
VSI OpenJDK Version X17.0-17A
Release Notes and Installation Guide

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

Publication Date: January 2026

Operating System: VSI OpenVMS x86-64 Version 9.2-3

Kit Name: VSI-X86VMS-OPENJDK17-X1700-17A-1.PCSI$COMPRESSED

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

Copyright © 2026 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

All other trademarks and registered trademarks mentioned in this document are the property of their respective holders.

2

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

Table of Contents
1. Introduction .. 4
2. Fixed Issues and Enhancements .. 4
3. Compatibility ... 4
4. Requirements ... 7
5. Installation .. 8

5.1. Post-Installation Tasks ... 9
6. Contents of the Kit .. 11
7. Known Issues and Limitations .. 12

3

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

1. Introduction
Thank you for your interest in this port of OpenJDK 17 to VSI OpenVMS. The current release of VSI
OpenJDK is based on the OpenJDK 17.0.17-ga distribution.

OpenJDK (https://openjdk.java.net/) is a free and open source implementation of the Java Platform,
Standard Edition (Java SE). OpenJDK is licensed under the GNU General Public License (GNU GPL)
Version 2 with a linking exception such that components linked to the Java Class library are not subject
to the terms of the GPL license. OpenJDK is the official reference implementation of Java SE since
Version 7.

This document contains installation instructions, details of any new features, known issues, and other
information specific to this release of VSI OpenJDK. This kit can be used to develop and run Java-based
programs on VSI OpenVMS x86-64 V9.2-3.

Please ensure that you understand the copyright and license information before using this release. This
information can be found in the top level directory of your OpenJDK installation.

2. Fixed Issues and Enhancements
The following known issues were fixed in this release:

● An issue that was causing a hang when the GC was running has been fixed.

● Class data sharing (CDS) support is now enabled.

● Fixed a bug that prevented loading user libraries in some cases.

● Remote Method Invocation (RMI) support is now enabled.

● Added font support.

● Support of the O_DELETE_ON_CLOSE flag has been added.

● Fixed bugs that caused crashes when using X11.

● An exception during Tomcat 11 startup has been fixed.

● An issue that caused a hang after calling the findMountEntry() function has been fixed.

● An issue that caused a hang when working with sockets has been fixed.

● Java Flight Recorder (JFR) support is now enabled.

● An issue with inadequate CPU consumption when waiting for user input has been fixed.

● Several important TCP/IP socket bugs have been fixed.

● An issue that was causing a hang when starting a child JVM has been fixed.

3. Compatibility
VSI OpenJDK X17.0-17A is largely compatible with older Java versions for OpenVMS and most
existing Java programs will run without change on the OpenJDK platform.

4

https://openjdk.java.net/

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

The following list identifies various differences between Oracle Java 6 for HPE OpenVMS and
OpenJDK 17 for VSI OpenVMS that may impact the operation of some programs.

● Exclusive use of 64-bit pointers

For Oracle Java 6 for HPE OpenVMS, the HotSpot Java Virtual Machine (JVM) utilized 64-bit
pointers to facilitate the use of more than 2GB memory; however, other binary components such
as the launcher and shareable images called into by Java class libraries used only 32-bit pointers.
OpenJDK 17 for VSI OpenVMS uses 64-bit pointers exclusively. As a consequence of this, any C
or C++ application code using the Java Native Interface (JNI) will need to be recompiled to use 64-
bit pointers (/POINTER_SIZE=64). Depending on the nature of the application code, this may
necessitate some code changes.

● Symbol vector compatibility

Symbol vectors in sharable images shipped with OpenJDK 17 for VSI OpenVMS will not
necessarily match those of the equivalent images provided by Oracle Java 6 for HPE OpenVMS.
Any C or C++ application code using the Java Native Interface (JNI) that links with these shareable
images will need to be relinked.

● Removal of logical name JAVA$ENABLE_ENVIRONMENT_EXPANSION

Commands to run Java programs can often be very long, and this can cause issues with DCL
command line lengths. The logical name JAVA$ENABLE_ENVIRONMENT_EXPANSION was
used in prior versions of Java for OpenVMS to help get around this issue such that any argument
specified on the Java command line beginning with a "$" would be assumed to equate to a logical
name (without the leading "$" character) that could specify a list of values and would be expanded
out internally within Java, thereby avoiding issues with command line length. This facility was
most commonly used to specify the Java class path (via the –cp or –classpath command line
options), as class paths can often be very long; however the facility was little used for any other
purpose.

