
VSI OpenVMS

VSI DECwindows Motif
Guide to Application Programming

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI DECwindows Motif Guide to Application Programming

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

All other trademarks and registered trademarks are the property of their respective holders.

ii

VSI DECwindows Motif Guide to Application Programming

Table of Contents
Preface .. ix

1. About VSI ... ix
2. Intended Audience .. ix
3. Document Structure .. ix
4. Associated Documents ... x
5. VSI Encourages Your Comments .. x
6. OpenVMS Documentation ... x
7. Typographical Conventions ... x

Chapter 1. Introduction ... 1
1.1. Overview of DECwindows Motif Toolkit .. 1

1.1.1. Toolkit Building Blocks: Widgets and Gadgets .. 1
1.1.2. Widget Types .. 2
1.1.3. Widgets in the OSF/Motif Toolkit ... 3
1.1.4. Widgets Provided by VSI ... 4
1.1.5. Toolkit Widget and Gadget Routines ... 4
1.1.6. Application Development Tools ... 5
1.1.7. Internationalization Using UIL and MRM .. 5
1.1.8. Toolkit Intrinsic Routines .. 5

1.2. Toolkit Routines Contrasted with UIL .. 6
1.3. Toolkit Routines Contrasted with Xlib Routines .. 6
1.4. Toolkit Programming Considerations .. 6

1.4.1. Application Widget Hierarchy ... 6
1.4.2. OpenVMS DECburger Application Hierarchy ... 7
1.4.3. Form Versus Function .. 8
1.4.4. Associating Functions with Callbacks ... 10
1.4.5. Using Widget Attributes in Applications ... 11

1.4.5.1. Size and Position Attributes .. 11
1.4.5.2. Appearance Attributes .. 11
1.4.5.3. Callback Attributes .. 12
1.4.5.4. Assigning Values to Widget Attributes ... 12

1.5. Using the OpenVMS DECburger Demo Application .. 12
1.6. Non-C Language Examples for OpenVMS .. 13

Chapter 2. DECwindows Application Interface Design ... 15
2.1. Designing a DECwindows Application—Where to Begin .. 15

2.1.1. Application Design Topics ... 15
2.1.2. Use of Callbacks .. 16
2.1.3. Making Assumptions About Resources ... 16
2.1.4. Selecting Appropriate Widgets ... 16
2.1.5. Widgets in the OpenVMS DECburger Application .. 17
2.1.6. Toolkit Intrinsic Routines Used in OpenVMS DECburger 22

Chapter 3. Helpful Hints for Creating a DECwindows Application 25
3.1. Using Widgets Supplied by VSI from UIL .. 25
3.2. XmForm Widget Hints .. 25

3.2.1. Creating a Form Dialog Box with Children .. 25
3.2.2. Aligning Children of Different Sizes .. 29
3.2.3. Centering Widgets at Positions Within an XmForm Widget 32
3.2.4. Spacing XmPushButtons in XmForm Widgets .. 36

3.3. Using Default Files ... 36

iii

VSI DECwindows Motif Guide to Application Programming

3.4. Using Default Files to Save Customized Settings .. 37
3.5. Using Multiple Displays ... 44

3.5.1. Using Multiple Independent Displays .. 45
3.5.2. Using Multiple Interconnected Displays .. 49

3.6. Creating a Cursor .. 52
3.7. Using the XtAppAddInput Routine ... 53
3.8. Freeing Resources Allocated Through UIL .. 64

Chapter 4. Using the Help Widget .. 65
4.1. Overview of the Help Widget .. 65

4.1.1. Invoking the Help Widget ... 67
4.1.2. Help Widget Terminology ... 68

4.2. OpenVMS Help Library Information .. 68
4.2.1. OpenVMS Help Library Modules .. 69

4.2.1.1. Accessing OpenVMS Help Library Modules .. 69
4.2.1.2. Specifying OpenVMS Help Library Key Names 69

4.2.2. OpenVMS Help Library Enhancements .. 69
4.3. Help Widget Components .. 73
4.4. Modifying Help Widget Appearance ... 74

4.4.1. Modifying Help Widget Labels and Mnemonics .. 75
4.4.2. Help Widget Messages .. 76

4.5. Help Widget Callbacks .. 76
4.6. Specifying Help Widget Topics .. 76
4.7. Using the Help Widget .. 77

4.7.1. Context-Sensitive Help .. 78
4.7.1.1. Creating the On Context Push Button in UIL ... 79
4.7.1.2. Entering Context-Sensitive Help Mode .. 80

4.7.2. Specifying a Help Callback ... 81
4.8. Creating the Help Widget with UIL .. 83
4.9. Help Widget Implementation—C Language Module ... 88
4.10. Using the Toolkit Help Widget Creation Routine .. 96

Chapter 5. Using the DECwindows Motif Help System .. 99
5.1. Overview of the Help System .. 99
5.2. Invoking the Help System .. 101
5.3. Help File Information .. 102
5.4. Help File Information—VAX DOCUMENT Example .. 102
5.5. Context-Sensitive Help Callbacks .. 106

5.5.1. Creating the On Context Push Button in UIL .. 106
5.5.2. Entering Context-Sensitive Help Mode ... 107
5.5.3. Specifying a Help Callback .. 109

5.6. Implementing the Help System ... 110
5.7. Help System Implementation—C Language Module ... 116

Chapter 6. Using the Color Mixing Widget ... 123
6.1. Overview of the Color Mixing Widget .. 123
6.2. Color Mixing Widget Resources ... 123
6.3. Color Models .. 124

6.3.1. Color Picker Model .. 124
6.3.1.1. Color Picker Model Spectrum ... 125
6.3.1.2. Selecting a Color Using the Color Picker Model 126
6.3.1.3. Using the Interpolator .. 126

6.3.2. HLS Color Model .. 126
6.3.3. RGB Color Model .. 129

iv

VSI DECwindows Motif Guide to Application Programming

6.3.4. Browser Color Model ... 130
6.3.5. Greyscale Mixer ... 132

6.4. Color Mixing Widget Components ... 134
6.4.1. Scratch Pad .. 134
6.4.2. Color Display Subwidget ... 135
6.4.3. Color Model Option Menu Subwidget .. 135
6.4.4. Color Mixer Subwidget ... 136
6.4.5. Push-Button Subwidgets .. 136
6.4.6. Label Subwidgets ... 137
6.4.7. Work Area Subwidget ... 137
6.4.8. Setting and Retrieving New Color Values ... 137
6.4.9. Customizing the Color Mixing Widget ... 138

6.4.9.1. Specifying Size .. 138
6.4.9.2. Specifying Margins .. 138
6.4.9.3. Labeling the Color Mixing Widget .. 139
6.4.9.4. Defining the Background Color of the Color Display Subwidget 139
6.4.9.5. Adding a Work Area to the Color Mixing Widget 139
6.4.9.6. Customizing the Color Picker Color Model .. 140

6.5. Supporting Other Color Models .. 140
6.5.1. Replacing the Color Display Subwidget .. 141
6.5.2. Replacing the Color Mixer Subwidget ... 141

6.6. Associating Callbacks with a Color Mixing Widget .. 142
6.7. Creating a Color Mixing Widget ... 143

6.7.1. Creating a Color Mixing Widget—UIL Example ... 144
6.7.2. Color Mixing Widget—OK Callback .. 150
6.7.3. Color Mixing Widget—Apply Callback .. 151
6.7.4. Color Mixing Widget—Cancel Callback ... 152
6.7.5. Creating a Color Mixing Widget—Toolkit Example ... 153

Chapter 7. Using the Print Widget ... 157
7.1. Overview of the Print Widget .. 157
7.2. Print Widget Walk-Through ... 157
7.3. Print Widget Components .. 158
7.4. Print Widget Callbacks .. 159
7.5. Print Widget File-Type Guesser .. 160
7.6. Print Widget Resources ... 160

7.6.1. Suppressing Print Widget Features ... 162
7.6.2. Adding Print Widget Functions .. 164

7.6.2.1. Adding Print Formats ... 165
7.6.2.2. Adding to Option Menus .. 165

7.7. Creating the Print Widget with UIL .. 166
7.8. Creating the Print Widget with a Toolkit Routine ... 167
7.9. Submitting Print Jobs .. 169

Chapter 8. Using the Compound String Text Widget ... 171
8.1. Overview of the CSText Widget ... 171
8.2. Modifying CSText Widget Resources .. 173

8.2.1. Manipulating the Text Contents of the CSText Widget 173
8.2.1.1. Placing a Compound String in a CSText Widget 174
8.2.1.2. Retrieving Compound Strings from a CSText Widget 174
8.2.1.3. Disabling Text Editing .. 175
8.2.1.4. Limiting the Length of the Text .. 175

8.2.2. Customizing the Appearance of the CSText Widget ... 175

v

VSI DECwindows Motif Guide to Application Programming

8.2.2.1. Specifying Size .. 176
8.2.2.2. Specifying Margins .. 176
8.2.2.3. Controlling Resizing Behavior ... 177
8.2.2.4. Scroll Bar Positioning .. 177
8.2.2.5. Controlling Text Cursor Appearance .. 178
8.2.2.6. Positioning the Insertion Point .. 178
8.2.2.7. Identifying the Current Writing and Editing Directions 179

8.2.3. Multiline Editing in a CSText Widget ... 179
8.2.4. Handling Text Selections ... 180

8.2.4.1. Selecting Text .. 181
8.2.4.2. Retrieving Selected Text ... 181
8.2.4.3. Copy Selected Text to the Clipboard ... 181
8.2.4.4. Pasting Selected Text from the Clipboard ... 181
8.2.4.5. Deleting Selected Text from the Clipboard ... 181
8.2.4.6. Getting Position Information About the Selection 181
8.2.4.7. Determining Primary Selection Ownership ... 181
8.2.4.8. Canceling the Selection of Text ... 182

8.2.5. Associating Callbacks with CSText Widgets .. 182
8.3. Conversion Routines .. 183
8.4. Creating CSText Widgets ... 183

8.4.1. Using UIL to Create a CSText Widget ... 184
8.4.2. Using the Toolkit CSText Widget Creation Routine ... 186

Chapter 9. Using the SVN Widget .. 191
9.1. Overview of the SVN Widget .. 191

9.1.1. Components of an Entry ... 193
9.1.2. Selection Mode .. 194
9.1.3. Tree-Mode Navigation Window ... 194
9.1.4. Location Cursor ... 195
9.1.5. Highlighting Entries .. 195
9.1.6. Editable Text .. 195
9.1.7. Sensitive Entries ... 196
9.1.8. Disabling/Enabling the SVN Widget ... 196
9.1.9. Invalidating the SVN widget .. 196
9.1.10. Outer Scroll Bar Arrows ... 197
9.1.11. Scroll Bar Index Window .. 197

9.2. SVN Widget Programming Considerations .. 198
9.2.1. Creating the Data Hierarchy .. 198

9.2.1.1. Attaching to Data—The DXmSvnNattachToSourceCallback Callback 200
9.2.1.2. Understanding the entry_number Field .. 201
9.2.1.3. Getting Information About an Entry .. 202
9.2.1.4. Associating Hierarchy Data with SVN ... 203

9.2.2. Disabling/Enabling the SVN Widget ... 203
9.2.3. Setting the Location Cursor ... 204
9.2.4. Invalidating an Entry .. 204
9.2.5. Setting a Tree Style .. 205
9.2.6. Setting the Display Mode .. 205
9.2.7. Setting an Entry Coordinate Position .. 205
9.2.8. Setting an Entry Position ... 206
9.2.9. Selecting Entries ... 207
9.2.10. Manipulating Entries ... 207
9.2.11. Manipulating Column Mode Entries ... 209
9.2.12. Flushing an Entry ... 209

vi

VSI DECwindows Motif Guide to Application Programming

9.2.13. Manipulating Components ... 209
9.2.14. Highlighting an Entry .. 211
9.2.15. Getting the Displayed Entries ... 211
9.2.16. Dragging an Entry .. 212
9.2.17. Ghosting .. 212
9.2.18. Setting Entry Font Lists .. 213

9.3. Setting Tree-Mode Attributes ... 214
9.3.1. Manipulating Tree Position .. 214
9.3.2. Setting the Tree-Mode Arc Width ... 214
9.3.3. Centering Tree-Mode Components ... 215
9.3.4. Tree-Mode Outlines .. 215
9.3.5. Tree-Mode Entry Shadows .. 216
9.3.6. Tree-Mode Perpendicular Lines ... 216

9.4. Associating Callbacks with an SVN Widget ... 217
9.5. SVN Help Callback ... 217

9.5.1. User-Generated Callbacks ... 219
9.6. Creating an SVN Widget ... 221
9.7. SVN Demo Application ... 221

Chapter 10. Interoperability Coding Recommendations ... 241
10.1. Why Interoperability Is Important ... 241
10.2. Font Fallback .. 241

10.2.1. Font Naming Convention .. 242
10.2.2. Font Fallback Implementation .. 243
10.2.3. Using Common Fonts ... 244
10.2.4. Implementing Font Fallback Through UIL .. 245
10.2.5. Implementing Font Fallback Through Toolkit Routines 245

10.3. Screen Independence ... 247
10.3.1. Screen DPI Assumptions ... 247
10.3.2. MultiHead Server Support ... 247

10.3.2.1. Using XtAppInitialize to Specify a Screen .. 248
10.3.2.2. Using XtOpenDisplay to Specify a Screen .. 248

10.3.3. Window Size for Small Screens ... 248
10.3.4. Using Scrolled Windows for Small Screens ... 249
10.3.5. Using the DXmNfitToScreenPolicy Resource .. 249
10.3.6. Window Placement for Small Screens .. 249

10.4. Color Support ... 249
10.4.1. Matching Color Requirements to Display Types ... 250

10.4.1.1. Writable Color Cells ... 252
10.4.1.2. Display Depth .. 253
10.4.1.3. Handling Insufficient Color Resources ... 253

10.5. Image Format ... 254
10.5.1. Image Format Implementation ... 254
10.5.2. Determining Image Format .. 255

Appendix A. Using the OpenVMS DECwTermPort Routine ... 257

vii

VSI DECwindows Motif Guide to Application Programming

viii

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This document is intended for programmers who need information about the DECwindows Motif
Toolkit.

This document assumes that you are familiar with the overall design of the DECwindows
implementation.

3. Document Structure
● Chapter 1, "Introduction" describes the DECwindows Motif Toolkit. You should read this chapter

to become familiar with the DECwindows Motif Toolkit implementation. The chapter is intended to
complement the introductory chapters in the OSF/Motif Programmer's Guide.

● Chapter 2, "DECwindows Application Interface Design" describes how to use the Toolkit to design a
DECwindows application interface. The chapter includes a description of the DECburger application
interface. Note that the DECburger demo application is available only on OpenVMS systems.

● Chapter 3, "Helpful Hints for Creating a DECwindows Application" describes helpful programming
hints on a variety of topics.

● Chapter 4, "Using the Help Widget" describes how to use the help widget in an application.

● Chapter 5, "Using the DECwindows Motif Help System" describes how to use the DECwindows Help
System in an application.

● Chapter 6, "Using the Color Mixing Widget" describes how to use the color mixing widget in an
application.

● Chapter 7, "Using the Print Widget" describes how to use the print widget in an application.

● Chapter 8, "Using the Compound String Text Widget" describes how to use the compound string
widget in an application.

● Chapter 9, "Using the SVN Widget" describes how to use the structured visual navigation widget in an
application.

● Chapter 10, "Interoperability Coding Recommendations" describes a set of interoperability coding
recommendations that you should follow if you are writing DECwindows applications for multiple
hardware platforms.

● Appendix A, "Using the OpenVMS DECwTermPort Routine" describes how to use the
DECwTermPort routine to create a DECterm window on OpenVMS systems.

ix

Preface

4. Associated Documents
For more information about the DECwindows product, see the following documentation:

● DECwindows Extensions to Motif provides reference information on extensions to Motif.

● DECwindows Motif for OpenVMS Guide to Non-C Bindings describes non-C bindings for Xlib,
Intrinsics, Motif Toolkit, and extension routines.

● DECwindows Companion to the OSF/Motif Style Guide covers style issues for extensions to Motif
and topics not addressed in the OSF/Motif Style Guide.

● VMS DECwindows Guide to Xlib Programming: MIT C Binding describes how to program with Xlib
using C bindings.

● VMS DECwindows Guide to Xlib (Release 4) Programming: VAX Binding describes how to program
with Xlib using VAX bindings.

● Porting XUI Applications to Motif describes how to port an existing XUI DECwindows application to
Motif.

● OSF/Motif Style Guide describes style guidelines for applications based on the Motif Toolkit.

● OSF/Motif Programmer's Guide describes how to program with the Motif Window Manager, Motif
Toolkit, and the Motif User Interface Language (UIL).

● OSF/Motif Programmer's Reference provides reference information on the Motif Toolkit.

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions
The following conventions are used in this manual:

mouse The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 (Select)

MB2 (Drag)

MB3 (Menu)

MB1 indicates the left mouse button, MB2
indicates the middle mouse button, and MB3
indicates the right mouse button. The buttons can
be redefined by the user.

x

https://docs.vmssoftware.com

Preface

Ctrl+x A sequence such as Ctrl+x (or Ctrl/x) indicates
that you must hold down the key labeled Ctrl while
you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must
first press and release the key labeled PF1, then
press and release another key or a pointing device
button.

 .
 .
 .

A vertical ellipsis indicates the omission of items
from a code example or command format; the
items are omitted because they are not important
to the topic being discussed.

boldface text Boldface text represents the introduction of a
new term or the name of an argument, a field, a
resource, or a reason.

Boldface text is also used to show user input in
online versions of the book.

italic text Italic text represents information that can vary
in system messages (for example, Internal error
number).

UPPERCASE TEXT Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or
they indicate the name of a routine, the name of
a file, the name of a file protection code, or the
abbreviation for a system privilege.

- Hyphens in coding examples indicate that
additional arguments to the request are provided on
the line that follows.

numbers Unless otherwise noted, all numbers in the text
are assumed to be decimal. Nondecimal radixes
—binary, octal, or hexadecimal—are explicitly
indicated.

xi

Preface

xii

Chapter 1. Introduction
This chapter describes the DECwindows Motif Toolkit, including overviews of the following topics:

● DECwindows Motif Toolkit

● Basic DECwindows Motif Toolkit programming concepts

You should read this chapter to become familiar with the DECwindows Motif Toolkit implementation.

Note

This chapter is intended to complement the introductory chapters in the OSF/Motif Programmer's Guide,
which is the definitive source of programming information for the Motif Toolkit.

The DECwindows Motif Toolkit on OpenVMS systems includes an example application called
DECburger. DECburger is based on the OSF/Motif Motifburger application and demonstrates the use
of widgets provided by VSI. Section 1.5, "Using the OpenVMS DECburger Demo Application" describes
how to compile, link, and run the DECburger application. Note that the DECburger application is
unavailable on UNIX or Windows NT systems.

1.1. Overview of DECwindows Motif Toolkit
The DECwindows Motif Toolkit, hereinafter called the Toolkit, is a set of application development tools
and run-time routines you can use to create and manage a DECwindows application user interface.

The Toolkit is based on the OSF/Motif Toolkit and the X Toolkit Intrinsics, Release 5, and includes
widgets and support routines added by VSI. The widgets and support routines provided by VSI have the
prefix DXm. In the case of the Structured Visual Navigation (SVN) widget, the prefix is DXmSvn.

Using the Toolkit, you can:

● Open a connection to a display device

● Create a complete user interface for your application

● Perform output operations to windows

● Receive input from windows

The Toolkit consists of the following components:

● A set of user interface objects, with run-time routines to create them

● A pair of application development tools, called the User Interface Language (UIL) and the Motif
Resource Manager (MRM)

● A set of run-time routines to manipulate the widgets, called X Toolkit intrinsics. The intrinsics
routines have the prefix Xt.

1.1.1. Toolkit Building Blocks: Widgets and Gadgets
The Toolkit provides a set of user interface objects called widgets. Widgets are the building blocks for
the user interface of an application.

1

Chapter 1. Introduction

From a user's perspective, widgets are the interface for an application; users use menus, push buttons,
scroll bars, and text widgets to make selections, view output, enter input, and so forth. Because the
Toolkit implements widgets with a consistent appearance and behavior, users can move between
DECwindows applications without having to learn how to use a new interface.

From a programmer's perspective, widgets are windows that are logically connected to application
functions. When a user interacts with a widget (for example, by making a menu selection), information
in the widget makes the application respond appropriately.

A Toolkit widget is made up of a window packaged with input and output capabilities. Some widgets
display information, such as text or graphics. Others are merely containers for other widgets. Some
widgets are for output only and do not react to pointer or keyboard input. Others change their display in
response to input and can invoke functions that an application has attached to them.

Each widget supports a set of attributes—such as width, height, font, color, and border width—that you
can use to customize the widget's appearance and function. The Toolkit assigns default values to widget
attributes to create widgets that conform to the recommendations of the OSF/Motif Style Guide.

Some widgets in the Toolkit have variants, called gadgets. Gadgets have the same general appearance
as their widget counterparts but have restricted capabilities. Gadgets use fewer system resources and can
offer improved application performance. For example, gadgets do not have an associated window, thus
eliminating the processing involved with creating a window. On the other hand, gadgets do not provide
access to all the attributes supported by their widget counterparts.

To build a user interface using widgets (or gadgets), you create instances of the widgets in your
application program. When you create a widget, you specify its parent/child relationship, its initial
appearance, and other characteristics by assigning values to widget attributes.

When you create widgets in an application, you specify the following:

● The hierarchy of widgets

For example, an interface object might consist of a box (parent) with buttons (children) inside the
box. Both the box and buttons are widgets; specifying the hierarchy of widgets entails establishing
the relationship between the box and buttons.

● The characteristics of each widget

For example, you specify the height, width, and position of a widget.

● The routines your application executes when a user provides input to the interface

1.1.2. Widget Types
There are three main types of widgets in the Toolkit:

● Input/output widgets

These widgets provide the basic input and output capabilities of a user interface, such as displaying
text or graphics, allowing text editing, and enabling user input to your application. The widgets
that provide these functions are the XmLabel, XmPushButton, XmToggleButton, XmScale,
XmScrollBar, and XmText widgets.

● Container widgets

2

Chapter 1. Introduction

These widgets act as containers for other widgets. You use these widgets to gather together the
widgets that provide access to the functions of your application. The widgets that provide these
functions include the XmBulletinBoard, XmForm, and XmMainWindow widgets. The Toolkit
includes container widgets that are preconfigured to perform commonly needed functions such as
presenting caution messages.

● Choice widgets

These widgets present choices to the user of your application. The widgets that provide these
functions include the XmList widget.

1.1.3. Widgets in the OSF/Motif Toolkit
As described in Section 1.1, "Overview of DECwindows Motif Toolkit", the DECwindows Motif Toolkit
is based on the OSF/Motif Toolkit. The OSF/Motif Toolkit widgets are described in the OSF/Motif
Programmer's Guide.

The OSF/Motif demonstration program Periodic demonstrates the use and appearance of many of
the OSF/Motif widgets. The Periodic main window is shown in Figure 1.1, "The OSF/Motif Periodic
Demonstration Program".

Figure 1.1. The OSF/Motif Periodic Demonstration Program

3

Chapter 1. Introduction

1.1.4. Widgets Provided by VSI
In addition to the standard OSF/Motif widgets, the DECwindows Motif Toolkit includes the following
widgets provided by VSI:

● Help widget

● Print widget

● Color mixing widget

● Compound string text widget

● SVN widget

Using these widgets can save you considerable programming time, while allowing your application to
comply with the DECwindows Companion to the OSF/Motif Style Guide. The programming interface to
these widgets, with examples, is documented in subsequent chapters.

1.1.5. Toolkit Widget and Gadget Routines
The Toolkit routines let you create and manipulate all of the Toolkit widgets, including those provided
by VSI. To use these routines, you assign values to widget attributes in a data structure called an
argument list. You then pass this argument list to the Toolkit routine, as shown in Example 1.1,
"Passing an Argument List".

Example 1.1. Passing an Argument List

static void create_help (topic)
 XmString topic;
{
 unsigned int ac;
 Arg arglist[10];
 XmString appname, glossarytopic, overviewtopic, libspec;
 static Widget help_widget = NULL;

 if (!help_widget) {
 ac = 0;
 appname = XmStringCreateLtoR("Toolkit Help", XmSTRING_ISO8859_1);
 glossarytopic = XmStringCreateLtoR("glossary", XmSTRING_ISO8859_1);
 overviewtopic = XmStringCreateLtoR("overview", XmSTRING_ISO8859_1);
 libspec = XmStringCreateLtoR("decburger.hlb", XmSTRING_ISO8859_1);

 XtSetArg(arglist[ac], DXmNapplicationName, appname); ac++;
 XtSetArg(arglist[ac], DXmNglossaryTopic, glossarytopic); ac++;
 XtSetArg(arglist[ac], DXmNoverviewTopic, overviewtopic); ac++;
 XtSetArg(arglist[ac], DXmNlibrarySpec, libspec); ac++;
 XtSetArg(arglist[ac], DXmNfirstTopic, topic); ac++;

 help_widget = DXmCreateHelpDialog (toplevel_widget,
 "Toolkit Help",
 arglist, ac);
 XmStringFree(appname);
 XmStringFree(glossarytopic);
 XmStringFree(overviewtopic);
 XmStringFree(libspec);

Declare an array of 10 Arg data structures.

Call XtSetArg to set values into the argument list.

4

Chapter 1. Introduction

Create the widget, passing in the argument list and the count of argument data structures.

Although you can use widget manipulation routines to access the complete set of widget attributes after
a widget has been created, it is more efficient to assign values to widget attributes when you create the
widget.

1.1.6. Application Development Tools
The Toolkit provides routines for creating a widget hierarchy and specifying the complete set of
attributes of a widget. Moreover, the Toolkit includes additional tools that simplify the process further—
the User Interface Language (UIL) Compiler and the Motif Resource Manager (MRM) routines.

UIL is a user interface definition language. Using UIL, you specify the “form” of the application—that
is, the user interface—in a text file called a UIL specification file and compile this specification file
using the UIL compiler.

The UIL specification file defines the following characteristics of the user interface:

● The widgets that comprise the interface

● The hierarchy of widgets in the application

● The characteristics of the specified widgets

● The callback routines for each widget

Because you compile the specification file separately from the functional routines, you separate form
and function in an application. For example, you can use UIL to create an OK XmPushButton without
having to specify what happens when a user presses this button. The application's functional routines
determine what happens when a user presses the OK push button.

When you define widgets in a UIL specification file, you can access the complete set of widget
attributes. The UIL compiler checks that the values you assign to attributes are of the data type expected
by the widget. At run time, your application retrieves the compiled interface specification, called a UID
file, using MRM routines.

MRM routines enable you to open the UID specification file, retrieve the widget definitions from the
file, create the widgets, and build the user interface at run time.

1.1.7. Internationalization Using UIL and MRM
Using UIL and MRM, you can change the user interface specification without making major changes to
your main application program. This feature of UIL and MRM is particularly important for applications
developed for international markets. For example, you can create user interfaces in several languages for
a single application.

1.1.8. Toolkit Intrinsic Routines
X Toolkit routines, called intrinsics, let you manipulate widgets at run time. The X Toolkit Intrinsics is a
standard routine library layered on the X Window System, Version 11, R5.

Intrinsics are the basis of every application. You use intrinsics to do the following:

● Initialize the Toolkit

● Map and unmap widgets to the screen

5

Chapter 1. Introduction

● Process input from an application end user

1.2. Toolkit Routines Contrasted with UIL
You can use either UIL or the Toolkit routines to create the initial instance of each widget for your
application. You will probably find that it is much more convenient to use UIL because of the separation
between form and function that UIL allows. For example, you can dramatically change the user interface
for an application, recompile the UIL module into the UID file, and not make any changes to your
application source code.

However, once you have created the initial user interface, you must use the Toolkit routines to make
changes to widget resources in response to user actions. For example, assume that you create a Color
Mixing widget through UIL. You can set the initial red, green, and blue colors for the widget through
UIL. If you then need to change these colors in response to a user action, you must use the Toolkit
routines.

1.3. Toolkit Routines Contrasted with Xlib
Routines
As compared to using Xlib routines, the Toolkit simplifies the task of creating a user interface. For
example, you can create a menu with a call to one Toolkit routine. Creating the same menu using
Xlib routines requires many more calls and program lines. Using Toolkit routines also ensures that an
application interface conforms to the DECwindows Companion to the OSF/Motif Style Guide.

You can use the Toolkit for the majority of your application programming. However, there are several
instances that require you to use Xlib routines:

● Most drawing operations, with the exception of drawing compound strings

● Getting information about the screen, such as determining the visual type (XDefaultVisualOfScreen)
or the default colormap (XDefaultColormapOfScreen)

● Allocating color cells from the installed colormap (XAllocColor)

● Creating Xbitmaps for use as icons

1.4. Toolkit Programming Considerations
This section describes programming considerations for using the Toolkit, including the following topics:

● Application widget hierarchy

● Form versus function

● Associating functions with callbacks

● Using widget attributes in applications

1.4.1. Application Widget Hierarchy
You create a user interface for your application by arranging widgets in a widget hierarchy based on
parent/child relationships. Parent widgets control the behavior and appearance of their children. In

6

Chapter 1. Introduction

turn, their children can have children. This layering of parent/child relationships creates the application
widget hierarchy.

The application widget hierarchy should not be confused with the widget class hierarchy. The application
widget hierarchy defines the parent/child relationship of widgets in a user interface. The widget class
hierarchy defines the subclass/superclass relationship of the widgets in the Toolkit. The widget class
hierarchy determines which attributes a widget inherits from its superclass and which attributes are
unique to a particular widget class.

When you design your application hierarchy, it is a good idea to work down from the top of your
application hierarchy so that you know in advance which child widgets a parent widget supports. Also,
not every Toolkit widget can be a parent. Widgets are either composite widgets or primitive widgets.
Composite widgets can be parents or children of other composite widgets; primitive widgets can be only
children.

1.4.2. OpenVMS DECburger Application Hierarchy
To understand the concept of an application hierarchy in the context of an application, consider
the example of the OpenVMS DECburger main window, as shown in Figure 1.2, "The OpenVMS
DECburger Widget Hierarchy".

Figure 1.2. The OpenVMS DECburger Widget Hierarchy

At the top of the application widget hierarchy of the DECburger program is the application shell widget.
The application shell widget acts as the mediator between the application program and the workstation

7

Chapter 1. Introduction

environment in which the application runs. Every application must have a shell widget at the top of its
application widget hierarchy.

The main widget of the DECburger application is an XmMainWindow widget. This widget is the
child of the application shell widget (an application shell widget can have only one child). The
XmMainWindow widget has two children, an XmMenuBar and an XmScrolledList (not shown in the
figure). The XmScrolledList widget creates the scroll bar.

The XmMenuBar widget creates a blank menu bar. To add menu entries to the menu bar, the
XmMenuBar widget has four XmCascadeButton widget children: File, Edit, Order, and Help. In the case
of a color system, DECburger has a fifth XmCascadeButton for customizing colors.

The XmCascadeButton widgets use pull-down menus to present choices to the user. Therefore, each
XmCascadeButton widget controls one XmPulldownMenu widget child.

The XmPulldownMenu widgets create empty pull-down menus. To control the contents of the pull-down
menus, the XmPulldownMenu widgets have XmPushButton gadget children. For example, the Order
XmPulldownMenu widget controls three XmPushButton gadgets (Dismiss, Cancel, and Submit) and a
separator gadget.

The XmPushButton gadgets do not support children.

1.4.3. Form Versus Function
The fundamental concept of programming with the Toolkit is the separation of form and function. Using
the Toolkit, you can consider the form your application takes—its user interface—separately from the
routines that implement the functions of your application.

The form of an application defines its appearance, not how it functions. You can consider the form of an
application to be its facade; your application's function routines provide the support structure.

This separation lets you create applications by using widgets and groups of widgets as building blocks;
once you create widgets, you group them together in different combinations to build applications. From a
programming perspective, it takes less time to modify an existing widget than to create a new one.

For example, you can create an XmPushButton widget without having to specify what happens when a
user clicks MB1 on the button, as shown in Example 1.2, "Form Versus Function".

Example 1.2. Form Versus Function

object
 do_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("do label");
 XmNaccelerator = compound_string("do label");
 XmNacceleratorText = compound_string("do text");
 XmNmnemonic = keysym("D");
 };

 callbacks {
 XmNactivateCallback = procedure do_proc();
 };
 };

This UIL code fragment creates an XmPushButton widget but does not specify what happens when a
user clicks MB1 on this button. Widgets use callback routines to specify what happens when a particular

8

Chapter 1. Introduction

action or set of actions occurs. Callbacks are described in more detail in Section 1.4.4, "Associating
Functions with Callbacks".

The application's activate routine (in this case, do_proc) is called when a user clicks MB1 on the push-
button widget. This routine determines what action the program takes as a result of the button being
pressed.

Because the push-button widget is not inherently tied to a function, you can use this code fragment
wherever you need a push button and change the activate callback procedure as needed. For example, by
changing the label string and activate callback associated with the push button, you could use this push
button as an OK, Cancel, or Apply push button.

You could also use the generic pull-down menu created in Example 1.3, "Form Versus Function—
Generic Pull-down Menu" and then modify this menu as needed.

Example 1.3. Form Versus Function—Generic Pull-down Menu

object
 my_menu : XmPulldownMenu {
 controls {
 XmPushButton do_button;
 XmPushButton clear_button;
 XmPushButton save_button;
 };
 callbacks {
 MrmNcreateCallback = procedure create_proc (k_my_menu);
 XmNhelpCallback = procedure sens_help_proc(k_my_menu);
 };
 };

object
 do_button : XmPushButton {

 arguments {
 XmNlabelString = k_do_label_text;
 XmNaccelerator = k_do_accelerator;
 XmNacceleratorText = k_do_accelerator_text;
 XmNmnemonic = keysym("D");
 };

 callbacks {
 XmNactivateCallback = procedure do_proc();
 };
 };

object
 clear_button : XmPushButton {

 arguments {
 XmNlabelString = k_clear_label_text;
 XmNaccelerator = k_clear_accelerator;
 XmNacceleratorText = k_clear_accelerator_text;
 XmNmnemonic = keysym("C");
 };

 callbacks {
 XmNactivateCallback = procedure clear_proc();
 };
 };

object
 save_button : XmPushButton {

9

Chapter 1. Introduction

 arguments {
 XmNlabelString = k_save_label_text;
 XmNaccelerator = k_save_accelerator;
 XmNacceleratorText = k_save_accelerator_text;
 XmNmnemonic = keysym("S");
 };

 callbacks {
 XmNactivateCallback = procedure save_proc();
 };
 };
.
.
.

Once you create this pull-down menu, you can use it without change, or modify it to suit the needs of
your applications. You could, for example, change the push buttons' labels to Clear and Cut and modify
their activate callbacks accordingly.

Note

The building block approach is not unique to UIL; you could also create these widgets with the Toolkit
routines and use them as needed.

1.4.4. Associating Functions with Callbacks
When a user invokes a DECwindows application program, the application's initial user interface appears
on the display. The application then waits in an infinite loop for the user to interact with its interface.
Applications running in the DECwindows environment perform their functions only in response to user
interaction with the interface.

When a user of your application uses the mouse or keyboard to perform an action, that action causes
a change in the state of the widget. Each widget supports a specific set of such changes in its state that
cause it to notify an application. This flow of data from the interface to the application at run time is
accomplished through the callback mechanism. The callback mechanism provides a one-way path of
communication from the interface to the application. This is the primary means an application has of
getting input from its interface.

A widget can define one or more callbacks, depending on how many changes in its state it is willing
to communicate. Each particular set of user actions that triggers a callback is called a reason. When
a change of state in the widget triggers a callback, your application executes the routine you have
associated with the widget. This routine is called a callback routine. In this way, you associate the
routines that implement the functions of your application with the widgets that make up the user
interface of your application. You can associate more than one callback routine with a single callback
reason. When there is more than one callback routine, the routines are executed in the order in which
you specify them.

Note that reasons are not actions in the way that “MB1” is an action. Reasons represent a more abstract
concept, such as “activate”. For example, the push-button widget defines the MB1 down/MB1 up
sequence of events as the activate callback reason.

The X Window System, on which the Toolkit is based, defines an action (such as MB1 up) that occurs
in a window as an event. The server is responsible for noting when an event occurs in a window. In
general, an application that uses Toolkit widgets need not be concerned with events. Toolkit widgets
automatically notify applications when the event or sequence of events the widget defines as a reason
occurs.

10

Chapter 1. Introduction

1.4.5. Using Widget Attributes in Applications
Every Toolkit widget supports a set of attributes you can use to customize aspects of its appearance
and function. A subset of these widget attributes is supported by every Toolkit widget. These are called
common widget attributes. In addition, most widgets support their own unique attributes. The OSF/
Motif Programmer's Reference describes the complete set of attributes that each widget supports.

All widgets support the following basic types of attributes:

● Size and position attributes (geometry management)

● Appearance attributes

● Callback attributes

The sections that follow briefly describe programming considerations for using widgets in applications.
See the OSF/Motif Programmer's Guide for additional information.

1.4.5.1. Size and Position Attributes

All widgets support size and position attributes. Table 1.1, "Widget Size and Position Attributes" lists
these attributes.

Table 1.1. Widget Size and Position Attributes

Attribute Description

XmNwidth Specifies the width of the widget.
XmNheight Specifies the height of the widget.
XmNx Specifies the x-coordinate of the upper left corner

of the widget.
XmNy Specifies the y-coordinate of the upper left corner

of the widget.

Note that, while you can specify the size and position of a widget using these attributes, for many
widgets it is preferable to let the widget define its own size and position in the context in which it is used.
The size and position of a widget is controlled by its parent. A child can request to be a certain size,
but its parent makes the final decision. Parent widgets must weigh the sizing and positioning needs of
their other children. In addition, parent widgets are children themselves and must negotiate their space
requirements with their parent. This negotiation between parent and child for display space is called
geometry management.

1.4.5.2. Appearance Attributes

All Toolkit widgets support attributes that specify aspects of their appearance. Many of these attributes
are unique to each widget. For example, the XmPushButton widget appears on the display with a shadow
to give a three-dimensional impression. However, you can create push-buttons with a different shadow
thickness by setting the push-button widget XmNshadowThickness resource to a value other than
the default of 2.

If you do not set an appearance resource of a widget, the Toolkit uses a default value. The default values
for widget attributes create widgets that conform to the recommendations of the OSF/Motif Style Guide.

11

Chapter 1. Introduction

1.4.5.3. Callback Attributes
All Toolkit widgets support attributes that let you associate callback routines with their callback reasons.
For example, Table 1.2, "Callback Attributes Supported by the Push-Button Widget" lists the callback
attributes supported by the XmPushButton widget.

Table 1.2. Callback Attributes Supported by the Push-Button Widget

XmNactivateCallback Callback performed when a user clicks MB1 inside
the push-button widget

XmNarmCallback Callback performed when a user holds down MB1
inside the push-button widget

XmNdisarmCallback Callback performed when a user moves the pointer
cursor off the push-button widget without releasing
MB1

XmNhelpCallback Callback performed when a user presses the Help
key and clicks MB1 in the push-button widget

XmNdestroyCallback Callback performed when a push-button widget is
destroyed

1.4.5.4. Assigning Values to Widget Attributes
When you create a widget, the Toolkit determines the initial settings of widget attributes by checking the
following sources:

1. The argument list supplied with the creation routine

2. The widget resource database

3. The default values contained in the widget

The Toolkit first checks the argument list for resource values. You assign values to widget attributes
when you create the widget using Toolkit routines or UIL/MRM. If you have specified any resource
values in an argument list, the Toolkit assigns these values to the widget when it creates it.

For any attribute to which you do not assign a value, the Toolkit retrieves a default value from a database
of resource values.

If the Toolkit cannot find a value for a resource in an argument list or a resource database, the default
value contained in the widget itself is used. Each widget contains a default value for every resource it
supports.

1.5. Using the OpenVMS DECburger Demo
Application
The OpenVMS DECburger demo application implements an order-entry system for a fictitious fast-food
restaurant. In DECburger, the user interface is made up of dozens of widgets (and gadgets). To become
familiar with a basic DECwindows application, run the DECburger application. Note that the DECburger
application is available only on OpenVMS systems; it is not available on UNIX or Windows NT systems.

The C language and UIL source files for the DECburger sample application are included in the examples
directory (DECW$EXAMPLES). The DECW$EXAMPLES:DECBURGER.COM command procedure

12

Chapter 1. Introduction

compiles the DECburger C language program, links it with the Toolkit and Xlib shareable images,
creates the help library, and runs the DECburger executable image.

DECW$EXAMPLES:DECBURGER.COM also uses the UIL compiler to compile the UIL module
that defines the user interface of the DECburger application. This command procedure produces
DECBURGER.UID and DECBURGER.EXE files. To run the procedure, enter the following command:

$ @DECW$EXAMPLES:DECBURGER.COM

1.6. Non-C Language Examples for OpenVMS
The DECwindows Motif for OpenVMS Guide to Non-C Bindings contains language binding information
for Ada, FORTRAN, and Pascal. Ada and FORTRAN versions of the HelloMotif and Motifburger
programs are included in DECW$EXAMPLES.

13

Chapter 1. Introduction

14

Chapter 2. DECwindows
Application Interface Design
This chapter discusses the design of a DECwindows application interface. The chapter includes a
description of the OpenVMS DECburger demo application interface.

2.1. Designing a DECwindows Application—
Where to Begin
The first step in designing a DECwindows application interface is to become familiar with the
application interface guidelines contained in the DECwindows Companion to the OSF/Motif Style
Guide, the definitive reference on the look and feel of a DECwindows application. If you design your
application in accordance with the guidelines of the DECwindows Companion to the OSF/Motif Style
Guide, you can be certain that your application interface will be consistent with other DECwindows
applications.

Once you are familiar with the application interface guidelines, you can decide the form of the
application; that is, what you want your application to look like. You might want to sketch out how
you want your application to look before you create it. A sketch also helps you to visualize the parent/
child relationships of the widgets in your interface, as described in Section 1.4.1, "Application Widget
Hierarchy".

2.1.1. Application Design Topics
Answering the following questions can help you design your application interface:

● Must all parts of the application be visible when the application is started? Or, can you present an
initial environment and then wait for a user action before revealing additional components? For
example, the DECwindows Clock application initially presents only a clock; a user must click MB3
to get a customize menu.

● Will the application need only one main window that remains visible as long as the application is
running, or will it require widgets that appear, perform a function, and then disappear?

● Will the physical relationship between widgets be important? That is, will you need form widgets to
maintain a physical layout in the event that the application is resized?

● Will the application require the user to enter text or take some other action in response to a query?
Will your application use the compound string text widget to determine character set and writing
direction information?

● Will the application need label widgets to provide the user with information? If so, will this text need
to be translated for international use? (UIL provides capabilities for this.)

● Will the application need capabilities — such as color mixing or help — implemented by the widgets
provided by VSI? Using the widgets provided by VSI can save you considerable programming time
while allowing your application to be in compliance with the DECwindows Companion to the OSF/
Motif Style Guide.

● Will the application take advantage of gadgets? Because gadgets use fewer resources than widgets,
use gadgets whenever appropriate.

15

Chapter 2. DECwindows Application Interface Design

With the exception of the XmFileSelectionBox widget, all manager widgets accept gadgets.
However, there are several resources that can be used only if the child objects are widgets:

XmNbottomShadowColor
XmNbottomShadowPixmap
XmNforeground
XmNhighlightColor
XmNhighlightPixmap
XmNtopShadowColor
XmNtopShadowPixmap

2.1.2. Use of Callbacks
Remember that callbacks are the connection between the application interface and your functional code.
As you design your user interface, try to equate a user action with the callback to be generated; that is, if
you want the user to perform an action such as cancel, a cancel push button should be available.

2.1.3. Making Assumptions About Resources
As you design your application, be careful about assumptions you make about available resources.
DECwindows applications are likely to be displayed on a variety of hardware platforms and your
application should provide for differing screen sizes, availability of color resources, and so forth.

Depending on your application, you might want to selectively reduce functionality if you are unable to
allocate sufficient resources. This requires that you determine the minimum operating environment your
application needs and reduce functionality until you reach that environment.

Chapter 10, "Interoperability Coding Recommendations" describes a set of interoperability coding
recommendations that you should follow if you are writing DECwindows applications for multiple
hardware platforms. Chapter 10, "Interoperability Coding Recommendations" provides information on the
following topics:

● Font fallback

● Screen independence

● Color support

2.1.4. Selecting Appropriate Widgets
After you have determined what your application will look like, check the OSF/Motif Programmer's
Guide for the widgets that most closely implement your planned user interface.

As described in Section 1.1.2, "Widget Types", there are three major types of widgets in the Toolkit:

● Container widgets

Most applications use some form of container widget, such as XmBulletinBoard or
XmMainWindow, as the main widget of their application. These widgets support many types of
children and give your application a flexible platform.

For example, if your application needs to include a menu bar, you might find that the
XmMainWindow widget would make a suitable main window for your application because it easily
supports a menu bar child. You might also find that the simple geometry management provided by
XmBulletinBoard is a convenient way to make sure that child widgets do not overlap.

16

Chapter 2. DECwindows Application Interface Design

● Input/output widgets

Input/output and choice widgets are used to present information or to query the user for input. Pick
the type of widget that best fits your application. For example, if a text entry field needs to handle
more than one line of text, you might want to use the XmCreateScrolledText routine to create an
XmText widget that is contained within a scrolled window. Using this routine is easier than creating
separate text and scroll bar widgets.

● Choice widgets

These widgets allow your application to present choices to the user and obtain a response. Choice
widgets can be “pick one” and “pick many.”

As described in Section 1.4.3, "Form Versus Function", you might find that you can use part of an
existing application to build a new application. That is, if you already have written an application that
uses an XmMainWindow widget, consider reusing that code with different callbacks.

You should use existing Toolkit widgets whenever possible. However, if you cannot find a widget that
suits your needs, you can create your own widget, as described in the X Window System Toolkit. Note
that, if you create your own widgets, you become responsible for implementing the DECwindows look
and feel.

2.1.5. Widgets in the OpenVMS DECburger Application
This section describes the reasons for using the various widgets in the OpenVMS DECburger demo
application. Figure 2.1, "OpenVMS DECburger User Interface" shows the OSF/Motif widgets as used in
the DECburger user interface. The widgets provided by VSI are shown in subsequent chapters.

Figure 2.1. OpenVMS DECburger User Interface

17

Chapter 2. DECwindows Application Interface Design

The OpenVMS DECburger demo application uses an XmMainWindow widget as the base of the
application, as shown in Figure 2.2, "OpenVMS DECburger XmMainWindow Widget".

Figure 2.2. OpenVMS DECburger XmMainWindow Widget

The main window widget presents some of the OpenVMS DECburger application's basic functions, such
as placing an order, as items in a menu bar widget. The DECburger XmMenuBar widget contains the
four XmCascadeButton menu entries shown in Figure 2.3, "OpenVMS DECburger XmMenuBar Widget".
The menu bar widget also contains an Options menu entry on color systems.

Figure 2.3. OpenVMS DECburger XmMenuBar Widget

18

Chapter 2. DECwindows Application Interface Design

Each XmCascadeButton controls an XmPulldownMenu widget. When the user selects one of the entries
in the menu bar widget, a pull-down menu widget appears on the screen. The pull-down menu widget
disappears when the user releases MB1.

The XmPulldownMenu displayed in Figure 2.4, "OpenVMS DECburger XmPulldownMenu Widget" is the
Order pull-down menu widget DECburger uses when the order box is already displayed. The contents of
this menu vary depending on whether the order-entry box is visible.

Figure 2.4. OpenVMS DECburger XmPulldownMenu Widget

The OpenVMS DECburger Order-Entry Box shown in Figure 2.5, "OpenVMS DECburger
XmFormDialog Widget" is an XmFormDialog widget, which is a general container widget that imposes
geometry management on its children. Dialog widgets can extend beyond the boundaries of their parent
widgets, and the DECburger Order-Entry Box does so.

Figure 2.5. OpenVMS DECburger XmFormDialog Widget

To distinguish each XmForm widget in the Order-Entry Box, DECburger includes a descriptive text label
at the top of each section. Each of these text labels is an XmLabel gadget.

19

Chapter 2. DECwindows Application Interface Design

DECburger uses the XmRadioBox widget shown in Figure 2.6, "OpenVMS DECburger XmRadioBox
Widget" to present a list of choices from which the user can choose only one item at a time. Each item in
the radio box widget is implemented by an XmToggleButton gadget.

Figure 2.6. OpenVMS DECburger XmRadioBox Widget

To present a list of choices from which the user can select any number of items, DECburger uses an
XmRowColumn widget, as shown in Figure 2.7, "OpenVMS DECburger XmRowColumn Widget". Each
item in the menu is an XmToggleButton gadget.

Figure 2.7. OpenVMS DECburger XmRowColumn Widget

To solicit quantity information, DECburger uses an XmScale widget, as shown in Figure 2.8, "OpenVMS
DECburger XmScale Widget". Because scale widgets graphically present a range of values, they prevent
users from entering an incorrect value.

Figure 2.8. OpenVMS DECburger XmScale Widget

20

Chapter 2. DECwindows Application Interface Design

DECburger uses an XmOptionMenu widget to present a list of choices from which only one item can be
selected at a time, as shown in Figure 2.9, "OpenVMS DECburger XmOptionMenu Widget". Each item
in the option menu widget is an XmPushButton gadget. As with the pull-down menu widget, the option
menu appears on the display only when the user presses MB1. In this way, the list of items does not take
up any display space until it is invoked. The option menu widget always displays its current selection.

Figure 2.9. OpenVMS DECburger XmOptionMenu Widget

DECburger uses an XmText widget to handle another quantity choice, as shown in Figure 2.10,
"OpenVMS DECburger XmText Widget". The text widget lets the user enter text from the keyboard.

Figure 2.10. OpenVMS DECburger XmText Widget

To present a long list of choices, DECburger uses the XmScrolledList widget shown in Figure 2.11,
"OpenVMS DECburger XmScrolledList Widget". Only a portion of the entire list of items is visible in
the scrolled list as it appears on the display. XmScrolledList widgets can be configured to allow users to
select more than one item at a time.

Figure 2.11. OpenVMS DECburger XmScrolledList Widget

DECburger uses the XmForm widget shown in Figure 2.12, "OpenVMS DECburger XmForm Widget"
to implement drink quantity selection. The XmForm widget includes two XmPushButton widgets
with pixmap labels. The “up arrow” XmPushButton increases the drink quantity; the “down arrow”
XmPushButton decreases the drink quantity. Note that XmPushButton widgets are used instead of
gadgets because you cannot use pixmap labels with XmPushButton gadgets. The XmForm widget also

21

Chapter 2. DECwindows Application Interface Design

includes two XmLabel gadgets to display descriptive text and to present the current value selected by the
user.

Figure 2.12. OpenVMS DECburger XmForm Widget

DECburger uses an XmFormDialog widget containing four XmPushButton widgets to implement
the OK, Apply, Reset, and Cancel functions, as shown in Figure 2.13, "OpenVMS DECburger
XmFormDialog Widget". Note the use of widgets instead of gadgets to allow DECburger to specify a
larger font size to emphasize these important functions. You cannot specify the font in a gadget; gadgets
use the font specified in their parent. The figure does not represent the actual font used in these buttons.
To see this attribute, run the DECburger application.

The XmNshowAsDefault resource identifies the OK XmPushButton as the default; the
XmNdefaultButtonShadowThickness is set to one for all of the XmPushButton widgets so that they have
the same size when selected.

Figure 2.13. OpenVMS DECburger XmFormDialog Widget

2.1.6. Toolkit Intrinsic Routines Used in OpenVMS
DECburger
As described in Section 1.1.8, "Toolkit Intrinsic Routines", your application can use intrinsic routines
to initialize the Toolkit, get information about the screen and display, map and unmap widgets to the
screen, process input from an application end user, and so forth.

For example, the OpenVMS DECburger demo program uses the following intrinsic routines:

● XtAppInitialize—Initializes the Toolkit internals to create a default application context for use by the
other convenience routines. XtAppInitialize returns the “top-level” widget for an application.

XtAppContext app_context;
 .
 .
 .
toplevel_widget = XtAppInitialize(&app_context, "DECburger", NULL, 0,
 &argc, argv, &fallback, NULL, 0);

● XtDisplay—Returns the display pointer for the specified widget. DECburger uses XtDisplay when
querying colors associated with the default color map.

XQueryColor(the_display,
 XDefaultColormapOfScreen(the_screen), &newcolor);

● XtScreen—Returns the screen pointer for the specified widget. DECburger uses XtScreen to
determine the screen associated with the top-level widget.

22

Chapter 2. DECwindows Application Interface Design

the_screen = XtScreen(toplevel_widget);

● XtSetMappedWhenManaged—Maps a window if it is managed. DECburger allows a user to
customize the background color only if a color workstation is being used. Specifically, DECburger
uses XtSetMappedWhenManaged to map the Options menu entry.

XtSetMappedWhenManaged(widget_array[k_options_pdme], TRUE);

● XtManageChild—Adds a single child widget to the managed children of the parent widget.
DECburger first calls this routine to manage the main window.

XtManageChild(main_window_widget);

● XtUnmanageChild—Removes a single child widget from the managed children of the parent widget.

XtUnmanageChild(widget_array[k_order_box]);

● XtRealizeWidget—Realizing a widget creates a window for the widget and maps the window to the
display. For composite widgets (that is, widgets with children), realizing a widget also creates and
maps windows for all of the managed children of the widget. Therefore, DECburger needs to realize
only its top-level widget.

XtRealizeWidget(toplevel_widget);

● XtAppMainLoop—Performs a loop that waits for the user to interact with the user interface and then
processes input data in the form of callbacks.

XtAppMainLoop(app_context);

● XtSetArg—Fills in the argument data structures in an argument list. XtSetArg takes the following
arguments:

1. The address of the argument-list element

2. The name of the widget attribute

3. The value being assigned to the attribute or the address where the value will be returned by
XtGetValues

In the following example, XtSetArg fills in an argument data structure with the name of a widget
attribute (DXmNfirstTopic) and the value being assigned to that attribute (compound string
identified by help_topic).

XtSetArg (arglist[0], DXmNfirstTopic, help_topic);

● XtSetValues—Modifies the current value of a resource associated with a widget instance.
XtSetValues is commonly used together with XtSetArg to change the value of a resource. In the
following example, XtSetArg first fills in an argument data structure with the name of a widget
resource DXmNfirstTopic and the value being assigned to that attribute (compound string identified
by help_topic).

XtSetValues then sets the DXmNfirstTopic attribute for this instance of the help widget.

XtSetArg (arglist[0], DXmNfirstTopic, help_topic);
XtSetValues (help_widget[help_num], arglist, 1);

● XtGetValues—Retrieves the current value of resource data associated with a widget instance.
DECburger uses XtGetValues together with XtSetArg.

23

Chapter 2. DECwindows Application Interface Design

XtSetArg(arglist[0], XmNbackground, &newcolor.pixel);
XtGetValues(main_window_widget, arglist, 1);

This example calls the XtSetArg and XtGetValues intrinsic routines to get the background color of
the main window widget and store it in the newcolor.pixel pixel field.

● XtIsManaged – Determines if the specified widget is currently managed. Applications are obliged to
create new instances of the help widget if one is already managed. DECburger uses XtIsManaged to
determine if a help widget is already managed.

if (XtIsManaged(main_help_widget)) {

24

Chapter 3. Helpful Hints for
Creating a DECwindows
Application
This chapter provides information and programming examples for the following topics:

● Using the widgets supplied by VSI from UIL

● Using XmForm widgets

● Using default files

● Using multiple displays

● Creating a cursor

● Using the XtAppAddInput routine

● Freeing resources allocated through UIL

3.1. Using Widgets Supplied by VSI from UIL
If you are using UIL to create instances of the print, help, color mixing, compound string text, or SVN
widgets, you must add the following line to your application source file after the call to MrmInitialize:

DXmInitialize();

The DXmInitialize routine calls MrmRegisterClass for the widgets supplied by VSI. If you do not call
DXmInitialize, you will see error messages similar to the following when you run your application:

X Toolkit Warning: Urm__WCI_LookupClassDescriptor: Couldn't find class
descriptor for class xxxxxxx - MrmNOT_FOUND

3.2. XmForm Widget Hints
The sections that follow describe additional XmForm widget programming hints. See the OSF/Motif
Programmer's Reference for a complete description of the XmForm widget.

3.2.1. Creating a Form Dialog Box with Children
One of the common uses of the XmForm widget is to anchor rows and columns of widgets so that
their alignment does not change if the size of the XmForm widget changes. The UIL example shown in
Example 3.1, "XmForm Dialog with Children—UIL Module" implements such an XmForm widget.

Example 3.1. XmForm Dialog with Children—UIL Module

 .
 .
 .
object
 form_main : XmForm{

 arguments
 {

25

Chapter 3. Helpful Hints for Creating a DECwindows Application

 XmNdialogTitle = compound_string("XmForm");
 XmNwidth = 400;
 XmNheight = 400;
 };
 controls
 {
 XmPushButton a_button;
 XmPushButton b_button;
 XmPushButton c_button;
 XmPushButton d_button;
 XmPushButton e_button;
 XmPushButton f_button;
 XmPushButton g_button;
 XmPushButton h_button;
 XmPushButton i_button;
 XmPushButton j_button;
 };
 };

object
 a_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("a button");
 XmNtopAttachment = XmATTACH_FORM;
 XmNtopOffset = 25;
 XmNleftAttachment = XmATTACH_FORM;
 XmNleftOffset = 25;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 };
 };

object
 b_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("b button");
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopOffset = 5;
 XmNtopWidget = a_button;
 XmNleftAttachment = XmATTACH_FORM;
 XmNleftOffset = 25;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 };
 };

object
 c_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("c button");
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopOffset = 5;
 XmNtopWidget = b_button;
 XmNleftAttachment = XmATTACH_FORM;
 XmNleftOffset = 25;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 };
 };

object
 d_button : XmPushButton {

26

Chapter 3. Helpful Hints for Creating a DECwindows Application

 arguments {
 XmNlabelString = compound_string("d button");
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopOffset = 5;
 XmNtopWidget = c_button;
 XmNleftAttachment = XmATTACH_FORM;
 XmNleftOffset = 25;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 };
 };

object e_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("e button");
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopOffset = 5;
 XmNtopWidget = d_button;
 XmNleftAttachment = XmATTACH_FORM;
 XmNleftOffset = 25;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 };
 };

object
 f_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("f button");
 XmNtopAttachment = XmATTACH_FORM;
 XmNtopOffset = 25;
 XmNleftAttachment = XmATTACH_WIDGET;
 XmNleftOffset = 5;
 XmNleftWidget = a_button;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 };
 };

object
 g_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("g button");
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopOffset = 5;
 XmNtopWidget = f_button;
 XmNleftAttachment = XmATTACH_WIDGET;
 XmNleftOffset = 5;
 XmNleftWidget = b_button;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 };
 };

object
 h_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("h button");
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopOffset = 5;
 XmNtopWidget = g_button;
 XmNleftAttachment = XmATTACH_WIDGET;

27

Chapter 3. Helpful Hints for Creating a DECwindows Application

 XmNleftOffset = 5;
 XmNleftWidget = c_button;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 };
 };

object
 i_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("i button");
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopOffset = 5;
 XmNtopWidget = h_button;
 XmNleftAttachment = XmATTACH_WIDGET;
 XmNleftOffset = 5;
 XmNleftWidget = d_button;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 };
 };

object
 j_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("j button");
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopOffset = 5;
 XmNtopWidget = i_button;
 XmNleftAttachment = XmATTACH_WIDGET;
 XmNleftOffset = 5;
 XmNleftWidget = e_button;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 };
 };
 .
 .
 .

