I II VMS Software

VSI OpenVMS

OMNI API Omni Definition Facility User
Guide

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VS| OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

OMNI API Omni Definition Facility User Guide

I II VMS Software

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

ii

OMNI APl Omni Definition Facility User Guide

Table of Contents

Preface

Lo ADOUL VST e
. Intended AUIENCEouvviiiiiiiiiiiiiiiiiiie ettt ee e e eeeeeanee
. DOCUMENT STIUCIUIE ...eevvtiiiiiiiiiiiiiiiiiitieieiet ettt eeeeeeeeeeeeeeeeeeaeeeneeeneeanes
- Related DOCUMENTSooooiiiiiiiiiiiiiiiiiiiii
. VSI Encourages Your COMMENESccceeriiiiiiiiiiiiiiiiiiieiieiieieieeieieeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees
. OpenVMS DOCUMENTALIONuuuiiiiiiiiii e
7. Typographical CONVENTIONSuuurruuureuerereieieteteieeeeeeeeeeeeeeeeeeeeeeeaeeeaeaeaeeeeeeeaeaeeeeeeeeeaeaene

(o)WY I SRV I\

Chapter 1. Using the Omni Definition Facilitycccccceeeveiccsncccsnnccssnncssnncsssnscssnsscsssssssonns

1.1. Operations and FUNCHONSuuuuuiuiiueiiiiiiiiiiiiiiiiieiitetie e eeeeeeeeeaeees
1.1.1. Companion Standardseeeeueeeeemereeeiereeeeieeeeeeeeeeeee e ———————
1.1.2. Command Language Interfacecccccccvviiiiiiiiiiiiiiiiiiiiiiieceeeeee

1.1.2.1. Level-by-Level Promptingcccuuuuuiiiiiiiiiiiiiiiiiieee et eeeeeeeeiians
1.1.2.2. Command ADDIEVIAtIONSoeeeeieieieee e

1.1.3. Invoking the Facilitycccccciiiiiiiiiiiiieeeeeeeeeeeeeeeee

1.1.4. Exiting from the Facilitycccooiiiiimiiiiiiiiiiiiiii e
1.1.5. Getting HeElp ..o
1.2. Creating a Virtual Manufacturing Device Definitioncccccccvvviiiiiiiiiiiiiiiiiiiiiiiieieeenene.
1.3. Creating @ Domain Definitionccoooeioiiioiiiii e
1.4. Creating a Program Invocation Definitionccccccciiiii
1.5. Creating a Variable DefinItioncceeeiiiiiiiiiiineeiiiiiiiiiiiie ettt ee et eeeeeeeans
1.5.1. Named VariabIesc.coeueiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeee
1.5.2. Unnamed Variablescoooviiiiiiiiiiiiiiieeee e
1.6. Creating Manufacturing Message Specification and Application Type Definitions
1.6.1. Creating a Manufacturing Message Specification Named Type Definition
1.6.2. Creating an Application Named Type Definitionccccceeeiiiii..

1.6.3. Creating Application Type Definitions for Alternate AcCessevveeeveevevreeennn.

1.7. Committing Definitions to the Databasec.ccccc

1.8. Setting the Default SCOPEcuuviiiiiiiiiiiiiiiiiiiiiiiiiii e

1.9. Deleting @ Definitionccevieiiiiiiiiiiiiiee ettt e ettt e e e e e e eeabie e as

1.10. Creating, Opening, and Closing a Log Filecccociiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeieeenes
1.11. Enabling and Disabling LOgZINGcoooiiiiiiiiiiiiiiii
1.12. Displaying Definitions and Current SEtNgsccoeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiienenn.

1.13. Executing Stored COmMmMANASeuuummmmmmmmemieiiiiiiiiiiiiiiiiiiiteiieeeieeeeee e
1.14. Creating a Command to Repeat a Definitionccccccceiiiiiiiiiiiiiii.

1.15. EXAMPIE SCIIPL oo

Chapter 2. Using the Omni Directory Services
2.1. Command DESCIIPLONSceeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e eaes

Appendix A. Predefined Types

Appendix B. Error Messages

Appendix C. Supported Mappings

Appendix D. Example Script of Object Definitions
Glossary of VSI OMNI Terms

iii

OMNI APl Omni Definition Facility User Guide

v

Preface

This document describes the management functions provided to define, monitor, and control selected
data in the VSI OMNI Application Program Interface (API) system.

VSI OMNI is an implementation of the Manufacturing Message Specification (MMS) as defined in
ISO/IEC standard 9506. The MMS specifies the semantics and syntax for communications between
applications running on computer systems and dedicated plant floor processors such as robotic or
numeric control (NC) devices or programmable logic controllers (PLCs).

The Omni Definition Facility (ODF) enables a system manager to perform system management and
configuration tasks by creating local definitions for remote Virtual Manufacturing Device (VMD)

objects.

1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience

This document is for system and network managers and personnel who are experienced in network
management or distributed processing.

3. Document Structure

The manual consists of the following chapters and appendices:

Chapter Contents
Chapter 1, "Using the Omni describes VSI OMNI ODF user functions.
Definition Facility"

Chapter 2, "Using the Omni
Directory Services"

provides detailed descriptions of the VSI OMNI ODF commands.

Appendix A, "Predefined Types"

provides a list of the VSI OMNI ODF predefined types.

Appendix B, "Error Messages"

provides a list of VSI OMNI ODF error messages.

Appendix C, "Supported
Mappings"

provides a list of supported mappings between MMS and VSI OMNI
application types.

Appendix D, "Example Script of
Object Definitions"

provides an example script of object definitions.

Glossary of VSI OMNI Terms

defines the terms used in this document or in reference to the VSI
OMNI product set.

4. Related Documents

The following documents provide more information about using the VSI OMNI API software:

o VSI OMNI API for OpenVMS Installation Guide

Preface

o VSI OMNI API Guide to Using OmniView
o VSI OMNI API Omni Definition Facility User Guide

The following documents provide more information about the ISO/IEC standard Manufacturing Message
Specification (MMS):

o Industrial Automation Systems - Manufacturing
® Message Specification Service Definition, ISO/IEC 9506-1
e Industrial Automation Systems - Manufacturing

® Message Specification Protocol Specification, ISO/IEC 9506-2

5. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation

The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions

The following conventions may be used in this manual:

Convention Meaning

VSI OMNI The term "VSI OMNI" refers to the VSI OMNI API product or to
functions and services provided by the VSI OMNI API software.

OpenVMS The term "OpenVMS" refers to OpenVMS VAX or OpenVMS

Alpha products, or to operations and functions performed by the
OpenVMS VAX or OpenVMS Alpha operating system.

$ The dollar sign is the default OpenVMS system prompt for user
input.
ODF> The ODF acronym with a right angle bracket is the Omni Definition

Facility prompt for user input.

UPPERCASE, lowercase The system differentiates between uppercase and lowercase
characters. Literal strings that appear in descriptions, examples, or
command syntax must be entered exactly as shown.

Boldface type Boldface type emphasizes user input to system prompts.
sytem output This typeface indicates system output in interactive examples.
[] Square brackets are part of the directory specification [directory-

name] on OpenVMS systems. Square brackets in a procedure call
indicate parts of a parameter that can be included or omitted.

Vi

https://docs.vmssoftware.com

Preface

Convention Meaning

Ctrl/x Hold down the Ctrl key while you press another key, indicated here
by x.

italic type Italic type emphasizes important information, names of API calls

and procedures, or the complete titles of documents.

Vertical ellipses (dots) in examples indicate that information has
been omitted for clarity.

vii

Preface

viii

Chapter 1. Using the Omni
Definition Facility

The Omni Definition Facility (ODF) enables users to locally create and manage stored definitions and
data types for Manufacturing Message Specification (MMS) objects and Virtual Manufacturing Devices
(VMDs).

This chapter is organized in the following sections:

e Operations and Functions

e Creating a Virtual Manufacturing Device Definition
e Creating a Domain Definition

e Creating a Program Invocation Definition

e Creating a Variable Definition

e Creating Manufacturing Message Specification and Application Type Definitions
e Committing Definitions to the Database

e Setting the Default Scope

e Deleting a Definition

e Creating, Opening, and Closing a Log File

e Enabling and Disabling Logging

e Displaying Definitions and Current Settings

e Executing Stored Commands

e Creating a Command to Repeat a Definition.

1.1. Operations and Functions

The ODF provides a set of commands and procedures that enable users to perform the following specific
operations or functions:

o Create VMD definitions.

e Create MMS Domain definitions and associate them with a locally defined VMD.

o Create MMS Program Invocation (PI) definitions and associate them with a locally defined VMD.
e Create variable definitions and associate them with a locally defined Domain or VMD.

e Create data type definitions.

e Display the local definitions of an MMS object.

Chapter 1. Using the Omni Definition Facility

e Delete a locally created definition or set of definitions.

e Log the current ODF session to a file for later use.

e Write (export) definition commands for backup or convenience.

e Execute a series of stored commands (for example, commands in a log file).

e Set and display the defaults for an ODF session.

Note

The definitions you create with ODF are local to VSI OMNI but are not necessarily local to the system
that is running ODF or using the definitions.

1.1.1. Companion Standards

A companion standard (CS) can function as an integral part of VSI OMNI and can be defined by using
ODF.

If a CS exists with VSI OMNI, it can affect the behavior of the VSI OMNI procedure calls. The CS can
support objects and attributes that are different from those supported by VSI OMNL

See your applicable companion standard's guide for details about the objects and attributes supported by
the companion standard.

1.1.2. Command Language Interface

The ODF Command Language Interface (CLI) guides you through the correct syntax of each ODF
command by supplying prompts and a list of options.

For example, if you want to use the SET command, but cannot remember the exact syntax or choices of
the command, enter the SET command without arguments:

ODF> SET
(APPLICATION PROFILE, ODF LOGFILE, SCOPE)
_ODF>

The CLI prompts you for the next word in the command because the command has been entered in an
incomplete form. Options supporting the SET command are listed in parentheses.

1.1.2.1. Level-by-Level Prompting

You can specify the entire command without using CLI, or you can specify part of the command and
have CLI prompt only for those words that you miss.

Because CLI displays only supported options, prompting for the options is a good way to check the
syntax of a command after receiving a parser error. Any attribute or keyword you specify that is not in
the CLI option list is not supported for that command.

1.1.2.2. Command Abbreviations

You can shorten the command line by shortening the number of letters in each word. You can abbreviate
any word to the first three characters or to the minimum number of characters that makes the command
unique.

Chapter 1. Using the Omni Definition Facility

1.1.3. Invoking the Facility

You can issue single ODF commands at the Digital Command Language (DCL) prompt or you can
invoke the ODF facility for a continuous, interactive session.

To use ODF for single line DCL commands, you must first define the command. For example:
$ ODF :== SOMNI_ODF
You can then enter single line ODF commands from DCL. For example:

$ ODF command option .
$ ODF command option .

Another option is to define ODF as a foreign command:

$ ODF :== RUN SYSSSYSTEM:OMNI_ODF
or
$ ODF = "SYSSSYSTEM:OMNI_ODF.EXE"

You can then use the defined command to invoke an inter- active ODF session:

$ ODF
ODF>

You can then enter valid ODF commands at the ODF prompt. Each command must be terminated with a
semicolon (;) and entered by pressing Return. If you leave out required component ids or attributes, ODF
prompts you for them.

1.1.4. Exiting from the Facility

You can enter the EXIT command or press Ctrl/Z to exit from ODF and return to the DCL prompt.

The EXIT command attempts a COMMIT before ending the ODF session. If there are unresolved
dependencies, ODF does not exit. You must enter additional DEFINE commands to satisfy the
dependencies, then reenter the EXIT command.

