
VSI OMNI

OMNI Network Manager's Guide

Revision Update Information: This is a revised document.

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: VSI OMNI API Version 4.1

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

OMNI Network Manager's Guide

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or other
countries.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vista is either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is a registered trademark of The Open Group.

UNIX is a registered trademark of The Open Group.

ii

OMNI Network Manager's Guide

Table of Contents
Preface ... v

1. About VSI .. v
2. Intended Audience ... v
3. Document Structure ... v
4. Associated Documents ... v
5. OpenVMS Documentation .. vi
6. VSI Encourages Your Comments ... vi
7. Conventions ... vi

Chapter 1. Introduction to VSI OMNI Network Management ... 1
1.1. VSI OMNI Network Management Functions ... 1
1.2. Network Provider Requirements ... 1

Chapter 2. The OMNI Definition Facility .. 3
2.1. ODF and Companion Standards ... 3
2.2. ODF Command Language Interface ... 3

2.2.1. Level-by-Level Prompting ... 4
2.2.2. Short Lines and Abbreviations .. 4

2.3. Invoking and Exiting ODF .. 4
2.4. Getting Help Through ODF ... 4
2.5. Creating a Definition of a VMD .. 5
2.6. Creating a Definition of a Domain ... 6
2.7. Creating a Definition of a Program Invocation .. 7
2.8. Creating a Definition of a Variable ... 7

2.8.1. Named Variables .. 8
2.8.2. Unnamed Variables .. 8

2.9. Defining Variable Types .. 9
2.9.1. Creating an MMS Named Type Definition ... 9
2.9.2. Creating an Application Named Type Definition ... 10
2.9.3. Creating Application Type Definitions for Alternate Access 11

2.10. Committing Definitions to the ODF Database .. 12
2.11. Setting the Default Scope .. 13
2.12. Deleting a Definition ... 13
2.13. Creating, Opening, and Closing a Log File .. 14
2.14. Enabling and Disabling Logging ... 14
2.15. Displaying Definitions and Current Settings ... 15
2.16. Executing Stored Commands .. 15
2.17. Creating a Command to Repeat a Definition .. 16
2.18. Exiting and Quitting an ODF Session ... 16

Chapter 3. OMNI Definition Facility (ODF) Commands .. 17
COMMIT ... 18
DEFINE DOMAIN .. 18
DEFINE MESSAGE .. 19
DEFINE PROGRAM INVOCATION ... 20
DEFINE NAMED VARIABLE .. 21
DEFINE UNNAMED VARIABLE .. 22
DEFINE MMS NAMED TYPE .. 23
DEFINE APPLICATION NAMED TYPE ... 25
DEFINE VMD .. 28
DELETE DEFINITION ... 32

iii

OMNI Network Manager's Guide

DISABLE ... 33
DO .. 33
ENABLE ... 34
EXIT .. 34
QUIT .. 34
ROLLBACK ... 34
SET ODF LOGFILE ... 34
SET COMPANION STANDARD .. 35
SET SCOPE ... 35
SHOW .. 36
SHOW DEFINITION ... 36
WRITE DEFINITION ... 37

Chapter 4. OMNI Command Language ... 39
4.1. Summary of OMNICL Commands ... 39
4.2. OMNICL Command Syntax .. 40

4.2.1. OMNICL Command Language Interface .. 40
4.2.1.1. Level-by-Level Prompting ... 40
4.2.1.2. Short Lines and Abbreviations .. 40

4.3. Invoking and Exiting OMNICL .. 40
4.4. Getting Help Through OMNICL .. 41
4.5. SET Command Descriptions .. 41
4.6. SHOW Command Descriptions .. 43
4.7. ENABLE Command Descriptions .. 45
4.8. DISABLE Command Descriptions .. 46
4.9. DO Command Description .. 47

Appendix A. ODF Predefined Types .. 49
A.1. ODF Predefined Types ... 49

Appendix B. ODF Error Messages ... 51
B.1. ODF Error Messages .. 51

Appendix C. Supported Mappings .. 55

iv

Preface
The VSI OMNI Network Manager's Guide describes management functions that monitor, define, and
control select data within the VSI OMNI system, which is based on the MMS (Manufacturing Message
Specification) ISO 9506. MMS specifies the semantics and syntax for communications between
applications running on computers and on dedicated factory floor processors such as robots and
programmable logic controllers.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This document is for an audience experienced in network management.

The task of modifying VSI OMNI API data should be attempted only by managers who have knowledge
of MMS and OSI (Open Systems Interconnection) concepts and hands-on network management
experience. If you do not have these prerequisites, it is recommended that you run VSI OMNI API using
the default attributes initially set for the software.

3. Document Structure
The VSI OMNI Network Manager's Guide is structured as follows:

● Chapter 1, "Introduction to VSI OMNI Network Management" presents introductory and startup
information.

● Chapter 2, "The OMNI Definition Facility" describes the OMNI Definition Facility (ODF) and its
functions. ODF controls system management and configuration tasks and enables a system manager
to create local definitions of remote VMD objects.

● Chapter 3, "OMNI Definition Facility (ODF) Commands" describes ODF commands.

● Chapter 4, "OMNI Command Language" presents OMNICL information and OMNICL management
commands. OMNICL commands monitor data within the VSI OMNI system.

● Appendix A, "ODF Predefined Types" lists ODF predefined types.

● Appendix B, "ODF Error Messages" provides a list of ODF error messages.

● Appendix C, "Supported Mappings" gives information about the VSI OMNI API network provider,
VAX DEC/MAP V3.

4. Associated Documents
This document is part of the following online documentation set:

VSI OMNI Application Programmer's Guide

v

Preface

VSI OMNI API Guide to Using OmniView

VSI OMNI API for OpenVMS Installation Guide

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Conventions
The conventions found in the following table are used in this document.

Ctrl/x indicates that you must press the key labeled Ctrl while you simultaneously press another key.

A vertical series of periods, or ellipsis, mean that some of the sample text is missing. The point of the
example is made without displaying all of the sample text.

Attributes enclosed in brackets [] are optional.

Attributes or values enclosed in braces { } are a choice. At least one of the choices must be supplied.
Braces around a single choice indicates that the enclosed syntax is mandatory.

A word enclosed by angle brackets < > is either the name or the value of an attribute that a user
provides.

A comma may be used as a delimiter between optional parameters.

A horizontal series of periods, or ellipsis, indicates that an element may be repeated.

vi

https://docs.vmssoftware.com

Chapter 1. Introduction to VSI
OMNI Network Management
The user interfaces to VSI OMNI network management are the OMNI Control Language (OMNICL)
and the OMNI Definition Facility (ODF).

1.1. VSI OMNI Network Management Functions
OMNICL consists of a set of commands that enable you to read and monitor system-wide data on the
OMNI system. ODF controls system management and configuration tasks and enables you to create local
definitions of remote VMD objects.

ODF commands are explained in Chapter 3, "OMNI Definition Facility (ODF) Commands", and
OMNICL commands are explained in Chapter 4, "OMNI Command Language".

1.2. Network Provider Requirements
There are configuration requirements that VSI OMNI API and its network provider must meet before
communication with a Virtual Manufacturing Device (VMD) can occur.

Also, for further information about VSI OMNI API installation and network and system considerations
see the VSI OMNI API for OpenVMS Installation Guide.

1

Chapter 1. Introduction to VSI OMNI Network Management

2

Chapter 2. The OMNI Definition
Facility
The OMNI Definition Facility (ODF) enables you to create and manage locally stored definitions of
MMS objects. Specifically, ODF provides a set of commands that perform the following operations:

● Create definitions of VMDs.

● Create definitions of MMS domains and associate the definitions with a locally defined VMD.

● Create definitions of MMS program invocations and associate the definitions with a locally defined
VMD.

● Create definitions of variables and associate the definitions with a locally defined domain or VMD.

● Create data type definitions.

● Display the local definitions of an MMS object.

● Delete a locally created definition or set of definitions.

● Log the current ODF session to a file for later use.

● Write (export) definition commands for backup or convenience.

● Execute a series of stored commands - for example, commands saved in a log file.

● Set and display the defaults for an ODF session.

Note

The definitions you create with ODF are local to VSI OMNI but are not necessarily local to the system
running ODF or using the definitions.

2.1. ODF and Companion Standards
A companion standard (CS) can function as an integral part of VSI OMNI API and can be defined by
using ODF.

Note that if a CS exists with VSI OMNI API, it can affect the behavior of the VSI OMNI API procedure
calls, since a CS can support objects and attributes that are different from those supported by VSI OMNI
API.

See your applicable companion standard's guide for details about the objects and attributes supported by
that companion standard.

2.2. ODF Command Language Interface
The Command Language Interface (CLI) guides you through the correct syntax of each ODF command
by supplying prompts and a list of options.

3

Chapter 2. The OMNI Definition Facility

For example, suppose you want to use the SET command, but you cannot remember the exact syntax or
choices of the command. Simply type in the SET command followed by a carriage return:

ODF> SET Return

Because the command has been entered in incomplete form, CLI automatically prompts for the next
word in the command. Only those that support the SET command are listed as options. All options are
enclosed within parentheses:

(COMPANION STANDARD, ODF LOGFILE, SCOPE)
 _ODF>

2.2.1. Level-by-Level Prompting
You can specify the entire command without using CLI, or you can specify part of the command and
have CLI prompt only for those words that you miss.

Because CLI displays only supported options, prompting for options is a good way to check the syntax of
a command after receiving a parser error. Any attribute or keyword you specify that is not in the CLI list
of options is not supported for that command.

2.2.2. Short Lines and Abbreviations
You can shorten the command line by shortening the number of letters in each word. You can abbreviate
any word to three characters or the number of characters that makes it unique.

2.3. Invoking and Exiting ODF
You can issue ODF commands one at a time using Digital Command Language (DCL), or you can
invoke ODF and issue as many commands as you want before returning to the DCL prompt ($).

To use ODF for single line commands, first define ODF:

$ ODF :== $OMNI$ODF

ODF executes the command and returns you to the DCL system prompt. To invoke ODF through DCL
for an interactive session:

 $ ODF
 ODF>

Once invoked, the ODF prompt appears. Issue the first command next to the prompt. If you leave out
required component-ids or attributes, ODF prompts for them.

To invoke ODF for an interactive session without using DCL, use the RUN command:

$ RUN SYS$SYSTEM:OMNI$ODF
 ODF>

To exit ODF and return to the DCL system prompt, either issue the EXIT command or press Ctrl/z.

2.4. Getting Help Through ODF
After you invoke ODF, you can use the HELP command to display quick reference information about
individual commands. Type HELP and the name of the command you want information about as shown
in the following example, or type HELP followed by a carriage return to receive a menu of options:

4

Chapter 2. The OMNI Definition Facility

ODF> HELP SET SCOPE

A display of HELP information about the SET SCOPE command is returned when this command
executes.

2.5. Creating a Definition of a VMD
A complete VSI OMNI definition of a VMD consists of the following items in Table 2.1, "VMD
Definitions".

Table 2.1. VMD Definitions

Item Description

vmd_name The local name of the VMD definition. This name
is used to reference the definition; it is not used in
communications.

APPLICATION SIMPLE NAME The name used to look up the application in
Directory Services.

VERSION The version of the MMS protocol to use.
NESTING LEVEL The maximum number of levels of nesting that can

occur within any data element over an association
with the VMD.

MAXIMUM SERVICES CALLED The proposed maximum number of transaction
object instances that can be created at the called
MMS-user on the association.

MAXIMUM SERVICES CALLING The proposed maximum number of transaction
object instances that can be created at the calling
MMS-user on the association.

MAXIMUM SEGMENT SIZE The proposed maximum size of an MMS message
to exchange with the VMD.

PARAMETER CBB A list specifying the set of conformance building
blocks (CBBs) supported by the VMD.