The XmForm widget controls 10 XmPushButton widgets.

The top XmPushButton widget attaches on the top and left side to the XmForm widget, using an
offset of 25.

Subsequent XmPushButton widgets attach to the bottom of the XmPushButton widget directly
above them and to the XmForm on the left.

These XmPushButtons also could use XmATTACH_OPPOSITE_WIDGET to align their left sides
with the left side of the a_button, as follows:

object
 b_button : XmPushButton {
 arguments {
 XmNlabelString = compound_string("b button");
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopOffset = 5;
 XmNtopWidget = a_button;
 XmNleftAttachment = XmATTACH_OPPOSITE_WIDGET;
 XmNleftWidget = a_button;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;

28

Chapter 3. Helpful Hints for Creating a DECwindows Application

 };
 };

object
 c_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("b button");
 XmNtopAttachment = XmATTACH_WIDGET;
 XmNtopOffset = 5;
 XmNtopWidget = b_button;
 XmNleftAttachment = XmATTACH_OPPOSITE_WIDGET;
 XmNleftWidget = a_button;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 };
 };

Button f, like a, also attaches to the XmForm on the top, but attaches its left side to the
XmPushButton on the left.

Subsequent XmPushButton widgets attach to the bottom of the XmPushButton widget directly
above them and to the XmPushButton on the left.

These XmPushButtons also could use XmATTACH_OPPOSITE_WIDGET to attach their left
sides to the left side of the f_button.

3.2.2. Aligning Children of Different Sizes
The UIL module shown in Example 3.1, "XmForm Dialog with Children—UIL Module" correctly aligns
the XmPushButtons and maintains this relationship regardless of the size of the XmForm. However, this
alignment would be broken if the XmPushButton widgets were of different sizes. For example, a long
title in button b would push button g to the right.

If your application needs to align widgets of varying sizes, you can put the XmPushButtons into
XmRowColumn widgets, which expand to fit the largest child. You then align the XmRowColumn
widgets within an XmForm widget.

The UIL example shown in Example 3.2, "Aligning Children of Different Sizes" implements an XmForm
widget that has children of different sizes.

Example 3.2. Aligning Children of Different Sizes

 .
 .
 .
object
 form_main : XmForm{

 arguments
 {
 XmNdialogTitle = compound_string("XmForm");
 XmNwidth = 400;
 XmNheight = 400;
 };

 controls
 {
 XmRowColumn align_a;
 XmRowColumn align_b;
 };
 };

29

Chapter 3. Helpful Hints for Creating a DECwindows Application

object
 align_a : XmRowColumn {
 arguments {
 XmNunitType = XmPIXELS;
 XmNtopAttachment = XmATTACH_FORM;
 XmNtopOffset = 25;
 XmNleftAttachment = XmATTACH_FORM;
 XmNleftOffset = 25;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 XmNorientation = XmVERTICAL;
 XmNborderWidth = 0;
 };
 controls
 {
 XmPushButton a_button;
 XmPushButton b_button;
 XmPushButton c_button;
 XmPushButton d_button;
 XmPushButton e_button;
 };
 };

object
 a_button : XmPushButton {
 arguments {
 XmNlabelString = compound_string("a button");
 };
 };

object
 b_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("b button");
 };
 };

object
 c_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("Long Button Title");
 };
 };

object
 d_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("d button");
 };
 };

object
 e_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("Long Button Title");
 };
 };

object
 align_b : XmRowColumn {

30

Chapter 3. Helpful Hints for Creating a DECwindows Application

 arguments {
 XmNunitType = XmPIXELS;
 XmNtopAttachment = XmATTACH_FORM;
 XmNtopOffset = 25;
 XmNleftAttachment = XmATTACH_WIDGET;
 XmNleftWidget = align_a;
 XmNleftOffset = 25;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 XmNorientation = XmVERTICAL;
 XmNborderWidth = 0;
 };

 controls
 {
 XmPushButton f_button;
 XmPushButton g_button;
 XmPushButton h_button;
 XmPushButton i_button;
 XmPushButton j_button;
 };
 };

object
 f_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("f button");
 };
 };

object
 g_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("g button");
 };
 };

object
 h_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("h button");
 };
 };

object
 i_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("i button");
 };
 };

object
 j_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("j button");
 };
 };
 .
 .
 .

31

Chapter 3. Helpful Hints for Creating a DECwindows Application

The XmForm widget controls two XmRowColumn widgets.

XmRowColumn widget align_a is aligned to the top and left of the XmForm. It controls
XmPushButtons a through e and has no visible border.

XmRowColumn widget align_b is aligned to the top of the XmForm and to the right side of the
align_a widget. It controls XmPushButtons f through j and has no visible border.

3.2.3. Centering Widgets at Positions Within an
XmForm Widget
The XmForm widget lets you attach an edge of a widget to a position in the XmForm widget. Instead
of specifying the position by its x- and y-coordinates, you specify the position as a fraction of the total
dimension of the XmForm widget. This is called fractional positioning.

You specify this type of attachment by passing the attachment type constant
XmNATTACH_POSITION as the value of the attachment type attribute and the numerator of the
fractional position as the value of the attachment position attribute.

For example, the midpoint of the XmForm widget is one-half the distance between the two
edges. To attach the left edge of a child widget to the midpoint of the XmForm widget, set the
XmNleftAttachment attribute to XmNATTACH_POSITION and specify the numerator of 50 in the
XmNleftPosition attribute. The default denominator is 100.

Note that you can also treat the XmNleftPosition argument as a percentage, where a value of 50
means 50%.

Note, however, that this aligns the left edge of the child widget with the midpoint of the XmForm
widget; the child widget is not centered. To center the child widget at the midpoint, you can:

● Get the width and height of the child widget

● Specify a value of 50 for the XmNleftPosition and XmNtopPosition attributes

● Specify negative offsets equal to one-half the size of the child widget

Example 3.3, "Centering Child Widgets at Positions in XmForm—UIL Module" and Example 3.4,
"Centering Child Widgets at Positions in XmForm—C Module" show how to center child widgets by
using offset values. The MrmNcreateCallback routine computes width and height offsets that center
the XmPushButton widgets at their respective positions. These position and offset relationships are
maintained regardless of any resizing operations performed on the XmForm widget.

Example 3.3. Centering Child Widgets at Positions in XmForm—UIL Module

 .
 .
 .

module form
 version = 'v1.0'
 names = case_sensitive

procedure
 center_form ();

object
 form_main : XmForm{

 arguments

32

Chapter 3. Helpful Hints for Creating a DECwindows Application

 {
 XmNdialogTitle = compound_string("XmForm");
 XmNwidth = 400;
 XmNheight = 400;
 };
 controls
 {
 XmPushButton a_arrow;
 XmPushButton b_arrow;
 XmPushButton c_arrow;
 };
 };

object
 a_arrow : XmPushButton {

 arguments {
 XmNlabelString = compound_string("centered");
 XmNtopAttachment = XmATTACH_POSITION;
 XmNtopPosition = 50;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNleftAttachment = XmATTACH_POSITION;
 XmNleftPosition = 25;
 XmNrightAttachment = XmATTACH_NONE;
 };
 callbacks {
 MrmNcreateCallback = procedure center_form();
 };
 };

object
 b_arrow : XmPushButton {

 arguments {
 XmNlabelString = compound_string("centered");
 XmNtopAttachment = XmATTACH_POSITION;
 XmNtopPosition = 50;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNleftAttachment = XmATTACH_POSITION;
 XmNleftPosition = 50;
 XmNrightAttachment = XmATTACH_NONE;
 };
 callbacks {
 MrmNcreateCallback = procedure center_form();
 };
 };

object
 c_arrow : XmPushButton {

 arguments {
 XmNlabelString = compound_string("centered");
 XmNtopAttachment = XmATTACH_POSITION;
 XmNtopPosition = 50;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNleftAttachment = XmATTACH_POSITION;
 XmNleftPosition = 75;
 XmNrightAttachment = XmATTACH_NONE;
 };
 callbacks {
 MrmNcreateCallback = procedure center_form();
 };
 };
end module;
 .
 .

33

Chapter 3. Helpful Hints for Creating a DECwindows Application

 .

Create an instance of the XmForm widget that controls an XmPushButton.

This XmPushButton will be centered at 25% of the total width of the XmForm widget and 50% of
its height.

The center_form procedure is called when the XmPushButton widget is created. The widget is
created when it is fetched.

This XmPushButton will be centered at 50% of the total width of the XmForm widget and 50% of
its height.

This XmPushButton will be centered at 75% of the total width of the XmForm widget and 50% of
its height.

Example 3.4. Centering Child Widgets at Positions in XmForm—C Module

 .
 .
 .
#include <stdio>
#include <Mrm/MrmAppl.h>
#include <DXm/DXmCSText.h>

Widget toplevel, form_w;

static MrmHierarchy s_MrmHierarchy;
static MrmType *dummy_class;
static char *db_filename_vec[] =
 {"center_form.uid"
 };

/* Forward declarations */

static void center_form();

/* The names and addresses of things that Mrm.has to bind. The names do
 * not have to be in alphabetical order. */

static MrmRegisterArg reglist[] = {
 {"center_form", (caddr_t) center_form}
};

static int reglist_num = (sizeof reglist / sizeof reglist [0]);

int main(argc, argv)
 unsigned int argc;
 char **argv;
{

 XtAppContext app_context;

 MrmInitialize();
 DXmInitialize();

 toplevel = XtAppInitialize(&app_context, "example", NULL, 0, &argc,
 argv, NULL, NULL, 0);
 /* Open the UID files (the output of the UIL compiler) in the hierarchy*/

 if (MrmOpenHierarchy(1,
 db_filename_vec,

34

Chapter 3. Helpful Hints for Creating a DECwindows Application

 NULL,
 &s_MrmHierarchy)
 !=MrmSUCCESS)
 printf("can't open hierarchy");

 MrmRegisterNames(reglist, reglist_num);

 if (MrmFetchWidget(s_MrmHierarchy, "form_main", toplevel,
 &form_w, &dummy_class) != MrmSUCCESS)
 printf("can't fetch widget");
 XtManageChild(form_w);

 XtRealizeWidget(toplevel);

 XtAppMainLoop(app_context);

}

static void center_form(w, tag, reason)
 Widget w;
 int *tag;
 unsigned long *reason;
{
 Arg arglist[10];
 int ac;
 int calc_width = 0;
 int width_b = 0;
 int calc_height = 0;
 int height_b = 0;

 /* Get the button width and height*/

 ac = 0;
 XtSetArg(arglist[ac], XmNwidth, &width_b); ac++;
 XtSetArg(arglist[ac], XmNheight, &height_b); ac++;
 XtGetValues(w, arglist, ac);

 /* Calculate the button width and height */

 calc_width = width_b/2;
 calc_height = height_b/2;

 ac = 0;
 XtSetArg (arglist[ac], XmNleftOffset, -calc_width); ac++;
 XtSetArg (arglist[ac], XmNtopOffset, -calc_height); ac++;
 XtSetValues (w, arglist, ac);

}
 .
 .
 .

Get the width and height of the XmPushButton.

Calculate the offset to use. Offset the XmPushButton widget by values equal to one-half its width
and one-half its height.

Specify calc_width as a negative XmNleftOffset value to shift the XmPushButton to the left.

Specify calc_height as a negative XmNtopOffset value to shift the XmPushButton toward the top.

35

Chapter 3. Helpful Hints for Creating a DECwindows Application

3.2.4. Spacing XmPushButtons in XmForm Widgets
The Toolkit includes a routine, DXmFormSpaceButtonsEqually, that applications can call to set
a variable number of push buttons in an XmForm widget so they are equally spaced and sized.
DXmFormSpaceButtonsEqually determines the width of the XmForm widget and the number of
XmPushButtons and then spaces and sizes the XmPushButtons accordingly.

You pass to DXmFormSpaceButtonsEqually the widget ID of the XmForm widget that contains the
XmPushButtons, an array of the widget IDs of the XmPushButtons to be changed, and the number of
XmPushButtons in the widget array.

You must specify the XmPushButton IDs in the order they appear in the XmForm widget; for
example, OK, Apply, Reset, and Cancel. Additionally, the XmPushButtons must not have left and right
attachments.

Example 3.5, "Calling the DXmFormSpaceButtonsEqually Routine", the DXmFormSpaceButtonsEqually
routine, is from the OpenVMS DECburger sample program. It spaces the OK, Apply, Reset, and Cancel
push buttons in the XmFormDialog widget.

Example 3.5. Calling the DXmFormSpaceButtonsEqually Routine

 .
 .
 .
#define k_ok 6 /* NOTE: ok, apply, reset, cancel*/
#define k_apply 7 /* must be sequential */
#define k_reset 8
#define k_cancel 9

 .
 .
 .
static void show_hide_proc(w, tag, reason)
 Widget w;
 int *tag;
 XmAnyCallbackStruct *reason;
{
 if (XtIsManaged(widget_array[k_order_box]))
 XtUnmanageChild(widget_array[k_order_box]);
 else {
 start_watch();
 XtManageChild(widget_array[k_order_box]);
 DXmFormSpaceButtonsEqually (widget_array[k_order_box],
 &widget_array[k_ok], 4);
 stop_watch();
 }
}

3.3. Using Default Files
As described in the OSF/Motif Programmer's Guide, your application can use application-specific default
files to specify resources that are not explicitly set in the C or UIL modules. You specify the file that
contains the application defaults in the application_class argument of the XtAppInitialize
routine, as follows:

toplevel = XtAppInitialize(&app_context, "example", NULL, 0,
 &argc, argv, NULL, NULL, 0);

The application_class argument, in this case "example", specifies a defaults file named
example.dat on UNIX systems and eXcursion for Windows NT systems, or EXAMPLE.DAT on

36

Chapter 3. Helpful Hints for Creating a DECwindows Application

OpenVMS systems. By default, the file extension is .dat or .DAT by default. The XtAppInitialize
routine automatically uses the defaults file if it is present.

The following is an example of a defaults file. On OpenVMS systems, this file is located in DECW
$USER_DEFAULTS (the user's SYS$LOGIN directory). On UNIX and Windows NT systems, the file
is located in the user's home directory.

!
example*allowShellResize: true
example*borderWidth: 0
example*highlightThickness: 1
example*traversalOn: true
example*fontList: fixed
example*background: LightBlue
!

To determine how the resource is used in a defaults file, check the include file for the widget to see how
the resource is defined. For example, the DXmSvnNfontListLevel resources are defined as follows in
DXmSvn.h (UNIX and Windows NT) or DXMSVN.H (OpenVMS):

#define DXmSvnNfontListLevel0 "DXmfontListLevel0"
#define DXmSvnNfontListLevel1 "DXmfontListLevel1"
#define DXmSvnNfontListLevel2 "DXmfontListLevel2"
#define DXmSvnNfontListLevel3 "DXmfontListLevel3"

Note that widgets provided by VSI have the resource name prefix DXmN for resources that are unique
to the widget. In the case of the SVN widget, the prefix is DXmSvnN.

You use the string value of the resource as the value in the defaults file, in this case DXmfontListLevel0,
DXmfontListLevel1, and so forth. Note that the names are case sensitive.

example*main_svn.background: LightBlue
example*DXmfontListLevel2: -ADOBE-ITC Avant Garde Gothic-Book-R-Normal–14-100-*-*-
P-80-*"

Resources that are common with other widgets or part of the widget's superclass use the XmN prefix.
The resource names are in Xm.h (UNIX and Windows NT) or XM.H (OpenVMS), and the string used
in the defaults file is in parentheses following the X_GBLS. For example, you use the string value of
background to specify the XmNbackground resource in a defaults file.

#define XmNbackground X_GBLS(background)

3.4. Using Default Files to Save Customized
Settings
Many applications give the user the option to customize application settings and then save these settings
for subsequent invocations of the application. Example 3.6, "Saving Application Defaults—UIL Module"
and Example 3.7, "Saving Application Defaults—C Module" implement an application that lets the user
set and save the XmNwidth and XmNheight resources of its main window.

Example 3.6. Saving Application Defaults—UIL Module

 .
 .
 .
module form
 version = 'v1.0'
 names = case_sensitive

procedure

37

Chapter 3. Helpful Hints for Creating a DECwindows Application

 save_create ();
 all_done ();

object
 main_window : XmMainWindow {

 controls {
 XmMenuBar menu_bar;
 XmForm form_main;
 };
 };

object
 menu_bar : XmMenuBar {

 arguments {
 XmNorientation = XmHORIZONTAL;
 XmNspacing = 15;
 };
 controls {
 XmCascadeButton cust_entry;
 };
 };

object
 cust_entry : XmCascadeButton {

 arguments {
 XmNlabelString = compound_string("Save Settings");
 XmNmnemonic = keysym("S");
 };
 controls {
 XmPulldownMenu cust_menu;
 };
 };

object
 cust_menu : XmPulldownMenu {
 controls {
 XmPushButton push_me;
 XmPushButton done;
 };
 };

object
 push_me : XmPushButton {

 arguments {
 XmNlabelString = compound_string("Save Width and Height");
 };

 callbacks {
 XmNactivateCallback = procedure save_create ();
 };
 };

object
 done : XmPushButton {

 arguments {
 XmNlabelString = compound_string("Exit");
 };

 callbacks {
 XmNactivateCallback = procedure all_done ();

38

Chapter 3. Helpful Hints for Creating a DECwindows Application

 };
 };

 object
 form_main : XmForm{

 arguments
 {
 XmNdialogTitle = compound_string("XmForm");
 XmNwidth = 300;
 XmNheight = 300;
 };

 controls
 {
 XmRowColumn align_a;
 XmRowColumn align_b;
 };
 };

object
 align_a : XmRowColumn {
 arguments {
 XmNunitType = XmPIXELS;
 XmNtopAttachment = XmATTACH_FORM;
 XmNtopOffset = 25;
 XmNleftAttachment = XmATTACH_FORM;
 XmNleftOffset = 25;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 XmNorientation = XmVERTICAL;
 XmNborderWidth = 0;
 };
 controls
 {
 XmPushButton a_button;
 XmPushButton b_button;
 XmPushButton c_button;
 XmPushButton d_button;
 XmPushButton e_button;
 };
 };

object
 align_b : XmRowColumn {
 arguments {
 XmNunitType = XmPIXELS;
 XmNtopAttachment = XmATTACH_FORM;
 XmNtopOffset = 25;
 XmNleftAttachment = XmATTACH_WIDGET;
 XmNleftWidget = align_a;
 XmNleftOffset = 25;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNrightAttachment = XmATTACH_NONE;
 XmNorientation = XmVERTICAL;
 XmNborderWidth = 0;
 };

 controls
 {
 XmPushButton f_button;
 XmPushButton g_button;
 XmPushButton h_button;
 XmPushButton i_button;

39

Chapter 3. Helpful Hints for Creating a DECwindows Application

 XmPushButton j_button;
 };
 };

object
 a_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("a button");
 };
 };

object
 b_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("b button");
 };
 };

object
 c_button : XmPushButton {
 arguments {
 XmNlabelString = compound_string("Long Button Title");
 };
 };

object
 d_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("d button");
 };
 };

object
 e_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("Long Button Title");
 };
 };

object
 f_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("f button");
 };
 };

object
 g_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("g button");
 };
 };

object
 h_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("h button");
 };
 };

40

Chapter 3. Helpful Hints for Creating a DECwindows Application

object
 i_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("i button");
 };
 };

object
 j_button : XmPushButton {

 arguments {
 XmNlabelString = compound_string("j button");
 };
 };

end module;

Because the example lets the user determine the XmNwidth and XmNheight defaults, the
XmNwidth and XmNheight values are not hardcoded.

Declare a "Save Settings" XmCascadeButton.

Declare a "Save Width and Height" XmPushButton. The activate callback for this push-button calls
the save defaults routine.

Declare an "Exit" XmPushButton. The activate callback for this push-button calls the exit routine.

Declare XmForm, XmRowColumn, and XmPushButton widgets to complete the application.

Example 3.7. Saving Application Defaults—C Module

 .
 .
 .

 /* The example uses these defaults:
 * example*main_window.width: 334
 * example*main_window.height: 246
 * example*allowShellResize: true
 * example*highlightThickness: 1
 * example*borderWidth: 0
 * example*background: LightBlue
 * example*fontList: fixed
 * example*traversalOn: true
 */

 #include <stdio>
 #include <Mrm/MrmAppl.h>
 #include <DXm/DXmCSText.h>
 #include <X11/Xresource.h>

 Widget toplevel, main_win, form_w;

 XrmDatabase database = 0;
 int save_width;
 int save_height;

 #ifdef VMS
 /* Use this definition for OpenVMS systems. */
 #define resourceFileName "decw$user_defaults:example.dat"

 #else

41

Chapter 3. Helpful Hints for Creating a DECwindows Application

 /* Use this definition for UNIX and Windows NT systems. */
 #define resourceFileName "~/example.dat"

 #endif

 static MrmHierarchy s_MrmHierarchy;
 static MrmType *dummy_class;
 static char *db_filename_vec[] =
 {"defaults_file.uid"
 };

 /* Forward declarations */

 static void save_create();
 static void all_done();
 static void update_database();

 /* The names and addresses of things that Mrm.has to bind. The names do
 * not have to be in alphabetical order. */

 static MrmRegisterArg reglist[] = {
 {"save_create", (caddr_t) save_create},
 {"all_done", (caddr_t) all_done}
 };

 static int reglist_num = (sizeof reglist / sizeof reglist [0]);

 int main(argc, argv)
 unsigned int argc;
 char **argv;
 {

 XtAppContext app_context;

 MrmInitialize();
 DXmInitialize();

toplevel = XtAppInitialize(&app_context, "example", "Example", 0, &argc,
 argv, NULL, NULL, 0);

 /* Open the UID files (the output of the UIL compiler) in the hierarchy*/

 if (MrmOpenHierarchy(1,
 db_filename_vec,
 NULL,
 &s_MrmHierarchy)
 !=MrmSUCCESS)
 printf("can't open hierarchy");

 MrmRegisterNames(reglist, reglist_num);

 if (MrmFetchWidget(s_MrmHierarchy, "main_window", toplevel,
 &main_win, &dummy_class) != MrmSUCCESS)
 printf("can't fetch widget");

 XtManageChild(main_win);

 XtRealizeWidget(toplevel);

 XtAppMainLoop(app_context);

 }

 static void save_create(w, tag, reason)

42

Chapter 3. Helpful Hints for Creating a DECwindows Application

 Widget w;
 int *tag;
 unsigned long *reason;
 {

 Arg arglist[10];
 int ac;
 if (!(database = XrmGetFileDatabase (resourceFileName)))
 printf("Resource Database Not found");

 ac = 0;
 XtSetArg(arglist[ac], XmNwidth, &save_width); ac++;
 XtSetArg(arglist[ac], XmNheight, &save_height); ac++;
 XtGetValues(main_win, arglist, ac);

 update_database ("example*main_window.width", save_width);
 update_database ("example*main_window.height", save_height);

 XrmPutFileDatabase (database, resourceFileName);
}

static void update_database(resourceNameP, number)
 char *resourceNameP;
 int number;
{
 XrmValue value;
 char valueA[256];

 sprintf (valueA, "%d", number);
 value.addr = valueA;
 value.size = strlen (valueA) + 1;
 XrmPutResource (&database, resourceNameP, XtRString, &value);
}

static void all_done(w, tag, reason)
 Widget w;
 int *tag;
 unsigned long *reason;
{
 exit(1);
}
 .
 .
 .

Define a constant to specify the defaults file name in calls to the Xrm resource manager routines.

The application_class argument, in this case "example", specifies a defaults file named
"example". By default, the file extension is .dat . The XtAppInitialize routine automatically uses
the defaults file (if it is present) when the application is run.

The save-the-defaults routine invoked by the push_me push-button callback.

Get the defaults file from disk.

Get the current XmNwidth and XmNheight values.

Call the update_database routine to convert the save_height and save_width integer values into
character strings and store them in XrmValue data structures, which is the format required by the
XrmPutResource routine.

Resources must be specified according to the format described in the X Window System, for
example "example*main_window.width".

43

Chapter 3. Helpful Hints for Creating a DECwindows Application

Store the defaults file to disk.

The XrmValue data structures are initialized with the strings and their length. The addresses of the
XrmValue data structures are then passed as arguments to the XrmPutResource routine.

3.5. Using Multiple Displays
The Toolkit allows your application to open multiple displays. You can open multiple displays to run
independent instances of an application on more than one workstation or to interconnect instances of the
application. You use the following sequence of commands to open multiple displays:

1. XtToolkitInitialize (once)

2. XtCreateApplicationContext (once)

3. XtOpenDisplay (multiple times)

4. XtAppCreateShell (multiple times)

5. XtAppMainLoop (once)

6. MrmFetchWidget (multiple times to fetch multiple main widgets)

7. XtManageChild (multiple times to manage multiple main widgets)

8. XtRealizeWidget (multiple times for multiple application shells)

You do not need to hard code multiple display names. Instead, on OpenVMS systems, you can use the
SET DISPLAY command to set multiple display names for your application:

$ SET DISPLAY DPY1/CREATE/NODE="DPY1"
$ SET DISPLAY DPY2/CREATE/NODE="DPY2"

DPY1 and DPY2 are logical names that equate to workstation devices. The following calls to
XtOpenDisplay pass logical names instead of display names:

display = XtOpenDisplay(app_context, "dpy1", "two_heads", "demo",
 NULL, 0, &argc, argv);

display_b = XtOpenDisplay(app_context, "dpy2", "two_heads", "demo",
 NULL, 0, &argc, argv);

On UNIX systems, the ability to use multiple displays depends on which shell the user is running. If the
user is running the C shell, use the following setenv commands:

setenv dpy1 dpy1:0.0
setenv dpy2 dpy2:0.2

For users running either the Bourne shell or Korn shell, use the following export commands:

export dpy1=dpy1:0.0
export dpy2=dpy2:0.1

Then, include the following code in your application:

char *dpy1;
char *dpy2;

dpy1=getenv("dpy1");
dpy2=getenv("dpy2");
display=XtOpenDisplay(app_context,
 dpy1, "two_heads", "demo", NULL, 0, &argc, argv);
display_b=XtOpenDisplay(app_context,

44

Chapter 3. Helpful Hints for Creating a DECwindows Application

 dpy2, "two_heads", "demo", NULL, 0, &argc, argv);

On Windows NT systems, the command to set the display variables are as follows:

set dpy1=dpy1:0.0
set dpy2=dpy2:0.0

3.5.1. Using Multiple Independent Displays
Example 3.8, "Using Multiple Independent Displays—UIL Module" and Example 3.9, "Using Multiple
Independent Displays—C Module" implement a version of the widget-centering example shown in
Section 3.2.3, "Centering Widgets at Positions Within an XmForm Widget", which opens two displays and
runs independent instances of the application. Note that the UIL file is shared.

Example 3.8. Using Multiple Independent Displays—UIL Module

 .
 .
 .
module form
 version = 'v1.0'
 names = case_sensitive

procedure
 center_form ();

object
 form_main : XmForm{

 arguments
 {
 XmNdialogTitle = compound_string("XmForm");
 XmNwidth = 400;
 XmNheight = 400;
 };
 controls
 {
 XmPushButton a_arrow;
 XmPushButton b_arrow;
 XmPushButton c_arrow;
 };
 };

object
 a_arrow : XmPushButton {

 arguments {
 XmNlabelString = compound_string("centered");
 XmNtopAttachment = XmATTACH_POSITION;
 XmNtopPosition = 50;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNleftAttachment = XmATTACH_POSITION;
 XmNleftPosition = 25;
 XmNrightAttachment = XmATTACH_NONE;
 };
 callbacks {
 MrmNcreateCallback = procedure center_form();
 };
 };

object
 b_arrow : XmPushButton {

45

Chapter 3. Helpful Hints for Creating a DECwindows Application

 arguments {
 XmNlabelString = compound_string("centered");
 XmNtopAttachment = XmATTACH_POSITION;
 XmNtopPosition = 50;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNleftAttachment = XmATTACH_POSITION;
 XmNleftPosition = 50;
 XmNrightAttachment = XmATTACH_NONE;
 };
 callbacks {
 MrmNcreateCallback = procedure center_form();
 };
 };

object
 c_arrow : XmPushButton {

 arguments {
 XmNlabelString = compound_string("centered");
 XmNtopAttachment = XmATTACH_POSITION;
 XmNtopPosition = 50;
 XmNbottomAttachment = XmATTACH_NONE;
 XmNleftAttachment = XmATTACH_POSITION;
 XmNleftPosition = 75;
 XmNrightAttachment = XmATTACH_NONE;
 };

 callbacks {
 MrmNcreateCallback = procedure center_form();
 };
 };

end module;

 .
 .
 .

Example 3.9. Using Multiple Independent Displays—C Module

 .
 .
 .
#include <stdio>
#include <Mrm/MrmAppl.h>
#include <DXm/DXmCSText.h>

Widget toplevel, toplevel_b, form_w, form_w_b;

static MrmHierarchy s_MrmHierarchy;
static MrmType *dummy_class;
static char *db_filename_vec[] =
 {"twin_form.uid"
 };

/* Forward declarations */

static void center_form();

/* The names and addresses of things that Mrm has to bind. The names do
 * not have to be in alphabetical order. */

static MrmRegisterArg reglist[] = {

46

Chapter 3. Helpful Hints for Creating a DECwindows Application

 {"center_form", (caddr_t) center_form}
};

static int reglist_num = (sizeof reglist / sizeof reglist [0]);

int main(argc, argv)
 unsigned int argc;
 char **argv;
{

 XtAppContext app_context;
 Display *display, *display_b;

 MrmInitialize();
 DXmInitialize();

 XtToolkitInitialize();

 app_context = XtCreateApplicationContext();

 #ifdef VMS
 /* The two getenv lines apply to UNIX and Windows NT systems.
 Do not include these lines in applications running on
 OpenVMS systems. */

 #else

 /* These two lines apply only to application running on
 UNIX and Windows NT systems. */
 dpy1=getenv("dpy1");
 dpy2=getenv("dpy2");

 #endif

 display = XtOpenDisplay(app_context, "dpy1", "two_heads", "demo",
 NULL, 0, &argc, argv);

 display_b = XtOpenDisplay(app_context, "dpy2", "two_heads", "demo",
 NULL, 0, &argc, argv);

 if (!display) {
 XtWarning ("Can't open display one...exiting");
 exit(0);
 }

 if (!display_b) {
 XtWarning ("Can't open display two...exiting");
 exit(0);
 }

 toplevel = XtAppCreateShell ("two_heads", NULL,
 applicationShellWidgetClass, display, NULL, 0);

 toplevel_b = XtAppCreateShell ("two_heads", NULL,
 applicationShellWidgetClass, display_b, NULL, 0);

 /* Open the UID files (the output of the UIL compiler) in the hierarchy*/

 if (MrmOpenHierarchy(1,

47

Chapter 3. Helpful Hints for Creating a DECwindows Application

 db_filename_vec,
 NULL,
 &s_MrmHierarchy)
 !=MrmSUCCESS)
 printf("can't open hierarchy");

 MrmRegisterNames(reglist, reglist_num);

 if (MrmFetchWidget(s_MrmHierarchy, "form_main", toplevel,
 &form_w, &dummy_class) != MrmSUCCESS)
 printf("can't fetch widget");

 if (MrmFetchWidget(s_MrmHierarchy, "form_main", toplevel_b,
 &form_w_b, &dummy_class) != MrmSUCCESS)
 printf("can't fetch widget");

 XtManageChild(form_w);
 XtManageChild(form_w_b);

 XtRealizeWidget(toplevel);
 XtRealizeWidget(toplevel_b);

 XtAppMainLoop(app_context);

}

static void center_form(w, tag, reason)
 Widget w;
 int *tag;
 unsigned long *reason;

{
 Arg arglist[10];
 int ac;
 int calc_width = 0;
 int width_b = 0;
 int calc_height = 0;
 int height_b = 0;

 /* Calculate the button width */

 ac = 0;
 XtSetArg(arglist[ac], XmNwidth, &width_b);
 XtGetValues(w, arglist, 1);

 calc_width = width_b/2;

 /* Calculate the button height */

 ac = 0;
 XtSetArg(arglist[ac], XmNheight, &height_b);
 XtGetValues(w, arglist, 1);

 calc_height = height_b/2;

 ac = 0;
 XtSetArg (arglist[ac], XmNleftOffset, -calc_width); ac++;
 XtSetArg (arglist[ac], XmNtopOffset, -calc_height); ac++;
 XtSetValues (w, arglist, ac);

48

Chapter 3. Helpful Hints for Creating a DECwindows Application

}
 .
 .
 .

The example needs two application shells and two XmForm widgets.

One UID file is shared between instances of the application.

Declare one Display data structure for each display you open.

You need to initialize the toolkit only once.

You need to create only one application context.

Call XtOpenDisplay for each of the displays you want to open.

Create a top-level shell for each instance of the application.

Fetch an instance of the widget hierarchy for each instance of the application.

Manage the main widgets for each instance of the application.

Realize the top-level shells for each instance of the application.

Because there is only one application context, you need to call XtAppMainLoop only once.

3.5.2. Using Multiple Interconnected Displays
Example 3.10, "Using Multiple Interconnected Displays" implements an application that interconnects
two multiline CSText widgets. Text entered in one widget is also reflected in the other, as if both widgets
were simultaneously editing the same file.

Example 3.10. Using Multiple Interconnected Displays

 .
 .
 .
#include <stdio>
#include <Mrm/MrmAppl.h>
#include <DXm/DXmCSText.h>

static void change_cs();

static Widget toplevel, toplevel_b, text_shell,

 text_shell_b, text_w, text_w_b;

static int ignoreValueChanged = 1;

int main(argc, argv)
 unsigned int argc;
 char **argv;
{
 XtAppContext app_context;
 Arg arglist[15];
 int ac = 0;
 XtCallbackRec callback_arg[2];
 Display *display, *display_b;
 XmString cstring;

 XtToolkitInitialize();

49

Chapter 3. Helpful Hints for Creating a DECwindows Application

 app_context = XtCreateApplicationContext();

 #ifdef VMS
 /* The two getenv lines only apply to UNIX and Windows NT systems.
 Do not include these lines in applications running on
 OpenVMS systems. */

 #else

 /* These two lines apply only to applications running on
 UNIX and Windows NT systems. */
 dpy1=getenv("dpy1");
 dpy2=getenv("dpy2");

 #endif

 display = XtOpenDisplay(app_context, "dpy1", "two_heads", "demo",
 NULL, 0, &argc, argv);

 display_b = XtOpenDisplay(app_context, "dpy2", "two_heads", "demo",
 NULL, 0, &argc, argv);

 if (!display) {
 XtWarning ("Can't open display...exiting");
 exit(0);
 }

 if (!display_b) {
 XtWarning ("Can't open display...exiting");
 exit(0);
 }

 toplevel = XtAppCreateShell ("two_heads", NULL,
 applicationShellWidgetClass, display, NULL, 0);

 toplevel_b = XtAppCreateShell ("two_heads", NULL,
 applicationShellWidgetClass, display_b, NULL, 0);

 ac = 0;
 cstring = XmStringCreateLtoR("User Defined", XmSTRING_ISO8859_1);
 XtSetArg(arglist[ac], XmNdialogTitle, cstring);ac++;
 XtSetArg(arglist[ac], XmNallowOverlap, TRUE);ac++;
 XtSetArg(arglist[ac], XmNheight, 300);ac++;
 XtSetArg(arglist[ac], XmNwidth, 300);ac++;
 XtSetArg(arglist[ac], XmNresizePolicy, XmRESIZE_GROW);ac++;

 text_shell = XmCreateBulletinBoard(toplevel, "CSText", arglist, ac);

 text_shell_b = XmCreateBulletinBoard(toplevel_b, "CSText", arglist, ac);

 XmStringFree(cstring);

 callback_arg[0].callback = change_cs;
 callback_arg[0].closure = 0;
 callback_arg[1].callback = NULL;
 callback_arg[1].closure = NULL;

 ac = 0;
 XtSetArg(arglist[ac], XmNx, 40);ac++;
 XtSetArg(arglist[ac], XmNy, 50);ac++;
 XtSetArg(arglist[ac], XmNrows, 20); ac++;

50

Chapter 3. Helpful Hints for Creating a DECwindows Application

 XtSetArg(arglist[ac], XmNcolumns, 45); ac++;
 XtSetArg(arglist[ac], XmNvalueChangedCallback, callback_arg);ac++;
 XtSetArg(arglist[ac], XmNscrollVertical, TRUE);ac++;
 XtSetArg(arglist[ac], XmNeditMode, XmMULTI_LINE_EDIT);ac++;

 text_w = DXmCreateScrolledCSText(text_shell, "textwidget",
 arglist, ac);

 text_w_b = DXmCreateScrolledCSText(text_shell_b, "textwidget",
 arglist, ac);

 XtManageChild(text_w);
 XtManageChild(text_w_b);

 XtManageChild(text_shell);
 XtManageChild(text_shell_b);

 XtRealizeWidget(toplevel);
 XtRealizeWidget(toplevel_b);

 ignoreValueChanged = 0;

 XtAppMainLoop(app_context);

 }

 /* The user entered something*/

static void change_cs(w, tag, reason)

 Widget w;
 int *tag;
 unsigned long *reason;
{
 XmString new_text;
 DXmCSTextPosition last_pos;
 Widget ww;

 if (ignoreValueChanged) return;
 ignoreValueChanged = 1;

 new_text = DXmCSTextGetString(w);
 last_pos = DXmCSTextGetLastPosition(text_w);

 if (w == text_w_b) ww = text_w; else ww = text_w_b;

 DXmCSTextSetString(ww, new_text);
 DXmCSTextSetInsertionPosition(ww, last_pos);
 DXmCSTextSetInsertionPosition(text_w_b, last_pos);

 XtFree(new_text);
 ignoreValueChanged = 0;
}
 .
 .
 .

The example uses multiple instances of the application shells and all widgets.

Declare one Display data structure for each display you open.

51

Chapter 3. Helpful Hints for Creating a DECwindows Application

You need to initialize the toolkit only once.

You need to create only one application context.

Call XtOpenDisplay for each of the displays you want to open. The application opens the display
identified by the last call to the SET DISPLAY command, and a second, hardcoded display name.

Create a top-level shell for each instance of the application.

Create an XmBulletinBoard widget for each instance of the application. The argument list is
shared.

Create a scrolled CSText widget for each instance of the application. The argument list is shared,
including the XmNvalueChangedCallback routine to call.

Manage both CSText widgets.

Manage both XmBulletinBoard widgets.

Realize both top-level shells.

Make sure that the value changed callback is not invoked until everything is realized.

Because there is only one application context, you need to call XtAppMainLoop only once.

When the user enters text, this callback routine is called.

Make sure that this callback is not invoked until the top-level shell is realized.

Make sure the callback routine is not invoked until this invocation of the callback routine is
complete.

Get the new text entered by the user.

Get the position of the last character of the string.

Find out which of the two CSText widgets generated the callback and set the text and insertion
position for the other.

3.6. Creating a Cursor
The Toolkit includes a routine, DXmCreateCursor, that you can call to create a cursor for your
application. On UNIX and Windows NT systems, you specify one of the cursor constants defined in
the decwcursor.h include file to identify the cursor. Your application must include the DECspecific.h
and decwcursor.h include files to use the DXmCreateCursor routine. On OpenVMS systems, you
specify one of the cursor constants defined in the DECw$Cursor.h include file to identify the cursor.
Your application must include the DECspecific.h and DECw$Cursor.h include files to use the
DXmCreateCursor routine.

Example 3.11, "The DXmCreateCursor Routine" shows how to use the DXmCreateCursor routine to
create a wait cursor, define this cursor to be used in a window of an application, and then restore the
parent's (original) cursor. You need only create the cursor once; you can then define it and undefine it as
necessary.

Example 3.11. The DXmCreateCursor Routine

 .
 .
 .

52

Chapter 3. Helpful Hints for Creating a DECwindows Application

#include <DXm/DECspecific.h>

#ifdef VMS
/* On OpenVMS systems, use the following include file to identify
 the cursor. */
#include <sys$library/DECw$Cursor.h>

#else
/* On UNIX and Windows NT systems, use the following include file to identify
 the cursor. */
#include <X11/decwcursor.h>

#endif

 .
 .
 .

Widget toplevel_widget, my_widget;
Cursor cursor;

 cursor = DXmCreateCursor(toplevel_widget, decw$c_wait_cursor);

 XDefineCursor(XtDisplay(toplevel_widget), XtWindow(my_widget), cursor);
 .
 .
 .
 /* Perform some function */

 XUndefineCursor(XtDisplay(toplevel_widget), XtWindow(my_widget));

3.7. Using the XtAppAddInput Routine
As described in the X Window System Toolkit, you can use the XtAppAddInput routine to register an
alternative source of input with the Toolkit. When input from this alternate source becomes available, the
intrinsics call the supplied callback routine to notify it that input is available.

The XtAppAddInput routine has several operating-system-dependent arguments. The X Window System
Toolkit describes all the arguments used for calling the XtAppAddInput routine on UNIX and Windows
NT systems.

Note

The remainder of this section applies only to OpenVMS systems.

In the OpenVMS environment, the arguments used in calling the XtAppAddInput routine are as follows:

1. Application context.

2. An event flag to monitor. When the intrinsics notices that this flag is set, it calls the
XtInputCallbackProc routine you specify. Event flag numbers are restricted to cluster 0, which
contains event flag numbers 0 to 31 For more information, see the VSI OpenVMS System Services
Reference Manual. Note that event flag 0 cannot be used as the XtAppAddInput event flag.

3. An I/O status byte (IOSB) for the condition return code. This argument can be zero.

4. An XtInputCallbackProc routine you want invoked when input is available; that is, when the event
flag is set.

5. Some data to pass to the XtInputCallbackProc routine.

53

Chapter 3. Helpful Hints for Creating a DECwindows Application

Your application needs a way to set the event flag to indicate that input is available. The most common
method of setting the event flag is by using an AST completion routine. For example, in Example 3.13,
"Using the XtAppAddInput Routine—C Module", the START_READ routine starts a $QIO read and
specifies CompletionAst as the AST completion routine. CompletionAst sets the event flag.

Example 3.12, "Using the XtAppAddInput Routine—UIL Module" and Example 3.13, "Using the
XtAppAddInput Routine—C Module" implement a program that traps broadcast messages and displays
them in an XmScrolledList widget. The program uses mailboxes to handle communications between the
processes.

The AllocateAddInputRec routine allocates and initializes a data structure containing allocated space, an
application (widget) callback, and tag. This data structure is passed to the CompletionAst routine at AST
level and then to your XtInputCallbackProc routine. You can use this data structure as needed by your
application.

By using the data structure allocated by AllocateAddInputRec and by replacing the ProcessMessageRec
and AddInputCallback routines based on your application's needs, you can use this code to do a $QIO
read into a buffer, set an event flag to notify the Toolkit that input is available, and start another $QIO
read.

You can use the following commands to compile and link this program:

$ UIL/MOTIF BTRAP.UIL
$ CC/NOOPTIMIZE BTRAP
$ LINK BTRAP,SYS$INPUT/OPT
SYS$SHARE:DECW$DXMLIBSHR/SHARE,SYS$SHARE:DECW$XLIBSHR/SHARE

Note

One way to test this program is to run it from a DECterm window, give the window input focus, and
then press Ctrl/T to generate broadcast messages to be trapped.

Example 3.12. Using the XtAppAddInput Routine—UIL Module

module BTrap
 names = case_sensitive

procedure
 LabelCreateCallback ();
 QuitCallback ();

object bTrapMain : XmMainWindow {

 arguments
 {
 XmNwidth = 650;
 XmNheight = 150;
 };

 controls
 {
 XmForm btrap_form;
 };
 };

object
 btrap_form : XmForm{

54

Chapter 3. Helpful Hints for Creating a DECwindows Application

 controls
 {
 XmScrolledList bTrapLabel;
 XmPushButton bTrapQuitButton;
 };
 };

object bTrapLabel : XmScrolledList {

 arguments
 {
 XmNvisibleItemCount = 5;
 XmNunitType = XmPIXELS;
 XmNlistSizePolicy = XmVARIABLE;
 XmNscrollBarDisplayPolicy = XmSTATIC;
 XmNleftAttachment = XmATTACH_FORM;
 XmNleftOffset = 0;
 XmNrightAttachment = XmATTACH_FORM;
 XmNrightOffset = 0;
 XmNtopAttachment = XmATTACH_FORM;
 XmNtopOffset = 3;
 XmNbottomAttachment = XmATTACH_NONE;
 };

 callbacks
 {
 MrmNcreateCallback = procedure LabelCreateCallback();
 };
 };

object
 bTrapQuitButton : XmPushButton {

 arguments {
 XmNlabelString = compound_string("Quit");
 XmNleftAttachment = XmATTACH_NONE;
 XmNtopAttachment = XmATTACH_NONE;
 XmNbottomAttachment = XmATTACH_FORM;
 XmNbottomOffset = 5;
 XmNrightAttachment = XmATTACH_FORM;
 XmNrightOffset = 10;
 };
 callbacks {
 XmNactivateCallback = procedure QuitCallback();
 };
 };

end module;
 .
 .
 .

Create an XmScrolledList widget to receive the broadcast messages and attach it to the XmForm
widget.

Example 3.13. Using the XtAppAddInput Routine—C Module

 #include <Mrm/MrmAppl.h>
 #include <descrip.h>
 #include <jpidef.h>

55

Chapter 3. Helpful Hints for Creating a DECwindows Application

 #include <ssdef.h>
 #include <iodef.h>
 #include <libdef.h>
 #include <dvidef.h>
 #include <psldef.h>
 #include <prcdef.h>
 #include <ttdef.h>
 #include <tt2def.h>
 #include <msgdef.h>

 /*
 * Global Data
 *
 */

 static MrmHierarchy s_MrmHierarchy; /* MRM database hierarchy ID */
 static MrmType *dummy_class; /* and class variable. */
 static char *db_filename_vec[] = /* Mrm hierarchy file list. */
 {"btrap.uid" /* There is only one UID file for */
 }; /* this application. */
 static int db_filename_num =
 (sizeof db_filename_vec / sizeof db_filename_vec [0]);

 #define MISC_EFN 2 /* use for system service calls */

 typedef struct {
 unsigned short type;
 unsigned short unit;
 unsigned char controllerNameLen;
 char controllerNameA[15];
 unsigned short messageLen;
 char messageA[256];
 } VmsMailboxMessage;

 /* Define a control block to contain information about the mailbox message.
 * This control block will be passed to the I/O completion routine. */

 typedef struct _MessageRec {
 unsigned short iosbA[4];
 VmsMailboxMessage mailboxMessage;
 } MessageRec;

 static MessageRec messageRec;
 static short devChan, mbChan;

 /* Definitions for AST routines */

 #define LIB$_QUEWASEMP 1409772
 #define ADD_INPUT_EFN 3

 typedef struct {
 unsigned long queueEntryA[2]; /* must be first in struct */
 char *mallocP; /* address actually malloc-ed */
 void (*routineP)(); /* thread resumption routine */
 Opaque closure; /* thread closure */
 } AddInputRec;

 static _align(quadword) unsigned long addInputQueueHeaderA[2];
 static int initialized;

56

Chapter 3. Helpful Hints for Creating a DECwindows Application

 /* Application Context */

 XtAppContext app_context;

 /* Application Widgets */

 static Widget appW, mainW, labelW;

 /*
 * Forward declarations
 */

 static unsigned long StartReadQIO();
 static void LabelCreateCallback();
 static void QuitCallback();
 static void AddInputCallback();
 extern void CompletionAst();
 extern Opaque AllocateAddInputRec();

 /* The names and addresses of things that Mrm has to bind. The names do
 * not have to be in alphabetical order. */

 static MrmRegisterArg reglist[] = {
 {"LabelCreateCallback", (caddr_t) LabelCreateCallback},
 {"QuitCallback", (caddr_t) QuitCallback}
 };

 static int reglist_num = (sizeof reglist / sizeof reglist [0]);

 static void ProcessMessageRec(messageRecP)
 MessageRec *messageRecP;
 {
 VmsMailboxMessage *mailboxMessageP = &messageRecP->mailboxMessage;
 int bell = 0;
 char c, bufA[256];
 char *fromBufP = mailboxMessageP->messageA;
 int fromBufLen = mailboxMessageP->messageLen;
 char *toBufP;
 Arg al[1];
 XmString labelP;

 /* If this is a non-null broadcast message, pass it to XmScrolledList. */

 if ((mailboxMessageP->type == MSG$_TRMBRDCST) && fromBufLen) {
 if (fromBufP[fromBufLen-1] != '\n') fromBufP[fromBufLen++] = '\n';

 while (fromBufLen) {
 toBufP = bufA;
 bell = 0;

 while (1) {
 c = *(fromBufP++); fromBufLen--;

 if (c == 7) bell++;

57

Chapter 3. Helpful Hints for Creating a DECwindows Application

 else if (c == '\t') *(toBufP++) = ' ';
 else if (c == '\n') {*toBufP = 0; break;}
 else *(toBufP++) = c;
 }

 if (bufA[0]) {
 labelP = XmStringLtoRCreate(bufA,"");

 XmListAddItem(labelW, labelP, 0);
 XtFree (labelP);
 }

 while (bell--) XBell (XtDisplay (labelW), 0);
 }
 }

 /* Start another asynchronous read. */

 StartReadQIO (messageRecP);
 }

 static unsigned long StartReadQIO(messageRecP)
 MessageRec *messageRecP;
 {
 unsigned long status;

 status = sys$qio (
 MISC_EFN, /* always use this EFN */
 mbChan, /* mailbox channel */
 IO$_READVBLK, /* function code */
 messageRecP->iosbA, /* IOSB (in message control block) */
 CompletionAst, /* always use this ASTADR */
 AllocateAddInputRec(ProcessMessageRec, messageRecP),
 /* callback and its argument */
 &messageRecP->mailboxMessage, /* buffer address */
 sizeof(VmsMailboxMessage), /* buffer length */
 0, 0, 0, 0); /* unused QIO parameters */

 return (status);

 }

 typedef struct {
 short bufferLength;
 short itemCode;
 char *bufP;
 unsigned short *bufLenP;
 } GetjpiItemList;

 static unsigned long masterPid;
 static GetjpiItemList masterPidItemListA[2] = {
 {4, JPI$_MASTER_PID, &masterPid, 0},
 {0, 0, 0, 0}};

 static char devNameBufA[64];
 static unsigned short devNameLen;
 static GetjpiItemList devNameItemListA[2] = {
 {sizeof(devNameBufA)-1, JPI$_TERMINAL, devNameBufA, &devNameLen},
 {0, 0, 0, 0}};

58

Chapter 3. Helpful Hints for Creating a DECwindows Application

 #define Check(s) if ((status = s) != SS$_NORMAL) return (status)

 static unsigned long StartTrappingMessages()
 {
 unsigned long status;
 unsigned long modeBufA[3];
 unsigned short dviBufA[2];
 unsigned short iosbA[4];

 /* Get the terminal name owned by the master process of our job tree. */

 Check (sys$getjpiw (MISC_EFN, 0, 0, masterPidItemListA,
 iosbA, 0, 0));
 Check (iosbA[0]);

 Check (sys$getjpiw (MISC_EFN, &masterPid, 0, devNameItemListA,
 iosbA, 0, 0));
 Check (iosbA[0]);

 /* Assign a channel (with mailbox) to that terminal device, and enable
 * the mailbox so that messages will be sent to it. */

 {
 struct dsc$descriptor_s devNameDsc =
 {devNameLen, DSCK_DTYPE_T, DSCK_CLASS_S, devNameBufA};
 int maximumMessageSize = sizeof(VmsMailboxMessage);
 int bufferQuota = sizeof(VmsMailboxMessage)*32;

 Check (lib$asn_wth_mbx (&devNameDsc, &maximumMessageSize, &bufferQuota,
 &devChan, &mbChan));
 }

 {
 char dummyBufA[4];

 Check (sys$qiow (MISC_EFN, devChan, IO$_WRITEVBLK | IO$M_ENABLMBX,
 iosbA, 0, 0, dummyBufA, 0, 0, 0, 0, 0));
 Check (iosbA[0]);
 }

 /* Set the terminal NOBROADCAST since messages will be displayed in
 * our window. */

 Check (sys$qiow (MISC_EFN, devChan, IO$_SENSEMODE, iosbA, 0, 0,
 modeBufA, sizeof(modeBufA), 0, 0, 0, 0));
 Check (iosbA[0]);

 {
 modeBufA[1] |= TT$M_NOBRDCST;
 modeBufA[2] |= TT2$M_BRDCSTMBX;
 Check (sys$qiow (MISC_EFN, devChan, IO$_SETMODE, iosbA, 0, 0, modeBufA,
 sizeof(modeBufA), 0, 0, 0, 0));
 Check (iosbA[0]);
 }

 /* Start the first asynchronous mailbox read. */

 Check (StartReadQIO (&messageRec));

 printf("FYI - messages are being trapped\n");

 return (SS$_NORMAL);
 }

59

Chapter 3. Helpful Hints for Creating a DECwindows Application

 static int main(argc, argv)
 int argc;
 char **argv;
 {
 unsigned long status;

 MrmInitialize(); /* Initialize MRM before initializing
 /* the X Toolkit. */

 /* Initialize the application. */

 appW = XtAppInitialize(&app_context,
 /* App. context is returned */
 "btrap$defaults", /* Root class name. */
 NULL, /* No option list. */
 0, /* Number of options. */
 &argc, /* Address of argc */
 argv, /* argv */
 NULL, /* No fallback resources */
 NULL, /* No override resources */
 0); /* No override resources */

 /* Open the UID files (the output of the UIL compiler) in the hierarchy*/

 if (MrmOpenHierarchy(db_filename_num, /* Number of files. */
 db_filename_vec, /* Array of file names. */
 NULL, /* Default OS extension. */
 &s_MrmHierarchy) /* Pointer to returned MRM ID */
 !=MrmSUCCESS)
 printf("can't open hierarchy");

 /* Register the items MRM needs to bind for us. */

 MrmRegisterNames(reglist, reglist_num);

 /* Start to trap messages and do the $QIO read of the mailbox */

 if ((status = StartTrappingMessages ()) != SS$_NORMAL) {
 printf ("BTrap - Unable to trap broadcast messages");
 return (status);
 };

 /* Go get the main part of the application. */

 if (MrmFetchWidget(s_MrmHierarchy, "bTrapMain", appW,
 &mainW, &dummy_class) != MrmSUCCESS)
 printf("can't fetch main window");

 XtManageChild (mainW); /* manage the main window */

 XtRealizeWidget (appW); /* realize the widget tree */

 XtAppMainLoop(app_context); /* and go to work */
 }

60

Chapter 3. Helpful Hints for Creating a DECwindows Application

 /* The routine you want to be invoked by XtAppAddInput.
 * AddInputCallback does not use the tag argument of XtAppAddInput.
 */

 static void AddInputCallback()
 {
 unsigned long status;
 AddInputRec *addInputRecP;

 sys$clref (ADD_INPUT_EFN); /* clear flag so we can be called again */

 while (lib$remqhi (addInputQueueHeaderA, &addInputRecP, 0) !=
 LIB$_QUEWASEMP) {
 (*addInputRecP->routineP) (addInputRecP->closure);
 XtFree (addInputRecP->mallocP);
 }
 }

 /* Use CompletionAst as the ASTADR parameter on asynchronous system service
 * calls. This routine must not be called directly from the application.
 * It adds an application callback to the pending callback list. */

 void CompletionAst(addInputRecP)
 AddInputRec *addInputRecP;
 {
 lib$insqti (addInputRecP, addInputQueueHeaderA, 0);
 sys$setef (ADD_INPUT_EFN);
 }

 /* Use AllocateAddInputRec as the ASTPRM parameter on asynchronous system
 * service calls. Arguments to this routine are the application callback
 * routine to be called when the system service completes and the parameter
 * to be passed to that callback. AllocateAddInputRec allocates and
 * initializes an application callback record to be passed to the
 * CompletionAst routine at AST level when the system service completes. */

 Opaque AllocateAddInputRec(routineP, closure)
 void (*routineP)();
 Opaque closure;
 {
 char *mallocP;
 AddInputRec *addInputRecP;

 if (!initialized) XtAppAddInput (app_context, ADD_INPUT_EFN,
 0, AddInputCallback, 0);

 mallocP = XtMalloc (sizeof (AddInputRec) + 7);
 addInputRecP = (AddInputRec *)(((int)(mallocP) + 7) & (-8));
 addInputRecP->mallocP = mallocP;
 addInputRecP->routineP = routineP;
 addInputRecP->closure = closure;

 return ((Opaque)addInputRecP);
 }

61

Chapter 3. Helpful Hints for Creating a DECwindows Application

 /* Callback Routines */

 static void LabelCreateCallback(w, tag, reason)
 Widget w;
 int *tag;
 XmAnyCallbackStruct *reason;
 {
 labelW = w;
 }

 static void QuitCallback(w, tag, reason)
 Widget w;
 int *tag;
 XmAnyCallbackStruct *reason;

 {
 exit (1);
 }

Include the Toolkit widget definitions. The additional include files are needed to set up the mailbox
and trap messages.

This event flag is passed to the $QIO system service routine and is distinct from the event flag
specified in the call to XtAppAddInput. The $QIO system service routine clears this flag when it
begins execution and sets the flag when the I/O completes, either successfully or unsuccessfully.

MISC_EFN is not the same flag specified in the call to XtAppAddInput because that flag must
remain set for the Toolkit to notice that input is pending, and because it is more efficient to have
XtAppAddInput invoked only when there is input pending.

