.

Key Names

VSI Digital Test Manager recognizes special strings for the following:

● Names written on the keyboard keys with underscores (_)substituted for spaces. For example,
{RETURN},{LINE_FEED}, and {PF1}.

● Function keys by name. For example, both {F12}and {BS} (see Table 8.5, "Translation of Special
Strings Representing the Function Key Codes When Recording a Session File from an Input File").

● Editing keys by name. For example, {REMOVE},{NEXT_SCREEN}, and {NEXT} (see Table 8.6,
"Translation of Special Strings Representing the Editing Key Codes When Recording a Session File
from an Input File").

● Keypad keys by name. For example, {KP3},{MINUS}, and {ENTER} (see Table 8.7, "Translation
of Special Strings Representing the Keypad Key Codes When Recording a Session File from an Input
File").

● Arrow keys by name. For example, both{UP_ARROW} and {UP} (see Table 8.8, "Translation
of Special Strings Representing the Arrow Key Codes When Recording a Session File from an Input
File").

Note

Tables Table 8.5, "Translation of Special Strings Representing the Function Key Codes When Recording
a Session File from an Input File" through Table 8.8, "Translation of Special Strings Representing the

114

Chapter 8. Working with Terminal Session Files

Arrow Key Codes When Recording a Session File from an Input File", located at the end of this chapter,
list the special string translations that VSI Digital Test Manager performs for key names.

Recording Functions

VSI Digital Test Manager recognizes the following special strings for the recording functions:

{BEGIN_COMMENT} and {END_COMMENT}
{BEGIN_COMPARE} and {END_COMPARE}
{COMPARE_SCREEN}
{WAIT}

Use these special strings in input files to avoid making the input file dependent on a particular
termination character. For example, if you enter{Ctrl/P}C in an input file to mark a screen for
comparison, the input file and all session files generated from it must be used in conjunction with the
termination character Ctrl/P. But if you enter {COMPARE_SCREEN} to mark a screen for comparison,
the input file and all session files generated from it can be used in conjunction with any termination
character.

Table 8.9, "Translation of Special Strings Representing the Recording Functions When Recording a
Session File from an Input File" lists the special string translations that VSI Digital Test Manager
performs for the recording functions.

8.2.2.2. Using Special Strings in Input Files
The VSI Digital Test Manager interpretation of special strings in input files is not case sensitive. You can
use uppercase or lowercase characters, or a combination of the two when you enter a special string in an
input file.

When processing input files, VSI Digital Test Manager does not interpret the end of a record as the end
of input. Therefore, you must be careful to enter a special string corresponding to a carriage return; (for
example, {<CR>}) at the end of any input normally terminated with a carriage return.

To include text enclosed within braces ({}) in the input file, enter double braces around the text, (for
example, {{text }}). When processing the input file, VSI Digital Test Manager translates the double
braces to single braces;it does not interpret the text contained within the braces as a special string.

Use the special string equivalents for the recording functions when writing an input file. This avoids
building a dependency on a particular termination character into an input file.

When you enter a comment in an input file, enclose the comment between the{BEGIN_COMMENT}
and {END_COMMENT} special strings. Enter the {BEGIN_COMMENT}and {END_COMMENT}
special strings on separate lines because VSI Digital Test Manager ignores the remainder of the line
following these special strings. You must begin each line of comment text with the comment character
(!).

Do not nest input files. VSI Digital Test Manager ignores INSERT recording functions (Ctrl/P I) when
they occur in input files.

8.3. Creating Input Files
You can create an input file using a text editor, or you can use the EXTRACT command to create an
input file from a session file. When the input file is complete and correctly formatted, you can then use it
to record a session file.

115

Chapter 8. Working with Terminal Session Files

Note

When you create a terminal input file, use the same type of display device on which the session file was
created. If you do not, you might cause the input file and session to have different characteristics.

When you extract an input file from a session file, you might not be able tore-create the session file
except by using a display device of the same type as the display device used to record the original
recording session, especially if the recording display device handles 8-bit characters and the extracting
display device handles 7-bit characters.

8.3.1. Extracting an Input File from a Session File
The EXTRACT command extracts an input file from an existing session file without altering the session
file. The format for the EXTRACT command is as follows:

DTM> EXTRACT session-file-specification [input-file-specification]/
INTERACTIVE

The session file specification is the file specification of the session file from which VSI Digital Test
Manager extracts an input file. If you specify a filename for the session file without specifying a file type,
the file type defaults to .SESSION.

The input file specification is the file specification for the input file being created. If you do not specify
an input file specification, the file specification defaults to session-file-name.INP. If you specify an input
filename without specifying a file type, the file type defaults to .INP.

You can store both files in CMS libraries. The EXTRACT command can fetch the session file from a
CMS library and place the input file in the CMS library.

If you subsequently record a session file from an input file stored in a CMS library, you must first fetch
the input file from the CMS library by issuing the appropriate CMS commands.

The EXTRACT command takes the /[NO]LOG and /TERMINATION_CHARACTER qualifiers.
The /TERMINATION_CHARACTER qualifier specifies the termination character that VSI Digital
Test Manager is to use when translating the recording functions in the session file to special strings in
the input file. If the interactive terminal session you are recording does not use the default termination
character (Ctrl/P), you need not specify a different termination character. If the interactive terminal
session you are recording uses Ctrl/P for its own purposes, you must specify a different termination
character.

When VSI Digital Test Manager extracts the input file from the session file, the following occurs:

● All input in the session file is written to the input file.

● All nonprinting characters and recording functions are translated to special strings—text delimited by
braces ({}).

● Any braces appearing in the text of the session file are doubled in the input file.

The following example extracts the input file TEST1_A.INP from the session file TEST1.SESSION:

DTM> EXTRACT TEST1.SESSION TEST1_A.INP

%DTM-S-EXTRACTED, input file DUA0:[USER01.DTMLIB]TEST1_A.INP created
DTM>

116

Chapter 8. Working with Terminal Session Files

8.3.2. Creating an Input File with a Text Editor
You can create an input file using any text editor. See Section 8.2.2.2, "Using Special Strings in Input
Files" for information on using special strings in input files.

The following example shows a sample input file created with a text editor:

{BEGIN_COMMENT}
! This is a sample input file. When used, it calls up EDT
! to create a file, enters some text into the buffer, and
! moves around that text, finally quitting without saving
! the file.
{END_COMMENT}
edit/edt sample.tmp{<CR>}
change{<CR>}
{BEGIN_COMMENT}
! Enter the text into the buffer.
{END_COMMENT}
This is the first line of the file.{<CR>}
This is the
second line of the file.{<CR>}
{UP_ARROW}{UP}{KP2}
{SPACE}This is more of the first line.
{Ctrl/Z}
quit{<CR>}

8.4. Recording a Session File from an Input
File
You can record a session file from an input file in two ways:

● By using the /INPUT qualifier on a RECORD command

● By entering the INSERT recording function (Ctrl/P I) while recording an interactive terminal session

8.4.1. Using the /INPUT Qualifier
The RECORD command with the /INPUT qualifier specifies that VSI Digital Test Manager record a
new session file by initiating an interactive terminal session and taking input from the specified input file.
If you do not also specify the /APPEND qualifier, VSI Digital Test Manager terminates the interactive
terminal session when the input file is exhausted. If you include both the/INPUT and /APPEND
qualifiers, VSI Digital Test Manager leaves the terminal in record mode when the input file is exhausted.
You can then continue the terminal session interactively and terminate it by entering the termination
character(Ctrl/P) twice.

The following example initiates an interactive terminal session to create session file TEST2.SESSION,
takes all input from input file TEST2.INP, and terminates the terminal session when TEST2.INP is
exhausted.

DTM> RECORD/INPUT=TEST2.INP
_Remark: Recording TEST2.SESSION from TEST2.INP
%DTM-I-DEFAULTED, benchmark file name defaulted to TEST2.BMK
%DTM-I-DEFAULTED, template file name defaulted to TEST2.SESSION
%DTM-I-BEGIN, your interactive test session is now beginning...

