
VSI Fortran V8.6-001
for OpenVMS x86-64
Release Notes

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

Publication Date: November 2024

Operating System: VSI OpenVMS x86-64 Version 9.2-1 or higher

VSI Fortran V8.6-001 for OpenVMS x86-64 Release Notes

VSI Fortran V8.6-001 for OpenVMS x86-64 Release Notes

Copyright © 2024, VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

All other trademarks and registered trademarks mentioned in this document are the property of their respective holders.

2

VSI Fortran V8.6-001 for OpenVMS x86-64 Release Notes

1. Release Notes
1.1. Overview
VSI Fortran V8.6-001 for OpenVMS x86-64 Systems runs on VSI OpenVMS x86-64 V9.2-1 or higher.
VSI OpenVMS V9.2-3 is strongly recommended.

VSI Fortran on OpenVMS x86-64 is based on VSI Fortran for OpenVMS I64. There may be platform-
specific features from OpenVMS Alpha and OpenVMS I64 that may not be supported.

The image identification for the Fortran compiler is:

F90 V8.6-001

The FORTRAN/VERSION string is:

VSI Fortran x86-64 V8.6-001 (GEM 50xxx) on OpenVMS x86_64 V9.2-3

1.2. Getting Help And Reporting Problems
Please report problems or offer feedback using the VSI Support Portal.

You can also send comments, questions and suggestions about the VSI Fortran product to
<info@vmssoftware.com>. Note that these addresses are for informational inquiries and is not a
formal support channel.

1.3. Corrections Since The Last Release
● Various math functions (for example, SQRT) now will signal appropriate errors for invalid

operations. The returned error code may be slightly different than Alpha or Itanium due to x86
architecture differences. OpenVMS V9.2-3 is required for all errors to be appropriately signalled.

● Improved the online HELP to list all the new predefined symbols for x86 systems.

● Added debug support for variables and parameters access by descriptor. This requires either
OpenVMS V9.2-3 or the DEBUG V2 update kit on OpenVMS V9.2-2.

● Fixed the incorrect code when passing a function as an argument to a multi-entry routine.

● Fixed the incorrect code for assigning into an EQUIVALENCE variable.

● Several COMPLEX math operations would return the wrong value.

Old

(4.0,3.0) ** I = (7.00, 0.00)

New

(4.0,3.0) ** I = (7.00, 24.00)

● Using VAX float COMPLEX numbers could crash the compiler. For example:

assert error: expression = Ty && "Invalid GetElementPtrInst indices...

 END
........^
%F90-F-FATAL, **Internal compiler error: abort signal raised**

3

VSI Fortran V8.6-001 for OpenVMS x86-64 Release Notes

● The compiler was generating invalid debugger information for structure members which resulted in
debug failures or wrong values displayed.

DBG> ex struct_1.member_2
%DEBUG-E-NOACCESSR, no read access to address 2000000000001FF0

● Allocating arrays in 64-bit address space would lead to run-time errors.

program test
!DEC$ ATTRIBUTES ADDRESS64 :: ttt , i
real (kind = 8) , allocatable :: ttt(:)
integer i

allocate(ttt(10000))
ttt(10000) = 8888.0
write(*,*) ttt(10000)
end
$ f90 test
$ link test
$ run test
%FOR-F-INVREALLOC, allocatable array is already allocated

● The length for a COMMON block was computed incorrectly for many programs.

● Various bug fixes for incorrect optimization.

1.4. Changes From OpenVMS Alpha and OpenVMS I64
1.4.1. Incompatible Change For Assigned GOTO Statements

OpenVMS x86-64 places code in 64-bit address space by default. Due to this change, assigning a label
to INTEGER*4 variable will cause truncation of a 64-bit pointer to a 32-bit pointer and using GOTO
may cause unexpected results or an access violation error. Change the program to use an INTEGER*8
variable or link with the /SEGMENT=CODE=P0 qualifier which will cause the code segments to be
place in 32-bit address space. The compiler will now issue a warning message for using ASSIGN with an
INTEGER*4 variable.

$ type assigngoto.for
 integer num

 assign 200 to num
 goto num

200 print *,'At 200'
 end
$ fort assigngoto

 assign 200 to num
......................^
%F90-W-WARNING, Storing label address to 32-bit integer may cause runtime errors.
at line number 3 in file DKA300:[DIR]ASSIGNGOTO.FOR;1

1.4.2. VAX D_floating May Produce Different Results Than I64

VAX D_floating values may produce slightly different results compared to Itanium. This is due to
compiler-generated conversions to G_floating and then back to D_floating which removes 3 bits
of mantissa. This is similar to Alpha where D_floating would always convert to G_floating before
operations. On x86-64, this behavior is acceptable.

