
VSI OpenVMS Debugger Manual

Document Number: DO-DDEBGM-01A

Publication Date: March 2024

Operating System and Version: VSI OpenVMS Integrity Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI OpenVMS Debugger Manual

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium, and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or other
countries.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vista is either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is a registered trademark of The Open Group.

UNIX is a registered trademark of The Open Group.

ii

VSI OpenVMS Debugger Manual

Preface .. xix
1. About VSI ... xix
2. Intended Audience .. xix
3. Document Structure .. xix
4. Related Documents .. xx
5. VSI Encourages Your Comments ... xxi
6. OpenVMS Documentation .. xxi
7. Typographical Conventions .. xxi

Part I. Introduction to the Debugger

Chapter 1. Introduction to the Debugger ... 3
1.1. Overview of the Debugger ... 3

1.1.1. Functional Features .. 3
1.1.2. Convenience Features ... 6

1.2. Preparing an Executable Image for Debugging .. 7
1.2.1. Compiling a Program for Debugging .. 7
1.2.2. Linking a Program for Debugging ... 8
1.2.3. Controlling Debugger Activation with the LINK and RUN Commands 8

1.3. Debugging a Program with the Kept Debugger .. 9
1.3.1. Starting the Kept Debugger ... 10
1.3.2. When Your Program Completes Execution ... 13
1.3.3. Rerunning the Same Program from the Kept Debugger 13
1.3.4. Running Another Program from the Kept Debugger 14

1.4. Interrupting Program Execution and Aborting Debugger Commands 14
1.5. Pausing and Resuming a Debugging Session .. 15
1.6. Starting the Debugger by Running a Program .. 16
1.7. Starting the Debugger After Interrupting a Running Program 16
1.8. Ending a Debugging Session .. 17
1.9. Debugging a Program on a Workstation Running DECwindows Motif 17
1.10. Debugging a Program from a PC Running the Debug Client 18
1.11. Debugging Detached Processes That Run with No CLI ... 19
1.12. Configuring Process Quotas for the Debugger .. 19
1.13. Debugger Command Summary ... 20

1.13.1. Starting and Ending a Debugging Session ... 20
1.13.2. Controlling and Monitoring Program Execution ... 21
1.13.3. Examining and Manipulating Data ... 21
1.13.4. Controlling Type Selection and Radix .. 21
1.13.5. Controlling Symbol Searches and Symbolization 22
1.13.6. Displaying Source Code .. 22
1.13.7. Using Screen Mode .. 22
1.13.8. Editing Source Code ... 23
1.13.9. Defining Symbols ... 23
1.13.10. Using Keypad Mode ... 23
1.13.11. Using Command Procedures, Log Files, and Initialization Files 23
1.13.12. Using Control Structures ... 24
1.13.13. Debugging Multiprocess Programs ... 24
1.13.14. Additional Commands ... 24

Part II. Command Interface

Chapter 2. Getting Started with the Debugger .. 29

iii

VSI OpenVMS Debugger Manual

2.1. Entering Debugger Commands and Accessing Online Help 29
2.2. Displaying Source Code ... 31

2.2.1. Noscreen Mode .. 32
2.2.2. Screen Mode ... 32

2.3. Controlling and Monitoring Program Execution ... 33
2.3.1. Starting or Resuming Program Execution ... 34
2.3.2. Executing the Program by Step Unit .. 34
2.3.3. Determining Where Execution Is Paused .. 35
2.3.4. Suspending Program Execution with Breakpoints .. 36
2.3.5. Tracing Program Execution with Tracepoints .. 37
2.3.6. Monitoring Changes in Variables with Watchpoints 38

2.4. Examining and Manipulating Program Data .. 39
2.4.1. Displaying the Value of a Variable ... 39
2.4.2. Assigning a Value to a Variable ... 40
2.4.3. Evaluating Language Expressions ... 41

2.5. Controlling Access to Symbols in Your Program .. 41
2.5.1. Setting and Canceling Modules .. 42
2.5.2. Resolving Symbol Ambiguities .. 42

2.6. Sample Debugging Session .. 43
Chapter 3. Controlling and Monitoring Program Execution 47

3.1. Commands Used to Execute the Program ... 47
3.2. Executing the Program by Step Unit ... 48

3.2.1. Changing the STEP Command Behavior .. 48
3.2.2. Stepping Into and Over Routines ... 49

3.3. Suspending and Tracing Execution with Breakpoints and Tracepoints 50
3.3.1. Setting Breakpoints or Tracepoints on Individual Program Locations 51

3.3.1.1. Specifying Symbolic Addresses ... 51
3.3.1.2. Specifying Locations in Memory ... 53
3.3.1.3. Obtaining and Symbolizing Memory Addresses 53

3.3.2. Setting Breakpoints or Tracepoints on Lines or Instructions 54
3.3.3. Setting Breakpoints on Emulated Instructions (Alpha Only) 54
3.3.4. Controlling Debugger Action at Breakpoints or Tracepoints 55
3.3.5. Setting Breakpoints or Tracepoints on Exceptions .. 56
3.3.6. Setting Breakpoints or Tracepoints on Events .. 56
3.3.7. Deactivating, Activating, and Canceling Breakpoints or Tracepoints 56

3.4. Monitoring Changes in Variables and Other Program Locations 57
3.4.1. Deactivating, Activating, and Canceling Watchpoints 59
3.4.2. Watchpoint Options .. 59
3.4.3. Watching Nonstatic Variables .. 59

3.4.3.1. Execution Speed .. 60
3.4.3.2. Setting a Watchpoint on a Nonstatic Variable 61
3.4.3.3. Options for Watching Nonstatic Variables .. 61
3.4.3.4. Setting Watchpoints in Installed Writable Shareable Images 62

Chapter 4. Examining and Manipulating Program Data .. 63
4.1. General Concepts .. 63

4.1.1. Accessing Variables While Debugging .. 63
4.1.2. Using the EXAMINE Command ... 64
4.1.3. Using the DUMP Command ... 65
4.1.4. Using the DEPOSIT Command ... 66
4.1.5. Address Expressions and Their Associated Types .. 67
4.1.6. Evaluating Language Expressions ... 67

iv

VSI OpenVMS Debugger Manual

4.1.6.1. Using Variables in Language Expressions ... 69
4.1.6.2. Numeric Type Conversion by the Debugger 70

4.1.7. Address Expressions Compared to Language Expressions 70
4.1.8. Specifying the Current, Previous, and Next Entity 71
4.1.9. Language Dependencies and the Current Language 73
4.1.10. Specifying a Radix for Entering or Displaying Integer Data 73
4.1.11. Obtaining and Symbolizing Memory Addresses ... 75

4.2. Examining and Depositing into Variables .. 77
4.2.1. Scalar Types .. 77
4.2.2. ASCII String Types .. 78
4.2.3. Array Types ... 79
4.2.4. Record Types ... 80
4.2.5. Pointer (Access) Types ... 81

4.3. Examining and Depositing Instructions ... 82
4.3.1. Examining Instructions ... 82

4.4. Examining and Depositing into Registers ... 84
4.4.1. Examining and Depositing into Alpha Registers .. 84
4.4.2. Examining and Depositing into Integrity server Registers 85

4.5. Specifying a Type When Examining and Depositing .. 90
4.5.1. Defining a Type for Locations Without a Symbolic Name 90
4.5.2. Overriding the Current Type ... 91

4.5.2.1. Integer Types .. 92
4.5.2.2. ASCII String Type ... 92
4.5.2.3. User-Declared Types .. 93

Chapter 5. Controlling Access to Symbols in Your Program 95
5.1. Controlling Symbol Information When Compiling and Linking 96

5.1.1. Compiling .. 96
5.1.2. Local and Global Symbols .. 97
5.1.3. Linking .. 97
5.1.4. Controlling Symbol Information in Debugged Images 99
5.1.5. Creating Separate Symbol Files (Alpha Only) ... 99

5.2. Setting and Canceling Modules ... 100
5.3. Resolving Symbol Ambiguities ... 101

5.3.1. Symbol Lookup Conventions ... 102
5.3.2. Using SHOW SYMBOL and Path Names to Specify Symbols Uniquely 102

5.3.2.1. Simplifying Path Names ... 103
5.3.2.2. Specifying Symbols in Routines on the Call Stack 104
5.3.2.3. Specifying Global Symbols ... 104
5.3.2.4. Specifying Routine Invocations ... 104

5.3.3. Using SET SCOPE to Specify a Symbol Search Scope 104
5.4. Debugging Shareable Images .. 105

5.4.1. Compiling and Linking Shareable Images for Debugging 106
5.4.2. Accessing Symbols in Shareable Images ... 107

5.4.2.1. Accessing Symbols in the PC Scope (Dynamic Mode) 107
5.4.2.2. Accessing Symbols in Arbitrary Images ... 108
5.4.2.3. Accessing Universal Symbols in Run-Time Libraries and System
Images .. 109

5.4.3. Debugging Resident Images (Alpha Only) ... 110
Chapter 6. Controlling the Display of Source Code .. 113

6.1. How the Debugger Obtains Source Code Information ... 113
6.2. Specifying the Location of Source Files .. 113

v

VSI OpenVMS Debugger Manual

6.3. Displaying Source Code by Specifying Line Numbers ... 115
6.4. Displaying Source Code by Specifying Code Address Expressions 116
6.5. Displaying Source Code by Searching for Strings ... 117
6.6. Controlling Source Display After Stepping and at Event points 118
6.7. Setting Margins for Source Display ... 120

Chapter 7. Screen Mode .. 121
7.1. Concepts and Terminology ... 122
7.2. Display Kinds ... 123

7.2.1. DO (Command[; …]) Display Kind ... 124
7.2.2. INSTRUCTION Display Kind ... 124
7.2.3. INSTRUCTION (Command) Display Kind ... 125
7.2.4. OUTPUT Display Kind .. 125
7.2.5. REGISTER Display Kind .. 126
7.2.6. SOURCE Display Kind ... 127
7.2.7. SOURCE (Command) Display Kind .. 127
7.2.8. PROGRAM Display Kind ... 128

7.3. Display Attributes .. 128
7.4. Predefined Displays ... 130

7.4.1. Predefined Source Display (SRC) .. 131
7.4.1.1. Displaying Source Code in Arbitrary Program Locations 133
7.4.1.2. Displaying Source Code for a Routine on the Call Stack 133

7.4.2. Predefined Output Display (OUT) .. 133
7.4.3. Predefined Prompt Display (PROMPT) .. 134
7.4.4. Predefined Instruction Display (INST) .. 134

7.4.4.1. Displaying the Instruction Display ... 135
7.4.4.2. Displaying Instructions in Arbitrary Program Locations 136
7.4.4.3. Displaying Instructions for a Routine on the Call Stack 136
7.4.4.4. Displaying Register Values for a Routine on the Call Stack 136

7.5. Manipulating Existing Displays ... 136
7.5.1. Scrolling a Display ... 137
7.5.2. Showing, Hiding, Removing, and Canceling a Display 137
7.5.3. Moving a Display Across the Screen .. 138
7.5.4. Expanding or Contracting a Display ... 138

7.6. Creating a New Display ... 139
7.7. Specifying a Display Window ... 139

7.7.1. Specifying a Window in Terms of Lines and Columns 140
7.7.2. Using a Predefined Window .. 140
7.7.3. Creating a New Window Definition ... 140

7.8. Sample Display Configuration .. 140
7.9. Saving Displays and the Screen State .. 141
7.10. Changing the Screen Height and Width ... 142
7.11. Screen-Related Built-In Symbols ... 142

7.11.1. Screen Height and Width .. 142
7.11.2. Display Built-In Symbols ... 143

7.12. Screen Dimensions and Predefined Windows ... 143
7.13. Internationalization of Screen Mode .. 145

Part III. DECwindows Interface

Chapter 8. Introduction ... 149
8.1. Introduction .. 149

8.1.1. Convenience Features .. 150

vi

VSI OpenVMS Debugger Manual

8.2. Debugger Windows and Menus .. 153
8.2.1. Default Window Configuration .. 153
8.2.2. Main Window .. 153

8.2.2.1. Title Bar ... 154
8.2.2.2. Source View ... 154
8.2.2.3. Menus on Main Window .. 154
8.2.2.4. Call Stack Menu .. 157
8.2.2.5. Push Button View .. 157
8.2.2.6. Command View ... 157

8.2.3. Optional Views Window ... 158
8.2.3.1. Menus on Optional Views Window ... 160

8.3. Entering Commands at the Prompt ... 163
8.3.1. Debugger Commands That Are Not Available in the VSI DECwindows
Motif for OpenVMS Interface .. 164

8.4. Displaying Online Help About the Debugger ... 165
8.4.1. Displaying Context-Sensitive Help .. 165
8.4.2. Displaying the Overview Help Topic and Subtopic 165
8.4.3. Displaying Help on Debugger Commands ... 166
8.4.4. Displaying Help on Debugger Diagnostic Messages 166

Chapter 9. Starting and Ending a Debugging Session ... 167
9.1. Starting the Kept Debugger .. 167
9.2. When Your Program Completes Execution .. 171
9.3. Rerunning the Same Program from the Current Debugging Session 171
9.4. Running Another Program from the Current Debugging Session 172
9.5. Debugging an Already Running Program .. 172
9.6. Interrupting Program Execution and Aborting Debugger Operations 173
9.7. Ending a Debugging Session .. 173
9.8. Additional Options for Starting the Debugger .. 173

9.8.1. Starting the Debugger by Running a Program ... 174
9.8.2. Starting the Debugger After Interrupting a Running Program 174
9.8.3. Overriding the Debugger's Default Interface .. 175

9.8.3.1. Displaying the Debugger's VSI DECwindows Motif for OpenVMS
User Interface on Another Workstation .. 175
9.8.3.2. Displaying the Debugger's Command User Interface in a DECterm
Window .. 176
9.8.3.3. Displaying the Command Interface and Program Input/Output in
Separate DECterm Windows ... 176
9.8.3.4. Explanation of DBG$DECW$DISPLAY and DECW$DISPLAY 177

9.9. Starting the Motif Debug Client ... 178
9.9.1. Software Requirements ... 178
9.9.2. Starting the Server .. 179
9.9.3. Primary Clients and Secondary Clients ... 180
9.9.4. Starting the Motif Client ... 180
9.9.5. Switching Between Sessions .. 181
9.9.6. Closing a Client/Server Session .. 183

Chapter 10. Using the Debugger ... 185
10.1. Displaying the Source Code of Your Program .. 185

10.1.1. Displaying the Source Code of Another Routine 186
10.1.2. Displaying the Source Code of Another Module 187
10.1.3. Making Source Code Available for Display ... 188
10.1.4. Specifying the Location of Source Files .. 188

vii

VSI OpenVMS Debugger Manual

10.2. Editing Your Program ... 188
10.3. Executing Your Program .. 190

10.3.1. Determining Where Execution Is Currently Paused 190
10.3.2. Starting or Resuming Program Execution .. 190
10.3.3. Executing Your Program One Source Line at a Time 191
10.3.4. Stepping into a Called Routine ... 191
10.3.5. Returning from a Called Routine .. 192

10.4. Suspending Execution by Setting Breakpoints .. 192
10.4.1. Setting Breakpoints on Source Lines .. 193
10.4.2. Setting Breakpoints on Routines with Source Browser 193
10.4.3. Setting an Exception Breakpoint .. 195
10.4.4. Identifying the Currently Set Breakpoints .. 195
10.4.5. Deactivating, Activating, and Canceling Breakpoints 196
10.4.6. Setting a Conditional Breakpoint .. 196
10.4.7. Setting an Action Breakpoint ... 198

10.5. Examining and Manipulating Variables .. 199
10.5.1. Selecting Variable Names from Windows .. 199
10.5.2. Displaying the Current Value of a Variable .. 200
10.5.3. Changing the Current Value of a Variable ... 202
10.5.4. Monitoring a Variable ... 203

10.5.4.1. Monitoring an Aggregate (Array or Structure) Variable 204
10.5.4.2. Monitoring a Pointer (Access) Variable .. 205

10.5.5. Watching a Variable .. 205
10.5.6. Changing the Value of a Monitored Scalar Variable 206

10.6. Accessing Program Variables .. 207
10.6.1. Accessing Static and Nonstatic (Automatic) Variables 207
10.6.2. Setting the Current Scope Relative to the Call Stack 208
10.6.3. How the Debugger Searches for Variables and Other Symbols 209

10.7. Displaying and Modifying Values Stored in Registers .. 210
10.8. Displaying the Decoded Instruction Stream of Your Program 211
10.9. Debugging Tasking (Multithread) Programs ... 212

10.9.1. Displaying Information About Tasks (Threads) .. 212
10.9.2. Changing Task (Threads) Characteristics ... 213

10.10. Customizing the Debugger's VSI DECwindows Motif for OpenVMS Interface 213
10.10.1. Defining the Startup Configuration of Debugger Views 214
10.10.2. Displaying or Hiding Line Numbers inSource View and Instruction
View ... 214
10.10.3. Modifying, Adding, Removing, and Resequencing Push Buttons 215

10.10.3.1. Changing a Button's Label or Associated Command 215
10.10.3.2. Adding a New Button and Associated Command 216
10.10.3.3. Removing a Button .. 217
10.10.3.4. Resequencing a Button ... 217

10.10.4. Editing the Debugger Resource File .. 217
10.10.4.1. Defining the Key Sequence to Display the Breakpoint Dialog
Box ... 223
10.10.4.2. Defining the Key Sequence for Language-Sensitive Text
Selection ... 223
10.10.4.3. Defining the Font for Displayed Text ... 223
10.10.4.4. Defining the Key Bindings on the Keypad 223

10.11. Debugging Detached Processes ... 223

Part IV. PC Client Interface

viii

VSI OpenVMS Debugger Manual

Chapter 11. Using the Debugger PC Client/Server Interface 227
11.1. Introduction .. 227
11.2. Installation of PC Client .. 227
11.3. Primary Clients and Secondary Clients ... 227
11.4. The PC Client Workspace .. 228
11.5. Establishing a Server Connection .. 228

11.5.1. Choosing a Transport .. 229
11.5.2. Secondary Connections ... 229

11.6. Terminating a Server Connection .. 229
11.6.1. Exiting Both Client and Server .. 230
11.6.2. Exiting the Client Only ... 230
11.6.3. Stopping Only the Server .. 230

11.7. Documentation .. 230

Part V. Advanced Topics

Chapter 12. Using the Heap Analyzer .. 235
12.1. Starting a Heap Analyzer Session ... 235

12.1.1. Invoking the Heap Analyzer .. 235
12.1.2. Viewing Heap Analyzer Windows .. 236
12.1.3. Viewing Heap Analyzer Pull-Down Menus .. 238
12.1.4. Viewing Heap Analyzer Context-Sensitive Menus 238
12.1.5. Setting a Source Directory .. 239
12.1.6. Starting Your Application .. 240
12.1.7. Controlling the Speed of Display .. 240

12.2. Working with the Default Display ... 242
12.2.1. Memory Map Display ... 242
12.2.2. Options for Memory Map Display .. 242
12.2.3. Options for Further Information ... 244
12.2.4. Requesting Traceback Information .. 246
12.2.5. Correlating Traceback Information with Source Code 246

12.3. Adjusting Type Determination and Display .. 247
12.3.1. Options for Further Information ... 248
12.3.2. Altering Type Determination ... 249
12.3.3. Altering the Views-and-Types Display .. 251

12.3.3.1. Selecting the Scope of Your Change .. 251
12.3.3.2. Choosing a Display Option ... 252

12.4. Exiting the Heap Analyzer ... 255
12.5. Sample Session ... 255

12.5.1. Isolating Display of Interactive Command ... 255
12.5.2. Adjusting Type Determination ... 256
12.5.3. Requesting Traceback Information .. 257
12.5.4. Correlating Traceback with Source Code .. 257
12.5.5. Locating an Allocation Error in Source Code .. 258

Chapter 13. Additional Convenience Features ... 261
13.1. Using Debugger Command Procedures .. 261

13.1.1. Basic Conventions ... 261
13.1.2. Passing Parameters to Command Procedures ... 262

13.2. Using a Debugger Initialization File .. 264
13.3. Logging a Debugging Session into a File ... 265
13.4. Defining Symbols for Commands, Address Expressions, and Values 266

ix

VSI OpenVMS Debugger Manual

13.4.1. Defining Symbols for Commands ... 266
13.4.2. Defining Symbols for Address Expressions ... 267
13.4.3. Defining Symbols for Values ... 267

13.5. Assigning Commands to Function Keys ... 267
13.5.1. Basic Conventions ... 268
13.5.2. Advanced Techniques .. 268

13.6. Using Control Structures to Enter Commands .. 269
13.6.1. FOR Command .. 269
13.6.2. IF Command .. 269
13.6.3. REPEAT Command .. 270
13.6.4. WHILE Command ... 270
13.6.5. EXITLOOP Command ... 270

13.7. Calling Routines Independently of Program Execution .. 270
Chapter 14. Debugging Special Cases ... 273

14.1. Debugging Optimized Code ... 273
14.1.1. Eliminated Variables ... 274
14.1.2. Changes in Coding Order .. 275
14.1.3. Semantic Stepping (Alpha Only) .. 276
14.1.4. Use of Registers ... 279
14.1.5. Split-Lifetime Variables ... 279

14.2. Debugging Screen-Oriented Programs ... 283
14.2.1. Setting the Protection to Allocate a Terminal .. 284

14.3. Debugging Multilanguage Programs .. 285
14.3.1. Controlling the Current Debugger Language .. 285
14.3.2. Specific Differences Among Languages .. 285

14.3.2.1. Default Radix .. 286
14.3.2.2. Evaluating Language Expressions .. 286
14.3.2.3. Arrays and Records .. 286
14.3.2.4. Case Sensitivity ... 287
14.3.2.5. Initialization Code .. 287
14.3.2.6. Predefined Breakpoints ... 287

14.4. Recovering from Stack Corruption .. 288
14.5. Debugging Exceptions and Condition Handlers .. 288

14.5.1. Setting Breakpoints or Tracepoints on Exceptions 288
14.5.2. Resuming Execution at an Exception Breakpoint 289
14.5.3. Effect of the Debugger on Condition Handling .. 291

14.5.3.1. Primary Handler .. 291
14.5.3.2. Secondary Handler ... 292
14.5.3.3. Call-Frame Handlers (Application-Declared) 292
14.5.3.4. Final and Last-Chance Handlers .. 292

14.5.4. Exception-Related Built-In Symbols .. 293
14.6. Debugging Exit Handlers ... 293
14.7. Debugging AST-Driven Programs ... 294

14.7.1. Disabling and Enabling the Delivery of ASTs .. 294
14.8. Debugging Translated Images (Alpha and Integrity servers Only) 295
14.9. Debugging Programs That Perform Synchronization or Communication
Functions ... 295
14.10. Debugging Inlined Routines .. 295

Chapter 15. Debugging Multiprocess Programs .. 297
15.1. Basic Multiprocess Debugging Techniques ... 297

15.1.1. Starting a Multiprocess Debugging Session .. 297

x

VSI OpenVMS Debugger Manual

15.2. Obtaining Information About Processes ... 298
15.3. Process Specification ... 300
15.4. Process Sets .. 300
15.5. Debugger Prompts ... 302
15.6. Process-Sensitive Commands .. 302
15.7. Visible Process and Process-Sensitive Commands ... 302
15.8. Controlling Process Execution .. 303

15.8.1. WAIT Mode .. 303
15.8.2. Interrupt Mode ... 304
15.8.3. STOP Command ... 304

15.9. Connecting to Another Program ... 304
15.10. Connecting to a Spawned Process ... 305
15.11. Monitoring the Termination of Images .. 306
15.12. Releasing a Process From Debugger Control .. 306
15.13. Terminating Specified Processes ... 306
15.14. Interrupting Program Execution .. 307
15.15. Ending the Debugging Session .. 307
15.16. Supplemental Information .. 308

15.16.1. Process Relationships When Debugging .. 308
15.16.2. Specifying Processes in Debugger Commands 308
15.16.3. Monitoring Process Activation and Termination 309
15.16.4. Interrupting the Execution of an Image to Connect It to the Debugger 309
15.16.5. Screen Mode Features for Multiprocess Debugging 310
15.16.6. Setting Watchpoints in Global Sections (Alpha and Integrity servers
Only) .. 310
15.16.7. System Requirements for Debugging .. 311

15.16.7.1. User Quotas ... 311
15.16.7.2. System Resources ... 312

15.17. Examples .. 312
Chapter 16. Debugging Tasking Programs ... 317

16.1. Comparison of POSIX Threads and Ada Terminology .. 317
16.2. Sample Tasking Programs .. 318

16.2.1. Sample C Multithread Program .. 318
16.2.2. Sample Ada Tasking Program .. 322

16.3. Specifying Tasks in Debugger Commands .. 326
16.3.1. Definition of Active Task and Visible Task ... 326
16.3.2. Ada Tasking Syntax .. 327
16.3.3. Task ID ... 329
16.3.4. Task Built-In Symbols ... 330

16.3.4.1. Caller Task Symbol (Ada Only) .. 331
16.4. Displaying Information About Tasks ... 331

16.4.1. Displaying Information About POSIX Threads Tasks 331
16.4.2. Displaying Task Information About Ada Tasks .. 334

16.5. Changing Task Characteristics .. 337
16.5.1. Putting Tasks on Hold to Control Task Switching 338

16.6. Controlling and Monitoring Execution ... 338
16.6.1. Setting Task-Specific and Task-Independent Debugger Eventpoints 338
16.6.2. Setting Breakpoints on POSIX Threads Tasking Constructs 339
16.6.3. Setting Breakpoints on Ada Task Bodies, Entry Calls, and Accept
Statements ... 340
16.6.4. Monitoring Task Events .. 342

16.7. Additional Task-Debugging Topics .. 345

xi

VSI OpenVMS Debugger Manual

16.7.1. Debugging Programs with Deadlock Conditions 345
16.7.2. Automatic Stack Checking in the Debugger .. 346
16.7.3. Using Ctrl/Y When Debugging Ada Tasks .. 347

Part VI. Debugger Command Dictionary

Chapter 17. Debugger Command Dictionary ... 351
@ (Execute Procedure) .. 354
ACTIVATE BREAK .. 356
ACTIVATE TRACE .. 358
ACTIVATE WATCH .. 360
ANALYZE/CRASH_DUMP ... 361
ANALYZE/PROCESS_DUMP ... 362
ATTACH ... 363
CALL ... 364
CANCEL ALL .. 369
CANCEL BREAK ... 371
CANCEL DISPLAY ... 374
CANCEL MODE ... 375
CANCEL RADIX .. 375
CANCEL SCOPE .. 376
CANCEL SOURCE ... 377
CANCEL TRACE .. 380
CANCEL TYPE/OVERRIDE ... 382
CANCEL WATCH ... 383
CANCEL WINDOW ... 384
CONNECT .. 385
Ctrl/C ... 387
Ctrl/W .. 389
Ctrl/Y ... 389
Ctrl/Z .. 390
DEACTIVATE BREAK ... 391
DEACTIVATE TRACE .. 393
DEACTIVATE WATCH ... 395
DECLARE .. 396
DEFINE .. 398
DEFINE/KEY ... 400
DEFINE/PROCESS_SET ... 403
DELETE ... 406
DELETE/KEY ... 407
DEPOSIT .. 409
DISABLE AST .. 415
DISCONNECT .. 415
DISPLAY .. 417
DUMP .. 423
EDIT .. 425
ENABLE AST ... 427
EVALUATE .. 427
EVALUATE/ADDRESS ... 430
EXAMINE .. 432
EXIT .. 442
EXITLOOP ... 445

xii

VSI OpenVMS Debugger Manual

EXPAND .. 446
EXTRACT .. 448
FOR .. 449
GO ... 450
HELP .. 452
IF ... 453
MONITOR .. 454
MOVE .. 457
PTHREAD .. 459
QUIT .. 460
REBOOT (Integrity servers and Alpha Only) ... 463
REPEAT ... 463
RERUN .. 464
RUN ... 465
SAVE .. 467
SCROLL ... 469
SEARCH ... 471
SDA .. 474
SELECT .. 475
SET ABORT_KEY .. 478
SET ATSIGN .. 479
SET BREAK ... 480
SET DEFINE .. 489
SET EDITOR .. 490
SET EVENT_FACILITY ... 491
SET IMAGE ... 493
SET KEY .. 494
SET LANGUAGE ... 495
SET LANGUAGE/DYNAMIC ... 496
SET LOG .. 497
SET MARGINS .. 498
SET MODE ... 500
SET MODULE .. 504
SET OUTPUT ... 506
SET PROCESS .. 508
SET PROMPT ... 510
SET RADIX ... 511
SET SCOPE .. 513
SET SEARCH ... 516
SET SOURCE ... 518
SET STEP ... 521
SET TASK |THREAD ... 524
SET TERMINAL .. 528
SET TRACE ... 529
SET TYPE .. 536
SET WATCH ... 538
SET WINDOW ... 545
SHOW ABORT_KEY .. 547
SHOW AST .. 547
SHOW ATSIGN .. 548
SHOW BREAK ... 549
SHOW CALLS .. 550

xiii

VSI OpenVMS Debugger Manual

SHOW DEFINE .. 552
SHOW DISPLAY .. 553
SHOW EDITOR .. 554
SHOW EVENT_FACILITY ... 555
SHOW EXIT_HANDLERS .. 555
SHOW IMAGE ... 556
SHOW KEY ... 558
SHOW LANGUAGE ... 560
SHOW LOG ... 560
SHOW MARGINS .. 561
SHOW MODE .. 562
SHOW MODULE .. 563
SHOW OUTPUT ... 565
SHOW PROCESS .. 566
SHOW RADIX ... 569
SHOW SCOPE .. 570
SHOW SEARCH ... 572
SHOW SELECT .. 573
SHOW SOURCE ... 574
SHOW STACK .. 575
SHOW STEP ... 578
SHOW SYMBOL .. 579
SHOW TASK |THREAD ... 582
SHOW TERMINAL .. 585
SHOW TRACE ... 586
SHOW TYPE .. 587
SHOW WATCH .. 588
SHOW WINDOW ... 589
SPAWN ... 590
START HEAP_ANALYZER (Integrity servers only) ... 592
STEP .. 593
STOP .. 598
SYMBOLIZE .. 600
TYPE .. 601
WAIT ... 603
WHILE ... 603

Appendix A. Predefined Key Functions ... 605
A.1. DEFAULT, GOLD, BLUE Functions ... 606
A.2. Key Definitions Specific to LK201 Keyboards .. 607
A.3. Keys That Scroll, Move, Expand, Contract Displays ... 607
A.4. Online Keypad Key Diagrams ... 609
A.5. Debugger Key Definitions ... 610

Appendix B. Built-In Symbols and Logical Names .. 617
B.1. SS$_DEBUG Condition .. 617
B.2. Logical Names .. 617
B.3. Built-In Symbols ... 618

B.3.1. Specifying Registers ... 620
B.3.2. Constructing Identifiers ... 623
B.3.3. Counting Parameters Passed to Command Procedures 623
B.3.4. Determining the Debugger Interface (Command or VSI DECwindows Motif for
OpenVMS) .. 623

xiv

VSI OpenVMS Debugger Manual

B.3.5. Controlling the Input Radix .. 624
B.3.6. Specifying Program Locations and the Current Value of an Entity 624
B.3.7. Using Symbols and Operators in Address Expressions 625
B.3.8. Obtaining Information About Exceptions ... 628
B.3.9. Specifying the Current, Next, and Previous Scope on the Call Stack 629

Appendix C. Summary of Debugger Support for Languages ... 631
C.1. Overview ... 631
C.2. GNAT Ada (Integrity servers only) .. 632
C.3. HP Ada ... 632

C.3.1. Ada Names and Symbols .. 632
C.3.1.1. Ada Names ... 633
C.3.1.2. Predefined Attributes ... 633

C.3.2. Operators and Expressions .. 635
C.3.2.1. Operators and Expressions ... 635
C.3.2.2. Language Expressions .. 636

C.3.3. Data Types .. 637
C.3.4. Compiling and Linking ... 638
C.3.5. Source Display ... 638
C.3.6. EDIT Command .. 639
C.3.7. GO and STEP Commands .. 639
C.3.8. Debugging Ada Library Packages .. 640
C.3.9. Predefined Breakpoints ... 641
C.3.10. Monitoring Exceptions .. 641

C.3.10.1. Monitoring Any Exception ... 641
C.3.10.2. Monitoring Specific Exceptions .. 642
C.3.10.3. Monitoring Handled Exceptions and Exception Handlers 643

C.3.11. Examining and Manipulating Data ... 643
C.3.11.1. Records .. 643
C.3.11.2. Access Types .. 644

C.3.12. Module Names and Path Names .. 645
C.3.13. Symbol Lookup Conventions ... 645
C.3.14. Setting Modules ... 646

C.3.14.1. Setting Modules for Package Bodies ... 647
C.3.15. Resolving Overloaded Names and Symbols .. 647
C.3.16. CALL Command ... 647

C.4. BASIC ... 647
C.4.1. Operators in Language Expressions ... 648
C.4.2. Constructs in Language and Address Expressions .. 648
C.4.3. Data Types .. 648
C.4.4. Compiling for Debugging ... 649
C.4.5. Constants ... 649
C.4.6. Evaluating Expressions ... 649
C.4.7. Line Numbers .. 649
C.4.8. Stepping into Routines ... 649
C.4.9. Symbolic References .. 650

C.5. BLISS .. 650
C.5.1. Operators in Language Expressions ... 650
C.5.2. Constructs in Language and Address Expressions .. 651
C.5.3. Data Types .. 651

C.6. C ... 652
C.6.1. Operators in Language Expressions ... 652
C.6.2. Constructs in Language and Address Expressions .. 653

xv

VSI OpenVMS Debugger Manual

C.6.3. Data Types .. 653
C.6.4. Case Sensitivity ... 654
C.6.5. Static and Nonstatic Variables ... 654
C.6.6. Scalar Variables ... 654
C.6.7. Arrays ... 655
C.6.8. Character Strings ... 655
C.6.9. Structures and Unions .. 655

C.7. C++ Version 5.5 and Later (Alpha and Integrity servers Only) 656
C.7.1. Operators in Language Expressions ... 656
C.7.2. Constructs in Language and Address Expressions .. 657
C.7.3. Data Types .. 658
C.7.4. Case Sensitivity ... 659
C.7.5. Displaying Information About a Class .. 659
C.7.6. Displaying Information About an Object .. 660
C.7.7. Setting Watchpoints .. 662
C.7.8. Debugging Functions .. 662
C.7.9. Limitations on Debugger Support for C++ ... 664

C.8. COBOL ... 670
C.8.1. Operators in Language Expressions ... 670
C.8.2. Constructs in Language and Address Expressions .. 671
C.8.3. Data Types .. 671
C.8.4. Source Display ... 672
C.8.5. COBOL INITIALIZE Statement and Arrays (Alpha Only) 672

C.9. Fortran ... 672
C.9.1. Operators in Language Expressions ... 672
C.9.2. Constructs in Language and Address Expressions .. 673
C.9.3. Predefined Symbols .. 673
C.9.4. Data Types .. 673
C.9.5. Initialization Code .. 674

C.10. MACRO-32 .. 675
C.10.1. Operators in Language Expressions .. 675
C.10.2. Constructs in Language and Address Expressions .. 676
C.10.3. Data Types .. 676
C.10.4. MACRO--32 Compiler (AMACRO - Alpha Only; IMACRO - Integrity servers
Only) .. 677

C.10.4.1. Code Relocation .. 677
C.10.4.2. Symbolic Variables .. 677
C.10.4.3. Locating Arguments Without $ARG n Symbols 677
C.10.4.4. Arguments That Are Easy to Locate ... 678
C.10.4.5. Arguments That Are Not Easy to Locate ... 678
C.10.4.6. Debugging Code with Floating-Point Data ... 679
C.10.4.7. Debugging Code with Packed Decimal Data .. 679

C.11. MACRO--64 (Alpha Only) .. 679
C.11.1. Operators in Language Expressions .. 679
C.11.2. Constructs in Language and Address Expressions .. 680
C.11.3. Data Types .. 680

C.12. Pascal .. 681
C.12.1. Operators in Language Expressions .. 681
C.12.2. Constructs in Language and Address Expressions .. 682
C.12.3. Predefined Symbols .. 682
C.12.4. Built-In Functions .. 682
C.12.5. Data Types .. 682

xvi

VSI OpenVMS Debugger Manual

C.12.6. Additional Information ... 683
C.12.7. Restrictions .. 684

C.13. PL/I (Alpha Only) .. 684
C.13.1. Operators in Language Expressions .. 684
C.13.2. Constructs in Language and Address Expressions .. 685
C.13.3. Data Types .. 685
C.13.4. Static and Nonstatic Variables ... 685
C.13.5. Examining and Manipulating Data ... 686

C.13.5.1. EXAMINE Command Examples .. 686
C.13.5.2. Notes on Debugger Support ... 687

C.14. Language UNKNOWN ... 687
C.14.1. Operators in Language Expressions .. 687
C.14.2. Constructs in Language and Address Expressions .. 688
C.14.3. Predefined Symbols .. 688
C.14.4. Data Types .. 689

Appendix D. EIGHTQUEENS.C ... 691
D.1. EIGHTQUEENS.C ... 691
D.2. 8QUEENS.C .. 692

xvii

VSI OpenVMS Debugger Manual

xviii

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is for programmers at all levels of experience. It covers all user interfaces of the OpenVMS
Debugger:

• The command interface for terminals and workstations

• The VSI DECwindows Motif for OpenVMS user interface for workstations

• The Microsoft Windows PC client interface

The OpenVMS Debugger on OpenVMS Alpha systems can access all the extended memory made
available by the 64-bit processing of the OpenVMS Alpha operating system. Hence, you can examine
and manipulate data in the complete 64-bit address space.

The OpenVMS Debugger has been internationalized. For Asian users, the debugger's VSI DECwindows
Motif for OpenVMS, command line, and screen mode user interfaces can be used with multibyte
characters.

You can use the debugger to debug code only in user mode. You cannot debug code in supervisor,
executive, or kernel modes.

3. Document Structure
This manual is organized as follows:

• Part I introduces the OpenVMS Debugger. Part I contains one chapter:

• Chapter 1 introduces the debugger.

• Part II describes the debugger's command interface. Part II includes the following chapters:

• Chapter 2 gets you started using the debugger.

• Chapter 3 explains how to control and monitor program execution.

• Chapter 4 explains how to examine and manipulate program data.

• Chapter 5 explains how to control access to symbols in your program.

• Chapter 6 explains how to control the display of source code.

• Chapter 7 explains how to use screen mode.

• Part III describes the debugger's VSI DECwindows Motif for OpenVMS user interface. Part III
includes the following chapters:

xix

Preface

• Chapter 8 gives an overview of its VSI DECwindows Motif for OpenVMS user interface
features.

• Chapter 9 explains how to prepare your program for debugging and then start and end a
debugging session using the VSI DECwindows Motif for OpenVMS user interface.

• Chapter 10, which is organized by task, explains how to use the debugger via the VSI
DECwindows Motif for OpenVMS user interface.

• Part IV describes the debugger's PC interface. Part IV contains one chapter:

• Chapter 11 gives an overview of the debugger's PC interface.

• Part V describes advanced debugging topics. Part V includes the following chapters:

• Chapter 12, which is organized by task, explains how to use the debugger's Heap Analyzer.

• Chapter 13 explains additional convenience features, such as key definitions and other
customizations.

• Chapter 14 explains some special cases, such as debugging optimized programs and
multilanguage programs.

• Chapter 15 explains how to debug multiprocess programs.

• Chapter 16 explains how to debug tasking (multithread) programs.

• Part VI is the debugger command dictionary, followed by the appendixes:

• Appendix A lists the keypad-key definitions that are predefined by the debugger.

• Appendix B identifies all of the debugger built-in symbols and logical names.

• Appendix C identifies the debugger support for languages.

• Appendix D contains the source code of the programs shown in the figures in Chapter 8,
Chapter 9, and Chapter 10.

4. Related Documents
The following documents may also be helpful when using the debugger.

Programming Languages

This manual emphasizes debugger usage that is common to all or most supported languages. For more
information specific to a particular language, see:

• The debugger's online help system (see Section 2.1)

• The documentation supplied with that language, particularly regarding compiling and linking the
program for debugging

• The VAX MACRO and Instruction Set Reference Manual or the MACRO-64 Assembler for OpenVMS
AXP Systems Reference Manual for information about assembly-language instructions and the
MACRO assembler

xx

Preface

Linker Utility

For information about the linking of programs or shareable images, see the VSI OpenVMS Linker Utility
Manual.

Delta/XDelta Debugger

For information about debugging code in supervisor, executive, or kernel modes (that is, in other than
user mode), see the VSI OpenVMS Delta/XDelta Debugger Manual in the OpenVMS documentation set.
This manual contains information about debugging programs that run in privileged processor mode or at
an elevated interrupt priority level.

OpenVMS Alpha System-Code Debugger

See the VSI OpenVMS System Analysis Tools Manual for information on debugging operating system
code. This manual describes how to activate the OpenVMS System-Code Debugger through the
OpenVMS Debugger, and debug within the OpenVMS System-Code Debugger environment.

For information on the OpenVMS System-Code Debugger-specific commands, see the CONNECT and
REBOOT commands in Part VI.

DECwindows Motif for OpenVMS

For general information about the DECwindows Motif for OpenVMS user interface, see the Using VSI
DECwindows Motif for OpenVMS.

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions
The following conventions are used in this manual:

Convention Meaning

Ctrl/X A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 X A sequence such as PF1 X indicates that you must first press and release the
key labeled PF1 and then press and release another key (x) or a pointing device
button.

Enter In examples, a key name in bold indicates that you press that key.
... A horizontal ellipsis in examples indicates one of the following possibilities:

− Additional optional arguments in a statement have been omitted.− The

xxi

https://docs.vmssoftware.com

Preface

Convention Meaning
preceding item or items can be repeated one or more times.− Additional
parameters, values, or other information can be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose
choices in parentheses if you specify more than one. In installation or upgrade
examples, parentheses indicate the possible answers to a prompt, such as:

 Is this correct? (Y/N) [Y]

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
directory specifications and for a substring specification in an assignment
statement. In installation or upgrade examples, brackets indicate the default
answer to a prompt if you press Enter without entering a value, as in:

 Is this correct? (Y/N) [Y]

| In command format descriptions, vertical bars separate choices within brackets
or braces. Within brackets, the choices are optional; within braces, at least one
choice is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold type Bold type represents the name of an argument, an attribute, or a reason.
In command and script examples, bold indicates user input. Bold type also
represents the introduction of a new term.

italic type Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a file,
or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies website addresses, UNIX
command and pathnames, PC-based commands and folders, and certain
elements of the C programming language.

– A hyphen at the end of a command format description, command line, or code
line indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

xxii

Part I. Introduction to the Debugger

1

2

Chapter 1. Introduction to the
Debugger
This chapter briefly describes the command interface of the OpenVMS Debugger, and provides the
following information:

• An overview of debugger features

• Instructions to compile and link your program for debugging

• Instructions to start and end a debugging session

• A list of the debugger commands grouped by function

For a tutorial introduction to basic debugging tasks, see Chapter 2.

1.1. Overview of the Debugger
The OpenVMS Debugger is a tool to locate run-time programming or logic errors, also known as bugs,
in a program that has been compiled and linked successfully but does not run correctly. For example, the
program might give incorrect output, go into an infinite loop,or terminate prematurely.

By using the OpenVMS Debugger,you can locate program bugs by observing and manipulating the
program interactively as it executes. Debugger commands enable you to:

• Control and observe execution of the program

• Display and browse through the source code of the program to identify instructions and variables
worth scrutiny

• Suspend program execution at specified points in order to monitor changes in variables and other
program entities

• Change the value of a variable and, in some cases, test the modification without having to edit the
source code, recompile, and relink

• Trace the execution path of the program

• Monitor exception conditions and language-specific events

These are basic debugging techniques. After locating program errors,you can edit the source code and
compile, link, execute, and test the corrected version.

As you use the debugger and its documentation, you will discover and develop variations on the basic
techniques. You can also customize the debugger for your own needs. Section 1.1.1summarizes the
features of the OpenVMS Debugger.

1.1.1. Functional Features
Programming Language Support
On Alpha systems, you can use the debugger with programs written in the following languages:

3

Chapter 1. Introduction to the Debugger

Ada BASIC BLISS C
C++ COBOL Fortran MACRO-32 Note that MACRO-32 must be

compiled with the AMACRO compiler.
MACRO-64 Pascal PL/I

On Integrity server, you can use the debugger with programs written in the following languages:

Assembler
(IAS)

BASIC BLISS C

C++ COBOL Fortran MACRO-32. Note that MACRO-32 must be
compiled with the AMACRO compiler.

IMACRO PASCAL

The debugger recognizes the syntax, data types, operators, expressions,scoping rules, and other
constructs of a supported language. You can change the debugging context from one language to another
(with the SET LANGUAGE command) during a debugging session.

Symbolic Debugging

The debugger is a symbolic debugger. You can refer to program locations by the symbols used in your
program — the names of variables, routines, labels, and so on. You can also specify explicit memory
addresses or machine registers if you choose.

Support for All Data Types

The debugger recognizes the data types generated by the compilers of all supported languages, such as
integer, floating-point, enumeration, record,array, and so on, and displays the values of each program
variable according to its declared type.

Flexible Data Format

With the debugger, you can enter and display a variety of data forms and data types. The source
language of the program determines the default format for the entry and display of data. However, you
can select other formats as needed.

Starting or Resuming Program Execution

Once the program is under control of the debugger, you can start or resume program execution with
the GO or STEP command. The GO command causes the program to execute until specified events
occur (the PC points to a designated line of code, a variable is modified, an exception is signaled, or the
program terminates). You can use the STEP command to execute a specified number instructions or
lines of source code, or until the program reaches the next instruction of a specified class.

Breakpoints

You can set a breakpoint with the SET BREAK command, to suspend program execution at a specified
location in order to check the current status of the program. You can also direct the debugger to suspend
execution when the program is about to execute an instruction of a specific class. You can also suspend
execution when certain events occur, such as exceptions and tasking (multithread) events.

4

Chapter 1. Introduction to the Debugger

Tracepoints
You can set a tracepoint with the SET TRACE command, to cause the debugger to report each time
that program execution reaches a specified location (that is, each time the program counter (PC)
references that location). As with the SET BREAK command, you can also trace the occurrence of
classes of instructions and monitor the occurrence of certain events, such as exceptions and tasking
(multithread) events.

Watchpoints
You can set a watchpoint with the SET WATCH command to cause the debugger to suspend program
execution whenever a particular variable (or other specified memory location) has been modified, at
which point the debugger reports the old and new values of the variable.

Manipulation of Variables and Program Locations
You can use the EXAMINE command to determine the value of a variable or memory location. You can
use the DEPOSIT command to change that value. You can then continue execution of the program to
determine the effect of the change without having to recompile, relink, and rerun the program.

Evaluation of Expressions
You can use the EVALUATE command to compute the value of a source-language expression or an
address expression in the syntax of the language to which the debugger is currently set.

Control Structures
You can use logical control structures (FOR, IF, REPEAT, WHILE) in commands to control the
execution of other commands.

Shareable Image Debugging
You can debug shareable images (images that are not directly executable). The SET IMAGE command
enables you to access the symbols declared in as shareable image (that was compiled and linked with
the /DEBUG qualifiers).

Multiprocess Debugging
You can debug multiprocess programs (programs that run in more than one process). The SHOW
PROCESS and SET PROCESS commands enable you to display process information and to control the
execution of images in individual processes.

Task Debugging
You can debug tasking programs (also known as multithread programs). These programs use POSIX
Threads Library or POSIX 1003.1b services, or use language-specific tasking services (for example, Ada
tasking programs). The SHOW TASK and SET TASK commands enable you to display task information
and to control the execution of individual tasks.

Terminal and Workstation Support
The debugger supports all VT-series terminals and VAX workstations.

5

Chapter 1. Introduction to the Debugger

1.1.2. Convenience Features
Online Help
Online help is always available during a debugging session. Online help contains information about all
debugger commands and additional selected topics.

Source Code Display
During a debugging session, you can display the source code for program modules written in any of the
languages supported by the OpenVMS Debugger.

Screen Mode
In screen mode, you can capture and display various kinds of information in scrollable display units.
You can move these display units around the screen and resize them as needed. Automatically updated
source, instruction, and register displays units are available. You can selectively direct debugger input,
output, and diagnostic messages to specific display units. You can also create display units to capture the
output of specific command sequences.

Kept Debugger
The kept debugger enables you to run different program images or rerun the same image from the
current debugging session without having to first exit and restart the debugger. When you rerun a
program, you can choose to retain or cancel any previously set breakpoints, as well as most trace points
and watch points.

DECwindows Motif User Interface
The OpenVMS Debugger has an optional HP DECwindows Motif graphical user interface (GUI) that
provides access to common debugger commands by means of push buttons, pull down menus, and pop
up menus. The GUI is an optional enhancement to the debugger command line interface that is available
on workstations running DECwindows Motif. When using the GUI, you have full command-line access
to all debugger commands that are relevant within a DECwindows Motif environment.

Microsoft Windows Interface
The OpenVMS Debugger has an optional client/server configuration that allows you to access the
debugger and its functions from a PC running on your supplied Microsoft operating system. This
debugger implementation has a debug server that runs on OpenVMS on an Alpha or Integrity server
CPU, and a debug client interface that runs on Microsoft operating systems on an Intel or Alpha CPU.

Client/Server Configuration
The client/server configuration allows you to debug programs that run on an OpenVMS node remotely
from another OpenVMS node using the DECwindows Motif user interface, or from a PC using the
Microsoft Windows interface. Up to 31 debug clients can simultaneously access the same debug
server,which allows many debugging options.

Keypad Mode
When you start the debugger, several predefined debugger command sequences are assigned to the keys
of the numeric keypad of the VT52, VT100, and LK201 keyboards. You can also create your own key
definitions.

6

Chapter 1. Introduction to the Debugger

Source Editing
As you find errors during a debugging session, you can use the EDIT command to use any editor
available on your system. You can specify the editor with the SET EDITOR command. If you use the
Language-Sensitive Editor (LSE), the editing cursor is automatically positioned within the source file
corresponding to the source code that appears in the screen-mode source display.

Command Procedures
You can direct the debugger to execute a command procedure (a file of debugger commands) to
re-create a debugging session, to continue a previous session, or to avoid typing the same debugger
commands many times during a debugging session. In addition, you can pass parameters to command
procedures.

Initialization Files
You can create an initialization file that contains debugger commands to set default debugging modes,
screen display definitions, keypad key definitions, symbol definitions, and so on. Upon start up, the
OpenVMS Debugger automatically executes the initialization file to create the predefined debugging
environment.

Log Files
You can create a log file to contain a record of command input and debugger output. You can then
use the log file to analyze the debugging session, or edit the file for use as a command procedure in
subsequent debugging sessions.

Symbol Definitions
You can define your own symbols to represent lengthy commands, address expressions, or values in
abbreviated form.

1.2. Preparing an Executable Image for
Debugging
To take full advantage of symbolic debugging, you must first compile and link the program's modules
(compilation units) using the compiler and linker /DEBUG qualifiers as explained in Section 1.2.1 and
Section 1.2.2.

1.2.1. Compiling a Program for Debugging
Example 1.1shows how to compile (for debugging) a C program, FORMS.EXE, that consists of two
source modules: FORMS.C and INVENTORY.C. FORMS.C is the main program module.

Example 1.1. Compiling a Program with the /DEBUG Qualifier

$ CC/DEBUG/NOOPTIMIZE INVENTORY,FORMS

Note that the /DEBUG and /NOOPTIMIZE qualifiers are compiler command defaults for some
languages. These qualifiers are used in the example for emphasis. (For information about compiling
programs in a specific language, see the documentation for that language.)

7

Chapter 1. Introduction to the Debugger

The /DEBUG qualifier in the compiler command in Example 1.1 directs the compiler to include the
symbol information associated with FORMS.C and INVENTORY.C in object modules FORMS.OBJ
and INVENTORY.OBJ, respectively. This enables you to refer to the symbolic names of variables,
routines,and other declared symbols while debugging the program. Only object files created with
the /DEBUG qualifier contain symbol information. You can control whether to include all symbol
information or only that required to trace program flow (see Section 5.1.1).

Some compilers optimize the object code to reduce the size of the program or to make it run faster. In
such cases the object code does not always match the source code, which can make debugging more
difficult. To avoid this, compile the program with the /NOOPTIMIZE command qualifier (or equivalent).
After the non-optimized program has been debugged, you can recompile and test it again without the /
NOOPTIMIZE qualifier to take advantage of optimization. Section 14.1 describes some of the effects of
optimization.

1.2.2. Linking a Program for Debugging
Example 1.2 shows how to link a C program, FORMS.EXE that consists of two source modules:
FORMS.C and INVENTORY.C. FORMS.C is the main program module. Both source modules were
compiled with the /DEBUG qualifier (see Example 1.1).

Example 1.2. Linking a Program with the /DEBUG Qualifier

$ LINK/DEBUG FORMS,INVENTORY

In Example 1.2, the /DEBUG qualifier in the LINK command directs the linker to include in the
executable image all symbol information that is contained in the object modules being linked. Most
languages require that you specify all included object modules in the LINK command. See Section 5.1.3
for more details on how to control symbol information with the LINK command.

On Alpha and Integrity server systems, you can now debug programs that have been linked with
the /DSF qualifier (and therefore have a separate debug symbol file).The /DSF qualifier to the LINK
command directs the linker to create a separate. DSF file to contain the symbol information. This allows
more flexible debugging options. Debugging such a program requires the following:

• The name of the .DSF file must match the name of the .EXE file being debugged.

• You must define DBG$IMAGE_DSF_PATH to point to the directory that contains the .DSF file.

For example:

$ CC/DEBUG/NOOPTIMIZE TESTPROGRAM
$ LINK/DSF=TESTDISK:[TESTDIR]TESTPROGRAM.DSF TESTPROGRAM
$ DEFINE DBG$IMAGE_DSF_PATH TESTDISK:[TESTDIR]
$ DEBUG/KEEP TESTPROGRAM

See Section 5.1.5 for more information about debugging programs that have separate symbol files. See
the VSI OpenVMS Linker Utility Manual for more information about using the /DSF qualifier.

1.2.3. Controlling Debugger Activation with the LINK
and RUN Commands
In addition to passing symbol information to the executable image, the LINK /DEBUG command causes
the image activator to start the debugger if you execute the resulting image with the DCL command
RUN. (See Section 1.6.)

8

Chapter 1. Introduction to the Debugger

You can also run an image compiled and linked with the /DEBUG command qualifiers without invoking
the debugger. To do so, use the /NODEBUG qualifier in the DCL command RUN. For example:

$ RUN/NODEBUG FORMS

This is convenient for checking your program once you think it is error free. Note that the data required
by the debugger occupies space within the executable image. When your program is correct, you can link
your program again without the /DEBUG qualifier. This creates an image with only trace back data in
the debug symbol table, which creates a smaller executable file.

Table 1.1 summarizes how to control debugger activation with the LINK and RUN command qualifiers.
Note that the LINK command qualifiers /[NO]DEBUG and /[NO]TRACEBACK affect not only
debuggeractivation but also the maximum level of symbol information provided when debugging.

Table 1.1. Controlling Debugger Activation with the LINK and RUN Commands

LINK Command
Qualifier

To Run Program
without Debugger

To Run Program
with Debugger

Maximum Symbol
Information Available1

/DEBUG1 RUN /NODEBUG RUN Full
None or
/TRACEBACK or
/NODEBUG3

RUN RUN /DEBUG Only traceback4

/NOTRACEBACK RUN RUN /DEBUG5 None
/DSF6 RUN DEBUG /KEEP7 Full
/DSF6 RUN DEBUG /SERVER7 Full

1On OpenVMS Alpha systems, anything that uses system service interception (SSI), such as the debugger or the Heap Analyzer, is unable to
intercept system service call images activated by shared linkage. The image activator, therefore, avoids shared linkage for images linked or run
with /DEBUG, and instead activates private image copies. This affects performance of user applications under debugger or Heap Analyzer
control, as images activated by shared linkage run faster.
3LINK /TRACEBACK (or LINK /NODEBUG) is a LINK command default.
4Traceback information includes compiler-generated line numbers and the names of routines and modules (compilation units). This symbol
information is used by the traceback condition handler to identify the PC value (where execution is paused) and the active calls when a run-time
error has occurred. The information is also used by the debugger SHOW CALLS command (see Section 2.3.3).
5The RUN /DEBUG command allows you to run the debugger, but if you entered the LINK /NOTRACEBACK command, you will be unable
to do symbolic debugging.
6Alpha and Integrity server only.
7Logical name DBG$DSF_IMAGE_NAME must point to the directory that contains the .DSF file (see Section 1.2.2).

1.3. Debugging a Program with the Kept
Debugger
You can run the OpenVMS Debugger as the kept debugger, which allows you to rerun the same program
again and again, or to run different programs, all without terminating the debugging session. This section
explains how to:

• Start the kept debugger and then bring a program under debugger control

• Rerun the same program from the current debugging session

• Run another program from the current debugging session

• Interrupt program execution and abort debugger commands

• Interrupt a debugging session and then return to the debugging session

9

Chapter 1. Introduction to the Debugger

1.3.1. Starting the Kept Debugger
This section explains how to start the kept debugger from DCL level ($) and bring your program under
debugger control. Section 1.6 and Section 1.7 describe other ways to invoke the debugger.

Using the kept debugger enables you to use the debugger's RERUN and RUN features explained in
Section 1.3.3 and Section 1.3.4, respectively.

Note

The following problems or restrictions are specific to the kept debugger:

• If a previous debugger process has not completely stopped, you may see the following error at
debugger startup:

%DEBUG-E-INTERR, internal debugger error in
 DBGMRPC\DBG$WAIT_FOR_EVENT got an ACK

To fix this problem, exit the debugger. Then use the DCL command SHOW
PROCESS /SUBPROCESS to check whether any debugger subprocesses exist. If so, stop them by
using the DCL command STOP and then restart the debugger.

• Running a sequence of many large programs can cause the debugger to fail because it has run out of
memory, global sections, or some other resource.

To fix this problem, exit the debugger and restart the debugging session.

To start the kept debugger and bring your program under debugger control:

1. Verify that you have compiled and linked the program as explained in Section 1.2.

2. Enter the following command line:

$ DEBUG/KEEP

Upon startup, the debugger displays its banner, executes any user-defined initialization file (see
Section 13.2), and displays its DBG> prompt to indicate that you can now enter debugger commands,
as explained in Section 2.1.

3. Bring your program under debugger control with the debugger RUN command, specifying the
executable image of your program as the parameter. For example:

DBG> RUN FORMS
%DEBUG-I-INITIAL,Language: C, Module: FORMS
DBG>

The message displayed indicates that this debugging session is initialized fora C program and that the
name of the main program unit (the module containing the image transfer address) is FORMS. The
initialization sets up language-dependent debugger parameters. These parameters control the way the
debugger parses names and expressions, formats debugger output, and so on. See Section 4.1.9 for more
information about language-dependent parameters.

The debugger suspends program execution (by setting a temporary breakpoint) at the start of the main
program unit or, with certain programs, at the start of some initialization code, at which point the
debugger displays the following message:

10

Chapter 1. Introduction to the Debugger

%DEBUG-I-NOTATMAIN, Type GO to reach main program

With some of these programs (for example, Ada programs), the temporary breakpoint enables you to
debug the initialization code using full symbolic information. See Section 14.3 for more information.

At this point, you can debug your program as explained in Chapter 2.

RUN and RERUN Command Options for Programs That Require
Arguments
Some programs require arguments. This section explains how to use the RUN and RERUN commands
with the /ARGUMENTS and /COMMAND qualifiers when debugging a program with the kept
debugger.

After starting the kept debugger, you can specify the image to be debugged by entering the RUN
command with an image name, or the RUN /COMMAND command with a DCL foreign command.
Note that you can specify a DCL foreign command only with the /COMMAND qualifier to the RUN
command.

You can specify a list of arguments with the /ARGUMENTS qualifier to the RUN and RERUN
commands.

The different methods are shown in the following example of a debugger session. The program to be
debugged is echoargs.c,a program that echoes the input arguments to the terminal:

#include <stdio.h>

main(int argc, char *argv[])
{
 int i;

 for (i = 0; i < argc; i++)
 printf("%s\n", argv[i]);
}

Compile and link the program as follows:

$ cc/debug/noopt echoargs.c
$ link/debug echoargs

Define a DCL foreign command as follows:

$ ECHO == "$ sys$disk:[]echoargs.exe"

Invoke the kept debugger. The debugger session in the example that follows shows three ways of passing
arguments:

• RUN with /COMMAND and /ARGUMENTS

• RERUN with /ARGUMENTS

• RUN with /ARGUMENTS and image name

RUN with /COMMAND and /ARGUMENTS
This section of the debugger session shows the use of the debugger RUN command with
the /COMMAND and /ARGUMENTS qualifiers. The /COMMAND qualifier specifies DCL foreign

11

Chapter 1. Introduction to the Debugger

command echo.The /ARGUMENTS qualifier specifies arguments fa sol la mi. The first GO
command executes the initialization code of echoargs.exe after which the debugger suspends
program execution at the temporary breakpoint at the start of the program. The second GO command
executes echoargs.exe, which correctly echoes the arguments to the screen.

$ DEBUG/KEEP
 Debugger Banner and Version Number
DBG> RUN/COMMAND="echo"/ARGUMENTS="fa sol la mi"
%DEBUG-I-NOTATMAIN,Language: C, Module: ECHOARGS
%DEBUG-I-NOTATMAIN,Type GO to reach main program
DBG> GO
break at routine ECHOARGS\main
 1602: for (i = 0; i < argc; i++)
DBG> GO
_dsa1:[jones.test]echoargs.exe;2
fa
sol
la
mi
%DEBUG-I-EXITSTATUS,is '%SYSTEM-S-NORMAL, Normal successful completion'

This section of the debugger session shows the use of the RERUN command with the /ARGUMENTS
qualifier to run the same image again, with new arguments fee fii foo fum. (If you omit
the /ARGUMENTS qualifier, the debugger reruns the program with the arguments used previously.)

The first GO command executes the initialization code of echoargs.exe after which the debugger
suspends program execution at the temporary breakpoint at the start of the program. The second GO
command executes echoargs.exe, which correctly echoes the arguments to the screen.

