I II VMS Software

VSI OpenVMS
VSI OMNI Pocket Guide

Operating System and Version: VS| OpenVMS IA-64 Version 8.4-1H1 or higher
VS| OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: VSI OMNI Version 4.1

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI OMNI Pocket Guide

I II VMS Software

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.
Intel, Itanium and IA64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or other
countries.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vista is either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is a registered trademark of The Open Group.

UNIX is a registered trademark of The Open Group.

ii

VSI OMNI Pocket Guide

Table of Contents

Preface vii
Lo ADOUL VST o vii
2. INteNAEd AUIENCEeevviiiiiiiiiiiiiiiiiitietee ettt eeeee e neneneeenenes vii
3. DOCUMENE SIUCLUTE ..eevvvuiieeeeiiiiiiiiiiee e e ee ettt e e e e e ettt e e e e e eeetabbaeeeeeeeeeeatbnanaeeeaeeeees vii
4. ASSOCIAtEd DOCUIMIENLSceeiiiiiiiiiiiee et ettt e e ettt e e e e ettt e e e e eeeeeebbbaeseeeeeeeenaans vii
5. VSI Encourages YOUT COMIMENLSceeeeeeeriiiiiiieeeeetetiiiiiieeeeeeetttiaiiaeeeeeeeeeeseninneeeeaeeees viii
6. OpenVMS DOCUMENTALION ...cevvvviiiieeeeiiiiiiiiiie e et e e ettt e e e e e eetttbie s e e eeeeetaaabiaeseeeeeeaenns viii
7. TypographiCal CONVENTIONSeeeeertiiiiiiiiieeeeeeetiiiiiieeeeeeeettttii e eeeeeteabbaa e eeeeeeeenennnnns viii

Chapter 1. Programming with VSI OMNI 1
OMNISABORTootiiiiiiieeeeiiciiiiteee e e e eeeiet ittt eeeee e e attbaeeeaaeesassssssseaeeaesssessnssssseaeeaeessannses 11
OMNISACCEPT_CONCLUDEcceeiiiiiiiiiitieeeeeseeiieeteeeeeeeeeiireeeeeeeeseennessraeeeaessesnnnnnssees 12
OMNISACCEPT_CONNECTuttiiiiiieeieiiiiiiieteeeeeseseiirtreeeeeeeesssessseeeeeesssesssssssseseeassesasnnes 12
OMNISCANCELouiiiiiiieeeeieiiittte e e e e e e ettt et e e e e e e eeabreeeeaeeesessssssaaeteasassssssssssaeeaeessannnnes 12
OMNISCONCLUDEcoiiiiiiittiiiiite ettt et e ettt e e ettt e e e et e e e st e e e s anbaeee s 12
OMNISCONNECTiiiiiiitieee e e ettt et e e e e e e eatreeeeeeeesesssarssaaaeaeessessssssssraeeesesassnsssseeeeens 12
OMNISCREATEcooiiiiiiiiiiiieee ettt ettt e et e e et e e e e abaeeeenaeeees 13
OMNISDELETEooiiiiiiiiiteioe ettt ettt e ettt e e et e e e sianeeeeanes 13
OMNISDOWNLOAD ...ttt ettt e e ettt e e sttt e e et eeseabaeeeeaas 13
OMNISEND _LIST ..oiiiiiiiiiiitittee ettt e e e e ettt e e e e e e esataaaeeeeeeeessnnsssaeaaeeeesessnnsssseeeeens 13
OMNISEDELETEooiiiiiiiiiiiiiit ettt ettt e et e e st e e ettt e e e ebtaeeeenns 14
OMNISEDIRooiiiiiiiiiiieiiiiteee e e e ettt et e e e e e sserraeeeeeeeeeessnsasareeaeessssssssssssaeeesessasnsssseeeeens 14
OMNISEGET ..ottt e e ettt e ettt e e ettt eeatbaeeeesabaneeeenes 14
OMNISFRENAMEooiiiiiiiiiiiiiiiete ettt e e e e ettt et e e e e e e e atbsaeeeeeeeessnssaaeaeaeeeesnnsnssees 14
OMNISGET_ATTRIBUTEcoiiiiiiiiiieeeeiiiiieee e e ettt e e e e e e et e e e e e e e e ennnssaaeaaeeeeennnns 15
OMNISGET_DEFINITIONootiiiiiiiiiiiiiiiiieeeeeeesiiiteereeeeeeesinsrseeeeeesssasnssssreeeeesssssssnssens 15
OMNISGET_HANDLE_BY_NAMEcoiiiiiiiiiiiiiiiiiiieee ettt 15
OMNISGET_HANDLE_LISTuuiiiiiiiiiiieeettee ettt ettt e st e e eaaeee s 16
OMNISGET_INDICATIONSooiiiiiittiiiiiitee ettt ettt ettt e et e e e e e e 16
OMNISGET_REMOTE_ATTRIBUTESc.oeitiiiiiiieeeeiciieetee e e e eeirveee e e e e eiiaereeae e 16
OMNISGET_VALUEooiiiiiiiiiiiiee ettt e e e e e st aaeaeeesesntnssaaeeeaesesensnnnns 16
OMNISGROUP_VARIABLESooiiiiiiiiiiiiiee ettt ettt e e e e e e arrrreea e e e e e nenseees 17
OMNISINITIALIZEcoutiiiiiiieee ettt e e e ettt e e e e e e e ettt e e e e e e s e ssssbaeaeeaeeeeesnnsssaeeeeens 17
OMNISKILL .eeiiiiitieeeiie ettt e et e e ettt e e ettt e e e st e e e e st eeeeasbaeeeenaaeee 17
OMNISLISTEN ...ttt ettt e e ettt e e ettt e e s ettt e e ettt e e e ebtaeeenaas 18
OMNISLOAD_DEFINITIONSooiiiiiiiiiieieiiiiiiteee e e e eeeirtrteeeeeeesesetrereeeeeeeessnnnsreeeeeaens 18
OMNISMODIFY _DEFINITIONccotiiiiiiiiiiiiiiiieeeeeeeiiiiiteeereeessssenrsaeeeeaeeesssnsssseeaeesssnnnnes 18
OMNISPUT_VALUE ..ottt ettt e e et e e et e e e 19
OMNISRETECToiiiiiiitte ettt e e e e e ettt e e e e e e e tbbaaeeeaeesesassssssaaaeaeeesesnnsssssnaeeaeens 19
OMNISREJECT_CONCLUDEcciiiiiiiiiiiiiiee ittt ettt e et e e iiree e e 19
OMNISREJECT_CONNECToottiiiiiiieeeeieciiiiteeeeeeeesiiirrteeeeeesesesassseaeeaeessessnssssreaeaessnanns 19
OMNISRESET ...ttt ettt e e ettt e e et e e e sttt e e e enbaeeeeeaaees 19
OMNISRESUMEooiiiiiitiiiiitte ettt ettt e et e e st e e et eee e e 20
OMNISSTART ...ooviiiiiiieieiecit et ee e e e e ettt et e e e e e e settreeeeeaese s ssnsssreaeaeesessasssssseaeeesssesnsssssees 20
OMNISSTOP ...ooviiiiieeeeieeiiette e e e ettt et e e e e e s bt e eeeeeesesasssaeaeaesssesssssssaaeeaeeesssssssaaeeeaeens 20
OMNISOMNI_TO_VMS_TIMEottiiiiiiiiiiiiiiiiiieeeeeeecireteeeeeeeeeinrreeeeeeeeeessnsssnaeeeeeeeas 20
OMNISUPLOAD ...ttt ettt e ettt e e et e e sttt e e st e e e eibeeee s 20

Chapter 2. OMNI Definition Facility 23
2.1. ODF and Companion Standardsccccciiiiiiiiiiiiiiiieeeeeee 23
2.2. ODF Command Language INterfaceccccccuummmmiiimimiiiiiiiiiiiiiiiiiiiiiiii 23

iii

VSI OMNI Pocket Guide

2.2.1. Level-by-Level Promptingcceeeeeeiieiiiiiiiineeeeeeeiiiiiiieeeeeeeeeeeiiiiieeeeeeeeesnennnnns 24
2.2.2. Short Lines and AbDIEVIAtIONSccceeeeeieiieeieeeeeeee e 24

2.3. Invoking and EXiting ODFuciiiiiiiiiiiiiiiiiie et e e eeeiee e e e e e e eeeareee e e e e eeaeees 24
2.4. Getting Help Through ODFcooiiiiiiiiiiiieiec et e e e e e e eeeaaaans 24
2.5. Creating a Definition of @ VIMDcooiiiiiiiiiiiiiiiei e e et e e e e eeees 25
2.6. Creating a Definition of @ DOMAINccovuuiiiiiiiiiiiiiiiiiiie e e e e e e eeeees 25
2.7. Creating a Definition of a Program Invocationcccevereiriiiiiiiiiinnneeeeeeiiiieeeeeeeeees 26
2.8. Creating a Definition of @ Variableccooeiiiiiiiiiiiiiinieeiieeiiicee e e e e 27
2.8.1. Named Variablesoooiiiiiiiiiiiiiiii 27
2.8.2. Unnamed Variableseeeueumummmemmiiiiiiiiiiiiiiiiiiiiiiiii e 27