In OpenJDK 17 for VSI OpenVMS, the Java virtual machine always checks the value
supplied with the –cp or –classpath option to determine whether it equates
to a logical name and if so then expansion occurs as before (as if the logical name
JAVA$ENABLE_ENVIRONMENT_EXPANSION was defined), regardless of whether the
argument has a leading "$" or not. It should also be noted that OpenJDK for VSI OpenVMS also
supports the use of wildcards ("*") in class path specifications. This feature can also be used to
reduce the length of class path specifications.

● Logical name JAVA$FILENAME_CONTROLS defaults to 8

The logical name JAVA$FILENAME_CONTROLS can be used to control how OpenJDK interprets
and maps file names (between UNIX and OpenVMS formats). This logical name now defaults to a
value of 8, as this value generally affords greatest flexibility and most predictable results.

Be sure to define JAVA$FILENAME_CONTROLS appropriately for your environment, particularly
if an ODS-2 file system is used for .jar and/or .class files. However, the use of ODS-2 file
systems is not recommended. See examples in JAVA$FILENAME_CONTROLS.COM (found
in SYS$COMMON:[OPENJDK$17.COM] for a default installation) for setting the variable
JAVA$M_MULTI_DOT_KEEP_LAST to accommodate any particular file name mapping
requirements.

● Changes to use of JAVA$FORK_PIPE_STYLE

5

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

In Oracle Java 6 for HPE OpenVMS, it was possible to specify values of 0, 1, and 2 for this logical
name to control how pipes are established between parent and child processes. The value of 2
would cause sockets to be used instead of OpenVMS mailboxes or standard UNIX-style pipes.
If JAVA$FORK_PIPE_STYLE is not defined, then a default value of 1 is used (which causes
mailboxes to be used for any inter-process communication). This is still the case for OpenJDK on
VSI OpenVMS; however, the value of 2 is no longer supported, and if a value of 2 or an invalid
value is specified, this will not be accepted and the default value of 1 will silently be used.

● No debug versions of images

The size of the HotSpot Java Virtual Machine is such that building a debug version is not possible
and consequently OpenJDK for VSI OpenVMS does not provide debug versions of executable
programs and shareable images.

● Case sensitivity of file names

OpenJDK for VSI OpenVMS is more sensitive to the case of file names, and in general the names of
.java and .class files should match identically the name of the class in question. For example,
if you have a Java class named myClass, then the corresponding source file should be named
myClass.java. This impacts both the JVM (the java command) and utilities such as the
javac compiler. However, when compiling classes it is possible to specify Java source code file
name arguments to javac in arbitrary case and the compiler will attempt to determine (and use) the
true on-disk filename (which javac will expect to match the public class name).

● Mixed syntax file names

Oracle Java 6 for HPE OpenVMS allowed mixed-syntax file names (file names containing a
combination of UNIX-style and OpenVMS-style syntax). The use of mixed syntax is not supported
by OpenJDK for VSI OpenVMS, and in general file names should ideally conform to UNIX-style
syntax. For example, the following code will give an exception:

File file = new File("[.log]/filetest.log");

● java.awt.headless system property

The system property java.awt.headless defaults to "true" for this release of OpenJDK
for VSI OpenVMS. For Java applications that use AWT graphical user interface components, it is
necessary to explicitly set java.awt.headless to false either via the java command line
("- Djava.awt.headless=false") or programmatically.

As a specific example, if you use the Archive Backup System (ABS) graphical user interface, the
start-up script SYS$COMMON:[MDMS.SYSTEM]MDMS$START_GUI.COM should be modified
to include -Djava.awt.headless=false on the Java command line, as follows:

$ java "-Xmx64M" "-Djava.awt.headless=false" "absview.ABSView"

● The CRTL feature DECC$READDIR_DROPDOTNOTYPE is enabled

This CRTL feature controls how the OpenVMS C RTL treats file names with no extension (no
file type). Without this feature enabled, problems can occur when performing operations, such as
adding a directory containing files with no extension to a jar file such that the files with no extension
appear in the jar with a "." appended to the names. This can then cause problems if your Java code
specifically tries to access those files in the jar. Appending the "." is the typical C RTL behaviour
when scanning a directory to return a list of file names; this behaviour is overridden by enabling the
DECC$READDIR_DROPDOTNOTYPE feature.

6

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

● Exit status

Upon normal successful completion, java, javac, and other executable utilities will consistently
exit with a status of "%X10000001".