Remember that event flag numbers are restricted to cluster 0, which contains event flag numbers 0
to 31.

The structure used to store the mailbox message.

A control block that contains information about the mailbox message structure. This control block
is passed to the I/O completion routine to obtain the string value of the message.

This event flag is specified in the call to XtAppAddInput. The AST completion routine
(CompletionAst) sets this flag each time it is invoked. It is the same flag specified in the call to
XtAppAddInput because that flag must be set for the Toolkit to notice that input is pending.

Declare an application context.

AllocateAddInputRec is the ASTPRM parameter on asynchronous system service calls. Arguments
to AllocateAddInputRec include the application-specific callback routine (ProcessMessageRec) to
be called and the parameter (mailbox message) to be passed to that callback.

In the example, ProcessMessageRec gets the text of the broadcast message, converts it into an
XmString, and adds it to the bottom of the list of items in the XmScrolledList widget. Then,
ProcessMessageRec starts another $QIO read.

Start an asynchronous read on the broadcast mailbox. This routine is called by the
StartTrappingMessages routine before the call to MrmFetchWidget.

The IOSB is embedded in the message control block so that it is available to the read-completion
routine. The IOSB reflects the status of the $QIO read.

62

Chapter 3. Helpful Hints for Creating a DECwindows Application

The AST read-completion routine. CompletionAst is used only for notification and does nothing
with the data returned by the read. CompletionAst is called with one argument, the addInputRecP
data structure returned by AllocateAddInputRec. This data structure can contain an application
(widget) callback and tag.

CompletionAst uses the LIB$INSQTI routine to insert the data structure on a queue
(addInputQueueHeaderA). CompletionAst sets the ADD_INPUT_EFN event flag, which causes
the Toolkit to invoke your XtAppAddInput routine for execution at non-AST level as soon as
possible.

AllocateAddInputRec is used as the ASTPRM parameter. Remember that this is a $QIO system
service and not $QIOW. AllocateAddInputRec is invoked after the $QIO read completes, but
before the CompletionAst AST read-completion routine is invoked.

This code is executed as follows:

1. AllocateAddInputRec sets up the routine to be invoked by XtAppAddInput.

2. AllocateAddInputRec allocates and initializes a data structure containing allocated space, an
application (widget) callback, and a tag to be passed to the CompletionAst routine at AST level.
You can use this data structure as needed by your application.

3. The ProcessMessageRec routine is called with the message data as its argument. Note
that ProcessMessageRec is also invoked when the system service completes, but before
the CompletionAst AST read-completion routine is invoked. Therefore, by the time that
CompletionAst is invoked, ProcessMessageRec has already processed the data and started
another $QIO read.

Note that this implementation queues the next $QIO read request while in the AST routine
without waiting for the XtAppAddInput proc to execute.

Set up the mailbox and trap messages.

Note that this example disables broadcast messages to the terminal. If you do not want to disable
broadcast messages to the terminal, you might want to change the code so that it only enables
broadcasts to the mailbox.

{
modeBufA[1] |= TT2$M_BRDCSTMBX;
Check (sys$qiow (MISC_EFN, devChan, IO$_SETMODE, iosbA, 0, 0, modeBufA,
 sizeof(modeBufA), 0, 0, 0, 0));
Check (iosbA[0]);
}

If you do disable broadcast messages to the terminal, when you exit the program enter the
following command:

$ SET TERMINAL/BROADCAST/NOBRDCSTMBX

This command reenables broadcast messages to the terminal.

Start the first asynchronous read on the broadcast mailbox.

StartTrappingMessages is called before the call to MrmFetchWidget.

The Toolkit has noticed that the ADD_INPUT_EFN flag is set and calls the routine specified in
XtAppAddInput, in this case AddInputCallback. Your version of the AddInputCallback routine can
perform application-specific functions.

63

Chapter 3. Helpful Hints for Creating a DECwindows Application

In the example, AddInputCallback clears the flag and removes the data structure from the
queue. The *addInputRecP->routineP field is a widget's callback routine to call and the
addInputRecP->closure field is the callback's argument. Neither is used.

AddInputCallback does not actually do anything with the message data; the ProcessMessageRec
routine adds the message data to the XmScrolledList widget.

3.8. Freeing Resources Allocated Through UIL
If you use the MrmFetch xxxx routines to fetch resources allocated through UIL, you should free the
memory associated with those resources when you are finished with them.

Table 3.1, "Freeing Resources Allocated Through UIL" lists the UIL value types and the routines your
application should use to free their associated resources.

Table 3.1. Freeing Resources Allocated Through UIL

UIL Value Mrm Value Routine to Free

string_table MrmRtypeCStringVector XtFree
asciz_table MrmRtypeChar8Vector XtFree
compound_string MrmRtypeCString XmStringFree
string MrmRtypeChar8 XtFree
integer_table MrmRtypeIntegerVector XtFree
integer MrmRtypeInteger XtFree
boolean MrmRtypeBoolean XtFree
rgb MrmRtypeColor XFreeColors
color MrmRtypeColor XFreeColors
color_table MrmRtypeColorTable XFreeColors for each color in the

vector
float MrmRtypeFloat XtFree
single_float MrmRtypeSingleFloat XtFree
font_table MrmRtypeFontList XmFontListFree
font MrmRtypeFont XmFontListFree
icon MrmRtypeIconImage XFreePixmap
pixmap MrmRtypeIconImage XFreePixmap
xbitmapfile MrmRtypeXBitmapFile XFreePixmap
class_rec_name MrmRtypeClassRecName Do not free
keysym MrmRtypeKeysym Do not free
translation_table MrmRtypeTransTable Not applicable
identifier MrmRtypeAddrName Do not free
any MrmRtypeAny Depends on usage

64

Chapter 4. Using the Help Widget
DECwindows applications can use the help widget to display general and context-sensitive information
in response to a user request for assistance. This chapter presents an overview of the help widget and
describes its components. In addition, the chapter covers help widget callbacks and explains how to use
the help widget. Other sections show how to create the help widget with UIL or using the Toolkit help
widget creation routine.

The DECwindows Companion to the OSF/Motif Style Guide describes the recommended appearance and
behavior of the help widget.

Note

You can also use the DECwindows Help System to display general and context-sensitive information
in response to a user request. The DECwindows Help System is described in Chapter 5, "Using the
DECwindows Motif Help System".

4.1. Overview of the Help Widget
The help widget is a modeless widget that allows you to display appropriate, context-sensitive help text
in response to a user query. Figure 4.1, "Sample Help Widget" shows a sample help widget from the
OpenVMS DECburger demo application.

65

Chapter 4. Using the Help Widget

Figure 4.1. Sample Help Widget

The help widget can be viewed as an independent application that your application calls to provide
help functions. Using the help widget, you can create and manage one or more help windows and

66

Chapter 4. Using the Help Widget

determine the first topic to be displayed to the user. The modeless behavior of the help widget permits an
application to support one or more concurrent help widgets.

Your application is responsible for invoking a help pull-down menu widget with push-button widgets (or
gadgets) for your chosen help topics. The labels for the push buttons should indicate the types of help
available.

The OSF/Motif Style Guide suggests that applications include the following topics in the help pull-down
menu widget, when appropriate to the application:

● On Context—Provides context-sensitive information.

● On Help—Provides information about how to use the application's help facility.

● On Window—Provides overview information for the window.

● On Keys—Provides information about the application's use of keys, mnemonics, and keyboard
accelerators.

● Index—Provides an index, with search capability, for all help information in the application. Note
that the help widget provides its own search function.

● Tutorial—Provides access to the application's tutorial, if one exists.

● On Version—Provides information about the application, such as its formal name and version
number.

You can also add application-specific help topics.

4.1.1. Invoking the Help Widget
A user can invoke the help widget four ways:

● The user clicks on a push button in the Help pull-down menu. Your application calls the help widget
to create a help window. Your application can use either UIL or the Toolkit help routine to call the
help widget.

● The user clicks on the On Context push button in the Help pull-down menu and the application
enters context-sensitive help mode. The user then moves the pointer to some object and clicks
MB1. Your application calls routines to display context-sensitive help on the object or on its nearest
ancestor with context-sensitive help available.

You can use a help callback routine to create a help widget (or change an existing help widget) to
display appropriate help text. See Section 4.7.1, "Context-Sensitive Help" for more information.

● The user moves the input location to an object and presses the Help key on the keyboard. The Help
key displays context-sensitive help on the object that has input focus or on that object's nearest
ancestor with context-sensitive help available. Note that users cannot use the Help key to generate
context-sensitive help for widgets that do not accept input focus, such as XmLabel widgets.

● The user types a help topic command string in a command window widget. Your application must
include a command window widget to support this mechanism.

As an application developer, you must decide which Help invocation methods to support. Most
DECwindows applications support invoking the help widget by clicking on a help option in the menu bar
and through context-sensitive help.

67

Chapter 4. Using the Help Widget

4.1.2. Help Widget Terminology
This chapter uses the terms defined in Table 4.1, "Help Widget Terminology" to describe the help widget.

Table 4.1. Help Widget Terminology

Term Definition

help widget The general name for all modules that compose the
widget.

help window The window that contains all of the help
information. There is one help window for each
help widget. Help display is synonymous with help
window.

help session All the help interactions (requests, answers, and
so on) that occur while an application is running.
A help session can be composed of several help
widgets.

4.2. OpenVMS Help Library Information
Neither UNIX systems nor Windows NT systems have a librarian utility. On these systems, the help
widget reads the .HLP file directly. The information contained in this section applies only to OpenVMS
systems.

This section describes how to use OpenVMS help libraries with the help widget. For general information
about the OpenVMS Librarian Utility, see the VSI OpenVMS Librarian Utility Manual.

When you create a help widget on an OpenVMS system, you pass an OpenVMS help library
specification to the help widget creation routine. The help widget uses this specification to locate
and read the help files. The help libraries for OpenVMS DECwindows applications are conventional
OpenVMS help libraries. You can use a command similar to the following to create an OpenVMS help
library:

$ LIBRARY/HELP/CREATE DECBURGER.HLB DECBURGER.HLP

The help widget includes two resources that you use to specify the OpenVMS help library and its type.
The DXmNlibrarySpec resource specifies an OpenVMS help library file specification. An OpenVMS
help library has a default file type of HLB and defaults the file type of input files to HLP.

The DXmNlibraryType resource has a predefined value of DXmTextLibrary.

For applications running on OpenVMS, the help widget uses these resources to identify the location and
type of the help topic database. Once you have invoked the help widget, you can navigate only within the
selected OpenVMS help library.

The help widget includes an OpenVMS help library cache, specified by the
DXmNcacheHelpLibrary resource. The DXmNcacheHelpLibrary resource is a Boolean
attribute that specifies whether the text of the OpenVMS help library is stored in the help widget's
cache memory. If true, the library is initialized when it is first opened and is cached in memory until the
application closes down.

If DXmNcacheHelpLibrary is false, the text is not stored in cache memory. The default is false.

68

Chapter 4. Using the Help Widget

4.2.1. OpenVMS Help Library Modules
The files you insert into OpenVMS help libraries are text files you build using a program or a text editor.
Each help input file can contain one or more modules; each module contains a group of related keys
numbered key 1 to key 9. Each key represents a hierarchical level within the module.

The OpenVMS Librarian Utility stores a key-1 name as its module name. The key-2 through key-9
names identify subtopics related to the key-1 name. For the purpose of making the HLP file easier to
maintain, it is good practice to associate top-level help topics with key-1 names. However, there is no
requirement to do so.

4.2.1.1. Accessing OpenVMS Help Library Modules
Your OpenVMS application can access a module from the key-1 name or from any key in the module.
For example, if you have help push-button widgets for On Window, On Version, and On Help top-
level topics, you might maintain the OpenVMS help library as one file called APPLICATION.HLP and
create an OpenVMS help library called APPLICATION.HLB. The APPLICATION.HLP file would
contain a separate module, identified by a key-1 name, for each top-level topic. You can also maintain
the OpenVMS help library modules in multiple HLP files.

When a user asks for help about the On Window topic, your OpenVMS application could determine
from the push-button widget activate callback that the user wanted overview help. Your OpenVMS
application could then create a help widget and, through the DXmNfirstTopic resource, pass to the
help widget the string that identifies the correct help topic. This string would identify a key-1 name or
another key in the module.

The help widget uses the key-name hierarchy to find the help topic. For example, if you want to directly
access the help topic identified by a key-3 name, you must also specify the key-1 and key-2 names that
form a path to the key-3 name.

The help widget looks in the specified OpenVMS library for the module defined by the string and
displays the text. If the string identifies a key-1 name, any key-2 subentries in the Overview module
automatically appear as additional topics.

If the user then asks for help on a key-2 subentry, the help widget displays the key-2 text, and the key-3
subentries appear as additional topics, and so on.

4.2.1.2. Specifying OpenVMS Help Library Key Names
There are two ways to specify the OpenVMS help library key names:

● You can directly specify the key name for the help topic in DXmNfirstTopic. The disadvantage to
this method is that the key names specified in DXmNfirstTopic must match the key names in the
OpenVMS help library. This matching might be difficult to maintain if you have help support for a
large number of widgets.

● You can specify the key name as a resource name. Create a UIL module that maps the resource
names to the key names for the help topics. If you change the key name of the help topic, you do not
have to change application code.

4.2.2. OpenVMS Help Library Enhancements
The help widget provides several extensions to the OpenVMS Librarian Utility. These extensions give
the help widget more sophisticated search capabilities and take the form of help widget commands
(special text lines) in conventional OpenVMS help topics. These commands have the following format:

69

Chapter 4. Using the Help Widget

=name operand(s)

The following syntax rules apply to all commands:

● Commands should be the first lines of text in a help topic.

● The first character of a command line must be an equal sign (=).

● The command name must immediately follow the equal sign.

● Command names are not case sensitive and cannot be abbreviated.

● At least one space must precede the command operand.

● The remainder of the line is the command operand.

The extensions to the OpenVMS Librarian Utility are described in Table 4.2, "OpenVMS Librarian
Utility Extensions".

Table 4.2. OpenVMS Librarian Utility Extensions

Command Name Description

=TITLE Permits a case-sensitive title to be associated with
the help topic. This title is displayed in situations
where a topic is identified. For example, Overview
of the Help Widget.

If no title is provided, the OpenVMS help library
topic key becomes the topic title. The help widget
Search menu lets users search by keyword and title.

=KEYWORD Permits one or more case-insensitive keywords to
be associated with the help topic. If more than one
keyword is specified, the individual keywords must
be separated by a comma or at least one space.
The help widget Search menu lets users search by
keyword and title.

=NOSEARCH Disables search operations for title and keywords
on a specific topic.

=INCLUDE Permits help topics to be shared across modules
within a single OpenVMS help library. The
operand of the INCLUDE command is a help
topic key name. See Section 4.6, "Specifying Help
Widget Topics" for more information about help
topic key names. The title of the included topic is
automatically added as an additional topic.

Example 4.1, "Sample Help File" shows a portion of the DECBURGER.HLP help file. Note that the
DECBURGER.HLP file is presented only as an example; refer to the DECwindows Companion to the
OSF/Motif Style Guide for the recommended content and style of a help file.

Example 4.1. Sample Help File

1 overview
=Title Overview of the Help Widget
=Keyword overview
=Include programming creating create_help_widget

70

Chapter 4. Using the Help Widget

 A help widget is a modeless widget that allows you
 to display appropriate, context-sensitive help text
 in response to a user query. The help widget can
 be viewed as an independent application that your
 application calls to provide help functions.

 The help widget creates and manages one or more
 help windows and determines the first topic to be
 displayed to the user.

2 functions_1

=Title Using the help widget
=Keyword overview functions
 To use the help widget, you perform the following
 steps:

 1. Use the OpenVMS Librarian Utility (LIBRARIAN) to
 create an OpenVMS help library.

 2. Create a Help menu bar item for your
 application. The Help menu item should be
 located at the right of the menu bar. If the
 menu bar is wider than a line, the Help menu
 item should be located at the bottom right.

1 about
=Title About the Help Widget
=Keyword about
=Include programming creating create_help_widget

 This topic provides version
 information.

1 onhelp
=Title Help Widget On Help
=Keyword on-help
=Include programming creating create_help_widget

 This topic provides help-on-using-help
 information.

1 menu_bar
=Title Menu Bar Context Sensitive Help
=Keyword menu

1 file_menu
=Title File Menu Context Sensitive Help
=Keyword file

1 edit_menu
=Title Edit Menu Context Sensitive Help
=Keyword edit

1 not_implemented
=Title Not Yet Implemented
=Keyword

1 order_menu
=Title Order Menu Context Sensitive Help
=Keyword order

71

Chapter 4. Using the Help Widget

1 order
=Title Order Context Sensitive Help
=Keyword order
=Include programming creating create_help_widget

 Order menu context-sensitive help

2 burgers
=Title Burgers For Us
=Keyword burger

3 burgers_rare
=Title Burgers Rare For Us
=Keyword burger rare

3 burgers_medium
=Title Burgers Medium For Us
=Keyword burger medium

3 burgers_well
=Title Burgers Well For Us
=Keyword burger well

 .
 .
 .

1 options
=Title Help on Custom Colors
=Keyword options

1 print
=Title Help on Print Order
=Keyword print

1 programming
=Title Programming Help
=Keyword programming

 Programming help.

2 creating
=Title Creating a Help widget
=Keyword programming

 Creating a help widget.

3 create_help_widget
=Title Creating a Help widget
=Keyword programming

 Programming help for creating
 a help widget.

1 glossary
=Title Help Widget Glossary
=Keyword glossary
=Include programming creating create_help_widget

 This topic provides glossary
 information.

 .

72

Chapter 4. Using the Help Widget

 .
 .

The name of the key-1 module is overview. You pass the string overview to the help widget. The
help widget then searches the OpenVMS help library for a module with this name and displays the
text. A module is terminated by either another key-1 name or by an end-of-file record.

The title that the help widget displays for the On Window topic is Overview of the Help Widget.

The name of the keyword topic to search for with the help widget Search function is overview.

The included topic key name from the programming module is programming creating
create_help_widget. The title of the key identified by the =INCLUDE tag is displayed as an
additional topic.

The name of the key-2 subentry in the Overview module is functions_1. The functions_1 subentry
appears as an additional topic.

4.3. Help Widget Components
The help widget is a pop-up dialog box that is preconfigured to contain the child widgets, called
subwidgets, it needs to implement its functions. Figure 4.2, "Help Widget Components" shows a help
widget with its component parts.

73

Chapter 4. Using the Help Widget

Figure 4.2. Help Widget Components

4.4. Modifying Help Widget Appearance
You can use the following help widget resources to modify the appearance of the help widget:

● XmNbuttonFontList

● XmNlabelFontList

● XmNtextFontList

● DXmNcols

74

Chapter 4. Using the Help Widget

● DXmNrows

● DXmNdefaultPosition

For example, the DXmNcols resource specifies the width, in characters, of the help text displayed by the
help widget. The default is language dependent; the American English default is 55 characters.

The following UIL code fragment reduces the value of the DXmNcols resource to 50 columns.

object main_help : DXmHelpDialog
 {
 arguments
 {
 DXmNapplicationName = compound_string("Help Example");
 DXmNglossaryTopic = compound_string("glossary");
 DXmNoverviewTopic = compound_string("overview");
 DXmNcols = 50;
 };

 };

The help widget appearance resources are described in the DECwindows Extensions to Motif manual.

4.4.1. Modifying Help Widget Labels and Mnemonics
You can use the help widget label resources, described in the DECwindows Extensions to Motif manual,
to modify the help widget labels.

For example, the DXmNapplicationName resource specifies the application name to be used in the help
widget Help on... title bar. The default is null.

The following UIL code fragment sets the DXmNapplicationName resource to "Help Example":

object main_help : DXmHelpDialog
 {
 arguments
 {
 DXmNapplicationName = compound_string("Help Example");
 DXmNglossaryTopic = compound_string("glossary");
 DXmNoverviewTopic = compound_string("overview");
 };
 };

The mnemonics resources allow you to change the key a user presses to activate a help widget menu
item. For example, the DXmNhelpLabelMnem resource specifies which key the user can press (instead
of clicking MB1) to activate the Help pull-down menu. The default is the letter U.

The following UIL code fragment sets the DXmNhelpLabelMnem resource to "H":

object main_help : DXmHelpDialog
 {
 arguments
 {
 DXmNapplicationName = compound_string("Help Example");
 DXmNglossaryTopic = compound_string("glossary");
 DXmNoverviewTopic = compound_string("overview");
 DXmNhelpLabelMnem = keysym("H");
 };
 };

The help widget mnemonics resources are described in DECwindows Extensions to Motif.

75

Chapter 4. Using the Help Widget

The most common reason to modify the help widget label and mnemonics resources is for
internationalization purposes.

4.4.2. Help Widget Messages
The help widget uses messages to provide status information to the user. You can use help widget
resources to modify the text of these messages. The help widget message resources are described in
DECwindows Extensions to Motif. Note that for OpenVMS applications, the !CS variable is replaced by
the relevant compound string in the actual messages.

For example, the following UIL code fragment from an OpenVMS application changes the value of the
DXmNbadlibMessage resource from "Couldn't open library !CS" to "TEST_HELP.HLB is missing":

object main_help : DXmHelpDialog
 {
 arguments
 {
 DXmNapplicationName = compound_string("Help Example");
 DXmNglossaryTopic = compound_string("glossary");
 DXmNoverviewTopic = compound_string("overview");
 DXmNlibrarySpec = compound_string("test_help.hlb");
 DXmNbadlibMessage = compound_string("TEST_HELP.HLB is missing");
 };

 };

4.5. Help Widget Callbacks
The help widget supports the callbacks described in Table 4.3, "Help Widget Callbacks".

Table 4.3. Help Widget Callbacks

Callback Description

DXmNunmapCallback The callback routine or routines called when
the help widget is unmapped. For this callback
routine, the reason is Unmap. The default is
null. The help widget automatically unmanages
itself when a user exits the help session, so the
DXmNunmapCallback callback need not do this.
You can use the DXmNunmapCallback callback to
perform other functions when a user exits the help
session.

DXmNmapCallback The callback routine or routines called when the
help widget is mapped. The default is null.

4.6. Specifying Help Widget Topics
You can use the help widget resources described in Table 4.4, "Help Widget Topic Resources" to specify
the topics of the help widget.

If you specify a help topic identified by a subkey name, you must also specify the key names that form
the path to the subkey name. The key names must be separated by at least one space.

For example, suppose you have the following module:

1 programming

76

Chapter 4. Using the Help Widget

2 creating
3 create_help_widget

If you want to display the create_help_widget key-3 help text as the first topic in the help widget, pass
the compound string “programming creating create_help_widget”.

Table 4.4. Help Widget Topic Resources

Resource Description

DXmNfirstTopic Specifies the first help topic to be displayed.

If the DXmNfirstTopic resource is not specified
(set to null), the help widget displays an empty
window with a list of level 1 topics in the
additional topic list box.

See Section 4.7.1, "Context-Sensitive Help" for
information about using DXmNfirstTopic to
specify context-sensitive help.

DXmNoverviewTopic Specifies the Overview topic to be displayed. The
Overview topic is displayed when you select the
Go To Overview menu item from the View menu.

As described in Section 4.2, "OpenVMS Help
Library Information", your application uses the
DXmNoverviewTopic resource to pass to the help
widget a string that identifies the key name of the
Overview module. Overview is generally a key-1
name.

DXmNglossaryTopic Specifies the Glossary topic to be displayed.
Your application uses the DXmNglossaryTopic
resource to pass to the help widget a string that
identifies the key name of the Glossary module.
Glossary is generally a key-1 name.

If you pass a null string (the default), the Visit
Glossary menu item does not appear in the View
pull-down menu. Set DXmNglossaryTopic to null
if your application does not support glossary help.

4.7. Using the Help Widget
This section describes general programming considerations for using the help widget.

The most basic approach to using the help widget is to create it, manage it to cause the help window to
appear, and destroy it using the unmap callback routine when the user is finished. However, any changes
to the help window, such as resizing, are lost when the widget is destroyed.

If your application destroys a help widget and then re-creates it, your application assumes the help widget
creation overhead. On OpenVMS systems, an OpenVMS help library is initialized when it is first opened
by the help widget and is cached in memory until the application closes down. Once a help widget
initializes an OpenVMS help library on behalf of your application, the library is not reinitialized unless
your application is restarted.

77

Chapter 4. Using the Help Widget

The recommended approach is to create the help widget once and use the same help widget each time
the user requests help by specifying a new first topic in the DXmNfirstTopic resource (using the
XtSetValues routine) and managing the widget (using the XtManageChild routine) to cause the help
window to appear.

Note

Your application must avoid reusing a widget that is still active. Because the help widget is modeless, the
user can return to the application while a help widget is active and invoke Help a second time. In this
situation, the application is obliged to create a new help widget.

One way to determine if a help widget is active is to see if it is managed. A help widget automatically
unmanages itself when a user exits the help session. Therefore, if a help widget is already managed, you
should create a new instance of the help widget.

To use the help widget, perform the following steps:

1. If you are creating an application for OpenVMS systems, use the OpenVMS Librarian Utility to
create an OpenVMS help library. See Section 4.2, "OpenVMS Help Library Information" for more
information.

2. Create a Help menu bar item for your application. To conform with the guidelines of the OSF/Motif
Style Guide, use the menu_help_widget resource of the menu bar widget to position the Help
menu item at the right end of the menu bar. If the menu bar widget wraps onto additional lines, the
menu bar widget positions the Help menu item at the bottom right of the menu bar.

3. Create a help pull-down menu widget with items such as On Context, On Window, On Version, and
On Help.

An application that does not support a specific Help menu item should not include that item in its
help pull-down menu widget.

4. Create the help buttons for the pull-down menu widget. Create one push button widget for each topic
on the help pull-down menu widget. The push button widgets are associated with the routines to call
when the buttons are pressed.

5. Use any of the widget creation routines listed in Table 4.5, "Help Widget Creation Routines" to create
an instance of the help widget.

Table 4.5. Help Widget Creation Routines

UIL object type Use the DXmHelpDialog object type identifier to
create a help widget in a UIL module.

Toolkit routine Use the DXmCreateHelpDialog routine to create
a help widget.

6. Optionally, specify the callback routine to be called when the help widget is unmapped.

4.7.1. Context-Sensitive Help
In context-sensitive help, the application presents direct help on the current topic rather than starting at a
higher level and working down through a help hierarchy. Users do not have to navigate through several
layers of help to find the information they need.

78

Chapter 4. Using the Help Widget

All widgets that are a subclass of the XmPrimitive or XmManager widget class support a help callback
with a reason of XmCR_HELP (other widgets can also support the help callback, but there is no
requirement to do so). Your application uses this help callback to implement context-sensitive help by
associating a help callback routine with the widgets for which you want to provide help.

The Toolkit includes a routine, DXmHelpOnContext, that applications can use to enter context-sensitive
help mode.

Note

The OSF/Motif Style Guide recommends that, within dialog boxes, context-sensitive help should be
provided for the dialog box as a whole. The first help frame should be an overview of the dialog box,
with additional topics about each object in the dialog box.

To be consistent with the recommendations of the OSF/Motif Style Guide, you need to provide a
help callback only for the dialog box itself and not for the objects within the dialog box. Because
the DXmHelpOnContext routine checks a widget's nearest ancestors until it finds a widget with an
associated help callback routine, a user should be able to get context-sensitive help on a dialog box by
clicking anywhere within that dialog box.

An example of a help callback routine (sens_help_proc) is described in Example 4.5, "Specifying a Help
Callback—C Module".

The remainder of this section describes how to implement context-sensitive help.

4.7.1.1. Creating the On Context Push Button in UIL
Example 4.2, "The On Context Push Button in UIL" shows how to create an On Context push button in
the Help pull-down menu.

Example 4.2. The On Context Push Button in UIL

 .
 .
 .

object help_menu_entry : XmCascadeButton {
 arguments {
 XmNlabelString = k_help_label_text;
 XmNmnemonic = keysym("H");
 };
 controls {
 XmPulldownMenu help_menu;
 };
 callbacks
 {
 XmNhelpCallback = procedure sens_help_proc(k_help_help);
 };
 };

object help_menu : XmPulldownMenu
 {
 controls
 {
 XmPushButton help_sensitive;
 XmPushButton help_window;
 XmPushButton help_version;
 XmPushButton help_onhelp;
 };

79

Chapter 4. Using the Help Widget

 callbacks
 {
 XmNhelpCallback = procedure sens_help_proc(k_help_help);
 };
 };

object help_sensitive : XmPushButton
 {
 arguments
 {
 XmNlabelString = k_sensitive_label_text;
 XmNmnemonic = keysym("C");
 };
 callbacks
 {
 XmNactivateCallback = procedure activate_proc (k_help_sensitive);
 XmNhelpCallback = procedure sens_help_proc(k_sensitive_help);
 };
 };

 .
 .
 .

When the user clicks the On Context push button, the activate callback calls a routine to enter
context-sensitive help mode. The On Context push button also has a context-sensitive help callback.

4.7.1.2. Entering Context-Sensitive Help Mode
The activate callback for the On Context push button calls a routine to enter context-sensitive help mode,
as shown in Example 4.3, "Calling the DXmHelpOnContext Routine". Note that all of the push buttons in
OpenVMS DECburger call back to the activate_proc routine. However, your application could directly
invoke the context-sensitive help callback from the On Context push button.

Example 4.3. Calling the DXmHelpOnContext Routine

 .
 .
 .

static void activate_proc(w, tag, reason)
 Widget w;
 int *tag;
 XmAnyCallbackStruct *reason;
{
 int widget_num = *tag; /* Convert tag to widget number. */
 int i, value;
 XmString topic;

 switch (widget_num) {
 .
 .
 .

 case k_help_sensitive:
 tracking_help();
 break;

 .
 .
 .
static void tracking_help()

80

Chapter 4. Using the Help Widget

{
 DXmHelpOnContext(toplevel_widget, FALSE);
}

 .
 .
 .

When the activate_proc routine is called with a tag that identifies the On Context push button, a
context-sensitive help routine (tracking_help) is called.

The DXmHelpOnContext changes the pointer cursor to the help cursor and grabs it. The
application is in context-sensitive help mode. The user then moves the pointer cursor to the object
for which context-sensitive help is required and clicks MB1.

If the selected widget has a help callback, that help callback is invoked. If the selected widget does
not have a help callback, the widget's ancestors are tested until a help callback is found or the top
of the widget hierarchy is reached.

The DXmHelpOnContext routine is called with the name of the application's top-level widget and
a Boolean value that indicates whether you want the locating activity confined to that widget.

If you confine the help pointer cursor to the application's top-level widget (a Boolean value of
TRUE), the user will not be able to move the help pointer cursor outside the boundaries of the
main window. This means that the user cannot get context-sensitive help on pop-up widgets that
extend beyond the boundaries of the top-level widget.

If you do not confine the help pointer cursor to the application's top-level widget (a Boolean value
of FALSE), the user can potentially get context-sensitive help on any of the application's widgets.

The previous example does not confine the help pointer cursor.

4.7.2. Specifying a Help Callback
Your application uses the XmNhelpCallback resource to associate a help callback routine with the
widgets for which you want to provide help.

Your application can use the callback's tag argument to supply application-specific data. For example,
the widgets in the OpenVMS DECburger application supply the help callback routine with a compound
string value that specifies the help topic, as shown in Example 4.4, "Specifying a Help Callback—UIL
Module".

The string value for the Help System callback is described in Chapter 5, "Using the DECwindows Motif
Help System".

Example 4.4. Specifying a Help Callback—UIL Module

 .
 .
 .
!Compound strings to use for context-sensitive help callbacks

value
 k_order_help : compound_string ("order");
 k_print_help : compound_string ("print");
 k_options_help : compound_string ("options");
 k_menu_bar_help : compound_string ("menu_bar");
 k_file_help : compound_string ("file_menu");
 k_edit_help : compound_string ("edit_menu");

81

Chapter 4. Using the Help Widget

 k_order_menu_help : compound_string ("order_menu");
 k_help_help : compound_string ("help");
 k_sensitive_help : compound_string ("sensitive");
 k_onhelp_help : compound_string ("onhelp");
 k_about_help : compound_string ("about");
 k_overview_help : compound_string ("overview");
 k_nyi_help : compound_string ("not_implemented");

!String value to use for the Help System callback

value
 helpsys_order_help : 'order';

 .
 .
 .

object
 s_menu_bar : XmMenuBar {

 arguments {
 XmNorientation = XmHORIZONTAL;
 XmNmenuHelpWidget = XmCascadeButton help_menu_entry;
 };

 controls {
 XmCascadeButton file_menu_entry;
 XmCascadeButton edit_menu_entry;
 XmCascadeButton order_menu_entry;
 XmCascadeButton options_menu_entry;
 XmCascadeButton help_menu_entry;
 };
 callbacks {
 MrmNcreateCallback = procedure create_proc (k_menu_bar);
 XmNhelpCallback = procedure sens_help_proc(k_menu_bar_help);
 };
 };
 .
 .
 .

The help callback routine uses this compound string to set the DXmNfirstTopic resource.

Example 4.5, "Specifying a Help Callback—C Module" shows how the OpenVMS DECburger
application help callback routine calls a creation routine (create_help) to set the DXmNfirstTopic
resource. See Example 4.7, "Help Widget Implementation—C Language Module" for a complete
description of create_help.

Example 4.5. Specifying a Help Callback—C Module

 .
 .
 .
static void sens_help_proc(w, tag, reason)
 Widget w;
 XmString *tag;
 XmAnyCallbackStruct *reason;
{
 create_help(tag);
}

 .
 .

82

Chapter 4. Using the Help Widget

 .

4.8. Creating the Help Widget with UIL
Example 4.6, "UIL Help Widget Implementation" shows the code that implements the help widget for
the OpenVMS DECburger sample application. The complete UIL source code for the OpenVMS
DECburger application in DECW$EXAMPLES on OpenVMS systems.

Example 4.6. UIL Help Widget Implementation

 .
 .
 .
!module DECburger_demo

module decburger
 version = 'v1.1.1'
 names = case_sensitive

 objects = {
 XmSeparator = gadget ;
 XmLabel = gadget ;
 XmPushButton = gadget ;
 XmToggleButton = gadget ;
 }

procedure
 toggle_proc (integer);
 activate_proc (integer);
 create_proc (integer);
 scale_proc (integer);
 list_proc (integer);
 exit_proc (string);
 show_hide_proc (integer);
 pull_proc (integer);
 sens_help_proc (compound_string);
 help_system_proc (string);
 ok_color_proc ();
 apply_color_proc ();
 cancel_color_proc ();

value
 k_create_order : 1;
 k_order_pdme : 2;
 k_file_pdme : 3;
 k_edit_pdme : 4;
 k_nyi : 5;
 k_ok : 6; ! NOTE: ok, apply, reset, cancel
 k_apply : 7; ! must be sequential
 k_reset : 8;
 k_cancel : 9;
 k_cancel_order : 10;
 k_submit_order : 11;
 k_order_box : 12;
 k_burger_min : 13;
 k_burger_rare : 13;
 k_burger_medium : 14;
 k_burger_well : 15;
 k_burger_ketchup : 16;
 k_burger_mustard : 17;
 k_burger_onion : 18;
 k_burger_mayo : 19;
 k_burger_pickle : 20;
 k_burger_max : 20;

83

Chapter 4. Using the Help Widget

 k_burger_quantity : 21;
 k_fries_tiny : 22;
 k_fries_small : 23;
 k_fries_medium : 24;
 k_fries_large : 25;
 k_fries_huge : 26;
 k_fries_quantity : 27;
 k_drink_list : 28;
 k_drink_add : 29;
 k_drink_sub : 30;
 k_drink_quantity : 31;
 k_total_order : 32;
 k_burger_label : 33;
 k_fries_label : 34;

 k_drink_label : 35;
 k_menu_bar : 36;
 k_file_menu : 37;
 k_edit_menu : 38;
 k_order_menu : 39;
 k_help_pdme : 40;
 k_help_menu : 41;
 k_help_overview : 42;
 k_help_about : 43;
 k_help_onhelp : 44;
 k_help_sensitive : 45;
 k_print : 46;
 k_options_pdme : 47;
 k_options_menu : 48;
 k_create_options : 49;
 k_fries_optionmenu : 50;

value
 k_decburger_title : 'DECburger: Order Entry Box';
 k_nyi_label_text : 'This feature is not yet implemented.';
 k_file_label_text : 'File';
 k_print_label_text : 'Print Order..';
 k_exit_label_text : 'Exit';
 k_edit_label_text : 'Edit';
 k_cut_dot_label_text : 'Cut';
 k_copy_dot_label_text : 'Copy';
 k_paste_dot_label_text : 'Paste';
 k_clear_dot_label_text : 'Clear';
 k_select_all_label_text : 'Select All';
 k_order_label_text : 'Order';
 k_cancel_order_label_text : 'Cancel Order';
 k_submit_order_label_text : 'Submit Order';
 k_options_label_text : 'Options';
 k_options_color_label_text : 'Background Color...';
 k_help_label_text : 'Help';
 k_sensitive_label_text : 'On Context';
 k_overview_label_text : 'On Window';
 k_about_label_text : 'On Version';
 k_onhelp_label_text : 'On Help';
 k_hamburgers_label_text : 'Hamburgers';
 k_rare_label_text : 'Rare';
 k_medium_label_text : 'Medium';
 k_well_done_label_text : 'Well Done';
 k_ketchup_label_text : 'Ketchup';
 k_mustard_label_text : 'Mustard';
 k_onion_label_text : 'Onion';
 k_mayonnaise_label_text : 'Mayonnaise';
 k_pickle_label_text : 'Pickle';
 k_quantity_label_text : 'Quantity';
 k_fries_label_text : 'Fries';
 k_size_label_text : 'Size';

84

Chapter 4. Using the Help Widget

 k_tiny_label_text : 'Tiny';
 k_small_label_text : 'Small';
 k_large_label_text : 'Large';
 k_huge_label_text : 'Huge';
 k_drinks_label_text : 'Drinks';
 k_0_label_text : ' 0';
 k_drink_list_text :
 string_table ('Apple Juice',
 'Orange Juice',
 'Grape Juice',
 'Cola',
 'Punch',
 'Root beer',
 'Water',
 'Ginger Ale',
 'Milk',
 'Coffee',
 'Tea');
 k_drink_list_select : string_table('Apple Juice');
 k_ok_label_text : 'OK';
 k_apply_label_text : 'Apply';
 k_reset_label_text : 'Reset';
 k_cancel_label_text : 'Cancel';

!Compound strings to use for context-sensitive help callbacks

 value
 k_order_help : compound_string ("order");
 k_print_help : compound_string ("print");
 k_options_help : compound_string ("options");
 k_menu_bar_help : compound_string ("menu_bar");
 k_file_help : compound_string ("file_menu");
 k_edit_help : compound_string ("edit_menu");
 k_order_menu_help : compound_string ("order_menu");
 k_help_help : compound_string ("help");
 k_sensitive_help : compound_string ("sensitive");
 k_onhelp_help : compound_string ("onhelp");
 k_about_help : compound_string ("about");
 k_overview_help : compound_string ("overview");
 k_nyi_help : compound_string ("not_implemented");

 .
 .
 .

 object
 main_help : DXmHelpDialog {
 arguments
 {
 DXmNapplicationName = compound_string("Help Example");
 DXmNglossaryTopic = compound_string("glossary");
 DXmNoverviewTopic = compound_string("overview");
 DXmNlibrarySpec = compound_string("decburger.hlb");
 };

 };

 .
 .
 .
object

85

Chapter 4. Using the Help Widget

 s_menu_bar : XmMenuBar {

 arguments {
 XmNorientation = XmHORIZONTAL;
 XmNmenuHelpWidget = XmCascadeButton help_menu_entry;
 };

 controls {
 XmCascadeButton file_menu_entry;
 XmCascadeButton edit_menu_entry;
 XmCascadeButton order_menu_entry;
 XmCascadeButton options_menu_entry;
 XmCascadeButton help_menu_entry;
 };
 callbacks {
 MrmNcreateCallback = procedure create_proc (k_menu_bar);
 XmNhelpCallback = procedure sens_help_proc(k_menu_bar_help);
 };
 };

 .
 .
 .
object help_menu_entry : XmCascadeButton {

 arguments {
 XmNlabelString = k_help_label_text;
 XmNmnemonic = keysym("H");
 };
 controls {
 XmPulldownMenu help_menu;
 };
 callbacks
 {
 XmNhelpCallback = procedure sens_help_proc(k_help_help);
 };
 };

object help_menu : XmPulldownMenu

 {
 controls
 {
 XmPushButton help_sensitive;
 XmPushButton help_window;
 XmPushButton help_version;
 XmPushButton help_onhelp;
 };

 callbacks
 {
 XmNhelpCallback = procedure sens_help_proc(k_help_help);
 };
 };

object help_sensitive : XmPushButton
 {
 arguments
 {
 XmNlabelString = k_sensitive_label_text;
 XmNmnemonic = keysym("C");
 };
 callbacks
 {
 XmNactivateCallback = procedure activate_proc (k_help_sensitive);

86

Chapter 4. Using the Help Widget

 XmNhelpCallback = procedure sens_help_proc(k_sensitive_help);
 };
 };

object help_onhelp : XmPushButton
 {
 arguments
 {
 XmNlabelString = k_onhelp_label_text;
 XmNmnemonic = keysym("H");
 };
 callbacks
 {
 XmNactivateCallback = procedure activate_proc (k_help_onhelp);
 XmNhelpCallback = procedure sens_help_proc(k_onhelp_help);
 };
 };

object help_version : XmPushButton
 {
 arguments
 {
 XmNlabelString = k_about_label_text;
 XmNmnemonic = keysym("V");
 };
 callbacks
 {
 XmNactivateCallback = procedure activate_proc (k_help_about);
 XmNhelpCallback = procedure sens_help_proc(k_about_help);
 };
 };

object help_window : XmPushButton
 {
 arguments
 {
 XmNlabelString = k_overview_label_text;
 XmNmnemonic = keysym("W");
 };
 callbacks
 {
 XmNactivateCallback = procedure activate_proc (k_help_overview);
 XmNhelpCallback = procedure sens_help_proc(k_overview_help);
 };
 };

 .
 .
 .

The OpenVMS DECburger widgets call the sens_help_proc procedure to implement context-
sensitive help. DECburger assigns a compound string value to use in the callback's tag argument.

Compound string value declarations for the help push-button labels. Using values for widget labels
makes it easier to modify the interface. Putting all of the label definitions at the beginning of the
module makes it easier to find a label if you want to change it later.

Compound string value declarations for the help callbacks. Putting all of the definitions at the
beginning of the module makes it easier to find a string if you want to change it later.

87

Chapter 4. Using the Help Widget

Create an instance of the help widget. This example assigns values to the
DXmNapplicationName, DXmNglossaryTopic, DXmNoverview, and
DXmNlibrarySpec help widget resources.

The menu bar includes the XmNmenuHelpWidget resource, which places the Help menu entry
at the far right of the menu bar. If the menu bar widget wraps onto additional lines, the menu bar
widget positions the Help menu entry at the bottom right of the menu bar.

The menu bar controls a cascade button for the Help menu entry.

The sens_help_proc procedure implements context-sensitive help for the menu bar. You use this
callback to display context-sensitive help on a given topic.

The Help menu entry is a cascade button that controls a Help pull-down menu.

The Help pull-down menu includes push-button gadgets for context-sensitive help, overview,
version, and on-help menu entries.

When activated, the help push-button gadgets call the activate_proc callback routine with an
identifying integer value. The activate_proc callback uses this integer value, which is the tag
argument for the callback, to determine which widget called it.

4.9. Help Widget Implementation—C Language
Module
Example 4.7, "Help Widget Implementation—C Language Module" and Example 4.8, "Help Widget
Implementation—Callbacks" show the C language code that implements the help widget created
in Example 4.9, "Creating Help Widget with Toolkit Routine". The complete C source code for the
OpenVMS DECburger application is included in DECW$EXAMPLES on OpenVMS systems.

Example 4.7. Help Widget Implementation—C Language Module

 .
 .
 .
#include <stdio.h> /* For printf and so on. */

#include <Xm/Text.h>
#include <Mrm/MrmAppl.h>
#include <DXm/DXmHelpB.h>

#include <DXm/DXmPrint.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <DXm/DXmColor.h>
#include <DXm/DECspecific.h>

#ifdef VMS
/* For OpenVMS systems, use the following include file: */
#include <sys$library/DECw$Cursor.h>

#else
/* For UNIX systems, use the following include file: */
#include <X11/decwcursor.h>

#endif

/*
 * These numbers are matched with corresponding numbers in the
 * OpenVMS DECburger UIL module.
 */

88

Chapter 4. Using the Help Widget

#define k_create_order 1
#define k_order_pdme 2
#define k_file_pdme 3
#define k_edit_pdme 4
#define k_nyi 5
#define k_ok 6 /* NOTE: ok, apply, reset, cancel */
#define k_apply 7 /* must be sequential */
#define k_reset 8
#define k_cancel 9
#define k_cancel_order 10
#define k_submit_order 11
#define k_order_box 12
#define k_burger_min 13
#define k_burger_rare 13
#define k_burger_medium 14
#define k_burger_well 15
#define k_burger_ketchup 16
#define k_burger_mustard 17
#define k_burger_onion 18
#define k_burger_mayo 19
#define k_burger_pickle 20
#define k_burger_max 20
#define k_burger_quantity 21
#define k_fries_tiny 22
#define k_fries_small 23

#define k_fries_medium 24
#define k_fries_large 25
#define k_fries_huge 26
#define k_fries_quantity 27
#define k_drink_list 28
#define k_drink_add 29
#define k_drink_sub 30
#define k_drink_quantity 31
#define k_total_order 32
#define k_burger_label 33
#define k_fries_label 34
#define k_drink_label 35
#define k_menu_bar 36
#define k_file_menu 37
#define k_edit_menu 38
#define k_order_menu 39
#define k_help_pdme 40

#define k_help_menu 41
#define k_help_overview 42
#define k_help_about 43
#define k_help_onhelp 44
#define k_help_sensitive 45
#define k_print 46
#define k_custom_pdme 47
#define k_custom_menu 48
#define k_create_custom 49
#define k_fries_optionmenu 50

#define k_max_widget 50

#define MAX_WIDGETS (k_max_widget + 1)

#define NUM_BOOLEAN (k_burger_max - k_burger_min + 1)

#define k_burger_index 0
#define k_fries_index 1
#define k_drinks_index 2
#define k_index_count 3

89

Chapter 4. Using the Help Widget

/*
 * Global data
 */

static Cursor watch = NULL;

static Widget
 toplevel_widget = (Widget)NULL, /* Root widget ID of our application. */
 main_window_widget = (Widget)NULL, /* Root widget ID of main MRM fetch */
 widget_array[MAX_WIDGETS], /* Place to keep all other widget IDs */
 main_help_widget = (Widget)NULL, /* Primary help widget */
 help_widget[MAX_WIDGETS], /* Array of help widgets */
 help_array[MAX_WIDGETS], /* Array of help widgets for Toolkit */
 print_widget = (Widget)NULL, /* Print widget */
 color_widget = (Widget)NULL; /* Color Mix widget */

static Screen *the_screen; /* Pointer to screen data*/
static Display *the_display; /* Pointer to display data */
static XColor savecolor;

static int help_num = 0; /* make sure they start zero */
static int low_num = 0;

 .
 .
 .

/*
 * Forward declarations
 */

static void s_error();
static void get_something();
static void set_something();
static void activate_proc();
static void create_proc();
static void list_proc();
static void exit_proc();
static void pull_proc();
static void scale_proc();
static void show_hide_proc();
static void show_label_proc();
static void toggle_proc();

static void create_help();

static void tracking_help();
static void sens_help_proc();
static void help_system_proc();
static void create_print();
static void activate_print();
static void create_color();
static void ok_color_proc();
static void apply_color_proc();
static void cancel_color_proc();
static void xmstring_append();
static void start_watch();
static void stop_watch();

/* The names and addresses of things that Mrm has to bind. The names do
 * not have to be in alphabetical order. */

static MrmRegisterArg reglist[] = {
 {"activate_proc", (caddr_t) activate_proc},

90

Chapter 4. Using the Help Widget

 {"create_proc", (caddr_t) create_proc},
 {"list_proc", (caddr_t) list_proc},
 {"pull_proc", (caddr_t) pull_proc},
 {"exit_proc", (caddr_t) exit_proc},
 {"scale_proc", (caddr_t) scale_proc},
 {"show_hide_proc", (caddr_t) show_hide_proc},
 {"show_label_proc", (caddr_t) show_label_proc},
 {"toggle_proc", (caddr_t) toggle_proc},
 {"sens_help_proc", (caddr_t) sens_help_proc},
 {"help_system_proc", (caddr_t) help_system_proc},
 {"cancel_color_proc", (caddr_t) cancel_color_proc},
 {"apply_color_proc", (caddr_t) apply_color_proc},
 {"ok_color_proc", (caddr_t) ok_color_proc}
};

static int reglist_num = (sizeof reglist / sizeof reglist [0]);
static font_unit = 400;

/*
 * OS transfer point. The main routine does all the one-time setup and
 * then calls XtMainLoop.
 */

static String fallback =
 "DECburger.title: DECburger\nDECburger.x: 100\nDECburger.y: 100";

unsigned int main(argc, argv)
 unsigned int argc; /* Command line argument count. */
 char *argv[]; /* Pointers to command line args. */
{
 XtAppContext app_context;

 MrmInitialize(); /* Initialize MRM before initializing
 /* the X Toolkit. */

 DXmInitialize(); /* Initialize DXm widgets */

 /* If we had user-defined widgets, we would register them with Mrm here. */

 /* Initialize the X Toolkit. We get back a top level shell widget. */

 toplevel_widget = XtAppInitialize(
 &app_context, /* App. context is returned */
 "DECburger", /* Root class name. */
 NULL, /* No option list. */
 0, /* Number of options. */
 &argc, /* Address of argc */
 argv, /* argv */
 &fallback, /* Fallback resources */
 NULL, /* No override resources */
 0); /* No override resources */

 /* Open the UID files (the output of the UIL compiler) in the hierarchy*/

 if (MrmOpenHierarchy(
 db_filename_num, /* Number of files. */
 db_filename_vec, /* Array of file names. */
 NULL, /* Default OS extension. */
 &s_MrmHierarchy) /* Pointer to returned MRM ID */
 !=MrmSUCCESS)
 s_error("can't open hierarchy");

 init_application();

 /* Register the items MRM needs to bind for us. */

91

Chapter 4. Using the Help Widget

 MrmRegisterNames(reglist, reglist_num);

 /* Go get the main part of the application. */
 if (MrmFetchWidget(s_MrmHierarchy, "S_MAIN_WINDOW", toplevel_widget,
 &main_window_widget, &dummy_class) != MrmSUCCESS)
 s_error("can't fetch main window");

 /* Save some frequently used values */
 the_screen = XtScreen(toplevel_widget);
 the_display = XtDisplay(toplevel_widget);

 /* If it's a color display, map customize color menu entry */

 if ((XDefaultVisualOfScreen(the_screen))->class == TrueColor
 || (XDefaultVisualOfScreen(the_screen))->class == PseudoColor
 || (XDefaultVisualOfScreen(the_screen))->class == DirectColor
 || (XDefaultVisualOfScreen(the_screen))->class == StaticColor)

 XtSetMappedWhenManaged(widget_array[k_custom_pdme], TRUE);

 /* Manage the main part and realize everything. The interface comes up
 * on the display now. */

 XtManageChild(main_window_widget);
 XtRealizeWidget(toplevel_widget);

 .
 .
 .

 /* Sit around forever waiting to process X-events. We never leave
 * XtAppMainLoop. From here on, we only execute our callback routines. */
 XtAppMainLoop(app_context);
}

/*
 * One-time initialization of application data structures.
 */

static int init_application()
{
 int k;
 int i;

 /* Initialize the application data structures. */
 for (k = 0; k < MAX_WIDGETS; k++)
 widget_array[k] = NULL;
 for (k = 0; k < NUM_BOOLEAN; k++)
 toggle_array[k] = FALSE;

 /* Initialize CS help widgets. */

 for (i = 0; i < MAX_WIDGETS; i++)
 help_widget[i] = NULL;

 .
 .
 .

92

Chapter 4. Using the Help Widget

To define the help widget resources, include the DXmHelpB.h file on UNIX systems and the
DXMHELPB.H file on OpenVMS systems.

Assign an integer value to the help-related widgets so the callback routines can identify which
widget called them. The integer values must match those assigned in the decburger.uil file on
UNIX systems or the DECBURGER.UIL file on OpenVMS systems.

The main_help_widget variable is initialized to NULL to prevent it from containing invalid
data.

Declare an array of MAX_NUMBER widgets used to store the help widget IDs.

Forward declarations of the help routines.

Because the sens_help_proc callback is called through UIL, it is registered in an argument list. The
OpenVMS DECburger application stores the names and addresses of the callback routines for later
use by the Mrm routine MrmRegisterNames.

Initialize the widgets in the VSI extended toolkit.

Initialize the array of help widgets to NULL to prevent them from containing invalid data.

Example 4.8. Help Widget Implementation—Callbacks

 .
 .
 .

/*
 * All push buttons in this application call back to this routine. We
 * use the tag to tell us what widget it is, then react accordingly.
 */

static void activate_proc(w, tag, reason)
 Widget w;
 int *tag;
 XmAnyCallbackStruct *reason;
{
 int widget_num = *tag; /* Convert tag to widget number. */
 int i, value;
 XmString topic;

 switch (widget_num) {
 case k_nyi:

 /* The user activated a 'not yet implemented' push button. Send
 * the user a message. */
 if (widget_array[k_nyi] == NULL) {
 /* The first time, fetch from the data base. */
 if (MrmFetchWidget(s_MrmHierarchy, "nyi", toplevel_widget,
 &widget_array[k_nyi], &dummy_class) != MrmSUCCESS) {
 s_error("can't fetch nyi widget");
 }
 }
 /* Put up the message box saying 'not yet implemented'. */
 XtManageChild(widget_array[k_nyi]);
 break;

 case k_submit_order:
 /* This would send the order off to the kitchen. In this case,
 * we just pretend the order was submitted. */
 clear_order();
 break;

93

Chapter 4. Using the Help Widget

 .
 .
 .

 case k_help_overview:
 topic = XmStringCreateLtoR("overview",XmSTRING_ISO8859_1);
 create_help(topic);
 XmStringFree(topic);
 break;

 case k_help_about:
 topic = XmStringCreateLtoR("about",XmSTRING_ISO8859_1);
 create_help(topic);
 XmStringFree(topic);
 break;

 case k_help_onhelp:
 topic = XmStringCreateLtoR("onhelp",XmSTRING_ISO8859_1);
 create_help(topic);
 XmStringFree(topic);
 break;

 case k_help_sensitive:
 tracking_help();
 break;

 case k_print:
 create_print();
 break;

 case k_create_custom:
 create_color();
 break;

 default:
 break;
 }
}

 .
 .
 .

/*
 * Context sensitive help callback.
 */
static void sens_help_proc(w, tag, reason)

 Widget w;
 XmString *tag;
 XmAnyCallbackStruct *reason;
{
 create_help(tag);
}

/* Creates an instance of the help widget for the push buttons in the help
pull-down menu and for context-sensitive help callbacks. */

static void create_help (help_topic)

94

Chapter 4. Using the Help Widget

 XmString help_topic;

{
 Arg arglist[1];

 start_watch();
 if (!main_help_widget) {
 if (MrmFetchWidget (s_MrmHierarchy, "main_help", toplevel_widget,
 &main_help_widget, &dummy_class) != MrmSUCCESS)
 s_error ("can't fetch help widget");
 }

 if (XtIsManaged(main_help_widget)) {

 if (MrmFetchWidget (s_MrmHierarchy, "main_help", toplevel_widget,
 &help_widget[help_num], &dummy_class) != MrmSUCCESS)
 s_error ("can't fetch help widget");

 XtSetArg (arglist[0], DXmNfirstTopic, help_topic);
 XtSetValues (help_widget[help_num], arglist, 1);
 XtManageChild(help_widget[help_num]);
 help_num++;
 return;
 }

 XtSetArg (arglist[0], DXmNfirstTopic, help_topic);
 XtSetValues (main_help_widget, arglist, 1);
 XtManageChild(main_help_widget);
 stop_watch();
}

 .
 .
 .

The On Window push button in the Help pull-down menu. The topic variable is used to store a
compound string that identifies a help library key name, in this case "overview". The string must
match the key name in the OpenVMS help library. The compound string is later used as the value
of the DXmNfirstTopic resource.

The sens_help_proc callback is called as a result of a help callback, as described in Section 4.7.1,
"Context-Sensitive Help". The sens_help_proc calls the generic create_help routine.

The create_help routine creates an instance of the help widget for the push buttons in the Help pull-
down menu and for context-sensitive help callbacks.

If the help widget does not already exist, create_help fetches it.

If the help widget exists and is already managed, create_help is obliged to fetch a new instance
of the help widget. The help_widget[help_num] variable is an array of help widgets
equal to the maximum number of widgets in the OpenVMS DECburger application. Set the
DXmNfirstTopic resource using the specified compound string and manage the help widget.

If the help widget now exists but is not already managed, set the DXmNfirstTopic resource using
the specified compound string and manage the help widget.

95

Chapter 4. Using the Help Widget

4.10. Using the Toolkit Help Widget Creation
Routine
As described in Section 4.7, "Using the Help Widget", you can implement the help widget through UIL or
through the Toolkit help widget creation routine.

Example 4.9, "Creating Help Widget with Toolkit Routine" demonstrates how to create a help widget
using the Toolkit help widget creation routine.

Example 4.9. Creating Help Widget with Toolkit Routine

 .
 .
 .
static Widget
 help_array[MAX_WIDGETS], /* Array of help widgets for Toolkit*/
 .
 .
 .
static int low_num = 0; /* make sure it starts zero */

 .
 .
 .
/* Initialize help widgets for Toolkit creation. */
 for (i = 0; i < MAX_WIDGETS; i++)
 help_array[i] = NULL;

 .
 .
 .