DBG> RERUN/ARGUMENTS="fee fii foo fum"
%DEBUG-I-NOTATMAIN,Language: C, Module: ECHOARGS
%DEBUG-I-NOTATMAIN,Type GO to reach main program
DBG> GO
break at routine ECHOARGS\main
 1602: for (i = 0; i < argc; i++)
DBG> GO
_dsa1:[jones.test]echoargs.exe;2
fee
fii
foo
fum
%DEBUG-I-EXITSTATUS,is '%SYSTEM-S-NORMAL, Normal successful completion'

This section of the debugging session uses the RUN command to invoke a fresh image of echoargs,
with the /ARGUMENTS qualifier to specify a new set of arguments a b c.

The first GO command executes the initialization code of echoargs.exe after which the debugger
suspends program execution at the temporary breakpoint at the start of the program. The second GO
command executes echoargs.exe,which correctly echoes the arguments to the screen.

DBG> RUN/ARGUMENTS="a b c" echoargs
%DEBUG-I-NOTATMAIN,Language: C, Module: ECHOARGS
%DEBUG-I-NOTATMAIN,Type GO to reach main program
DBG> GO
break at routine ECHOARGS\main
 1602: for (i = 0; i < argc; i++)
DBG> GO

12

Chapter 1. Introduction to the Debugger

_dsa1:[jones.test]echoargs.exe;2
a
b
c
%DEBUG-I-EXITSTATUS,is '%SYSTEM-S-NORMAL, Normal successful completion'
DBG> quit

RUN Command Restrictions
Note the following restrictions about the debugger RUN command:

• You can use the RUN command only if you started the debugger with the DCL command DEBUG /
KEEP.

• You cannot use the RUN command to connect the debugger to a running program (see Section 1.7).

• Unless you are using the debugger client/server interface, you cannot run a program under debugger
control over a network link. See Section 9.9 and Chapter 11 for more information about using the
debugger client/server interface.

1.3.2. When Your Program Completes Execution
When your program completes execution normally during a debugging session, the debugger issues the
following message:

%DEBUG-I-EXITSTATUS,is '%SYSTEM-S-NORMAL, Normal successful completion')

You then have the following options:

• You can rerun your program from the same debugging session (see Section 1.3.3).

• You can run another program from the same debugging session (see Section 1.3.4).

• You can end the debugging session (see Section 1.8).

1.3.3. Rerunning the Same Program from the Kept
Debugger
You can rerun the program currently under debugger control at any time during a debugging session,
provided you invoked the kept debugger as explained in Section 1.3.1. Use the RERUN command. For
example:

DBG> RERUN
%DEBUG-I-NOTATMAIN, Language: C, Module: ECHOARGS
%DEBUG-I-NOTATMAIN, Type GO to reach main program

DBG>

The RERUN command terminates the image you were debugging and brings a fresh copy of that image
under debugger control, pausing at the start of the main source module as if you had used the RUN
command (see Section 1.3.1).

When you use the RERUN command you can save the current state (activated or deactivated) of any
breakpoints, trace points, and static watch points. Note that the state of a particular nonstatic watchpoint

13

Chapter 1. Introduction to the Debugger

might not be saved, depending on the scope of the variable being watched relative to the main program
unit (where execution restarts). RERUN /SAVE is the default. To clear all breakpoints tracepoints, and
watchpoints, enter RERUN /NOSAVE.

The RERUN command invokes the same version of the image that is currently under debugger control.
To debug a different version of that program (or a different program) from the same debugging session,
use the RUN command. To rerun a program with new arguments, use the /ARGUMENTS qualifier (see
the section called “RUN and RERUN Command Options for Programs That Require Arguments”).

1.3.4. Running Another Program from the Kept
Debugger
You can bring another program under debugger control at any time during a debugging session, provided
you invoked the kept debugger as explained in Section 1.3.1. Use the debugger RUN command. For
example:

DBG> RUN TOTALS
%DEBUG-I-NOTATMAIN, Language: FORTRAN, Module: TOTALS
DBG>

The debugger loads the program and pauses execution at the start of the main source module.

For more information about startup conditions and restrictions, see Section 1.3.1.

For information about all RUN command options, see the debugger RUN command description.

1.4. Interrupting Program Execution and
Aborting Debugger Commands
If your program goes into an infinite loop during a debugging session so that the debugger prompt does
not reappear, press Ctrl/C. This interrupts program execution and returns you to the debugger prompt
(pressing Ctrl/C does not end the debugging session). For example:

DBG> GO
 .
 .
 .
Ctrl/C
DBG>

You can also press Ctrl/C to abort the execution of a debugger command. This is useful if, for example,
the debugger is displaying along stream of data.

Pressing Ctrl/C when the program is not running or when the debugger is not performing an operation
has no effect.

If your program has a Ctrl/C AST (asynchronous system trap) service routine enabled, use the SET
ABORT_KEY command to assign the debugger's abort function to another Ctrl/key sequence. To
identify the abort key that is currently defined, enter the SHOW ABORT_KEY command.

Pressing Ctrl/Y from within a debugging session has the same effect as pressing Ctrl/Y during the
execution of a program. Control is returned to the DCL command interpreter ($ prompt).

14

Chapter 1. Introduction to the Debugger

1.5. Pausing and Resuming a Debugging
Session
The debugger SPAWN and ATTACH commands enable you to interrupt a debugging session from the
debugger prompt, enter DCL commands, and return to the debugger prompt. These commands function
essentially like the DCL commands SPAWN and ATTACH:

• Use the debugger SPAWN command to create a subprocess.

• Use the debugger ATTACH command to attach to an existing process or subprocess.

You can enter the SPAWN command with or without specifying a DCL command as a parameter. If
you specify a DCL command, it is executed in a subprocess (if the DCL command invokes a utility, that
utility is invoked in a subprocess). Control returns to the debugging session when the DCL command
terminates (or when you exit the utility). The following example shows spawning the DCL command
DIRECTORY:

DBG> SPAWN DIR [JONES.PROJECT2]*.FOR
 .
 .
 .
Control returned to process JONES_1
DBG>

The next example shows spawning the DCL command MAIL, which invokes the Mail utility:

DBG> SPAWN MAIL
MAIL> READ/NEW
 .
 .
 .
MAIL> EXIT
Control returned to process JONES_1
DBG>

If you enter the SPAWN command without specifying a parameter, a subprocess is created, and you can
then enter DCL commands. Either logging out of the subprocess or attaching to the parent process (with
the DCL command ATTACH) returns you to the debugging session. For example:

DBG> SPAWN
$ RUN PROG2
 .
 .
 .
$ ATTACH JONES_1
Control returned to process JONES_1
DBG>

If you plan to go back and forth several times between your debugging session and a spawned subprocess
(which might be another debugging session), use the debugger ATTACH command to attach to that
subprocess. Use the DCL command ATTACH to return to the parent process. Because you do not create
a new subprocess every time you leave the debugger, you use system resources more efficiently.

If you are running two debugging sessions simultaneously, you can define anew debugger prompt for one
of the sessions with the SET PROMPT command. This helps you differentiate the sessions.

15

Chapter 1. Introduction to the Debugger

1.6. Starting the Debugger by Running a
Program
You can bring your program under control of the non-kept debugger in one step by entering the DCL
command RUN filespec.

Note that when running the non-kept debugger, you cannot use the debugger RERUN or RUN features
explained in Section 1.3.3 and Section 1.3.4, respectively. To rerun the same program or run another
program under debugger control, you must first exit the debugger and start it again.

To start the non-kept debugger by running a program:

1. Verify that you have compiled and linked the program as explained in 1.2.1 and 1.2.2.

2. Enter the DCL command RUN filespec to start the debugger.

For example:

$ RUN FORMS
 Debugger Banner and Version Number
%DEBUG-I-NOTATMAIN, Language: C, Module: FORMS
DBG>

Upon startup, the debugger displays its banner, executes any user-defined initialization file, sets the
language-dependent parameters to the source language of the main program, suspends execution at the
start of the main program,and prompts for commands.

For more information about startup conditions, see Section 1.2.3 and Section 1.3.1.

1.7. Starting the Debugger After Interrupting a
Running Program
You can bring a program that is executing freely under debugger control. This is useful either if you
suspect that the program might be in an infinite loop or if you see erroneous output.

To bring your program under debugger control:

1. Verify that you have compiled and linked the program as explained in Section 1.2.

2. Enter the DCL command RUN/NODEBUG filespec to execute the program without invoking
the debugger.

3. Press Ctrl/Y to interrupt the executing program. Control passes to the DCL command interpreter.

4. Enter the DCL command DEBUG. This invokes the non-kept debugger.

For example:

$ RUN/NODEBUG FORMS
 .
 .
 .
Ctrl/Y
Interrupt

16

Chapter 1. Introduction to the Debugger

$ DEBUG
 Debugger Banner and Version Number
%DEBUG-I-NOTATMAIN, Language: C, Module: FORMS
DBG>

Upon startup, the debugger displays its banner, executes any user-defined initialization file, sets the
language-dependent parameters to the source language of the module where execution is interrupted, and
prompts for commands.

To know where the execution is interrupted, enter the SHOW CALLS command to determine where
execution is paused and to display the sequence of routine calls on the call stack (the SHOW CALLS
command is described in Section 2.3.3).

Note that when running the non-kept debugger, you cannot use the debugger RERUN or RUN features
explained in Section 1.3.3 and Section 1.3.4, respectively. To rerun the same program or run another
program under debugger control, you must first exit the debugger and start it again.

For more information about startup conditions, see Section 1.2.3 and Section 1.3.1.

1.8. Ending a Debugging Session
To end a debugging session in an orderly manner and return to DCL level,enter EXIT or QUIT or press
Ctrl/Z. For example:

DBG> EXIT
$

The QUIT command starts the debugger exit handlers to close log files, restores the screen and keypad
states, and so on.

The EXIT command and Ctrl/Z function identically. They perform the same functions as the QUIT
command,and additionally execute any exit handlers that are declared in your program.

1.9. Debugging a Program on a Workstation
Running DECwindows Motif
If you are at a workstation running HP DECwindows Motif, by default the debugger starts up in the
HP DECwindows Motif user interface, which is displayed on the workstation specified by the HP
DECwindows Motif application wide logical name DECW$DISPLAY.

The logical name DBG$DECW$DISPLAY enables you to override the default to display the debugger's
command interface in a DECterm window, along with any program input/output (I/O).

To display the debugger's command interface in a DECterm window:

1. Enter the following definition in the DECterm window from which you plan to start the debugger:

$ DEFINE/JOB DBG$DECW$DISPLAY " "

You can specify one or more space characters between the quotation marks. You should use a job
definition for the logical name. If you use a process definition, it must not have the CONFINE
attribute.

2. Start the debugger in the usual way from that DECterm window (see Section 1.3.1).The debugger's
command interface is displayed in the same window.

17

Chapter 1. Introduction to the Debugger

For example:

$ DEFINE/JOB DBG$DECW$DISPLAY " "
$ DEBUG/KEEP
 Debugger Banner and Version Number
DBG>

You can now bring your program under debugger control as explained in Section 1.3.1.For more
information about the logical names DBG$DECW$DISPLAY and DECW$DISPLAY, see Section 9.8.3.

On a workstation running HP DECwindows Motif, you can also run the client/server configuration of the
OpenVMS debugger. See Section 9.9 for details.

1.10. Debugging a Program from a PC
Running the Debug Client
The OpenVMS Debugger Version 7.2 and later features a client/server interface that allows you to debug
programs running on OpenVMS on Alpha from a PC debug client interface running:

• Microsoft Windows (Intel)

• Microsoft Windows NT Version 3.51 or greater (Intel or Alpha)

Note

The client/server interface for OpenVMS Integrity server systems is planned for a future release.

The OpenVMS client/server configuration allows the following:

• Remote access to OpenVMS Debug servers from other OpenVMS systems or from PCs running
Windows 95 or Windows NT Version 3.51 or later

• Client access to multiple servers, each running on the same or different OpenVMS nodes

• Multiple clients on different nodes to simultaneously connect to the same server for teaching or team
debugging

• Debugging of multitier client/server applications that are distributed among several mixed-platform
systems

The client and server communicate using Distributed Computing Environment/Remote Procedure Calls
(DCE/RPC) over one of the following transports:

• TCP/IP

• UDP

• DECnet

To invoke the server on an OpenVMS node, enter the following command:

$ DEBUG/SERVER

The server displays its network binding strings. You must specify one of these strings when you connect
a HP DECwindows Motif or Microsoft Windows client to this server. For example:

18

Chapter 1. Introduction to the Debugger

$ DEBUG/SERVER
%DEBUG-I-SPEAK: TCP/IP: YES, DECnet: YES, UDP: YES
%DEBUG-I-WATCH: Network Binding: ncacn_ip_tcp:16.32.16.138[1034]
%DEBUG-I-WATCH: Network Binding: ncacn_dnet_nsp:19.10[RPC224002690001]
%DEBUG-I-WATCH: Network Binding: ncadg_ip_udp:16.32.16.138[1045]
%DEBUG-I-AWAIT: Ready for client connection...

In the client's Server Connection dialog box, enter the type of network protocol (TCP/IP, DECnet, or
UDP) and the corresponding network binding string (see Section 9.9.4).

Note

Messages and program output appear by default in the window in which you start the server. You can
redirect program output to another window as required.

For more information about using the debug client interface, see Chapter 11.

1.11. Debugging Detached Processes That
Run with No CLI
The design and implementation of the debugger's HP DECwindows Motif user interface requires that the
process being debugged have a command line interpreter (CLI). To debug a detached process (such as a
print symbiont) that does not have a CLI, you must use the character-cell (screen mode) interface to the
debugger.

To do so, direct DBG$INPUT, DBG$OUTPUT and DBG$ERROR to a terminal port that is not logged
in. This allows the image to be debugged with the standard character-cell interface on that terminal.

For example:

$ DEFINE/TABLE=GROUP DBG$INPUT TTA3:
$ DEFINE/TABLE=GROUP DBG$OUTPUT TTA3:
$ DEFINE/TABLE=GROUP DBG$ERROR TTA3:
$ START/QUEUE SYS$PRINT /PROCESSOR=dev:[dir]test_program
[Debugger starts up on logged-out terminal TTA3:]

1.12. Configuring Process Quotas for the
Debugger
Each user needs a PRCLM quota sufficient to create an additional subprocess for the debugger, beyond
the number of processes needed by the program.

BYTLM, ENQLM, FILLM, and PGFLQUOTA are pooled quotas. You may need to increase these
quotas to account for the debugger subprocess as follows:

• You should increase each user's ENQLM quota by at least the number of processes being debugged.

• You might need to increase each user's PGFLQUOTA. If a user has an insufficient PGFLQUOTA,
the debugger may fail to activate or may cause "virtual memory exceeded" errors during execution.

• You might need to increase each user's BYTLM and FILLM quotas. The debugger requires
sufficient BYTLM and FILLM quotas to open each image file being debugged, the corresponding

19

Chapter 1. Introduction to the Debugger

source files, and the debugger input, output, and log files. To increase these quotas, you can run
SYS$SYSTEM:AUTHORIZE.EXE to adjust parameters in SYSUAF.DAT.

1.13. Debugger Command Summary
The following sections list all the debugger commands and any related DCL commands in functional
groupings, along with brief descriptions. During a debugging session, you can get online help on all
debugger commands and their qualifiers by typing HELP at the debugger prompt (see Section 2.1).

1.13.1. Starting and Ending a Debugging Session
The following commands start the debugger, bring a program under debugger control, and interrupt and
end a debugging session. Except where the DCL commands RUN and DEBUG are indicated specifically,
all commands are debugger commands.

$ DEBUG/KEEP (DCL) Starts the kept debugger.
$ RUN SYS$SHARE:DEBUGSHR.EXE (DCL) Starts the kept debugger.
$ DEBUG/SERVER (DCL) Starts the debug server.
$ DEBUG/CLIENT (DCL) Starts the debug client.
$ RUN SYS$SHARE:DEBUGUISHR.EXE (DCL) Starts the debug client.
RUN filespec Brings a program under debugger control.
RERUN Reruns the program currently under debugger control.
$ RUN program-image (DCL) If the specified image was linked using

LINK /DEBUG, starts the debugger and also brings
the image under debugger control. When you start
the debugger in this manner, you cannot then use the
debugger RUN or RERUN commands. You can use
the /[NO]DEBUG qualifiers with the RUN command
to control whether the debugger is started when the
program is executed.

EXIT
Ctrl/Z

Ends a debugging session, executing all exit handlers.

QUIT Ends a debugging session without executing any exit
handlers declared in the program.

Ctrl/C Aborts program execution or a debugger command
without interrupting the debugging session.

(SET, SHOW) ABORT_KEY (Assigns, identifies) the default Ctrl/C abort function
to another Ctrl/key sequence, identifies the Ctrl/key
sequence currently defined for the abort function.

Ctrl/Y

$ DEBUG

(DCL) Interrupts a program that is running without
debugger control and starts the debugger.

ATTACH Passes control of your terminal from the current process
to another process.

SPAWN Creates a subprocess, which enables you to execute DCL
commands without ending a debugging session or losing
your debugging context.

20

Chapter 1. Introduction to the Debugger

1.13.2. Controlling and Monitoring Program Execution
The following commands control and monitor program execution:

GO Starts or resumes program execution
STEP Executes the program up to the next line, instruction, or specified

instruction
(SET,SHOW) STEP (Establishes, displays) the default qualifiers for the STEP command
(SET,SHOW,CANCEL) BREAK (Sets, displays, cancels) breakpoints
(ACTIVATE,DEACTIVATE)
 BREAK

(Activates, deactivates) previously set breakpoints

(SET,SHOW,CANCEL) TRACE (Sets, displays, cancels) tracepoints
(ACTIVATE,DEACTIVATE)
 TRACE

(Activates, deactivates) previously set tracepoints

(SET,SHOW,CANCEL) WATCH (Sets, displays, cancels) watchpoints
(ACTIVATE,DEACTIVATE)
 WATCH

(Activates, deactivates) previously set watchpoints

SHOW CALLS Identifies the currently active routine calls
SHOW STACK Gives additional information about the currently active routine

calls
CALL Calls a routine

1.13.3. Examining and Manipulating Data
The following commands examine and manipulate data:

EXAMINE Displays the value of a variable or the contents of a program
location

SET MODE [NO]OPERANDS Controls whether the address and contents of the instruction
operands are displayed when you examine an instruction

DEPOSIT Changes the value of a variable or the contents of a program
location

DUMP Displays the contents of memory in a manner similar to the DCL
command DUMP

EVALUATE Evaluates a language or address expression
MONITOR (Applies only to the debugger's HP DECwindows Motif user

interface) Displays the current value of a variable or language
expression in the monitor view of the HP DECwindows Motif user
interface

1.13.4. Controlling Type Selection and Radix
The following commands control type selection and radix:

(SET,SHOW,CANCEL) RADIX (Establishes, displays, restores) the radix for data entry and display
(SET,SHOW,CANCEL) TYPE (Establishes, displays, restores) the type for program locations that

are not associated with a compiler-generated type

21

Chapter 1. Introduction to the Debugger

SET MODE [NO]G_FLOAT Controls whether double-precision floating-point constants are
interpreted as G_FLOAT or D_FLOAT

1.13.5. Controlling Symbol Searches and Symbolization
The following commands control symbol searches and symbolization:

SHOW SYMBOL Displays symbols in your program
(SET,SHOW,CANCEL) MODULE Sets a module by loading its symbol information into the

debugger's symbol table, identifies, cancels a set module
(SET,SHOW,CANCEL) IMAGE Sets a shareable image by loading data structures into the

debugger's symbol table, identifies, cancels a set image
SET MODE [NO]DYNAMIC Controls whether or not modules and shareable images are set

automatically when the debugger interrupts execution
(SET,SHOW,CANCEL) SCOPE (Establishes, displays, restores) the scope for symbol searches
SYMBOLIZE Converts a memory address to a symbolic address expression
SET MODE [NO]LINE Controls whether or not program locations are displayed in terms

of line numbers or routine-name + byte offset
SET MODE [NO]SYMBOLIC Controls whether or not program locations are displayed

symbolically or in terms of numeric addresses

1.13.6. Displaying Source Code
The following commands control the display of source code:

TYPE Displays lines of source code
EXAMINE/SOURCE Displays the source code at the location specified by the address

expression
SEARCH Searches the source code for the specified string
(SET,SHOW) SEARCH (Establishes, displays) the default qualifiers for the SEARCH

command
SET STEP [NO]SOURCE Enables/disables the display of source code after a STEP command

has been executed or at a breakpoint, tracepoint, or watchpoint
(SET,SHOW) MARGINS (Establishes, displays) the left and right margin settings for

displaying source code
(SET,SHOW,CANCEL) SOURCE (Creates, displays, cancels) a source directory search list

1.13.7. Using Screen Mode
The following commands control screen mode and screen displays:

SET MODE [NO]SCREEN Enables/disables screen mode
DISPLAY Creates or modifies a display
SCROLL Scrolls a display
EXPAND Expands or contracts a display
MOVE Moves a display across the screen

22

Chapter 1. Introduction to the Debugger

(SHOW,CANCEL) DISPLAY (Identifies, deletes) a display
(SET,SHOW,CANCEL) WINDOW (Creates, identifies, deletes) a window definition
SELECT Selects a display for a display attribute
SHOW SELECT Identifies the displays selected for each of the display attributes
SAVE Saves the current contents of a display into another display
EXTRACT Saves a display or the current screen state into a file
(SET,SHOW) TERMINAL (Establishes, displays) the terminal screen height and width that the

debugger uses when it formats displays and other output
SET MODE [NO]SCROLL Controls whether an output display is updated line by line or once

per command
Ctrl/W
DISPLAY/REFRESH

Refreshes the screen

1.13.8. Editing Source Code
The following commands control source editing from a debugging session:

EDIT Starts an editor during a debugging session
(SET,SHOW) EDITOR (Establishes, identifies) the editor started by the EDIT command

1.13.9. Defining Symbols
The following commands define and delete symbols for addresses, commands, or values:

DEFINE Defines a symbol as an address, command, or value
DELETE Deletes symbol definitions
(SET,SHOW) DEFINE (Establishes, displays) the default qualifier for the DEFINE

command
SHOW SYMBOL/DEFINED Identifies symbols that have been defined with the DEFINE

command

1.13.10. Using Keypad Mode
The following commands control keypad mode and key definitions:

SET MODE [NO]KEYPAD Enables/disables keypad mode
DEFINE/KEY Creates key definitions
DELETE/KEY Deletes key definitions

SET KEY
Establishes the key definition state

SHOW KEY Displays key definitions

1.13.11. Using Command Procedures, Log Files, and
Initialization Files
The following commands are used with command procedures and log files:

23

Chapter 1. Introduction to the Debugger

@(execute procedure) Executes a command procedure
(SET,SHOW) ATSIGN (Establishes, displays) the default file specification that the

debugger uses to search for command procedures
DECLARE Defines parameters to be passed to command procedures
(SET,SHOW) LOG (Specifies, identifies) the debugger log file
SET OUTPUT [NO]LOG Controls whether or not a debugging session is logged
SET OUTPUT [NO]SCREEN_LOG Controls whether or not, in screen mode, the screen contents are

logged as the screen is updated
SET OUTPUT [NO]VERIFY Controls whether or not debugger commands are displayed as a

command procedure is executed
SHOW OUTPUT Identifies the current output options established by the SET

OUTPUT command

1.13.12. Using Control Structures
The following commands establish conditional and looping structures for debugger commands:

FOR Executes a list of commands while incrementing a variable
IF Executes a list of commands conditionally
REPEAT Executes a list of commands a specified number of times
WHILE Executes a list of commands while a condition is true
EXITLOOP Exits an enclosing WHILE, REPEAT, or FOR loop

1.13.13. Debugging Multiprocess Programs
The following commands debug multiprocess programs. Note that these commands are specific
to multiprocess programs. Many of the commands listed under other categories have qualifiers or
parameters that are specific to multiprocess programs (for example, SET BREAK/ACTIVATING, EXIT
process-spec, DISPLAY /PROCESS=).

CONNECT Brings a process under debugger control
DEFINE/PROCESS_SET Assigns a symbolic name to a list of process specifications
SET MODE [NO]INTERRUPT Controls whether execution is interrupted in other processes when

it is paused in some process
(SET,SHOW) PROCESS Modifies the multiprocess debugging environment, displays process

information
WAIT When debugging a multiprocess program, controls whether the

debugger waits until all processes have stopped before prompting
for another command

1.13.14. Additional Commands
The following commands are used for miscellaneous purposes:

HELP Displays online help on debugger commands and selected topics

24

Chapter 1. Introduction to the Debugger

ANALYZE/CRASH_DUMP Opens a process dump for analysis with the System Dump
Debugger (SDD)

ANALYZE/PROCESS_DUMP Opens a process dump for analysis with the System Code
Debugger (SCD)

(DISABLE,ENABLE,SHOW) AST (Disables, enables) the delivery of ASTs in the program, identifies
whether delivery is enabled or disabled

PTHREAD Passes a command to the POSIX Threads Debugger
(SET,SHOW) EVENT_FACILITY (Establishes, identifies) the current run-time facility for Ada,

POSIX Threads, and SCAN events
(SET,SHOW) LANGUAGE (Establishes, identifies) the current language
SET OUTPUT [NO]TERMINAL Controls whether debugger output, except for diagnostic messages,

is displayed or suppressed
SET PROMPT Specifies the debugger prompt
(SET,SHOW) TASK|THREAD Modifies the tasking environment, displays task information
SHOW EXIT_HANDLERS Identifies the exit handlers declared in the program
SHOW MODE Identifies the current debugger modes established by the SET

MODE command (for example, screen mode, step mode)
SHOW OUTPUT Identifies the current output options established by the SET

OUTPUT command

25

Chapter 1. Introduction to the Debugger

26

Part II. Command Interface

27

28

Chapter 2. Getting Started with the
Debugger
This chapter gives a tutorial introduction to the debugger's command interface.

The way you use the debugger depends on several factors: the kind of program you are working on, the
kinds of errors you are looking for, and your own personal style and experience with the debugger. This
chapter explains the following basic tasks that apply to most situations:

• Entering debugger commands and getting online help

• Viewing your source code with the TYPE command and in screen mode

• Controlling program execution with the GO, STEP, and SET BREAK commands, and monitoring
execution with the SHOW CALLS, SET TRACE, and SET WATCH commands

• Examining and manipulating data with the EXAMINE, DEPOSIT, and EVALUATE commands

• Controlling symbol references with path names and the SET MODULE and SET SCOPE commands

Several examples are language specific. However, the general concepts are readily adaptable to all
supported languages.

The sample debugging session in Section 2.6 shows how to use some of this information to locate an
error and correct it.

For information about starting and ending a debugging session, see Section 1.3.

2.1. Entering Debugger Commands and
Accessing Online Help
After you start the debugger as explained in Section 1.3, you can enter debugger commands whenever
the debugger prompt (DBG>) is displayed. To enter a command, type it at the keyboard and press
Return. For example, the following command sets a watchpoint on the variable COUNT:

DBG> SET WATCH COUNT

Detailed reference information about debugger commands is available in Chapter 11 and through the
debugger's online help:

• To list the help topics, type HELP at the prompt.

• For an explanation of the help system, type HELP.

• For complete rules on entering commands, type HELP Command_Format.

• To display help on a particular command, type HELP command. For example, to display HELP on
the SET WATCH command, type HELP SET WATCH.

• To list commands grouped by function, type HELP Command_Format.

29

Chapter 2. Getting Started with the Debugger

Online help is also available on the following topics:

New_Features
Release_Notes
Address_Expressions
Built_in_Symbols
DECwindows_Interface
Keypad_Definitions
Language_Support
Logical_Names
Messages (diagnostic messages)
Path_Names (to qualify symbolic names)
Screen_Mode
SS$_DEBUG condition (to start debugger from program)
System_Management

To display help about any of these topics, type HELP topic. For example, to display information about
diagnostic messages, type HELP Messages.

When you start the debugger, a few commonly used command sequences are automatically assigned
to the keys on the numeric keypad (to the right of the main keyboard). Thus, you can perform certain
functions either by entering a command or by pressing a keypad key.

The predefined key functions are identified in Figure 2.1.

Most keypad keys have three predefined functions - DEFAULT, GOLD, and BLUE.

• To enter a key's DEFAULT function, press the key.

• To enter its GOLD function, first press and release the PF1 (GOLD) key, and then press the key.

• To enter its BLUE function, first press and release the PF4 (BLUE) key, and then press the key.

In Figure 2.1, the DEFAULT, GOLD, and BLUE functions are listed within each key's outline, from top
to bottom, respectively. For example:

• Pressing KP0 (keypad key 0) enters the STEP command.

• Pressing PF1 KP0 enters the STEP /INTO command.

• Pressing PF4 KP0 enters the STEP /OVER command.

Normally, keys KP2, KP4, KP6, and KP8 scroll screen displays down, left, right, or up, respectively.
By putting the keypad in the MOVE, EXPAND, or CONTRACT state, indicated in Figure 2.1, you can
also use these keys to move, expand, or contract displays in four directions. Enter the command HELP
Keypad_Definitions to display the keypad key definitions.

You can redefine keypad key functions with the DEFINE /KEY command.

30

Chapter 2. Getting Started with the Debugger

Figure 2.1. Keypad Key Functions Predefined by the Debugger—Command Interface

2.2. Displaying Source Code
The debugger provides two modes for displaying information: noscreen mode and screen mode. By
default, when you start the debugger, you are in noscreen mode, but you might find that it is easier to
view source code in screen mode. The following sections briefly describe both modes.

31

Chapter 2. Getting Started with the Debugger

2.2.1. Noscreen Mode
Noscreen mode is the default, line-oriented mode of displaying input and output. The interactive
examples throughout this chapter, excluding Section 2.2.2, show noscreen mode.

In noscreen mode, use the TYPE command to display one or more source lines. For example, the
following command displays line 7 of the module in which execution is currently paused:

DBG> TYPE 7
module SWAP_ROUTINES
 7: TEMP := A;
DBG>

The display of source lines is independent of program execution. To display source code from a module
(compilation unit) other than the one in which execution is currently paused, use the TYPE command
with a path name to specify the module. For example, the following command displays lines 16 to 21of
module TEST:

DBG> TYPE TEST\16:21

Path names are discussed in more detail in Section 2.3.2, with the STEP command.

You can also use the EXAMINE /SOURCE command to display the source line for a routine or any
other program location that is associated with an instruction.

The debugger also displays source lines automatically when it suspends execution at a breakpoint or
watch point, after a STEP command, or when a trace point is triggered (see Section 2.3).

After displaying source lines at various locations in your program, you can redisplay the location at
which execution is currently paused by pressing KP5.

If the debugger cannot locate source lines for display, it issues a diagnostic message. Source lines might
not be available for a variety of reasons. For example:

• Execution is paused within a module that was compiled or linked without the /DEBUG qualifier.

• Execution is paused within a system or shareable image routine for which no source code is available.

• The source file was moved to a different directory after it was compiled (the location of source files
is embedded in the object modules).In this case, use the SET SOURCE command to specify the new
location.

• The module might need to be set with the SET MODULE command. Module setting is explained in
Section 2.5.1.

To switch to noscreen mode from screen mode, press PF1 PF3 (or type SET MODE NOSCREEN). You
can use the TYPE and EXAMINE /SOURCE commands in screen mode as well as noscreen mode.

2.2.2. Screen Mode
Screen mode provides the easiest way to view your source code. To switch to screen mode, press PF3 (or
type SET MODE SCREEN). In screen mode, by default the debugger splits the screen into three displays
named SRC, OUT, and PROMPT, as shown in Figure 2.2.

32

Chapter 2. Getting Started with the Debugger

Figure 2.2. Default Screen Mode Display Configuration

The SRC display shows the source code of the module in which execution is currently paused. An arrow
in the left column points to the source line corresponding to the current value of the program counter
(PC). The PC is a register that contains the memory address of the instruction to be executed next.
The line numbers, which are assigned by the compiler, match those in a listing file. As you execute the
program, the arrow moves down and the source code is scrolled vertically to center the arrow in the
display.

The OUT display captures the debugger's output in response to the commands that you enter. The
PROMPT display shows the debugger prompt, your input (the commands that you enter), debugger
diagnostic messages, and program output.

You can scroll both SRC and OUT to see whatever information might scroll beyond the display
window's edge. Press KP3 repeatedly as needed to select the display to be scrolled (by default, SRC is
scrolled). Press KP8 to scroll up and KP2 to scroll down. Scrolling a display does not affect program
execution.

In screen mode, if the debugger cannot locate source lines for the routine in which execution is currently
paused, it tries to display source lines in the next routine down on the call stack for which source lines
are available. If the debugger can display source lines for such a routine, it issues the following message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .0
\%PC.Displaying source in a caller of the current routine.
DBG>

In such cases, the arrow in the SRC display identifies the line that contains code following the call
statement in the calling routine.

2.3. Controlling and Monitoring Program
Execution
This section explains how to perform the following tasks:

33

Chapter 2. Getting Started with the Debugger

• Start and resume program execution

• Execute the program to the next source line, instruction, or other step unit

• Determine where execution is currently paused

• Use breakpoints to suspend program execution at points of interest

• Use trace points to trace the execution path of your program through specified locations

• Use watchpoints to monitor changes in the values of variables

With this information you can pick program locations where you can then test and manipulate the
contents of variables as described in Section 2.4.

2.3.1. Starting or Resuming Program Execution
Use the GO command to start or resume program execution.

After it is started with the GO command, program execution continues until one of the following events
occurs:

• The program completes execution

• A breakpoint is reached

• A watchpoint is triggered

• An exception is signaled

• You press Ctrl/C

With most programming languages, when you bring a program under debugger control, execution is
initially paused directly at the beginning of the main program. Entering a GO command at this point
quickly enables you to test for an infinite loop or an exception.

If an infinite loop occurs during execution, the program does not terminate, so the debugger prompt
does not reappear. To obtain the prompt, interrupt execution by pressing Ctrl/C (see Section 1.4). If
you are using screen mode, the pointer in the source display indicates where execution stopped. You can
also use the SHOW CALLS command to identify the currently active routine calls on the call stack (see
Section 2.3.3).

If an exception that is not handled by your program is signaled, the debugger interrupts execution at that
point so that you can enter commands. You can then look at the source display and a SHOW CALLS
display to find where execution is paused.

The most common use of the GO command is in conjunction with breakpoints, tracepoints, and
watchpoints, as described in Section 2.3.4, Section 2.3.5, and Section 2.3.6, respectively. If you set
a breakpoint in the path of execution and then enter the GO command, execution is paused at that
breakpoint. Similarly, if you set a tracepoint, execution is monitored through that tracepoint. If you set a
watchpoint, execution is paused when the value of the watched variable changes.

2.3.2. Executing the Program by Step Unit
Use the STEP command to execute the program one or more step units at a time.

34

Chapter 2. Getting Started with the Debugger

By default, a step unit is one line of source code. In the following example, the STEP command executes
one line, reports the action ("stepped to …"), and displays the line number (27) and source code of the
line to be executed next:

DBG> STEP
stepped to TEST\COUNT\%LINE 27
 27: X := X + 1;
DBG>

Execution is now paused at the first machine-code instruction for line 27 within routine COUNT of
module TEST.

When displaying a program symbol (for example, a line number, routine name, or variable name), the
debugger always uses a path name. A path name consists of the symbol plus a prefix that identifies
the symbol's location. In the previous example, the path name is TEST \COUNT \%LINE27. The
leftmost element of a path name is the module name. Moving toward the right, the path name lists any
successively nested routines and blocks that enclose the symbol. A backslash character (\) is used to
separate elements (except when the language is Ada, where a period is used to parallel Ada syntax).

A path name uniquely identifies a symbol of your program to the debugger. In general, you need to use
path names in commands only if the debugger cannot resolve a symbol ambiguity in your program (see
Section 2.5). Usually the debugger can determine the symbol you mean from its context.

When using the STEP command, note that only those source lines for which code instructions were
generated by the compiler are recognized as executable lines by the debugger. The debugger skips over
any other lines - for example, comment lines.

You can specify different stepping modes, such as stepping by instruction rather than by line (SET STEP
INSTRUCTION). Also, by default, the debugger steps over called routines-execution is not paused
within a called routine, although the routine is executed. By entering the SET STEP INTO command,
you direct the debugger to suspend execution within called routines as well as within the routine in which
execution is currently paused (SET STEP OVER is the default mode).

2.3.3. Determining Where Execution Is Paused
Use the SHOW CALLS command when you are unsure where execution is paused during a debugging
session (for example, after a Ctrl/C interruption).

The command displays a trace back that lists the sequence of calls leading to the routine in which
execution is paused. For each routine (beginning with the one in which execution is paused), the
debugger displays the following information:

• The name of the module that contains the routine

• The name of the routine

• The line number at which the call was made (or at which execution is paused, in the case of the
current routine)

• The corresponding PC value

On Alpha and Integrity server processors, the PC is shown as a memory address relative to the first
code address in the module and also as an absolute address.

Note that on Integrity server processors, there is no hardware PC register. The PC is a software
constructed value, built by adding the hardware Instruction Pointer (IP) register and the slot offset of
the instruction within the bundle (0, 1, or 2).

35

Chapter 2. Getting Started with the Debugger

For example:

DBG> SHOW CALLS
module name routine name line rel PC abs PC
*TEST PRODUCT 18 00000009 0000063C
*TEST COUNT 47 00000009 00000647
*MY_PROG MY_PROG 21 0000000D 00000653
DBG>

This example indicates that execution is paused at line 18 of routine PRODUCT (in module TEST),
which was called from line 47 of routine COUNT (in module TEST), which was called from line 21 of
routine MY_PROG (in module MY_PROG).

2.3.4. Suspending Program Execution with Breakpoints
The SET BREAK command enables you to select locations at which to suspend program execution
(breakpoints).You can then enter commands to check the call stack, examine the current values of
variables, and so on. You resume execution from a breakpoint with the GO or STEP commands.

The following example shows a typical use of the SET BREAK command:

DBG> SET BREAK COUNT
DBG> GO
 .
 .
 .
break at routine PROG2\COUNT
 54: procedure COUNT(X, Y:INTEGER);
DBG>

In the example, the SET BREAK command sets a breakpoint on routine COUNT (at the beginning
of the routine's code); the GO command starts execution. When routine COUNT is encountered, the
following occurs:

• Execution is paused.

• The debugger announces that the breakpoint at COUNT has been reached ("break at …").

• The debugger displays the source line (54) at which execution is paused.

• The debugger prompts for another command.

At this breakpoint, you can use the STEP command to step through routine COUNT and then use the
EXAMINE command (discussed in Section 2.4.1) to check on the values of X and Y.

When using the SET BREAK command, you can specify program locations using various kinds of
address expressions (for example, line numbers, routine names, memory addresses, byte offsets). With
high-level languages, you typically use routine names, labels, or line numbers, possibly with path names
to ensure uniqueness.

Specify routine names and labels as they appear in the source code. Line numbers can be derived from
either a source code display or a listing file. When specifying a line number, use the prefix %LINE;
otherwise, the debugger interprets the line number as a memory location. For example, the following
command sets a breakpoint at line 41 of the module in which execution is paused. The breakpoint causes
the debugger to suspend execution at the beginning of line 41.

DBG> SET BREAK %LINE 41

36

Chapter 2. Getting Started with the Debugger

Note that you can set breakpoints only on lines that resulted in machine-code instructions. The debugger
warns you if you try to do otherwise (for example, on a comment line). To pick a line number in a
module other than the one in which execution is paused, you must specify the module's name in a path
name. For example:

DBG> SET BREAK SCREEN_IO\%LINE 58

You can also use the SET BREAK command with a qualifier, but no parameter, to break on every line,
or on every CALL instruction, and so on. For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

You can set breakpoints on events, such as exceptions, or state transitions in tasking programs.

You can conditionalize a breakpoint (with a WHEN clause)or specify that a list of commands be
executed at the breakpoint (with a DO clause).

To display the current breakpoints, enter the SHOW BREAK command.

To deactivate a breakpoint, enter the DEACTIVATE BREAK command, and specify the program
location exactly as you did when setting the breakpoint. This causes the debugger to ignore the
breakpoint during program execution. However, you can activate it at a later time, for example, when you
rerun the program (see Section 1.3.3). A deactivated breakpoint is listed as such in a SHOW BREAK
display.

To activate a breakpoint, use the ACTIVATE BREAK command. Activating a breakpoint causes it to
take effect during program execution.

The commands DEACTIVATE BREAK/ALL and ACTIVATE BREAK/ALL operate on all breakpoints
and are particularly useful when rerunning a program.

To cancel a breakpoint, use the CANCEL BREAK command. A canceled breakpoint is no longer listed
in a SHOW BREAK display.

2.3.5. Tracing Program Execution with Tracepoints
The SET TRACE command enables you to select locations for tracing the execution of your program
(tracepoints), without stopping its execution. After setting a tracepoint, you can start execution with the
GO command and then monitor the path of execution, checking for unexpected behavior. By setting a
tracepoint on a routine, you can also monitor the number of time sit is called.

As with breakpoints, every time a tracepoint is reached, the debugger issues a message and displays
the source line. But the program continues executing, and the debugger prompt is not displayed. For
example:

DBG> SET TRACE COUNT
DBG> GO
trace at routine PROG2\COUNT
 54: procedure COUNT(X, Y:INTEGER);
 .
 .
 .

This is the only difference between a breakpoint and a tracepoint. When using the SET TRACE
command, you specify address expressions, qualifiers, and optional clauses exactly as with the SET
BREAK command. The commands SHOW TRACE, ACTIVATE TRACE, DEACTIVATE TRACE,

37

Chapter 2. Getting Started with the Debugger

and CANCEL TRACE operate on tracepoints in a manner similar to the corresponding commands for
breakpoints (see Section 2.3.4).

2.3.6. Monitoring Changes in Variables with
Watchpoints
The SET WATCH command enables you to specify program variables that the debugger monitors as
your program executes. This process is called setting watchpoints. If the program modifies the value of
a watched variable, the debugger suspends execution and displays information. The debugger monitors
watchpoints continuously during program execution. (Note that you can also use the SET WATCH
command to monitor arbitrary program locations, not just variables.)

You can set a watch point on a variable by specifying the variable's name with the SET WATCH
command. For example, the following command sets a watch point on the variable TOTAL:

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the watchpoint is triggered.

Note

The technique you use to set watchpoints depends on your system (Alpha or Integrity servers) and the
type of variable, static or nonstatic. On Alpha systems, for example, a static variable is associated with
the same memory address throughout program execution.

The following example shows what happens when your program modifies the contents of this watched
variable:

DBG> SET WATCH TOTAL
DBG> GO
 .
 .
 .
watch of SCREEN_IO\TOTAL at SCREEN_IO\%LINE 13
 13: TOTAL = TOTAL + 1;
 old value: 16
 new value: 17
break at SCREEN_IO\%LINE 14
 14: POP(TOTAL);
DBG>

In this example, a watchpoint is set on the variable TOTAL and execution is started. When the value of
TOTAL changes, execution is paused. The debugger announces the event ("watch of …"), identifying
where TOTAL changed (the beginning of line 13) and the associated source line. The debugger then
displays the old and new values and announces that execution has been paused at the beginning of the
next line (14). Finally, the debugger prompts for another command. When a change in a variable occurs
at a point other than the beginning of a source line, the debugger gives the line number plus the byte
offset from the beginning of the line.

On Alpha systems, you can set a watchpoint on a nonstatic variable by setting a tracepoint on the
defining routine and specifying a DO clause to set the watchpoint whenever execution reaches the
tracepoint. Since a nonstatic variable is allocated on the stack or in a register and exists only when its
defining routine is active (on the call stack), the variable name is not always meaningful in the way that a
static variable name is.

38

Chapter 2. Getting Started with the Debugger

In the following example, a watchpoint is set on the nonstatic variable Y in routine ROUT3. After the
tracepoint is triggered, the WPT TRACE message indicates that the nonstatic watchpoint is set, and the
watchpoint is triggered when the value of Y changes. For example:

DBG> SET TRACE/NOSOURCE ROUT3 DO (SET WATCH Y)
DBG> GO
 .
 .
 .
trace at routine MOD4\ROUT3
%DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every
 instruction
 .
 .
 .
watch of MOD4\ROUT3\Y at MOD4\ROUT3\%LINE 16
 16: Y := 4
 old value: 3
 new value: 4
break at MOD4\ROUT3\%LINE 17
 17: SWAP(X, Y);
DBG>

When execution returns to the calling routine, the nonstatic variable is no longer active, so the debugger
automatically cancels the watchpoint and issues a message to that effect.

On Alpha and Integrity servers, the debugger treats all watchpoints as nonstatic watchpoints.

The commands SHOW WATCH, ACTIVATE WATCH, DEACTIVATE WATCH, and CANCEL
WATCH operate on watchpoints in a manner similar to the corresponding commands for breakpoints
(see Section 2.3.4). However, a nonstatic watchpoint exists only as long as execution remains within the
scope of the variable being watched.

2.4. Examining and Manipulating Program
Data
This section explains how to use the EXAMINE, DEPOSIT, and EVALUATE commands to display
and modify the contents of variables and evaluate expressions. Before you can examine or deposit into a
nonstatic variable, as defined in Section 2.3.6, its defining routine must be active.

2.4.1. Displaying the Value of a Variable
To display the current value of a variable, use the EXAMINE command. It has the following syntax:

EXAMINE address-expression

The debugger recognizes the compiler-generated data type of the variable you specify and retrieves and
formats the data accordingly. The following examples show some uses of the EXAMINE command.

Examine a string variable:

DBG> EXAMINE EMPLOYEE_NAME
PAYROLL\EMPLOYEE_NAME:
 "Peter C. Lombardi"
DBG>

39

Chapter 2. Getting Started with the Debugger

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine a two-dimensional array of real numbers (three per dimension):

DBG> EXAMINE REAL_ARRAY
PROG2\REAL_ARRAY
 (1, 1): 27.01000
 (1, 2): 31.00000
 (1, 3): 12.48000
 (2, 1): 15.08000
 (2, 2): 22.30000
 (2, 3): 18.73000
DBG>

Examine element 4 of a one-dimensional array of characters:

DBG> EXAMINE CHAR_ARRAY(4)
PROG2\CHAR_ARRAY(4): 'm'
DBG>

Examine a record variable (COBOL example):

DBG> EXAMINE PART
INVENTORY\PART:
 ITEM: "WF-1247"
 PRICE: 49.95
 IN_STOCK: 24
DBG>

Examine a record component (COBOL example):

DBG> EXAMINE IN_STOCK OF PART
INVENTORY\IN-STOCK of PART:
 IN_STOCK: 24
DBG>

You can use the EXAMINE command with any kind of address expression (not just a variable name)
to display the contents of a program location. The debugger associates certain default data types with
untyped locations. If you want the data interpreted and displayed in some other data format you can
override the defaults for typed and untyped locations.

2.4.2. Assigning a Value to a Variable
To assign a new value to a variable, use the DEPOSIT command. It has the following syntax:

DEPOSIT address-expression = language-expression

The DEPOSIT command is like an assignment statement in most programming languages.

In the following examples, the DEPOSIT command assigns new values to different variables. The
debugger checks that the value assigned, which can be a language expression, is consistent with the data
type and dimensional constraints of the variable.

40

Chapter 2. Getting Started with the Debugger

Deposit a string value (it must be enclosed in quotation marks (") or apostrophes ('):

DBG> DEPOSIT PART_NUMBER = "WG-7619.3-84"

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENT_WIDTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire array aggregate with a single
DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY(12) := 'K'

Deposit a record component (you cannot deposit an entire record aggregate with a single DEPOSIT
command, only a component):

DBG> DEPOSIT EMPLOYEE.ZIPCODE = 02172

Deposit an out-of-bounds value (X was declared as a positive integer):

DBG> DEPOSIT X = -14
%DEBUG-I-IVALOUTBNDS, value assigned is out of bounds
 at or near DEPOSIT

As with the EXAMINE command, you can specify any kind of address expression (not just a variable
name) with the DEPOSIT command. You can override the defaults for typed and untyped locations if
you want the data interpreted in some other data format.

2.4.3. Evaluating Language Expressions
To evaluate a language expression, use the EVALUATE command. It has the following syntax:

EVALUATE language-expression

The debugger recognizes the operators and expression syntax of the currently set language. In the
following example, the value 45 is assigned to the integer variable WIDTH; the EVALUATE command
then obtains the sum of the current value of WIDTH and 7:

DBG> DEPOSIT WIDTH := 45
DBG> EVALUATE WIDTH + 7
52
DBG>

In the next example, the values TRUE and FALSE are assigned to the Boolean variables WILLING and
ABLE, respectively; the EVALUATE command then obtains the logical conjunction of these values:

DBG> DEPOSIT WILLING := TRUE
DBG> DEPOSIT ABLE := FALSE
DBG> EVALUATE WILLING AND ABLE
False
DBG>

2.5. Controlling Access to Symbols in Your
Program
To have full access to the symbols that are associated with your program (variable names, routine names,
source code, line numbers, and so on), you must compile and link the program using the /DEBUG
qualifier, as explained in Section 1.2.

41

Chapter 2. Getting Started with the Debugger

Under these conditions, the way in which the debugger handles these symbols is transparent to you in
most cases. However, the following two are as might require action:

• Setting and canceling modules

• Resolving symbol ambiguities

2.5.1. Setting and Canceling Modules
To facilitate symbol searches, the debugger loads symbol information from the executable image into
a run-time symbol table (RST), where that information can be accessed efficiently. Unless symbol
information is in the RST, the debugger does not recognize or properly interpret the associated symbols.

Because the RST takes up memory, the debugger loads it dynamically, anticipating what symbols you
might want to reference in the course of program execution. The loading process is called module
setting, because all symbol information for a given module is loaded into the RST atone time.

Initially, only the module containing the image transfer address is set. Subsequently, whenever execution
of the program is interrupted, the debugger sets the module that contains the routine in which execution
is paused. This enables you to reference the symbols that should be visible at that location.

If you try to reference a symbol in a module that has not been set, the debugger warns you that the
symbol is not in the RST. For example:

DBG> EXAMINE K
%DEBUG-W-NOSYMBOL, symbol 'K' is not in symbol table
DBG>

You must use the SET MODULE command to set the module containing that symbol explicitly. For
example:

DBG> SET MODULE MOD3
DBG> EXAMINE K
MOD3\ROUT2\K: 26
DBG>

The SHOW MODULE command lists the modules of your program and identifies which modules are
set.

Dynamic module setting can slow the debugger down as more and more modules are set. If performance
becomes a problem, you can use the CANCEL MODULE command to reduce the number of set
modules, or you can disable dynamic module setting by entering the SET MODE NODYNAMIC
command (SET MODE DYNAMIC enables dynamic module setting).

2.5.2. Resolving Symbol Ambiguities
Symbol ambiguities can occur when a symbol (for example, a variable name X)is defined in more than
one routine or other program unit.

In most cases, the debugger resolves symbol ambiguities automatically. First, it uses the scope and
visibility rules of the currently set language. In addition, because the debugger permits you to specify
symbols in arbitrary modules (to set breakpoints and so on), the debugger uses the ordering of routine
calls on the call stack to resolve symbol ambiguities.

If the debugger cannot resolve a symbol ambiguity, it issues a message. For example:

42

Chapter 2. Getting Started with the Debugger

DBG> EXAMINE Y
%DEBUG-W-NOUNIQUE, symbol 'Y' is not unique
DBG>

You can then use a path-name prefix to uniquely specify a declaration of the given symbol. First, use the
SHOW SYMBOL command to identify all pathnames associated with the given symbol (corresponding
to all declarations of that symbol) that are currently loaded in the RST. Then use the desired path-name
prefix when referencing the symbol. For example:

DBG> SHOW SYMBOL Y
data MOD7\ROUT3\BLOCK1\Y
data MOD4\ROUT2\Y
DBG> EXAMINE MOD4\ROUT2\Y
MOD4\ROUT2\Y: 12
DBG>

If you need to refer to a particular declaration of Y repeatedly, use the SET SCOPE command to
establish a new default scope for symbol lookup. Then, references to Y without a path-name prefix
specify the declaration of Y that is visible in the new scope. For example:

DBG> SET SCOPE MOD4\ROUT2
DBG> EXAMINE Y
MOD4\ROUT2\Y: 12
DBG>

To display the current scope for symbol lookup, use the SHOW SCOPE command. To restore the default
scope, use the CANCEL SCOPE command.

2.6. Sample Debugging Session
This section walks you through a debugging session with a simple Fortran program that contains a logic
error (see Example 2.1). Compiler-assigned line numbers have been added in the example so that you
can identify the source lines referenced in the discussion.

The program, called SQUARES, performs the following functions:

1. Reads a sequence of integer numbers from a data file and saves these numbers in the array INARR
(lines 4 and 5).

2. Enters a loop in which it copies the square of each nonzero integer into another array OUTARR
(lines 8 through 13).

3. Prints the number of nonzero elements in the original sequence and the square of each such element
(lines 16 through 21).

Example 2.1. Sample Program SQUARES

 1: INTEGER INARR(20), OUTARR(20)
 2: C
 3: C ---Read the input array from the data file.
 4: OPEN(UNIT=8, FILE='DATAFILE.DAT', STATUS='OLD')
 5: READ(8,*) N, (INARR(I), I=1,N)
 6: C
 7: C ---Square all nonzero elements and store in OUTARR.
 8: K = 0
 9: DO 10 I = 1, N
10: IF(INARR(I) .NE. 0) THEN

43

Chapter 2. Getting Started with the Debugger

11: OUTARR(K) = INARR(I)**2
12: ENDIF
13: 10 CONTINUE
14: C
15: C ---Print the squared output values. Then stop.
16: PRINT 20, K
17: 20 FORMAT(' Number of nonzero elements is',I4)
18: DO 40 I = 1, K
19: PRINT 30, I, OUTARR(I)
20: 30 FORMAT(' Element',I4,' has value',I6)
21: 40 CONTINUE
22: END

When you run SQUARES, it produces the following output, regardless of the number of nonzero
elements in the data file:

$ RUN SQUARES
Number of nonzero elements is 0

The error in the program is that variable K, which keeps track of the current index into OUTARR, is not
incremented in the loop on lines 9 through 13. The statement K = K + 1 should be inserted just before
line 11.

Example 2.2 shows how to start the debugging session and then how to use the debugger to find the
error. Comments, keyed to the callouts, follow the example.

Example 2.2. Sample Debugging Session Using Program SQUARES

$ FORTRAN/DEBUG/NOOPTIMIZE SQUARES
$ LINK/DEBUG SQUARES
$ DEBUG/KEEP
 Debugger Banner and Version Number
DBG> RUN SQUARES
Language: FORTRAN, Module: SQUARES$MAIN
DBG> STEP 4
stepped to SQUARES$MAIN\%LINE 9
 9: DO 10 I = 1, N
DBG> EXAMINE N, K
SQUARES$MAIN\N: 9
SQUARES$MAIN\K: 0
DBG> STEP 2
stepped to SQUARES$MAIN\%LINE 11
 11: OUTARR(K) = INARR(I)**2
DBG> EXAMINE I, K
SQUARES$MAIN\I: 1
SQUARES$MAIN\K: 0
DBG> DEPOSIT K = 1
DBG> SET TRACE/SILENT %LINE 11 DO (DEPOSIT K = K + 1)
DBG> GO
Number of nonzero elements is 4
Element 1 has value 16
Element 2 has value 36
Element 3 has value 9
Element 4 has value 49
'Normal successful completion'
DBG> SPAWN
$ EDIT SQUARES.FOR
 .

44

Chapter 2. Getting Started with the Debugger

 .
 .
10: IF(INARR(I) .NE. 0) THEN
11: K = K + 1
12: OUTARR(K) = INARR(I)**2
13: ENDIF
 .
 .
 .
$ FORTRAN/DEBUG/NOOPTIMIZE SQUARES
$ LINK/DEBUG SQUARES
$ LOGOUT
DBG> RUN SQUARES
Language: FORTRAN, Module: SQUARES$MAIN
DBG> SET BREAK %LINE 12 DO (EXAMINE I, K)
DBG> GO
SQUARES$MAIN\I: 1
SQUARES$MAIN\K: 1
DBG> GO
SQUARES$MAIN\I: 2
SQUARES$MAIN\K: 2
DBG> GO
SQUARES$MAIN\I: 4
SQUARES$MAIN\K: 3
DBG> EXIT
$

The following comments apply to the callouts in Example 2.2. Example 2.1 shows the program that is
being debugged.

The /DEBUG qualifier on the DCL FORTRAN command directs the compiler to write the symbol
information associated with SQUARES into the object module, SQUARES.OBJ, in addition to the
code and data for the program.

The /NOOPTIMIZE qualifier disables optimization by the Fortran compiler, which ensures that
the executable code matches the source code of the program. Debugging optimized code can be
confusing because the contents of some program locations might be inconsistent with what you
would expect from viewing the source code.
The /DEBUG qualifier on the DCL command LINK causes the linker to include all symbol
information that is contained in SQUARES.OBJ in the executable image.
The DCL command DEBUG /KEEP starts the debugger, which displays its banner and the
debugger prompt, DBG>. You can now enter debugger commands.
The debugger command RUN SQUARES brings the program SQUARES under debugger control.
The informational message identifies the source language of the program and the name of the main
program unit (FORTRAN and SQUARES, respectively, in this example).

Execution is initially paused at the start of the main program unit (line 1 of SQUARES, in this
example).
You decide to test the values of variables N and K after the READ statement has been executed
and the value 0 has been assigned to K.

The command STEP 4 executes 4 source lines of the program. Execution is now paused at line 9.
Note that the STEP command ignores source lines that do not result in executable code; also, by
default, the debugger identifies the source line at which execution is paused.
The command EXAMINE N, K displays the current values of N and K. Their values are correct at
this point in the execution of the program.

45

Chapter 2. Getting Started with the Debugger

The command STEP 2 executes the program into the loop that copies and squares all nonzero
elements of INARR into OUTARR.
The command EXAMINE I, K displays the current values of I and K.

I has the expected value 1, but K has the value 0 instead of 1, which is the expected value. Now
you can see the error in the program: K should be incremented in the loop just before it is used in
line 11.
The DEPOSIT command assigns K the value it should have now: 1.
The SET TRACE command is now used to patch the program so that the value of K is
incremented automatically in the loop. The command sets a trace point that triggers every time
execution reaches line 11:

• The /SILENT qualifier suppresses the "trace at" message that would otherwise appear each
time line 11 is executed.

• The DO clause issues the DEPOSIT K = K + 1 command every time the tracepoint is
triggered.

To test the patch, the GO command starts execution from the current location.

The program output shows that the patched program works properly. The EXIT STATUS message
shows that the program executed to completion.
The SPAWN command spawns a subprocess to return control temporarily to DCL level (without
ending the debugging session) so that you can correct the source file and recompile and relink the
program.
The EDIT command invokes an editor and the source file is edited to add K = K + 1 after line 10,
as shown. (Compiler-assigned line numbers have been added to clarify the example.)
The revised program is compiled and linked.
The LOGOUT command terminates the spawned subprocess and returns control to the debugger.
The (debugger) command RUN SQUARES brings the revised program under debugger control so
that its correct execution can be verified.
The SET BREAK command sets a breakpoint that triggers every time line 12 is executed. The DO
clause displays the values of I and K automatically when the breakpoint triggers.
The GO command starts execution.

At the first breakpoint, the value of K is 1, indicating that the program is running correctly so
far. Each additional GO command shows the current values of I and K. After two more GO
commands, K is now 3, as expected, but note that I is 4. The reason is that one of the INARR
elements was 0 so that lines 11 and 12 were not executed (and K was not incremented) for that
iteration of the DO loop. This confirms that the program is running correctly.
The EXIT command ends the debugging session and returns control to DCL level.

46

Chapter 3. Controlling and Monitoring
Program Execution
This chapter describes how to control and monitor program execution while debugging by using the
following techniques:

• Executing the program by step unit

• Suspending and tracing execution with breakpoints and tracepoints

• Monitoring changes in variables and other program locations with watchpoints

The following related functions are discussed in Chapter 2:

• Starting or resuming program execution with the GO command (Section 2.3.1)

• Monitoring where execution is currently paused with the SHOW CALLS command (Section 2.3.3)

This chapter includes information that is common to all programs. For more information:

• See Chapter 15 for additional information specific to multiprocess programs.

• See Chapter 16 for additional information specific to tasking (multithread) programs.

For information about rerunning your program or running another program from the current debugging
session, see Section 1.3.3and Section 1.3.4.

3.1. Commands Used to Execute the Program
Only four debugger commands are directly associated with program execution:

GO
STEP
CALL
EXIT (if your program has exit handlers)

As explained in Section 2.3.1 and Section 2.3.2, GO and STEP are the basic commands for starting and
resuming program execution. The STEP command is discussed further in Section 3.2.

During a debugging session, routines are executed as they are called during the execution of a program.
The CALL command enables you to arbitrarily call and execute a routine that was linked with your
program. This command is discussed in Section 13.7.

The EXIT command was discussed in Section 1.8, in conjunction with ending a debugging session.
Because it executes any exit handlers in your program, it is also useful for debugging exit handlers (see
Section 14.6).

When using any of these four commands, note that program execution can be interrupted or stopped by
any of the following events:

• The program terminates

• A breakpoint is reached

47

Chapter 3. Controlling and Monitoring Program Execution

• A watchpoint is triggered

• An exception is signaled

• You press Ctrl/C

3.2. Executing the Program by Step Unit
The STEP command (probably the most frequently used debugger command) enables you to execute
your program in small increments called step units.

By default, a step unit is an executable line of source code. In the following example, the STEP
command executes one line, reports the action ("stepped to …"), and displays the line number (27) and
source code of the next line to be executed:

DBG> STEP
stepped to TEST\COUNT\%LINE 27
 27: X := X + 1;
DBG>

Execution is now paused at the first machine-code instruction for line 27 of module TEST. Line 27 is in
COUNT, a routine within module TEST.

The STEP command can also execute several source lines at a time. If you specify a positive integer
as a parameter, the STEP command executes that number of lines. In the following example, the STEP
command executes the next three lines:

DBG> STEP 3
stepped to TEST\COUNT\%LINE 34
 34: SWAP (X, Y);
DBG>

Note that only those source lines for which code instructions were generated by the compiler are
recognized as executable lines by the debugger. The debugger skips over any other lines - for example,
comment lines. Also, if a line has more than one statement on it, the debugger executes all the statements
on that line as part of the single step.

Source lines are displayed by default after stepping if they are available for the module being debugged.
Source lines are not available if you are stepping in code that has not been compiled or linked with
the /DEBUG qualifier (for example, a shareable image routine). If source lines are available, you can
control their display with the SET STEP [NO]SOURCE command and the /[NO]SOURCE qualifier of
the STEP command. For information about how to control the display of source code in general and in
particular after stepping, see Chapter 6.