117

Chapter 8. Working with Terminal Session Files

$ show default
 DUA0:[USER01.DTMLIB]

^P

%DTM-I-BMK_SAVED, benchmark has been saved in file
 DUA0:[USER01.DTMLIB]TEST2.BMK;1
%DTM-S-RECORDED, test TEST2 has been successfully recorded in
 DUA0:[USER01.DTMLIB]TEST2.SESSION
DTM>

The following example initiates an interactive terminal session to create the session file
SAMPLE_TEST.SESSION, takes input from the input file SAMPLE_TEST.INP until the file is
exhausted, and leaves the terminal in record mode:

DTM> RECORD/INPUT=SAMPLE_TEST.INP
_Remark: Recording a sample session file
%DTM-I-DEFAULTED, benchmark file name defaulted to SAMPLE_TEST.BMK
%DTM-I-DEFAULTED, template file name defaulted to SAMPLE_TEST.SESSION
%DTM-I-BEGIN, your interactive test session is now beginning...
Type Ctrl/P twice to terminate the session.

$ show default
 DUA0:[USER01.DTMLIB]
$ show time

$ ^P^P

^P

%DTM-I-BMK_SAVED, benchmark has been saved in file
 DUA0:[USER01.DTMLIB]SAMPLE_TEST.BMK;1
%DTM-S-RECORDED, test SAMPLE_TEST has been successfully recorded in
 DUA0:[USER01.DTMLIB]SAMPLE_TEST.SESSION
DTM>

8.4.2. Using the INSERT Recording Function
When you enter the INSERT recording function Ctrl/P-I during an active recording session, it specifies
that VSI Digital Test Manager is to take input from the specified input file. When you enter the INSERT
recording function, VSI Digital Test Manager prompts you for the file specification for a single input
file. VSI Digital Test Manager then takes input from the specified input file and returns control to the
terminal when the input file is exhausted.

Example 8.2, "Inserting an Input File into a Recording Session" shows how to insert an input file during a
recording session.

Example 8.2. Inserting an Input File into a Recording Session

DTM> RECORD/INPUT=SAMPTEST.INP
_test name: SAMPTEST
_Remark: Recording SAMPTEST.SESSION from SAMPTEST.INP
%DTM-I-DEFAULTED, benchmark file name defaulted to SAMPTEST.BMK
%DTM-I-DEFAULTED, template file name defaulted to SAMPTEST.SESSION
%DTM-I-BEGIN, your interactive test session is now beginning...

118

Chapter 8. Working with Terminal Session Files

Type Ctrl/P twice to terminate the session.

 .
 .
 .

^PI

_Input file: SAMPTEST2.INP

 .
 .
 .

^P^P

^P

%DTM-I-BMK_SAVED, benchmark has been saved in file
 DUA0:[USER01.DTMLIB]SAMPTEST.BMK;1
%DTM-S-RECORDED, test SAMPTEST has been successfully recorded in
 DUA0:[USER01.DTMLIB]SAMPTEST.SESSION
DTM>

During a terminal session, you can read input from multiple input files sequentially. The input files
cannot be nested. VSI Digital Test Manager ignores any INSERT recording functions in an input file.

8.4.3. Terminal Characteristics
The process of creating an input file is not terminal specific. When you extract an input file from a
session file, all control codes and other nonprinting characters are translated to special strings, regardless
of whether they have meaning to the terminal you are using to perform the translation.

The process of creating a session file from an input file is terminal specific. When you record a session
file, VSI Digital Test Manager translates all special strings back to control codes and other nonprinting
characters based on the terminal characteristics for the recording terminal. If VSI Digital Test Manager
encounters a special string that it cannot translate for the recording terminal, the braces are stripped off
the special string and the characters representing the untranslated special string are printed in the session
file. They are also displayed on the terminal screen along with an error message.

When you record a session file, the terminal characteristics for the recording terminal become the first
record of that session file. That session file is guaranteed to run on terminals of the same type as the
recording terminal. The session file might not run on other terminal types.

Note

You might encounter problems re-recording a session file on a VT100-seriesterminal if the session
file was originally recorded on a VT200-seriesterminal. Problems will occur if the original session
file contains control codes that are restricted to use in an 8-bit compatible environment. Table 8.4,
"Translation of Special Strings Representing 8-Bit Control Characters When Recording a Session File from
an Input File" lists these codes. VSI Digital Test Manager cannot translate these 8-bit control codes for
use in a 7-bit environment.

119

Chapter 8. Working with Terminal Session Files

If you record an interactive terminal session on a VT100-series terminal and extract an input file from
this session file, you will be able to successfully record the edited terminal session again on either a
VT100- orVT200-series terminal.

The VSI Digital Test Manager interactive terminal testing does not provide support for VT400 or greater
series terminals. Tests recorded or executed on VT400 or greater series terminals might cause VSI
Digital Test Manager screen comparisons to fail. Set VT400- or greater series terminal characteristics to
a VT100-, VT200-, or VT300-series terminal when using VSI Digital Test Manager interactive terminal
testing features.

8.4.4. Type-Ahead
Anything you type on a terminal while input is being taken from an input file will have no immediate
effect on the terminal session. All or part of what you type might be stored as type-ahead and might
appear when the input file is exhausted and control is returned to the terminal.

8.5. Translation Tables
Table 8.2, "Translation of Nonprinting Characters and Control Codes When Extracting an Input File from
a Session File" describes translation of nonprinting characters and control codes when an input file is
extracted from a session file.

Table 8.2. Translation of Nonprinting Characters and Control Codes When Extracting an
Input File from a Session File

Code in Session File Translated Special String
in Input File

Mnemonic Recording
Function

8-bit Control
String

Escape Sequence Special String

— — <CSI> A
and <SS3>A

<ESC> A
and <ESC>[A
and <ESC>O A

{UP_ARROW}

— — <CSI> B
and <SS3> B

<ESC> B
and <ESC>[B
and <ESC>O B

{DOWN_ARROW}

— — <CSI> C
and <SS3> C

<ESC> C
and <ESC>[C
and <ESC>O C

{RIGHT_ARROW}

— — <CSI> D
and <SS3> D

<ESC> D
and <ESC>[D
and <ESC>O D

{LEFT_ARROW}

— — <SS3> P <ESC> P
and <ESC>O P

{PF1}

— — <SS3> Q <ESC> Q
and <ESC>O Q

{PF2}

— — <SS3> R <ESC> R
and <ESC>O R

{PF3}

— — <SS3> S <ESC> S
and <ESC>O S

{PF4}

120

Chapter 8. Working with Terminal Session Files

Code in Session File Translated Special String
in Input File

Mnemonic Recording
Function

8-bit Control
String

Escape Sequence Special String

— — <SS3> l <ESC>? l
and <ESC>O l

{COMMA}

— — <SS3> m <ESC>? m
and <ESC>O m

{MINUS}

— — <SS3> n <ESC>? n
and <ESC>O n

{PERIOD}

— — <SS3> M <ESC>? M
and <ESC>O M

{ENTER}

— — <SS3> p <ESC>? p
and <ESC>O p

{KP0}

— — <SS3> q <ESC>? q
and <ESC>O q

{KP1}

— — <SS3> r <ESC>? r
and <ESC>O r

{KP2}

— — <SS3> s <ESC>? s
and <ESC>O s

{KP3}

— — <SS3> t <ESC>? t
and <ESC>O t

{KP4}

— — <SS3> u <ESC>? u
and <ESC>O u

{KP5}

— — <SS3> v <ESC>? v
and <ESC>O v

{KP6}

— — <SS3> w <ESC>? w
and <ESC>O w

{KP7}

— — <SS3> x <ESC>? x
and <ESC>O x

{KP8}

— — <SS3> y <ESC>? y
and <ESC>O y

{KP9}

— — <CSI> 17~ <ESC>[17~ {F6}
— — <CSI> 18~ <ESC>[18~ {F7}
— — <CSI> 19~ <ESC>[19~ {F8}
— — <CSI> 21~ <ESC>[21~ {F10}
— — <CSI> 23~ <ESC>[23~ {F11}
— — <CSI> 24~ <ESC>[24~ {F12}
— — <CSI> 25~ <ESC>[25~ {F13}
— — <CSI> 26~ <ESC>[26~ {F14}
— — <CSI> 28~ <ESC>[28~ {F15}
— — <CSI> 29~ <ESC>[29~ {F16}
— — <CSI> 31~ <ESC>[31~ {F17}