/*
 * Context sensitive help callback.
 */
 */
static void sens_help_proc(w, tag, reason)

 Widget w;
 XmString *tag;
 XmAnyCallbackStruct *reason;
{
 create_help(tag);
}

 .
 .
 .
/* Toolkit help creation routine */

static void create_help (topic)
 XmString topic;
{

 unsigned int ac;
 Arg arglist[10];
 XmString appname, glossarytopic, overviewtopic, libspec;
 static Widget help_widget = NULL;

 if (!help_widget) {

96

Chapter 4. Using the Help Widget

 ac = 0;
 appname = XmStringCreateLtoR("Toolkit Help", XmSTRING_ISO8859_1);
 glossarytopic = XmStringCreateLtoR("glossary", XmSTRING_ISO8859_1);
 overviewtopic = XmStringCreateLtoR("overview", XmSTRING_ISO8859_1);
 libspec = XmStringCreateLtoR("decburger.hlb", XmSTRING_ISO8859_1);

 XtSetArg(arglist[ac], DXmNapplicationName, appname); ac++;
 XtSetArg(arglist[ac], DXmNglossaryTopic, glossarytopic); ac++;
 XtSetArg(arglist[ac], DXmNoverviewTopic, overviewtopic); ac++;
 XtSetArg(arglist[ac], DXmNlibrarySpec, libspec); ac++;
 XtSetArg(arglist[ac], DXmNfirstTopic, topic); ac++;

 help_widget = DXmCreateHelpDialog (toplevel_widget,
 "Toolkit Help",
 arglist, ac);
 XmStringFree(appname);
 XmStringFree(glossarytopic);
 XmStringFree(overviewtopic);
 XmStringFree(libspec);

 XtManageChild(help_widget);

 return;
 }

 if (XtIsManaged(help_widget)) {
 ac = 0;
 appname = XmStringCreateLtoR("Toolkit Help", XmSTRING_ISO8859_1);
 glossarytopic = XmStringCreateLtoR("glossary", XmSTRING_ISO8859_1);
 overviewtopic = XmStringCreateLtoR("overview", XmSTRING_ISO8859_1);
 libspec = XmStringCreateLtoR("decburger.hlb", XmSTRING_ISO8859_1);

 XtSetArg(arglist[ac], DXmNapplicationName, appname); ac++;
 XtSetArg(arglist[ac], DXmNglossaryTopic, glossarytopic); ac++;
 XtSetArg(arglist[ac], DXmNoverviewTopic, overviewtopic); ac++;
 XtSetArg(arglist[ac], DXmNlibrarySpec, libspec); ac++;
 XtSetArg(arglist[ac], DXmNfirstTopic, topic); ac++;

 help_array[low_num] = DXmCreateHelpDialog (toplevel_widget,
 "Toolkit Help",
 arglist, ac);
 XmStringFree(appname);
 XmStringFree(glossarytopic);
 XmStringFree(overviewtopic);
 XmStringFree(libspec);

 XtManageChild(help_array[low_num]);
 low_num++;
 return;
 }

 ac = 0;
 XtSetArg (arglist[ac], DXmNfirstTopic, topic); ac++;
 XtSetValues (help_widget, arglist, ac);
 XtManageChild(help_widget);
}

 .
 .
 .

The help-callback routine (sens_help_proc) calls the create_help routine to create the help widget.

The create_help routine tests to see if the help widget already exists. If it does not already
exist, create_help sets the DXmNapplicationName, DXmNglossaryTopic,

97

Chapter 4. Using the Help Widget

DXmNoverviewTopic, DXmNlibrarySpec, and DXmNfirstTopic resources and calls
the DXmCreateHelpDialog routine. The create_help routine then calls XtManageChild to manage
the help widget.

If the help widget already exists and is managed, the create_help routine is obliged to create
another instance of the help widget. The help_array array is an array of help widgets equal to the
maximum number of widgets in the OpenVMS DECburger application.

If the help widget now exists but is not managed, set the DXmNfirstTopic resource and
manage it.

98

Chapter 5. Using the DECwindows
Motif Help System
In addition to the help widget described in Chapter 4, "Using the Help Widget", DECwindows Motif
applications can use the DECwindows Motif Help System (help system) to display general and context-
sensitive information in response to a user request. The help system uses Bookreader and LinkWorks
to display and navigate through decw_book (UNIX systems) or DECW$BOOK (OpenVMS systems)
format help text and graphics. You can use DECwrite to create the files for Bookreader to display. On
OpenVMS for VAX systems, you can also use VAX DOCUMENT to create hyperhelp files. Note that
Bookreader is not available on Windows NT systems, so the information in this chapter is not relevant
for applications running only on that operating system.

This chapter describes how to use the help system in an application. The following topics are discussed:

● An overview of the help system

● Invoking the help system

● Help file information

● Context-sensitive help callbacks

● Implementing the help system

The OpenVMS DECburger demo program uses the help system to implement context-sensitive help
for widgets in the Order control box. To become familiar with the operation of the help system, run
DECburger and request context-sensitive help for any item in the Order control box.

Note

For the purpose of example, the OpenVMS DECburger sample application uses both the help system
and the help widget to implement help. To present a consistent user interface, your application should
implement only one help model.

5.1. Overview of the Help System
The help system uses the DECwindows Bookreader as its display window. The help system routines
allow your application to invoke Bookreader and specify the book, as well as the specific topic or
directory within that book, to display first. In addition, once Bookreader is invoked through the help
system, it remains available until the user explicitly closes it or ends the DECwindows session.

The help system provides the following Bookreader features to users of your application:

● Proportional fonts

● Graphics

● Formatted tables

● Hotspots

● The ability to create links between the online help and other pieces of information, such as mail
messages and other Bookreader topics, via LinkWorks

99

Chapter 5. Using the DECwindows Motif Help System

Figure 5.1, "Comparison of Help Widget and the Help System Windows" shows a comparison of the help
widget and the help system.

Figure 5.1. Comparison of Help Widget and the Help System Windows

To implement the help system, perform the following steps:

1. Use one of the methods described in Section 5.3, "Help File Information" to create a help file.

2. Create a Help pull-down menu with push-button widgets (or gadgets) for your chosen help topics.

The help menu required to implement the help system is identical to the help menu required for the
help widget. If you have already implemented a help menu for the help widget, you can use this
menu with only minor modifications to the help callbacks.

The labels for the push buttons should indicate the types of help available. The OSF/Motif Style
Guide suggests that applications include the following topics in the help pull-down menu widget,
when appropriate to the application:

● On Context—Provides context-sensitive information.

● On Window—Provides overview information for the window.

● Index—Provides an index, with search capability, for all help information in the application.

● On Keys—Provides information about the application's use of keys, mnemonics, and keyboard
accelerators.

● Tutorial—Provides access to the application's tutorial, if one exists.

100

Chapter 5. Using the DECwindows Motif Help System

● On Help—Provides information about how to use the application's help facility.

● On Version—Provides information about the application, such as its formal name and version
number.

You can also add application-specific help topics.

3. Add XmNhelpCallbacks help callbacks for each widget for which you want to provide context-
sensitive help, as described in Section 5.5.3, "Specifying a Help Callback".

4. Implement the three help-system routines in your application:

● DXmHelpSystemOpen does all of the initialization work required by LinkWorks and prepares to
display a topic from the help file name passed to it. This routine needs to be called just before the
main loop of the application.

● DXmHelpSystemDisplay displays the topic or directory of the help file in Bookreader, depending
on the arguments passed to it. It is also used to open topics and/or directories of books other than
the one passed to DXmHelpSystemOpen.

DXmHelpSystemDisplay is called as the result of the activate callback of the push buttons in the
help menu or as the result of a widget's context-sensitive help callback.

● DXmHelpSystemClose is used to close all of the remaining topic and navigation windows in
Bookreader. This routine should be called when the application is closing down all of its other
windows.

5.2. Invoking the Help System
A user can invoke the help system in four ways:

● The user clicks on a push button in the Help pull-down menu. The push button's activate callback
routine calls a routine to invoke the help system.

● The user clicks on the On Context push button in the Help pull-down menu. The push button's
activate callback routine invokes the DXmOnContext routine to enter context-sensitive help mode.
The user then moves the pointer to some object and clicks MB1. The selected object's help callback
is then invoked to display context-sensitive help on the object or on its nearest ancestor with context-
sensitive help available. This is called context-sensitive help.

● The user moves the input location to an object and presses the Help key on the keyboard. The
selected object's help callback is then invoked to display context-sensitive help on the object or on its
nearest ancestor with context-sensitive help available.

Note that users cannot use the Help key to generate context-sensitive help for widgets that do not
accept input focus, such as XmLabel widgets.

● The user types a help topic command string in a command window widget. Your application must
include a command window widget to support this mechanism.

As an application developer, you must decide which help invocation methods to support. Most
DECwindows applications support invoking help by clicking on a help option in the menu bar and
through context-sensitive help.

101

Chapter 5. Using the DECwindows Motif Help System

5.3. Help File Information
You can use VAX DOCUMENT on OpenVMS for VAX systems or DECwrite to create Bookreader
files for the help system. The remainder of this section uses a help file created using VAX DOCUMENT
for the purpose of example.

5.4. Help File Information—VAX DOCUMENT
Example
Help-system help files created with VAX DOCUMENT are standard SDML files processed with the
SOFTWARE.ONLINE document type for Bookreader output.

You can use any standard section tag (<HEADn>) as a help topic. The symbol name associated with the
tag HEADn\symbolic_name must match the topic identifier specified in the UIL file.

Example 5.1, "DECBURGER_HELP.SDML Help File" shows the DECBURGER.DECW$BOOK file
as a VAX DOCUMENT DECBURGER_HELP.SDML file. Note that topics identified by INCLUDE
commands in the HLP file are identified by <HOTSPOT> tags in the SDML file. Also note that for the
help system you need to specify only the topic identifier in the symbolic name. The help widget uses the
key name hierarchy to find the help topic and requires the key names that form a path to the topic.

Note

The DECBURGER_HELP.SDML file is presented only as an example; refer to the DECwindows
Companion to the OSF/Motif Style Guide for the recommended content and style of a help file.

Example 5.1. DECBURGER_HELP.SDML Help File

<FRONT_MATTER>(dwhlp_front)
<TITLE_PAGE>
<TITLE>(Help on DECburger)
<ENDTITLE_PAGE>
<CONTENTS_FILE>
<ENDFRONT_MATTER>

<HEAD1>(Overview of the Help Widget\overview)

<P>
 A help widget is a modeless widget that allows you
 to display appropriate, context-sensitive help text
 in response to a user query. The help widget can
 be viewed as an independent application that your
 application calls to provide help functions.

<P>
 The help widget creates and manages one or more
 help windows and determines the first topic to be
 displayed to the user.

<P>
Additional topics:
<LIST>(UNNUMBERED)
<LE><HOTSPOT>(functions_1)

<LE><HOTSPOT>(create_help_widget)
<ENDLIST>

<HEAD2>(Using the Help widget\functions_1)
<P>

102

Chapter 5. Using the DECwindows Motif Help System

 To use the help widget, you perform the following steps:

<LIST>(NUMBERED\1)
<LE>Use the OpenVMS Librarian Utility (LIBRARIAN) to create a help library.
<LE>Create a Help menu bar item for your application. The Help menu item
 should be located at the right of the menu bar. If the menu bar is
 wider than a line, the Help menu item should be located at the bottom
 right.
<ENDLIST>

<HEAD1>(About the Help Widget\about)

<P>
 This topic provides version information.

<P>
Additional topics:
<LIST>(UNNUMBERED)
<LE><HOTSPOT>(create_help_widget)
<ENDLIST>

<HEAD1>(Help Widget On Help\onhelp)

<P>
 This topic provides help-on-using-help information.

<P>
Additional topics:
<LIST>(UNNUMBERED)
<LE><HOTSPOT>(create_help_widget)
<ENDLIST>

<HEAD1>(Menu Bar Context Sensitive Help\menu_bar)

<HEAD1>(File Menu Context Sensitive Help\file_menu)

<HEAD1>(Edit Menu Context Sensitive Help\edit_menu)

<HEAD1>(Not Yet Implemented\not_implemented)

<HEAD1>(Order Menu Context Sensitive Help\order_menu)

<HEAD1>(Order Context Sensitive Help\order)

<P>
 Order menu context-sensitive help

<P>
Additional topics:
<LIST>(UNNUMBERED)
<LE><HOTSPOT>(burgers)
<LE><HOTSPOT>(fries)
<LE><HOTSPOT>(drink)
<LE><HOTSPOT>(apply)
<LE><HOTSPOT>(dismiss)
<LE><HOTSPOT>(create_help_widget)
<ENDLIST>

<HEAD2>(Burgers For Us\burgers)

<P>
Additional topics:
<LIST>(UNNUMBERED)
<LE><HOTSPOT>(burgers_rare)
<LE><HOTSPOT>(burgers_medium)
<LE><HOTSPOT>(burgers_well)

103

Chapter 5. Using the DECwindows Motif Help System

<LE><HOTSPOT>(burgers_ketchup)
<LE><HOTSPOT>(burgers_mustard)
<LE><HOTSPOT>(burgers_onion)
<LE><HOTSPOT>(burgers_mayo)
<LE><HOTSPOT>(burgers_pickle)
<LE><HOTSPOT>(burgers_quantity)
<ENDLIST>

<HEAD3>(Burgers For Us\burgers_rare)

<HEAD3>(Burgers Medium For Us\burgers_medium)

<HEAD3>(Burgers Well For Us\burgers_well)

<HEAD3>(Burgers Ketchup For Us\burgers_ketchup)

<HEAD3>(Burgers Mustard For Us\burgers_mustard)

<HEAD3>(Burgers Onion For Us\burgers_onion)

<HEAD3>(Burgers Mayo For Us\burgers_mayo)

<HEAD3>(Burgers Pickle For Us\burgers_pickle)

<HEAD3>(Burgers Quantity\burgers_quantity)

<HEAD2>(Fries For Us\fries)

<P>
Additional topics:
<LIST>(UNNUMBERED)
<LE><HOTSPOT>(fries_tiny)
<LE><HOTSPOT>(fries_small)
<LE><HOTSPOT>(fries_medium)
<LE><HOTSPOT>(fries_large)
<LE><HOTSPOT>(fries_huge)
<LE><HOTSPOT>(fries_quantity)
<ENDLIST>

<HEAD3>(Tiny Fries\fries_tiny)

<HEAD3>(Small Fries\fries_small)

<HEAD3>(Medium Fries\fries_medium)

<HEAD3>(Large Fries\fries_large)

<HEAD3>(Huge Fries\fries_huge)

<HEAD3>(Fries Quantity\fries_quantity)

<HEAD2>(Drink Choices\drink)

<P>
Additional topics:
<LIST>(UNNUMBERED)
<LE><HOTSPOT>(drink_list)
<LE><HOTSPOT>(drink_quantity)
<LE><HOTSPOT>(drink_add)
<LE><HOTSPOT>(drink_sub)
<ENDLIST>

<HEAD3>(Drink List\drink_list)

<HEAD3>(Drink Quantity\drink_quantity)

104

Chapter 5. Using the DECwindows Motif Help System

<HEAD3>(Drink Add\drink_add)

<HEAD3>(Drink Subtract\drink_sub)

<HEAD2>(Help on Apply\apply)

<P>
 This topic provides information on both Apply and Reset.

<HEAD2>(Help on Dismiss\dismiss)

<HEAD1>(Help on Custom Colors\customize)

<HEAD1>(Help on Print Order\print)

<HEAD1>(Programming Help\programming)

<P>
 Programming help.

<P>
Additional topics:
<LIST>(UNNUMBERED)
<LE><HOTSPOT>(creating)
<ENDLIST>

<HEAD2>(Creating a Help widget\creating)

<P>
 Creating a help widget.

<P>
Additional topics:
<LIST>(UNNUMBERED)
<LE><HOTSPOT>(create_help_widget)
<ENDLIST>

<HEAD3>(Creating a Help widget\create_help_widget)
<P>
 Programming help for creating a help widget.

<HEAD1>(Help Widget Glossary\glossary)

<P>
 This topic provides glossary information.

<P>
Additional topics:
<LIST>(UNNUMBERED)
<LE><HOTSPOT>(create_help_widget)
<ENDLIST>

Because it is processed as a Bookreader book, the file must include front matter tags. The file must
also be processed with the /CONTENTS command line qualifier. You can also process the file
with the /INDEX command line qualifier if you have index entries in the SDML file.

Subordinate <HEADn> tags added are not automatically included in the "additional topics" list
of the next-highest previous head (parent). That is, <HEAD2>(Using the Help widget)

105

Chapter 5. Using the DECwindows Motif Help System

would not be automatically included as an additional topic under <HEAD1>(Overview of
the Help Widget). You must add an <LE><HOTSPOT>(functions_1) tag for this
purpose.

When you invoke the help system, you pass a help file specification to the DXmHelpSystemOpen
routine. The default location is SYS$HELP and the default file extension is DECW$BOOK, but you
can provide your own location or extension along with the help file name. The help system uses this
specification to locate and read the help file.

For example, you can define a symbolic name for the help file specification:

#define decburger_help "decw$examples:decburger_help.decw$book"

Then pass this symbolic name as the help file specification:

DXmHelpSystemOpen(&help_context, toplevel_widget, decburger_help,
 help_error, "Help System Error");

5.5. Context-Sensitive Help Callbacks
In context-sensitive help, the application presents direct help on the current topic rather than starting at a
higher level and working down through a help hierarchy. Users do not have to navigate through several
layers of help to find the information they need.

All widgets that are a subclass of the XmPrimitive or XmManager widget class support a help callback
with a reason of XmCR_HELP. Other widgets can also support the help callback, but there is no
requirement to do so. Your application uses this help callback to implement context-sensitive help by
associating a help callback routine with the widgets for which you want to provide help.

The Toolkit includes a routine, DXmHelpOnContext, that applications can use to enter context-sensitive
help mode.

Note

The OSF/Motif Style Guide recommends that, within dialog boxes, context-sensitive help should be
provided for the dialog box as a whole. The first help frame should be an overview of the dialog box,
with additional topics about each object in the dialog box.

To be consistent with the recommendations of the OSF/Motif Style Guide, you need to provide a
help callback only for the dialog box itself, not for the objects within the dialog box. Because the
DXmHelpOnContext routine checks a widget's nearest ancestors until it finds a widget with an
associated help callback routine, a user should be able to get context-sensitive help on a dialog box by
clicking anywhere within that dialog box.

Example 5.4, "Specifying a Help Callback—UIL Module" shows a sample help callback routine.

The remainder of this section describes how to implement context-sensitive help.

5.5.1. Creating the On Context Push Button in UIL
Example 5.2, "The On Context Push Button in UIL" shows how to create an On Context push button in
the Help pull-down menu.

106

Chapter 5. Using the DECwindows Motif Help System

Example 5.2. The On Context Push Button in UIL

 .
 .
 .

object help_menu_entry : XmCascadeButton {
 arguments {
 XmNlabelString = k_help_label_text;
 XmNmnemonic = keysym("H");
 };
 controls {
 XmPulldownMenu help_menu;
 };
 callbacks
 {
 XmNhelpCallback = procedure help_system_proc(k_help_help);
 };
 };

object help_menu : XmPulldownMenu
 {
 controls
 {
 XmPushButton help_sensitive;
 XmPushButton help_window;
 XmPushButton help_version;
 XmPushButton help_onhelp;
 };
 callbacks
 {
 XmNhelpCallback = procedure help_system_proc(k_help_help);
 };
 };

object help_sensitive : XmPushButton
 {
 arguments
 {
 XmNlabelString = k_sensitive_label_text;
 XmNmnemonic = keysym("C");
 };
 callbacks
 {
 XmNactivateCallback = procedure activate_proc (k_help_sensitive);
 XmNhelpCallback = procedure help_system_proc(k_sensitive_help);
 };
 };

 .
 .
 .

When the user clicks on the On Context push button, the activate callback calls a routine to enter
context-sensitive help mode. The On Context push button also has a context-sensitive help callback.

5.5.2. Entering Context-Sensitive Help Mode
The activate callback for the On Context push button calls a routine to enter context-sensitive help mode,
as shown in Example 5.3, "Calling the DXmHelpOnContext Routine". Note that all of the push buttons
in the OpenVMS DECburger demo application call back to the activate_proc routine. However, your
application can directly invoke the context-sensitive help callback from the On Context push button.

107

Chapter 5. Using the DECwindows Motif Help System

Example 5.3. Calling the DXmHelpOnContext Routine

 .
 .
 .

static void activate_proc(w, tag, reason)
 Widget w;
 int *tag;
 XmAnyCallbackStruct *reason;
{
 int widget_num = *tag; /* Convert tag to widget number. */
 int i, value;
 XmString topic;

 switch (widget_num) {
 .
 .
 .

 case k_help_sensitive:
 tracking_help();
 break;

 .
 .
 .
static void tracking_help()

{
 DXmHelpOnContext(toplevel_widget, FALSE);
}

 .
 .
 .

When the activate_proc routine is called with a tag that identifies the On Context push button, a
context-sensitive help routine (tracking_help) is called.

DXmHelpOnContext changes the pointer cursor to the help cursor and grabs it. The application
is in context-sensitive help mode. The user then moves the pointer cursor to the object for which
context-sensitive help is required and clicks MB1.

If the selected widget has a help callback, that help callback is invoked. If the selected widget does
not have a help callback, the widget's ancestors are tested until a help callback is found or the top
of the widget hierarchy is reached.

The DXmHelpOnContext routine is called with the name of the application's top-level widget and
a Boolean value that indicates whether you want the locating activity confined to that widget.

If you confine the help pointer cursor to the application's top-level widget (a Boolean value of
TRUE), the user will not be able to move the help pointer cursor outside the boundaries of the
main window. This means that the user could not get context-sensitive help on pop-up widgets that
extend beyond the boundaries of the top-level widget.

If you do not confine the help pointer cursor to the application's top-level widget (a Boolean value
of FALSE), the user can potentially get context-sensitive help on any of the application's widgets.

The example does not confine the help pointer cursor.

108

Chapter 5. Using the DECwindows Motif Help System

5.5.3. Specifying a Help Callback
Your application uses the XmNhelpCallback resource to associate a context-sensitive help callback
routine with the widgets for which you want to provide help.

Your application can use the callback's tag argument to supply help-topic-specific data. The help
system DXmHelpSystemDisplay routine uses a string value to specify the help topic to display.
Therefore, your application must supply the help callback routine with a string value that specifies the
help topic, as shown in Example 5.4, "Specifying a Help Callback—UIL Module".

Example 5.4. Specifying a Help Callback—UIL Module

 .
 .
 .
!String value to use for the help system callback

value
 helpsys_order_help : 'order';
 .
 .
 .

object ! The control panel. All order entry
 ! is done through this dialog box.
 control_box : XmFormDialog {
 arguments {
 XmNdialogTitle = k_decburger_title;
 XmNdialogStyle = XmDIALOG_MODELESS;
 XmNnoResize = true;
 XmNdefaultPosition = false;
 XmNx = 525;
 XmNy = 100;
 XmNautoUnmanage = false;
 XmNallowOverlap = false;
 XmNdefaultButton = XmPushButton ok_button;
 XmNcancelButton = XmPushButton cancel_button;
 XmNhorizontalSpacing = 10;
 XmNverticalSpacing = 10;
 XmNnavigationType = XmEXCLUSIVE_TAB_GROUP;
 };
 controls {
 XmForm burger_form;
 XmForm fries_form;
 XmForm drinks_form;
 XmSeparator button_separator;
 XmPushButton ok_button;
 XmPushButton apply_button;

 XmPushButton reset_button;
 XmPushButton cancel_button;
 XmSeparator button_separator;
 };
 callbacks {
 MrmNcreateCallback = procedure create_proc (k_order_box);
 XmNhelpCallback = procedure help_system_proc (helpsys_order_help);
 };
 };

 .
 .
 .

109

Chapter 5. Using the DECwindows Motif Help System

The help callback routine uses this string to set the DXmHelpSystemDisplay name argument, as
shown in Example 5.5, "Specifying a Help Callback—C Module".

Example 5.5. Specifying a Help Callback—C Module

 .
 .
 .
/* Creates a help system session */
static void help_system_proc(w, tag, reason)
 Widget w;
 char *tag;
 XmAnyCallbackStruct *reason;

{
DXmHelpSystemDisplay(help_context, decburger_help, "topic", tag,
 help_error, "Help System Error");
}
 .
 .
 .

If "dir" is used for the keyword argument, the name argument must specify the character string
identifying the Bookreader directory to open. You could use this feature to present the user directly
with a list of examples, open the help file at the index, and so forth. The Bookreader directory can be
"Contents", "Index", "Examples", "Figures", or "Tables", as shown in the following example.

DXmHelpSystemDisplay(help_context, decburger_help, "dir", "Contents",
 help_error, "Help System Error");

5.6. Implementing the Help System
Example 5.6, "UIL Help System Implementation" shows a sample implementation of the help system for
OpenVMS DECburger. Note that, unlike the actual DECburger code, this code implements only the help
system and not the help widget.

Example 5.6. UIL Help System Implementation

 .
 .
 .
 !module DECburger_demo

 module decburger
 version = 'v1.1.1'
 names = case_sensitive

 objects = {
 XmSeparator = gadget ;
 XmLabel = gadget ;
 XmPushButton = gadget ;
 XmToggleButton = gadget ;
 }

 procedure
 toggle_proc (integer);
 activate_proc (integer);
 create_proc (integer);
 scale_proc (integer);
 list_proc (integer);
 exit_proc (string);
 show_hide_proc (integer);
 pull_proc (integer);

110

Chapter 5. Using the DECwindows Motif Help System

 help_system_proc (string);
 ok_color_proc ();
 apply_color_proc ();
 cancel_color_proc ();

 value
 k_create_order : 1;
 k_order_pdme : 2;
 k_file_pdme : 3;
 k_edit_pdme : 4;
 k_nyi : 5;
 k_ok : 6; ! NOTE: ok, apply, reset, cancel
 k_apply : 7; ! must be sequential
 k_reset : 8;
 k_cancel : 9;
 k_cancel_order : 10;
 k_submit_order : 11;
 k_order_box : 12;
 k_burger_min : 13;
 k_burger_rare : 13;
 k_burger_medium : 14;
 k_burger_well : 15;
 k_burger_ketchup : 16;
 k_burger_mustard : 17;
 k_burger_onion : 18;
 k_burger_mayo : 19;
 k_burger_pickle : 20;
 k_burger_max : 20;
 k_burger_quantity : 21;
 k_fries_tiny : 22;
 k_fries_small : 23;
 k_fries_medium : 24;
 k_fries_large : 25;
 k_fries_huge : 26;
 k_fries_quantity : 27;
 k_drink_list : 28;
 k_drink_add : 29;

 k_drink_sub : 30;
 k_drink_quantity : 31;
 k_total_order : 32;
 k_burger_label : 33;
 k_fries_label : 34;
 k_drink_label : 35;
 k_menu_bar : 36;
 k_file_menu : 37;
 k_edit_menu : 38;
 k_order_menu : 39;
 k_help_pdme : 40;
 k_help_menu : 41;
 k_help_overview : 42;
 k_help_about : 43;
 k_help_onhelp : 44;
 k_help_sensitive : 45;
 k_print : 46;
 k_options_pdme : 47;
 k_options_menu : 48;
 k_create_options : 49;
 k_fries_optionmenu : 50;

 value
 k_decburger_title : 'DECburger: Order Entry Box';
 k_nyi_label_text : 'This feature is not yet implemented.';
 k_file_label_text : 'File';

111

Chapter 5. Using the DECwindows Motif Help System

 k_print_label_text : 'Print Order..';
 k_exit_label_text : 'Exit';
 k_edit_label_text : 'Edit';
 k_cut_dot_label_text : 'Cut';
 k_copy_dot_label_text : 'Copy';
 k_paste_dot_label_text : 'Paste';
 k_clear_dot_label_text : 'Clear';
 k_select_all_label_text : 'Select All';
 k_order_label_text : 'Order';
 k_cancel_order_label_text : 'Cancel Order';
 k_submit_order_label_text : 'Submit Order';
 k_options_label_text : 'Options';
 k_options_color_label_text : 'Background Color...';
 k_help_label_text : 'Help';
 k_sensitive_label_text : 'On Context';
 k_overview_label_text : 'On Window';
 k_about_label_text : 'On Version';
 k_onhelp_label_text : 'On Help';
 k_hamburgers_label_text : 'Hamburgers';
 k_rare_label_text : 'Rare';
 k_medium_label_text : 'Medium';
 k_well_done_label_text : 'Well Done';
 k_ketchup_label_text : 'Ketchup';
 k_mustard_label_text : 'Mustard';
 k_onion_label_text : 'Onion';
 k_mayonnaise_label_text : 'Mayonnaise';
 k_pickle_label_text : 'Pickle';
 k_quantity_label_text : 'Quantity';
 k_fries_label_text : 'Fries';
 k_size_label_text : 'Size';
 k_tiny_label_text : 'Tiny';
 k_small_label_text : 'Small';
 k_large_label_text : 'Large';
 k_huge_label_text : 'Huge';

 k_drinks_label_text : 'Drinks';
 k_0_label_text : ' 0';
 k_drink_list_text :
 string_table ('Apple Juice',
 'Orange Juice',
 'Grape Juice',
 'Cola',
 'Punch',
 'Root beer',
 'Water',
 'Ginger Ale',
 'Milk',
 'Coffee',
 'Tea');
 k_drink_list_select : string_table('Apple Juice');
 k_ok_label_text : 'OK';
 k_apply_label_text : 'Apply';
 k_reset_label_text : 'Reset';
 k_cancel_label_text : 'Cancel';

 .
 .
 .
 !String value to use for the Help System callbacks

 value

 k_order_help : 'order';

112

Chapter 5. Using the DECwindows Motif Help System

 k_print_help : 'print';
 k_options_help : 'options';
 k_menu_bar_help : 'menu_bar';
 k_file_help : 'file_menu';
 k_edit_help : 'edit_menu';
 k_order_menu_help : 'order_menu';
 k_help_help : 'help';
 k_sensitive_help : 'sensitive';
 k_onhelp_help : 'onhelp';
 k_about_help : 'about';
 k_overview_help : 'overview';
 k_nyi_help : 'not_implemented';

 .
 .
 .
 object
 s_menu_bar : XmMenuBar {

 arguments {
 XmNorientation = XmHORIZONTAL;
 XmNmenuHelpWidget = XmCascadeButton help_menu_entry;
 };

 controls {
 XmCascadeButton file_menu_entry;
 XmCascadeButton edit_menu_entry;
 XmCascadeButton order_menu_entry;
 XmCascadeButton options_menu_entry;
 XmCascadeButton help_menu_entry;
 };
 callbacks {
 MrmNcreateCallback = procedure create_proc (k_menu_bar);
 XmNhelpCallback = procedure help_system_proc(k_menu_bar_help);
 };
 };

 .
 .
 .
 object help_menu_entry : XmCascadeButton {

 arguments {
 XmNlabelString = k_help_label_text;
 XmNmnemonic = keysym("H");
 };
 controls {
 XmPulldownMenu help_menu;
 };
 callbacks
 {
 XmNhelpCallback = procedure help_system_proc(k_help_help);
 };
 };

 object help_menu : XmPulldownMenu

 {
 controls
 {
 XmPushButton help_sensitive;
 XmPushButton help_window;
 XmPushButton help_version;

113

Chapter 5. Using the DECwindows Motif Help System

 XmPushButton help_onhelp;
 };

 callbacks
 {
 XmNhelpCallback = procedure help_system_proc(k_help_help);
 };
 };

 object help_sensitive : XmPushButton
 {
 arguments
 {
 XmNlabelString = k_sensitive_label_text;
 XmNmnemonic = keysym("C");
 };
 callbacks
 {
 XmNactivateCallback = procedure activate_proc (k_help_sensitive);
 XmNhelpCallback = procedure help_system_proc(k_sensitive_help);
 };
 };

 object help_onhelp : XmPushButton
 {
 arguments
 {
 XmNlabelString = k_onhelp_label_text;
 XmNmnemonic = keysym("H");
 };
 callbacks
 {
 XmNactivateCallback = procedure activate_proc (k_help_onhelp);
 XmNhelpCallback = procedure help_system_proc(k_onhelp_help);
 };
 };

 object help_version : XmPushButton
 {
 arguments
 {
 XmNlabelString = k_about_label_text;
 XmNmnemonic = keysym("V");
 };
 callbacks
 {
 XmNactivateCallback = procedure activate_proc (k_help_about);
 XmNhelpCallback = procedure help_system_proc(k_about_help);
 };
 };

 object help_window : XmPushButton
 {
 arguments
 {
 XmNlabelString = k_overview_label_text;
 XmNmnemonic = keysym("W");
 };
 callbacks
 {
 XmNactivateCallback = procedure activate_proc (k_help_overview);

114

Chapter 5. Using the DECwindows Motif Help System

 XmNhelpCallback = procedure help_system_proc(k_overview_help);
 };
 };

 object ! The control panel. All order entry
 ! is done through this dialog box.
 control_box : XmFormDialog {
 arguments {
 XmNdialogTitle = k_decburger_title;
 XmNdialogStyle = XmDIALOG_MODELESS;
 XmNnoResize = true;
 XmNdefaultPosition = false;
 XmNx = 375;
 XmNy = 100;
 XmNautoUnmanage = false;
 XmNallowOverlap = false;
 XmNdefaultButton = XmPushButton ok_button;
 XmNcancelButton = XmPushButton cancel_button;
 XmNhorizontalSpacing = 10;
 XmNverticalSpacing = 10;
 XmNnavigationType = XmEXCLUSIVE_TAB_GROUP;
 };

 controls {
 XmForm burger_form;
 XmForm fries_form;
 XmForm drinks_form;
 XmSeparator button_separator;
 XmPushButton ok_button;
 XmPushButton apply_button;
 XmPushButton reset_button;
 XmPushButton cancel_button;
 XmSeparator button_separator;
 };
 callbacks {
 MrmNcreateCallback = procedure create_proc (k_order_box);
 XmNhelpCallback = procedure help_system_proc (k_order_help);
 };
 };

 .
 .
 .

The help_system_proc routine is used to implement context-sensitive help.

Compound string value declarations for the help push-button labels. Using values for widget labels
makes it easier to modify the interface. Putting all of the label definitions at the beginning of the
module makes it easier to find a label if you want to change it later.

String value declarations for the help callbacks. Putting the definitions at the beginning of the
module makes it easier to find a string if you want to change it later.

To conform with the guidelines of the OSF/Motif Style Guide, use the XmNmenuHelpWidget
resource to position the Help menu item at the far right of the menu bar. If the menu bar widget
wraps onto additional lines, the menu bar widget positions the Help menu item at the bottom right
of the menu bar.

The menu bar controls a cascade button for the Help menu entry.

The Help menu entry is a cascade button that controls a Help pull-down menu.

115

Chapter 5. Using the DECwindows Motif Help System

The Help pull-down menu includes push-button gadgets for context-sensitive help, overview,
version, and on-help menu entries. An application that does not support a specific help menu item
should not include that item in its Help pull-down menu.

When activated, the help push-button gadgets call the activate_proc callback routine with an
identifying integer value. The activate_proc callback uses this integer value, which is the tag
argument for the callback, to determine which widget called it.

The help callback routine uses this string to set the DXmHelpSystemDisplay name argument, as
shown in Example 5.5, "Specifying a Help Callback—C Module".

5.7. Help System Implementation—C
Language Module
Example 5.7, "Help System Implementation—C Language Module" shows the C language code that
implements the help system created in Example 5.6, "UIL Help System Implementation". The complete
C source code for the OpenVMS DECburger application is included in in DECW$EXAMPLES on
OpenVMS systems.

Example 5.7. Help System Implementation—C Language Module

 .
 .
 .
#include <stdio.h> /* For printf and so on. */

#include <Xm/Text.h>
#include <Mrm/MrmAppl.h>
#include <DXm/DXmHelpB.h>
#include <DXm/DXmPrint.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <DXm/DXmColor.h>
#include <DXm/DECspecific.h>

#ifdef VMS
/* For OpenVMS systems, use the following include file: */
#include <sys$library/DECw$Cursor.h>

#else
/* For UNIX systems, use the following include file: */
#include <X11/decwcursor.h>

#endif

 .
 .
 .

/*
 * Global data
 */

/* Book file for help system */

/* Use the following define command on OpenVMS systems: */
#define decburger_help "decw$examples:decburger_help.decw$book"

116

Chapter 5. Using the DECwindows Motif Help System

 /* Global help system context */

Opaque help_context;

 .
 .
 .

/*
 * Forward declarations
 */

static void s_error();
static void help_error();
static void get_something();
static void set_something();

static void activate_proc();
static void create_proc();
static void list_proc();
static void exit_proc();
static void pull_proc();
static void scale_proc();
static void show_hide_proc();
static void show_label_proc();
static void toggle_proc();
static void tracking_help();
static void help_system_proc();

static void create_print();
static void activate_print();
static void create_color();
static void ok_color_proc();
static void apply_color_proc();
static void cancel_color_proc();
static void xmstring_append();
static void start_watch();
static void stop_watch();

/* The names and addresses of things that Mrm has to bind. The names do
 * not have to be in alphabetical order. */

static MrmRegisterArg reglist[] = {
 {"activate_proc", (caddr_t) activate_proc},
 {"create_proc", (caddr_t) create_proc},
 {"list_proc", (caddr_t) list_proc},
 {"pull_proc", (caddr_t) pull_proc},
 {"exit_proc", (caddr_t) exit_proc},
 {"scale_proc", (caddr_t) scale_proc},
 {"show_hide_proc", (caddr_t) show_hide_proc},
 {"show_label_proc", (caddr_t) show_label_proc},
 {"toggle_proc", (caddr_t) toggle_proc},
 {"help_system_proc", (caddr_t) help_system_proc},
 {"cancel_color_proc", (caddr_t) cancel_color_proc},
 {"apply_color_proc", (caddr_t) apply_color_proc},
 {"ok_color_proc", (caddr_t) ok_color_proc}
};

static int reglist_num = (sizeof reglist / sizeof reglist [0]);
static font_unit = 400;

117

Chapter 5. Using the DECwindows Motif Help System

/*
 * OS transfer point. The main routine does all the one-time setup and
 * then calls XtMainLoop.
 */

static String fallback =
 "DECburger.title: DECburger\nDECburger.x: 100\nDECburger.y: 100";

unsigned int main(argc, argv)
 unsigned int argc; /* Command line argument count. */
 char *argv[]; /* Pointers to command line args. */
{
 XtAppContext app_context;

 MrmInitialize(); /* Initialize MRM before initializing
 /* the X Toolkit. */

 DXmInitialize(); /* Initialize DXm widgets */

 /* If we had user-defined widgets, we would register them with Mrm here. */

 /* Initialize the X Toolkit. We get back a top level shell widget. */

 toplevel_widget = XtAppInitialize(
 &app_context, /* App. context is returned */
 "DECburger", /* Root class name. */
 NULL, /* No option list. */
 0, /* Number of options. */
 &argc, /* Address of argc */
 argv, /* argv */
 &fallback, /* Fallback resources */
 NULL, /* No override resources */
 0); /* No override resources */

 /* Open the UID files (the output of the UIL compiler) in the hierarchy*/

 if (MrmOpenHierarchy(
 db_filename_num, /* Number of files. */
 db_filename_vec, /* Array of file names. */
 NULL, /* Default OS extension. */
 &s_MrmHierarchy) /* Pointer to returned MRM ID */
 !=MrmSUCCESS)
 s_error("can't open hierarchy");

 init_application();

 /* Register the items MRM needs to bind for us. */

 MrmRegisterNames(reglist, reglist_num);

 /* Go get the main part of the application. */
 if (MrmFetchWidget(s_MrmHierarchy, "S_MAIN_WINDOW", toplevel_widget,
 &main_window_widget, &dummy_class) != MrmSUCCESS)
 s_error("can't fetch main window");

 /* Save some frequently used values */
 the_screen = XtScreen(toplevel_widget);
 the_display = XtDisplay(toplevel_widget);

 /* If it's a color display, map customize color menu entry */

 if ((XDefaultVisualOfScreen(the_screen))->class == TrueColor
 || (XDefaultVisualOfScreen(the_screen))->class == PseudoColor

118

Chapter 5. Using the DECwindows Motif Help System

 || (XDefaultVisualOfScreen(the_screen))->class == DirectColor
 || (XDefaultVisualOfScreen(the_screen))->class == StaticColor)

 XtSetMappedWhenManaged(widget_array[k_custom_pdme], TRUE);

 /* Manage the main part and realize everything. The interface comes up
 * on the display now. */

 XtManageChild(main_window_widget);
 XtRealizeWidget(toplevel_widget);

 /* Set up Help System environment */

 DXmHelpSystemOpen(&help_context, toplevel_widget, decburger_help,
 help_error, "Help System Error");

 /* Sit around forever waiting to process X-events. We never leave
 * XtAppMainLoop. From here on, we only execute our callback routines. */
 XtAppMainLoop(app_context);
}
 .
 .
 .

/*
 * Help System errors are also fatal.
 */

static void help_error(problem_string, status)

 char *problem_string;
 int status;

{
 printf("%s, %x\n", problem_string, status);
 exit(0);
}

 .
 .
 .

/*
 * All push buttons in this application call back to this routine. We
 * use the tag to tell us what widget it is, then react accordingly.
 */

static void activate_proc(w, tag, reason)
 Widget w;
 int *tag;
 XmAnyCallbackStruct *reason;
{
 int widget_num = *tag; /* Convert tag to widget number. */
 int i, value;
 XmString topic;

 switch (widget_num) {
 case k_nyi:

119

Chapter 5. Using the DECwindows Motif Help System

 /* The user activated a 'not yet implemented' push button. Send
 * the user a message. */
 if (widget_array[k_nyi] == NULL) {
 /* The first time, fetch from the data base. */
 if (MrmFetchWidget(s_MrmHierarchy, "nyi", toplevel_widget,
 &widget_array[k_nyi], &dummy_class) != MrmSUCCESS) {
 s_error("can't fetch nyi widget");
 }
 }
 /* Put up the message box saying 'not yet implemented'. */
 XtManageChild(widget_array[k_nyi]);
 break;
 .
 .
 .

 case k_help_overview:
 DXmHelpSystemDisplay(help_context, decburger_help, "topic",
 "overview", help_error, "Help System Error");
 break;

 case k_help_about:
 DXmHelpSystemDisplay(help_context, decburger_help, "topic",
 "about", help_error, "Help System Error");
 break;

 case k_help_onhelp:
 DXmHelpSystemDisplay(help_context, decburger_help, "topic",
 "onhelp", help_error, "Help System Error");
 break;

 case k_help_sensitive:
 tracking_help();
 break;
 .
 .
 .

/* Switches DECburger into context-sensitive mode and calls the selected
** widget's context-sensitive help callback
*/

static void tracking_help()
{
 DXmHelpOnContext(toplevel_widget, FALSE);
}

/* Help system callback. Creates a help system session */

static void help_system_proc(w, tag, reason)

 Widget w;
 int *tag;
 XmAnyCallbackStruct *reason;

120

Chapter 5. Using the DECwindows Motif Help System

{
DXmHelpSystemDisplay(help_context, decburger_help, "topic", tag,
 help_error, "Help System Error");
}

 .
 .
 .
/*
 * The user pushed the exit button, so the application exits.
 */
static void exit_proc(w, tag, reason)

 Widget w;
 char *tag;
 XmAnyCallbackStruct *reason;
{
 if (tag != NULL)
 printf("Exit - %s\n", tag);

 DXmHelpSystemClose(help_context, help_error, "Help System Error");

 exit(1);
}

Define a macro for the help file specification.

Declare the context for the help system. This context must be defined globally.

Forward declarations of the help system callback.

Because the help_system_proc callback is called through UIL, it is registered in an argument list.
OpenVMS DECburger stores the names and addresses of the callback routines for later use by the
MRM routine MrmRegisterNames.

Initialize the widgets in the VSI extended toolkit.

Call DXmHelpSystemOpen to initialize the help system environment before calling the
XtAppMainLoop routine. DECburger defines a macro (decburger_help) for the help file
specification. Note that you pass the address of the help system context.

The help_error routine is used for error processing. If an error occurs within the Help System
and it cannot be processed by either LinkWorks or Bookreader, the Help System calls this error
processing routine. You must specify an error handling routine; if an error cannot be processed by
either LinkWorks or Bookreader and you have not specified an error handling routine, your system
will generate an access violation.

The Help System passes in an integer, or status, to indicate the status of the error processing
operation, as follows:

Value Description

1 The Help System could not find the LinkWorks
shareable image.

2 The Help System could not translate a specified
value into a valid file specification.

121

Chapter 5. Using the DECwindows Motif Help System

The example uses the tag argument, in this case problem_string, to specify an error message.
Your application could also use the tag argument to tell where the error occurred. For example,
you can pass in one value for tag to indicate that the error occurred as a result of a call to the
DXmHelpSystemOpen routine, and then pass different values for the DXmHelpSystemDisplay and
DXmHelpSystemClose routines.

When activated, the help push-button gadgets call the activate_proc callback routine with an
identifying integer value. The activate_proc callback uses this integer value, which is the tag
argument for the callback, to determine which widget called it.

The activate_proc routine calls the DXmHelpSystemDisplay routine with the appropriate name
argument.

When a user requests context-sensitive help for an object, this callback routine is invoked.

The name argument, in this case tag, is the string value from UIL that identifies the help topic to
be displayed. The value of the keyword argument is "topic".

If "dir" is used for the keyword argument, the name argument must specify the character
string identifying the Bookreader directory to open. The Bookreader directory can be "Contents",
"Index", "Examples", "Figures", or "Tables".

When a user exits from DECburger, this callback routine is invoked. The DXmHelpSystemClose
routine closes the help system. Note that DXmHelpSystemClose closes any remaining Bookreader
windows but does not close Bookreader itself.

122

Chapter 6. Using the Color Mixing
Widget
This chapter describes how to use the color mixing widget in an application. The chapter provides the
following information:

● An overview of the color mixing widget in the DECwindows Motif Toolkit

● A description of the support routines for the color mixing widget

In addition, the chapter describes how to modify the color mixing widget to support various color
models.

6.1. Overview of the Color Mixing Widget
The color mixing widget gives your DECwindows Motif applications a mechanism for querying end
users for a color. For example, if your application includes a pie chart, you can use the color mixing
widget to query users for the colors to be used in the pie chart. The color mixing widget gives users
immediate feedback, displaying each new color as it is selected.

The color mixing widget lets a user choose from up to five different color models. It supports static
color browsing, dynamic color interpolation (blending of hues), and standard color mixing. The different
color models can be used separately or together. By default, the color mixing widget supports the color
models described in Section 6.3, "Color Models". However, you can customize the color mixing widget to
support other color models. See Section 6.5, "Supporting Other Color Models".

Although the color mixing widget supports a wide variety of color models, it communicates with your
application in RGB (red, green, blue) values because, in the X Window System Version 11 colors are
specified in terms of intensities of red, green, and blue. Intensity is expressed as a value of between 0 and
65535. As an application programmer, you need not care which color model the user uses to specify a
color choice because the color mixing widget always translates that color into X11 RGB values.

The color mixing widget is intended for use by both novice and sophisticated color users. Novice color
users do not need to understand color theory to generate their desired colors, while sophisticated color
users can use their knowledge of RGB values or X11 named colors to choose colors.

The color mixing widget is designed to run optimally on an 8-plane color system that can display
256 colors simultaneously. However, the color mixing widget runs on all DECwindows supported
configurations, including true color, grayscale, and monochrome systems. The color mixing widget
automatically adjusts to the display, providing whatever color functionality the hardware can support.

DECwindows applications that use the color mixing widget include the Session and Window Managers,
DECpaint, DECwindows Mail, and the OpenVMS DECburger demo application. You can run any of
these applications to become familiar with the function of the color mixing widget.

6.2. Color Mixing Widget Resources
The color mixing widget allocates up to 29 color cells to represent the colors in the various color models.
It allocates the color cells in the following order:

123

Chapter 6. Using the Color Mixing Widget

1. 1 cell for the new color.

2. 1 cell for the original color.

3. 1 cell for the background color.

4. 10 cells for the Color Picker color spectrum. If these 10 cells are not available, the Color Picker
model option is dimmed.

5. 10 cells for the Color Picker color interpolator. If these 10 cells are not available, the Color Picker
model is functional, but the color interpolator feature is dimmed.

6. 5 cells for the visible items in the Browser's list of named colors. If these cells are not available, the
named colors appear in black and white instead of in their respective colors.

7. 1 color cell for the scratch pad.

Note

The color mixing widget does not allocate any resources on your application's behalf. Your application is
responsible for allocating the required system color resources to display colors.

6.3. Color Models
Color models are abstractions that enable unambiguous color specification. The color mixing widget
supports the following color models:

● Color Picker

● HLS (hue, lightness, saturation)

● RGB (red, green, blue)

● Browser (X11 named colors)

● Greyscale Mixer

Users of your application can use the color models independently to select a color. Users can also use
any of the color models to select a color and then use the Color Picker model to smear (blend) the
selected color into the color of choice.

The following sections describe the supported color models.

6.3.1. Color Picker Model
The Color Picker is the default color model for the color mixing widget on color systems. Note that the
Color Picker model does not display on noncolor systems or on systems with too few resources. The
Color Picker allows a user to pick a color from a static color spectrum (or another color model) and
either use that color without change or use it to generate a new color. Users can also pick colors from the
spectrum and smear them into each other to create their color of choice.

Users can select any color displayed by the Color Picker model as their color of choice.

124

Chapter 6. Using the Color Mixing Widget

The Color Picker consists of a 10-color spectrum and its title, a color interpolator and its title, a smear
button, an undo button, two paint bucket buttons, and arrow buttons to control the warmth and lightness
of interpolator colors.

Figure 6.1, "Components of the Color Mixing Widget (Color Picker Model)" shows the components in a
color mixing widget with the Color Picker model selected.

Figure 6.1. Components of the Color Mixing Widget (Color Picker Model)

6.3.1.1. Color Picker Model Spectrum
The color spectrum is a static collection of colors. The spectrum pull-down menu allows the user to set
the spectrum to one of four common color palettes:

● The typical “rainbow” spectrum (white, red, orange, yellow, green, blue, blue-violet, violet, brown,
and black)

● Pastels

● Vivids

125

Chapter 6. Using the Color Mixing Widget

● Earthtones

These four color palettes allow users to select from a wide variety of colors. The application can also add
another palette, which becomes the default palette accessible to the user through this menu. The other
palettes still remain available.

6.3.1.2. Selecting a Color Using the Color Picker Model
In the context of the color mixing widget, the term current selection refers to the color to be used as the
new color, unless the user performs some action to modify that color or selects another color.

When a user clicks and releases MB1 on a spectrum tile or interpolator tile, that color becomes the
current selection, and the tile becomes highlighted, identifying it as the selected color.

The user can use the selected color without modification or can perform one or more of the following
actions:

● Use the interpolator to smear (blend) the selected color into the color of choice. The interpolator is
particularly useful in the instance where the user has a particular color in mind, for example a shade
of purple, but wants to see a range of purples before making a final selection.

● Use the arrow buttons to make the color lighter or darker, warmer or cooler.

● Switch to another color model and use the features of that model to modify the current selection.

6.3.1.3. Using the Interpolator
Two paint buckets are used to load the interpolator with the color or colors to smear. First, the user
clicks MB1 on a spectrum tile or interpolator tile. The color display widget displays the color of that
tile. Clicking on a paint bucket then fills the interpolator end tile below it with the selected color. The
user can fill both interpolator end tiles or one, in which case the color of the empty interpolator end tile
defaults to white.

As an alternative to the paint buckets, the user can use an eyedropper to load the interpolator. Pressing
and holding MB1 on a spectrum or interpolator tile, the original color tile, or the new color tile causes
the pointer to become an eyedropper filled with the color of that tile. This eyedropper can then be moved
to the interpolator and used to fill one of the two end tiles by releasing MB1. If the eyedropper is not
positioned directly on one of the two end tiles, the closest end tile is filled with the eyedropper color.

When the interpolator end points are filled with the selected colors, activating the smear button causes
a linear interpolation between these two colors. The results of this interpolation appear in the central
interpolator tiles. The new colors generated by this process can then be selected, picked up with the
eyedropper, smeared, and so forth.

The warmer, cooler, lighter, and darker buttons apply changes to each tile in the interpolator array. The
warmer button adds red to the color of each tile, while the cooler button adds blue. The lighter and
darker buttons modify the lightness component of each interpolator tile.

The undo button is used to undo the last interpolator action, which can be a smear, the filling of an end
tile, or the activation of one of the warmth or lightness adjustment buttons.

6.3.2. HLS Color Model
In the HLS (hue, lightness, saturation) color model, a color is specified by three characteristics: hue,
lightness, and saturation. Hue is color. Lightness describes the intensity of the color, that is, the amount
of the color. Saturation describes the purity of the color or how much the color is diluted by white.

126

Chapter 6. Using the Color Mixing Widget

HLS expresses hue as a continuous spectrum of values arranged in a circular pattern. Red appears at
0 degrees (and again at 360 degrees), magenta is at 60 degrees, blue is at 120 degrees, cyan is at 180
degrees, green is at 240 degrees, and yellow is at 300 degrees. HLS expresses the lightness or intensity
of a color as a percentage between 0 and 100 percent. One hundred percent lightness creates white light;
zero percent lightness creates black.

To support the HLS color model, the color mixer subwidget contains three scales that represent the
ranges of hue, lightness, and saturation. The hue scale presents color values as a range between 0 and
360. The lightness and saturation scales present their values as a range of percentages between 0 and
100.

Figure 6.2, "Components of the Color Mixing Widget (HLS Color Model)" shows the components in a
color mixing widget with the HLS color model selected.

127

Chapter 6. Using the Color Mixing Widget

Figure 6.2. Components of the Color Mixing Widget (HLS Color Model)

One oddity of the HLS color model is that full intensity colors are specified at 50 percent lightness.
HLS expresses the saturation or purity of a color also as a percentage between 0 and 100 percent. One
hundred percent saturation is a pure color. A zero-saturated color is a shade of gray, determined by the
value of lightness.

128

Chapter 6. Using the Color Mixing Widget

6.3.3. RGB Color Model
The RGB color model is the default color model for the color mixing widget.

In the RGB color model, a color is specified as a mixture of different intensities of red, green, and blue.
In the X Window System Version 11 (X11), you specify the intensity of red, green, or blue as a value
between 0 and 65,535. Zero is the lowest intensity. Black is defined as a zero-intensity value for all three
colors; white is 100 percent intensity for all three colors.

The color mixing widgets shown in Figure 6.2, "Components of the Color Mixing Widget (HLS Color
Model)" and Figure 6.3, "Components of the Color Mixing Widget (RGB Color Model)" illustrate how the
color “LightBlue” is specified in each color model. X11 specifies a number of “named” colors, such as
LightBlue, by their RGB values.

In the HLS color model, LightBlue is specified as 220 on the Hue scale, 62 percent lightness, and 68
percent saturation. In the RGB color model, LightBlue is specified at 24672 intensity, green at 35209
intensity, and blue at 57825 intensity. Figure 6.3, "Components of the Color Mixing Widget (RGB Color
Model)" illustrates how the scales in the color mixer subwidget express these X11 RGB values as
percentages.

To support the RGB color model, the color mixer subwidget contains three scales that represent the
ranges of intensity of red, green, and blue. Each scale presents these color values as a percentage between
0 and 100. In addition, when supporting the RGB color model, the color mixer subwidget also contains
text widgets in which users of your application can enter RGB values directly as text. The text widgets
and the scales are linked; a change in one effects a corresponding change in the other.

Figure 6.3, "Components of the Color Mixing Widget (RGB Color Model)" shows the components in a
color mixing widget with the RGB color model selected.

129

Chapter 6. Using the Color Mixing Widget

Figure 6.3. Components of the Color Mixing Widget (RGB Color Model)

6.3.4. Browser Color Model
The Color Browser is a scrolled window that displays a list of X11 named colors. Each button in the
scrolled window shows the name of an X11 color. If enough resources are available, the background
is set to that color. You can use the scroll bar to scroll through this color list. Clicking MB1 on a color
in the list causes the color display subwidget to become filled with that color. The Color Browser is
available on all systems.

Figure 6.4, "Components of the Color Mixing Widget (Browser Color Model)" shows the components in a
color mixing widget with the Color Browser color model selected.

130

Chapter 6. Using the Color Mixing Widget

Figure 6.4. Components of the Color Mixing Widget (Browser Color Model)

If the new color is not further modified by other color models, the X11 name of this color is also
returned to the application as part of the colormix callback structure. Note that, in this callback, the
Color Browser differs from the other color models, which return only RGB values and have a null value
in the name field.

131

Chapter 6. Using the Color Mixing Widget

The location of the file containing the list of available colors depends on which X server is being used.
On UNIX systems, the file /usr/lib/X11/rgb.txt contains a list of the available DECwindows named
colors. For OpenVMS systems, this information is in the VMS DECwindows Guide to Xlib(Release 4)
Programming: MIT C Binding. If you are creating applications with eXcursion for Windows NT, check
the documentation for that product to determine the X server that is being used. The RGB values for
named colors are not guaranteed to exactly match the named colors for all server implementations. Not
all servers support all of the named colors.

The DXmNbrowserItemCount resource determines the number of visible items in the browser's
color list. This resource can be set only at widget creation time. The default is 5. Note that, if you
increase this number, each visible item requires the color mixing widget to allocate an additional color
cell.

6.3.5. Greyscale Mixer
The Greyscale mixer is a scale widget that allows generation of gray shades ranging from black to white.
When the Greyscale mixer is selected, the current color selection is converted to an appropriate shade of
gray, which can then be adjusted with the scale widget. All shades of gray generated by this model are a
mixture of equal portions of red, green, and blue, which means they appear identically on both color and
grayscale systems.

Figure 6.5, "Components of the Color Mixing Widget (Greyscale Mixer)" shows the components in a color
mixing widget with the Greyscale mixer selected.

132

Chapter 6. Using the Color Mixing Widget

Figure 6.5. Components of the Color Mixing Widget (Greyscale Mixer)

The DXmNgreyscaleOnGreyscale Boolean resource, when true, causes the grayscale mixing
color model to be the default on grayscale systems. The default is true. The Greyscale mixer is available
on all systems.

133

Chapter 6. Using the Color Mixing Widget

6.4. Color Mixing Widget Components
The color mixing widget is a dialog box that is preconfigured to contain the child widgets, called
subwidgets, it needs to implement its functions. When a widget contains other widgets, the widgets it
contains are called subwidgets. The color mixing widget contains the following subwidgets:

● Scratch pad – Stores intermediate colors for possible later use in color mixing.

● Color display subwidget – Displays the original color and the new color.

● Color model option menu subwidget – Implements choice of a color model.

● Color mixer subwidget – Provides graphic tools with which users can define new colors.

● Push-button subwidgets – Activate color mixing widget functions.

● Label subwidgets – Provide descriptive information.

● Work area subwidget – Supplies additional functions defined by application (optional).

6.4.1. Scratch Pad
The scratch pad dialog box lets users pass colors among color models. For example, a user might use the
scratch pad to save a series of colors selected with the Color Picker model and then get the RGB values
for those colors in the RGB color model.