3.2.1. Changing the STEP Command Behavior
You can change the default behavior of the STEP command in two ways:

• By specifying a STEP command qualifier - for example, STEP /INTO

• By establishing a new default qualifier with the SET STEP command - for example, SET STEP
INTO

In the following example, the STEP /INTO command steps into a called routine when the program
counter (PC) is at a call statement. The debugger displays the source line identifying the routine
PRODUCT, which is called from routine COUNT of module TEST:

48

Chapter 3. Controlling and Monitoring Program Execution

DBG> STEP/INTO
stepped to routine TEST\PRODUCT
 6: function PRODUCT (X, Y : INTEGER) return INTEGER is
DBG>

After the STEP /INTO command executes, subsequent STEP commands revert to the default behavior.

In contrast, the SET STEP command enables you to establish new defaults for the STEP command.
These defaults remain in effect until another SET STEP command is entered. For example, the SET
STEP INTO command causes subsequent STEP commands to behave like STEP /INTO (SET STEP
LINE causes subsequent STEP commands to behave like STEP /LINE).

There is a SET STEP command parameter for each STEP command qualifier.

You can override the current STEP command defaults for the duration of a single STEP command by
specifying other qualifiers. Use the SHOW STEP command to identify the current STEP command
defaults.

3.2.2. Stepping Into and Over Routines
By default, when the PC is at a call statement and you enter the STEP command, the debugger steps
over the called routine. Although the routine is executed, execution is not paused within the routine
but, rather, on the beginning of the line that follows the call statement. When stepping by instruction,
execution is paused on the instruction that follows a called routine's return instruction.

To step into a called routine when the PC is at a call statement, enter the STEP /INTO command. The
following example shows how to step into the routine PRODUCT, which is called from routine COUNT
of module TEST:

DBG> STEP
stepped to TEST\COUNT\%LINE 18
 18: AREA := PRODUCT (LENGTH, WIDTH);
DBG> STEP/INTO
stepped to routine TEST\PRODUCT
 6: function PRODUCT (X, Y : INTEGER) return INTEGER is
DBG>

To return to the calling routine from any point within the called routine, use the STEP /RETURN
command. It causes the debugger to step to the return instruction of the routine being executed. A
subsequent STEP command brings you back to the statement that follows the routine call. For example:

DBG> STEP/RETURN
stepped on return from TEST\PRODUCT\%LINE 11 to TEST\PRODUCT\%LINE 15+4
 15: end PRODUCT;
DBG> STEP
stepped to TEST\COUNT\%LINE 19
 19: LENGTH := LENGTH + 1;
DBG>

To step into several routines, enter the SET STEP INTO command to change the default behavior of the
STEP command from STEP /OVER to STEP /INTO:

DBG> SET STEP INTO

As a result of this command, when the PC is at a call statement, a STEP command suspends execution
within the called routine. If you later want to step over routine calls, enter the SET STEP OVER
command.

49

Chapter 3. Controlling and Monitoring Program Execution

When SET STEP INTO is in effect, you can qualify the kinds of called routines that the debugger is
stepping into by specifying any of the following parameters with the SET STEP command:

• [NO]SHARE - Controls whether to step into called routines in shareable images.

• [NO]SYSTEM - Controls whether to step into called system routines.

These parameters make it possible to step into application-defined routines and automatically step over
system routines, and so on. For example, the following command directs the debugger to step into called
routines in user space only. The debugger steps over routines in system space and in shareable images.

DBG> SET STEP INTO, NOSYSTEM, NOSHARE

3.3. Suspending and Tracing Execution with
Breakpoints and Tracepoints
This section discusses using the SET BREAK and SET TRACE commands to, respectively, suspend and
trace program execution. The commands are discussed together because of their similarities.

SET BREAK Command Overview
The SET BREAK command lets you specify program locations or events at which to suspend program
execution (breakpoints). After setting a breakpoint, you can start or resume program execution with
the GO command, letting the program run until the specified location or condition is reached. When
the breakpoint is triggered, the debugger suspends execution, identifies the breakpoint, and displays the
DBG> prompt. You can then enter debugger commands - for example, to determine where you are (with
the SHOW CALLS command), step into a routine, examine or modify variables, and so on.

The syntax of the SET BREAK command is as follows:

SET BREAK[/qualifier[...]] [address-expression[, ...]]
 [WHEN (conditional-expression)]
 [DO (command[; ...])]

The following example shows a typical use of the SET BREAK command and shows the general default
behavior of the debugger at a breakpoint.

In this example, the SET BREAK command sets a breakpoint on routine COUNT (at the beginning
of the routine's code). The GO command starts execution. When routine COUNT is encountered,
execution is paused, the debugger announces that the breakpoint at COUNT has been reached ("break at
…"), displays the source line (54) where execution is paused, and prompts for another command:

DBG> SET BREAK COUNT
DBG> GO
⋮
break at routine PROG2\COUNT
 54: procedure COUNT (X, Y:INTEGER);
DBG>

SET TRACE Command Overview
The SET TRACE command lets you select program locations or events for tracing the execution of your
program without stopping its execution (tracepoints). After setting a tracepoint, you can start execution
with the GO command and then monitor that location, checking for unexpected behavior. By setting a
tracepoint on a routine, you can also monitor the number of times it is called.

50

Chapter 3. Controlling and Monitoring Program Execution

The debugger's default behavior at a tracepoint is identical to that at a breakpoint, except that program
execution continues past a tracepoint. Thus, the DBG> prompt is not displayed when a tracepoint is
reached and announced by the debugger.

Except for the command name, the syntax of the SET TRACE command is identical to that of the SET
BREAK command:

SET TRACE[/qualifier[...]] [address-expression[, ...]]
[WHEN (conditional-expression)]
[DO (command[; ...])]

The SET TRACE and SET BREAK commands have similar syntax. When using the SET TRACE
command, specify address expressions, qualifiers, and the optional WHEN and DO clauses exactly as
with the SET BREAK command.

Unless you use the /TEMPORARY qualifier on the SET BREAK or SET TRACE command,
breakpoints and tracepoints remain in effect until you:

• Deactivate or cancel them (see Section 3.3.7)

• Rerun the program with the RERUN/NOSAVE command (see Section 1.3.3)

• Run a new program (see Section 1.3.4) or end the debugging session (Section 1.8)

To identify all of the breakpoints or tracepoints that are currently set, use the SHOW BREAK or SHOW
TRACE command.

To deactivate, activate, or cancel breakpoints or tracepoints, use the following commands (see
Section 3.3.7):

DEACTIVATE BREAK, DEACTIVATE TRACE
ACTIVATE BREAK, ACTIVATE TRACE
CANCEL BREAK, CANCEL TRACE

The following sections describe how to specify program locations and events with the SET BREAK and
SET TRACE commands.

3.3.1. Setting Breakpoints or Tracepoints on Individual
Program Locations
To set a breakpoint or a tracepoint on a particular program location, specify an address expression with
the SET BREAK or SET TRACE command.

Fundamentally, an address expression specifies a memory address or a register. Because the debugger
understands the symbols associated with your program, the address expressions you typically use with
the SET BREAK or SET TRACE command are routine names, labels, or source line numbers rather
than memory addresses - the debugger converts these symbols to addresses.

3.3.1.1. Specifying Symbolic Addresses

Note

In some cases, when using the SET BREAK or SET TRACE command with a symbolic address
expression, you might need to set a module or specify a scope or a path name. Those concepts are

51

Chapter 3. Controlling and Monitoring Program Execution

described in detail in Chapter 5. The examples in this section assume that all modules are set and that all
symbols referenced are uniquely defined, unless otherwise indicated.

The following examples show how to set a breakpoint on a routine (SWAP) and a tracepoint on a label
(LOOP1):

DBG> SET BREAK SWAP
DBG> SET TRACE LOOP1

The next command sets a breakpoint on the return instruction of routine SWAP. Breaking on the return
instruction of a routine lets you inspect the local environment (for example, to obtain the values of local
variables) while the routine is still active.

DBG> SET BREAK/RETURN SWAP

Some languages, for example Fortran, use numeric labels. To set a breakpoint or a tracepoint on
a numeric label, you must precede the number with the built-in symbol %LABEL. Otherwise, the
debugger interprets the number as a memory address. For example, the following command sets a
tracepoint on label 20:

DBG> SET TRACE %LABEL 20

You can set a breakpoint or a tracepoint on a line of source code by specifying the line number preceded
by the built-in symbol %LINE. The following command sets a breakpoint on line 14:

DBG> SET BREAK %LINE 14

The previous breakpoint causes execution to pause on the first instruction of line 14. You can set a
breakpoint or a tracepoint only on lines for which the compiler generated instructions (lines that resulted
in executable code). If you specify aline number that is not associated with an instruction, such as
a comment line or a statement that declares but does not initialize a variable, the debugger issues a
diagnostic message. For example:

DBG> SET BREAK %LINE 6
%DEBUG-I-LINEINFO, no line 6, previous line is 5, next line is 8
%DEBUG-E-NOSYMBOL, symbol '%LINE 6' is not in the symbol table
DBG>

The previous messages indicate that the compiler did not generate instructions for lines 6 or 7 in this
case.

Some languages allow more than one statement on a line. In such cases, you can use statement numbers
to differentiate among statements on the same line. A statement number consists of a line number,
followed by a period (.), and a number indicating the statement. The syntax is as follows:

%LINE line-number.statement-number

For example, the following command sets a tracepoint on the second statement of line 38:

DBG> SET TRACE %LINE 38.2

When searching for symbols that you reference in commands, the debugger uses the conventions
described in Section 5.3.1. That is, it first looks within the module where execution is currently paused,
then in other scopes associated with routines on the call stack, and so on. Therefore, to specify a symbol
that is defined in more than one module, such as a line number, you might need to use a path name. For
example, the following command sets a tracepoint on line 27 of module MOD4:

52

Chapter 3. Controlling and Monitoring Program Execution

DBG> SET TRACE MOD4\%LINE 27

Remember the symbol lookup conventions when specifying a line number in debugger commands. If that
line number is not defined in the module where execution is paused (because it is not associated with an
instruction), the debugger uses the symbol lookup conventions to locate another module where the line
number is defined.

When specifying address expressions, you can combine symbolic addresses with byte offsets. Thus, you
can set a breakpoint or a tracepoint on a particular instruction by specifying its line number and the byte
offset from the beginning of that line to the first byte of the instruction. For example, the next command
sets a breakpoint on the address that is five bytes beyond the beginning of line 23:

DBG> SET BREAK %LINE 23+5

3.3.1.2. Specifying Locations in Memory
To set a breakpoint or a tracepoint on a location in memory, specify its numerical address in the
currently set radix. The default radix for both data entry and display is decimal for most languages.

On Alpha systems, the exceptions are BLISS, MACRO--32, and MACRO--64, which have a default
radix of hexadecimal.

On Integrity server, the exceptions are BLISS, MACRO--32, and Intel Assembler.

For example, the following command sets a breakpoint at address 2753, decimal, or at address 2753,
hexadecimal:

DBG> SET BREAK 2753

You can specify a radix when you enter an individual integer literal (such as 2753) by using one of the
built-in symbols %BIN, %OCT, %DEC, or %HEX. For example, in the following command line the
symbol %HEX specifies that 2753 should be treated as a hexadecimal integer:

DBG> SET BREAK %HEX 2753

Note that when specifying a hexadecimal number that starts with a letter rather than a number, you must
add a leading 0. Otherwise, the debugger tries to interpret the entity specified as a symbol declared in
your program.

For additional information about specifying radixes and about the built-in symbols %BIN, %DEC,
%HEX, and %OCT, see Section 4.1.10 and Appendix B.

If a breakpoint or a tracepoint was set on a numerical address that corresponds to a symbol in your
program, the SHOW BREAK or SHOW TRACE command identifies the breakpoint symbolically.

3.3.1.3. Obtaining and Symbolizing Memory Addresses
Use the EVALUATE /ADDRESS command to determine the memory address associated with a
symbolic address expression, such as a line number, routine name, or label. For example:

DBG> EVALUATE/ADDRESS SWAP
1536
DBG> EVALUATE/ADDRESS %LINE 26
1629
DBG>

53

Chapter 3. Controlling and Monitoring Program Execution

The address is displayed in the current radix. You can specify a radix qualifier to display the address in
another radix. For example:

DBG> EVALUATE/ADDRESS/HEX %LINE 26
0000065D
DBG>

The SYMBOLIZE command does the reverse of EVALUATE /ADDRESS. It converts a memory
address into its symbolic representation (including its path name)if such a representation is possible.
Chapter 5 explains how to control symbolization. See Section 4.1.11 for more information about
obtaining and symbolizing addresses.

3.3.2. Setting Breakpoints or Tracepoints on Lines or
Instructions
The following SET BREAK and SET TRACE command qualifiers cause the debugger to break on or
trace every source line or every instruction of a particular class:

/LINE
/BRANCH
/CALL
/INSTRUCTION

When using these qualifiers, do not specify an address expression.

For example, the following command causes the debugger to break on the beginning of every source line
encountered during execution:

DBG> SET BREAK/LINE

The instruction-related qualifiers are especially useful for opcode tracing, which is the tracing of all
instructions or the tracing of a class of instructions. The next command causes the debugger to trace
every branch instruction encountered (for example BEQL, BGTR, and so on):

DBG> SET TRACE/BRANCH

Note that opcode tracing slows program execution.

By default, when you use the qualifiers discussed in this section, the debugger breaks or traces
within all called routines as well as within the currently executing routine (this is equivalent to
specifying SETBREAK /INTO or SET TRACE /INTO). By specifying SET BREAK /OVER or
SETTRACE /OVER, you can suppress break or trace action within all called routines. Or, you can use
the /[NO]JSB, /[NO]SHARE, or /[NO]SYSTEM qualifiers to specify the kinds of called routines where
break or trace action is to be suppressed. For example, the next command causes the debugger to break
on every line except within called routines that are in shareable images or system space:

DBG> SET BREAK/LINE/NOSHARE/NOSYSTEM

3.3.3. Setting Breakpoints on Emulated Instructions
(Alpha Only)
On Alpha systems, to cause the debugger to suspend program execution when an instruction is emulated,
use the command SET BREAK /SYSEMULATE. The syntax of the SET BREAK command when using
the /SYSEMULATE qualifier is:

54

Chapter 3. Controlling and Monitoring Program Execution

SET BREAK/SYSEMULATE =mask

The optional argument mask is a quad word with bits set to specify which instruction groups shall
trigger breakpoints. The only emulated instruction group currently defined consists of the BYTE and
WORD instructions. Specify this instruction group by setting bit 0 of mask to 1.

If you do not specify mask, or if mask=FFFFFFFFFFFFFFFF, the debugger stops program
execution whenever the operating system emulates any instruction.

3.3.4. Controlling Debugger Action at Breakpoints or
Tracepoints
The SET BREAK and SET TRACE commands provide several options for controlling the behavior
of the debugger at breakpoints and tracepoints - the /AFTER, /[NO]SILENT, /[NO]SOURCE, and /
TEMPORARY command qualifiers, and the optional WHEN and DO clauses. The following examples
show several of these options.

The following command sets a breakpoint on line 14 and specifies that the breakpoint take effect after
the fifth time that line 14 is executed:

DBG> SET BREAK/AFTER:5 %LINE 14

The following command sets a tracepoint that is triggered at every line of execution. The DO clause
obtains the value of the variable X when each line is executed:

DBG> SET TRACE/LINE DO (EXAMINE X)

The following example shows how you capture the WHEN and DO clauses together. The command sets
a breakpoint at line 27. The breakpoint is triggered (execution is paused) only when the value of SUM is
greater than 100 (not each time line 27 is executed). The DO clause causes the value of TEST_RESULT
to be examined whenever the breakpoint is triggered - that is, whenever the value of SUM is greater than
100. If the value of SUM is not greater than 100 when execution reaches line 27, the breakpoint is not
triggered and the DO clause is not executed.

DBG> SET BREAK %LINE 27 WHEN (SUM > 100) DO (EXAMINE TEST_RESULT)

See Section 4.1.6 and Section 14.3.2.2 for information about evaluating language expressions like SUM
> 100.

The /SILENT qualifier suppresses the break or trace message and source code display. This is useful
when, for example, you want to use the SET TRACE command only to execute a debugger command at
the tracepoint. In the following example, the SET TRACE command is used to examine the value of the
Boolean variable STATUS at the tracepoint:

DBG> SET TRACE/SILENT %LINE 83 DO (EXAMINE STATUS)
DBG> GO
 .
 .
 .
SCREEN_IO\CLEAR\STATUS: OFF
 .
 .
 .

In the next example, the SET TRACE command is used to count the number of times line 12 is
executed. The first DEFINE /VALUE command defines a symbol COUNT and initializes its value to

55

Chapter 3. Controlling and Monitoring Program Execution

0. The DO clause of the SET TRACE command causes the value of COUNT to be incremented and
evaluated whenever the tracepoint is triggered (whenever execution reaches line 12).

DBG> DEFINE/VALUE COUNT=0
DBG> SET TRACE/SILENT %LINE 12 DO (DEF/VAL COUNT=COUNT+1;EVAL COUNT)

Source lines are displayed by default at breakpoints, tracepoints, and watchpoints if they are available
for the module being debugged. You can also control their display with the SET STEP [NO]SOURCE
command and the /[NO]SOURCE qualifier of the SET BREAK, SET TRACE, and SET WATCH
commands. See Chapter 6 for information about how to control the display of source code in general
and in particular at breakpoints, tracepoints, and watchpoints.

3.3.5. Setting Breakpoints or Tracepoints on Exceptions
The SET BREAK /EXCEPTION and SET TRACE /EXCEPTION commands direct the debugger
to treat any exception generated by your program as a breakpoint or tracepoint, respectively. The
breakpoint or tracepoint occurs before any application-declared exception handler is invoked. See
Section 14.5 for debugging techniques associated with exceptions and condition handlers.

3.3.6. Setting Breakpoints or Tracepoints on Events
The SET BREAK and SET TRACE commands each have an /EVENT= event-name qualifier. You
can use this qualifier to set breakpoints or tracepoints that are triggered by various events (denoted by
event-name keywords).Events and their keywords are currently defined for the following event facilities:

• ADA event facility, which defines HPE Ada tasking events. ADA events are defined in
Section 16.6.4.

• THREADS event facility, which defines tasking (multithread) events for programs written in any
language that uses POSIX Threads services. Threads events are defined in Section 16.6.4.

The appropriate facility and event-name keywords are defined when the program is brought under
debugger control. Use the SHOW EVENT_FACILITY command to identify the current event facility
and the associated event-name keywords. The SET EVENT_FACILITY command enables you to
change the event facility and change your debugging context. This is useful if you have a multilanguage
program and want to debug a routine that is associated with an event facility but that facility is not
currently set.

The following example shows how to set a SCAN event breakpoint. It causes the debugger to break
whenever a SCAN token is built, for any value:

DBG> SET BREAK/EVENT=TOKEN

When a breakpoint or tracepoint is triggered, the debugger identifies the event that caused it to be
triggered and gives additional information.

3.3.7. Deactivating, Activating, and Canceling
Breakpoints or Tracepoints
After a breakpoint or tracepoint is set, you can deactivate it, activate it, or cancel it.

To deactivate a breakpoint or tracepoint, enter the DEACTIVATE BREAK or DEACTIVATE
TRACE command. This causes the debugger to ignore the breakpoint or tracepoint during program

56

Chapter 3. Controlling and Monitoring Program Execution

execution. However, you can activate it at a later time, for example, when you rerun the program (see
Section 1.3.3). A deactivated breakpoint or tracepoint is listed as such in a SHOW BREAK display.

To activate a breakpoint or tracepoint, use the ACTIVATE BREAK or ACTIVATE TRACE command.
Activating a breakpoint or tracepoint causes it to take effect during program execution.

The commands DEACTIVATE BREAK/ALL and ACTIVATE BREAK/ALL (or DEACTIVATE
TRACE/ALL and ACTIVATE TRACE/ALL) operate on all breakpoints or tracepoints and are
particularly useful when rerunning a program with the RERUN command.

To cancel a breakpoint or tracepoint, use the CANCEL BREAK or CANCEL TRACE command. A
canceled breakpoint or tracepoint is no longer listed in a SHOW BREAK or SHOW TRACE display.

When using any of these commands, specify the address expression and qualifiers (if any) exactly as you
did when setting the breakpoint or tracepoint. For example:

DBG> DEACTIVATE TRACE/LINE
DBG> CANCEL BREAK SWAP, MOD2\LOOP4, 2753

3.4. Monitoring Changes in Variables and
Other Program Locations
The SET WATCH command enables you to specify program variables (or arbitrary memory locations)
that the debugger monitors as your program executes. This process is called setting watchpoints. If,
during execution, the program modifies the value of a watched variable (or memory location), the
watchpoint is triggered. The debugger then suspends execution, displays information, and prompts for
more commands. The debugger monitors watchpoints continuously during program execution.

This section describes the general use of the SET WATCH command. Section 3.4.3 gives additional
information about setting watch points on nonstatic variables - variables that are allocated on the call
stack or in registers.

Note

In some cases, when using the SET WATCH command with a variable name (or any other symbolic
address expression), you might need to set a module or specify a scope or a path name. Those concepts
are described in Chapter 5. The examples in this section assume that all modules are set and that all
variable names are uniquely defined.

If your program was optimized during compilation, certain variables in the program might be removed
by the compiler. If you then try to set a watchpoint on such a variable, the debugger issues a warning (see
Section 1.2 and Section 14.1).

The syntax of the SET WATCH command is as follows:

SET WATCH[/qualifier[...]] address-expression[, ...]
[WHEN (conditional-expression)]
[DO (command[; ...])]

You can specify any valid address expression, but usually you specify the name of a variable. The
following example shows a typical use of the SET WATCH command and shows the general default
behavior of the debugger at a watchpoint:

DBG> SET WATCH COUNT

57

Chapter 3. Controlling and Monitoring Program Execution

DBG> GO
 .
 .
 .
watch of MOD2\COUNT at MOD2\%LINE 24
 24: COUNT := COUNT + 1;
 old value: 27
 new value: 28
break at MOD2\%LINE 25
 25: END;
DBG>

In this example, the SET WATCH command sets a watchpoint on the variable COUNT, and the GO
command starts execution. When the program changes the value of COUNT, execution is paused. The
debugger then does the following:

• Announces the event ("watch of MOD2 \COUNT …"), identifying the location of the instruction
that changed the value of the watched variable ("… at MOD2 \%LINE 24")

• Displays the associated source line (24)

• Displays the old and new values of the variable (27 and 28)

• Announces that execution is paused at the beginning of the next line ("break at MOD2 \%LINE
25")and displays that source line

• Prompts for another command

When the address of the instruction that modified a watched variable is not at the beginning of a source
line, the debugger denotes the instruction's location by displaying the line number plus the byte offset
from the beginning of the line. For example:

DBG> SET WATCH K
DBG> GO
 .
 .
 .
watch of TEST\K at TEST\%LINE 19+5
 19: DO 40 K = 1, J
 old value: 4
 new value: 5
break at TEST\%LINE 19+9
 19: DO 40 K = 1, J
DBG>

In this example, the address of the instruction that modified variable K is 5 bytes beyond the beginning
of line 19. The breakpoint is on the instruction that follows the instruction that modified the variable (not
on the beginning of the next source line as in the preceding example).

You can set watchpoints on aggregates (that is, entire arrays or records).A watchpoint set on an array or
record triggers if any element of the array or record changes. Thus, you do not need to set watchpoints
on individual array elements or record components. However, you cannot set an aggregate watchpoint on
a variant record. In the following example, the watchpoint is triggered because element 3 of array ARR
was modified:

DBG> SET WATCH ARR
DBG> GO
 .

58

Chapter 3. Controlling and Monitoring Program Execution

 .
 .
watch of SUBR\ARR at SUBR\%LINE 12
 12: ARR (3) := 28
 old value:
 (1): 7
 (2): 12
 (3): 3
 (4): 0
 new value:
 (1): 7
 (2): 12
 (3): 28
 (4): 0
break at SUBR\%LINE 13
DBG>

You can also set a watchpoint on a record component, on an individual array element, or on an array
slice (a range of array elements). A watchpoint set on an array slice triggers if any element within that
slice changes. When setting the watchpoint, use the syntax of the current language. For example, the
following command sets a watchpoint on element 7 of array CHECK using Pascal syntax:

DBG> SET WATCH CHECK[7]

To identify all of the watchpoints that are currently set, use the SHOW WATCH command.

3.4.1. Deactivating, Activating, and Canceling
Watchpoints
After a watchpoint is set, you can deactivate it, activate it, or cancel it.

To deactivate a watchpoint, use the DEACTIVATE WATCH command. This causes the debugger
to ignore the watchpoint during program execution. However, you can activate it at a later time, for
example, when you rerun the program (see Section 1.3.3). A deactivated watchpoint is listed as such in a
SHOW WATCH display.

To activate a watchpoint, use the ACTIVATE WATCH command. Activating a watchpoint causes it
to take effect during program execution. You can always activate a static watchpoint, but the debugger
cancels a nonstatic watchpoint if execution moves out of the scope in which the variable is defined (see
Section 3.4.3).

The commands DEACTIVATE WATCH/ALL and ACTIVATE WATCH/ALLoperate on all watchpoint
sand are particularly useful when rerunning a program with the RERUN command.

To cancel a watchpoint, use the CANCEL WATCH command. A canceled watchpoint is no longer listed
in a SHOW WATCH display.

3.4.2. Watchpoint Options
The SET WATCH command provides the same options for controlling the behavior of the debugger at
watchpoints that the SET BREAK and SET TRACE commands provide for breakpoints and tracepoints
- namely the /AFTER, /[NO]SILENT, /[NO]SOURCE, and /TEMPORARY qualifiers, and the optional
WHEN and DO clauses. See Section 3.3.4 for examples.

3.4.3. Watching Nonstatic Variables

59

Chapter 3. Controlling and Monitoring Program Execution

Note

The generic term nonstatic variable is used here to denote what is called an automatic variable in some
languages.

Storage for a variable in your program is allocated either statically or nonstatically. A static variable is
associated with the same memory address throughout execution of the program. A nonstatic variable is
allocated on the call stack or in a register and has a value only when its defining routine is active on the
call stack. As explained in this section, the technique for setting a watchpoint, the watchpoint's behavior,
and the speed of program execution are different for the two kinds of variables.

To determine how a variable is allocated, use the EVALUATE /ADDRESS command. A static variable
generally has its address in P0 space (0 to 3FFFFFFF, hexadecimal). A nonstatic variable generally
has its address in P1 space (40000000 to 7FFFFFFF, hexadecimal) or is in a register. In the following
Pascal code example, X is declared as a static variable, but Y is a nonstatic variable (by default). The
EVALUATE /ADDRESS command, entered while debugging, shows that X is allocated at memory
location 512, but Y is allocated in register R0.

 .
 .
 .
VAR
 X: [STATIC] INTEGER;
 Y: INTEGER;
 .
 .
 .
DBG> EVALUATE/ADDRESS X
512
DBG> EVALUATE/ADDRESS Y
%R0
DBG>

When using the SET WATCH command, note the following distinction. You can set a watchpoint on
a static variable throughout execution of your program, but you can set a watchpoint on a nonstatic
variable only when execution is paused within the scope of the variable's defining routine. Otherwise, the
debugger issues a warning. For example:

DBG> SET WATCH Y
%DEBUG-W-SYMNOTACT, nonstatic variable 'MOD4\ROUT3\Y'
 is not active
DBG>

Section 3.4.3.2 describes how to set a watchpoint on a nonstatic variable.

3.4.3.1. Execution Speed
When a watchpoint is set, the speed of program execution depends on whether the variable is static or
nonstatic. To watch a static variable, the debugger write-protects the page containing the variable. If your
program attempts to write to that page (modify the value of that variable), an access violation occurs
and the debugger handles the exception. The debugger temporarily unprotects the page to allow the
instruction to complete and then determines whether the watched variable was modified. Except when
writing to that page, the program executes at full speed.

Because problems arise if the call stack or registers are write-protected, the debugger must use another
technique to watch a nonstatic variable. It traces every instruction in the variable's defining routine and

60

Chapter 3. Controlling and Monitoring Program Execution

checks the value of the variable after each instruction has been executed. Because this significantly slows
down the execution of the program, the debugger issues the following message when you set a nonstatic
watchpoint:

DBG> SET WATCH Y
%DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction
DBG>

3.4.3.2. Setting a Watchpoint on a Nonstatic Variable
To set a watchpoint on a nonstatic variable, make sure that execution is paused within the defining
routine. A convenient technique is to set a tracepoint on the routine that includes a DO clause to set
the watchpoint. Thus, whenever the routine is called, the tracepoint is triggered and the watchpoint is
automatically set on the local variable. In the following example, the WPTTRACE message indicates that
a watchpoint has been set on Y, a nonstatic variable that is local to routine ROUT3:

DBG> SET TRACE/NOSOURCE ROUT3 DO (SET WATCH Y)
DBG> GO
 .
 .
 .
trace at routine MOD4\ROUT3
%DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction
 .
 .
 .
watch of MOD4\ROUT3\Y at MOD4\ROUT3\%LINE 16
 16: Y := 4
 old value: 3
 new value: 4
break at MOD4\ROUT3\%LINE 17
 17: SWAP (X, Y);
DBG>

When execution returns to the caller of routine ROUT3, variable Y is no longer active. Therefore, the
debugger automatically cancels the watchpoint and issues the following messages:

%DEBUG-I-WATCHVAR, watched variable MOD4\ROUT3\Y has gone out of scope
%DEBUG-I-WATCHCAN, watchpoint now canceled

3.4.3.3. Options for Watching Nonstatic Variables
The SET WATCH command qualifiers /OVER, /INTO, and /[NO]STATIC provide options for watching
nonstatic variables.

When you set a watchpoint on a nonstatic variable, you can direct the debugger to do one of two things
at a routine call:

• Step over the called routine - executing it at full speed - and resume instruction tracing after
returning. This is the default (SET WATCH /OVER).

• Trace instructions within the called routine, which monitors the variable instruction-by-instruction
within the routine (SET WATCH /INTO).

Using the SET WATCH /OVER command results in better performance. However, if the called routine
modifies the watched variable, the watchpoint is triggered only after execution returns from that

61

Chapter 3. Controlling and Monitoring Program Execution

routine. The SET WATCH /INTO command slows down program execution but enables you to monitor
watchpoints more precisely within called routines.

The debugger determines whether a variable is static or nonstatic by looking at its address (P0 space, P1
space, or register). When entering a SET WATCH command, you can override this decision with the /
[NO]STATIC qualifier. For example, if you have allocated nonstack storage in P1 space, use the SET
WATCH /STATIC command to specify that a particular variable is static even though it is in P1 space.
Conversely, if you have allocated your own call stack in P0 space, use the SET WATCH /NOSTATIC
command to specify that a particular variable is nonstatic even though it is in P0 space.

3.4.3.4. Setting Watchpoints in Installed Writable Shareable Images
When setting a watchpoint in an installed writable shareable image, use the SET WATCH /NOSTATIC
command (see Section 3.4.3.3).

The reason you must set a nonstatic watchpoint is as follows. Variables declared in such shareable images
are typically static variables. By default, the debugger watches a static variable by write-protecting the
page containing that variable. However, the debugger cannot write-protect a page in an installed writable
shareable image. Therefore, the debugger must use the slower method of detecting changes, as for
nonstatic variables - that is, by checking the value at the watched location after each instruction has been
executed (see Section 3.4.3.1).

If any other process modifies the watched location's value, the debugger may report that your program
modified the watched location.

62

Chapter 4. Examining and
Manipulating Program Data
This chapter explains how to use the EXAMINE and DEPOSIT commands to display and modify
the values of symbols declared in your program as well as the contents of arbitrary program locations.
The chapter also explains how to use the EVALUATE and other commands that evaluate language
expressions.

The topics covered in this chapter are organized as follows:

• General concepts related to using the EXAMINE, DEPOSIT, and EVALUATE commands.

• Use of the commands with symbolic names - for example, the names of variables and routines
declared in your program. Such symbolic address expressions are associated with compiler generated
types.

• Use of the commands with program locations (memory addresses or registers) that do not have
symbolic names. Such address expressions are not associated with compiler generated types.

• Specifying a type to override the type associated with an address expression.

The examples in this chapter do not cover all language-dependent behavior. When debugging in any
language, be sure also to consult the following documentation:

• Section 14.3, which highlights some important language differences that you should be aware of
when debugging multilanguage programs.

• The debugger's online help (type HELP Language).

• The documentation supplied with that language.

4.1. General Concepts
This section introduces the EXAMINE, DEPOSIT, and EVALUATE commands and discusses concepts
that are common to those commands.

4.1.1. Accessing Variables While Debugging

Note

The generic term nonstatic variable is used here to denote what is called an automatic variable in some
languages.

Before you try to examine or deposit into a nonstatic (stack-local or register) variable, its defining routine
must be active on the call stack. That is, program execution must be paused somewhere within the
defining routine. See Section 3.4.3 for more information about nonstatic variables.

You can examine a static variable at any time during program execution, and you can examine a
nonstatic variable as soon as execution reaches its defining routine. However, before you examine any

63

Chapter 4. Examining and Manipulating Program Data

variable, you should execute the program beyond the point where the variable is declared and initialized.
The value contained in any uninitialized variable should be considered invalid.

Many compilers optimize code to make the program run faster. If the code that you are debugging has
been optimized, some program locations might not match what you would expect from looking at the
source code. In particular, some optimization techniques eliminate certain variables so that you no longer
have access to them while debugging.

Section 14.1 explains the effect of several optimization techniques on the executable code. When
first debugging a program, it is best to disable optimization, if possible, with the /NOOPTIMIZE (or
equivalent) compiler command qualifier.

In some cases, when using the EXAMINE or DEPOSIT command with a variable name (or any other
symbolic address expression) you might need to set a module or specify a scope or a path name. Those
concepts are described in Chapter 5. The examples in this chapter assume that all modules are set and
that all variable names are uniquely defined.

4.1.2. Using the EXAMINE Command
For high-level language programs, the EXAMINE command is used mostly to display the current value
of variables, and it has the following syntax:

EXAMINE address-expression[,...]

For example, the following command displays the current value of the integer variable X:

DBG>EXAMINE X
MOD3\X: 17
DBG>

When displaying the value, the debugger prefixes the variable name with its path name - in this case, the
name of the module where variable X is declared (see Section 5.3.2).

The EXAMINE command usually displays the current value of the entity, denoted by an address
expression, in the type associated with that location (for example, integer, real, array, record, and so on).

When you enter an EXAMINE command, the debugger evaluates the address expression to yield a
program location (a memory address or a register). The debugger then displays the value stored at that
location as follows:

• If the location has a symbolic name, the debugger formats the value according to the compiler-
generated type associated with that symbol.

• If the location does not have a symbolic name, the debugger formats the value in the type longword
integer by default.

See Section 4.1.5 for more information about the types associated with symbolic and nonsymbolic
address expressions.

By default, when displaying the value, the debugger identifies the address expression and its path
name symbolically if symbol information is available. See Section 4.1.11 for more information about
symbolizing addresses.

The debugger can directly examine a wchar_t variable:

64

Chapter 4. Examining and Manipulating Program Data

DBG> EXAMINE wide_buffer
TST\main\wide_buffer[0:31]: 'test data line 1................'

OpenVMS Debugger on Integrity servers displays general, floating point and predicate registers as if the
register rename base (CFM.rrb) and rotating size (CFM.sor) are both zero. In other words, when rotating
registers are in use, the effects of the rotation are ignored.

Note

This is a rare condition that occurs only in unusual circumstances in C++ and assembly language
programs; most programs are not affected by this problem.

In this condition, you must examine the CFM register and manually adjust the EXAMINE command to
account for the non-zero CFM.rrb and CFM.sor fields.

4.1.3. Using the DUMP Command
Use the debugger command DUMP to display the contents of memory, in a manner similar to that of the
DCL command DUMP, in one of the following formats:

Binary
Byte
Decimal
Hexadecimal
Longword (default)
Octal
Quadword
Word

The DUMP command has the following syntax:

DUMP address-expression1[:address-expression2]

The default for address-expression2 is address-expression1. For example, the following
command displays the current value of registers R16 through R25 in quadword format.

DBG>DUMP/QUADWORD R16:R25
 0000000000000078 0000000000030038 8.......x....... %R16
 000000202020786B 0000000000030041 A.......kx ... %R18
 0000000000030140 0000000000007800 .x......@....... %R20
 0000000000010038 00000000000000078....... %R22
 0000000000000006 0000000000000000 %R24
DBG>

You can use the command DUMP to display registers, variables, and arrays. The debugger makes no
attempt to interpret the structure of arrays. The following qualifiers determine how the debugger displays
output from the DUMP command:

Qualifier Formats Output As

/BINARY Binary integers
/BYTE One-byte integers
/DECIMAL Decimal integers

65

Chapter 4. Examining and Manipulating Program Data

Qualifier Formats Output As

/HEXADECIMAL Hexadecimal integers
/LONGWORD Longword integers (length 4 bytes)
/OCTAL Octal integers
/QUADWORD Quadword integers (length 8 bytes)
/WORD Word integers (length 2 bytes)

By default, the debugger displays examined entities that do not have a compiler-generated type as
longwords.

4.1.4. Using the DEPOSIT Command
For high-level languages, the DEPOSIT command is used mostly to assign anew value to a variable. The
command is similar to an assignment statement inmost programming languages, and has the following
syntax:

DEPOSIT address-expression = language-expression

For example, the following DEPOSIT command assigns the value 23 to the integer variable X:

DBG>EXAMINE X
MOD3\X: 17
DBG>DEPOSIT X = 23
DBG>EXAMINE X
MOD3\X: 23
DBG>

The DEPOSIT command usually evaluates a language expression and deposits the resulting value into a
program location denoted by an address expression.

When you enter a DEPOSIT command, the debugger does the following:

• It evaluates the address expression to yield a program location.

• If the program location has a symbolic name, the debugger associates the location with the symbol's
compiler generated type. If the location does not have a symbolic name, the debugger associates the
location with the type longword integer by default (see Section 4.1.5).

• It evaluates the language expression in the syntax of the current language and in the current radix to
yield a value. This behavior is identical to that of the EVALUATE command (see Section 4.1.6).

• It checks that the value and type of the language expression is consistent with the type of the address
expression. If you try to deposit a value that is incompatible with the type of the address expression,
the debugger issues a diagnostic message. If the value is compatible, the debugger deposits the value
into the location denoted by the address expression.

Note that the debugger might do type conversion during a deposit operation if the language rules allow it.
For example, assume X is an integer variable. In the following example, the real value 2.0 is converted to
the integer value 2, which is then assigned to X:

DBG>DEPOSIT X = 2.0
DBG>EXAMINE X
MOD3\X: 2

66

Chapter 4. Examining and Manipulating Program Data

DBG>

In general, the debugger tries to follow the assignment rules for the current language.

4.1.5. Address Expressions and Their Associated
Types
The symbols that are declared in your program (variable names, routine names, and so on) are symbolic
address expressions. They denote memory addresses or registers. Symbolic address expressions (also
called symbolic names in this chapter) have compiler-generated types, and the debugger knows the type
and location that are associated with symbolic names. Section 4.1.11 explains how to obtain memory
addresses and register names from symbolic names and how to symbolize program locations.

Symbolic names include the following categories:

• Variables

The associated program locations contain the current values of variables. Techniques for examining
and depositing into variables are described in Section 4.2.

• Routines, labels, and line numbers

The associated program locations contain instructions. Techniques for examining and depositing
instructions are described in Section 4.3.

Program locations that do not have a symbolic name are not associated with a compiler-generated type.
To enable you to examine and deposit into such locations, the debugger associates them with the default
type longword integer. If you specify a location that does not have a symbolic name, the EXAMINE
command displays the contents of four bytes starting at the address specified and formats the displayed
information as an integer value. In the following example, the memory address 926 is not associated with
a symbolic name (note that the address is not symbolized when the EXAMINE command is executed).
Therefore, the EXAMINE command displays the value at that address as a longword integer.

DBG>EXAMINE 926
926: 749404624
DBG>

By default you can deposit up to four bytes of integer data into a program location that does not have a
symbolic name. This data is formatted as a longword integer. For example:

DBG>DEPOSIT 926 = 84
DBG>EXAMINE 926
926: 84
DBG>

Techniques for examining and depositing into locations that do not have a symbolic name are described
in Section 4.5.

The EXAMINE and DEPOSIT commands accept type qualifiers (/ASCII: n, /BYTE, and so on) that
enable you to override the type associated with a program location. This is useful either if you want the
contents of the location to be interpreted and displayed in another type, or if you want to deposit some
value of a particular type into a location that is associated with another type. Techniques for overriding a
type are described in Section 4.5.

4.1.6. Evaluating Language Expressions

67

Chapter 4. Examining and Manipulating Program Data

A language expression consists of any combination of one or more symbols, literals, and operators
that is evaluated to a single value in the syntax of the current language and in the current radix. (The
current language and current radix are defined in Section 4.1.9 and Section 4.1.10, respectively.) Several
debugger commands and constructs evaluate language expressions:

• The EVALUATE and DEPOSIT commands, which are described in this section and in Section 4.1.4,
respectively

• The IF, FOR, REPEAT, and WHILE commands (see Section 13.6)

• WHEN clauses, which are used with the SET BREAK, SET TRACE, and SET WATCH commands
(see Section 3.3.4)

This discussion applies to all commands and constructs that evaluate language expressions, but it focuses
on using the EVALUATE command.

The EVALUATE command evaluates one or more language expressions in the syntax of the current
language and in the current radix and displays the resulting values. The command has the following
syntax:

EVALUATE language-expression […]

One use of the EVALUATE command is to perform arithmetic calculations that might be unrelated to
your program. For example:

DBG>EVALUATE (8+12)*6/4
30
DBG>

The debugger uses the rules of operator precedence of the current language when evaluating language
expressions.

You can also evaluate language expressions that include variables and other constructs. For example, the
following EVALUATE command subtracts 3 from the current value of the integer variable X, multiplies
the result by 4, and displays the resulting value:

DBG>DEPOSIT X = 23
DBG>EVALUATE (X - 3) * 4
80
DBG>

However, you cannot evaluate a language expression that includes a function call. For example, if
PRODUCT is a function that multiplies two integers, you cannot enter the EVALUATE PRODUCT(3,
5) command. If your program assigns the returned value of a function to a variable, you can examine the
resulting value of that variable.

If an expression contains symbols with different compiler generated types, the debugger uses the type-
conversion rules of the current language to evaluate the expression. If the types are incompatible,
a diagnostic message is issued. Debugger support for operators and other constructs in language
expressions is listed in the debugger's online help for each language (type HELP Language).

The built-in symbol %CURVAL denotes the current value - the value last displayed by an EVALUATE
or EXAMINE command or deposited by a DEPOSIT command. The backslash (\) also denotes the
current value when used in that context. For example:

68

Chapter 4. Examining and Manipulating Program Data

DBG>EXAMINE X
MOD3\X: 23
DBG>EVALUATE %CURVAL
23
DBG>DEPOSIT Y = 47
DBG>EVALUATE \
47
DBG>

4.1.6.1. Using Variables in Language Expressions
You can use variables in language expressions in much the same way that you use them in the source
code of your program.

Thus, the debugger generally interprets a variable used in a language expression as the current value of
that variable, not the address of the variable. For example (X is an integer variable):

DBG>DEPOSIT X = 12 ! Assign the value 12 to X.
DBG>EXAMINE X ! Display the value of X.
MOD4\X: 12
DBG>EVALUATE X ! Evaluate and display the value of X.
12
DBG>EVALUATE X + 4 ! Add the value of X to 4.
16
DBG>DEPOSIT X = X/2 ! Divide the value of X by 2 and assign
 ! the resulting value to X.
DBG>EXAMINE X ! Display the new value of X.
MOD4\X: 6
DBG>

Using a variable in a language expression as shown in the previous examples is generally limited to
single-valued, non composite variables. Typically, you can specify a multivalued, composite variable (like
an array or record) in a language expression only if the syntax indicates that you are referencing only a
single value (a single element of the aggregate). For example, if ARR is the name of an array of integers,
the following command is invalid:

DBG> EVALUATE ARR
%DEBUG-W-NOVALUE, reference does not have a value
DBG>

However, the following commands are valid because only a single element of the array is referenced:

DBG>EVALUATE ARR(2) ! Evaluate element 2 of array ARR.
37
DBG>DEPOSIT K = 5 + ARR(2) ! Deposit the sum of two integer
DBG> ! values into an integer variable.

If the current language is BLISS, the debugger interprets a variable in a language expression as the
address of that variable. To denote the value stored in a variable, you must use the contents-of operator
(period (.). For example, when the language is set to BLISS:

DBG>EXAMINE Y ! Display the value of Y.
MOD4\Y: 3
DBG>EVALUATE Y ! Display the address of Y.
02475B
DBG>EVALUATE .Y ! Display the value of Y.
3

69

Chapter 4. Examining and Manipulating Program Data

DBG>EVALUATE Y + 4 ! Add 4 to the address of Y and
02475F ! display the resulting value.
DBG>EVALUATE .Y + 4 ! Add 4 to the value of Y and display
7 ! the resulting value.
DBG>

For all languages, to obtain the address of a variable, use the EVALUATE /ADDRESS command as
described in Section 4.1.11. The EVALUATE and EVALUATE /ADDRESS commands both display the
address of an address expression when the language is set to BLISS.

4.1.6.2. Numeric Type Conversion by the Debugger

When evaluating language expressions involving numeric types of different precision, the debugger
first converts lower-precision types to higher-precision types before performing the evaluation. In the
following example, the debugger converts the integer 1 to the real 1.0 before doing the addition:

DBG>EVALUATE 1.5 + 1
2.5
DBG>

The basic rules are as follows:

• If integer and real types are mixed, the integer type is converted to the real type.

• If integer types of different sizes are mixed (for example, byte-integer and word-integer), the one
with the smaller size is converted to the larger size.

• If real types of different sizes are mixed (for example, S_float and T_float), the one with the smaller
size is converted to the larger size.

In general, the debugger allows more numeric type conversion than the programming language. In
addition, the hardware type used for a debugger calculation (word, longword, S_float, and so on) might
differ from that chosen by the compiler. Because the debugger is not as strongly typed or as precise as
some languages, the evaluation of an expression by the EVALUATE command might differ from the
result that would be calculated by compiler-generated code and obtained with the EXAMINE command.

4.1.7. Address Expressions Compared to Language
Expressions
Do not confuse address expressions with language expressions. An address expression specifies a
program location; a language expression specifies a value. In particular, the EXAMINE command
expects an address expression as its parameter, and the EVALUATE command expects a language
expression as its parameter. These points are shown in the next examples.

In the following example, the value 12 is deposited into the variable X. This is confirmed by the
EXAMINE command. The EVALUATE command computes and displays the sum of the current value
of X and the integer literal 6:

DBG>DEPOSIT X = 12
DBG>EXAMINE X
MOD3\X: 12
DBG>EVALUATE X + 6
18
DBG>

70

Chapter 4. Examining and Manipulating Program Data

In the next example, the EXAMINE command displays the value currently stored at the memory
location that is 6 bytes beyond the address of X:

DBG>EXAMINE X + 6
MOD3\X+6: 274903
DBG>

In this case the location is not associated with a compiler-generated type. Therefore, the debugger
interprets and displays the value stored at that location in the type longword integer (see Section 4.1.5).

In the next example, the value of X + 6 (that is, 18) is deposited into the location that is 6 bytes beyond
the address of X. This is confirmed by the last EXAMINE command.

DBG>EXAMINE X
MOD3\X: 12
DBG>DEPOSIT X + 6 = X + 6
DBG>EXAMINE X
MOD3\X: 12
DBG>EXAMINE X + 6
MOD3\X+6: 18
DBG>

4.1.8. Specifying the Current, Previous, and Next Entity
When using the EXAMINE and DEPOSIT commands, you can use three special built-in symbols
(address expressions) to refer quickly to the current, previous, and next data locations (logical entities).
These are the period (.), the circumflex (^), and the Return key.

The period (.), when used by itself with an EXAMINE or DEPOSIT command, denotes the current
entity - that is, the program location most recently referenced by an EXAMINE or DEPOSIT command.
For example:

DBG>EXAMINE X
SIZE\X: 7
DBG>DEPOSIT . = 12
DBG>EXAMINE .
SIZE\X: 12
DBG>

The circumflex (^) and Return key denote, respectively, the previous and next logical data locations
relative to the last EXAMINE or DEPOSIT command (the logical predecessor and successor,
respectively). The circumflex and Return key are useful for referring to consecutive indexed
components of an array. The following example shows the use of these operators with an array of
integers, ARR:

DBG>EXAMINE ARR(5) ! Examine element 5 of array ARR.MAIN
\ARR(5): 448670
DBG>EXAMINE ^ ! Examine the previous element (4).MAIN
\ARR(4): 792802
DBG>EXAMINE ! Examine the next element (5).MAIN
\ARR(5): 448670
DBG>EXAMINE ! Examine the next element (6).MAIN
\ARR(6): 891236
DBG>

The debugger uses the type associated with the current entity to determine logical successors and
predecessors.

71

Chapter 4. Examining and Manipulating Program Data

You can also use the built-in symbols %CURLOC, %PREVLOC, and %NEXTLOC to achieve the same
purpose as the period, circumflex, and Return key, respectively. These symbols are useful in command
procedures and also if your program uses the circumflex for other purposes. Moreover, using the Return
key to signify the logical successor does not apply to all contexts. For example, you cannot press the
Return key after entering the DEPOSIT command to indicate the next location, but you can always use
the symbol %NEXTLOC for that purpose.

Note that, like EXAMINE and DEPOSIT, the EVALUATE /ADDRESS command also resets the values
of the current, previous, and next logical-entity built-in symbols (see Section 4.1.11). However, you
cannot press the Return key after entering the EVALUATE /ADDRESS command to indicate the next
location. For more information about debugger built-in symbols, see Appendix B.

The previous examples show the use of the built-in symbols after referencing a symbolic name with the
EXAMINE or DEPOSIT command. If you examine or deposit into a memory address, that location
might or might not be associated with a compiler-generated type. When you reference a memory
address, the debugger uses the following conventions to determine logical predecessors and successors:

• If the address has a symbolic name (the name of a variable, component of a composite variable,
routine, and so on), the debugger uses the associated compiler-generated type.

• If the address does not have a symbolic name, the debugger uses the type longword integer by
default.

As the current entity is reset with new examine or deposit operations, the debugger associates each new
location with a type in the manner indicated to determine logical successors and predecessors. This is
shown in the following examples.

Assume that a Fortran program has declared three variables, ARY, FLT, and BTE, as follows:

• ARY is an array of three word integers (2 bytes each)

• FLT is an F_floating type (4 bytes)

• BTE is a byte integer (1 byte)

Assume that storage for these variables has been allocated at consecutive addresses in memory, starting
with 1000. For example:

1000: ARY(1)
1002: ARY(2)
1004: ARY(3)
1006: FLT
1010: BTE
1011: undefined
 .
 .
 .

Examining successive logical data locations will give the following results:

DBG>EXAMINE 1000 ! Examine ARY(1), associated with 1000.
MOD3\ARY(1): 13 ! Current entity is now ARY(1).
DBG>EXAMINE ! Examine next location, ARY(2),
MOD3\ARY(2): 7 ! using type of ARY(1) as reference.
DBG>EXAMINE ! Examine next location, ARY(3).
MOD3\ARY(3): 19 ! Current entity is now ARY(3).

72

Chapter 4. Examining and Manipulating Program Data

DBG>EXAMINE ! Examine entity at 1006 (FLT).
MOD3\FLT: 1.9117807E+07 ! Current entity is now FLT.
DBG>EXAMINE ! Examine entity at 1010 (BTE).
MOD3\BTE: 43 ! Current entity is now BTE.
DBG>EXAMINE ! Examine entity at 1011 (undefined).
1011: 17694732 ! Interpret data as longword integer.
DBG> ! Location is not symbolized.

The same principles apply when you use type qualifiers with the EXAMINE and DEPOSIT commands
(see Section 4.5.2). The type specified by the qualifier determines the data boundary of an entity and,
therefore, any logical successors and predecessors.

4.1.9. Language Dependencies and the Current
Language
The debugger enables you to set your debugging context to any of several supported languages. The
setting of the current language determines how the debugger parses and interprets the names, numbers,
operators, and expressions you specify in debugger commands, and how it displays data.

By default, the current language is the language of the module containing the main program, and it is
identified when you bring the program under debugger control. For example:

$ PASCAL/NOOPTIMIZE/DEBUG TEST1
$ LINK/DEBUG TEST1
$ DEBUG/KEEP
 Debugger Banner and Version Number
DBG>RUN TEST1
Language: PASCAL, Module: TEST1
DBG>

When debugging modules whose code is written in other languages, you can use the SET LANGUAGE
command to establish a new language-dependent context. Section 14.3 highlights some important
language differences. Debugger support for operators and other constructs in language expressions is
listed for each language in the debugger's online help (type HELP Language).

4.1.10. Specifying a Radix for Entering or Displaying
Integer Data
The debugger can interpret and display integer data in any one of four radixes: decimal, hexadecimal,
octal, and binary. The default radix is decimal for most languages.

On Alpha systems, the exceptions are BLISS, MACRO-32 and MACRO-64, which have a default radix
of hexadecimal.

You can control the radix for the following kinds of integer data:

• Data that you specify in address expressions or language expressions

• Data that is displayed by the EVALUATE and EXAMINE commands

You cannot control the radix for other kinds of integer data. For example, addresses are always displayed
in hexadecimal radix in a SHOW CALLS display. Or, when specifying an integer n with various
command qualifiers (/AFTER: n, /UP: n, and so on), you must use decimal radix.

73

Chapter 4. Examining and Manipulating Program Data

The technique you use to control radix depends on your objective. To establish a new radix for all
subsequent commands, use the SET RADIX command. For example:

DBG>SET RADIX HEXADECIMAL

After this command is executed, all integer data that you enter in address or language expressions is
interpreted as being hexadecimal. Also, all integer data displayed by the EVALUATE and EXAMINE
commands is given in hexadecimal radix.

The SHOW RADIX command identifies the current radix (which is either the default radix, or the radix
last established by a SET RADIX command). For example:

DBG>SHOW RADIX
input radix: hexadecimal
output radix: hexadecimal
DBG>

The SHOW RADIX command identifies both the input radix (for data entry) and the output radix
(for data display). The SET RADIX command qualifiers /INPUT and /OUTPUT enable you to specify
different radixes for data entry and display. For more information, see the SET RADIX command.

Use the CANCEL RADIX command to restore the default radix.

The examples that follow show several techniques for displaying or entering integer data in another radix
without changing the current radix.

To convert some integer data to another radix without changing the current radix, use the EVALUATE
command with a radix qualifier (/BINARY, /DECIMAL, /HEXADECIMAL, /OCTAL). For example:

DBG>SHOW RADIX
input radix: decimal
output radix: decimal
DBG>EVALUATE 18 + 5
23 ! 23 is decimal integer.
DBG>EVALUATE/HEX 18 + 5
00000017 ! 17 is hexadecimal integer.
DBG>

The radix qualifiers do not affect the radix for data entry.

To display the current value of an integer variable (or the contents of a program location that has an
integer type) in another radix, use the EXAMINE command with a radix qualifier. For example:

DBG>EXAMINE X
MOD4\X: 4398 ! 4398 is a decimal integer.
DBG>EXAMINE/OCTAL . ! X is the current entity.
MOD4\X: 00000010456 ! 10456 is an octal integer.
DBG>

To enter one or more integer literals in another radix without changing the current radix, use one of the
radix built-in symbols %BIN, %DEC, %HEX, or %OCT. A radix built-in symbol directs the debugger
to treat an integer literal that follows (or all numeric literals in a parenthesized expression that follows) as
a binary, decimal, hexadecimal, or octal number, respectively. These symbols do not affect the radix for
data display. For example:

DBG>SHOW RADIX

74

Chapter 4. Examining and Manipulating Program Data

input radix: decimal
output radix: decimal
DBG>EVAL %BIN 10 ! Evaluate the binary integer 10.
2 ! 2 is a decimal integer.
DBG>EVAL %HEX (10 + 10) ! Evaluate the hexadecimal integer 20.
32 ! 32 is a decimal integer.
DBG>EVAL %HEX 20 + 33 ! Treat 20 as hexadecimal, 33 as decimal.
65 ! 65 is a decimal integer.
DBG>EVAL/HEX %OCT 4672 ! Treat 4672 as octal and display in hex.
000009BA ! 9BA is a hexadecimal number.
DBG>EXAMINE X + %DEC 12 ! Examine the location 12 decimal bytes
MOD3\X+12: 493847 ! beyond the address of X.
DBG>DEPOS J = %OCT 7777777 ! Deposit an octal value.
DBG>EXAMINE . ! Display that value in decimal radix.
MOD3\J: 2097151
DBG>EXAMINE/OCTAL . ! Display that value in octal radix.
MOD3\J: 00007777777
DBG>EXAMINE %HEX 0A34D ! Examine location A34D, hexadecimal.
SHARE$LIBRTL+4941: 344938193 ! 344938193 is a decimal integer.
DBG>

Note

When specifying a hexadecimal integer that starts with a letter rather than a number (for example, A34D
in the last example), add a leading 0. Otherwise, the debugger tries to interpret the integer as a symbol
declared in your program.

For more examples showing the use of the radix built-in symbols, see Appendix B.

4.1.11. Obtaining and Symbolizing Memory Addresses
Use the EVALUATE /ADDRESS command to determine the memory address or the register name
associated with a symbolic address expression, such as a variable name, line number, routine name, or
label. For example:

DBG>EVALUATE/ADDRESS X ! A variable name
2476
DBG>EVALUATE/ADDRESS SWAP ! A routine name
1536
DBG>EVALUATE/ADDRESS %LINE 26
1629
DBG>

The address is displayed in the current radix (as defined in Section 4.1.10). You can specify a radix
qualifier to display the address in another radix. For example:

DBG>EVALUATE/ADDRESS/HEX X
000009AC
DBG>

If a variable is associated with a register instead of a memory address, the EVALUATE /ADDRESS
command displays the name of the register, regardless of whether a radix qualifier is used. The following
command indicates that variable K (a nonstatic variable) is associated with register R2:

DBG>EVALUATE/ADDRESS K
%R2

75

Chapter 4. Examining and Manipulating Program Data

DBG>

Like the EXAMINE and DEPOSIT commands, EVALUATE /ADDRESS resets the values of the
current, previous, and next logical-entity built-in symbols (see Section 4.1.8).Unlike the EVALUATE
command, EVALUATE /ADDRESS does not affect the current-value built-in symbols %CURVAL and
backslash (\).

The SYMBOLIZE command does the reverse of EVALUATE /ADDRESS, but without affecting the
current, previous, or next logical-entity built-in symbols.It converts a memory address or a register name
into its symbolic representation (including its path name) if such a representation is possible (Chapter 5
explains how to control symbolization).For example, the following command shows that variable K is
associated with register R2:

DBG>SYMBOLIZE %R2
address MOD3\%R2: MOD3\K
DBG>

By default, symbolic mode is in effect (SET MODE SYMBOLIC).Therefore, the debugger displays
all addresses symbolically if symbols are available for the addresses. For example, if you specify a
numeric address with the EXAMINE command, the address is displayed in symbolic form if symbolic
information is available:

DBG>EVALUATE/ADDRESS X
2476
DBG>EXAMINE 2476
MOD3\X: 16
DBG>

However, if you specify a register that is associated with a variable, the EXAMINE command does not
convert the register name to the variable name. For example:

DBG>EVALUATE/ADDRESS K
%R2
DBG>EXAMINE %R2
MOD3\%R2: 78
DBG>

By entering the SET MODE NOSYMBOLIC command, you disable symbolic mode and cause the
debugger to display numeric addresses rather than their symbolic names. When symbolization is
disabled, the debugger might process commands somewhat faster because it does not need to convert
numbers to names. The EXAMINE command has a /[NO]SYMBOLIC qualifier that enables you to
control symbolization for a single EXAMINE command. For example:

DBG>EVALUATE/ADDRESS Y
512
DBG>EXAMINE 512
MOD3\Y: 28
DBG>EXAMINE/NOSYMBOLIC 512
512: 28
DBG>

Symbolic mode also affects the display of instructions.

For example, on Integrity servers:

DBG>EXAMINE/INSTRUCTION .%PC

76

Chapter 4. Examining and Manipulating Program Data

HELLO\main\%LINE 8: add r34=200028, r1
DBG>EXAMINE/NOSYMBOL/INSTRUCTION .%PC
65969: add r34 = 200028, r1
DBG>

4.2. Examining and Depositing into Variables
The examples in this section show how to use the EXAMINE and DEPOSIT commands with variables.

Languages differ in the types of variables they use, the names for these types, and the degree to which
different types can be intermixed in expressions. The following generic types are discussed in this
section:

• Scalars (such as integer, real, character, or Boolean)

• Strings

• Arrays

• Records

• Pointers (access types)

The most important consideration when examining and manipulating variables in high-level language
programs is that the debugger recognizes the names, syntax, type constraints, and scoping rules of the
variables in your program. Therefore, when specifying a variable with the EXAMINE or DEPOSIT
command, you use the same syntax that is used in the source code. The debugger processes and displays
the data accordingly. Similarly, when assigning a value to a variable, the debugger follows the typing rules
of the language. It issues a diagnostic message if you try to deposit an incompatible value. The examples
in this section show some of these invalid operations and the resulting diagnostics.

When using the DEPOSIT command (or any other command), note the following behavior. If the
debugger issues a diagnostic message with a severity level of I (informational), the command is still
executed (the deposit is made in this case). The debugger aborts an illegal command line only when the
severity level of the message is W (warning) or greater.

For additional language-specific information, seethe debugger's online help (type HELP Language).

4.2.1. Scalar Types
The following examples show use of the EXAMINE, DEPOSIT, and EVALUATE commands with some
integer, real, and Boolean types.

Examine a list of three integer variables:

DBG>EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4SIZE
SIZE\LENGTH: 7SIZE
SIZE\AREA: 28
DBG>

Deposit an integer expression:

DBG>DEPOSIT WIDTH = CURRENT_WIDTH + 10

77

Chapter 4. Examining and Manipulating Program Data

DBG>

The debugger checks that a value to be assigned is compatible with the data type and dimensional
constraints of the variable. The following example shows an attempt to deposit an out-of-bounds value
(X was declared as a positive integer):

DBG>DEPOSIT X = -14
%DEBUG-I-IVALOUTBNDS, value assigned is out of bounds at or near DEPOSIT
DBG>

If you try to mix numeric types (integer and real of varying precision) in a language expression, the
debugger generally follows the rules of the language. Strongly typed languages do not allow much, if any,
mixing. With some languages, you can deposit a real value into an integer variable. However, the real
value is converted into an integer. For example:

DBG>DEPOSIT I = 12345
DBG>EXAMINE I
MOD3\I: 12345
DBG>DEPOSIT I = 123.45
DBG>EXAMINE I
MOD3\I: 123
DBG>

If numeric types are mixed in an expression, the debugger performs type conversion as discussed in
Section 4.1.6.2.For example:

DBG>DEPOSIT Y = 2.356 ! Y is of type G_floating point.
DBG>EXAMINE Y
MOD3\Y: 2.35600000000000
DBG>EVALUATE Y + 3
5.35600000000000
DBG>DEPOSIT R = 5.35E3 ! R is of type F_floating point.
DBG>EXAMINE R
MOD3\R: 5350.000
DBG>EVALUATE R*50
 267500.0
DBG>DEPOSIT I = 22222
DBG>EVALUATE R/I
 0.2407524
DBG>

The next example shows some operations with Boolean variables. The values TRUE and FALSE are
assigned to the variables WILLING and ABLE, respectively. The EVALUATE command then obtains
the logical conjunction of these values.