2.9. Defining Variable TYPEScceeeiieiiiiiiiieeeeeeeeetiiiieeee e e e eeeeeiitieaeeeeeeeeeeeaanaeeeeeeeeesnannaeens 28
2.9.1. Creating an MMS Named Type Definitioncceuvveiieirreriiiiiiiiiiinnneeeeeeeiennnn. 28
2.9.2. Creating an Application Named Type Definitionceevereieriiiiiiiiinneeennennn. 29
2.9.3. Creating Application Type Definitions for Alternate ACCeSSccceevverrererereeeeennen. 30
2.10. Committing Definitions to the ODF Databaseccceeeeeveeriiiiiiiereeereiiiiiiieneeeeeeeeeeenenns 30
2.11. Setting the Default SCOPEceeeiiiiiiiiiiiiiie e e e e e e e e e e eeeeeeees 31
2.12. Deleting @ DEefINItiONceeeeiiiiiiiiiiieeeeeeeeiiiieee e e e eee ettt e e e e e eeeeerenaeeseeeeeeessnnnaeeeeens 31
2.13. Creating, Opening, and Closing a Log Filecoooiiiiiiiiiniiiiiiiiiiiiiee e 32
2.14. Enabling and Disabling LOZZINGcovveiiiiiiiiiiiiieeeeiieiiiieeee e e et e e e e e e 32
2.15. Executing Stored COommMAandScuuuuuieeeeeeiiiiiiiieieeeeeeeeiiiiieeeeeeeeereainnneeeeeeeeeensnnnnns 32
2.16. Creating a Command to Repeat a Definitionuceeeerriiiiiiiiiiiinnneeeiciiiiceee e 33
2.17. Exiting and Quitting an ODF SESSIONuvveiiiiiiiiiiiiieeeeeeeeiiiicee e e e eeeeeiiire e e eeeeeeeeenes 33
Chapter 3. OMNI Definition Facility (ODF) Commands 35
(60107 117 18 ST UPURR TSP 35
DEFINE DOMAIN ...ttt ettt ettt e e e e e e ettt e e e e e e s e nnteeeeeas 36
DEFINE MESSAGEoottiiiiiiiiiee ettt e ettt e e e e e et eaeaeeeeaaes 36
DEFINE PROGRAM INVOCATIONcooiiiiiiiiiiiiiiieeee ettt ettt e e e e e e e eeieeeeeeee s 36
DEFINE NAMED VARIABLE ...ttt 36
DEFINE UNNAMED VARIABLEcoooiiiiiiiiiiiiie ettt ettt et e e 37
DEFINE APPLICATION NAMED TYPEccooiiiiiiiiiiieeeeee et 37
DEFINE VIMD ...ttt e ettt e e e e e sttt e e e e e s enanbbeeeeeeeeeens 37
DELETE DEFINITION ...coiiiiiiiiiiiitiiiaeee ettt e e e e ettt e e e e e e e s eeieetee e e e e e e e e 37
DISABLE ...ttt e e e e e ettt e e e e e e ettt te e e e e e e e aaaneaee 37
D PSP PPP SRR 38
ENABLE ...ttt ettt ettt e e e e ettt e e e e e e ettt e e e e e e e nebeeeeas 38
2 1 TSP PPRRP 38
(010 1 PSP UTP PP 38
ROLLBAQCK ...ttt ettt ettt e e e e e e ettt e e e e e e e bbbttt e e e e e eeaaeseeeeas 38
SET ODF LOGFILEcootiiiiiiiiiitiieeee ettt e e ettt e e e e e st teeeeeaeeeeaans 39
SET COMPANION STANDARDootiiiiiiiiiiiee et 39
SET SCOPE ...ttt ettt e ettt e e e e e ettt e e e e e e senbbeareeeeeeeens 39
) = (0 PP PPPT PP 39
SHOW DEFINITIONooiiiiiiiiiiiiiiitieee ettt e e e e e ettt et e e e e e s et eeeeeeeeeeanans 39
WRITE DEFINITIONoiiiiiiiiiiiieii ittt ettt e e e e e e et e e e e e e s enateeeeeas 40
Chapter 4. OMNI Command Language 41
4.1. OMNICL Command SYNTAXuuuieeereererriuinniaeeeeeeeererinnieaeeeeeerersnnaseeseereemsmnnanneseeeeees 41
4.1.1. OMNICL Command Language INterfacecooevvuvuieeeereeiiiiiiiiiineneeeeeeeeiinnnnns 41
4.1.1.1. Level-by-Level Promptingccouvuuiieeeeeeeieiiiiiieneeeeeeeeiiiiieneeeeeeeeennnens 41

4.1.1.2. Short Lines and Abbreviationscccccccccviiiiiiiiiiiiiiiin 42

4.2. Invoking and Exiting OMNICLccoiiiiiiiiiiiiiieie e e ee e 42
4.3. Getting Help Through OMNICLcooviiiiiiiieiiieiieiiieee et e e e e eerise e e e eeeeenees 42

v

VSI OMNI Pocket Guide

OMNI COMIMANGS ...uiivuniiineeiin e e e e e e e e e e e e et ee et eesaa e e et eesaeseaeesaneeeraaeertneerneees 45
SET DEFAULT ... e e e e e e e e e e e e e e e eaans 45
SET EVENT LOGGINGcoouniiiiiiiiiieee e e e e e e 45
SET OMNICL LOGGINGouuiiiiiiiiiie et e e e 45
SHOW VERSIONooiiiiiiiiiiiii ettt et e e e e e s s e e e eaans 46
SHOW EVENT LOGGINGcoioviiiiiiieeeeeee et 46
SHOW OMNICL LOGGINGcoovviiiiiiieeieeeee et 46
SHOW APPLICATION_ENTITY ..ottt 46
SHOW ASSOCIATIONS ...ttt ettt e e e e e e e e e e e e eeaans 47
ENABLE EVENT LOGGINGoooiiiiiiiiiiiiiee e 47
ENABLE OMNICL LOGGINGouciiiiiiieiiiee e 47
DISABLE EVENT LOGGINGooiiiiiiiiiiieeeeeeee e 48
DISABLE OMNICL LOGGINGuuiiiiiieiiiiiieeeeee et 48
| 1@ O UPORPPRRt 48

VSI OMNI Pocket Guide

Vi

Preface
1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience

This guide is intended for VSI OMNI users with experience in OpenVMS programming for distributed
systems applications and knowledge of manufacturing applications and the Manufacturing Message
Specification.

3. Document Structure

This guide consists of four chapters:

Chapter 1, "Programming with VSI OMNI" summarizes API commands.

Chapter 2, "OMNI Definition Facility" describes ODF concepts.

Chapter 3, "OMNI Definition Facility (ODF) Commands" summarizes ODF commands.

Chapter 4, "OMNI Command Language" describes OMNICL concepts and commands.

4. Associated Documents

This guide is intended to complement the online VSI OMNI documentation set that provides more
detailed information about API, ODF, and OMNICL.

The online documentation set includes:

VSI OMNI Application Programmer's Guide

VSI OMNI Guide to Using OmniView

VSI OMNI Software Installation Guide

VSI OMNI Network Manager's Guide

The online documentation can be found under the following VSI OMNI V1.1 file names:
e OMNISAPPL_PROG_GUIDE

e OMNISNETWORK_MNGR_GUIDE

e OMNISINSTALLATION_GUIDE

e OMNI$SGUIDE_TO_OMNIVIEW

vii

Preface

5. VS| Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation

The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions

The conventions found in the following table are used in this document.

Convention |Meaning

Return Press the Return key.

UPPERCASEAII uppercase letters in a command line indicate keywords that must be entered. You
TYPE can enter them in either uppercase or lowercase. You can use the first three characters to
abbreviate command keywords, or you can use the minimum unique abbreviation.

lowercase | Lowercase italics in command syntax or examples indicate variables for which either you
ital- ics or the system supplies a value.

[] In examples showing VMS directory specifications, square brackets are a necessary part
of the specification, [directory-name].

In a procedure, square brackets in an inquiry enclose the default response for the inquiry.

key Press the specified key.
CTRL/x | While holding down the Ctrl key, press the key specified by x.

Vertical ellipses (dots) in examples represent data that has been omitted.

viii

https://docs.vmssoftware.com

Chapter 1. Programming with VSI
OMNI

An application can use the VSI OMNI programming interface to perform the following operations:
e Initialize VSI OMNIL

e Load VMD object definitions and obtain a VMD definition handle.

e Obtain handles for object definitions associated with a VMD.

e Establish associations with remote applications and request other MMS environment and general
management services.

e Request VMD support services.

e Request domain services and receive client requests for domain services.

e Request program invocation services.

o Request variable access services and receive client requests to read and write local variables.
e Request file management services.

e Create, modify, and retrieve definitions using the VSI OMNI run-time facility.

See the online VSI OMNI Application Programmer's Guide for details about these operations.

VSI OMNI Procedure Call Format

The format section describes the syntax of the procedure call — that is, the call elements in their proper
sequence. The general format for a call with multiple arguments is:

status=0MNI$ procedure [_A] argl , [arg2] . . . ,[argn]

The elements are defined in Table 1.1, "Elements"

Table 1.1. Elements

Element Meaning

status A location to receive a longword condition value that the procedure
returns to the caller.

procedure A VSI OMNI procedure.

_A A suffix to specify asynchronous operation of the requested service.

argl ,[arg?] ... [argn] A list of required and optional arguments.

[...] Square brackets, used to indicate that the enclosed element is
optional. In the general format example, arg2 and argn are
optional.

, A comma, used to separate arguments in an argument list. Omitted
arguments must be indicated by 0.

Chapter 1. Programming with VS| OMNI

Note

All omitted arguments must be indicated by 0. Omitted arguments include both optional arguments and
placeholder arguments reserved for use in future versions of VSI OMNL

VSI OMNI Return Values

The VSI OMNI procedure calls return the information listed in Table 1.2, "Return Values"

Table 1.2. Return Values

VMS Usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value in R0

See the online VSI OMNI Application Programmer's Guide for information about specific, procedure call
return values.

VSI OMNI Procedure Calls

The following section defines each VSI OMNI procedure call and provides the command line format of
each procedure. See the section called “VSI OMNI Procedure Call Argument Definitions” for information
about procedure call argument definitions.

VSI OMNI Procedure Call Argument Definitions

The following section defines arguments used by VSI OMNI procedure calls.
attraddress

type: OMNISL_ENUMERATION_CONST

access: read only

mechanism: by reference

Attraddress specifies the address of a variable whose value is the attribute to retrieve.
call ed_vnd_handl e

type: OMNISL_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The handle of the VMD that the called application will make available to the remote peer. (On an OMNI
$LISTEN, the called application is the local application that has issued the OMNISLISTEN request.)

cal ling_vmd_handl e

Chapter 1. Programming with VSI OMNI

type: OMNISL_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide The handle of a VMD that the
application wants to make available during the association. If the calling_vmd_handle is included, the
application can receive client requests from the remote peer to operate on the VMD. In addition, the
handle also enables VSI OMNI to service network objects — such as variables — for the user.

cl ass
type: OMNISL_ENUMERATION_CONST

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide Class identifies the class of definition to

create.

The value of the class parameter is one of the values listed in Table 1.3, "Class Constants"

Table 1.3. Class Constants

Constant Meaning
OMNI$SK_CLS_VMD VMD
OMNIS$K_CLS_DOM Domain

OMNISK_CLS_PI

Program Invocation

OMNIS$K_CLS_NAMED_VAR

Named Variable

OMNIS$K_CLS_UNNAMED_VAR

Unnamed Variable

OMNI$K_CLS_MSG

Message

OMNI$K_CLS_MMS_NAMED_TYPE

MMS Named Type

OMNISK_CLS_MMS_TYPE_SPECIFICATION

MMS Type Specification

OMNIS$K_CLS_APP_NAMED_TYPE

Application Named Type

OMNISK_CLS_APP_TYPE_SPECIFICATION

Application Type Specification

OMNIS$K_CLS_MMS_STRUCT_COMP

MMS Structure Component

OMNIS$SK_CLS_APP_STRUCT_COMP

Application Structure Component

concl ude_f | ag
type: longword

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

Takes one of the values listed in Table 1.4, "Conclude Values"

Table 1.4. Conclude Values

Value Meaning
non 0 VSI OMNI delivers all conclude indications to the calling application for
processing.