121

Chapter 8. Working with Terminal Session Files

Code in Session File Translated Special String
in Input File

Mnemonic Recording
Function

8-bit Control
String

Escape Sequence Special String

— — <CSI> 32~ <ESC>[32~ {F18}
— — <CSI> 33~ <ESC>[33~ {F19}
— — <CSI> 34~ <ESC>[34~ {F20}
— — <CSI> 1~ <ESC>[1~ {FIND}
— — <CSI> 2~ <ESC>[2~ {INSERT_HERE}
— — <CSI> 3~ <ESC>[3~ {REMOVE}
— — <CSI> 4~ <ESC>[4~ {SELECT}
— — <CSI> 5~ <ESC>[5~ {PREV_SCREEN}
— — <CSI> 6~ <ESC>[6~ {NEXT_SCREEN}
<NUL> — — — {Ctrl/@}
<SOH> — — — {Ctrl/A}
<STX> — — — {Ctrl/B}
<ETX> — — — {Ctrl/C}
<EOT> — — — {Ctrl/D}
<ENQ> — — — {Ctrl/E}
<ACK> — — — {Ctrl/F}
<BEL> — — — {Ctrl/G}
<BS> — — — {<BS>}
<HT> — — — {<TAB>}
<LF> — — — {<LF>}
<VT> — — — {Ctrl/K}
<FF> — — — {<FF>}
<CR> — — — {<CR>}
<SO> — — — {Ctrl/N}
<SI> — — — {Ctrl/O}
<DLE> — — — {Ctrl/P}
<DC1> — — — {Ctrl/Q}
<DC2> — — — {Ctrl/R}
<DC3> — — — {Ctrl/S}
<DC4> — — — {Ctrl/T}
<NAK> — — — {Ctrl/U}
<SYN> — — — {Ctrl/V}
<ETB> — — — {Ctrl/W}
<CAN> — — — {Ctrl/X}
 — — — {Ctrl/Y}

122

Chapter 8. Working with Terminal Session Files

Code in Session File Translated Special String
in Input File

Mnemonic Recording
Function

8-bit Control
String

Escape Sequence Special String

<SUB> — — — {Ctrl/Z}
<ESC> — — — {<ESC>}
<FS> — — — {Ctrl/ \}
<GS> — — — {Ctrl/]}
<RS> — — — {Ctrl/^}
<US> — — — {Ctrl/_}
 — — — {}
<IND> — — — {<IND>}
<NEL> — — — {<NEL>}
<SSA> — — — {<SSA>}
<ESA> — — — {<ESA>}
<HTS> — — — {<HTS>}
<HTJ> — — — {<HTJ>}
<VTS> — — — {<VTS>}
<PLD> — — — {<PLD>}
<PLU> — — — {<PLU>}
<RI> — — — {<RI>}
<SS2> — — — {<SS2>}
<SS3> — — — {<SS3>}
<DCS> — — — {<DCS>}
<PU1> — — — {<PU1>}
<PU2> — — — {<PU2>}
<STS> — — — {<STS>}
<CCH> — — — {<CCH>}
<MW> — — — {<MW>}
<SPA> — — — {<SPA>}
<EPA> — — — {<EPA>}
<CSI> — — — {<CSI>}
<ST> — — — {<ST>}
<OSC> — — — {<OSC>}
<PM> — — — {<PM>}
<APC> — — — {<APC>}
— !++ — — {BEGIN_COMMENT}
— !– – — — {END_COMMENT}
— Ctrl/P1 B — — {BEGIN_COMPARE}

123

Chapter 8. Working with Terminal Session Files

Code in Session File Translated Special String
in Input File

Mnemonic Recording
Function

8-bit Control
String

Escape Sequence Special String

— Ctrl/P1 C — — {COMPARE_SCREEN}
— Ctrl/P1 E — — {END_COMPARE}
— Ctrl/P1 W — — {WAIT}

1Ctrl/P is used here only as an example. The actual value will be the termination character specified when the session file was recorded.

Table 8.3, "Translation of Special Strings Representing Control and Nonprinting Characters When
Recording a Session File from an Input File" describes special string translations for control and
nonprinting characters when a session file is recorded from an input file. Where applicable, special
strings for common names of nonprinting characters are listed with the mnemonic for the control
character. For example,{BACK_SPACE} is listed with {Ctrl/H}.

Table 8.3. Translation of Special Strings Representing Control and Nonprinting
Characters When Recording a Session File from an Input File

Special Strings in Input File

Control Character Mnemonics Decimal Value

Translation in
Session File

{Ctrl/@} {^@} {<NUL>} {0} NUL
{Ctrl/A} {^A} {<SOH>} {1} SOH
{Ctrl/B} {^B} {<STX>} {2} STX
{Ctrl/C} {^C} {<ETX>} {3} ETX
{Ctrl/D} {^D} {<EOT>} {4} EOT
{Ctrl/E} {^E} {<ENQ>} {5} ENQ
{Ctrl/F} {^F} {<ACK>} {6} ACK
{Ctrl/G} {^G} {<BEL>} {7} BEL
{Ctrl/H}
and
{BACK_SPACE}

{^H} {<BS>} {8} BS

{Ctrl/I}
and
{TAB}

{^I} {<HT>} {9} HT

{Ctrl/J}
and
{LINE_FEED}

{^J} {<LF>} {10} LF

{Ctrl/K} {^K} {<VT>} {11} VT
{Ctrl/L}
and
{PAGE}
and
{FORM_FEED}

{^L} {<FF>} {12} FF

{Ctrl/M}
and
{RETURN}

{^M} {<CR>} {13} CR

124

Chapter 8. Working with Terminal Session Files

Special Strings in Input File

Control Character Mnemonics Decimal Value

Translation in
Session File

{Ctrl/N} {^N} {<SO>} {14} SO
{Ctrl/O} {^O} {<SI>} {15} SI
{Ctrl/P} {^P} {<DLE>} {16} DLE
{Ctrl/Q} {^Q} {<DC1>} {17} DC1
{Ctrl/R} {^R} {<DC2>} {18} DC2
{Ctrl/S} {^S} {<DC3>} {19} DC3
{Ctrl/T} {^T} {<DC4>} {20} DC4
{Ctrl/U} {^U} {<NAK>} {21} NAK
{Ctrl/V} {^V} {<SYN>} {22} SYN
{Ctrl/W} {^W} {<ETB>} {23} ETB
{Ctrl/X} {^X} {<CAN>} {24} CAN
{Ctrl/Y} {^Y} {} {25} EM
{Ctrl/Z} {^Z} {<SUB>} {26} SUB
{Ctrl/[}
{ESCAPE}
and
{ESC}

{^[} {<ESC>} {27} ESC

{Ctrl/ \} {^ \} {<FS>} {28} FS
{Ctrl/]} {^]} {<GS>} {29} GS
{Ctrl/~} {^~} {<RS>} {30} RS
{Ctrl/?}
and
{Ctrl/_}

{^?}
and
{^_}

{<US>} {31} US

{DELETE} — {} {128} DEL
{SPACE} — — — (a space character)

Table 8.4, "Translation of Special Strings Representing 8-Bit Control Characters When Recording
a Session File from an Input File" describes special string translations for 8-bit control characters
when a session file is recorded from an input file. These control characters are available only in 8-bit
environments.

Table 8.4. Translation of Special Strings Representing 8-Bit Control Characters When
Recording a Session File from an Input File

Special String in Input File

Mnemonic Decimal Value

Translation in Session File

{<IND>} {132} IND
{<NEL>} {133} NEL
{<SSA>} {134} SSA
{<ESA>} {135} ESA
{<HTS>} {136} HTS

125

Chapter 8. Working with Terminal Session Files

Special String in Input File

Mnemonic Decimal Value

Translation in Session File

{<HTJ>} {137} HTJ
{<VTS>} {138} VTS
{<PLD>} {139} PLD
{<PLU>} {140} PLU
{<RI>} {141} RI
{<SS2>} {142} SS2
{<SS3>} {143} SS3
{<DCS>} {144} DCS
{<PU1>} {145} PU1
{<PU2>} {146} PU2
{<STS>} {147} STS
{<CCH>} {148} CCH
{<MW>} {149} MW
{<SPA>} {150} SPA
{<EPA>} {151} EPA
{<CSI>} {155} CSI
{<ST>} {156} ST
{<OSC>} {157} OSC
{<PM>} {158} PM
{<APC>} {159} APC

Table 8.5, "Translation of Special Strings Representing the Function Key Codes When Recording a Session
File from an Input File" describes special string translations for codes generated by the function keys
when a session file is recorded from an input file.