The QUIT command rolls back any batched DEFINE or DELETE DEFINITION commands and ends
the ODF session.

1.1.5. Getting Help

After invoking ODF, you can use the HELP command to display information about individual
commands. Enter HELP followed by the name of the command that you want information about:

ODF> HELP SET SCOPE

This command returns a display of HELP information about the SET SCOPE command. You can also
enter the HELP command by itself to display a menu of options.

1.2. Creating a Virtual Manufacturing Device
Definition

A complete VST OMNI VMD definition consists of the items listed in Table 1.1, "VMD Definitions".

Chapter 1. Using the Omni Definition Facility

Table 1.1. VMD Definitions

Item Description

vmd_name The local name of the VMD definition. This name is used to
reference the definition; it is not used in communications.

APPLICATION SIMPLE NAME | The name used to look up the application in Omni Directory

Services.

CPU This attribute is not supported for all application profiles. See the
appropriate ASE-specific documentation for further information.

DESCRIPTION Information describing the defined VMD. This is not used in
communication.

MAXIMUM SERVICES The proposed maximum number of transaction object instances that

CALLED can be created at the called MMS-user on the association.

MAXIMUM SERVICES The proposed maximum number of transaction object instances that

CALLING can be created at the calling MMS-user on the association.

MAXIMUM SEGMENT SIZE |The proposed maximum size of an MMS message to exchange with
the VMD.

MODEL The proposed maximum size of an MMS message to exchange with
the VMD.

NESTING LEVEL The maximum number of levels of nesting that can occur within any
data element over an association with the VMD.

NOT This attribute is not supported for all application profiles. See the
appropriate ASE-specific documentation for further information.

PARAMETER CBB A list specifying the set of conformance building blocks (CBBs)
supported by the VMD.

REVISION A string describing the software, firmware, or hardware revision
level of the VMD.

SUPPORTED SERVICES A list of services supported by the VMD for the association.

VENDOR The vendor of the system supporting the VMD.

VERSION The version of the MMS protocol to use.

To create a VSI OMNI definition of a VMD, enter the DEFINE VMD command, specify the name of
the VMD, and supply the values that describe the VMD. For example:

ODF> DEFINE VMD myvmd

(APPL, CPU,DESC, MAX,MOD, NEST, NOT, PAR, REV, SUPP, VEN, VERS)
_ODF> APPLICATION SIMPLE NAME mycountry@myorg@myunit@myvmd,
(APPL, CPU,DESC, MAX,MOD, NEST, NOT, PAR, REV, SUPP, VEN, VERS)
_ODF> DESCRIPTION "Example VMD" (',', ';')

(APPL, CPU,DESC, MAX, MOD, NEST, NOT, PAR, REV, SUPP, VEN, VERS)
_ODF> MAXIMUM SERVICES CALLED 5,

_ODF> MAXIMUM SERVICES CALLING 2,

_ODF> MAXIMUM SEGMENT SIZE 512,

_ODF> MODEL "A",

_ODF> NESTING LEVEL 7,

_ODF> PARAMETER CBB (NOVALT, NO UNNAMED VARIABLES, TPY),
_ODF> REVISION "first",

_ODF> SUPPORTED SERVICES

_ODF> VENDOR "me",

_ODF> VERSION 1,

Chapter 1. Using the Omni Definition Facility

_ODF> (NO INFORMATION REPORT,
_ODF> RENAME) ;

To add the definition to the permanent ODF database, enter the COMMIT command (described in
Section 1.7, "Committing Definitions to the Database".

1.3. Creating a Domain Definition

A complete VSI OMNI definition for a Domain consists of the items listed in 7able 1.2, "Domain
Definitions".

Table 1.2. Domain Definitions

Item Description

BLOCK ADDRESS LIST This attribute is not supported for all application profiles. See the
appropriate ASE-specific documentation for more information.

CAPABILITY FILE An OpenVMS file specifying the capabilities of the Domain.

CONTENT FILE An OpenVMS file containing the Domain.

vmd_name:domain_ name The name of the remote Domain object and its associated VMD.

[NO] DELETABLE A value indicating whether or not the Domain can be deleted from
the VMD.

DESCRIPTION Information describing the defined Domain

[NO] SHARABLE A value indicating whether or not the Domain can be shared by
multiple program invocations.

A Domain definition must include the name of the VMD to which the Domain belongs. ODF rejects any
Domain definition that does not specify an existing VMD and capabilities file.

To create a VSI OMNI definition of a Domain, enter the DEFINE DOMAIN command at the ODF
prompt and supply the information you need to describe the Domain. For example:

ODF> DEFINE DOMAIN myvmd:mydom

(BLOCK ADDRESS LIST, CAPABILITY FILE, CONTENT FILE, [NO]DELETABLE,
DESCRIPTION,

[NO] SHAREABLE)

_ODF> CAPABILITY FILE my_domains:mydom.cap CONTENT FILE
my_domains:mydom.dom

"yt ")

_ODF> , DELETABLE, NOSHARABLE;

To add the definition to the permanent ODF database, enter the COMMIT command (described in
Section 1.7, "Committing Definitions to the Database").

1.4. Creating a Program Invocation Definition

A complete VSI OMNI definition of a program invocation (PI) consists of the items listed in Table 1.3,
"Named Variable Definition".

Table 1.3. Named Variable Definition

Item Description

vmd_name:pi_name The name of the program invocation and its associated VMD.

Chapter 1. Using the Omni Definition Facility

Item Description

[NO] DELETABLE A value indicating whether or not the PI can be deleted from the
VMD.

[NO] REUSABLE A value indicating whether or not the PI can be reused.

EXECUTION ARGUMENT An execution argument that becomes the default for START and

STRING RESUME requests for the PI.

monitor_type One of three values. NO MONITOR indicates that the PI has no

monitoring event condition. MONITOR PERMANENT indicates
that the PI has a monitoring event condition that exists throughout
program execution. MONITOR CURRENT indicates that the PI
has a monitoring event condition that exists only for the life of the

association.

DOMAIN LIST A list of references to the Domains that make up this program
invocation.

DESCRIPTION Information describing the defined program invocation.

A PI definition must include the name of the VMD to which the Domain belongs. ODF will reject any PI
definition that does not specify an existing VMD.

Each PI definition must also specify a Domain list with at least one Domain in it. ODF will reject the
definition if the listed Domains are not defined.

To create a VSI OMNI definition of a program invocation, enter the DEFINE PROGRAM
INVOCATION command in response to the ODF prompt and supply the values that describe the PI. For
example:

ODF> DEFINE PROGRAM INVOCATION myvmd:mypi DOMAIN LIST (myvmd:mydom)
"y)

_ODF> , DELETABLE, REUSABLE, XA STRING "/DEBUG", NOMONITOR;

To add the definition to the permanent ODF database, enter the COMMIT command (described in
Section 1.7, "Committing Definitions to the Database").

1.5. Creating a Variable Definition

ODF enables you to create VSI OMNI definitions for the following types of variables:
e Named variables

e Unnamed variables

1.5.1. Named Variables

A complete VSI OMNI definition of a named variable consists of the items listed in Table 1.4, "Named
Variable Definition".

Table 1.4. Named Variable Definition

Item Description
vmd_name:domain_ The name of the remote named variable object and its associated
name.variable_name VMD and (optionally) Domain.

Chapter 1. Using the Omni Definition Facility

Item Description

type A reference to a predefined application type. Either a type
specification for the variable or a reference to a specification created
by the DEFINE APPLICATION NAMED TYPE command.

A value that indicates whether the named variable can be deleted
from the VMD.

[NO] DELETABLE

DESCRIPTION Information that describes the named variable.

A variable definition must include the name of the VMD to which the variable belongs. ODF will reject
any definition that does not specify an existing VMD. If a variable is defined as being on a Domain, you
must also define the Domain.

You must specify the type of the variable.

To create a VSI OMNI definition for a named variable, enter the DEFINE NAMED VARIABLE
command in response to the ODF prompt and supply the required information. For example:

DEFINE NAMED VARIABLE Foo:Bar.Y
DESCRIPTION "Domain Bar of VMD Foo Y Coordinate"™ TYPE INTEGER 32;

DEFINE NAMED VARIABLE Foo:X
DESCRIPTION "VMD Foo X Coordinate" APPLICATION TYPE %:OMNISLONG;

To add the definition to the permanent ODF database, enter the COMMIT command (described in
Section 1.7, "Committing Definitions to the Database").

1.5.2. Unnamed Variables

A complete VSI OMNI definition of an unnamed variable consists of the items listed in Table 1.5,
"Unnamed Variable Definition".

Table 1.5. Unnamed Variable Definition

Item Description

The name of the remote unnamed variable and its associated VMD
(and, optionally, its Domain).

vmd_name:domain_
name.variable_name

type A reference to a predefined application type. Either a type
specification for the variable or a reference to a specification created
by the DEFINE APPLICATION NAMED TYPE command.

<address>

The address of the unnamed variable.

[NO] Supply Type Spec

A value that indicates whether the variable’s type specification is to
be sent to the remote VMD to access the variable.

DESCRIPTION

Information that describes the named variable.

To create a VSI OMNI definition for an unnamed variable, enter the DEFINE UNNAMED VARIABLE
command in response to the prompt and supply the required information. For example:

X

ODF> DEFINE UNNAMED VARIABLE myvmd:X APPLICATION TYPE %:O0OMNISLONG

(DES, TYP, APP TYP)

_ODF> NUMERIC ADDRESS

variable";

ODF> DEFINE UV myvmd:AT

%$X4000, DESCRIPTION "Example of an unnamed

:OMNISLONG SYMBOLIC ADDRESS "$n0:0";

Chapter 1. Using the Omni Definition Facility

To add the definition to the permanent ODF database, enter the COMMIT command (described in
Section 1.7, "Committing Definitions to the Database").

1.6. Creating Manufacturing Message
Specification and Application Type Definitions

An ODF variable definition includes two variable type definitions: an MMS Type definition and an
Application Type definition.

e The MMS Type (MT) definition provides information about the variable that is communicated
through the MMS protocol when the variable is read or written.

e The Application Type (AT) definition provides information about the way the application views the
variable. Application Type information cannot be communicated through the MMS protocol; it is
specific to the local programming environment.

ODF provides two commands that you can use to create variable type definitions:
e DEFINE MMS NAMED TYPE. Creates an MMS Type definition.

e DEFINE APPLICATION NAMED TYPE. Creates an Application Type definition and associates the
definition with a corresponding MMS Type definition that you have created.

The DEFINE TYPE commands are useful for creating commonly-used type definitions that many
variables will reference. When a number of variables refer to the same type definition, all of the variables
can be changed by changing the one type definition.

1.6.1. Creating a Manufacturing Message Specification
Named Type Definition

A complete VSI OMNI definition of an MMS Named Type consists of the items listed in Table 1.6,
"MMS Named Type Definition".

Table 1.6. MMS Named Type Definition

Item Description

vmd_name:domain_ The name of the MMS Named Type specification and its associated

name.mms_type_name VMD (and, optionally, its Domain).

mms_type_specification A structure, array or simple type specification or a reference to
another MMS Named Type.

[[NO] DELETABLE] Indicates whether or not the MT can be deleted from the VMD.

DESCRIPTION Information describing the defined MMS Named Type.

An MMS Named Type definition must include the name of the VMD to which the named type belongs.
ODF rejects any definition that does not specify an existing VMD. If a named type is defined as being
on a Domain, you must also specify the Domain.

You must specify the MMS type specification.