SUPPORTED SERVICES A list of services supported by the VMD for the
association.

VENDOR The vendor of the system supporting the VMD.
MODEL The model of the system supporting the VMD.
REVISION A string describing the software, firmware, or

hardware revision level of the VMD.
DESCRIPTION Information describing the defined VMD. This is

not used in communication.

To create a VSI OMNI definition of a VMD, enter the DEFINE VMD command, specify the name of
the VMD, and supply the values that describe the VMD. To add the definition to the permanent ODF
database, enter the COMMIT command (COMMIT is described in Section 2.10, "Committing Definitions
to the ODF Database"), for example:

ODF> DEFINE VMD myvmd
(DES,APP SIM NAM,VER,NES LEV,MAX SER CALLE/CALLI,VEN,MOD,PAR CBB,SER
 SUPP,ATT)

5

Chapter 2. The OMNI Definition Facility

_ODF> APPLICATION SIMPLE NAME mycountry@myorg@myunit@myvmd,
(DES,APP SIM NAM,VER,NES LEV,MAX SER CALLE/CALLI,VEN,MOD,PAR CBB,SER
 SUPP,ATT)
_ODF> DESCRIPTION "Example VMD"
(',', ';')
_ODF> VERSION 1,
(DES,APP SIM NAM,VER,NES LEV,MAX SER CALLE/CALLI,VEN,MOD,PAR CBB,SER
 SUPP,ATT)
_ODF> NESTING LEVEL 7,
_ODF> MAXIMUM SERVICES CALLED 5,
_ODF> MAXIMUM SERVICES CALLING 2,
_ODF> MAXIMUM SEGMENT SIZE 512,
_ODF> VENDOR "me",
_ODF> MODEL "A",
_ODF> REVISION "first",
_ODF> PARAMETER CBB (NOVALT, NO UNNAMED VARIABLES, TPY),
_ODF> SUPPORTED SERVICES
_ODF> (NO INFORMATION REPORT,
_ODF> RENAME);

2.6. Creating a Definition of a Domain
A complete VSI OMNI definition for a domain consists of the following elements in Table 2.2, "Domain
Definitions".

Table 2.2. Domain Definitions

Item Description

vmd_name:domain_name The name of the remote domain object and its
associated VMD

[NO] DELETABLE A value indicating whether or not the domain can
be deleted from the VMD

[NO] SHARABLE A value indicating whether or not the domain can
be shared by multiple program invocations

CONTENT FILE An OpenVMS file containing the domain
CAPABILITY FILE An OpenVMS file specifying the capabilities of the

domain
DESCRIPTION Information describing the defined domain

A domain definition must include the name of the VMD to which the domain belongs. ODF will reject
any domain definition that does not specify an existing VMD and a capabilities file.

To create a VSI OMNI definition of a domain, enter the DEFINE DOMAIN command in response to
the ODF prompt and supply the information you need to describe the domain. To add the definition
to the permanent ODF database, enter the COMMIT command (COMMIT is described in Section 2.10,
"Committing Definitions to the ODF Database"), for example:

 ODF> DEFINE DOMAIN myvmd:mydom
 (CAP FIL,CON FIL,[NO]DEL,DES,[NO]SHA)
 _ODF> CAPABILITY FILE my_domains:mydom.cap CONTENT FILE
 my_domains:mydom.dom
 (',', ';')
 _ODF> , DELETABLE, NOSHARABLE;

6

Chapter 2. The OMNI Definition Facility

2.7. Creating a Definition of a Program
Invocation
A complete VSI OMNI definition of a program invocation (PI) contains the information listed in Table
2.3, "PI Defintion".

Table 2.3. PI Defintion

Item Description

vmd_name:pi_name The name of the program invocation and its
associated VMD.

[NO] DELETABLE A value indicating whether or not the PI can be
deleted from the VMD.

[NO] REUSABLE A value indicating whether or not the PI can be
reused.

EXECUTION ARGUMENT STRING An execution argument that becomes the default
for START and RESUME requests for the PI.

monitor_type One of three values. NO MONITOR indicates
that the PI has no mon- itoring event condition.
MONITOR PERMANENT indicates that the
PI has a monitoring event condition that exists
throughout program execu- tion. MONITOR
CURRENT indicates that the PI has a monitoring
event condition that exists only for the life of the
association.

DOMAIN LIST A list of references to the domains that make up
this program invocation.

DESCRIPTION Information describing the defined Program
Invocation.

A PI definition must include the name of the VMD to which the domain belongs. ODF will reject any PI
definition that does not specify an existing VMD.

Each PI definition must also specify a domain list with at least one domain in it. ODF will reject the
definition if the listed domains are not defined.

To create a VSI OMNI definition of a program invocation, enter the
DEFINE PROGRAM INVOCATION command in response to the ODF prompt and supply the values
that describe the PI. To add the definition to the permanent ODF database, enter the COMMIT command
(COMMIT is described in Section 2.10, "Committing Definitions to the ODF Database"), for example:

ODF> DEFINE PROGRAM INVOCATION myvmd:mypi DOMAIN LIST (myvmd:mydom)
 (',', ';')
 _ODF> , DELETABLE, REUSABLE, XA STRING "/DEBUG", NOMONITOR;

2.8. Creating a Definition of a Variable
ODF enables you to create VSI OMNI definitions for the following types of variable:

● Named variables

7

Chapter 2. The OMNI Definition Facility

● Unnamed variables

2.8.1. Named Variables
A complete VSI OMNI definition of a named variable contains the items listed in Table 2.4, "Named
Variable Definition".

Table 2.4. Named Variable Definition

Item Description

vmd_name:domain_ name.variable_name The name of the remote named variable object and
its associated VMD and (optionally) domain

type A reference to a predefined application type
[NO] DELETABLE A value that indicates whether the named variable

can be deleted from the VMD
DESCRIPTION Information that describes the named variable

A variable definition must include the name of the VMD to which the variable belongs. ODF will reject
any definition that does not specify an existing VMD. If a variable is defined as being on a domain, you
must also define the domain.

You must specify the type of the variable. To create a VSI OMNI definition for a named variable,
enter the DEFINE NAMED VARIABLE command in response to the prompt and supply the required
information. To add the definition to the permanent ODF database, enter the COMMIT command
(COMMIT is described in Section 2.10, "Committing Definitions to the ODF Database"), for example:

DEFINE NAMED VARIABLE Foo:X
 DESCRIPTION "VMD Foo X Coordinate"
 APPLICATION TYPE %:OMNI$LONG;

2.8.2. Unnamed Variables
A complete VSI OMNI definition of an unnamed variable contains the items listed in Table 2.5,
"Unnamed Varaible Definition ".

Table 2.5. Unnamed Varaible Definition

Item Description

vmd_name:domain_ name.variable_name The name of the remote unnamed variable and its
associated VMD (and, option- ally, its domain)

type A reference to a predefined application type
<address> The address of the unnamed variable
[NO] Supply Type Spec A value that indicates whether the variable's type

specification is to be sent to the remote VMD to
access the variable

DESCRIPTION Information describing the unnamed variable

A variable definition must include the name of the VMD to which the variable belongs, the variable type,
and the address. ODF will reject any definition that does not specify an existing VMD, the variable type,
and the address.

8

Chapter 2. The OMNI Definition Facility

The variable address can be specified as a NUMERIC ADDRESS or a SYMBOLIC ADDRESS. A
numeric address value is entered as a decimal number by default or as a hexadecimal number using the
%X prefix. A symbolic address value is entered as a quoted string.

To create a VSI OMNI definition for an unnamed variable, enter the DEFINE UNNAMED VARIABLE
command in response to the prompt and supply the required information. To add the definition to
the permanent ODF database, enter the COMMIT command (COMMIT is described in Section 2.10,
"Committing Definitions to the ODF Database"), for example:

ODF> DEFINE UNNAMED VARIABLE myvmd:X APPLICATION TYPE %:OMNI$LONG
 (DES,TYP,APP TYP)
 _ODF> NUMERIC ADDRESS %X4000, DESCRIPTION "Example of an unnamed
 variable";
 ODF> DEFINE UV myvmd:AT %:OMNI$LONG SYMBOLIC ADDRESS "$n0:0";

2.9. Defining Variable Types
An ODF variable definition includes two variable type definitions: an MMS Type definition and an
Application Type definition.

● The MMS Type definition provides information about the variable that is communicated through the
MMS protocol when the variable is read or written.

● The Application Type definition provides information about the way the application views the
variable. Application Type information cannot be communicated through the MMS protocol - it is
specific to the local programming environment.

ODF provides two commands that you can use to create variable type definitions:

● DEFINE MMS NAMED TYPE. Creates an MMS Type definition.

● DEFINE APPLICATION TYPE. Creates an Application Type definition and associates the definition
with a corresponding MMS type definition that you have created.

The DEFINE TYPE commands are useful for creating commonly-used type definitions that many
variables will reference. When a number of variables refer to the same type definition, all of the variables
can be changed by changing the one type definition.

2.9.1. Creating an MMS Named Type Definition
A complete VSI OMNI definition of an MMS Named Type contains the items listed in Table 2.6, "MMS
Named Type Definitin".

Table 2.6. MMS Named Type Definitin

Item Description

vmd_name:domain_ name.mms_type_ name The name of the MMS Named Type specification
and its associated VMD (and, optionally, its
domain.)

mms_type_ specification A structure, array or simple type specification or a
reference to another MMS Named Type.

[[NO]DELETABLE] Indicates whether or not the MT can be deleted
from the VMD.

9

Chapter 2. The OMNI Definition Facility

Item Description

DESCRIPTION Information describing the defined MMS Named
Type.

An MMS Named Type definition must include the name of the VMD to which the named type belongs.
ODF rejects any definition that does not specify an existing VMD. If a named type is defined as being
on a domain, you must also specify the domain.

You must specify the MMS type specification. To create a VSI OMNI definition for an MMS Named
Type, enter the DEFINE MMS Named Type command in response to the prompt and supply the
required information. To add the definition to the permanent database, enter the COMMIT command
(COMMIT is described in Section 2.10, "Committing Definitions to the ODF Database"), for example:

DEFINE MMS NAMED TYPE Foo:Point
 DESCRIPTION "Point in threespace"
 STRUCTURE
 x INTEGER 32;
 y INTEGER 32;
 z INTEGER 32;
 END;
 DEFINE MMS NAMED TYPE Foo:Position
 DESCRIPTION "Position and Orientation"
 STRUCTURE
 pos Foo:Point;
 r FLOAT FORMAT WIDTH 32 EXPONENT 9;
 o FLOAT FORMAT WIDTH 32 EXPONENT 9;
 h FLOAT FORMAT WIDTH 32 EXPONENT 9;
 END;

2.9.2. Creating an Application Named Type Definition
A complete VSI OMNI definition of an Application Named Type contains the items listed in Table 2.7,
"Application Named Type Definition".

Table 2.7. Application Named Type Definition

Item Description

vmd_name:domain_ name.application_ type_name The name of the Application Named Type
specification and its associated VMD (and,
optionally, its domain).

FROM MMS NAME TYPE The name of the MMS Named Type associated
with the application named type.The default is the
same name and scope as the application type.

application_type_ specification A structure, array or simple type specification or a
reference to another Application Named Type.

DESCRIPTION Information describing the defined Application
Named Type.

An Application Named Type definition must include the name of the VMD to which the named type
belongs. ODF will reject any definition that does not specify an existing VMD. The named type can also
be defined on a domain.