DBG>DEPOSIT WILLING = TRUE
DBG>DEPOSIT ABLE = FALSE
DBG>EVALUATE WILLING AND ABLE
False
DBG>

4.2.2. ASCII String Types
When displaying an ASCII string value, the debugger encloses it within quotation marks (") or
apostrophes ('), depending on the language syntax. For example:

DBG>EXAMINE EMPLOYEE_NAME

78

Chapter 4. Examining and Manipulating Program Data

PAYROLL\EMPLOYEE_NAME: "Peter C. Lombardi"
DBG>

To deposit a string value (including a single character) into a string variable, you must enclose the value
in quotation marks (") or apostrophes ('). For example:

DBG>DEPOSIT PART_NUMBER = "WG-7619.3-84"
DBG>

If the string has more ASCII characters (1 byte each) than can fit into the location denoted by the
address expression, the debugger truncates the extra characters from the right and issues the following
message:

%DEBUG-I-ISTRTRU, string truncated at or near DEPOSIT

If the string has fewer characters, the debugger pads the remaining characters to the right of the string by
inserting ASCII space characters.

4.2.3. Array Types
You can examine an entire array aggregate, a single indexed element, or a slice (a range of elements).
However, you can deposit into only one element at a time. The following examples show typical
operations with arrays.

The following command displays the values of all the elements of the array variable ARRX, a one-
dimensional array of integers:

DBG>EXAMINE ARRX
MOD3\ARRX
 (1): 42
 (2): 17
 (3): 278
 (4): 56
 (5): 113
 (6): 149
DBG>

The following command displays the value of element 4 of array ARRX (depending on the language,
parentheses or brackets are used to denote indexed elements):

DBG>EXAMINE ARRX(4)
MOD3\ARRX(4): 56
DBG>

The following command displays the values of all the elements in a slice of ARRX. This slice consists of
the range of elements from element 2 to element 5:

DBG>EXAMINE ARRX(2:5)
MOD3\ARRX
 (2): 17
 (3): 278
 (4): 56
 (5): 113
DBG>

In general, a range of values to be examined is denoted by two values separated by a colon
(value1:value2). Depending on the language, two periods (..) can be used instead of a colon.

79

Chapter 4. Examining and Manipulating Program Data

You can deposit a value to only a single array element at a time (you cannot deposit to an array slice
or an entire array aggregate with a single DEPOSIT command). For example, the following command
deposits the value 53 into element 2 of ARRX:

DBG>DEPOSIT ARRX(2) = 53
DBG>

The following command displays the values of all the elements of array REAL_ARRAY, a two-
dimensional array of real numbers (three per dimension):

DBG>EXAMINE REAL_ARRAY
PROG2\REAL_ARRAY
 (1, 1): 27.01000
 (1, 2): 31.00000
 (1, 3): 12.48000
 (2, 1): 15.08000
 (2, 2): 22.30000
 (2, 3): 18.73000
DBG>

The debugger issues a diagnostic message if you try to deposit to an index value that is out of bounds.
For example:

DBG>DEPOSIT REAL_ARRAY(1, 4) = 26.13
%DEBUG-I-SUBOUTBND, subscript 2 is out of bounds, value is 4,
bounds are 1..3
DBG>

In the previous example, the deposit operation was executed because the diagnostic message is of I level.
This means that the value of some array element adjacent to (1, 3), possibly (2, 1) might have been
affected by the out-of-bounds deposit operation.

To deposit the same value to several components of an array, you can use a looping command such as
FOR or REPEAT. For example, assign the value RED to elements 1 to 4 of the array COLOR_ARRAY:

DBG>FOR I = 1 TO 4 DO (DEPOSIT COLOR_ARRAY(I) = RED)
DBG>

You can also use the built-in symbols (.) and (^)to step through array elements, as explained in
Section 4.1.8.

4.2.4. Record Types

Note

The generic term record is used here to denote a data structure whose elements have heterogeneous data
types - what is called a struct type in the C language.

You can examine an entire record aggregate, a single record component, or several components.
However, you can deposit into only one component at a time. The following examples show typical
operations with records.

The following command displays the values of all the components of the record variable PART:

DBG>EXAMINE PART

80

Chapter 4. Examining and Manipulating Program Data

INVENTORY\PART:
 ITEM: "WF-1247"
 PRICE: 49.95
 IN_STOCK: 24
DBG>

The following command displays the value of component IN_STOCK of record PART (general syntax):

DBG>EXAMINE PART.IN_STOCK
INVENTORY\PART.IN_STOCK: 24
DBG>

The following command displays the value of the same record component using COBOL syntax (the
language must be set to COBOL):

DBG>EXAMINE IN_STOCK OF PART
INVENTORY\IN_STOCK of PART: IN_STOCK: 24
DBG>

The following command displays the values of two components of record PART:

DBG>EXAMINE PART.ITEM, PART.IN_STOCK
INVENTORY\PART.ITEM: "WF-1247"
INVENTORY\PART.IN_STOCK: 24
DBG>

The following command deposits a value into record component IN_STOCK:

DBG>DEPOSIT PART.IN_STOCK = 17
DBG>

4.2.5. Pointer (Access) Types
You can examine the entity designated (pointed to) by a pointer variable and deposit a value into that
entity. You can also examine a pointer variable.

For example, the following Pascal code declares a pointer variable A that designates a value of type real:

 .
 .
 .
TYPE
 T = ^REAL;
VAR
 A : T;
 .
 .
 .

The following command displays the value of the entity designated by the pointer variable A:

DBG>EXAMINE A^
MOD3\A^: 1.7
DBG>

In the following example, the value 3.9 is deposited into the entity designated by A:

DBG>DEPOSIT A^ = 3.9

81

Chapter 4. Examining and Manipulating Program Data

DBG>EXAMINE A^
MOD3\A^: 3.9
DBG>

When you specify the name of a pointer variable with the EXAMINE command, the debugger displays
the memory address of the object it designates. For example:

DBG>EXAMINE/HEXADECIMAL A
SAMPLE\A: 0000B2A4
DBG>

4.3. Examining and Depositing Instructions
The debugger recognizes address expressions that are associated with instructions. This enables you to
examine and deposit instructions using the same basic techniques as with variables.

When debugging at the instruction level, you might find it convenient to first enter the following
command. It sets the default step mode to stepping by instruction:

DBG>SET STEP INSTRUCTION
DBG>

There are other step modes that enable you to execute the program to specific kinds of instructions. You
can also set breakpoints to interrupt execution at these instructions.

In addition, you can use a screen-mode instruction display (see Section 7.4.4) to display the actual
decoded instruction stream of your program.

4.3.1. Examining Instructions
If you specify an address expression that is associated with an instruction in an EXAMINE command
(for example, a line number), the debugger displays the first instruction at that location. You can then
use the period (.), Return key, and circumflex (^) to display the current, next, and previous instruction
(logical entity), as described in Section 4.1.8.

For example, on Alpha systems:

DBG>EXAMINE %LINE 12
MOD3\%LINE 12: BIS R31, R31, R2
DBG>EXAMINE
MOD3\%LINE 12+4: BIS R31, R2, R0 ! Next instruction
DBG>EXAMINE
MOD3\%LINE 12+8: ADDL R31, R0, R0 ! Next instruction
DBG>EXAMINE ^
MOD3\%LINE 12+4: BIS R31, R2, R0 ! Previous instruction
DBG>

Line numbers, routine names, and labels are symbolic address expressions that are associated with
instructions. In addition, instructions might be stored in various other memory addresses and in certain
registers during the execution of your program.

The program counter (PC) is the register that contains the address of the next instruction to be executed
by your program. The command EXAMINE .%PC displays that instruction. The period (.), when used
directly in front of an address expression, denotes the contents of operator - that is, the contents of the
location designated by the address expression. Note the following distinction:

82

Chapter 4. Examining and Manipulating Program Data

• EXAMINE %PC displays the current PC value, namely the address of the next instruction to be
executed.

• EXAMINE .%PC displays the contents of that address, namely the next instruction to be executed
by the program.

As shown in the previous examples, the debugger knows whether an address expression is associated
with an instruction. If it is, the EXAMINE command displays that instruction (you do not need to
use the /INSTRUCTION qualifier). You use the /INSTRUCTION qualifier to display the contents of
an arbitrary program location as an instruction - that is, the command EXAMINE /INSTRUCTION
causes the debugger to interpret and format the contents of any program location as an instruction (see
Section 4.5.2).

When you examine consecutive instructions in a MACRO-32 program, the debugger might misinterpret
data as instructions if storage for the data is allocated in the middle of a stream of instructions. The
following example shows this problem. It shows some MACRO-32 code with two longwords of data
storage allocated directly after the BRB instruction at line 7 (line numbers have been added to the
example for clarity).

module TEST
 1: .TITLE TEST
 2:
 3: TEST$START::
 4: .WORD 0
 5:
 6: MOVL #2, R2
 7: BRB LABEL_2
 8:
 9: .LONG ^X12345
 10: .LONG ^X14465
 11:
 12: LABEL_2:
 13: MOVL #5, R5
 14:
 15: .END TEST$START

The following EXAMINE command displays the instruction at the start of line 6:

DBG>EXAMINE %LINE 6
TEST\TEST$START\%LINE 6: MOVL S^#02, R2
DBG>

The following EXAMINE command correctly interprets and displays the logical successor entity as an
instruction at line 7:

DBG>EXAMINE
TEST\TEST$START\%LINE 7: BRB TEST\TEST$START\LABEL_2
DBG>

However, the following three EXAMINE commands incorrectly interpret the three logical successors as
instructions:

DBG>EXAMINE
TEST\TEST$START\%LINE 7+2: MULF3 S^#11.00000, S^#0.5625000, S^#0.5000000
DBG>EXAMINE
%DEBUG-W-ADDRESSMODE, instruction uses illegal or undefined addressing
 modes

83

Chapter 4. Examining and Manipulating Program Data

TEST\TEST$START\%LINE 7+6: MULD3 S^#0.5625000[R4], S^#0.5000000,
 @W^5505(R0)
DBG>EXAMINE
TEST$START+12: HALT
DBG>

4.4. Examining and Depositing into Registers
The EXAMINE command displays contents of any register that is accessible in your program. You can
use the DEPOSIT command to change the contents of these registers. The number and type of registers
vary for each OpenVMS platform, as described in the following sections.

4.4.1. Examining and Depositing into Alpha Registers
On Alpha systems, the Alpha architecture provides 32 general (integer) registers and 32 floating-point
registers, some of which are used for temporary address and data storage. Table 4.1 identifies the
debugger built-in symbols that refer to Alpha registers.

Table 4.1. Debugger Symbols for Alpha Registers

Symbol Description

Alpha Integer Registers
%R0 …%R28 Registers R0 …R28
%FP (%R29) Stack frame base register (FP)
%SP (%R30) Stack pointer (SP)
%R31 ReadAsZero/Sink (RZ)
%PC Program counter (PC)
%PS Processor status register (PS). The built-in symbols %PSL and %PSW are disabled

for Alpha systems.
Alpha Floating-Point Registers

%F0 …%F30 Registers F0 …F30
%F31 ReadAsZero/Sink

On Alpha systems:

• You can omit the percent sign (%) prefix if your program has not declared a symbol with the same
name.

• You cannot deposit a value into register R30.

• You cannot deposit a value into registers R31 or F31. They are permanently assigned the value 0.

• There are no vector registers.

The following examples show how to examine and deposit into registers:

DBG>SHOW TYPE ! Show type for locations without
type: long integer ! a compiler-generated type.
DBG>SHOW RADIX ! Identify current radix.
input radix: decimal

84

Chapter 4. Examining and Manipulating Program Data

output radix: decimal
DBG>EXAMINE %R11 ! Display value in R11.
MOD3\%R11: 1024
DBG>DEPOSIT %R11 = 444 ! Deposit new value into R11.
DBG>EXAMINE %R11 ! Check new value.
R11: 444
DBG>EXAMINE %PC ! Display value in program counter.
MOD\%PC: 1553
DBG>EXAMINE %SP ! Display value in stack pointer.
0\%SP: 2147278720
DBG>

See Section 4.3.1 for specific information about the PC.

Processor Status (Alpha Only)
On Alpha systems, the processor status (PS) is a register whose value represents a number of processor
state variables. The first three bits of the PS are reserved for the use of the software. The values of these
bits can be controlled by a user program. The remainder of the bits, bits 4 to 64, contain privileged
information and cannot be altered by a user-mode program.

The following example shows how to examine the contents of the PS:

DBG>EXAMINE %PS
MOD1\%PS:
 SP_ALIGN IPL VMM CM IP SW
 48 0 0 USER 0 3
DBG>

See the Alpha Architecture Reference Manual for complete information about the PS, including the values
of the various bits.

You can also display the information in the PS in other formats. For example:

DBG>EXAMINE/LONG/HEX %PS
MOD1\%PS: 0000001B
DBG>EXAMINE/LONG/BIN %PS
MOD1\%PS: 00000000 00000000 00000000 00011011
DBG>

The command EXAMINE /PS displays the value at any location in PS format. This is useful for
examining the combined current and saved PS values.

4.4.2. Examining and Depositing into Integrity server
Registers
On Integrity server processors, the Integrity server architecture provides:

• Up to 128 64-bit general registers

• Up to 128 82-bit floating-point registers (the debugger allows you to treat these as full octawords),

• Up to 64 1-bit predicate, 8 64-bit branch, and 128 (only 20 are accessible/used) application registers

• Special registers (for example, %PC) and virtual registers (for example, %RETURN_PC)

85

Chapter 4. Examining and Manipulating Program Data

Most of these registers are read/writable from user mode debug. Some, however, are not writable and
others are only accessible from the higher privileges related with the System Code Debugger (SCD)
configuration (see VSI OpenVMS System Analysis Tools Manual).

Table 4.2. Debugger Symbols for Integrity server Registers

Symbol Description

Integrity server Application Registers
%KR0 …%KR7 Kernel registers 0 …7
%RSC (%AR16) Register Stack Configuration
%BSP (%AR17) Backing Store Pointer
%BSPSTORE (%AR18) Backing Store Pointer for Memory Stores
%RNAT (%AR19) RSE NaT Collection
%CCV ($AR32) Compare and Exchange Compare Value
%UNAT (%AR36) User NaT Collection
%FPSR (%AR40) Floating-point Status
%PFS (%AR64) Previous Function State
%LC (%AR65) Loop Count
%EC (%AR66) Epilog Count
%CSD Code Segment
%SSD Stack Segment

Control Registers
%DCR (%CR0) Default Control
%ITM (%CR1) Interval Timer Match (only visible for SCD)
%IVA (%CR2) Interruption Vector Address (only visible for SCD)
%PTA (%CR8) Page Table Address (only visible for SCD)
%PSR (%CR9, %ISPR) Interruption Processor Status
%ISR (%CR17) Interruption Status
%IIP (%CR19) Interruption Instruction Pointer
%IFA (%CR20) Interruption Faulting Address
%ITIR (%CR21) Interruption TLB Insertion
%IIPA (%CR22) Interruption Instruction Previous
%IFS (%CR23) Interruption Function State
%IIM (%CR24) Interruption Immediate
%IHA (%CR25) Interruption Hash Address
%LID (%CR64) Local Interrupt ID (only visible for SCD)
%TPR (%CR66) Task Priority (only visible for SCD)
%IRR0 …%IRR3 (%CR68 …%CR71) External Interrupt Request 0 …3 (only visible for SCD)
%ITV (%CR72) Interval Timer (only visible for SCD)
%PMV (%CR73) Performance Monitoring (only visible for SCD)
%CMCV (%CR74) Corrected Machine Check Vector (only visible for SCD)

86

Chapter 4. Examining and Manipulating Program Data

Symbol Description

%IRR0 and %IRR1 (%CR80 and
%CR81)

Local Redirection 0:1 (only visible for SCD)

Special Registers
%IH (%SR0) Invocation Handle
%PREV_BSP Previous Backing Store Pointer
%PC (%IP) Program Counter (Instruction Pointer | slot number)
%RETURN_PC Return Program Counter
%CFM Current Frame Marker
%NEXT_PFS Next Previous Frame State
%PSP Previous Stack Pointer
%CHFCTX_ADDR Condition Handling Facility Context Address
%OSSD Operating System Specific Data
%HANDLER_FV Handler Function Value
%LSDA Language Specific Data Area
%UM User Mask

Predicate Registers
%PR (%PRED) Predicate Collection Register -- Collection of %P0 …%P63
%P0 …%P63 Predicate (single-bit)Registers 0 …63

Branch Registers
%RP (%B0) Return Pointer
%B1 …%B7 Branch Registers 1 …7

General Integer Registers
%R0 General Integer Register 0
%GP (%R1) Global Data Pointer
%R2 …%R11 General Integer Registers 2 …11
%SP (%R12) Stack Pointer
%TP (%R13) Thread Pointer
%R14 …%R24 General Integer Registers 14 …24
%AP (%R25) Argument Information
%R26 …%R127 General Integer Registers 26 …127

Output Registers
%OUT0 …%OUT7 Output Registers, runtime aliases (i.e., If the frame has

allocated output registers, then %OUT0 maps to the first
allocated output registers, for example, %R38, etc.)
General Registers

%GRNAT0 and %GRNAT1 General Register Not A Thing (NAT) collection registers 64
bits each, for example, %GRNAT0 <3, 1, 0> is the NAT
bit for %R3.

Floating Point Registers

87

Chapter 4. Examining and Manipulating Program Data

Symbol Description

%F0 …%F127 Floating Point Registers 0 …127

On Integrity server processors:

• You can omit the percent sign (%) prefix if your program has not declared a symbol with the same
name.

• You cannot deposit values into the following kinds of registers: unallocated, disabled, or unreadable
registers. For example:

• %R38 to %R127, if only %R32 to %R37 were allocated

• %F0 (always 0.0)

• %F1 (always 1.0)

• %R0 (always 0)

• %SP

• %P0 (always 1)

• %GRNAT0 and %GRNAT1

• All of the special registers, except %PC

• Most of the control and application registers (see below)

• For regular user mode debug and SCD, you can also deposit into registers, as follows:

• Control registers %IPSR, %ISR, %IIP, %IFA, %ITIR, %IIPA, %IFS, %IIM, and %IHA for
exception frames

• Application registers %RSC and %CCV

• For SCD ONLY, you can also deposit into registers, as follows:

• Application registers %KR0 to %KR7

• Control registers %DCR, %ITM, %IVA, %PTA, %LID, %TPR, %IRR0 to %IRR3, %ITV,
%PMV, %CMCV, %LRR0, and %LRR1

• There are no vector registers.

• Some register reads are automatically formatted. You can override this formatting, as shown in
Section 4.4.1(for example, EXAMINE/QUAD/HEX %FPSR).

• For information on the Floating Point Status Register (%FPSR), see the Intel IA-64 Architecture
Software Developer's Manual Volume 1. Example:

88

Chapter 4. Examining and Manipulating Program Data

DBG> ex %fpsr
LOOPER\main\%FPSR:
 I U O Z D V TD RC PC WRE FTZ
 SF3 0 0 0 0 0 0 1 0 3 0 0
 SF2 0 0 0 0 0 0 1 0 3 0 0
 SF1 0 0 0 0 0 0 1 0 3 1 0
 SF0 0 0 0 0 0 0 0 0 3 0 0
 TRAPS ID UD OD ZD DD VD
 1 1 1 1 1 1
DBG>

You can also force this formatting on any location (see EXAMINE /FPSR).

• For information about Previous Function State (%PFS), Current Frame Maker (%CFM), Interrupt
Function State (%IFS), and Next Previous Function State (%NEXT_PFS) registers, see Intel IA-64
Architecture Software Developer's Manual, Volume 1. Example:

DBG> ex %pfs
LOOPER\main\%PFS:
 PPL PEC SOF SOL SOR RRB_GR RRB_FR RRB_PR
 3 0 29 21 0 0 0 0
DBG> ex %cfm
LOOPER\main\%CFM:
 SOF SOL SOR RRB_GR RRB_FR RRB_PR
 6 5 0 0 0 0
DBG> ex %ifs
LOOPER\main\%IFS:
 SOF SOL SOR RRB_GR RRB_FR RRB_PR
 6 5 0 0 0 0
DBG> ex %next_pfs
LOOPER\main\%NEXT_PFS:
 PPL PEC SOF SOL SOR RRB_GR RRB_FR RRB_PR
 3 0 6 5 0 0 0 0
DBG>

Also see EXAMINE /PFS and EXAMINE /CFM.

• For information about the Process Status Register (%PSR), see the Intel IA-64 Architecture Software
Developer's Manual, Volume 2. Example:

DBG> ex %psr
LOOPER\main\%PSR:
 IA BN ED RI SS DD DA ID IT MC IS CPL RT TB LP DB SI DI PP SP DFH DFL
 0 1 0 0 0 0 0 0 1 0 0 3 1 0 0 0 0 1 0 0 0 0
 DT PK I IC MFH MFL AC UP BE
 1 0 1 1 1 1 0 0 0
DBG>

Also see EXAMINE /PSR.

• The debugger defaults to a bit vector format for the %GRNAT0, %GRANT1, and %PR registers.
For example:

DBG> ex %grnat0, %pr
LOOPER\main\%GRNAT0:
11111111 11111111 11111111 11000000 00000000 00000000 00000000 00000000
LOOPER\main\%PR:
00000000 00000000 00000000 00000000 11111111 01010110 10010110 10100011

89

Chapter 4. Examining and Manipulating Program Data

DBG>

• The debugger defaults to single bits for registers %p0 …%p63. For example:

DBG> ex %p6, %p7
LOOPER\main\%P6:
 0
LOOPER\main\%P7:
 1
DBG>

4.5. Specifying a Type When Examining and
Depositing
The preceding sections explain how to use the EXAMINE and DEPOSIT commands with program
locations that have a symbolic name and, therefore, are associated with a compiler-generated type.

Section 4.5.1 describes how the debugger formats (types) data for program locations that do not have a
symbolic name and explains how you can control the type for those locations.

Section 4.5.2 explains how to override the type associated with any program location, including a
location that has a symbolic name.

4.5.1. Defining a Type for Locations Without a Symbolic
Name
Program locations that do not have a symbolic name and, therefore, are not associated with a compiler-
generated type have the type longword integer by default. Section 4.1.5 explains how to examine and
deposit into such locations using the default type.

The SET TYPE command enables you to change the default type in order to examine and display the
contents of a location in another type, or to deposit a value of one type into a location associated with
another type. Table 4.3 lists the type keywords for the SET TYPE command.

Table 4.3. SET TYPE Keywords

ASCIC D_FLOAT PACKED
ASCID DATE_TIME INSTRUCTION QUADWORD
ASCII: n EXTENDED_FLOAT1 LONG_FLOAT1 S_FLOAT1

ASCIW F_LOAT LONG_LONG_FLOAT1 T_FLOAT1

ASCIZ FLOAT LONGWORD TYPE=(type-
expression)

BYTE G_FLOAT OCTAWORD WORD
X_FLOAT1

1Integrity server and Alpha specific

For example, the following commands set the type for locations without a symbolic name to,
respectively, byte integer, G_floating, and ASCII with 6 bytes of ASCII data. Each successive SET TYPE
command resets the type.

DBG>SET TYPE BYTE

90

Chapter 4. Examining and Manipulating Program Data

DBG>SET TYPE G_FLOAT
DBG>SET TYPE ASCII:6

Note that the SET TYPE command, when used without the /OVERRIDE qualifier, does not affect the
type for program locations that have a symbolic name (locations associated with a compiler-generated
type).

The SHOW TYPE command identifies the current type for locations without a symbolic name. To
restore the default type for such locations, enter the SET TYPE LONGWORD command.

4.5.2. Overriding the Current Type
The SET TYPE /OVERRIDE command enables you to change the type associated with any program
location, including locations with compiler-generated types. For example, after the following command is
executed, an unqualified EXAMINE command displays the contents of only the first byte of the location
specified and interprets the contents as byte integer data. An unqualified DEPOSIT command modifies
only the first byte of the location specified and formats the data deposited as byte integer data.

DBG>SET TYPE/OVERRIDE BYTE

See Table 4.3 for the valid type keywords for the SET TYPE /OVERRIDE command.

To identify the current override type, enter the SHOW TYPE /OVERRIDE command. To cancel the
current override type and restore the normal interpretation of locations that have a symbolic name, enter
the CANCEL TYPE /OVERRIDE command.

The EXAMINE and DEPOSIT commands have qualifiers that enable you to override the type currently
associated with a program location for the duration of the EXAMINE or DEPOSIT command. These
qualifiers override any previous SET TYPE or SET TYPE/OVERRIDE command as well as any
compiler-generated type. See the DEPOSIT and EXAMINE commands for the type qualifiers available
to each command.

When used with a type qualifier, the EXAMINE command displays the entity specified by the address
expression in that type. For example:

DBG>EXAMINE/BYTE ! Type is byte integer
MOD3\%LINE 15 : -48
DBG>EXAMINE/WORD ! Type is word integer.
MOD3\%LINE 15 : 464
DBG>EXAMINE/LONG ! Type is longword integer.
MOD3\%LINE 15 : 749404624
DBG>EXAMINE/QUAD ! Type is quadword integer.
MOD3%LINE 15 : +0130653502894178768
DBG>EXAMINE/FLOAT ! Type is F_floating.
MOD3%LINE 15 : 1.9117807E-38
DBG>EXAMINE/G_FLOAT ! Type is G_floating.
MOD3%LINE 15 : 1.509506018605227E-300
DBG>EXAMINE/ASCII ! Type is ASCII string.
MOD3\%LINE 15 : ".."
DBG>

When used with a type qualifier, the DEPOSIT command deposits a value of that type into the location
specified by the address expression, which overrides the type associated with the address expression.

The remaining sections provide examples of specifying integer, string, and user-declared types with type
qualifiers and the SET TYPE command.

91

Chapter 4. Examining and Manipulating Program Data

4.5.2.1. Integer Types
The following examples show the use of the EXAMINE and DEPOSIT commands with integer-
type qualifiers (/BYTE, /WORD, /LONGWORD). These qualifiers enable you to deposit a value of a
particular integer type into an arbitrary program location.

DBG>SHOW TYPE ! Show type for locations without
type: long integer ! a compiler-generated type.
DBG>EVALU/ADDR . ! Current location is 724.
724
DBG>DEPO/BYTE . = 1 ! Deposit the value 1 into one byte
 ! of memory at address 724.
DBG>EXAM . ! By default, 4 bytes are examined.
724: 1280461057
DBG>EXAM/BYTE . ! Examine one byte only.
724: 1
DBG>DEPO/WORD . = 2 ! Deposit the value 2 into first two
 ! bytes (word) of current entity.
DBG>EXAM/WORD . ! Examine a word of the current entity.
724: 2
DBG>DEPO/LONG 724 = 999 ! Deposit the value 999 into 4 bytes
 !(a longword) beginning at address 724.
DBG>EXAM/LONG 724 ! Examine 4 bytes (longword)
724: 999 ! beginning at address 724.
DBG>

4.5.2.2. ASCII String Type
The following examples show the use of the EXAMINE and DEPOSIT commands with the /ASCII: n
type qualifier.

When used with the DEPOSIT command, this qualifier enables you to deposit an ASCII string of length
n into an arbitrary program location. In the example, the location has a symbolic name (I) and, therefore,
is associated with a compiler-generated integer type. The command syntax is as follows:

DEPOSIT/ASCII:n address-expression = "ASCII string of length n"

The default value of n is 4 bytes.

DBG>DEPOSIT I = "abcde" ! I has compiler-generated integer type.
%DEBUG-W-INVNUMBER, invalid numeric string 'abcde'
 ! So, it cannot deposit string into I.
DBG>DEP/ASCII:5 I = "abcde" ! /ASCII qualifier overrides integer
 ! type to deposit 5 bytes of
 ! ASCII data.
DBG>EXAMINE ! Display value of I in compiler-
MOD3\I: 1146048327 ! generated integer type.
DBG>EXAM/ASCII:5 ! Display value of I as 5-byte
MOD3\I: "abcde" ! ASCII string.
DBG>

To enter several DEPOSIT /ASCII commands, you can establish an override ASCII type with the SET
TYPE/OVERRIDE command. Subsequent EXAMINE and DEPOSIT commands then have the effect of
specifying the /ASCII qualifier with these commands. For example:

DBG>SET TYPE/OVER ASCII:5 ! Establish ASCII:5 as override type.
DBG>DEPOSIT I = "abcde" ! Can now deposit 5-byte string into I.

92

Chapter 4. Examining and Manipulating Program Data

DBG>EXAMINE I ! Display value of I as 5-byte
MOD3\I: "abcde" ! ASCII string.
DBG>CANCEL TYPE/OVERRIDE ! Cancel ASCII override type.
DBG>EXAMINE I ! Display I in compiler-generated type.
MOD3\I: 1146048327
DBG>

4.5.2.3. User-Declared Types
The following examples show the use of the EXAMINE and DEPOSIT commands with
the /TYPE=(name) qualifier. The qualifier enables you to specify a user-declared override type when
examining or depositing.

For example, assume that a Pascal program contains the following code, which declares the enumeration
type COLOR with the three values RED, GREEN, and BLUE:

 .
 .
 .
TYPE
 COLOR = (RED, GREEN, BLUE);
 .
 .
 .

During the debugging session, the SHOW SYMBOL/TYPE command identifies the type COLOR as it is
known to the debugger:

DBG>SHOW SYMBOL/TYPE COLOR
data MOD3\COLOR
 enumeration type (COLOR, 3 elements), size: 1 byte
DBG>

The next example displays the value at address 1000, which is not associated with a symbolic name.
Therefore, the value 0 is displayed in the type longword integer, by default.

DBG>EXAMINE 1000
1000: 0
DBG>

The next example displays the value at address 1000 in the type COLOR. The preceding SHOW
SYMBOL /TYPE command indicates that each enumeration element is stored in 1 byte. Therefore,
the debugger converts the first byte of the longword integer value 0 at address 1000 to the equivalent
enumeration value, RED (the first of the three enumeration values):

DBG>EXAMINE/TYPE=(COLOR) 1000
1000: RED
DBG>

The following DEPOSIT command deposits the value GREEN into address 1000 with the override type
COLOR. The EXAMINE command displays the value at address 1000 in the default type, longword
integer:

DBG>DEPOSIT/TYPE=(COLOR) 1000 = GREEN
DBG>EXAMINE 1000
1000: 1
DBG>

93

Chapter 4. Examining and Manipulating Program Data

The following SET TYPE command establishes the type COLOR for locations, such as address 1000,
that do not have a symbolic name. The EXAMINE command now displays the value at 1000 in the type
COLOR:

DBG>SET TYPE TYPE=(COLOR)
DBG>EXAMINE 1000
1000: GREEN
DBG>

94

Chapter 5. Controlling Access to
Symbols in Your Program
Symbolic debugging enables you to specify variable names, routine names, and so on, precisely as
they appear in your source code. You do not need to use numeric memory addresses or registers when
referring to program locations.

In addition, you can use symbols in the context that is appropriate for the program and its source
language. The debugger supports the language conventions regarding data types, expressions, scope and
visibility of entities, and so on.

To have full access to the symbols that are associated with your program, you must compile and link the
program using the /DEBUG command qualifier.

Under these conditions, the way in which symbol information is passed from your source program to
the debugger and is processed by the debugger is transparent to you in most cases. However, certain
situations might require some action.

For example, when you try to set a breakpoint on a routine named COUNTER, the debugger might
display the following diagnostic message:

DBG>SET BREAK COUNTER
%DEBUG-E-NOSYMBOL, symbol 'COUNTER' is not in the symbol table
DBG>

You must then set the module where COUNTER is defined, as explained in Section 5.2.

The debugger might display the following message if the same symbol X is defined (declared) in more
than one module, routine, or other program unit:

DBG>EXAMINE X
%DEBUG-E-NOUNIQUE, symbol 'X' is not unique
DBG>

You must then resolve the symbol ambiguity, perhaps by specifying a path name for the symbol, as
explained in Section 5.3.

This chapter explains how to handle these and other situations related to accessing symbols in your
program.

The chapter discusses only the symbols (typically address expressions) that are derived from your source
program:

• The names of entities that you have declared in your source code, such as variables, routines, labels,
array elements, or record components

• The names of modules (compilation units) and shareable images that are linked with your program

• Elements that the debugger uses to identify source code - for example, the specifications of source
files, and source line numbers as they appear in a listing file or when the debugger displays source
code

The following types of symbols are discussed in other chapters:

95

Chapter 5. Controlling Access to Symbols in Your Program

• The symbols you create during a debugging session with the DEFINE command are covered in
Section 13.4.

• The debugger's built-in symbols, such as the period (.) and%PC, are discussed throughout this
manual in the appropriate context and are defined in Appendix B.

Also, see Section 4.1.11 for information about how to obtain the memory addresses and register names
associated with symbolic address expressions and how to symbolize program locations.

Note

If your program was optimized during compilation, certain variables in the program might be removed
by the compiler. If you then try to reference such a variable, the debugger issues a warning (see
Section 1.2 and Section 14.1).

Before you try to reference a nonstatic (stack-local or register) variable, its defining routine must be
active on the call stack. That is, program execution must be paused somewhere within the defining
routine (see Section 3.4.3).

5.1. Controlling Symbol Information When
Compiling and Linking
To take full advantage of symbolic debugging, you must compile and link your program with the /
DEBUG qualifier as explained in Section 1.2.

The following sections describe how symbol information is created and passed to the debugger when
compiling and linking.

5.1.1. Compiling
When you compile a source file using the /DEBUG qualifier, the compiler creates symbol records for the
debug symbol table (DST records) and includes them in the object module being created.

DST records provide not only the names of symbols but also all relevant information about their use. For
example:

• Data types, ranges, constraints, and scopes associated with variables

• Parameter names and parameter types associated with functions and procedures

• Source-line correlation records, which associate source lines with line numbers and source files

Most compilers allow you to vary the amount of DST information put in an object module by specifying
different options with the /DEBUG qualifier. Table 5.1 identifies the options for most compilers (seethe
documentation supplied with your compiler for complete information).

Table 5.1. Compiler Options for DST Symbol Information

Compiler Command
Qualifier

DST Information in Object Module

/DEBUG1 Full

96

Chapter 5. Controlling Access to Symbols in Your Program

Compiler Command
Qualifier

DST Information in Object Module

/DEBUG=TRACEBACK2 Traceback only (module names, routine names, and line numbers)
/NODEBUG3 None

1 /DEBUG, /DEBUG=ALL, and /DEBUG=(SYMBOLS, TRACEBACK) are equivalent.
2 /DEBUG=TRACEBACK and DEBUG=(NOSYMBOLS, TRACEBACK) are equivalent.
3 /NODEBUG, /DEBUG=NONE, and /DEBUG=(NOSYMBOLS, NOTRACEBACK) are equivalent.

The TRACEBACK option is a default for most compilers. That is, if you omit the /DEBUG qualifier,
most compilers assume /DEBUG=TRACEBACK. The TRACEBACK option enables the trace back
condition handler to translate memory addresses into routine names and line numbers so that it can give
a symbolic traceback if a run-time error has occurred. For example:

$ RUN FORMS
 .
 .
 .
%PAS-F-ERRACCFIL, error in accessing file PAS$OUTPUT
%PAS-F-ERROPECRE, error opening/creating file
%RMS-F-FNM, error in file name
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC
PAS$IO_BASIC _PAS$CODE 00000192 00001CED
PAS$IO_BASIC _PAS$CODE 0000054D 000020A8
PAS$IO_BASIC _PAS$CODE 0000028B 00001DE6
FORMS FORMS 59 00000020 000005A1
$

Traceback information is also used by the debugger's SHOW CALLS command.

5.1.2. Local and Global Symbols
DST records contain information about all of the symbols that are defined in your program. These are
either local or global symbols.

Typically, a local symbol is a symbol that is referenced only within the module where it is defined; a
global symbol is a symbol such as a routine name, procedure entry point, or a global data name, that is
defined in one module but referenced in other modules.

A global symbol that is defined in a shareable image and is referenced in another image (for example the
main, executable image of a program) is called a universal symbol. When creating a shareable image,
you must explicitly define any universal symbols as such at link time. See Section 5.4 for information
about universal symbols and shareable images.

Generally, the compiler resolves references to local symbols, and the linker resolves references to global
symbols.

The distinction between local and global symbols is discussed in various parts of this chapter in
connection with symbol lookup and with shareable images and universal symbols.

5.1.3. Linking
When you enter the LINK /DEBUG command to link object modules and produce an executable image,
the linker performs several functions that affect debugging:

97

Chapter 5. Controlling Access to Symbols in Your Program

• It builds a debug symbol table (DST) from the DST records contained in the object modules being
linked. The DST is the primary source of symbol information during a debugging session.

• It resolves references to global symbols and builds a global symbol table (GST). The GST duplicates
some of the global symbol information already contained in the DST, but the GST is used by the
debugger for symbol lookup under certain circumstances.

• It puts the DST and GST in the executable image.

• It sets flags in the executable image that cause the image activator to pass control to the debugger
when you enter the DCL command RUN (see Section 1.2).

Section 5.4 explains how to link shareable images for debugging, including how to define universal
symbols (global symbols that are defined within a shareable image and referenced from another image).

Table 5.2 summarizes the level of DST and GST information passed to the debugger depending on
the compiler or LINK command option. The compiler command qualifier controls the level of DST
information passed to the linker. The LINK command qualifier controls not only how much DST and
GST information is passed to the debugger but also whether the program can be brought under debugger
control (see Section 1.2).

Table 5.2. Effect of Compiler and Linker on DST and GST Symbol Information

Compiler Command
Qualifier1

DST Data in
Object Module

LINK Command
Qualifier2

DST Data Passed
to Debugger

GST Data
Passed to
Debugger3

/DEBUG Full /DEBUG Full Full
/DEBUG=TRACE Traceback only /DEBUG Traceback only Full
/NODEBUG None /DEBUG None Full

/DEBUG Full /DSF4 Full Full 5

/DEBUG=TRACE Traceback only /DSF 4 Traceback only Full 5

/NODEBUG None /DSF 4 None Full 5

/DEBUG Full /TRACE 6 Traceback only Full
/DEBUG=TRACE Traceback only /TRACE Traceback only Full
/NODEBUG None /TRACE None Full

/DEBUG Full /NOTRACE 7

1See Table 5.1for additional information.
2You must also specify the /SHAREABLE qualifier when creating a shareable image (see Section 5.4).
3GST data includes global symbol information that is resolved at link time. GST data for an executable image includes the names and values of
global routines and global constants. GST data for a shareable image includes universal symbols (see Section 5.1.2 and Section 5.4).
4Alpha only.
5DBG$IMAGE_DSF_PATH must point to the directory in which the .DSF file resides.
6LINK /TRACEBACK and LINK /NODEBUG are equivalent. This is the default for the LINK command.
7The RUN /DEBUG command allows you to run the debugger, but if you entered the LINK /NOTRACEBACK command you will be unable to
do symbolic debugging.

If you specify /NODEBUG with the compiler command and subsequently link and execute the image,
the debugger issues the following message when the program is brought under debugger control:

98

Chapter 5. Controlling Access to Symbols in Your Program

%DEBUG-I-NOLOCALS, image does not contain local symbols

The previous message, which occurs whether you linked with the /TRACEBACK or /DEBUG qualifier,
indicates that no DST has been created for that image. Therefore, you have access only to global symbols
contained in the GST.

If you do not specify /DEBUG with the LINK command, the debugger issues the following message
when the program is brought under debugger control:

%DEBUG-I-NOGLOBALS, some or all global symbols not accessible

The previous message indicates that the only global symbol information available during the debugging
session is stored in the DST.

These concepts are discussed in later sections. In particular, see Section 5.4 for additional information
related to debugging shareable images.

5.1.4. Controlling Symbol Information in Debugged
Images
Symbol records occupy space within the executable image. After you debug your program, you might
want to link it again without using the /DEBUG qualifier to make the executable image smaller. This
creates an image with only traceback data in the DST and with a GST.

The LINK /NOTRACEBACK command enables you to secure the contents of an image from users after
it has been debugged. Use this command for images that are to be installed with privileges (see the VSI
OpenVMS System Manager's Manual, Volume 1: Essentials and the VSI OpenVMS System Management
Utilities Reference Manual, Volume 1: A-L). When you use the /NOTRACEBACK qualifier with the
LINK command, no symbolic information (including traceback data) is passed to the image.

5.1.5. Creating Separate Symbol Files (Alpha Only)
On Alpha systems, you can LINK your program with the /DSF qualifier to create a separate file that
contains symbol information. By default, the symbol file has the same file name as the executable file
created by the LINK utility, and has file type .DSF. For example:

$ CC/DEBUG/NOOPTIMIZE TESTPROGRAM.C
$ LINK/DSF TESTPROGRAM
$ DEFINE DBG$IMAGE_DSF_PATH SYS$DISK:[]
$ DEBUG/KEEP TESTPROGRAM

This example does the following:

1. Compiles TESTPROGRAM.C

2. Creates TESTPROGRAM.EXE and TESTPROGRAM.DSF

3. Defines logical name DBG$IMAGE_DSF_PATH as the current directory

4. Invokes the kept debugger

This procedure allows you to create smaller executable files and still have global symbol information
available for debugging. Certain applications, such as installed resident files, require that the executable
not contain symbol tables. In addition, .DSF files allow you to deliver executable files without symbol
tables to customers, but retain separate .DSF files for future debugging needs.

99

Chapter 5. Controlling Access to Symbols in Your Program

Note

For ease of debugging, use the /NOOPTIMIZE qualifier (if possible) when compiling the program. See
Section 14.1 for information about debugging optimized code.

Debugging an executable file that has a separate symbol (.DSF) file requires the following:

• The name of the .DSF file must match the name of the .EXE file being debugged.

• You must define DBG$IMAGE_DSF_PATH to point to the directory that contains the .DSF file.

See the VSI OpenVMS Linker Utility Manual for more information about using the /DSF qualifier.

5.2. Setting and Canceling Modules
You need to set a module if the debugger is unable to locate a symbol that you have specified (for
example, a variable name X) and issues a message as in the following example:

DBG>EXAMINE X
%DEBUG-E-NOSYMBOL, symbol 'X' is not in the symbol table
DBG>

This section explains module setting, and the conditions under which you might need to set or cancel a
module, using the SET MODULE and CANCEL MODULE commands.

When you compile and link your program using the /DEBUG command qualifier, as explained in
Section 5.1, complete symbol information is passed from the program's source code to its executable
image.

Symbol information is contained in the debug symbol table (DST) and global symbol table (GST) within
the executable image. The DST contains detailed information about local and global symbols. The GST
duplicates some of the global symbol information contained in the DST.

To facilitate symbol searches, the debugger loads symbol information from the DST and GST into a run-
time symbol table (RST), which is structured for efficient symbol lookup. Unless symbol information is
in the RST, the debugger does not recognize or properly interpret the associated symbol.

Because the RST takes up memory, the debugger loads it dynamically, anticipating what symbols you
might want to reference in the course of program execution. The loading process is called module
setting, because all symbol information for a given module is loaded into the RST at one time.

When your program is brought under debugger control, all GST records are loaded into the RST,
because global symbols must be accessible throughout the debugging session. Also, the debugger sets
the module that contains the main program (the routine specified by the image transfer address, where
execution is paused at the start of a debugging session). You then have access to all global symbols and
to any local symbols that should be visible within the main program.

Subsequently, whenever execution of the program is interrupted, the debugger sets the module that
contains the routine in which execution is paused. (For Ada programs, the debugger also sets any module
that is related by a with-clause or subunit relationship, as explained in the debugger's online help. Type
Help Language_Support_Ada.) This enables you to reference the symbols that should be visible at that
program location (in addition to the global symbols). This default mode of operation is called dynamic
mode. When setting a module dynamically, the debugger issues a message such as the following:

%DEBUG-I-DYNMODSET, setting module MOD4

100

Chapter 5. Controlling Access to Symbols in Your Program

If you try to reference a symbol that is defined in a module that has not been set, the debugger warns you
that the symbol is not in the RST. You must then use the SET MODULE command to set the module
containing that symbol explicitly. For example:

DBG>EXAMINE X
%DEBUG-E-NOSYMBOL, symbol 'X' is not in the symbol table
DBG>SET MODULE MOD3
DBG>EXAMINE X
MOD3\ROUT2\X: 26
DBG>

The SHOW MODULE command lists the modules of your program and identifies which modules are
set.

When a module is set, the debugger automatically allocates memory as needed by the RST. This can
eventually slow down the debugger as more modules are set. If performance becomes a problem, you
can use the CANCEL MODULE command to reduce the number of set modules, which automatically
releases memory. Or you can disable dynamic mode by entering the SET MODE NODYNAMIC
command. When dynamic mode is disabled, the debugger does not set modules automatically. Use the
SHOW MODE command to determine whether dynamic mode is enabled or disabled.

For additional information about module setting specific to Ada programs, seethe debugger's online help
(type Help Language_Support_Ada).

Section 5.4 explains how to set images and modules when debugging shareable images.

5.3. Resolving Symbol Ambiguities
Symbol ambiguities can occur when a symbol (for example, a variable name X)is defined in more than
one routine or other program unit.

In most cases, the debugger resolves symbol ambiguities automatically, by using the scope and visibility
rules of the currently set language and the ordering of routine calls on the call stack, as explained in
Section 5.3.1.

However, in some cases the debugger might respond as follows when you specify a symbol that is
defined multiple times:

• It might not be able to determine the particular declaration of the symbol that you intended. For
example:

DBG>EXAMINE X
%DEBUG-W-NOUNIQUE, symbol 'X' is not unique
DBG>

• It might reference the declaration that is visible in the current scope, which may not be the one you
want.

To resolve such problems, you must specify a scope where the debugger should search for a particular
declaration of the symbol. In the following example, the pathname COUNTER \X uniquely specifies a
particular declaration of X:

DBG>EXAMINE COUNTER\X
COUNTER\X: 14
DBG>

101

Chapter 5. Controlling Access to Symbols in Your Program

The following sections discuss scope concepts and explain how to resolve symbol ambiguities.

5.3.1. Symbol Lookup Conventions
This section explains how the debugger searches for symbols, resolving most potential symbol
ambiguities using the scope and visibility rules of the programming language and also its own rules.
Section 5.3.2 and Section 5.3.3 describe supplementary techniques that you can use when necessary.

You can specify symbols in debugger commands by using either a path name or the exact symbol.

If you use a path name, the debugger looks for the symbol in the scope denoted by the pathname prefix
(see Section 5.3.2).

If you do not specify a pathname prefix, by default, the debugger searches the run-time symbol table
(RST) as explained in the following paragraphs (you can modify this default behavior with the SET
SCOPE command as explained in Section 5.3.3).

First, the debugger looks for symbols in the PC scope (also known as scope 0), according to the scope
and visibility rules of the currently set language. This means that, typically, the debugger first looks
within the block or routine surrounding the current PC value (where execution is currently paused). If
the symbol is not found, the debugger searches the nesting program unit, then its nesting unit, and so on.
The precise manner, which depends on the language, ensures that the correct declaration of a symbol that
is defined multiple times is chosen.

However, you can reference symbols throughout your program, not just those that are visible in the
PC scope as defined by the language. This is necessary so you can set breakpoints in arbitrary areas,
examine arbitrary variables, and so on. Therefore, if the symbol is not visible in the PC scope, the
debugger continues searching as follows.

After the PC scope, the debugger searches the scope of the calling routine (if any), then its caller, and
so on. Symbolically, the complete scope search list is denoted (0, 1, 2, …, n), where 0 denotes the PC
scope and n is the number of calls on the call stack. Within each scope (call frame), the debugger uses
the visibility rules of the language to locate a symbol.

This search list, based on the call stack, enables the debugger to differentiate symbols that are defined
multiple times in a convenient, predictable way.

If the symbol is still not found, the debugger searches the rest of the RST - that is, the other set modules
and the global symbol table (GST). At this point the debugger does not attempt to resolve any symbol
ambiguities. Instead, if more than one occurrence of the symbol is found, the debugger issues a message
such as the following:

%DEBUG-W-NOUNIQUE, symbol 'Y' is not unique

If you have used a SET SCOPE command to modify the default symbol search behavior, you can restore
the default behavior with the CANCEL SCOPE command.

5.3.2. Using SHOW SYMBOL and Path Names to Specify
Symbols Uniquely
If the debugger indicates that a symbol reference is not unique, use the SHOW SYMBOL command
to obtain all possible path names for that symbol, then specify a path name to reference the symbol
uniquely. For example:

102

Chapter 5. Controlling Access to Symbols in Your Program

DBG>EXAMINE COUNT
%DEBUG-W-NOUNIQUE, symbol 'COUNT' is not unique
DBG>SHOW SYMBOL COUNT
data MOD7\ROUT3\BLOCK1\COUNT
data MOD4\ROUT2\COUNT
routine MOD2\ROUT1\ROUT3\COUNT
DBG>EXAMINE MOD4\ROUT2\COUNT
MOD4\ROUT2\COUNT: 12
DBG>

The command SHOW SYMBOL COUNT lists all declarations of the symbol COUNT that exist in
the RST. The first two declarations of COUNT are variables (data). The last declaration listed is a
routine. Each declaration is shown with its pathname prefix, which indicates the path (search scope)
the debugger must follow to reach that particular declaration. For example, MOD4 \ROUT2 \COUNT
denotes the declaration of the symbol COUNT in routine ROUT2 of module MOD4.

The pathname format is as follows. The leftmost element of a path name identifies the module
containing the symbol. Moving toward the right, the path name lists the successively nested routines and
blocks that lead to the particular declaration of the symbol (which is the rightmost element).

The debugger always displays symbols with their path names, but you need to use path names in
debugger commands only to resolve an ambiguity.

The debugger looks up line numbers like any other symbols you specify (by default, it first looks in the
module where execution is paused). A common use of path names is for specifying a line number in an
arbitrary module. For example:

DBG>SET BREAK QUEUE_MANAGER\%LINE 26

The SHOW SYMBOL command identifies global symbols twice, because global symbols are included
both in the DST and in the GST. For example:

DBG>SHOW SYMBOL X
data ALPHA\X ! global X
data ALPHA\BETA\X ! local X
data X (global) ! same as ALPHA\X
DBG>

In the case of a shareable image, its global symbols are universal symbols and the SHOW SYMBOL
command identifies universal symbols twice (see Section 5.1.2 and Section 5.4).

5.3.2.1. Simplifying Path Names
Path names are often long. You can simplify the process of specifying pathnames in three ways:

• Abbreviate a path name

• Define a brief symbol for a path name

• Set a new search scope so you do not have to use a path name

To abbreviate a path name, delete the names of nesting program units starting from the left, but leave
enough of the path name to specify it uniquely. For example, ROUT3 \COUNT is a valid abbreviated
pathname for the routine in the first example of Section 5.3.2.

To define a symbol for a path name, use the DEFINE command. For example:

103

Chapter 5. Controlling Access to Symbols in Your Program

DBG>DEFINE INTX = INT_STACK\CHECK\X
DBG>EXAMINE INTX

To set a new search scope, use the SET SCOPE command, which is described in Section 5.3.3.

5.3.2.2. Specifying Symbols in Routines on the Call Stack
You can use a numeric path name to specify the scope associated with a routine on the call stack (as
identified in a SHOW CALLS display). The pathname prefix "0 \ " denotes the PC scope, the pathname
prefix "1 \ " denotes scope 1 (the scope of the caller routine), and so on.

For example, the following commands display the current values of two distinct declarations of Y, which
are visible in scope 0 and scope 2, respectively:

DBG>EXAMINE 0\Y
DBG>EXAMINE 2

By default, the EXAMINE Y command signifies EXAMINE 0 \Y.

See the SET SCOPE/CURRENT command description in Section 5.3.3. That command enables you to
reset the reference for the default scope search list relative to the call stack.

5.3.2.3. Specifying Global Symbols
To specify a global symbol uniquely, use a backslash (\) as a prefix to the symbol. For example, the
following command displays the value of the global symbol X:

DBG>EXAMINE \X

5.3.2.4. Specifying Routine Invocations
When a routine is called recursively, you might need to distinguish among several calls to the same
routine, all of which generate new symbols with identical names.

You can include an invocation number in a path name to indicate a particular call to a routine. The
number must be a non negative integer and must follow the name of the rightmost routine in the path
name. A 0 denotes the most recent invocation; 1 denotes the previous invocation, and so on. For
example, if PROG calls COMPUTE and COMPUTE calls itself recursively, and each call creates a
new variable SUM, the following command displays the value of SUM for the most recent call to
COMPUTE:

DBG>EXAMINE PROG\COMPUTE 0\SUM

To refer to the variable SUM that was generated in the previous call to COMPUTE, express the path
name with a 1 in place of the 0.

When you do not include an invocation number, the debugger assumes that the reference is to the most
recent call to the routine (the default invocation number is 0).

See the SET SCOPE/CURRENT command description in Section 5.3.3. That command enables you to
reset the reference for the default scope search list relative to the call stack.

5.3.3. Using SET SCOPE to Specify a Symbol Search
Scope

104

Chapter 5. Controlling Access to Symbols in Your Program

By default, the debugger looks up symbols that you specify without a pathname prefix by using the scope
search list described in Section 5.3.1.

The SET SCOPE command enables you to establish a new scope for symbol lookup so that you do not
have to use a path name when referencing symbols in that scope.

In the following example, the SET SCOPE command establishes the path name MOD4 \ROUT2 as the
new scope for symbol lookup. Then, references to Y without a pathname prefix specify the declaration
of Y that is visible in the new scope.

DBG>EXAMINE Y
%DEBUG-E-NOUNIQUE, symbol 'Y' is not unique
DBG>SHOW SYMBOL Y
data MOD7\ROUT3\BLOCK1\Y
data MOD4\ROUT2\Y
DBG>SET SCOPE MOD4\ROUT2
DBG>EXAMINE Y
MOD4\ROUT2\Y: 12
DBG>

After you enter a SET SCOPE command, the debugger applies the pathname you specified in the
command to all references that are not individually qualified with path names.

You can specify numeric path names with SET SCOPE. For example, the following command sets the
current scope to be three calls down from the PC scope:

DBG>SET SCOPE 3

You can also define a scope search list to specify the order in which the debugger should search for
symbols. For example, the following command causes the debugger to look for symbols first in the PC
scope (scope 0) and then in the scope denoted by routine ROUT2 of module MOD4:

DBG>SET SCOPE 0, MOD4\ROUT2

The debugger's default scope search list is equivalent to entering the following command (if it existed):

DBG>SET SCOPE 0, 1, 2, 3,
…, n

Here the debugger searches successively down the call stack to find a symbol.

You can use the SET SCOPE /CURRENT command to reset the reference for the default scope search
list to another routine down the call stack. For example, the following command sets the scope search list
to be 2, 3, 4, …, n:

DBG>SET SCOPE/CURRENT 2

To display the current scope search list for symbol lookup, use the SHOW SCOPE command. To restore
the default scope search list (see Section 5.3.1), use the CANCEL SCOPE command.

5.4. Debugging Shareable Images
By default, your program might be linked with several HPE-supplied shareable images (for example, the
run-time library image LIBRTL.EXE). This section explains how to extend the concepts described in
the previous sections when debugging user-defined shareable images.

105

Chapter 5. Controlling Access to Symbols in Your Program

A shareable image is not intended to be directly executed. A shareable image must first be included as
input in the linking of an executable image, and then the shareable image is loaded at run time when the
executable image is run. You do not have to install a shareable image to debug it. Instead, you can debug
your own private copy by assigning a logical name to it.

See the VSI OpenVMS Linker Utility Manual for detailed information about linking shareable images.

5.4.1. Compiling and Linking Shareable Images for
Debugging
The basic steps in compiling and linking a shareable image for debugging are as follows:

1. Compile the source files for the main image and for the shareable image, by using the /DEBUG
qualifier.

2. Link the shareable image with the /SHAREABLE and /DEBUG command qualifiers and declare
any universal symbols for that image. (A universal symbol is a global symbol that is defined in a
shareable image and referenced in another image.)

3. Link the shareable image against the main image by specifying the shareable image with
the /SHAREABLE file qualifier as a linker option. Also specify the /DEBUG command qualifier.

4. Define a logical name to point to the local copy of the shareable image. You must specify the device
and directory as well as the image name. Otherwise the image activator looks for an image of that
name in the system default shareable image library directory, SYS$SHARE.

5. Bring the main image under debugger control. The shareable image is loaded at run time.

These steps are shown next with a simple example. In the example, MAIN.FOR and SUB1.FOR are the
source files for the main (executable) image; SHR1.FOR and SHR2.FOR are the source files for the
shareable image to be debugged.

You compile the source files for each image as described in Section 5.1.

$ FORTRAN/NOOPT/DEBUG MAIN, SUB1
$ FORTRAN/NOOPT/DEBUG SHR1, SHR2

On Alpha systems, use the LINK command with the SYMBOL_VECTOR option to create the shareable
image and specify any universal symbols. For example:

$ LINK/SHAREABLE/DEBUG SHR1, SHR2, SYS$INPUT:/OPTIONS
SYMBOL_VECTOR=(SHR_ROUT=PROCEDURE)
Ctrl/Z

In the previous examples:

• The /SHAREABLE command qualifier creates the shareable image SHR1.EXE from the object files
SHR1.OBJ and SHR2.OBJ.

• The /OPTIONS qualifier appended to SYS$INPUT: enables you to specify the universal symbol
SHR_ROUT.

• The /DEBUG qualifier builds a debug symbol table (DST) and a global symbol table (GST) for
SHR1.EXE and puts them in that image. The GST contains the universal symbol SHR_ROUT.

106

Chapter 5. Controlling Access to Symbols in Your Program

You have now built the shareable image SHR1.EXE in your current default directory. Because
SHR1.EXE is a shareable image, you do not execute it explicitly. Instead you link SHR1.EXE against
the main (executable) image:

$ LINK/DEBUG MAIN, SUB1, SYS$INPUT:/OPTIONS
SHR1.EXE/SHAREABLE Ctrl/Z
$

In the previous example:

• The LINK command creates the executable image MAIN.EXE from MAIN.OBJ and SUB1.OBJ.

• The /DEBUG qualifier builds a DST and a GST for MAIN.EXE and puts them in that image.

• The /SHAREABLE qualifier appended to SHR1.EXE specifies that SHR1.EXE is to be linked
against MAIN.EXE as a shareable image.

When you execute the resulting main image, MAIN.EXE, any shareable images linked against it are
loaded at run time. However, by default, the image activator looks for shareable images in the system
default shareable image library directory, SYS$SHARE. Therefore, you must define the logical name
SHR1 to point to SHR1.EXE in your current default directory. Be sure to specify the device and
directory:

$ DEFINE SHR1 SYS$DISK:[]SHR1.EXE

You can now bring both MAIN and SHR1 under debugger control by specifying MAIN with the
debugger RUN command (after starting the debugger):

$ DEBUG/KEEP
 Debugger Banner and Version Number
DBG>RUN MAIN

5.4.2. Accessing Symbols in Shareable Images
All the concepts covered in Section 5.1, Section 5.2, and Section 5.3 apply to the modules of a single
image, namely the main (executable) image. This section provides additional information that is specific
to debugging shareable images.

When you link shareable images for debugging as explained in Section 5.4.1, the linker builds a DST
and a GST for each image. The GST for a shareable image contains only universal symbols. To conserve
memory, the debugger builds an RST for an image only when that image is set, either dynamically by the
debugger or when you use a SET IMAGE command.

The SHOW IMAGE command identifies all shareable images that are linked with your program, shows
which images are set, and identifies the current image (see Section 5.4.2.2 for a definition of the current
image). Only the main image is set initially when you bring the program under debugger control.

The following sections explain how the debugger sets images dynamically during program execution and
how you can access symbols in arbitrary images independently of execution.

See Section 3.4.3.4 for information about setting watch points in installed writable shareable images.

5.4.2.1. Accessing Symbols in the PC Scope (Dynamic Mode)
By default, dynamic mode is enabled. Therefore, whenever the debugger interrupts execution, the
debugger sets the image and module where execution is paused, if they are not already set.

107

Chapter 5. Controlling Access to Symbols in Your Program

Dynamic mode gives you the following access to symbols automatically:

• You can reference symbols defined in all set modules in the image where execution is paused.

• You can reference any universal symbols in the GST for that image.

By setting other modules in that image with the SET MODULE command, you can reference any
symbol defined in the image.

After an image is set, it remains set until you cancel it with the CANCEL IMAGE command. If the
debugger slows down as more images and modules are set, use the CANCEL IMAGE command. You
can also enter the SET MODE NODYNAMIC command to disable dynamic mode.

5.4.2.2. Accessing Symbols in Arbitrary Images
The last image that you or the debugger sets is the current image. The current image is the debugging
context for symbol lookup. Therefore, when using the following commands, you can reference only the
symbols that are defined in the current image:

DEFINE/ADDRESS
DEFINE/VALUE
DEPOSIT
EVALUATE
EXAMINE
TYPE
(SET, CANCEL) BREAK
(SET, SHOW, CANCEL) MODULE
(SET, CANCEL) TRACE
(SET, CANCEL) WATCH
SHOW SYMBOL

Note that the SHOW BREAK, SHOW TRACE, and SHOW WATCH commands identify any
breakpoints, tracepoints, or watchpoints that have been set in all images.

To reference a symbol in another image, use the SET IMAGE command to make the specified image the
current image, then use the SET MODULE command to set the module where that symbol is defined
(the SET IMAGE command does not set any modules). The following sample program shows these
concepts.

The sample program consists of a main image PROG1 and a shareable image SHR1. Assume that you
have just brought the program under debugger control and that execution is paused within the main
program unit in image PROG1. Assume that you want to set a breakpoint on routine ROUT2, which is
defined in some module in image SHR1.

