
VSI OpenVMS

VSI OMNI Pocket Guide

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: VSI OMNI Version 4.1

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI OMNI Pocket Guide

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or other
countries.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vista is either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is a registered trademark of The Open Group.

UNIX is a registered trademark of The Open Group.

ii

VSI OMNI Pocket Guide

Table of Contents
Preface ... vii

1. About VSI .. vii
2. Intended Audience ... vii
3. Document Structure ... vii
4. Associated Documents ... vii
5. VSI Encourages Your Comments ... viii
6. OpenVMS Documentation .. viii
7. Typographical Conventions .. viii

Chapter 1. Programming with VSI OMNI .. 1
OMNI$ABORT ... 11
OMNI$ACCEPT_CONCLUDE ... 12
OMNI$ACCEPT_CONNECT ... 12
OMNI$CANCEL ... 12
OMNI$CONCLUDE .. 12
OMNI$CONNECT .. 12
OMNI$CREATE ... 13
OMNI$DELETE .. 13
OMNI$DOWNLOAD .. 13
OMNI$END_LIST .. 13
OMNI$FDELETE .. 14
OMNI$FDIR ... 14
OMNI$FGET .. 14
OMNI$FRENAME .. 14
OMNI$GET_ATTRIBUTE .. 15
OMNI$GET_DEFINITION .. 15
OMNI$GET_HANDLE_BY_NAME .. 15
OMNI$GET_HANDLE_LIST .. 16
OMNI$GET_INDICATIONS .. 16
OMNI$GET_REMOTE_ATTRIBUTES .. 16
OMNI$GET_VALUE .. 16
OMNI$GROUP_VARIABLES ... 17
OMNI$INITIALIZE .. 17
OMNI$KILL ... 17
OMNI$LISTEN ... 18
OMNI$LOAD_DEFINITIONS ... 18
OMNI$MODIFY_DEFINITION ... 18
OMNI$PUT_VALUE .. 19
OMNI$REJECT .. 19
OMNI$REJECT_CONCLUDE ... 19
OMNI$REJECT_CONNECT ... 19
OMNI$RESET .. 19
OMNI$RESUME .. 20
OMNI$START .. 20
OMNI$STOP .. 20
OMNI$OMNI_TO_VMS_TIME .. 20
OMNI$UPLOAD .. 20

Chapter 2. OMNI Definition Facility ... 23
2.1. ODF and Companion Standards ... 23
2.2. ODF Command Language Interface ... 23

iii

VSI OMNI Pocket Guide

2.2.1. Level-by-Level Prompting ... 24
2.2.2. Short Lines and Abbreviations ... 24

2.3. Invoking and Exiting ODF ... 24
2.4. Getting Help Through ODF ... 24
2.5. Creating a Definition of a VMD .. 25
2.6. Creating a Definition of a Domain ... 25
2.7. Creating a Definition of a Program Invocation ... 26
2.8. Creating a Definition of a Variable ... 27

2.8.1. Named Variables .. 27
2.8.2. Unnamed Variables .. 27

2.9. Defining Variable Types .. 28
2.9.1. Creating an MMS Named Type Definition ... 28
2.9.2. Creating an Application Named Type Definition ... 29
2.9.3. Creating Application Type Definitions for Alternate Access 30

2.10. Committing Definitions to the ODF Database .. 30
2.11. Setting the Default Scope .. 31
2.12. Deleting a Definition ... 31
2.13. Creating, Opening, and Closing a Log File .. 32
2.14. Enabling and Disabling Logging ... 32
2.15. Executing Stored Commands .. 32
2.16. Creating a Command to Repeat a Definition .. 33
2.17. Exiting and Quitting an ODF Session ... 33

Chapter 3. OMNI Definition Facility (ODF) Commands .. 35
COMMIT .. 35
DEFINE DOMAIN ... 36
DEFINE MESSAGE .. 36
DEFINE PROGRAM INVOCATION ... 36
DEFINE NAMED VARIABLE .. 36
DEFINE UNNAMED VARIABLE ... 37
DEFINE APPLICATION NAMED TYPE ... 37
DEFINE VMD .. 37
DELETE DEFINITION .. 37
DISABLE .. 37
DO ... 38
ENABLE .. 38
EXIT .. 38
QUIT .. 38
ROLLBACK .. 38
SET ODF LOGFILE ... 39
SET COMPANION STANDARD ... 39
SET SCOPE .. 39
SHOW .. 39
SHOW DEFINITION .. 39
WRITE DEFINITION ... 40

Chapter 4. OMNI Command Language ... 41
4.1. OMNICL Command Syntax .. 41

4.1.1. OMNICL Command Language Interface .. 41
4.1.1.1. Level-by-Level Prompting ... 41
4.1.1.2. Short Lines and Abbreviations .. 42

4.2. Invoking and Exiting OMNICL .. 42
4.3. Getting Help Through OMNICL .. 42

iv

VSI OMNI Pocket Guide

OMNI Commands ... 45
SET DEFAULT ... 45
SET EVENT LOGGING ... 45
SET OMNICL LOGGING ... 45
SHOW VERSION .. 46
SHOW EVENT LOGGING ... 46
SHOW OMNICL LOGGING ... 46
SHOW APPLICATION_ENTITY ... 46
SHOW ASSOCIATIONS ... 47
ENABLE EVENT LOGGING .. 47
ENABLE OMNICL LOGGING ... 47
DISABLE EVENT LOGGING ... 48
DISABLE OMNICL LOGGING ... 48
DO ... 48

v

VSI OMNI Pocket Guide

vi

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This guide is intended for VSI OMNI users with experience in OpenVMS programming for distributed
systems applications and knowledge of manufacturing applications and the Manufacturing Message
Specification.

3. Document Structure
This guide consists of four chapters:

Chapter 1, "Programming with VSI OMNI" summarizes API commands.

Chapter 2, "OMNI Definition Facility" describes ODF concepts.

Chapter 3, "OMNI Definition Facility (ODF) Commands" summarizes ODF commands.

Chapter 4, "OMNI Command Language" describes OMNICL concepts and commands.

4. Associated Documents
This guide is intended to complement the online VSI OMNI documentation set that provides more
detailed information about API, ODF, and OMNICL.

The online documentation set includes:

VSI OMNI Application Programmer's Guide

VSI OMNI Guide to Using OmniView

VSI OMNI Software Installation Guide

VSI OMNI Network Manager's Guide

The online documentation can be found under the following VSI OMNI V1.1 file names:

● OMNI$APPL_PROG_GUIDE

● OMNI$NETWORK_MNGR_GUIDE

● OMNI$INSTALLATION_GUIDE

● OMNI$GUIDE_TO_OMNIVIEW

vii

Preface

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions
The conventions found in the following table are used in this document.

Convention Meaning

Return Press the Return key.
UPPERCASE
TYPE

All uppercase letters in a command line indicate keywords that must be entered. You
can enter them in either uppercase or lowercase. You can use the first three characters to
abbreviate command keywords, or you can use the minimum unique abbreviation.

lowercase
ital- ics

Lowercase italics in command syntax or examples indicate variables for which either you
or the system supplies a value.

[] In examples showing VMS directory specifications, square brackets are a necessary part
of the specification, [directory-name].

In a procedure, square brackets in an inquiry enclose the default response for the inquiry.
key Press the specified key.
CTRL/x While holding down the Ctrl key, press the key specified by x.
⁝ Vertical ellipses (dots) in examples represent data that has been omitted.

viii

https://docs.vmssoftware.com

Chapter 1. Programming with VSI
OMNI
An application can use the VSI OMNI programming interface to perform the following operations:

● Initialize VSI OMNI.

● Load VMD object definitions and obtain a VMD definition handle.

● Obtain handles for object definitions associated with a VMD.

● Establish associations with remote applications and request other MMS environment and general
management services.

● Request VMD support services.

● Request domain services and receive client requests for domain services.

● Request program invocation services.

● Request variable access services and receive client requests to read and write local variables.

● Request file management services.

● Create, modify, and retrieve definitions using the VSI OMNI run-time facility.

See the online VSI OMNI Application Programmer's Guide for details about these operations.

VSI OMNI Procedure Call Format
The format section describes the syntax of the procedure call – that is, the call elements in their proper
sequence. The general format for a call with multiple arguments is:

status=OMNI$ procedure [_A] arg1 ,[arg2] . . . ,[argn]

The elements are defined in Table 1.1, "Elements"

Table 1.1. Elements

Element Meaning

status A location to receive a longword condition value that the procedure
returns to the caller.

procedure A VSI OMNI procedure.
_A A suffix to specify asynchronous operation of the requested service.
arg1 ,[arg2] . . . ,[argn] A list of required and optional arguments.
[. . .] Square brackets, used to indicate that the enclosed element is

optional. In the general format example, arg2 and argn are
optional.

, A comma, used to separate arguments in an argument list. Omitted
arguments must be indicated by 0.

1

Chapter 1. Programming with VSI OMNI

Note

All omitted arguments must be indicated by 0. Omitted arguments include both optional arguments and
placeholder arguments reserved for use in future versions of VSI OMNI.

VSI OMNI Return Values
The VSI OMNI procedure calls return the information listed in Table 1.2, "Return Values"

Table 1.2. Return Values

VMS Usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value in R0

See the online VSI OMNI Application Programmer's Guide for information about specific, procedure call
return values.