Table 8.5. Translation of Special Strings Representing the Function Key Codes When
Recording a Session File from an Input File

Translation inSession FileSpecial String in Input File

VT200 Mode VT100 and VT52 Mode

{F6} CSI 17~
and ESC [1 17~

—

{F7} CSI 18~
and ESC [1 18~

—

{F8} CSI 19~
and ESC [1 19~

—

{F9} CSI 20~
and ESC [1 20~

—

{F10} CSI 21~
and ESC [1 21~

—

{F11} and {ESC} CSI 23~ ESC

126

Chapter 8. Working with Terminal Session Files

Translation inSession FileSpecial String in Input File

VT200 Mode VT100 and VT52 Mode
and ESC [1 23~

{F12} and {BS} CSI 24~
and ESC [1 24~

BS

{F13} and {LF} CSI 25~
and ESC [1 25~

LF

{F14} CSI 26~
and ESC [1 26~

—

{F15} and {HELP} CSI 28~
and ESC [1 28~

—

{F16} and {DO} CSI 29~
and ESC [1 29~

—

{F17} CSI 31~
and ESC [1 31~

—

{F18} CSI 32~
and ESC [1 32~

—

{F19} CSI 33~
and ESC [1 33~

—

{F20} CSI 34~
and ESC [1 34~

—

1ESC [is the 7-bit code extension equivalent for the 8-bit control string CSI.

Table 8.6, "Translation of Special Strings Representing the Editing Key Codes When Recording a Session
File from an Input File" describes special string translations for codes associated with editing keys when
a session file is recorded from an input file.

Table 8.6. Translation of Special Strings Representing the Editing Key Codes When
Recording a Session File from an Input File

Translation in Session FileSpecial String in Input File

VT200 Mode VT100 and VT52 Modes

{FIND} CSI 1~ and ESC [1 1~ —
{INSERT_HERE}
and {INSERT}

CSI 2~ and ESC [1 2~ —

{REMOVE} CSI 3~ and ESC [1 3~ —
{SELECT} CSI 4~ and ESC [1 4~ —
{PREV_SCREEN}
and {PREV}

CSI 5~ and ESC [15~ —

{NEXT_SCREEN}
and {NEXT}

CSI 6~ and ESC [16~ —

1ESC [is the 7-bit code extension equivalent for the 8-bit control string CSI.

Table 8.7, "Translation of Special Strings Representing the Keypad Key Codes When Recording a Session
File from an Input File" describes special string translations for codes associated with the keypad keys
when a session file is recorded from an input file.

127

Chapter 8. Working with Terminal Session Files

Table 8.7. Translation of Special Strings Representing the Keypad Key Codes When
Recording a Session File from an Input File

Translation in Session File

ANSI Mode1 VT52 Mode1
Special String in
Input File

Numeric Keypad
Mode

Application
Keypad Mode

Numeric Keypad
Mode

Application
Keypad Mode

{KP0} 0 SS3 p
and ESC O 2 p

0 ESC ? p

{KP1} 1 SS3 q
and ESC O 2 q

1 ESC ? q

{KP2} 2 SS3 r
and ESC O 2 r

2 ESC ? r

{KP3} 3 SS3 s
and ESC O 2 s

3 ESC ? s

{KP4} 4 SS3 t
and ESC O 2 t

4 ESC ? t

{KP5} 5 SS3 u
and ESC O 2 u

5 ESC ? u

{KP6} 6 SS3 v
and ESC O 2 v

6 ESC ? v

{KP7} 7 SS3 w
and ESC O 2 w

7 ESC ? w

{KP8} 8 SS3 x
and ESC O 2 x

8 ESC ? x

{KP9} 9 SS3 y
and ESC O 2 y

9 ESC ? y

{COMMA} , (comma) SS3 l
and ESC O 2 l

,(comma) ESC ? l

{MINUS} - (minus) SS3 m
and ESC O 2 m

- (minus) ESC? m

{PERIOD} . (period) SS3 n
and ESC O 2 n

.(period) ESC ? n

{ENTER} CR SS3 M
and ESC O 2 M

CR ESC ? M

{PF1} SS3 P
and ESC O 2 P

SS3 P
and ESCO 2 P

ESC P ESC P

{PF2} SS3 Q
and ESC O 2 Q

SS3 Q
and ESCO 2 Q

ESC Q ESC Q

{PF3} SS3 R
and ESC O 2 R

SS3 R
and ESCO 2 R

ESC R ESC R

{PF4} SS3 S
and ESC O 2 S

SS3 S
and ESC OS 2

ESC S ESC S

1ANSI mode applies to VT200 and VT100 modes. VT52 mode is an ANSI-incompatible mode.
2ESC O is the 7-bit code extension equivalent for the 8-bitcontrol string SS3.

128

Chapter 8. Working with Terminal Session Files

Table 8.8, "Translation of Special Strings Representing the Arrow Key Codes When Recording a Session
File from an Input File" describes special string translations for arrow key codes when a session file is
recorded from an input file.

Table 8.8. Translation of Special Strings Representing the Arrow Key Codes When
Recording a Session File from an Input File

Translation in Session FileSpecial String in
Input File ANSI Mode 1 VT52 Mode 1

Cursor Key Mode
Reset Normal

Cursor KeyMode
Set Application

Cursor Key Mode
Reset Normal

Cursor KeyMode
Set Application

{UP_ARROW}
and {UP}

CSI A
and
ESC [3 A

SS3 A
and
ESC O 2 A

ESC A ESC A

{DOWN_ARROW}
and {DOWN}

CSI B
and
ESC [3B

SS3 B
and
ESC O 2 B

ESC B ESC B

{RIGHT_ARROW}
and {RIGHT}

CSI C
and
ESC[3 C

SS3 C
and
ESC O 2 C

ESC C ESC C

{LEFT_ARROW}
and {LEFT}

CSI D
and
ESC [3D

SS3 D
and
ESC O 2 D

ESC D ESC D

1ANSI mode applies to VT200 and VT100 modes. VT52 mode is an ANSI-incompatible mode.
3ESC [is the 7-bit code extension equivalent for the 8-bitcontrol string CSI.
2ESC O is the 7-bit code extension equivalent for the 8-bitcontrol string SS3.

Table 8.9, "Translation of Special Strings Representing the Recording Functions When Recording a
Session File from an Input File" describes special string translations for codes associated with recording
functions when a session file is recorded from an input file.

Table 8.9. Translation of Special Strings Representing the Recording Functions When
Recording a Session File from an Input File

Special String in Input File Translation in Session File

{BEGIN_COMPARE} DLE 1 B
{COMPARE_SCREEN} DLE 1 C
{END_COMPARE} DLE 1 E
{WAIT} DLE 1 W
{BEGIN_COMMENT} DLE 1 !
{END_COMMENT} SUB (Ctrl/Z)

1 DLE (Ctrl/P) is used here only as an example. The actual value will be the termination character specified when the session file is recorded.

129

Chapter 8. Working with Terminal Session Files

130

Chapter 9. Working with
DECwindows Session Files
When you record a DECwindows test, VSI Digital Test Manager creates an editable and ASCII format
session file containing all the mouse inputs, keyboards inputs, and text output activity that occurred
during recording. VSI Digital Test Manager reads this file during test playback to transmit recorded input
activity to the workstation under test. Playback reads the output text records from the script and uses that
text information to properly pace the playback of the mouse and keyboard input.