You must specify the application type specification. To create a VSI OMNI definition for an Application
Named Type, enter the DEFINE Application Named Type command in response to the prompt and

10

Chapter 2. The OMNI Definition Facility

supply the required information. To add the definition to the permanent database, enter the COMMIT
command (COMMIT is described in Section 2.10, "Committing Definitions to the ODF Database"), for
example:

 DEFINE APPLICATION NAMED TYPE Foo:Point
 DESCRIPTION "Point in threespace"
 APPLICATION TYPE FROM MMS NAMED TYPE Foo:Point
 STRUCTURE
 (x,x) INTEGER 32;
 (y,y) INTEGER 32;
 (z,z) INTEGER 32;
 END;

2.9.3. Creating Application Type Definitions for
Alternate Access
Every VSI OMNI variable definition specifies a default Application Type definition, which in turn refers
to an MMS Type definition.

Simple applications would generally access the variable's data using the default Application Type.
Other applications may need to perform alternate access by referring to the variable using some other
Application and/or MMS Type definition.

One reason for alternate access would be to support applications which store internal data differently.
For example, suppose two applications access a variable whose MMS Type definition is a Visible
String. One application may need to store this visible string internally as a null terminated string while
another Application Type may need to store it internally as a word counted string. In both cases, since
all elements of the array would be accessed, there is a 1:1 correspondence between array components
of the MMS Type definition and the Application Type definition. Following is an example of the type
definitions that can be used under these circumstances:

DEFINE MMS NAMED TYPE Foo:String VISIBLE STRING 100;
 DEFINE APPLICATION NAMED TYPE Foo:String
 FROM MMS NAMED TYPE Foo:String, STRING 100;
 DEFINE APPLICATION NAMED TYPE Foo:Alt_String_NT
 FROM MMS NAMED TYPE Foo:String, NULL TERMINATED STRING 100;
 DEFINE APPLICATION NAMED TYPE Foo:Alt_String_WC
 FROM MMS NAMED TYPE Foo:String, WORD COUNTED STRING 100;
 DEFINE NAMED VARIABLE Foo:String_Var APPLICATION TYPE Foo:String;

Another reason for alternate access is to support applications which may not need to access all of the
data in a variable. This type of alternate access is called partial access. For example, a device can define a
portion of its memory as a large array. An application can read the portion of the memory it is interested
in by creating an Application Type definition that specifies a subrange of the array to be read into an
application buffer which is only large enough to hold the data in that subrange. Following is an example
of the definitions that can be used in circumstances where the default application type references the
entire array:

DEFINE MMS NAMED TYPE Foo:Int_Array ARRAY [20] of INTEGER 32;
 DEFINE APPLICATION NAMED TYPE Foo:Int_Array
 FROM MMS NAMED TYPE Foo:Int_Array, ARRAY [20] of INTEGER 32;
 DEFINE APPLICATION NAMED TYPE Foo:Alt_Int_Array_0_9
 FROM MMS NAMED TYPE Foo:Int_Array, ARRAY [0..9] of INTEGER 32;
 DEFINE APPLICATION NAMED TYPE Foo:Alt_Int_Array_5_14
 FROM MMS NAMED TYPE Foo:Int_Array, ARRAY [5..14] of INTEGER 32;

11

Chapter 2. The OMNI Definition Facility

 DEFINE NAMED VARIABLE Foo:Int_Array_Var APPLICATION TYPE
 Foo:Int_Array;

In both examples of alternate access (full and partial), an application accomplishes alternate access on a
variable by providing a method handle in calls to the variable access procedures, OMNI$GET_VALUE
and OMNI$PUT_ VALUE. A method handle is an object identifier handle of an Application Named
type. For information on Method Handles refer to the VSI OMNI Application Programmer's Guide.

The user can also define the default application type as an alternate access type. In this case, it is not
to supply a method handle to perform alternate access. Instead, alternate access can be performed by
default whenever the variable is accessed.

2.10. Committing Definitions to the ODF
Database
An ODF session consists of the following steps:

1. The user enters a series of DEFINE and/or DELETE commands to describe the objects in the MMS
environment. ODF saves these definitions in a special area allocated for the ODF session.

2. The user enters the COMMIT command. ODF examines the batched definitions (that is, all the
definitions entered since the last COMMIT command or since the beginning of the session), writes
all valid definitions into the permanent database, or reports on any errors. If committing the changes
will produce inconsistencies in the database, referred to as a database constraint error, ODF reports
an error and does not make any of the modifications.

For example, if you have entered a variable definition that includes a reference to a nonexistant
VMD, ODF will reject the definition and return an error code.

ODF does not discard the batch of definitions if the COMMIT operation fails. Thus you can correct the
error and COMMIT again.

To erase a batch of modifications from the temporary storage area, type the ROLLBACK command.
ODF discards all the definitions that you have created since your last COMMIT command. (Note
how ROLLBACK differs from DELETE. The DELETE command removes a definition that
has been committed to the permanent ODF database and/or exists in temporary storage; the
ROLLBACK COMMAND simply discards actions from temporary storage.)

In addition to batching DEFINE commands, ODF batches all commands that modify the database (for
example, the DELETE command) until you enter a COMMIT command.

Note

The EXIT command causes ODF to attempt a COMMIT before exiting. The QUIT command causes
ODF to attempt a ROLLBACK before exiting.

If, as an ODF user, you arrange your transactions so a COMMIT is issued after each DEFINE command,
you can reduce the ambiguity of constraint error messages.

The constraint error message identifiers have the following general format:

DUP<def> - A definition with the name specified in a DEFINE <def> command already exists in the
database. To modify a definition, DELETE it, DEFINE it, and then COMMIT it. If modification is not
wanted, and the existing database entry is correct, use ROLLBACK to cancel the DEFINE request.

12

Chapter 2. The OMNI Definition Facility

<def1>NO<def2>- An attempt was made to create a definition that is dependent on the existence of
another definition. For example, DOMNOVMD means that a DEFINE DOMAIN command was issued
for a domain, and the VMD specified for that domain does not exist.

Either create the required definition or roll back the request. Remember that all database names are case
sensitive.

<def1>REF<def2>- A definition refers to another definition that does not exist. For example,
NVREFAT means that a DEFINE NAMED VARIABLE command was issued with an
APPLICATION TYPE reference to a nonexisting Application Named Type.

Either create the required definition or roll back the request. Remember that all database names are case
sensitive.

Classes of definitions are abbreviated as follows:

● VMD: Virtual Manufacturing Device

● DOM: Domain

● PI: Program Invocation

● NV: Named Variable

● UV: Unnamed Variable

● VAR: Simple variable-named or unnamed (NR or UV)

● PID: Entry in a PI list of domains

● MT: MMS Named Type

● AT: Application Named Type

A completes list of ODF error messages can be found in Appendix B, "ODF Error Messages".

2.11. Setting the Default Scope
ODF enables you to set the default VMD and domain for dependent objects that you want to define. To
specify a default VMD and domain, enter the SET SCOPE command and the name of the VMD and
domain. (If you omit the domain name, the scope is VMD-specific.)

For example, the following SET SCOPE command specifies Foo as the default VMD for the session and
Bar as the default domain. The DEFINE command creates a variable definition named X:

ODF> SET SCOPE Foo:Bar
 ODF> DEFINE NAMED VARIABLE X APPLICATION TYPE %OMNI$LONG;

ODF creates the definition Foo:Bar.X.

2.12. Deleting a Definition
The DELETE DEFINITION command deletes a definition from the permanent ODF database and/or
temporary storage.

13

Chapter 2. The OMNI Definition Facility

A definition cannot be deleted until all its dependencies are deleted. In the following command sequence,
for example, domain "Bar'' cannot be deleted while there is an existing definition for a named variable
"Baz'' within the "Bar'' scope:

DEFINE DEFINITION VMD Foo ...
 DEFINE DEFINITION DOMAIN Foo:Bar ...
 DEFINE DEFINITION NAMED VARIABLE Foo:Bar.Baz ...
 DELETE Foo:Bar;
 COMMIT;! Will fail because of Foo:Bar.Baz
 DELETE DEFINITION Foo:Bar(NAMED VARIABLE:*);! Delete all variables in
 Domain Bar of Vmd Foo
 DELETE DEFINITION DOMAIN Foo:Bar;
 COMMIT; ! Will succeed
 DELETE DEFINITION VMD Foo;

A right arrow character (>) in the command line causes ODF to delete the specified object and all
objects that are dependent on that object. For example, the following command deletes VMD Foo and all
the objects it contains:

DELETE DEFINITION Foo>;

To delete the entire database:

DELETE DEFINITION *>;

This command line is not recommended.

The DELETE command supports the wildcard asterisk (*). For example, the following command deletes
all named variables in domain Foo:Bar:

DELETE DEFINITION Foo:Bar(NV:*);

2.13. Creating, Opening, and Closing a Log
File
ODF enables you to create and open a log file for the ODF session. To create a log file, enter the
SET ODF LOGFILE command and specify the name of the log file.

Once the file is open you can start session logging with the ENABLE ODF LOGGING command. You
can also write definition commands to the log file using the WRITE DEFINITION command.

To close the log file, reenter the SET ODF LOGFILE command with a different filename or the null
device name (NL:).

2.14. Enabling and Disabling Logging
To create a log of the ODF session, enter the ENABLE ODF LOGGING command.

If you have already specified a log file with the SET ODF LOGFILE command, ODF logs the session
to that file. If you have not specifed a file, ODF creates a file OMNI$ODF.LOG in the current default
directory and logs the session there.

To disable logging, enter the DISABLE ODF LOGGING command. Logging will stop, but the log file
will remain open until the ODF session is exited or another SET ODF LOGFILE command is entered.

14

Chapter 2. The OMNI Definition Facility

The ENABLE and DISABLE ODF LOGGING commands can be used to selectively log portions of an
ODF command session.

2.15. Displaying Definitions and Current
Settings
ODF provides the commands listed in Table 2.8, "ODF Commands" that you can use to display the
current settings of ODF session attributes or the values of definitions in the database.

Table 2.8. ODF Commands

Command Action

SHOW SCOPE Shows the default VMD and domain
SHOW COMPANION STANDARD Shows the current companion standard
SHOW ODF LOGFILE Shows the current output file
SHOW ODF LOGGING Shows the current logging state
SHOW DEFINITION Displays a definition or set of definitions to SYS

$OUTPUT
SHOW VERSION Displays the version of ODF and the database level

2.16. Executing Stored Commands
The DO command (or @) enables you to read ODF commands stored in a script file.

You can create script files in any of the following ways:

● Use the SET ODF LOGFILE and ENABLE ODF LOGGING commands to trace a session.

● Use the WRITE DEFINITION TO command to write declaration commands to a file. This is
helpful when creating script files to rebuild portions of the database.

Issuing a WRITE DEFINITION command without a TO specifier causes a DEFINE command to
be written to the current log file.

● Use any editor to create a text file containing the commands.

If logging is enabled when the script file is invoked, the invocation command is commented out in the
trace, and the individual commands in the script file appear in the trace output. A comment is inserted at
the end of the trace file. If the script file contains an EXIT command, that command does not appear in
the trace file.

DO commands can be nested (a script file can issue a DO command). There is no limit to how many DO
commands can be issued from a particular script file; however, ODF must open each script file, so the
open file limit (FILLM) quota determines the maximum nesting allowed, for example:

 File COMMANDS.COM looks like:
 +---------------------------------+
 | DEFINE NAMED VARIABLE Bar ... |
 | DEFINE NAMED VARIABLE Baz ... |
 | EXIT |
 +---------------------------------+

15

Chapter 2. The OMNI Definition Facility

 $ ODF = "SYSSYSTEM:OMNI$ODF.EXE"
 $ ODF
 ODF> DEFINE VMD Foo;
 ODF> SET SCOPE Foo;
 ODF> ENABLE ODF LOGGING
 ODF> sho sco
 Scope is Foo:
 ODF> DEFINE NAMED VAR X ...
 ODF> DO COMMANDS.COM;
 ODF> EXIT
 $ TYPE OMNI$DEF.LOG
 sho sco
 ! Scope is Foo:
 DEFINE NAMED VAR X ...
 ! DO COMMANDS.COM;
 ! Invoking Script File DISK1:[GUEST]COMMANDS.COM;1
 DEFINE NAMED VARIABLE Bar ...
 DEFINE NAMED VARIABLE Baz ...
 ! End of Script File DISK1:[GUEST]COMMANDS.COM;1
 EXIT

2.17. Creating a Command to Repeat a
Definition
The WRITE DEFINITION command enables you to write out definitions to a file, where each
definition is written as a valid ODF DEFINE command. A reference to a definition, list of definitions,
or a wildcard specification can be specified. An asterisk (*) used as a wildcard character matches zero or
more characters, and a period (.) used as a wildcard character matches exactly one character.