VSI OMNI Procedure Calls
The following section defines each VSI OMNI procedure call and provides the command line format of
each procedure. See the section called “VSI OMNI Procedure Call Argument Definitions” for information
about procedure call argument definitions.

VSI OMNI Procedure Call Argument Definitions
The following section defines arguments used by VSI OMNI procedure calls.

attraddress

type: OMNI$L_ENUMERATION_CONST

access: read only

mechanism: by reference

Attraddress specifies the address of a variable whose value is the attribute to retrieve.

called_vmd_handle

type: OMNI$L_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The handle of the VMD that the called application will make available to the remote peer. (On an OMNI
$LISTEN, the called application is the local application that has issued the OMNI$LISTEN request.)

calling_vmd_handle

2

Chapter 1. Programming with VSI OMNI

type: OMNI$L_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide The handle of a VMD that the
application wants to make available during the association. If the calling_vmd_handle is included, the
application can receive client requests from the remote peer to operate on the VMD. In addition, the
handle also enables VSI OMNI to service network objects – such as variables – for the user.

class

type: OMNI$L_ENUMERATION_CONST

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide Class identifies the class of definition to
create.

The value of the class parameter is one of the values listed in Table 1.3, "Class Constants"

Table 1.3. Class Constants

Constant Meaning

OMNI$K_CLS_VMD VMD
OMNI$K_CLS_DOM Domain
OMNI$K_CLS_PI Program Invocation
OMNI$K_CLS_NAMED_VAR Named Variable
OMNI$K_CLS_UNNAMED_VAR Unnamed Variable
OMNI$K_CLS_MSG Message
OMNI$K_CLS_MMS_NAMED_TYPE MMS Named Type
OMNI$K_CLS_MMS_TYPE_SPECIFICATION MMS Type Specification
OMNI$K_CLS_APP_NAMED_TYPE Application Named Type
OMNI$K_CLS_APP_TYPE_SPECIFICATION Application Type Specification
OMNI$K_CLS_MMS_STRUCT_COMP MMS Structure Component
OMNI$K_CLS_APP_STRUCT_COMP Application Structure Component

conclude_flag

type: longword

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

Takes one of the values listed in Table 1.4, "Conclude Values"

Table 1.4. Conclude Values

Value Meaning

non 0 VSI OMNI delivers all conclude indications to the calling application for
processing.

3

Chapter 1. Programming with VSI OMNI

Value Meaning

0 VSI OMNI automatically accepts conclude requests.

context

type: OMNI$R_CONTEXT

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

A location for use by VSI OMNI. The context is the same value that was returned by OMNI
$_GET_REMOTE_ ATTRIBUTES.

contextaddress

type: OMNI$L_CONTEXT

access: modify

mechanism: by reference

Contextaddress is the address of a variable. This parameter is used only if you modify a multivalued
attribute.

The value of contextaddress should be initialized to NULL. If a multivalued attribute is modified, reset
the value of the context to zero before another multivalued attribute is modified.

After you specify values for the attribute, call OMNI$END_ LIST. Do not modify the value of the
context until OMNI$END_LIST has been called.

ctrl_struc

type: OMNI$R_CTRL

access: read only

mechanism: by reference

A control structure to handle an event flag, AST routine, and AST parameter.

The ctrl_struc parameter is the address of the control structure.

domain_file

type: OMNI$T_FILE_NAME

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The file specification for a VMS file containing the domain contents. If you omit this parameter, OMNI
uses the domain contents file name associated with the ODF definition of the domain.

domain_handle

4

Chapter 1. Programming with VSI OMNI

type: OMNI$L_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The identifier of a loaded domain definition.

defhandle

type: OMNI$L_HANDLE

access: read only

mechanism: by value

Defhandle specifies the handle of the definition to modify. The value of this parameter is one of the
following:

● VMD Handle

● Domain Handle

● PI Handle

● Named Variable Handle

● Unnamed Variable Handle

● MMS Named Type Handle

● Application Named Type Handle

● MMS Type Specification Handle

● Application Type Specification Handle

● MMS Structure Component

● Application Structure Component

● Message Handle

def_name

type: character-coded text string

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The name of the definition to search for.

domain_file

type: OMNI$T_FILE_NAME

5

Chapter 1. Programming with VSI OMNI

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The file specification for a VMS file to receive the domain. If you omit this parameter, OMNI uses the
file name associated with the domain.

execution_argument

type: OMNI$T_EXEC_ARG_STR

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

A character string appropriate to the execution of the program invocation. This field overrides the ODF
execution argument definition.

handle

type: OMNI$L_HANDLE

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide

A location to receive the definition handle.

handleaddress

type: OMNI$L_HANDLE

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide

Handleaddress specifies the return address of the definition handle.

incoming_vmd_struc

type: OMNI$R_VMD_DEF

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide

Service parameters proposed by the calling (remote) application.

invoke_id

type: longword

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The identifier assigned by VSI OMNI to the service the application wants to cancel.

6

Chapter 1. Programming with VSI OMNI

last_modified

type: OMNI$L_LAST_MOD_DATE

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide

The date on which the file was last modified on the remote system. Last modified dates before January
1, 1970 are not supported.

local_file_name

type: OMNI$T_FILE_NAME

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The file specification for the local file to receive the copy.

method_handle

type: OMNI$HANDLE

access: read only

mechanism: sse the VSI OMNI Application Programmer's Guide

Method_handle modifies the default presentation of a variable.

model

type: character-coded text string

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The name of the MMS software service provider. VSI OMNI uses the name when replying to an Identify
Request. The default name is OMNI.

modifier_object

type: OMNI$L_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

Reserved for future use.

negotiated_vmd_struc

type: OMNI$R_VMD_DEF

access: write only

7

Chapter 1. Programming with VSI OMNI

mechanism: see the VSI OMNI Application Programmer's Guide

A VMD data structure to receive negotiated service parameters.

new_remote_file_name

type: OMNI$T_FILE_NAME

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The file specification (in native format) for the new name.

object_attribute

type: longword (unsigned)

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

object_handle

type: OMNI$L_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The identifier of a loaded definition for the object to be created.

omni_iosb

type: OMNI$R_IOSB

access: write only

mechanism: by reference

The VSI OMNI I/O status block. For a description of the codes that VSI OMNI returns to the IOSB, see
the VSI OMNI Application Programmer's Guide .

The omni_iosb parameter is the address of the status block.

original_remote_file_name

type: OMNI$T_FILE_NAME

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The file specification (in native format) for the remote file to rename.

pdata

type: depends on value

8

Chapter 1. Programming with VSI OMNI

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

Pdata is a pointer to a data structure that receives the value of the object or to a data structure that
contains the value of the object.

pi_handle

type: OMNI$L_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The identifier of a loaded program definition.

reason

type: condition value

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The reason the conclude request is being rejected. Reserved for future use.

receive_struct

type: depends on attribute specified

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide

VSI OMNI uses the code to construct a location to contain the returned attribute value.

remote_file_name

type: OMNI$T_FILE_NAME

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The file specification (in native format) for the remote file to receive the copy.

req_method_handle

type: OMNI$L_HANDLE

access: read only

mechanism: by reference

Identifier of a defined and loaded access method. If present, this method overrides the method
associated with the Response Data object in ODF.

9

Chapter 1. Programming with VSI OMNI

The req_method_handle parameter is the address of the handle.

revision

type: character-coded text string

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The version number of OMNI software. The default version is V1.0.

scope

type: OMNI$L_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

A handle indicating the scope of the search. The scope parameter is typically the handle of a VMD or a
domain. VSI OMNI limits its search to the specified VMD or domain.

The scope parameter is the handle of a VMD (obtained using OMNI$LOAD_DEFINITIONS) or a
domain (obtained by a previous call to OMNI$GET_HANDLE_BY_NAME).

size

type: OMNI$L_SIZE_OF_FILE

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide

Size of the file on the remote device.

translate_flag

type: longword

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

One of the values in Table 1.5, "Values" to specify the way VSI OMNI handles initation indications
received from a remote VMD.

Table 1.5. Values

Value Meaning

0 VSI OMNI rejects the initiation if the calling application specifies a VMD whose
definition is not currently loaded.

non 0 If the calling application specifies a VMD that is not currently loaded, VSI OMNI
returns the initiation indication, creates a dummy VMD definition, and passes the
handle of the dummy definition to the user.

10

Chapter 1. Programming with VSI OMNI

value

type: see table

access: write only

mechanism: by reference

Value is the address of a buffer in which the attribute value is returned.

value_structure

type: depends on value

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

A data structure containing the value of the object.

vmd_handle

type: OMNI$L_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The longword identifier of a loaded VMD definition. The vmd_handle is returned by the OMNI
$LOAD_ DEFINITIONS procedure.

vmd_name

type: character-coded text string

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The name of the VMD whose local definitions you want to load.

vendor

type: character-coded text string

access: read only

mechanism: by reference

The name of the system vendor. VSI OMNI uses the vendor name when replying to an Identify-Request.
The default name is VSI.

OMNI$ABORT
OMNI$ABORT — Immediately terminates an association with a remote VMD. All pending requests
return with status OMNI$ABORT.

11

Chapter 1. Programming with VSI OMNI

Format
status=OMNI$ABORT[_A] vmd_handle, [omni_iosb], [ctrl_str]

OMNI$ACCEPT_CONCLUDE
OMNI$ACCEPT_CONCLUDE — Accepts an association conclude request from a remote application.