9.1. DECwindows Session File Format
Example 9.1, "DECwindows Session File" shows a simple DECwindows session file. It has been edited
to show some of the optional records that could be added to a script. This script moves to the session
manager icon box, brings up its help menu, saves a screen, and brings down the help menu. A loop
record is used to make this occur three times.

Example 9.1. DECwindows Session File

Orient= 1020408;
HeadSize=92; XdtVers=2; Xvers=12; Xrel=0; NScrs=1;
ScrNum=0; ScrWid=1024; ScrHt=864; ScrPlanes=1;
HeadExt=255; StartData=100;
PF= "DEC" ; XTRel=3; XtVers=3; XTRev-0; Flags=41bf;
Requests = " 0 0 1400 0 0 0 0 0 ";
Events = " 7C 0 0 0 0 0 0 0 ";
#
Configuration records
#
SetScreen(0); SetBase(0,0); SetTimeout(Actual,180); SetSpeed(100);
Set Delay(100);
#
Begin of recorded input and output events.
#
Msg("Defining a logical name on OpenVMS");
#
Note that system() commands are nonportable.
#
Shell ("define/job sample_apps 255dua101:[users.sample_apps]");
#
Now loop
#
Loop(3);
#
Teleport mouse to Session Box and click on the Help icon
#
XY(457,739,16); XY(458,739,16) XY(459,739,32); XY(460,739,64);
XY(461,739,48); XY(462,739,80);
BP(1,462,739,128,0);
WaitForText(76, 1, 540, 0, 0, 25, "Session Manager on WUTSUP");
 WaitForText(74, 2, 1310, 0, 0, 9, "On Window");
 WaitForText(74, 2, 1600, 0, 0, 9, "On Basics");
 WaitForText(74, 2, 1610, 0, 0, 8, "Tutorial");
 WaitForText(74, 2, 1620, 0, 0, 10, "On Version");

131

Chapter 9. Working with DECwindows Session Files

 WaitForText(74, 2, 1640, 0, 0, 7, "On Help");
BR(1,462,739,4176,0);
#
Save the screen
#
SaveScreen(FullScreen,0,0,0,0,0,5170,0);
#
Move away from the Help menu and click anywhere to remove it
#
XY(420,785,16); XY(420,786,16) XY(420,787,16); XY(420,788,16);
XY(420,789,32); XY(420,790,16) XY(419,791,32);
BP(1,419,791,352,0); BR(1,419,791,464,0);
#
Do next loop
EndLoop();
#
The end of this script
#
Note("This is an alternate way to comment.");
Note("This form of commenting will allow you to use the");
Note("pound sign for C pre-processor directives that could");
Note("generate scripts using system commands specific to");
Note("a platform.");

9.1.1. DECwindows Session File Header Information
The first seven lines of a DECwindows session file show the workstation configuration on which the
session file was recorded. Note that the header information is at the beginning of the file. You should
make edits to the file after the header information only.

The header information is generated by querying the workstation under test. The returned information is
as follows:

● The version of the VSI Digital Test Manager DECwindows testing tool.

● The version and release of X.

● The number of screens on the workstation.

● The screen on which the recording was done.

● The height, width and depth of the screen.

● The size of any extended header data.

● The offset (in bytes) to the start of script records.

● The platform running the X server.

● The XTrap X server extension version, release and revision.

● A set of undocumented flags reserved for VSI Digital Test Manager use.

● A hexadecimal bit mask of the X Requests found in the session file. Each hexadecimal number
represents 16 bits or a word.

● A hexadecimal bit mask of the X Events that were recorded. Each hexadecimal number represents 8
bits or a byte.

132

Chapter 9. Working with DECwindows Session Files

9.1.2. DECwindows Session File Records
The session file contains the following records:

● #—This is the comment character. It can occur any place after the initial data header for the script
file. The initial data header ends with the first line after the ’Events= ’ record.

● Note("%s");—This is another form of commenting. It is more difficult to use, but it allows the use of
the pound sign (#) for C preprocessing.

● SetScreen(%d);—The set screen record indicates the number of the X Server screen that playback
uses to transmit X events. This is usually screen 0.

● SetBase(%d,%d);—This record is reserved for future use to set the absolute X and Y coordinates for
relative mouse motion during playback. This record can be used as part of the default header setup
for newly recorded session files. The default is ’SetBase(0,0);’.

● SetTimeout(%d,%d);—This record tells playback how long to wait for a particular WaitForText()
record when playback has already waited the time specified in this record. The decimal given is in
seconds, and the text string should read ’Actual’. The record default is ’SetTimeout(Actual,60);’.

● SetSpeed(%d);—This record indicates the speed of playback relative to the recording times,
expressed as a percentage. For example, a value of 50 indicates that the test should be played back at
half speed. The default is ’SetSpeed(100)’.

● SetDelay(%d);—This record indicates a scaling factor to be applied during playback to delays that
occurred when the test was recorded. The value is expressed as a percentage. For example, a value
of 50 indicates that delays should be reduced to half their duration when recorded. The default is
’SetDelay(100)’.

● KP(XK_%s,%d);—This is the key press record that tells playback to simulate a key press to the
current workstation. The key string is a key symbol, followed by a millisecond delta time. XK_ is the
prefix to keyboard key symbols defined in the X windows keysym.h file. Record and playback use
the X toolkit’s translation routines to map key symbols to X Server-specific key codes. This file is
found in DECW$INCLUDE.

● KR(XK_%s,%d);—This record simulates a key release on the workstation currently being driven.
See the discussion for KP(); for more details. The %s is the keyboard key string found in keysym.h
(XK_ is part of the key string).

● BP(%d,%d,%d,%d,%d);—This record simulates a button press to the X workstation under test. The
data for this record is BP(button#,x-coord,y-coord,delta-milli-timestamp, window_id). The window
identifiers are not yet recorded.

● BR(%d,%d,%d,%d,%d);—This record is a button release record very similar to the button press
record above. It simulates a button release event on the current X server being driven.

● XY(%d,%d,%d);—This record simulates a mouse event to the X Workstation under test. The
parameters are ’XY(x-coord,y-coord,timestamp);’. This is a motion notify event in X terms.

● Loop(%d);—This record allows looping around a section of a script. It is a simple mechanism in
that the corresponding EndLoop record matches the last seen Loop record. These can be nested, but
a nested loop cannot cross its parent’s boundary. The decimal indicates how many times the loop
should execute.

133

Chapter 9. Working with DECwindows Session Files

● EndLoop();—The EndLoop record terminates the Loop record. These records match only the most
recently used Loop record.

● SaveScreen(%d,%d,%d,%d,%d,%d,%d,%d);—This record saves a screen on the X workstation
under test. Its parameters are as follows:

○ A string to indicate the type of save screen to be done. Currently only a full screen can be saved.
The string used is ’FullScreen’.

○ A decimal indicating the widget level of the screen to be saved. This is not implemented, but is
specified as 0 and must be present in the record.

○ A decimal indicating the X coordinate of the screen section to save. This is not implemented, but
is specified as 0 and must be present in the record.

○ A decimal indicating the Y coordinate of the screen section to save. This is not implemented, but
is specified as 0 and must be present in the record.

○ A decimal indicating the width of the screen section to save. This is not implemented, but is
specified as 0 and must be present in the record.

○ A decimal indicating the height of the screen section to save. This is not implemented, but is
specified as 0 and must be present in the record.

○ A decimal indicating the millisecond delta-timestamp that playback will use to wait before saving
the screen.

○ A decimal indicating the identifier of the window to save. This is not implemented, but is
specified as 0 and must be present in the record.

● Shell("%s");—This record allows a script to call out to the operating system to do anything the user
wants. The command string is quoted for this record and is executed by the system during playback.
Use this directive with caution.

● Msg("%s");—This record outputs a user-specified text string to the current output device. This could
be standard output or the record and playback user interface.

● WaitForText((%d,%d,%d,%d,%d,%d,"%s");— This record defines attributes of a text string that
playback uses to wait. When the text string shows up to the playback client, playback continues. If
the text string does not show up to playback, playback times out the text string based on the time
stamp in the text string and the value of the SetTimeout() record. Its parameters are as follows:

○ A decimal indicating the X Request identification of the text string. This is 74 for X_PolyText8
strings and 76 for X_ImageText8 strings. The difference between these strings is that ImageText
X Requests contain one single string of text to output, whereas PolyText X Requests can contain
many text strings to output. Regardless, all text strings get their own WaitForText() records.
ImageText strings are seen in typing dialog boxes and terminal simulation boxes like DECterms.
PolyText strings are usually associated with pull down menus, labels, toggles and other nontyping
textual information.