Chapter 1. Programming with VS| OMNI

Value Meaning
0 VSI OMNI automatically accepts conclude requests.
cont ext

type: OMNISR_CONTEXT
access: read only
mechanism: see the VSI OMNI Application Programmer's Guide

A location for use by VSI OMNI. The context is the same value that was returned by OMNI
$_GET_REMOTE_ ATTRIBUTES.

cont ext addr ess

type: OMNISL_CONTEXT
access: modify

mechanism: by reference

Contextaddress is the address of a variable. This parameter is used only if you modify a multivalued
attribute.

The value of contextaddress should be initialized to NULL. If a multivalued attribute is modified, reset
the value of the context to zero before another multivalued attribute is modified.

After you specify values for the attribute, call OMNISEND_ LIST. Do not modify the value of the
context until OMNISEND_LIST has been called.

ctrl _struc

type: OMNISR_CTRL

access: read only

mechanism: by reference

A control structure to handle an event flag, AST routine, and AST parameter.
The ctrl_struc parameter is the address of the control structure.

domai n_file

type: OMNIST_FILE_NAME

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The file specification for a VMS file containing the domain contents. If you omit this parameter, OMNI
uses the domain contents file name associated with the ODF definition of the domain.

domai n_handl e

Chapter 1. Programming with VSI OMNI

type: OMNISL_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide
The identifier of a loaded domain definition.

def handl e

type: OMNISL_HANDLE

access: read only

mechanism: by value

Defhandle specifies the handle of the definition to modify. The value of this parameter is one of the
following:

e VMD Handle

e Domain Handle

e PI Handle

e Named Variable Handle

e Unnamed Variable Handle

e MMS Named Type Handle

e Application Named Type Handle

e MMS Type Specification Handle

e Application Type Specification Handle
e MMS Structure Component

e Application Structure Component

o Message Handle

def nane

type: character-coded text string

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide
The name of the definition to search for.
domain_file

type: OMNIST_FILE_NAME

Chapter 1. Programming with VS| OMNI

access: read only
mechanism: see the VSI OMNI Application Programmer's Guide

The file specification for a VMS file to receive the domain. If you omit this parameter, OMNI uses the
file name associated with the domain.

executi on_ar gunent

type: OMNIST_EXEC_ARG_STR

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

A character string appropriate to the execution of the program invocation. This field overrides the ODF
execution argument definition.

handl e

type: OMNISL_HANDLE

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide
A location to receive the definition handle.

handl eaddr ess

type: OMNISL_HANDLE

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide
Handleaddress specifies the return address of the definition handle.
i ncom ng_vmnd_struc

type: OMNI$R_VMD_DEF

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide
Service parameters proposed by the calling (remote) application.
i nvoke id

type: longword

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The identifier assigned by VSI OMNI to the service the application wants to cancel.

Chapter 1. Programming with VSI OMNI

| ast _nodified

type: OMNISL_LAST_MOD_DATE

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide

The date on which the file was last modified on the remote system. Last modified dates before January
1, 1970 are not supported.

| ocal _file_name

type: OMNIST_FILE_NAME

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide
The file specification for the local file to receive the copy.

nmet hod_handl e

type: OMNISHANDLE

access: read only

mechanism: sse the VSI OMNI Application Programmer's Guide
Method_handle modifies the default presentation of a variable.
nodel

type: character-coded text string

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The name of the MMS software service provider. VSI OMNI uses the name when replying to an Identify
Request. The default name is OMNIL

nodi fi er _obj ect

type: OMNISL_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide
Reserved for future use.

negoti ated_vnd_struc

type: OMNISR_VMD_DEF

access: write only

Chapter 1. Programming with VS| OMNI

mechanism: see the VSI OMNI Application Programmer's Guide
A VMD data structure to receive negotiated service parameters.
new renote fil e nane

type: OMNIST_FILE_NAME

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide
The file specification (in native format) for the new name.

obj ect _attribute

type: longword (unsigned)

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide
obj ect _handl e

type: OMNISL_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide
The identifier of a loaded definition for the object to be created.
omi _i osb

type: OMNIS$R_IOSB

access: write only

mechanism: by reference

The VSI OMNI I/O status block. For a description of the codes that VSI OMNI returns to the IOSB, see
the VSI OMNI Application Programmer's Guide .

The omni_iosb parameter is the address of the status block.
original _renote file nane

type: OMNIST_FILE_NAME

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The file specification (in native format) for the remote file to rename.
pdat a

type: depends on value

Chapter 1. Programming with VSI OMNI

access: read only
mechanism: see the VSI OMNI Application Programmer's Guide

Pdata is a pointer to a data structure that receives the value of the object or to a data structure that
contains the value of the object.

pi _handl e

type: OMNISL_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The identifier of a loaded program definition.

reason

type: condition value

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The reason the conclude request is being rejected. Reserved for future use.
recei ve_struct

type: depends on attribute specified

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide

VSI OMNI uses the code to construct a location to contain the returned attribute value.
renmote fil e _nane

type: OMNIST_FILE_NAME

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The file specification (in native format) for the remote file to receive the copy.
reqg_net hod_handl e

type: OMNISL_HANDLE

access: read only

mechanism: by reference

Identifier of a defined and loaded access method. If present, this method overrides the method
associated with the Response Data object in ODF.

Chapter 1. Programming with VS| OMNI

The req_method_handle parameter is the address of the handle.
revision

type: character-coded text string

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide
The version number of OMNI software. The default version is V1.0.
scope

type: OMNISL_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

A handle indicating the scope of the search. The scope parameter is typically the handle of a VMD or a
domain. VSI OMNI limits its search to the specified VMD or domain.

The scope parameter is the handle of a VMD (obtained using OMNISLOAD_DEFINITIONS) or a
domain (obtained by a previous call to OMNI$SGET_HANDLE_BY_NAME).

si ze

type: OMNISL_SIZE_OF_FILE

access: write only

mechanism: see the VSI OMNI Application Programmer's Guide
Size of the file on the remote device.

translate flag

type: longword

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

One of the values in Table 1.5, "Values" to specify the way VSI OMNI handles initation indications
received from a remote VMD.

Table 1.5. Values

Value Meaning

0 VSI OMNI rejects the initiation if the calling application specifies a VMD whose
definition is not currently loaded.

non 0 If the calling application specifies a VMD that is not currently loaded, VSI OMNI
returns the initiation indication, creates a dummy VMD definition, and passes the
handle of the dummy definition to the user.

10

Chapter 1. Programming with VSI OMNI

val ue

type: see table

access: write only

mechanism: by reference

Value is the address of a buffer in which the attribute value is returned.
val ue_structure

type: depends on value

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide
A data structure containing the value of the object.
vimd_handl e

type: OMNISL_HANDLE

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide

The longword identifier of a loaded VMD definition. The vind_handle is returned by the OMNI
$LOAD_ DEFINITIONS procedure.

vnd_nane

type: character-coded text string

access: read only

mechanism: see the VSI OMNI Application Programmer's Guide
The name of the VMD whose local definitions you want to load.
vendor

type: character-coded text string

access: read only

mechanism: by reference

The name of the system vendor. VSI OMNI uses the vendor name when replying to an Identify-Request.
The default name is VSL

OMNISABORT

OMNIS$SABORT — Immediately terminates an association with a remote VMD. All pending requests
return with status OMNI$SABORT.

11

Chapter 1. Programming with VS| OMNI

Format

st at us=OWNI $ABORT[_A] vnd_handl e, [omi _iosb], [ctrl _str]

OMNI$ACCEPT CONCLUDE

OMNI$ACCEPT_CONCLUDE — Accepts an association conclude request from a remote application.

Format

st at us=OVNI $ACCEPT_CONCLUDE[_A] vnd_handl e, [omi _iosb], [ctrl _str]

OMNISACCEPT_CONNECT

OMNISACCEPT_CONNECT — Accepts an association request from a remote VMD.

Format

st at us=OVNI $ACCEPT_CONNECT[_A] vnd_handl e, reserved,
[conclude_flag], [omi _iosb], [ctrl_struc]

OMNI$SCANCEL

OMNI$CANCEL — Cancels a request previously issued but not yet completed.

Format

st at us=OVWNI $CANCEL[_A]i nvoke_i d, [omi _isob], [ctrl _struc]

OMNI$SCONCLUDE

OMNI$CONCLUDE — Brings an association with a remote VMD to an orderly conclusion. It is valid
to conclude an association only when all requests have been satisfied. If there are pending operations on
the association, VSI OMNI does not accept an OMNISCONCLUDE request.

Format

st at us=OVNI $CONCLUDE[_A] vnd_handl e, [omi _iosb], [ctrl _str]

OMNISCONNECT

OMNI$CONNECT — Initiates an association with a remote VMD. The calling VMD specifies network
objects.

Format

st at us=OVNI $CONNECT[_A] vnd_handl e, reserved, [calling_vnd_handl e],
[negotiated _vnd_struc], [conclude_flag], [omi _iosb], [ctrl_struc]

12

Chapter 1. Programming with VS| OMNI

OMNI$SCREATE

OMNIS$CREATE — Creates an object on a VMD.

Format

st at us=OWNI $CREATE[_A] [invoke_id], object_handl e,
[modifier_object], [omi _iosb], [ctrl_struc]

OMNI$DELETE

OMNIS$SDELETE — Deletes a specific object on a VMD. Only objects with no dependencies can be
deleted. For example, a domain with an associated program invocation cannot be deleted until the
program invocation is deleted.

Format

st at us=OWNI $DELETE[_A] [invoke_id], object_handl e,
[modifier_object], [omi _iosb], [ctrl _struc]

Description

OMNIS$DELETE does not delete the definition obtained by OMNI$SLOAD_DEFINITIONS. The only
way to delete an object definition is through the use of ODF.

OMNISDOWNLOAD

OMNI$DOWNLOAD — Initiates the downloading of a domain to a remote VMD.

Format

st at us=OWNI $DOMLOAD] _A] [i nvoke_id], domai n_handl e, [domain_file],
[modifier_object], [omi _iosb], [ctrl_struc]

Description

e You cannot download a domain that already exists on the VMD.

e If a domain file specification is not included in the OMNISDOWNLOAD call or in the ODF
definition, VSI OMNI returns an error code.

e If, on completion of the download service, the domain has been discarded by the remote application,
the user is notified in the JOSB.

e VSI OMNI supports only one download to a domain at a time.

OMNISEND_LIST

MNIS$SEND_LIST — Terminates the use of a list context. OMNI$SGET REMOTE_ATTRIBUTES
allocates memory. OMNISEND_LIST frees that same memory. Failure to call OMNISEND_LIST
results in an increase of memory usage.