Format
status=OMNI$ACCEPT_CONCLUDE[_A] vmd_handle, [omni_iosb], [ctrl_str]

OMNI$ACCEPT_CONNECT
OMNI$ACCEPT_CONNECT — Accepts an association request from a remote VMD.

Format
status=OMNI$ACCEPT_CONNECT[_A] vmd_handle, reserved,
[conclude_flag], [omni_iosb], [ctrl_struc]

OMNI$CANCEL
OMNI$CANCEL — Cancels a request previously issued but not yet completed.

Format
status=OMNI$CANCEL[_A]invoke_id, [omni_isob], [ctrl_struc]

OMNI$CONCLUDE
OMNI$CONCLUDE — Brings an association with a remote VMD to an orderly conclusion. It is valid
to conclude an association only when all requests have been satisfied. If there are pending operations on
the association, VSI OMNI does not accept an OMNI$CONCLUDE request.

Format
status=OMNI$CONCLUDE[_A] vmd_handle, [omni_iosb], [ctrl_str]

OMNI$CONNECT
OMNI$CONNECT — Initiates an association with a remote VMD. The calling VMD specifies network
objects.

Format
status=OMNI$CONNECT[_A] vmd_handle,reserved, [calling_vmd_handle],
[negotiated_vmd_struc], [conclude_flag], [omni_iosb], [ctrl_struc]

12

Chapter 1. Programming with VSI OMNI

OMNI$CREATE
OMNI$CREATE — Creates an object on a VMD.

Format
status=OMNI$CREATE[_A] [invoke_id], object_handle,
[modifier_object], [omni_iosb], [ctrl_struc]

OMNI$DELETE
OMNI$DELETE — Deletes a specific object on a VMD. Only objects with no dependencies can be
deleted. For example, a domain with an associated program invocation cannot be deleted until the
program invocation is deleted.

Format
status=OMNI$DELETE[_A] [invoke_id], object_handle,
[modifier_object], [omni_iosb], [ctrl_struc]

Description
OMNI$DELETE does not delete the definition obtained by OMNI$LOAD_DEFINITIONS. The only
way to delete an object definition is through the use of ODF.

OMNI$DOWNLOAD
OMNI$DOWNLOAD — Initiates the downloading of a domain to a remote VMD.

Format
status=OMNI$DOWNLOAD[_A] [invoke_id],domain_handle, [domain_file],
[modifier_object], [omni_iosb], [ctrl_struc]

Description
● You cannot download a domain that already exists on the VMD.

● If a domain file specification is not included in the OMNI$DOWNLOAD call or in the ODF
definition, VSI OMNI returns an error code.

● If, on completion of the download service, the domain has been discarded by the remote application,
the user is notified in the IOSB.

● VSI OMNI supports only one download to a domain at a time.

OMNI$END_LIST
MNI$END_LIST — Terminates the use of a list context. OMNI$GET_REMOTE_ATTRIBUTES
allocates memory. OMNI$END_LIST frees that same memory. Failure to call OMNI$END_LIST
results in an increase of memory usage.

13

Chapter 1. Programming with VSI OMNI

Format
status=OMNI$END_LISTcontext

OMNI$FDELETE
OMNI$FDELETE — Deletes a file from a remote system. Wildcards are delivered to the remote device
as specified. See PIC for remote device specification.

Format
status=OMNI$FDELETE[_A] [invoke_id], vmd_handle, remote_file_name,
[modifier_object], [omni_iosb], [ctrl_struc]

OMNI$FDIR
OMNI$FDIR — Obtains a list of file specifications from a remote directory. To get the file
specifications in the directory, call the OMNI$GET_ATTRIBUTE procedure for each filespec.
OMNI$FDIR allocates space for a buffer to contain the directory. To release the buffer, call OMNI
$END_LIST.

Format
status=OMNI$FDIR[_A] [invoke_id], vmd_handle, remote_directory,
context, [modifier_object], [omni_iosb], [ctrl_struc]

OMNI$FGET
OMNI$FGET — Copies a file from the remote system to the local system.

Format
status=OMNI$FGET[_A] [invoke_id], vmd_handle, remote_file_name,
local_file_name, [size], [last_modified], [modifier_object],
[omni_iosb], [ctrl_struc]

Description
● If an error occurs while writing the file, the file is deleted.

● Wildcards must reduce to one file name.

● If the local file already exists, the record attributes are inherited from the previous version.

● If the local file does not exist, the file created is compatible with an FTAM-3 document type. OMNI
$FGET creates a file with RMS record format undefined and RMS record attributes of none.

OMNI$FRENAME
OMNI$FRENAME — Renames a file on the remote system.

14

Chapter 1. Programming with VSI OMNI

Format
status=OMNI$FRENAME[_A] [invoke_id], vmd_handle,
original_remote_file_name, new_remote_file_name, [modifier_object],
[omni_iosb], [ctrl_struc]

OMNI$GET_ATTRIBUTE
OMNI$GET_ATTRIBUTE — Obtains: 1. A specific object attribute from a list of attributes obtained
by the OMNI$GET_REMOTE_ATTRIBUTE procedure. 2. A file specification from a remote directory
obtained by the OMNI$FDIR procedure.

Format
status=OMNI$GET_ATTRIBUTE context, object_attribute, receive_struc

Description
The receive structure is based on the type of attribute. The OMNI$GET_ATTRIBUTE procedure
reads the first value of the specified type. To read the next value of the same type, call OMNI
$GET_ATTRIBUTE with a NULL attribute.

OMNI$GET_DEFINITION
OMNI$GET_DEFINITION — Retrieves the value of a specified attribute of a specified definition and
inserts the value in an address specified by the caller.

Format
tatus=OMNI$GET_DEFINITION (defhandle,attraddress, contextaddress,
value)

Description
OMNI$GET_DEFINITION retrieves the values of both single-valued and multivalued attributes.

In the case of multivalued attributes, OMNI$GET_ DEFINITION acts similar to OMNI
$GET_HANDLE_LIST. Each call to either of the routines, returns one value.

The value of the ATTRIBUTE parameter should specify the address of the attribute on the first call,
and should be NULL thereafter. A value of NULL for the ATTRIBUTE parameter indicates that the
next value should be specified or retrieved. In the case of OMNI$GET_DEFINITION, when the last
value has been retrieved, OMNI$_ENDOFLIST is returned as the status value. The OMNI$END_LIST
routine should be called after a list of values has been retrieved.

OMNI$GET_HANDLE_BY_NAME
OMNI$GET_HANDLE_BY_NAME — Locates the handle of a specified object definition. The name
used when the definition was created with ODF is supplied to identify the definition.

15

Chapter 1. Programming with VSI OMNI

Format
status=OMNI$GET_HANDLE_BY_NAME scope, class, def_name, handle

OMNI$GET_HANDLE_LIST
OMNI$GET_HANDLE_LIST — Returns a definition handle of the specified class for the specified
scope.

Format
status=OMNI$GET_HANDLE_LIST scope, class, context, handle

Description
When used as part of a loop, OMNI$GET_HANDLE_LIST can retrieve all of the handles of a specified
class for the specified scope. OMNI$GET_HANDLE_LIST sets the value pointed to by the receiving
handle to NULL before assigning it a valid value. Even if OMNI$GET_HANDLE_LIST returns an
error, the value pointed to by the receiving handle can still be zero.

OMNI$GET_INDICATIONS
OMNI$GET_INDICATIONS — Receives the following indications from a remote application:Read/
write indications, Unsolicited status, Conclude indications, Abort indications, Information reports.

Format
status=OMNI$GET_INDICATIONS[_A] vmd_handle, def_handle, context,
indication_type, reserved, [omni_iosb], [ctrl_struc]

Description
Issue one OMNI$GET_INDICATIONS call per remote VMD.

OMNI$GET_REMOTE_ATTRIBUTES
OMNI$GET_REMOTE_ATTRIBUTES — Obtains a list of current attribute values for an object on a
remote MMS system.

Format
status=OMNI$GET_REMOTE_ATTRIBUTES[_A][invoke_id], def_handle, class,
context, [modifier_object], [omni_iosb], [ctrl_struc]

OMNI$GET_VALUE
OMNI$GET_VALUE — As a client procedure, obtains the value of a variable on a remote VMD. As a
server procedure, OMNI$GET_VALUE obtains the value referred to by a write indication.

16

Chapter 1. Programming with VSI OMNI

Format
status=OMNI$GET_VALUE[_A] [invoke_id], object_handle,
[method_handle], receiving_struc, [modifier_object], [omni_iosb],
[ctrl_struc]

OMNI$GROUP_VARIABLES
OMNI$GROUP_VARIABLES — Allows to read or write multiple variables.

Format
status=OMNI$GROUP_VARIABLES(contextaddress, object_handle,
method_handle, pdata,modifier_object,omni_iosb);

Description
You can use this procedure by following these steps:

1. Set the context variable to be used to zero.

2. Call the OMNI$GROUP_VARIABLES with the pointer to the context, variable handle, alternate
access handle, pointer to data, modifier handle, and pointer to ISOB for one variable.

3. Repeat step 2 as many times as necessary for different variables, using the same context.

4. Call the OMNI$GET_VALUE[_A] or OMNI$PUT_ VALUE[_A], substituting the context value
for the variable handle, and omitting the object handle, method handle, pointer to data, and modifier
handles.