The user can also use the scratch pad to store intermediate colors for later use in color mixing. For
example, the user might use the scratch pad to store five different shades of blue and then pick the
preferred shade from the stored shades.

The scratch pad is accessible from all of the color models. Figure 6.6, "Components of the Scratch Pad"
shows the components of the scratch pad.

Figure 6.6. Components of the Scratch Pad

134

Chapter 6. Using the Color Mixing Widget

Users can click on the paint bucket above the scratch pad color tile to store the currently selected color
in the scratch pad. The scratch pad adds that color to its list of stored colors. Users can scroll through the
stored colors.

Note

Note that, for the Color Picker model, the currently selected color can be derived from any of the color
tiles in the model. However, when using other color models, only the new or original color tiles can be
selected.

To set the new-color tile of the color display subwidget to a scratch pad color, a user scrolls to that color
and clicks on the scratch pad color tile. The new-color tile changes and the scratch pad tile becomes
highlighted. In the Color Picker model, this highlighting indicates that the user can use the paint bucket
buttons to put the scratch pad color into one of the interpolator end tiles.

The Clear button resets the list of stored colors and sets the scratch pad back to its initial state. The
Cancel button unmanages the scratch pad dialog box without changing its contents.

6.4.2. Color Display Subwidget
The default color display subwidget is a dialog box widget (work area style) that contains two window
widgets: one to display the original color and one to display the new color. The color displayed in the
new-color window widget changes to represent the new color as it is defined.

When you create the color mixing widget, you can specify the initial values of both the original color and
the new color. If you do not specify an initial value for the new color, the color mixing widget sets it to
match the original color. The DXmNmatchColors resource is a Boolean value that, when true, causes
the new-color tile to match the color of the original color tile when the color mix widget first becomes
visible. DXmNmatchColors is true by default.

You can also specify the background color of the color display subwidget (which is gray by default).

When displayed on a grayscale device, the color display subwidget represents the color values as shades
of gray. On static gray and monochrome devices, the color display subwidget is not visible in the color
mixing widget.

You can replace the default color display subwidget with a widget of your own design. For information
about this topic, see Section 6.5.1, "Replacing the Color Display Subwidget".

6.4.3. Color Model Option Menu Subwidget
The color model option menu subwidget lets users of your application choose the color model supported
by the color mixer subwidget. For information about the color mixer subwidget, see Section 6.4.4, "Color
Mixer Subwidget". The color models appear as items in the option menu. Users can switch among color
models at any time.

When the color model is changed, the color mixing widget preserves the current color definition,
translating the values that define the color in the current color model into values appropriate to the new-
color model.

The color model option menu subwidget appears in the color mixing widget only when the default color
mixer subwidget is used.

135

Chapter 6. Using the Color Mixing Widget

6.4.4. Color Mixer Subwidget
The color mixer subwidget provides graphic tools that users can use to define colors. When a user
changes a value in the color mixer subwidget, the color mixing widget immediately updates the color
displayed in the new-color window of the color display subwidget.

The default color mixer subwidget supports the Color Picker, HLS, RGB, Browser, and Greyscale
mixer color models. You can specify which color model the color mixer subwidget initially supports by
assigning a value to the DXmNcolorModel resource. If you do not specify a color model, the color
mixer subwidget default is determined by the system type of the display device.

Use the constants listed in Table 6.1, "Color Model Constants" to specify the color model in the
DXmNcolorModel resource. Table 6.1, "Color Model Constants" also describes when the various
color models are used as the default.

Table 6.1. Color Model Constants

Color Model Constant When Default

Color Picker DXmColorModelPicker Color systems
HLS DXmColorModelHLS Not used as a default
RGB DXmColorModelRGB Monochrome systems
Browser DXmColorModelBrowser Not used as a default
Greyscale DXmColorModelGreyscale Grayscale systems

The Color Picker model does not display on noncolor systems. If you specify the Color Picker color
model in the DXmNcolorModel resource and the application is displayed on a noncolor system, the
color mixer subwidget uses the default color model for that system.

The HLS, RGB, and Browser color models and the Greyscale mixer display on color, grayscale,
and monochrome systems. However, the color display subwidget is not visible on static gray and
monochrome devices.

For information about replacing the default color mixer subwidget with a widget of your own design, see
Section 6.5.2, "Replacing the Color Mixer Subwidget".

6.4.5. Push-Button Subwidgets
By default, the color mixing widget contains five push-button subwidgets labeled OK, Apply, Reset,
Cancel, and Help. When activated, the OK, Apply, and Cancel push buttons cause the color mixing
widget to perform a callback to your application.

Note

The Reset and Help push buttons do not trigger a callback to your application because they have built-in
functions that are internal to the color mixing widget.

When activated, the Reset button changes the values in the color mixer subwidget and the color displayed
in the new-color window of the color display subwidget back to their initial values. The Help button
displays help on using the color mixing widget.

You implement the functions associated with the color mixing widget push buttons. The OSF/Motif Style
Guide contains specific recommendations about what functions should be associated with push buttons

136

Chapter 6. Using the Color Mixing Widget

containing labels such as OK, Apply, and Cancel. The following list restates these recommendations as
they might be implemented with the color mixing widget:

● The OK push button makes the newly defined color appear in your application and then removes the
color mixing widget from the display.

● The Apply push button makes the newly defined color appear in your application while the color
mixing widget remains active on the display.

● The Cancel push button removes the color mixing widget from the display without implementing any
of the changes a user might have made.

Use callback routines to implement the functions you want associated with these push buttons. You
associate these callback routines with the callback resources of the color mixing widget. For example,
to associate a function with the OK push button, use the XmNactivateCallback resource. For
more information about associating callback routines with the color mixing widget, see Section 6.6,
"Associating Callbacks with a Color Mixing Widget".

Note that you can change the text displayed in the push-button subwidgets. For details, see Section 6.4.6,
"Label Subwidgets". You can also remove any of the push-button subwidgets by specifying a null value
for the text label.

6.4.6. Label Subwidgets
The color mixing widget contains more than a dozen labels you can use to provide descriptive text for
the components of the color mixing widget. Section 6.4.6, "Label Subwidgets" describes how to specify
text for these labels.

6.4.7. Work Area Subwidget
The color mixing widget can contain a work area subwidget, if your application supplies one. The color
mixing widget manages this subwidget and positions it below the color mixer subwidget and above the
push-button subwidgets.

The work area subwidget can be any other Toolkit widget, such as a label, push button, or dialog box
widget. If you use a dialog box widget, use only the work area style of this widget.

For example, your application can use this additional subwidget to include additional push-button widgets
to extend the functions of the color mixing widget.

6.4.8. Setting and Retrieving New Color Values
If your application does not use the default color display subwidget, you might need to set or retrieve
the RGB values of the new color displayed in the color display subwidget. You can use the XtSetValues
and XtgetValues intrinsic routines for this purpose. However, the DECwindows Motif Toolkit provides
support routines that let you perform these tasks much faster.

To set the values of the DXmNnewRedValue, DXmNnewGreenValue, and DXmNnewBlueValue
resources, use the DXmColorMixSetNewColor support routine. You specify the values of these
resources as arguments to the routine. The default color display subwidget updates the new-color window
to represent the newly defined color.

To retrieve the value of the new-color resources, use the DXmColorMixGetNewColor support routine.
This support routine writes the current values of the DXmNnewRedValue, DXmNnewGreenValue,
and DXmNnewBlueValue resources into variables that you pass as arguments to the routine.

137

Chapter 6. Using the Color Mixing Widget

Table 6.2, "Support Routines for the Color Mixing Widget" summarizes the support routines for the color
mixing widget.

Table 6.2. Support Routines for the Color Mixing Widget

Routine Description

DXmColorMixGetNewColor Retrieves the current values of the new-color
resources.

DXmColorMixSetNewColor Assigns values to the new-color resources.

6.4.9. Customizing the Color Mixing Widget
You can customize the following aspects of the appearance and function of the color mixing widget:

● Size

● Margins

● Labels

● Background color

● Work area subwidget

6.4.9.1. Specifying Size
The color mixing widget sizes itself to fit the subwidgets that it contains. For example, if you specify
long compound strings as values for the label subwidgets, the color mixing widget increases its size to
accommodate the labels. Note that you do not need to set the common widget resources XmNwidth
and XmNheight to 0 [zero] to get the default size.

In the default color display subwidget, you can specify the size of the windows in which the original
and new colors are displayed. By default, each of these windows is 80 pixels square. Use the
DXmNdisplayColWinWidth resource and the DXmNdisplayColWinHeight resource to
specify the dimensions of these windows. Specify these dimensions in pixels. These resources affect only
the default color display subwidget.

DXmNpickerTileHeight—Specifies the height of each individual Color Picker spectrum tile in
pixels. The default is 30 pixels.

DXmNpickerTileWidth—Specifies the width of each individual Color Picker spectrum tile in
pixels. The default is 30 pixels.

DXmNinterpTileHeight—Specifies the height of each individual Color Picker interpolator tile in
pixels. The default is 30 pixels.

DXmNinterpTileWidth—Specifies the width of each individual Color Picker interpolator tile in
pixels. The default is 30 pixels.

6.4.9.2. Specifying Margins
You can specify the amount of space surrounding the subwidgets contained in the color mixing widget.
Use the common widget resource XmNmarginWidth to specify the amount of space between the

138

Chapter 6. Using the Color Mixing Widget

left and right edges of the subwidgets (the default is 10 pixels). Use the common widget resource
XmNmarginHeight to specify the amount of space between the top and bottom edges of the
subwidgets (the default is 10 pixels). Specify these margins in pixels.

In addition, you can specify the amount of space surrounding the two window widgets in the default
display subwidget. Use the DXmNdispWinMargin resource to specify the size for all the margins in
the display subwidget (the default is 20 pixels). The DXmNdispWinMargin resource affects only the
default color display subwidget.

6.4.9.3. Labeling the Color Mixing Widget
You can specify the text in each of the labels contained in the color mixing widget by assigning values to
the color mixing widget label resources, described in DECwindows Extensions to Motif. You must specify
these labels as compound strings.

For example, the DXmNmainLabel resource specifies the text that appears at the top of the color
mixing widget, centered between the left and right borders. The following UIL code fragment sets the
value of the DXmNmainLabel resource to "Colormix Example":

object main_color : DXmColorMixDialog
 {
 arguments
 {
 XmNdialogTitle = "DECburger: Background Color";
 DXmNmainLabel = compound_string("Colormix Example");
 };

 callbacks
 {
 XmNhelpCallback = procedure sens_help_proc(k_options_help);
 XmNcancelCallback = procedure cancel_color_proc();
 XmNokCallback = procedure ok_color_proc();
 XmNapplyCallback = procedure apply_color_proc();
 };
 };

If you do not specify values for the DXmNmainLabel, DXmNdisplayLabel, or
DXmNmixerLabel resources, the color mixing widget does not include these label subwidgets.
If you specify a null value for the XmNokLabelString, XmNapplyLabelString,
DXmNresetLabelString, or XmNcancelLabelString resources, the color mixing widget
deletes the push-button subwidget.

Note that the resources that specify the text labels in the color mixer subwidget work only with the
default color mixer subwidget.

6.4.9.4. Defining the Background Color of the Color Display
Subwidget
Use the DXmNbackRedValue, DXmNbackGreenValue, and DXmNbackBlueValue resources
to define the background color of the display subwidget. These resources work only with the default
color display subwidget.

6.4.9.5. Adding a Work Area to the Color Mixing Widget
To specify that the color mixing widget contain a work area subwidget, create the widget that you want
to be the subwidget and assign the widget identifier as the value of the XmNworkWindow resource.

139

Chapter 6. Using the Color Mixing Widget

You do not have to manage the work area subwidget.

6.4.9.6. Customizing the Color Picker Color Model
You can use the resources described in Table 6.3, "Customizing the Color Picker Color Model" to
customize the Color Picker color model.

Table 6.3. Customizing the Color Picker Color Model

Resource Name Description

DXmNpickerColors A palette of 10 colors available through the
user palette menu option. If not specified, the
user palette does not appear in the menu. If a
user palette is specified, it is the default palette
accessible to the user through this menu. The other
palettes remain available.

DXmNpickerColors is an array of 10 colors in
the following order: white, red, orange, yellow,
green, blue, blue-violet, violet, brown, black. The
first item in the array is the red value of the first
spectrum tile, the second item is its green value, the
third item is its blue value, the fourth item is the
second tile's red value, and so forth.

Because there are 10 colors by default and
each color has red, green, and blue values,
DXmNpickerColors has a default value of 30.

DXmNpickerColors can be set only at creation
time.

DXmNinterpTileCount The number of interpolator tiles used. The default
is 10. DXmNinterpTileCount can be set only at
creation time.

DXmNwarmthIncrement The amount of red or blue added to the color of
each interpolator tile when the warmer or cooler
buttons are pressed. The default is 5000.

DXmNlightnessIncrement The percentage by which to increase or decrease
the lightness of the color of each interpolator tile
when the lighter or darker buttons are pressed. The
default is 5 percent.

6.5. Supporting Other Color Models
You can extend the color mixing widget to support other color models by replacing the default color
mixer subwidget and the color display subwidget with widgets of your own design. Section 6.5.1,
"Replacing the Color Display Subwidget" and Section 6.5.2, "Replacing the Color Mixer Subwidget"
describe how to replace these subwidgets.

Whatever color system you choose to support, remember that X11 defines colors by their RGB values.
Your custom subwidget must convert whatever values it accepts into RGB values and provide these
values to the color mixing widget, which returns the values to the application as callback data. On

140

Chapter 6. Using the Color Mixing Widget

OpenVMS systems, you can find more information about obtaining color resources as well as an
example of converting color values from another color model to RGB by looking at the color example
program in the VMS DECwindows Xlib Programming Volume.

6.5.1. Replacing the Color Display Subwidget
To replace the default color display subwidget, specify the identifier of the new-color display subwidget
as the value of the DXmNdisplayWindow resource. Note that if you do not specify a value for this
resource, the color mixing widget uses the default color display subwidget.

Note that you cannot specify a replacement for the default color display subwidget when you create
the color mixing widget; you must first create (but not manage) the color mixing widget and then use
XtSetArg and XtSetValues to specify a value for the DXmNdisplayWindow resource.

Thus, to replace the default color display subwidget, you must do the following:

1. Create the colormix widget without specifying the DXmNdisplayWindow resource.

2. Create your custom color display subwidget. Specify the colormix widget as the parent.

3. Use XtSetArg and XtSetValues to set the new values.

4. Manage the color mixing widget.

You can switch back to the default color display subwidget at any time by setting the
DXmNdisplayWindow resource to null.

If you replace the default color display subwidget, you must provide a procedure to update the new-
color window when a user changes the color mixer widget. The color mixing widget calls this routine
whenever a user changes a value in the color mixer subwidget. Pass the address of this routine as the
value of the DXmNsetNewColorProc resource.

The default value for the DXmNsetNewColorProc resource is the routine that updates the new-color
window. If your application supplies a DXmNsetNewColorProc routine, your routine is used even if your
application does not replace the default color display subwidget.

6.5.2. Replacing the Color Mixer Subwidget
To replace the default color mixer subwidget with one of your own design, assign the widget identifier of
the new subwidget as the value of the DXmNmixerWindow resource. If you do not specify a value for
this resource, the color mixing widget uses the default color mixer subwidget.

Note that you cannot specify a replacement for the default color mixer subwidget when you create
the color mixing widget; you must first create (but not manage) the color mixing widget and then use
XtSetArg and XtSetValues to specify a value for the DXmNmixerWindow resource.

Thus, to replace the default color mixing subwidget, you must do the following:

1. Create the colormix widget without specifying the DXmNmixerWindow resource.

2. Create your custom color mixer subwidget. Specify the colormix widget as the parent.

3. Use XtSetArg and XtSetValues to set the new values.

141

Chapter 6. Using the Color Mixing Widget

4. Manage the color mixing widget.

You can switch back to the default color mixer subwidget at any time by setting the
DXmNmixerWindow resource to null.

The DXmNsetMixerColorProc resource specifies a procedure that is called whenever the new color is
updated by some means other than direct manipulation of the mixing model (such as pressing the Reset
button). The procedure makes any necessary changes to the current mixing model, such as setting the
sliders in the RGB or HLS models to match the new-color value. DXmNsetMixerColorProc is generally
used when your application supplies its own color mixing model rather than using the default mixers.

6.6. Associating Callbacks with a Color Mixing
Widget
When a user presses the OK, Apply, or Cancel push button, the color mixing widget performs a callback
to your application (however, activating the Reset or Help buttons does not trigger a callback).

When the color mixing widget performs a callback, it returns data to your application, including
the RGB values that define the original color (specified in the DXmNorigRedValue,
DXmNorigGreenValue, and DXmNorigBlueValue resources) and the RGB values that
define the new color (specified in the DXmNnewRedValue, DXmNnewGreenValue, and
DXmNnewBlueValue resources).

For complete information about the data returned in the callback by the color mixing widget, see
DECwindows Extensions to Motif.

The color mixing callback also supports passing named colors to your application if the user has selected
the Browser color model. If the user selects a named color from the Browser and then triggers a callback
to the application without modifying the new color, the newname field of the callback data structure
is filled in with a pointer to an ASCII, null-terminated string that contains the color's X11 name. This
string is read only and should not be freed or modified.

If a color is generated in one of the other color models or generated in the Browser and subsequently
modified, the newname field in the callback structure is set to NULL.

The format of the DXmColorMixCallbackStruct data structure is shown in Example 6.1, "The
DXmColorMixCallbackStruct Data Structure".

Example 6.1. The DXmColorMixCallbackStruct Data Structure

typedef struct
{
 int reason;
 XEvent *event;
 unsigned short newred;
 unsigned short newgrn;
 unsigned short newblu;
 char *newname;
 unsigned short origred;
 unsigned short origgrn;
 unsigned short origblu;
} DXmColorMixCallbackStruct;

To associate a callback routine with a color mixing widget callback, pass a callback routine list to one of
the color mixing widget callback resources. Table 6.4, "Color Mixing Widget Callbacks" lists the callback
resources and describes the conditions that trigger these callbacks.

142

Chapter 6. Using the Color Mixing Widget

Table 6.4. Color Mixing Widget Callbacks

Callback Resource Conditions for Callback

XmNokCallback The user clicked the OK push-button widget in the
color mixing widget.

XmNapplyCallback The user clicked the Apply push-button widget in
the color mixing widget.

XmNcancelCallback The user clicked the Cancel push-button widget in
the color mixing widget.

6.7. Creating a Color Mixing Widget
To create a color mixing widget, do the following:

1. Create the color mixing widget using any of the widget creation mechanisms listed in Table 6.5,
"Mechanisms for Creating the Color Mixing Widget".

2. Manage the color mixing widget using the intrinsic routine XtManageChild.

After you have completed these steps, if the parent of the color mixing widget has been realized, the
color mixing widget appears on the display.

Table 6.5. Mechanisms for Creating the Color Mixing Widget

Mechanism Routine Name or Object Type

Toolkit routine Use the DXmCreateColorMixDialog routine to
create a color mixing widget in a pop-up dialog
box.

Toolkit routine Use the DXmCreateColorMix routine to create a
color mixing widget in a dialog box. You might
want to use this routine to add a color mixing
widget inside one of your existing widgets. There
are two side effects of using this version of the
color mixing widget:

● Color resources are not freed until the widget is
destroyed.

The pop-up version of the widget frees
resources when it is unmanaged, freeing
applications from having to create, destroy, and
then re-create the color widget.

● The grayscale mixer scale widget is altered.
UIL object type Use the UIL object type DXmColorDialog to

define a color mixing widget in a pop-up dialog
box. At run time, the MrmFetchWidget routine
creates the widget according to this definition.

UIL object type Use the UIL object type DXmColor to define
a dialog box color mixing widget. At run time,
the MrmFetchWidget routine creates the widget
according to this definition. The side effects

143

Chapter 6. Using the Color Mixing Widget

Mechanism Routine Name or Object Type
described for the DXmCreateColorMix routine
also apply to DXmColor.

6.7.1. Creating a Color Mixing Widget—UIL Example
Example 6.2, "Creating a Color Mixing Widget—UIL Example" creates the options menu entry and color
mixing widget used in the OpenVMS DECburger example program. The example defines a color mixing
widget that uses the default color display subwidget and the default color mixer subwidget.

Example 6.2. Creating a Color Mixing Widget—UIL Example

 .
 .
 .

! The options pull-down entry and its associated pull-down menu.

object
 options_menu_entry : XmCascadeButton {
 arguments {
 XmNlabelString = k_options_label_text;
 XmNmnemonic = keysym("O");
 XmNmappedWhenManaged = false;
 };
 controls {
 XmPulldownMenu options_menu;
 };
 callbacks {
 MrmNcreateCallback = procedure create_proc (k_options_pdme);
 XmNhelpCallback = procedure sens_help_proc(k_options_help);
 };
 };

object

 options_menu : XmPulldownMenu {
 controls {
 XmPushButton m_options_control_button;
 };
 callbacks {
 MrmNcreateCallback = procedure create_proc (k_options_menu);
 XmNhelpCallback = procedure sens_help_proc(k_options_help);
 };
 };

object

 m_options_control_button : XmPushButton {

 arguments
 {
 XmNlabelString = k_options_color_label_text;
 XmNmnemonic = keysym("C");

 };
 callbacks {
 MrmNcreateCallback = procedure create_proc (k_create_options);
 XmNactivateCallback = procedure activate_proc (k_create_options);
 XmNhelpCallback = procedure sens_help_proc(k_options_help);
 };
 };

144

Chapter 6. Using the Color Mixing Widget

object main_color : DXmColorMixDialog

 {
 arguments
 {
 XmNdialogTitle = "DECburger: Background Color";
 DXmNmainLabel = compound_string("Colormix Example");
 };

 callbacks
 {
 XmNhelpCallback = procedure sens_help_proc(k_options_help);
 XmNcancelCallback = procedure cancel_color_proc();
 XmNokCallback = procedure ok_color_proc();
 XmNapplyCallback = procedure apply_color_proc();
 };
 };
 .
 .
 .

The object declaration defines a cascade button named options_menu_entry. The
XmNmappedWhenManaged resource is set to false because OpenVMS DECburger uses the
Options menu entry only on color systems.

The object declaration defines a pull-down menu named options_menu.

The options_menu pull-down menu controls the Background Color push button. The create_color
routine is called as a result of the activate callback for this push button.

The object declaration defines a pop-up color mixing widget named main_color. The UIL keyword
for the color mixing widget is DXmColorMixDialog.

The callbacks list section of the UIL object declaration assigns values to each of the primary
callbacks performed by the color mixing widget.

Example 6.3, "C Source Code for Creating a Color Mixing Widget with UIL" shows the C source code
associated with the UIL module.

Example 6.3. C Source Code for Creating a Color Mixing Widget with UIL

 .
 .
 .
#include <DXm/DXmColor.h>

 .
 .
 .
/*
 * Global data
 */

static Cursor watch = NULL;

static Widget
 toplevel_widget = (Widget)NULL, /* Root widget ID of the application */
 main_window_widget = (Widget)NULL, /* Root widget ID of main MRM fetch */
 widget_array[MAX_WIDGETS], /* Place to keep all other widget IDs */
 main_help_widget = (Widget)NULL, /* Primary help widget */
 help_widget[MAX_WIDGETS], /* Array of help widgets */
 help_array[MAX_WIDGETS], /* Array of help widgets for Toolkit */
 print_widget = (Widget)NULL, /* Print widget */
 color_widget = (Widget)NULL; /* Color Mix widget */

145

Chapter 6. Using the Color Mixing Widget

static Screen *the_screen; /* Pointer to screen data*/
static Display *the_display; /* Pointer to display data */
static XColor savecolor;

 .
 .
 .
/*
 * Forward declarations
 */

static void s_error();
static void get_something();
static void set_something();

static void activate_proc();
static void create_proc();
static void list_proc();
static void exit_proc();
static void pull_proc();
static void scale_proc();
static void show_hide_proc();
static void show_label_proc();
static void toggle_proc();
static void create_help();
static void tracking_help();
static void sens_help_proc();
static void help_system_proc();
static void create_print();
static void activate_print();
static void create_color();

static void ok_color_proc();
static void apply_color_proc();
static void cancel_color_proc();
static void xmstring_append();
static void start_watch();
static void stop_watch();
 .
 .
 .

/* The names and addresses of things that Mrm has to bind. The names do
 * not have to be in alphabetical order. */

static MrmRegisterArg reglist[] = {
 {"activate_proc", (caddr_t) activate_proc},
 {"create_proc", (caddr_t) create_proc},
 {"list_proc", (caddr_t) list_proc},
 {"pull_proc", (caddr_t) pull_proc},
 {"exit_proc", (caddr_t) exit_proc},
 {"scale_proc", (caddr_t) scale_proc},
 {"show_hide_proc", (caddr_t) show_hide_proc},
 {"show_label_proc", (caddr_t) show_label_proc},
 {"toggle_proc", (caddr_t) toggle_proc},
 {"sens_help_proc", (caddr_t) sens_help_proc},
 {"help_system_proc", (caddr_t) help_system_proc},
 {"cancel_color_proc", (caddr_t) cancel_color_proc},
 {"apply_color_proc", (caddr_t) apply_color_proc},
 {"ok_color_proc", (caddr_t) ok_color_proc}
};

 .
 .

146

Chapter 6. Using the Color Mixing Widget

 .

 /* If it's a color display, map customize color menu entry */

 if ((XDefaultVisualOfScreen(the_screen))->class == TrueColor
 || (XDefaultVisualOfScreen(the_screen))->class == PseudoColor
 || (XDefaultVisualOfScreen(the_screen))->class == DirectColor
 || (XDefaultVisualOfScreen(the_screen))->class == StaticColor)

 XtSetMappedWhenManaged(widget_array[k_options_pdme], TRUE);

 .
 .
 .

/*
 * One-time initialization of application data structures.
 */

static int init_application()
{
 int k;
 int a = i;

 /* Initialize the application data structures. */
 for (k = 0; k < MAX_WIDGETS; k++)
 widget_array[k] = NULL;
 for (k = 0; k < NUM_BOOLEAN; k++)
 toggle_array[k] = FALSE;

 /* Initialize CS help widgets. */

 for (a = 0; a < MAX_WIDGETS; a++)
 help_widget[a] = NULL;

 /* Initialize help widgets for Toolkit creation. */

 for (a = 0; a < MAX_WIDGETS; a++)
 help_array[a] = NULL;

 /* Initialize print widgets. */

 print_widget = NULL;

 /* Initialize color mix widget. */

 color_widget = NULL;

 .
 .
 .
/*
 * All push buttons in this application call back to this routine. We
 * use the tag to tell us what widget it is, then react accordingly.
 */

static void activate_proc(w, tag, reason)
 Widget w;
 int *tag;
 XmAnyCallbackStruct *reason;
{

147

Chapter 6. Using the Color Mixing Widget

 int widget_num = *tag; /* Convert tag to widget number. */
 int a, value;
 XmString topic;

 switch (widget_num) {
 case k_nyi:

 /* The user activated a 'not yet implemented' push button. Send
 * the user a message. */
 if (widget_array[k_nyi] == NULL) {
 /* The first time, fetch from the data base. */
 if (MrmFetchWidget(s_MrmHierarchy, "nyi", toplevel_widget,
 &widget_array[k_nyi], &dummy_class) != MrmSUCCESS) {
 s_error("can't fetch nyi widget");
 }
 }
 /* Put up the message box saying 'not yet implemented'. */
 XtManageChild(widget_array[k_nyi]);
 break;

 .
 .
 .
 case k_create_options:
 create_color();
 break;

 default:
 break;
 }
}

 .
 .
 .

/* Color Mixing Widget Creation */

static void create_color()
{

 XColor newcolor;
 unsigned int ac;
 Arg arglist[10];

 start_watch();

 if (!color_widget) {

 if (MrmFetchWidget (s_MrmHierarchy, "main_color", toplevel_widget,
 &color_widget, &dummy_class) != MrmSUCCESS)
 s_error ("can't fetch color mix widget");

 XtSetArg(arglist[0], XmNbackground, &newcolor.pixel);
 XtGetValues(main_window_widget, arglist, 1);

 XQueryColor(the_display,
 XDefaultColormapOfScreen(the_screen), &newcolor);

 ac = 0;
 XtSetArg (arglist[ac], DXmNorigRedValue, newcolor.red); ac++;
 XtSetArg (arglist[ac], DXmNorigGreenValue, newcolor.green); ac++;
 XtSetArg (arglist[ac], DXmNorigBlueValue, newcolor.blue); ac++;

148

Chapter 6. Using the Color Mixing Widget

 XtSetValues(color_widget, arglist, ac);

 savecolor.red = newcolor.red;
 savecolor.green = newcolor.green;
 savecolor.blue = newcolor.blue;
 savecolor.pixel = newcolor.pixel;

 } else {

 XtSetArg(arglist[0], XmNbackground, &savecolor.pixel);
 XtGetValues(main_window_widget, arglist, 1);

 XQueryColor(the_display,
 XDefaultColormapOfScreen(the_screen), &savecolor);
 }

 XtManageChild(color_widget);
 stop_watch();
}

 .
 .
 .

Include the color mixing widget resource file.

The color mixing widget is declared in the global data section because it is referenced by more than
one routine within the module.

The savecolor XColor data structure is declared in the global data section because it is referenced
by more than one routine within the module.

Forward declaration to the color mixing routines.

When a user presses the OK, Apply, or Cancel push button, the color mixing widget performs
a callback to your application. The ok, apply, and cancel callback routines are provided for this
purpose.

Test to see if OpenVMS DECburger is displaying on a color system. DECburger implements the
customize background color feature only for color systems.

If DECburger is displaying on a color system, set the Options cascade button to be mapped when
managed.

Make sure that the color mixing widget starts with a null value. The create_color routine tests to
see if the color mixing widgets exists. Initializing the widget to NULL makes sure that it does not
contain invalid data.

The create_color routine is called as a result of the activate callback for the Background Color push
button.

If the color mixing widget does not already exist, fetch it.

When the color mixing widget is first managed, the original color of the Color Display Subwidget
should match the color of the object to be changed, in this case the main window widget.
Therefore, the example calls the XtSetArg and XtGetValues intrinsic routines to get the
background color of the main window widget and store it in the newcolor.pixel pixel field.

The example then calls the Xlib XQueryColor routine to get the RGB values associated with the
pixel value in newcolor.pixel. The XQueryColor routine fills in the red, green, and blue fields of
the newcolor data structure.

149

Chapter 6. Using the Color Mixing Widget

This implementation allows the application to determine the initial color for the Color Display
Subwidget at run time.

Note

The only way to set the DXmNorigRedValue, DXmNorigGreenValue, and
DXmNorigBlueValue resources through UIL is to use hard coded RGB values.

This practice is not recommended because there is no way to guarantee that the hard coded RGB
values will match the actual color of the object to be changed.

Call the XtSetArg and XtSetValues routines to set the original colors for the color mixing widget.

Save the original XmNbackground color of the main window widget in case you need to restore it.

If the color mixing widget already exists, get the current XmNbackground pixel value for
the main window widget, and then call XQueryColor to get the associated RGB values. The
savecolor.red, savecolor.green, and savecolor.blue fields store the RGB values
in case you need to restore them.

Manage the color mixing widget. The color mixing widget callbacks update the color mixing
widget as needed.

6.7.2. Color Mixing Widget—OK Callback
The OpenVMS DECburger OK callback routine is shown in Example 6.4, "Color Mixing Widget—OK
Callback".

Example 6.4. Color Mixing Widget—OK Callback

 .
 .
 .
 /* Color Mix OK Callback */
 static void ok_color_proc(widget_id, tag, reason)
 Widget widget_id;
 int *tag;
 DXmColorMixCallbackStruct *reason;
 {

 int ac;
 Arg arglist[10];
 XColor newcolor;

 newcolor.red = reason->newred;
 newcolor.green = reason->newgrn;
 newcolor.blue = reason->newblu;

 if (XAllocColor(the_display,
 XDefaultColormapOfScreen(the_screen), &newcolor)) {

 ac = 0;
 XtSetArg (arglist[ac], XmNbackground, newcolor.pixel);ac++;
 XtSetValues(widget_array[k_total_order], arglist, ac);
 XtSetValues(main_window_widget, arglist, ac);
 }

150

Chapter 6. Using the Color Mixing Widget

 else
 s_error ("can't allocate color cell");

 XtUnmanageChild(color_widget);

 ac = 0;
 XtSetArg (arglist[ac], DXmNorigRedValue, newcolor.red);ac++;
 XtSetArg (arglist[ac], DXmNorigGreenValue, newcolor.green);ac++;
 XtSetArg (arglist[ac], DXmNorigBlueValue, newcolor.blue);ac++;
 XtSetValues(color_widget, arglist, ac);

 }
 .
 .
 .

The ok_color callback routine is called as a result of a user pressing the OK push button.

The red, green, and blue members of the newcolor data structure are initialized to the RGB values
selected by the user and returned by the color mixing widget in the reason argument.

Allocate a color cell entry. You pass the Xlib XAllocColor routine the display identifier and color
map to use, and a pointer to an XColor data structure. XAllocColor fills in the XColor.pixel
member with the RGB value determined by the red, green, and blue RGB values of the data
structure.

Set the background attribute of the k_total_order widget, which is the XmScrolledList
widget child of the main window widget. The k_total_order widget is on top of the main window
widget in the window hierarchy. Therefore, the background color of this widget must match the
background color of the main window widget.

Set the background attribute of the main window widget.

6.7.3. Color Mixing Widget—Apply Callback
The OpenVMS DECburger apply callback routine is shown in Example 6.5, "Color Mixing Widget—
Apply Callback". The apply callback is similar to the OK callback with the exception that the apply
callback does not update or unmanage the color mixing widget.

Example 6.5. Color Mixing Widget—Apply Callback

 .
 .
 .

/* Color Mix Apply Callback */
static void apply_color_proc(widget_id, tag, reason)
 Widget widget_id;
 int *tag;
 DXmColorMixCallbackStruct *reason;

{

 int ac;
 Arg arglist[10];
 XColor newcolor;

 newcolor.red = reason->newred;
 newcolor.green = reason->newgrn;
 newcolor.blue = reason->newblu;

151

Chapter 6. Using the Color Mixing Widget

 if (XAllocColor(the_display,
 XDefaultColormapOfScreen(the_screen), &newcolor)) {

 ac = 0;
 XtSetArg (arglist[ac], XmNbackground, newcolor.pixel);ac++;
 XtSetValues(widget_array[k_total_order], arglist, ac);
 XtSetValues(main_window_widget, arglist, ac);

 }

 else
 s_error ("can't allocate color cell");

}

 .
 .
 .

6.7.4. Color Mixing Widget—Cancel Callback
The OpenVMS DECburger cancel callback routine is shown in Example 6.6, "Color Mixing Widget—
Cancel Callback". The cancel callback unmanages the color mixing widget and restores the main window
widget to the state it was in when it was last managed. The Cancel callback removes any changes the
user might have made by clicking the Apply push button.

Example 6.6. Color Mixing Widget—Cancel Callback

 .
 .
 .
/* Color Mix Cancel Callback */

static void cancel_color_proc(widget_id, tag, reason)
 Widget widget_id;
 int *tag;
 DXmColorMixCallbackStruct *reason;

{

 int ac;
 Arg arglist[10];

 XtUnmanageChild(color_widget);

 ac = 0;
 XtSetArg (arglist[ac], XmNbackground, savecolor.pixel);ac++;
 XtSetValues(widget_array[k_total_order], arglist, ac);

 XtSetValues(main_window_widget, arglist, ac);

}

 .
 .
 .

Unmanage the color mixing widget.

Restore the k_total_order widget to the state it was in when it was last managed. The k_total_order
widget is on top of the main window widget in the window hierarchy. Therefore, the background
color of this widget must match the background color of the main window widget.

152

Chapter 6. Using the Color Mixing Widget

Restore the main window widget to the state it was in when it was last managed.

6.7.5. Creating a Color Mixing Widget—Toolkit Example
The code section shown in Example 6.7, "Creating a Color Mixing Widget—Toolkit Example" can be
used to set the background color of the OpenVMS DECburger example program main window.

Example 6.7. Creating a Color Mixing Widget—Toolkit Example

 .
 .
 .

/* Color Mix Widget Creation */

static void create_color()
 {
 unsigned int ac;
 Arg arglist[10];
 XtCallbackRec ok_callback_arg[2];
 XtCallbackRec apply_callback_arg[2];
 XtCallbackRec cancel_callback_arg[2];
 XColor newcolor;
 Arg al[1];

 if (!color_widget) {

 apply_callback_arg[0].callback = apply_color_proc;
 apply_callback_arg[0].closure = 0;
 apply_callback_arg[1].callback = NULL;
 apply_callback_arg[1].closure = NULL;

 cancel_callback_arg[0].callback = cancel_color_proc;
 cancel_callback_arg[0].closure = 0;
 cancel_callback_arg[1].callback = NULL;
 cancel_callback_arg[1].closure = NULL;

 ok_callback_arg[0].callback = ok_color_proc;
 ok_callback_arg[0].closure = 0;
 ok_callback_arg[1].callback = NULL;
 ok_callback_arg[1].closure = NULL;

 XtSetArg(al[0], XmNbackground, &newcolor.pixel);
 XtGetValues(main_window_widget, al, 1);

 XQueryColor(the_display,
 XDefaultColormapOfScreen(the_screen), &newcolor);

 ac = 0;

 XtSetArg (arglist[ac], XmNcancelCallback, cancel_callback_arg);ac++;
 XtSetArg (arglist[ac], XmNokCallback, ok_callback_arg); ac++;
 XtSetArg (arglist[ac], XmNapplyCallback, apply_callback_arg); ac++;
 XtSetArg (arglist[ac], DXmNorigRedValue, newcolor.red); ac++;
 XtSetArg (arglist[ac], DXmNorigGreenValue, newcolor.green); ac++;
 XtSetArg (arglist[ac], DXmNorigBlueValue, newcolor.blue); ac++;
 XtSetArg (arglist[ac], DXmNcolorModel, DXmColorModelPicker); ac++;

 color_widget = DXmCreateColorMixDialog (toplevel_widget,
 "Color Mix Widget",
 arglist, ac);

153

Chapter 6. Using the Color Mixing Widget

 savecolor.red = newcolor.red;
 savecolor.green = newcolor.green;
 savecolor.blue = newcolor.blue;
 savecolor.pixel = newcolor.pixel;

 XtManageChild(color_widget);
 return;
 }

 else {
 ac = 0;
 XtSetArg(arglist[ac], XmNbackground, &savecolor.pixel);
 XtGetValues(main_window_widget, arglist, 1);

 XQueryColor(the_display,
 XDefaultColormapOfScreen(the_screen), &savecolor);

 XtManageChild(color_widget);
 }

 }

 .
 .
 .

If the color mixing widget does not exist, assign values to elements of the callback routine lists.
Each callback routine data structure contains the address of a callback routine and a tag. In this
case, the callback routines are ok_color_proc, apply_color_proc, and cancel_color_proc. The tag
value is not used. Each callback routine data structure is also null terminated.

When the color mixing widget is first managed, the original color of the Color Display subwidget
should match the color of the object to be changed, in this case the main window widget.
Therefore, call the XtSetArg and XtGetValues intrinsic routines to get the background color of the
main window widget and store it in the newcolor.pixel pixel field.

Calls the Xlib XQueryColor routine to get the RGB values associated with the pixel value in
newcolor.pixel. The XQueryColor routine fills in the red, green, and blue fields of the newcolor
data structure.

Note

This implementation allows the application to determine the initial color for the Color Display
subwidget. If you set the DXmNorigRedValue, DXmNorigGreenValue, and DXmNorigBlueValue
values through UIL, you must hard-code RGB values to match the background of the main
window widget.

Call the XtSetArg routine to set the initial resources for the color mixing widget.

Note that, if you specify the Color Picker color model in the DXmNcolorModel resource and
the application is displayed on a noncolor system, the color mixer subwidget uses the default color
model for that system.

Call the DXmCreateColorMixDialog routine to create a pop-up dialog box version of the color
mixing widget and then manage it.

154

Chapter 6. Using the Color Mixing Widget

Save the original XmNbackground color of the main window widget in case you need to restore it.

Manage the color mixing widget. The color mixing widget callbacks update the color mixing
widget as needed.

If the color mixing widget already exists, get the current XmNbackground pixel value for
the main window widget and then call XQueryColor to get the associated RGB values. The
savecolor.red, savecolor.green, and savecolor.blue fields store the RGB values
in case you need to restore them.

Manage the color mixing widget. The color mixing widget callbacks update the color mixing
widget as needed.

155

Chapter 6. Using the Color Mixing Widget

156

Chapter 7. Using the Print Widget
This chapter describes how to use the print widget in an application program. It includes a description of
the print widget resources and also provides both UIL and Toolkit print widget programming examples.

7.1. Overview of the Print Widget
The print widget is a modeless widget that provides DECwindows applications with a fast, convenient
method of printing one or more files in multiple formats. As an application programmer, you need only
to create an instance of the print widget, using either the UIL DXmPrintDialog object type or the Toolkit
DXmCreatePrintDialog routine, and then submit the print job by calling the DXmPrintWgtPrintJob
routine.

Your application can also use the UIL DXmPrintBox object type or the DXmCreatePrintBox routine to
create a print widget without a dialog shell. You might want to use this object type or routine to add a
print widget inside one of your existing widgets.

Because the print widget uses a graphical interface to prompt users for print options, users do not have
to know the syntax of the UNIX print command or the OpenVMS PRINT command to print files. In
addition, because the print widget uses OpenVMS logical names to determine and display the available
print queues, users do not have to know about the print queues on a given OpenVMS system.

The print widget lets application programmers determine how the print widget first appears to the user.
The user can then change the resources based on the file and print queue being used.

Note

The print widget does not format or convert files for printing; your application must provide the files in a
suitable print format.

7.2. Print Widget Walk-Through
This section describes a walk-through of how to use the print widget in an application. Subsequent
sections describe this process in more detail.

To use the print widget, an application performs the following steps:

1. If using UIL, declares an instance of the print widget in the UIL module.

2. Includes a way to invoke the print widget, usually a print push button on a cascade menu. The
activate callback of this push button either fetches an instance of the print widget or calls the Toolkit
routine to create a print widget.

3. Manages and realizes the print widget.

4. Waits for the user to interact with the print widget to select the print options.

5. When OK or Cancel is selected, invokes the appropriate application callback. For the OK push
button, the application is now free to perform any application-specific preparation of the affected

157

Chapter 7. Using the Print Widget

files. For the Cancel push button, the application can perform processing to indicate that the file was
not printed.

6. Calls the DXmPrintWgtPrintJob routine when it is ready to submit the print job.

DXmPrintWgtPrintJob completes the actual submission of the identified files to the appropriate print
service and returns the status of the print job to the application.

7. Unmanages the print widget. This saves re-creation time and allows the print widget to reappear on
the screen with the same settings the user set up on a previous appearance. The application could
destroy the print widget instead of unmanaging it.

7.3. Print Widget Components
The main print widget dialog box contains the primary print options. When the Options... push button
is selected, a secondary dialog box containing additional printer options is fetched and managed. The
options shown on the secondary dialog box are tailored to the kind of file being submitted and the
printer on which it is to be printed.

The components of the print widget created by the OpenVMS DECburger example program are shown
in Figure 7.1, "Print Widget Main Dialog Box" and Figure 7.2, "Print Widget Secondary Dialog Box".

Figure 7.1. Print Widget Main Dialog Box

158

Chapter 7. Using the Print Widget

Figure 7.2. Print Widget Secondary Dialog Box

7.4. Print Widget Callbacks
The print widget supports the callbacks described in Table 7.1, "Print Widget Callbacks".

Table 7.1. Print Widget Callbacks

Callback Description

XmNokCallback The user clicked on the OK push button
in the print widget main dialog box. If the
DXmNunmanageOnOk resource is set, the print
widget automatically unmanages itself when the
OK button in the main box is pressed.

159

Chapter 7. Using the Print Widget

Callback Description
Your application can use the XmNokCallback
callback to perform other functions, such as calling
the XtGetValues routine to get and store the user's
print choices, or calling DXmPrintWgtPrintJob to
submit the print job.

XmNcancelCallback The user clicked on the Cancel push button
in the print widget main dialog box. If the
DXmNunmanageOnCancel resource is set, the
print widget automatically unmanages itself when
the Cancel button in the main box is pressed.

Your application can use the XmNcancelCallback
callback to perform other functions.

7.5. Print Widget File-Type Guesser
If your application program specifies the DXmNfileNameList resource, the print widget uses the file
extension, when one exists, to guess the type and the associated print format of the first file to be
printed. The print widget then establishes some print defaults based on this file type. Therefore, if you
use the DXmNfileNameList resource to specify a list of files, those files should all be of one type; that
is, they should all be text files, or they should all be PostScript files, and so forth.

Applications that do not know the attributes of the files to be printed should use the DXmNfileNameList
resource and rely on the print widget file-type guesser. If the print widget incorrectly guesses the format
of the file to be printed, the user can select the correct print format.

7.6. Print Widget Resources
You can specify print widget resources, described in the DECwindows Extensions to Motif manual, that
define how the print widget first appears to the user. The user then has the option to modify the print
options as needed.

The print widget resources contained in the main dialog box are grouped as follows:

● General

● Print Format

● Printer

● Job

The print widget resources contained in the secondary dialog box are grouped as follows:

● General

● Physical

● Printer

● Job

160

Chapter 7. Using the Print Widget

Note

The print widget gets the appropriate printer and print forms information from the operating system and
creates compound strings for use in the following resources.

● DXmNprinterFormList

● DXmNprinterFormCount

● DXmNprinterList

● DXmNprinterCount

Your application should not attempt to set these resources. If your application needs the value of this
resource, call the XtGetValues routine to obtain the value.

Example 7.1, "Setting Print Widget Resources Through UIL" shows a UIL example of setting print widget
resources.

Example 7.1. Setting Print Widget Resources Through UIL

 .
 .
 .
object myprint_widget : DXmPrintDialog
{
 arguments
 {
 XmNnoResize = true;
 DXmNnumberCopies = 13;
 DXmNpageRangeFrom = compound_string("3");
 DXmNpageRangeTo = compound_string("20");
 DXmNprintFormatList = compound_string_table
 ("PostScript(R)",
 "DDIF",
 "ANSI");

 DXmNprintFormatCount = 3;
 DXmNprintFormatChoice = compound_string("ANSI");
 DXmNorientation = DXmORIENTATION_PORTRAIT;
 DXmNprintAfter = compound_string("23-JUN-1990 17:30");
 DXmNdeleteFile = true;
 DXmNpageSize = DXmSIZE_LEDGER;
 DXmNsides = DXmSIDES_SIMPLEX_ONE;
 DXmNnumberUp = 0;
 DXmNsheetCount = 1;
 DXmNfileStartSheet = DXmFILE_SHEET_NONE;
 DXmNfileEndSheet = DXmFILE_SHEET_ONE;
 DXmNfileBurstSheet = DXmFILE_SHEET_ALL;
 DXmNmessageLog = DXmMESSAGE_LOG_DEFAULT;
 DXmNholdJob = true;
 DXmNnotify = false;
 DXmNsheetSize = DXmSIZE_LEGAL;
 DXmNinputTray = DXmINPUT_TRAY_DEFAULT;
 DXmNoutputTray = DXmOUTPUT_TRAY_DEFAULT;
 DXmNjobName = compound_string("This is the Job Name");
 DXmNoperatorMessage = compound_string("This is the Operator Message");
 DXmNheader = true;
 DXmNdoubleSpacing = true;
 DXmNstartSheetComment = compound_string("This is the Start Sheet
 Comment");

161

Chapter 7. Using the Print Widget

 DXmNpriority = 12;
 DXmNunmanageOnOk = true;
 DXmNunmanageOnCancel = true;
 DXmNfileNameList = compound_string_table
 ("order.txt",
 "test.txt");
 DXmNfileNameCount = 2;
 DXmNsuppressOptionsMask = DXmSUPPRESS_NUMBER_COPIES;
 DXmNoptionsDialogTitle = compound_string("Secondary Dialog Box");
 };

 .
 .
 .

Generally, you should not set user-choice and default resources such as DXmNprinterChoice and
DXmNdefaultPrinter in the UIL file because they vary from system to system. As described in the OSF/
Motif Programmer's Guide, your application can use application-specific default files to specify resources
that are not explicitly set in the C or UIL modules. You might want to specify user-choice and printer
default resources in a defaults file.

7.6.1. Suppressing Print Widget Features
The print widget includes a DXmNsuppressOptionsMask argument that you can use
to suppress print widget features. As an applications programmer, you might want to use the
DXmNsuppressOptionsMask argument to limit the print choices available to the user.

The DXmNsuppressOptionsMask argument is a bitmask; you perform a logical OR operation on
the resources you want to suppress. When using the Toolkit routines, this means that you would OR the
resources in a call to XtSetArg, as shown in the following C example:

XtSetArg (arglist[ac], DXmNsuppressOptionsMask,
 DXmSUPPRESS_DELETE_FILE | DXmSUPPRESS_OPERATOR_MESSAGE); ac++;

From UIL, you also OR the resources you want to suppress, as shown in the following UIL code
fragment:

object main_print : DXmPrintDialog
 {
 arguments
 {
 XmNdialogTitle = "DECburger: Print";
 DXmNoptionsDialogTitle = "DECburger: Print Options";
 DXmNnumberCopies = 2;
 DXmNunmanageOnOk = true;
 DXmNunmanageOnCancel = true;
 DXmNsuppressOptionsMask = DXmSUPPRESS_DELETE_FILE +
 DXmSUPPRESS__OPERATOR_MESSAGE;
 };
 callbacks
 {
 XmNhelpCallback = procedure sens_help_proc(k_print_help);
 };

 };

The possible values for DXmNsuppressOptionsMask are as follows:

● DXmSUPPRESS_NONE

● DXmSUPPRESS_DELETE_FILE

162

Chapter 7. Using the Print Widget

● DXmSUPPRESS_NUMBER_COPIES

● DXmSUPPRESS_PAGE_RANGE

● DXmSUPPRESS_PRINT_FORMAT

● DXmSUPPRESS_ORIENTATION

● DXmSUPPRESS_PRINTER

● DXmSUPPRESS_PRINT_AFTER

● DXmSUPPRESS_PAGE_SIZE

● DXmSUPPRESS_SIDES

● DXmSUPPRESS_NUMBER_UP

● DXmSUPPRESS_SHEET_COUNT

● DXmSUPPRESS_FILE_START_SHEET

● DXmSUPPRESS_FILE_END_SHEET

● DXmSUPPRESS_FILE_BURST_SHEET

● DXmSUPPRESS_MESSAGE_LOG

● DXmSUPPRESS_HOLD_JOB

● DXmSUPPRESS_NOTIFY

● DXmSUPPRESS_SHEET_SIZE

● DXmSUPPRESS_INPUT_TRAY

● DXmSUPPRESS_OUTPUT_TRAY

● DXmSUPPRESS_JOB_NAME

● DXmSUPPRESS_OPERATOR_MESSAGE

● DXmSUPPRESS_HEADER

● DXmSUPPRESS_AUTOMATIC_PAGINATION

● DXmSUPPRESS_DOUBLE_SPACING

● DXmSUPPRESS_LAYUP_DEFINITION

● DXmSUPPRESS_START_SHEET_COMMENT

● DXmSUPPRESS_PASS_ALL

● DXmSUPPRESS_PRINTER_FORM

● DXmSUPPRESS_PRIORITY

● DXmSUPPRESS_SETUP

163

Chapter 7. Using the Print Widget

7.6.2. Adding Print Widget Functions
Applications can call the DXmPrintWgtAugmentList routine to define additional print formats as well
as to add new options to the print widget option menus. The format of the DXmPrintWgtAugmentList
routine is as follows:

unsigned long int DXmPrintWgtAugmentList(pw,list,data)
 Widget pw;
 int list;
 caddr_t data;

The DXmPrintWgtAugmentList pw argument identifies the print widget. You must choose the
DXmPrintWgtAugmentList list argument from the following constants:

● DXmPRINT_FORMAT

● DXmPAGE_SIZE

● DXmSIDES

● DXmFILE_START_SHEET

● DXmFILE_END_SHEET

● DXmFILE_BURST_SHEET

● DXmMESSAGE_LOG

● DXmSHEET_SIZE

● DXmINPUT_TRAY

● DXmOUTPUT_TRAY

The data argument is a data structure (passed by reference) of type DXmPrintFormatStruct or
DXmPrintOptionMenuStruct. The DXmPrintFormatStruct data structure is declared as follows:

typedef struct _DXmPrintFormatStruct
{
 XmString ui_string;
 XmString os_string;
 XmString var_string;
} DXmPrintFormatStruct;

The ui_string field is the label displayed in the user interface. The os_string field is passed to the
operating system to identify the print format. The var_string field is the OpenVMS logical or UNIX
environment variable that identifies the printer list to use for the print format.

The DXmPrintOptionMenuStruct is declared as follows:

typedef struct _DXmPrintOptionMenuStruct
{
 XmString ui_string;
 XmString os_string;
} DXmPrintOptionMenuStruct;

The ui_string field is the label displayed in the user interface and the os_string field identifies the print
option to the operating system.

DXmPrintWgtAugmentList returns NULL if the request fails. If the request is successful,
DXmPrintWgtAugmentList returns an integer that identifies the new element. This integer is not

164

Chapter 7. Using the Print Widget

needed when adding print formats. However, the integer can be used in subsequent XtGetValues and
XtSetValues calls on the option menus.

For example, if an application added an option to an option menu and wanted to select the added option,
it would use the returned integer in an XtSetValues call.

7.6.2.1. Adding Print Formats
When adding print formats, use the constant DXmPRINT_FORMAT for the list argument
and a variable of type DXmPrintFormatStruct for the data argument. All fields in the
DXmPrintFormatStruct structure must contain valid compound strings; null compound strings are not
allowed.

The DXmNpassAll resource is set to FALSE (off) and DXmNautoPagination is set to TRUE (on) if the
added format is selected. If this is not the desired behavior, your application must set DXmNpassAll and
DXmNautoPagination to the desired settings in the XmNokCallback callback.

Example 7.2, "Adding Print Formats" shows an example of adding print formats.

Example 7.2. Adding Print Formats

 .
 .
 .
DXmPrintFormatStruct r_my_struct;

r_my_struct.ui_string = XmStringCreateLtoR("User String",
 XmSTRING_DEFAULT_CHARSET);
r_my_struct.os_string = XmStringCreateLtoR("OS String",
 XmSTRING_DEFAULT_CHARSET);
r_my_struct.var_string = XmStringCreate("Logical",
 XmSTRING_DEFAULT_CHARSET);

DXmPrintWgtAugmentList(print_widget, DXmPRINT_FORMAT, &r_my_struct));
 .
 .
 .

7.6.2.2. Adding to Option Menus
When adding options to print widget option menus, use one of the constants (other than
DXmPRINT_FORMAT) for the list argument and a variable of type DXmPrintOptionMenuStruct
for the data argument.

The ui_string field of the DXmPrintOptionMenuStruct data structure must contain a valid compound
string. The os_string field of the DXmPrintOptionMenuStruct data structure must be either a valid
compound string or NULL.

If the field is not NULL, the print widget sends the os_string field string to the operating system when
the option is selected by the user.

If the field is NULL, the print widget does not send anything to the operating system if the option is
selected by the user. That is, the print widget functions as though the default had been selected.

Applications can add only a limited number of options to each option menu. If an application tries to add
more options than allowed, DXmPrintWgtAugmentList returns a status of 0.

165

Chapter 7. Using the Print Widget

Example 7.3, "Adding Print Options" shows an example of adding options to the menu.

Example 7.3. Adding Print Options

 .
 .
 .
DXmPrintOptionMenuStruct r_my_struct;

r_my_struct.ui_string = XmStringCreateLtoR("User String",
 XmSTRING_DEFAULT_CHARSET);

r_my_struct.os_string = XmStringCreateLtoR("OS String",
 XmSTRING_DEFAULT_CHARSET);

DXmPrintWgtAugmentList(print_widget, DXmPAGE_SIZE, &r_my_struct));
 .
 .
 .

7.7. Creating the Print Widget with UIL
Example 7.4, "Creating the Print Widget Through UIL" and Example 7.5, "Creating the Print Widget
Through UIL—C Support" show how the OpenVMS DECburger example program creates the print
widget.

Example 7.4. Creating the Print Widget Through UIL

 .
 .
 .
!The print widget object

object main_print : DXmPrintDialog

 {
 arguments
 {
 XmNdialogTitle = "DECburger: Print";
 DXmNoptionsDialogTitle = "DECburger: Print Options";
 DXmNnumberCopies = 2;
 DXmNunmanageOnOk = true;
 DXmNunmanageOnCancel = true;
 };
 callbacks
 {
 XmNhelpCallback = procedure sens_help_proc(k_print_help);
 };

 };
 .
 .
 .

Create an instance of the print widget. By default, print two copies of the file or files and
unmanage the print widget when the OK or Cancel push buttons are pressed.

Example 7.5. Creating the Print Widget Through UIL—C Support

 .
 .
 .
#include <DXm/DXmPrint.h>

166

Chapter 7. Using the Print Widget

 .
 .
 .

/* Print Widget Creation */

static void create_print()

{
 unsigned int ac;
 Arg arglist[10];
 XtCallbackRec callback_arg[2];

 start_watch();

 if (!print_widget) {

 if (MrmFetchWidget (s_MrmHierarchy, "main_print", toplevel_widget,
 &print_widget, &dummy_class) != MrmSUCCESS)
 s_error ("can't fetch print widget");

 callback_arg[0].callback = activate_print;
 callback_arg[0].closure = 0;
 callback_arg[1].callback = NULL;
 callback_arg[1].closure = NULL;

 ac = 0;
 XtSetArg (arglist[ac], XmNokCallback, callback_arg);ac++;
 XtSetArg (arglist[ac], DXmNsuppressOptionsMask,
 DXmSUPPRESS_DELETE_FILE | DXmSUPPRESS_OPERATOR_MESSAGE); ac++;
 XtSetValues (print_widget, arglist, ac);
 }

 XtManageChild(print_widget);
 stop_watch();
}

 .
 .
 .

If an instance of the print widget does not already exist, fetch one.

Assign values to elements of the callback routine list. Each callback routine data structure contains
the address of a callback routine and a tag. In this case the callback routine is activate_print and
there is no tag value. The null values signify the end of the callback routine list.

The XmNokCallback resource uses the null-terminated argument list to determine what routines to
call when a user presses the OK push button.

Suppress the delete file and operator message resources.