If you include a file specification by using the TO clause, ODF opens that file, writes the definitions to it,
and closes the file. If there is no file specification, ODF appends the definitions to the current log file. If
no log file is open, ODF opens a new version of OMNI$DEF.LOG and writes the definitions there.

The following command writes out all definitions in the database to a file named BACKUP.LOG:

WRITE DEFINITION *> TO BACKUP.LOG;

The following example writes out domain Bar of VMD Foo and its dependent objects to file
DOMAIN.LOG:

WRITE DEFINITION Foo:Bar> TO DOMAIN.LOG;

The following example writes out named variables defined in domain Bar to the current log file:

WRITE DEFINITION Foo:Bar(NV:*);

2.18. Exiting and Quitting an ODF Session
The EXIT command attempts to perform a COMMIT before ending the ODF session. If there are
unresolved dependencies, ODF does not EXIT. Enter additional DEFINE commands to satisfy the
dependencies, and reenter the EXIT command.

The QUIT command rolls back any batched DEFINE or DELETE DEFINITION commands and ends
the ODF session.

16

Chapter 3. OMNI Definition Facility
(ODF) Commands
This chapter describes the set of commands you issue to create and manage local VSI OMNI definitions
of remote MMS objects.

These sections use the documentation conventions listed in Table 3.1, "Conventions".

Table 3.1. Conventions

[] Brackets enclose optional expressions.
{} Large braces enclose choices from a group of

items. Braces around a single item indicate that this
item is mandatory.

<> Angle brackets enclose tokens that must be
expanded.

. . Ellipsis indicates an expression that can be
repeated.

A local ODF definition name has the same format as an MMS identifier: it is a string of 1 to 32
characters. All alphanumeric characters, the dollar sign ($), and the underscore (_) are valid. The
identifier cannot begin with a numeric character. Also, ODF definition names, like MMS identifiers, are
case-sensitive (foo is not equal to FOO).

Table 3.2, "Naming Format" shows the valid formats for referring to a definition. These formats are used
with the DELETE DEFINITION, SHOW DEFINITION, and WRITE DEFINITION commands.

Table 3.2. Naming Format

Definition Naming Format and Examples

VMD vmd_name vmd
Domain [vmd_name :] domain_name vmd:dom, :dom,

dom [vmd_name](DOMAIN: domain_name)
v(DOMAIN:d), (DOM:d)

Program Invocation [vmd_name](PROGRAM INVOCATION:
pi_name) v(PROGRAM INVOCATION:p), (PI:p)

Named Variable [vmd_name][: dom_name](NAMED
VARIABLE: var_name) v:d(NAMED
VARIABLE:n), :d(NV:n), :(NV:n), (NV:n)

Unnamed Variable [vmd_name](UNNAMED VARIABLE:
uvar_name) v(UNNAMED VARIABLE:n),
(UV:n)

MMS Named Type [vmd_name][: dom_name](MMS NAMED
TYPE: type_name) v:d(MMS NAMED
TYPE:n), :d(MT:n), :(MT:n), (MT:n)

Application Named Type [vmd_name][: dom_name](APPLICATION
NAMED TYPE: type_name)

17

Chapter 3. OMNI Definition Facility (ODF) Commands

Definition Naming Format and Examples
v:d(APPLICATION NAMED
TYPE:n), :d(AT:n), :(AT:n), (AT:n)

COMMIT
COMMIT — The COMMIT command commits changes to the database. All changes made in an ODF
session since the last COMMIT become permanent and are made visible to other users of the ODF
database.

Format
COMMIT;

Description
When you enter COMMIT, ODF processes all of the DEFINE and DELETE DEFINITION commands
you have entered since your last COMMIT command or since the beginning of the session.

Before the modifications are made visible, ODF verifies that those modifications leave the database in
a consistent state. If committing the command would cause an inconsistency, ODF reports a constraint
violation, and the changes are not added to the database. See Appendix B, "ODF Error Messages" for the
list of constraint errors.

To recover from a constraint violation, either roll back the commands or enter additional commands to
correct the problem. The SHOW DEFINITION command is useful for pinpointing the cause of the
problem. SHOW DEFINITION shows any uncommitted changes as if they had already been applied.

DEFINE DOMAIN
DEFINE DOMAIN — The DEFINE DOMAIN command creates a definition of a domain and
associates the domain with a VMD definition.

Format
DEFINE DOMAIN [<vmd_name>:]<domain_name>
 [[NO] DELETABLE]
 [[NO] SHARABLE]
 [CONTENT FILE <content_filespec>]
 [CAPABILITY FILE <capability_filespec>]
 [DESCRIPTION <text>];

Attributes and Values
<vmd_name>

The name of the VMD definition with which the domain definition is associated. A <vmd_name> is an
MMS identifier.

<domain_name>

18

Chapter 3. OMNI Definition Facility (ODF) Commands

The name of the domain.

A <domain_name> is an MMS identifer.

[NO] DELETABLE

Indicates whether or not the domain can be deleted from the VMD. The DELETABLE attribute can be
set by a server only. The default is DELETABLE.

[NO] SHARABLE

Indicates whether or not the domain can be shared by multiple program invocations. The default is
NO SHARABLE. ODF does not prevent PI definitions from sharing a domain that is marked NO
SHARABLE.

CONTENT FILE <content_filespec>

A file containing the domain.

The <content_filespec> is an OpenVMS file specification or logical name. The default is "".

CAPABILITY FILE <capability_filespec>

A file specifying the capabilities of the domain.

The <capability_filespec> is an OpenVMS file specification or logical name. The default is OMNI
$DOMAINS:[<vmd_name>]<domain_name>.cap

Note

If the OpenVMS file specification contains a semicolon (;), the specification string must be enclosed in
quotes.

DESCRIPTION <text>

Any information identifying the domain. This is not communicated. The default is "".

The <text> is a quoted character string with a maximum length of 128 characters.

DEFINE MESSAGE
DEFINE MESSAGE — The DEFINE MESSAGE command creates a local VSI OMNI definition of a
message object and associates it with a VMD previously defined.

Format
DEFINE MESSAGE [<vmd_name>:]<msg_name> LENGTH
 <msg_length> [DESCRIPTION <text>];

Attributes and Values
<vmd_name>

19

Chapter 3. OMNI Definition Facility (ODF) Commands

The name of the VMD the message belongs to. If omitted, ODF uses the default VMD that you have set
with the SET SCOPE command. The <vmd_name> is an MMS identifier.

<msg_name>

The name of the message object being defined. Only one message can be defined for each VMD.

The <msg_name> is an MMS identifier.

LENGTH <msg_length>

The maximum length of the message data in bytes.

The <msg_length> is any positive integer in the range from 1 to 4096.

DESCRIPTION <text>

Information identifying the variable.

The <text> is a quoted character string with a maximum length of 80 characters. The default is "".

DEFINE PROGRAM INVOCATION
DEFINE PROGRAM INVOCATION — The DEFINE PROGRAM INVOCATION command creates
a definition of a program invocation and associates the PI with a VMD definition.

Format
DEFINE PROGRAM INVOCATION [<vmd_name>:]<pi_name>
 [DESCRIPTION
 <text>]
 DOMAIN LIST

 <dom_id>[,<dom_id>]...
 [[NO] DELETABLE]
 [[NO] REUSABLE]
 [[NO]EXECUTION ARG
 STRING <text>];

Attributes and Values
<vmd_name>

The name of the VMD definition with which the domain definition is associated. The <vmd_name> is
an MMS identifier.

<pi_name>

The name of the program invocation.

The <pi_name> is an MMS identifer.

DOMAIN LIST <dom_id>[,<dom_id>]...

20

Chapter 3. OMNI Definition Facility (ODF) Commands

A list of one or more domain references.

A <domain_id> is an MMS identifier. Separate the IDs with commas and enclose the list in parentheses.
At least one domain must be specified. The order of the list is not significant.

DESCRIPTION <text>

Any information identifying the PI.

The <text> is a quoted character string. The default is "". The maximum length is 128 characters.

[NO] DELETABLE

Indicates whether or not the program invocation can be deleted from the VMD. The default is
DELETABLE.

[NO] RESUABLE

Indicates whether or not the program invocation can be reused. The default is NO REUSABLE.

[NO] EXECUTION ARGUMENT STRING <text>

An execution argument for the program invocation. If supplied, the value becomes the default for both
START and RESUME service requests for the program invocation. The value can be overridden on the
call to either the OMNI START or RESUME function. The default is NO EXECUTION ARGUMENT
STRING.

The <text> is a symbol or a quoted text string. The maximum length is 128 characters.

DEFINE NAMED VARIABLE
DEFINE NAMED VARIABLE — The DEFINE NAMED VARIABLE command creates a VSI OMNI
definition of a named variable and associates the definition with a defined domain or VMD.

Format
 DEFINE NAMED VARIABLE [<vmd>:][<dom>.]<var>
 {<type>}
 [[NO]DELETABLE]
 DESCRIPTION <text>;

Attributes and Values
<vmd>

The name of the VMD the variable belongs to. If omitted, ODF uses the default VMD that you have set
with the SET SCOPE command. The <vmd> is an MMS identifier.

<dom>

The name of the domain that the variable belongs to. If not specified, ODF uses the default scope that
you have set with the SET SCOPE command. See the SET SCOPE command for details.

The <dom> is an MMS identifer.

21

Chapter 3. OMNI Definition Facility (ODF) Commands

<var>

The name of the named variable being defined.

The <var> is an MMS identifier.

<type>

There is one variable type: APPLICATION TYPE <app_type_reference> where
<app_type_reference> is a reference to a predefined application type, such as %:OMNI$LONG or to a
user- defined application type. (See DEFINE APPLICATION NAMED TYPE.)

You must enter a type. However, the type you specify can be overridden at run time. See Appendix A,
"ODF Predefined Types" for a list of available predefined types.

[NO] DELETABLE

Indicates whether the variable can be deleted from the VMD. The default is DELETABLE.

DESCRIPTION <text>

Information identifying the variable

The <text> is a quoted character string with a maximum length of 128 characters. The default is "".

DEFINE UNNAMED VARIABLE
DEFINE UNNAMED VARIABLE — The DEFINE UNNAMED VARIABLE command creates a VSI
OMNI definition of an unnamed variable object and associates the definition with a defined domain or
VMD.

Format
DEFINE UNNAMED VARIABLE [<vmd>:]<var>
 <type>
 <address>
 [[NO] Supply Type Spec]
 [DESCRIPTION <text>];

Attributes and Values
<vmd>

The name of the VMD the variable belongs to. If omitted, ODF uses the default VMD that you have set
with the SET SCOPE command. The <vmd> is an MMS identifier.

<var>

The name of the unnamed variable being defined.

The <var> is an MMS identifier.

<type>

22

Chapter 3. OMNI Definition Facility (ODF) Commands

APPLICATION TYPE <app_type_reference> where <app_type_reference> is a reference
to a predefined type such as %:OMNI$LONG or to a user-defined application type. (See
DEFINE APPLICATION NAMED TYPE.)

You must enter a type. However, the type you specify can be overridden at run time. See Appendix A,
"ODF Predefined Types" for a list of available predefined types.

[NO] Supply Type Spec

Indicates whether the variable's type description is to be sent to the remote VMD with requests to access
this variable. The default is NO Supply Type Spec.