5. The group context is in effect until an OMNI$END_LIST with the context specified is done.

The IOSB that is passed in each time to the OMNI$GROUP_VARIABLES function indicates whether
the transaction was successful on the variable.

If variables are grouped together and the user passes to OMNI$GET_VALUE[_A] or OMNI
$PUT_VALUE[_A] a pointer to an IOSB, that IOSB represents the general transaction completion.

OMNI$INITIALIZE
OMNI$INITIALIZE — Sets up VSI OMNI data structures and specifies values for the following
operating parameters: 1. Vendor name (the default is VSI). 2. Model name (the default is VSI OMNI). 3.
Revision name.(the default is V1.0).

Format
tatus=OMNI$INITIALIZE [vendor], [model], [revision]

OMNI$KILL
OMNI$KILL — Ends a program invocation on a VMD by causing it to transition to the unrunnable
state.

17

Chapter 1. Programming with VSI OMNI

Format
status=OMNI$KILL[_A] [invoke_id], pi_handle, [modifier_object],
[omni_iosb], [ctrl_struc]

OMNI$LISTEN
OMNI$LISTEN — Receives an association request from a remote application.

Format
status=OMNI$LISTEN[_A] called_vmd_handle, translate_flag,
calling_vmd_handle, [incoming_vmd_struc], [omni_iosb], [ctrl_str]

OMNI$LOAD_DEFINITIONS
OMNI$LOAD_DEFINITIONS — Loads the definitions that have been created by ODF for one VMD
object and related objects.

Format
status=OMNI$LOAD_DEFINITIONS vmd_name, vmd_handle

OMNI$MODIFY_DEFINITION
OMNI$MODIFY_DEFINITION — Modifies the value of a specified attribute of a specified definition.
The address of the new attribute value is passed as a parameter to the routine.

Format
status=OMNI$MODIFY_DEFINITION(defhandle, attraddress,
contextaddress, value)

Description
OMNI$MODIFY_DEFINITION modifies the values of both single-valued and multivalued attributes.
In the case of multivalued attributes, OMNI$MODIFY_DEFINITION is used much like OMNI
$GET_HANDLE_LIST. Each call to OMNI$MODIFY_DEFINITION specifies one value. The value of
the ATTRIBUTE parameter should specify the address of the attribute on the first call, and should be
NULL thereafter. A value of NULL for the ATTRIBUTE parameter indicates that the next value should
be specified.

OMNI$END_LIST should be called after modifying a list to free space allocated for bookkeeping by
VSI OMNI.

A definition is not usable until the value of its SCOPE attribute has been modified. The scope of a
definition can be modified only once, and each class of definition must have a particular set of attributes
modified before its scope can be modified. Modification of the value of a definition's scope is equivalent
to the committal of that definition in ODF.

18

Chapter 1. Programming with VSI OMNI

OMNI$PUT_VALUE
OMNI$PUT_VALUE — As a client procedure, modifies the value of a variable on a remote VMD.
As a server procedure, OMNI$PUT_VALUE transmits the value of the variable specified by a read
indication.

Format
status=OMNI$PUT_VALUE[_A] [invoke_id], object handle,
[method_handle], value_struc, [modifier_object], [omni_iosb],
[ctrl_struc]

OMNI$REJECT
OMNI$REJECT — Rejects an indication you do not want.

Format
status=OMNI$REJECT[_A] context,[reason], [omni_iosb], [ctrl_struc]

OMNI$REJECT_CONCLUDE
OMNI$REJECT_CONCLUDE — Rejects an association conclude request from a remote application.
Call the OMNI$REJECT_CONCLUDE procedure in response to an indication returned by OMNI
$GET_INDICATIONS.

Format
status=OMNI$REJECT_CONCLUDE[_A] vmd_handle, [reason], [omni_iosb],
[ctrl_struc]

OMNI$REJECT_CONNECT
OMNI$REJECT_CONNECT — Rejects an association request from a remote VMD. Call the OMNI
$REJECT_CONNECT procedure in response to an association request returned by OMNI$LISTEN.

Format
status=OMNI$REJECT_CONNECT[_A] vmd_handle, [reason], [omni_iosb],
[ctrl_struc]

OMNI$RESET
OMNI$RESET — Resumes execution of a stopped program on the VMD. It causes a program
invocation that is in the stopped state to transition to either the idle or unrunnable state. If the PI is
reusable, it transitions to the idle state; otherwise, it transitions to the unrunnable state.

19

Chapter 1. Programming with VSI OMNI

Format
status=OMNI$RESET[_A] [invoke_id], pi_handle, [modifier_object],
[omni_iosb], [ctrl_struc]

OMNI$RESUME
OMNI$RESUME — Causes a program invocation to transition from the stopped state to the running
state.

Format
status=OMNI$RESUME[_A] [invoke_id], pi_handle, [execution_arg],
[modifier_object], [omni_iosb], [ctrl_struc]

OMNI$START
MNI$START — Causes a program invocation to transition from the idle to the running state.

Format
status=OMNI$START[_A] [invoke_id], pi_handle, [execution_arg],
[modifier_object], [omni_iosb], [ctrl_struc]

OMNI$STOP
OMNI$STOP — Causes a program invocation to transition from the running state to the stopped state.

Format
status=OMNI$STOP[_A] [invoke_id], pi_handle, [modifier_object],
[omni_iosb], [ctrl_struc]

OMNI$OMNI_TO_VMS_TIME
OMNI$OMNI_TO_VMS_TIME — Converts an OMNI time to a VMS time.

Format
status=OMNI$OMNI_TO_VMS_TIME[_A] OMNI_Time, VMS_Time

OMNI$UPLOAD
OMNI$UPLOAD — Preforms the uploading of a domain from a remote VMD. Two files are created,
one with the list of capabilities and one with the domain contents. The list of capabilities file name is a
mandatory field in ODF and is the name that is used for the upload. If an error occurs during the upload
process, the files are deleted.

20

Chapter 1. Programming with VSI OMNI

Format
status=OMNI$UPLOAD[_A] [invoke_id], domain_handle, [domain_file],
[modifier_object], [omni_iosb], [ctrl_struc]

21

Chapter 1. Programming with VSI OMNI

22

Chapter 2. OMNI Definition Facility
The OMNI Definition Facility (ODF) enables you to create and manage locally stored definitions of
MMS objects. Specifically, ODF provides a set of commands that perform the following operations:

● Create definitions of VMDs.

● Create definitions of MMS domains and associate the definitions with a locally defined VMD.

● Create definitions of MMS program invocations and associate the definitions with a locally defined
VMD.

● Create definitions of variables and associate the definitions with a locally defined domain or VMD.

● Create data type definitions.

● Display the local definitions of an MMS object.

● Delete a locally created definition or set of definitions.

● Log the current ODF session to a file for later use.

● Write (export) definition commands for backup or convenience.

● Execute a series of stored commands – for example, commands saved in a log file.

● Set and display the defaults for an ODF session.

Note

The definitions you create with ODF are local to VSI OMNI but are not necessarily local to the system
running ODF or using the definitions.

2.1. ODF and Companion Standards
A Companion Standard (CS) can function as an integral part of VSI OMNI and can be defined by using
ODF.

Note that if a CS exists with VSI OMNI, it can affect the behavior of the VSI OMNI procedure calls,
since a CS can support objects and attributes that are different from those supported by VSI OMNI.

See your applicable companion standard's guide for details about the objects and attributes supported by
that companion standard.

2.2. ODF Command Language Interface
The Command Language Interface (CLI) guides you through the correct syntax of each ODF command
by supplying prompts and a list of options.

For example, suppose you want to use the SET command, but you cannot remember the exact syntax or
choices of the command. Simply type in the SET command followed by a carriage return, as shown:

23

Chapter 2. OMNI Definition Facility

ODF>SET Return

Because the command has been entered in incomplete form, CLI automatically prompts for the next
word in the command. Only those that support the SET command are listed as options. All options
are enclosed within parentheses, as follows: (COMPANION STANDARD, ODF LOGFILE, SCOPE)
_ODF>

2.2.1. Level-by-Level Prompting
You can specify the entire command without using CLI, or you can specify part of the command and
have CLI prompt only for those words that you miss.

Because CLI displays only supported options, prompting for options is a good way to check the syntax of
a command after receiving a parser error. Any attribute or keyword you specify that is not in the CLI list
of options is not supported for that command.

2.2.2. Short Lines and Abbreviations
You can shorten the command line by shortening the number of letters in each word. You can abbreviate
any word to three characters or the number of characters that makes it unique.

2.3. Invoking and Exiting ODF
You can issue ODF commands one at a time using Digital Command Language (DCL), or you can
invoke ODF and issue as many commands as you want before returning to the DCL prompt ($).

To use ODF for single line commands, first define ODF as follows:

$ ODF :== $OMNI$ODF

ODF executes the command and returns you to the DCL system prompt. To invoke ODF through DCL
for an interactive session, type:

$ ODF
ODF>

Once invoked, the ODF prompt is displayed on the screen. Issue the first command next to the prompt.
If you leave out required component-ids or attributes, ODF prompts for them.

To invoke ODF for an interactive session without using DCL, use the RUN command as follows:

$ RUN SYS$SYSTEM:OMNI$ODF
ODF>

To exit ODF and return to the DCL system prompt, either issue the EXIT command or press Ctrl/z.