● Location of error logs

In the event of an unrecoverable error condition, the JVM will attempt to create a log file containing
potentially useful information about the crash. Oracle Java 6 for HPE OpenVMS would attempt
to create these files in the equivalent of the UNIX/Linux tmp directory, which unless otherwise
defined, is mapped by the OpenVMS C RTL to SYS$SCRATCH. To avoid any ambiguity, this
release explicitly uses SYS$SCRATCH instead of tmp.

● HPE Secure Web Browser compatibility

OpenJDK for VSI OpenVMS is not compatible with the HPE Secure Web Browser for OpenVMS.
A compatible browser plugin may be provided at a later date.

● Not compatible with Availability Manager Analyser

The Availability Manager Analyser kit includes a compatible JRE (Java Runtime Environment).
Availability Manager Analyser will not work correctly with OpenJDK for VSI OpenVMS and the
use of the bundled JRE should not be overridden or bypassed in any way. An updated Availability
Manager Analyser that can be used with OpenJDK for VSI OpenVMS will be made available in due
course.

● JAVA$DAEMONIZE_MAIN_THREAD logical name deprecated

In Oracle Java 6 for HPE OpenVMS this logical name could be used to "daemonize" the main
JVM thread, making it less susceptible to various types of interruption (particularly ASTs) that
run on the main thread. This is the default for OpenJDK 17 for VSI OpenVMS. The logical name
JAVA$DAEMONIZE_MAIN_THREAD therefore serves no purpose and defining it will have no
effect on JVM operation.

4. Requirements
VSI OpenJDK X17.0-17A requires the following operating system and layered product software
versions:

● VSI OpenVMS x86-64 Version 9.2-3

● VSI TCP/IP, HPE TCP/IP Services for OpenVMS, or the Process Software MultiNet TCP/IP stack
for network communication

● The software must be installed on an ODS-5-enabled file system (the software cannot be installed on
an ODS-2 file system).

● DECWindows Motif V1.5 or higher (note that this is required even if you are not using the Java
AWT, as functionality provided by the Motif libraries is used for some non-AWT functions)

● The OpenVMS internationalization data kit (VMSI18N) must be installed in order to use the Java
debugger, jdb.

● Kernel support for Thread Manager upcalls must be enabled (do not disable Thread Manager upcalls
using either the image flags or the MULTITHREAD system parameter).

7

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

The reader should be familiar with the installation, configuration, and use of open source products in the
VSI OpenVMS environment.

5. Installation
The kit is provided as a compressed OpenVMS PCSI kit
(VSI-X86VMS-OPENJDK17-X1700-17A-1.PCSI$COMPRESSED) that can be installed by a suitably
privileged user using the following command:

$ PRODUCT INSTALL OPENJDK17

The installation will then proceed as follows (output may differ slightly from that shown, depending on
the platform or other factors):

Performing product kit validation of signed kits ...
%PCSI-I-VSIVALPASSED, validation of X86$DKA200:[USER]VSI-X86VMS-OPENJDK17-
X1700-17A-1.PCSI$COMPRESSED;1 succeeded

The following product has been selected:
 VSI X86VMS OPENJDK17 X17.0-17A Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

Configuring VSI X86VMS OPENJDK17 X17.0-17A: OpenJDK for VSI OpenVMS x86-64

 (c) Copyright 2026 VMS Software Inc.

 VMS Software Inc.

* This product does not have any configuration options.

Execution phase starting ...

The following product will be installed to destination:
 VSI X86VMS OPENJDK17 X17.0-17A DISK$X86SYS:[VMS$COMMON.]

Portion done: 0%...10%...50%...60%...90%...100%

The following product has been installed:
 VSI X86VMS OPENJDK17 X17.0-17A Layered Product

VSI X86VMS OPENJDK17 X17.0-17A: OpenJDK for VSI OpenVMS x86-64

 Post-installation tasks are required.