Call XtSetValues to set the values for the print widget.

Manage the print widget.

7.8. Creating the Print Widget with a Toolkit
Routine
Example 7.6, "Calling the DXmCreatePrintDialog Routine" shows how the print widget for the
OpenVMS DECburger example was created using the DXmCreatePrintDialog routine.

167

Chapter 7. Using the Print Widget

Example 7.6. Calling the DXmCreatePrintDialog Routine

 .
 .
 .
#include <DXm/DXmPrint.h>
 .
 .
 .
print_widget = (Widget)NULL; /* Print widget*/

 .
 .
 .

static void create_print()

{
 unsigned int ac;
 Arg arglist[10];
 static int num_copies;
 XmString print_format;
 XtCallbackRec callback_arg[2];

 if (!print_widget) {

 num_copies = 2;

 callback_arg[0].callback = activate_print;
 callback_arg[0].closure = 0;
 callback_arg[1].callback = NULL;
 callback_arg[1].closure = NULL;

 ac = 0;

 XtSetArg (arglist[ac], DXmNnumberCopies, num_copies); ac++;
 XtSetArg (arglist[ac], DXmNunmanageOnOk, TRUE); ac++;
 XtSetArg (arglist[ac], DXmNunmanageOnCancel, TRUE); ac++;
 XtSetArg (arglist[ac], XmNokCallback, callback_arg);ac++;

 XtSetArg (arglist[ac], DXmNsuppressOptionsMask,
 DXmSUPPRESS_DELETE_FILE | DXmSUPPRESS_OPERATOR_MESSAGE); ac++;

 print_widget = DXmCreatePrintDialog (toplevel_widget,
 "Print Widget", arglist, ac);

 XtManageChild(print_widget);
 return;

 }

 XtManageChild(print_widget);
}

 .
 .
 .

The OpenVMS DECburger application defines the print widget in its global data section so that it
can be referenced throughout the source file. DECburger explicitly initializes print_widget to null
to make sure that it does not contain a garbage value. DECburger later tests print_widget to see if it
exists, thereby preventing a garbage value from producing unexpected results.

The num_copies variable is used to set the DXmNnumberCopies resource. This example sets the
number of copies to 2 by default.

168

Chapter 7. Using the Print Widget

DECburger declares the callback routine list as an array of callback routine data structures. Note
that the array contains two elements. All callback routine lists must contain at least two elements
because a callback routine list is a null-terminated list.

Test to see if the print widget already exists. If the print widget already exists, DECburger only
needs to manage it.

Assign values to elements of the callback routine list. Each callback routine data structure contains
the address of a callback routine and a tag. In this case, the callback routine is activate_print and
there is no tag value. The null values signify the end of the callback routine list.

Call the XtSetArg intrinsics routine once for each resource you want to specify. DECburger sets
the DXmNunmanageOnOk and DXmNunmanageOnCancel resources to unmanage the print
widget when the OK or Cancel push button in the print widget main dialog box is pressed.

DECburger suppresses the Delete File and Operator Message options; the user cannot use the print
widget to delete the file being printed, and operator messages are suppressed.

Call the DXmCreatePrintDialog routine to create the print widget. DXmCreatePrintDialog returns
the widget ID of the print widget.

Manage the newly created print widget.

If the print widget already existed, DECburger only needs to manage the existing print widget.

7.9. Submitting Print Jobs
After you have created an instance of the print widget through either UIL or the Toolkit routine, you
must submit the print job to the printer queue. The DXmPrintWgtPrintJob routine is provided for this
purpose. You pass the ID of the print widget, a list of the files to print, and the number of files to print to
the DXmPrintWgtPrintJob routine.

Example 7.7, "Calling the DXmPrintWgtPrintJob Routine" shows an example of calling the
DXmPrintWgtPrintJob routine from the OpenVMS DECburger example program.

Example 7.7. Calling the DXmPrintWgtPrintJob Routine

 .
 .
 .

static void activate_print(w, tag, reason)
 Widget w;
 int *tag;
 XmAnyCallbackStruct *reason;

{
 unsigned long int l_status;
 XmString file_pointer[1];
 int l_num_names,l_i;
 char at_buffer[30];
 FILE *fopen(), *fp;

 if ((fp = fopen("order.txt", "w")) != NULL) {

 fprintf(fp, "Function Not Yet Implemented\n");
 fclose(fp);

169

Chapter 7. Using the Print Widget

 file_pointer[0] = XmStringCreateLtoR("order.txt",
 XmSTRING_DEFAULT_CHARSET);

 l_status = DXmPrintWgtPrintJob(print_widget, file_pointer, 1);

 printf("DXmPrintWgtPrintJob return status: %x\n",l_status);

 }

}

 .
 .
 .

Open a file called order.txt for writing. If the open is successful, print the "Function Not Yet
Implemented" message in the file and close it.

Create a compound string from the file name.

Call the DXmPrintWgtPrintJob routine, specifying the print widget ID, an XmString array
containing the order.txt file, and the number of files to print (1).

Print the print-job status on the standard output.

170

Chapter 8. Using the Compound
String Text Widget
This chapter provides the following:

● An overview of the compound string text widget in the DECwindows Motif Toolkit

● A description of the support routines used with the compound string text widget

8.1. Overview of the CSText Widget
A compound string is a string stored with character set and writing information. A compound string can
consist of multiple segments, where each segment in the string can have a different character set and
writing direction properties.

In a compound string, you specify not only the characters in the text string, but also the character set
and writing direction you want for displaying the text string on a workstation screen. All DECwindows
Motif Toolkit widgets that contain text labels use compound strings to represent these labels. By using
the compound string text widget, you enable users of your application to enter and edit text in the same
character set and writing direction used throughout the user interface for your application.

The DECwindows Motif Toolkit includes a compound string text widget, CSText, that you can use to
give your application text editing capabilities. The CSText widget is available both with and without
scroll bars:

● DXmCreateScrolledCSText

● DXmCreateCSText

Both versions of the CSText widget let users of your application enter text or edit existing text using
the keyboard. The difference between the two widgets is that the DXmCreateScrolledCSText widget
supports horizontal and vertical scroll bars, while DXmCreateCSText does not.

With the exception of the scroll bars, both versions of the CSText widget have the same visual
appearance. The text entry area contains a text cursor that indicates where text will be inserted. When
the widget has input focus, the text cursor blinks and is displayed at full brightness. When the widget
does not have input focus, the text cursor appears dimmed and does not blink.

The text cursor in the CSText widget can also indicate the current editing direction. The editing
direction is the direction in which characters can be inserted or deleted. If your application sets
the DXmNbidirectionalCursor resource to true, users of your application can switch
between the left-to-right and right-to-left editing directions by pressing the toggle key (F17).
DXmNbidirectionalCursor is FALSE by default.

Whenever a user changes the editing direction in a CSText widget, the shape of the text cursor, called
a bidirectional text cursor, can change to indicate the new editing direction. When the CSText widget
does not have input focus, it contains a dimmed, standard text cursor. For information on how to create a
CSText widget with a bidirectional text cursor, see Section 8.2.2.7, "Identifying the Current Writing and
Editing Directions".

The widget uses the callback mechanism to notify your application when the text it contains changes.
Note, however, that the widget does not return the text in the callback. To retrieve the text, you must use
the XtGetValues intrinsic routine or one of the support routines provided by the DECwindows Motif

171

Chapter 8. Using the Compound String Text Widget

Toolkit for use with the CSText widget. For more information about this topic, see Section 8.2.1.2,
"Retrieving Compound Strings from a CSText Widget".

The DECwindows Motif Toolkit includes support routines for many commonly performed tasks, such as
specifying the text contained in the CSText widget. The sections that follow describe how to use these
support routines. Table 8.1, "CSText Widget Support Routines" lists the support routines.

Table 8.1. CSText Widget Support Routines

Routine Name Description

Manipulating the Text Content of the Widget
DXmCSTextCopy Copies the currently selected (highlighted) text to

the clipboard.
DXmCSTextCut Deletes the currently selected (highlighted) text

after copying it to the clipboard.
DXmCSTextGetString Returns the compound string that is the current

value of the CSText widget.
DXmCSTextInsert Inserts the new compound string into the

compound string at the specified position.
DXmCSTextNumLines Returns the number of output lines in the

compound string text widget.
DXmCSTextPaste Pastes the data on the clipboard into the text at the

current cursor position.
DXmCSTextRemove Removes the currently selected (highlighted) text.
DXmCSTextReplace Replaces the compound string characters between

“from” and “to” with the given string; “from” and
“to” are zero-based character offsets that include
new lines.

DXmCSTextSetString Replaces the text of the CSText widget with
completely new text.

DXmCSTextHorizontalScroll Scrolls text by the given number of pixels.
DXmCSTextGetEditable Returns a Boolean value that indicates whether

the user of the application can edit the current
text contents of the widget. When this routine
returns TRUE (1), the user can edit the text; when
it returns FALSE (0), the user cannot edit the text.

DXmCSTextGetInsertionPosition Returns the position (offset) of the insertion cursor.
DXmCSTextGetLastPosition Returns the position (offset) corresponding to the

last character in the string.
DXmCSTextGetMaxLength Returns the maximum length of text that the

widget will allow a user to enter.
DXmCSTextGetTopPosition Returns the position (offset) of the top left (or top

right) character in the displayed text.
DXmCSTextPosToXY Identifies the x and y positions of a specified

character in the text.
DXmCSTextXYToPos Identifies the position in the text of the character

nearest to a specified x and y position.

172

Chapter 8. Using the Compound String Text Widget

Routine Name Description

DXmCSTextHorizontalScroll Scrolls text by the given number of pixels.
DXmCSTextSetAddMode Controls whether the CSText widget is in Add

Mode, which allows the user to move the insert
cursor without affecting the primary selection.

DXmCSTextSetEditable Sets the Boolean value that indicates whether
the user can edit the current text contents of the
CSText widget. To allow editing, set this value to
TRUE.

DXmCSTextSetHighlight Changes the highlighting mode of a compound
string.

DXmCSTextSetInsertionPosition Sets the insertion cursor to the given position
(offset) in the source.

DXmCSTextSetMaxLength Sets a size limit in characters, including newline
characters, that the user can enter in the widget.

DXmCSTextSetTopPosition Sets the position (offset), which will be at the top
left (or top right) of the displayed text.

DXmCSTextShowPosition Forces the given position to be displayed.
DXmCSTextVerticalScroll Scrolls text by the specified number of lines.
DXmCSTextClearSelection Cancels the selection of compound string text in

the widget and turns off highlighting of the text.
DXmCSTextGetSelection Gets the portion of the compound string text that

has been selected using the selection mechanism.
Selected text is highlighted on the display.

DXmCSTextGetSelectionInfo Returns the left and right positions (offsets)
corresponding to the currently selected
(highlighted) text. Returns FALSE if there is no
currently selected text.

DXmCSTextHasSelection Returns TRUE if the compound string text widget
currently owns the primary selection.

DXmCSTextSetSelection Sets the portion of the compound string text
specified by the start and end point positions as the
selection, and highlights the text on the screen.

8.2. Modifying CSText Widget Resources
The following sections describe how to use the resources of the CSText widget and the CSText widget
support routines.

8.2.1. Manipulating the Text Contents of the CSText
Widget
The CSText widget provides text entry and text editing capabilities in a user interface. To manipulate the
text contents of the CSText widget at run time (after the widget has been created), you can use either of
the following two sets of routines:

● XtSetValues or XtGetValues intrinsic routines

173

Chapter 8. Using the Compound String Text Widget

● CSText widget support routines

The support routines offer several advantages over the XtSetValues or XtGetValues:

● The support routines use fewer system resources and, therefore, are more efficient.

● The support routines do not require that you create an argument list.

8.2.1.1. Placing a Compound String in a CSText Widget
To place a compound string in a CSText widget after the widget has been created, you can use the
XtSetValues intrinsic routine or a support routine.

To use the XtSetValues intrinsic routine, specify the address of the compound string as the value of the
XmNvalue resource in an argument list (the default value is null). Then pass this argument list to the
XtSetValues intrinsic routine to assign the value to the widget resource.

You can use the CSText widget support routines to either modify the text the widget contains or replace
the text entirely.

Use the DXmCSTextReplace support routine to modify the text currently in the CSText widget. This
routine takes the following arguments:

● The identifier of the CSText widget

● The position in the text where the text to be replaced begins

● The position in the text after the text to be replaced ends

● The new text that you want to put in place of the existing text

Specify the position in the text as an offset from the beginning. Determine the offset by counting
the characters, including spaces and new lines. The first character is numbered 0 (zero). Successive
characters are numbered sequentially.

Use the DXmCSTextInsert routine to insert a new compound string into the compound string text source
at the specified position. Specify the same position for both the start and the end points. If the start and
end points are not specified as the same position, the text in the section defined by the start and end
points is replaced by the new text.

Use the DXmCSTextPaste routine to insert the data on the clipboard into the text at the current cursor
position.

Use the DXmCSTextSetString routine to replace all the text in a CSText widget. This routine places the
address of the new text in the XmNvalue resource.

8.2.1.2. Retrieving Compound Strings from a CSText Widget
To retrieve the current value of a CSText widget, you can use the XtGetValues intrinsic routine or a
support routine.

To use the XtGetValues intrinsic routine, create a variable to hold the address of the compound string
and specify this variable as the value of the XmNvalue resource in an argument list. Then pass this
argument list to the XtGetValues intrinsic routine. The XtGetValues intrinsic routine writes the address
contained in the XmNvalue resource into the variable that you specified in the argument list. Do not
free the returned pointer.

174

Chapter 8. Using the Compound String Text Widget

Use the DXmCSTextGetString support routine to retrieve the current contents of the CSText widget.
This support routine returns the value of the XmNvalue resource. Free the returned pointer.

Example 8.1, "Using the DXmCSTextGetString Support Routine" shows how to use the
DXmCSTextGetString routine.

Example 8.1. Using the DXmCSTextGetString Support Routine

 .
 .
 .
static void change_cs(w, tag, reason)
 Widget w;
 int *tag;
 XmNanyCallbackStruct *reason;
{
 int ac = 0;
 Arg arglist[15];
 XmString new_text;
 XtCallbackRec ok_arg[2];

 new_text = DXmCSTextGetString(w);

 ac = 0;
 XtSetArg(arglist[ac], XmNdialogTitle, new_text);ac++;
 XtSetValues (text_shell, arglist, ac);
 .
 .
 .

 XtFree(new_text);
 .
 .
 .

}

8.2.1.3. Disabling Text Editing
By default, users can edit the text contained in the CSText widget. However, you can disable text editing
by setting the XmNeditable resource to FALSE (by default, this resource is TRUE). To change this
value after the widget has been created, use the XtSetValues intrinsic routine or the support routines.

Use the DXmCSTextSetEditable and DXmCSTextGetEditable support routines to set and read the
XmNeditable resource.

8.2.1.4. Limiting the Length of the Text
You can specify the maximum amount of text that the user can enter in the CSText widget by using the
XmNmaxLength resource. To assign a value to this resource at run time, use the XtSetValues intrinsic
routine or the DXmCSTextSetMaxLength support routine. To read the value of this resource at run time,
use the XtGetValues intrinsic routine or the DXmCSTextGetMaxLength support routine. Example 8.6,
"Toolkit CSText Creation Routine" includes an example of setting the XmNmaxLength resource.

8.2.2. Customizing the Appearance of the CSText
Widget
You can customize the following appearance and function aspects of the CSText widget:

175

Chapter 8. Using the Compound String Text Widget

● Size

● Margins

● Resizing behavior

● Scroll bar positioning

● Text cursor appearance

● Position of the insertion point

● Current writing direction

● Current editing direction

The sections that follow describe these resources.

8.2.2.1. Specifying Size
To specify the dimensions of the CSText widget, use the XmNcolumns and XmNrows resources.
These resources specify the size of the widget in relation to the size of the characters they contain, which
is determined by the fonts used to display the characters.

Use the XmNcolumns resource to specify the width of the CSText widget (each character width is
referred to as a column). With this attribute, you can specify the width by the number of characters that
the widget can contain horizontally. The default is 20 characters.

Use the XmNrows resource to specify the height of the CSText widget. The height of each row
is determined by the height of a character. The overall height dimension of the CSText widget is
determined by the number of rows that you specify in the XmNrows resource. The default is 1.

The exact measurement in pixels of these two dimensions depends on the font being used. In the
DECwindows Motif Toolkit, fonts are specified in font lists, in this case in the XmNfontList
argument. The CSText widget, which can use as many fonts as are specified in the font list, uses the
maximum dimensional values from all of the specified fonts as the unit of the XmNcolumns and
XmNrows resources.

Although you can specify the size of the CSText widget in pixels by using the common widget resources
XmNwidth and XmNheight, this method is not recommended. Fixing the size of the widget in this
way creates a dependency on the font. The size you specify might work well with a particular font, but if
the font size is increased, the text characters might no longer fit inside the widget.

8.2.2.2. Specifying Margins
You can specify the amount of space around the text entry area of the CSText widget by using the
XmNmarginWidth and XmNmarginHeight resources.

Use the XmNmarginWidth resource to specify the amount of space between the border of the widget
and the beginning of the array of characters. The length of the text determines the amount of space
between the end of the text and the border. Specify this margin in pixels. The default value is 6.

Use the XmNmarginHeight resource to specify the amount of space between the top and bottom
borders of the widget and the top and bottom edges of the text entry area. Specify this margin in pixels.
The default value is 6.

176

Chapter 8. Using the Compound String Text Widget

8.2.2.3. Controlling Resizing Behavior
If the user enters more text than will fit in the widget, the CSText widget does not attempt to expand
to fit the text. Using the resources of the CSText widget, you can control this behavior in the following
ways:

● Setting the resize resources to TRUE

● Making the text wrap

● Using the DXmCreateScrolledCSText routine

You can turn on the automatic resizing behavior of the CSText widget by using the
XmNresizeHeight, XmNresizeWidth, or XmNwordWrap resource. The default for these
resources is FALSE.

To allow the CSText widget to increase its height, set the XmNresizeHeight resource to TRUE. The
XmNresizeHeight resource is ignored if the XmNscrollVertical resource is TRUE.

To allow the CSText widget to increase its width, set the XmNresizeWidth resource to TRUE. Note
that if XmNresizeWidth is TRUE, the CSText widget will grow to display all text even if you set
XmNcolumns to 1. The XmNresizeWidth resource is ignored if XmNwordWrap is TRUE.

The XmNstringDirection resource determines in which direction the CSText widget expands. For
example, if the writing direction is right-to-left, the widget attempts to expand to the left, keeping the
rightmost column fixed in its place. The default is left-to-right.

You can specify that the widget wrap words to the next line that would otherwise extend beyond the
edge of the line by setting the XmNwordWrap resource to TRUE. This resource is ignored if the
XmNeditMode resource is set to XmSINGLE_LINE_EDIT.

8.2.2.4. Scroll Bar Positioning
Another way to control resizing is to create a scrolled CSText widget. To do this, your application
calls the DXmCreateScrolledCSText routine and sets either the XmNscrollVertical or
XmNscrollHorizontal resource. Note that these resources do not affect a non-scrolled CSText
widget. Example 8.2, "Creating a Scrolled CSText Widget" demonstrates creating a scrolled CSText
widget.

Example 8.2. Creating a Scrolled CSText Widget

 .
 .
 .
 ac = 0;
 XtSetArg(arglist[ac], XmNfontList, font_list); ac++;
 XtSetArg(arglist[ac], XmNx, 40);ac++;
 XtSetArg(arglist[ac], XmNy, 100);ac++;
 XtSetArg(arglist[ac], XmNrows, 2); ac++;
 XtSetArg(arglist[ac], XmNcolumns, 35); ac++;
 XtSetArg(arglist[ac], XmNmaxLength, 10); ac++;
 XtSetArg(arglist[ac], XmNactivateCallback, callback_arg);ac++;
 XtSetArg(arglist[ac], XmNscrollVertical, TRUE);ac++;

 text_w = DXmCreateScrolledCSText(text_shell, "textwidget", arglist, ac);

 XmFontListFree (font_list);

 XtManageChild(text_w);

177

Chapter 8. Using the Compound String Text Widget

 .
 .
 .
 }

If you include a vertical and a horizontal scroll bar in a CSText widget, the widget will not resize its
height or width to fit additional text. The scroll bar enables the user to scroll through text that is not
currently visible.

By default, the vertical scroll bar appears on the right side of the widget, but you can make the scroll bar
appear on the left side of the widget by setting the XmNscrollLeftSide resource to TRUE. The
default is FALSE.

By default, the horizontal scroll bar appears on the bottom side of the widget, but you can make the
scroll bar appear on the top side of the widget by setting the XmNscrollTopSide resource to TRUE.
The default is FALSE.

Your application can call the DXmCSTextHorizontalScroll and/or DXmCSTextVerticalScroll routines
to scroll text horizontally by the specified number of pixels and/or vertically by the specified number of
lines.

8.2.2.5. Controlling Text Cursor Appearance
When the CSText widget has input focus, its text cursor blinks. By assigning values to CSText widget
resources, you can specify the following:

● How fast the text cursor blinks

● Whether the text cursor is visible

Use the XmNblinkRate resource to specify how fast the text cursor should blink. Specify this value in
milliseconds. The default is 500 milliseconds.

Use the XmNcursorPositionVisible resource to determine whether the text cursor is visible in
the widget. The text cursor is visible when it is drawn in the foreground color. Set this value to TRUE if
you want the text cursor to be visible. The default is TRUE.

Note that the XmNcursorPositionVisible argument specifies only whether the text cursor
should be drawn in the foreground color. If the text cursor is positioned in a portion of the text that is not
currently visible in the CSText widget, the text cursor will not be visible. To ensure that the text cursor is
always in the visible portion of the text widget, use the XmNautoShowCursorPosition resource
(described in Section 8.2.2.6, "Positioning the Insertion Point").

You can also specify whether the shape of the text cursor indicates the current editing direction.
For information about this topic, see Section 8.2.2.7, "Identifying the Current Writing and Editing
Directions".

8.2.2.6. Positioning the Insertion Point
Use the XmNcursorPosition resource to position the text cursor within the text contents of the
widget. Specify the position of the insertion point as an offset from the beginning of the compound
string. Determine the offset by counting the number of characters in the string, including spaces and
new lines. The first character in a string is numbered 0 (zero). Successive characters are numbered
sequentially.

To specify that the insertion point should always be in the visible portion of a scrollable CSText widget,
set the XmNautoShowCursorPosition to TRUE. The default is TRUE. This causes the widget to

178

Chapter 8. Using the Compound String Text Widget

scroll as the position of the insertion point changes, keeping the insertion point in the visible portion of
the text.

The DXmCSTextGetInsertionPosition routine returns the current position of the insertion cursor. The
position is an offset determined by counting the characters, including spaces and new lines. The first
character is numbered 0 (zero). Successive characters are numbered sequentially.

To insert text at the end of the current compound string, call the DXmCSTextGetLastPosition
routine to return the position of the last character in the compound string. Then, call the
DXmCSTextSetInsertionPosition routine to set the insertion cursor to this position.

8.2.2.7. Identifying the Current Writing and Editing Directions
You can identify the current writing and editing directions of the text contained in a CSText widget by
reading the value of the DXmNtextPath and DXmNeditingPath resources.

The DXmNtextPath resource indicates the main writing direction of the text in the CSText widget.
The default is left to right. The CSText widget sets the value of the DXmNtextPath resource to the
writing direction specified in the compound string that it contains when it is created. If this compound
string has multiple segments, the CSText widget uses the value of the first segment.

The DXmNeditingPath resource indicates the writing direction enabled for text entry and editing.
For example, if the value of the DXmNeditingPath resource is left to right, the delete key deletes
characters to the left of the insertion point. If the value is right to left, the delete key deletes the character
to the right of the insertion point.

At widget creation time, the CSText widget sets the value of the DXmNeditingPath resource
to be the same as the value of the DXmNtextPath resource. However, the value of the
DXmNeditingPath resource changes whenever a user changes the editing direction.

Note

Users of your application can switch between the left-to-right and right-to-left editing directions by
pressing the toggle key [F17].

The CSText widget can indicate the current editing direction by changing the shape of the cursor. To use
this feature, set the DXmNbidirectionalCursor resource to TRUE. By default, the text cursor
does not indicate editing direction.

8.2.3. Multiline Editing in a CSText Widget
Like the XmText widget, the CSText widget supports multiline editing. See the OSF/Motif Programmer's
Guide for a description of XmText multiline editing.

Multiline editing is especially useful when using a scrolled CSText widget. Your application must set the
XmNeditMode resource to XmMULTI_LINE_EDIT to enable multiline editing. Example 8.3, "CSText
Widget with Multiline Editing" demonstrates how to create a CSText widget that implements multiline
editing.

Example 8.3. CSText Widget with Multiline Editing

 .
 .
 .
 cstring = XmStringCreateLtoR("Line number 1\nLine number 2",

179

Chapter 8. Using the Compound String Text Widget

 XmSTRING_ISO8859_1);

 ac = 0;
 XtSetArg(arglist[ac], XmNfontList, font_list); ac++;
 XtSetArg(arglist[ac], XmNx, 40);ac++;
 XtSetArg(arglist[ac], XmNy, 100);ac++;
 XtSetArg(arglist[ac], XmNrows, 2); ac++;
 XtSetArg(arglist[ac], XmNcolumns, 35); ac++;
 XtSetArg(arglist[ac], XmNactivateCallback, callback_arg);ac++;
 XtSetArg(arglist[ac], XmNscrollVertical, TRUE);ac++;
 XtSetArg(arglist[ac], XmNeditMode, XmMULTI_LINE_EDIT);ac++;
 XtSetArg(arglist[ac], XmNvalue, cstring);ac++;

 text_w = DXmCreateScrolledCSText(text_shell, "textwidget", arglist, ac);
 XmStringFree(cstring);

 .
 .
 .

This example creates a scrolled CSText widget with multiline editing capability. The XmNrows
argument limits the CSText widget to two rows; the user can use the scroll bar to view additional rows.

The initial compound string is displayed on two lines; the XmStringCreateLtoR routine scans the text for
newline characters. When one is found, the text up to that point (Line number 1) is put into a segment
followed by a separator component. Each segment can be individually selected.

By default, users can edit the text contained in the CSText widget, insert additional text, add new lines
(segments) by pressing the Return key, and so forth. However, you can disable text editing by setting the
XmNeditable resource to FALSE. By default, this resource is TRUE.

Note

The Enter key on the keypad generates the activate callback while in multiline editing mode.

8.2.4. Handling Text Selections
All applications running in the DECwindows or X Window System environment have access to a global
selection facility. This facility allows users of applications to select portions of the display by moving the
pointer cursor. Selected portions appear highlighted on the display.

The CSText widget supports the selection mechanism automatically. In addition, you can do the
following:

● Select text in the CSText widget.

● Retrieve the selected text.

● Copy selected text to the clipboard.

● Cut selected text from the clipboard.

● Paste selected text from the clipboard into your application.

● Get position information about the selection.

● Determine if the CSText widget owns the primary selection.

● Cancel the current selection.

180

Chapter 8. Using the Compound String Text Widget

8.2.4.1. Selecting Text
Use the DXmCSTextSetSelection support routine to select a portion of the text in a CSText widget. This
routine takes the following arguments:

● The widget identifier of the CSText widget

● The position in the text where you want to start the selection

● The position in the text where you want to end the selection

● The time of the event that led to the call to the selection

Section 8.2.1.2, "Retrieving Compound Strings from a CSText Widget" describes how to determine
positions in a compound string.

You obtain the time stamp of the event that triggered the selection from the X Event data structure.

If the selected text contains the insertion point, the selected text is deleted when new text is entered by
the user. You can specify that this selected text not be deleted by setting the XmNpendingDelete
resource to FALSE. By default, this resource is set to TRUE.

8.2.4.2. Retrieving Selected Text
Use the DXmCSTextGetSelection to retrieve the selected text in a CSText widget. The selected text is
returned as a compound string.

8.2.4.3. Copy Selected Text to the Clipboard
The DXmCSTextCopy routine copies the selected (highlighted) text to the clipboard.

8.2.4.4. Pasting Selected Text from the Clipboard
The DXmCSTextPaste routine pastes the data on the clipboard into the text at the current cursor
position.

8.2.4.5. Deleting Selected Text from the Clipboard
The DXmCSTextCut routine deletes the selected (highlighted) text after copying it to the clipboard.

8.2.4.6. Getting Position Information About the Selection
Use the DXmCSTextGetSelectionInfo routine to return the left and right positions of the selected
(highlighted) text. As for the insertion cursor routines, the positions in the text are offsets determined
by counting the characters, including spaces and new lines. The first character is numbered 0 (zero).
Successive characters are numbered sequentially.

DXmCSTextGetSelectionInfo returns FALSE if there is no currently selected text.

Use the DXmCSTextPosToXY routine to identify the x and y position of a specified character in the
text. Use the DXmCSTextXYToPos routine to identify the position in the text of the character nearest to
a specified x and y position.

8.2.4.7. Determining Primary Selection Ownership
Use the DXmCSTextHasSelection routine to determine if the CSText widget owns the primary selection.
See the OSF/Motif Programmer's Guide for a description of the primary selection mechanism.

181

Chapter 8. Using the Compound String Text Widget

8.2.4.8. Canceling the Selection of Text
Use the DXmCSTextClearSelection support routine to cancel the selection of text in the compound
string text widget. DXmCSTextClearSelection turns off the selected text highlighting.

8.2.5. Associating Callbacks with CSText Widgets
When the text contained in a CSText widget changes, the widget uses the callback mechanism to notify
your application. The text in the widget can change as the result of a user interaction, such as entering
new text or editing existing text. Your program can also cause a callback by changing the text in a
CSText widget using the XtSetValues intrinsic routine or a support routine.

In addition, the CSText widget performs callbacks whenever it accepts or loses input focus. Users can
enter text from the keyboard only when the CSText widget has input focus. The CSText widget gets
input focus when the user clicks MB1 anywhere within its borders.

The CSText widget performs a callback if it cannot find in its font list the character set required to
display a segment of text. In this callback, the CSText widget identifies the required character set for
which there is no entry in the font list. The CSText widget searches its font list a second time for the
character set when the callback routine returns.

If you update the CSText widget's font list in the callback routine, the widget will find the character
set in its font list and be able to display the text tagged with this character set. If you do not associate a
callback routine with this callback reason, the CSText widget does not perform the second search of the
font list. The CSText widget uses the first font found in the font list.

For complete information about the data returned in the callbacks performed by the CSText widget, see
DECwindows Extensions to Motif.

To associate a callback routine with a CSText widget, pass a callback routine list to one of the callback
resources. Table 8.2, "Text Widget Callbacks" lists the callback resources and describes the conditions
that trigger these callbacks.

Table 8.2. Text Widget Callbacks

Callback Resource Conditions for Callback

XmNactivateCallback Specifies the list of callbacks that are called when
the user performs an action (such as pressing
Return).

XmNmodifyVerifyCallback Specifies the list of callbacks called before text is
deleted from or inserted into the CSText widget.

XmNmotionVerifyCallback Specifies the list of callbacks called before the
insert cursor is moved to a new position.

XmNvalueChangedCallback Specifies the list of callbacks called when the text
contained in the CSText widget has changed. This
callback can be triggered by a user interaction or
because your application has changed the text in
the widget using the XtSetValues intrinsic routine
or one of the CSText widget support routines.

XmNfocusCallback Specifies the callback routine or routines called
before the CSText widget has accepted the input
focus. The default is null.

182

Chapter 8. Using the Compound String Text Widget

Callback Resource Conditions for Callback

XmNlosingFocusCallback Specifies the callback routine or routines called
when the CSText widget is about to lose input
focus.

XmNhelpCallback Specifies the callback routine or routines called
when a user has triggered a help callback.

DXmNnoFontCallback Specifies the callback routine or routines called
when the CSText widget cannot find a character set
in its font list that is needed to display the text in a
compound string.

8.3. Conversion Routines
The DECwindows Motif Toolkit includes conversion routines for use by applications. You might find
these conversion routines particularly useful when used in conjunction with the CSText widget. Table
8.3, "Conversion Routines" lists the conversion routines.

Table 8.3. Conversion Routines

Routine Name Description

DXmCvtCStoFC Converts a compound string to a file-compatible
format string. Currently uses text format.

DXmCvtFCtoCS Converts a string in the file-compatible format to a
compound string.

DXmCvtCStoOS Converts a compound string to an operating-system
specific format. Currently uses text format.

DXmCvtOStoCS Converts a string in the operating-system specific
format to a compound string.

DXmCvtCStoDDIF Converts a compound string into a DDIF format
string.

DXmCvtDDIFtoCS Converts a string in DDIF format to a compound
string.

8.4. Creating CSText Widgets
To create a CSText widget, perform the following steps:

1. Create the CSText widget using any of the widget creation mechanisms listed in Table 8.4,
"Mechanisms for Creating CSText Widgets".

Choose the mechanism that provides access to the widget resources you need to set.

Table 8.4. Mechanisms for Creating CSText Widgets

Mechanism CSText Widget

Toolkit routine Use the DXmCreateCSText routine to create a
CSText widget without scroll bars.

Toolkit routine Use the DXmCreateScrolledCSText routine
to create a CSText widget with horizontal

183

Chapter 8. Using the Compound String Text Widget

Mechanism CSText Widget
and/or vertical scroll bars. Your application
must also set the XmNscrollVertical and/or
XmNscrollVertical resource.

UIL object type Use the UIL object type DXmCSText to define
a CSText widget in a UIL module. At run time,
the MRM routine MrmFetchWidget creates the
widget according to this definition.

UIL object type Use the UIL object type DXmScrolledCSText
to define a scrolled CSText widget in a UIL
module. At run time, the MRM routine
MrmFetchWidget creates the widget according to
this definition.

2. Manage the CSText widget by using the intrinsic routine XtManageChild.

After you complete these steps, the CSText widget appears on the display if its parent has been realized.

Toolkit routines and UIL provide access to the complete set of resources at widget creation time.

When you create a CSText widget, you can specify aspects of the initial appearance of the widget by
assigning values to widget resources.

8.4.1. Using UIL to Create a CSText Widget
Example 8.4, "Creating a CSText Widget with UIL" demonstrates using UIL to create a CSText widget.
This CSText widget has 2 rows and 25 columns. The initial content of this widget is "Sample Text". The
widget uses the font list identified by the cs_font variable.

Example 8.4. Creating a CSText Widget with UIL

 .
 .
 .
module cstext
 version = 'v1.0'
 names = case_sensitive

procedure
 cstext_activate();

value
 cs_font : font('-ADOBE-Courier-Bold-R-Normal--14-140-*-*-M-90-ISO8859-1');

object
 cstext_main : DXmCSText {
 arguments
 {
 XmNfontList = cs_font;
 XmNvalue = compound_string("Sample Text");
 XmNx = 20;
 XmNy = 20;
 XmNrows = 2;
 XmNcolumns = 25;
 };
 };

184

Chapter 8. Using the Compound String Text Widget

end module;
 .
 .
 .

Example 8.5, "C Source for Creating a CSText Widget with UIL" shows the C source code associated
with the UIL module.

Example 8.5. C Source for Creating a CSText Widget with UIL

 .
 .
 .
#include <stdio>
#include <Mrm/MrmAppl.h>
#include <DXm/DXmCSText.h>

Widget toplevel, text_w;

static MrmHierarchy s_MrmHierarchy;
static MrmType *dummy_class;
static char *db_filename_vec[] =
 {"cstext.uid"
 };

int main(argc, argv)
 unsigned int argc;
 char **argv;
{
 XtAppContext app_context;

 MrmInitialize();
 DXmInitialize();

 toplevel = XtAppInitialize(&app_context, "example", NULL, 0, &argc,
 argv, NULL, NULL, 0);

 /* Open the UID files (the output of the UIL compiler) in the hierarchy*/

 if (MrmOpenHierarchy(1,
 db_filename_vec,
 NULL,
 &s_MrmHierarchy)
 !=MrmSUCCESS)
 printf("can't open hierarchy");

 if (MrmFetchWidget(s_MrmHierarchy, "cstext_main", toplevel,
 &text_w, &dummy_class) != MrmSUCCESS)
 printf("can't fetch widget");

 XtManageChild(text_w);

 XtRealizeWidget(toplevel);

 XtAppMainLoop(app_context);

}

 .
 .
 .

185

Chapter 8. Using the Compound String Text Widget

8.4.2. Using the Toolkit CSText Widget Creation Routine
As described in Section 8.4, "Creating CSText Widgets", you can implement the CSText widget through
UIL or through the Toolkit widget creation routine. Example 8.6, "Toolkit CSText Creation Routine"
demonstrates using the Toolkit CSText widget creation routine to create a CSText widget.

Example 8.6. Toolkit CSText Creation Routine

 .
 .
 .
#include <stdio>
#include <Mrm/MrmAppl.h>
#include <DXm/DXmCSText.h>

static void change_cs();
static void ok_text();
XmString cstring;

Widget toplevel, text_shell,
 text_label, text_w,
 ok_button;

int main(argc, argv)
 unsigned int argc;
 char **argv;
{
 XtAppContext app_context;
 Arg arglist[15];
 int ac = 0;
 XFontStruct *font;
 XmFontList font_list;
 XtCallbackRec callback_arg[2];

 toplevel = XtAppInitialize(&app_context, "example", NULL, 0, &argc,
 argv, NULL, NULL, 0);

 ac = 0;
 cstring = XmStringCreateLtoR("User Defined", XmSTRING_ISO8859_1);
 XtSetArg(arglist[ac], XmNdialogTitle, cstring);ac++;
 XtSetArg(arglist[ac], XmNallowOverlap, TRUE);ac++;
 XtSetArg(arglist[ac], XmNheight, 300);ac++;
 XtSetArg(arglist[ac], XmNwidth, 300);ac++;
 XtSetArg(arglist[ac], XmNresizePolicy, XmRESIZE_GROW);ac++;

 text_shell = XmCreateBulletinBoard(toplevel, "CSText", arglist, ac);
 XmStringFree(cstring);

 ac = 0;
 cstring = XmStringCreateLtoR("Enter a 10-letter title\nfor this widget",
 XmSTRING_ISO8859_1);
 XtSetArg(arglist[ac], XmNlabelString, cstring);ac++;
 XtSetArg(arglist[ac], XmNx, 90);ac++;
 XtSetArg(arglist[ac], XmNy, 20);ac++;
 text_label = XmCreateLabel(text_shell, "textlabel", arglist, ac);
 XmStringFree(cstring);

 font = DXmLoadQueryFont(XtDisplay (toplevel),

186

Chapter 8. Using the Compound String Text Widget

 "-ADOBE-Courier-Bold-R-Normal--14-140-*-*-M-90-ISO8859-1");

 if (font == NULL){
 printf("Fonts Are Not Available");
 exit(0);
 }

 font_list = XmStringCreateFontList(font, XmSTRING_ISO8859_1);

 callback_arg[0].callback = change_cs;
 callback_arg[0].closure = 0;
 callback_arg[1].callback = NULL;
 callback_arg[1].closure = NULL;

 ac = 0;
 XtSetArg(arglist[ac], XmNfontList, font_list); ac++;
 XtSetArg(arglist[ac], XmNx, 40);ac++;
 XtSetArg(arglist[ac], XmNy, 100);ac++;
 XtSetArg(arglist[ac], XmNrows, 2); ac++;
 XtSetArg(arglist[ac], XmNcolumns, 35); ac++;
 XtSetArg(arglist[ac], XmNmaxLength, 10); ac++;
 XtSetArg(arglist[ac], XmNactivateCallback, callback_arg);ac++;

 text_w = DXmCreateCSText(text_shell, "textwidget", arglist, ac);
 XmFontListFree (font_list);

 XtManageChild(text_w);

 XtManageChild(text_label);
 XtManageChild(text_shell);

 XtRealizeWidget(toplevel);

 XtAppMainLoop(app_context);

 }

 /* The user entered a new title*/

static void change_cs(w, tag, reason)

 Widget w;
 int *tag;
 unsigned long *reason;
{
 int ac = 0;
 Arg arglist[15];
 XmString new_text;
 XtCallbackRec ok_arg[2];

 new_text = DXmCSTextGetString(w);
 XtUnmanageChild(w);

 ac = 0;
 XtSetArg(arglist[ac], XmNdialogTitle, new_text);ac++;
 XtSetValues (text_shell, arglist, ac);

 ac = 0;
 cstring = XmStringCreateLtoR("Thank you.\nPress OK to Exit",
 XmSTRING_ISO8859_1);

187

Chapter 8. Using the Compound String Text Widget

 XtSetArg(arglist[ac], XmNlabelString, cstring);ac++;
 XtSetValues (text_label, arglist, ac);
 XmStringFree(cstring);

 ok_arg[0].callback = ok_text;
 ok_arg[0].closure = 0;
 ok_arg[1].callback = NULL;
 ok_arg[1].closure = NULL;

 ac = 0;
 cstring = XmStringCreateLtoR("OK", XmSTRING_ISO8859_1);
 XtSetArg(arglist[ac], XmNlabelString, cstring);ac++;
 XtSetArg(arglist[ac], XmNactivateCallback, ok_arg);ac++;
 XtSetArg(arglist[ac], XmNheight, 60);ac++;
 XtSetArg(arglist[ac], XmNwidth, 60);ac++;
 XtSetArg(arglist[ac], XmNx, 125);ac++;
 XtSetArg(arglist[ac], XmNy, 150);ac++;
 ok_button = XmCreatePushbutton(text_shell, "ok", arglist, ac);

 XtFree(new_text);
 XmStringFree(cstring);

 XtManageChild(text_label);
 XtManageChild(ok_button);
 XtManageChild(text_shell);

}

 /* The user pressed OK*/

static void ok_text(w, tag, reason)
 Widget w;
 int *tag;
 unsigned long *reason;
{
 exit(1);

}

 .
 .
 .

Create a BulletinBoard widget to use as the parent. This example program uses the CSText widget
to change the title of the BulletinBoard widget. The XmNresizePolicy resource is set to
XmRESIZE_GROW to allow the BulletinBoard widget to grow but not shrink. Otherwise, when
the CSText widget was unmanaged, the BulletinBoard widget would shrink.

Create a Label widget. The XmNlabelString resource contains a compound string derived
from "Enter a 10-letter title for this widget" string.

Create a CSText widget with 2 rows, 35 columns, and a maximum length of 10 characters. Note
that the CSText widget is created with 35 columns, not 10, for appearance. The XmNmaxLength
resource limits input to 10 characters regardless of the number or rows or columns.

Manage the CSText widget, the XmLabel widget, and the BulletinBoard widget. Realize the top-
level widget.

188

Chapter 8. Using the Compound String Text Widget

As a result of an activate callback on the CSText widget, the change_cs callback is invoked. The
change_cs callback calls DXmCSTextGetString to get the compound string derived from the user-
entered value of the CSText widget and unmanages the CSText widget.

The compound string is used as the title of BulletinBoard widget.

The label of the XmLabel widget is then changed to "Thank you. Press OK to Exit" and the
BulletinBoard, XmLabel, and XmPushbutton widgets are managed. When the user presses the OK
push button, the program exits.

189

Chapter 8. Using the Compound String Text Widget

190

Chapter 9. Using the SVN Widget
This chapter describes how to use the Structured Visual Navigation (SVN) widget in an application.
The chapter includes examples from the demo SVN widget implementation found in the /usr/examples/
motif directory on UNIX systems and in the DECW$EXAMPLES directory on OpenVMS systems. The
demo uses many of the SVN resources and associated routines. Note that the SVN demo example is not
available with Windows NT.

9.1. Overview of the SVN Widget
The SVN widget presents data in a hierarchical structure and lets the user navigate in, and select from,
the structure.

You can use the SVN widget to present hierarchies of information in an organized manner, as shown
in Figure 9.1, "The SVN Widget" from the SVN demo application. Your application need only tell the
SVN widget about the organization of the data and respond to SVN widget callbacks; the SVN widget is
responsible for actually displaying the data.

Figure 9.1. The SVN Widget

As another example, the DECwindows Mail application uses the SVN widget to create drawers that
contain folders and folders that contain messages. In displaying this hierarchy, you can show just the
drawers (the highest level of information hierarchy); you can open a drawer to display all the folders
within it; and you can open a folder to display all the mail messages in the folder.

191

Chapter 9. Using the SVN Widget

Your application is responsible for creating the hierarchy and supplying the data to the SVN widget; the
actual data in the hierarchy is transparent to the SVN widget.

You can use SVN to display hierarchical information in three different formats, or modes:

● Outline format, as shown in Figure 9.1, "The SVN Widget".

● Tree format, as shown in Figure 9.2, "Tree Format". The tree style can be oriented from the top, the
left, in outline form, and in a user-defined style.

● Column format, as shown in Figure 9.3, "Column Format". The difference between the outline and
column formats is that in column format, a window pane separates a set of components from the rest
of the display. You can scroll horizontally on each side, independently of the other side. However,
you have only one vertical scroll bar.

Figure 9.2. Tree Format

192

Chapter 9. Using the SVN Widget

Figure 9.3. Column Format

9.1.1. Components of an Entry
Each SVN line, or entry, in your hierarchy can display as many as 30 pieces of information, called
components, depending upon the amount of information users need. The components can be of three
data types: text, pixmaps, and widgets.

Components you might want to use include:

● Icon—Depicts the state (expanded or collapsed) of an entry. For example, the folder icon in
DECwindows Mail can show either a closed folder or an open folder. This component is set via the
DXmSvnSetComponentPixmap routine.

● Entry number—Gives the position of the entry within its sublevel, as set with the
DXmSvnAddEntries routine.

● Description—A short line of text that describes the entry. This resource is set via the
DXmSvnSetComponentText or DXmSvnSetComponentWidget routines. You can use the x and y
arguments of the DXmSvnSetComponentText and DXmSvnSetComponentWidget routines to align
the descriptions.

● Child summary—Lists the number and type of entries revealed when an entry is expanded. If an
entry is expanded, this number reflects the number and type of children revealed. You can use the
DXmSvnGetComponentTag routine to get the child summary information.

Not all of the components are always relevant to users. For example, the child summary would not be a
relevant piece of information for a nonexpandable entry.

193

Chapter 9. Using the SVN Widget

The SVN widget includes routines that allow your application to insert and remove components as
necessary. Additional support routines allow you to set the text associated with a component, set a
component hidden, set and determine a component's width, and determine a component's number.

9.1.2. Selection Mode
The term selection mode refers to the portion of an entry that is selected and displayed in reverse video
in response to a user action. Mode selection (other than DXmSvnKselectEntry) is probably most useful
in column mode. Note that you can select only the complete entry from the primary work window; the
secondary work window lets you select individual components within an entry.

The SVN Widget gives you a choice of four selection modes:

● DXmSvnKselectEntry—Select the entire entry.

● DXmSvnKselectComp—Select a component within an entry.

● DXmSvnKselectCompAndPrimary—Select a component within the secondary work window and
select the entire entry from the primary work window.

● DXmSvnKselectEntryOrComp—Select the entire entry if in the primary work window or select the
component if in the secondary work window.

The SVN widget includes support routines that allow your application to select entries chosen by users.
Your application can call the DXmSvnGetNumSelections routine to determine how many entries are
selected and the DXmSvnGetSelections routine to return the selected entry numbers. Additional routines
set and clear selected entries and hide and show selections.

9.1.3. Tree-Mode Navigation Window
As a user navigates through the data hierarchy using tree display mode, it is possible to lose track of an
entry's relative position within the hierarchy. The SVN widget includes a navigation window that users
can use to find their relative position within the tree display mode. This navigation window is activated
by a push button in the SVN widget. An example navigation window is shown in Figure 9.4, "SVN Tree-
Mode Navigation Window".

194

Chapter 9. Using the SVN Widget

Figure 9.4. SVN Tree-Mode Navigation Window

You can set the DXmSvnNnavWindowTitle resource to specify a title for this navigation window.

9.1.4. Location Cursor
The location cursor is a solid rectangle around the current entry. When the SVN widget is created,
the location cursor is on the first entry in the display by default. Your application can set the
DXmSvnNstartLocationCursor resource to specify which entry the location cursor should be first drawn
on. This resource can be set only when the SVN widget is created.

After the first entry, the location cursor is always located on the last selected or toggled entry. In
addition, all callbacks report which entry has the location cursor in the callback structure.

9.1.5. Highlighting Entries
The SVN widget includes support routines that allow your application to highlight entries chosen
by users by enclosing them in dashed rectangular boxes. Your application decides how to treat the
highlighted entries; the SVN widget does not assign any special significance to highlighted entries.

Your application can call the DXmSvnGetNumHighlighted routine to determine how many entries are
highlighted and the DXmSvnGetHighlighted routine to return the highlighted entry numbers.

9.1.6. Editable Text
The SVN widget supports both read-only and read/write text in components.

Your application can call the DXmSvnSetComponentText routine to set a read-only compound string
component and the DXmSvnGetComponentText routine to get the address of this compound string
component.

195

Chapter 9. Using the SVN Widget

For read/write text, your application can call the DXmSvnSetComponentWidget to use a subwidget as a
component.

Managing subwidgets requires significant system resources. If an application supports read/write text,
it should dynamically replace text components with a subwidget component when the user selects an
entry for modification. For example, the SVN demo application uses a CSText widget as a subwidget
component. The demo application allows users to toggle between read-only and read/write states.

if (Editable)
 if (node->stext == 0)
 {

 Widget primary_window;
 XtSetArg (args[0], DXmSvnNprimaryWindowWidget, &primary_window);
 XtGetValues (svnw, args, 1);

 XtSetArg (args[0], XmNvalue, node->text);
 XtSetArg (args[1], XmNcolumns, 50);
 XtSetArg (args[2], XmNrows, 1);
 XtSetArg (args[3], XmNwordWrap, FALSE);
 node->stext = DXmCreateCSText(primary_window, "TextWidget", args, 4);
 };

 if (Editable)
 DXmSvnSetComponentWidget (svnw, data->entry_number, 2,
 pixmap_width+4, 0, node->stext);
 else
 DXmSvnSetComponentText (svnw, data->entry_number, 2,
 pixmap_width+4, 0, node->text, fontlist);

9.1.7. Sensitive Entries
The SVN widget lets your application alter the sensitivity of an entry. The DXmSvnSetEntrySensitivity
routine lets you make an entry sensitive or insensitive; the DXmSvnGetEntrySensitivity routine returns
the sensitivity of an entry.

9.1.8. Disabling/Enabling the SVN Widget
The SVN widget provides routines that lock (DXmSvnDisableDisplay) and unlock
(DXmSvnEnableDisplay) the SVN widget. These routines allow your application to make changes to
the SVN widget and update the display without the user making additional changes. For example, if
a user expands an entry, the DXmSvnDisableDisplay routine makes sure that further user actions are
not processed until the expansion is completed and your application calls the DXmSvnEnableDisplay
routine.

Your application does not need to disable and enable the SVN widget in response to a callback. The
SVN widget automatically disables the widget prior to issuing the callback and automatically enables the
widget upon return.

9.1.9. Invalidating the SVN widget
The SVN widget is unlike other widgets in that, when your application needs to change one or more
components in an entry, the application calls the DXmSvnInvalidateEntry routine to make the SVN
widget reflect the change.

For example, assume that your application uses a CSText widget as a subwidget component to store text.
To change the text in this component, your application would:

196

Chapter 9. Using the SVN Widget

1. Update the data hierarchy to reflect the new text.

2. Call XtSetArg and XtSetValues to use the new value in the CSText widget.

3. Call DXmSvnDisableDisplay to disable the SVN widget.

4. Call the DXmSvnInvalidateEntry routine. DXmSvnInvalidateEntry invokes the
DXmSvnNgetEntryCallback callback, which should call the DXmSvnSetComponentWidget routine
to use the revised CSText widget. Your application does not explicitly manage either the CSText or
SVN widgets.

5. Call DXmSvnEnableDisplay to enable the SVN widget.

The components of an entry are internal to the SVN widget and cannot be set by calls to XtSetArg
and XtSetValues. However, SVN resources not related to the components of an entry—for example,
DXmSvnNtreePerpendicularLines—can be set by calls to XtSetArg and XtSetValues.

Your application can also call the DXmSvnValidateAll routine to make the SVN widget reflect changes
to all the entries.

9.1.10. Outer Scroll Bar Arrows
The DXmSvnNuseScrollButtons resource creates outer arrows on a scroll bar. Outer arrows perform
operations that are a magnitude greater than the inner, or stepper, arrows. Clicking on the up stepper
arrow moves the display up one unit, which is the number of rows in the display. Clicking on the
upper outer arrow moves the display to the top level of the hierarchy the user is currently viewing. The
DXmSvnNuseScrollButtons resource is TRUE by default.

For example, if a screen displays messages 20 through 40 in a folder that contains 200 mail messages,
clicking on the upper outer arrow causes messages 1 to 20 to be displayed; clicking on the lower outer
arrow causes messages 180 to 200 to be displayed.

If the hierarchy is a single-rooted hierarchy, that is, it has one level-zero entry, then clicking Shift/MB1
on the outer arrows scrolls to the top or bottom.

If the hierarchy has multiple level-zero entries, clicking Shift/MB1 on the outer arrows scrolls the display
to the top or bottom of each level 0 hierarchy.

In an application like DECwindows mail, which has multiple drawers (all at level 0) and multiple folders
(at level 1), clicking Shift/MB1 on the outer arrows scrolls from drawer to drawer (level 0). Clicking
MB1 scrolls from folder to folder.

The Ctrl/Up Arrow and Ctrl/Down Arrow keyboard sequences perform the same functions as the outer
arrows without modifiers.

9.1.11. Scroll Bar Index Window
The SVN widget supports smooth scrolling for outline and column display mode when the
DXmSvnNliveScrolling resource is set to TRUE. This is the default action.

However, if you set the DXmSvnNliveScrolling resource to FALSE, the SVN widget implements an
index window. The index window is a special window, attached to the scroll bar, that offers a guide to
the material to be displayed in the window when a user releases the mouse button. Your application can
call the DXmSvnSetEntryIndexWindow routine to make sure an entry is displayed in the index window.

197

Chapter 9. Using the SVN Widget

9.2. SVN Widget Programming Considerations
This section discusses SVN widget programming considerations, including topics related to the data
hierarchy, enabling and disabling the SVN widget, manipulating components, and callbacks.

9.2.1. Creating the Data Hierarchy
The SVN widget displays the hierarchical structure supplied by the application. The actual information in
the hierarchy is transparent to the SVN widget; the application is responsible for creating the hierarchy
and supplying the individual lines of text to the SVN widget.

Your application must therefore implement a mechanism for tracking data in the hierarchy. The data is
usually arranged as initial entries, children, and siblings. For example, the SVN demo application uses the
following node data structure to define its hierarchy:

typedef struct node
 {
 int level;
 int number;
 XmString text;
 struct node *sibling;
 struct node *children;
 Widget stext;
 Boolean opened;

 }_Node, *NodePtr;

Table 9.1, "The _Node Data Structure" describes the fields in the _Node data structure.

Table 9.1. The _Node Data Structure

Field Description

level The level number of children.
number The number of children.
text Text (XmString) associated with an entry.
sibling Pointer to the first sibling of this entry.
children Pointer to the first child of this entry. If there are

multiple children, they are tracked as siblings of the
first child.

stext CSText widget associated with an entry.
opened Boolean value that indicates whether the entry is

opened; that is, whether children are showing.

The _Node data structure lets you visualize the relationship of the data in the hierarchy.

The code fragment shown in Example 9.1, "Portion of the SVN Demo Application Data Hierarchy"
implements part of the data hierarchy for the SVN demo application. B, P1, P2, and so forth are _Node
data structures.

Example 9.1. Portion of the SVN Demo Application Data Hierarchy

 .
 .
 .
/*
** Fill in the child pointers for the book, parts, and chapters

198

Chapter 9. Using the SVN Widget

*/
 B.children = &P1;
 P1.children = &C11;
 P2.children = &C21;
 P3.children = &C31;
 P4.children = &C41;
 P5.children = &C51;
 P6.children = &C61;
 P7.children = NULL;

 C11.children = NULL;
 C12.children = &C121;
 C13.children = &C131;
 C14.children = &C141;
 C15.children = NULL;
 C16.children = &C161;
 C17.children = NULL;
 C21.children = &C211;
 C22.children = &C221;
 C23.children = &C231;
 C31.children = &C311;
 C32.children = &C321;
 C33.children = &C331;
 C41.children = &C411;
 C42.children = &C421;
 C43.children = &C431;
 C44.children = NULL;
 C51.children = NULL;
 C52.children = &C521;
 C53.children = &C531;
 C54.children = NULL;
 C55.children = &C551;
 C61.children = NULL;
 C62.children = &C621;
 C63.children = NULL;
 C64.children = NULL;
 C65.children = NULL;
 C66.children = NULL;

/*
** Fill in the sibling pointers for the book
*/
 B.sibling = NULL;

/*
** Fill in the sibling pointers for the parts
*/
 P1.sibling = &P2;
 P2.sibling = &P3;
 P3.sibling = &P4;
 P4.sibling = &P5;
 P5.sibling = &P6;
 P6.sibling = &P7;
 P7.sibling = NULL;

/*
** Fill in the sibling pointers for the chapters
*/
 C11.sibling = &C12;
 C12.sibling = &C13;
 C13.sibling = &C14;
 C14.sibling = &C15;
 C15.sibling = &C16;

199

Chapter 9. Using the SVN Widget

 C16.sibling = &C17;
 C17.sibling = &P2;

 C21.sibling = &C22;
 C22.sibling = &C23;
 C23.sibling = &P3;
 C31.sibling = &C32;
 C32.sibling = &C33;
 C33.sibling = &P4;
 C41.sibling = &C42;
 C42.sibling = &C43;
 C43.sibling = &C44;
 C44.sibling = &P5;
 C51.sibling = &C52;
 C52.sibling = &C53;
 C53.sibling = &C54;
 C54.sibling = &C55;
 C55.sibling = &P6;
 C61.sibling = &C62;
 C62.sibling = &C63;
 C63.sibling = &C64;
 C64.sibling = &C65;
 C65.sibling = &C66;
 C66.sibling = &P7;

 .
 .
 .

The node->children field is a pointer to the first child of an entry. In the case of P1, there are seven
children, C11 through C17. The first child has six siblings.

Note that the node->sibling field of C17 points at P2, not C21; C17 and C21 do not have the same
parent. This organization reflects how the SVN demo equates the entry_number supplied in the
callback with an entry in the data hierarchy. For more information, see Section 9.2.1.2, "Understanding
the entry_number Field".)

The data is arranged so that the application does not have to go back up the hierarchy to the P level to
find the next entry in the hierarchy. If the C21 entry is not opened, the SVN demo code travels down the
C21 path to find the first sibling of C2. If the C2 entry is opened, the last child of C21, C212, has C22
as its sibling.