13

Chapter 1. Programming with VS| OMNI

Format

st at us=OVNI $END_LI| STcont ext

OMNI$SFDELETE

OMNIS$FDELETE — Deletes a file from a remote system. Wildcards are delivered to the remote device
as specified. See PIC for remote device specification.

Format

stat us=OWNI $FDELETE[_A] [invoke_id], vnd_handle, renote_file_name,
[modi fier_object], [omi _iosb], [ctrl_struc]

OMNISFDIR

OMNISFDIR — Obtains a list of file specifications from a remote directory. To get the file
specifications in the directory, call the OMNI$SGET_ATTRIBUTE procedure for each filespec.
OMNISFDIR allocates space for a buffer to contain the directory. To release the buffer, call OMNI
$END_LIST.

Format

status=OWNI $FDI R[_A] [invoke_id], vnd_handl e, renote_directory,
context, [nodifier_object], [omi _iosb], [ctr]_struc]

OMNISFGET

OMNISFGET — Copies a file from the remote system to the local system.

Format

st at us=OWNI $FCGET[_A] [invoke_id], vnd_handle, renote file_nane,
| ocal _file_name, [size], [last_nodified], [nodifier_object],
[ommi _iosb], [ctrl_struc]

Description

e If an error occurs while writing the file, the file is deleted.
e Wildcards must reduce to one file name.
e If the local file already exists, the record attributes are inherited from the previous version.

e If the local file does not exist, the file created is compatible with an FTAM-3 document type. OMNI
$FGET creates a file with RMS record format undefined and RMS record attributes of none.

OMNI$SFRENAME

OMNISFRENAME — Renames a file on the remote system.

14

Chapter 1. Programming with VS| OMNI

Format
st at us=OWNI $FRENAVE[_A] [invoke_id], vnd_handl e,

original _renmote file name, new renote file name, [nodifier_object],
[ommi _iosb], [ctrl _struc]

OMNISGET_ATTRIBUTE

OMNIS$SGET_ATTRIBUTE — Obtains: 1. A specific object attribute from a list of attributes obtained
by the OMNISGET_REMOTE_ATTRIBUTE procedure. 2. A file specification from a remote directory
obtained by the OMNI$FDIR procedure.

Format

st at us=OWNI $CET_ATTRI BUTE context, object_attribute, receive_struc

Description

The receive structure is based on the type of attribute. The OMNI$SGET_ATTRIBUTE procedure
reads the first value of the specified type. To read the next value of the same type, call OMNI
$GET_ATTRIBUTE with a NULL attribute.

OMNISGET_DEFINITION

OMNISGET_DEFINITION — Retrieves the value of a specified attribute of a specified definition and
inserts the value in an address specified by the caller.

Format

t at us=OVNI $GET_DEFI NI TI ON (def handl e, att raddr ess, cont ext addr ess,
val ue)

Description

OMNISGET_DEFINITION retrieves the values of both single-valued and multivalued attributes.

In the case of multivalued attributes, OMNI$GET _DEFINITION acts similar to OMNI
$GET_HANDLE_LIST. Each call to either of the routines, returns one value.

The value of the ATTRIBUTE parameter should specify the address of the attribute on the first call,
and should be NULL thereafter. A value of NULL for the ATTRIBUTE parameter indicates that the
next value should be specified or retrieved. In the case of OMNISGET_DEFINITION, when the last
value has been retrieved, OMNI$_ENDOFLIST is returned as the status value. The OMNISEND_LIST
routine should be called after a list of values has been retrieved.

OMNISGET_HANDLE_BY_NAME

OMNI$GET_HANDLE_BY_NAME — Locates the handle of a specified object definition. The name
used when the definition was created with ODF is supplied to identify the definition.

15

Chapter 1. Programming with VS| OMNI

Format

st at us=OWNI $CET_HANDLE_BY_NAME scope, cl ass, def_nane, handl e

OMNI$GET HANDLE_LIST

OMNISGET_HANDLE_LIST — Returns a definition handle of the specified class for the specified
scope.

Format

st at us=OMNI $GET_HANDLE LI ST scope, class, context, handle

Description
When used as part of a loop, OMNISGET_HANDLE_LIST can retrieve all of the handles of a specified
class for the specified scope. OMNISGET_HANDLE_LIST sets the value pointed to by the receiving

handle to NULL before assigning it a valid value. Even if OMNI$SGET_HANDLE_LIST returns an
error, the value pointed to by the receiving handle can still be zero.

OMNISGET_INDICATIONS

OMNIS$GET_INDICATIONS — Receives the following indications from a remote application:Read/
write indications, Unsolicited status, Conclude indications, Abort indications, Information reports.

Format

st at us=OVNI $GET_| NDI CATI ONS[_A] vnd_handl e, def _handl e, context,
i ndi cation_type, reserved, [omi _iosb], [ctrl _struc]

Description

Issue one OMNI$SGET_INDICATIONS call per remote VMD.

OMNI$SGET_REMOTE_ATTRIBUTES

OMNISGET_REMOTE_ATTRIBUTES — Obtains a list of current attribute values for an object on a
remote MMS system.

Format

st at us=OWNI $CGET_REMOTE_ATTRI BUTES[_A] [i nvoke_i d], def_handl e, cl ass,
context, [nodifier_object], [omi _iosb], [ctrl_struc]

OMNISGET_VALUE

OMNISGET_VALUE — As a client procedure, obtains the value of a variable on a remote VMD. As a
server procedure, OMNI$SGET_VALUE obtains the value referred to by a write indication.

16

Chapter 1. Programming with VS| OMNI

Format

stat us=OWNI $GET_VALUE[_A] [invoke_id], object_handle,
[met hod_handl e], receiving_struc, [nodifier_object], [omi _iosb],
[ctrl _struc]

OMNI$SGROUP_VARIABLES

OMNI$GROUP_VARIABLES — Allows to read or write multiple variables.

Format

st at us=0OVWNI $GROUP_VARI ABLES(cont ext addr ess, obj ect handl e,
nmet hod_handl e, pdata, nodi fi er _obj ect, ommi _i osb);

Description

You can use this procedure by following these steps:
1. Set the context variable to be used to zero.

2. Call the OMNISGROUP_VARIABLES with the pointer to the context, variable handle, alternate
access handle, pointer to data, modifier handle, and pointer to ISOB for one variable.

3. Repeat step 2 as many times as necessary for different variables, using the same context.

4. Call the OMNISGET_VALUE[_A] or OMNI$PUT_ VALUEJ[_A], substituting the context value
for the variable handle, and omitting the object handle, method handle, pointer to data, and modifier
handles.

5. The group context is in effect until an OMNISEND_LIST with the context specified is done.

The IOSB that is passed in each time to the OMNI$SGROUP_VARIABLES function indicates whether
the transaction was successful on the variable.

If variables are grouped together and the user passes to OMNISGET_VALUE[_A] or OMNI
$PUT_VALUE[_A] a pointer to an IOSB, that IOSB represents the general transaction completion.

OMNISINITIALIZE

OMNISINITIALIZE — Sets up VST OMNI data structures and specifies values for the following
operating parameters: 1. Vendor name (the default is VSI). 2. Model name (the default is VST OMNI). 3.
Revision name.(the default is V1.0).

Format

tat us=OVWNI $I NI TI ALI ZE [vendor], [nodel], [revision]

OMNISKILL

OMNIS$KILL — Ends a program invocation on a VMD by causing it to transition to the unrunnable
state.

17

Chapter 1. Programming with VS| OMNI

Format

status=OWNI $KI LL[_A] [invoke_id], pi_handle, [nodifier_object],
[ommi _iosb], [ctrl _struc]

OMNISLISTEN

OMNISLISTEN — Receives an association request from a remote application.

Format

status=OWNI $LI STEN _A] cal l ed_vnd_handl e, transl ate_fl ag,
calling vmd_handl e, [incom ng_vnd_struc], [omi _iosb], [ctrl _str]

OMNISLOAD_DEFINITIONS

OMNISLOAD_DEFINITIONS — Loads the definitions that have been created by ODF for one VMD
object and related objects.

Format

st at us=OWNI $LOAD _DEFI NI TI ONS vnd_nane, vnd_handl e

OMNISMODIFY_DEFINITION

OMNIS$SMODIFY_DEFINITION — Modifies the value of a specified attribute of a specified definition.
The address of the new attribute value is passed as a parameter to the routine.

Format

st at us=0OWNI $MODI FY_DEFI NI TI ON(def handl e, attraddress,
cont ext addr ess, val ue)

Description

OMNIS$SMODIFY_DEFINITION modifies the values of both single-valued and multivalued attributes.
In the case of multivalued attributes, OMNI$SMODIFY _DEFINITION is used much like OMNI
$GET_HANDLE_LIST. Each call to OMNI$SMODIFY_DEFINITION specifies one value. The value of
the ATTRIBUTE parameter should specify the address of the attribute on the first call, and should be
NULL thereafter. A value of NULL for the ATTRIBUTE parameter indicates that the next value should
be specified.

OMNISEND_LIST should be called after modifying a list to free space allocated for bookkeeping by
VSI OMNL

A definition is not usable until the value of its SCOPE attribute has been modified. The scope of a
definition can be modified only once, and each class of definition must have a particular set of attributes
modified before its scope can be modified. Modification of the value of a definition's scope is equivalent
to the committal of that definition in ODF.

18

Chapter 1. Programming with VSI OMNI

OMNISPUT_VALUE

OMNIS$PUT_VALUE — As a client procedure, modifies the value of a variable on a remote VMD.
As a server procedure, OMNISPUT_VALUE transmits the value of the variable specified by a read
indication.

Format

st at us=OWNI $PUT_VALUE[_A] [invoke_id], object handl e,
[met hod_handl e], val ue_struc, [nodifier_object], [omi _iosb],
[ctrl _struc]

OMNI$SREJECT

OMNISREJECT — Rejects an indication you do not want.

Format

st at us=OWNI $REJECT[_A] context,[reason], [omni _iosb], [ctr] _struc]

OMNI$SREJECT_CONCLUDE

OMNISREJECT_CONCLUDE — Rejects an association conclude request from a remote application.

Call the OMNI$REJECT_CONCLUDE procedure in response to an indication returned by OMNI
$GET_INDICATIONS.

Format

st at us=OWMNI $REJECT_CONCLUDE[_A] vnd_handl e, [reason], [ommi _iosb],
[ctrl _struc]

OMNISREJECT_CONNECT

OMNISREJECT_CONNECT — Rejects an association request from a remote VMD. Call the OMNI
$REJECT_CONNECT procedure in response to an association request returned by OMNI$SLISTEN.