4

VSI Fortran V8.6-001 for OpenVMS x86-64 Release Notes

1.5. Known Issues
● Some conversions between VAX and IEEE are incorrect with VSI OpenVMS V9.2-1. These

problems are fixed in the VSI OpenVMS V9.2-2 release.

● REAL*8 exponentiation does not signal correct errors for invalid operations.

● Debug support is not fully implemented yet, and the debugger may not fully understand Fortran
datatypes.

● Quadruple precision floating point (REAL*16, REAL(KIND=16), COMPLEX*16) is currently not
supported. This will be addressed in a future release of the compiler along with changes to various
system libraries.

● The /SEPARATE_COMPILATION qualifier is currently ignored. A single Fortran source file is
create a single object module.

● The /MACHINE_CODE qualifier is ignored. As a workaround, you can use the
ANALYZE/OBJECT/DISASSEMBLE to show the generated code and line numbers.

1.6. Known Restrictions
The SCA support with the /ANALYSIS_DATA qualifier is limited. The Fortran 95 compiler only
produces basic SCA information about modules. It does not include information about variables and
other symbols. This is a permanent restriction.

1.7. Features Missing From Documentation
IA64, _IA64_ , X86, And _X86_64_ predefine symbols are implemented.

1.8. Floating-Point Arithmetic
● IEEE is the default floating-point datatype (which means, the default is /FLOAT=IEEE_FLOAT).

VSI Fortran for OpenVMS Alpha Systems defaults to the VAX G_float floating-point format
(/FLOAT=G_FLOAT). On OpenVMS I64 or OpenVMS x86-64 systems, however, there is no
hardware support for floating-point representations other than IEEE. Instead, the compiler supports
VAX floating-point formats by generating run-time code which converts operands to IEEE format,
performs the needed arithmetic operations, and then converts the IEEE result back to the appropriate
VAX format. Depending on the application, this may impose significant additional run-time
overhead and some loss of accuracy compared to performing the operations in hardware on an
Alpha.

This software support for the VAX formats is an important functional compatibility requirement for
certain applications that need to deal with on- disk binary floating-point data, but its use should be
strongly discouraged.

If possible, users should use /FLOAT=IEEE_FLOAT (the default) for the highest performance and
accuracy.

Note that the changed /FLOAT default will have implications for the use of /CONVERT=NATIVE
(the default). This switch causes unformatted data to remain unconverted on input, on the assumption
that it matches the prevailing floating-point datatype.

5

VSI Fortran V8.6-001 for OpenVMS x86-64 Release Notes

Files written from Fortran applications built with /FLOAT=G_FLOAT/CONVERT=NATIVE
(the default) on Alpha can be read by Integrity server applications built with
/FLOAT=G_FLOAT/CONVERT=NATIVE or /FLOAT=IEEE/CONVERT=VAXG.

● The /IEEE_MODE qualifier defaults to /IEEE_MODE=DENORM_RESULTS. This differs from
Alpha, where the default is /IEEE_MODE=FAST. Despite the name, /IEEE_MODE=FAST does
not have a significant effect on run-time performance on Integrity or x86-64 servers (or on Alpha
processors from EV6 onward).

● On Integrity or x86-64 servers, users will have to pick one compile-time /FLOAT value and one
compile-time /IEEE_MODE value and stick with it for the whole of their application. This is
because mixed-mode applications will not (in general) work on OpenVMS I64 or OpenVMS x86-64
systems as a result of architectural differences in the hardware. This is a change from OpenVMS
Alpha systems, where mixed-mode applications work. In particular, per-routine/per-file/per-library
settings of a mode will not work.

● Exception handlers will be entered with the floating- point mode in effect at the time the exception
was raised, not the mode with which the handler was compiled.

2. VSI FORTRAN Documentation and Online
Information
The VSI Fortran documentation set can be found online at https://docs.vmssoftware.com/

6

https://docs.vmssoftware.com/

	VSI Fortran V8.6-001 for OpenVMS x86-64
	1. Release Notes
	1.1. Overview
	1.2. Getting Help And Reporting Problems
	1.3. Corrections Since The Last Release
	1.4. Changes From OpenVMS Alpha and OpenVMS I64
	1.4.1. Incompatible Change For Assigned GOTO Statements
	1.4.2. VAX D_floating May Produce Different Results Than I64

	1.5. Known Issues
	1.6. Known Restrictions
	1.7. Features Missing From Documentation
	1.8. Floating-Point Arithmetic

	2. VSI FORTRAN Documentation and Online Information