9.2.1.1. Attaching to Data—The DXmSvnNattachToSourceCallback
Callback
After you create an instance of the SVN widget, you must attach it to the data for the hierarchy. The
attachment is done in the DXmSvnNattachToSourceCallback callback routine, which is invoked when
the SVN widget is realized.

Your application's DXmSvnNattachToSourceCallback callback establishes the data in a parent/child/
sibling hierarchy and then calls the DXmSvnAddEntries routine to specify the initial entries (and
number of entries) in the hierarchy.

One of the required arguments to the DXmSvnAddEntries routine is the entry number after which to
add the new entries, which for the initial entry is zero. In this way, the SVN widget refers to the first
entry as number 1.

An application can also specify an application-specific entry_tag argument to be associated with the
entry.

200

Chapter 9. Using the SVN Widget

For example, the SVN demo application call to DXmAddEntries is as follows:

entry_tags[0] = (unsigned int) &B;
DXmSvnAddEntries (svnw, 0, 1, 0, entry_tags, TRUE);

This call adds one entry (starting after zero) with a level of zero. The address of the first entry in the data
hierarchy, _Node, is passed as a tag, and the entry appears in the scroll index window (if activated) when
the user drags the slider.

The DXmSvnNattachToSourceCallback callback does not provide information about what the entries
contain; that information is obtained by the GetEntry callbacks.

9.2.1.2. Understanding the entry_number Field

Your application must be able to equate the entry_number field supplied in the callback with an entry
in your data hierarchy.

The SVN widget numbering sequence is sequential, starting with 1. The number associated with
subsequent entries depends on whether these entries are opened and have children or siblings. If an entry
is opened and has children, the children are included in the entry numbers. Otherwise, only the siblings
are included.

Consider the following example from the demo program. Assume the entry_number field in the
callback has a value of 5.

entry_number
 1 OSF/Motif Style Guide
 2 1. User Interface Design Principles
 3 2. Input and Navigation Models
 4 3. Selection and Component Activation
 5 4. Application Design Principles

In this example, entry number 1 is opened and has children. However, the child of entry 1, "User
Interface Design Principles", and that child's siblings are not opened. In this case, the entry_number
value of 5 means that the user double clicked on "Application Design Principles".

If the user then double clicked on the child of entry 1, "User Interface Design Principles", and it had
children, the possible entry numbers would be as follows:

entry_number
 1 OSF/Motif Style Guide
 2 1. User Interface Design Principles
 3 1.1 Adopt the User's Perspective
 4 1.2 Give the User Control
 5 1.3 Use Real-World Metaphors
 6 1.4 Keep Interfaces Natural
 7 1.5 Keep Interfaces Consistent
 8 1.6 Communicate Application Actions to the User
 9 1.7 Avoid Common Design Pitfalls
 10 2. Input and Navigation Models
 11 3. Selection and Component Activation
 12 4. Application Design Principles

In this case, an entry_number value of 5 means that the user double clicked on "Use Real-World
Metaphors".

The SVN demo application uses the following code to map the entry_number field, called
node_number in the code, to a _Node data structure.

201

Chapter 9. Using the SVN Widget

Note

Do not confuse node_number with references in the code to the node->number field, which tells if
there are children.

 .
 .
 .

NodePtr LclGetNodePtr (node_number)

 int node_number;

{
 int i;
 NodePtr current_node = &B;

 if (node_number != 1)
 for (i = 2; i <= node_number; i++)
 if (current_node == NULL)
 break;
 else if (current_node->opened)
 current_node = current_node->children;
 else current_node = current_node->sibling;

 return current_node;

This code loops through, trying to find the fifth entry. Assume the entry_number field in the callback
has a value of 5. The code would go through four parent/sibling tests (2 through 5). The current_node
field then contains the address of either a child or sibling, depending on which entries were opened.

9.2.1.3. Getting Information About an Entry
Once the data is attached to the SVN widget, the SVN widget triggers DXmSvnNgetEntryCallback to
get information associated with the first entry, such as the number of components and the text from
the data hierarchy to associate with the entry. Note that DXmSvnNgetEntryCallback is triggered to get
information about any entry in the hierarchy not just the first entry.

In the case of SVN demo application, the DXmSvnNgetEntryCallback callback routine performs the
following functions:

● Determines the font to use for the entry text.

● Associates the entry_number field of the callback data structure with an entry in the data hierarchy.

● Chooses the icon to use with the entry. If there are no children, the child pixmap is used. Otherwise
the parent pixmap is used.

● Calls the DXmSvnSetEntryNumComponents routine to set the number of components for this
entry. The entries in the SVN demo application have two components: the icon to use and the text
associated with the entry.

● Calls the DXmSvnSetEntryTag routine to set the entry_tag field of this entry to the address of
associated _Node data structure.

● If the entry text is editable, creates a CSText widget to hold the text associated with the entry and
makes it a managed subwidget of the SVN widget. For example, for the first entry, a CSText widget
containing the text "Designing the User Interface" is made a managed child of the SVN widget.

202

Chapter 9. Using the SVN Widget

9.2.1.4. Associating Hierarchy Data with SVN
Your application is responsible for linking the data in the hierarchy to entries in the SVN widget. To do
this, your application callback routines call the DXmSvnAddEntries routine based on knowledge of the
hierarchy data.

As described in Section 9.2.1.1, "Attaching to Data—The DXmSvnNattachToSourceCallback Callback",
the top-level entry in the hierarchy is known by the SVN widget as entry number 1. When a user double
clicks on this entry, the DXmSvnNselectAndConfirm callback is generated. The callback includes
the entry_number of the entry, in this case 1. The DXmSvnCallbackStruct callback data structure is
described in Section 9.4, "Associating Callbacks with an SVN Widget".

The callback indicates that the user wants to expand (or contract) this entry.

The demo SVN application's _Node data structure includes fields that track siblings (sibling),
children (children), and whether or not the children of the element are expanded (opened). The
DXmSvnNselectAndConfirm callback routine opens the entry if it is not already opened and calls the
DXmSvnAddEntry routine to add any children that the element might have.

For example, when a user double clicks on entry number 1, the call to DXmSvnAddEntries is translated
as follows:

DXmSvnAddEntries (Svn, node_number, node->number, node->level, NULL, FALSE);

This call adds four children (node->number) to entry number 1 (node_number). The actual text of
these entries is unspecified.

The SVN widget then calls your application's DXmSvnNgetEntry callback routine for each displayed
entry, as described in Section 9.2.1.3, "Getting Information About an Entry".

9.2.2. Disabling/Enabling the SVN Widget
Disabling an instance of the SVN widget prohibits the user from altering the selected entries and allows
your application to modify the underlying data hierarchy. For the changes to appear as expected, your
application must disable the SVN widget before calling the DXmSvnInvalidateEntry routine.

The following example disables the SVN widget, changes the label string associated with the menu entry,
and enables the SVN widget.

void MenuToggleEditable()
{
/*
** Local data declarations
*/
 XmString cs;
 Arg arguments[2];

/*
** Disable the widget. This would not be necessary if this routine was
** being called in response to an SVN callback.
*/
 DXmSvnDisableDisplay (Svn);

/*
** Turn it on or off...
*/
 if (Editable)
 {
 cs = XmStringCreate("Editable Text", XmSTRING_DEFAULT_CHARSET);

203

Chapter 9. Using the SVN Widget

 }
 else {
 cs = XmStringCreate("Non-editable Text", XmSTRING_DEFAULT_CHARSET);
 };

/*
** Change the label
*/
 XtSetArg (arguments[0], XmNlabelString, cs);
 XtSetValues (editableEntry, arguments, 1);
 XmStringFree (cs);

/*
** Tell the source module to make the change
*/
 SourceToggleEditable();

/*
** Re-enable the SVN Widget.
*/
 DXmSvnEnableDisplay (Svn);
}

Note

Your application does not need to disable and enable the SVN widget in response to an SVN callback.
The SVN widget automatically disables the widget prior to issuing the callback and automatically enables
the widget upon return.

9.2.3. Setting the Location Cursor
Your application can set the DXmSvnNstartLocationCursor resource to specify which entry the location
cursor should be first drawn on. By default, the location cursor begins on entry 1.

This resource can be set only when the SVN widget is created. An application is not able to change the
position of this location cursor at any other time. If an XtSetValues is done on this resource, the value is
ignored.

9.2.4. Invalidating an Entry
Your application can invalidate an entry to force the SVN widget to update the entry. As
described in Section 9.1.9, "Invalidating the SVN widget", your application can call the SVN
DXmSvnInvalidateEntry routine to update an entry. The DXmSvnInvalidateEntry routine in turn
invokes your DXmSvnNgetEntryCallback callback routine to obtain the new information.

The DXmSvnInvalidateEntry routine therefore allows your application to generate
DXmSvnNgetEntryCallbacks as needed.

For example:

/*
** Traverse tree and unmanage all editable fields and invalidate
** the entries.
*/
 while (node_number <= SourceNumEntries)
 {
 node = LclGetNodePtr (1);

204

Chapter 9. Using the SVN Widget

 if (node->stext)
 XtUnmanageChild(node->stext);
 DXmSvnInvalidateEntry(Svn, node_number);
 node_number++;
 };

For each entry, test to see if there is an associated CSText widget. If there is, unmanage the widget and
call DXmSvnInvalidateEntry to invoke the DXmSvnNgetEntryCallback callback.

9.2.5. Setting a Tree Style
If your application is in tree mode, it can specify one of the following constants to set the
DXmSvnNtreeStyle resource:

● DXmSvnKtopTree—Oriented from the top.

● DXmSvnKhorizontalTree—Oriented from the left.

● DXmSvnKoutlineTree—Oriented in outline form.

● DXmSvnKuserDefinedTree—Oriented in an application-defined format. The SVN widget uses the
x- and y-coordinate values you specify for an entry to determine its position.

The following example sets the tree style to DXmSvnKtopTree:

cs = XmStringCreate("Top Tree Navigation", XmSTRING_DEFAULT_CHARSET);
XtSetArg (arguments[0], DXmSvnNnavWindowTitle, cs);
XtSetArg (arguments[1], DXmSvnNtreeStyle, DXmSvnKtopTree);
XtSetValues (Svn, arguments, 2);
XtFree (cs);

9.2.6. Setting the Display Mode
Your application can specify one of the following constants to set the DXmSvnNdisplayMode resource:

● DXmSvnKdisplayNone—Used by the DXmSvnSetComponentHidden routine to not hide a
component in any mode; that is, the component is visible in all modes.

● DXmSvnKdisplayOutline—Displayed in outline mode.

● DXmSvnKdisplayTree—Displayed in tree mode.

● DXmSvnKdisplayAllModes—Used by the DXmSvnSetComponentHidden routine to hide a
component in all modes.

● DXmSvnKdisplayColumns—Displayed in column mode.

The following example sets the display mode to DXmSvnKdisplayTree:

XtSetArg (arguments[0], DXmSvnNdisplayMode, DXmSvnKdisplayTree);
XtSetValues (Svn, arguments, 1);

9.2.7. Setting an Entry Coordinate Position
Generally, your application does not have to be concerned with positioning entries because the SVN
widget does this automatically. However, if you specify a tree style of DXmSvnKuserDefinedTree, the
SVN widget uses the x- and y-coordinates you specify to position entries.

Your application can call the DXmSvnSetEntryPosition and DXmSvnGetEntryPosition Toolkit routines
to set and get the x- and y-coordinates for an entry.

205

Chapter 9. Using the SVN Widget

The following example gets the x- and y-coordinates of the parent entries and adds a hard-coded value
of 30 for both the x- and y-coordinates of all children. FALSE is a Boolean value that indicates that the
position information should be interpreted internally by the SVN widget.

/*
** For each child, call SetEntry if the child has children. Also set the
** positions in case we are in UserDefined Tree Style.
*/
 DXmSvnGetEntryPosition(Svn, node_number, FALSE, &x, &y);
 for (i = 1; i <= node->number; i++)
 {
 if (child_node->children != 0)
 DXmSvnSetEntry (Svn, node_number+i, 0, 0, 2, 1, 0, FALSE);
 child_node = child_node->sibling;
 x += 30;
 y += 30;
 DXmSvnSetEntryPosition(Svn, node_number+i, FALSE, x, y);

9.2.8. Setting an Entry Position
The DXmSvnPositionDisplay routine lets you position a specified entry at the top, middle, or
bottom of the display without concern for the number of entries being displayed. You provide the
DXmSvnPositionDisplay routine with the ID of the SVN widget, the entry number of the entry you want
to position, and one of the following constants to specify position:

● DXmSvnKpositionTop

● DXmSvnKpositionMiddle

● DXmSvnKpositionBottom

● DXmSvnKpositionPreviousPage

● DXmSvnKpositionNextPage

In the following code example, note that the tag argument specifies one of the position constants:

void MenuPosition (unused_w, tag)

 Widget unused_w;
 int tag;

{
/*
** Local variables
*/
 int selections [1];

/*
** Can position only one entry at a time, so just get it
*/
 DXmSvnDisableDisplay(Svn);

 if ((tag != DXmSvnKpositionNextPage) &&
 (tag != DXmSvnKpositionPreviousPage))
 DXmSvnGetSelections (Svn, selections, NULL, NULL, 1);
 DXmSvnPositionDisplay(Svn, selections[0], tag);
 DXmSvnEnableDisplay(Svn);

Because the call to this routine is not the result of a callback, disable the SVN widget. If the position
is not equal to DXmSvnKpositionNextPage and DXmSvnKpositionPreviousPage, find out which

206

Chapter 9. Using the SVN Widget

entries are currently selected. Then, position the first of those entries according to the specified position
constant. Enable the SVN widget.

9.2.9. Selecting Entries
The SVN widget selection routines allow your application to:

● Get the number of selections

● Get the entry number of selected entries

● Clear the current selection or selections

● Select all of the entries

● Select a particular component of an entry

● Select a particular entry

● Hide the selections (no reverse video)

● Show the selections if they are hidden

For example, the following code fragment gets the current selections:

void SvnExtended (w)

 Widget w;

{
/*
** Local data declarations
*/
 int number_selected;
 int selections [50];
 int Entry_tags [50];
 int i;

/*
** Ask how many were selected.
*/
 number_selected = DXmSvnGetNumSelections (w);

/*
** Get those that are selected
*/
 DXmSvnGetSelections (w, selections, NULL, Entry_tags, number_selected);

This example gets the entry numbers of the current selections in the selections argument. The
number of current selections (number_selected) is returned by the DXmSvnGetNumSelections
routine.

If you want your SVN widget to support multiple selections, you must set the
DXmSvnNmultipleSelections resource to TRUE.

9.2.10. Manipulating Entries
The SVN widget manipulation routines allow your application to:

207

Chapter 9. Using the SVN Widget

● Add and delete entries

● Invalidate an entry, as described in Section 9.2.4, "Invalidating an Entry"

● Get and set the sensitivity of an entry

● Get and set new entry-level information

● Get and set the tag associated with an entry

● Get the entry number associated with an entry tag

● Set the number of components associated with an entry

● Set the entry in or out of the scroll index window (if activated) when the user drags the slider

● Flush an entry to the screen in outline mode

The following example shows how to add an entry:

entry_tags[0] = (unsigned int) &B;
DXmSvnAddEntries (svnw, 0, 1, 0, entry_tags, TRUE);

When a user double clicks on an entry in the SVN demo application, the DXmSvnNselectAndConfirm
callback routine opens the entry if it is not already opened and calls the DXmSvnAddEntry routine to
add any children that the element might have.

This call adds one entry (starting after zero) with a level of zero. The address of the first entry in the data
hierarchy, _Node, is passed as a tag, and the entry appears in the scroll index window (if activated) when
the user drags the slider.

The following example shows how to delete an entry:

DXmSvnDeleteEntries (Svn, node_number, node->number);

The after argument, in this case node_number, is the entry number after which to delete entries.
The count argument, in this case node->number, is the number of entries to delete. Assume that
node_number had a value of 1 and node->number had a value of 3. The example would delete
entries 2, 3, and 4.

If you want to delete the children of an entry, pass the parent's entry number in the after argument
and the number of its children in the count argument.

In the following example, entries are set sensitive or insensitive depending on the value of the
application-specified tag argument. Because the call to this code is not the result of a callback, the
example disables and enables the SVN widget.

 .
 .
 .
/*
** Disable Svn while making changes
*/
 DXmSvnDisableDisplay(Svn);

 if (tag == 0)
 while (DXmSvnGetNumSelections(Svn) > 0)
 {
 DXmSvnGetSelections (Svn, selections, NULL, NULL, 1);
 DXmSvnSetEntrySensitivity(Svn, selections[0], FALSE);
 DXmSvnClearSelection(Svn, selections[0]);

208

Chapter 9. Using the SVN Widget

 }

 if (tag == 1)
 for (i = 1; i <= SourceNumEntries; i++)
 DXmSvnSetEntrySensitivity(Svn, i, TRUE);
 .
 .
 .
/*
** Changes done so reenable
*/
 DXmSvnEnableDisplay(Svn);
}

9.2.11. Manipulating Column Mode Entries
Column mode allows your application to split the SVN widget display into two columns, which are
comprised of primary and secondary work windows. The DXmSvnNstartColumnComponent resource
specifies the number of the last component in the primary work window; that is, the number of the
component after which components are to be located in the secondary work window.

For example, the following code fragment specifies that components numbered 4 and greater are to be
located in the secondary work window.

 .
 .
 .
XtSetArg (arguments[0], DXmSvnNstartColumnComponent, 3);
XtSetArg (arguments[1], DXmSvnNcolumnLines, TRUE);
XtSetValues (Svn, arguments, 2);

You can select only the complete entry from the primary work window; the secondary work window
lets you select individual components within an entry. You can call the DXmSvnInsertComponent and
DXmSvnRemoveComponent routines to add or remove components from an entry.

9.2.12. Flushing an Entry
Your application can call the DXmSvnFlushEntry routine to display an entry on the screen while in
outline mode. If the entry number you pass to DXmSvnFlushEntry is one greater than the entry number
of the last displayed entry and there is enough space for the entry to fit, the entry is appended to the set
of visible entries. If there is not enough blank space for the entry to fit, DXmSvnFlushEntry scrolls to
the entry.

9.2.13. Manipulating Components
As described in Section 9.1.1, "Components of an Entry", each entry in your hierarchy can display
as many as 30 components of information, depending upon the amount of information users need.
Components can be of three data types: text, pixmaps (icons), and widgets.

Components you might want to use include:

● Icon

● Entry number

● Description

● Child summary

209

Chapter 9. Using the SVN Widget

The SVN widget manipulation routines allow your application to:

● Set a pixmap to be used for the icon

● Set a compound string to be used for the description

● Set a widget as a component

● Set a component hidden from the user

● Insert and remove components

● Set and get a component's width

● Set and get a tag to be used as the description component

● Get a component's number (1 to 30)

The following is an example of how to create and set a pixmap to be used as an icon:

 .
 .
 .

/*
** Create the pixmap.
*/
 parent_pixmap = XCreatePixmapFromBitmapData (
 display, /* (IN) display */
 XDefaultRootWindow(display), /* (IN) drawable */
 parent_pixmap_bits, /* (IN) bitmap data */
 pixmap_width, /* (IN) width */
 pixmap_height, /* (IN) height */
 foreground_pixel, /* (IN) foreground pixel */
 background_pixel, /* (IN) background pixel */
 DefaultDepthOfScreen (screen)); /* (IN) pixmap depth */

 child_pixmap = XCreatePixmapFromBitmapData (
 display, /* (IN) display */
 XDefaultRootWindow(display), /* (IN) drawable */
 child_pixmap_bits, /* (IN) bitmap data */
 pixmap_width, /* (IN) width */
 pixmap_height, /* (IN) height */
 foreground_pixel, /* (IN) foreground pixel */
 background_pixel, /* (IN) background pixel */
 DefaultDepthOfScreen (screen)); /* (IN) pixmap depth */

 .
 .
 .
 DXmSvnDisableDisplay(Svn);

 if (node->number == 0)
 DXmSvnSetComponentPixmap (svnw, data->entry_number, 1, 0, 0,
 child_pixmap, pixmap_width, pixmap_height);

 else DXmSvnSetComponentPixmap (svnw, data->entry_number, 1, 0, 0,
 parent_pixmap, pixmap_width, pixmap_height);
 .
 .
 .
 DXmSvnEnableDisplay(Svn);

This example creates two separate pixmaps: one for parent entries and one for entries without children.
The example then uses the node->number field to determine if the selected entry has children and sets

210

Chapter 9. Using the SVN Widget

the icon component accordingly. Because the call to this code is not the result of a callback, the example
disables and enables the SVN widget.

9.2.14. Highlighting an Entry
Application users might want to highlight entries to make them stand out in a long list of entries.
Another possible use of highlighting is to highlight the user's selection so that the user can confirm the
selection. For example, when a user requests a pop-up menu by clicking MB3 on an entry, DECwindows
Mail highlights the entry.

The SVN widget allows your application to highlight one or more entries by framing them in dashed
rectangular boxes. Your application decides how to treat the highlighted entries; the SVN widget does
not assign any special significance to highlighted entries.

The SVN widget includes routines that allow your application to:

● Set and clear highlighting for an entry

● Set and clear highlighting for all entries

● Show highlighted entries

● Hide the highlighting for one or more entries

● Get the number of highlighted entries

● Get the entry numbers of highlighted entries

The following example highlights all entries:

/*
** This routine is the callback for the Highlight All button
*/
void MenuHighlightAll()
{
 DXmSvnDisableDisplay(Svn);
 DXmSvnHighlightAll(Svn);
 DXmSvnEnableDisplay(Svn);
}

Because the call to this code is not the result of a callback, the example disables and enables the SVN
widget.

If your application is to use highlighting, you should set the DXmSvnNexpectHighlighting resource to
TRUE to leave room for the highlight rectangle.

9.2.15. Getting the Displayed Entries
The SVN widget includes routines that allow your application to get the number of entries currently
being displayed in the SVN window and then get the entry numbers, tag values, and y-coordinates
associated with those entries.

In the following example, DXmSvnGetDisplayed returns the entry numbers of the displayed entries to
the array of integers specified by the disp_nums argument, does not use the tag argument value,
and returns the y-coordinates to the disp_ys argument. The disp_count argument is the number
returned by the DXmSvnGetNumDisplayed routine.

 .
 .

211

Chapter 9. Using the SVN Widget

 .
/*
** Local data declarations
*/
 int disp_count;
 int disp_nums [75];
 int disp_ys [75];
 int i;

/*
** Ask how many are being displayed. If none are being displayed, then
** leave.
*/
 disp_count = DXmSvnGetNumDisplayed (w);
 if (disp_count == 0)
 return;

/*
** Max out at 75 hardcoded
*/
 if (disp_count > 75) disp_count = 75;

/*
** Get those that are displayed. The null field is for a tag array.
*/
 DXmSvnGetDisplayed (w, disp_nums, NULL, disp_ys, disp_count);

9.2.16. Dragging an Entry
The SVN widget includes an entry-dragging mechanism that lets a user click MB2 on an entry, drag that
entry to a new location, and release MB2 to move the entry.

The SVN widget also allows an application to implement an application-specific dragging mechanism.
Your application can call the DXmSvnSetApplDragging routine to toggle between the SVN and
application-specific dragging modes.

If the DXmSvnNselectionsDraggedCallback callback routine is not null, and application-specific
dragging is not set, a callback is generated when entries are being dragged with MB2. The SVN widget
implements the dragging function; your application can use this callback to perform some dragging-
related function.

If your application calls the DXmSvnSetApplDragging routine to set the application-specific dragging
mode, the DXmSvnNdraggingCallback is generated when the user clicks on MB2. When the application
dragging is complete, the DXmSvnNdraggingEndCallback is generated. If your application uses
application-specific dragging, you must provide the callback routines.

9.2.17. Ghosting
As described in Section 9.2.16, "Dragging an Entry", the SVN widget allows applications to implement
their own application-specific entry dragging mechanism. As part of this dragging mechanism, your
application can define the shape, size, and relative x and y origins of a “ghost” image that follows the
entries as they are moved.

The ghost resources are as follows:

● DXmSvnNghostHeight—Height of ghost pixmap.

● DXmSvnNghostPixmap—Pixmap of ghosting image.

212

Chapter 9. Using the SVN Widget

● DXmSvnNghostWidth—Width of ghost pixmap.

● DXmSvnNghostX—Relative x offset of the ghost image from the actual entry. This field is provided
because the ghost image can be larger or smaller than the size of the entry.

● DXmSvnNghostY—Relative y offset of the ghost image from the actual entry. This field is provided
because the ghost image can be larger or smaller than the size of the entry.

The following example gets the x and y offsets of the ghost image. Then, it gets the current selections—
that is, the entries being moved—and sets their new entry positions. The data->x and data->y fields of
the callback indicate the origin of the ghost; that is, the data->x and data->y fields give the location of
the ghost and not of the entry itself.

/*
 ** If not user defined tree, then return
 */
 XtSetArg (arguments[0], DXmSvnNghostX, &offset_x);
 XtSetArg (arguments[1], DXmSvnNghostY, &offset_y);
 XtSetArg (arguments[2], DXmSvnNtreeStyle, &tree_style);
 XtGetValues (Svn, arguments, 3);

 if (tree_style == DXmSvnKuserDefinedTree)
 {
 /*
 ** Move the entry to the new position
 */
 DXmSvnGetSelections (Svn, selection, NULL, entry_tags, num_selections);
 DXmSvnSetEntryPosition (Svn, selection[0], TRUE,
 data->x-offset_x, data->y-offset_y);
 return;
 }

9.2.18. Setting Entry Font Lists
The SVN widget lets your application set default font lists for each entry level or to use one font list as
the default for all entry levels. The font list resources are as follows:

● DXmSvnNfontList—Default font list when no level font lists are specified

● DXmSvnNfontListLevel0—Default level 0 font list

● DXmSvnNfontListLevel1—Default level 1 font list

● DXmSvnNfontListLevel2—Default level 2 font list

● DXmSvnNfontListLevel3—Default level 3 font list

● DXmSvnNfontListLevel4—Default level 4 font list

The SVN demo application assigns a child level number (the first field in the data structure) to each
entry in the hierarchy, as follows:

static _Node B = { 1, 7};
static _Node P1 = { 2, 7};
static _Node P2 = { 2, 3};
static _Node P3 = { 2, 3};
static _Node P4 = { 2, 4};
 .
 .
 .

213

Chapter 9. Using the SVN Widget

Therefore, if you set the DXmSvnNfontListLevel2 resource, all level 2 entries (children of P1, P2, P3,
and P4) use the specified font list.

The following example sets the DXmSvnNfontListLevel2 and DXmSvnNfontListLevel3 resources:

XmFontList fontlist;
Arg arglist[10];
int ac;

 .
 .
 .

fontlist = XmFontListCreate (XLoadQueryFont (XtDisplay(toplevel),
 "-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--14-100-*-*-P-80-*"),
 XmSTRING_DEFAULT_CHARSET);

ac = 0;
XtSetArg (arglist[ac], DXmSvnNfontListLevel2, fontlist);ac++;
XtSetArg (arglist[ac], DXmSvnNfontListLevel3, fontlist);ac++;
XtSetValues (svn_widget, arglist, ac);
 .
 .
 .

Note that you can set the font list for a component independently of the font list for the entire entry. For
example, if you use the DXmSvnSetComponentText routine to specify a compound string, you can use
the fontlist argument to specify a font list for a component.

9.3. Setting Tree-Mode Attributes
This section describes the resources that are specific to tree mode.

9.3.1. Manipulating Tree Position
The SVN widget includes routines that allow your application to get and reinstate the tree position when
the display mode is DXmSvnDisplayTree. The routines provide a way to determine the exact positioning
of the display, based on x- and y-coordinates known internally by the SVN widget, and to store that
position for later use. When your application restores the saved position, the SVN widget must be in the
same state (same size and number of entries) as when the position was saved.

9.3.2. Setting the Tree-Mode Arc Width
Tree display mode entries are surrounded by an outline that makes the boundaries between entries
clearer. You can use the DXmSvnNtreeArcWidth resource to specify an arc width for this outline.

For example, the SVN demo application sets the DXmSvnNtreeArcWidth resource to allow users to
toggle between oval (arc_width = 15) and rectangular (arc_width = 0) entries.

if (arc_width == 0)
 {
 arc_width = 15;
 XtSetArg (arguments[0], DXmSvnNtreeArcWidth, arc_width);
 XtSetValues (Svn, arguments, 1);
 cs = XmStringCreate("Rectangular Entries", XmSTRING_DEFAULT_CHARSET);
 }
else {

 arc_width = 0;
 XtSetArg (arguments[0], DXmSvnNtreeArcWidth, arc_width);
 XtSetValues (Svn, arguments, 1);

214

Chapter 9. Using the SVN Widget

 cs = XmStringCreate("Oval Entries", XmSTRING_DEFAULT_CHARSET);
 };

If arc_width is zero, rectangular outlines are displayed. Set arc_width to 15 to display oval
entries and switch the toggle-to label to "Rectangular Entries".

If arc_width is not zero, oval outlines are displayed. Set arc_width to zero to display
rectangular entries and switch the toggle-to label to "Oval Entries".

9.3.3. Centering Tree-Mode Components
The DXmSvnNtreeCenteredComponents resource lets you vertically center all of the components
within an entry. The SVN widget automatically alters the size of the entries to fit the centered
components.

For example, the SVN demo application sets the DXmSvnNtreeCenteredComponents resource to let
users toggle between centered and “normal” components.

if (centered_components)
 {
 centered_components = FALSE;
 XtSetArg (arguments[0], DXmSvnNtreeCenteredComponents,
 centered_components);
 XtSetValues (Svn, arguments, 1);
 cs = XmStringCreate("Components Centered", XmSTRING_DEFAULT_CHARSET);
 }
 else {

 centered_components = TRUE;
 XtSetArg (arguments[0], DXmSvnNtreeCenteredComponents,
 centered_components);
 XtSetValues (Svn, arguments, 1);
 cs = XmStringCreate("Normal Components", XmSTRING_DEFAULT_CHARSET);
 };

If the components are centered, pass a Boolean value of FALSE to revert to normal components.
Switch the toggle-to label to "Components Centered".

If the components are not centered, pass a Boolean value of TRUE to center the components.
Switch the toggle-to label to "Normal Components".

9.3.4. Tree-Mode Outlines
You can use the DXmSvnNtreeEntryOutlines resource to toggle on and off the outline surrounding
tree-mode entries.

For example, the SVN demo application sets the DXmSvnNtreeEntryOutlines resource to allow users
to turn outlines on and off.

if (outlines)
 {
 outlines = FALSE;
 XtSetArg (arguments[0], DXmSvnNtreeEntryOutlines, outlines);
 XtSetValues (Svn, arguments, 1);
 cs = XmStringCreate("Add Outlines", XmSTRING_DEFAULT_CHARSET);
 }
else {

 outlines = TRUE;
 XtSetArg (arguments[0], DXmSvnNtreeEntryOutlines, outlines);
 XtSetValues (Svn, arguments, 1);
 cs = XmStringCreate("Remove Outlines", XmSTRING_DEFAULT_CHARSET);
 };

215

Chapter 9. Using the SVN Widget

If outlines are on, pass a Boolean value of FALSE to turn them off. Switch the toggle-to label to
"Add Outlines".

If outlines are off, pass a Boolean value of TRUE to turn them on. Switch the toggle-to label to
"Remove Outlines".

9.3.5. Tree-Mode Entry Shadows
You can use the DXmSvnNtreeEntryShadows resource to add shadowing to the outline surrounding
tree-mode entries.

For example, the SVN demo application sets the DXmSvnNtreeEntryShadows resource to allow users
to turn shadowing on and off.

if (shadows)
 {
 shadows = FALSE;
 XtSetArg (arguments[0], DXmSvnNtreeEntryShadows, shadows);
 XtSetValues (Svn, arguments, 1);
 cs = XmStringCreate("Add Shadows", XmSTRING_DEFAULT_CHARSET);
 }
else {

 shadows = TRUE;
 XtSetArg (arguments[0], DXmSvnNtreeEntryShadows, shadows);
 XtSetValues (Svn, arguments, 1);
 cs = XmStringCreate("Remove Shadows", XmSTRING_DEFAULT_CHARSET);
 };

If shadowing is on, pass a Boolean value of FALSE to turn it off. Switch the toggle-to label to
"Add Shadows".

If shadowing is off, pass a Boolean value of TRUE to turn it on. Switch the toggle-to label to
"Remove Shadows".

9.3.6. Tree-Mode Perpendicular Lines
You can set the DXmSvnNtreePerpendicularLines resource to toggle between perpendicular and
diagonal connecting lines for tree-mode entries.

For example, the SVN demo application sets the DXmSvnNtreePerpendicularLines resource to allow
users to toggle between perpendicular and diagonal connecting lines.

 if (perpendicular_lines)
 {
 perpendicular_lines = FALSE;
 XtSetArg (arguments[0], DXmSvnNtreePerpendicularLines,
 perpendicular_lines);
 XtSetValues (Svn, arguments, 1);
 cs = XmStringCreate("Perpendicular Lines", XmSTRING_DEFAULT_CHARSET);
 }
 else {

 perpendicular_lines = TRUE;
 XtSetArg (arguments[0], DXmSvnNtreePerpendicularLines,
 perpendicular_lines);
 XtSetValues (Svn, arguments, 1);
 cs = XmStringCreate("Diagonal Lines", XmSTRING_DEFAULT_CHARSET);
 };

If perpendicular lines are on, pass a Boolean value of FALSE to turn them off. Switch the toggle-to
label to "Perpendicular Lines".

216

Chapter 9. Using the SVN Widget

If perpendicular lines are off, pass a Boolean value of TRUE to turn them on. Switch the toggle-to
label to "Diagonal Lines".

9.4. Associating Callbacks with an SVN
Widget
The SVN widget communicates with your application through callback routines established by the
application during the creation of the widget. The SVN widget uses these callback routines when
attaching to or detaching from the hierarchy data, as the result of a user action, when the widget needs
the display information associated with an entry, and so forth.

The format of the DXmSvnCallbackStruct data structure is shown in Example 9.2, "The
DXmSvnCallbackStruct Data Structure".

Note

The format of the SVN callback data structure is specific to the callback. The only portion that is always
available is the callback reason code.

Example 9.2. The DXmSvnCallbackStruct Data Structure

typedef struct
{
 int reason;
 int entry_number;
 int component_number;
 int first_selection;
 int x;
 int y;
 unsigned int entry_tag;
 Time time;
 int entry_level;
 int loc_cursor_entry_number;
 int transfer_mode;
 int dragged_entry_number;
 XEvent *event;
} DXmSvnCallbackStruct;

To associate a callback routine with an SVN widget callback, pass a callback routine list to one of the
SVN widget callback resources. See DECwindows Extensions to Motif for a list of the callbacks and the
conditions that trigger them.

9.5. SVN Help Callback
Your application can use the DXmSvnNhelpRequestedCallback callback to specify a routine to call
when the user requests help.

The SVN widget supports two mechanisms for generating help: pressing the Help key and requesting
context-sensitive help on the scroll bar, navigation push button, or navigation window. The SVN
widget sets one of two fields in the DXmSvnCallbackStruct data structure, depending on how help was
requested:

● If the user presses the Help key, the entry number of the currently selected entry is returned in the
loc_cursor_entry_number field of the DXmSvnCallbackStruct data structure.

217

Chapter 9. Using the SVN Widget

● If the user requests context-sensitive help on the scroll bar, navigation push button, or navigation
window, a negative value representing one of the following constants is returned in the
entry_number field of the DXmSvnCallbackStruct data structure:

○ DXmSvnKhelpScroll (–1)—Help on the scroll bar was requested.

○ DXmSvnKhelpNavButton (–2)—Help on the navigation push button was requested.

○ DXmSvnKhelpNavWindow (–3)—Help on the navigation window was requested.

The entry number of the currently-selected entry is also returned in the loc_cursor_entry_number
field of the DXmSvnCallbackStruct data structure.

Your help callback routine should check these two fields to determine the type of help the user
requested.

Example 9.3, "The SVN Help Callback" first tests the entry_number field to see if context-sensitive
help was requested. If entry_number does not contain a negative number, the code tests the
loc_cursor_entry_number field to make sure it is not NULL and then provides overview help on the
SVN entries.

See Chapter 5, "Using the DECwindows Motif Help System" for information on using the DECwindows
Help System routines.

Example 9.3. The SVN Help Callback

static void svn_help_proc (svnw, unused_tag, data)
 Widget svnw;
 int unused_tag;
 DXmSvnCallbackStruct *data;
{
 int help_num = NULL;
 int sens_num = NULL;

 help_num = data->loc_cursor_entry_number;
 sens_num = data->entry_number;

 if (sens_num < 0) {

 if (sens_num == DXmSvnKhelpScroll)
 DXmHelpSystemDisplay(help_context, svn_help,
 "topic", "scroll", help_error, "Help System Error");

 else if (sens_num == DXmSvnKhelpNavButton)
 DXmHelpSystemDisplay(help_context, svn_help, "topic",
 "navigate", help_error, "Help System Error");

 else
 DXmHelpSystemDisplay(help_context, svn_help,
 "topic", "overview",
 help_error,
 "Help System Error");
 return;
 };

 if (help_num != NULL) {
 DXmHelpSystemDisplay(help_context, svn_help, "topic",
 "overview", help_error, "Help System Error");
 };
}

218

Chapter 9. Using the SVN Widget

9.5.1. User-Generated Callbacks
There are a limited number of actions that a user can make during the lifetime of an SVN widget. Table
9.2, "User-Generated Callbacks" describes the callbacks that are generated as a result of user actions.

Table 9.2. User-Generated Callbacks

Action Callback Description

MB1 Click DXmSvnNentrySelectedCallback

DXmSvnNentryUnselectedCallback

DXmSvnNtransitionsDoneCallback

Selects one entry. The SVN
widget sets all previously selected
entries as unselected. Then it
sets this entry as selected. The
selected entry is displayed with
reverse video.

MB1 Double Click DXmSvnNselectAndConfirmCallbackThe user has double clicked
on a single entry. The
callback indicates that the
user wants to expand (or
contract) this entry. The
DXmSvnNselectAndConfirm
callback routine opens the entry
if it is not already opened and
calls the DXmSvnAddEntry
routine to add any children that
the element might have.

MB1 Drag Click DXmSvnNentrySelectedCallback

DXmSvnNtransitionsDoneCallback

Entries are selected as they are
passed over so that at each point
all the entries from the press
point to the current point are
selected. Any entries selected
when MB1 is clicked are
unselected.

Shift/MB1 Click on an Entry DXmSvnNentrySelectedCallback

DXmSvnNtransitionsDoneCallback

All entries between the last
selected entry (on MB1 Click)
and the current entry that the
Shift/MB1 Click is performed on
become selected.

MB1/Ctrl Click DXmSvnNentrySelectedCallback

DXmSvnNentryUnselectedCallback

DXmSvnNtransitionsDoneCallback

The current entry's selection state
is toggled. The location cursor
moves to that entry.

MB1/Ctrl Drag DXmSvnNentrySelectedCallback

DXmSvnNentryUnselectedCallback

DXmSvnNtransitionsDoneCallback

Entries selection state are toggled
as they are passed over so that all
the entries from the press point to
the current point are toggled.

MB2 Click DXmSvnNentryTransfer The DXmSvnNentryTransfer
callback is generated with the
transfer mode "Unknown"
specified.

219

Chapter 9. Using the SVN Widget

Action Callback Description

MB2/Ctrl Click DXmSvnNentryTransfer Same as MB2 Click, but the
transfer of entry should be a
copy operation implemented
by the application. The
DXmSvnKtransferCopy value is
returned in the transfer_mode
field of the callback data
structure.

MB2/Alt Click DXmSvnNentryTransfer Same as MB2 Click, but the
transfer of entry should be a
move operation implemented
by the application. The
DXmSvnKtransferMove value is
returned in the transfer_mode
field of the callback data
structure.

MB2 Drag DXmSvnNselectionsDragged If MB2 is clicked on a selected
entry, all selected entries are
dragged. If MB2 is clicked on a
unselected entry, only that entry
is dragged. A ghost of the entries
is created and is dragged with the
mouse to the release point. The
DXmSvnNselectionsDragged
callback is returned to the
application. The transfer mode
of "Unknown" is specified in the
callback structure.

MB2/Ctrl Drag DXmSvnNselectionsDragged Same as MB2 Drag, but the
transfer of entry or entries
should be a copy operation
implemented by the application.
The DXmSvnKtransferCopy
value is returned in the
transfer_mode field of the
callback data structure.

MB2/Alt Drag DXmSvnNselectionsDragged Same as MB2 Click, but the
transfer of entry should be a
move operation implemented
by the application. The
DXmSvnKtransferMove value is
returned in the transfer_mode
field of the callback data
structure.

MB3 Click DXmSvnNpopupMenuCallback Pop-up menu callback to the
application. The application
should use this button only to
implement a pop-up menu.

220

Chapter 9. Using the SVN Widget

9.6. Creating an SVN Widget
Your application can use any of the methods described in Table 9.3, "SVN Widget Creation Routines" to
create an instance of the SVN widget.

Table 9.3. SVN Widget Creation Routines

UIL object type Use the DXmSvn object-type identifier to create
an SVN widget in a UIL module.

Toolkit routine Use the DXmCreateSvn routine to create an SVN
widget.

Once the SVN widget is created, applications communicate with the widget through Toolkit routine
calls. These routines can change the scope of the structure being displayed, inquire about selections,
and manipulate those selections. Routines to manipulate the selections include clearing the selections,
selecting all of the entries, and getting a list of selected entries.

At a minimum, your application must implement the following SVN callbacks:

1. DXmSvnNattachToSourceCallback, as described in Section 9.2.1.1, "Attaching to Data—The
DXmSvnNattachToSourceCallback Callback"

2. DXmSvnNgetEntryCallback, as described in Section 9.2.1.3, "Getting Information About an Entry"

3. DXmSvnNselectAndConfirmCallback, as described in Section 9.2.1.4, "Associating Hierarchy Data
with SVN"

9.7. SVN Demo Application
This section describes a minimal implementation of the SVN demo application located in the /usr/
examples/motif directory on UNIX systems and the DECW$EXAMPLES directory on OpenVMS
systems. This implementation uses the DXmSvn object-type identifier to create an SVN widget in a UIL
module. Note that the SVN demo application is not available with eXcursion for Windows NT.

You can use this example as a starting point when adding the SVN widget to your application. See the
SVN demo application for additional SVN features.

Note

The source code contains many comment lines that explain how the code functions. This example calls
out lines of code that are of particular interest and provides additional information.

Example 9.4, "svn.uil (UNIX) or SVN.UIL (OpenVMS) Module" contains the UIL module.

Example 9.4. svn.uil (UNIX) or SVN.UIL (OpenVMS) Module

 .
 .
 .
module form
 version = 'v1.0'
 names = case_sensitive

procedure
 svn_attach_proc ();
 svn_confirm_proc ();
 svn_get_entry_proc ();

221

Chapter 9. Using the SVN Widget

 exit_proc (string);

value
 k_exit_accelerator : "Ctrl<Key>z:";
 k_exit_accelerator_text : "Ctrl/Z";

!Build menu for exit button

object
 S_MAIN_WINDOW : XmMainWindow {
 arguments {
 XmNx = 0;
 XmNy = 0;
 XmNwidth = 800;
 XmNheight = 800;
 };
 controls { ! S_MAIN_WINDOW has two children.
 XmMenuBar s_menu_bar;
 DXmSvn main_svn;
 };
 };

object
 s_menu_bar : XmMenuBar {
 arguments {
 XmNorientation = XmHORIZONTAL;
 };
 controls {
 XmCascadeButton file_menu_entry;
 };
 };

object
 file_menu_entry : XmCascadeButton {
 arguments {
 XmNlabelString = "File";
 XmNmnemonic = keysym("F");
 };

 controls {
 XmPulldownMenu file_menu;
 };
 };

! The file pull-down menu with the push buttons it controls.

object
 file_menu : XmPulldownMenu {
 controls {
 XmPushButton exit_button;
 };
 };

object
 exit_button : XmPushButton {
 arguments {
 XmNlabelString = "Exit" ;
 XmNaccelerator = k_exit_accelerator;
 XmNacceleratorText = k_exit_accelerator_text;
 XmNmnemonic = keysym("E");
 };

222

Chapter 9. Using the SVN Widget

 callbacks {
 XmNactivateCallback = procedure exit_proc('normal demo exit');
 };
 };

!The SVN widget object

 object main_svn : DXmSvn
 {
 arguments
 {
 XmNwidth = 826;
 XmNheight = 237;
 };

 callbacks
 {
 DXmSvnNattachToSourceCallback = procedure svn_attach_proc();
 DXmSvnNselectAndConfirmCallback = procedure svn_confirm_proc();
 DXmSvnNgetEntryCallback = procedure svn_get_entry_proc();
 };
 };

end module;
 .
 .
 .

Create an instance of the SVN widget with the three required callbacks:
DXmSvnNattachToSourceCallback, DXmSvnNselectAndConfirmCallback, and
DXmSvnNgetEntryCallback.

Example 9.5, "svn.c (UNIX) or SVN.C (OpenVMS) Module" contains the main part of the C program.

Example 9.5. svn.c (UNIX) or SVN.C (OpenVMS) Module

 .
 .
 .
#include <stdio>
#include <Mrm/MrmAppl.h>
#include <DXm/DXmSvn.h>

Widget toplevel, main_widget, svn_widget;

/**/
/* Local declarations needed for SVN definitions */
/**/

/*
** My local hierarchy storage structure
*/
 typedef struct node
 {
 int level; /* level number of children */
 int number; /* number of children */
 XmString text; /* entry text */
 struct node *sibling; /* pointer to sibling or NULL */

223

Chapter 9. Using the SVN Widget

 struct node *children; /* pointer to children or NULL */
 Widget stext; /* stext widget for this entry */
 Boolean opened; /* children are showing */
 }_Node, *NodePtr;

/*
** Declarations used in building the pixmap
*/
#define pixmap_width 13
#define pixmap_height 13
static char parent_pixmap_bits[] = {

 0x40, 0x00, 0xe0, 0x00, 0xf0, 0x01, 0x08, 0x02, 0xf4, 0x05, 0x16, 0x0d,
 0x57, 0x1d, 0x16, 0x0d, 0xf4, 0x05, 0x08, 0x02, 0xf0, 0x01, 0xe0, 0x00,
 0x40, 0x00};

static char child_pixmap_bits[] = {
 0x40, 0x00, 0xa0, 0x00, 0x10, 0x01, 0x08, 0x02, 0x04, 0x04, 0x02, 0x08,
 0x41, 0x10, 0x02, 0x08, 0x04, 0x04, 0x08, 0x02, 0x10, 0x01, 0xa0, 0x00,
 0x40, 0x00};

/*
** Pixmap structures
*/
 static Pixmap parent_pixmap = NULL;
 static Pixmap child_pixmap = NULL;

/*
** Local data defining all of the nodes of the book. We will initialize
** the first three fields of the structures, namely level, number, and
** text. All of the remaining fields will be initialized in the local
** initialization routines.
*/

 static _Node B = { 1, 7};

 static _Node P1 = { 2, 7};
 static _Node P2 = { 2, 3};
 static _Node P3 = { 2, 3};
 static _Node P4 = { 2, 4};
 static _Node P5 = { 2, 5};
 static _Node P6 = { 2, 6};
 static _Node P7 = { 2, 0};

 static _Node C11 = { 3, 0};
 static _Node C12 = { 3, 2};
 static _Node C13 = { 3, 3};
 static _Node C14 = { 3, 2};
 static _Node C15 = { 3, 0};
 static _Node C16 = { 3, 3};
 static _Node C17 = { 3, 0};
 static _Node C21 = { 3, 2};
 static _Node C22 = { 3, 3};
 static _Node C23 = { 3, 4};
 static _Node C31 = { 3, 9};
 static _Node C32 = { 3, 4};
 static _Node C33 = { 3, 7};
 static _Node C41 = { 3, 2};
 static _Node C42 = { 3, 4};
 static _Node C43 = { 3, 3};
 static _Node C44 = { 3, 0};
 static _Node C51 = { 3, 0};
 static _Node C52 = { 3, 3};

224

Chapter 9. Using the SVN Widget

 static _Node C53 = { 3, 7};
 static _Node C54 = { 3, 0};
 static _Node C55 = { 3, 3};
 static _Node C61 = { 3, 0};
 static _Node C62 = { 3, 9};
 static _Node C63 = { 3, 0};
 static _Node C64 = { 3, 0};
 static _Node C65 = { 3, 0};
 static _Node C66 = { 3, 0};
 static _Node C70 = { 3, 0};

 static _Node C121 = { 4, 0};
 static _Node C122 = { 4, 0};

 static _Node C131 = { 4, 0};
 static _Node C132 = { 4, 0};
 static _Node C133 = { 4, 0};

 static _Node C141 = { 4, 0};
 static _Node C142 = { 4, 0};

 static _Node C161 = { 4, 0};
 static _Node C162 = { 4, 0};
 static _Node C163 = { 4, 0};

 static _Node C211 = { 4, 0};
 static _Node C212 = { 4, 0};

 static _Node C221 = { 4, 0};
 static _Node C222 = { 4, 0};
 static _Node C223 = { 4, 0};

 static _Node C231 = { 4, 0};
 static _Node C232 = { 4, 0};
 static _Node C233 = { 4, 0};
 static _Node C234 = { 4, 0};

 static _Node C311 = { 4, 0};
 static _Node C312 = { 4, 0};
 static _Node C313 = { 4, 0};
 static _Node C314 = { 4, 0};
 static _Node C315 = { 4, 0};
 static _Node C316 = { 4, 0};
 static _Node C317 = { 4, 0};
 static _Node C318 = { 4, 0};
 static _Node C319 = { 4, 0};

 static _Node C321 = { 4, 0};
 static _Node C322 = { 4, 0};
 static _Node C323 = { 4, 0};
 static _Node C324 = { 4, 0};

 static _Node C331 = { 4, 0};
 static _Node C332 = { 4, 0};
 static _Node C333 = { 4, 0};
 static _Node C334 = { 4, 0};
 static _Node C335 = { 4, 0,};
 static _Node C336 = { 4, 0};
 static _Node C337 = { 4, 0};

 static _Node C411 = { 4, 0};
 static _Node C412 = { 4, 0};

 static _Node C421 = { 4, 0};
 static _Node C422 = { 4, 0};

225

Chapter 9. Using the SVN Widget

 static _Node C423 = { 4, 0};
 static _Node C424 = { 4, 0};

 static _Node C431 = { 4, 0};
 static _Node C432 = { 4, 0};
 static _Node C433 = { 4, 0};

 static _Node C521 = { 4, 0};
 static _Node C522 = { 4, 0};
 static _Node C523 = { 4, 0};

 static _Node C531 = { 4, 0};
 static _Node C532 = { 4, 0};
 static _Node C533 = { 4, 0};
 static _Node C534 = { 4, 0};
 static _Node C535 = { 4, 0};
 static _Node C536 = { 4, 0};
 static _Node C537 = { 4, 0};

 static _Node C551 = { 4, 0};
 static _Node C552 = { 4, 0};
 static _Node C553 = { 4, 0};

 static _Node C621 = { 4, 0};
 static _Node C622 = { 4, 0};
 static _Node C623 = { 4, 0};
 static _Node C624 = { 4, 0};
 static _Node C625 = { 4, 0};
 static _Node C626 = { 4, 0};
 static _Node C627 = { 4, 0};
 static _Node C628 = { 4, 0};
 static _Node C629 = { 4, 0};

/*
 * Forward declarations
 */

static void create_svn();
static void svn_attach_proc();
static void svn_confirm_proc();
static void svn_get_entry_proc();
static void exit_proc();
static void LclInitializeList();
Boolean SourceIsNodeParent();
static void SourceToggleNode();
static void SourceOpenNode();
static void SourceCloseNode();
NodePtr LclGetNodePtr();
static void LclCloseNode();
static void LclSetUpPixmap();

int SourceNumComps = 2;

int SourceNumEntries;

static MrmHierarchy s_MrmHierarchy;
static MrmType *dummy_class;
static char *db_filename_vec[] =

 {"create_svn.uid"
 };

/* The names and addresses of things that Mrm has to bind. The names do

226

Chapter 9. Using the SVN Widget

 * not have to be in alphabetical order. */

static MrmRegisterArg reglist[] = {
 {"svn_attach_proc", (caddr_t) svn_attach_proc},
 {"svn_confirm_proc", (caddr_t) svn_confirm_proc},
 {"exit_proc", (caddr_t) exit_proc},
 {"svn_get_entry_proc", (caddr_t) svn_get_entry_proc}
};

static int reglist_num = (sizeof reglist / sizeof reglist [0]);

int main(argc, argv)
 unsigned int argc;
 char **argv;
{

 XtAppContext app_context;

 MrmInitialize();
 DXmInitialize();

 toplevel = XtAppInitialize(&app_context, "svn example", NULL, 0, &argc,
 argv, NULL, NULL, 0);

 /* Open the UID files (the output of the UIL compiler) in the hierarchy */

 if (MrmOpenHierarchy(1,
 db_filename_vec,
 NULL,
 &s_MrmHierarchy)
 !=MrmSUCCESS)
 printf("can't open hierarchy");

 MrmRegisterNames(reglist, reglist_num);

 if (MrmFetchWidget(s_MrmHierarchy, "main_svn", toplevel,
 &svn_widget, &dummy_class) != MrmSUCCESS)
 printf("can't fetch Svn widget");

 XtManageChild(svn_widget);

 XtRealizeWidget(toplevel);

 XtAppMainLoop(app_context);

}
 .
 .
 .

/*
 * The user pushed the exit button, so the application exits.
 */
static void exit_proc(w, tag, reason)
 Widget w;
 char *tag;
 XmAnyCallbackStruct *reason;
{
 if (tag != NULL)
 printf("Exit - %s\n", tag);

227

Chapter 9. Using the SVN Widget

 exit(1);
}

Include the DXmSvn.h file.

The bitmap data to use when creating the pixmap. On OpenVMS systems, you can use the DECW
$EXAMPLES:XBITMAP.EXE program to create the bitmap.

Declare data structures to be of type _Node and initialize the first two fields of all of the data
structures needed to represent the data hierarchy. For example, for B, the level field is initialized to
1, and the number field is initialized to 7 to indicate that there are 7 children at level 1.

This example uses entries with two components: a pixmap and text.

Specify the svn.uid (UNIX) or SVN.UID (OpenVMS) file.

Fetch the SVN widget, manage it, and realize the top-level widget.

Example 9.6, "SVN Callbacks" contains the SVN widget callbacks.

Example 9.6. SVN Callbacks

 .
 .
 .