To create a VSI OMNI definition for an MMS Named Type, enter the DEFINE MMS Named Type
command in response to the prompt and supply the required information. For example:

Chapter 1. Using the Omni Definition Facility

DEFINE MMS NAMED TYPE Foo:Point
DESCRIPTION "Point in threespace" STRUCTURE
x INTEGER 32;
vy INTEGER 32;

z INTEGER 32; END;
DEFINE MMS NAMED TYPE Foo:Position
DESCRIPTION "Position and Orientation"
STRUCTURE

pos Foo:Point;

r FLOAT FORMAT WIDTH 32 EXPONENT 9;

o FLOAT FORMAT WIDTH 32 EXPONENT 9;

h FLOAT FORMAT WIDTH 32 EXPONENT 9;
END;

To add the definition to the permanent database, enter the COMMIT command (described in Section
1.7, "Committing Definitions to the Database").

1.6.2. Creating an Application Named Type Definition

A complete VSI OMNI definition of an Application Named Type consists of the items listed in 7Table
1.7, "Application Named Type Definition".

Table 1.7. Application Named Type Definition

Item Description
vmd_name:domain_ The name of the Application Named Type specification and its
name.application_type_ name associated VMD (and, optionally, its Domain).

FROM MMS NAME TYPE The name of the MMS Named Type associated with the Application
Named Type. The default is the same name and scope as the
Application Type.

application_type_ specification | A structure, array or simple type specification or a reference to
another Application Named Type.

DESCRIPTION Information describing the defined Application Named Type.

An Application Named Type definition must include the name of the VMD to which the named type
belongs. ODF will reject any definition that does not specify an existing VMD. The named type can also
be defined on a Domain.

You must specify the application type specification.

To create a VSI OMNI definition for an Application Named Type, enter the DEFINE Application
Named Type command in response to the ODF prompt and supply the required information. For
example:

DEFINE APPLICATION NAMED TYPE Foo:Point

DESCRIPTION "Point in threespace"

APPLICATION TYPE FROM MMS NAMED TYPE Foo:Point STRUCTURE
(x,x) INTEGER 32;

(y,v) INTEGER 32;

(z,z) INTEGER 32; END;

To add the definition to the permanent database, enter the COMMIT command (described in Section
1.7, "Committing Definitions to the Database").

Chapter 1. Using the Omni Definition Facility

1.6.3. Creating Application Type Definitions for
Alternate Access

Every VSI OMNI variable definition specifies a default Application Type definition, which in turn refers
to an MMS Type definition.

Simple applications would generally access the variable's data using the default Application Type.
Other applications may need to perform alternate access by referring to the variable using some other
Application and/ or MMS Type definition.

One reason for alternate access would be to support applications which store internal data differently.
For example, suppose two applications access a variable whose MMS Type definition is a Visible
String. One application may need to store this visible string internally as a null terminated string while
another Application Type may need to store it internally as a word counted string. In both cases, since
all elements of the array would be accessed, there is a 1:1 correspondence between array components
of the MMS Type definition and the Application Type definition. Following is an example of the type
definitions that can be used under these circumstances:

DEFINE MMS NAMED TYPE Foo:String VISIBLE STRING 100; DEFINE APPLICATION
NAMED TYPE Foo:String

FROM MMS NAMED TYPE Foo:String, STRING 100; DEFINE APPLICATION NAMED TYPE
Foo:Alt_String NT

FROM MMS NAMED TYPE Foo:String, NULL TERMINATED STRING 100; DEFINE
APPLICATION NAMED TYPE Foo:Alt_String_WC

FROM MMS NAMED TYPE Foo:String, WORD COUNTED STRING 100; DEFINE NAMED
VARIABLE Foo:String_Var APPLICATION TYPE Foo:String;

Another reason for alternate access is to support applications which may not need to access all of the
data in a variable. This type of alternate access is called partial access. For example, a device can define a
portion of its memory as a large array. An application can read the portion of the memory it is interested
in by creating an

Application Type definition that specifies a subrange of the array to be read into an application buffer
which is only large enough to hold the data in that subrange. Following is an example of the definitions
that can be used in circumstances where the default application type references the entire array:

DEFINE MMS NAMED TYPE Foo:Int_Array ARRAY [20] of INTEGER 32; DEFINE
APPLICATION NAMED TYPE Foo:Int_Array

FROM MMS NAMED TYPE Foo:Int_Array, ARRAY [20] of INTEGER 32; DEFINE
APPLICATION NAMED TYPE Foo:Alt_Int_Array_0_9

FROM MMS NAMED TYPE Foo:Int_Array, ARRAY [0...9] of INTEGER 32;

DEFINE APPLICATION NAMED TYPE Foo:Alt_Int_Array_ 5_14

FROM MMS NAMED TYPE Foo:Int_Array, ARRAY [5...14] of INTEGER 32;

DEFINE NAMED VARIABLE Foo:Int_Array_Var APPLICATION TYPE Foo:Int_Array;

In both examples of alternate access (full and partial), an application accomplishes alternate access on
a variable by providing a method handle in calls to the variable access procedures, omni_get_value and
omni_put_value.

A method handle is an object identifier handle of an Application Named type.
The user can also define the default application type as an alternate access type. In this case, it is not

necessary to supply a method handle to perform alternate access. Instead, alternate access can be
performed by default whenever the variable is accessed.

10

Chapter 1. Using the Omni Definition Facility

1.7. Committing Definitions to the Database

An ODF session consists of the following steps:

1. The user enters a series of DEFINE and/or DELETE commands to describe the objects in the MMS
environment. ODF saves these definitions in a special area allocated for the ODF session.

2. The user enters the COMMIT command. ODF examines the batched definitions (that is, all the
definitions entered since the last COMMIT command or since the beginning of the session), writes
all valid definitions into the permanent database, or reports on any errors. If committing the changes
will produce inconsistencies in the database, referred to as a database constraint error, ODF reports
an error and does not make any of the modifications. For example, if you have entered a variable
definition that includes a reference to a nonexistent VMD, ODF rejects the definition and returns an

error code.

ODF does not discard the batch of definitions if the COMMIT operation fails. Thus, you can correct the
error and enter the COMMIT command again.

To erase a batch of modifications from the temporary storage area, enter the ROLLBACK command.
ODF discards all the definitions that you have created since your last COMMIT command. (Note

how ROLLBACK differs from DELETE. The DELETE command removes a definition that has been
committed to the permanent ODF database or exists in temporary storage; the ROLLBACK command
discards actions from temporary storage.)

In addition to batching DEFINE commands, ODF batches all commands that modify the database (for
example, the DELETE command) until you enter a COMMIT command.

Note

The EXIT command causes ODF to attempt a COMMIT before exiting. The QUIT command causes
ODF to attempt a ROLLBACK before exiting.

If, as an ODF user, you arrange your transactions so a COMMIT is issued after each DEFINE command,
you can reduce the ambiguity of constraint error messages.

The constraint error message identifiers have the following general format:

DUP<def>

A definition with the name specified in a DEFINE <def> command
already exists in the database. To modify a definition, DELETE it,
DEFINE it, and then COMMIT it. If modification is not wanted, and the
existing database entry is correct, use ROLLBACK to cancel the DEFINE
request.

<def1>NO<def2>

An attempt was made to create a definition that is dependent on the
existence of another definition. For example, DOMNOVMD means

that a DEFINE DOMAIN command was issued for a Domain, and the
VMD specified for that Domain does not exist. Either create the required
definition or roll back the request. Remember that all definition names are
case sensitive.

<def1>REF<def2>

A definition refers to another definition that does not exist. For example,
NVREFAT means that a DEFINE NAMED VARIABLE command
was issued with an APPLICATION TYPE reference to a nonexisting

11

Chapter 1. Using the Omni Definition Facility

Application Named Type. Either create the required definition or roll
back the request. Remember that all definition names are case sensitive.

Classes of definitions are abbreviated as follows:

VMD: Virtual Manufacturing Device DOM: Domain PI: Program Invocation NV: Named Variable
UV: Unnamed Variable

VAR: Simple variable - named or unnamed (NV or UV) PID: Entry in a PI list of Domains

MT: MMS Named Type

AT: Application Named Type

Appendix B, "Error Messages" provides a list of the ODF error messages.

1.8. Setting the Default Scope

ODF enables you to set the default VMD and Domain for dependent objects that you want to define. To
specify a default VMD and Domain, enter the SET SCOPE command and the name of the VMD and
Domain. (If you omit the Domain name, the scope is VMD-specific).

For example, the following SET SCOPE command specifies Foo as the default VMD for the session and
Bar as the default Domain. The DEFINE command creates a variable definition named X:

ODF> SET SCOPE Foo:Bar
ODF> DEFINE NAMED VARIABLE X APPLICATION TYPE $%OMNIS$LONG;

ODF creates the definition Foo:Bar.X.

1.9. Deleting a Definition

The DELETE DEFINITION command deletes a definition from the permanent ODF database and/or
temporary storage.

A definition deletion cannot be committed until all of its dependencies are deleted. In the following
command sequence, for example, Domain "Bar" cannot be deleted while there is an existing definition
for a named variable "Baz" within the "Bar" scope:

DEFINE DEFINITION VMD Foo .

DEFINE DEFINITION DOMAIN Foo:Bar .

DEFINE DEFINITION NAMED VARIABLE Foo:Bar.Baz . . . DELETE Foo:Bar;
COMMIT; ! Will fail because of Foo:Bar.Baz

DELETE DEFINITION Foo:Bar (NAMED VARIABLE:*); ! Delete all variables in
Domain Bar of Vmd Foo

DELETE DEFINITION DOMAIN Foo:Bar;

COMMIT; ! Will succeed DELETE DEFINITION VMD Foo;

A right angle bracket character (>) in the command line causes ODF to delete the specified object and
all objects that are dependent on that object. For example, the following command deletes VMD Foo and
all the objects it contains:

DELETE DEFINITION Foo>;

12

Chapter 1. Using the Omni Definition Facility

To delete the entire database:

DELETE DEFINITION *>;

Note

VSI recommends that you do not use this command line.

The DELETE command supports the wildcard asterisk (*). For example, the following command
deletes all named variables in Domain Foo:Bar:

DELETE DEFINITION Foo:Bar (NV:*);

1.10. Creating, Opening, and Closing a Log
File

ODF enables you to create and open a log file for the ODF session. To create a log file, enter the SET
ODF LOGFILE command and specify the name of the log file.

Once the file is open, you can start session logging with the ENABLE ODF LOGGING command. You
can also write definition commands to the log file using the WRITE DEFINITION command.

To close the log file, reenter the SET ODF LOGFILE command with a different filename or the null
device name (NL:).

1.11. Enabling and Disabling Logging

To create a log of the ODF session, enter the ENABLE ODF LOGGING command.

If you have already specified a log file with the SET ODF LOGFILE command, ODF logs the session
to that file. If you have not specified a file, ODF creates a file OMNI_ODF.LOG in the current default
directory and logs the session there.

To disable logging, enter the DISABLE ODF LOGGING command. Logging will stop, but the log file
will remain open until the ODF session is exited or another SET ODF LOGFILE command is entered.

The ENABLE and DISABLE ODF LOGGING commands can be used to selectively log portions of an
ODF command session.

1.12. Displaying Definitions and Current
Settings

ODF provides commands that you can use to display the current settings of ODF session attributes or the
values of definitions in the database, as shown in Table 1.8, "ODF Commands".

Table 1.8. ODF Commands

Item Description

SHOW SCOPE Shows the default VMD and Domain.

13

Chapter 1. Using the Omni Definition Facility

Item Description

SHOW APPLICATION PROFILE Shows the current application profile.

SHOW ODF LOGFILE Shows the current output file.

SHOW ODF LOGGING Information describing the defined Application
Named Type.

SHOW DEFINITION Displays a definition or set of definitions to SYS
$OUTPUT.