 **
 Note that the VSI OpenVMS internationalization data kit (VMSI18N)
 must be installed in order to use the Java debugger, jdb;
 however VMSI18N is not required by OpenJDK for any other purpose.
 **

 To use OpenJDK Java, users must execute the following command:

 $ @SYS$STARTUP:OPENJDK17$SETUP.COM
$

8

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

5.1. Post-Installation Tasks
Once the installation process has completed, you may wish to verify that OpenJDK has installed
correctly by running the following commands and verifying that the output is similar to that shown
below (there may be some differences in the output, depending on operating system version, installation
destination, available memory, locale settings, and so on):

$ @SYS$STARTUP:OPENJDK17$SETUP.COM
$ java -XshowSettings:all
VM settings:
 Max. Heap Size (Estimated): 1.94G
 Using VM: OpenJDK 64-Bit Server VM

Property settings:
 file.encoding = ISO8859-1
 file.separator = /
 java.class.path =
 java.class.version = 61.0
 java.home = /DISK$X86SYS/SYS0/SYSCOMMON/openjdk$17
 java.io.tmpdir = /SYS$SCRATCH
 java.library.path = /usr/lib
 java.runtime.name = OpenJDK Runtime Environment
 java.runtime.version = 17.0.17-ga+10
 java.specification.maintenance.version = 1
 java.specification.name = Java Platform API Specification
 java.specification.vendor = Oracle Corporation
 java.specification.version = 17
 java.vendor = VMS Software, Inc
 java.vendor.url = http://www.vmssoftware.com
 java.vendor.url.bug = mailto:support@vmssoftware.com
 java.version = 17.0.17-ga
 java.version.date = 2025-10-21
 java.vm.compressedOopsMode = Non-zero based
 java.vm.info = mixed mode
 java.vm.name = OpenJDK 64-Bit Server VM
 java.vm.specification.name = Java Virtual Machine Specification
 java.vm.specification.vendor = Oracle Corporation
 java.vm.specification.version = 17
 java.vm.vendor = VMS Software, Inc
 java.vm.version = 17.0.17-ga
 jdk.debug = release
 line.separator = \n
 native.encoding = ISO8859-1
 os.arch = x86_64
 os.name = OpenVMS
 os.version = V9.2-3
 path.separator = :
 sun.arch.data.model = 64
 sun.boot.library.path = /DISK$X86SYS/SYS0/SYSCOMMON/openjdk$17/lib
 sun.cpu.endian = little
 sun.io.unicode.encoding = UnicodeLittle
 sun.java.launcher = SUN_STANDARD
 sun.jnu.encoding = ISO8859-1
 sun.management.compiler = HotSpot 64-Bit Tiered Compilers
 sun.stderr.encoding = ISO8859-1
 sun.stdout.encoding = ISO8859-1
 user.dir = /DISK$WORK/User
 user.home = /DISK$WORK/User
 user.language = en
 user.name = USER

Locale settings summary:
 Use "-XshowSettings:locale" option for verbose locale settings options
 default locale = English
 default display locale = English
 default format locale = English
 tzdata version = 2025b

9

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

Security settings summary:
 See "java -X" for verbose security settings options
 Security provider static configuration: (in order of preference)
 Provider name: SUN
 Provider name: SunRsaSign
 Provider name: SunEC
 Provider name: SunJSSE
 Provider name: SunJCE
 Provider name: SunJGSS
 Provider name: SunSASL
 Provider name: XMLDSig
 Provider name: SunPCSC
 Provider name: JdkLDAP
 Provider name: JdkSASL
 Provider name: SunPKCS11
 Security TLS configuration (SunJSSE provider):
 Enabled Protocols:
 TLSv1.3
 TLSv1.2

Usage: X86$DKA100:[SYS0.SYSCOMMON.openjdk$17.bin]java.exe;1 [options] <mainclass> [args...]
 (to execute a class)
 or X86$DKA100:[SYS0.SYSCOMMON.openjdk$17.bin]java.exe;1 [options] -jar <jarfile>
 [args...]
 (to execute a jar file)
 or X86$DKA100:[SYS0.SYSCOMMON.openjdk$17.bin]java.exe;1 [options] -m <module>[/
<mainclass>] [args...]
 X86$DKA100:[SYS0.SYSCOMMON.openjdk$17.bin]java.exe;1 [options] --module <module>[/
<mainclass>] [args...]
 (to execute the main class in a module)
 or X86$DKA100:[SYS0.SYSCOMMON.openjdk$17.bin]java.exe;1 [options] <sourcefile> [args]
 (to execute a single source-file program)

 Arguments following the main class, source file, -jar <jarfile>,
 -m or --module <module>/<mainclass> are passed as the arguments to
 main class.

 where options include:

 -cp <class search path of directories and zip/jar files>
 -classpath <class search path of directories and zip/jar files>
 --class-path <class search path of directories and zip/jar files>
 A : separated list of directories, JAR archives,
 and ZIP archives to search for class files.
 -p <module path>
 --module-path <module path>...
 A : separated list of directories, each directory
 is a directory of modules.
 --upgrade-module-path <module path>...
 A : separated list of directories, each directory
 is a directory of modules that replace upgradeable
 modules in the runtime image
 --add-modules <module name>[,<module name>...]
 root modules to resolve in addition to the initial module.
 <module name> can also be ALL-DEFAULT, ALL-SYSTEM,
 ALL-MODULE-PATH.
 --enable-native-access <module name>[,<module name>...]
 modules that are permitted to perform restricted native operations.
 <module name> can also be ALL-UNNAMED.
 --list-modules
 list observable modules and exit
 -d <module name>
 --describe-module <module name>
 describe a module and exit
 --dry-run create VM and load main class but do not execute main method.
 The --dry-run option may be useful for validating the
 command-line options such as the module system configuration.
 --validate-modules
 validate all modules and exit
 The --validate-modules option may be useful for finding

10

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

 conflicts and other errors with modules on the module path.
 -D<name>=<value>
 set a system property
 -verbose:[class|module|gc|jni]
 enable verbose output for the given subsystem
 -version print product version to the error stream and exit
 --version print product version to the output stream and exit
 -showversion print product version to the error stream and continue
 --show-version
 print product version to the output stream and continue
 --show-module-resolution
 show module resolution output during startup
 -? -h -help
 print this help message to the error stream
 --help print this help message to the output stream
 -X print help on extra options to the error stream
 --help-extra print help on extra options to the output stream
 -ea[:<packagename>...|:<classname>]
 -enableassertions[:<packagename>...|:<classname>]
 enable assertions with specified granularity
 -da[:<packagename>...|:<classname>]
 -disableassertions[:<packagename>...|:<classname>]
 disable assertions with specified granularity
 -esa | -enablesystemassertions
 enable system assertions
 -dsa | -disablesystemassertions
 disable system assertions
 -agentlib:<libname>[=<options>]
 load native agent library <libname>, e.g. -agentlib:jdwp
 see also -agentlib:jdwp=help
 -agentpath:<pathname>[=<options>]
 load native agent library by full pathname
 -javaagent:<jarpath>[=<options>]
 load Java programming language agent, see java.lang.instrument
 -splash:<imagepath>
 show splash screen with specified image
 HiDPI scaled images are automatically supported and used
 if available. The unscaled image filename, e.g. image.ext,
 should always be passed as the argument to the -splash option.
 The most appropriate scaled image provided will be picked up
 automatically.
 See the SplashScreen API documentation for more information
 @argument files
 one or more argument files containing options
 -disable-@files
 prevent further argument file expansion
 --enable-preview
 allow classes to depend on preview features of this release
To specify an argument for a long option, you can use --<name>=<value> or
--<name> <value>.

Assuming that the installation was successful and OpenJDK is functioning as expected, you can now use
OpenJDK to compile and run your Java-based applications.

6. Contents of the Kit
This section provides a general summary of the files and directories that are created by the
installation process. For simplicity, it is assumed that OpenJDK was installed using the default location
(SYS$COMMON:[OPENJDK$17]). If you installed the kit in an alternate location, substitute that
location for the default when reading the examples in this document.

● Development tools (SYS$COMMON:[OPENJDK$17.BIN])

This area contains programs that will help you develop, execute, debug, and document programs
written in the Java programming language.

11

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

● Configuration files (SYS$COMMON:[OPENJDK$17.CONF])

The .properties, .policy, and other configuration files intended to be edited by developers, deployers,
and end users.

● Runtime environment (SYS$COMMON:[OPENJDK$17.LIB])

The private implementation details of the runtime system. These files are not intended for external
use and must not be modified.

The lib directory contains a virtual machine for Java, runtime system's dynamically linked native
libraries, class libraries, and other files that support the execution of programs written in the Java
programming language.

● C header files (SYS$COMMON:[OPENJDK$17.INCLUDE])

Header files that support native-code programming using the Java Native Interface (JNI) and the
JVM Tools Interface.

● JNI example code (SYS$COMMON:[OPENJDK$17.examples.jni])

Simple example code that illustrates using the JNI to call C code from Java and to call Java (invoke a
JVM instance) from C.

7. Known Issues and Limitations
This section provides descriptions of the known issues and limitations that exist in this release of
OpenJDK for VSI OpenVMS. These issues include the following:

● Using jlink with jmods is temporarily unsupported.

● When trying to work with fonts from the FreeType library or pictures in jpg format, errors may
occur.