If you try to set a breakpoint on ROUT2, the debugger looks for ROUT2 in the current image, PROG1:

DBG>SET BREAK ROUT2
%DEBUG-E-NOSYMBOL, symbol 'ROUT2' is not in symbol table
DBG>

The SHOW IMAGE command shows that image SHR1 needs to be set:

DBG>SHOW IMAGE
 image name set base address end address

108

Chapter 5. Controlling Access to Symbols in Your Program

*PROG1 yes 00000200 000009FF
 SHR1 no 00001000 00001FFF
 total images: 2 bytes allocated: 32856
DBG>SET IMAGE SHR1
DBG>SHOW IMAGE
 image name set base address end address
 PROG1 yes 00000200 000009FF
*SHR1 yes 00001000 00001FFF
 total images: 2 bytes allocated: 41948
DBG>

SHR1 is now set and is the current image. However, because the SET IMAGE command does not set
any modules, you must set the module where ROUT2 is defined before you can set the breakpoint:

DBG>SET BREAK ROUT2
%DEBUG-E-NOSYMBOL, symbol 'ROUT2' is not in symbol table
DBG>SET MODULE/ALL
DBG>SET BREAK ROUT2
DBG>GO
break at routine ROUT210: SUBROUTINE ROUT2(A, B)
DBG>

Now that you have set image SHR1 and all its modules and have reached the breakpoint at ROUT2, you
can debug using the normal method (for example, step through the routine, examine variables, and so
on).

After you have set an image and set modules within that image, the image and modules remain set even
if you establish a new current image. However, you have access to symbols only in the current image at
any one time.

5.4.2.3. Accessing Universal Symbols in Run-Time Libraries and
System Images
The following paragraphs describe how to access a universal symbol (such as a routine name) in a run-
time library or other shareable image for which no symbol-table information was generated. With this
information you can, for example, use the CALL command to execute a run-time library or system
service routine as explained in Section 13.7.

Enter the SET MODULE command with the following command syntax:

SET MODULE SHARE$image-name

For example:

DBG>SET MODULE SHARE$LIBRTL

The debugger creates dummy modules for each shareable image in your program. The names of
these shareable image modules have the prefix SHARE$. The command SHOW MODULE /SHARE
identifies these shareable image modules as well as the modules in the current image.

Once a shareable image module has been set with the SET MODULE command, you can access all of
the image's universal symbols. For example, the following command lists all of the universal symbols in
LIBRTL:

DBG>SHOW SYMBOL * IN SHARE$LIBRTL
 .
 .

109

Chapter 5. Controlling Access to Symbols in Your Program

 .
routine SHARE$LIBRTL\STR$APPEND
routine SHARE$LIBRTL\STR$DIVIDE
routine SHARE$LIBRTL\STR$ROUND
 .
 .
 .
routine SHARE$LIBRTL\LIB$WAIT
routine SHARE$LIBRTL\LIB$GETDVI
 .
 .
 .

You can then specify these universal symbols with, for example, the CALL or SET BREAK command.

Setting a shareable image module with the SET MODULE command loads the universal symbols for
that image into the run-time symbol table so that you can reference these symbols from the current
image. However, you cannot reference other (local or global) symbols in that image from the current
image. That is, your debugging context remains set to the current image.

5.4.3. Debugging Resident Images (Alpha Only)
A resident image is a shareable module that is created and installed in a particular way to enhance its
efficiency. The requirements of creating such an image include linking the image without a symbol table,
and running the image in system space. These requirements make such an image difficult to debug. The
following procedure creates a resident image that can be more easily debugged.

1. Compile the shareable image. For example:

$ CC/DEBUG/NOOPTIMIZE RESIDENTMODULE.C

2. Link the shareable image using the /DSF qualifier. For example:

$ LINK/NOTRACEBACK/SHAREABLE/SECTION_BINDING/DSF RESIDENTMODULE

See the VSI OpenVMS Linker Utility Manual for information about linking the image.

3. Create the installed resident image. See VSI OpenVMS System Management Utilities Reference
Manual, Volume 1: A-L for information about using the Install utility. See VSI OpenVMS System
Manager's Manual, Volume 2: Tuning, Monitoring, and Complex Systems for information about
resident images.

4. Compile the program that calls the resident image. For example:

$ CC/DEBUG/NOOPTIMIZE TESTPROGRAM

5. Create the executable image that calls the resident image. For example:

$ LINK/DSF TESTPROGRAM

6. Create a private copy of the resident image. For example:

$ COPY SYS$LIBRARY:RESIDENTMODULE.EXE []RESIDENTMODULE.EXE

7. Define a logical name that points to the private copy of the resident image. For example:

$ DEFINE RESIDENTMODULE []RESIDENTMODULE

110

Chapter 5. Controlling Access to Symbols in Your Program

8. Make sure that the .DSF file for the test program and the .DSF file for the resident module both
reside in the same directory.

9. Define DBG$IMAGE_DSF_PATH to point to the directory that contains the .DSF files.

10. Invoke the debugger. For example:

$ DEBUG/KEEP TESTPROGRAM

You should now have access to all debugging options for the executable and resident images.

111

Chapter 5. Controlling Access to Symbols in Your Program

112

Chapter 6. Controlling the Display of
Source Code
The term source code refers to statements in a programming language as they appear in a source file.
Each line of source code is also called a source line.

This chapter covers the following topics:

• Obtaining information about source files and source lines

• Specifying the location of a source file that has been moved to another directory after it was
compiled

• Displaying source lines by specifying line numbers, code address expressions, or search strings

• Controlling the display of source code at breakpoints, tracepoints, and watchpoints and after a STEP
command has been executed

• Using the SET MARGINS command to improve the display of source lines under certain
circumstances

The techniques described in this chapter apply to screen mode as well as line (no screen) mode. Any
difference in behavior between line mode and screen mode is identified in this chapter and in the
descriptions of the commands discussed. (Screen mode is described in Chapter 7.)

If your program has been optimized by the compiler, the code that is executing as you debug might not
always match your source code. See Section 14.1 for more information.

6.1. How the Debugger Obtains Source Code
Information
When a compiler processes source files to generate object modules, it assigns a line number to each
source line sequentially. For most languages, each compilation unit (module) starts with line 1. For other
languages like Ada, each source file, which might represent several compilation units, starts with line 1.

Line numbers appear in a source listing obtained with the /LIST compile-command qualifier. They also
appear whenever the debugger displays source code, either in line mode or screen mode. Moreover, you
can specify line numbers with several debugger commands (for example, TYPE and SET BREAK).

The debugger displays source lines only if you have specified the /DEBUG command with both the
compile command and the LINK command. Under these conditions, the symbol information created by
the compiler and passed to the debug symbol table (DST) includes source-line correlation records. Fora
given module, source-line correlation records contain the full file specification of each source file that
contributes to that module. In addition, they associate source records (symbols, types, and so on) with
source files and line numbers in the module.

6.2. Specifying the Location of Source Files
The debug symbol table (DST) contains the full file specification of each source file when it was
compiled. By default, the debugger expects a source file to be in the same directory it was in at compile

113

Chapter 6. Controlling the Display of Source Code

time. If a source file is moved to a different directory after it is compiled, the debugger does not find it
and issues a warning such as the following when attempting to display source code from that file:

%DEBUG-W-UNAOPNSRC, unable to open source file DISK:[JONES.WORK]PRG.FOR;2

In such cases, use the SET SOURCE command to direct the debugger to the new directory. The
command can be applied to all source files for your program or to only the source files for specific
modules.

For example, after you enter the following command line, the debugger looks for all source files in WORK
$:[JONES.PROG3]:

DBG> SET SOURCE WORK$:[JONES.PROG3]

You can specify a directory search list with the SET SOURCE command. For example, after the
following command line is entered, the debugger looks for source files first in the current default
directory ([]) and then in WORK$:[JONES.PROG3]:

DBG> SET SOURCE [], WORK$:[JONES.PROG3]

If you want to apply the SET SOURCE command only to the source files for a given module, use
the /MODULE= module-name qualifier and specify that module. For example, the following
command line specifies that the source files for module SCREEN_IO are in the directory DISK2:
[SMITH.SHARE] (the search of source files for other modules is not affected by this command):

DBG> SET SOURCE/MODULE=SCREEN_IO DISK2:[SMITH.SHARE]

To summarize, the SET SOURCE /MODULE command specifies the location of source files for a
particular module, but the SET SOURCE command specifies the location of source files for modules
that were not mentioned explicitly in SET SOURCE /MODULE commands.

When you enter a SET SOURCE command, be aware that one of the two qualifiers, /LATEST or /
EXACT, will always be active. The /LATEST qualifier directs the debugger to search for the latest
version of your source files (the highest-numbered version in your directory). The /EXACT qualifier, the
default, directs the debugger to search for the version last compiled (the version recorded in the debugger
symbol table created at compile time). For example, a SET SOURCE /LATEST command might search
for SORT.FOR;3 while a SET SOURCE /EXACT command might search for SORT.FOR;1.

Use the SHOW SOURCE command to display all source directory search lists currently in effect. The
command displays the search lists for specific modules (as previously established by one or more SET
SOURCE /MODULE commands) and the search list for all other modules (as previously established by
a SET SOURCE command). For example:

DBG> SET SOURCE [PROJA], [PROJB], USER$:[PETER.PROJC]
DBG> SET SOURCE/MODULE=COBOLTEST [], DISK$2:[PROJD]
DBG> SHOW SOURCE
source directory search list for COBOLTEST:
 []
 DISK$2:[PROJD]
source directory search list for all other modules:
 [PROJA]
 [PROJB]
 USER$:[PETER.PROJC]
DBG>

If no SET SOURCE or SET SOURCE/MODULE command has been entered, the SHOW SOURCE
command indicates that no search list is currently in effect.

114

Chapter 6. Controlling the Display of Source Code

Use the CANCEL SOURCE command to cancel the effect of a previous SET SOURCE command.
Use the CANCEL SOURCE /MODULE command to cancel the effect of a previous SET
SOURCE /MODULE command (specifying the same module name).

When a source directory search list has been canceled, the debugger again expects the source files
corresponding to the designated modules to be in the same directories they were in at compile time.

For more information about how the debugger locates source files that have been moved to another
directory after compile time, see the SET SOURCE command.

6.3. Displaying Source Code by Specifying
Line Numbers
The TYPE command enables you to display source lines by specifying compiler-assigned line numbers,
where each line number designates a line of source code.

For example, the following command displays line 160 and lines 22 to 24 of the module being debugged:

DBG> TYPE 160, 22:24
module COBOLTEST
 160: START-IT-PARA.
module COBOLTEST
 22: 02 SC2V2 PIC S99V99 COMP VALUE 22.33.
 23: 02 SC2V2N PIC S99V99 COMP VALUE -22.33.
 24: 02 CPP2 PIC PP99 COMP VALUE 0.0012.
DBG>

You can display all the source lines of a module by specifying a range of line numbers starting from 1
and ending at a number equal to or greater than the largest line number in the module.

After displaying a source line, you can display the next line in that module by entering a TYPE command
without a line number - that is, by entering a TYPE command and then pressing the Return key. For
example:

DBG> TYPE 160
module COBOLTEST
 160: START-IT-PARA.
DBG> TYPE
module COBOLTEST
 161: MOVE SC1 TO ES0.
DBG>

You can then display the next line and successive lines by entering the TYPE command repeatedly,
which lets you read through your code one line at a time.

To display source lines in an arbitrary module of your program, specify the module name with the line
numbers. Use standard pathname notation - that is, first specify the module name, then a backslash (\),
and finally the line numbers (or the range of line numbers) without intervening spaces. For example, the
following command displays line 16 of module TEST:

DBG> TYPE TEST\16

If you specify a module name with the TYPE command, the module must be set. Use the SHOW
MODULE command to determine whether a particular module is set. Then use the SET MODULE
command, if necessary (see Section 5.2).

115

Chapter 6. Controlling the Display of Source Code

If you do not specify a module name with the TYPE command, the debugger displays source lines for
the module in which execution is currently paused by default - that is, the module associated with the PC
scope. If you have specified another scope with the SET SCOPE command, the debugger displays source
lines in the module associated with the specified scope.

In screen mode, the output of a TYPE command updates the current source display (see Section 7.2.6).

After displaying source lines at various locations in your program, you can redisplay the line at which
execution is currently paused by pressing KP5.

6.4. Displaying Source Code by Specifying
Code Address Expressions
The EXAMINE /SOURCE command enables you to display the source line corresponding to a code
address expression. A code address expression denotes the address of a machine-code instruction and,
therefore, must be one of the following:

• A line number associated with one or more instructions

• A label

• A routine name

• The memory address of an instruction

You cannot specify a variable name with the EXAMINE /SOURCE command, because a variable name
is associated with data, not with instructions.

When you use the EXAMINE /SOURCE command, the debugger evaluates the address expression to
obtain a memory address, determines which compiler-assigned line number corresponds to that address,
and then displays the source line designated by the line number.

For example, the following command line displays the source line associated with the address
(declaration) of routine SWAP:

DBG> EXAMINE/SOURCE SWAP
module MAIN
 47: procedure SWAP(X, Y: in out INTEGER) is
DBG>

If you specify a line number that is not associated with an instruction, the debugger issues a diagnostic
message. For example:

DBG> EXAMINE/SOURCE %LINE 6
%DEBUG-I-LINEINFO, no line 6, previous line is 5, next line is 8
%DEBUG-E-NOSYMBOL, symbol '%LINE 6' is not in the symbol table
DBG>

When using the EXAMINE /SOURCE command with a symbolic address expression (a line number,
label, or routine), you might need to set the module in which the entity is defined, unless that module is
already set. Use the SHOW MODULE command to determine whether a particular module is set. Then,
if necessary, use the SET MODULE command (see Section 5.2).

The command EXAMINE/SOURCE .%PC displays the source line corresponding to the current PC
value (the line that is about to be executed). For example:

116

Chapter 6. Controlling the Display of Source Code

DBG> EXAMINE/SOURCE .%PC
module COBOLTEST
 162: DISPLAY ES0.
DBG>

Note the use of the contents-of operator (.), which specifies the contents of the entity that follows the
period. If you do not use the contents-of operator, the debugger tries to find a source line for the PC
rather than for the address currently stored in the PC:

DBG> EXAMINE/SOURCE %PC
%DEBUG-W-NOSRCLIN, no source line for address 7FFF005C
DBG>

The following example shows the use of a numeric path name (1 \) to display the source line at the PC
value one level down the call stack (at the call to the routine in which execution is paused):

DBG> EXAMINE/SOURCE .1\%PC

In screen mode, the output of an EXAMINE /SOURCE command updates the current source display
(see Section 7.2.6).

The debugger uses the EXAMINE /SOURCE command in the following contexts to display source code
at the current PC value.

Keypad key 5 (KP5) is bound to the following debugger command sequence:

EXAMINE/SOURCE .%SOURCE_SCOPE\%PC; EXAMINE/INST .%INST_SCOPE\%PC

This command sequence displays the source line and the instruction at which execution is currently
paused in the current scope. Pressing KP5 enables you to quickly determine your debugging context.

The predefined source display SRC is an automatically updated display that executes the following
built-in command every time the debugger interrupts execution and prompts for commands (see
Section 7.4.1):

EXAMINE/SOURCE .%SOURCE_SCOPE\%PC

6.5. Displaying Source Code by Searching for
Strings
The SEARCH command enables you to display any source lines that contain an occurrence of a
specified string.

The syntax of the SEARCH command is as follows:

SEARCH[/qualifier[, ...]] [range] [string]

The range parameter can be a module name, a range of line numbers, or a combination of both. If you
do not specify a module name, the debugger uses the current scope to find source lines, as with the
TYPE command (see Section 6.3).

By default, the SEARCH command displays the source line that contains the first (next) occurrence of a
string in a specified range (SEARCH /NEXT). The command SEARCH /ALL displays all source lines
that contain an occurrence of a string in a specified range. For example, the following command line
displays the source line that contains the first occurrence of the string pro in module SCREEN_IO:

DBG> SEARCH SCREEN_IO pro

117

Chapter 6. Controlling the Display of Source Code

The remaining examples use source lines from one COBOL module, in the current scope, to show
various aspects of the SEARCH command.

The following command line displays all source lines within lines 40 to 50 that contain an occurrence of
the string D:

DBG> SEARCH/ALL 40:50 D
module COBOLTEST
 40: 02 D2N COMP-2 VALUE -234560000000.
 41: 02 D COMP-2 VALUE 222222.33.
 42: 02 DN COMP-2 VALUE -222222.333333.
 47: 02 DR0 COMP-2 VALUE 0.1.
 48: 02 DR5 COMP-2 VALUE 0.000001.
 49: 02 DR10 COMP-2 VALUE 0.00000000001.
 50: 02 DR15 COMP-2 VALUE 0.0000000000000001.
DBG>

After you have found an occurrence of a string in a particular module, you can enter the SEARCH
command with no parameters to display the source line containing the next occurrence of the same
string in the same module. This is similar to using the TYPE command without a parameter to display
the next source line. For example:

DBG> SEARCH 42:50 D
module COBOLTEST
 42: 02 DN COMP-2 VALUE -222222.333333.
DBG> SEARCH
module COBOLTEST
 47: 02 DR0 COMP-2 VALUE 0.1.
DBG>

By default, the debugger searches for a string as specified and does not interpret the context surrounding
an occurrence of the string (this is the behavior of SEARCH /STRING).If you want to locate an
occurrence of a string that is an identifier in your program (for example, a variable name) and exclude
other occurrences of the string, use the /IDENTIFIER qualifier. The command SEARCH /IDENTIFIER
displays only those occurrences of the string that are bounded on either side by a character that cannot be
part of an identifier in the current language.

The default qualifiers for the SEARCH command are /NEXT and /STRING. If you want to establish
different default qualifiers, use the SET SEARCH command. For example, after the following command
is executed, the SEARCH command behaves like SEARCH /IDENTIFIER:

DBG> SET SEARCH IDENTIFIER

Use the SHOW SEARCH command to display the default qualifiers currently in effect for the SEARCH
command. For example:

DBG> SHOW SEARCH
search settings: search for next occurrence, as an identifier
DBG>

6.6. Controlling Source Display After Stepping
and at Event points
By default, the debugger displays the associated source line when a breakpoint, tracepoint, or watchpoint
is triggered and upon the completion of a STEP command.

118

Chapter 6. Controlling the Display of Source Code

When you enter a STEP command, the debugger displays the source line at which execution is paused
after the step. For example:

DBG> STEP
stepped to MAIN\%LINE 16
 16: RANGE := 500;
DBG>

When a breakpoint or tracepoint is triggered, the debugger displays the source line at the breakpoint or
tracepoint, respectively. For example:

DBG> SET BREAK SWAP
DBG> GO
 .
 .
 .
break at MAIN\SWAP
 47: procedure SWAP(X, Y: in out INTEGER) is
DBG>

When a watchpoint is triggered, the debugger displays the source line corresponding to the instruction
that caused the watch point to be triggered.

The SET STEP [NO]SOURCE command enables you to control the display of source code after a
step and at breakpoints, tracepoints, and watchpoints. SET STEP SOURCE, the default, enables source
display. SET STEP NOSOURCE suppresses source display. For example:

DBG> SET STEP NOSOURCE
DBG> STEP
stepped to MAIN\%LINE 16
DBG> SET BREAK SWAP
DBG> GO
 .
 .
 .
break at MAIN\SWAP
DBG>

You can selectively override the effect of a SET STEP SOURCE command or a SET STEP
NOSOURCE command by using the qualifiers /SOURCE and /NOSOURCE with the STEP, SET
BREAK, SET TRACE, and SET WATCH commands.

The STEP /SOURCE command overrides the effect of the SET STEP NOSOURCE command, but only
for the duration of that STEP command (similarly, STEP /NOSOURCE overrides the effect of SET
STEP SOURCE for the duration of that STEP command). For example:

DBG> SET STEP NOSOURCE
DBG> STEP/SOURCE
stepped to MAIN\%LINE
 16 16: RANGE := 500;
DBG>

The SET BREAK/SOURCE command overrides the effect of the SET STEP NOSOURCE command,
but only for the breakpoint set with that SET BREAK command (similarly, SET BREAK /NOSOURCE
overrides the effect of SET STEP SOURCE for the breakpoint set with that SET BREAK command).
The same conventions apply to the SET TRACE and SET WATCH commands. For example:

DBG> SET STEP SOURCE

119

Chapter 6. Controlling the Display of Source Code

DBG> SET BREAK/NOSOURCE SWAP
DBG> GO
 .
 .
 .
break at MAIN\SWAP
DBG>

6.7. Setting Margins for Source Display
The SET MARGINS command enables you to specify the leftmost and rightmost source-line character
positions at which to begin and end the display of a source line (respectively, the left and right margins).
This is useful for controlling the display of source code when, for example, the code is deeply indented
or long lines wrap at the right margin. In such cases, you can set the left margin to eliminate indented
space in the source display, and you can decrease the right margin setting to truncate lines and prevent
them from wrapping.

For example, the following command line sets the left margin to column 20 and the right margin to
column 35.

DBG> SET MARGINS 20:35

Subsequently, only that portion of the source code that is between columns 20 and 35 is displayed when
you enter commands that display source lines (for example, TYPE, SEARCH, STEP). Use the SHOW
MARGINS command to identify the current margin settings for the display of source lines.

Note that the SET MARGINS command affects only the display of source lines. It does not affect the
display of other debugger output (for example, output from an EXAMINE command).

The SET MARGINS command is useful mostly in line (no screen) mode. In screen mode, the SET
MARGINS command has no effect on the display of source lines in a source display, such as the
predefined display SRC.

120

Chapter 7. Screen Mode
Screen mode is an enhancement to the command line interface of the OpenVMS debugger that enables
you to simultaneously display separate groups of data about the debugging session, in a manner similar
to that available with the VSI DECwindows Motif for OpenVMS user interface (see Part III). For
example, you can display source code in one portion of the screen, register contents in a different
portion, debugger output in another portion, and so on.

To invoke screen mode, press PF3 on the keypad (or enter the SET MODE SCREEN command). To
return to line-oriented debugging, press PF1 PF3 (or enter the SET MODE NOSCREEN command).

Note

Note that you cannot enter screen mode from within the VSI DECwindows Motif for OpenVMS
interface to the debugger.

Screen mode output is best displayed on VT-series terminals with higher numbers than VT52, and on
workstations running VWS. The larger screen of workstations is particularly suitable to using a number
of displays for different purposes.

This chapter covers the following topics:

• Screen mode concepts and terminology used throughout the chapter

• Using different kinds of displays

• Directing debugger output to different displays by assigning display attributes

• Using predefined displays SRC, OUT, PROMPT, INST, REG, IREG, and FREG (Alpha only), which
are automatically available when you enter screen mode

• Scrolling, hiding, deleting, moving, and resizing a display

• Creating a new display

• Specifying a display window

• Creating a display configuration

• Saving the current state of screen displays

• Changing your terminal screen's height and width during a debugging session and the effect on
display windows

• Using screen-related debugger built-in symbols

• Using predefined windows

• Enabling country-specific features for screen mode

Many screen mode commands are bound to keypad keys. For key definitions, see Appendix A.

Note

This chapter provides information common to programs that run in one or several processes. See
Chapter 15 for additional information specific to multiprocess programs.

121

Chapter 7. Screen Mode

7.1. Concepts and Terminology
A display is a group of text lines. The text can be lines from a source file, assembly-language
instructions, the values contained in registers, your input to the debugger, debugger output, or program
input and output.

You view a display through its display window, which can occupy any rectangular area of the screen.
Because a display window is typically smaller than the associated display, you can scroll the display
window up, down, right, and left across the display text to view any part of the display.

Figure 7.1 is an example of screen mode that shows three display windows. The name of each display
(SRC, OUT, and PROMPT) appears at the top left corner of its display window. The display name serves
both as a tag on the display itself and as a name for future reference in commands.

Figure 7.1. Default Screen Mode Display Configuration

Figure 7.1 is the default display configuration established when you first invoke screen mode. SRC, OUT,
and PROMPT are three of the predefined displays that the debugger provides when you enter screen
mode (see Section 7.4).You can modify the configuration of these displays as well as create additional
displays.

Displays SRC, OUT, and PROMPT have the following basic characteristics:

• SRC is a source-code display that occupies the upper half of the screen(it displays Fortran code in
Figure 7.1). The name of the source module displayed, SQUARES$MAIN, is to the right of the
display name.

• OUT, located in a window directly below SRC, shows the output of debugger commands.

• PROMPT, at the bottom of the screen, shows the debugger prompt and debugger input.

Conceptually, displays are placed on the screen as on a pasteboard. The display most recently referenced
by a command is put on top of the pasteboard by default. Therefore, depending on their screen locations,
display windows that you have referenced recently might overlay or hide other display windows.

122

Chapter 7. Screen Mode

The debugger maintains a display list, which is the pasting order of displays. Several keypad key
definitions use the display list to cycle through the displays currently on the pasteboard.

Every display belongs to a display kind (see Section 7.2). The display kind determines what type of
information the display can capture and display, such as source code, or debugger output. The display
kind defines whether displayed data is paged into the memory buffer or discarded when the memory
buffer over flows. The display kind also determines how the contents of the display are generated.

The contents of a display are generated in two ways:

• Some displays are automatically updated. Their definition includes a command list that is executed
whenever the debugger gains control from the program. The output of the command list forms the
contents of those displays. Display SRC belongs to that category: it is automatically updated so that
an arrow points to the source line at which execution is currently paused.

• Other displays, for example, display OUT, are updated in response to commands you enter
interactively. For a display of this type to be updated, it must first be assigned an appropriate display
attribute (with the SELECT command). The display attribute identifies the display as the target
display for one or more types of output (see Section 7.3).

The names of any attributes assigned to a display appear to the right of the display name, in lowercase
letters. In Figure 7.1, SRC has the source and scroll attributes (SRC is the current source display and
the current scrolling display), OUT has the output attribute (it is the current output display), and so
on. Note that, although SRC is automatically updated by its own built-in command, it can also receive
the output of certain interactive commands (such as EXAMINE /SOURCE) because it has the source
attribute.

The concepts introduced in this section are developed in more detail in the rest of this chapter.

7.2. Display Kinds
Every display has a display kind. The display kind determines the type of information a display contains,
how that information is generated, and whether the memory buffer associated with the display is paged.

Typically, you specify a display kind when you use the DISPLAY command to create a new display
(if you do not specify a display kind, an output display is created). You can also use the DISPLAY
command to change the display kind of an existing display with the following keywords:

DO (command[, ...])
INSTRUCTION
INSTRUCTION (command)
OUTPUT
REGISTER
SOURCE
SOURCE (command)

The contents of a register display are generated and updated automatically by the debugger. The
contents of other kinds of displays are generated by commands, and these display kinds fall into two
general groups.

A display that belongs to one of the following display kinds has its contents updated automatically
according to the command or command list you supply when defining that display:

DO (command[, ...])

123

Chapter 7. Screen Mode

INSTRUCTION (command)
REGISTER
SOURCE (command)

The command list specified is executed each time the debugger gains control from your program, if the
display is not marked as removed. The output of the commands forms the new contents of the display.
If the display is marked as removed, the debugger does not execute the command list until you view that
display (marking that display as unremoved).

A display that belongs to one of the following display kinds derives its contents from commands that you
enter interactively:

INSTRUCTION
OUTPUT
SOURCE

To direct debugger output to a specific display in this group, you must first select it with the SELECT
command. The technique is explained in the following sections and in Section 7.3. After a display is
selected for a certain type of output, the output from your commands forms the contents of the display.

7.2.1. DO (Command[; …]) Display Kind
A DO display is an automatically-updated display. The commands in the command list are executed in
the order listed each time the debugger gains control from your program. Their output forms the contents
of the display and erases any previous contents.

For example, the following command creates the DO display CALLS at window Q3. (Window Q3
refers to screen dimensions of the window. For information about screen dimensions and predefined
windows, see Section 7.12.) Each time the debugger gains control from the program, the SHOW CALLS
command is executed and the output is displayed in CALLS, replacing any previous contents.

DBG> DISPLAY CALLS AT Q3 DO (SHOW CALLS)

The following command creates a DO display named V2_DISP that shows the contents of elements 4 to
7 of the vector register V2 (using For tran array syntax). The display is automatically updated whenever
the debugger gains control from the program:

DBG> DISPLAY V2_DISP AT RQ2 DO (EXAMINE %V2(4:7))

The default size of the memory buffer associated with any DO display is 64 lines. When the memory
buffer is full, the oldest lines are discarded to make room for new text. You can use the DISPLAY /SIZE
command to change the buffer size.

7.2.2. INSTRUCTION Display Kind
An instruction display shows the output of an EXAMINE /INSTRUCTION command within the
instruction stream of a routine. Because the instructions displayed are decoded from the image being
debugged and show the exact code that is executing, this kind of display is particularly useful in helping
you debug optimized code (see Section 14.1).

In the display, one line is devoted to each instruction. Source-line numbers corresponding to the
instructions are displayed in the left column. The instruction at the location being examined is centered in
the display and is marked by an arrow in the left column.

124

Chapter 7. Screen Mode

Before anything can be written to an instruction display, you must select it as the current instruction
display with the SELECT /INSTRUCTION command.

In the following example, the DISPLAY command creates the instruction display INST2 at RH1. The
SELECT /INSTRUCTION command then selects INST2 as the current instruction display. When the
EXAMINE /INSTRUCTION X command is executed, window RH1 fills with the instruction stream
surrounding the location denoted by X. The arrow points to the instruction at location X, which is
centered in the display.

DBG> DISPLAY INST2 AT RH1 INSTRUCTION
DBG> SELECT/INSTRUCTION INST2
DBG> EXAMINE/INSTRUCTION X

Each subsequent EXAMINE /INSTRUCTION command updates the display.

The default size of the memory buffer associated with any instruction display is 64 lines;however, you
can scroll back and forth to view all the instructions within the routine. You can use the DISPLAY /SIZE
command to change the buffer size and improve performance.

7.2.3. INSTRUCTION (Command) Display Kind
This is an instruction display that is automatically updated with the out put of the command specified.
That command, which must be an EXAMINE /INSTRUCTION command, is executed each time the
debugger gains control from your program.

For example, the following command creates the instruction display INST3 at window RS45. Each time
the debugger gains control, the built-in command EXAMINE /INSTRUCTION .%INST_SCOPE \%PC
is executed, updating the display.

DBG> DISPLAY INST3 AT RS45 INSTRUCT (EX/INST .%INST_SCOPE\%PC)

This command creates a display that functions like the predefined display INST. The built-in
EXAMINE/INSTRUCTION command displays the instruction at the current PC value in the current
scope(see Section 7.4.4).

If an automatically updated instruction display is selected as the current instruction display, it is updated
like a simple instruction display by an interactive EXAMINE /INSTRUCTION command (in addition to
being updated by its built-in command).

The default size of the memory buffer associated with any instruction display is 64 lines; however, you
can scroll back and forth to view all the instructions within the routine. You can use the DISPLAY /SIZE
command to change the buffer size and improve performance.

7.2.4. OUTPUT Display Kind
An output display shows any debugger output that is not directed to another display. New output is
appended to the previous contents of the display.

Before anything can be written to an output display, it must be selected as the current output display
with the SELECT /OUTPUT command, or as the current error display with the SELECT /ERROR
command, or as the current input display with the SELECT /INPUT command. See Section 7.3 for
more information about using the SELECT command with output displays.

In the following example, the DISPLAY command creates the output display OUT2 at window T2 (the
display kind OUTPUT can be omitted from this example, because it is the default kind). The SELECT /

125

Chapter 7. Screen Mode

OUTPUT command then selects OUT2 as the current output display. These two commands create a
display that functions like the predefined display OUT:

DBG> DISPLAY OUT2 AT T2 OUTPUT
DBG> SELECT/OUTPUT OUT2

OUT2 now collects any debugger output that is not directed to another display. For example:

• The output of a SHOW CALLS command goes to OUT2.

• If no instruction display has been selected as the current instruction display, the output of an
EXAMINE /INSTRUCTION command goes to OUT2.

• By default, debugger diagnostic messages are directed to the PROMPT display. They can be directed
to OUT2 with the SELECT /ERROR command.

The default size of the memory buffer associated with any output display is 64 lines. When the memory
buffer is full, the oldest lines are discarded to make room for new text. You can use the DISPLAY /SIZE
command to change the buffer size.

7.2.5. REGISTER Display Kind
A register display is an automatically updated display that shows the current values, in hexadecimal
format, of the processor registers and as many of the top call-stack values as will fit in the display.

The register values displayed are for the routine in which execution is currently paused. The values are
updated whenever the debugger takes control. Any changed values are highlighted.

There are up to three predefined register displays. The REG, IREG, and FREG displays are predefined
on Alpha and Integrity server processors. The contents of the predefined displays are shown in Table 7.1.

Table 7.1. Predefined Register Displays

Display Alpha Intel Itanium

REG simp
R0 to R31
PC
PS
F0 to F31
FPCR
top of call-stack values

PC
CFM
R1 to R31
R32 to R127(as many as are used)
F2 to F127
top-of-stack values

IREG R0 to R31
PC
PS
top of call-stack values

The data is shown in
hexadecimal format.

PC
CFM
R1 to R31
top of call-stack values

The data is shown in hexadecimal format.

FREG F0 to F31
FPCR
SFPCR
top of call-stack values

F2 to F127
top-of-stack values

The register data is shown in the format consistent with
the data value (integer or floating-point); the stack
values are shown in floating-point format.

126

Chapter 7. Screen Mode

Display Alpha Intel Itanium
The data is shown in floating-
point format.

On Alpha systems, the predefined display REG contains, in hexadecimal format, general-purpose
registers R0 to R28, FP (R29), SP (R30), R31, PC, PS floating-point registers F0 to F31, FPCR,
SFPCR, and as many of the top call-stack values as will fit in the display.

On Alpha systems, the predefined display IREG contains, in hexadecimal format, general-purpose
registers R0 to R28, FP, and as many of the top call-stack values as can be displayed in the window.

On Alpha systems, the predefined display FREG contains floating-point registers F0 to F31, FPCR,
SFPCR, displayed in floating-point format and as many of the top call-stack values (in hexadecimal
format) as can be displayed in the window.

The default size of the memory buffer associated with any register display is 64 lines. When the memory
buffer is full, the oldest lines are discarded to make room for new text. You can use the DISPLAY /SIZE
command to change the buffer size.

7.2.6. SOURCE Display Kind
A source display shows the output of a TYPE or EXAMINE /SOURCE command within the source
code of a module, if that source code is available. Source line numbers are displayed in the left column.
The source line that is the output of the command is centered in the display and is marked by an arrow
in the left column. If a range of lines is specified with the TYPE command, the lines are centered in the
display, but no arrow is shown.

Before anything can be written to a source display, you must select it as the current source display with
the SELECT /SOURCE command.

In the following example, the DISPLAY command creates source display SRC2 at Q2. The SELECT /
SOURCE command then selects SRC2 as the current source display. When the TYPE 34 command is
executed, window RH1 fills with the source code surrounding line 34 of the module being debugged.
The arrow points to line 34, centered in the display.

DBG> DISPLAY SRC2 AT Q2 SOURCE
DBG> SELECT/SOURCE SRC2
DBG> TYPE 34

Each subsequent TYPE or EXAMINE /SOURCE command updates the display.

The default size of the memory buffer of a source display is 64 lines. The memory buffer of a source
display is paged, enabling you to scroll back and forth through the entire source module or routine. You
can use the DISPLAY /SIZE command to change the buffer size to improve performance.

7.2.7. SOURCE (Command) Display Kind
This is a source display that is automatically updated with the output of the command specified. That
command, which must be an EXAMINE /SOURCE or TYPE command, is executed each time the
debugger gains control from your program.

For example, the following command creates source display SRC3 at window RS45. Each time the
debugger gains control, it executes the built-in command
EXAMINE /SOURCE .%SOURCE_SCOPE \%PC and updates the display.

127

Chapter 7. Screen Mode

DBG> DISPLAY SRC3 AT RS45 SOURCE (EX/SOURCE .%SOURCE_SCOPE\%PC)

This command creates a display that functions like the predefined display SRC. The built-in
EXAMINE /SOURCE command displays the source line for the current PC value in the current
scope(see Section 7.4.1).

If you select an automatically updated source display as the current source display, it displays the
output generated by an interactive EXAMINE /SOURCE or TYPE command in addition to the output
generated by its built-in command.

The default size of the memory buffer of a source display is 64 lines. The memory buffer of an
automatically updated source display is paged, enabling you to scroll back and forth through the entire
source module or routine. You can use the DISPLAY /SIZE command to change the buffer size to
improve performance.

7.2.8. PROGRAM Display Kind
A program display can receive the output of the program being debugged. The predefined PROMPT
display belongs to the program display kind, and is the only display permitted of that kind. You cannot
create a new display of the program display kind.

To avoid possible confusion, the PROMPT display has several restrictions (see Section 7.4.3).

7.3. Display Attributes
In screen mode, the output from commands you enter interactively is directed to various displays
according to the type of output and the display attributes assigned to these displays. For example,
debugger diagnostic messages go to the display that has the error attribute (the current error display). By
assigning one or more attributes to a display, you can mix or isolate different kinds of information.

The attributes have the following names:

error
input
instruction
output
program
prompt
scroll
source

When a display is assigned an attribute, the name of that attribute appears in lowercase letters on the
top border of its window to the right of the display name. Note that the scroll attribute does not affect
debugger output but is used to control the default display for the SCROLL, MOVE, and EXPAND
commands.

By default, attributes are assigned to the predefined displays as follows:

• SRC has the source and scroll attributes

• OUT has the output attribute

• PROMPT has the prompt, program, and error attributes

To assign an attribute to a display, use the SELECT command with the qualifier of the same name as
the attribute. In the following example, the DISPLAY command creates the output display ZIP. The

128

Chapter 7. Screen Mode

SELECT /OUTPUT command then selects ZIP as the current output display - the display that has the
output attribute. After this command is executed, the word "output" disappears from the top border
of the predefined output display OUT and appears instead on display ZIP, and all the debugger output
formerly directed to OUT is now directed to ZIP.

DBG> DISPLAY ZIP OUTPUT
DBG> SELECT/OUTPUT ZIP

You can assign specific attributes only to certain display kinds. The following list identifies each of the
SELECT command qualifiers, its effect, and the display kinds to which you can assign that attribute:

SELECT Qualifier Apply to Display
Kind

Description

/ERROR Output Prompt Selects the specified display as the current error display.
Directs any subsequent debugger diagnostic message
to that display. If no display is specified, selects the
PROMPT display as the current error display.

/INPUT Output Selects the specified display as the current input display.
Echoes any subsequent debugger input in that display.
If no display is specified, unselects the current input
display: debugger input is not echoed to any display.

/INSTRUCTION Instruction Selects the specified display as the current instruction
display. Directs the output of any subsequent
EXAMINE /INSTRUCTION command to that display.
Keypad key sequence PF4 COMMA selects the next
instruction display in the display list as the current
instruction display. If no display is specified, unselects
the current instruction display: no display has the
instruction attribute.

/OUTPUT Output Prompt Selects the specified display as the current output
display. Directs any subsequent debugger output to
that display, except where a particular type of output
is being directed to another display (such as diagnostic
messages going to the current error display). Keypad key
sequence PF1 KP3 selects the next output display in the
display list as the current output display. If no display
is specified, selects the PROMPT display as the current
output display.

/PROGRAM Prompt Selects the specified display as the current program
display. Tries to force any subsequent program input or
output to that display. If no display is specified, unselects
the current program display: program input and output
are no longer forced to the PROMPT display.

/PROMPT Prompt Selects the specified display as the current prompt
display where the debugger prompts for input. You
cannot unselect the PROMPT display.

/SCROLL All Selects the specified display as the current scrolling
display. Makes that display the default display for any
subsequent SCROLL, MOVE, or EXPAND command.
You can specify any display (however, note that the
PROMPT display cannot be scrolled). The /SCROLL

129

Chapter 7. Screen Mode

SELECT Qualifier Apply to Display
Kind

Description

qualifier is the default if you do not specify a qualifier
with the SELECT command. Key KP3 selects as the
current scrolling display the next display in the display
list after the current scrolling display. If no display is
specified, unselects the current scrolling display: no
display has the scroll attribute.

/SOURCE Source Selects the specified display as the current source
display. Directs the output of any subsequent TYPE or
EXAMINE/SOURCE command to that display. Keypad
key sequence PF4 KP3 selects the next source display
in the display list as the current source display. If no
display is specified, unselects the current source display:
no display has the source attribute.

Subject to the restrictions listed, a display can have several attributes. In the preceding example, ZIP was
selected as the current output display. In the next example, ZIP is further selected as the current input,
error, and scrolling display. After these commands are executed, debugger input, output, and diagnostics
are logged in ZIP in the proper sequence as they occur, and ZIP is the current scrolling display.

DBG> SELECT/INPUT/ERROR/SCROLL ZIP

To identify the displays currently selected for each of the display attributes, use the SHOW SELECT
command.

If you use the SELECT command with a particular qualifier but without specifying a display name, the
effect is typically to deassign that attribute (to unselect the display that had the attribute). The exact effect
depends on the attribute, as described in the preceding table.

7.4. Predefined Displays
The debugger provides the following predefined displays that you can use to capture and display different
kinds of data:

SRC, the predefined source display
OUT, the predefined output display
PROMPT, the predefined prompt display
INST, the predefined instruction display
REG, the predefined register display
FREG, the predefined floating-point register display (Alpha only)
IREG, the predefined integer register display

When you enter screen mode, the debugger puts SRC in the top half of the screen, PROMPT in the
bottom sixth, and OUT between SRC and PROMPT, as shown in Figure 7.1. Displays INST, REG,
FREG (Alpha only), and IREG are initially removed from the screen by default.

To re-create this default configuration, press BLUE MINUS on the keypad (PF4 followed by the MINUS
(-) key).

The basic features of the predefined displays are described in the next sections. As explained in other
parts of this chapter, you can change certain characteristics of these displays, such as the buffer size or
display attributes. You can also create additional displays similar to the predefined displays.

130

Chapter 7. Screen Mode

To display summary information about the characteristics of any display, use the SHOW DISPLAY
command.

Table 7.2 summarizes key information about the predefined displays.

Table 7.2. Predefined Displays

Display Name Display Kind Valid Display Attributes Visible on Startup

SRC Source Scroll
Source (By Default)

X

OUT Output Error
Input
Output (By Default)
Scroll

X

PROMPT Output Error (By Default)
Output
Program (By Default)
Prompt (By Default)
Scroll

X

INST Instruction Instruction
Scroll

REG Register Scroll
FREG (Alpha only) Register Scroll
IREG Register Scroll

1

7.4.1. Predefined Source Display (SRC)

Note

See Chapter 6 for information about how to make source code available for display during a debugging
session.

The predefined display SRC (see Figure 7.1) is an automatically updated source display.

You can use SRC to display source code in two basic ways:

• By default, SRC automatically displays the source code for the module in which execution is
currently paused. This enables you to quickly determine your current debugging context.

• In addition, because SRC has the source attribute by default, you can use it to display the source
code for any part of your program as explained in Section 7.4.1.1.

The name of the module whose source code is displayed is shown at the right of the display name, SRC.
The numbers displayed at the left of the source code are the compiler-generated line numbers, as they
might appear in a compiler-generated listing file.

As you execute the program under debugger control, SRC is automatically updated whenever execution
is paused. The arrow in the left most column indicates the source line to be executed next. Specifically,

1The predefined PROMPT display cannot be scrolled.

131

Chapter 7. Screen Mode

execution is paused at the first instruction associated with that source line. Thus, the line indicated by
the arrow corresponds to the current program counter (PC) value. The PC is a register that contains the
memory address of the next instruction to be executed.

If the debugger cannot locate source code for the routine in which execution is paused (because, for
example, the routine is a run-time library routine), it tries to display source code in the next routine down
on the call stack for which source code is available. When displaying source code for such a routine, the
debugger issues the following message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
 Displaying source in a caller of the current routine.

Figure 7.2 shows this feature. The source display shows that a call to routine TYPE is currently active.
TYPE corresponds to a Fortran run-time library procedure. No source code is available for that routine,
so the debugger displays the source code of the calling routine. The output of a SHOW CALLS
command, shown in the output display, identifies the routine where execution is paused and the call
sequence leading to that routine.

In such cases, the arrow in the source window identifies the line to which execution returns after the
routine call. Depending on the source language and coding style, this might be the line that contains the
call state mentor the next line.

Figure 7.2. Screen Mode Source Display When Source Code Is Not Available

If your program was optimized during compilation, the source code displayed in SRC might not always
represent the code that is actually executing. The predefined instruction display INST is useful in such
cases, because its hows the exact instructions that are executing (see Section 7.4.4).

The built-in command that automatically updates display SRC is EXAMINE/SOURCE .
%SOURCE_SCOPE\%PC. For information about the EXAMINE /SOURCE command, see
Section 6.4. The built-in debugger symbol %SOURCE_SCOPE denotes a scope and has the following
properties:

• By default %SOURCE_SCOPE denotes scope 0, which is the scope of the routine where execution
is currently paused.

132

Chapter 7. Screen Mode

• If you have reset the scope search list relative to the call stack by means of the SET SCOPE /
CURRENT command (see Section 7.4.1.2), %SOURCE_SCOPE denotes the current scope
specified (the scope of the routine at the start of the search list).

• If source code is not available for the routine in the current scope, %SOURCE_SCOPE denotes
scope n, where n is the first level down the call stack for which source code is available.

7.4.1.1. Displaying Source Code in Arbitrary Program Locations
You can use display SRC to display source code throughout your program, if source code is available for
display:

• You can scroll through the entire source display by pressing KP2 (scroll down) or KP8 (scroll up)
as explained in Section 7.5.1. This enables you to view any of the source code within the module in
which execution is paused.

• You can display the source code for any routine that is currently on the call stack by using the SET
SCOPE /CURRENT command (see Section 7.4.1.2).

• Because SRC has the source attribute, you can display source code throughout your program by
using the TYPE and EXAMINE /SOURCE commands:

• To display arbitrary source lines, use the TYPE command (see Section 6.3).

• To display the source line associated with a code location (for example, a routine declaration),
use the EXAMINE /SOURCE command (see Section 6.4).

When using the TYPE or EXAMINE /SOURCE command, make sure that the module in which you
want to view source code is set first. Use the SHOW MODULE command to determine whether a
particular module is set. Then use the SET MODULE command, if necessary (see Section 5.2).

After manipulating the contents of display SRC, you can redisplay the location at which execution is
currently paused (the default behavior of SRC) by pressing KP5.

7.4.1.2. Displaying Source Code for a Routine on the Call Stack
The command SET SCOPE /CURRENT lets you display the source code for any routine that is
currently on the call stack. For example, the following command updates display SRC so that it shows
the source code for the caller of the routine in which execution is currently paused:

DBG> SET SCOPE/CURRENT 1

To reset the default scope for displaying source code, enter the command CANCEL SCOPE. The
command causes display SRC to show the source code for the routine at the top of the call stack where
execution is paused.

7.4.2. Predefined Output Display (OUT)
Figure 7.1 and Figure 7.2 show some typical debugger output in the predefined display OUT.

Display OUT is a general-purpose output display. By default, OUT has the output attribute so it displays
any debugger output that is not directed to the source display SRC or the instruction display INST. For
example, if display INST is not displayed or does not have the instruction attribute, any output that would
otherwise update display INST is shown in display OUT.

133

Chapter 7. Screen Mode

By default, OUT does not display debugger diagnostic messages (these appear in the PROMPT display).
You can assign display attributes to OUT so that it captures debugger input and diagnostics as well as
normal output (see Section 7.3).

By default, the memory buffer associated with predefined display OUT contains 100 lines.

7.4.3. Predefined Prompt Display (PROMPT)
The predefined display PROMPT is the display in which the debugger prompts for input. Figure 7.1 and
Figure 7.2 show PROMPT in its default location, the bottom sixth of the screen.

By default, PROMPT has the prompt attribute. In addition, PROMPT also has (by default) the program
and error attributes, which force program output and diagnostic messages to that display.

PROMPT has different properties and restrictions than other displays. This is to eliminate possible
confusion when manipulating that display:

• The PROMPT display window is always fully visible. You cannot hide PROMPT (with the
DISPLAY /HIDE command), remove PROMPT from the pasteboard (with the DISPLAY /
REMOVE command), or delete PROMPT (with the CANCEL DISPLAY command).

• You can assign PROMPT the scroll attribute so that it receives the output of the MOVE and
EXPAND commands. However, you cannot scroll through the PROMPT display.

• The PROMPT display window always occupies the full width of the screen, beginning in the first
column.

• You can move PROMPT vertically anywhere on the screen, expand it to fill the full screen height, or
contract it down to two lines.

The debugger alerts you if you try to move or expand a display such that it is hidden by PROMPT.

7.4.4. Predefined Instruction Display (INST)

Note

By default, the predefined instruction display INST is not shown on the screen and does not have the
instruction attribute (see Section 7.4.4.1 and Section 7.4.4.2).

Display INST is an automatically updated instruction display. It shows the decoded instruction stream of
your program. This is the exact code that is executing, including the effects of any compiler optimization.

A VAX example is shown in Figure 7.3.

This type of display is useful when debugging code that has been optimized. In such cases some of the
code being executed might not match the source code that is shown in a source display. See Section 14.1
for information about the effects of optimization.

You can use INST in two basic ways:

• By default, INST automatically displays the decoded instructions for the routine in which execution
is currently paused. This enables you to quickly determine your current debugging context.

• In addition, if INST has the instruction attribute, you can use it to display the decoded instructions
for any part of your program as explained in Section 7.4.4.2.

134

Chapter 7. Screen Mode

The name of the routine whose instructions are displayed is shown at the right of the display name,
INST. The numbers displayed at the left of the instructions are the compiler-generated source line
numbers.

As you execute the program under debugger control, INST is updated automatically whenever execution
is paused. The arrow in the leftmost column points to the instruction at which execution is paused. This
is the instruction that will be executed next and whose address is the current PC value.

Figure 7.3. Screen Mode Instruction Display (VAX Example)

The built-in command that automatically updates display INST is EXAMINE/INSTRUCTION .
%INST_SCOPE\%PC.For information about the EXAMINE /INSTRUCTION command, see
Section 4.3.1.The built-in debugger symbol %INST_SCOPE denotes a scope and has the following
properties:

• By default %INST_SCOPE denotes scope 0, which is the scope of the routine where execution is
currently paused.

• If you have reset the scope search list relative to the call stack by means of the SET SCOPE /
CURRENT command (see Section 7.4.4.3), %INST_SCOPE denotes the current scope specified
(the scope of the routine at the start of the search list).

7.4.4.1. Displaying the Instruction Display
By default, display INST is marked as removed (see Section 7.5.2) from the display pasteboard and is
not visible. To show display INST, use one of the following methods:

• Press KP7 to place displays SRC and INST side by side. This enables you to compare the source
code and the decoded instruction stream.

• Press PF1 KP7 to place displays INST and REG side by side.

• Enter the DISPLAY INST command to place INST in its default or most recently defined location
(see Section 7.5.2).

135

Chapter 7. Screen Mode

7.4.4.2. Displaying Instructions in Arbitrary Program Locations
You can use display INST to display decoded instructions throughout your program as follows:

• You can scroll through the entire instruction display by pressingKP2 (scroll down) or KP8 (scroll up)
as explained in Section 7.5.1. This enables you to view any instruction within the routine in which
execution is paused.

• You can display the instruction stream for any routine that is currently on the call stack by using the
SET SCOPE/CURRENT command (see Section 7.4.4.3).

• If INST has the instruction attribute, you can display the instructions for any code location
throughout your program by using the EXAMINE/INSTRUCTION command as follows:

• To assign INST the instruction attribute, use the SELECT/INSTRUCTION INST command (see
Section 7.2.2 and Section 7.3). Note that the instruction attribute is automatically assigned to
INST when you display it by pressing either KP7 or PF1 KP7.

• To display the instructions associated with a code location (for example, a routine declaration),
use the EXAMINE/INSTRUCTION command (see Section 4.3.1).

If no display has the instruction attribute, the output of an EXAMINE/INSTRUCTION command is
directed at display OUT.

After manipulating the contents of display INST, you can redisplay the location at which execution is
currently paused (the default behavior of INST) by pressing KP5.

7.4.4.3. Displaying Instructions for a Routine on the Call Stack
The SET SCOPE/CURRENT command lets you display the instructions for any routine that is currently
on the call stack. For example, the following command updates display INST so that it shows the
instructions for the caller of the routine in which execution is currently paused:

DBG> SET SCOPE/CURRENT 1

To reset the default scope for displaying instructions, enter the CANCEL SCOPE command. The
command causes display INST to show the instructions for the routine at the top of the call stack where
execution is paused.

7.4.4.4. Displaying Register Values for a Routine on the Call Stack
The SET SCOPE/CURRENT command lets you display the register values associated with any routine
that is currently on the call stack. For example, the following command updates display REG so that it
shows the register values for the caller of the routine in which execution is currently paused:

DBG> SET SCOPE/CURRENT 1

To reset the default scope for displaying register values, enter the CANCEL SCOPE command. This
command causes display REG to show the register values for the routine at the top of the call stack,
where execution is paused.

7.5. Manipulating Existing Displays
This section explains how to perform the following functions:

136

Chapter 7. Screen Mode

• Use the SELECT and SCROLL commands to scroll a display.

• Use the DISPLAY command to show, hide, or remove a display; the CANCEL DISPLAY command
to permanently delete a display; and the SHOW DISPLAY command to identify the displays that
currently exist and their order in the display list.

• Use the MOVE command to move a display across the screen.

• Use the EXPAND command to expand or contract a display.

Section 7.7 and Section 7.2discuss more advanced techniques for modifying existing displays with the
DISPLAY command - how to change the display window and the type of information displayed.

7.5.1. Scrolling a Display
A display usually has more lines of text (and possibly longer lines) than can be seen through its window.
The SCROLL command lets you view text that is hidden beyond a window's border. You can scroll
through all displays except for the PROMPT display.

The easiest way to scroll displays is with the keypad keys, described later in this section. Using the
relevant commands is explained first.

You can specify a display explicitly with the SCROLL command. Typically, however, you first use the
SELECT/SCROLL command to select the current scrolling display. This display then has the scroll
attribute and is the default display for the SCROLL command. You then use the SCROLL command
with no parameter to scroll that display up or down by a specified number of lines, or to the right or left
by a specified number of columns. The direction and distance scrolled are specified with the command
qualifiers (/UP: n, /RIGHT: n, and so on).

In the following example, the SELECT command selects display OUT as the current scrolling display (/
SCROLL can be omitted because it is the default qualifier); the SCROLL command then scrolls OUT to
reveal text 18 lines down:

DBG> SELECT OUT
DBG> SCROLL/DOWN:18

Several useful SELECT and SCROLL command lines are assigned to keypad keys (See Appendix A for
a keypad diagram):

• Pressing KP3 assigns the scroll attribute to the next display in the display list after the current
scrolling display. To select a display as the current scrolling display, press KP3 repeatedly until the
word "scroll" appears on the top line of that display.

• Press KP8, KP2, KP6, or KP4 to scroll up, down, right, or left, respectively. The amount of scroll
depends on which key state you use (DEFAULT, GOLD, or BLUE).

7.5.2. Showing, Hiding, Removing, and Canceling a
Display
The DISPLAY command is the most versatile command for creating and manipulating displays. In its
simplest form, the command puts an existing display on top of the pasteboard where it appears through
its current window. For example, the following command shows the display INST through its current
window:

137

Chapter 7. Screen Mode

DBG> DISPLAY INST

Pressing KP9, which is bound to the DISPLAY %NEXTDISP command, enables you to achieve this
effect conveniently. The built-in function %NEXTDISP signifies the next display in the display list.
(Appendix B identifies all screen-related built-in functions.) Each time you press KP9, the next display in
the list is put on top of the pasteboard in its current window.

By default, the top line of display OUT (which identifies the display) coincides with the bottom line of
display SRC. If SRC is on top of the pasteboard, its bottom line hides the top line of OUT (keep this in
mind when using the DISPLAY command and associated keypad keys to put various displays on top of
the pasteboard).

To hide a display at the bottom of the pasteboard, use the DISPLAY/HIDE command. This command
changes the order of that display in the display list.

To remove a display from the pasteboard so that it is no longer seen (yet is not permanently deleted),
use the DISPLAY/REMOVE command. To put a removed display back on the pasteboard, use the
DISPLAY command.

To delete a display permanently, use the CANCEL DISPLAY command. To re-create the display, use the
DISPLAY command as described in Section 7.6.

Note that you cannot hide, remove, or delete the PROMPT display.

To identify the displays that currently exist, use the SHOW DISPLAY command. They are listed
according to their order on the display list. The display that is on top of the pasteboard is listed last.

For more information about the DISPLAY options, see the DISPLAY command. Note that the
DISPLAY command accepts optional parameters that let you modify other characteristics of existing
displays, namely the display window and the type of information displayed. The techniques are discussed
in Section 7.7 and Section 7.2.

7.5.3. Moving a Display Across the Screen
Use the MOVE command to move a display across the screen. The qualifiers /UP: n, /DOWN: n, /
RIGHT: n, and /LEFT: n specify the direction and the number of lines or columns by which to move
the display. If you do not specify a display, the current scrolling display is moved.

The easiest way to move a display is by using keypad keys:

• Press KP3 repeatedly as needed to select the current scrolling display.

• Put the keypad in the MOVE state, then press KP8, KP2, KP4, or KP6 to move the display up,
down, left, or right, respectively. See Appendix A.

7.5.4. Expanding or Contracting a Display
Use the EXPAND command to expand or contract a display. The qualifiers /UP: n, /DOWN: n, /
RIGHT: n, and /LEFT: n specify the direction and the number of lines or columns by which to expand
or contract the display (to contract a display, specify negative integer values with these qualifiers). If you
do not specify a display, the current scrolling display is expanded or contracted.

The easiest way to expand or contract a display is to use the keypad keys:

• Press KP3 repeatedly as needed to select the current scrolling display.

138

Chapter 7. Screen Mode

• Put the keypad in the EXPAND or CONTRACT state, then press KP8, KP2, KP4, or KP6 to expand
or contract the display vertically or horizontally. See Appendix A.

The PROMPT display cannot be contracted (or expanded) horizontally. Also, it cannot be contracted
vertically to less than two lines.

7.6. Creating a New Display
To create a new screen display, use the DISPLAY command. The basic syntax is as follows:

DISPLAY display-name [AT window-spec] [display-kind]

The display name can be any name that is not already used to name a display (use the SHOW DISPLAY
command to identify all existing displays). A newly created display is placed on top of the pasteboard, on
top of any existing displays (except for the predefined PROMPT display, which cannot be hidden). The
display name appears at the top left corner of the display window.

Section 7.7 explains the options for specifying windows. If you do not provide a window specification,
the display is positioned in the upper or lower half of the screen, alternating between these locations as
you create new displays.

Section 7.2 explains the options for specifying display kinds. If you do not specify a display kind, an
output display is created.

For example, the following command creates a new output display named OUT2. The window
associated with OUT2 is either the top or bottom half of the screen.

DBG> DISPLAY OUT2

The following command creates a new DO display named EXAM_XY that is located in the right third
quarter (RQ3) of the screen. This display shows the current value of variables X and Y and is updated
whenever the debugger gains control from the program.

DBG> DISPLAY EXAM_XY AT RQ3 DO (EXAMINE X, Y)

For more information, see the DISPLAY command.

7.7. Specifying a Display Window
Display windows can occupy any rectangular portion of the screen.

You can specify a display window when you create a display with the DISPLAY command. You can also
change the window currently associated with a display by specifying a new window with the DISPLAY
command. When specifying a window, you have the following options:

• Specify a window in terms of lines and columns.

• Use the name of a predefined window, such as H1.

• Use the name of a window definition previously established with the SET WINDOW command.

Each of these techniques is described in the following sections. When specifying windows, keep in mind
that the PROMPT display always remains on top of the display pasteboard and, therefore, occludes any
part of another display that shares the same region of the screen.

139

Chapter 7. Screen Mode

Display windows, regardless of how specified, are dynamic. This means that, if you use a SET
TERMINAL command to change the screen height or width, the window associated with a display
expands or contracts in proportion to the new screen height or width.

7.7.1. Specifying a Window in Terms of Lines and
Columns
The general form of a window specification is (start-line, line-count [, start-column,
column-count]). For example, the following command creates the output display CALLS and
specifies that its window be 7 lines deep starting at line 10, and 30 columns wide starting at column 50:

DBG> DISPLAY CALLS AT (10, 7, 50, 30)

If you do not specify start-column or column-count, the window occupies the full width of the
screen.

7.7.2. Using a Predefined Window
The debugger provides many predefined windows. These have short, symbolic names that you can use
in the DISPLAY command instead of having to specify lines and columns. For example, the following
command creates the output display ZIP and specifies that its window be RH1 (the top right half of the
screen):

DBG> DISPLAY ZIP AT RH1

The SHOW WINDOW command identifies all predefined window definitions as well as those you
create with the SET WINDOW command.

7.7.3. Creating a New Window Definition
The predefined windows should be adequate for most situations, but you can also create a new window
definition with the SET WINDOW command. This command, which has the following syntax,
associates a window name with a window specification:

SET WINDOW window-name AT (start-line, line-count[, start-column, column-
count])

After creating a window definition, you can use its name (like that of a predefined window) in a
DISPLAY command. In the following example, the window definition MIDDLE is established. That
definition is then used to display OUT through the window MIDDLE.

DBG> SET WINDOW MIDDLE AT (9, 4, 30, 20)
DBG> DISPLAY OUT AT MIDDLE

To identify all current window definitions, use the SHOW WINDOW command. To delete a window
definition, use the CANCEL WINDOW command.

7.8. Sample Display Configuration
How to best use screen mode depends on your personal style and on what type of error you are looking
for. You might be satisfied to use the predefined displays. If you have access to a larger screen, you
might want to create additional displays for various purposes. The following example gives some ideas.

140

Chapter 7. Screen Mode

Assume you are debugging in a high-level language and are interested in tracing the execution of your
program through several routine calls.

First set up the default screen configuration - that is, SRC in H1, OUT in S45, and PROMPT in S6 (the
keypad key sequence PF4 MINUS gives this configuration). SRC shows the source code of the module
in which execution is paused.

The following command creates a source display named SRC2 in RH1 that shows the PC value at scope
1 (one level down the call stack, at the call to the routine in which execution is paused):

DBG> DISPLAY SRC2 AT RH1 SOURCE (EXAMINE/SOURCE .1\%PC)

Thus the left half of your screen shows the currently executing routine and the right half shows the caller
of that routine.

The following command creates a DO display named CALLS at S4 that executes the SHOW CALLS
command each time the debugger gains control from the program:

DBG> DISPLAY CALLS AT S4 DO (SHOW CALLS)

Because the top half of OUT is now hidden by CALLS, make OUT's window smaller as follows:

DBG> DISPLAY OUT AT S5

You can create a similar display configuration with instruction displays instead of source displays.