SHOW VERSION Displays the version of ODF and the database
level.

1.13. Executing Stored Commands

The DO command (or @) enables you to read ODF commands stored in a script file. You can create
script files in any of the following ways:

e Use the SET ODF LOGFILE and ENABLE ODF LOGGING commands to trace a session.

e Use the WRITE DEFINITION TO command to write declaration commands to a file. This is
helpful when creating script files to rebuild portions of the database. Issuing a WRITE DEFINITION
command without a TO specifier causes a DEFINE command to be written to the current log file.

e Use any editor to create a text file containing the commands.

If logging is enabled when the script file is invoked, the invocation command is commented out in the
trace, and the individual commands in the script file appear in the trace output. A comment is inserted at
the end of the trace file. If the script file contains an EXIT command, that command does not appear in
the trace file.

DO commands can be nested (a script file can issue a DO command). There is no limit to how many
DO commands can be issued from a particular script file; however, ODF must open each script file, so
the open file limit (FILLM) quota determines the maximum nesting allowed. For example:

The file COMMANDS.COM looks like this:

| DEFINE NAMED VARIABLE Bar ... |
| DEFINE NAMED VARIABLE Baz ... |
| EXIT |

$ ODF = "S$SYSSSYSTEM:OMNI_ODF.EXE"

$ ODF

ODF> DEFINE VMD Foo; ODF> SET SCOPE Foo; ODF> ENABLE ODF LOGGING
ODF> sho sco Scope is Foo:)

ODF> DEFINE NAMED VAR X ... ODF> DO COMMANDS.COM;

ODEF> EXIT

$ TYPE OMNI_DEF.LOG

sho sco

! Scope is Foo:

DEFINE NAMED VAR X ...

! DO COMMANDS.COM;

! Invoking Script File DISK1:[GUEST]COMMANDS.COM;1 DEFINE NAMED VARIABLE
Bar ...

DEFINE NAMED VARIABLE Baz

14

Chapter 1. Using the Omni Definition Facility

! End of Script File DISK1:[GUEST]COMMANDS.COM;1 EXIT

1.14. Creating a Command to Repeat a
Definition

The WRITE DEFINITION command enables you to write out definitions to a file, where each definition
is written as a valid ODF DEFINE command. A reference to a definition, list of definitions, or a
wildcard specification can be specified. An asterisk (*) used as a wildcard character matches zero or
more characters, and a period (.) used as a wildcard character matches exactly one character.

If you include a file specification by using the TO clause, ODF opens that file, writes the definitions to it,
and closes the file. If there is no file specification, ODF appends the definitions to the current log file. If

no log file is open, ODF opens a new version of OMNI_DEF.LOG and writes the definitions there. The

name of the file can then be provided in the DO command to execute the commands stored in the file.

The following command writes out all definitions in the database which match the currently set
application profile to a file named BACKUP.LOG:

WRITE DEFINITION *> TO BACKUP.LOG;

To write all definitions for any other application profile, you must first type the SET APPLICATION
PROFILE command and specify the wanted application profile. Then enter the WRITE DEFINITION
command as shown in the previous example. A new file is created with each WRITE command entered.

The following example writes out Domain Bar of VMD Foo and its dependent objects to file
DOMAIN.LOG:

WRITE DEFINITION Foo:Bar> TO DOMAIN.LOG;

The following example writes named variables defined in Domain Bar to the current log file:

WRITE DEFINITION Foo:Bar (NV:*);

1.15. Example Script

The ODF command script, OMNI_EXAMPLES:OMNI_ODF_EXAMPLE.COM, provides an example
of a command sequence for defining a VMD and its dependent objects then generating a command
script of the VMD definition created. Appendix D, "Example Script of Object Definitions" lists the
contents of the example script file.

This script can by run by entering @ OMNI_EXAMPLES:OMNI_ODF_EXAMPLE.COM at the ODF
prompt.

15

Chapter 1. Using the Omni Definition Facility

16

Chapter 2. Using the Omni
Directory Services

This chapter describes the Omni Definition Facility (ODF) commands that create and manage local VSI
OMNI definitions of remote Manufacturing Message Specification (MMS) objects.

Table 2.1, "Conventions" lists the conventions used in this chapter.

Table 2.1. Conventions

Symbol Meaning

[] Square brackets enclose optional expressions.

<> Angle brackets enclose tokens that must be expanded.
Ellipsis (dots) indicate an expression that can be repeated.

A local ODF definition name has the same format as an MMS identifier and is a string of 1 to 32
alphanumeric characters including the dollar sign ($) and underscore (_). However, the identifier cannot
begin with a numeric character. Also, ODF definition names, like MMS identifiers, are case-sensitive
(for example, foo is not equal to FOO).

Table 2.2, "Definition Naming Format and Examples" shows the valid formats for referring to a
definition with the DELETE DEFINITION, SHOW DEFINITION, and WRITE DEFINITION

commands.

Table 2.2. Definition Naming Format and Examples

Definition Naming Format and Examples
VMD vmd_name vimd
Domain [vind_name :] domain_name vmd:dom, :dom, dom [vind_name]

(DOMAIN: domain_name) v(DOMAIN:d), (DOM:d)

Program Invocation

[vimd_name J(PROGRAM INVOCATION: pi_name)
v(PROGRAM INVOCATION:p), (PI:p)

Named Variable

[vimnd_name][dom_name .|(INAMED VARIABLE: var_name)
v:d(NAMED VARIABLE:n), :d(NV:n), :(NV:n), (NV:n)

Unnamed Variable

[vind_name](UNNAMED VARIABLE: uvar_name) v(UNNAMED
VARIABLE:n), (UV:n)

MMS Named Type [vind_name :][dom_name .](MMS NAMED TYPE: type_name)
v:d(MMS NAMED TYPE:n), :d(MT:n), :(MT:n), (MT:n)
Application Named Type [vmd_name :][dom_name .](APPLICATION NAMED TYPE:

type_name) v.d(APPLICATION NAMED TYPE:n), :d(AT:n), :
(AT:n), (AT:n)

17

Chapter 2. Using the Omni Directory Services

2.1. Command Descriptions

COMMIT

COMMIT — Commits changes to the database. All changes made in an ODF session since the last
COMMIIT become permanent and are visible to other users of the ODF database.

Format

COMMIT;

Description

When you enter the COMMIT command, ODF processes all of the DEFINE and DELETE
DEFINITION commands you have entered since your last COMMIT command or since the beginning of
the session.

However, before the modifications are made visible, ODF verifies that those modifications leave the
database in a consistent state. If committing the command would cause an inconsistency, ODF reports a
constraint violation and the changes are not added to the database. See Appendix B, "Error Messages" for
the list of constraint errors.

To recover from a constraint violation, either roll back the commands or enter additional commands

to correct the problem. The SHOW DEFINITION command is useful for pinpointing the cause of the
problem. SHOW DEFINITION shows any uncommitted changes as if they had already been applied.

DEFINE APPLICATION NAMED TYPE

DEFINE APPLICATION NAMED TYPE — Creates an Application Named Type definition.

Format

DEFI NE APPLI CATI ON NAMED TYPE [<vmd>:] [<dom>] <type> [FROM MMS NAMED TYPE
<ref>] <app_type_specification> [DESCRIPTION <text>] ;

Attributes and Values
<vmd>

The name of the VMD to which the Application Named Type belongs. If omitted, ODF uses the
default VMD that you have set with the SET SCOPE command.

<vmd> is an MMS identifier.

<dom>
The name of the domain to which the type belongs. If blank, the type's scope is VMD specific. If
not specified, ODF uses the default domain that you have set with the SET SCOPE command. (To

override the default domain, enter :<named_var_name>.)

<dom> is an MMS identifier.

18

Chapter 2. Using the Omni Directory Services

<type>

The name of the type being defined.

<type> is a character string of up to 255 characters.
FROM MMS NAMED TYPE <ref>

The name of the MMS type to use when using this application type. The MMS type must have the
same VMD scope as the application type or must be one of the predefined MMS types. The default
is the same name and scope as the application type name.

<ref> is a reference to an MMS named type definition.
<app_type_specification>

A construct specifying local format information. Mapping of an application type specification

to an MMS type specification is limited to certain combinations. Structures must be mapped to
structures, arrays to arrays, references to references, and simple types to simple types. See Appendix
C, "Supported Mappings" for details.

The following are valid mapping combinations:

e STRUCTURE
Indicates that the variable is a structure. A structure entry has the format:
STRUCTURE
{<app_component_id> <app_type_specification>;}

END STRUCTURE

<app_component_id> specifies which component of the corresponding MMS structure is being
referenced, and what name the application uses to refer to that component. It has the form:

<app_component_name>, <mms_component_ name>
e ARRAY
Indicates that the variable is an array. The entry has the following format:

ARRAY
<app_array_bounds> OF <app_type_specification>

<app_array_bounds> is a positive integer enclosed in brackets (for example, [10]), indicating
either the number of elements in the array or the range (for example, [3...5]) indicating which
elements in the array are included in a partial access.

<app_type_specification> indicates that the component type is a structure, array, or simple type.
e BOOLEAN

Indicates the type is a simple boolean with a cell size of eight bits.
e BIT STRING <cell_size_bits>

Indicates that the type is a simple bit string. <cell_size_bits> is the number of bits in the bit
string. Each bit is stored in the low order bit of an 8-bit cell.

19

Chapter 2. Using the Omni Directory Services

e INTEGER [<cell_size_bits>]
Indicates that the type is a simple integer.

<cell_size_bits> is the number of bits to use to represent the integer in two's complement format.
Only cell sizes of 8, 16, or 32 are valid. The default is 32.

e UNSIGNED |[<cell_size_bits>]

Indicates that the type is a simple binary integer. <cell_size_bits> is the number of bits to store
the value in. Only cell sizes of 8, 16, or 32 are valid. The default is 32.

e F FLOAT
Indicates that the type is a simple floating-point, stored locally in VAX F_Float format.
e STRING <size_in_bytes>

Indicates that the type is a simple scalar byte string. <size_in_bytes> is the length of the string in
bytes.

e WORD COUNTED STRING <size_in_bytes>

Indicates that the type is a word counted string. <size_in_bytes> is the maximum number of
characters in the string.

e NULL TERMINATED STRING <size_in_bytes>

Indicates that the type is a null terminated string. <size_in_bytes> is the maximum number of
characters in the string, not including the null terminator.

e OMNITime

Indicates that the type is a time value stored as six words. It is the time type used internally by
the VSI OMNI Application Interface.

e VMS ABSOLUTE TIME
Indicates that the type is stored as a quadword containing a VMS absolute time value.
e BOOLEAN ARRAY <app_array_bounds>

Indicates that the type is an array of boolean values, where each value is stored in a cell of eight
bits. <app_array_bounds> specifies the number or range of values.

e <ref>

A reference may be used instead of an explicit type description. The VMD scope of the
reference must match the VMD scope of the application named type being defined or must be
one of the predefined application named types.

DESCRIPTION <text>
Information identifying the variable.

<text> is a quoted character string with a maximum length of 128 characters.

20

Chapter 2. Using the Omni Directory Services

DEFINE DOMAIN

DEFINE DOMAIN — Creates a definition of a domain and associates the domain with a VMD
definition.

Format

DEFI NE DOVAI N [<vmd_name>:] <domain_name> [[NO]DELETABLE] [[NO]JSHARABLE)]
[CONTENT FILE <content_filespec>] [CAPABILITY FILE <capability_filespec>] [DESCRIPTION
<text>] ;

Attributes and Values

<vmd_name>

The name of the VMD definition with which the domain definition is associated. A <vmd_name>
an MMS identifier.

<domain_name>
The name of the domain.

A <domain_name> is an MMS identifier.