● The following exception is sometimes thrown on JVM exit:

%NONAME-F-NOMSG, Message number 05F78414
Improperly handled condition, image exit forced by last chance handler.

● The redirect stderr to the file does not currently work.

● Use of the JAVA$READDIR_CASE_DISABLE logical name:

Java program performance may be improved by defining the JAVA$READDIR_CASE_DISABLE
logical name. This logical name allows the user to turn off the case-sensitive filename extraction
feature, if it is not needed. In such cases, for ODS-2 filename formats the Java language compiler
(javac) fails with the "cannot find symbol" error when referencing Java programs with mixedcase
class names.

● To set the receive or send buffer size using the socket.setReceiveBufferSize(int) or
socket.setSendBufferSize(int) methods, processes must have one or more of SYSPRV,
BYPASS, or OPER privileges. This restriction is imposed by TCP/IP services.

Without one of the aforementioned process privileges, these Java methods behave as follows:

12

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

○ If the receive or send buffer size requested is greater than the default receive or send buffer size
set on the system, then the methods will fail.

○ If the receive or send buffer size requested is less than or equal to the default receive or send
buffer size set on the system, then the system returns the default receive or send buffer size.

Alternatively, you can modify the default buffer size value in the system.

● If the process does not have any of the SYSPRV, BYPASS, or OPER OpenVMS process privileges,
invocation of the DatagramSocket setBroadcast(boolean) method fails.

● The OpenJDK debugger (jdb) fails with UTF ERROR at startup if the VMSI18N kit for VSI
OpenVMS is not installed.

The jdb utility uses the C RTL iconv family of functions to perform UTF-8 character conversions;
however, the database files required by the RTL for these conversions are not installed by default on
all VSI OpenVMS operating system versions that support OpenJDK. To overcome this issue, you
must ensure that the VMSI18N kit is installed on your system (note that VMSI18N is installed by
default for OpenVMS 8.4-2 and higher).

● OpenJDK will not operate properly after the DCL command
SET PROCESS/CASE=SENSITIVE is executed.

● OpenJDK will not operate correctly if either of the logical names
DECC$FILENAME_UNIX_ONLY or
DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION are defined. Running Java programs
with these logical names defined is not supported. Other DECC$* logical names (or combinations of
such logical names) may also result in incorrect operation of the Java virtual machine.

● Upon encountering a fatal error, the JVM may try to create a log file containing potentially
useful information regarding the crash. Unless specified otherwise (using the –XX:ErrorFile
command line option), such log files will be created in the directory pointed to by the logical name
SYS$SCRATCH (which is generally your login directory). However, it should be noted that the
JVM will report that the file has been created in /tmp (the standard scratch area on UNIX and
Linux systems). If tmp is not defined as a logical name, the OpenVMS C RTL will map /tmp to
your SYS$SCRATCH directory. If tmp is defined, the log file may be found in the corresponding
directory (assuming the directory exists). For example, the following definition would cause log
files to be created in SYS$SYSDEVICE:[LOGS] (assuming the user has write permission for this
directory):

$ define tmp SYS$SYSDEVICE:[LOGS]

● Splash screens may only work with small image files. For larger image files, the image may be only
partially displayed.

● This release of OpenJDK for VSI OpenVMS provides an option that can be used to limit the
maximum length of XML names in XML documents processed by the Java API for XML
processing (JAXP).

The maximum length can be changed by using the -Djdk.xml.maxXMLNameLimit=value
option, where value is a positive integer. A value of 0 or a negative number sets no limits (0 is the
default). It is also possible to set this limit by adding the following line to your jaxp.properties file:

jdk.xml.maxXMLNameLimit=value

13

VSI OpenJDK Version X17.0-17A Release Notes and Installation Guide

● Defining the logical name JAVA$FILE_OPEN_MODE to "3" can cause problems with some Java
applications and should not be used. Note that this logical name is deprecated and may be removed
in future releases.

● The logical name JAVA$XCOMP_SAFE_MODE has been added

In rare situations Java programs run with the –Xcomp option can crash with an ACCVIO error
caused by a race condition between threads. The logical name JAVA$XCOMP_SAFE_MODE can
be defined (to anything) to prevent this race condition from occurring, at the expense of a small
performance penalty.

14

	VSI OpenJDK Version X17.0-17A
	Table of Contents
	1. Introduction
	2. Fixed Issues and Enhancements
	3. Compatibility
	4. Requirements
	5. Installation
	5.1. Post-Installation Tasks

	6. Contents of the Kit
	7. Known Issues and Limitations