Format

st at us=OMNI $REJECT_CONNECT[_A] vnd_handl e, [reason], [omi _iosb],
[ctrl _struc]

OMNISRESET

OMNIS$RESET — Resumes execution of a stopped program on the VMD. It causes a program
invocation that is in the stopped state to transition to either the idle or unrunnable state. If the PI is
reusable, it transitions to the idle state; otherwise, it transitions to the unrunnable state.

19

Chapter 1. Programming with VS| OMNI

Format

stat us=OWNI $RESET[_A] [invoke_id], pi_handle, [nodifier_object],
[omi iosb], [ctrl_struc]

OMNI$SRESUME

OMNIS$RESUME — Causes a program invocation to transition from the stopped state to the running
state.

Format

stat us=OWNI $RESUVE[_A] [invoke_id], pi_handle, [execution_arg],
[modi fier_object], [omi _iosb], [ctrl_struc]

OMNI$SSTART

MNIS$START — Causes a program invocation to transition from the idle to the running state.

Format

st at us=OWNlI $START[_A] [invoke_id], pi_handle, [execution_arg],
[modi fier_object], [omi _iosb], [ctrl_struc]

OMNI$STOP

OMNI$STOP — Causes a program invocation to transition from the running state to the stopped state.

Format

stat us=OWNI $STOP[_A] [invoke_id], pi_handle, [nodifier_object],
[ommi _iosb], [ctrl_struc]

OMNI$SOMNI_TO_VMS_TIME

OMNI$OMNI_TO_VMS_TIME — Converts an OMNI time to a VMS time.

Format

st at us=OVNI $OMNI_TO VMB_TI ME[_A] OWNI _Tine, VNS _Tine

OMNI$SUPLOAD

OMNI$UPLOAD — Preforms the uploading of a domain from a remote VMD. Two files are created,
one with the list of capabilities and one with the domain contents. The list of capabilities file name is a
mandatory field in ODF and is the name that is used for the upload. If an error occurs during the upload
process, the files are deleted.

20

Chapter 1. Programming with VSI OMNI

Format

st at us=OVNI $UPLOAD] _A] [i nvoke_id],

domai n_handl e,

[modi fier_object], [omni _iosb], [ctrl_struc]

[domain_file],

21

Chapter 1. Programming with VSI OMNI

22

Chapter 2. OMNI Definition Facility

The OMNI Definition Facility (ODF) enables you to create and manage locally stored definitions of
MMS objects. Specifically, ODF provides a set of commands that perform the following operations:

e Create definitions of VMDs.
e Create definitions of MMS domains and associate the definitions with a locally defined VMD.

e Create definitions of MMS program invocations and associate the definitions with a locally defined
VMD.

e Create definitions of variables and associate the definitions with a locally defined domain or VMD.
e Create data type definitions.

e Display the local definitions of an MMS object.

e Delete a locally created definition or set of definitions.

e Log the current ODF session to a file for later use.

e Write (export) definition commands for backup or convenience.

e Execute a series of stored commands — for example, commands saved in a log file.

e Set and display the defaults for an ODF session.

Note

The definitions you create with ODF are local to VSI OMNI but are not necessarily local to the system
running ODF or using the definitions.

2.1. ODF and Companion Standards

A Companion Standard (CS) can function as an integral part of VSI OMNI and can be defined by using
ODF.

Note that if a CS exists with VSI OMNI, it can affect the behavior of the VSI OMNI procedure calls,
since a CS can support objects and attributes that are different from those supported by VSI OMNI.

See your applicable companion standard's guide for details about the objects and attributes supported by
that companion standard.

2.2. ODF Command Language Interface

The Command Language Interface (CLI) guides you through the correct syntax of each ODF command
by supplying prompts and a list of options.

For example, suppose you want to use the SET command, but you cannot remember the exact syntax or
choices of the command. Simply type in the SET command followed by a carriage return, as shown:

23

Chapter 2. OMNI Definition Facility

ODF>SET Return

Because the command has been entered in incomplete form, CLI automatically prompts for the next
word in the command. Only those that support the SET command are listed as options. All options
are enclosed within parentheses, as follows: (COMPANION STANDARD, ODF LOGFILE, SCOPE)
_ODF>

2.2.1. Level-by-Level Prompting

You can specify the entire command without using CLI, or you can specify part of the command and
have CLI prompt only for those words that you miss.

Because CLI displays only supported options, prompting for options is a good way to check the syntax of
a command after receiving a parser error. Any attribute or keyword you specify that is not in the CLI list
of options is not supported for that command.

2.2.2. Short Lines and Abbreviations

You can shorten the command line by shortening the number of letters in each word. You can abbreviate
any word to three characters or the number of characters that makes it unique.

2.3. Invoking and Exiting ODF

You can issue ODF commands one at a time using Digital Command Language (DCL), or you can
invoke ODF and issue as many commands as you want before returning to the DCL prompt ($).

To use ODF for single line commands, first define ODF as follows:
$ ODF :== $OMNISODF

ODF executes the command and returns you to the DCL system prompt. To invoke ODF through DCL
for an interactive session, type:

$ ODF
ODEF>

Once invoked, the ODF prompt is displayed on the screen. Issue the first command next to the prompt.
If you leave out required component-ids or attributes, ODF prompts for them.

To invoke ODF for an interactive session without using DCL, use the RUN command as follows:

$ RUN SYS$SYSTEM:OMNISODF
ODE™>

To exit ODF and return to the DCL system prompt, either issue the EXIT command or press Ctrl/z.

2.4. Getting Help Through ODF

After you invoke ODF, you can use the HELP command to display quick reference information about
individual commands. Type HELP and the name of the command you want information about as shown
in the following example, or type HELP followed by a carriage return to receive a menu of options. For
example:

ODF> HELP SET SCOPE

24

Chapter 2. OMNI Definition Facility

A display of HELP information about the SET SCOPE command is returned when this command

executes.

2.5. Creating a Definition of a VMD

A complete VSI OMNI definition of a VMD consists of the items in Table 2.1, "VMD Definitions"

Table 2.1. VMD Definitions

Item

Description

vmd_name

The local name of the VMD definition. This name
is used to reference the definition; it is not used in
communications.

APPLICATION SIMPLE NAME

The name used to look up the application in
Directory Services.

VERSION

The version of the MMS protocol to use.

NESTING LEVEL

The maximum number of levels of nesting that can
occur within any data element over an association
with the VMD.

MAXIMUM SERVICES CALLED

The proposed maximum number of transaction
object instances that can be created at the called
MMS-user on the association.

MAXIMUM SERVICES CALLING

The proposed maximum number of transaction
object instances that can be created at the calling
MMS-user on the association.

MAXIMUM SEGMENT SIZE The proposed maximum size of an MMS message
to exchange with the VMD.

PARAMETER CBB A list specifying the set of conformance building
blocks (CBBs) supported by the VMD.

SUPPORTED SERVICES A list of services supported by the VMD for the
association.

VENDOR The vendor of the system supporting the VMD.

MODEL The model of the system supporting the VMD.

REVISION A string describing the software, firmware, or
hardware revision level of the VMD.

DESCRIPTION Information describing the defined VMD. This is

not used in communication.

To create a VSI OMNI definition of a VMD, enter the DEFINE VMD COMMAND, specify the name
of the VMD, and supply the values that describe the VMD. To add the definition to the permanent ODF
database, enter the COMMIT command. COMMIT is described in the VSI OMNI Network Manager's

Guide .

2.6. Creating a Definition of a Domain

A complete VSI OMNI definition for a domain consists of the elements in Table 2.2, "Domain

Definitions"

25

Chapter 2. OMNI Definition Facility

Table 2.2. Domain Definitions

Item

Definition

vmd_name:domain_name

The name of the remote domain object and its
associated VMD.

[NO] DELETABLE

A value indicating whether the domain can be
deleted from the VMD.

[NO] SHARABLE

A value indicating whether the domain can be
shared by multiple program invocations.

CONTENT FILE A VMS file containing the domain.

CAPABILITY FILE A VMS file specifying the capabilities of the
domain.

DESCRIPTION Information describing the defined domain.

A domain definition must include the name of the VMD to which the domain belongs. ODF will reject
any domain definition that does not specify an existing VMD and a capabilities file.

To create a VSI OMNI definition of a domain, enter the DEFINE DOMAIN command in response to
the ODF prompt and supply the information you need to describe the domain. To add the definition to
the permanent ODF database, enter the COMMIT command.

2.7. Creating a Definition of a Program

Invocation

A complete VSI OMNI definition of a Program Invocation (PI) contains the information listed in Table

2.3, "PI Definition"

Table 2.3. PI Definition

Item

Description

vmd_name:pi_name

The name of the program invocation and its
associated VMD.

[NO] DELETABLE

A value indicating whether the PI can be deleted
from the VMD.

[NO] REUSABLE

A value indicating whether the PI can be reused.

EXECUTION ARGUMENT STRING

An execution argument that becomes the default
for START and RESUME requests for the PL

monitor_type

One of three values. NO MONITOR indicates
that the PI has no monitoring event condition.
MONITOR PERMANENT indicates that the

PI has a monitoring event condition that exists
throughout program execution. MONITOR
CURRENT indicates that the PI has a monitoring
event condition that exists only for the life of the
association.

DOMAIN LIST

A list of references to the domains that make up
this program invocation.

26

Chapter 2. OMNI Definition Facility

Item Description
DESCRIPTION Information describing the defined Program
Invocation.

A PI definition must include the name of the VMD to which the domain belongs. ODF will reject any PI
definition that does not specify an existing VMD.

Each PI definition must also specify a domain list with at least one domain. ODF will reject the
definition if the listed domains are not defined.

To create a VSI OMNI definition of a program invocation, enter the DEFINE PROGRAM
INVOCATION command in response to the ODF prompt and supply the values that describe the PIL. To
add the definition to the permanent ODF database, enter the COMMIT command.

2.8. Creating a Definition of a Variable

ODF enables you to create VSI OMNI definitions for the following types of variables:
e Named variables

e Unnamed variables

2.8.1. Named Variables

A complete VSI OMNI definition of a Named Variable contains the items listed in Table 2.4, "Named
Variable Definition"

Table 2.4. Named Variable Definition

Item Description

vmd_name:domain_name.variable_name The name of the remote named variable object and
its associated VMD and (optionally) domain.

type A reference to a predefined application type.

[NO] DELETABLE A value that indicates whether the named variable
can be deleted from the VMD.

DESCRIPTION Information that describes the named variable.

A variable definition must include the name of the VMD to which the variable belongs. ODF will reject
any definition that does not specify an existing VMD. If a variable is defined as being on a domain, you
must also define the domain.

You must specify the type of the variable.

To create a VSI OMNI definition for a named variable, enter the DEFINE NAMED VARIABLE
command in response to the prompt and supply the required information. To add the definition to the
permanent ODF database, enter the COMMIT command.