[NO] DELETABLE

1S

Indicates whether or not the domain can be deleted from the VMD. The DELETABLE attribute can

be set by a server only. The default is DELETABLE.
[NO] SHARABLE

Indicates whether or not the domain can be shared by multiple program invocations. The default is
NO SHARABLE. ODF does not prevent PI definitions from sharing a domain that is marked NO
SHARABLE.

CONTENT FILE <content_filespec>

A file containing the domain.

<content_filespec> is an OpenVMS file specification or logical name. The default is "".
CAPABILITY FILE <capability_filespec>

A file specifying the capabilities of the domain.

The <capability_filespec> is an OpenVMS file specification or logical name. The default is OMNI
$DOMAINS: [<vmd_name>] <domain_name>.cap.

Note

If the OpenVMS file specification contains a semicolon (;), the specification string must be
enclosed in quotes.

DESCRIPTION <text>

nn

Any information identifying the domain. This is not communicated. The default is "".

21

Chapter 2. Using the Omni Directory Services

<text> is a quoted character string with a maximum length of 128 characters.

DEFINE MESSAGE

DEFINE MESSAGE — Creates a local VSI OMNI definition of a message object and associates it with
a previously defined VMD. This object is not supported for the application profile. See the appropriate
ASE-specific documentation for more information.

Format

DEFI NE MESSACE [<vmd_name>:] <msg_name> LENGTH <msg_length> [DESCRIPTION
<text>] ;

Attributes and Values
<vmd_name>

The name of the VMD to which the message belongs. If omitted, ODF uses the default VMD that
you have set with the SET SCOPE command.

The <vmd_name> is an MMS identifier.
<msg_name>

The name of the message object being defined. Only one message can be defined for each VMD.
The <msg_name> is an MMS identifier.

LENGTH <msg_length>

The maximum length of the message data in bytes.

The <msg_length> is any positive integer in the range from 1 to 4096.
DESCRIPTION <text>

Information identifying the variable.

"nn

<text> is a quoted character string with a maximum length of 80 characters. The default is "".

DEFINE MMS NAMED TYPE

DEFINE MMS NAMED TYPE — Creates an MMS Named Type definition. An MMS Named Type
definition describes the attributes of a variable that can be communicated to an MMS peer.

Format

DEFI NE MVB NAMED TYPE [<vmd>:] [<dom>.] <type> <mms_type_specification>
[[NO]DELETABLE] [DESCRIPTION <text>] ;

Attributes and Values

<vmd>

The name of the VMD to which the named type definition belongs. If omitted, ODF uses the default
VMD that you have set with the SET SCOPE command.

22

Chapter 2. Using the Omni Directory Services

<vmd> is an MMS identifier.
<dom>

The name of the domain to which the type belongs. If blank, the type’s scope is VMD specific. If
not specified, ODF uses the default domain that you have set with the SET SCOPE command.

To override the default domain:
:<mms_named_type>.
<dom> is an MMS identifier.
<type>
The name of the MMS type being defined.
<type> is an MMS identifier.
<mms_type_specification>
One of the following values indicating that the variable is a structure, an array, or a simple variable:
e STRUCTURE {<mms_type_component_name> <mms_type_specification>;} ... END;

Indicates that the value is constructed from an ordered list of one or more components, each of
which can have a distinct type.

<mms_type_component_name> is an MMS identifier.

<mms_type_specification> describes the type of this component. The type can be a structure, an
array, or a simple type.

e ARRAY <mms_array_bounds> OF <mms_type_specification>
Indicates that the value is an ordered sequence of elements.
<mms_array_bounds> is a positive integer enclosed in brackets ([]).

<mms_type_specification> describes the type of elements in the array. The type can be a
structure, an array, or a simple type.

e BOOLEAN
Indicates the type is a simple boolean.
e [VARYING] BIT STRING <cell_size_bits>

Indicates that the type is a simple bit string. <cell_size_bits> is the number of bits in the bit
string.

e INTEGER [<cell_size_bits>]

Indicates that the type is a simple integer. <cell_size_bits> is the number of bits in the largest
two’s complement number that the integer can hold. The cell size value must be 8, 16, or 32. The
default is 32.

23

Chapter 2. Using the Omni Directory Services

e UNSIGNED [<cell_size bits>]
Indicates that the type is a simple unsigned integer. <cell_size_bits> is the number of bits in the
largest binary number that the unsigned integer can hold. The cell size value must be 8, 16, or
32. The default is 32.

e FLOAT
[FORMAT WIDTH <width>] [EXPONENT <exponent>]

Indicates that the type is a simple floating-point number. The format width is 32 bits and the
exponent is 8 bits.

<width> is the largest width in bits. <exponent> is the exponent width in bits.
e [VARYING] OCTET STRING <size_in_octets>

Indicates that the type is a simple octet string. Each octet can hold a value from 0 to 255.
<size_in_octets> is the number of octets in the string.

e [VARYING] VISIBLE STRING <size_in_octets>

Indicates that the type is a simple visible string. <size_in_octets> is the number of characters in
the string. The string should hold a printable ASCII value.

e GENERALIZED TIME

Indicates that the type is a generalized time value.
e BINARY TIME DATE [NOT] INCLUDED

Indicates that the type is a binary time value. DATE INCLUDED is the default.
e BCD [<size_in_digits>]

Indicates that the type is an unsigned binary coded decimal number.

<size_in_digits> is the number of decimal digits used to represent the maximum value that the
variable can hold.

e <ref>

A reference to another MMS Named Type can be used instead of an explicit type description.
The VMD scope of the reference must match the VMD scope of the MMS Named Type being
defined or must be one of the predefined MMS Named Types.

[NO] DELETABLE

Indicates whether the MMS Named Type can be deleted from the VMD. The default is
DELETABLE.

DESCRIPTION <text>
Information identifying the type.

<text> is a quoted character string with a maximum length of 128 characters. The default is "".

24

Chapter 2. Using the Omni Directory Services

DEFINE NAMED VARIABLE

DEFINE NAMED VARIABLE — Creates a VSI OMNI definition of a named variable and associates
the definition with a defined domain or VMD.

Format

DEFI NE NAMED VARI ABLE [<vmd>:] [<dom>.] <var> <type> [[NO]DELETABLE]
[DESCRIPTION <text>] ;

Attributes and Values

<vmd>

The name of the VMD to which the variable belongs. If omitted, ODF uses the default VMD that
you have set with the SET SCOPE command.

<vmd> is an MMS identifier.
<dom>

The name of the domain to which the variable belongs. If not specified, ODF uses the default scope
that you have set with the SET SCOPE command. See the SET SCOPE command for details.

<dom> is an MMS identifier.

<var>
The name of the named variable being defined.
<var> is an MMS identifier.

<type>
There is one variable type:
APPLICATION TYPE <app_type_reference>
Where:

<app_type_reference> is a reference to a predefined application type, such as %:OMNISLONG, or
to a user- defined application type. (See DEFINE APPLICATION NAMED TYPE.)

You must enter a type. However, the type you specify can be overridden at run time by means of a

method handle. See Section 1.6.3, "Creating Application Type Definitions for Alternate Access" for

more information. See Appendix A, "Predefined Types" for a list of the available predefined types.
[NO] DELETABLE

Indicates whether the variable can be deleted from the VMD. The default is DELETABLE.
DESCRIPTION <text>

Information identifying the variable.

25

Chapter 2. Using the Omni Directory Services

<text> is a quoted character string with a maximum length of 128 characters. The default is " ".

DEFINE PROGRAM INVOCATION

DEFINE PROGRAM INVOCATION — Creates a definition of a Program Invocation (PI) and
associates the PI with a VMD definition.

Format

DEFI NE PROG | NVOC [<vmd_name>:] <pi_name> [DESCRIPTION <text>] DOMAIN LIST
<dom_id>[,<dom_id>] ... [[NO]DELETABLE] [[NO]JREUSABLE] [[NO]JEXECUTION ARG STRING
<text>] [[NO]JMONITOR <type>] ;

Attributes and Values

<vmd_name>

The name of the VMD definition with which the domain definition is associated. The <vmd_name>
is an MMS identifier.

<pi_name>

The name of the program invocation. The <pi_name> is an MMS identifier. DESCRIPTION
<text>

Any information identifying the PI.
<text> is a quoted character string with a maximum length of 128 characters. The default is " ".
DOMAIN LIST <dom_id>[,<dom_id>] ...

A list of one or more domain references.

<dom_id> is an MMS identifier. Separate the IDs with commas and enclose the list in parentheses.
At least one domain must be specified. The order of the list is not significant.

[NO] DELETABLE

Indicates whether or not the program invocation can be deleted from the VMD. The default is
DELETABLE.

[NO] REUSABLE

An execution argument for the program invocation. If supplied, the value becomes the default
for both START and RESUME service requests for the program invocation. The value can
be overridden on the call to either the OMNI START or RESUME function. The default is
NOEXECUTION ARGUMENTSTRING.

<text> is a symbol or a quoted text string. The maximum length is 128 characters.
[NO] MONITOR <type>

Indicates whether program monitoring is in effect. NO MONITOR is the default. If you specify
MONITOR, one of the following monitoring types must be entered:

26

Chapter 2. Using the Omni Directory Services

e MONITOR CURRENT — Indicates that the PI has a monitoring event condition that exists for
the life of the association.

e MONITOR PERMANENT — Indicates that the PI has a monitoring event condition that exists
throughout program execution.

DEFINE UNNAMED VARIABLE

DEFINE UNNAMED VARIABLE — Creates a VSI OMNI definition of an unnamed variable object
and associates the definition with a defined domain or VMD.

Format

DEFI NE UNNAMED VARI ABLE [<vmd>:] <var> <type> <address> [[NO]Supply Type Spec]
[DESCRIPTION <text>] ;

Attributes and Values
<vmd>

The name of the VMD to which the variable belongs. If omitted, ODF uses the default VMD that
you have set with the SET SCOPE command.

<vmd> is an MMS identifier.

<var>
The name of the unnamed variable being defined.
<var> is an MMS identifier.

<type>
There is one variable type:
APPLICATION TYPE <app_type_reference>
Where:

<app_type_reference> is a reference to a predefined application type, such as %:OMNI$SLONG, or
to a user- defined application type. (See DEFINE APPLICATION NAMED TYPE.

You must enter a type. However, the type you specify can be overridden at run time by means of a
method handle. See Section 1.6.3, "Creating Application Type Definitions for Alternate Access" for
more information. See Appendix A, "Predefined Types" for a list of the available predefined types.

<address>
Use one of the following to indicate the address of the variable:
e NUMERIC ADDRESS <longword_value>

<longword_value> can be a decimal number (the default) or hexadecimal number. A
hexadecimal number has the format %hhhhhhhh where each h is a hexadecimal digit (0-9, a—f,
or A-F).

27

Chapter 2. Using the Omni Directory Services

e SYMBOLIC ADDRESS <address_string>

<address string> should be a string enclosed in double quotation marks (" ").

[NO] Supply Type Spec

Indicates whether the variable’s type description is to be sent to the remote VMD with requests to
access this variable. The default is NOSupply Type Spec.

DESCRIPTION <text>

Information identifying the variable.

nn

<text> is a quoted character string with a maximum length of 128 characters. The default is

DEFINE VMD

DEFINE VMD — Creates a local VSI OMNI definition of a VMD.

Format

DEFI NE VMD <vmd_name> APPLICATION SIMPLE NAME <app_simple_name>
[VERSION <version_number>] [NESTING LEVEL <word_value>] [MAXIMUM SERVICES
CALLED <word_value>] [MAXIMUM SERVICES CALLING <word_value>] [MAXIMUM
SEGMENT SIZE <integer_value>] [PARAMETER CBB <cbb_list>] [SUPPORTED SERVICES
<supported_service_list>] [[NO]JVENDOR <vendor_name>] [[NO]JMODEL <model>]
[[NOJREVISION <revision>] [DESCRIPTION <text>] ;

Attributes and Values

<vmd_name>

The local name of the VMD definition.