DESCRIPTION <text>

Information identifying the variable

The <text> quoted character string with a maximum length of 128 characters. The default is "".

<address>

One of the following to indicate the address of the variable:

NUMERIC ADDRESS <longword_value>

<longword_value> can be a decimal number (the default) or a hexadecimal number. A hexadecimal
number has the format % hhhhhhhh where each h is a hex digit (0-9, a-f, or A-F)

SYMBOLIC ADDRESS <address_string>

<address string> should be a string enclosed in double quotation marks (").

DEFINE MMS NAMED TYPE
DEFINE MMS NAMED TYPE — The DEFINE MMS NAMED TYPE command creates an MMS
named type definition. An MMS type definition de- scribes the attributes of a variable that can be
communicated to an MMS peer.

Format
DEFINE MMS NAMED TYPE [<vmd>]:[<dom>.]<type>
 <mms_type_specification>
 [[NO]DELETABLE]
 [DESCRIPTION <text>];

Attributes and Values
<vmd>

The name of the VMD the named type definition belongs to. If omitted, ODF uses the default VMD that
you have set with the SET SCOPE command. <vmd> is an MMS identifier.

<dom>

The name of the domain the type belongs to. If blank, the type's scope is VMD specific. If not specified,
ODF uses the default domain that you have set with the SET SCOPE command.

23

Chapter 3. OMNI Definition Facility (ODF) Commands

To override the default domain:

:<mms_named_type>.
<dom> is an MMS identifer.

<type>

The name of the MMS type being defined.

<type> is an MMS identifier.

<mms_type_specification>

One of the following values indicating that the variable is a structure, an array, or a simple variable:

● STRUCTURE {<mms_type_component_name> <mms_ type_specification>;}...END;

Indicates that the value is constructed from an ordered list of one or more components, each of
which can have a distinct type.

<mms_type_component_name> is an MMS identifier.

<mms_type_specification> describes the type of this component. The type can be a structure, an
array, or a simple type.

● ARRAY <mms_array_bounds> OF <mms_type_ specification>

Indicates that the value is an ordered sequence of elements.

<mms_array_bounds> is a positive integer enclosed in brackets ([])

<mms_type_specification> describes the type of one element in the array The type can be a
structure, an array, or a simple type.

● BOOLEAN

Indicates the type is a simple boolean.

● [VARYING] BIT STRING <cell_size_bits>

Indicates that the type is a simple bitstring. <cell_size_ bits> is the number of bits in the bit string.

● INTEGER [<cell_size_bits>]

Indicates that the type is a simple integer. <cell_size_ bits> is the number of bits in the largest two's
complement number the integer can hold. The cell size value must be 8, 16, or 32. The default is 32.

● UNSIGNED [<cell_size_bits>]

Indicates that the type is a simple unsigned integer. <cell_size_bits> is the number of bits in the
largest binary number the unsigned integer can hold. The cell size value must be 8, 16, or 32. The
default is 32.

● FLOAT

Indicates that the type is a simple floating-point number. The format width is 32 bits and the
exponent is 8 bits.

24

Chapter 3. OMNI Definition Facility (ODF) Commands

● [VARYING] OCTET STRING <size_in_octets>

Indicates that the type is a simple octet string. Each octet can hold a value from 0 to 255.
<size_in_octets> is the number of octets in the string.

● [VARYING] VISIBLE STRING <size_in_octets>

Indicates that the type is a simple visible string. <size_ in_octets> is the number of characters in the
string. The string should hold a printable ASCII value.

● GENERALIZED TIME

Indicates that the type is a generalized time value.

● BINARY TIME DATE [NOT] INCLUDED

Indicates that the type is a binary time value. DATE INCLUDED is the default.

● BCD [<size_in_digits>]

Indicates that the type is an unsigned binary coded decimal number. <size_in_digits> is the number
of decimal digits used to represent the maximum value the variable can hold.

● OBJECT IDENTIFIER

Indicates that the type is an object_identifier.

● <ref>

A reference to another MMS Named Type can be used instead of an explicit type description. The
VMD scope of the reference must match the VMD scope of the MMS Named Type being defined or
must be one of the predefined MMS Named Types.

[NO] DELETABLE

Indicates whether the MMS Named Type can be deleted from the VMD. The default is DELETABLE.

DESCRIPTION <text>

Information identifying the type.

<text> is a quoted character string with a maximum length of 128 characters. The default is "".

DEFINE APPLICATION NAMED TYPE
DEFINE APPLICATION NAMED TYPE — The DEFINE APPLICATION NAMED TYPE
command creates an Application Named Type definition.

Format
DEFINE APPLICATION NAMED TYPE [<vmd>]:
 [<dom>.]<type>
 [FROM MMS NAMED TYPE <ref>]
 <app_type_specification>

25

Chapter 3. OMNI Definition Facility (ODF) Commands

 [DESCRIPTION <text>];

Attributes and Values
<vmd>

The name of the VMD the Application Named Type belongs to. If omitted, ODF uses the default VMD
that you have set with the SET SCOPE command. <vmd> is an MMS identifier.

<dom>

The name of the domain the type belongs to. If blank, the type's scope is VMD specific. If not specified,
ODF uses the default domain that you have set with the SET SCOPE command. (To override the
default domain, enter :<named_ var_name>).

<dom> is an MMS identifer.

<type>

The name of the type being defined.

<type> is an MMS identifier.

FROM MMS NAMED TYPE <ref>

The name of the MMS type to use when using this application type. The MMS type must have the same
VMD scope as the application type or must be one of the predefined MMS types. The default is the
same name and scope as the application type name.

<ref> is a reference to an MMS named type definition.

<app_type_specification>

A construct specifying local format information. Mapping of an application type specification to an
MMS type specification is limited to certain combinations. Structures must be mapped to structures,
arrays to arrays, references to references, and simple types to simple types. See Appendix C, "Supported
Mappings" for details.

● STRUCTURE

Indicates that the variable is a structure. A structure entry has the format:

STRUCTURE
{<app_component_id> <app_type_specification>;}...
END STRUCTURE

<app_component_id> specifies which component of the corresponding MMS structure is being
referenced, and what name the application uses to refer to that component. It has the form:

(<app_component_name>, <mms_component_name>)

● ARRAY

Indicates that the variable is an array. The entry has the following format:

ARRAY
<app_array_bounds> OF <app_type_specification>

26

Chapter 3. OMNI Definition Facility (ODF) Commands

<app_array_bounds> is a positive integer, enclosed in brackets (for example, [10]) indicating the
number of elements in the array or a range (for example, [3...5]) indicating which elements in the
array are included in a partial access.

<app_type_specification> indicates that the component type is a structure, an array, or a simple type.

● BOOLEAN

Indicates the type is a simple boolean with a cell size of eight bits.

● BIT STRING <cell_size_bits>

Indicates that the type is a simple bitstring. <cell_size_ bits> is the number of bits in the bitstring.
Each bit is stored in the low order bit of an eight-bit cell.

● INTEGER [<cell_size_bits>]

Indicates that the type is a simple integer. <cell_size_ bits> is the number of bits to use to represent
the integer in two's complement format. Only cell sizes of 8, 16, or 32 are valid. The default is 32.

● UNSIGNED [<cell_size_bits>]

Indicates that the type is a simple binary integer <cell_ size_bits> is the number of bits to store the
value in. Only cell sizes of 8, 16, or 32 are valid. The default is 32.

● F_FLOAT

Indicates that the type is a simple floating-point, stored locally in VAX F_Float format.

● STRING <size_in_bytes>

Indicates that the type is a simple scalar byte string. <size_in_bytes> is the length of the string in
bytes.

● WORD COUNTED STRING <size_in_bytes>

Indicates that the type is a word counted string. <size_ in_bytes> is the maximum number of
characters in the string.

● NULL TERMINATED STRING <size_in_bytes>

Indicates that the type is a null terminated string. <size_ in_bytes> is the maximum number of
characters in the string, not including the null terminator.

● OMNITime

Indicates that the type is a time value stored as six words. It is the time type used internally by the
VSI OMNI Application Interface.

● VMS ABSOLUTE TIME

Indicates that the type is stored as a quadword containing a VMS absolute time value.

● BOOLEAN ARRAY <app_array_bounds>

Indicates that the type is an array of boolean values, where each value is stored in a cell of eight bits.
<app_ array_bounds> specifies the number or range of values.

27

Chapter 3. OMNI Definition Facility (ODF) Commands

● <ref>

A reference may be used instead of an explicit type description. The VMD scope of the reference
must match the VMD scope of the application named type being defined or must be one of the
predefined application named types.

DESCRIPTION <text>

Information identifying the variable.

<text> is a quoted character string with a maximum length of 128 characters.

DEFINE VMD
DEFINE VMD — The DEFINE VMD command creates a local VSI OMNI definition of a VMD.

Format
DEFINE VMD <vmd_name>
 APPLICATION SIMPLE NAME <app_simple_name>
 [VERSION <version_number>]
 [NESTING LEVEL <word_value>]
 [MAXIMUM SERVICES CALLED <word_value>]
 [MAXIMUM SERVICES CALLING <word_value>]
 [MAXIMUM SEGMENT SIZE <integer_value>]
 [PARAMETER CBB <cbb_list>]
 [SUPPORTED SERVICES <supported_service_list>]
 [[NO] VENDOR <vendor_name>]
 [[NO] MODEL <model>]
 [[NO] REVISION <revision>]
 [DESCRIPTION <text>];

Attributes and Values
<vmd_name>

The local name of the VMD definition. The <vmd_name> is an MMS identifer. The VMD name is used
to identify the VMD in the OMNI data base; it is not used for communications.

APPLICATION SIMPLE NAME <app_simple_name>

The simple name is used to look up the application in Directory Services. The format of the name is
determined by the Directory Service Provider you are using. See MAPCL documentation for further
details. If you omit the simple name, VSI OMNI uses the VMD name.

The <app_simple_name> is a quoted character string.

VERSION <version_number>

Specifes the protocol used by the application.

The <version_number> is an integer value. The range is determined by the companion standard being
used. For the MMS companion standard, the following values are valid: Zero (0)- The application is
DIS-compliant. One (1) - The application is IS compliant. This is the default.

28

Chapter 3. OMNI Definition Facility (ODF) Commands

NESTING LEVEL <word_value>

The maximum number of levels of nesting that can occur within any data element that is transmitted or
communicated over an association with the VMD. A value of zero (0) specifies unlimited nesting. The
default is 10.

The <level> is an integer.

MAXIMUM SERVICES CALLING <word_value>

The proposed maximum number of transaction object instances that can be created at the calling MMS-
user on the application association. The default is 5.

The <word_value> is an integer.

MAXIMUM SERVICES CALLED <word_value>

The proposed maximum number of transaction object instances that can be created at the called MMS-
user on the application association. The default is 5.

The <word_value> is an integer.

MAXIMUM SEGMENT SIZE <integer_value>

The proposed maximum size of an MMS message to exchange with a VMD.

PARAMETER CBB <cbb_list>

The set of conformance building blocks supported by the VMD.

The <cbb_list> consists of one or more of the items listed in Table 3.3, "CBB Parameters" separated by
commas and enclosed by parentheses.

Table 3.3. CBB Parameters

Parameter ISO 9506 Designation

[NO] ARRAYS STR1
[NO] STRUCTURES STR2
[NO] NAMED VARIABLES VNAM
[NO] ALTERNATE ACCESS VALT
[NO] UNNAMED VARIABLES VADR
[NO] SCATTERED ACCESS VSCA
[NO] THIRD PARTY TPY
[NO] NAMED VARIABLE LIST VLIS
[NO] REAL REAL
[NO] ACKNOWLEDGEMENT EVENT
CONDITION

AKEC

[NO] EVALUATION INTERVAL CEI

SUPPORTED SERVICES <supported_service_list>

The set of services supported by the calling MMS user for the association.