7.9. Saving Displays and the Screen State
The SAVE command enables you to make a snapshot of an existing display and save that copy as a new
display. This is useful if, for example, you later want to refer to the current contents of an automatically
updated display (such as a DO display).

In the following example, the SAVE command saves the current contents of display CALLS into display
CALLS 4, which is created by the command:

DBG> SAVE CALLS AS CALLS4

The new display is removed from the pasteboard. To view its contents, use the DISPLAY command:

DBG> DISPLAY CALLS4

The EXTRACT command has two uses. First, it enables you to save the contents of a display in a
text file. For example, the following command extracts the contents of display CALLS, appending the
resulting text to the file COB34.TXT:

DBG> EXTRACT/APPEND CALLS COB34

Second, the EXTRACT/SCREEN_LAYOUT command enables you to create a command procedure
that can later be executed during a debugging session to re-create the previous state of the screen. In the
following example, the EXTRACT/SCREEN_LAYOUT command creates a command procedure with
the default specification SYS$DISK:[]DBGSCREEN.COM. The file contains all the commands needed
to re-create the current state of the screen.

DBG> EXTRACT/SCREEN_LAYOUT
 .
 .
 .

141

Chapter 7. Screen Mode

DBG> @DBGSCREEN

Note that you cannot save the PROMPT display as another display, or extract it into a file.

7.10. Changing the Screen Height and Width
During a debugging session, you can change the height or width of your terminal screen. One reason
might be to accommodate long lines that would wrap if displayed across 80 columns. Or, if you are at a
workstation, you might want to reformat your debugger window relative to other windows.

To change the screen height or width, use the SET TERMINAL command. The general effect of the
command is the same whether you are at a VT-series terminal or at a workstation.

In this example, assume you are using a workstation window in its default emulated VT100-screen mode,
with a screen size of 24 lines by 80 columns. You have started the debugger and are using it in screen
mode. You now want to take advantage of the larger screen. The following command increases the
screen height and width of the debugger window to 35 lines and 110 columns respectively:

DBG> SET TERMINAL/PAGE:35/WIDTH:110

By default, all displays are dynamic. A dynamic display automatically adjusts its window dimensions
in proportion when a SET TERMINAL command changes the screen height or width. This means
that, when using the SET TERMINAL command, you preserve the relative positions of your displays.
The /[NO]DYNAMIC qualifier on the DISPLAY command lets you control whether or not a display is
dynamic. If a display is not dynamic, it does not change its window coordinates after you enter a SET
TERMINAL command (you can then use the DISPLAY, MOVE, or EXPAND commands, or various
keypad key combinations, to move or resize a display).

To see the current terminal width and height being used by the debugger, use the SHOW TERMINAL
command.

Note that the debugger's SET TERMINAL command does not affect the terminal screen size at DCL
level. When you exit the debugger, the original screen size is maintained.

7.11. Screen-Related Built-In Symbols
The following built-in symbols are available for specifying displays and screen parameters in language
expressions:

• %SOURCE_SCOPE - To display source code. %SOURCE_SCOPE is described in Section 7.4.1.

• %INST_SCOPE - To display instructions. %INST_SCOPE is described in Section 7.4.4.

• %PAGE, %WIDTH - To specify the current screen height and width.

• %CURDISP, %CURSCROLL, %NEXTDISP, %NEXTINST, %NEXTOUTPUT, %NEXTSCROLL,
%NEXTSOURCE - To specify displays in the display list.

7.11.1. Screen Height and Width
The built-in symbols %PAGE and %WIDTH return, respectively, the current height and width of the
terminal screen. These symbols can be used in various expressions, such as for window specifications.
For example, the following command defines a window named MIDDLE that occupies a region around
the middle of the screen:

142

Chapter 7. Screen Mode

DBG> SET WINDOW MIDDLE AT (%PAGE/4, %PAGE/2, %WIDTH/4, %WIDTH/2)

7.11.2. Display Built-In Symbols
Each time you refer to a specific display with a DISPLAY command, the display list is updated and
reordered, if necessary. The most recently referenced display is put at the tail of the display list, because
that display is pasted last on the pasteboard (you can identify the display list by entering a SHOW
DISPLAY command).

You can use display built-in symbols to specify displays relative to their positions in the display list.
These symbols, listed as follows, enable you to refer to displays by their relative positions in the list
instead of by their explicit names. The symbols are used mainly in keypad key definitions or command
procedures.

Display symbols treat the display list as a circular list. Therefore, you can enter commands that use
display symbols to cycle through the display list until you reach the display you want.

%CURDISP The current display. This is the display most recently referenced with a
DISPLAY command - the least occluded display.

%CURSCROLL The current scrolling display. This is the default display for the SCROLL,
MOVE, and EXPAND commands, as well as for the associated keypad keys
(KP2, KP4, KP6, and KP8).

%NEXTDISP The next display in the list after the current display. The next display is the
display that follows the topmost display. Because the display list is circular,
this is the display at the bottom of the pasteboard - the most occluded display.

%NEXTINST The next instruction display in the display list after the current instruction
display. The current instruction display is the display that receives the output
from the EXAMINE/INSTRUCTION commands.

%NEXTOUTPUT The next output display in the display list after the current output display. An
output display receives debugger output that is not already directed to another
display.

%NEXTSCROLL The next display in the display list after the current scrolling display.
%NEXTSOURCE The next source display in the display list after the current source display. The

current source display is the display that receives the output from the TYPE
and EXAMINE/SOURCE commands.

7.12. Screen Dimensions and Predefined
Windows
On a VT-series terminal, the screen consists of 24 lines by 80 or 132 columns. On a workstation, the
screen is larger in both height and width. The debugger can accommodate screen sizes up to 100 lines by
255 columns.

The debugger has many predefined windows that you can use to position displays on the screen. In
addition to the full height and width of the screen, the predefined windows include all possible regions
that result from:

• Dividing the screen vertically into equal fractions: halves, thirds, quarters, sixths, or eighths

• Combining vertically contiguous equal fractions: halves, thirds, quarters, sixths, or eighths

143

Chapter 7. Screen Mode

• Dividing the vertical fractions into left and right halves

The SHOW WINDOW command identifies all predefined display windows.

The following conventions apply to the names of predefined windows. The prefixes L and R denote left
and right windows, respectively. Other letters denote the full screen (FS) or fractions of the screen height
(H: half, T: third, Q: quarter, S: sixth, E: eighth). The trailing numbers denote specific segments of the
screen height, starting from the top. For example:

• Windows T1, T2, and T3 occupy the top, middle, and bottom thirds of the screen, respectively.

• Window RH2 occupies the right bottom half of the screen.

• Window LQ23 occupies the left middle two quarters of the screen.

• Window S45 occupies the fourth and fifth sixths of the screen.

The following four commands create displays that have windows identical in size and location (the top
half of the screen):

DBG> DISPLAY XYZ AT H1 SOURCE
DBG> DISPLAY XYZ AT Q12 SOURCE
DBG> DISPLAY XYZ AT S123 SOURCE
DBG> DISPLAY XYZ AT E1234 SOURCE

The horizontal boundaries (start-column, column-count) of the predefined windows for the default
terminal screen width of 80 columns are as follows:

• Left-hand windows: (1, 40)

• Right-hand windows: (42, 39)

Table 7.3 lists the vertical boundaries (start-line, line-count) of single-segment display windows
predefined for the default terminal screen height of 24 lines. Table 7.3 does not list windows that consist
of multiple segments such as E23 (a display window created from the combination of display windows
E2 and E3).

Table 7.3. Predefined Windows

Window Name Start-line, Line-count Window Location

FS (1, 23) Full screen
H1 (1, 11) Top half
H2 (13, 11) Bottom half
T1 (1, 7) Top third
T2 (9, 7) Middle third
T3 (17, 7) Bottom third
Q1 (1, 5) Top quarter
Q2 (7, 5) Second quarter
Q3 (13, 5) Third quarter
Q4 (19, 5) Bottom quarter
S1 (1, 3) Top sixth
S2 (5, 3) Second sixth

144

Chapter 7. Screen Mode

Window Name Start-line, Line-count Window Location

S3 (9, 3) Third sixth
S4 (13, 3) Fourth sixth
S5 (17, 3) Fifth sixth
S6 (21, 3) Bottom sixth
E1 (1, 2) Top eighth
E2 (4, 2) Second eighth
E3 (7, 2) Third eighth
E4 (10, 2) Fourth eighth
E5 (13, 2) Fifth eighth
E6 (16, 2) Sixth eighth
E7 (19, 2) Seventh eighth
E8 (22, 2) Bottom eighth

7.13. Internationalization of Screen Mode
You can enable country-specific features for screen mode by defining logical names, as follows:

• DBG$SMGSHR - For specifying the Screen Management (SMG) shareable image. The debugger
uses the SMG shareable image in its implementation of screen mode. Asian variants of the SMG
shareable image handle multibyte characters. Hence, if an Asian variant of SMG is used by the
debugger, the screen mode interface to the debugger will be able to display and manipulate multibyte
characters.

Define the DBG$SMGSHR logical name as follows:

$ DEFINE/JOB DBG$SMGSHR <name_of_Asian_SMG>

where <name_of_Asian_SMG> varies according to the variants of Asian OpenVMS. For
example, the name of the Asian SMG in Japanese OpenVMS is JSY$SMGSHR.EXE.

• SMG$DEFAULT_CHARACTER_SET - For the Asian SMG and multibyte characters. This logical
need only be defined if DBG$SMGSHR has been defined. See the documentation on Asian or
Japanese screen management routines for details on how to define this logical name.

145

Chapter 7. Screen Mode

146

Part III. DECwindows Interface

147

148

Chapter 8. Introduction
This chapter introduces the VSI DECwindows Motif for OpenVMS user interface of the debugger. For
information about the command interface, see Part II.

Note

The VSI DECwindows Motif for OpenVMS user interface to the OpenVMS Debugger Version 7.1 or
later requires Version 1.2 or later of VSI DECwindows Motif for OpenVMS.

This chapter provides the following information:

• A functional overview of the OpenVMS Debugger, including its user interface options - VSI
DECwindows Motif for OpenVMS and command (Section 8.1)

• An orientation to the debugger's VSI DECwindows Motif for OpenVMS screen features, such as
windows, menus, and so on (Section 8.2)

• Instructions for entering debugger commands at the command-entry prompt (Section 8.3)

• Instructions for accessing online help (Section 8.4)

For information about starting a debugging session, see Chapter 9. For detailed information
about using the Motif interface for debugging, see Chapter 10. For the source code of program
EIGHTQUEENS.EXE, shown in the figures of this chapter, see Appendix D.

8.1. Introduction
The OpenVMS Debugger has a VSI DECwindows Motif for OpenVMS graphical user interface (GUI)
for workstations. This enhancement to the screen-mode command interface accepts mouse input to
choose items from menus and to activate or deactivate push buttons, to drag the pointer to select text
in windows, and so on. The debugger's VSI DECwindows Motif for OpenVMS GUI menus and push
buttons provide the functions for most basic debugging tasks.

The VSI DECwindows Motif for OpenVMS GUI is layered on the character-cell command interface
and has a command-entry prompt on the command line (in the command view). From the VSI
DECwindows Motif for OpenVMS GUI command line, you can enter debugger commands for the
following purposes:

• To perform certain operations by using the VSI DECwindows Motif for OpenVMS user interface
menus and push buttons for certain operations

• To do debugging tasks not available through the VSI DECwindows Motif for OpenVMS GUI menus
and push buttons

You can customize the VSI DECwindows Motif for OpenVMS GUI to associate other debugger
commands with new or existing push buttons.

You can run the VSI DECwindows Motif for OpenVMS GUI in local mode or in client/server mode.
Client/server mode allows you to debug programs remotely from another OpenVMS node. The user
interface in both Motif modes is virtually identical. Chapter 9 describes how to start interfaces.

149

Chapter 8. Introduction

Note

The VSI DECwindows Motif for OpenVMS GUI does not recognize the HELP command at its
command-entry prompt. Choose the On Commands item in the Help menu for online help on debugger
commands.

You cannot use the VSI DECwindows Motif for OpenVMS GUI to debug detached processes such as
print symbionts that run without a command line interpreter (CLI).See Section 1.11 for details about
debugging detached processes that do not have a CLI.

8.1.1. Convenience Features
The following paragraphs highlight some of the convenience features of the debugger's default VSI
DECwindows Motif for OpenVMS interface. Section 8.2 gives visual details. (Convenience features of
the debugger's command interface are described in detail in Section 1.1.2.)

Source-Code Display

The OpenVMS Debugger is a source-level debugger. The debugger displays in the source viewthe
source code that surrounds the instruction where program execution is paused currently. You can enable
and disable the display of compiler-generated line numbers.

A source browser lets you:

• List the images, modules, and routines of your program

• Display source code from selected modules or routines

• Display the underlying hierarchy of modules and routines

• Set breakpoints by double-clicking on selected routines

Call-Stack Navigation

The call-stack menu on the main window lists the sequence of routine calls currently on the call stack.
Click on a routine name in the call-stack menu to set (to that routine) the context (scope) for

• Source code display (in the source view)

• Register display (in the register view)

• Instruction display (in the instruction view)

• Symbol searches

Breakpoints

You set, activate, and deactivate breakpoints by clicking on buttons next to the source lines in the source
view or the instruction view. Optionally, you can set, deactivate, or activate breakpoints by selecting
items in window pull-down menus, pop-up menus, context-sensitive menus, or dialog boxes. You
can set conditional breakpoints, which suspend program execution if the specified condition is true.
You can set action breakpoints, which execute one or more debugger commands when the breakpoint

150

Chapter 8. Introduction

suspends program execution. The main window push buttons, the instruction view push buttons, and the
breakpoint view give a visual indication of activated, deactivated, and conditional breakpoints.

Push Buttons
Push buttons in the push button view control common operations:by clicking on a push button, you can
start execution, step to the next source line, display the value of a variable selected in a window, interrupt
execution, and so on.

You can modify, add, remove, and resequence push buttons and the associated debugger commands.

Context-Sensitive Pop-Up Menus
Context-sensitive pop-up menus list common operations associated with your view (source view,
command view, and so on.) When you click MB3, the pop-up menu lists actions for the text you have
selected, the source line at which you are pointing, or the view in which you are working.

Displaying and Manipulating Data
To display the value of a variable or expression, select the variable or expression in the source view and
click on a push button, such as Examine (examine variable). You can also display selected values by
choosing items from window pull-down menus(such as Examine, in the Commands pull-down menu),
context-sensitive menus, or dialog boxes. You can display values in different type or radix formats.

To change the value of a variable, edit the currently displayed value in the monitor view. You can also
change values by selecting items in window pull-down menus (such as Deposit, in the Commands pull-
down menu), context-sensitive pop-up menus, or dialog boxes.

The monitor view displays the updated values of specified variables whenever the debugger regains
control from your program.

Kept Debugger RERUN Command
You can run the debugger in a state known as the kept debugger from which you can rerun the same
program or run another program without exiting the debugger. When rerunning a program, you can
choose to save the current state of breakpoints, tracepoints, and static watch points. The kept debugger
is also available in the screen mode debugger. See Section 9.1 for information on starting the kept
debugger.

Client/Server Configuration
You can run the debugger in a client/server configuration, which allows you to debug programs that run
on an OpenVMS node remotely from another OpenVMS node using the VSI DECwindows Motif for
OpenVMS interface, or from a PC using the Microsoft Windows interface. Up to 31 debug clients can
simultaneously access the same debug server, which allows many debugging options.

Instruction and Register Views
The instruction view shows the decoded instruction stream (the code that is actually executing) of your
program. This view is useful if the program you are debugging has been optimized by the compiler, in
which case the source code in the source view may not reflect the code that is executing. You can set
breakpoints on instructions and display the memory addresses and source-code line numbers associated
with each instruction.

151

Chapter 8. Introduction

The register view displays the current contents of all machine registers. You can edit the displayed
values to deposit other values into the registers.

Debugger Status Indicator

The debugger has a status indicator to identify the state of the debugger, which can be one of the
following:

• D — the program being debugged is running

• U — the Debugger is executing a user command

Threads Program Support

The threads view displays information about the current state of all tasks of a multithread program. You
can modify threads characteristics to control thread execution, priority, state transitions, and so on.

Integration with Command Interface

The debugger's VSI DECwindows Motif for OpenVMS GUI is an enhancement to the character-cell
debugger. It is layered on, and closely integrated with, the command-driven character-cell debugger:

• When you use the VSI DECwindows Motif for OpenVMS GUI menus and push buttons, the
debugger echoes your commands in the command view to provide a record of your actions.

• When you enter commands at the prompt, the debugger updates the VSI DECwindows Motif for
OpenVMS views accordingly.

Integration with Source-Level Editor

You can edit program source code without exiting from the debugger. In the editor view, you can display
the source code, search and replace text, or add additional text. Editor view text buffers allow you to
move quickly back and forth between new or existing files, and copy, cut, and paste text from buffer to
buffer.

The text editor available through the debugger's VSI DECwindows Motif for OpenVMS menu interface
is a simple convenience feature, not intended to replace sophisticated text editors such as the Language-
Sensitive Editor (LSE). To use a different editor, enter the Edit command at the DBG> prompt in the
command view (see the EDIT command).

Customization

You can modify the following and other aspects of the debugger's VSI DECwindows Motif for
OpenVMS interface and save the current settings in a resource file to customize your debugger start up
environment:

• Configuration of windows and views (for example, size, screen location, order)

• Push button order, labels, and associated debugger commands (this includes adding and removing
push buttons)

• Character fonts for displayed text

152

Chapter 8. Introduction

Online Help
Online help is available for the debugger's VSI DECwindows Motif for OpenVMS interface(context-
sensitive help) and for its command interface.

8.2. Debugger Windows and Menus
The following sections describe the debugger windows, menus, views, and other features of the
OpenVMS Debugger VSI DECwindows Motif for OpenVMS interface.

8.2.1. Default Window Configuration
By default, the debugger starts up in the main window, as shown in Figure 8.1.

When you start the debugger as explained in Section 9.1, the source view is initially empty. Figure 8.1
shows the source view after a program has been brought under debugger control (by directing the
debugger to run a specific image, in this example, EIGHTQUEENS).

You can customize the startup configuration to your preference as described in Section 10.10.1.

Figure 8.1. Debugger Main Window

8.2.2. Main Window
The main window (see Figure 8.1) includes:

• Title bar (see Section 8.2.2.1)

• Source view (see Section 8.2.2.2)

153

Chapter 8. Introduction

• Call Stack view (see Section 8.2.2.4)

• Push button view (see Section 8.2.2.5)

• Command view (see Section 8.2.2.6)

If the debugger is running on an Alpha or Integrity server processor, the name of the debugger is
"OpenVMS Debug64."

8.2.2.1. Title Bar
The title bar, at the top of the main window, displays (by default) the name of the debugger, the name of
the program being debugged, and the name of the source code module that is currently displayed in the
source view.

8.2.2.2. Source View
The source view shows the following:

• Source code of the program you are debugging and, by default, the compiler-generated line numbers
(to the left of the source code). To choose not to display line numbers, see Section 10.1.

• Breakpoint toggle push buttons.

• Current-location pointer (a triangle to the left of breakpoint push buttons), which points to the line of
source code that will be executed when program execution resumes.

For more information about displaying source code, see Section 8.2.2.3 and Section 10.1.

8.2.2.3. Menus on Main Window
Figure 8.2 and Table 8.1 describe the menus on the main window.

Figure 8.2. Menus on Main Window

154

Chapter 8. Introduction

Table 8.1. Menus on Main Window

Menu Item Description

File Run Image... Bring a program under debugger control by
specifying an executable image.

Run Foreign
Command...

Bring a program under debugger control by
specifying a symbol for a foreign command.

Rerun Same... Rerun the same program under debugger control.
Browse Sources Display the source code in any module of your

program. Set breakpoints on routines.

• Symbolic -- List only those modules for which
the debugger has symbolic information.

• All -- List all modules.
Display Line Numbers Display or hide line numbers in the source view.
Server Connection... (Client/Server mode)Specify the network binding

string of the server for connection.
Exit Debug? End the debugging session, terminating the

debugger.
Edit Cut Cut selected text and copy it to the clipboard.

You can cut text only from fields or regions that
accept input (although, in most cases, Cut copies
the selected text to the clipboard).

Copy Copy selected text from the window to the
clipboard without deleting the text.

Paste Paste text from the clipboard to a text-entry field
or region.

Break On Exception Break on any exception signaled during program
execution.

Activate All Activate any previously set breakpoints.
Deactivate All Deactivate any previously set breakpoints.
Cancel All Remove all breakpoints from the debugger's

breakpoint list and from the breakpoint view.
Set... Set a new breakpoint, optionally associated with

a particular condition or action, at a specified
location.

Commands Examine... Examine the current value of a variable or
expression. The output value may be typecast or
changed in radix.

Deposit... Deposit a value to a variable. The input value may
be changed in radix.

Edit File Edit the source code of your file in the debugger's
editor.

Options Views... Display one or more of the following:

Breakpoint view

155

Chapter 8. Introduction

Menu Item Description
Monitor view
Instruction view
Tasking view
Register view (see Table 8.2)

Track Language
Changes

Notify you if the debugger enters a module that is
written in a language different from the previously
executed module.

Show Message
Separators

Display a dotted line between each command and
message displayed by the debugger.

Customize Buttons... Modify, add, remove, or resequence a push
button in the push button view and the associated
debugger command.

Save Options Save the current settings of all VSI DECwindows
Motif for OpenVMS features of the debugger
that you can customize interactively, such as the
configuration of windows and views, and push
button definitions. This preserves the current
debugger configuration for the next time you run
the debugger.

Restore Default Options Copy the system default debugger resource file
DECW$SYSTEM_DEFAULTS:VMSDEBUG.DAT
to the user-specific resource file DECW
$USER_DEFAULTS:VMSDEBUG.DAT. The
default options take effect when you next start the
debugger.

Edit Options File Load and display the user-specific resource file
DECW$USER_DEFAULTS:VMSDEBUG.DAT in
the debug editor for review and modification.

Help On Context Enable the display of context-sensitive online help.
On Window Display information about the debugger.
On Help Display information about the online help system.
On Version Display information about this version of the

debugger.
On Commands Display information about debugger commands.

Table 8.2. Displays in Register View

Register Type Alpha Displays Integrity Server Displays

Call Frame R0, R25, R26, R27, FP, SP, F0,
F1, PC, PS, FPCR, SFPCR

PC, CFM, BSP, BSPSTORE,
PFS, RP, UNAT, GP, SP, TP, AI

General Purpose R0-R28, FP, SP, R31 PC, GP, R2-R11, SP, TP, R14-
R24, AI, R26-R127

Floating Point F0-F31 F2 - F127

156

Chapter 8. Introduction

8.2.2.4. Call Stack Menu
The Call Stack menu, between the source view and the push button view, shows the name of the routine
whose source code is displayed in the source view. This menu lists the sequence of routine calls currently
on the stack and lets you set the scope of source code display and symbol searches to any routine on the
stack (see Section 10.6.2).

8.2.2.5. Push Button View
Figure 8.3 and Table 8.3describe the default push buttons in the main window. You can modify, add,
remove, and resequence buttons and their associated commands as explained in Section 10.10.3.

Figure 8.3. Default Buttons in the Push Button View Table

Table 8.3. Default Buttons in the Push Button View

Button Description

Stop Interrupt program execution or a debugger operation without ending the debugging
session.

Go Start or resume execution from the current program location.
STEP Execute the program one step unit of execution. By default, this is one executable

line of source code.
S/in When execution is suspended at a routine call statement, move execution into the

called routine just past the start of the routine. This is the same behavior as STEP
if not at a routine call statement.

S/ret Execute the program directly to the end of the current routine.
S/call Execute the program directly to the next Call or Return instruction.
EX Display, in the command view, the current value of a variable whose name you

have selected in a window.
E/az Display, in the command view, the current value of a variable whose name you

have selected in a window. The variable is interpreted as a zero-terminated ASCII
string.

E/ac Display, in the command view, the current value of a variable whose name you
have selected in a window. The variable is interpreted as a counted ASCII string
preceded by a one-byte count field that contains the length of the string.

EVAL Display, in the command view, the value of a language expression in the current
language (by default, the language of the module containing the main program).

MON Display, in the monitor view, a variable name that you have selected in a window
and the current value of that variable. Whenever the debugger regains control from
your program, it automatically checks the value and updates the displayed value
accordingly.

8.2.2.6. Command View
The command view, located directly under the push button view in the main window, accepts typed
command input on the command line (see Section 8.3), and displays debugger output other than that
displayed in the optional views. Examples of such output are:

157

Chapter 8. Introduction

• The result of an Examine operation.

• Diagnostic messages. For online help on debugger diagnostic messages, see Section 8.4.4.

• Command echo. The debugger translates your VSI DECwindows Motif for OpenVMS menu and
push button input into debugger commands and displays those commands on the command line in
the command view, providing a record of your most recent commands. This enables you to correlate
your input with debugger actions.

You can clear the entire command view, leaving only the current command-line prompt, by choosing
Clear Command Window from the pop-up menu.

You can clear the current command line by choosing Clear Command Line from the pop-up menu.

8.2.3. Optional Views Window
Table 8.4 lists the optional views. They are accessible by choosing Views... from the Options menu on
the main window.

Table 8.4. Optional Views

View
Description

Breakpoint view List all breakpoints that are currently set and identify those which
are activated, deactivated, or qualified as conditional breakpoints.
The breakpoint view also allows you to modify the state of each
breakpoint.

Monitor view List variables whose values you want to monitor as your program
executes. The debugger updates the values whenever it regains
control from your program (for example, after a step or at a
breakpoint). Alternatively, you can set a watchpoint, causing
execution to stop whenever a particular variable has been modified.
You can also change the values of variables.

Instruction view Display the decoded instruction stream of your program and allow
you to set breakpoints on instructions. By default, the debugger
displays the corresponding memory addresses and source-code line
numbers to the left of the instructions. You can choose to suppress
these.

Register view Display the current contents of all machine registers. The debugger
updates the values whenever it regains control from your program.
The register view also lets you change the values in registers.

Tasking view List all the existing (non terminated) tasks of a tasking program.
Provides information about each task and allows you to modify the
state of each task.

Figure 8.5 shows a possible configuration of the breakpoint view, monitor view, and register view, as a
result of the selections in the View menu in Figure 8.4.

Figure 8.6 shows the instruction view, which is a separate window so that you can position it where most
convenient. Figure 8.7 shows the tasking view.

Note that the registers and instructions displayed are system-specific. Figure 8.5 and Figure 8.6 show
Integrity server-specific registers and instructions.

158

Chapter 8. Introduction

You can move and resize all windows. You can also save a particular configuration of the windows and
views so that it is set up automatically when you restart the debugger (see Section 10.10.1).

Note

If you are debugging a UI application and you have many debugger windows overlapping the user
program's windows, the X server will occasionally abruptly terminate the user program.

To avoid this problem, refrain from overlapping or covering windows belonging to the user program.

Figure 8.4. Debugger Main Window and the Optional Views Window

159

Chapter 8. Introduction

Figure 8.5. Monitor, Breakpoint, and Register Views

Figure 8.6. Instruction View

Figure 8.7. Thread View

8.2.3.1. Menus on Optional Views Window

Figure 8.8 and Table 8.5 describe the menus on the optional views window.

160

Chapter 8. Introduction

Figure 8.8. Menus on Optional Views Window

Table 8.5. Menus on Optional Views Window

Menu Item Description

File Close Close the optional views window.
Exit Debug? End the debugging session, terminating the

debugger.
Break On Exception Break on any exception signaled during program

execution.
Activate All Activate any previously set breakpoints.
Deactivate All Deactivate any previously set breakpoints.
Cancel All Remove all breakpoints from the debugger's

breakpoint list and from the breakpoint view.
Toggle Toggle a breakpoint.
Set/Modify... Set a new breakpoint, optionally associated with

a particular condition or action, at a specified
location.

Cancel Cancel (delete) an individual breakpoint.
Monitor Expand Expand monitor view output to include the values

of component parts of a selected item as well as
the aggregate value.

Collapse Collapse the monitor view output to show only the
aggregate value of a selected item, instead of the
values of each component part.

Deposit... Change the value of a monitored element.

161

Chapter 8. Introduction

Menu Item Description

Toggle Watchpoint Toggle a selected watchpoint.
Typecast Use the submenu to typecast output for a selected

variable to int, long, quad, short, or char*.
Change Radix Use the submenu to change the output radix for a

selected variable to hex, octal, binary, or decimal.
Change All Radix Use the submenu to change the output radix for

all subsequent monitored elements to hex, octal,
binary, or decimal.

Remove Remove an element from the monitor view.
Register Change Radix Use the submenu to change radix for selected

register to hex, octal, binary, or decimal.
Change All Radix Use the submenu to change radix for all registers to

hex, octal, binary, or decimal.
Tasks Abort Request that the selected task be terminated at the

next allowed opportunity.
Activate Make the selected task the active task.
Hold Place the selected task on hold.
No hold Release the selected task from hold.
Make Visible Make the selected task the visible task.
All Use the submenu to abort all tasks or release all

tasks from hold.
Options Views... Display one or more of the following:

Breakpoint view
Monitor view
Instruction view
Tasking view
Register view

Customize Buttons... Modify, add, remove, or resequence a push
button in the push button view and the associated
debugger command.

Save Options Save the current settings of all VSI DECwindows
Motif for OpenVMS features of the debugger
that you can customize interactively, such as the
configuration of windows and views, and push
button definitions. This preserves your current
debugger configuration for the next time you run
the debugger.

Restore Default Options Copy the system default debugger resource file
DECW$SYSTEM_DEFAULTS:VMSDEBUG.DAT
to the user-specific resource file DECW
$USER_DEFAULTS:VMSDEBUG.DAT. The
default options take effect when you next start the
debugger.

162

Chapter 8. Introduction

Menu Item Description

Edit Options File Load and display the user-specific resource file
DECW$USER_DEFAULTS:VMSDEBUG.DAT in
the debug editor for review and modification.

Help On Context Enable the display of context-sensitive online help.
On Window Display information about the debugger.
On Help Display information about the online help system.
On Version Display information about this version of the

debugger.
On Commands Display information about debugger commands.

8.3. Entering Commands at the Prompt
The debugger's VSI DECwindows Motif for OpenVMS GUI is layered on the command interface. The
command line, the last line in the command view and identified by the command-entry prompt (DBG>),
lets you enter debugger commands for the following purposes:

• As an alternative to using the VSI DECwindows Motif for OpenVMS GUI menus and push buttons
for certain operations

• To do debugging tasks not available through the VSI DECwindows Motif for OpenVMS GUI pull-
down menus and push buttons

Figure 8.9 shows the RUN command in the command view.

Figure 8.9. Entering Commands at the Prompt

When you use the VSI DECwindows Motif for OpenVMS interface pull-down menus and push
buttons, the debugger translates your input into debugger commands and echoes these commands
on the command line so that you have a record of your commands. Echoed commands are visually
indistinguishable from commands that you enter explicitly on the command line.

For information about the debugger's command interface, see Part II. For online help about the
commands, see Section 8.4.3.

In addition to entering debugger commands interactively at the prompt, you can also place them in
debugger initialization files and command files for execution within the VSI DECwindows Motif for
OpenVMS environment.

163

Chapter 8. Introduction

You can also take advantage of the keypad support available at the command-entry prompt. (This
support is a subset of the more extensive keypad support provided for the command interface, which is
described in Appendix A.) The commands in Table 8.6are mapped to individual keys on your computer
keypad.

Table 8.6. Keypad Definitions in the VSI DECwindows Motif for OpenVMS Debugger
Interface

Command Corresponding Key

Step/Line KP0
Step/Into GOLD-KP0
Step/Over BLUE-KP0
Examine KP1
Examine^ GOLD-KP1
Go KP,
Show Calls KP5
Show Calls 3 GOLD-KP5

To enter one of these commands, press the key or keys indicated, followed by the Enter key on the
keypad. (The GOLD key is PF1; the BLUE key is PF4.)

For information on changing these key bindings, or binding commands to unassigned keys on the
keypad, see Section 10.10.4.4.

8.3.1. Debugger Commands That Are Not Available in
the VSI DECwindows Motif for OpenVMS Interface
Table 8.7 lists the debugger commands that are disabled in the debugger's VSI DECwindows Motif for
OpenVMS interface. Many of them are relevant only to the debugger's screen mode.

Table 8.7. Debugger Commands Not Available in the VSI DECwindows Motif for
OpenVMS User Interface

ATTACH SELECT
CANCEL MODE (SET, SHOW) ABORT_KEY
CANCEL WINDOW (SET, SHOW) KEY
DEFINE/KEY (SET, SHOW) MARGINS
DELETE/KEY SET MODE [NO]KEYPAD
DISPLAY SET MODE [NO]SCREEN
EXAMINE/SOURCE SET MODE [NO]SCROLL
EXPAND SET OUTPUT [NO]TERMINAL
EXTRACT (SET, SHOW) TERMINAL
HELP 1 (SET, SHOW) WINDOW
MOVE (SET, CANCEL) DISPLAY
SAVE SHOW SELECT

164

Chapter 8. Introduction

SCROLL SPAWN
1Help on commands is available from the Help menu in a debugger window.

The debugger issues an error message if you enter any of these commands on the command line, or if the
debugger encounters one of these commands while executing a command procedure.

8.4. Displaying Online Help About the
Debugger
The following types of online help about the debugger and debugging are available during a debugging
session:

• Context-sensitive help - information about an area or object in a window or dialog box

• Task-oriented help - consists of an introductory help topic named Overview of the Debugger and
several subtopics on specific debugging tasks

• Help on debugger commands and various topics, such as language support

• Help on debugger diagnostic messages

Task-oriented topics related to context-sensitive topics are connected through the list of additional topics
in the help windows.

8.4.1. Displaying Context-Sensitive Help
Context-sensitive help is information about an area or object in a window or a dialog box.

To display context-sensitive help:

1. Choose On Context from the Help menu in a debugger window. The pointer shape changes to a
question mark (?).

2. Place the question mark on an object or area in a debugger window or dialog box.

3. Click MB1. Help for that area or object is displayed in a Help window. Additional topics provide
task-oriented discussions, where applicable.

To display context-sensitive help for a dialog box, you can also click on the Help button in the dialog
box.

Note

Chapter 12, which is organized by task, explains how to use the debugger's Heap Analyzer.

You cannot obtain true context-sensitive help about any push button other than Stop. This is because all
other buttons can be modified or removed.

8.4.2. Displaying the Overview Help Topic and Subtopic
The Overview help topic (Overview of the Debugger) and its subtopics provide task-oriented
information about the debugger and debugging.

165

Chapter 8. Introduction

To display the Overview topic, use either of these techniques:

• Choose On Window from the Help menu in a debugger window.

• Choose Go To Overview from the View menu of a debugger help window.

To display information about a particular topic, choose it from the list of additional topics.

8.4.3. Displaying Help on Debugger Commands
To display help on debugger commands:

1. Choose On Commands from the Help menu of a debugger window.

2. Choose the command name or other topic (for example, Language_Support) from the list of
additional topics.

Note that the Help command is not available through the command line interface in the command view.

8.4.4. Displaying Help on Debugger Diagnostic
Messages
Debugger diagnostic messages are displayed in the command view. To display help on a particular
message:

1. Choose On Commands from the Help menu of a debugger window.

2. Choose Messages from the list of additional topics.

3. Choose the message identifier from the list of additional topics.

166

Chapter 9. Starting and Ending a
Debugging Session
This chapter explains how to:

• Start the debugger (Section 9.1)

• Continue when your program completes execution (Section 9.2)

• Rerun the same program from the current debugging session (Section 9.3)

• Run another program from the current debugging session (Section 9.4)

• Interrupt program execution and debugger operations (Section 9.6)

• End a debugging session (Section 9.7)

• Start the debugger in additional ways for specific purposes (Section 9.8)

• Debug a program already running in a subprocess or detached process (Section 9.5)

9.1. Starting the Kept Debugger
This section explains the most common way to start the debugger from DCL level ($) and bring your
program under debugger control. Section 9.8 explains optional ways to start the debugger.

Starting the kept debugger as explained here enables you to use the Connect (see Section 9.5), Rerun
(see Section 9.3), and Run (see Section 9.4) features.

To start the debugger and bring your program under debugger control:

1. Verify that you have compiled and linked the program as explained in Section 1.2.

2. Enter the following command line:

$ DEBUG/KEEP

By default, the debugger starts up as shown in Figure 9.1. The main window remains empty until
you bring a program under debugger control (Step 4). Upon startup, the debugger executes any user-
defined initialization file (see Section 13.2).

167

Chapter 9. Starting and Ending a Debugging Session

Figure 9.1. Debugger at Startup

3. Bring your program under debugger control using one of the following three techniques:

• If the program is already running in a subprocess or detached process, use the CONNECT
command to bring the program under debugger control. See Section 9.5.

• Run a specified image (this is the most common technique):

a. Choose Run Image... from the File menu on the main window. The Run Image dialog lists
the executable images in your current directory (see Figure 9.2).

b. Click on the name of the image to be debugged. The Image: field displays the image name.

c. If applicable, enter arguments to be passed to the program in theArguments: field. If you
specify a quoted string, you might have to add quotation marks because the debugger strips
quotation marks when parsing the string.

d. Click on OK.

168

Chapter 9. Starting and Ending a Debugging Session

Figure 9.2. Running a Program by Specifying an Image

• Run an image by specifying a DCL command or a symbol for a foreign command:

a. Choose Run Foreign Command... from the File menu on the main window. The Run Foreign
Command dialog is displayed (see Figure 9.3).

b. Enter the symbol in the Foreign Command: field (such a symbol can provide a shortcut
around the directory and file selection process). The foreign command X1, shown in
Figure 9.3, has been previously defined:

$X1 :== RUN MYDISK:[MYDIR.MYSUBDIR]EIGHTQUEENS.EXE

c. Enter any arguments to be passed with the command in the Arguments: field.

d. Click on OK.

169

Chapter 9. Starting and Ending a Debugging Session

Figure 9.3. Running a Program by Specifying a Command Symbol

Once the debugger has control of the program, the debugger:

• Displays the program's source code in the main window, as shown in Figure 9.4.

• Suspends execution at the start of the main program. The current-location pointer to the left of the
source code shows which line of code will be executed next.

Figure 9.4. Source Display at Startup

The message displayed in the command view indicates that this debugging session is initialized for a C
program and that the name of the source module is EIGHTQUEENS.

With certain programs, the debugger sets a temporary breakpoint to suspend program execution at the
start of some initialization code, before the main program, and displays the following message:

Type GO to reach MAIN program
No source line for address: nnnnnnnn

170

Chapter 9. Starting and Ending a Debugging Session

With some of these programs (for example, Ada programs), the breakpoint enables you to debug
the initialization code using full symbolic information.The initialization sets up language-dependent
debugger parameters. These parameters control the way the debugger parses names and expressions,
formats debugger output, and so on.

You can now debug your program as explained in Chapter 10.

Note the following restrictions about running a program under debugger control:

• You cannot use the procedure in this section to connect the debugger to a running program (see
Section 9.8.2).

• To run a program under debugger control over a network link, you must use the debugger client/
server interface. See Section 9.9 for more information.

If you try to run a program that does not exist, or misspell the name of a program that does exist, the
following error messages are displayed in the DEC term window, rather than in the command view:

%DCL-W-ACTIMAGE, error activating image-CLI-E-IMAGEFNF, image file not
 found

9.2. When Your Program Completes Execution
When your program completes execution normally during a debugging session, the debugger issues the
following message:

'Normal successful completion'

You then have the following options:

• You can rerun your program from the same debugging session (see Section 9.3).

• You can run another program from the same debugging session (see Section 9.4).

• You can end the debugging session (see Section 9.7).

9.3. Rerunning the Same Program from the
Current Debugging Session
When running the kept debugger (see Section 9.1), you can rerun the program currently under debugger
control at any time during a debugging session.

To rerun the program:

1. Choose Rerun Same... from the File menu on the main window. The Rerun dialog is displayed (see
Figure 9.5).

2. Enter any arguments to be passed to the program, if required, in the Arguments: field. If you specify
a quoted string, you might have to add quotation marks because the debugger strips quotation marks
when parsing the string.

3. Choose whether or not to keep the current state of any breakpoints, tracepoints, or static watchpoints
that you previously set, activated, or deactivated(see Section 10.4 and Section 10.5.5). Nonstatic
watchpoints might or might not be saved, depending on the scope of the variable being watched
relative to the main program unit (where execution restarts).

171

Chapter 9. Starting and Ending a Debugging Session

4. Click on OK.

Figure 9.5. Rerunning the Same Program

When you rerun a program, it is in the same initial state as a program that is brought under debugger
control as explained in Section 9.1, except for any saved breakpoints, tracepoints, or static watchpoints.
The source display and current location pointer are updated accordingly.

When you rerun a program, the debugger uses the same version of the image that is currently under
debugger control. To debug a different version of that program (or a different program) from the same
debugging session, choose Run Image... or Run Foreign Command.. from the File menu on the main
window (see Section 9.1).

9.4. Running Another Program from the
Current Debugging Session
You can bring another program under debugger control at any time during a debugging session, if you
started the debugger as explained in Section 9.1. Follow the procedure in that section for bringing a
program under debugger control (also note the restrictions about using that procedure).

9.5. Debugging an Already Running Program
This section describes how to debug a program that is already running in a subprocess or in a detached
process. Perform the following steps:

1. Start the Kept debugger configuration using the DCL command:

$ DEBUG/KEEP

2. At the DBG> prompt, use the CONNECT command to interrupt the program and bring it under debug
control. CONNECT can be used to attach to a program running in a subprocess or attach to a program
running in a detached process. Detached processes must meet both of the following requirements:

• The detached process UIC must be in the same group as your process

• The detached process must have a CLI mapped

The second requirement effectively means that the program must have been started with a command
similar to this:

172

Chapter 9. Starting and Ending a Debugging Session

$ RUN/DETACH/INPUT=xxx.com SYS$SYSTEM:LOGINOUT

where

xxx.com

is a command procedure that starts the program with /NODEBUG.

Once you have connected to the program, the rest of the debugging session is the same as a normal
debugger session.

3. When you have finished debugging the program, do either of the following:

• Use the DISCONNECT command to release debugger control of the program. The program
continues execution.

• Exit the debugger. The program will terminate.

9.6. Interrupting Program Execution and
Aborting Debugger Operations
To interrupt program execution during a debugging session, click on the Stop button on the push button
view (see Figure 8.3).This is useful if, for example, the program is in an infinite loop.

To abort a debugger operation in progress, click on Stop. This is useful if, for example, the debugger is
displaying along stream of data.

Clicking on Stop does not end the debugging session. Clicking on Stop has no effect when the program
is not running or when the debugger is not executing a command.

9.7. Ending a Debugging Session
To end a debugging session and terminate the debugger, choose Exit Debugger from the File menu on
the main window, or enter EXIT at the prompt (to avoid confirmation dialogue). This returns control to
system level.

To rerun your program from the current debugging session, see Section 9.3.

To run another program from the current debugging session, see Section 9.4.

9.8. Additional Options for Starting the
Debugger
In addition to the startup procedure described in Section 9.1, the following options are available for
starting the debugger from DCL level ($):

• Start the debugger by running the program to be debugged with the DCL command RUN (see
Section 9.8.1).

• Interrupt a running program by pressing Ctrl/Y and then start the debugger using the DCL
command DEBUG (see Section 9.8.2).

173

Chapter 9. Starting and Ending a Debugging Session

• Override the debugger's default (VSI DECwindows Motif for OpenVMS user interface (see
Section 9.8.3) to achieve the following:

• Display the VSI DECwindows Motif for OpenVMS user interface on another workstation

• Display the command interface in a DECterm window along with any program input/output (I/
O)

• Display the command interface and program I/O in separate DECterm windows

In all cases, before starting the debugger, verify that you have compiled and linked the modules of your
program (as explained in Section 1.2).

9.8.1. Starting the Debugger by Running a Program
You can start the debugger and also bring your program under debugger control in one step by entering
the DCL command RUN filespec (assuming the program was compiled and linked with the
/DEBUG qualifier).

However, you cannot then use the Rerun or Run features explained in Section 9.3 and Section 9.4,
respectively. To rerun the same program or run a new program under debugger control, you must first
exit the debugger and start it again.

To start the debugger by running a program, enter the DCL command RUN filespec to start the
debugger. For example:

$ RUN EIGHTQUEENS

By default, the debugger starts up as shown in Figure 9.4, executing any user-defined initialization
file and displaying the program's source code in the main window. The current-location pointer shows
that execution is paused at the start of the main program. The debugger sets the language-dependent
parameters to the source language of the main program unit.

For more information about debugger startup, see Section 9.1.

9.8.2. Starting the Debugger After Interrupting a
Running Program
You can bring a program that is executing freely under debugger control. This is useful if you suspect
that the program might be in an infinite loop or if you see erroneous output.

To bring your program under debugger control:

1. Enter the DCL command RUN /NODEBUG filespec to execute the program without debugger
control.

2. Press Ctrl/Y to interrupt the executing program. Control passes to the DCL command interpreter.

3. Enter the DCL command DEBUG to start the debugger.

For example:

$ RUN/NODEBUG EIGHTQUEENS
⋮
Ctrl/Y

174

Chapter 9. Starting and Ending a Debugging Session

Interrupt
$ DEBUG
[starts debugger]

At startup, the debugger displays the main window and executes any user-defined initialization file, and
sets the language-dependent parameters to the source language of the module in which execution was
interrupted.

To help you determine where execution was interrupted:

1. Look at the main window.

2. Enter the SET MODULES /CALLS command at the command-entry prompt.

3. Display the Call Stack menu on that window to identify the sequence of routine calls on the call
stack. The routine at level 0 is the routine in which execution is currently paused(see Section 10.3.1).

When you start the debugger in this manner, you cannot then use the Rerun or Run features explained
in Section 9.3 and Section 9.4, respectively. To rerun the same program or run a new program under
debugger control, you must first exit the debugger and start it again.

For more information about debugger startup, see Section 9.1.

9.8.3. Overriding the Debugger's Default Interface
By default, if your workstation is running VSI DECwindows Motif for OpenVMS, the debugger
starts up in the VSI DECwindows Motif for OpenVMS user interface, which is displayed on the
workstation specified by the VSI DECwindows Motif for OpenVMS application wide logical name
DECW$DISPLAY.

This section explains how to override the debugger's default VSI DECwindows Motif for OpenVMS user
interface to achieve the following:

• Display the debugger's VSI DECwindows Motif for OpenVMS user interface on another workstation

• Display the debugger's command interface in a DECterm window along with any program I/O

• Display the debugger's command interface and program I/O in separate DECterm windows

The logical name DBG$DECW$DISPLAY enables you to override the default interface of the debugger.
In most cases, there is no need to define DBG$DECW$DISPLAY because the default is appropriate.

Section 9.8.3.4 provides more information about the logical names DBG$DECW$DISPLAY and DECW
$DISPLAY.

9.8.3.1. Displaying the Debugger's VSI DECwindows Motif for
OpenVMS User Interface on Another Workstation
If you are debugging a VSI DECwindows Motif for OpenVMS application that uses most of the screen
(or if you are debugging pop-ups in a Motif application), you might find it useful to run the program on
one workstation and display the debugger's VSI DECwindows Motif for OpenVMS user interface on
another. To do so:

1. Enter a logical definition with the following syntax in the DECterm window from which you plan to
run the program:

175

Chapter 9. Starting and Ending a Debugging Session

DEFINE/JOB DBG$DECW$DISPLAY workstation_pathname

The path name for the workstation where the debugger's VSI DECwindows Motif for OpenVMS
user interface is to be displayed is workstation_pathname. See the description of the
SET DISPLAY command in the VSI OpenVMS DCL Dictionary: N-Z for the syntax of this path
name.

It is recommended that you use a job definition. If you use a process definition, it must not have the
CONFINE attribute.

2. Run the program from that DECterm window. The debugger's VSI DECwindows Motif for
OpenVMS user interface is now displayed on the workstation specified by DBG$DECW$DISPLAY.
The application's windowing interface is displayed on the workstation where it is normally displayed.

3. Use client/server mode (see Section 9.9.2).

9.8.3.2. Displaying the Debugger's Command User Interface in a
DECterm Window
To display the debugger's command interface in a DECterm window, along with any program I/O:

1. Enter the following definition in the DECterm window from which you plan to start the debugger:

$ DEFINE/JOB DBG$DECW$DISPLAY " "

You can specify one or more spaces between the quotation marks. You should use a job definition
for the logical name. If you use a process definition, it must not have the CONFINE attribute.

2. Start the debugger from that DECterm window (see Section 9.1). The debugger's command interface
is displayed in the same window.

For example:

$ DEFINE/JOB DBG$DECW$DISPLAY " "
$ DEBUG/KEEP
 Debugger Banner and Version Number
DBG>

You can now bring your program under debugger control as explained in Section 9.1.

9.8.3.3. Displaying the Command Interface and Program Input/
Output in Separate DECterm Windows
This section describes how to display the debugger's command interface in a DECterm window other
than the DECterm window in which you start the debugger. This separate window is useful when using
the command interface to debug a screen-oriented program as follows:

• The program's input/output (I/O) is displayed in the window from which you start the debugger.

• The debugger's I/O, including any screen-mode display, is displayed in the separate window.

The effect is the same as entering the SET MODE SEPARATE command at the DBG> prompt
on a workstation running VWS rather than VSI DECwindows Motif for OpenVMS. (The
SET MODE SEPARATE command is not valid when used in a DECterm window.)

176

Chapter 9. Starting and Ending a Debugging Session

The following example shows how to display the debugger's command interface in a separate debugger
window titled Debugger.

1. Create the command procedure SEPARATE_WINDOW.COM shown in Example 9.1.

Example 9.1. Command Procedure SEPARATE_WINDOW.COM

$! Simulates effect of SET MODE SEPARATE from a DECterm window
$!
$ CREATE/TERMINAL/NOPROCESS -
 /WINDOW_ATTRIBUTES=(TITLE="Debugger", -
 ICON_NAME="Debugger", ROWS=40)-
 /DEFINE_LOGICAL=(TABLE=LNMJOB, DBGINPUT, DBG$OUTPUT)
$ ALLOCATE DBG$OUTPUT
$ EXIT$!
$! The command CREATE/TERMINAL/NOPROCESS creates a DECterm
$! window without a process.
$!
$! The /WINDOW_ATTRIBUTES qualifier specifies the window's
$! title (Debugger), icon name (Debugger), and the number
$! of rows in the window (40).
$!
$! The /DEFINE_LOGICAL qualifier assigns the logical names
$! DBG$INPUT and DBG$OUTPUT to the window, so that it becomes
$! the debugger input and output device.
$!
$! The command ALLOCATE DBG$OUTPUT causes the separate window
$! to remain open when you end the debugging session.

2. Execute the command procedure as follows:

$ @SEPARATE_WINDOW
%DCL-I-ALLOC, _MYNODE$TWA8: allocated

A new DECterm window is created with the attributes specified in SEPARATE_WINDOW.COM.

3. Follow the steps in Section 9.8.3.2 to display the debugger's command interface. The interface is
displayed in the new window.

4. You can now enter debugger commands in the debugger window. Program I/O is displayed in the
DECterm window from which you started the debugger.

5. When you end the debugging session with the EXIT command, control returns to the DCL prompt
in the program I/O window but the debugger window remains open.

6. To display the debugger's command interface in the same window as the program's I/O (as in
Section 9.8.3.2), enter the following commands:

$ DEASSIGN/JOB DBG$INPUT
$ DEASSIGN/JOB DBG$OUTPUT

The debugger window remains open until you close it explicitly.

9.8.3.4. Explanation of DBG$DECW$DISPLAY and DECW$DISPLAY
By default, if your workstation is running VSI DECwindows Motif for OpenVMS, the debugger
starts up in the VSI DECwindows Motif for OpenVMS user interface, which is displayed on the

177

Chapter 9. Starting and Ending a Debugging Session

workstation specified by the VSI DECwindows Motif for OpenVMS application wide logical name
DECW$DISPLAY.DECW$DISPLAY is defined in the job table by File View or DECterm and points to
the display device for the workstation.

For information about DECW$DISPLAY, see the description of the DCL commands SET DISPLAY
and SHOW DISPLAY in the VSI OpenVMS DCL Dictionary: N-Z.

The logical name DBG$DECW$DISPLAY is the debugger-specific equivalent of DECW
$DISPLAY.DBG$DECW$DISPLAY is similar to the debugger-specific logical names DBG$INPUT
and DBG$OUTPUT. These logical names enable you to reassign SYS$INPUT and SYS$OUTPUT,
respectively, to specify the device on which debugger input and output are to appear.

The default user interface of the debugger results when DBG$DECW$DISPLAY is undefined or has the
same translation as DECW$DISPLAY. By default, DBG$DECW$DISPLAY is undefined.

The algorithm that the debugger follows when using the logical definitions of DECW$DISPLAY and
DBG$DECW$DISPLAY is as follows:

1. If the logical name DBG$DECW$DISPLAY is defined, then use it. Otherwise, use the logical name
DECW$DISPLAY.

2. Translate the logical name. If its value is not null (if the string contains characters other than spaces),
the VSI DECwindows Motif for OpenVMS user interface is displayed on the specified workstation.
If the value is null (if the string consists only of spaces), the command interface is displayed in the
DECterm window.

To enable the OpenVMS Debugger to start up in the VSI DECwindows Motif for OpenVMS user
interface, first enter one of the following DCL commands:

$ DEFINE DBG$DECW$DISPLAY "WSNAME::0"
$ SET DISPLAY/CREATE/NODE=WSNAME

where WSNAME is the node name of your workstation.

9.9. Starting the Motif Debug Client
The OpenVMS Debugger Version 7.2 features a client/server interface that allows you to debug
programs running on OpenVMS on a VAX or Alpha CPU from a client interface running on the same or
separate system.

The debugger client/server retains the functionality of the kept debugger, but splits the debugger into
two components:the debug server and the debug client. The debug server runs on an OpenVMS system,
and is just like the kept debugger without the user interface. The debug client contains the user interface,
and runs on an OpenVMS system using VSI DECwindows Motif for OpenVMS, or on a PC running
Microsoft Windows 95 or Microsoft Windows NT.

9.9.1. Software Requirements
The debug server requires OpenVMS Version 7.2 or later.

The debug client can run on any of the following:

• OpenVMS Version 7.2 or later, along with VSI DECwindows Motif for OpenVMS Version 1.2-4

• Microsoft Windows 95

178

Chapter 9. Starting and Ending a Debugging Session

• Microsoft Windows NT Version 3.51 or later (Intel or Alpha)

The OpenVMS Debugger client/server configuration also requires that the following be installed on the
OpenVMS node running the server:

• A TCP/IP stack

• DCE RPC

Note

If you are running TCP/IP Services for OpenVMS (UCX) Version 4.1, you must have ECO2 installed.
You can also run a later version of UCX.

The OpenVMS Version 7.2 installation procedures automatically install DCE RPC.

9.9.2. Starting the Server
You can start the debug server after logging in directly to the OpenVMS system, or you may find it more
convenient to log in remotely with a product such as eXcursion, or an emulator such as Telnet.

To start the debug server, enter the following command:

$ DEBUG/SERVER

The server displays its network binding strings. The server port number is enclosed in square brackets
([]). For example:

$ DEBUG/SERVER%DEBUG-I-SPEAK: TCP/IP: YES, DECnet: YES, UDP: YES
%DEBUG-I-WATCH: Network Binding: ncacn_ip_tcp:16.32.16.138[1034]
%DEBUG-I-WATCH: Network Binding: ncacn_dnet_nsp:19.10[RPC224002690001]
%DEBUG-I-WATCH: Network Binding: ncadg_ip_udp:16.32.16.138[1045]
%DEBUG-I-AWAIT: Ready for client connection...

Use one of the network binding strings to identify this server when you connect from the client (see
Section 9.9.4). The following table matches the network binding string prefix with its associated network
transport:

Network Transport Network Binding String Prefix

TCP/IP ncacn_ip_tcp
DECnet ncacn_dnet_nsp
UDP ncadg_ip_udp

Note

You can usually identify the server using only the node name and the port number. For example,
nodnam[1034].

Messages and program output appear by default in the window in which you start the server. You can
redirect program output to another window as required.

The following example contains an error message that indicates that DCE is not installed:

$ debug/server

179

Chapter 9. Starting and Ending a Debugging Session

%LIB-E-ACTIMAGE, error activating image disk:[SYSn.SYSCOMMON.][SYSLIB]DTSS
$SHR.EXE;
-RMS-E-FNF, file not found

This indicates that DCE is installed but not configured.

9.9.3. Primary Clients and Secondary Clients
The debugger client/server interface allows more than one client to be connected to the same server. This
allows team debugging, classroom sessions, and other applications.

The primary client is the first client to connect to the server. A secondary client is an additional client
that has connected to the same server. The primary client controls whether or not any secondary clients
can connect to the server.

Section 9.9.4 describes how to specify the number of secondary clients allowed in a session.

9.9.4. Starting the Motif Client
A session is the connection between a particular client and a particular server. Each session is identified
within the client by the network binding string the client used to connect to the server. Once the debug
server is running, start the Motif debug client. To do so, enter the following command:

$ DEBUG/CLIENT

To establish a session from the Motif debug client, click on Server Connection from the File menu.
The Server Connection dialog displays, in the Connection list, the default network binding string. This
string is based on the last string you entered, or the node on which the client is running. There is not
necessarily a server associated with the default binding string. Figure 9.6 shows the Server Connection
dialog.

Figure 9.6. Debug Server Connection Dialog

From the buttons at the bottom of the Server Connection dialog, you can

180

Chapter 9. Starting and Ending a Debugging Session

• Connect to the selected server to begin and activate a new session

• Disconnect from a session

• Test whether the session is still available

• Stop the server

• Cancel the connection operation and dismiss the dialog

In addition, the Options button invokes the Server Options dialog, which allows you to select the
network transport to be used (see Section 11.5.1).

The Server Options dialog also allows you to select the number of secondary clients (0-31) allowed for a
new session.

Figure 9.7 shows the Server Options dialog.

Figure 9.7. Server Options Dialog

To connect the client to a server, perform the following steps:

1. Open the File menu.

2. Click Server Connection.

3. Enter the server network binding string in the Connection field, or select the default string.

4. Click Options.

5. In the Server Options dialog, click on the network transport: TCP/IP, DECnet, or UDP.

6. In the Server Options dialog. Select the number of secondary clients (0-31) to be allowed.

7. Click OK to dismiss the Server Options dialog.

8. In the Server Connection dialog, click Connect.

You can establish connections to an unlimited number of servers by repeating the sequence above and
specifying the new network binding string each time.

9.9.5. Switching Between Sessions
Each time you connect to a server and initiate a session, the session is listed in the Active Sessions list
in the Server Connection dialog (see Figure 9.8). You can switch back and forth between sessions. Each

181

Chapter 9. Starting and Ending a Debugging Session

time you switch to a new session, the debugger updates the contents of any open debugger displays with
the new context.

To switch to a different session, perform the following steps:

1. Open the File menu.

2. Click Server Connection.

3. Click the Active Sessions list to display the list of active sessions.

4. Double click the required session in the Active Sessions list. This selects the session as the current
session, dismisses the Server Connection dialog, and updates the debugger displays with the current
context.

Note that you cannot change the number of secondary clients allowed on a session while that session
is active. To change the number of clients allowed on a session, you must be the primary client, and
perform the following steps:

1. Open the File menu.

2. Specify the network binding string of the session.

3. Click Disconnect.

4. Click Options.

5. In the Server Options dialog, click on the network transport: TCP/IP, DECnet, or UDP.

6. In the Server Options dialog, select the number of secondary clients (0-31) to be allowed.

7. Click OK to dismiss the Server Options dialog.

8. In the Server Connection dialog, click Connect.

Figure 9.8. Active Sessions List

182

Chapter 9. Starting and Ending a Debugging Session

9.9.6. Closing a Client/Server Session
Click on Exit Debug? on the File menu to invoke the Confirm Exit dialog. Figure 9.9 shows the Confirm
Exit dialog.

Figure 9.9. Confirm Exit Dialog

Once you have invoked the Confirm Exit dialog, perform one of the following:

• To terminate both the client and the server (default) click OK.

• To dismiss the Confirm Exit dialog without taking any action, click Cancel.

• To terminate only the debug client, perform the following steps:

1. Click Exit Server.

2. Click OK.

• To terminate only the debug server, perform the following steps:

1. Click Exit Client.

2. Click OK.

If you do not terminate the debug server, you can connect to the server from another debug client. If you
do not terminate the client, you can connect to another server for which you know the network binding
string.

183

Chapter 9. Starting and Ending a Debugging Session

184

Chapter 10. Using the Debugger
This chapter explains how to:

• Display the source code of your program (Section 10.1)

• Edit your program under debugger control (Section 10.2)

• Execute your program under debugger control (Section 10.3)

• Suspend execution with breakpoints (Section 10.4)

• Examine and manipulate program variables (Section 10.5)

• Access program variables (Section 10.6)

• Display and modify values stored in registers (Section 10.7)

• Display the decoded instruction stream of your program (Section 10.8)

• Debug tasking programs (Section 10.9)

• Customize the debugger's VSI DECwindows Motif for OpenVMS user interface (Section 10.10)

The chapter describes window actions and window menu choices, but you can perform most common
debugger operations by choosing items from context-sensitive pop-up menus. To access these menus,
click MB3 while the mouse pointer is in the window area.

You can also enter commands at the VSI DECwindows Motif for OpenVMS command prompt. For
information about entering debugger commands, see Section 8.3.

For the source code of programs EIGHTQUEENS.EXE and 8QUEENS.EXE, shown in the figures of
this chapter, see Appendix D.

10.1. Displaying the Source Code of Your
Program
The debugger displays the source code of your program in the main window (see Figure 10.1).

Figure 10.1. Source Display

185

Chapter 10. Using the Debugger

Whenever execution is suspended (for example, at a breakpoint), the debugger updates the source display
by displaying the code surrounding the point at which execution is paused. The current-location pointer,
to the left of the source code, marks which line of code will execute next. (A source line corresponds to
one or more programming-language statements, depending on the language and coding style.)

By default, the debugger displays compiler-generated line numbers to the left of the source code. These
numbers help identify breakpoints, which are listed in the breakpoint view (see Section 10.4.4). You can
choose not to display line numbers so that more of the source code can show in the window. To hide or
display line numbers, toggle Display Line Numbers from the File menu on the main window.

The Call Stack menu, between the source view and the push button view, shows the name of the routine
whose source code is displayed.

The current-location pointer is normally filled in as shown in Figure 10.1. It is cleared if the displayed
code is not that of the routine in which execution is paused (see Section 10.1.3 and Section 10.6.2).