The <vmd_name> is an MMS identifier. The VMD name is used to identify the VMD in the Omni
database; it is not used for communications.

APPLICATION SIMPLE NAME <app_simple_name>

The simple name is used to look up the application in Directory Services. The format of the name is
determined by the Directory Service Provider you are using. See the VSI OMNI API Omni Directory
Services User Guide for further details. If you omit the simple name, VSI OMNI uses the VMD
name.

When the Omni Directory Services Command Language (ODSCL) is used as the directory services
provider, the Application Simple Name is normally set to the Common Name of the desired ODS
entry. The Application Simple Name must include the prefix /cn= if an MMS Application Profile is
being used.

The <app_simple_name> is a quoted character string of up to 128 characters.

VERSION <version_number>

Specifies the protocol used by the application.

28

Chapter 2. Using the Omni Directory Services

The <version_number> is an integer value. The range is determined by the application profile being
used. For the MMS companion standard, the following values are valid:

e Zero (0) — The application is DIS compliant or is compliant with the draft international
standard of ISO/ISE standard 9506.

® One (1) — The application is IS compliant or is compliant with ISO/ISE standard 9506. This is
the default.

NESTING LEVEL <word_value>

The maximum number of levels of nesting that can occur within any data element that is transmitted

or communicated over an association with the VMD. A value of zero (0) specifies unlimited nesting.
The default is 10.

The <LEvel> is an integer.
MAXIMUM SERVICES CALLING <word_value>

The proposed maximum number of transaction object instances that can be created at the calling
MMS-user on the application association. The default is 5.

The <word_value> is an integer.

MAXIMUM SERVICES CALLED <word_value>

The proposed maximum number of transaction object instances that can be created at the called
MMS-user on the application association. The default is 5.

The <word_value> is an integer.

MAXIMUM SEGMENT SIZE <integer_value>

The proposed maximum size of an MMS message to exchange with a VMD. The default size is 512.
A value between 64 and 8192 is allowed.

PARAMETER CBB <cbb_list>
The set of conformance building blocks supported by the VMD.

The <cbb_list> consists of one or more of the items listed in Table 2.3, "CBB Parameters", separated
by commas and enclosed in parentheses.

Table 2.3. CBB Parameters

Parameter ISO/ISE 9506 Designation
[NO] ARRAYS STR1

[NO] STRUCTURES STR2

[NO] NAMED VARIABLES VNAM

[NO] ALTERNATE ACCESS VALT

[NO] UNNAMED VARIABLES VADR

[NO] SCATTERED ACCESS VSCA

[NO] THIRD PARTY TPY

[NO] NAMED VARIABLE LIST VLIS

29

Chapter 2. Using the Omni Directory Services

Parameter ISO/ISE 9506 Designation
[NO] REAL REAL

[NO] ACKNOWLEDGEMENT EVENT CONDITION AKEC

[NO] EVALUATION INTERVAL CEI

SUPPORTED SERVICES <supported_service_list>

The set of services supported by the calling MMS user for the association.

The <supported_service_list> consists of one or more of the services listed in Table 2.4,

"Supported

Services", separated by commas and enclosed in parentheses.

Table 2.4. Supported Services

Services

[NO] STATUS [NO] RESUME
[NO] GET NAME LIST [NO] RESET
[NO] IDENTIFY [NO] KILL

[NO] RENAME [NO] GET PROGRAM INVOCATION
ATTRIBUTES

[NO] READ [NO] OBTAIN FILE

[NO] WRITE [NO] DEFINE EVENT

[NO] GET VARIABLE ACCESS
ATTRIBUTES

[NO] DELETE EVENT CONDITION

[NO] DEFINE NAMED VARIABLE

[NO] GET EVENT CONDITION
ATTRIBUTES

[NO] DEFINE SCATTERED ACCESS

[NO] REPORT EVENT CONDITION STATUS

[NO] GET SCATTERED ACCESS
ATTRIBUTES

[NO] ALTER EVENT CONDITION
MONITORING

[NO] DELETE VARIABLE ACCESS

[NO] TRIGGER EVENT

[NO] DEFINE NAMED VARIABLE LIST

[NO] DEFINE EVENT ACTION

[NO] GET NAMED VARIABLE LIST
ATTRIBUTES

[NO] DELETE EVENT ACTION

[NO] DELETE NAMED VARIABLE LIST

[NO] GET EVENT ACTION ATTRIBUTES

[NO] DEFINE NAMED TYPE

[NO] REPORT EVENT ACTION STATUS

[NO] GET NAMED TYPE ATTRIBUTES

[NO] DELETE NAMED TYPE

[NO] DELETE EVENT ENROLLMENT

[NO] INPUT

|
|
[NO] DEFINE EVENT ENROLLMENT
|
|

[NO] ALTER EVENT ENROLLMENT

[NO] OUTPUT

[NO] REPORT EVENT ENROLLMENT
STATUS

[NO] TAKE CONTROL

[NO] GET EVENT ENROLLMENT
ATTRIBUTES

[NO] RELINQUISH CONTROL

[NO] ACKNOWLEDGE EVENT
NOTIFICATION

[NO] DEFINE SEMAPHORE

[NO] GET ALARM SUMMARY

30

Chapter 2. Using the Omni Directory Services

Services

[NO] DELETE SEMAPHORE

[NO] GET ALARM ENROLLMENT
SUMMARY

[NO] REPORT SEMAPHORE STATUS

[NO] READ JOURNAL

[NO] REPORT POOL SEMAPHORE STATUS

[NO] WRITE JOURNAL

[NO] REPORT SEMAPHORE ENTRY
STATUS

[NO]J INITTIALIZE JOURNAL

[NO] INITIATE DOWNLOAD SEQUENCE [NO] REPORT JOURNAL STATUS
[NO] DOWNLOAD SEGMENT [NO] CREATE JOURNAL

[NO] TERMINATE DOWNLOAD SEQUENCE | [NO] DELETE JOURNAL

[NO] INITIATE UPLOAD SEQUENCE [NO] GET CAPABILITY LIST
[NO] UPLOAD SEGMENT [NO] FILE OPEN

[NO] TERMINATE UPLOAD SEQUENCE [NO] FILE READ

[NO] REQUEST DOMAIN DOWNLOAD [NO] FILE CLOSE

[NO] REQUEST DOMAIN UPLOAD [NO] FILE RENAME

[NO] LOAD DOMAIN CONTENT [NO] FILE DELETE

[NO] STORE DOMAIN CONTENT [NO] FILE DIRECTORY

[NO] DELETE DOMAIN [NO] UNSOLICITED STATUS
[NO] GET DOMAIN ATTRIBUTES [NO] INFORMATION REPORT
[NO] CREATE PROGRAM INVOCATION [NO] EVENT NOTIFICATION
[NO] DELETE PROGRAM INVOCATION [NO] ATTACH TO EVENT CONDITION
[NO] START [NO] ATTACH TO SEMAPHORE
[NO] STOP [NO] CONCLUDE

[NO] CANCEL

[NO] VENDOR <vendor_name>

The name of the vendor of the system that supports this VMD, enclosed in double quotes (" "). The
default is NOVENDOR. VSI OMNI uses the default vendor name. The vendor name is relevant only

when you are defining a server VMD.

The <vendor_name> is a character string with a maximum length of 128 characters.

[NO] MODEL <model>

The model of the system supported by the VMD, enclosed in double quotes (" ").

The default is NO MODEL. VSI OMNI uses the default model name. The model name is relevant

only when you are defining a server VMD.

<model> is a character string with a maximum length of 128 characters.

[NO] REVISION <revision>

The name of the revision of the system that supports this VMD, enclosed in double quotes (" "). The

default is NOREVISION. VSI OMNI uses the default revision. The revision is relevant only when

you are defining a server VMD.

31

Chapter 2. Using the Omni Directory Services

<revision> is a character string with a maximum length of 128 characters.
DESCRIPTION <text>
Any information identifying the VMD.

<text> is a quoted character string with a maximum length of 128 characters.

DELETE DEFINITION

DELETE DEFINITION, — Removes a definition from the database. A definition cannot be deleted until
all of its dependent definitions have been deleted.

Format

DELETE DEFI NI TI ON <def_ref> [, <def_ref>, ...] ;

Attributes and Values
<def_ref>

The reference to a definition. See Table 2.2, "Definition Naming Format and Examples" for the form
of a reference.

The DELETE DEFINITION command supports the following special characters in definition
references as shown in Table 2.5, "DELETE DEFINITION Special Characters".

Table 2.5. DELETE DEFINITION Special Characters

Character Meaning

* Asterisk wildcard. Matches zero (0) or more characters in a name. For

non non

example, "a*z" matches "az", "abz", "abcz", and so forth.

Period wildcard. Matches exactly one character in a name. For
example, "a.z" matches "abz", but not "az" or "abcz".

def_ref> Definition reference followed by a right angle bracket. Deletes the
definition and all definitions that are dependent on the definition. Can
only be used with a VMD or Domain reference.

DISABLE ODF LOGGING

DISABLE ODF LOGGING — Stops logging of the current ODF session. The logfile is not closed. To
close the logfile, issue a SET ODF LOGFILE command or exit from the session.

Format

DI SABLE ODF LOGE NG

DO

DO — Executes a series of stored commands, such as those saved in a script file by the ENABLE
command. DO is a synonym for the "at" symbol (@).

32

Chapter 2. Using the Omni Directory Services

Format
DO <script_file>;
Attributes and Values

<script_file>

An OpenVMS file specification or logical name pointing to the script file. The default file extension
for a script file is .COM.

ENABLE ODF LOGGING

ENABLE ODF LOGGING — Enables logging to the logfile specified in the most recent SET ODF
LOGFILE command. If no logfile has been set since the start of the ODF session, ODF tries to create
the file OMNI_ODF.LOG in the current default directory and log commands to that file.

Format

ENABLE ODF LOGA NG

EXIT

EXIT — Commits any outstanding changes to the database and exits from ODF. If the outstanding
changes are invalid, ODF reports an error and does not exit.

Format

EXIT;

QUIT — Cancels all of the DEFINE and DELETE commands you have entered since the last COMMIT

command, then exits from the session. No definition data from the cancelled commands is written to the
database.

Format

QUT;

ROLLBACK
ROLLBACK — Cancels all of the DEFINE and DELETE DEFINITION commands you have entered

since the last COMMIT command. No definition data is written to the database from commands within
the range of the rollback.

Format

ROLLBACK;

33

Chapter 2. Using the Omni Directory Services

SET APPLICATION PROFILE

SET APPLICATION PROFILE — Sets the application profile for subsequent DEFINE and SHOW
operations. A VMD and its dependencies must all be defined under the same application profile.

Format

SET APPLI CATI ON PRCFI LE <application_profile_name>;

Description
Definitions created after the application profile is set are associated with the Application Service
Element (ASE) and the Companion Standard (CS) associated with the application profile. Setting the

application profile implicitly identifies the abstract syntax used. See the enumeration omni_Il_app_profile
of the omni_defs file for more information.

Attributes and Values
<application_profile_name>
The following application profile name:
MMS (default)

For MMS, Application Service Element is the MMS International Standard and no Companion
Standard is used.

OSAP

See the OSAP specification for more information.

SET ODF LOGFILE

SET ODF LOGFILE — Specifies the file to which ODF logs the session.