/* Svn Attach Callback */

static void svn_attach_proc(svnw)

Widget svnw;
{
/*
** Local data declarations
*/
 unsigned int entry_tags [1];

/*
** Announce the routine on the debugging terminal
*/
 printf ("AttachToSource handler\n");

/*
** Initialize the book data structure
*/
 LclInitializeList ();

/*
** Make room for the books entries. I will pass the tag array here since I
** know that I have exactly one entry and it's easy to figure out the tag.
*/
 entry_tags[0] = (unsigned int) &B;
 DXmSvnAddEntries (svnw, 0, 1, 0, entry_tags, TRUE);

/*
** Reflect this addition in the global count.
*/
 SourceNumEntries = 1;
}

228

Chapter 9. Using the SVN Widget

/*
** SelectAndConfirm callback routine. This routine is called when one and
** only one Entry is selected. The Entry number selected is provided in the
** callback structure.
*/

static void svn_confirm_proc(w, unused_tag, data)

 Widget w;
 int unused_tag;
 DXmSvnCallbackStruct *data;

{
/*
** Announce the routine on the debugging terminal
*/
 printf ("SelectAndConfirm handler\n");

/*
** Determine if the Entry can be expanded. If so, then tell the source module
** to deal with it.
*/
 if (SourceIsNodeParent (data->entry_number, data->entry_tag) == TRUE)
 {
 SourceToggleNode (data->entry_number, data->entry_tag);
 DXmSvnClearSelection (w, data->entry_number);
 };

}

/*
** This routine is called when the widget wants the Source module to set
** the information associated with a particular entry.
*/

static void svn_get_entry_proc(svnw, unused_tag, data)

 Widget svnw;
 int unused_tag;
 DXmSvnCallbackStruct *data;

{
/*
** Local data declarations
*/
 int i;
 NodePtr node;
 Arg args[10];
 XmFontList fontlist;

 fontlist = XmFontListCreate (XLoadQueryFont (XtDisplay(toplevel),
 "*helvetica-medium-r-*-14-*"), XmSTRING_DEFAULT_CHARSET);

/*
** Announce the routine on the debugging terminal
*/
 printf ("GetEntry handler - entry_number = %d, entry_tag = %d\n",
 data->entry_number, data->entry_tag);

/*

229

Chapter 9. Using the SVN Widget

** Get at the node (if needed)
*/
 if (data->entry_tag == 0)
 node = LclGetNodePtr (data->entry_number);
 else node = (NodePtr) data->entry_tag;

/*
** Set up the pixmaps
*/
 LclSetUpPixmap (svnw);

/*
** Set the entry information that both children and parent nodes
** have in common.
*/
 DXmSvnSetEntryNumComponents (svnw, data->entry_number, SourceNumComps);
 DXmSvnSetEntryTag (svnw, data->entry_number, node);

/*
 * The first component is different in parent/child nodes and always present.
 * If there are no children, use the child pixmap. Otherwise use the parent
 * pixmap.
 */

 if (node->number == 0)

 DXmSvnSetComponentPixmap (svnw, data->entry_number, 1, 0, 0,
 child_pixmap, pixmap_width, pixmap_height);

 else DXmSvnSetComponentPixmap (svnw, data->entry_number, 1, 0, 0,
 parent_pixmap, pixmap_width, pixmap_height);

 DXmSvnSetComponentText (svnw, data->entry_number, 2, pixmap_width+4,
 0, node->text, fontlist);

}

/*
** Global routine that opens a closed node or closes an open node.
*/

void SourceToggleNode (node_number, entry_tag)

 int node_number;
 unsigned int entry_tag;

{
/*
** Local data declarations
*/
 NodePtr node;

/*
** Get at the node (if needed)
*/
 if (entry_tag == 0)
 node = LclGetNodePtr (node_number);
 else node = (NodePtr) entry_tag;

230

Chapter 9. Using the SVN Widget

/*
** If it is opened, then close it. Otherwise open it.
*/
 if (node->opened == TRUE)
 SourceCloseNode (node_number, entry_tag);
 else SourceOpenNode (node_number, entry_tag);

}

/*
** Global routine that tells the caller if the given node has child nodes.
*/

Boolean SourceIsNodeParent (node_number, entry_tag)

 int node_number;
 unsigned int entry_tag;

{
/*
** Local data declarations
*/
 NodePtr node;

/*
** Get at the node (if needed)
*/
 if (entry_tag == 0)
 node = LclGetNodePtr (node_number);
 else node = (NodePtr) entry_tag;

/*
** Return TRUE or FALSE
*/
 if (node->children == 0)
 return FALSE;
 else return TRUE;

}

/*
** Global routine that opens a node, given the node number
*/

static void SourceOpenNode(node_number, entry_tag)

 int node_number;
 unsigned int entry_tag;

{
/*
** Local data declarations
*/
 NodePtr node;
 NodePtr child_node;
 int i, x, y;

/*

231

Chapter 9. Using the SVN Widget

** Get at the node (if needed)
*/
 if (entry_tag == 0)
 node = LclGetNodePtr (node_number);
 else node = (NodePtr) entry_tag;

/*
** If it is already opened, then return.
*/
 if (node->opened == TRUE)
 return;

/*
** If it has no children, then return.
*/
 if (node->number == 0)
 return;

/*
** Mark the node as being opened
*/
 node->opened = TRUE;

/*
 * Add the entries. This code does not yet use the entry_tags array.
 */

 DXmSvnAddEntries (svn_widget, node_number, node->number,
 node->level, NULL, FALSE);

/*
 * Get to the first child of this node
 */
 child_node = node->children;

/*
 * For each child, call SetEntry if the child has children. Also set their
 * positions in case we have a UserDefined Tree Style.
 */
 DXmSvnGetEntryPosition(svn_widget, node_number, FALSE, &x, &y);
 for (i = 1; i <= node->number; i++)
 {
 if (child_node->children != 0)
 DXmSvnSetEntry (svn_widget, node_number+i, 0, 0, 2, 1, 0, FALSE);
 child_node = child_node->sibling;
 x += 30;
 y += 30;
 DXmSvnSetEntryPosition(svn_widget, node_number+i, FALSE, x, y);
 };

/*
** Reflect this addition in the global count.
*/
 SourceNumEntries = SourceNumEntries + node->number;

}

/*
** Global routine that closes a node, given the node number
*/

232

Chapter 9. Using the SVN Widget

void SourceCloseNode (node_number, entry_tag)

 int node_number;
 unsigned int entry_tag;

{
/*
** Local data declarations
*/
 NodePtr node;

/*
** Get at the node (if needed)
*/
 if (entry_tag == 0)
 node = LclGetNodePtr (node_number);
 else node = (NodePtr) entry_tag;

/*
** Call the local recursive close routine.
*/
 LclCloseNode(node, node_number);

}

/*
** Recursively close all nodes given a current node pointer
** and a current node number.
*/

void LclCloseNode(node, node_number)

 NodePtr node;
 int node_number;

{
/*
** Local data declarations
*/
 int i;
 NodePtr child_node;

/*
** If the current node is not opened, then return
*/
 if (node->opened == FALSE)
 return;

/*
** Get to the first child of this node
*/
 child_node = node->children;

/*
** For each child, call CloseNode on each child
*/
 for (i=1; i<=node->number; i++)
 {

233

Chapter 9. Using the SVN Widget

 LclCloseNode (child_node, node_number);
 child_node = child_node->sibling;
 };

/*
** Tell SVN to remove its children
*/
 DXmSvnDeleteEntries (svn_widget, node_number, node->number);

/*
** Mark the node closed
*/
 node->opened = FALSE;
 if (node->stext != NULL) XtUnmanageChild(node->stext);

/*
** Reflect this removal in the global count.
*/
 SourceNumEntries = SourceNumEntries - node->number;

}

/*
** Routine that maps a node_number into a node structure pointer.
*/

NodePtr LclGetNodePtr (node_number)

 int node_number;

{
/*
** Local routine data
*/
 int i;
 NodePtr current_node = &B;

/*
** Loop through until it's found. If we hit the end of the list, then
** we'll return a null pointer.
*/
 if (node_number != 1)
 for (i = 2; i <= node_number; i++)
 if (current_node == NULL)
 break;
 else if (current_node->opened)
 current_node = current_node->children;
 else current_node = current_node->sibling;

/*
** Return the node address
*/
 return current_node;

}

 .
 .
 .

234

Chapter 9. Using the SVN Widget

After you create an instance of the SVN widget, you must attach it to the data for the hierarchy.
The attachment is done in the DXmSvnNattachToSourceCallback callback routine, which is
invoked when the SVN widget is realized.

The user has double clicked on a single entry. Your application is responsible for linking the data in
the hierarchy to entries in the SVN widget. The entry selected can be determined by examining the
entry_number and entry_tag fields of the callback data structure.

Once the data is attached to the SVN widget, the SVN widget triggers the
DXmSvnNgetEntryCallback to get information associated with the first entry, such as the
number of components and the text from the data hierarchy to associate with the entry. Note that
DXmSvnNgetEntryCallback is triggered to get information about any entry in the hierarchy, not
just the first entry.

In the case of the SVN demo application, the DXmSvnNgetEntryCallback callback routine
performs the following functions:

● Determines the font to use for the entry text.

● Associates the entry_number field of the callback data structure with an entry in the data
hierarchy.

● Chooses the icon to use with the entry. If there are no children, the child pixmap is used.
Otherwise the parent pixmap is used.

● Calls the DXmSvnSetEntryNumComponents routine to set the number of components for this
entry. The entries in the SVN demo application have two components: the icon to use and the
text associated with the entry.

● Calls the DXmSvnSetEntryTag routine to set the entry_tag field of this entry to the address of
the associated _Node data structure.

● Set the text associated with each entry.

Example 9.7, "SVN Hierarchy Data" contains additional hierarchy data.

Example 9.7. SVN Hierarchy Data

 .
 .
 .
void LclInitializeList ()
{
 B.text = XmStringCreate("OSF/Motif Style Guide V1.1",
 XmSTRING_DEFAULT_CHARSET);

 P1.text = XmStringCreate("1. User Interface Design Principles",
 XmSTRING_DEFAULT_CHARSET);
 P2.text = XmStringCreate("2. Input and Navigation Models",
 XmSTRING_DEFAULT_CHARSET);
 P3.text = XmStringCreate("3. Selection and Component Activation",
 XmSTRING_DEFAULT_CHARSET);
 P4.text = XmStringCreate("4. Application Design Principles",
 XmSTRING_DEFAULT_CHARSET);
 P5.text = XmStringCreate("5. Window Manager Design Principles",
 XmSTRING_DEFAULT_CHARSET);
 P6.text = XmStringCreate("6. Designing for International Markets",
 XmSTRING_DEFAULT_CHARSET);
 P7.text = XmStringCreate("7. Controls, Groups, and Models Reference Pages",
 XmSTRING_DEFAULT_CHARSET);

235

Chapter 9. Using the SVN Widget

 C11 .text = XmStringCreate("1.1 Adopt the User's Perspective",
 XmSTRING_DEFAULT_CHARSET);
 C12 .text = XmStringCreate("1.2 Give the User Control",
 XmSTRING_DEFAULT_CHARSET);
 C13 .text = XmStringCreate("1.3 User Real-World Metaphors",
 XmSTRING_DEFAULT_CHARSET);
 C14 .text = XmStringCreate("1.4 Keep Interfaces Natural",
 XmSTRING_DEFAULT_CHARSET);
 C15 .text = XmStringCreate("1.5. Keep Interfaces Consistent",
 XmSTRING_DEFAULT_CHARSET);
 C16 .text = XmStringCreate("1.6 Communicate Application Actions to the User",
 XmSTRING_DEFAULT_CHARSET);
 C17 .text = XmStringCreate("1.7 Avoid Common Design Pitfalls",
 XmSTRING_DEFAULT_CHARSET);
 C21 .text = XmStringCreate("2.1 The Keyboard Focus Model",
 XmSTRING_DEFAULT_CHARSET);
 C22 .text = XmStringCreate("2.2 The Input Device Model",
 XmSTRING_DEFAULT_CHARSET);
 C23.text = XmStringCreate("2.3 The Navigation Model",
 XmSTRING_DEFAULT_CHARSET);
 C31.text = XmStringCreate("3.1 Selection Models", XmSTRING_DEFAULT_CHARSET);
 C32.text = XmStringCreate("3.2 Selection Actions", XmSTRING_DEFAULT_CHARSET);
 C33.text = XmStringCreate("3.3 Component Activation",
 XmSTRING_DEFAULT_CHARSET);
 C41.text = XmStringCreate("4.1 Choosing Components",
 XmSTRING_DEFAULT_CHARSET);
 C42.text = XmStringCreate("4.2 Layout", XmSTRING_DEFAULT_CHARSET);
 C43.text = XmStringCreate("4.3 Interaction", XmSTRING_DEFAULT_CHARSET);
 C44.text = XmStringCreate("4.4 Component Design", XmSTRING_DEFAULT_CHARSET);
 C51.text = XmStringCreate("5.1 Configurability", XmSTRING_DEFAULT_CHARSET);
 C52.text = XmStringCreate("5.2 Window Support", XmSTRING_DEFAULT_CHARSET);
 C53.text = XmStringCreate("5.3 Window Decorations", XmSTRING_DEFAULT_CHARSET);
 C54.text = XmStringCreate("5.4 Window Navigation", XmSTRING_DEFAULT_CHARSET);
 C55.text = XmStringCreate("5.5 Icons", XmSTRING_DEFAULT_CHARSET);
 C61.text = XmStringCreate("6.1 Collating Sequences",
 XmSTRING_DEFAULT_CHARSET);

 .
 .
 .

/*
** Fill in the child pointers for the book, parts, and chapters
*/
 B.children = &P1;
 P1.children = &C11;
 P2.children = &C21;
 P3.children = &C31;
 P4.children = &C41;
 P5.children = &C51;
 P6.children = &C61;
 P7.children = NULL;

 C11.children = NULL;
 C12.children = &C121;
 C13.children = &C131;
 C14.children = &C141;
 C15.children = NULL;
 C16.children = &C161;
 C17.children = NULL;
 C21.children = &C211;
 C22.children = &C221;
 C23.children = &C231;
 C31.children = &C311;

236

Chapter 9. Using the SVN Widget

 C32.children = &C321;
 C33.children = &C331;
 C41.children = &C411;
 C42.children = &C421;
 C43.children = &C431;
 C44.children = NULL;
 C51.children = NULL;
 C52.children = &C521;
 C53.children = &C531;
 C54.children = NULL;
 C55.children = &C551;
 C61.children = NULL;
 C62.children = &C621;
 C63.children = NULL;
 C64.children = NULL;
 C65.children = NULL;
 C66.children = NULL;

/*
** Fill in the sibling pointers for the book
*/
 B.sibling = NULL;

/*
** Fill in the sibling pointers for the parts
*/
 P1.sibling = &P2;
 P2.sibling = &P3;
 P3.sibling = &P4;
 P4.sibling = &P5;
 P5.sibling = &P6;
 P6.sibling = &P7;
 P7.sibling = NULL;

/*
** Fill in the sibling pointers for the chapters
*/
 C11.sibling = &C12;
 C12.sibling = &C13;
 C13.sibling = &C14;
 C14.sibling = &C15;
 C15.sibling = &C16;
 C16.sibling = &C17;
 C17.sibling = &P2;
 C21.sibling = &C22;
 C22.sibling = &C23;
 C23.sibling = &P3;
 C31.sibling = &C32;
 C32.sibling = &C33;
 C33.sibling = &P4;
 C41.sibling = &C42;
 C42.sibling = &C43;
 C43.sibling = &C44;
 C44.sibling = &P5;
 C51.sibling = &C52;
 C52.sibling = &C53;
 C53.sibling = &C54;
 C54.sibling = &C55;
 C55.sibling = &P6;
 C61.sibling = &C62;
 C62.sibling = &C63;
 C63.sibling = &C64;

237

Chapter 9. Using the SVN Widget

 C64.sibling = &C65;
 C65.sibling = &C66;
 C66.sibling = &P7;

/*
** Fill in the sibling pointers for the sections of chapter 1
*/
 C121.sibling = &C122;
 C122.sibling = &C13;
 C131.sibling = &C132;
 C132.sibling = &C133;
 C133.sibling = &C14;
 C141.sibling = &C142;
 C142.sibling = &C15;
 C161.sibling = &C162;
 C162.sibling = &C163;
 C163.sibling = &C17;

/*
** Fill in the sibling pointers for the sections of chapter 2
*/
 C211.sibling = &C212;
 C212.sibling = &C22;
 C221.sibling = &C222;
 C222.sibling = &C223;
 C223.sibling = &C23;
 C231.sibling = &C232;
 C232.sibling = &C233;
 C233.sibling = &C234;
 C234.sibling = &P3;

 .
 .
 .

}

Example 9.8, "Creating the SVN Pixmaps (Icons)" creates the pixmaps used as icons.

Example 9.8. Creating the SVN Pixmaps (Icons)

 .
 .
 .

void LclSetUpPixmap (svnw)

 Widget svnw;

{
/*
** Local data declarations
*/
 Screen *screen = XtScreen(toplevel);
 Display *display = DisplayOfScreen (screen);
 Pixel background_pixel;
 Pixel foreground_pixel;
 Arg args [2];

/*
** If we've already done this, then return.
*/

238

Chapter 9. Using the SVN Widget

 if (parent_pixmap != NULL) return;

/*
** Get the foreground/background colors of Svn
*/
 XtSetArg (args[0], XmNforeground, &foreground_pixel);
 XtSetArg (args[1], XmNbackground, &background_pixel);
 XtGetValues (svnw, args, 2);

/*
** Create the pixmap.
*/
 parent_pixmap = XCreatePixmapFromBitmapData (
 display, /* (IN) display */
 XDefaultRootWindow(display), /* (IN) drawable */
 parent_pixmap_bits, /* (IN) bitmap data */
 pixmap_width, /* (IN) width */
 pixmap_height, /* (IN) height */
 foreground_pixel, /* (IN) foreground pixel */
 background_pixel, /* (IN) background pixel */
 DefaultDepthOfScreen(screen)); /* (IN) pixmap depth */

 child_pixmap = XCreatePixmapFromBitmapData (
 display, /* (IN) display */
 XDefaultRootWindow(display), /* (IN) drawable */
 child_pixmap_bits, /* (IN) bitmap data */
 pixmap_width, /* (IN) width */
 pixmap_height, /* (IN) height */
 foreground_pixel, /* (IN) foreground pixel */
 background_pixel, /* (IN) background pixel */
 DefaultDepthOfScreen(screen)); /* (IN) pixmap depth */

}

 .
 .
 .

239

Chapter 9. Using the SVN Widget

240

Chapter 10. Interoperability
Coding Recommendations
This chapter describes a set of interoperability coding recommendations you should follow if you are
writing DECwindows applications for multiple hardware platforms. The chapter includes code examples
that demonstrate the interoperability coding recommendations.

The chapter provides information on the following topics:

● Font fallback

● Screen independence

● Color support

● Image format

10.1. Why Interoperability Is Important
When you write a DECwindows application, you cannot always be sure what type of hardware will be
used to display it. For example, a user might run an application on an OpenVMS cluster node and display
it on a PC screen. If your application makes assumptions about the size of the screen, it might not display
correctly.

It is possible to code your DECwindows application so that it is not dependent upon the display
hardware. The sections that follow provide interoperability coding recommendations and examples.

10.2. Font Fallback
You should use system-default fonts whenever possible to ensure that your application appears well
integrated in the Motif environment. However, you might need to use a particular font for some
application-specific purpose. DECwindows lets you specify the fonts for your application to use. The
term font fallback refers to using a second-choice font if the font you specified is not available.

The fonts bundled with the DECwindows server include fonts supplied by VSI as well as fonts supplied
with the X11 R5 release. The fonts supplied by VSI are available with all implementations of the
DECwindows server. However, if you run a DECwindows application and display the results on some
other vendor's workstation or PC, the fonts supplied by VSI are not available. Your application must be
able to handle this case and use another font.

How your application deals with font fallback depends on whether the application uses UIL or the
Toolkit routines to specify fonts:

● If your application specifies fonts through UIL by using the FONT function and the VALUE
declaration, you do not need to be concerned with font fallback because the DECwindows Motif
Toolkit provides it for you according to the algorithm described in Section 10.2.2, "Font Fallback
Implementation".

● If your application specifies fonts through the Toolkit routines, you can use the DXmLoadQueryFont
or DXmFindFontFallback routines to determine a fallback font. The DXmLoadQueryFont and
DXmFindFontFallback routines also use the algorithm described in Section 10.2.2, "Font Fallback
Implementation" to determine the fallback font.

241

Chapter 10. Interoperability Coding Recommendations

● You can explicitly use only fonts that are common to both DECwindows and the X11 R5 release.

The sections that follow provide additional detail on font fallback.

10.2.1. Font Naming Convention
Part IV of the X Window System by Scheifler and Gettys contains a complete description of the X11
font naming convention, which is summarized here for convenience. The VMS DECwindows Xlib
Programming Volume also contains this same information.

Xlib font names consist of the following fields, in left-to-right order:

1. Foundry that supplied the font, or the font designer

2. Typeface family of the font

3. Weight (book, demi, medium, bold, light)

4. Slant (R (roman), I (italic), O (oblique))

5. Width per horizontal unit of the font (normal, wide, double wide, narrow)

6. Additional style font identifier (usually blank)

7. Pixel font size

8. Point size (8, 10, 12, 14, 18, 24) in decipoints

9. X Resolution in pixels/dots per inch

10. Y Resolution in pixels/dots per inch

11. Spacing (P (proportional), M (monospaced), or C (character cell))

12. Average width of all characters in the font

13. Character set registry

14. Character set encoding

The full name of a representative font is as follows:

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
-ADOBE-ITC Avant Garde Gothic-Book-R-Normal--14-100-100-100-P-80-ISO8859-1

In the example:

1. The font foundry is Adobe.

2. The font is named ITC Avant Garde Gothic.

3. The Font weight is book.

4. The font slant is R (roman).

5. The width per font unit is normal.

6. The additional style font identifier is blank.

7. The pixel size is 14.

8. The point size is 10 (derived from 100/10).

242

Chapter 10. Interoperability Coding Recommendations

9. The horizontal resolution in dots per inch (dpi) is 100.

10. The vertical resolution in dots per inch (dpi) is 100. When the dpi is 100, 14 pixels are required to
represent a 10-point font.

11. The font is proportionally spaced.

12. The average width of characters is 80.

13. The character set registry is ISO8859.

14. The character set encoding is Latin-1.

10.2.2. Font Fallback Implementation
The DECwindows Motif Toolkit first tries to load the specified font. If it is unable to successfully load
the font, the DECwindows Motif Toolkit uses the fallbacks listed in Table 10.1, "Font Fallbacks" and
Table 10.2, "Terminal Font Fallbacks".

The font fallback implementation uses whatever matching fonts are available on the display including,
but not limited to, the DECwindows and X11 R5 server fonts. Asterisks indicate a wildcard.

Table 10.1. Font Fallbacks

Field Fallback

(Foundry)
All families but Terminal Adobe

(Family)
ITC Avant Garde Gothic Helvetica
ITC Lubalin Graph New Century Schoolbook
Menu Helvetica
ITC Souvenir Times
Any other Fixed

(Weight)
Menu family Bold (overrides any other weight

remapping)
Book weight Medium
Demi weight Bold
Light weight Medium

(Style)
ITC Lubalin Graph family and O
slant

Italic

(Width)
All AVERAGE_WIDTH values *

(Pixel Size When Not DPI 100)
* *

(Pixel Size When DPI 100)
10 11

243

Chapter 10. Interoperability Coding Recommendations

Field Fallback

13 14
16 17
19 20
24 25
33 34

Table 10.2. Terminal Font Fallbacks

Field Fallback

(Foundry)
* *
When 75 dpi DEC
When 100 dpi Bitstream

(Pixel Size)
* *
When 75 dpi 14
When 100 dpi 18

(Setwidth Name)
All SETWIDTH_NAME values Normal

(Point Size)
All POINT_SIZE values 140

(Average Width)
All AVERAGE_WIDTH values *

Note

Note that the font fallback implementation does not remap all of the font name fields. For example, the
x and y resolution fields (in pixels or dots per inch) are not remapped. Because not all screens support
both 75 dpi and 100 dpi fonts, you can use wildcards for these fields to avoid interoperability problems.

Font name fields that are not remapped while generating the new font name remain unchanged.

The Fixed font is returned if the family, weight, slant, width, character set registry, or character set
encoding font name fields are wildcarded or if the font name syntax cannot be parsed (for example, if
hyphens are not positioned correctly or are missing). Note that the terminal line-drawing characters are
not available in the Fixed font.

10.2.3. Using Common Fonts
If your application specifies fonts through the Toolkit routines but does not use the
DXmLoadQueryFont or DXmFindFontFallback routines to determine a fallback font, the application
should use only fonts common to both the DECwindows and X11 R5 servers.

The font fallback policy implemented through UIL and the DXmLoadQueryFont and
DXmFindFontFallback routines provides the best assurance of finding a suitable font. However, if your

244

Chapter 10. Interoperability Coding Recommendations

application uses only fonts common to both the DECwindows and X11 R5 servers, the application will
be able to display on other vendors' workstations that support the X11 fonts.

Font families common to both DECwindows and X11 R5 are as follows:

● Courier

● Helvetica

● New Century Schoolbook

● Symbol

● Times

10.2.4. Implementing Font Fallback Through UIL
You can use FONT function and the VALUE declaration to create font lists through UIL. For example,
the following UIL code segment defines a font by using the FONT function and the VALUE declaration:

VALUE
k_button_font :
 font('-ADOBE-Courier-Bold-R-Normal--14-140-75-75-M-90-ISO8859-1');

If this font is not available when the widget associated with it is fetched, the DECwindows Motif Toolkit
determines the fallback font as described in Section 10.2.2, "Font Fallback Implementation".

If for some reason the font fallback implementation is not appropriate for your application, do not
specify the font through UIL. Instead, use the Toolkit routines to select a fallback font.

10.2.5. Implementing Font Fallback Through Toolkit
Routines
The program in Example 10.1, "Font Fallback Through Toolkit Routines" creates a font list and uses it to
specify the font used in a CSText widget.

Example 10.1. Font Fallback Through Toolkit Routines

#include <stdio>
#include <Mrm/MrmAppl.h>
#include <DXm/DXmCSText.h>

static void change_cs();
static void ok_text();
XmString cstring;

Widget toplevel, text_shell,
 text_label, text_w,
 ok_button;

int main(argc, argv)
 unsigned int argc;
 char **argv;
{
 XtAppContext app_context;
 Arg arglist[15];
 int ac = 0;
 XFontStruct *font;

245

Chapter 10. Interoperability Coding Recommendations

 XmFontList font_list;
 XtCallbackRec callback_arg[2];

 toplevel = XtAppInitialize(&app_context, "example", NULL, 0, &argc,
 argv, NULL, NULL, 0);

 ac = 0;
 cstring = XmStringCreateLtoR("User Defined", XmSTRING_ISO8859_1);
 XtSetArg(arglist[ac], XmNdialogTitle, cstring);ac++;
 XtSetArg(arglist[ac], XmNallowOverlap, TRUE);ac++;
 XtSetArg(arglist[ac], XmNheight, 300);ac++;
 XtSetArg(arglist[ac], XmNwidth, 300);ac++;
 XtSetArg(arglist[ac], XmNresizePolicy, XmRESIZE_GROW);ac++;

 text_shell = XmCreateBulletinBoard(toplevel, "CSText", arglist, ac);
 XmStringFree(cstring);

 ac = 0;
 cstring = XmStringCreateLtoR("Enter a 10-letter title\nfor this widget",
 XmSTRING_ISO8859_1);
 XtSetArg(arglist[ac], XmNlabelString, cstring);ac++;
 XtSetArg(arglist[ac], XmNx, 90);ac++;
 XtSetArg(arglist[ac], XmNy, 20);ac++;
 text_label = XmCreateLabel(text_shell, "textlabel", arglist, ac);
 XmStringFree(cstring);

 font = DXmLoadQueryFont(XtDisplay (toplevel),
 "-ADOBE-Courier-Bold-R-Normal--14-140-*-*-M-90-ISO8859-1");

 if (font == NULL){
 printf("Fonts Are Not Available");
 exit(0);
 }

 font_list = XmStringCreateFontList(font, XmSTRING_ISO8859_1);

 callback_arg[0].callback = change_cs;
 callback_arg[0].closure = 0;
 callback_arg[1].callback = NULL;
 callback_arg[1].closure = NULL;

 ac = 0;
 XtSetArg(arglist[ac], XmNfontList, font_list); ac++;
 XtSetArg(arglist[ac], XmNx, 40);ac++;
 XtSetArg(arglist[ac], XmNy, 100);ac++;
 XtSetArg(arglist[ac], XmNrows, 2); ac++;
 XtSetArg(arglist[ac], XmNcolumns, 35); ac++;
 XtSetArg(arglist[ac], XmNmaxLength, 10); ac++;
 XtSetArg(arglist[ac], XmNactivateCallback, callback_arg);ac++;

 text_w = DXmCreateCSText(text_shell, "textwidget", arglist, ac);
 XmFontListFree (font_list);

 XtManageChild(text_w);

 XtManageChild(text_label);
 XtManageChild(text_shell);

 XtRealizeWidget(toplevel);

246

Chapter 10. Interoperability Coding Recommendations

 XtAppMainLoop(app_context);

 }
 .
 .
 .

The variable font is declared as a pointer to an X font structure.

The variable font_list is declared as a font list.

The DXmLoadQueryFont routine attempts to load the specified font. If that font fails to load, a
fallback font is loaded. If a font is successfully loaded, a pointer to the XFontStruct of the font
is returned. Applications that require identification of the returned font can access the font's
properties to obtain the needed information.

If a font cannot be loaded for any reason, NULL is returned.

You could also use the DXmFindFontFallback routine, which allows you to specify a font name
and receive a fallback font name in return. Your application could then call the Xlib XLoadFont
routine to attempt to load the fallback font.

The XmStringCreateFontList routine creates a font list. In the example, the first argument
to the XmStringCreateFontList routine specifies the X font structure returned by the
DXmLoadQueryFont routine. The second argument to this routine is a constant that identifies the
character set.

The font list is used to specify the font the CSText widget will use to display text.

After using the font list, free the memory associated with it.

10.3. Screen Independence
You should not make any assumptions about the screen on which your application will display. This
section discusses several interoperability issues related to screen independence.

10.3.1. Screen DPI Assumptions
As described in Section 10.2.2, "Font Fallback Implementation", not all screens support both 75 DPI
and 100 DPI fonts. To avoid screen interoperability problems, you can use wildcards for the x and y
resolution fields. The first example shows specific values for the x and y resolution fields:

VALUE
k_button_font :
 font('-ADOBE-Courier-Bold-R-Normal--14-140-75-75-M-90-ISO8859-1');

This example uses wildcards for the x and y resolution fields:

VALUE
k_button_font :
 font('-ADOBE-Courier-Bold-R-Normal--14-140-*-*-M-90-ISO8859-1');

10.3.2. MultiHead Server Support
DECwindows supports servers with multiple screens. Such systems are called multiheaded displays.

DECwindows servers currently support a maximum of two screens. However, other vendor's server
implementations might support additional screens.

247

Chapter 10. Interoperability Coding Recommendations

When you create a DECwindows application, you should not make any assumptions as to whether the
application will run on screen zero (the default), screen one, or any other screen of a display. Rather, you
should let the user specify the screen by using command line arguments, the SET DISPLAY command
on OpenVMS systems, or the DISPLAY environment variable on UNIX and Windows NT systems.

If you hard code a screen number of zero, the user cannot display the application on any other screen. If
you hard code a screen number of one, the user cannot display the application on any other screen.

Hard-coding screen numbers can result in severe limitations. For example, if you hard code a screen
number of one and the server has only the default screen (screen zero), your application will not be able
to open the display.

Note that there is no way for your application to determine in advance of opening the display how many
screens are attached. All of the Xlib routines that return screen information require that you first open
the display. For example, your application must first open the display before it can call Xlib routines such
as XScreenCount or XScreenofDisplay.

10.3.2.1. Using XtAppInitialize to Specify a Screen
DECwindows Motif Toolkit applications generally call the XtAppInitialize routine to initialize the toolkit
and open the display. XtAppInitialize uses command line arguments or, if command line arguments are
not present, the result of the last command used to set the DISPLAY environment variable (UNIX and
Windows NT) or DISPLAY logical (OpenVMS) to determine the display and screen to use. In this way,
XtAppInitialize uses the “default” display and screen; it does not otherwise explicitly set the display or
screen to use.

10.3.2.2. Using XtOpenDisplay to Specify a Screen
DECwindows Motif Toolkit applications that want to open a connection to a specific display or screen
(without also initializing the toolkit) can call the XtOpenDisplay routine to open a display, initialize it,
and add it to an application context.

XtOpenDisplay calls the Xlib routine XOpenDisplay with the specified display name. If the display
name argument is null, XtOpenDisplay uses the current value of the display option specified in the
command-line argvalue argument. If no display is specified in argvalue, XtOpenDisplay uses the
result of the last command that defined DISPLAY.

The format of the display name argument is hostname:number.screen (UNIX and
Windows NT) or hostname::number.screen (OpenVMS). The element hostname is the network
name of the host, number is the number of the server on the host, and screen is the number of the screen
to use. Currently, the screen number can be zero or one for DECwindows servers; additional screens are
possible in other vendors' server implementations.

If you specifically wanted your application to use screen one, you could specify screen one in a call to
XtOpenDisplay and then test to see if XtOpenDisplay returns NULL to indicate failure.

● If XtOpenDisplay returns non-NULL, screen one is attached.

● If XtOpenDisplay returns NULL, call XtOpenDisplay without specifying a screen.

10.3.3. Window Size for Small Screens
If your application will be displayed on PC or other small screens, you must make sure that your
application windows are not too big to fit on the screen.

248

Chapter 10. Interoperability Coding Recommendations

This section describes two possible implementations for adjusting window size:

● Implementing the window with scroll bars so that the user can navigate throughout the window

● Using the DXmNfitToScreenPolicy resource to reduce the size of dialog boxes and add scroll bars

Other implementations are also possible.

10.3.4. Using Scrolled Windows for Small Screens
You can use scrolled windows, such as an XmMainWindow widget with scroll bars or an
XmBulletinBoardDialog widget with scroll bars, to present large windows on small screens. This
implementation has the disadvantage of not displaying all of a window at one time; that is, the user
has to use the scroll bars to view all portions of the window. This could mean that the user has to use
the scroll bars to find push buttons or other widgets, but it does ensure that the application interface is
available to the user.

When writing your application, you can automatically include scroll bars on all large, and potentially
large, windows without regard to screen size. If you set the XmNscrollBarDisplayPolicy resource to
XmAS_NEEDED and the XmNscrollingPolicy resource to XmAUTOMATIC, the scroll bars are
displayed only when needed. The scroll bars might not ever be needed, but they are always available.

10.3.5. Using the DXmNfitToScreenPolicy Resource
You can specify the DXmNfitToScreenPolicy resource in your application's defaults file to automatically
size all dialog widgets for a screen. DXmNfitToScreenPolicy is a resource of the dialog shell widget.
When the DXmNfitToScreenPolicy resource is set to XmAS_NEEDED in an application's defaults file,
the dialog shell automatically resizes and positions all dialog shells that are too big for the user's screen.

As a side effect of the resizing, the dialog shell creates its own scroll bars, which allow the user to
navigate to the occluded portions of the dialog box.

The DXmNfitToScreenPolicy resource can be set only in an application's defaults file; it cannot be set in
a UIL module or through a call to XtSetArg. The format for setting this resource is as follows:

*DXmfitToScreenPolicy: AS_NEEDED

Note

The DXmNfitToScreenPolicy resource affects dialog shells only; setting this resource has no effect on
an application's main window or top-level shells.

10.3.6. Window Placement for Small Screens
If it is possible to do so, the Motif window manager places a window so that it is not clipped by the
boundaries of the screen, regardless of the screen size. If clipping cannot be avoided, a window is placed
so that at least the upper-left corner of the window is on the screen. Therefore, your application does not
have to take any special precautions when setting the XmNy and XmNy resources for widgets.

10.4. Color Support
You can use color to enhance the visual appeal of your DECwindows application. However, how colors
are supported and displayed depends on the visual type of the display hardware and the available color
resources.

249

Chapter 10. Interoperability Coding Recommendations

Each screen has one or more visual types associated with it. The visual type identifies the characteristics
of the screen, such as color or monochrome capability. Visual types partially determine the appearance
of color on the screen and determine how a client can manipulate colormaps for a specified screen.

Your application should not make any assumptions about the display hardware or the availability of color
resources.

Specifically, your application must do the following:

● Not assume that colormap cells are writable

● Not make any assumptions about the depth of the display

● Handle insufficient color resources

This policy is especially true if your application will be displayed on multiple hardware platforms.

The sections that follow describe coding recommendations to follow when writing color applications that
will be displayed on multiple hardware platforms.

See the X Window System by Scheifler and Gettys for a complete description of the DECwindows
color implementation. Some of that information is summarized here for convenience. The complete
description is also contained in the VMS DECwindows Xlib Programming Volume.

10.4.1. Matching Color Requirements to Display Types
The basic philosophy for using color is to determine the color needs of your application and then
determine how the display hardware can best support those needs.

Therefore, before defining colors, use the following method to determine the default visual type of a
screen:

1. Call the XDefaultVisualofScreen routine to determine the default visual for the screen. Xlib returns
the address of a visual data structure.

2. Check the XVisual.class member of the data structure to determine the visual type.

The X Protocol defines the visual types shown in Table 10.3, "DECwindows Visual Types".

Table 10.3. DECwindows Visual Types

Visual Type Colormap Description

Pseudocolor read/write Pseudocolor is a full-color device.
A pixel value indexes a colormap
composed of red, green, and blue
definitions. Each definition in the
colormap stores the red, green,
and blue component values for
one color. The color index refers
directly to a single entry in the
color map. RGB values can be
changed dynamically if a cell has
been allocated for exclusive use.

Pseudocolor is the default visual
type on VSI 4-plane and 8-plane
systems.

250

Chapter 10. Interoperability Coding Recommendations

Visual Type Colormap Description

Gray scale read/write Gray scale is a black and white
device. Gray scale is the same as
pseudocolor except that a pixel
value indexes a colormap that
produces shades of gray only.
The gray shades are defined in
a colormap with each definition
having just one component that
defines the level of the white
intensity.

Direct color read/write Direct color is a full-color device.
Both the pixel value and the
colormap are separated into three
independent parts, one each for
red, green, and blue. The red
part of the pixel indexes the red
part of the colormap, the green
indexes the green part of the
colormap, and the blue indexes
the blue part of the colormap.
A complete color definition
comprises the three parts in each
colormap.

When you use the
XAllocColorPlanes routine to
allocate color resources for a
direct color model, pixel values
that differ only in one part share
the colormap entries indexed
by their identical parts. For
example, two different pixels (for
simplicity, pixel A and pixel B)
might index different red color
cells but index the same green
and blue color cells. If you then
use XStoreColors to change the
RGB values of the color cells
indexed by pixel A, the value of
the shared color cells indexed by
pixel B would change as well.

RGB values can be changed
dynamically if a cell has been
allocated for exclusive use.

True color read only True color is a full-color device.
True color is the same as direct
color except that the colormap
has predefined read-only RGB
values in ascending order. True

251

Chapter 10. Interoperability Coding Recommendations

Visual Type Colormap Description
color is the default visual type on
VSI 24-plane systems.

Static gray read only Static gray is a black and white
device. Static gray is the same as
gray scale except that the values
in the colormap are read-only.
Static gray with a two-entry
colormap can be thought of as
monochrome.

Static color read only Static color is a full-color
device and is the same as
pseudocolor except that the
colormap has predefined, read-
only, server-dependent values in
an undefined, server-dependent
order.

Note

On some systems, a single display can support multiple screens. Each screen can have several different
visual types supported at different depths. Xlib provides routines that allow a client to search and choose
the appropriate visual type on the system by using the visual information data structure.

The OpenVMS DECburger demo application uses the code shown in Example 10.2, "Testing
XVisual.class Member" to test the XVisual.class member to see if it is being displayed on a color screen.
DECburger implements a “customize background color” feature only for color screens.

Example 10.2. Testing XVisual.class Member

 .
 .
 .

/* If it's a color display, map the customize color menu entry */

 if ((XDefaultVisualOfScreen(the_screen))->class == TrueColor
 || (XDefaultVisualOfScreen(the_screen))->class == PseudoColor
 || (XDefaultVisualOfScreen(the_screen))->class == DirectColor
 || (XDefaultVisualOfScreen(the_screen))->class == StaticColor)

 XtSetMappedWhenManaged(widget_array[k_custom_pdme], TRUE);

 .
 .
 .

10.4.1.1. Writable Color Cells
Color cells can be read-only or writable, depending on the visual type. If the XVisual.class field indicates
that the display has read-only color cells (StaticGray, StaticColor, TrueColor), an X error is generated if
you attempt to allocate read/write color cells.

When an application calls the XAllocColor routine to allocate a read-only color cell, it specifies the
RGB values for the color it wants to use. The server then searches the colors that have already been

252

Chapter 10. Interoperability Coding Recommendations

allocated. If the requested color has been allocated, that pixel value is returned. Otherwise, the server
allocates a color cell to store the specified RGB values or those that most closely match the specified
RGB values. XAllocColor returns the pixel value that identifies the color cell in the XColor.pixel field.
The application cannot change the RGB values of the cell.

Note

The XAllocColor routine can be used with any visual type, although colors might not contrast on gray
scale or static gray systems.

Read-only color cells are shared among clients; that is, if another application also calls XAllocColor with
these same RGB values, the pixel value is returned to that application as well. This does not count as an
additional entry in the colormap.

For read/write color cells, the initial RGB values of the cells are undefined. An application must call
XStoreColor or XStoreColors to store RGB values into the cells. Read/write cells should not be shared
because the RGB values of the cells can change.

10.4.1.2. Display Depth
You should not make any assumptions about the depth (number of planes) of a display. For example,
if you assume that eight planes are available and the application is displayed on a screen with only four
planes, unpredictable results will occur.

Your application should call the XDefaultDepthofScreen or XPlanesofScreen routines to determine the
maximum number of planes supported on a screen.

Remember that, on some systems, a single display can support multiple screens. Each screen can have
several different visual types supported at different depths.

10.4.1.3. Handling Insufficient Color Resources
If your application is displayed on a system with limited color resources, your application should be
prepared to deal with this lack of resources. For example, if your application wants to allocate 20 color
cells, but only 10 are available, your application must determine how it wants to proceed.

If your application cannot function without all the color cells, you might just print a message that
insufficient color resources are available and exit. For example, the OpenVMS DECburger demo
application uses the code shown in Example 10.3, "Testing Color Resources" to print a message and exit
if it is unable to allocate a color cell.

Example 10.3. Testing Color Resources

 if (XAllocColor(XtDisplay(toplevel_widget),
 XDefaultColormapOfScreen(the_screen), &newcolor)) {

 ac = 0;
 XtSetArg (arglist[ac], XmNbackground, newcolor.pixel);ac++;
 XtSetValues(widget_array[k_total_order], arglist, ac);
 XtSetValues(main_window_widget, arglist, ac);
 }
 else
 s_error ("can't allocate color cell");

 .
 .

253

Chapter 10. Interoperability Coding Recommendations

 .
static void s_error(problem_string)
 char *problem_string;
{
 printf("%s\n", problem_string);
 exit(0);

If your application can function while allocating only some of the color cells, allocate the color cells
according to their priority. For example, the color mixing widget tries to allocate 29 color cells to
represent the colors in the various color models, as described in Section 10.4.1.3, "Handling Insufficient
Color Resources". The color mixing widget allocates the most important color cells first. If all of the 29
cells are not available, the color mix widget dims features as required.

10.5. Image Format
Applications are required to present image data (bitmaps, pixmaps) to the X server in a format that the
server expects; otherwise, errors occur. This becomes especially important if your application will be
displayed on multiple hardware platforms that have different image formats.

For example, assume that you used the /usr/examples/motif/bitmap.exe (UNIX) or DECW
$EXAMPLES:BITMAP.EXE (OpenVMS) program to create the following bitmap. Note that the bitmap
example is not available with eXcursion for Windows NT.

#define icon_width 24
#define icon_height 20
static char icon_bits[] = {
 0x00, 0x00, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00,
 0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x3c, 0x00, 0xfe, 0xff, 0x7f,
 0xfe, 0xff, 0x7f, 0x0c, 0x00, 0x30, 0x18, 0x00, 0x18, 0x30, 0x00, 0x0c,
 0x60, 0x00, 0x06, 0xc0, 0x00, 0x03, 0x80, 0x81, 0x01, 0x00, 0xc3, 0x00,
 0x00, 0x66, 0x00, 0x00, 0x3c, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x00};

For example, BITMAP.EXE creates bitmaps with byte_order and bitmap_bit_order equal to LSBFirst.
You could use this bitmap as data for an image on VAX displays, but it might cause errors when
displayed on some PC servers. If your application will be displayed on multiple hardware platforms, you
must provide for this possible conflict in image formats.

The sections that follow describe how to provide for this possible conflict.

10.5.1. Image Format Implementation
X11 servers and Xlib implementations exchange protocol information to set protocol-request size
maximums, establish the byte order for protocol requests, and so forth. The server determines most of
these connection parameters, including the image format order to use.

To allow applications to determine the server's image format, the Xlib XOpenDisplay routine fills in a
Display data with the following setup parameters provided by the server:

Display field Description

byte_order The image byte order. Allowed values are LSBFirst
(least significant byte leftmost) and MSBFirst
(most significant byte leftmost).

bitmap_bit_order The bitmap bit order. Allowed values are LSBFirst
(least significant bit leftmost) and MSBFirst (most
significant bit leftmost).

254

Chapter 10. Interoperability Coding Recommendations

Xlib includes XImageByteOrder and XBitmapBitOrder routines that your application can call to
determine the image byte and bit order.

10.5.2. Determining Image Format
The XCreateImage routine does not let applications specify the byte_order and bitmap_bit_order of
the data being used for the image.

Therefore, your application must function as follows:

1. Call XCreateImage to create the image. An XImage data structure is returned.

2. Explicitly set the XImage.byte_order and XImage.bit_order fields to the format of your data.

● If your application uses only Xlib calls to create the data, you can assume that Xlib used
the server's image format to create the data. In this case, call the XImageByteOrder and
XBitmapBitOrder Xlib routines to determine the server's image format.

● If your application runs on OpenVMS and uses the DECW$EXAMPLES:BITMAP.EXE
program to create a bitmap to be used as your image data, set the byte_order and
bitmap_bit_order fields to LSBFirst. By default, DECW$EXAMPLES:BITMAP.EXE creates
bitmaps with byte_order and bitmap_bit_order equal to LSBFirst.

● If you create data by your own mechanism, you need to know the format of the data.

3. When your application calls XPutImage to combine the image in memory with the drawable,
XPutImage tests to see if the byte_order and bitmap_bit_order of the data match the format
expected by the server and changes the data to the server's format if it does not match.

Note that if your application does not explicitly set the byte_order and bitmap_bit_order fields,
XPutImage uses the server's default format and does not test the format of your data. Such a
situation could cause errors.

255

Chapter 10. Interoperability Coding Recommendations

256

Appendix A. Using the OpenVMS
DECwTermPort Routine
The information in this appendix applies only to OpenVMS operating systems.

Your application can use the OpenVMS DECwTermPort routine to create a DECterm window on any
node, local or remote. You can also create DECterm windows by spawning a CREATE/TERMINAL
command; however, using the DECwTermPort routine provides better performance. Users can create a
DECterm window from the session manager's Applications menu or by using the CREATE/TERMINAL
command in DCL.

Example A.1, "Creating a DECterm Window on a Remote Node" illustrates how to use the
DECwTermPort routine to create a DECterm window on a remote system.

Example A.1. Creating a DECterm Window on a Remote Node

#include descrip /* descriptor definitions */
#include ssdef /* system status codes */
#include prcdef /* stsflg bits for creating process */

main()
{
 int status, stsflg;
 short device_length;

char device_name[50];

 $DESCRIPTOR(command, "SYS$SYSTEM:LOGINOUT.EXE");
 $DESCRIPTOR(input_file, "");
 $DESCRIPTOR(output_file, "");

/* send the message to the controller */

status = DECwTermPort(0, 0, 0, device_name, &device_length);

if (status != SS$_NORMAL)
 printf("DECterm creation failed, status is %x\n", status);
else
{
 /* create a process that is already logged in */
 /* input from TWn: */
 input_file.dsc$w_length = device_length;
 input_file.dsc$a_pointer = device_name;

 /* output to TWn: */
 output_file.dsc$w_length = device_length;
 output_file.dsc$a_pointer = device_name;

 /* make it detached, interactive, logged in */
 stsflg = PRC$M_DETACH | PRC$M_INTER | PRC$M_NOPASSWORD;

 /* create the process */
status = sys$creprc(0, &command, &input_file,

 &output_file, 0, 0, 0, 0, 4, 0, 0, stsflg);
 if (status != SS$_NORMAL)
 printf("Could not run LOGINOUT.EXE, status is %x\n", status);
 }
}

The DECwTermPort routine returns the name of the virtual terminal device in this character array.

257

Appendix A. Using the OpenVMS DECwTermPort Routine

This call to the DECwTermPort routine creates a DECterm window on a remote node. In the
example, the display argument is specified as 0. This indicates that the default display should
be used. By specifying the second argument as 0, the example uses the default setup file. By
specifying the third argument as 0, the example specifies that the default values in the setup and
resource files should not be overridden.

The DECwTermPort routine returns the name of the virtual terminal device in the fourth
argument, device_name. The DECwTermPort routine writes the length of the virtual terminal
device name in the last argument, device_length.

After successfully creating a remote DECterm, the example creates a process that is already logged
in.

This call to SYS$CREPRC creates the process that runs in the DECterm window. The SYS
$INPUT of the process is the DECterm window, and the process is created with a priority of 4.
The process is logged in as a detached process.

Example A.2, "Command Procedure to Compile, Link, and Run a DECterm on a Remote Node" provides
a command procedure to compile, link, and run the example program.

Example A.2. Command Procedure to Compile, Link, and Run a DECterm on a Remote
Node

$ cc create_decterm
$ link create_decterm, sys$input/opt

sys$share:decw$xlibshr/share
sys$share:decw$dwtlibshr/share
sys$share:vaxcrtl/share
sys$share:decw$terminalshr/share
$ set display/create/node=mynode
$ run create_decterm

The command procedure invokes the compiler to compile the example program.

The command procedure invokes the linker, specifying the name of the object module and an
options file as command line arguments. The options file lists the shareable libraries needed to run
the example program. The DECterm shareable image is named decw$terminalshr.

The default display is set to point to mynode. Because the display argument to the DECwTermPort
routine in Example A.1, "Creating a DECterm Window on a Remote Node" was specified as
0 (zero), the DECterm is created on mynode. The same effect could have been achieved by
specifying the display argument to the DECwTermPort routine as mynode::0.

The command procedure runs the example program.

258

	VSI DECwindows Motif Guide to Application Programming
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Associated Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Introduction
	1.1. Overview of DECwindows Motif Toolkit
	1.1.1. Toolkit Building Blocks: Widgets and Gadgets
	1.1.2. Widget Types
	1.1.3. Widgets in the OSF/Motif Toolkit
	1.1.4. Widgets Provided by VSI
	1.1.5. Toolkit Widget and Gadget Routines
	1.1.6. Application Development Tools
	1.1.7. Internationalization Using UIL and MRM
	1.1.8. Toolkit Intrinsic Routines

	1.2. Toolkit Routines Contrasted with UIL
	1.3. Toolkit Routines Contrasted with Xlib Routines
	1.4. Toolkit Programming Considerations
	1.4.1. Application Widget Hierarchy
	1.4.2. OpenVMS DECburger Application Hierarchy
	1.4.3. Form Versus Function
	1.4.4. Associating Functions with Callbacks
	1.4.5. Using Widget Attributes in Applications
	1.4.5.1. Size and Position Attributes
	1.4.5.2. Appearance Attributes
	1.4.5.3. Callback Attributes
	1.4.5.4. Assigning Values to Widget Attributes

	1.5. Using the OpenVMS DECburger Demo Application
	1.6. Non-C Language Examples for OpenVMS

	Chapter 2. DECwindows Application Interface Design
	2.1. Designing a DECwindows Application—Where to Begin
	2.1.1. Application Design Topics
	2.1.2. Use of Callbacks
	2.1.3. Making Assumptions About Resources
	2.1.4. Selecting Appropriate Widgets
	2.1.5. Widgets in the OpenVMS DECburger Application
	2.1.6. Toolkit Intrinsic Routines Used in OpenVMS DECburger

	Chapter 3. Helpful Hints for Creating a DECwindows Application
	3.1. Using Widgets Supplied by VSI from UIL
	3.2. XmForm Widget Hints
	3.2.1. Creating a Form Dialog Box with Children
	3.2.2. Aligning Children of Different Sizes
	3.2.3. Centering Widgets at Positions Within an XmForm Widget
	3.2.4. Spacing XmPushButtons in XmForm Widgets

	3.3. Using Default Files
	3.4. Using Default Files to Save Customized Settings
	3.5. Using Multiple Displays
	3.5.1. Using Multiple Independent Displays
	3.5.2. Using Multiple Interconnected Displays

	3.6. Creating a Cursor
	3.7. Using the XtAppAddInput Routine
	3.8. Freeing Resources Allocated Through UIL

	Chapter 4. Using the Help Widget
	4.1. Overview of the Help Widget
	4.1.1. Invoking the Help Widget
	4.1.2. Help Widget Terminology

	4.2. OpenVMS Help Library Information
	4.2.1. OpenVMS Help Library Modules
	4.2.1.1. Accessing OpenVMS Help Library Modules
	4.2.1.2. Specifying OpenVMS Help Library Key Names

	4.2.2. OpenVMS Help Library Enhancements

	4.3. Help Widget Components
	4.4. Modifying Help Widget Appearance
	4.4.1. Modifying Help Widget Labels and Mnemonics
	4.4.2. Help Widget Messages

	4.5. Help Widget Callbacks
	4.6. Specifying Help Widget Topics
	4.7. Using the Help Widget
	4.7.1. Context-Sensitive Help
	4.7.1.1. Creating the On Context Push Button in UIL
	4.7.1.2. Entering Context-Sensitive Help Mode

	4.7.2. Specifying a Help Callback

	4.8. Creating the Help Widget with UIL
	4.9. Help Widget Implementation—C Language Module
	4.10. Using the Toolkit Help Widget Creation Routine

	Chapter 5. Using the DECwindows Motif Help System
	5.1. Overview of the Help System
	5.2. Invoking the Help System
	5.3. Help File Information
	5.4. Help File Information—VAX DOCUMENT Example
	5.5. Context-Sensitive Help Callbacks
	5.5.1. Creating the On Context Push Button in UIL
	5.5.2. Entering Context-Sensitive Help Mode
	5.5.3. Specifying a Help Callback

	5.6. Implementing the Help System
	5.7. Help System Implementation—C Language Module

	Chapter 6. Using the Color Mixing Widget
	6.1. Overview of the Color Mixing Widget
	6.2. Color Mixing Widget Resources
	6.3. Color Models
	6.3.1. Color Picker Model
	6.3.1.1. Color Picker Model Spectrum
	6.3.1.2. Selecting a Color Using the Color Picker Model
	6.3.1.3. Using the Interpolator

	6.3.2. HLS Color Model
	6.3.3. RGB Color Model
	6.3.4. Browser Color Model
	6.3.5. Greyscale Mixer

	6.4. Color Mixing Widget Components
	6.4.1. Scratch Pad
	6.4.2. Color Display Subwidget
	6.4.3. Color Model Option Menu Subwidget
	6.4.4. Color Mixer Subwidget
	6.4.5. Push-Button Subwidgets
	6.4.6. Label Subwidgets
	6.4.7. Work Area Subwidget
	6.4.8. Setting and Retrieving New Color Values
	6.4.9. Customizing the Color Mixing Widget
	6.4.9.1. Specifying Size
	6.4.9.2. Specifying Margins
	6.4.9.3. Labeling the Color Mixing Widget
	6.4.9.4. Defining the Background Color of the Color Display Subwidget
	6.4.9.5. Adding a Work Area to the Color Mixing Widget
	6.4.9.6. Customizing the Color Picker Color Model

	6.5. Supporting Other Color Models
	6.5.1. Replacing the Color Display Subwidget
	6.5.2. Replacing the Color Mixer Subwidget

	6.6. Associating Callbacks with a Color Mixing Widget
	6.7. Creating a Color Mixing Widget
	6.7.1. Creating a Color Mixing Widget—UIL Example
	6.7.2. Color Mixing Widget—OK Callback
	6.7.3. Color Mixing Widget—Apply Callback
	6.7.4. Color Mixing Widget—Cancel Callback
	6.7.5. Creating a Color Mixing Widget—Toolkit Example

	Chapter 7. Using the Print Widget
	7.1. Overview of the Print Widget
	7.2. Print Widget Walk-Through
	7.3. Print Widget Components
	7.4. Print Widget Callbacks
	7.5. Print Widget File-Type Guesser
	7.6. Print Widget Resources
	7.6.1. Suppressing Print Widget Features
	7.6.2. Adding Print Widget Functions
	7.6.2.1. Adding Print Formats
	7.6.2.2. Adding to Option Menus

	7.7. Creating the Print Widget with UIL
	7.8. Creating the Print Widget with a Toolkit Routine
	7.9. Submitting Print Jobs

	Chapter 8. Using the Compound String Text Widget
	8.1. Overview of the CSText Widget
	8.2. Modifying CSText Widget Resources
	8.2.1. Manipulating the Text Contents of the CSText Widget
	8.2.1.1. Placing a Compound String in a CSText Widget
	8.2.1.2. Retrieving Compound Strings from a CSText Widget
	8.2.1.3. Disabling Text Editing
	8.2.1.4. Limiting the Length of the Text

	8.2.2. Customizing the Appearance of the CSText Widget
	8.2.2.1. Specifying Size
	8.2.2.2. Specifying Margins
	8.2.2.3. Controlling Resizing Behavior
	8.2.2.4. Scroll Bar Positioning
	8.2.2.5. Controlling Text Cursor Appearance
	8.2.2.6. Positioning the Insertion Point
	8.2.2.7. Identifying the Current Writing and Editing Directions

	8.2.3. Multiline Editing in a CSText Widget
	8.2.4. Handling Text Selections
	8.2.4.1. Selecting Text
	8.2.4.2. Retrieving Selected Text
	8.2.4.3. Copy Selected Text to the Clipboard
	8.2.4.4. Pasting Selected Text from the Clipboard
	8.2.4.5. Deleting Selected Text from the Clipboard
	8.2.4.6. Getting Position Information About the Selection
	8.2.4.7. Determining Primary Selection Ownership
	8.2.4.8. Canceling the Selection of Text

	8.2.5. Associating Callbacks with CSText Widgets

	8.3. Conversion Routines
	8.4. Creating CSText Widgets
	8.4.1. Using UIL to Create a CSText Widget
	8.4.2. Using the Toolkit CSText Widget Creation Routine

	Chapter 9. Using the SVN Widget
	9.1. Overview of the SVN Widget
	9.1.1. Components of an Entry
	9.1.2. Selection Mode
	9.1.3. Tree-Mode Navigation Window
	9.1.4. Location Cursor
	9.1.5. Highlighting Entries
	9.1.6. Editable Text
	9.1.7. Sensitive Entries
	9.1.8. Disabling/Enabling the SVN Widget
	9.1.9. Invalidating the SVN widget
	9.1.10. Outer Scroll Bar Arrows
	9.1.11. Scroll Bar Index Window

	9.2. SVN Widget Programming Considerations
	9.2.1. Creating the Data Hierarchy
	9.2.1.1. Attaching to Data—The DXmSvnNattachToSourceCallback Callback
	9.2.1.2. Understanding the entry_number Field
	9.2.1.3. Getting Information About an Entry
	9.2.1.4. Associating Hierarchy Data with SVN

	9.2.2. Disabling/Enabling the SVN Widget
	9.2.3. Setting the Location Cursor
	9.2.4. Invalidating an Entry
	9.2.5. Setting a Tree Style
	9.2.6. Setting the Display Mode
	9.2.7. Setting an Entry Coordinate Position
	9.2.8. Setting an Entry Position
	9.2.9. Selecting Entries
	9.2.10. Manipulating Entries
	9.2.11. Manipulating Column Mode Entries
	9.2.12. Flushing an Entry
	9.2.13. Manipulating Components
	9.2.14. Highlighting an Entry
	9.2.15. Getting the Displayed Entries
	9.2.16. Dragging an Entry
	9.2.17. Ghosting
	9.2.18. Setting Entry Font Lists

	9.3. Setting Tree-Mode Attributes
	9.3.1. Manipulating Tree Position
	9.3.2. Setting the Tree-Mode Arc Width
	9.3.3. Centering Tree-Mode Components
	9.3.4. Tree-Mode Outlines
	9.3.5. Tree-Mode Entry Shadows
	9.3.6. Tree-Mode Perpendicular Lines

	9.4. Associating Callbacks with an SVN Widget
	9.5. SVN Help Callback
	9.5.1. User-Generated Callbacks

	9.6. Creating an SVN Widget
	9.7. SVN Demo Application

	Chapter 10. Interoperability Coding Recommendations
	10.1. Why Interoperability Is Important
	10.2. Font Fallback
	10.2.1. Font Naming Convention
	10.2.2. Font Fallback Implementation
	10.2.3. Using Common Fonts
	10.2.4. Implementing Font Fallback Through UIL
	10.2.5. Implementing Font Fallback Through Toolkit Routines

	10.3. Screen Independence
	10.3.1. Screen DPI Assumptions
	10.3.2. MultiHead Server Support
	10.3.2.1. Using XtAppInitialize to Specify a Screen
	10.3.2.2. Using XtOpenDisplay to Specify a Screen

	10.3.3. Window Size for Small Screens
	10.3.4. Using Scrolled Windows for Small Screens
	10.3.5. Using the DXmNfitToScreenPolicy Resource
	10.3.6. Window Placement for Small Screens

	10.4. Color Support
	10.4.1. Matching Color Requirements to Display Types
	10.4.1.1. Writable Color Cells
	10.4.1.2. Display Depth
	10.4.1.3. Handling Insufficient Color Resources

	10.5. Image Format
	10.5.1. Image Format Implementation
	10.5.2. Determining Image Format

	Appendix A. Using the OpenVMS DECwTermPort Routine