29

Chapter 3. OMNI Definition Facility (ODF) Commands

The <supported_service_list> consists of one or more of the services listed in Table 3.4, "Supported
Services" separated by commas and enclosed by parentheses.

Table 3.4. Supported Services

Service

[NO] STATUS
[NO] GET NAME LIST
[NO] IDENTIFY
[NO] RENAME
[NO] READ
[NO] WRITE
[NO] GET VARIABLE ACCESS ATTRIBUTES
[NO] DEFINE NAMED VARIABLE
[NO] DEFINE SCATTERED ACCESS
[NO] GET SCATTERED ACCESS ATTRIBUTES
[NO] DELETE VARIABLE ACCESS
[NO] DEFINE NAMED VARIABLE LIST
[NO] GET NAMED VARIABLE LIST ATTRIBUTES
[NO] DELETE NAMED VARIABLE LIST
[NO] DEFINE NAMED TYPE
[NO] GET NAMED TYPE ATTRIBUTES
[NO] DELETE NAMED TYPE
[NO] INPUT
[NO] OUTPUT
[NO] TAKE CONTROL
[NO] RELINQUISH CONTROL
[NO] DEFINE SEMAPHORE
[NO] DELETE SEMAPHORE
[NO] REPORT SEMAPHORE STATUS
[NO] REPORT POOL SEMAPHORE STATUS
[NO] REPORT SEMAPHORE ENTRY STATUS
[NO] INITIATE DOWNLOAD SEQUENCE
[NO] DOWNLOAD SEGMENT
[NO] TERMINATE DOWNLOAD SEQUENCE
[NO] INITIATE UPLOAD SEQUENCE
[NO] UPLOAD SEGMENT
[NO] TERMINATE UPLOAD SEQUENCE
[NO] REQUEST DOMAIN DOWNLOAD
[NO] REQUEST DOMAIN UPLOAD
[NO] LOAD DOMAIN CONTENT
[NO] STORE DOMAIN CONTENT

30

Chapter 3. OMNI Definition Facility (ODF) Commands

Service

[NO] DELETE DOMAIN
[NO] GET DOMAIN ATTRIBUTES
[NO] CREATE PROGRAM INVOCATION
[NO] DELETE PROGRAM INVOCATION
[NO] START
[NO] STOP
[NO] RESUME
[NO] RESET
[NO] KILL
[NO] GET PROGRAM INVOCATION ATTRIBUTES
[NO] OBTAIN FILE
[NO] DEFINE EVENT CONDITION
[NO] DELETE EVENT CONDITION
[NO] GET EVENT CONDITION ATTRIBUTES
[NO] REPORT EVENT CONDITION STATUS
[NO] ALTER EVENT CONDITION MONITORING
[NO] TRIGGER EVENT [NO] DEFINE EVENT ACTION
[NO] DELETE EVENT ACTION
[NO] GET EVENT ACTION ATTRIBUTES
[NO] REPORT EVENT ACTION STATUS
[NO] DEFINE EVENT ENROLLMENT
[NO] DELETE EVENT ENROLLMENT
[NO] ALTER EVENT ENROLLMENT
[NO] REPORT EVENT ENROLLMENT STATUS
[NO] GET EVENT ENROLLMENT ATTRIBUTES
[NO] ACKNOWLEDGE EVENT NOTIFICATION
[NO] GET ALARM SUMMARY
[NO] GET ALARM ENROLLMENT SUMMARY
[NO] READ JOURNAL
[NO] WRITE JOURNAL
[NO] INITIALIZE JOURNAL
[NO] REPORT JOURNAL STATUS
[NO] CREATE JOURNAL
[NO] DELETE JOURNAL
[NO] GET CAPABILITY LIST
[NO] FILE OPEN
[NO] FILE READ
[NO] FILE CLOSE
[NO] FILE RENAME

31

Chapter 3. OMNI Definition Facility (ODF) Commands

Service

[NO] FILE DELETE
[NO] FILE DIRECTORY
[NO] UNSOLICITED STATUS
[NO] INFORMATION REPORT
[NO] EVENT NOTIFICATION
[NO] ATTACH TO EVENT CONDITION
[NO] ATTACH TO SEMAPHORE
[NO] CONCLUDE
[NO] CANCEL

VENDOR <vendor_name>

The name of the vendor of the system that supports this VMD, enclosed in double quotes ("). The
default is NO VENDOR. VSI OMNI uses the default vendor name. The vendor name is relevant only
when you are defining a server VMD.

The <vendor_name> is a character string of as many as 128 characters.

MODEL <model>

The model of the system supported by the VMD, enclosed in double quotes (").

The default is NO MODEL. VSI OMNI uses the default model name. The model name is relevant only
when you are defining a server VMD.

The <model> is a character string of as many as 128 characters.

REVISION <revision>

The name of the revision of the system that supports this VMD, enclosed in double quotes ("). The
default is NO REVISION. VSI OMNI uses the default revision. The revision is relevant only when you
are defining a server VMD.

The <revision> is a character string of as many as 128 characters.

DESCRIPTION <text>

Any information identifying the VMD.

The <text> is a quoted character string of as many as 128 characters.

DELETE DEFINITION
DELETE DEFINITION — The DELETE DEFINITION command removes a definition from the
database. A definition cannot be deleted until all its dependent definitions have been deleted.

Format
DELETE DEFINITION <def_ref>[, <def_ref>]...;

32

Chapter 3. OMNI Definition Facility (ODF) Commands

Attributes and Values
<def_ref>

The reference to a definition. For the form of a reference, see Table 3.2, "Naming Format". The
DELETE DEFINITION command supports the special characters in definition references in Table 3.5,
"DELETE DEFINITION Special Characters".

Table 3.5. DELETE DEFINITION Special Characters

Character Meaning

* Asterisk wildcard. Matches zero (0) or more
characters in a name. For example, "a * z'' matches
"az'', "abz'', "abcz'', and so forth.

. Period wildcard. Matches exactly one character in
a name. For example, "a.z'' matches "abz'', but not
"az'' or "abcz''.

def_ref > Right arrow. Deletes the definition and all
definitions that are dependent on the definition.
Can be used with a VMD or Domain reference
only.

DISABLE
DISABLE — The DISABLE command stops logging of the current ODF session. The logfile is not
closed. To close the file, issue a SET ODF LOGFILE command or exit the session.

Format
DISABLE ODF LOGGING;

DO
DO — The DO command executes a series of stored commands, such as those saved in a script file by
the ENABLE command. DO is a synonym for @.

Format
DO <script_file>;

Attributes and Values
<script_file>

An OpenVMS file specificiation or logical name pointing to the script file. The default file extension for
a script file is .COM.

33

Chapter 3. OMNI Definition Facility (ODF) Commands

ENABLE
ENABLE — The ENABLE command enables OMNI logging to the logfile specified in the most recent
SET ODF LOGFILE command. If no logfile has been set since the start of the ODF session, ODF tries
to create a file OMNI$ODF.LOG in the current default directory and log commands to that file.

Format
ENABLE ODF LOGGING;

EXIT
EXIT — The EXIT command commits any outstanding changes to the database and exits ODF. If the
outstanding changes are invalid, ODF reports an error and does not exit.

Format
EXIT;

QUIT
QUIT — The QUIT command cancels all the DEFINE and DELETE commands you have entered since
the last COMMIT command and exits from the session. No definition data from the cancelled commands
is written into the database.

Format
QUIT;

ROLLBACK
ROLLBACK — The ROLLBACK command cancels all the DEFINE and DELETE DEFINITION
commands you have entered since the last COMMIT command. No definition data is written into the
database from the commands within the range of the rollback.

Format
ROLLBACK;

SET ODF LOGFILE
SET ODF LOGFILE — The SET ODF LOGFILE command specifies the file to which ODF logs
the session.

Format
SET ODF LOGFILE <vms_file_specification>;

34

Chapter 3. OMNI Definition Facility (ODF) Commands

Attributes and Values
<vms_file_specification>

An OpenVMS file specification for a file to receive the session log. The default specification is OMNI
$ODF.LOG.

Description
The log file is opened immediately, but logging is disabled until you enter an ENABLE ODF LOGGING
command. If a log file is already open, ODF closes the file before attempting to open the new file. If
logging is currently enabled, ODF issues an implicit DISABLE ODF LOGGING command.

SET COMPANION STANDARD
SET COMPANION STANDARD — The SET COMPANION STANDARD command sets the ODF
command syntax (if the companion standard extends the syntax) and the default companion standard
name for definitions created under ODF. A VMD and its dependencies must all be defined under the
same companion standard.

Format
SET COMPANION STANDARD <companion_standard_name>;

Attributes and Values
<companion_standard_name>

The following companion standard name:

MMS (default)

SET SCOPE
SET SCOPE — The scope of an ODF command is the VMD or domain definition or both with which
the command is associated. The SET SCOPE command specifies the definitions that ODF uses as the
default scope.

Format
SET SCOPE [<vmd_name>] [:<domain_name>];

Attributes and Values
<vmd_name>

The VMD to use as the default.

<domain_name>

35

Chapter 3. OMNI Definition Facility (ODF) Commands

The domain to use as the default. If you leave the domain name blank, the default scope is VMD-
specific. To change to a different domain in the same VMD, type SET SCOPE :<domain_name>;,
where <domain_name> is the name of the new domain.

To blank out the scope setting, type SET SCOPE;.

The following examples provide Named Variable definitions with scopes set.

SET SCOPE v; ! default scope is now set to VMD "v";
DEF NV x ... ! defines a variable on VMD "v";
 equivalent to the command "DEF NV v:x..."
DEF NV a.y ... ! defines a variable on domain "a" of VMD "v";
 equivalent to the command "DEF NV v:a.y..."
DEF NV w:z ... ! overrides the default VMD scope and defines
 a variable on VMD "w";
 equivalent to the command "DEF NV w:z..."
SET SCOPE v:a; ! default scope is now set to VMD "v", domain "a"
DEF NV x ... ! defines a variable on domain "a";
 equivalent to "DEF NV v:a.x...";
DEF NV b.x ... ! overrides the default domain scope and defines
 a variable on domain "b";
 equivalent to the command "DEF NV v:b.x..."
DEF NV :x ... ! overrides the default domain scope and defines
 a variable on VMD "v";
 equivalent to the command "DEF NV v:x..."

SHOW
SHOW — The SHOW command displays current ODF session settings.

Format
SHOW <setting> ;

Attributes and Values
<setting>

One of the following settings for the ODF session:

● COMPANION STANDARD

● ODF LOGFILE

● ODF LOGGING

● SCOPE

● DEFINITION

● VERSION

SHOW DEFINITION
SHOW DEFINITION — The SHOW DEFINITION displays definitions from the database on the
terminal. If modifications have been made, but not committed, they will also be visible.

36

Chapter 3. OMNI Definition Facility (ODF) Commands

Format
SHOW DEFINITION <def_ref> [, <def-ref>]...;

Attributes and Values
<def_ref>

The reference to a definition. For the form of a reference, see Table 3.2, "Naming Format".

The SHOW DEFINITION command supports special characters in definition references as shown in
Table 3.6, "Special Characters".

Table 3.6. Special Characters

Character Meaning

* Asterisk wildcard. Matches zero (0) or more
characters in a name. For exam- ple, "a * z''
matches "az'', "abz'', "abcz'', and so forth.

. Period wildcard. Matches exactly one character in
a name. For example, "a.z'' matches "abz'', but not
"az'' or "abcz''.

def_ref > Right arrow. Deletes the definition and all
definitions that are dependent on the definition.
Can be used with a VMD or Domain reference
only.