Format

SET ODF LOGFI LE <vms_file_specification>;

Description

The log file is opened immediately, but logging is disabled until you enter an ENABLE ODF LOGGING

command. If a log file is already open, ODF closes the file before attempting to open the new file. If
logging is currently enabled, ODF issues an implicit DISABLE ODF LOGGING command.

Attributes and Values
<vms_{file_specification>

An OpenVMS file specification for a file to receive the session log. The default specification is
OMNI_ODFE.LOG.

34

Chapter 2. Using the Omni Directory Services

SET SCOPE

SET SCOPE — The scope of an ODF command is the VMD or domain definition, or both, that the
command is associated with. The SET SCOPE command specifies the definitions that ODF uses as the
default scope.

Format

SET SCOPE [<vmd_name>] [:<domain_name>] ;

Attributes and Values
<vmd_name>

The VMD to use as the default.
<domain_name>

The domain to use as the default. If you leave the domain name blank, the default scope is VMD-
specific. To change to a different domain in the same VMD, enter the command:

SET SCOPE :<domain_name>;

Where <domain_name> is the name of the new domain. To blank out the scope setting, enter the
command:

SET SCOPE;

The following examples provide Named Variable definitions with scopes set.

SET SCOPE v; ! default scope is now set to VMD "v";

DEF NV x ... ! defines a variable on VMD "v"; equivalent to the command "DEF NV v:x..."

DEF NV a.y ... ! defines a variable on domain "a" of VMD "v"; equivalent to the command "DEF
NV via.y..."

DEF NV w:z ... ! overrides the default VMD scope and defines a variable on VMD "w";
equivalent to the command "DEF NV w:z..."

SET SCOPE v:a; ! default scope is now set to VMD "v", domain "a"

DEF NV x ... ! defines a variable on domain "a"; equivalent to "DEF NV v:a.x...";

DEF NV b.x ... ! overrides the default domain scope and defines a variable on domain "b";
equivalent to the command "DEF NV v:b.x..."

DEF NV :x ... ! overrides the default domain scope and defines a variable on VMD "v";

equivalent to the command "DEF NV v:ix..."

SHOW

SHOW — Displays current ODF session settings.

Format

SHOWK<setting>;

Attributes and Values

<setting>
One of the following settings for the ODF session:
e APPLICATION PROFILE

e DEFINITION

35

Chapter 2. Using the Omni Directory Services

e ODF LOGFILE
e ODF LOGGING
e SCOPE

e VERSION

SHOW DEFINITION

SHOW DEFINITION — Displays definitions from the database. If modifications have been made, but
not committed, they are also visible.

Format

SHOW DEFI NI TI ON<def_ref> [, <def_ref>, ...] ;

Attributes and Values
<def_ref>

The reference to a definition. See Table 2.2, "Definition Naming Format and Examples" for the form
of a reference.

The SHOW DEFINITION command supports special characters in definition references as shown in
Table 2.6, "SHOW DEFINITION Special Characters".

Table 2.6. SHOW DEFINITION Special Characters

Character Meaning

* Asterisk wildcard. Matches zero (0) or more characters in a name. For
example, "a*z" matches "az", "abz", "abcz", and so forth.

Period wildcard. Matches exactly one character in a name. For
example, "a.z" matches "abz", but not "az" or "abcz"

def_ref> Definition reference followed by a right angle bracket. Displays the
definition and all definitions that are dependent on the definition. Can
only be used with a VMD or Domain reference.

WRITE DEFINITION

WRITE DEFINITION — Writes out definitions to a file. Each definition is written as a valid ODF
command.

Format

WRI TE DEFI NI TI ON<def_ref> [, <def_ref>, ...] [TO <filespec>] ;

Description

If you include a file specification, ODF opens the file, writes the definitions, and closes the file. If you

omit the file specification, ODF appends the definitions to the current log file (if there is no open log
file, ODF opens a new version of OMNI_ODF.LOG and writes the definitions).

36

Chapter 2. Using the Omni Directory Services

Attributes and Values
<def_ref>

A reference to a definition or set of definitions. If you enter multiple references, separate them
with commas. See Table 2.7, "WRITE DEFINITION Special Characters" for examples of definition
references.

<filespec>

An OpenVMS file specification for a file to contain the definition. If not specified, the command is
written to the log file.

The WRITE DEFINITION command supports special characters in definition references as shown
in Table 2.7, "WRITE DEFINITION Special Characters".

Table 2.7. WRITE DEFINITION Special Characters

Character Meaning

* Asterisk wildcard. Matches zero (0) or more characters in a name. For
example, "a*z" matches "az", "abz", "abcz", and so forth.

Period wildcard. Matches exactly one character in a name. For
example, "a.z" matches "abz", but not "az" or "abcz".

def_ref> Definition reference followed by a right angle bracket. Writes the
definition and all definitions that are dependent on the definition. Can
only be used with a VMD or Domain reference.

37

Chapter 2. Using the Omni Directory Services

38

Appendix A. Predefined Types

Table A.1, "Predefined Types" lists the predefined types supported by the Omni Definition Facility

(ODF).

Table A.1. Predefined Types

Predefined Type Meaning
OMNIS$BIT8 8-bit bitstring transmitted as bitstring
OMNIS$BIT16 16-bit bitstring transmitted as bitstring

OMNI$WC_STR4

4-byte word-counted string, transmitted as varying
octet string

OMNI$WC_STR8

8-byte word-counted string, transmitted as varying
octet string

OMNIS$SWC_STR10

10-byte word-counted string, transmitted as
varying octet string

OMNISWC_STR16

16-byte word-counted string, transmitted as
varying octet string

OMNI$WC_STRI18

18-byte word-counted string, transmitted as
varying octet string

OMNI$WC_STR32

32-byte word-counted string, transmitted as
varying octet string

OMNI$SWC_FIXED_STR4

4-byte word-counted string, transmitted as fixed

octet string

OMNI$SWC_FIXED_STR6

6-byte word-counted string, transmitted as fixed

octet string

OMNI$WC_FIXED_STR8

8-byte word-counted string, transmitted as fixed

octet string

OMNI$SWC_FIXED_STR10

10-byte word-counted string, transmitted as fixed

octet string

OMNISWC_FIXED_STR16

16-byte word-counted string, transmitted as fixed

octet string

OMNI$SWC_FIXED_STR18

18-byte word-counted string, transmitted as fixed

octet string

OMNIS$SWC_FIXED_STR32

32-byte word-counted string, transmitted as fixed
octet string

OMNISLONG 32-bit signed integer
OMNI$SWORD 16-bit signed integer
OMNIS$BYTE 8-bit signed integer
OMNISULONG 32-bit unsigned integer

39

Appendix A. Predefined Types

Predefined Type Meaning

OMNISUWORD 16-bit unsigned integer
OMNISUBYTE 8-bit unsigned integer
OMNI$BOOLEAN 8-bit boolean, transmitted as boolean
OMNIS$BIT32 32-bit bitstring, transmitted as bitstring

OMNISF_FLOAT

F_FLOATING transmitted as FLOAT

OMNISNT_STR4

4-byte null-terminated string, transmitted as
varying visible string

OMNISNT_STR6

6-byte null-terminated string, transmitted as
varying visible string

OMNI$NT_STRS

8-byte null-terminated string, transmitted as
varying visible string

OMNISNT_STR10

10-byte null-terminated string, transmitted as
varying visible string

OMNISNT_STR16

16-byte null-terminated string, transmitted as
varying visible string

OMNISNT_STRI18

18-byte null-terminated string, transmitted as
varying visible string

OMNI$SNT_STR32

32-byte null-terminated string, transmitted as
varying visible string

OMNISNT_FIXED_STR4

4-byte null-terminated string, transmitted as a fixed
visible string

OMNISNT_FIXED_STR6

6-byte null-terminated string, transmitted as a fixed
visible string

OMNISNT_FIXED_STRS

8-byte null-terminated string, transmitted as a

fixed visible string

OMNISNT_FIXED_STR10

10-byte null-terminated string, transmitted as a
fixed visible string

OMNISNT_FIXED_STR16

16-byte null-terminated string, transmitted as a
fixed visible string

OMNISNT_FIXED_STR18

18-byte null-terminated string, transmitted as a
fixed visible string

OMNISNT_FIXED_STR32

32-byte null-terminated string, transmitted as a
fixed visible string

40

Appendix B. Error Messages

This appendix lists the Omni Definition Facility (ODF) error messages.
ATCDUPNAME

Application Type structure contains duplicate component names.

ATCNOATS

Application Type Component depends on nonexistent Application Type Specification.

ATCNOMTC

Cannot resolve Application Type structure component reference to MMS Named Type Component.

ATCREFATS

Application Type Component refers to nonexistent Application Type Specification.

ATCREFMISS

Cannot resolve Application Type structure component reference to MMS Named Type.

ATCREFMTC

Application Type Component refers to nonexistent MMS Type Component.

ATCSTRORD

Ordering of Application Type structure components does not match MMS Named Type.

ATNODOM

The Domain that an Application Named Type was defined on does not exist.

ATNOMT

The MMS Named Type referred to in the FROM clause of an Application Named Type definition does
not exist.

ATNOVMD

The VMD that an Application Named Type was defined on does not exist.

41

Appendix B. Error Messages

ATSMAPMTS

Mapping of an Application Type to MMS Named Type is not supported.

ATSNOAT

Application Named Type depends on nonexistent Application Named Type.

ATSREFINV

Type of Application Type reference does not match type of MMS Named Type reference.

ATSREFMTS

Cannot resolve Application Type reference to MMS Named Type.

DOMNOVMD

The VMD that a Domain was defined for does not exist.

DUPAPP

The VMD that a Domain was defined for does not exist.

DUPAPP

Duplicate Application (OSAP only).

DUPAT

Duplicate Application Named Type.

DUPATC

Duplicate Application Type Component.

DUPATS

Duplicate Application Type Specification.

DUPDOM

Duplicate Domain Definition.

42

Appendix B. Error Messages

DUPMT

Duplicate MMS Named Type.

DUPMTC

Duplicate MMS Type Component.

DUPMTS

Duplicate MMS Type Specification.

DUPNV

Duplicate Named Variable.

DUPPI

Duplicate Program Invocation Definition.

DUPPID

Duplicate entry in a Program Invocation list of Domains.

DUPUDA

(Internal.)

DUPUDC

(Internal.)

DUPUDF

(Internal.)

DUPUV

Duplicate Unnamed_Variable.

DUPVLE

Duplicate Variable List entry.

43

Appendix B. Error Messages

DUPVLS

Duplicate Variable List.

DUPVMD

Duplicate VMD Definition.

DUPVRS

(Internal.)

MSGNOVMD

(Internal.)

MTCNOMTS

MMS Type component depends on nonexistent MMS Type Specification.

MTCREFMTS

MMS Type Component refers to nonexistent MMS Type Specification.

MTNODOM

The Domain an MMS Named Type was defined on does not exist.

MTNOVMD

The VMD that an MMS Named Type was defined on does not exist.

MTSNOMT

MMS Type specification depends on nonexistent MMS Named Type.

NVNODOM

The Domain that a Named Variable was defined on does not exist.

NVNOVMD

The VMD that a Named Variable was defined on does not exist.

44

Appendix B. Error Messages

NVREFAT

A Named Variable definition refers to an Application Named Type that does not exist.

ONEMSGVMD

(Internal.)

PIDNOPI

(Internal.)

PINOVMD

The VMD that a program invocation was defined on does not exist.

PIREFDOM

One or more Domains listed in a PI Domain List are not defined.

UVNODOM

The Domain in which an Unnamed_ Variable was defined does not exist.

UVNOVMD

The VMD in which an Unnamed_Variable was defined does not exist.

UVREFAT

An Unnamed_Variable definition refers to an Application Named Type that does not exist.