You can use the scroll bars to show more of the source code. However, you can scroll vertically through
only one module of your program at a time. (A module corresponds generally to a compilation unit.
With many programming languages, a module corresponds to the contents of a source file. With some
languages, such as Ada, a source file might contain one or more modules.)

The following sections explain how to display source code for other parts of your program so that you
can set breakpoints in various modules, and so on. Section 10.1.3 explains what to do if the debugger
cannot find source code for display. Section 10.6.2 explains how to display the source code associated
with routines that are currently active on the call stack.

After navigating the main window, you can redisplay the location at which execution is paused by
clicking on the Call Stack menu.

If your program was optimized during compilation, the source code displayed might not reflect the actual
contents of some program locations (see Section 1.2).

10.1.1. Displaying the Source Code of Another Routine
To display source code of another routine:

1. Choose Browse Sources from the File menu on the main window (see Figure 10.2).

Select SYMBOLIC display the names of all modules linked in the image. Select ALL to display the
names of only those modules for which the debugger has symbolic information.

The Source Browser dialog box displays the name of your executable image, which is highlighted,
and the class of shareable images linked with it (SYMBOLIC or ALL). The name of a linked image
is dimmed if no symbolic information is available for that image.

2. Double click on the name of your executable image. The names of the modules in that image are
displayed (indented) under the image name.

3. Double click on the name of the module containing the routine of interest. The names of the routines
in that module are displayed (indented) under the module name, and the Display Source button is
now highlighted.

4. Click on the name of the routine whose source code you want to display.

5. Click on the Display Source push button. The debugger displays in the source view the source code
of the target routine, along with an empty breakpoint button to the left of the source code. If the
instruction view is open, this display is updated to show the machine code of the target routine.

186

Chapter 10. Using the Debugger

Section 10.6.2 describes an alternative way to display routine source code for routines currently active on
the call stack.

Figure 10.2. Displaying Source Code of Another Routine

10.1.2. Displaying the Source Code of Another Module
To display source code of another module:

1. Choose Browse Sources from the File menu on the main window.

Select SYMBOLIC display the names of all modules linked in the image. Select ALL to display the
names of only those modules for which the debugger has symbolic information.

The Source Browser dialog box displays the name of your executable image, which is highlighted,
and the class of shareable images linked with it (SYMBOLIC or ALL). The names of the shareable
images are dimmed if no symbolic information is available for them.

187

Chapter 10. Using the Debugger

2. Double click on the name of your executable image. The names of the modules in that image are
displayed (indented) under the image name.

3. Click on the name of the module whose source code you want to display. The Display Source button
is now highlighted.

4. Click on Display Source. The source display in the main window now shows the routine's source
code. (If the instruction display in the instruction view is open, this display is updated to show the
routine's instruction code.)

10.1.3. Making Source Code Available for Display
In certain cases, the debugger cannot display source code. Possible causes are:

• Execution might be paused within a module of your program that was compiled or linked without
the debug option (see Section 1.2).

• Execution might be paused within a system or library routine for which no symbolic information
is intended to be available. In such cases you can quickly return execution to the calling routine by
clicking one or more times on the S/ret button in the push button view (see Section 10.3.5).

• The source file might have been moved to a different directory after it was compiled. Section 10.1.4
explains how to tell the debugger whereto look for source files.

If the debugger cannot find source code for display, it tries to display the source code for the next routine
down on the call stack for which source code is available. If the debugger can display source code for
such a routine, the current-location pointer is moved to point to the source line to which execution
returns in the calling routine.

10.1.4. Specifying the Location of Source Files
Information about the characteristics and the location of source files is embedded in the debug symbol
table of your program. If a source file has been moved to a different directory since compile time, the
debugger might not find the file. To direct the debugger to your source files, use the SET SOURCE
command at the DBG> prompt (see Section 6.2).

10.2. Editing Your Program
The debugger provides a simple text editor you can use to edit your source files while debugging your
program (see Figure 10.3).

The text editor available through the debugger's VSI DECwindows Motif for OpenVMS menu interface
is a simple convenience feature, not intended to replace sophisticated text editors such as the Language-
Sensitive Editor (LSE). You cannot substitute a more sophisticated editor for the text editor invoked with
the Edit File item in the Commands menu. To use a different editor, enter the EDIT command at the
DBG> prompt in the command view (see EDIT in the Command Reference Dictionary of this manual).

Note

When you enter an EDIT command at the command prompt, the debugger uses the DECterm window
that invoked the debugging session as the user-defined-editor window (as opposed to the debugger's
built-in editor, which is hardwired to the COMMANDS EDIT FILE pull-down menu). This behavior
constitutes a tradeoff that allows a more flexible choice of editors. If you inadvertently exit this

188

Chapter 10. Using the Debugger

DECterm window using FILE EXIT or MWM Close, the debugging session terminates abruptly,
having lost its parent window.

Figure 10.3. Editor Window

To invoke the editor, choose the Edit File item in the Commands menu on the main window. By default,
the editor opens a buffer and displays the module currently displayed in the source view. The buffer is
named with the file specification of the file in the buffer. If no file is displayed in the source view, the
editor displays an empty text buffer, called main_buffer. The buffer name appears in the buffer menu,
which is just under the menu bar of the editor view.

The editor allows you to create any number of text buffers by choosing New (for empty text buffers)
or Open (for existing files) from the File menu. The name of each text buffer appears in the buffer
menu. You can cut, copy, and paste text from buffer to buffer by choosing items from the Edit menu and
selecting buffers from the buffer menu.

You can perform forward and backward search and replace operations by entering strings in the Find
and Replace with fields and clicking on a directional arrow. You can perform a repeated search for
the string by continuing to press the Return key. You can also continue a search by choosing the Find/
Replace Next or Find/Replace Previous items in the Edit menu.

To save the file, choose the Save or Save As... items from the File menu. If you do not save your
corrections before closing a modified buffer or exiting the debugger, the debugger displays a warning
message.

To test any changes to the source code:

1. Select a DECterm window separate from that in which the debugger is running.

2. Recompile the program.

3. Relink the program.

4. Return to the debugging session.

189

Chapter 10. Using the Debugger

5. Choose the Run Image... item in the File menu on the main window.

10.3. Executing Your Program
This section explains how to:

• Determine where execution is currently paused within your program

• Start or resume program execution

• Execute the program one source line at a time, step by step

For information about rerunning your program or running another program from the current debugging
session, see Section 9.3 and Section 9.4.

10.3.1. Determining Where Execution Is Currently
Paused
To determine where execution is currently paused within your program:

1. If the current-location pointer is not visible in the main window, click on the Call Stack menu of that
window to display the pointer (see Figure 10.1).

2. Look at the current-location pointer:

• If the pointer is filled in, it marks the source line whose code will execute next (see
Section 10.1). The Call Stack menu always shows the routine at scope level 0 (where execution
is paused) when the pointer is filled in.

• If the pointer is cleared, the source code displayed is that of a calling routine, and the pointer
marks the source line to which execution returns in that routine:

• If the Call Stack menu shows level 0, source code is not available for display for the routine
in which execution is paused (see Section 10.1.3).

• If the Call Stack menu shows a level other than 0, you are displaying the source code for a
calling routine (see Section 10.6.2).

To list the sequence of routine calls that are currently active on the call stack, click on the Call Stack
menu. Level 0 denotes the routine in which execution is paused, level 1 denotes the calling routine, and
so on.

10.3.2. Starting or Resuming Program Execution
To start program execution or resume execution from the current location, click on the Go button in the
push button view (see Figure 8.3).

Letting your program run freely without debugger intervention is useful in situations such as the
following:

• To test for an infinite loop. In this case, you start execution; then, if your program does not terminate
and you suspect that it is looping, click on the Stop button. The main window will show where you
interrupted program execution, and the Call Stack menu will identify the sequence of routine calls at
that point (see Section 10.3.1).

190

Chapter 10. Using the Debugger

• To execute your program directly to a particular location. In this case, you first set a breakpoint at
the location (see Section 10.4) and then start execution.

Once started, program execution continues until one of the following events occurs:

• The program completes execution.

• A breakpoint is reached (including a conditional breakpoint whose condition is true).

• A watch point is triggered.

• An exception is signaled.

• You click on the Stop button on the push button view.

Whenever the debugger suspends execution of the program, the main window display is updated and the
current-location pointer marks which line of code will execute next.

10.3.3. Executing Your Program One Source Line at a
Time
To execute one source line of your program, click on the STEP button in the push button view or enter
the STEP command in the command view. This debugging technique (called stepping) is one of the
most commonly used.

After the line executes, the source view is updated and the current-location pointer marks which line of
code will execute next.

Note the following points about source lines and the stepping behavior:

• A source line can consist of one or more programming language elements depending on the language
and coding style used.

• When you click on the STEP button, the debugger executes one executable line and suspends
execution at the start of the next executable line, skipping over any intervening non executable lines.

• Executable lines are those for which instructions were generated by the compiler (for example, lines
with routine call or assignment statements). Executable lines have a button to their left in the main
window.

• Examples of non executable lines are comment lines or lines with variable declarations without value
assignments. Non executable lines do not have a button to their left in the main window.

Keep in mind that if you optimized your code at compilation time, the source code displayed might not
reflect the code that is actually executing (see Section 1.2).

10.3.4. Stepping into a Called Routine
When program execution is paused at a routine call statement, clicking on the STEP button typically
executes the called routine in one step (depending on the coding style used), and the debugger suspends
execution at the next source line in the calling routine(assuming no breakpoint was set within the called
routine). This enables you to step through the code quickly without having to trace execution through
any called routines (some of which might be system or library routines). This is called stepping over
called routines.

191

Chapter 10. Using the Debugger

To step into a called routine so that you can execute it one line at a time:

1. Suspend execution at the routine call statement, for example, by setting a breakpoint (see
Section 10.4) and then clicking on the Go button in the push button view.

2. When execution is paused at the call statement, click on the S/in button in the push button view, or
enter the STEP/INTO command at the DBG> prompt. This moves execution just past the start of
the called routine.

Once execution is within the called routine, click on the STEP button to execute the routine line by line.

Clicking on the S/in button when execution is not paused at a routine call statement is the same as
clicking on the STEP button.

10.3.5. Returning from a Called Routine
When execution is suspended within a called routine, you can execute your program directly to the end
of that routine by clicking on the S/ret button in the push button view, or enter the STEP/RETURN
command at the DBG> prompt.

The debugger suspends execution just before the routine's return instruction executes. At that point, the
routine's call frame has not been deleted from the call stack, so you can still get the values of variables
local to that routine, and so on.

You can also use the S/call button in the push button view (or enter the STEP/CALL command at the
DBG> prompt) to execute the program directly to the next Return or Call instruction.

The S/ret button is particularly useful if you have inadvertently stepped into a system or library routine
(see Section 10.1.3).

10.4. Suspending Execution by Setting
Breakpoints
 A breakpoint is a location in your program at which you want execution to stop so that you can check
the current value of a variable, step into a routine, and so on.

When using the debugger's VSI DECwindows Motif for OpenVMS user interface, you can set
breakpoints on:

• Specific source lines

• Specific routines (functions, subprograms, and so on)

• Exceptions signaled during the execution of your program

Note

If you are stopped at a breakpoint in a routine that has control of the mouse pointer by a Pointer Grab or
a Keyboard Grab, your workstation will hang.

To work around this problem, debug your program using two workstations. For more information, see
Section 9.8.3.1.

192

Chapter 10. Using the Debugger

The debugger provides two ways to qualify breakpoints:

• You can set a conditional breakpoint.The debugger suspends execution at a conditional breakpoint
only when a specified relational expression is evaluated as true.

• You can set an action breakpoint. The debugger executes one or more specified system-specific
commands when it reaches the breakpoint.

You can set a breakpoint that is both a conditional and action breakpoint.

The following sections explain these breakpoint options.

10.4.1. Setting Breakpoints on Source Lines
You can set a breakpoint on any source line that has a button to its left in the source display. These
are the lines for which the compiler has generated executable code (routine declarations, assignment
statements, and so on).

To set a breakpoint on a source line:

1. Find the source line on which you want to set a breakpoint (see Section 10.1).

2. Click on the button to the left of that line. (The breakpoint is set when the button is filled in.)
The breakpoint is set at the start of the source line - that is, on the first machine-code instruction
associated with that line.

Figure 10.4 shows that a breakpoint has been set on the start of line 37.

Figure 10.4. Setting a Breakpoint on a Source Line

10.4.2. Setting Breakpoints on Routines with Source
Browser
Setting a breakpoint on a routine enables you to move execution directly to the routine and inspect the
local environment.

193

Chapter 10. Using the Debugger

To set a breakpoint on a routine:

1. Choose Browse Sources from the File menu on the main window (see Figure 10.2).

Select SYMBOLIC to display the names of all modules linked in the image. Select ALL to display
the names of only those modules for which the debugger has symbolic information.

The Source Browser dialog box displays the name of your executable image, which is highlighted,
and the class of shareable images linked with it (SYMBOLIC or ALL). The name of a linked image
is dimmed if no symbolic information is available for that image.

2. Double click on the name of the executable image. The names of the modules in that image are
displayed (indented) under the image name.

3. Double click on the name of the target module. The names of the routines in that module are
displayed (indented) under the module name (see Figure 10.5).

4. Double click on the name of the routine on which to set a breakpoint. The debugger echoes the
results of your SET BREAKPOINT command on the command line in the command view.

Alternatively, click once on the name of the routine, then click the Set Breakpoint button in the
Source Browser view. The debugger echoes the results of your SET BREAKPOINT command on
the command line in the command view.

194

Chapter 10. Using the Debugger

Figure 10.5. Setting a Breakpoint on a Routine

10.4.3. Setting an Exception Breakpoint
An exception breakpoint suspends execution when an exception is signaled and before any exception
handler declared by your program executes. This enables you to step into the exception handler (if one is
available) to check the flow of control.

To set an exception breakpoint, choose On Exception from the Break menu on the main window or the
optional views window.

10.4.4. Identifying the Currently Set Breakpoints
There are three ways to determine which breakpoints are currently set:

195

Chapter 10. Using the Debugger

• Scroll through your source code and note the lines whose breakpoint button is filled in. This method
can be time consuming and also does not show which breakpoints were set and then deactivated (see
Section 10.4.5).

• Choose Views... from the Options menu on the main window or the optional views window.
When the Views dialog box appears, click on Breakpoint View to display the breakpoint view (see
Figure 8.4).

The breakpoint view lists a module name and line number for each breakpoint (see Section 10.1).
A filled-in button next to the breakpoint identification indicates that the breakpoint is activated. A
cleared button indicates that the breakpoint is deactivated.

• Enter the SHOW BREAK command at the DBG> prompt in the command view. The debugger lists
all the breakpoints that are currently set, including specifications for conditional breakpoints, and
commands to be executed at action breakpoints.

10.4.5. Deactivating, Activating, and Canceling
Breakpoints
After a breakpoint is set, you can deactivate, activate, or delete it.

Deactivating a breakpoint causes the debugger to ignore the breakpoint during program execution.
However, the debugger keeps the breakpoint listed in the breakpoint view so that you can activate it at a
later time, for example, when you rerun the program (see Section 9.3). Note the following points:

• To deactivate a specific breakpoint, clear the button for that breakpoint in the main window or in the
breakpoint view.

In the breakpoint view, you can also choose Toggle from the Break menu, if the breakpoint is
currently activated.

• To deactivate all breakpoints, choose Deactivate All from the Break menu.

Activating a breakpoint causes it to take effect during program execution:

• To activate a breakpoint, fill in the button for that breakpoint in the main window or in the
breakpoint view.

In the breakpoint view, you can also choose Toggle from the Break menu, if the breakpoint is
currently deactivated.

• To activate all breakpoints, choose Activate All from the Break menu.

When you cancel a breakpoint, it is no longer listed in the breakpoint view so that later you cannot
activate it from that list. You have to reset the breakpoint as explained in Section 10.4.1 and
Section 10.4.2. Note the following points:

• To cancel a specific breakpoint, choose Cancel from the Break menu on the optional views window.

• To cancel all breakpoints, choose Cancel All from the Break menu.

10.4.6. Setting a Conditional Breakpoint
The debugger suspends execution of the program at a conditional breakpoint only when a specified
expression is evaluated as true. The debugger evaluates the conditional expression when program
execution reaches the breakpoint and ignores the breakpoint if the expression is not true.

196

Chapter 10. Using the Debugger

The following procedure sets a conditional breakpoint, whether or not a breakpoint was previously set at
that location:

1. Display the source line on which you want to set the conditional breakpoint (see Section 10.1).

2. Do one of the following:

• Press Ctrl/MB1 on the button to the left of the source line. This displays the Set/Modify
Breakpoint dialog box, showing the source line you selected in the Location: field (see
Figure 10.6).

• Choose the Set or Set/Modify item from the Break menu. When the Set/Modify Breakpoint
dialog box displays, enter the source line in the Location: field.

3. Enter a relational expression in the Condition: field of the dialog box. The expression must be valid
in the source language. For example, a[3] == 0 is a valid relational expression in the C language.

4. Click on OK. The conditional breakpoint is now set. The debugger indicates that a breakpoint is
conditional by changing the shape of the breakpoint's button from a square to a diamond.

Figure 10.6. Setting a Conditional Breakpoint

The following procedure modifies a conditional breakpoint; that is, it can be used either to change the
location or condition associated with an existing conditional breakpoint, or to change an unqualified
breakpoint into a conditional breakpoint:

1. Choose Views... from the Options menu on the main window or optional views window. When the
Views dialog box appears, click on Breakpoint View to display the breakpoint view.

2. From the breakpoint view, do one of the following:

• Press Ctrl/MB1 on the button to the left of the listed breakpoint.

• Click on a breakpoint listed in the view, and choose the Set/Modify item from the Break menu.

3. Follow steps 3 and 4 of the previous procedure, as appropriate.

197

Chapter 10. Using the Debugger

10.4.7. Setting an Action Breakpoint
When a program reaches an action breakpoint, the debugger suspends execution of the program and
executes a specified list of commands.

To set an action breakpoint, whether or not a breakpoint was previously set at that location:

1. Display the source line on which you want to set the action breakpoint (see Section 10.1).

2. Do one of the following:

• Press Ctrl/MB1 on the button to the left of the source line. This displays the Set/Modify
Breakpoint dialog box, showing the source line you selected in the Location: field (see
Figure 10.6).

• Choose the Set or Set/Modify item from the Break menu. When the Set/Modify Breakpoint
dialog box displays, enter the source line in the Location: field.

3. Enter one or more debugger commands in the Action: field of the dialog box. For example:

DEPOSIT x[j] = 3; STEP; EXAMINE a

4. Click on OK. The action breakpoint is now set (see Figure 10.7.)

Figure 10.7. Setting an Action Breakpoint

The following procedure modifies an action breakpoint; that is, it can be used either to change the
location or command associated with an existing action breakpoint, or to change an unqualified
breakpoint into an action breakpoint:

1. Choose Views... from the Options menu on the main window or optional views window, then click
on Breakpoint View when the Views dialog box appears.

2. From the breakpoint view, do one of the following:

• Press Ctrl/MB1 on the button to the left of the listed breakpoint.

198

Chapter 10. Using the Debugger

• Click on a breakpoint listed in the view, and choose the Set/Modify item in the Break menu.

3. Follow steps 3 and 4 of the previous procedure, as appropriate.

10.5. Examining and Manipulating Variables
This section explains how to:

• Select variable names from windows

• Display the value of a variable

• Monitor a variable

• Watch a variable

• Change the value of a variable

See Section 10.6, which also applies to all operations on variables.

10.5.1. Selecting Variable Names from Windows
Use the following techniques to select variable names from windows for the operations described in the
sections that follow (see Section 10.5.2 for examples).

When selecting names, follow the syntax of the source programming language:

• To specify a scalar (non aggregate) variable, such as an integer, real, Boolean, or enumeration type,
select the variable's name.

• To specify an entire aggregate, such as an array or structure (record), select the variable's name.

• To specify a single element of an aggregate variable, select the entity using the language syntax. For
example:

• The string arr2[7] specifies element 7 of array arr2 in the C language.

• The string employee.address specifies component address of record (structure)
employee in the Pascal language.

• To specify the object designated by a pointer variable, select the entity following the language syntax.
For example, in the C language, the string *int_point specifies the object designated by pointer
int_point.

Select character strings from windows as follows:

• In any window, to select a string delimited by blank spaces, use the standard VSI DECwindows
Motif for OpenVMS word selection technique: position the pointer on that string and then double
click MB1.

• In any window, to select an arbitrary character string, use the standard VSI DECwindows Motif for
OpenVMS text-selection technique:position the pointer on the first character, press and hold MB1
while dragging the pointer over the string and then release MB1.

199

Chapter 10. Using the Debugger

• In the debugger source display, you also have the option of using language-sensitive text selection.
To select a string delimited by language-dependent identifier boundaries, position the pointer on that
string and press Ctrl/MB1.

For example, suppose the source display contains the character string arr2[m], then:

• To select arr2, position the pointer on arr2 and press Ctrl/MB1.

• To select m, position the pointer on m and press Ctrl/MB1.

You can change the key sequence for language-sensitive text selection as explained in
Section 10.10.4.2.

10.5.2. Displaying the Current Value of a Variable
To display the current value of a variable:

1. Find and select the variable name in a window as explained in Section 10.5.1.

2. Click on theEX button in the push button view. The debugger displays the variable and its current
value in the command view. The debugger displays the value of a variable in the current scope, which
might not be the same as the source location you were intending.

Figure 10.8, Figure 10.9, and Figure 10.10 show how to display the value of an integer variable, array
aggregate, and array element, respectively.

Figure 10.8. Displaying the Value of an Integer Variable

200

Chapter 10. Using the Debugger

Figure 10.9. Displaying the Value of an Array Aggregate

Figure 10.10. Displaying the Value of an Array Element

To display the current value in a different type or radix, use the following alternative method:

1. Find and select the variable name in a window as explained in Section 10.5.1.

201

Chapter 10. Using the Debugger

2. Choose Examine... in the Commands menu in the main window. The Examine dialog box appears
with the name selected in the Variable/Expression field.

3. Choose the default, int, long, quad, short, or char* item from the Typecast menu within the dialog
box.

4. Choose the default, hex, octal, decimal, or binary item from the Output Radix menu within the
dialog box.

5. Click on OK.

The value, altered to your specification, appears in the command view.

Figure 10.11 shows that the variable j has been typecast as long.

Figure 10.11. Typecasting the Value of a Variable

10.5.3. Changing the Current Value of a Variable
To change the current value of a variable:

• Find and select the variable name in a window as explained in Section 10.5.1.

• Choose Deposit... from the Commands menu in the main window. The Deposit dialog box appears
with the name selected in the Variable field.

• Enter the new value in the Value field.

• Choose the default, hex, octal, decimal, or binary item from the Input Radix menu within the dialog
box.

• Click on OK.

The new value, altered to your specification, appears in the command view and is assigned to the
variable.

Figure 10.12 shows a new value for the variable safe.

202

Chapter 10. Using the Debugger

Figure 10.12. Changing the Value of a Variable

10.5.4. Monitoring a Variable
When you monitor a variable, the debugger displays the value in the monitor view and checks and
updates the displayed value whenever the debugger regains control from your program (for example,
after a step or at a breakpoint).

Note

You can monitor only a variable, including an aggregate such as an array or structure (record). You
cannot monitor a composite expression or memory address.

To monitor a variable(see Figure 10.13):

1. Find and select the variable name in a window as explained in Section 10.5.1.

2. Click on the MON button in the push button view. The debugger:

• Displays the monitor view (if it is not displayed)

• Puts the selected variable's name, along with its qualifying path name, in the Monitor Expression
column

• Puts the value of the variable in the Value/Deposit column

• Puts a cleared button in the Watched column (see Section 10.5.5).

You can typecast the output value when monitoring variables by choosing the Typecast item in the
Monitor menu.

You can change the output radix when monitoring variables as follows:

• Choose Change Radix in the Monitor menu to change the output radix for a selected monitored
element.

• Choose the Change All Radix in the Monitor menu to change the output radix for all subsequently
monitored elements.

To remove a monitored element from the monitor view, choose Remove from the Monitor menu.

203

Chapter 10. Using the Debugger

Figure 10.13. Monitoring a Variable

10.5.4.1. Monitoring an Aggregate (Array or Structure) Variable

If you select the name of an aggregate variable, such as an array or structure (record) and click on the
MON button, the debugger displays the word Aggregate in the Value/Deposit column of the monitor
view. To display the values of all elements (components) of an aggregate variable, double click on the
variable name in the Monitor Expression column (or choose Expand in the Monitor menu).The displayed
element names are indented relative to the parent name (see Figure 10.14). If an element is also an
aggregate, you can double click on its name to display its elements, and so on.

Figure 10.14. Expanded Aggregate Variable (Array) in Monitor View

To collapse an expanded display so that only the aggregate parent name is shown in the monitor view,
double click on the name in the Monitor Expression column (or choose Collapse from the Monitor
menu).

204

Chapter 10. Using the Debugger

If you have selected a component of an aggregate variable, and the component expression is itself
a variable, the debugger monitors the component that was active when you made the selection. For
example, if you select the array component arr[i] and the current value of i is 9, the debugger
monitors arr[9] even if the value of i subsequently changes to 10.

10.5.4.2. Monitoring a Pointer (Access) Variable
If you select the name of a pointer (access) variable and click on the MON button, the debugger displays
the address of the referenced object in the Value/Deposit column of the monitor view (see the top entry
in Figure 10.15).

To monitor the value of the referenced object (to dereference the pointer variable), double click on the
pointer name in the Monitor Expression column. This adds an entry for the referenced object in the
monitor view, indented under the pointer entry (see the bottom entry in Figure 10.15). If a referenced
object is an aggregate, you can double click on its name to display its elements, and so on.

Figure 10.15. Pointer Variable and Referenced Object in Monitor View

10.5.5. Watching a Variable
Whenever the program changes the value of a watched variable, the debugger suspends execution and
displays the old and new values in the command view.

To watch a variable (also known as setting a watch point on a variable):

• Monitor the variable as explained in Section 10.5.4.The debugger puts a button in the Watched
column of the monitor view whenever you monitor a variable. See Figure 10.16.

• Click on the button in the Watched column. A filled-in button indicates that the watch point is set.

Figure 10.16. Watched Variable in Monitor View

To deactivate a watchpoint, clear its Watched button in the monitor view (by clicking on the button) or
choose Toggle Watchpoint in the Monitor menu. To activate a watchpoint, fill in its Watched button or
choose Toggle Watchpoint in the Monitor menu.

Section 10.6.1 explains static and nonstatic (automatic) variables and how to access them. The debugger
deactivates a nonstatic watchpoint when execution moves out of (returns from) the variable's defining

205

Chapter 10. Using the Debugger

routine. When a non static variable is no longer active, its entry is dimmed in the monitor view and its
Watched button is cleared.

The debugger does not automatically reactivate non static watchpoints if execution later returns to the
variable's defining routine. You must reactivate non static watchpoints explicitly.

10.5.6. Changing the Value of a Monitored Scalar
Variable
To change the value of a scalar (non aggregate) variable, such as an integer or Boolean type (see
Figure 10.17):

1. Monitor the variable as explained in Section 10.5.4.

2. Click on the variable's value in the Value/Deposit column of the monitor view. A small dialog box is
displayed over that value, which you can now edit.

3. Enter the new value in the dialog box.

4. Click on the check mark (OK) in the dialog box. The dialog box is removed and replaced by the new
value, indicating that the variable now has that value. The debugger notifies you if you try to enter a
value that is incompatible with the variable's type, range, and so on.

Figure 10.17. Changing the Value of a Monitored Scalar Variable

To cancel a text entry and dismiss the dialog box, click on X (Cancel).

You can change the value of only one component of an aggregate variable (such as an array or structure)
at a time. To change the value of an aggregate-variable component (see Figure 10.18):

1. Display the value of the component as explained in Section 10.5.4.1.

2. Click on the variable's value in the Value/Deposit column of the monitor view. A small dialog box is
displayed over that value, which you can now edit.

3. Enter the new value in the dialog box.

4. Click on the check mark (OK) in the dialog box. The dialog box is removed and replaced by the new
value, indicating that the variable now has that value. The debugger notifies you if you try to enter a
value that is incompatible with the variable's type, range, and so on.

206

Chapter 10. Using the Debugger

Figure 10.18. Changing the Value of a Component of an Aggregate Variable

10.6. Accessing Program Variables
This section provides some general information about accessing program variables while debugging.

If your program was optimized during compilation, you might not have access to certain variables while
debugging. When you compile a program for debugging, it is best to disable optimization, if possible (see
Section 1.2.1).

Before you check on the value of a variable, always execute the program beyond the point where
the variable is declared and initialized. The value contained in any uninitialized variable should be
considered invalid.

10.6.1. Accessing Static and Nonstatic (Automatic)
Variables

Note

The generic term nonstatic variable is used here to denote what is called an automatic variable in some
languages.

A static variable is associated with the same memory address throughout execution of the program. You
can always access a static variable.

A nonstatic variable is allocated on the stack or in a register and has a value only when its defining
routine or block is active (on the call stack). Therefore, you can access a nonstatic variable only when
program execution is paused within the scope of its defining routine or block (which includes any routine
called by the defining routine).

A common technique for accessing a nonstatic variable is first to set a breakpoint on the defining routine
and then to execute the program to the breakpoint.

Whenever the execution of your program makes a nonstatic variable inaccessible, the debugger notifies
you as follows:

207

Chapter 10. Using the Debugger

• If you try to display the value of the variable or monitor the variable (as explained in Section 10.5.2
and Section 10.5.4, respectively), the debugger issues a message that the variable is not active or not
in scope.

• If the variable (or an expression that includes the variable) is currently being monitored, its
entry becomes dimmed in the monitor view. When the entry is dimmed, the debugger does not
check or update the variable's displayed value;also, you cannot change that value as explained in
Section 10.5.3. The entry is fully displayed whenever the variable becomes accessible again.

• If the variable is currently being watched (as explained in Section 10.5.5), the watch point is
deactivated (its Watched button is cleared) and its entry is dimmed in the monitor view. However,
note that the watchpoint is not reactivated automatically when the variable becomes accessible again.

10.6.2. Setting the Current Scope Relative to the Call
Stack
 While debugging a routine in your program, you can set the current scope to a calling routine
(a routine down the stack from the routine in which execution is currently paused). This enables you to:

• Determine where the current routine call originated

• Determine the value of a variable declared in a calling routine

• Determine the value of a variable during a particular invocation of a routine that is called recursively

• Change the value of a variable in the context of a routine call

The Call Stack menu on the main window lists the names of the routines (and, under certain conditions,
the images and modules) of your program that are currently active on the stack, up to the maximum
number of lines that can be displayed on your screen (see Figure 10.19). The numbers on the left side of
the menu indicate the level of each routine on the stack relative to level 0, which denotes the routine in
which execution is paused.

To set the current scope to a particular routine on the stack, choose the routine's name from the Call
Stack menu (see Figure 10.19). This causes the following to occur:

• The Call Stack menu, when released, shows the name and relative level of the routine that is now the
current scope.

• The main window shows that routine's source code.

• The instruction view (if displayed) shows that routine's decoded instructions.

• The register view (if displayed) shows the register values associated with that routine call.

• If the scope is set to a calling routine (a call-stack level other than 0), the debugger clears the current-
location pointer, as shown in Figure 10.19.

• The debugger sets the scope for symbol searches to the chosen routine, so that you can examine
variables, and so on, in the context of that scope.

208

Chapter 10. Using the Debugger

Figure 10.19. Current Scope Set to a Calling Routine

When you set the scope to a calling routine, the current-location pointer (which is cleared) marks the
source line to which execution will return in that routine. Depending on the source language and coding
style used, this might be the line that contains the call statement or some subsequent line.

10.6.3. How the Debugger Searches for Variables and
Other Symbols
Symbol ambiguities can occur when a symbol (for example, a variable name X) is defined in more than
one routine or other program unit.

In most cases, the debugger automatically resolves symbol ambiguities. First, it uses the scope and
visibility rules of the currently set language. In addition, because the debugger permits you to specify
symbols in arbitrary modules (to set breakpoints and so on), the debugger uses the ordering of routine
calls on the call stack to resolve symbol ambiguities.

In some cases, however, the debugger might respond as follows when you specify a symbol that is
defined multiple times:

• It might issue a "symbol not unique" message because it is not able to determine the particular
declaration of the symbol that you intended.

• It might reference the symbol declaration that is visible in the current scope, not the one you want.

To resolve such problems, you must specify a scope where the debugger should search for the particular
declaration of the symbol:

• If the different declarations of the symbol are within routines that are currently active on the call
stack, use the Call Stack menu on the main window to reset the current scope (see Section 10.6.2).

209

Chapter 10. Using the Debugger

• Otherwise, enter the appropriate command at the command prompt (EXAMINE or MONITOR, for
example), specifying a path name prefix with the symbol. For example, if the variable X is defined in
two modules named COUNTER and SWAP, the following command uses the path name SWAP \X
to specify the declaration of X that is in module SWAP:

DBG> EXAMINE SWAP\X

10.7. Displaying and Modifying Values Stored
in Registers
 The register view displays the current contents of all machine registers (see Figure 10.20).

To display the register view, choose Views... from the Options menu on the main window or the optional
views window, then click on Registers when the Views dialog box appears.

By default, the register view automatically displays the register values associated with the routine in
which execution is currently paused. Any values that change as your program executes are highlighted
whenever the debugger regains control from your program.

To display the register values associated with any routine on the call stack, choose its name from the Call
Stack menu on the main window (see Section 10.6.2).

To change the value stored in a register:

1. Click on the register value in the register view. A small dialog box is displayed over the current value,
which you can now edit.

2. Enter the new value in the dialog box.

3. Click on the check mark (OK) in the dialog box. The debugger removes the dialog box and displays
the new value, indicating that the register now contains that value. To dismiss the dialog box without
changing the value in the register, click on X (Cancel).

To change the radix used to display register values:

• Choose Change Radix in the Register menu to change the radix in current and subsequent output for
a selected register.

• Choose Change All Radix in the Register menu to change the radix in current and subsequent output
for all registers.

210

Chapter 10. Using the Debugger

Figure 10.20. Register View

10.8. Displaying the Decoded Instruction
Stream of Your Program
The instruction view displays the decoded instruction stream of your program: the code that is actually
executing (see Figure 10.21). This is useful if the program you are debugging has been optimized by the
compiler so that the information in the main window does not exactly reflect the code that is executing
(see Section 1.2).

Figure 10.21. Instruction View

To display the instruction view, choose Views... from the Options menu on the main window or the
optional views window, then click on Instructions when the Views dialog box appears.

By default, the instruction view automatically displays the decoded instruction stream of the routine in
which execution is currently paused. The current-location pointer, to the left of the instructions, marks
the instruction that will execute next.

By default, the debugger displays source code line numbers to the left of the instructions with which they
are associated. To hide or display line numbers, toggle Display Line Numbers from the File menu in the
instruction view.

By default, the debugger displays memory addresses to the left of the instructions. To hide or display
addresses, toggle Show Instruction Addresses from the File menu in the instruction view.

211

Chapter 10. Using the Debugger

After navigating the instruction view, click on the Call Stack menu to redisplay the location at which
execution is paused.

To display the instruction stream of any routine on the call stack, choose the routine's name from the
Call Stack menu on the main window (see Section 10.6.2).

10.9. Debugging Tasking (Multithread)
Programs
 Tasking programs, also called multithreaded programs, have multiple threads of execution within a
process and include the following:

• Programs in any language that use POSIX Threads Library or POSIX 1003.1b services.

• Programs that use language-specific tasking services (services provided directly by the language).
Currently, Ada is the only language with built-in tasking services that the debugger supports.

Within the debugger, the term task or thread denotes such a flow of control, regardless of the language
or implementation. The debugger's tasking support applies to all such programs.

The debugger enables you to display task information and modify task characteristics to control task
execution, priority, state transitions, and so on.

The following sections summarize the tasking features of the debugger's VSI DECwindows Motif for
OpenVMS user interface. For more information about the debugger's tasking support, see Chapter 16.

10.9.1. Displaying Information About Tasks (Threads)
 To display information about one or more tasks (threads) of your program, choose Views... from
the Options menu on the main window or the optional views window, then click on Threads when the
Views dialog box appears.

The Threads view gives information about all currently existing(non terminated) tasks of your program.
The information is updated whenever the debugger regains control from the program, as shown in
Figure 10.22.

Figure 10.22. Thread View

The displayed information includes:

• The thread ID. The arrow in the left column marks the active task; i.e., the thread that runs when you
click on the Go or STEP button.

212

Chapter 10. Using the Debugger

• The thread priority.

• Whether the task (thread) has been put on hold as explained in Section 10.9.2.

• The current state of the task (thread). The task in the RUN (running) state is the active task.

• The current substate of the task (thread). The substate helps indicate the possible cause of a task's
state.

• A debugger path name for the task (thread) object or the address of the task object if the debugger
cannot symbolize the task object.

10.9.2. Changing Task (Threads) Characteristics
To modify a task's (thread's) characteristics or the tasking environment while debugging, choose one of
the following items from the Threads menu:

Threads Menu Item Description

Abort Request that the selected task (thread) be terminated at the next allowed
opportunity. The exact effect depends on the current event facility
(language dependent).For Ada tasks, this is equivalent to executing an
abort statement.

Activate Make the selected task (thread) the active task.
Hold Place the selected task (thread) on hold.
No hold Release the selected task (thread) from hold.
Make Visible Make the selected task the visible task (thread).
All Use the submenu to abort all tasks (threads) or release all tasks

(threads) from hold.

10.10. Customizing the Debugger's VSI
DECwindows Motif for OpenVMS Interface
The debugger is installed on your system with a default debugger resource file (DECW
$SYSTEM_DEFAULTS:VMSDEBUG.DAT) that defines the startup defaults for the following
customizable parameters:

• Configuration of windows and views

• Whether to show or hide line numbers in the main window

• Button names and associated debugger commands

• Key sequence to display the dialog box for conditional and action break points

• Key sequence for language-sensitive text selection in the source view and instruction view

• Character fonts for text in the views

• Character font for text displayed in specific windows and views

213

Chapter 10. Using the Debugger

• Color of the text foreground and background colors in the source view, instruction view, and editor
view

• Display of program, module, and routine names in the main window title bar

• Whether or not the debugger requires confirmation before exiting

A copy of the system default debugger resource file with explanatory comments is included in
Example 10.1 in Section 10.10.4.

You can modify the first three of these display attributes interactively from the VSI DECwindows Motif
for OpenVMS user interface, as explained in Section 10.10.1, Section 10.10.2, and Section 10.10.3. In
each case, you can save the modified display configuration for future debugging sessions by choosing
Save Options from the Options menu.

In addition, you can modify all the listed attributes of the debugger display configuration by editing and
saving the debugger resource file, as explained in Section 10.10.4.

When you choose Save Options from the Options menu or you edit and save the local debugger
resource file, the debugger creates a new version of the local debugger resource file DECW
$USER_DEFAULTS:VMSDEBUG.DAT that contains the definitions of the display configuration
attributes. When you next start the debugger, it uses the attributes defined in the most recent
local resource file to configure the output display. You can fall back to previous debugger display
configurations with appropriate use of the DCL commands DELETE, RENAME, and COPY.

To fall back to the system default display configuration, select Restore Default Options from the
OpenVMS Debugger Options menu.

10.10.1. Defining the Startup Configuration of Debugger
Views
 To define the startup configuration of the debugger views:

1. While using the debugger, set up your preferred configuration of views.

2. Choose Save Options from the Options menu to create a new version of the debugger resource file.

When you next start the debugger, the debugger uses the most recent resource file to create the new
display configuration.

You can also define the startup display configuration by editing the definition of these views in the
resource file (see Section 10.10.4).

10.10.2. Displaying or Hiding Line Numbers inSource
View and Instruction View
The source view and instruction view display source line numbers by default at debugger startup. To hide
(or display) line numbers at debugger startup:

1. While using the debugger, choose Display Line Numbers from the File menu on the main window
(or the instruction view). Line numbers are displayed when a filled-in button appears next to that
menu item.

214

Chapter 10. Using the Debugger

2. Choose Save Options from the Options menu to create a new version of the debugger's local
resource file.

When you next start the debugger, the debugger uses the most recent resource file to create the new
display configuration.

You can also set the startup default for line numbers by setting the following resources to either True or
False in the resource file (see Section 10.10.4).

DebugSource.StartupShowSourceLineno: True
DebugInstruction.StartupShowInstLineno: True

10.10.3. Modifying, Adding, Removing, and
Resequencing Push Buttons
 The buttons on the push button view are associated with debugger commands. You can:

• Change a button's label or associated command

• Add a new button

• Remove a button

• Resequence a button

Note

You cannot modify or remove the Stop button.

To save these modifications for future debugger sessions, choose Save Options from the Options menu.

Section 10.10.3.1, Section 10.10.3.2, and Section 10.10.3.3explain how to customize push buttons
interactively through the VSI DECwindows Motif for OpenVMS user interface. You can also
customize push buttons by editing the resource file. Button definitions in the resource file begin with:
DebugControl.Button (See Example 10.1.)

10.10.3.1. Changing a Button's Label or Associated Command
To change a button's label or associated command:

1. Choose Customize Buttons... from the Options menu on the main window or the optional views
window. The Customize Buttons dialog box is displayed(see Figure 10.23).

2. Within the dialog box, click on the button you are modifying. This fills the Command and Label
fields with the parameters for that button. The example in Figure 10.23shows that the STEP button
was selected.

3. To change the button icon, pull down the Icon menu within the dialog box and select one of the
predefined icons. As Figure 10.23 shows, the Label field dims and is filled with the debugger's
internal name for the predefined icon. The icon itself appears in the dialog box's push button display.

To change the button label, select None on the Icon menu and enter a new label in the Label field.

4. To change the command associated with the button, enter the new command in the Command field.
For online help about the commands, see Section 8.4.3.

215

Chapter 10. Using the Debugger

If the command is to operate on a name or language expression selected in a window, specify %S
as the command parameter. For example, the following command displays the current value of the
language expression that is currently selected: EVALUATE %s.

If the command is to operate on a debugger built-in symbol or any other name that has a percent sign
(%) as the first character, specify two percent signs. For example:

EXAMINE %%NEXTLOC

5. Click on Modify. The button's label or associated command is changed within the dialog box push
button display.

6. Click on Apply. The button's label or associated command is changed within the debugger's push
button view.

To save these modifications for future debugger sessions, choose Save Options from the Options menu.

Figure 10.23. Changing the STEP Button Label to an Icon

10.10.3.2. Adding a New Button and Associated Command
To add a new button to the push button view and assign a debugger command to that button:

1. Choose Customize Buttons... from the Options menu. The Customize Buttons dialog box is displayed
(see Figure 10.24).

2. Enter the debugger command for the new button in the Command field (see Section 10.10.3.1).
Figure 10.24 shows the debugger command RUN MYDISK:[MYDIRECTORY]X.EXE was
entered.

3. Enter a label for that button in the Label field or choose a predefined icon from the Icon menu.
Figure 10.24 shows that the Run-X label was chosen.

4. Click on Add. The button is added to the dialog box push button display.

5. Click on Apply. The button is added to the debugger's push button view.

To save these modifications for future debugger sessions, choose Save Options from the Options menu.

216

Chapter 10. Using the Debugger

Figure 10.24. Adding a Button

10.10.3.3. Removing a Button
To remove a button:

1. Choose Customize Buttons... from the Options menu on the main or optional views window. The
Customize Buttons dialog box is displayed.

2. Within the dialog box, click on the button you are removing. This fills the Command and Label
fields with the parameters for that button.

3. Click on Remove. The button is removed from the dialog box push button display.

4. Click on Apply. The button is removed from the debugger's push button view.

To save these modifications for future debugger sessions, choose Save Options from the Options menu.

10.10.3.4. Resequencing a Button
To resequence a button:

1. Choose Customize Buttons... from the Options menu on the main or optional views window. The
Customize Buttons dialog box is displayed.

2. Within the dialog box, click on the button you are resequencing. This fills the Command and Label
fields with the parameters for that button.

3. Click on the left or right arrow to move the button one position to the left or right. Continue to click
until the button has moved, one position at a time, to its final position.

4. Click on Apply to transfer this position to the debugger's push button view.

To save these modifications for future debugger sessions, choose Save Options from the Options menu.

10.10.4. Editing the Debugger Resource File
 The debugger is installed on your system with a default debugger resource file (DECW
$SYSTEM_DEFAULTS:VMSDEBUG.DAT) that defines the default display configuration for the
debugger. When you modify the display attributes as described in Section 10.10 and then save the
modifications with the Save Options command in the Options menu, the debugger creates a local

217

Chapter 10. Using the Debugger

debugger resource file, DECW$USER_DEFAULTS:VMSDEBUG.DAT. You can edit this file to further
modify the debugger display configuration.

If you do not have a local debugger resource file, you can create one with the Restore Default
Options item in the Options menu. Whenever you start the debugger, it creates the debugger display
configuration as defined in the most recent version of the local debugger resource file if there
is one; otherwise, the debugger uses the definitions in the system debugger resource file, DECW
$SYSTEM_DEFAULTS:VMSDEBUG.DAT.

You cannot edit the system resource file. You can modify the debugger display configuration either by
following the procedures in Section 10.10.1, Section 10.10.2, and Section 10.10.3, or by editing and
saving your local debugger resource file.

 Example 10.1 contains a copy of the system default debugger resource file. Most entries are annotated
within the file or are self-explanatory. Section 10.10.4.1, Section 10.10.4.2, Section 10.10.4.3, and
Section 10.10.4.4 contain additional information about modifying certain key sequences. For complete
information about specifying key sequences, see the translation table syntax in the X Toolkit Intrinsics
documentation.

Note

The line in Example 10.1 that begins with DebugControl.ButtonList does not completely
fit in this example. This line identifies the button definitions contained in the file. The full line in the
file also contains the following button names: StepReturnButton, StepCallButton, ExamineButton,
ExamineASCIZButton, ExamineASCICButton, EvalButton, MonitorButton.

Example 10.1. System Default Debugger Resource File (DECW
$SYSTEM_DEFAULTS:VMSDEBUG.DAT)

!
! OpenVMS Debug32/64 Debugger Resource File
!
DebugVersion: 71
!
! GEOMETRY RESOURCES:
!
! Written when you execute "SAVE OPTIONS" from the Options Menu.
!
DebugSource.x: 11
DebugSource.y: 30
DebugSource.width: 620
DebugSource.height: 700
!
DebugControl.x: 650
DebugControl.y: 30
DebugControl.width: 600
DebugControl.height: 700
!
DebugEditor.x: 650
DebugEditor.y: 30
DebugEditor.width: 600
DebugEditor.height: 700
!
DebugInstruction.x: 11
DebugInstruction.y: 769
DebugInstruction.width: 620

218

Chapter 10. Using the Debugger

DebugInstruction.height: 243
!
*DebugBrowser.x: 650
*DebugBrowser.y: 30
*DebugBrowser.width: 335
*DebugBrowser.height: 300
!
! LINE NUMBER DISPLAY RESOURCES:
!
! Create the line or address number display in views at startup?
!
DebugSource.StartupShowSourceLineno: True
DebugInstruction.StartupShowInstLineno: True
DebugInstruction.StartupShowInstAddrno: False
!
! WINDOW PANE RESOURCES:
!
! Relative size of panes in main window.
! Main window height is derived from sum of panes.
!
DebugSource*SrcView.height: 460
DebugSource*PushbuttonPanel.height: 36
DebugSource*MessageOutputPanel.height: 145
!
DebugControl.BreakpointView.height: 175
DebugControl.MonitorView.height: 150
DebugControl.TaskView.height: 130
DebugControl.RegisterView.height: 250
!
! CUSTOM BUTTON RESOURCES:
!
! The following resources determine which buttons to put in the button
! panel.
! Buttons will show in the order they are listed here.
! For each button there MUST be a set of associated resources.
! EXAMPLE:
! ButtonCommand - Associates a command with the button.
! ButtonLegend - Button Label or pixmap name if pixmap flag is True.
! ButtonPixmapFlag - If True uses ButtonLegend as predefined pixmap name.
!
DebugControl.ButtonList: \ GoButton, StepButton, StepInButton, ...

!
DebugControl.ButtonCommand.GoButton: go
DebugControl.ButtonLegend.GoButton: go_pixmap
DebugControl.ButtonPixmapFlag.GoButton: True
!
DebugControl.ButtonCommand.StepButton: step
DebugControl.ButtonLegend.StepButton: STEP
DebugControl.ButtonPixmapFlag.StepButton: False
!
DebugControl.ButtonCommand.StepInButton: step/in
DebugControl.ButtonLegend.StepInButton: S/in
DebugControl.ButtonPixmapFlag.StepInButton: False
!
DebugControl.ButtonCommand.StepReturnButton: step/return
DebugControl.ButtonLegend.StepReturnButton: S/ret
DebugControl.ButtonPixmapFlag.StepReturnButton: False

219

Chapter 10. Using the Debugger

!
DebugControl.ButtonCommand.StepCallButton: step/call
DebugControl.ButtonLegend.StepCallButton: S/call
DebugControl.ButtonPixmapFlag.StepCallButton: False
!
DebugControl.ButtonCommand.ExamineButton: examine %s
DebugControl.ButtonLegend.ExamineButton: EX
DebugControl.ButtonPixmapFlag.ExamineButton: False
!
DebugControl.ButtonCommand.ExamineASCIZButton: examine/asciz %s
DebugControl.ButtonLegend.ExamineASCIZButton: E/az
DebugControl.ButtonPixmapFlag.ExamineASCIZButton: False
!
DebugControl.ButtonCommand.ExamineASCICButton: examine/ascic %s
DebugControl.ButtonLegend.ExamineASCICButton: E/ac
DebugControl.ButtonPixmapFlag.ExamineASCICButton: False
!
DebugControl.ButtonCommand.EvalButton: evaluate %s
DebugControl.ButtonLegend.EvalButton: EVAL
DebugControl.ButtonPixmapFlag.EvalButton: False
!
DebugControl.ButtonCommand.MonitorButton: monitor %s
DebugControl.ButtonLegend.MonitorButton: MON
DebugControl.ButtonPixmapFlag.MonitorButton: False
!
! THE FOLLOWING RESOURCES CAN ONLY BE CHANGED BY EDITING THIS FILE.
! - --
! Be sure to trim off any trailing white-spaces.
!
! FONT RESOURCES:
!
! If a font is specified for a view, and the font is available on the
! system, it will be used for that view.
!
! For any views which do not explicitly specify a font, the font
! specified by the resource "DebugDefault.Font" will be used if
! it is available on the system.
!
! If no font resources are specified at all, the debugger will use the
! systems own default font specification.
!
! The "DebugOptions.Font" applies to all optional views. We suggest that
! you select a font with a point size no larger than 14 in the option
! views in order to preserve label alignment.
!
! Using 132 column sources? Try this narrow font:
! -dec-terminal-medium-r-narrow--14-100-100-100-c-60-iso8859-1
!
! FORMAT: -*-FONTNAM-FACE-T-*--*-PTS-*-*-*-*-CHARSET
!
DebugDefault.Font: -*-COURIER-BOLD-R-*--*-120-*-*-*-*-ISO8859-1
DebugSource.Font: -*-COURIER-BOLD-R-*--*-120-*-*-*-*-ISO8859-1
DebugInstruction.Font: -*-COURIER-BOLD-R-*--*-140-*-*-*-*-ISO8859-1
DebugMessage.Font: -*-COURIER-BOLD-R-*--*-120-*-*-*-*-ISO8859-1
DebugOptions.Font: -*-COURIER-BOLD-R-*--*-120-*-*-*-*-ISO8859-1
!
! STARTUP RESOURCES: 3=Iconified, 0=Visible
!

220

Chapter 10. Using the Debugger

DebugSource.initialState: 0
DebugControl.initialState: 0
DebugEditor.initialState: 0
DebugInstruction.initialState: 0
!
! COLOR RESOURCES:
!
! Use any of the OSF Motif Named Colors.
!
! Foreground = Text Color, Background = Window Color
!
! Try: Gainsboro, MintCream, Linen, SeaShell, MistyRose, Honeydew
! Cornsilk, Lavender
!
! To use your system default color scheme, comment out all lines!
 pertaining to color.
!
! Common color scheme (unless overridden for a specific view)
!
*background: Gainsboro
*borderColor: Red
!
! Source View Colors
!
!DebugSource*background: Gainsboro
DebugSource*topShadowColor: WindowTopshadow
DebugSource*bottomShadowColor: WindowBottomshadow
DebugSource*src_txt.foreground: blue
DebugSource*src_txt.background: white
DebugSource*src_lineno_txtw.foreground: red
DebugSource*cnt_msg_txt.foreground: black
DebugSource*cnt_msg_txt.background: white
!
! Control View Colors
!
!DebugControl*background: Gainsboro
DebugControl*topShadowColor: WindowTopshadow
DebugControl*bottomShadowColor: WindowBottomshadow
!
! Instruction View Colors
!
!DebugInstruction*background: Gainsboro
DebugInstruction*topShadowColor: WindowTopshadow
DebugInstruction*bottomShadowColor: WindowBottomshadow
DebugInstruction*inst_txt.foreground: blue
DebugInstruction*inst_txt.background: white
DebugInstruction*inst_addrno_txtw.foreground: red
!
! Editor Colors
!
!DebugEditor*background: Gainsboro
DebugEditor*topShadowColor: WindowTopshadow
DebugEditor*bottomShadowColor: WindowBottomshadow
DebugEditor*edit_textw.foreground: black
DebugEditor*edit_textw.background: white
!
! REGISTER VIEW RESOURCES:
!

221

Chapter 10. Using the Debugger

! Which Registers to display by default in the Register View?
! CF = Call Frame, GP = General Purpose, FP = Floating Point (Integrity
! server and Alpha Only)
!
*Show_CF_Registers.set: True
*Show_GP_Registers.set: False
*Show_FP_Registers.set: False
!
! SHOW MESSAGE/COMMAND SEPARATOR LINES?
!
*Show_Message_Separators.set: True
!
! TRACK LANGUAGE CHANGES? (parser follows module language)
!
*Track_Language_Changes.set: False
!
! KEY SEQUENCE RESOURCES:
!
! Key sequence used to activate the dialog box for conditional and action
! breakpoints.
!
DebugSource.ModifyBreakpointToggleSequence: Ctrl <Btn1Down>, Ctrl <Btn1Up>
!
! GENERAL KEYPAD FUNCTIONS:
!
!0xFFB0=KP0, 0xFF91, 0xFFB0=GOLD-KP0,
!0xFF94, 0xFFB0=BLUE-KP0, 0xFFB1=KP1,
!0xFF91, 0xFFB1=GOLD-KP1, 0xFFAC=KP,
DebugSource.*XmText.translations:#override\n\
 0xFFB0: EnterCmdOnCmdLine("step/line") \n\
 0xFFB1: EnterCmdOnCmdLine("examine") \n\
 0xFFAC: EnterCmdOnCmdLine("go") \n\
 0xFF91, 0xFFB0: EnterCmdOnCmdLine("step/into") \n\
 0xFF94, 0xFFB0: EnterCmdOnCmdLine("step/over") \n\
 0xFF91, 0xFFB1: EnterCmdOnCmdLine("examine^") \n\
 0xFFB5: EnterCmdOnCmdLine("show calls") \n\
 0xFF91, 0xFFB5: EnterCmdOnCmdLine("show calls 3") \n\
 0xFF8D: activate()\n
!
! IDENTIFIER WORD SELECTION: (language-based delimiters)
! NOTE: DO NOT use any double click combination for the following resource
! otherwise normal text selection in the source window will not work.
!
DebugSource.IdentifierSelectionSequence: Ctrl<Btn1Down>
!
! EXIT CONFIRMATION:
!
DebugDisplayExitConfirmDB: True
!
! COMMAND ECHO:
!
DebugEchoCommands: True
!
! TITLE FORMAT: Main window and optional view window.
!
! The following title format directives are supported:
!
! %t - The title of the debugger application.

222

Chapter 10. Using the Debugger

! %p - The name of the user program being debugged.
! %f - The name of the current file displayed in the source window.
!
DebugControl.TitleFormat: %t - %p: %f
!
! DRAG AND DROP MESSAGE SUPRESSION: (Dont mess with these)
!
*.dragInitiatorProtocolStyle: DRAG_NONE
*.dragReceiverProtocolStyle: DRAG_NONE

10.10.4.1. Defining the Key Sequence to Display the Breakpoint
Dialog Box
By default, the key sequence for displaying the dialog box for conditional and action breakpoints is
Ctrl/MB1 (see Section 10.4.6 and Section 10.4.7).To define another key sequence, edit the current
definition of the following resource in the resource file. For example:

DebugSource.ModifyBreakpointToggleSequence: Ctrl<Btn1Down>(2)

10.10.4.2. Defining the Key Sequence for Language-Sensitive Text
Selection
By default, the key sequence for language-sensitive text selection in the main window and instruction
view is Ctrl/MB1 (see Section 10.5.1). To define another key sequence, edit the current definition of
the following resource in the resource file. For example:

DebugSource.IdentifierSelectionSequence: Ctrl<Btn1Down>

To avoid conflict with standard VSI DECwindows Motif for OpenVMS word selection, do not use a
double-click combination, such as Ctrl <Btn1Down>(2).

10.10.4.3. Defining the Font for Displayed Text
 To define another font for the text displayed in various debugger windows and views, edit the current
definition of the following resources in the resource file. For example:

DebugDefault.Font: -*-COURIER-BOLD-R-*--*-120-*-*-*-*-ISO8859-1

10.10.4.4. Defining the Key Bindings on the Keypad
 To bind a different command to a key that is already associated with a command, edit the current
definition of the following resources in the resource file. For example:

 0xFFB0: EnterCmdOnCmdLine("step/line 3") \n\

To bind a command to a key that is not currently associated with a command, refer to the X and Motif
Quick Reference Guide for key designations.

10.11. Debugging Detached Processes
You cannot use the VSI DECwindows Motif for OpenVMS user interface to the debugger to debug
detached processes, such as print symbionts, which run without a command line interpreter (CLI).

To debug a detached process that runs without a CLI, use the character-cell (screen mode) interface to
the debugger (see Section 1.11).

223

Chapter 10. Using the Debugger

224

Part IV. PC Client Interface

225

226

Chapter 11. Using the Debugger PC
Client/Server Interface
This chapter describes the PC client/server interface to the debugger.

Note

The OpenVMS Version 7.3 debugger does not support previous versions of the PC client. You must
install the Version 1.1 PC client that is found in the kit on the OpenVMS Version 7.3 distribution media,
as identified in Section 11.2.

Version 1.1 PC client is compatible with OpenVMS Version 7.3 and prior debugger servers.

11.1. Introduction
The debug server runs on OpenVMS systems. The client is the user interface to the debugger, from
which you enter debugger commands that are sent to the server. The server executes the commands
and sends the results to the client for display. The client runs on Microsoft Windows 95, Windows 98,
Windows NT, Windows 2000, and Windows XP.

[DEBUG_CLIENTS011.KIT]DEBUGX86011.EXE

11.2. Installation of PC Client
There is no special installation procedure for the components that run on OpenVMS. The system
administrator must move the OpenVMS debug client kit listed in the previous section from the
OpenVMS distribution media to a place accessible to PC users, such as a PATHWORKS share or an
FTP server. The client kit is a self-extracting .EXE file.

Once the appropriate executable file has been transferred to the PC, you can run the file to install the
debug client on the PC. The Install Shield installation procedure guides you through the installation.

By default, the debug client is installed in the \Program Files\OpenVMS Debugger folder.
You can also click Browse to select an alternate location.

The installation creates an OpenVMS Debugger program folder that contains shortcuts to the following
items:

• Debug client

• Debug client Help file

• README file

• Uninstall procedure

11.3. Primary Clients and Secondary Clients
The primary client is the first client to connect to the server. A secondary client is an additional client
that has connected to the same server. The primary client controls whether or not any secondary clients
can connect to the server.

227

Chapter 11. Using the Debugger PC Client/Server Interface

See Section 11.5 for details about specifying the number of secondary clients allowed to connect to a
debugging session.

11.4. The PC Client Workspace
The PC client workspace is analogous to the workspace of the Motif client (see Chapter 8). The client
workspace contains views to display dynamic information and toolbars to contain shortcuts to debugger
commands. You can configure the views and toolbars to suit your personal requirements, create your
own shortcuts, and save your personal configurations.

These topics are discussed at length in the PC client Help file. You can access the PC client Help directly
from the OpenVMS Debugger folder that you created during PC client installation (see Section 11.2), or
from the Help menu within the client. See the following topics:

• Overview

• Getting Started

• Views

• Toolbars

11.5. Establishing a Server Connection
You can start the debug server after logging in directly to the OpenVMS system, or you may find it more
convenient to log in remotely with a product such as eXcursion, or a terminal emulator such as Telnet.

Note

You must hold the DBG$ENABLE_SERVER identifier in the rights database to be able to run the
debug server. Exercise care when using the debug server. Once a debug server is running, anyone on the
network has the ability to connect to the debug server.

Before granting the DBG$ENABLE_SERVER identifier, the system manager must create it by entering
the command DEBUG/SERVER from an account with write access to the rights database. The system
manager needs to do this only once. The system manager can then run the Authorize utility to grant the
DBG$ENABLE_SERVER identifier to the user.

To start the debug server, enter the following command:

$ DEBUG/SERVER

The server displays its network binding strings. The server port number is enclosed in square brackets
([]). For example:

$ DEBUG/SERVER
%DEBUG-I-SPEAK: TCP/IP: YES, DECnet: YES, UDP: YES
%DEBUG-I-WATCH: Network Binding: ncacn_ip_tcp:16.32.16.138[1034]
%DEBUG-I-WATCH: Network Binding: ncacn_dnet_nsp:19.10[RPC224002690001]
%DEBUG-I-WATCH: Network Binding: ncadg_ip_udp:16.32.16.138[1045]
%DEBUG-I-AWAIT: Ready for client connection...

Use one of the network binding strings to identify this server when you connect from the client (see
Section 9.9.4).

228

Chapter 11. Using the Debugger PC Client/Server Interface

Note

You can usually identify the server using only the node name and the port number. For example,
nodnam[1034].

To establish a connection from the PC client, invoke the Connection dialog, either from the File pull-
down menu, or by selecting the C/S button on the Main toolbar. The dialog displays the servers already
known to this client, and the sessions currently active by this client.

You can specify a server for a new connection, or select a particular session for use.

From the buttons at the bottom of the dialog, you can

• Connect to the selected (or the default) server

• Disconnect from a server

• Test the client/server connection

• Stop the selected server

In addition, the Advanced button allows you to select the network protocol to be used (see
Section 11.5.1), and to select the number of secondary clients (0-30) allowed for the client/server
connection to be established (see Section 11.5.2).