2.8.2. Unnamed Variables

A complete VSI OMNI definition of an Unnamed Variable contains the items listed in 7able 2.5,
"Unnamed Variable Definition".

27

Chapter 2. OMNI Definition Facility

Table 2.5. Unnamed Variable Definition

Item Description

vmd_name:domain_name.variable_name The name of the remote unnamed variable and its
associated VMD (and, optionally, its domain).

type A reference to a predefined application type.
<address> The address of the unnamed variable.
[NO] Supply Type Spec A value that indicates whether the variable's type

specification is to be sent to the remote VMD to
access the variable.

DESCRIPTION Information describing the unnamed variable.

A variable definition must include the name of the VMD to which the variable belongs, the variable type,
and the address. ODF will reject any definition that does not specify an existing VMD, the variable type,
and the address.

The variable address may be specified as a NUMERIC ADDRESS or a SYMBOLIC ADDRESS. A
numeric address value is entered as a decimal number by default or as a hexadecimal number using the
%X prefix. A symbolic address value is entered as a quoted string.

To create a VSI OMNI definition for an unnamed variable, enter the DEFINE UNNAMED VARIABLE
command in response to the prompt and supply the required information. To add the definition to the
permanent ODF database, enter the COMMIT command.

2.9. Defining Variable Types

An ODF variable definition includes two variable type definitions: an MMS type definition and an
application type definition.

e The MMS type definition provides information about the variable that is communicated through the
MMS protocol when the variable is read or written.

e The application type definition provides information about the way the application views the
variable. Application type information cannot be communicated through the MMS protocol — it is
specific to the local programming environment.

ODF provides two commands that you can use to create variable type definitions:
e DEFINE MMS NAMED TYPE. Creates an MMS type definition.

e DEFINE APPLICATION TYPE. Creates an application type definition and associates the definition
with a corresponding MMS type definition that you have created.

The DEFINE TYPE commands are useful for creating commonly-used type definitions that many

variables will reference. When a number of variables refer to the same type definition, all of the variables
can be changed by changing the one type definition.

2.9.1. Creating an MMS Named Type Definition

A complete VSI OMNI definition of an MMS Named Type contains the items listed in Table 2.6, "MMS
Named Type Definition".

28

Chapter 2. OMNI Definition Facility

Table 2.6. MMS Named Type Definition

Item Description

vmd_name:domain_name.mms_type_name The name of the MMS Named Type specification
and its associated VMD (and, optionally, its
domain).

mms_type_specification A structure, array or simple type specification or a
reference to another MMS Named Type.

[[NO]DELETABLE] Indicates whether or not the MT can be deleted
from the VMD.

DESCRIPTION Information describing the defined MMS Named
Type.

An MMS Named Type definition must include the name of the VMD to which the named type belongs.
ODF rejects any definition that does not specify an existing VMD. If a named type is defined as being
on a domain, you must also specify the domain.

You must specify the MMS type specification.

To create a VSI OMNI definition for an MMS Named Type, enter the DEFINE MMS Named Type
command in response to the prompt and supply the required information. To add the definition to the
permanent database, enter the COMMIT command. COMMIT is described in Section 2.10, "Committing
Definitions to the ODF Database"

2.9.2. Creating an Application Named Type Definition

A complete VSI OMNI definition of an Application Named Type contains the items listed in Table 2.7,
"Application Named Type Definition".

Table 2.7. Application Named Type Definition

Item Description

vmd_name:domain_name.application_type_name |The name of the Application Named Type
specification and its associated VMD (and,
optionally, its domain).

FROM MMS NAME TYPE The name of the MMS Named Type associated
with the application named type. The default is the
same name and scope as the application type.

application_type_specification A structure, array or simple type specification or a
reference to another Application Named Type.

DESCRIPTION Information describing the defined Application
Named Type

An Application Named Type definition must include the name of the VMD to which the named type
belongs. ODF will reject any definition that does not specify an existing VMD. The named type may also
be defined on a domain.

You must specify the application type specification.

To create a DECOmni definition for an Application Named Type, enter the DEFINE Application Named
Type command in response to the prompt and supply the required information. To add the definition

29

Chapter 2. OMNI Definition Facility

to the permanent database, enter the COMMIT command. COMMIT is described in Section 2. 10,
"Committing Definitions to the ODF Database".

2.9.3. Creating Application Type Definitions for
Alternate Access

Every VSI OMNI variable definition specifies a default Application Type Definition, which in turn refers
to an MMS Type Definition.

Simple applications would generally access the variable's data using the default Application Type.
Other applications may need to perform alternate access by referring to the variable using some other
Application or MMS Type Definition or both.

One reason for alternate access would be to support applications which store internal data differently.
For example, suppose two applications access a variable whose MMS Type Definition is a Visible String.
One application may need to store this visible string internally as a null terminated string while another
application type may need to store it internally as a word counted string. In both cases, since all elements
of the array would be accessed, there is a 1:1 correspondence between array components of the MMS
Type Definition and the Application Type Definition.

Another reason for alternate access is to support applications that may not need to access all of the data
in a variable. This type of alternate access is called partial access. For example, a device can define a
portion of its memory as a large array.

An application can read the portion of the memory it is interested in by creating an Application Type
Definition that specifies a subrange of the array to be read into an application buffer which is only large
enough to hold the data in that subrange.

In both examples of alternate access (full and partial), an application accomplishes alternate access on a
variable by providing a method handle in calls to the variable access procedures, OMNI$SGET_VALUE
and OMNI$PUT_ VALUE. A method handle is an object identifier handle of an Application Named
type. For information on method handles see the online VSI OMNI Application Programmer's Guide.

You can also define the default application type as an alternate access type. In this case, it is not
necessary to supply a method handle to perform alternate access. Instead, alternate access is by default
whenever the variable is accessed.

2.10. Committing Definitions to the ODF
Database

An ODF session consists of the following steps:

1. Enter a series of DEFINE or DELETE commands, or both to describe the objects in the MMS
environment. ODF saves these definitions in a special area allocated for the ODF session.

2. Enter the COMMIT command. ODF examines the batched definitions (that is, all the definitions
entered since the last COMMIT command or since the beginning of the session), writes all valid
definitions into the permanent database, and reports on any errors. If committing the changes
will produce inconsistencies in the database, ODF reports an error and does not make any of the
modifications.

For example, if you enter a variable definition that includes a reference to a nonexistant VMD, ODF
will reject the definition and return an error code.

30

Chapter 2. OMNI Definition Facility

ODF does not discard the batch of definitions if the COMMIT operation fails. Thus, you can correct the
error and COMMIT again.

To erase a batch of modifications from the temporary storage area, type the ROLLBACK command.
ODF discards all the definitions that you have created since your last COMMIT command. (Note
how ROLLBACK differs from DELETE. The DELETE command removes a definition that has been
committed to the permanent ODF database and/or exists in temporary storage; the ROLLBACK
COMMAND simply discards actions from temporary storage.)

In addition to batching DEFINE commands, ODF batches all commands that modify the database (for
example, the DELETE command) until you enter a COMMIT command.

Note

The EXIT command causes ODF to attempt a COMMIT before exiting. The QUIT command causes
ODF to attempt a ROLLBACK before exiting.

You should try to arrange your transactions so that a COMMIT can be issued after each DEFINE
command, which should reduce the ambiguity of constraint error messages.

2.11. Setting the Default Scope

ODF enables you to set the default VMD and domain for dependent objects that you want to define. To
specify a default VMD and domain, enter the SET SCOPE command and the name of the VMD and
domain. (If you omit the domain name, the scope is VMD-specific.)

For example, the following SET SCOPE command specifies Foo as the default VMD for the session and
Bar as the default domain. The DEFINE command creates a variable definition named X :

ODF> SET SCOPE Foo:Bar
ODF> DEFINE NAMED VARIABLE X APPLICATION TYPE $%OMNISLONG;

ODF creates the definition Foo:Bar.X.

2.12. Deleting a Definition

The DELETE DEFINITION command deletes a definition from the permanent ODF database and/or
temporary storage.

A definition cannot be deleted until all its dependencies are deleted.

A right arrow character (>) in the command line causes ODF to delete the specified object and all
objects that are dependent on that object. For example, the following command deletes VMD Foo and all
the objects it contains:

DELETE DEFINITION Foo>;
To delete the entire database, type:
DELETE DEFINITION *>;

This command line is not recommended.

The DELETE command supports the wildcard asterisk (*). For example, the following command deletes
all named variables in domain Foo:Bar:

31

Chapter 2. OMNI Definition Facility

DELETE DEFINITION Foo:Bar (NV:¥*);

2.13. Creating, Opening, and Closing a Log
File
ODF enables you to create and open a log file for the ODF session. To create a log file, enter the SET

ODF LOGFILE command and specify the name of the log file.

Once the file is open, you can start session logging with the ENABLE ODF LOGGING command. You
can also write definition commands to the log file using the WRITE DEFINITION command.

To close the log file, reenter the SET ODF LOGFILE command with a different filename or the null
device name (NL:).

2.14. Enabling and Disabling Logging

To create a log of the ODF session, enter the ENABLE ODF LOGGING command.

If you have already specified a log file with the SET ODF LOGFILE command, ODF logs the session
to that file. If you have not specified a file, ODF creates a file OMNI$SODF.LOG in the current default
directory and logs the session.

To disable logging, enter the DISABLE ODF LOGGING command. Logging will stop, but the log file
will remain open until you exit the ODF session or enter another SET ODF LOGFILE command.

The ENABLE and DISABLE ODF LOGGING commands can be used to selectively log portions of an
ODF command session.

2.15. Executing Stored Commands

The DO command (or @) enables you to read ODF commands stored in a script file.
You can create script files in any of the following ways:
e Use the SET ODF LOGFILE and ENABLE ODF LOGGING commands to trace a session.

e Use the WRITE DEFINITION TO command to write declaration commands to a file. This is helpful
when creating script files to rebuild portions of the database.

Issuing a WRITE DEFINITION command without a TO specifier causes a DEFINE command to be
written to the current log file.

e Use any editor to create a text file containing the commands.

If logging is enabled when the script file is invoked, the invocation command is commented out in the
trace, and the individual commands in the script file appear in the trace output. A comment is inserted at
the end of the trace file. If the script file contains an EXIT command, that command does not appear in
the trace file.

DO commands can be nested (a script file can issue a DO command). There is no limit to how many
DO commands can be issued from a particular script file; however, ODF must open each script file, so
the open file limit (FILLM) quota determines the maximum nesting allowed.

32

Chapter 2. OMNI Definition Facility

2.16. Creating a Command to Repeat a
Definition

The WRITE DEFINITION command enables you to write out definitions to a file, where each definition
is written as a valid ODF DEFINE command. A reference to a definition, list of definitions, or a
wildcard specification can be specified. An asterisk (*) used as a wildcard character matches zero or
more characters, and a period (.) used as a wildcard character matches exactly one character.