2.4. Getting Help Through ODF
After you invoke ODF, you can use the HELP command to display quick reference information about
individual commands. Type HELP and the name of the command you want information about as shown
in the following example, or type HELP followed by a carriage return to receive a menu of options. For
example:

ODF> HELP SET SCOPE

24

Chapter 2. OMNI Definition Facility

A display of HELP information about the SET SCOPE command is returned when this command
executes.

2.5. Creating a Definition of a VMD
A complete VSI OMNI definition of a VMD consists of the items in Table 2.1, "VMD Definitions"

Table 2.1. VMD Definitions

Item Description

vmd_name The local name of the VMD definition. This name
is used to reference the definition; it is not used in
communications.

APPLICATION SIMPLE NAME The name used to look up the application in
Directory Services.

VERSION The version of the MMS protocol to use.
NESTING LEVEL The maximum number of levels of nesting that can

occur within any data element over an association
with the VMD.

MAXIMUM SERVICES CALLED The proposed maximum number of transaction
object instances that can be created at the called
MMS-user on the association.

MAXIMUM SERVICES CALLING The proposed maximum number of transaction
object instances that can be created at the calling
MMS-user on the association.

MAXIMUM SEGMENT SIZE The proposed maximum size of an MMS message
to exchange with the VMD.

PARAMETER CBB A list specifying the set of conformance building
blocks (CBBs) supported by the VMD.

SUPPORTED SERVICES A list of services supported by the VMD for the
association.

VENDOR The vendor of the system supporting the VMD.
MODEL The model of the system supporting the VMD.
REVISION A string describing the software, firmware, or

hardware revision level of the VMD.
DESCRIPTION Information describing the defined VMD. This is

not used in communication.

To create a VSI OMNI definition of a VMD, enter the DEFINE VMD COMMAND, specify the name
of the VMD, and supply the values that describe the VMD. To add the definition to the permanent ODF
database, enter the COMMIT command. COMMIT is described in the VSI OMNI Network Manager's
Guide .

2.6. Creating a Definition of a Domain
A complete VSI OMNI definition for a domain consists of the elements in Table 2.2, "Domain
Definitions"

25

Chapter 2. OMNI Definition Facility

Table 2.2. Domain Definitions

Item Definition

vmd_name:domain_name The name of the remote domain object and its
associated VMD.

[NO] DELETABLE A value indicating whether the domain can be
deleted from the VMD.

[NO] SHARABLE A value indicating whether the domain can be
shared by multiple program invocations.

CONTENT FILE A VMS file containing the domain.
CAPABILITY FILE A VMS file specifying the capabilities of the

domain.
DESCRIPTION Information describing the defined domain.

A domain definition must include the name of the VMD to which the domain belongs. ODF will reject
any domain definition that does not specify an existing VMD and a capabilities file.

To create a VSI OMNI definition of a domain, enter the DEFINE DOMAIN command in response to
the ODF prompt and supply the information you need to describe the domain. To add the definition to
the permanent ODF database, enter the COMMIT command.

2.7. Creating a Definition of a Program
Invocation
A complete VSI OMNI definition of a Program Invocation (PI) contains the information listed in Table
2.3, "PI Definition"

Table 2.3. PI Definition

Item Description

vmd_name:pi_name The name of the program invocation and its
associated VMD.

[NO] DELETABLE A value indicating whether the PI can be deleted
from the VMD.

[NO] REUSABLE A value indicating whether the PI can be reused.
EXECUTION ARGUMENT STRING An execution argument that becomes the default

for START and RESUME requests for the PI.
monitor_type One of three values. NO MONITOR indicates

that the PI has no monitoring event condition.
MONITOR PERMANENT indicates that the
PI has a monitoring event condition that exists
throughout program execution. MONITOR
CURRENT indicates that the PI has a monitoring
event condition that exists only for the life of the
association.

DOMAIN LIST A list of references to the domains that make up
this program invocation.

26

Chapter 2. OMNI Definition Facility

Item Description

DESCRIPTION Information describing the defined Program
Invocation.

A PI definition must include the name of the VMD to which the domain belongs. ODF will reject any PI
definition that does not specify an existing VMD.

Each PI definition must also specify a domain list with at least one domain. ODF will reject the
definition if the listed domains are not defined.

To create a VSI OMNI definition of a program invocation, enter the DEFINE PROGRAM
INVOCATION command in response to the ODF prompt and supply the values that describe the PI. To
add the definition to the permanent ODF database, enter the COMMIT command.

2.8. Creating a Definition of a Variable
ODF enables you to create VSI OMNI definitions for the following types of variables:

● Named variables

● Unnamed variables

2.8.1. Named Variables
A complete VSI OMNI definition of a Named Variable contains the items listed in Table 2.4, "Named
Variable Definition"

Table 2.4. Named Variable Definition

Item Description

vmd_name:domain_name.variable_name The name of the remote named variable object and
its associated VMD and (optionally) domain.

type A reference to a predefined application type.
[NO] DELETABLE A value that indicates whether the named variable

can be deleted from the VMD.
DESCRIPTION Information that describes the named variable.

A variable definition must include the name of the VMD to which the variable belongs. ODF will reject
any definition that does not specify an existing VMD. If a variable is defined as being on a domain, you
must also define the domain.

You must specify the type of the variable.

To create a VSI OMNI definition for a named variable, enter the DEFINE NAMED VARIABLE
command in response to the prompt and supply the required information. To add the definition to the
permanent ODF database, enter the COMMIT command.

2.8.2. Unnamed Variables
A complete VSI OMNI definition of an Unnamed Variable contains the items listed in Table 2.5,
"Unnamed Variable Definition".

27

Chapter 2. OMNI Definition Facility

Table 2.5. Unnamed Variable Definition

Item Description

vmd_name:domain_name.variable_name The name of the remote unnamed variable and its
associated VMD (and, optionally, its domain).

type A reference to a predefined application type.
<address> The address of the unnamed variable.
[NO] Supply Type Spec A value that indicates whether the variable's type

specification is to be sent to the remote VMD to
access the variable.

DESCRIPTION Information describing the unnamed variable.

A variable definition must include the name of the VMD to which the variable belongs, the variable type,
and the address. ODF will reject any definition that does not specify an existing VMD, the variable type,
and the address.

The variable address may be specified as a NUMERIC ADDRESS or a SYMBOLIC ADDRESS. A
numeric address value is entered as a decimal number by default or as a hexadecimal number using the
%X prefix. A symbolic address value is entered as a quoted string.

To create a VSI OMNI definition for an unnamed variable, enter the DEFINE UNNAMED VARIABLE
command in response to the prompt and supply the required information. To add the definition to the
permanent ODF database, enter the COMMIT command.

2.9. Defining Variable Types
An ODF variable definition includes two variable type definitions: an MMS type definition and an
application type definition.

● The MMS type definition provides information about the variable that is communicated through the
MMS protocol when the variable is read or written.

● The application type definition provides information about the way the application views the
variable. Application type information cannot be communicated through the MMS protocol – it is
specific to the local programming environment.

ODF provides two commands that you can use to create variable type definitions:

● DEFINE MMS NAMED TYPE. Creates an MMS type definition.

● DEFINE APPLICATION TYPE. Creates an application type definition and associates the definition
with a corresponding MMS type definition that you have created.

The DEFINE TYPE commands are useful for creating commonly-used type definitions that many
variables will reference. When a number of variables refer to the same type definition, all of the variables
can be changed by changing the one type definition.

2.9.1. Creating an MMS Named Type Definition
A complete VSI OMNI definition of an MMS Named Type contains the items listed in Table 2.6, "MMS
Named Type Definition".

28

Chapter 2. OMNI Definition Facility

Table 2.6. MMS Named Type Definition

Item Description

vmd_name:domain_name.mms_type_name The name of the MMS Named Type specification
and its associated VMD (and, optionally, its
domain).

mms_type_specification A structure, array or simple type specification or a
reference to another MMS Named Type.

[[NO]DELETABLE] Indicates whether or not the MT can be deleted
from the VMD.

DESCRIPTION Information describing the defined MMS Named
Type.

An MMS Named Type definition must include the name of the VMD to which the named type belongs.
ODF rejects any definition that does not specify an existing VMD. If a named type is defined as being
on a domain, you must also specify the domain.

You must specify the MMS type specification.

To create a VSI OMNI definition for an MMS Named Type, enter the DEFINE MMS Named Type
command in response to the prompt and supply the required information. To add the definition to the
permanent database, enter the COMMIT command. COMMIT is described in Section 2.10, "Committing
Definitions to the ODF Database"

2.9.2. Creating an Application Named Type Definition
A complete VSI OMNI definition of an Application Named Type contains the items listed in Table 2.7,
"Application Named Type Definition".

Table 2.7. Application Named Type Definition

Item Description

vmd_name:domain_name.application_type_name The name of the Application Named Type
specification and its associated VMD (and,
optionally, its domain).

FROM MMS NAME TYPE The name of the MMS Named Type associated
with the application named type. The default is the
same name and scope as the application type.

application_type_specification A structure, array or simple type specification or a
reference to another Application Named Type.

DESCRIPTION Information describing the defined Application
Named Type

An Application Named Type definition must include the name of the VMD to which the named type
belongs. ODF will reject any definition that does not specify an existing VMD. The named type may also
be defined on a domain.

You must specify the application type specification.