○ A decimal holding the identifier of the client to which this string was associated. In some cases,
this field can change from playback to playback, and is in the record for future use.

○ A decimal, millisecond delta-time used for timeout purposes during playback. It reflects the
delta-time from the last user input in most cases. It is arrival time as seen by the record.

134

Chapter 9. Working with DECwindows Session Files

○ A decimal showing the absolute X coordinate of where the text was placed on the screen. This is
not currently used, but must be present in the record.

○ A decimal showing the absolute Y coordinate of where the text was placed on the screen. This is
not currently used, but must be present in the record.

○ A decimal indicating the size of the text string that follows in quotes.

○ The text string that was seen by record and playback. Record and playback take the last 32
characters of any incoming text string for processing purposes.

9.2. Synchronizing Playback
Input events can be lost if they are sent to a workstation before the workstation can process the input.
For example, if the mouse clicks on a menu item that has not yet appeared on the screen, the application
would never see the mouse click as a selection of an item in the pull down menu. The application might
well see the mouse click as a change-focus action. Regardless, the intent of the mouse click will have
been corrupted from the point of view of a playback.

Recorded scripts contain WaitForText() records that cause the playback system, when it reads the script
record, to stop sending data to the workstation until the workstation returns specified text to the playback
client. When playback receives the output text from the workstation, playback resumes sending input
data to the workstation.

When you record a DECwindows session file, VSI Digital Test Manager records text information
generated by the application as it is manipulated. This information is written to the session file as
WaitForText() records. These records provide what is called text-based synchronization, and they
are used during playback to pace input with application output. They are used to determine when the
application is ready for more keyboard or mouse input. Playback uses every WaitForText() record as a
synchronization point.

There is a timeout feature to keep playback from waiting for a text pattern that will never show up (for
example, a time or date string from DECW$CLOCK or DECW$CALENDAR). This timeout feature
takes the time stamp on the WaitForText() record (which indicates how long it took the record client to
see the text string) and adds a default timeout value in seconds. The default is currently 60 seconds as
can be seen in any recorded session file.

When you record the test, there might be text output that will not normally appear when the test is
played back. This extraneous text appears as WaitForText() records in your session file. When the
text is played back, these records cause an unneeded delay in the test execution as VSI Digital Test
Manager waits for each text to appear, then times out when the text does not appear. These records can
be commented out of the script manually or automatically.

9.2.1. Auto Synchronize Option
VSI Digital Test Manager provides a method by which you can automatically remove undesirable
WaitForText() records from your session file. To do this, use the Auto Synchronize option with the Play
command. This is specified as /AUTOSYNCH from the Play command, or from the toggle switch in the
Play dialog box when using the DECwindows interface.

When the Play command is executed with the /AUTOSYNCH Auto Synchronize option, VSI Digital
Test Manager automatically comments out all WaitForText() records in the session file that do not occur
during the playback. Effectively, a new session file is generated from this type of playback.

135

Chapter 9. Working with DECwindows Session Files

The only caution with this form of playback is that it should be used only on a playback that is being
monitored by the user. If something goes wrong with the test application such that it does not come up
on the workstation, all WaitForText() records in the script could end up being commented out. In a case
like this, playback can be aborted using the F9-C keyboard command on the workstation under test. Note
that if a collection is being run, only that test will abort. Because the following tests in the collection will
be run, you can abort a collection only by pressing F9-C for all the subsequent tests.

9.2.2. Record and Playback Resource File
The record and playback tool reads and uses the values found in its default resource
file (SYS$LIBRARY:DXDTMPLAYREC.DAT). This file can be copied to DECW
$USER_DEFAULTS:DXDTMPLAYREC.DAT and edited to provide the default record and playback
behavior desired.

The following list describes the resources that you can modify to customize record and playback
behavior:

● Set the generalVerboseFlag resource to 1 to obtain informational messages during record and
playback.

● Set the generalShowLines resource to 1 to obtain playback informational messages that show each
record from the session file as it is processed.

● Use the generalTimeoutValue resource to set the timeout duration for WaitForText records used to
synchronize playback. The value is in seconds.

● Use the cmdkeyValue resource used to set the keysym key. Use the mnemonic for the key definition,
without the preceeding XK_, found in the DECW$INCLUDE:KEYSYMDEF.H file.

136

Chapter 10. VSI Digital Test
Manager Callable Interface
This chapter describes the callable interface for VSI Digital Test Manager. DTM$DTM is a high-level
entry point that enables calling programs to pass a DCL command line to VSI Digital Test Manager for
processing. DTM$DTM parses and executes the command line, then returns to the calling program. It
can return all return codes and CLI$ errors. The DTM$DTM routine provides a full command-line level
interface into VSI Digital Test Manager.

10.1. Calling Sequence for DTM$DTM
The format for using DTM$DTM is as follows:

DTM$DTM ([command_line],

[msg_routine],

[prompt_routine],

[confirm_routine],

[output_routine],

[width],

[init_flag])

To perform confirmation, prompting, or display output, you must supply callback routines. The following
sections describe these callback routines and other parameters to the DTM$DTM routine.

10.1.1. Command Line (command_line)
Type: char_string
Access: read
Mechanism: by descriptor

The command-line parameter specifies the address of a string descriptor that contains a command line.
If you specify a value of 0, VSI Digital Test Manager calls DTM$$GET_INPUT to obtain the command
line. The prompt_routine parameter is then passed as a parameter to CLI$DCL_PARSE.

10.1.2. Message Routine (msg_routine)
Type: procedure
Access: read
Mechanism: by reference

The message routine specifies a message handler routine. See Section 10.4, "Writing an Error Message
Handler" for information about writing a message handler routine.

10.1.3. Prompt Routine (prompt_routine)
Type: procedure

137

Chapter 10. VSI Digital Test Manager Callable Interface

Access: read
Mechanism: by reference

The prompt routine parameter specifies the address of a callback routine that is called when the caller
specifies a missing or incomplete line.

If you do not specify a prompt callback, VSI Digital Test Manager does not prompt you, but operates
as if a callback were specified and has returned the status RMS$_EOF (except in the case of prompting
for a VSI Digital Test Manager remark,where the status is RMS$_NORMAL). The RMS$_EOF return
status causes termination of command parsing (as if you pressed Ctrl/Z at the DCL prompt).

The prompt callback routine is called with three parameters:

response_string

Specifies the address of a descriptor that points to the character string into which the prompt routine
writes the text in response to the prompt

prompt_string

Specifies a string descriptor containing the prompt string, passed by reference

response_string_length

Specifies the number of bytes written into response-string by the prompt routine

Note

The parameters you specify for the prompt routine parallel the parameters for the Run Time Library
(RTL) routine, LIB$GET_INPUT, allowing LIB$GET_INPUT to be specified as your callback routine.

10.1.4. Confirmation Routine (confirm_routine)
Type: procedure
Access: read
Mechanism: by reference

When the /CONFIRM qualifier is specified as part of the command line, the confirmation routine
parameter specifies the address of a callback routine that is used, rather than specifying direct terminal
input.

This routine works in either of two modes. It can return a string in the response-string parameter, or
the status of whatever operation it used to obtain the string (for example, LIB$GET_INPUT or $QIO
status). Table 10.1, "Confirm_Routine Response String" describes the valid values that might be returned
in the response string.

Table 10.1. Confirm_Routine Response String

String Meaning

YES, 1, true Indicates positive confirmation
ALL Indicates positive confirmation and that future

actions of the current call to VSI Digital

138

Chapter 10. VSI Digital Test Manager Callable Interface

String Meaning
Test Manager should be carried out without
confirmation

NO, 0, false Indicates negative confirmation
QUIT Indicates negative confirmation and that VSI

Digital Test Manager performs no further actions

The confirmation routine might also return a confirmation status code as in Table 10.2,
"Confirm_Routine Return Status".