VLENOVLS

(Internal.)

VLSNODOM

(Internal.)

VLSNOVMD

(Internal.)

45

Appendix B. Error Messages

VLSREFAT

(Internal.)

VLSREFVAR

(Internal.)

46

Appendix C. Supported Mappings

Table C.1, "Supported Mappings" lists supported mappings between MMS and Application Types.

Table C.1. Supported Mappings

MMS Type Application Type
BOOLEAN BOOLEAN
BOOLEAN INTEGER 8
INTEGER n, n <=8 INTEGER 8
INTEGER n, n <= 16 INTEGER 16
INTEGER n, n <= 32 INTEGER 32 (default)
UNSIGNED n, n <=8 UNSIGNED 8
UNSIGNED n, n <=16 UNSIGNED 16
FLOAT (exponent 8, format 32) F_FLOAT

BIT STRING n

BIT STRING x, x =n

BIT STRING n BOOLEAN ARRAY x,x=n
[VARYING] BIT STRING n WORD COUNTED STRING x, x >=n, x<=65535
OCTET STRING n STRING x, x =n

[VARYING] OCTET STRING n

WORD COUNTED STRING x, x >=n,
x<=65535

VISIBLE STRING n

STRING X, X =n

[VARYING] VISIBLE STRING n

NULL TERMINATED STRING x, x >=n

[VARYING] VISIBLE STRING n

WORD COUNTED STRING x, x >=n,
x<=065535

GENERALIZED TIME VMS ABSOLUTE TIME

BINARY TIME DATE INCLUDED VMS ABSOLUTE TIME

BINARY TIME DATE NOT INCLUDED VMS ABSOLUTE TIME

BCDn,n<=8 UNSIGNED 32

OBJECT IDENTIFIER STRING n

OBJECT IDENTIFIER WORD COUNTED STRING n, n <=65535
OBJECT IDENTIFIER NULL TERMINATED STRING n

ARRAY [n] OF <MMS type x>

ARRAY [s] OF <application type y>

where s <=n and x and y are a supported mapping

ARRAY [n] OF <MMS type x>

ARRAY [s1..s2] OF <application type y>

where sl <=n, s2 <=n, s1 <=s2, and x and y are
a supported mapping

STRUCTURE

STRUCTURE

47

Appendix C. Supported Mappings

48

Appendix D. Example Script of
Object Definitions

The following is an example script of object definitions that defines a Virtual Manufacturing Device
(VMD) and its dependent objects, commits the definitions, creates an Omni Definition Facility (ODF)
command file to redefine the VMD, then executes the command file.

! delete example_vmd and all dependent objects

DELETE DEFINITION example_vmd>;

! define a new VMD

DEFINE VMD example_vmd APPLICATION SIMPLE NAME /cn=OMNI_IVP_INIT_VMD,
DESCRIPTION "Example VMD", VERSION 1, NEST LEVEL 5, MAX SERV CALLING 10,

MAX SERV CALLED 10, MAX SEG 1024, MODEL "Model Name", VENDOR "Vendor Name",

REVISION "V X.X",

PARAM CBB (ARRAYS, STRUC, NAMED VAR, ALT ACC, UNNAMED VAR),

SUPP SER (READ, WRITE, STAT, START, STOP, NO DELE DOM, IDENTIFY, NORENAME) ;
! set the scope to example_vmd

! all object definitions which follow will be associated with this

! VMD scope unless the object name includes an explicit scope, SET SCOPE
example_vmd;

! define domains on example_vmd

DEFINE DOMAIN example_vmd:Doml CONTENT FILE domainl.content CAPABILITY FILE
Domainl.cap DELETABLE, NO SHARABLE;

DEF DOM Dom2 NO DEL SHAR;

! define program invocations on example_vmd

DEF PROGRAM INVOCATION example_vmd:PI1 DOMAIN LIST (Doml, Dom2),
DELETABLE, NO REUSABLE, MONITOR CURRENT, NO EXEC ARG;

DEF PI PI2 DOM LIS (Dom2) NO DEL, REU, MON PERM, EXEC ARG STRING "start";

! define simple mms named types on example_vmd DEFINE MMS NAMED TYPE
example_vmd:BCD BCD 8; DEF MT BinTimeDate BINARY TIME DATE;

DEF MT BinTimeNoDate BIN DATE NOT INC; DEF MT BitStr BIT STRING 32;

DEF MT BitStrVar VAR BIT STR 32; DEF MT Boolean BOOLEAN;

DEF MT Float FLOAT;

DEF MT GenTime GENERALIZED TIME; DEF MT Int32 INT 32;

DEF MT OctStr OCTET STRING 32; DEF MT OctStrVar VAR OCT 32;

DEF MT VisStr512 VAR VISIBLE STRING 512; DEF MT VisStr32 VISIBLE STRING 32;

DEF MT VisStrVar32 VAR VIS STR 32;

! define complex mms named types on example_vmd DEF MT IntArray NO
DELETABLE, ARRAY [6] of Int32;

DEF MT ArrayOfIntArray ARRAY [6] of IntArray;

DEF MT Nested_Struct STRUCT X IntArray; Y Int32; END;

! define simple application named types on example_vmd DEF AT BCD FROM MT
BCD UNSIGNED 32;

DEF AT BinTimeDateVMS FROM MT BinTimeDate, VMS ABSOLUTE TIME;

DEF AT BinTimeNoDateVMS FROM MT BinTimeNoDate, VMS ABSOLUTE TIME; DEF AT
BitStr FROM MT BitStr, BIT STRING 32;

DEF AT BitStrBoolAry FROM MT BitStr, BOOLEAN ARRAY 32;

DEF AT BitStrVarWC FROM MT BitStrVar, WORD COUNTED STRING 32;

DEF AT Boolean FROM MT Boolean, BOOLEAN; DEF AT F_Float FROM MT Float
F_FLOAT;

DEF AT GenTimeVMS FROM MT GenTime, VMS ABSOLUTE TIME; DEF AT Int32 FROM MT
Int32, INTEGER 32;

DEF AT OctStr FROM MT OctStr, STRING 32;

49

Appendix D. Example Script of Object Definitions

DEF AT OctStrVarWC FROM MT OctStrVar, WORD COUNTED STRING 32; DEF AT
VisStrWC FROM MT VisStr512, WORD COUNTED STRING 512; DEF AT VisStrVar32
FROM MT VisStr32, STRING 32;

DEF AT VisStrVarNT FROM MT VisStrVar32, NULL TERM STRING 32; DEF AT
VisStrVarWC FROM MT VisStrVar32, WORD COUNTED STRING 32;

! define complex application named types on example_vmd DEF AT IntArray
FROM MT IntArray, ARRAY [0..5] of Int32;

DEF AT ArrayOfIntArray FROM MT ArrayOfIntArray ARRAY [0..5] of IntArray;
DEF AT Nested_Struct FROM MT Nested_Struct,

STRUCT (X,X) IntArray; (Y,Y) Int32; END;

! define alternate access data types on example_vmd

DEF AT IntArray_Alt FROM MT IntArray, ARRAY [3..5] of Int32; DEF AT
Nested_Struct_Altl FROM MT Nested_Struct,

STRUCT (Y,Y) Int32; END;

DEF AT Nested_Struct_Alt2 FROM MT Nested_Struct,

STRUCT (X,X) IntArray_Alt; (Y,Y) Int32; END;

! define two unnamed variables on example_vmd

DEFINE UNNAMED VARIABLE example_vmd:Longword_Unnamed

APPLICATION TYPE %:0OMNISULONG, NUMERIC ADDRESS %$X00004000, NO SUPPLY TYPE
SPEC;

DEF UV Int32 AT Int32, NUM ADDR %X00004000;

! define three named variables on domain Doml of example_vmd

DEFINE NAMED VARIABLE example_vmd:Doml (Named Variable:BinTimeDateVMS)
DESCRIPTION "VMS date & time mapped to binary time", APPLICATION TYPE
example_vmd:BinTimeDateVMS, NO DELETABLE;

DEF NV :Doml (NV:Bit_String_32) AT %$:0MNISBIT32;

! set the scope to example_vmd:Doml set scope example_vmd:Doml

DEF NV Nested_Struct AT example_vmd:Nested_Struct;

! display example_vmd and all dependent objects SHOW DEF example_vmd>;

! commit all definitions to the database commit;

! save the definitions to an ODF command file WRITE DEF example_vmd> to
example_vmd.com

! delete example_vmd and all dependent objects DEL DEF example_vmd>;

! execute the command file created to re-define example_vmd
@example_vmd.com

50

Glossary of VSI OMNI Terms

This glossary defines VSI OMNI terms that are used in this document or in reference to VSI OMNI
functions.

AE Application Entity.

API Application Program Interface.

ASE Application Service Element.

AST OpenVMS Asynchronous System Trap.
AT Application Type or Application Named Type.
CS Companion Standard.

DOM Domain.

FD File Descriptor.

I0OSB Input/Output Status Block.

MMS Manufacturing Message Specification.
MT MMS Type or MMS Named Type.

NC Numeric Controller.

NV Named Variable

ODF Omni Definition Facility.

ODS Omni Directory Services.

PDU Protocol Data Unit.

PI Program Invocation.

PID Entry in a PI list of domains.

PLC Programmable Logic Controller.

RMS OpenVMS Record Management System.
uv Unnamed Variable.

VAR Simple Variable — Named or Unnamed.
VMD Virtual Manufacturing Device.

51

Glossary of VSI OMNI Terms

52

	OMNI API Omni Definition Facility User Guide
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Using the Omni Definition Facility
	1.1. Operations and Functions
	1.1.1. Companion Standards
	1.1.2. Command Language Interface
	1.1.2.1. Level-by-Level Prompting
	1.1.2.2. Command Abbreviations

	1.1.3. Invoking the Facility
	1.1.4. Exiting from the Facility
	1.1.5. Getting Help

	1.2. Creating a Virtual Manufacturing Device Definition
	1.3. Creating a Domain Definition
	1.4. Creating a Program Invocation Definition
	1.5. Creating a Variable Definition
	1.5.1. Named Variables
	1.5.2. Unnamed Variables

	1.6. Creating Manufacturing Message Specification and Application Type Definitions
	1.6.1. Creating a Manufacturing Message Specification Named Type Definition
	1.6.2. Creating an Application Named Type Definition
	1.6.3. Creating Application Type Definitions for Alternate Access

	1.7. Committing Definitions to the Database
	1.8. Setting the Default Scope
	1.9. Deleting a Definition
	1.10. Creating, Opening, and Closing a Log File
	1.11. Enabling and Disabling Logging
	1.12. Displaying Definitions and Current Settings
	1.13. Executing Stored Commands
	1.14. Creating a Command to Repeat a Definition
	1.15. Example Script

	Chapter 2. Using the Omni Directory Services
	2.1. Command Descriptions
	COMMIT
	DEFINE APPLICATION NAMED TYPE
	DEFINE DOMAIN
	DEFINE MESSAGE
	DEFINE MMS NAMED TYPE
	DEFINE NAMED VARIABLE
	DEFINE PROGRAM INVOCATION
	DEFINE UNNAMED VARIABLE
	DEFINE VMD
	DELETE DEFINITION
	DISABLE ODF LOGGING
	DO
	ENABLE ODF LOGGING
	EXIT
	QUIT
	ROLLBACK
	SET APPLICATION PROFILE
	SET ODF LOGFILE
	SET SCOPE
	SHOW
	SHOW DEFINITION
	WRITE DEFINITION

	Appendix A. Predefined Types
	Appendix B. Error Messages
	Appendix C. Supported Mappings
	Appendix D. Example Script of Object Definitions
	Glossary of VSI OMNI Terms