WRITE DEFINITION
WRITE DEFINITION — The WRITE DEFINITION command writes out definitions to a file. Each
definition is written as a valid ODF command. If you include a file specification, ODF opens the file,
writes the definitions, and closes the file. If you omit the file specification, ODF appends the definitions
to the current log file. (If there is no open log file, ODF opens a new version of OMNI$ODF.LOG and
writes the definitions.)

Format
WRITE DEFINITION <def_ref>[, <def_ref>]... [TO <filespec>];

Attributes and Values
<def_ref>

A reference to a definition or set of definitions. If you enter multiple references, separate them with
commas. See Table 3.2, "Naming Format" for examples of definition references.

<filespec>

An OpenVMS file specification for a file to contain the definition. If not specified, the command is
written to the log file.

37

Chapter 3. OMNI Definition Facility (ODF) Commands

The WRITE DEFINITION command supports special characters in definition references as shown in
Table 3.7, "Special Characters".

Table 3.7. Special Characters

Character Meaning

* Asterisk wildcard. Matches zero (0) or more
characters in a name. For exam- ple, "a * z''
matches "az'', "abz'', "abcz'', and so forth.

. Period wildcard. Matches exactly one character in
a name. For example, "a.z'' matches "abz'', but not
"az'' or "abcz''.

def_ref > Right arrow. Deletes the definition and all
definitions that are dependent on the definition.
Can be used with a VMD or Domain reference
only.

38

Chapter 4. OMNI Command
Language
One user interface to VSI OMNI network management is the OMNI Command Language (OMNICL).
OMNICL consists of a set of commands that enable you to read and monitor data on the OMNI system.
In this chapter, OMNICL features and commands are described.

4.1. Summary of OMNICL Commands
This section lists all the OMNICL commands in the order in which they appear in this chapter. Page
numbers of individual commands are given in the Table of Contents.

SET Commands
SET EVENT LOGGING

SET OMNICL LOGGING

SET DEFAULT

SHOW Commands
SHOW DEFAULT

SHOW VERSION

SHOW EVENT LOGGING

SHOW OMNICL LOGGING

SHOW APPLICATION_ENTITY

SHOW ASSOCIATIONS

ENABLE Commands
ENABLE EVENT LOGGING

ENABLE OMNICL LOGGING

DISABLE Commands
DISABLE EVENT LOGGING

DISABLE OMNICL LOGGING

DO Commands
DO

39

Chapter 4. OMNI Command Language

4.2. OMNICL Command Syntax
OMNICL commands contain the following elements: keyword component-id attribute value For example:

SET OMNICL LOGGING OUTPUT OPCOM

The keyword describes the operation you want to perform and the component-id describes the major
component affected by the command.

Most commands also have several attribute options to further qualify the action of the command. Also, if
you plan to change the value of an attribute, you must enter the new value in the command line.

In this chapter, each command is listed by keyword and component-id. A description of the command
and the correct format are given and then any attribute for that command is listed under "Attributes''
Variables you need to enter are identified with their associated attributes, but are described separately in
the area marked "Values.''

4.2.1. OMNICL Command Language Interface
The Command Language Interface (CLI) guides you through the correct syntax of each OMNICL
command using prompts and a list of options for each keyword and attribute level.

For example, suppose you want to use the SET command but cannot remember the exact syntax or
choices of the command. Simply type in the SET command followed by a carriage return:

OMNICL > SET Return

Because the command has been entered in incomplete form, CLI automatically prompts for the next
word in the command, which is the name of the component-id. Only those ids that support the SET
command are listed as options. All options are enclosed within parentheses:

* (EVENT, OMNICL, DEFAULT, NODEFAULT)? OMNICL LOGGING

4.2.1.1. Level-by-Level Prompting
You can specify the entire command without using CLI, or you can specify part of the command and
have CLI prompt only for those words that you miss.

Because CLI displays only supported options, prompting for options is a good way to check the syntax of
a command after receiving a parser error. Any attribute or keyword you specify that is not in the CLI list
of options is not supported for that command.

4.2.1.2. Short Lines and Abbreviations
You can shorten the command line by shortening the number of words you specify and the number of
letters in each word. You can abbreviate any word to the minimum number of letters that make it unique.
This is usually three letters. (You will receive an error message if the parser finds the term ambiguous.)

Once unique words are encountered in the command line, you do not have to enter remaining keywords
or attributes to execute the command. CLI automatically assumes the missing words.

4.3. Invoking and Exiting OMNICL
Before you can invoke OMNICL, you must confirm that your VSI OMNI license is correctly registered
and loaded. If it is not registered and loaded, invocation will fail.

40

Chapter 4. OMNI Command Language

You can issue OMNICL commands one at a time using Digital Command Language (DCL), or you can
invoke OMNICL and issue as many commands as you wish before returning to the DCL prompt ($).

To use DCL for single line commands, first define OMNICL:

$ OMNICL :== $OMNI$CL

To issue a single OMNICL command to DCL:

$ OMNICL command "attributes..."
$

OMNICL executes the command and returns you to the DCL system prompt. To invoke OMNICL
through DCL for an interactive session:

$ OMNICL
OMNICL>

Once invoked, the OMNICL prompt appears. (When specifying commands directly to OMNICL rather
than DCL, do not use foreign command format.) Issue the first command next to the prompt. If you
leave out required component-ids or attributes, OMNICL prompts for them.

To invoke OMNICL for an interactive session without using DCL, use the RUN command:

$ RUN SYS$SYSTEM:OMNI$CL
OMNICL>

To exit OMNICL and return to the DCL system prompt, issue either the EXIT command or press
Ctrl/Z.

4.4. Getting Help Through OMNICL
After you invoke OMNICL, you can use the HELP command to display quick reference information
about individual commands. Type HELP and the name of the command if you want information as
shown in the following example, or type HELP followed by a carriage return to receive a menu of
options:

OMNICL> HELP SET OMNICL LOGGING

A display of HELP information on the SET OMNICL LOGGING command is returned when this
command executes.

4.5. SET Command Descriptions
There are three SET commands:

● SET DEFAULT

● SET EVENT LOGGING

● SET OMNICL LOGGING

SET DEFAULT
SET DEFAULT — This command establishes the default application entity for subsequent commands.
If SET NODEFAULT is entered, the default application entity is cleared.

41

Chapter 4. OMNI Command Language

Format
SET [NO]DEFAULT <application_entity>

Attributes
None

Values
<application_entity>

Specifies the application entity name. The name must be known to Directory Services or a fully qualified
network address. The name is a character string.

SET EVENT LOGGING
SET EVENT LOGGING — This command defines the events to be logged and where those events will
be logged. OMNI events that you log are separate from DNA, OSAK, and VOTS events. Events you can
log are on a system-wide level; no application or association- specific events can be logged. By default,
logging is disabled.

Format
 SET EVENT LOGGING [OUTPUT= <dest_str>]

Attributes
OUTPUT= <dest_str>

Specifies where output is logged.

Values
<dest_str>

Specifies a destination name. The default destination is OPCOM, but a local or remote file can also be
the destination.

SET OMNICL LOGGING
SET OMNICL LOGGING — This command defines the script file to be logged and where that script
file will be logged.

Format
SET OMNICL LOGGING OUTPUT= <dest_str>]

Attributes
OUTPUT= <dest_str>

Specifies where output is logged.

42

Chapter 4. OMNI Command Language

Values
<dest_str>

Specifies a destination name.

4.6. SHOW Command Descriptions
There are six SHOW commands:

● SHOW DEFAULT

● SHOW VERSION

● SHOW EVENT LOGGING

● SHOW OMNICL LOGGING

● SHOW APPLICATION_ENTITY

● SHOW ASSOCIATIONS

SHOW DEFAULT
SHOW DEFAULT — This command displays the default application entity that is currently active.

Format
SHOW DEFAULT

Attributes
None

Values
None

SHOW VERSION
SHOW VERSION — This command displays the current version of VSI OMNI.

Format
SHOW VERSION

Attributes
None

Values
None

43

Chapter 4. OMNI Command Language

SHOW EVENT LOGGING
SHOW EVENT LOGGING — This command displays either EVENT logging attributes
that are provided by VSI OMNI as default values or are logging values that are set using the
SET EVENT LOGGING command.

Format
SHOW EVENT LOGGING

Attributes
None

Values
None

SHOW OMNICL LOGGING
SHOW OMNICL LOGGING — This command displays either OMNICL logging attributes
that are provided by VSI OMNI as default values or are logging values that are set using the
SET OMNICL LOGGING command.

Format
SHOW OMNICL LOGGING

Attributes
None

Values
None

SHOW APPLICATION_ENTITY
SHOW APPLICATION_ENTITY — This command displays the logging attributes set by using the
SET DEFAULT command. Each active association for the specified application entity is displayed along
with its associated state. If the KNOWN option is invoked, all known application entities are displayed.

Format
SHOW [KNOWN] APPLICATION_ENTITY [<application_entity>]

Attributes
None

Values
<application_entity>

44

Chapter 4. OMNI Command Language

Specifies the name of the application entity.

SHOW ASSOCIATIONS
SHOW ASSOCIATIONS — This command displays associations.

Format
SHOW [KNOWN] ASSOCIATIONS [<Sys ID>]

Attributes
None

Values
<Sys ID>

Specifies a unique association-id.

4.7. ENABLE Command Descriptions
There are two ENABLE commands:

● ENABLE EVENT LOGGING

● ENABLE OMNICL LOGGING

ENABLE EVENT LOGGING
ENABLE EVENT LOGGING — This command initiates event logging.

Format
ENABLE EVENT LOGGING

Attributes
EVENT LOGGING

Activates event logging.

Values
None

ENABLE OMNICL LOGGING
ENABLE OMNICL LOGGING — This command initiates scripting.

Format
ENABLE OMNICL LOGGING

45

Chapter 4. OMNI Command Language

Attributes
OMNICL LOGGING

Initiates script production.

Values
None

4.8. DISABLE Command Descriptions
There are two DISABLE commands:

● DISABLE EVENT LOGGING

● DISABLE OMNICL LOGGING

DISABLE EVENT LOGGING
DISABLE EVENT LOGGING — This command discontinues event logging.

Format
DISABLE EVENT LOGGING

Attributes
EVENT LOGGING

Deactivates event logging.

Values
None

DISABLE OMNICL LOGGING
DISABLE OMNICL LOGGING — This command discontinues scripting.

Format
DISABLE OMNICL LOGGING

Attributes
OMNICL LOGGING

Deactiviates script production.

Values
None

46

Chapter 4. OMNI Command Language

4.9. DO Command Description
There is one DO command.

DO
DO — This command invokes command files. Commands can be stored in text files either by using a
text editor or by invoking the logging facility with ENABLE OMNICL LOGGING. These command
files, or scripts, are invoked by the DO command and are useful for initialization and other commonly
performed activities. When the DO command invokes a script, OMNICL recognizes that script as an
alternative source of standard commands. DO scripts are executed synchronously. Multiple levels of
scripts are allowed.

Format
DO <script_filename>

Attributes
None

Values
<script_filename>

Specifies the script file. The default file extension is .SCP.

47

Chapter 4. OMNI Command Language

48

Appendix A. ODF Predefined
Types
This appendix contains a list of ODF predefined types.

A.1. ODF Predefined Types
ODF supports predefined types in Table A.1, "Predefined Types".