To create a DECOmni definition for an Application Named Type, enter the DEFINE Application Named
Type command in response to the prompt and supply the required information. To add the definition

29

Chapter 2. OMNI Definition Facility

to the permanent database, enter the COMMIT command. COMMIT is described in Section 2.10,
"Committing Definitions to the ODF Database".

2.9.3. Creating Application Type Definitions for
Alternate Access
Every VSI OMNI variable definition specifies a default Application Type Definition, which in turn refers
to an MMS Type Definition.

Simple applications would generally access the variable's data using the default Application Type.
Other applications may need to perform alternate access by referring to the variable using some other
Application or MMS Type Definition or both.

One reason for alternate access would be to support applications which store internal data differently.
For example, suppose two applications access a variable whose MMS Type Definition is a Visible String.
One application may need to store this visible string internally as a null terminated string while another
application type may need to store it internally as a word counted string. In both cases, since all elements
of the array would be accessed, there is a 1:1 correspondence between array components of the MMS
Type Definition and the Application Type Definition.

Another reason for alternate access is to support applications that may not need to access all of the data
in a variable. This type of alternate access is called partial access. For example, a device can define a
portion of its memory as a large array.

An application can read the portion of the memory it is interested in by creating an Application Type
Definition that specifies a subrange of the array to be read into an application buffer which is only large
enough to hold the data in that subrange.

In both examples of alternate access (full and partial), an application accomplishes alternate access on a
variable by providing a method handle in calls to the variable access procedures, OMNI$GET_VALUE
and OMNI$PUT_ VALUE. A method handle is an object identifier handle of an Application Named
type. For information on method handles see the online VSI OMNI Application Programmer's Guide.

You can also define the default application type as an alternate access type. In this case, it is not
necessary to supply a method handle to perform alternate access. Instead, alternate access is by default
whenever the variable is accessed.

2.10. Committing Definitions to the ODF
Database
An ODF session consists of the following steps:

1. Enter a series of DEFINE or DELETE commands, or both to describe the objects in the MMS
environment. ODF saves these definitions in a special area allocated for the ODF session.

2. Enter the COMMIT command. ODF examines the batched definitions (that is, all the definitions
entered since the last COMMIT command or since the beginning of the session), writes all valid
definitions into the permanent database, and reports on any errors. If committing the changes
will produce inconsistencies in the database, ODF reports an error and does not make any of the
modifications.

For example, if you enter a variable definition that includes a reference to a nonexistant VMD, ODF
will reject the definition and return an error code.

30

Chapter 2. OMNI Definition Facility

ODF does not discard the batch of definitions if the COMMIT operation fails. Thus, you can correct the
error and COMMIT again.

To erase a batch of modifications from the temporary storage area, type the ROLLBACK command.
ODF discards all the definitions that you have created since your last COMMIT command. (Note
how ROLLBACK differs from DELETE. The DELETE command removes a definition that has been
committed to the permanent ODF database and/or exists in temporary storage; the ROLLBACK
COMMAND simply discards actions from temporary storage.)

In addition to batching DEFINE commands, ODF batches all commands that modify the database (for
example, the DELETE command) until you enter a COMMIT command.

Note

The EXIT command causes ODF to attempt a COMMIT before exiting. The QUIT command causes
ODF to attempt a ROLLBACK before exiting.

You should try to arrange your transactions so that a COMMIT can be issued after each DEFINE
command, which should reduce the ambiguity of constraint error messages.

2.11. Setting the Default Scope
ODF enables you to set the default VMD and domain for dependent objects that you want to define. To
specify a default VMD and domain, enter the SET SCOPE command and the name of the VMD and
domain. (If you omit the domain name, the scope is VMD-specific.)

For example, the following SET SCOPE command specifies Foo as the default VMD for the session and
Bar as the default domain. The DEFINE command creates a variable definition named X :

ODF> SET SCOPE Foo:Bar
ODF> DEFINE NAMED VARIABLE X APPLICATION TYPE %OMNI$LONG;

ODF creates the definition Foo:Bar.X.

2.12. Deleting a Definition
The DELETE DEFINITION command deletes a definition from the permanent ODF database and/or
temporary storage.

A definition cannot be deleted until all its dependencies are deleted.

A right arrow character (>) in the command line causes ODF to delete the specified object and all
objects that are dependent on that object. For example, the following command deletes VMD Foo and all
the objects it contains:

DELETE DEFINITION Foo>;

To delete the entire database, type:

DELETE DEFINITION *>;

This command line is not recommended.

The DELETE command supports the wildcard asterisk (*). For example, the following command deletes
all named variables in domain Foo:Bar:

31

Chapter 2. OMNI Definition Facility

DELETE DEFINITION Foo:Bar(NV:*);

2.13. Creating, Opening, and Closing a Log
File
ODF enables you to create and open a log file for the ODF session. To create a log file, enter the SET
ODF LOGFILE command and specify the name of the log file.

Once the file is open, you can start session logging with the ENABLE ODF LOGGING command. You
can also write definition commands to the log file using the WRITE DEFINITION command.

To close the log file, reenter the SET ODF LOGFILE command with a different filename or the null
device name (NL:).

2.14. Enabling and Disabling Logging
To create a log of the ODF session, enter the ENABLE ODF LOGGING command.

If you have already specified a log file with the SET ODF LOGFILE command, ODF logs the session
to that file. If you have not specified a file, ODF creates a file OMNI$ODF.LOG in the current default
directory and logs the session.

To disable logging, enter the DISABLE ODF LOGGING command. Logging will stop, but the log file
will remain open until you exit the ODF session or enter another SET ODF LOGFILE command.

The ENABLE and DISABLE ODF LOGGING commands can be used to selectively log portions of an
ODF command session.

2.15. Executing Stored Commands
The DO command (or @) enables you to read ODF commands stored in a script file.

You can create script files in any of the following ways:

● Use the SET ODF LOGFILE and ENABLE ODF LOGGING commands to trace a session.

● Use the WRITE DEFINITION TO command to write declaration commands to a file. This is helpful
when creating script files to rebuild portions of the database.

Issuing a WRITE DEFINITION command without a TO specifier causes a DEFINE command to be
written to the current log file.

● Use any editor to create a text file containing the commands.

If logging is enabled when the script file is invoked, the invocation command is commented out in the
trace, and the individual commands in the script file appear in the trace output. A comment is inserted at
the end of the trace file. If the script file contains an EXIT command, that command does not appear in
the trace file.

DO commands can be nested (a script file can issue a DO command). There is no limit to how many
DO commands can be issued from a particular script file; however, ODF must open each script file, so
the open file limit (FILLM) quota determines the maximum nesting allowed.

32

Chapter 2. OMNI Definition Facility

2.16. Creating a Command to Repeat a
Definition
The WRITE DEFINITION command enables you to write out definitions to a file, where each definition
is written as a valid ODF DEFINE command. A reference to a definition, list of definitions, or a
wildcard specification can be specified. An asterisk (*) used as a wildcard character matches zero or
more characters, and a period (.) used as a wildcard character matches exactly one character.

If you include a file specification by using the TO clause, ODF opens that file, writes the definitions to it,
and closes the file. If there is no file specification, ODF appends the definitions to the current log file. If
no log file is open, ODF opens a new version of OMNI$DEF.LOG and writes the definitions.

The following command writes out all definitions in the database to a file named BACKUP.LOG:

WRITE DEFINITION *> TO BACKUP.LOG;

The following example writes out domain Bar of VMD Foo and its dependent objects to file
DOMAIN.LOG:

WRITE DEFINITION Foo:Bar> TO DOMAIN.LOG;

The following example writes out named variables defined in domain Bar to the current log file:

WRITE DEFINITION Foo:Bar(NV:*);

2.17. Exiting and Quitting an ODF Session
The EXIT command attempts to perform a COMMIT before ending the ODF session. If there are
unresolved dependencies, ODF does not EXIT. Enter additional DEFINE commands to satisfy the
dependencies, and reenter the EXIT command.

The QUIT command rolls back any batched DEFINE or DELETE DEFINITION commands and ends
the ODF session.

33

Chapter 2. OMNI Definition Facility

34

Chapter 3. OMNI Definition Facility
(ODF) Commands
This chapter describes the set of commands you issue to create and manage local VSI OMNI definitions
of remote MMS objects.

These sections use the documentation conventions listed in Table 3.1, "Conventions"

Table 3.1. Conventions

Convention Meaning

[] Square brackets enclose optional expressions.
8
 <
 :
 <val1>
 <val2>
 <val3>

 9
 =
 ;

 Large braces enclose choices from a group of items. Braces
around a single item indicate that this item is mandatory.

< > Angle brackets enclose tokens that must be expanded.
. . . Ellipsis indicates an expression that can be repeated.

A local ODF definition name has the same format as an MMS identifier: a string of 1 to 32 characters.
All alphanumeric characters, the dollar sign ($), and the underscore (_) are valid. The identifier cannot
begin with a numeric character. Also, ODF definition names, like MMS identifiers, are case-sensitive
(foo is not equal to FOO).

COMMIT
COMMIT — Makes changes to the database. All changes made in an ODF session since the last
COMMIT become permanent and are made visible to other users of the ODF database.

Format
COMMIT;

Description
When you enter COMMIT, ODF processes all of the DEFINE and DELETE DEFINITION commands
you have entered since your last COMMIT command or since the beginning of the session.