Table 10.2. Confirm_Routine Return Status

Return Code Meaning

DTM$_CONFIRM Yes
DTM$_NOCONFIRM No
DTM$_ALL All
DTM$_STOPPED Quit

If the callback routine returns one of these codes, any string returned is ignored. The callback routine
returns a status of DTM$_NORMAL when returning a response string.

For confirmation where ALL and QUIT are not meaningful, ALL is equivalent to YES and QUIT is
equivalent to NO.

If you do not specify a confirm callback routine, VSI Digital Test Manager does not request
confirmation. It operates as if a callback had been specified and had returned the string YES. VSI Digital
Test Manager then proceeds with the operation.

If an invalid response is given, VSI Digital Test Manager prompts you again. Note that any response can
be abbreviated to a single character. If a null string is returned, VSI Digital Test Manager defaults to NO.

The confirm callback routine is called with two parameters:

response_string

Specifies the address of a descriptor that points to the character string into which the confirm routine
writes the text in response to the confirmation prompt.

prompt_string

Specifies a string descriptor passed by reference for the prompt string, which can then be displayed to the
user.

10.1.5. Output Routine (output_routine)
Type: procedure
Access: read
Mechanism: by reference

The output routine parameter specifies the address of a callback routine to handle output usually sent to
SYS$OUTPUT. For example, all output from a SHOW command is directed to SYS$OUTPUT (in the

139

Chapter 10. VSI Digital Test Manager Callable Interface

absence of an overriding /OUTPUT qualifier). Note also that if you specify the /OUTPUT qualifier to
redirect terminal output to a file, VSI Digital Test Manager opens, writes to, and closes the file normally
and does not use the output callback routine. This callback also receives the output for the commands
specifying the /OUTPUT=SYS$OUTPUT qualifier.

If you do not specify output_routine, VSI Digital Test Manager writes all output to SYS$OUTPUT.

The output callback routine is called with one parameter:

output_string

Specifies a string descriptor for the output string, passed by reference.

10.1.6. Output Width (width)
Type: longword_signed
Access: read
Mechanism: by reference

When using the DTM$DTM callable interface, if the OUTPUT_ROUTINE parameter is specified but
the OUTPUT_WIDTH parameter is not specified, all SHOW commands return its output one character
at a time.

10.1.7. Initialization Flag (init_flag)
Type: longword_signed
Access: read
Mechanism: by reference

The initialization flag parameter specifies whether VSI Digital Test Manager processes an existing
initialization command file before processing the passed command line. If this argument is not specified,
the default is to execute the initialization file. Specifying a 0 value suppresses the execution of the
initialization command file.

10.2. Rules for Writing VSI Digital Test
Manager Callback Routines
When you write VSI Digital Test Manager callback routines, follow these rules:

● Every callback routine must return control to VSI Digital Test Manager. If your routine does not
return control to VSI Digital Test Manager, VSI Digital Test Manager cannot finish the transaction
and the library remains locked. (If your library becomes locked, you must use the VERIFY
command with the /RECOVER qualifier to unlock it.) In addition, any resources used to process the
command are not released.

● Callback routines must return a defined condition value to VSI Digital Test Manager. You can use
DTM$_NORMAL to indicate successful completion of the callback routine, or you can return
a condition code from an OpenVMS system service or other system software. VSI Digital Test
Manager checks for the DTM$_EOF and RMS$_EOF values, and checks the low-order bit to
determine whether the status code indicates success.

140

Chapter 10. VSI Digital Test Manager Callable Interface

● A success code directs VSI Digital Test Manager to continue processing. If more data awaits
processing, VSI Digital Test Manager calls the callback routine again.

● If the callback routine encounters an error during processing, it aborts the VSI Digital Test Manager
call by returning an error status, thus causing the call to exit.

10.3. Handling Error Conditions
VSI Digital Test Manager handles error conditions in one of two ways:

● If the condition is not fatal, VSI Digital Test Manager calls a message handler. You can provide a
message routine to handle messages (see Section 10.4, "Writing an Error Message Handler"), or, if
you do not provide a message routine, VSI Digital Test Manager calls its own message handler.

● If the condition is fatal, VSI Digital Test Manager signals the error. Fatal conditions are those
situations where execution cannot continue. VSI Digital Test Manager does not call the message
routine under these circumstances.

If you have established a condition handler in the calling program and the condition handler encounters
a fatal return value, do not return a value of SS$_CONTINUE from the condition handler or signal SS
$_CONTINUE again, and do not issue additional calls to VSI Digital Test Manager until you have exited
and entered the image again. The fatal error indicates that VSI Digital Test Manager cannot continue
with the current invocation of the image.

If you supply a routine for input or output and you establish a condition handler within this routine, do
not exit from the image (either through the condition handler or the routine itself).

To exit the image, return an error (any status with the low bit clear) from your routine, causing VSI
Digital Test Manager to terminate with DTM$_USERERR status. DTM$_USERERR status indicates
that a callback routine returned an error.

10.4. Writing an Error Message Handler
VSI Digital Test Manager directs all diagnostic messages to the default destinations SYS$OUTPUT
and SYS$ERROR. However, you can write your own routine to handle messages. When you specify
the msg_routine parameter to the DTM$DTM routine, VSI Digital Test Manager passes control to
your message handler instead of using the default handler. VSI Digital Test Manager does not call your
message handler routine if a fatal condition occurs, but instead notifies you by signaling the condition. If
you receive a fatal error message, exit and enter VSI Digital Test Manager again; do not attempt to recall
it within the same image invocation if VSI Digital Test Manager detected a fatal error.

VSI Digital Test Manager passes the following parameters in the order shown with each call to
msg_routine:

(signal_array, mechanism_array)

signal_array

Type: vector_longword_unsigned
Access: read
Mechanism: by reference

Specifies a standard OpenVMS signal array.

141

Chapter 10. VSI Digital Test Manager Callable Interface

mechanism_array

Type: vector_longword_unsigned
Access: read
Mechanism: by reference

Specifies a standard OpenVMS mechanism array.

When you write message-handling routines, follow these rules:

● Do not invoke any VSI Digital Test Manager routines from a message routine.

● Do not use the LIB$ESTABLISH RTL routine to enable the message routine as the exception
handler for a VSI Digital Test Manager call. VSI Digital Test Manager uses its own exception
handlers and calls the user-supplied message routine under the correct circumstances. (The message
routine is only for handling messages, not for general exception handling during the execution of a
VSI Digital Test Manager routine.)

10.5. Linking with the VSI Digital Test Manager
Image
You need to specify the VSI Digital Test Manager shareable image to the DCL LINK command. You
explicitly reference the shareable image (SYS$SHARE: DTMSHR.EXE) by specifying the linker option,
as follows:

$ LINK filename[,...],SYS$INPUT/OPTIONS Return
SYS$SHARE:DTMSHR.EXE/SHARE
Ctrl/Z

142

	VSI DECset for OpenVMS Guide to VSI Digital Test Manager
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. References to Other Products
	6. OpenVMS Documentation
	7. VSI Encourages Your Comments
	8. Conventions

	Chapter 1. Introduction to VSI Digital Test Manager
	1.1. Overview
	1.2. Entering Commands
	1.2.1. Getting Help
	1.2.2. Canceling Commands

	1.3. Getting Started

	Chapter 2. Using VSI Digital Test Manager for OpenVMS in a DECwindows Environment
	2.1. Overview
	2.1.1. Getting Help
	2.1.2. Displaying VSI Digital Test Manager Information in DECwindows
	2.1.3. VSI Digital Test Manager Command Correlation

	2.2. Sample DECwindows Session
	2.2.1. Creating a Library
	2.2.2. Creating a Test
	2.2.3. Recording a Test
	2.2.4. Creating a Collection
	2.2.5. Executing a Collection
	2.2.6. Displaying Test Results
	2.2.7. Updating a Benchmark File
	2.2.8. Creating a Benchmark Mask
	2.2.9. Removing the Screen Editor