If you include a file specification by using the TO clause, ODF opens that file, writes the definitions to it,
and closes the file. If there is no file specification, ODF appends the definitions to the current log file. If
no log file is open, ODF opens a new version of OMNI$SDEF.LOG and writes the definitions.

The following command writes out all definitions in the database to a file named BACKUP.LOG:
WRITE DEFINITION *> TO BACKUP.LOG;

The following example writes out domain Bar of VMD Foo and its dependent objects to file
DOMAIN.LOG:

WRITE DEFINITION Foo:Bar> TO DOMAIN.LOG;
The following example writes out named variables defined in domain Bar to the current log file:

WRITE DEFINITION Foo:Bar (NV:*);

2.17. Exiting and Quitting an ODF Session

The EXIT command attempts to perform a COMMIT before ending the ODF session. If there are
unresolved dependencies, ODF does not EXIT. Enter additional DEFINE commands to satisfy the
dependencies, and reenter the EXIT command.

The QUIT command rolls back any batched DEFINE or DELETE DEFINITION commands and ends
the ODF session.

33

Chapter 2. OMNI Definition Facility

34

Chapter 3. OMNI Definition Facility
(ODF) Commands

This chapter describes the set of commands you issue to create and manage local VSI OMNI definitions
of remote MMS objects.

These sections use the documentation conventions listed in Table 3.1, "Conventions"

Table 3.1. Conventions

Convention Meaning
[1] Square brackets enclose optional expressions.
8
<

<vall>

<val2>

<val3>

9

B

Large braces enclose choices from a group of items. Braces
around a single item indicate that this item is mandatory.

<> Angle brackets enclose tokens that must be expanded.

Ellipsis indicates an expression that can be repeated.

A local ODF definition name has the same format as an MMS identifier: a string of 1 to 32 characters.
All alphanumeric characters, the dollar sign ($), and the underscore (_) are valid. The identifier cannot
begin with a numeric character. Also, ODF definition names, like MMS identifiers, are case-sensitive
(foo is not equal to FOO).

COMMIT

COMMIT — Makes changes to the database. All changes made in an ODF session since the last
COMMIT become permanent and are made visible to other users of the ODF database.

Format
COW T;

Description

When you enter COMMIT, ODF processes all of the DEFINE and DELETE DEFINITION commands
you have entered since your last COMMIT command or since the beginning of the session.

Before the modifications are made visible, ODF verifies that those modifications leave the database in
a consistent state. If committing the command would cause an inconsistency, ODF reports a constraint
violation, and the changes are not added to the database.

35

Chapter 3. OMNI Definition Facility (ODF) Commands

To recover from a constraint violation, either roll back the commands or enter additional commands
to correct the problem. The SHOW DEFINITION command is useful for pinpointing the cause of the
problem. SHOW DEFINITION shows any uncommitted changes as if they had already been applied.

DEFINE DOMAIN

DEFINE DOMAIN — Creates a definition of a domain and associates the domain with a VMD
definition.

Format
DEFI NE DOVAI N [<vnd_name>:] <domai n_nanme> [[NOQ DELETABLE] [[NJ

SHARABLE] [CONTENT FILE <content_fil espec>] [CAPABILITY FILE
<capability_fil espec>] [DESCRI PTI ON <t ext>];

DEFINE MESSAGE

DEFINE MESSAGE — Creates a local VSI OMNI definition of a message object and associates it with
a VMD previously defined.

Format

DEFI NE MESSACE [<vnd_nane>:] <nmsg_nanme> LENGTH <nsg | engt h>
[DESCRI PTI ON <t ext >] ;

DEFINE PROGRAM INVOCATION

DEFINE PROGRAM INVOCATION — Creates a definition of a program invocation and associates the
PI with a VMD definition.

Format
DEFI NE PROGRAM | NVOCATI ON [<vird_name>:] <pi _nane> [DESCRI PTI ON

<text>] DOMAIN LI ST <domid>[,<domid>] . . . [[NO DELETABLE] [[NJ
REUSABLE] [[NO EXECUTI ON ARG STRI NG <t ext >] ;

DEFINE NAMED VARIABLE

DEFINE NAMED VARIABLE — Creates a VSI OMNI definition of a named variable and associates
the definition with a defined domain or VMD.

Format

DEFI NE NAMED VARI ABLE [<vimd>:] [<don®.] <var> {<type>} [[NJ|
DELETABLE] DESCRI PTI ON <t ext >;

36

Chapter 3. OMNI Definition Facility (ODF) Commands

DEFINE UNNAMED VARIABLE

DEFINE UNNAMED VARIABLE — Creates a VSI OMNI definition of an unnamed variable object
and associates the definition with a defined domain or VMD.

Format

DEFI NE UNNAMED VARI ABLE [<vnd>:] <var> <type> <address> [[NO Supply
Type Spec] [DESCRI PTI ON <t ext>];

DEFINE APPLICATION NAMED TYPE

DEFINE APPLICATION NAMED TYPE — Creates an application named type definition.

Format

DEFI NE APPLI CATI ON NAMED TYPE [<vnd>]: [<don®.]<type> [FROM MVB
NAMED TYPE <ref>] <app_type_specification> [DESCRI PTI ON <t ext >];

DEFINE VMD

DEFINE VMD — Creates a local VSI OMNI definition of a VMD.

Format

DEFI NE VWD <vnd_name> APPLI CATI ON SI MPLE NAME <app_si npl e_nanme>

[VERSI ON <versi on_nunber>] [NESTI NG LEVEL <word_val ue>] [MAXI MUM
SERVI CES CALLED <wor d_val ue>] [MAXI MUM SERVI CES CALLI NG

<wor d_val ue>] [MAXI MUM SEGVENT Sl ZE <i nt eger _val ue>] [PARAMETER
CBB <cbb_list>] [SUPPORTED SERVI CES <supported_service_list>] [[NJO
VENDCR <vendor _nane>]

DEFI NE VMD <vnd_nane> [[NO MODEL <nodel >] [[NOQ REVI SI ON
<revi sion>] [DESCRI PTI ON <t ext>];

DELETE DEFINITION

DELETE DEFINITION — Removes a definition from the database. A definition cannot be deleted until
all its dependent definitions have been deleted.

Format

DELETE DEFI NI TI ON <def ref>[, <def ref>] . . . ;

DISABLE

DISABLE — Stops logging of the current ODF session. The logfile is not closed. To close the file, issue
a SET ODF LOGFILE command or exit the session.

37

Chapter 3. OMNI Definition Facility (ODF) Commands

Format

DI SABLE ODF LOGE NG

DO

DO — Executes a series of stored commands, such as those saved in a script file by the ENABLE
command. DO is a synonym for @.

Format

DO <script_file>;

ENABLE

ENABLE — Turns on OMNI logging to the log file specified in the most recent SET ODF LOGFILE
command. If no log file has been set since the start of the ODF session, ODF tries to create a file OMNI
$ODF.LOG in the current default directory and log commands to that file.

Format

ENABLE ODF LOGA NG

EXIT

EXIT — Commits any outstanding changes to the database and exits ODF. If the outstanding changes
are invalid, ODF reports an error and does not exit.

Format

EXIT;

QUIT

QUIT — Cancels all the DEFINE and DELETE commands you have entered since the last COMMIT
command and exits from the session. No definition data from the cancelled commands is written into the
database.

Format
QUIT;

ROLLBACK

ROLLBACK — Cancels all the DEFINE and DELETE DEFINITION commands you have entered since
the last COMMIT command. No definition data is written into the database from the commands within
the range of the rollback.

38

Chapter 3. OMNI Definition Facility (ODF) Commands

Format

ROLLBACK;

SET ODF LOGFILE

SET ODF LOGFILE — Specifies the file to which ODF logs the session.

Format

SET ODF LOGFI LE <vns_file_specification>;

Description

The log file is opened immediately, but logging is disabled until you enter an ENABLE ODF LOGGING
command. If a log file is already open, ODF closes the file before attempting to open the new file. If
logging is currently enabled, ODF issues an implicit DISABLE ODF LOGGING command.

SET COMPANION STANDARD

SET COMPANION STANDARD — Sets the ODF command syntax (if the companion standard extends
the syntax) and the default companion standard name for definitions created under ODF. A VMD and its
dependencies must all be defined under the same companion standard.

Format

SET COMPANI ON STANDARD <conpani on_st andar d_nane>;

SET SCOPE

SET SCOPE — Specifies the definitions that ODF uses as the default scope. The scope of an ODF
command is the VMD or domain definition or both with which the command is associated.

Format

SET SCOPE [<vnd_nane>] [:<domai n_nanme>];

SHOW

SHOW — Displays current ODF session settings.

Format

SHOW <set ti ng> ;

SHOW DEFINITION

SHOW DEFINITION — Displays definitions from the database on the terminal. If modifications have
been made, but not committed, they will also be visible.

39

Chapter 3. OMNI Definition Facility (ODF) Commands

Format

SHOW DEFI NI TI ON <def _ref> [, <def-ref>]<hellipsis>;

WRITE DEFINITION

WRITE DEFINITION — Writes out definitions to a file. Each definition is written as a valid ODF
command. If you include a file specification, ODF opens the file, writes the definitions, and closes the
file. If you omit the file specification, ODF appends the definitions to the current log file. (If there is no
open log file, ODF opens a new version of OMNI$ODF.LOG and writes the definitions.)

Format

WRI TE DEFI NI TI ON <def _ref>[, <def ref>] . . . [TO <fil espec>];

40

Chapter 4. OMNI Command
Language

One user interface to VSI OMNI network management is the OMNI Command Language (OMNICL).
OMNICL consists of a set of commands that enable you to read and monitor data on the OMNI system.
In this chapter, the OMNICL features and commands are described.

4.1. OMNICL Command Syntax

OMNICL commands contain the following elements:
e keyword

e component-id

e attribute

e value

For example:

SET OMNICL LOGGING OUTPUT OPCOM

The keyword describes the operation you want to perform and the component-id describes the major
component affected by the command.

Most commands also have several attribute options to further qualify the action of the command. Also, if
you plan to change the value of an attribute, you must enter the new value in the command line.

In this chapter, each command is listed by keyword and component-id. A description of the command
and the correct format are given and then any attribute for that command is listed under "Attributes".
Variables you need to enter are identified with their associated attributes, but are described separately in
the area marked "Values".

4.1.1. OMNICL Command Language Interface

The Command Language Interface (CLI) guides you through the correct syntax of each OMNICL
command using prompts and a list of options for each keyword and attribute level.