Before the modifications are made visible, ODF verifies that those modifications leave the database in
a consistent state. If committing the command would cause an inconsistency, ODF reports a constraint
violation, and the changes are not added to the database.

35

Chapter 3. OMNI Definition Facility (ODF) Commands

To recover from a constraint violation, either roll back the commands or enter additional commands
to correct the problem. The SHOW DEFINITION command is useful for pinpointing the cause of the
problem. SHOW DEFINITION shows any uncommitted changes as if they had already been applied.

DEFINE DOMAIN
DEFINE DOMAIN — Creates a definition of a domain and associates the domain with a VMD
definition.

Format
DEFINE DOMAIN [<vmd_name>:]<domain_name> [[NO] DELETABLE] [[NO]
SHARABLE] [CONTENT FILE <content_filespec>] [CAPABILITY FILE
<capability_filespec>] [DESCRIPTION <text>];

DEFINE MESSAGE
DEFINE MESSAGE — Creates a local VSI OMNI definition of a message object and associates it with
a VMD previously defined.

Format
DEFINE MESSAGE [<vmd_name>:]<msg_name> LENGTH <msg_length>
[DESCRIPTION <text>];

DEFINE PROGRAM INVOCATION
DEFINE PROGRAM INVOCATION — Creates a definition of a program invocation and associates the
PI with a VMD definition.

Format
DEFINE PROGRAM INVOCATION [<vmd_name>:]<pi_name> [DESCRIPTION
<text>] DOMAIN LIST <dom_id>[,<dom_id>] . . . [[NO] DELETABLE] [[NO]
REUSABLE] [[NO]EXECUTION ARG STRING <text>];

DEFINE NAMED VARIABLE
DEFINE NAMED VARIABLE — Creates a VSI OMNI definition of a named variable and associates
the definition with a defined domain or VMD.

Format
DEFINE NAMED VARIABLE [<vmd>:][<dom>.]<var> {<type>} [[NO]
DELETABLE] DESCRIPTION <text>;

36

Chapter 3. OMNI Definition Facility (ODF) Commands

DEFINE UNNAMED VARIABLE
DEFINE UNNAMED VARIABLE — Creates a VSI OMNI definition of an unnamed variable object
and associates the definition with a defined domain or VMD.

Format
DEFINE UNNAMED VARIABLE [<vmd>:]<var> <type> <address> [[NO] Supply
Type Spec] [DESCRIPTION <text>];

DEFINE APPLICATION NAMED TYPE
DEFINE APPLICATION NAMED TYPE — Creates an application named type definition.

Format
DEFINE APPLICATION NAMED TYPE [<vmd>]: [<dom>.]<type> [FROM MMS
NAMED TYPE <ref>] <app_type_specification> [DESCRIPTION <text>];

DEFINE VMD
DEFINE VMD — Creates a local VSI OMNI definition of a VMD.

Format
DEFINE VMD <vmd_name> APPLICATION SIMPLE NAME <app_simple_name>
[VERSION <version_number>] [NESTING LEVEL <word_value>] [MAXIMUM
SERVICES CALLED <word_value>] [MAXIMUM SERVICES CALLING
<word_value>] [MAXIMUM SEGMENT SIZE <integer_value>] [PARAMETER
CBB <cbb_list>] [SUPPORTED SERVICES <supported_service_list>] [[NO]
VENDOR <vendor_name>]

DEFINE VMD <vmd_name> [[NO] MODEL <model>] [[NO] REVISION
<revision>] [DESCRIPTION <text>];

DELETE DEFINITION
DELETE DEFINITION — Removes a definition from the database. A definition cannot be deleted until
all its dependent definitions have been deleted.

Format
DELETE DEFINITION <def_ref>[,<def_ref>] . . . ;

DISABLE
DISABLE — Stops logging of the current ODF session. The logfile is not closed. To close the file, issue
a SET ODF LOGFILE command or exit the session.

37

Chapter 3. OMNI Definition Facility (ODF) Commands

Format
DISABLE ODF LOGGING;

DO
DO — Executes a series of stored commands, such as those saved in a script file by the ENABLE
command. DO is a synonym for @.

Format
DO <script_file>;

ENABLE
ENABLE — Turns on OMNI logging to the log file specified in the most recent SET ODF LOGFILE
command. If no log file has been set since the start of the ODF session, ODF tries to create a file OMNI
$ODF.LOG in the current default directory and log commands to that file.

Format
ENABLE ODF LOGGING;

EXIT
EXIT — Commits any outstanding changes to the database and exits ODF. If the outstanding changes
are invalid, ODF reports an error and does not exit.

Format
EXIT;

QUIT
QUIT — Cancels all the DEFINE and DELETE commands you have entered since the last COMMIT
command and exits from the session. No definition data from the cancelled commands is written into the
database.

Format
QUIT;

ROLLBACK
ROLLBACK — Cancels all the DEFINE and DELETE DEFINITION commands you have entered since
the last COMMIT command. No definition data is written into the database from the commands within
the range of the rollback.

38

Chapter 3. OMNI Definition Facility (ODF) Commands

Format
ROLLBACK;

SET ODF LOGFILE
SET ODF LOGFILE — Specifies the file to which ODF logs the session.

Format
SET ODF LOGFILE <vms_file_specification>;

Description
The log file is opened immediately, but logging is disabled until you enter an ENABLE ODF LOGGING
command. If a log file is already open, ODF closes the file before attempting to open the new file. If
logging is currently enabled, ODF issues an implicit DISABLE ODF LOGGING command.

SET COMPANION STANDARD
SET COMPANION STANDARD — Sets the ODF command syntax (if the companion standard extends
the syntax) and the default companion standard name for definitions created under ODF. A VMD and its
dependencies must all be defined under the same companion standard.

Format
SET COMPANION STANDARD <companion_standard_name>;

SET SCOPE
SET SCOPE — Specifies the definitions that ODF uses as the default scope. The scope of an ODF
command is the VMD or domain definition or both with which the command is associated.

Format
SET SCOPE [<vmd_name>] [:<domain_name>];

SHOW
SHOW — Displays current ODF session settings.

Format
SHOW <setting> ;

SHOW DEFINITION
SHOW DEFINITION — Displays definitions from the database on the terminal. If modifications have
been made, but not committed, they will also be visible.

39

Chapter 3. OMNI Definition Facility (ODF) Commands

Format
SHOW DEFINITION <def_ref> [, <def-ref>]<hellipsis>;

WRITE DEFINITION
WRITE DEFINITION — Writes out definitions to a file. Each definition is written as a valid ODF
command. If you include a file specification, ODF opens the file, writes the definitions, and closes the
file. If you omit the file specification, ODF appends the definitions to the current log file. (If there is no
open log file, ODF opens a new version of OMNI$ODF.LOG and writes the definitions.)

Format
WRITE DEFINITION <def_ref>[, <def_ref>] . . . [TO <filespec>];

40

Chapter 4. OMNI Command
Language
One user interface to VSI OMNI network management is the OMNI Command Language (OMNICL).
OMNICL consists of a set of commands that enable you to read and monitor data on the OMNI system.
In this chapter, the OMNICL features and commands are described.

4.1. OMNICL Command Syntax
OMNICL commands contain the following elements:

● keyword

● component-id

● attribute

● value

For example:

SET OMNICL LOGGING OUTPUT OPCOM

The keyword describes the operation you want to perform and the component-id describes the major
component affected by the command.

Most commands also have several attribute options to further qualify the action of the command. Also, if
you plan to change the value of an attribute, you must enter the new value in the command line.

In this chapter, each command is listed by keyword and component-id. A description of the command
and the correct format are given and then any attribute for that command is listed under "Attributes".
Variables you need to enter are identified with their associated attributes, but are described separately in
the area marked "Values".

4.1.1. OMNICL Command Language Interface
The Command Language Interface (CLI) guides you through the correct syntax of each OMNICL
command using prompts and a list of options for each keyword and attribute level.

For example, suppose you want to use the SET command but cannot remember the exact syntax or
choices of the command. Simply type in the SET command followed by a carriage return, as shown:

OMNICL> SET

Because the command has been entered in incomplete form, CLI automatically prompts for the next
word in the command, which is the name of the component-id. Only those ids that support the SET
command are listed as options. All options are enclosed within parentheses, as follows:

* (EVENT, OMNICL, DEFAULT, NODEFAULT)? OMNICL LOGGING

4.1.1.1. Level-by-Level Prompting
You can specify the entire command without using CLI, or you can specify part of the command and
have CLI prompt only for those words that you miss.

41

Chapter 4. OMNI Command Language

Because CLI displays only supported options, prompting for options is a good way to check the syntax of
a command after receiving a parser error. Any attribute or keyword you specify that is not in the CLI list
of options is not supported for that command.

4.1.1.2. Short Lines and Abbreviations
You can shorten the command line by shortening the number of words you specify and the number of
letters in each word. You can abbreviate any word to the minimum number of letters that make it unique.
This is usually three letters. (You will receive an error message if the parser finds the term ambiguous.)

Once unique words are encountered in the command line, you do not have to enter remaining keywords
or attributes to execute the command. CLI automatically assumes the missing words.

4.2. Invoking and Exiting OMNICL
Before you can invoke OMNICL, you must confirm that your VSI OMNI license is correctly registered
and loaded. If it is not registered and loaded, invocation will fail. Refer to the VAX License Management
Utility Reference Manual for details about license management.