	Chapter 3. Creating Tests
	3.1. VSI Digital Test Manager Libraries
	3.1.1. Creating a VSI Digital Test Manager Library
	3.1.2. Setting a Library
	3.1.3. Displaying VSI Digital Test Manager Library Information
	3.1.4. VSI Digital Test Manager History
	3.1.4.1. Adding a Remark to the History
	3.1.4.2. Deleting History Information

	3.2. Test Descriptions
	3.2.1. Creating Test Descriptions
	3.2.2. Displaying Test Descriptions
	3.2.3. Copying Test Descriptions
	3.2.4. Modifying Test Descriptions
	3.2.5. Deleting Test Descriptions

	3.3. Creating Noninteractive Tests
	3.3.1. Writing a Noninteractive Test
	3.3.2. Writing a Template File for a Noninteractive Test
	3.3.3. Creating a Noninteractive Test Description

	3.4. Creating Interactive Tests
	3.5. Recording Interactive Tests
	3.5.1. Recording Interactive Terminal Tests
	3.5.1.1. Terminal Record Command Keys
	3.5.1.2. Exiting from a Terminal Recording Session
	3.5.1.3. Redefining the Termination Character

	3.5.2. Recording Interactive DECwindows Tests
	3.5.2.1. DECwindows Record Command Keys
	3.5.2.2. Redefining the Command Key
	3.5.2.3. Exiting from a DECwindows Recording Session

	3.6. Playing Back an Interactive Test
	3.6.1. Playing an Interactive Terminal Test
	3.6.2. Playing an Interactive DECwindows Test

	3.7. Processing Considerations for Interactive Terminal Tests
	3.7.1. Time-Dependent Applications
	3.7.2. Playing Back Applications in Real Time
	3.7.3. Ctrl/C or Ctrl/Y
	3.7.4. Applications That Accept Unsolicited Input
	3.7.5. Device Type and Terminal Characteristics
	3.7.6. Graphics Mode Commands
	3.7.7. Comparison of Scrolled Screens

	Chapter 4. Organizing and Executing Test Collections
	4.1. Creating Collections
	4.2. Executing Collections
	4.2.1. Executing Collections in Batch Mode
	4.2.2. Executing Collections Interactively
	4.2.3. Stopping the Execution of Collections

	4.3. Displaying a Collection Summary
	4.4. Deleting Collections
	4.5. Re-Creating Collections
	4.6. Comparing Test Results
	4.7. Recomparing Partially Compared Collections

	Chapter 5. Reviewing Test Results
	5.1. Review Concepts
	5.1.1. Using Result Descriptions
	5.1.1.1. Output Files
	5.1.1.2. Comparison Status

	5.1.2. Specifying Result Descriptions

	5.2. Examining Test Results
	5.2.1. Using the Review Subsystem
	5.2.1.1. Review Subsystem Overview
	5.2.1.2. Primary and Read-only Reviewers
	5.2.1.3. Canceling Review Subsystem Commands
	5.2.1.4. Locating Test Results in the Review Subsystem
	5.2.1.5. Using the Review Subsystem Keypads

	5.2.2. Displaying Test Results
	5.2.3. Printing Test Results

	5.3. Working with Test Results
	5.3.1. Updating an Existing Benchmark File
	5.3.2. Creating a Benchmark File for a New Test
	5.3.3. Reviewing Partially Run Collections

	Chapter 6. Tailoring Your Test System
	6.1. Using Prologue and Epilogue Files
	6.1.1. Test Prologue and Epilogue Files
	6.1.2. Collection Prologues and Epilogues

	6.2. Grouping Tests
	6.2.1. Organizing Tests into Groups
	6.2.2. Displaying a Group Structure
	6.2.3. Removing Tests and Sub-groups from Groups
	6.2.4. Deleting Groups

	6.3. Using Variables
	6.3.1. Modifying and Deleting Variables
	6.3.2. Overriding Variable Default Values
	6.3.3. Using Variables Defined by VSI Digital Test Manager
	6.3.3.1. DTM$COLLECTION_NAME Global Symbol
	6.3.3.2. DTM$TEST_NAME Local Symbol
	6.3.3.3. DTM$RESULT Logical Name

	6.3.4. Using User-Defined Variables to Control VSI Digital Test Manager
	6.3.4.1. DTM$DELAY_TIMEOUT Logical Variable
	6.3.4.2. DTM$OMIT_PRINTABLE_SCREENS Logical Variable
	6.3.4.3. DTM$DATE_FILTER_MIN_YEAR Logical Variable
	6.3.4.4. DTM$DATE_FILTER_MAX_YEAR Logical Variable
	6.3.4.5. DTM$DATE_FILTER_STRING Logical Variable
	6.3.4.6. DTM$DATE_FILTER_FIRST Logical Variable
	6.3.4.7. DTM$DATE_MASK_MIN_YEAR Logical Variable
	6.3.4.8. DTM$DATE_MASK_MAX_YEAR Logical Variable
	6.3.4.9. DTM$IGNORE_PROLOGUE_ERRORS Logical Variable
	6.3.4.10. DTM$RETAIN_RESULTS Logical Variable
	6.3.4.11. DTM$TIME_FILTER_NO_SPACE Logical Variable

	6.4. Using Filters
	6.4.1. Associating and Disabling Test Filters
	6.4.2. Applying File Filters
	6.4.3. Using Masks
	6.4.4. User Defined Filters
	6.4.4.1. Command Qualifier
	6.4.4.2. Variables for User Filters
	6.4.4.3. Filtering Benchmarks on Recording Interactive Terminal Tests
	6.4.4.4. Using the Global Replace Procedure
	6.4.4.5. Examples of User Filters

	6.5. Defining Keypad Keys
	6.6. Using Command Files
	6.6.1. Creating and Invoking a Command File
	6.6.2. Creating a VSI Digital Test Manager Initialization Command File

	6.7. Spawning or Attaching to Another Process
	6.8. Gathering Test Coverage Data

	Chapter 7. Maintaining a VSI Digital Test Manager Library
	7.1. Correcting an Invalid VSI Digital Test Manager Library
	7.2. Storing Files Outside a VSI Digital Test Manager Library
	7.2.1. Setting Benchmark and Template Directories
	7.2.2. Storing Files in CMS Libraries

	7.3. Security Features
	7.3.1. Assigning UIC Protection
	7.3.2. Assigning ACL Protection
	7.3.2.1. Using ACLs on Library Directories
	7.3.2.2. Using ACLs on Library Files

	Chapter 8. Working with Terminal Session Files
	8.1. Terminal Session Files
	8.1.1. Sample Session File
	8.1.2. Terminal Session File Structure
	8.1.2.1. Record Structure of Session Files
	8.1.2.2. Modifying Session Files Directly

	8.2. Input Files
	8.2.1. Sample Input File
	8.2.2. Special Strings
	8.2.2.1. Types of Special Strings Recognized by VSI Digital Test Manager
	8.2.2.2. Using Special Strings in Input Files

	8.3. Creating Input Files
	8.3.1. Extracting an Input File from a Session File
	8.3.2. Creating an Input File with a Text Editor

	8.4. Recording a Session File from an Input File
	8.4.1. Using the /INPUT Qualifier
	8.4.2. Using the INSERT Recording Function
	8.4.3. Terminal Characteristics
	8.4.4. Type-Ahead

	8.5. Translation Tables

	Chapter 9. Working with DECwindows Session Files
	9.1. DECwindows Session File Format
	9.1.1. DECwindows Session File Header Information
	9.1.2. DECwindows Session File Records

	9.2. Synchronizing Playback
	9.2.1. Auto Synchronize Option
	9.2.2. Record and Playback Resource File

	Chapter 10. VSI Digital Test Manager Callable Interface
	10.1. Calling Sequence for DTM$DTM
	10.1.1. Command Line (command_line)
	10.1.2. Message Routine (msg_routine)
	10.1.3. Prompt Routine (prompt_routine)
	10.1.4. Confirmation Routine (confirm_routine)
	10.1.5. Output Routine (output_routine)
	10.1.6. Output Width (width)
	10.1.7. Initialization Flag (init_flag)

	10.2. Rules for Writing VSI Digital Test Manager Callback Routines
	10.3. Handling Error Conditions
	10.4. Writing an Error Message Handler
	10.5. Linking with the VSI Digital Test Manager Image