For example, suppose you want to use the SET command but cannot remember the exact syntax or
choices of the command. Simply type in the SET command followed by a carriage return, as shown:

OMNICL> SET

Because the command has been entered in incomplete form, CLI automatically prompts for the next
word in the command, which is the name of the component-id. Only those ids that support the SET
command are listed as options. All options are enclosed within parentheses, as follows:

* (EVENT, OMNICL, DEFAULT, NODEFAULT)? OMNICL LOGGING

4.1.1.1. Level-by-Level Prompting

You can specify the entire command without using CLI, or you can specify part of the command and
have CLI prompt only for those words that you miss.

41

Chapter 4. OMNI Command Language

Because CLI displays only supported options, prompting for options is a good way to check the syntax of
a command after receiving a parser error. Any attribute or keyword you specify that is not in the CLI list
of options is not supported for that command.

4.1.1.2. Short Lines and Abbreviations

You can shorten the command line by shortening the number of words you specify and the number of
letters in each word. You can abbreviate any word to the minimum number of letters that make it unique.
This is usually three letters. (You will receive an error message if the parser finds the term ambiguous.)

Once unique words are encountered in the command line, you do not have to enter remaining keywords
or attributes to execute the command. CLI automatically assumes the missing words.

4.2. Invoking and Exiting OMNICL

Before you can invoke OMNICL, you must confirm that your VSI OMNI license is correctly registered
and loaded. If it is not registered and loaded, invocation will fail. Refer to the VAX License Management
Utility Reference Manual for details about license management.

You can issue OMNICL commands one at a time using Digital Command Language (DCL), or you can
invoke OMNICL and issue as many commands as you want before returning to the DCL prompt ($).

To use DCL for single line commands, first define OMNICL as follows:

$ OMNICL :== $SOMNISCL

To issue a single OMNICL command to DCL, type:

$ OMNICL command "attributes . . . "
$

OMNICL executes the command and returns you to the DCL system prompt. To invoke OMNICL
through DCL for an interactive session, type:

$ OMNICL
OMNICL>

Once invoked, the OMNICL prompt is displayed on the screen. (When specifying commands directly to
OMNICL rather than DCL, do not use foreign command format.) Issue the first command next to the
prompt. If you leave out required component-ids or attributes, OMNICL prompts for them.

To invoke OMNICL for an interactive session without using DCL, use the RUN command as follows:

$ RUN SYS$SYSTEM:OMNISCL
OMNICL>

To exit OMNICL and return to the DCL system prompt, issue either the EXIT command or press Ctrl/
VA

4.3. Getting Help Through OMNICL

After you invoke OMNICL, you can use the HELP command to display quick reference information
about individual commands. Type HELP and the name of the command if you want information as
shown in the following example, or type HELP followed by a carriage return to receive a menu of
options. For example:

42

Chapter 4. OMNI Command Language

OMNICL> HELP SET OMNICL LOGGING

A display of HELP information on the SET OMNICL LOGGING command is returned when this
command executes.

43

Chapter 4. OMNI Command Language

44

OMNI Commands
SET DEFAULT

SET DEFAULT — Establishes the default application entity for subsequent commands. If SET
NODEFAULT is entered, the default application entity is cleared.

Format

SET [NO DEFAULT <application_entity>

Attributes

None.

Values
<application_entity>

Specifies the application entity name. The name must be known to Directory Services or a fully qualified
network address. The name is a character string.

SET EVENT LOGGING

SET EVENT LOGGING — Defines the events to be logged and where those events will be logged.
OMNI events that you log are separate from DNA, OSAK, and VOTS events. Events you can log are on
a system-wide level; no application or association- specific events can be logged. By default, logging is
disabled.

Format

SET EVENT LOGA NG [QUTPUT= <dest _str>]

Attributes
QUTPUT= <dest _str>

Specifies where output is logged.

Values

<dest _str>

Specifies a destination name. The default destination is OPCOM, but a local or remote file can also be
the destination.

SET OMNICL LOGGING

SET OMNICL LOGGING — Defines the script file to be logged and where that script file will be
logged.

45

OMNI Commands

Format

SET OMWNI CL LOGGE NG QUTPUT= <dest _str >]

Attributes
OUTPUT= <dest _str>

Specifies where output is logged.

Values

<dest str>

Specifies a destination name.

SHOW VERSION

SHOW VERSION — Displays the current version of VSI OMNIL

Format

SHOW VERSI ON

SHOW EVENT LOGGING

SHOW EVENT LOGGING — Displays either EVENT logging attributes that are provided by VSI
OMNI as default values or are logging values that are set using the SET EVENT LOGGING command.

Format

SHOW EVENT LOGGE NG

SHOW OMNICL LOGGING

SHOW OMNICL LOGGING — Displays either OMNICL logging attributes that are provided by
VSI OMNI as default values or are logging values that are set using the SET OMNICL LOGGING
command.

Format

SHOW OMNI CL LOGAE NG

SHOW APPLICATION_ENTITY

SHOW APPLICATION_ENTITY — Displays the logging attributes set by using the SET DEFAULT
command. Each active association for the specified application entity is displayed along with its
associated state. If the KNOWN option is invoked, all known application entities are displayed.

46

OMNI Commands

Format

SHOW [KNOAN] APPLI CATI ON_ENTI TY [<application_entity>]

Attributes

<dest str>
Specifies the destination.
<event _id>

Identifies the event.

Values
<application_entity>

Specifies the name of the application entity.

SHOW ASSOCIATIONS

SHOW ASSOCIATIONS — Displays associations.
Format
SHOW [KNOWN] ASSCOCI ATI ONS [<Sys | D>]

Attributes

None.

Values
<Sys | D>

Specifies a unique association-id.

ENABLE EVENT LOGGING

ENABLE EVENT LOGGING — Initiates event logging.

Format

ENABLE EVENT LOGGE NG

ENABLE OMNICL LOGGING

ENABLE OMNICL LOGGING — Initiates scripting

47

OMNI Commands

Format

ENABLE OVNI CL LOGA NG

DISABLE EVENT LOGGING

DISABLE EVENT LOGGING — Discontinues event logging.

Format

DI SABLE EVENT LOGE NG

DISABLE OMNICL LOGGING

DISABLE OMNICL LOGGING — Discontinues scripting.

Format

DI SABLE OWNI CL LOGGE NG

DO

DO — Invokes command files.

Format

DO <scri pt _fil ename>

Attributes

None.

Values

<script_fil enane>

Specifies the script file. The default file extension is .SCP.

Description

Commands can be stored in text files either by using a text editor or by invoking the logging facility with
ENABLE OMNICL LOGGING. These command files, or scripts, are invoked by the DO command and
are useful for initialization and other commonly performed activities.

48

OMNI Commands

When the DO command invokes a script, OMNICL recognizes that script as an alternative source of
standard commands. DO scripts are executed synchronously. Multiple levels of scripts are allowed.

49

OMNI Commands

50

	VSI OMNI Pocket Guide
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Associated Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Programming with VSI OMNI
	OMNI$ABORT
	OMNI$ACCEPT_CONCLUDE
	OMNI$ACCEPT_CONNECT
	OMNI$CANCEL
	OMNI$CONCLUDE
	OMNI$CONNECT
	OMNI$CREATE
	OMNI$DELETE
	OMNI$DOWNLOAD
	OMNI$END_LIST
	OMNI$FDELETE
	OMNI$FDIR
	OMNI$FGET
	OMNI$FRENAME
	OMNI$GET_ATTRIBUTE
	OMNI$GET_DEFINITION
	OMNI$GET_HANDLE_BY_NAME
	OMNI$GET_HANDLE_LIST
	OMNI$GET_INDICATIONS
	OMNI$GET_REMOTE_ATTRIBUTES
	OMNI$GET_VALUE
	OMNI$GROUP_VARIABLES
	OMNI$INITIALIZE
	OMNI$KILL
	OMNI$LISTEN
	OMNI$LOAD_DEFINITIONS
	OMNI$MODIFY_DEFINITION
	OMNI$PUT_VALUE
	OMNI$REJECT
	OMNI$REJECT_CONCLUDE
	OMNI$REJECT_CONNECT
	OMNI$RESET
	OMNI$RESUME
	OMNI$START
	OMNI$STOP
	OMNI$OMNI_TO_VMS_TIME
	OMNI$UPLOAD

	Chapter 2. OMNI Definition Facility
	2.1. ODF and Companion Standards
	2.2. ODF Command Language Interface
	2.2.1. Level-by-Level Prompting
	2.2.2. Short Lines and Abbreviations

	2.3. Invoking and Exiting ODF
	2.4. Getting Help Through ODF
	2.5. Creating a Definition of a VMD
	2.6. Creating a Definition of a Domain
	2.7. Creating a Definition of a Program Invocation
	2.8. Creating a Definition of a Variable
	2.8.1. Named Variables
	2.8.2. Unnamed Variables

	2.9. Defining Variable Types
	2.9.1. Creating an MMS Named Type Definition
	2.9.2. Creating an Application Named Type Definition
	2.9.3. Creating Application Type Definitions for Alternate Access

	2.10. Committing Definitions to the ODF Database
	2.11. Setting the Default Scope
	2.12. Deleting a Definition
	2.13. Creating, Opening, and Closing a Log File
	2.14. Enabling and Disabling Logging
	2.15. Executing Stored Commands
	2.16. Creating a Command to Repeat a Definition
	2.17. Exiting and Quitting an ODF Session

	Chapter 3. OMNI Definition Facility (ODF) Commands
	COMMIT
	DEFINE DOMAIN
	DEFINE MESSAGE
	DEFINE PROGRAM INVOCATION
	DEFINE NAMED VARIABLE
	DEFINE UNNAMED VARIABLE
	DEFINE APPLICATION NAMED TYPE
	DEFINE VMD
	DELETE DEFINITION
	DISABLE
	DO
	ENABLE
	EXIT
	QUIT
	ROLLBACK
	SET ODF LOGFILE
	SET COMPANION STANDARD
	SET SCOPE
	SHOW
	SHOW DEFINITION
	WRITE DEFINITION

	Chapter 4. OMNI Command Language
	4.1. OMNICL Command Syntax
	4.1.1. OMNICL Command Language Interface
	4.1.1.1. Level-by-Level Prompting
	4.1.1.2. Short Lines and Abbreviations

	4.2. Invoking and Exiting OMNICL
	4.3. Getting Help Through OMNICL

	OMNI Commands
	SET DEFAULT
	SET EVENT LOGGING
	SET OMNICL LOGGING
	SHOW VERSION
	SHOW EVENT LOGGING
	SHOW OMNICL LOGGING
	SHOW APPLICATION_ENTITY
	SHOW ASSOCIATIONS
	ENABLE EVENT LOGGING
	ENABLE OMNICL LOGGING
	DISABLE EVENT LOGGING
	DISABLE OMNICL LOGGING
	DO