You can issue OMNICL commands one at a time using Digital Command Language (DCL), or you can
invoke OMNICL and issue as many commands as you want before returning to the DCL prompt ($).

To use DCL for single line commands, first define OMNICL as follows:

$ OMNICL :== $OMNI$CL

To issue a single OMNICL command to DCL, type:

$ OMNICL command "attributes . . . "
$

OMNICL executes the command and returns you to the DCL system prompt. To invoke OMNICL
through DCL for an interactive session, type:

$ OMNICL
OMNICL>

Once invoked, the OMNICL prompt is displayed on the screen. (When specifying commands directly to
OMNICL rather than DCL, do not use foreign command format.) Issue the first command next to the
prompt. If you leave out required component-ids or attributes, OMNICL prompts for them.

To invoke OMNICL for an interactive session without using DCL, use the RUN command as follows:

$ RUN SYS$SYSTEM:OMNI$CL
OMNICL>

To exit OMNICL and return to the DCL system prompt, issue either the EXIT command or press Ctrl/
z.

4.3. Getting Help Through OMNICL
After you invoke OMNICL, you can use the HELP command to display quick reference information
about individual commands. Type HELP and the name of the command if you want information as
shown in the following example, or type HELP followed by a carriage return to receive a menu of
options. For example:

42

Chapter 4. OMNI Command Language

OMNICL> HELP SET OMNICL LOGGING

A display of HELP information on the SET OMNICL LOGGING command is returned when this
command executes.

43

Chapter 4. OMNI Command Language

44

OMNI Commands
SET DEFAULT
SET DEFAULT — Establishes the default application entity for subsequent commands. If SET
NODEFAULT is entered, the default application entity is cleared.

Format
SET [NO]DEFAULT <application_entity>

Attributes
None.

Values
<application_entity>

Specifies the application entity name. The name must be known to Directory Services or a fully qualified
network address. The name is a character string.

SET EVENT LOGGING
SET EVENT LOGGING — Defines the events to be logged and where those events will be logged.
OMNI events that you log are separate from DNA, OSAK, and VOTS events. Events you can log are on
a system-wide level; no application or association- specific events can be logged. By default, logging is
disabled.

Format
SET EVENT LOGGING [OUTPUT= <dest_str>]

Attributes
OUTPUT= <dest_str>

Specifies where output is logged.

Values
<dest_str>

Specifies a destination name. The default destination is OPCOM, but a local or remote file can also be
the destination.

SET OMNICL LOGGING
SET OMNICL LOGGING — Defines the script file to be logged and where that script file will be
logged.

45

OMNI Commands

Format
SET OMNICL LOGGING OUTPUT= <dest_str>]

Attributes
OUTPUT= <dest_str>

Specifies where output is logged.

Values
<dest_str>

Specifies a destination name.

SHOW VERSION
SHOW VERSION — Displays the current version of VSI OMNI.

Format
SHOW VERSION

SHOW EVENT LOGGING
SHOW EVENT LOGGING — Displays either EVENT logging attributes that are provided by VSI
OMNI as default values or are logging values that are set using the SET EVENT LOGGING command.

Format
SHOW EVENT LOGGING

SHOW OMNICL LOGGING
SHOW OMNICL LOGGING — Displays either OMNICL logging attributes that are provided by
VSI OMNI as default values or are logging values that are set using the SET OMNICL LOGGING
command.

Format
SHOW OMNICL LOGGING

SHOW APPLICATION_ENTITY
SHOW APPLICATION_ENTITY — Displays the logging attributes set by using the SET DEFAULT
command. Each active association for the specified application entity is displayed along with its
associated state. If the KNOWN option is invoked, all known application entities are displayed.

46

OMNI Commands

Format
SHOW [KNOWN] APPLICATION_ENTITY [<application_entity>]

Attributes
<dest_str>

Specifies the destination.

<event_id>

Identifies the event.

Values
<application_entity>

Specifies the name of the application entity.

SHOW ASSOCIATIONS
SHOW ASSOCIATIONS — Displays associations.

Format
SHOW [KNOWN] ASSOCIATIONS [<Sys ID>]

Attributes
None.

Values
<Sys ID>

Specifies a unique association-id.

ENABLE EVENT LOGGING
ENABLE EVENT LOGGING — Initiates event logging.

Format
ENABLE EVENT LOGGING

ENABLE OMNICL LOGGING
ENABLE OMNICL LOGGING — Initiates scripting

47

OMNI Commands

Format
ENABLE OMNICL LOGGING

DISABLE EVENT LOGGING
DISABLE EVENT LOGGING — Discontinues event logging.

Format
DISABLE EVENT LOGGING

DISABLE OMNICL LOGGING
DISABLE OMNICL LOGGING — Discontinues scripting.

Format
DISABLE OMNICL LOGGING

DO
DO — Invokes command files.

Format
DO <script_filename>

Attributes
None.

Values
<script_filename>

Specifies the script file. The default file extension is .SCP.

Description
Commands can be stored in text files either by using a text editor or by invoking the logging facility with
ENABLE OMNICL LOGGING. These command files, or scripts, are invoked by the DO command and
are useful for initialization and other commonly performed activities.

48

OMNI Commands

When the DO command invokes a script, OMNICL recognizes that script as an alternative source of
standard commands. DO scripts are executed synchronously. Multiple levels of scripts are allowed.

49

OMNI Commands

50

	VSI OMNI Pocket Guide
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Associated Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Programming with VSI OMNI
	OMNI$ABORT
	OMNI$ACCEPT_CONCLUDE
	OMNI$ACCEPT_CONNECT
	OMNI$CANCEL
	OMNI$CONCLUDE
	OMNI$CONNECT
	OMNI$CREATE
	OMNI$DELETE
	OMNI$DOWNLOAD
	OMNI$END_LIST
	OMNI$FDELETE
	OMNI$FDIR
	OMNI$FGET
	OMNI$FRENAME
	OMNI$GET_ATTRIBUTE
	OMNI$GET_DEFINITION
	OMNI$GET_HANDLE_BY_NAME
	OMNI$GET_HANDLE_LIST
	OMNI$GET_INDICATIONS
	OMNI$GET_REMOTE_ATTRIBUTES
	OMNI$GET_VALUE
	OMNI$GROUP_VARIABLES
	OMNI$INITIALIZE
	OMNI$KILL
	OMNI$LISTEN
	OMNI$LOAD_DEFINITIONS
	OMNI$MODIFY_DEFINITION
	OMNI$PUT_VALUE
	OMNI$REJECT
	OMNI$REJECT_CONCLUDE
	OMNI$REJECT_CONNECT
	OMNI$RESET
	OMNI$RESUME
	OMNI$START
	OMNI$STOP
	OMNI$OMNI_TO_VMS_TIME
	OMNI$UPLOAD

	Chapter 2. OMNI Definition Facility
	2.1. ODF and Companion Standards
	2.2. ODF Command Language Interface
	2.2.1. Level-by-Level Prompting
	2.2.2. Short Lines and Abbreviations

	2.3. Invoking and Exiting ODF
	2.4. Getting Help Through ODF
	2.5. Creating a Definition of a VMD
	2.6. Creating a Definition of a Domain
	2.7. Creating a Definition of a Program Invocation
	2.8. Creating a Definition of a Variable
	2.8.1. Named Variables
	2.8.2. Unnamed Variables

	2.9. Defining Variable Types
	2.9.1. Creating an MMS Named Type Definition
	2.9.2. Creating an Application Named Type Definition
	2.9.3. Creating Application Type Definitions for Alternate Access

	2.10. Committing Definitions to the ODF Database
	2.11. Setting the Default Scope
	2.12. Deleting a Definition
	2.13. Creating, Opening, and Closing a Log File
	2.14. Enabling and Disabling Logging
	2.15. Executing Stored Commands
	2.16. Creating a Command to Repeat a Definition
	2.17. Exiting and Quitting an ODF Session

	Chapter 3. OMNI Definition Facility (ODF) Commands
	COMMIT
	DEFINE DOMAIN
	DEFINE MESSAGE
	DEFINE PROGRAM INVOCATION
	DEFINE NAMED VARIABLE
	DEFINE UNNAMED VARIABLE
	DEFINE APPLICATION NAMED TYPE
	DEFINE VMD
	DELETE DEFINITION
	DISABLE
	DO
	ENABLE
	EXIT
	QUIT
	ROLLBACK
	SET ODF LOGFILE
	SET COMPANION STANDARD
	SET SCOPE
	SHOW
	SHOW DEFINITION
	WRITE DEFINITION

	Chapter 4. OMNI Command Language
	4.1. OMNICL Command Syntax
	4.1.1. OMNICL Command Language Interface
	4.1.1.1. Level-by-Level Prompting
	4.1.1.2. Short Lines and Abbreviations

	4.2. Invoking and Exiting OMNICL
	4.3. Getting Help Through OMNICL

	OMNI Commands
	SET DEFAULT
	SET EVENT LOGGING
	SET OMNICL LOGGING
	SHOW VERSION
	SHOW EVENT LOGGING
	SHOW OMNICL LOGGING
	SHOW APPLICATION_ENTITY
	SHOW ASSOCIATIONS
	ENABLE EVENT LOGGING
	ENABLE OMNICL LOGGING
	DISABLE EVENT LOGGING
	DISABLE OMNICL LOGGING
	DO