Table A.1. Predefined Types

Predefined Types Type Description

OMNI$BIT8 8-bit bitstring transmitted as bitstring
OMNI$BIT16 16-bit bitstring transmitted as bitstring
OMNI$WC_STR4 4-byte word-counted string, transmitted as varying

octet string
OMNI$WC_STR8 8-byte word-counted string, transmitted as varying

octet string
OMNI$WC_STR10 10-byte word-counted string, transmitted as

varying octet string
OMNI$WC_STR16 16-byte word-counted string, transmitted as

varying octet string
OMNI$WC_STR18 18-byte word-counted string, transmitted as

varying octet string
OMNI$WC_STR32 32-byte word-counted string, transmitted as

varying octet string
OMNI$WC_FIXED_STR4 4-byte word-counted string, transmitted as fixed

octet string
OMNI$WC_FIXED_STR6 6-byte word-counted string, transmitted as fixed

octet string
OMNI$WC_FIXED_STR8 8-byte word-counted string, transmitted as fixed

octet string
OMNI$WC_FIXED_STR10 10-byte word-counted string, transmitted as fixed

octet string
OMNI$WC_FIXED_STR16 16-byte word-counted string, transmitted as fixed

octet string
OMNI$WC_FIXED_STR18 18-byte word-counted string, transmitted as fixed

octet string
OMNI$WC_FIXED_STR32 32-byte word-counted string, transmitted as fixed

octet string
OMNI$LONG 32-bit signed integer
OMNI$WORD 16-bit signed integer
OMNI$BYTE 8-bit signed integer
OMNI$ULONG 32-bit unsigned integer

49

Appendix A. ODF Predefined Types

Predefined Types Type Description

OMNI$UWORD 16-bit unsigned integer
OMNI$UBYTE 8-bit unsigned integer
OMNI$BOOLEAN 8-bit boolean, transmitted as boolean
OMNI$BIT32 32-bit bitstring, transmitted as bitstring
OMNI$F_FLOAT F_FLOATING transmitted as FLOAT
OMNI$NT_STR4 4-byte null-terminated string, transmitted as

varying visible string
OMNI$NT_STR6 6-byte null-terminated string, transmitted as

varying visible string
OMNI$NT_STR8 8-byte null-terminated string, transmitted as

varying visible string
OMNI$NT_STR10 10-byte null-terminated string, transmitted as

varying visible string
OMNI$NT_STR16 16-byte null-terminated string, transmitted as

varying visible string
OMNI$NT_STR18 18-byte null-terminated string, transmitted as

varying visible string
OMNI$NT_STR32 32-byte null-terminated string, transmitted as

varying visible string
OMNI$NT_FIXED_STR4 4-byte null-terminated string, transmitted as a fixed

visible string
OMNI$NT_FIXED_STR6 6-byte null-terminated string, transmitted as a fixed

visible string
OMNI$NT_FIXED_STR8 8-byte null-terminated string, transmitted as a fixed

visible string
OMNI$NT_FIXED_STR10 10-byte null-terminated string, transmitted as a

fixed visible string
OMNI$NT_FIXED_STR16 16-byte null-terminated string, transmitted as a

fixed visible string
OMNI$NT_FIXED_STR18 18-byte null-terminated string, transmitted as a

fixed visible string
OMNI$NT_FIXED_STR32 32-byte null-terminated string, transmitted as a

fixed visible string

50

Appendix B. ODF Error Messages
This appendix provides a list of ODF error messages.

B.1. ODF Error Messages
ODF provides the error messages listed in the table below.

Table B.1. ODF Error Messages

ODF Messages Meaning

ATCDUPNAME Application Type structure contains duplicate
component names

ATCNOATS App Type Comp depends on nonexistent App Type
Spec

ATCREFMISS Cannot resolve Application Type structure
component reference to MMS Named Type

ATCSTRORD Ordering of Application Type structure
components does not match MMS Named Type

ATNODOM The Domain an Application Named Type was
defined on does not exist

ATNOMT The MMS Named Type referred to in the FROM
clause of an Application Named Type definition
does not exist

ATCNOMTC Cannot resolve Application Type structure
component reference to MMS Named Type
component

ATNOVMD The VMD an Application Named Type was
defined on does not exist

ATSNOAT App Named Type depends on nonexistent App
Named Type

ATSMAPMTS Mapping of Application type to MMS Named Type
is not supported

ATSREFINV Type of Application Type reference does not match
type of MMS Named Type reference

ATSREFMTS Cannot resolve Application Type reference to
MMS Named Type

ATCREFATS App Type Component refers to nonexistent App
Type Specification

ATCREFMTC App Type Component refers to nonexistent MMS
Type Component

DUPVRS (Internal)
DUPVMD Duplicate VMD Definition
DUPDOM Duplicate Domain Definition
DUPPI Duplicate Program Invocation Definition

51

Appendix B. ODF Error Messages

ODF Messages Meaning

DUPPID Duplicate entry in a Program Invocation list of
domains

DUPMT Duplicate MMS Named Type
DUPMTS Duplicate MMS Type Specification
DUPMTC Duplicate MMS Type Component
DUPAT Duplicate Application Named Type
DUPATS Duplicate Application Type Specification
DUPATC Duplicate Application Type Component
DUPNV Duplicate Named Variable
DUPUV Duplicate Unnamed Variable
DUPVLS Duplicate Variable List
DUPVLE Duplicate Variable List Entry
DUPAPP Duplicate Application (OSAP only)
DUPUDF (Internal)
DUPUDA (Internal)
DUPUDC (Internal)
DOMNOVMD The VMD a domain was defined for does not exist
MTCREFMTS MMS Type Component refers to nonexistent MMS

Type Specification
MSGNOVMD (Internal)
MTSNOMT MMS Type Spec depends on nonexistent MMS

Named Type
MTCNOMTS MMS Type Comp depends on nonexistent MMS

Type Spec
MTNOVMD The VMD an MMS Named Type was defined on

does not exist
MTNODOM The Domain an MMS Named Type was defined

on does not exist
NVNOVMD The VMD a Named Variable was defined on does

not exist
NVNODOM The Domain a Named Variable was defined on

does not exist
NVREFAT A Named Variable definition refers to an

Application Named Type which does not exist
ONEMSGVMD (Internal)
PINOVMD The VMD a program invocation was defined on

does not exist
PIDNOPI (Internal)
PIREFDOM One or more Domains listed in a PI Domain List is

not defined
UVNOVMD The VMD an Unnamed Variable was defined on

does not exist

52

Appendix B. ODF Error Messages

ODF Messages Meaning

UVNODOM The Domain an Unnamed Variable was defined on
does not exist

UVREFAT An unnamed Variable definition refers to an
Application Named Type which does not exist

VLSNOVMD (Internal)
VLSNODOM (Internal)
VLENOVLS (Internal)
VLSREFAT (Internal)
VLENOVLS (Internal)
VLSREFVAR (Internal)

53

Appendix B. ODF Error Messages

54

Appendix C. Supported Mappings
This appendix provides a list of mappings that are supported between MMS and Application Types.

Table C.1. Supported Mappings

MMS Type Application Type

BOOLEAN BOOLEAN
BOOLEAN INTEGER 8
INTEGER n, n <= 8 INTEGER 8
INTEGER n, n <= 16 INTEGER 16
INTEGER n, n <= 32 INTEGER 32 (default)
UNSIGNED n, n <= 8 UNSIGNED 8
UNSIGNED n, n <=16 UNSIGNED 16
UNSIGNED n, n <=32 UNSIGNED 32 (default)
FLOAT (exponent 8, format 32) F_FLOAT
BIT STRING n BIT STRING x, x = n
BIT STRING n BOOLEAN ARRAY x, x = n
[VARYING] BIT STRING n WORD COUNTED STRING x, x >=n, x

<=65535
OCTET STRING n STRING x, x = n
[VARYING] OCTET STRING n WORD COUNTED STRING x, x >= n, x

<=65535
VISIBLE STRING n STRING x, x = n
[VARYING] VISIBLE STRING n NULL TERMINATED STRING x, x >= n
[VARYING] VISIBLE STRING n WORD COUNTED STRING x, x >= n, x

<=65535
GENERALIZED TIME VMS ABSOLUTE TIME
GENERALIZED TIME OMNI TIME
BINARY TIME DATE INCLUDED VMS ABSOLUTE TIME
BINARY TIME DATE INCLUDED OMNI TIME
BINARY TIME DATE NOT INCLUDED VMS ABSOLUTE TIME
BINARY TIME DATE NOT INCLUDED OMNI TIME
BCD n, n <= 8 UNSIGNED 32
OBJECT IDENTIFIER STRING n
OBJECT IDENTIFIER WORD COUNTED STRING n, n <=65535
OBJECT IDENTIFIER NULL TERMINATED STRING n
ARRAY [n] OF <MMS type x> ARRAY [s] OF <application type y> where s <= n and x and y are

a supported mapping
ARRAY [n] OF <MMS type x> ARRAY [s1..s2]
OF

<application type y> where s1 <= n, s2 <= n, s1
<= s2 and x and y are a supported mapping

STRUCTURE STRUCTURE

55

Appendix C. Supported Mappings

56

	OMNI Network Manager's Guide
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Associated Documents
	5. OpenVMS Documentation
	6. VSI Encourages Your Comments
	7. Conventions

	Chapter 1. Introduction to VSI OMNI Network Management
	1.1. VSI OMNI Network Management Functions
	1.2. Network Provider Requirements

	Chapter 2. The OMNI Definition Facility
	2.1. ODF and Companion Standards
	2.2. ODF Command Language Interface
	2.2.1. Level-by-Level Prompting
	2.2.2. Short Lines and Abbreviations

	2.3. Invoking and Exiting ODF
	2.4. Getting Help Through ODF
	2.5. Creating a Definition of a VMD
	2.6. Creating a Definition of a Domain
	2.7. Creating a Definition of a Program Invocation
	2.8. Creating a Definition of a Variable
	2.8.1. Named Variables
	2.8.2. Unnamed Variables

	2.9. Defining Variable Types
	2.9.1. Creating an MMS Named Type Definition
	2.9.2. Creating an Application Named Type Definition
	2.9.3. Creating Application Type Definitions for Alternate Access

	2.10. Committing Definitions to the ODF Database
	2.11. Setting the Default Scope
	2.12. Deleting a Definition
	2.13. Creating, Opening, and Closing a Log File
	2.14. Enabling and Disabling Logging
	2.15. Displaying Definitions and Current Settings
	2.16. Executing Stored Commands
	2.17. Creating a Command to Repeat a Definition
	2.18. Exiting and Quitting an ODF Session

	Chapter 3. OMNI Definition Facility (ODF) Commands
	COMMIT
	DEFINE DOMAIN
	DEFINE MESSAGE
	DEFINE PROGRAM INVOCATION
	DEFINE NAMED VARIABLE
	DEFINE UNNAMED VARIABLE
	DEFINE MMS NAMED TYPE
	DEFINE APPLICATION NAMED TYPE
	DEFINE VMD
	DELETE DEFINITION
	DISABLE
	DO
	ENABLE
	EXIT
	QUIT
	ROLLBACK
	SET ODF LOGFILE
	SET COMPANION STANDARD
	SET SCOPE
	SHOW
	SHOW DEFINITION
	WRITE DEFINITION

	Chapter 4. OMNI Command Language
	4.1. Summary of OMNICL Commands
	4.2. OMNICL Command Syntax
	4.2.1. OMNICL Command Language Interface
	4.2.1.1. Level-by-Level Prompting
	4.2.1.2. Short Lines and Abbreviations

	4.3. Invoking and Exiting OMNICL
	4.4. Getting Help Through OMNICL
	4.5. SET Command Descriptions
	SET DEFAULT
	SET EVENT LOGGING
	SET OMNICL LOGGING

	4.6. SHOW Command Descriptions
	SHOW DEFAULT
	SHOW VERSION
	SHOW EVENT LOGGING
	SHOW OMNICL LOGGING
	SHOW APPLICATION_ENTITY
	SHOW ASSOCIATIONS

	4.7. ENABLE Command Descriptions
	ENABLE EVENT LOGGING
	ENABLE OMNICL LOGGING

	4.8. DISABLE Command Descriptions
	DISABLE EVENT LOGGING
	DISABLE OMNICL LOGGING

	4.9. DO Command Description
	DO

	Appendix A. ODF Predefined Types
	A.1. ODF Predefined Types

	Appendix B. ODF Error Messages
	B.1. ODF Error Messages

	Appendix C. Supported Mappings