11.5.1. Choosing a Transport
From the Connection dialog, select the network protocol to be used for the client/server connection from
the following:

• TCP/IP

• DECnet

• UDP

11.5.2. Secondary Connections
From the Connection dialog, you can enable up to 30 secondary clients to connect to the server. You
must be the primary client (the first client to connect to this server), and perform the following steps:

1. On the Connection dialog, click Advanced.

2. Select the number of secondary clients(0-30) to be permitted.

3. Click Connect on the Connection dialog.

The debugger dismisses the Connection dialog, makes the connection, and indicates success (or failure)
in the Command view. You can now begin your debugging procedures.

11.6. Terminating a Server Connection
You can stop a server by entering Ctrl-Y on the node on which the server is running. If you do so, then
enter the DCL STOP command.

229

Chapter 11. Using the Debugger PC Client/Server Interface

To stop the server from the client, perform the following steps:

1. Open the File pull-down menu.

2. Select Exit.

3. Click Server to stop only the server, or click Both to stop both the server and the client.

An alternative way to stop the server is to perform the following steps:

1. Open the File pull-down menu.

2. Click Connection to invoke the Connection dialog.

3. Select the server connection from the Active Sessions list.

4. Click Stop.

11.6.1. Exiting Both Client and Server
To stop both the server and the client, perform the following steps:

1. Open the File pull-down menu.

2. Click Exit.

3. Click Both.

11.6.2. Exiting the Client Only
To stop only the client, perform the following steps:

1. Open the File pull-down menu.

2. Click Exit.

3. Click Client.

11.6.3. Stopping Only the Server
To stop only the server, perform the following steps:

1. Open the File pull-down menu.

2. Click Exit.

3. Click Server.

11.7. Documentation
In addition to the PC client Help file, the VSI OpenVMS Debugger Manual is online in HTML format. To
access the manual from within the client, do the following:

1. Open the Help pull-down menu.

230

Chapter 11. Using the Debugger PC Client/Server Interface

2. Click Contents.

3. Click Local Manual.

231

Chapter 11. Using the Debugger PC Client/Server Interface

232

Part V. Advanced Topics

233

234

Chapter 12. Using the Heap Analyzer
The Heap Analyzer, available on OpenVMS Integrity servers and Alpha systems, is a feature of
the debugger that provides a graphical representation of memory use in real time. By studying this
representation, you can identify areas in your application where memory usage and performance can be
improved. For example, you might notice allocations that are made too often, memory blocks that are
too large, evidence of fragmentation, or memory leaks.

After you locate an area of interest, you can request an enlarged, more detailed, or altered view. You can
also request additional information on the size, contents, or address of the allocations shown.

After you narrow your interest to an individual allocation, you can request trace back information.
The analyzer allows you to correlate the trace back entry for an allocation with source code in your
application program. By scrolling through the source code display, you can then identify problematic
code and decide how to correct it.

This chapter describes the following:

• Starting a Heap Analyzer session (Section 12.1)

• Working with the default display (Section 12.2)

• Adjusting type determination and display (Section 12.3)

• Exiting the Heap Analyzer (Section 12.4)

• Sample session (Section 12.5)

12.1. Starting a Heap Analyzer Session
The following sections describe how to invoke the Heap Analyzer and run your application.

12.1.1. Invoking the Heap Analyzer
You can invoke the Heap Analyzer during a debugging session in one of the following ways:

1. In the debugger main window, choose Run Image or Rerun Same from the File menu. When a dialog
box appears, select the program you wish to execute and click the Heap Analyzer toggle button.

2. At the debugger command entry prompt, enter the RUN/HEAP_ANALYZER or
RERUN/HEAP_ANALYZER program-image command.

3. On Alpha systems: At the DCL prompt ($) in a DECterm window outside the debugger, enter the
following command and then execute your program:

$ DEFINE/USER/NAME=CONFINE LIBRTL SYS$LIBRARY:LIBRTL_INSTRUMENTED

 To use the heap analyzer with a protected image, enter the following command and then execute
your program:

$ DEFINE/EXEC/NAME=CONFINE LIBRTL SYS$LIBRARY:LIBRTL_INSTRUMENTED

235

Chapter 12. Using the Heap Analyzer

This is necessary if the image was installed with the following command:

$ INSTALL ADD imagename/PROTECTED

You can invoke the Heap Analyzer outside a debugging session by entering the DEFINE/USER (or
DEFINE/SYSTEM) command detailed above, and then the DCL command RUN/NODEBUG.

4. On Integrity server systems, at the Debug prompt (DBG>), enter the START HEAP_ANALYZER
command.

Note

The Heap Analyzer startup and the Heap Analyzer START command on the Integrity servers kept
debugger (START HEAP_ANALYZER) hangs for threaded applications with up calls enabled.

In such instances, for threaded or AST-involved applications, HP strongly recommends that you
either start the Heap Analyzer before setting up any debug events or after disabling or canceling the
debug events. (You can enable/reset events after the Heap Analyzer startup and START returns you
to debugger control.)

After you successfully invoke the Heap Analyzer, the Heap Analyzer startup screen appears.

Note

On OpenVMS Alpha systems, the Heap Analyzer does not work on programs linked with the
/NODEBUG qualifier.

On OpenVMS Integrity server systems, the Heap Analyzer does work on programs linked with the
/NODEBUG qualifier, although the traceback information displayed is minimal.

12.1.2. Viewing Heap Analyzer Windows
The Heap Analyzer contains a main window, six subsidiary windows, and a control panel (see
Figure 12.1.)

The Memory Map, the most important window, displays a representation of your application's dynamic
memory use. At startup, the Memory Map shows the images that comprise your application. As your
application executes, you can see the relative location and size of individual memory blocks, images,
program regions, memory zones, and dynamic strings as they are allocated and deallocated in memory
space.

The Message window displays information on your Heap Analyzer session. At startup, the Message
window contains the message “Heap Analyzer initialization complete. Press Start button to begin
program.”As your application executes, informational and error messages appear in this window.

The Push Button Control Panel contains buttons that allow you to control the speed of the Memory Map
display. At startup, you click on the Start button to begin executing your application. As your application
executes, you can click on other buttons in the panel to pause, slow, or otherwise affect the continuous
display.

The Information window displays information on Memory Map segments. As your application executes,
you can pause execution at any time to request specific information.

236

Chapter 12. Using the Heap Analyzer

The Source window displays the application source code associated with a segment in the Memory Map.

The Do-not-use Type List allows you to adjust the Memory Map display by redetermining a segment's
type, or group name.

The Views-and-Types Display allows you to adjust the Memory Map display by selectively viewing
certain segment types.

The Type Histogram displays summary and statistical information on segment types.

As you use the Heap Analyzer, you may need to increase or decrease the size of the window in which
you are working. To do this, pull the window pane sashes between windows or resize the screen as a
whole.

Figure 12.1. Heap Analyzer Windows

1. Memory Map Shows the graphical representation of memory,
that is, the part of P0-space that is in use. Each
allocation appears as a colored strip, or segment.

2. Message Window Displays Heap Analyzer informational and error
messages and one-line segment descriptions.

3. Information Window Shows additional information on segments and
segment types that appear in the Memory Map.

4. Source Window Shows application source code.

237

Chapter 12. Using the Heap Analyzer

5. Do-not-use Type List Lists routines not used as segment types, the name
that characterizes segments.

6. Views-and-Types Display Lists all segment types known to the Heap
Analyzer and allows you to alter the segment
display.

7. Push Button Control Panel Provides Start/Step, Pause, Slow, and Sync buttons
that allow you to control the speed of Memory
Map display.

8. Type Histogram Shows statistics on segment size and use.

12.1.3. Viewing Heap Analyzer Pull-Down Menus
The Heap Analyzer provides pull-down menus that are grouped over the Memory Map (see
Figure 12.2). This figure is adjusted slightly so that all menu items can be seen.

Figure 12.2. Heap Analyzer Pull-Down Menus

1. File Menu Allows you to exit from the Heap Analyzer
2. Display Menu Allows you to adjust the Memory Map display and

to clear the Information window
3. Zoom Menu Provides a closer or further view of the Memory

Map
4. View Menu Lets you select the granularity of the display
5. Options Menu Allows you to indicate a search directory list or to

adjust the Do-not-use Type List
6. Help Menu Provides context-sensitive or task-oriented online

help

12.1.4. Viewing Heap Analyzer Context-Sensitive Menus
Most operations in the Heap Analyzer, however, are accomplished through context-sensitive pop-up
menus. Most Heap Analyzer windows contain a pop-up menu listing available tasks (see Figure 12.3). To
access a window's pop-up menu, position your mouse pointer in the window and click MB3.

238

Chapter 12. Using the Heap Analyzer

Figure 12.3. Heap Analyzer Context-Sensitive Pop-Up Menus

1. Memory Map Pop-Up Provides additional information on segments
displayed in the Memory Map, allows you to
jump to a segment's type in the Views-and-Types
Display, or adds a segment's type to the Do-not-
Use Type List.

2. Information Window Pop-Up Allows you to jump from a line of trace back
displayed in the Information window to the related
source code in the Source window.

3. Do-not-use Type List Pop-Up Deletes a segment's type from the Do-not-Use
Type List.

4. Views-and-Types Display Pop-Up Left side:Provides additional information on
segment types listed, highlights a segment type
within the Views-and-Types Display, or adds a
segment type to the Do-not-Use Type List.

Right side: Allows you to adjust display
characteristics for the segment type highlighted in
the left side of the Views-and-Types Display.

5. Type Histogram Pop-Up Provides additional information on segment types
listed, highlights a segment type in the Type
Histogram, or adds the segment type to the Do-
not-Use Type List.

12.1.5. Setting a Source Directory
If you are invoking the Heap Analyzer from a directory other than the one that stores your application
source code, you can set a source directory for the Heap Analyzer as soon as the startup screen appears.

To set a source directory:

1. Choose Set Source... from the Options menu on the Heap Analyzer screen.

The Set Source dialog box appears.

239

Chapter 12. Using the Heap Analyzer

2. Enter the directory specification for your source directory as you would for the debugger
SET SOURCE command.

For more information on this command, see the SET SOURCE command.

3. Click on OK.

The Heap Analyzer can now access your application.

12.1.6. Starting Your Application
If you invoked the Heap Analyzer from within a debugging session, start your application by performing
the following steps:

1. Click on the Start button in the Push Button Control Panel.

The Message window displays an "application starting" message, and the Start button label changes
to Step. The OpenVMS Debugger main window pops forward.

2. Click on the Go button in the debugger's control panel, and iconize the OpenVMS Debugger
window.

Memory events associated with your application begin showing in the Memory Map.

If you invoked the Heap Analyzer outside a debugging session, start your application by performing only
step 1 above.

After your application is running, the Memory Map (and other parts of the Heap Analyzer display) are
continuously updated to reflect the state of your application.

Unless you intervene (see Section 12.1.7), this updating continues until an occurrence causes memory
events to stop. For example, your application might prompt for input, the debugger might prompt for
input, or your application might finish execution.

12.1.7. Controlling the Speed of Display
To examine events in the Memory Map as your application is executing, you can use the Heap Analyzer's
push buttons to slow, pause, and otherwise affect the speed of the display. Figure 12.4 shows these push
buttons on the Heap Analyzer window just after the Start button was pushed.

The Slow and Pause push buttons allow you to slow or pause the display.

The Step push button allows you to single-step through memory events.

The Sync histogram (not shown) to the right of the Sync button indicate show far behind your
application the Heap Analyzer is running. For performance reasons, the Heap Analyzer displays memory
events a few seconds after their occurrence in your application.

240

Chapter 12. Using the Heap Analyzer

Figure 12.4. Heap Analyzer Control Panel

1. Start Button Click to start executing your application and enable
the Memory Map display. Once you do so, the
Start button changes to a Step button, which is
initially dimmed (inaccessible).

2. Step Button Click to single-step through memory events in the
Memory Map display. This button is dimmed until
you click on the Pause button.

3. Pause Button Click to stop (or restart) execution of your
application and the dynamic Memory Map display.

4. Slow Button Click to slow the dynamic Memory Map display.
5. Sync Button Click to force concurrent execution of your

application program and display of memory events
in the Memory Map.

The Sync push button allows you to synchronize Heap Analyzer display and application execution, if this
is important to you. Your application runs more slowly when you request synchronization.

On OpenVMS Alpha systems, anything that uses system service interception, like the debugger or the
Heap Analyzer, is unable to intercept system service call images activated by shared linkage. The image
activator, therefore, avoids shared linkage for images linked or run with /DEBUG, and instead activates
private image copies. This affects performance of applications under Heap Analyzer control, as images
activated by shared linkage run faster.

241

Chapter 12. Using the Heap Analyzer

12.2. Working with the Default Display
The following sections describe how to use the Heap Analyzer when memory problems are clearly
visible in the default Memory Map display.

Visible problems include allocations that are larger than you expect, that repeat numerous times, that
increment at each allocation, and that could occur in a more efficient way.

In such cases, your Heap Analyzer session consists of the following steps:

1. Examine the Memory Map display.

2. Set display characteristics in the Memory Map (optional).

3. Request additional information on individual segments (optional).

4. Request traceback information on individual segments.

5. Correlate traceback entries with source code routines.

12.2.1. Memory Map Display
Depending on the size of your application, you may wish to examine the Memory Map display as your
application is running (by using the push buttons to slow, pause, or step through events) or after your
application completes running (by using the Memory Map's vertical scroll bar to scroll back through the
display).

You can identify segments whose size or location are not what you expect by remembering that a
segment's location in the Memory Map corresponds to its location in dynamic memory. Lower addresses
in dynamic memory are represented in the upper left of the Memory Map display. Addresses increase to
the right and wrap at each line of the display.

12.2.2. Options for Memory Map Display
As you examine the Memory Map, you may wish to select display options that allow you to see more
clearly those parts of the display you are most interested in.

The Display Menu allows you to control whether you see segment type names within the Memory Map
display, whether the display automatically scrolls to show the most recent activity, and whether you can
compress the display.

The Zoom Menu allows you to control the degree of magnification with which you see segments in
the Memory Map. Choosing the Far menu item, for example, shows an overview of memory. Choosing
Extremely Close shows a more detailed view of memory.

Figure 12.5 shows the display options that appear in the Display pull-down menu. The figure then lists
all the display options available in the Memory Map.

242

Chapter 12. Using the Heap Analyzer

Figure 12.5. Heap Analyzer Display Menu and Zoom Menu

1. Display Menu Text Visible: (Default.) Labels each segment in the
Memory Map with a segment name, provided that
the segment is large enough to carry a name label.

Auto Scroll: (Default.) Automatically scrolls the
Memory Map to the highest memory addresses
(lower right) whenever the display is expanded.

Reduce Scroll Region: When you request a
limited or partial Memory Map display (see
Section 12.3.3.2), compresses the display so that
you can see as many segments as possible without
scrolling to their location in the original display.

Display All Segments: Displays segment definitions
for all segments in the Memory Map.

Clear Information Window: Clears text and
messages from the Information window.

2. Zoom Menu Options provide a closer or more distant view of
the Memory Map.

243

Chapter 12. Using the Heap Analyzer

12.2.3. Options for Further Information
As you examine the Memory Map display, you may find that you need more information on those
segments that interest you. The Memory Map pop-up menu allows you to request segment, contents,
address, and type definitions for an individual segment.

A segment definition has the following form:

cursor-address n:init-address + length = end-address name (view)

cursor-address The address beneath your cursor when you click MB3.
n The number of your segment within the sequence of total segments.
init-address The initial address of your segment.
length The length (in bytes) of your segment.
end-address The last address of your segment.
name The segment type name of your segment.
view The view of your segment: block, image, region, or zone. (See Section 12.3.3.2 for

more information on views.)

For example, the following segment definition describes the 15th segment in your Memory Map display,
which is a segment of type LIBRTL:

 0004ECA5 15: 00040000+0001CA00=0005CA00 LIBRTL (Image)

A contents definition consists of a partial segment definition (a segment definition without a cursor-
address) and an ASCII representation of the contents of segment addresses. For example:

contents of: 38: 001C7000+000000C0=001C70C0
 LIBTRL\LIB$VM\LIB$GET_VM (Block)
 [ASCII representation]

An address definition takes the form of a statement describing user access to a stated address. For
example:

001C710B is read and write accessible by the user

A type definition takes the form of a statement summarizing the total number of segments and total
number of bytes devoted to a segment type. For example:

LIBRTL\LIB$VM\LIB$GET_VM (Block) has 39 segments using 00002160 bytes

Figure 12.6 shows the Memory Map context-sensitive pop-up menu. The figure then lists all the mouse
and pop-up menu item choices available in the Memory Map.

244

Chapter 12. Using the Heap Analyzer

Figure 12.6. Heap Analyzer Memory Map Context-Sensitive Pop-Up Menu

1. Memory Map Click MB1: Displays the segment definition in the
Message window.

2. Map Pop-Up Traceback of Allocation: Displays the traceback
information associated with a segment in the
Information window (see Section 12.2.4).

Display Segment: Displays the segment definition
in the Information window.

Display Contents: Displays the segment definition
and contents of each address in the Information
window.

Display Address: Displays the position (address)
under your cursor and the type of user access in
the Information window.

Display Type: Displays the segment type definition
in the Information window.

Go to Type: Allows you to jump from a segment
type listed in the Type Histogram to the same
segment type listed in the Views-and-Types
Display.

245

Chapter 12. Using the Heap Analyzer

Do Not Use Type: Adds a segment type to the Do-
not-use Type List.

12.2.4. Requesting Traceback Information
After you identify an individual segment of interest, choose the Traceback of Allocation menu item in
the Memory Map pop-up menu. Traceback information can help you understand why your segment was
created. Viewing traceback is also a preliminary step to displaying application code.

Traceback information consists of a partial segment definition (a segment definition without a cursor
address) and the list of elements on the call stack at the moment your segment was created. The element
naming convention is image name\ module name\ routine name\ line number. For example:

traceback: 8:000BA800+00065C00=00120400 DECC$SHR (Image)
00066EDE DBG$HA_KERNEL
00005864 CRL$MAIN_DB\CRL_LIBRARY\crl__initialize_libraries\%LINE 5592

12.2.5. Correlating Traceback Information with Source
Code
When the traceback display appears, you identify the traceback entry most closely associated with
the segment you are investigating. Most often, you can do this by comparing segment type names and
traceback routine names.

When you double click MB1 on this traceback entry, the source code associated with the entry appears
(highlighted) in the Source window. You can then scroll through the source code display, identify
problematic code, and decide how to correct it.

If you cannot identify any problems in the displayed source code, return to the Information window and
double click MB1 on the routine immediately above or below your previous choice.

If you double click MB1 on a traceback entry, and 'Source Not Available' messages appear in the Source
window, you may have forgotten to set a source directory at the beginning of your Heap Analyzer
session. See Section 12.1.5 for information on setting a search directory.

Figure 12.7 shows the source code that appears when you double click MB1 on the traceback entry
highlighted in the Information window. The figure then lists all the mouse and menu item choices
available for the Source and Information windows.

246

Chapter 12. Using the Heap Analyzer

Figure 12.7. Heap Analyzer Information and Source Windows

1. Information Window Double click MB1: Allows you to jump from a line
of traceback displayed in the Information window
to the related source code in the Source window.

2. Information Window Pop-Up Go to Source: Allows you to jump from a line of
traceback displayed in the Information window to
the related source code in the Source window.

3. Display Menu Clear Information window: Clears text and
messages from the Information window.

12.3. Adjusting Type Determination and
Display
The following sections describe the steps to perform when the memory events represented in the default
Memory Map are not clear; that is, you cannot tell whether a problem exists or not.

This circumstance can occur when the segment type names chosen by the Heap Analyzer are too broad
to be useful for your application, or when the Memory Map is so full that you cannot easily see the
segment of interest.

In such cases, you can choose one or both of the following strategies:

247

Chapter 12. Using the Heap Analyzer

• Review the type summary in the Type Histogram (to see a summary, in total segments and total
bytes, of each segment type's use)

• Adjust the type determination in the Memory Map (directing the Heap Analyzer to select type names
that are more meaningful to you)

• Adjust the type display in the Memory Map (directing the Heap Analyzer to suppress some types and
highlight others)

If, by adjusting the type determination or display, you then identify visible problems, you can resolve
them in the same way you would if you were working with the default Memory Map display. (For more
information, see Section 12.2.)

12.3.1. Options for Further Information
As you examine the Memory Map, you may wish to see a summary of Memory Map activity in the Type
Histogram. The Type Histogram, which is two histograms back-to-back, shows the percentage of total
segments and the percentage of total bytes devoted to each segment type in the Memory Map.

To see these graphical representations in numeric form, click MB1 on the segment type of interest.

To see the total number of segments or total number of bytes, check the top of each histogram.

Figure 12.8 shows the types listed in the Type Histogram. (This window has been resized so all types
appear.) The figure then lists all the mouse and menu item choices available in the Type Histogram.

Figure 12.8. Heap Analyzer Type Histogram

248

Chapter 12. Using the Heap Analyzer

1. Type Histogram Click MB1: Displays the percentage of total
segments and the percentage of total bytes
represented by a segment.

2. Type Histogram Pop-Up Display Type:Displays a type definition in the
Information window.

Go To Type: Allows you to jump from a segment
type listed in the Type Histogram to the same
segment type listed in the Views-and-Types
Display.

Do Not Use Type: Adds a segment type to the Do-
not-use Type List.

12.3.2. Altering Type Determination
As you examine the Memory Map, you may find that some segment type names are not meaningful
to you. By adding these names to the Do-not-use Type List, you direct the Heap Analyzer to rename
segments and, if necessary, regenerate the Memory Map display.

By default, the analyzer assigns segment type names at the creation of a segment. In some cases, the
analyzer assigns an element name (for example, LIBRTL). In most cases, however, the analyzer searches
down the call stack to find a routine name that then serves as a segment type name.

The analyzer chooses the first routine name on the call stack that is not prohibited by the Do-not-use
Type List. If the first routine is prohibited, the analyzer examines the next routine down, and so on.

This default behavior can cause the following Memory Map problems:

• The same few type names appear repeatedly in the Memory Map display.

This occurs when the first routines on the call stack are low-level memory management or utility
routines. Since most of the allocation events in your application use these routines, you see unrelated
allocations grouped together with the same type name.

To prevent this problem, add any application-specific memory management or utility routine names
to the Do-not-use Type List before you run your application.

• The type names assigned provide a higher level of abstraction than you require.

This can occur when the first routine on the call stack is less application-bound than your level of
examination. If you need to see type names that reflect application functions, it is not helpful to see
type names derived from intermediary memory management routines instead.

This can also occur when the first routine on the call stack focuses on a part of your application you
are not interested in examining. If you need to see type names that reflect subsystem functions (for
example, initialize_death_star), it is not helpful to see only one type name for all subsystem functions
(for example, initialize_star).

To correct this problem, add the current type name to the Do-not-use Type List until the Memory
Map display reflects the level of abstraction you desire.

To add a segment type name to the Do-not-use Type List, you can select the Add to Do-not-use Type
List pull-down menu item in the Options menu, or you can choose the Do Not Use Type pop-up menu

249

Chapter 12. Using the Heap Analyzer

item in the Memory Map, Type Histogram, or Views-and-Types Display. To delete a segment type from
this list, choose the Use Type pop-up menu item in the Do-not-use Type List.

To save the contents of a Do-not-use Type List, you can choose the Save Do-not-use Type List menu
item in the Options menu. This saves the list for future Heap Analyzer sessions. The Restore Do-not-use
Type List menu item removes recent additions to the list since the last time the list was saved.

Figure 12.9 shows a LIBRTL** entry in the Add to Do-not-use Type List dialog box you can choose
from the Options menu. The figure then lists all the mouse and menu item choices available for the Do-
not-Use Type List.

Figure 12.9. Heap Analyzer Do-Not-Use Type List

1. Do-not-use Type List Pop-Up Use Type: Deletes a segment type from the Do-
not-use Type List.

2. Options Menu Add to Do-not-use Type List: Adds a segment type
to the Do-not-use Type List.

Save Do-not-use Type List: Allows you to save the
segment types listed in your Do-not-use Type List
between Heap Analyzer sessions.

Restore Do-not-use Type List: Deletes additions
to the Do-not-use Type List since the list was last
saved.

250

Chapter 12. Using the Heap Analyzer

3. Memory Map Pop-Up,

Histogram Pop-Up,

Views-and-Types Display Pop-Up

Do Not Use Type: Adds a segment type to the Do-
not-use Type List.

12.3.3. Altering the Views-and-Types Display
As you examine the Memory Map, you may find that you need to adjust the type display to focus more
clearly on your area of interest. The Views-and-Types Display allows you to specify changes to multiple
or individual segments of the same type.

The Views-and-Types Display is actually two windows separated by a window sash. You can expand
the left window to show all the known types in your application. The right window contains the display
options (color, show status, expand status, and save status).

12.3.3.1. Selecting the Scope of Your Change
The Heap Analyzer receives information about segments from four OpenVMS memory managers that
perform allocations and deallocations in memory space. Each memory manager has a slightly different
view, or overall picture, of dynamic memory.

Each memory manager recognizes a different set of segment types. This means that, within the Heap
Analyzer, where views from the memory managers are layered on each other, a single memory location
can be associated with one or more segment types.

The left window of the Views-and-Types Display contains a hierarchy that reflects this integration:

• Views (integrates all four views)

• Blocks (block view from LIB$VM memory manager)

• Images (image view from SYS$IMAGE memory manager)

• Regions (system services view from SYS$SERVICES memory manager)

• Zones (zone view from LIB$VM_ZONE memory manager)

To see the individual segment types recognized by each memory manager, expand the default display by
double clicking MB1 on Blocks, Images, Regions, or Zones keywords. To collapse an individual listing,
click MB3 on the keyword you previously selected.

This hierarchy offers you the following choices in scope:

• To affect all segment types in all views: Click MB1 on the Views keyword.

• To affect all segment types in one view: Click MB1 on the Blocks, Images, Regions, or Zones
keywords.

• To affect individual segment types: Double click MB1 on the view of your choice, and click MB1 on
one or more single segment types.

Figure 12.10 shows the Block hierarchy item that is highlighted when you click MB1 to choose all
blocks. The figure then lists all the mouse and menu item choices available in the hierarchy side of the
Views-and-Types Display.

251

Chapter 12. Using the Heap Analyzer

Figure 12.10. Heap Analyzer Views-and-Types Hierarchy

1. Double click MB1 Allows you to expand (or collapse) the Views-and-
Types hierarchy.

2. Views Hierarchy Pop-Up Display Type:Displays a type definition in the
Information window.

Go to Type: Highlights the type you have selected
in the Views-and-Types Display.

Do Not Use Type: Adds a segment type to the Do-
not-use Type List.

12.3.3.2. Choosing a Display Option

The right window of the Views-and-Types Display shows the display options available, as follows:

• Color

To change the color of all segment types, all segment types in a particular view, or individual
segment types, click MB3 on the color button in the display. When the vertical color strip appears,
click MB1on the color of your choice. Then, click the Apply button to apply your change.

• Show (or hide) status

252

Chapter 12. Using the Heap Analyzer

To suppress (or restore) the display of all segment types, all segment types in a particular view, or
individual segment types, toggle the Show button to the Hide (or Show) setting and click MB1.
(Alternatively, you can choose the appropriate menu item from the Show pop-up menu.) Then, click
the Apply button to apply your change.

Use this option to clear the Memory Map of segments you are not examining. You can also use this
option to find all segments of a particular type(by hiding every other segment).

• Expand (or collapse) status

To collapse (or expand) the display of segment types contained within all segment types, all segment
types in a particular view, or individual segment types, toggle the Expand button to the Collapse (or
Expand) setting and click MB1. (Alternatively, you can choose the appropriate menu item from the
Expand pop-up menu.) Then, click the Apply button to apply your change.

Use this option to clear the Memory Map of nested segments you are not examining. Depending on
your application, Heap Analyzer performance may also improve.

• Save (or remove) status

To destroy (or save) information on all segment types, all segment types in a particular view, or
individual segment types, toggle the Save button to the Remove (or Save) setting and click MB1.
(Alternatively, you can choose the appropriate menu item from the Save pop-up menu.) Then, click
the Apply button to apply your change.

Use this option to clear the Memory Map completely, and then resume Memory Map display. See
Section 12.5 to see how this can be valuable when you examine interactive commands.

To cancel a choice, click the Reset button, or choose the Reset menu item from the Show, Expand, or
Save pop-up menus.

Figure 12.11 shows the Show pop-up menu that appears when you click MB3 on the options side of
the Views-and-Types Display (the scope of your change, Blocks, has been previously highlighted). The
figure then lists the mouse and menu item choices available in the options side of the Views-and-Types
Display.

253

Chapter 12. Using the Heap Analyzer

Figure 12.11. Heap Analyzer Views-and-Types Display Options

1. Click MB1 Toggles the Show, Expand, and Save toggle
buttons.

2. Color Pop-Up Controls the color display for individual types or
groups of types.

3. Show Pop-Up Controls the display of segment types you have
chosen. Show and Hide menu items allow you
to restore or suppress display; Reset cancels your
choice.

4. Expand Pop-Up Controls the display of segments within segment
types you have chosen. Expand and Collapse menu
items allow you to restore or suppress display;
Reset cancels your choice.

5. Save Pop-Up Controls the Heap Analyzer's ability to show and
store information on the segment types you have
selected. The Remove menu item destroys all
information;Save restores the ability to show and
store information; and Reset cancels your choice.

6. Apply Button Applies your selections to the Memory Map
display.

7. Reset Button Cancels your selections.

254

Chapter 12. Using the Heap Analyzer

12.4. Exiting the Heap Analyzer
To exit the Heap Analyzer, choose Exit from the File menu on the Heap Analyzer screen.

12.5. Sample Session
This section contains an example that shows how to combine information from Heap Analyzer windows
and menus to locate a particular memory leak in your application.

The example assumes that you have invoked the Heap Analyzer and run your application. As you scroll
back through the Memory Map display, you focus your attention on segments that appear when your
application calls for an interactive command.

12.5.1. Isolating Display of Interactive Command
You suspect that the leak occurs when you enter an interactive SHOW UNITS command, so your first
step is to clear the Memory Map and reenter the command.

To clear the Memory Map and reenter the command:

1. Click on Remove for the Views item within the Views-and-Types Display. Then click on the Apply
button.

The Heap Analyzer clears all previous output from the Memory Map.

2. Click on Save for the Views item. Then click on the Apply button.

The Heap Analyzer will save all subsequent output to the Memory Map.

3. In another DECterm window, at your application's prompt, enter several SHOW UNITS commands.

The Heap Analyzer shows a small series of segments that appear to be incrementing, but the scale is
too small for you to be sure.

4. Choose the Extremely Close menu item in the Zoom menu.

The Heap Analyzer provides a closer view of the segments.

The memory space allocated to each SCA__MEM_GET_VM segment is slightly larger with each
SHOW UNITS command (see Figure 12.12). This growth in what should be a same-size allocation
indicates a memory leak.

255

Chapter 12. Using the Heap Analyzer

Figure 12.12. Incrementing Memory Allocation Indicates a Memory Leak

12.5.2. Adjusting Type Determination
The Heap Analyzer labels the segment type associated with your segments as SCA__MEM_GET_VM.
This is a fairly low-level memory management routine that many segments might share. Your next step
is to redefine the segment type to a more meaningful level of abstraction, perhaps one corresponding to
the name of an application routine.

To redefine the segment type:

1. Position your mouse pointer over one of the segments, and click MB3.

The Heap Analyzer displays the Memory Map's context-sensitive pop-up menu.

2. Choose Do Not Use Type from the pop-up menu.

The segment type associated with your segment changes from SCA__MEM_GET_VM to the more
meaningful crl_begin_unit_query (see Figure 12.13).

256

Chapter 12. Using the Heap Analyzer

Figure 12.13. The Do-Not-Use Type Menu Item Redefines Segment Type

12.5.3. Requesting Traceback Information
After you determine the level of abstraction at which you want to view your segment, the next step is to
examine the state of the call stack when the segment was allocated. Reviewing the traceback associated
with a segment can reveal when and why it was created, and why a memory problem is occurring.

To request traceback information:

1. Position your mouse pointer over your segment, and click MB3.

The Heap Analyzer displays the Memory Map's context-sensitive pop-up menu.

2. Choose the Traceback of Allocation menu item from the pop-up menu.

Traceback information for your segment appears in the Information window.

12.5.4. Correlating Traceback with Source Code
The traceback for your segment indicates that the crl_begin_unit_query routine sets up the environment
for the SHOW UNITS command. To examine this event further, you can request to see the source code
associated with it.

To request source code, double click MB1 on the traceback line that refers to crl_begin_unit_query.

Source code appears in the Source window. The routine call that placed crl_begin_unit_query on the call
stack is highlighted (see Figure 12.14).

257

Chapter 12. Using the Heap Analyzer

Figure 12.14. The Click on Traceback Entry Shows Associated Source Code

12.5.5. Locating an Allocation Error in Source Code
After you connect a traceback entry to a routine in your application source code, you can enlarge the
Source window and search for allocation errors in that source code location.

For example, the highlighted line 5725 in Figure 12.15 makes an allocation to unit_query. This allocation
is not deallocated before line 5740, where an additional allocation occurs. This coding error is the cause
of your memory leak.

258

Chapter 12. Using the Heap Analyzer

Figure 12.15. Review of Source Code Shows Double Allocation

259

Chapter 12. Using the Heap Analyzer

260

Chapter 13. Additional Convenience
Features
This chapter describes the following debugger convenience features not described elsewhere in this
manual:

• Using debugger command procedures

• Using an initialization file for a debugging session

• Logging a debugging session into a file

• Defining symbols to represent commands, address expressions, or values

• Assigning debugger commands to function keys

• Using control structures to enter commands

• Calling arbitrary routines linked with your program

13.1. Using Debugger Command Procedures
A debugger command procedure is a sequence of commands contained in a file. You can direct the
debugger to execute a command procedure to re-create a debugging session, to continue a previous
session, or to avoid typing the same debugger commands many times during a debugging session. You
can pass parameters to command procedures.

As with DCL command procedures, you execute a debugger command procedure by preceding its file
specification with an at sign (@). The @ is the execute procedure command.

Debugger command procedures are especially useful when you regularly perform a number of standard
setup debugger commands, as specified in a debugger initialization file (see Section 13.2). You can also
use a debugger log file as a command procedure (see Section 13.3).

13.1.1. Basic Conventions
The following is a sample debugger command procedure named BREAK7.COM:

! ***** Debugger Command Procedure BREAK7.COM *****
SET BREAK/AFTER:3 %LINE 120 DO (EXAMINE K, N, J, X(K); GO)
SET BREAK/AFTER:3 %LINE 160 DO (EXAMINE K, N, J, X(K), S; GO)
SET BREAK %LINE 90

When you execute this command procedure with the execute procedure (@) command, the commands
listed in the procedure are executed in the order they appear.

The rules for entering commands in command procedures are listed in the debugger's online help (type
HELP Command_Format).

You can pass parameters to a command procedure. See Section 13.1.2 for conventions on passing
parameters.

261

Chapter 13. Additional Convenience Features

You can enter the execute procedure (@) command like any other debugger command:directly from
the terminal, from within another command procedure, from within a DO clause in a command such as
SET BREAK, or from within a DO clause in a screen display definition.

If you do not supply a full file specification with the execute procedure (@) command, the debugger
assumes SYS$DISK:[]DEBUG.COM as the default file specification for command procedures. For
example, enter the following command line to execute command procedure BREAK7.COM, located in
your current default directory:

DBG> @BREAK7

 The SET ATSIGN command enables you to change any or all fields of the default file specification,
SYS$DISK:[]DEBUG.COM. The SHOW ATSIGN command identifies the default file specification
for command procedures.

 By default, commands read from a command procedure are not echoed. If you enter the
SET OUTPUT VERIFY command, all commands read from a command procedure are echoed on the
current output device, as specified by DBG$OUTPUT (the default output device is SYS$OUTPUT). Use
the SHOW OUTPUT command to determine whether commands read from a command procedure are
echoed or not.

If the execution of a command in a command procedure results in a diagnostic of severity warning
or greater, the command is aborted but execution of the command procedure continues at the next
command line.

13.1.2. Passing Parameters to Command Procedures
As with DCL command procedures, you can pass parameters to debugger command procedures.
However, the technique is different in several respects.

Subject to the conventions described here, you can pass as many parameters as you want to a debugger
command procedure. The parameters can be address expressions, commands, or value expressions in the
current language. You must surround command strings in quotation marks ("), and you must separate
parameters by commas (,).

A debugger command procedure to which you pass parameters must contain a DECLARE command
line that binds each actual (passed) parameter to a formal parameter (a symbol) declared within the
command procedure.

The DECLARE command is valid only within a command procedure. Its syntax is as follows:

DECLARE p-name:p-kind[, p-name:p-kind[, …]]

Each p-name: p-kind pair associates a formal parameter (p-name) with a parameter kind (p-
kind). The valid p-kind keywords are as follows:

ADDRESS Causes the actual parameter to be interpreted as an address expression
COMMAND Causes the actual parameter to be interpreted as a command
VALUE Causes the actual parameter to be interpreted as a value expression in the current

language

The following example shows what happens when a parameter is passed to a command procedure.
The command DECLARE DBG:ADDRESS, within command procedure EXAM.COM, declares the

262

Chapter 13. Additional Convenience Features

formal parameter DBG. The actual parameter passed to EXAM.COM is interpreted as an address
expression. The command EXAMINE DBG displays the value of that address expression. The command
SET OUTPUT VERIFY causes the commands to echo when they are read by the debugger.

! ***** Debugger Command Procedure EXAM.COM *****
SET OUTPUT VERIFY
DECLARE DBG:ADDRESS
EXAMINE DBG

The next command line executes EXAM.COM by passing the actual parameter ARR24. Within
EXAM.COM, ARR24 is interpreted as an address expression (an array variable, in this case).

DBG> @EXAM ARR24
%DEBUG-I-VERIFYIC, entering command procedure EXAM
 DECLARE DBG:ADDRESS
 EXAMINE DBG
PROG_8\ARR24
 (1): Mark A. Hopper
 (2): Rudy B. Hopper
 (3): Tim B. Hopper
 (4): Don C. Hopper
 (5): Mary D. Hopper
 (6): Jeff D. Hopper
 (7): Nancy G. Hopper
 (8): Barbara H. Hopper
 (9): Lon H. Hopper
 (10): Dave H. Hopper
 (11): Andy J. Hopper
 (12): Will K. Hopper
 (13): Art L. Hopper
 (14): Jack M. Hopper
 (15): Karen M. Hopper
 (16): Tracy M. Hopper
 (17): Wanfang M. Hopper
 (18): Jeff N. Hopper
 (19): Nancy O. Hopper
 (20): Mike R. Hopper
 (21): Rick T. Hopper
 (22): Dave W. Hopper
 (23): Jim W. Hopper
 (24): Robert Z. Hopper
%DEBUG-I-VERIFYIC, exiting command procedure EXAM
DBG>

Each p-name: p-kind pair specified by a DECLARE command binds one parameter. For example, if
you want to pass five parameters to a command procedure, you need five corresponding p-name: p-
kind pairs. The pairs are always processed in the order in which you specify them.

For example, the next command procedure, EXAM_GO.COM, accepts two parameters: an address
expression (L) and a command string (M). The address expression is then examined and the command is
executed:

! ***** Debugger Command Procedure EXAM_GO.COM *****
DECLARE L:ADDRESS, M:COMMAND
EXAMINE L; M

The following example shows how you can execute EXAM_GO.COM by passing a variable X to be
examined and a command @DUMP.COM to be executed:

263

Chapter 13. Additional Convenience Features

DBG> @EXAM_GO X, "@DUMP"

The %PARCNT built-in symbol, which can be used only within a command procedure, enables you to
pass a variable number of parameters to a command procedure. The value of %PARCNT is the number
of actual parameters passed to the command procedure.

The %PARCNT built-in symbol is shown in the following example. The command procedure,
VAR.DBG, contains the following lines:

! ***** Debugger Command Procedure VAR.DBG *****
SET OUTPUT VERIFY
! Display the number of parameters passed:
EVALUATE %PARCNT
! Loop as needed to bind all passed parameters and obtain their values:
FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)

The following command line executes VAR.DBG, passing the parameters 12, 37, and 45:

DBG> @VAR.DBG 12, 37, 45
%DEBUG-I-VERIFYIC, entering command procedure VAR.DBG
! Display the number of parameters passed:
EVALUATE %PARCNT3
! Loop as needed to bind all passed parameters! and get their values:
FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)
12
37
45
%DEBUG-I-VERIFYIC, exiting command procedure VAR.DBG
DBG>

When VAR.DBG is executed, %PARCNT has the value 3. Therefore, the FOR loop within VAR.DBG
is repeated 3 times. The FOR loop causes the DECLARE command to bind each of the three actual
parameters (starting with 12) to a new declaration of X. Each actual parameter is interpreted as a value
expression in the current language, and the EVALUATE X command displays that value.

13.2. Using a Debugger Initialization File
A debugger initialization file is a command procedure, assigned the logical name DBG$INIT, that the
debugger automatically executes at debugger startup. Every time you start the debugger, the commands
contained in the file are automatically executed.

An initialization file contains any command lines you might always enter at the start of a debugging
session to either tailor your debugging environment or control the execution of your program in a
predetermined way from run to run.

For example, you might have a file DEBUG_START4.COM containing the following commands:

! ***** Debugger Initialization File DEBUG_START4.COM *****
! Log debugging session into default log file (SYS$DISK:[]DEBUG.LOG)
SET OUTPUT LOG
!
! Echo commands as they are read from command procedures:
SET OUTPUT VERIFY
!
! If source files are not in current default directory, use [SMITH.SHARE]
SET SOURCE [], [SMITH.SHARE]

264

Chapter 13. Additional Convenience Features

!
! Invoke screen mode:
SET MODE SCREEN
!
! Define the symbol SB as the SET BREAK command:
DEFINE/COMMAND SB = "SET BREAK"
!
! Assign the SHOW MODULE * command to KP7:
DEFINE/KEY/TERMINATE KP7 "SHOW MODULE *"

To make this file a debugger initialization file, use the DCL command DEFINE. For example:

$ DEFINE DBG$INIT WORK:[JONES.DBGCOMFILES]DEBUG_START4.COM

13.3. Logging a Debugging Session into a File
A debugger log file maintains a history of a debugging session. During the debugging session, each
command entered and the resulting debugger output are stored in the file. The following is an example of
a debugger log file:

SHOW OUTPUT
!noverify, terminal, noscreen_log, logging to DSK2:[JONES.P7]DEBUG.LOG;1
SET STEP NOSOURCE
SET TRACE %LINE 30
SET BREAK %LINE 60
SHOW TRACE
!tracepoint at PROG4\%LINE 30
GO
!trace at PROG4\%LINE 30
!break at PROG4\%LINE 60
⋮

The DBG> prompt is not recorded, and the debugger output is commented outwith exclamation points
so the file can be used as a debugger command procedure without modification. Thus, if a lengthy
debugging session is interrupted, you can execute the log file as you would any other debugger command
procedure. Executing the log file restores the debugging session to the point at which it was previously
terminated.

To create a debugger log file, use the SET OUTPUT LOG command. By default, the debugger writes
the log to SYS$DISK:[]DEBUG.LOG. To name a debugger log file, use the SET LOG command.
You can override any field of the default file specification. For example, after you enter the following
commands, the debugger logs the session to the file [JONES.WORK2]MONITOR.LOG:

DBG> SET LOG [JONES.WORK2]MONITOR
DBG> SET OUTPUT LOG

You might want to enter the SET OUTPUT LOG command in your debugger initialization file (see
Section 13.2).

 The SHOW LOG command reports whether the debugger is writing to a log file and identifies the
current log file. The SHOW OUTPUT command identifies all current output options.

If you are debugging in screen mode, the SET OUTPUT SCREEN_LOG command enables you to log
the screen contents as the screen is updated. To use this command, you must already be logging your
debugging session - that is, the SET OUTPUT SCREEN_LOG command is valid only after you enter
the SET OUTPUT LOG command. Using SET OUTPUT SCREEN_LOG is not desirable for a long

265

Chapter 13. Additional Convenience Features

debugging session, because storing screen information in this manner results in a large log file. For other
techniques on saving screen-mode information, see the SAVE and EXTRACT command descriptions.

To use a log file as a command procedure, first enter the SET OUTPUT VERIFY command so that
debugger commands are echoed as they are read.

13.4. Defining Symbols for Commands,
Address Expressions, and Values
The DEFINE command enables you both to create a symbol for a lengthy or often-repeated command
sequence or address expression and to store the value of a language expression in a symbol.

You specify the kind of symbol you want to define by the command qualifier you use with the DEFINE
command (/COMMAND, /ADDRESS, or /VALUE). The default qualifier is /ADDRESS. If you plan
to enter several DEFINE commands with the same qualifier, you can first use the SET DEFINE
command to establish a new default qualifier (for example, SET DEFINE COMMAND makes the
DEFINE command behave like DEFINE/COMMAND). The SHOW DEFINE command identifies the
default qualifier currently in effect.

Use the SHOW SYMBOL/DEFINED command to identify symbols you have defined with the DEFINE
command. Note that the SHOW SYMBOL command without the /DEFINED qualifier identifies only the
symbols that are defined in your program, such as the names of routines and variables.

Use the DELETE command to delete symbol definitions created with the DEFINE command.

When defining a symbol within a command procedure, use the /LOCAL qualifier to confine the symbol
definition to that command procedure.

13.4.1. Defining Symbols for Commands
Use the DEFINE/COMMAND command to equate one or more command strings to a shorter symbol.
The basic syntax is shown in the following example:

DBG> DEFINE/COMMAND SB = "SET BREAK"
DBG> SB PARSER

In the example, the DEFINE/COMMAND command equates the symbol SB to the string SET BREAK
(note the use of the quotation marks to delimit the command string). When the command line
SB PARSER is executed, the debugger substitutes the string SET BREAK for the symbol SB and then
executes the SET BREAK command.

In the following example, the DEFINE/COMMAND command equates the symbol BT to the string
consisting of the SHOW BREAK command followed by the SHOW TRACE command (use semicolons to
separate multiple command strings):

DBG> DEFINE/COMMAND BT = "SHOW BREAK;SHOW TRACE"

The SHOW SYMBOL/DEFINED command identifies the symbol BT as follows:

DBG> SHOW SYM/DEFINED BT
defined BT
 bound to: "SHOW BREAK;SHOW TRACE"
 was defined /command
DBG>

266

Chapter 13. Additional Convenience Features

To define complex commands, you might need to use command procedures with parameters (see
Section 13.1.2 for information about passing parameters to command procedures). For example:

DBG> DEFINE/COMMAND DUMP = "@DUMP_PROG2.COM"

13.4.2. Defining Symbols for Address Expressions
Use the DEFINE/ADDRESS command to equate an address expression to a symbol. /ADDRESS is the
default qualifier for the DEFINE command, but it is used in the following examples for emphasis.

In the following example, the symbol B1 is equated to the address of line378; the SET BREAK B1
command then sets a breakpoint on line 378:

DBG> DEFINE/ADDRESS B1 = %LINE 378
DBG> SET BREAK B1

The DEFINE/ADDRESS command is useful when you need to specify a long pathname repeatedly
to reference the name of a variable or routine that is defined multiple times. In the next example, the
symbol UX is equated to the path name SCREEN_IO \UPDATE \X; the abbreviated command line
EXAMINE UX can then be used to obtain the value of X in routine UPDATE of module SCREEN_IO:

DBG> DEFINE UX = SCREEN_IO\UPDATE\X
DBG> EXAMINE UX

13.4.3. Defining Symbols for Values
Use the DEFINE/VALUE command to equate the current value of a language expression to a symbol
(the current value is the value at the time the DEFINE/VALUE command was entered).

The following example shows how you can use the DEFINE/VALUE command to count the number of
calls to a routine:

DBG> DEFINE/VALUE COUNT = 0
DBG> SET TRACE/SILENT ROUT DO (DEFINE/VALUE COUNT = COUNT + 1)
DBG> GO
⋮
DBG> EVALUATE COUNT
14
DBG>

In the example, the first DEFINE/VALUE command initializes the value of the symbol COUNT to
0. The SET TRACE command sets a silent tracepoint on routine ROUT and (through the DO clause)
increments the value of COUNT by 1 every time ROUT is called. After execution is resumed and
eventually suspended, the EVALUATE command obtains the current value of COUNT (the number of
times that ROUT was called).

13.5. Assigning Commands to Function Keys
To facilitate entering commonly used commands, the function keys on the keypad have predefined
debugger functions that are established when you start the debugger. These predefined functions are
identified in Appendix A and the debugger's online help (type HELP Keypad). You can modify
the functions of the keypad keys to suit your individual needs. If you have a VT200- or VT300-series
terminal or a workstation, you can also bind commands to the additional function keys on the LK201
keyboard.

267

Chapter 13. Additional Convenience Features

The debugger commands DEFINE/KEY, SHOW KEY, and DELETE/KEY enable you to assign,
identify, and delete key definitions, respectively. Before you can use this feature, keypad mode must be
enabled with the SET MODE KEYPAD command (keypad mode is enabled by default). Keypad mode
also enables you to use the predefined functions of the keypad keys.

To use the keypad keys to enter numbers rather than debugger commands, enter the
SET MODE NOKEYPAD command.

13.5.1. Basic Conventions
The debugger DEFINE/KEY command, which is similar to the DCL command DEFINE/KEY, enables
you to assign a string to a function key. In the following example, the DEFINE/KEY command defines
KP7 (keypad key 7) to enter and execute the SHOW MODULE * command:

DBG> DEFINE/KEY/TERMINATE KP7 "SHOW MODULE *"
%DEBUG-I-DEFKEY, DEFAULT key KP7 has been defined
DBG>

You must use a valid key name (such as KP7) with the commands DEFINE/KEY, SHOW KEY, and
DELETE/KEY. See the DEFINE/KEY command for the valid key names that you can use with these
commands for VT52 and VT100-series terminals and for LK201 keyboards.

In the previous example, the /TERMINATE qualifier indicates that pressing KP7 executes the command.
You do not have to press Return after pressing KP7.

You can assign any number of definitions to the same function key as long as each definition is
associated with a different state. The predefined states (DEFAULT, GOLD, BLUE, and so on) are
identified in Appendix A and the debugger's online help (type HELP Keypad). In the preceding
example, the informational message indicates that KP7 has been defined for the DEFAULT state (which
is the default key state).

You can enter key definitions in a debugger initialization file (see Section 13.2) so that these definitions
are available whenever you start the debugger.

 To display a key definition in the current state, enter the SHOW KEY command. For example:

DBG> SHOW KEY KP7
DEFAULT keypad definitions:
 KP7 = "SHOW MODULE *" (echo, terminate, nolock)
DBG>

To display a key definition in a state other than the current state, specify that state with the /STATE
qualifier when entering the SHOW KEY command. To see all key definitions in the current state, enter
the SHOW KEY/ALL command.

 To delete a key definition, use the DELETE/KEY command. To delete a key definition in a state other
than the current state, specify that state with the /STATE qualifier. For example:

DBG> DELETE/KEY/STATE=GOLD KP7
%DEBUG-I-DELKEY, GOLD key KP7 has been deleted
DBG>

13.5.2. Advanced Techniques
This section shows more advanced techniques for defining keys, particularly techniques related to the use
of state keys.

268

Chapter 13. Additional Convenience Features

The following command line assigns the unterminated command string "SET BREAK %LINE" to KP9,
for the BLUE state:

DBG> DEFINE/KEY/IF_STATE=BLUE KP9 "SET BREAK %LINE"

The predefined DEFAULT key state is established by default. The predefined BLUE key state is
established by pressing the PF4 key. Enter the command line assigned in the preceding example (SET
BREAK %LINE …) by pressing PF4, pressing KP9, entering a line number, and then pressing the
Return key to terminate and process the command line.

The SET KEY command enables you to change the default state for key definitions. For example, after
entering the SET KEY/STATE=BLUE command, you do not need to press PF4 to enter the command
line in the previous example. Also, the SHOW KEY command will show key definitions in the BLUE
state, by default, and the DELETE/KEY command will delete key definitions in the BLUE state by
default.

You can create additional key states. For example:

DBG> SET KEY/STATE=DEFAULT
DBG> DEFINE/KEY/SET_STATE=RED/LOCK_STATE F12 ""

In this example, the SET KEY command establishes DEFAULT as the current state. The DEFINE/KEY
command makes F12 (LK201 keyboard) a state key. As a result, pressing F12 while in the DEFAULT
state causes the current state to become RED. The key definition is not terminated and has no other
effect (a null string is assigned to F12). After pressing F12, you can enter RED commands by pressing
keys that have definitions associated with the RED state.

13.6. Using Control Structures to Enter
Commands
The FOR, IF, REPEAT, and WHILE commands enable you to create looping and conditional constructs
for entering debugger commands. The associated command EXIT LOOP is used to exit a FOR,
REPEAT, or WHILE loop. The following sections describe these commands.

See Section 4.1.6 and Section 14.3.2.2 for information about evaluating language expressions.

13.6.1. FOR Command
The FOR command executes a sequence of commands while incrementing a variable a specified number
of times. It has the following syntax:

FOR name=expression1 TO expression2 [BY expression3] DO(command[; …])

For example, the following command line sets up a loop that initializes the first 10 elements of an array
to 0:

DBG> FOR I = 1 TO 10 DO (DEPOSIT A(I) = 0)

13.6.2. IF Command

269

Chapter 13. Additional Convenience Features

The IF command executes a sequence of commands if a language expression (Boolean expression) is
evaluated as true. It has the following syntax:

IF boolean-expression THEN (command[; …]) [ELSE (command[;…])]

The following Fortran example sets up a condition that issues the command EXAMINE X2 if X1 is not
equal to −9.9, and issues the command EXAMINE Y1 otherwise:

DBG> IF X1 .NE. -9.9 THEN (EXAMINE X2) ELSE (EXAMINE Y1)

The following Pascal example combines a FOR loop and a condition test. The STEP command is issued
if X1 is not equal to −9.9. The testis made four times:

DBG> FOR COUNT = 1 TO 4 DO (IF X1 <> -9.9 THEN (STEP))

13.6.3. REPEAT Command
The REPEAT command executes a sequence of commands a specified number of times. It has the
following syntax:

REPEAT language-expression DO (command[; …])

For example, the following command line sets up a loop that issues a sequence of two commands
(EXAMINE Y then STEP) 10 times:

DBG> REPEAT 10 DO (EXAMINE Y; STEP)

13.6.4. WHILE Command
The WHILE command executes a sequence of commands while the language expression (Boolean
expression) you have specified evaluates as true. It has the following syntax:

WHILE boolean-expression DO (command[; …])

The following Pascal example sets up a loop that repetitively tests X1 and X2 and issues the two
commands EXAMINE X2 and STEP if X2 is less than X1:

DBG> WHILE X2 < X1 DO (EX X2;STEP)

13.6.5. EXITLOOP Command
The EXIT LOOP command exits one or more enclosing FOR, REPEAT, or WHILE loops. It has the
following syntax:

EXITLOOP [integer]

The integer n specifies the number of nested loops to exit from.

The following Pascal example sets up an endless loop that issues a STEP command with each iteration.
After each step, the value of X is tested. If X is greater than 3, the EXIT LOOP command terminates
the loop.

DBG> WHILE TRUE DO (STEP; IF X > 3 THEN EXITLOOP)

13.7. Calling Routines Independently of
Program Execution

270

Chapter 13. Additional Convenience Features

The CALL command enables you to execute a routine independently of the normal execution of your
program. It is one of the four debugger commands that you can use to execute your program (the others
are GO, STEP, and EXIT).

The CALL command executes a routine whether or not your program actually includes a call to that
routine, as long as the routine was linked with your program. Thus, you can use the CALL command
to execute routines for any purpose (for example, to debug a routine out of the context of program
execution, call a run-time library procedure, call a routine that dumps debugging information, and so on).

You can debug unrelated routines by linking them with a dummy main program that has a transfer
address, and then using the CALL command to execute them.

The following example shows how you can use the CALL command to display some process statistics
without having to include the necessary code in your program. The example consists of calls to run-time
library routines that initialize a timer (LIB$INIT_TIMER) and display the elapsed time and various
statistics (LIB$SHOW_TIMER). (Note that the presence of the debugger affects the timings and counts.)

DBG> SET MODULE SHARE$LIBRTL
DBG> CALL LIB$INIT_TIMER
value returned is 1
DBG> [enter various debugger commands]
⋮
DBG> CALL LIB$SHOW_TIMER
 ELAPSED: 0 00:00:21.65 CPU: 0:14:00.21 BUFIO: 16 DIRIO: 0 FAULTS: 3
value returned is 1
DBG>

The comments that follow refer to the callouts in the previous example:

The routines LIB$INIT_TIMER and LIB$SHOW_TIMER are in the shareable image LIBRTL.
This image must be set by setting its module, because only its universal symbols are accessible
during a debugging session (see Section 5.4.2.3).
This CALL command executes the routine LIB$INIT_TIMER.
The value returned message indicates the value returned in register R0 after the CALL command
has been executed.

By convention, after a called routine has executed, register R0 contains the function return value
(if the routine is a function) or the procedure completion status (if the routine is a procedure that
returns a status value). If a called procedure does not return a status value or function value, the
value in R0 might be meaningless, and the value returned message can be ignored.
This CALL command executes the routine LIB$SHOW_TIMER.

The following example shows how to call LIB$SHOW_VM (also in LIBRTL) to display memory
statistics. Again, note that the presence of the debugger affects the counts.

DBG> SET MODULE SHARE$LIBRTL
DBG> CALL LIB$SHOW_VM
 1785 calls to LIB$GET_VM, 284 calls to LIB$FREE_VM,
 122216 bytes still allocated value returned is 1
DBG>

You can pass parameters to routines with the CALL command. See the CALL command description for
details and examples.

271

Chapter 13. Additional Convenience Features

272

Chapter 14. Debugging Special Cases
This chapter presents debugging techniques for special cases that are not covered elsewhere in this
manual:

• Optimized code

• Screen-oriented programs

• Multi language programs

• Stack corruption

• Exceptions and condition handlers

• Exit handlers

• AST-driven programs

• Translated images

14.1. Debugging Optimized Code
By default, many compilers optimize the code they produce so that the program executes faster. With
optimization, invariant expressions are removed from DO loops so that they are evaluated only once
at run time; some memory locations might be allocated to different variables at different points in the
program, and some variables might be eliminated so that you no longer have access to them while
debugging.

The net result is that the code that is executing as you debug might not match the source code displayed
in a screen-mode source display (see Section 7.4.1) or in a source listing file.

To avoid the problems of debugging optimized code, many compilers allow you to specify the
/NOOPTIMIZE (or equivalent) command qualifier at compile time. Specifying this qualifier inhibits
most compiler optimization and thereby reduces discrepancies between the source code and executable
code caused by optimization.

If this option is not available to you, or if you have a definite need to debug optimized code, read this
section. It describes the techniques for debugging optimized code and gives some typical examples of
optimized code to show the potential causes of confusion. It also describes some features you can use to
reduce the confusion inherent in debugging optimized code.

In order to take advantage of the features that improve the ability to debug optimized code, you need an
up-to-date version of your language compiler. For definitive information about the necessary version of
your compiler, please see your compiler release notes or other compiler documentation.

Note that about one-third more disk space is needed for debugging optimized code, to accommodate the
increased image size.

When debugging optimized code, use a screen-mode instruction display, such as the predefined display
INST, to show the decoded instruction stream of your program (see Section 7.4.4). An instruction
display shows the exact code that is executing.

In screen mode, pressing KP7 places the SRC and INST displays side by side for easy comparison.
Alternatively, you can inspect a compiler-generated machine-code listing.

273

Chapter 14. Debugging Special Cases

In addition, to execute the program at the instruction level and examine instructions, use the techniques
described in Section 4.3.

Using these methods, you should be able to determine what is happening at the executable code level
and be able to resolve the discrepancy between source display and program behavior.

14.1.1. Eliminated Variables
A compiler might optimize code by eliminating variables, either permanently or temporarily at various
points during execution. For example, if you try to examine a variable X that no longer is accessible
because of optimization, the debugger might display one of the following messages:

%DEBUG-W-UNALLOCATED, entity X was not allocated in memory
 (was optimized away)
%DEBUG-W-NOVALATPC, entity X does not have a value at the
 current PC

The following Pascal example shows how this could happen:

PROGRAM DOC(OUTPUT);
 VAR
 X, Y: INTEGER;
 BEGIN
 X := 5;
 Y := 2;
 WRITELN(X*Y);
 END.

If you compile this program with the /NOOPTIMIZE (or equivalent) qualifier, you obtain the following
(normal) behavior when debugging:

$ PASCAL/DEBUG/NOOPTIMIZE DOC
$ LINK/DEBUG DOC
$ DEBUG/KEEP
⋮
DBG> RUN DOC
⋮
DBG> STEP
stepped to DOC\%LINE 5
 5: X := 5;
DBG> STEP
stepped to DOC\%LINE 6
 6: Y := 2;
DBG> STEP
stepped to DOC\%LINE 7
 7: WRITELN(X*Y);
DBG> EXAMINE X, Y
DOC\X: 5
DOC\Y: 2
DBG>

If you compile the program with the /OPTIMIZE (or equivalent) qualifier, because the values of X and
Y are not changed after the initial assignment, the compiler calculates X*Y, stores that value (10), and
does not allocate storage for X or Y. Therefore, after you start debugging, a STEP command takes you
directly to line 7 rather than line 5. Moreover, you cannot examine X or Y:

$ PASCAL/DEBUG/OPTIMIZE DOC
$ LINK/DEBUG DOC

274

Chapter 14. Debugging Special Cases

$ DEBUG/KEEP
⋮
DBG> RUN DOC
⋮
DBG> EXAMINE X, Y
%DEBUG-W-UNALLOCATED, entity X was not allocated in memory
 (was optimized away)
DBG> STEP
stepped to DOC\%LINE 7
 7: WRITELN(X*Y);
DBG>

In contrast, the following lines show the unoptimized code at the WRITELN statement:

DBG> STEP
stepped to DOC\%LINE 7
 7: WRITELN(X*Y);
DBG> EXAMINE/OPERAND .%PC
DOC\%LINE 7: MOVL S^#10, B^-4(FP)
 B^-4(FP) 2146279292 contains 62914576
DBG>

14.1.2. Changes in Coding Order
Several methods of optimizing consist of performing operations in a sequence different from the
sequence specified in the source code. Sometimes code is eliminated altogether.

As a result, the source code displayed by the debugger does not correspond exactly to the actual code
being executed.

The following example depicts a segment of source code from a Fortran program as it might appear on a
compiler listing or in a screen-mode source display. This code segment sets the first ten elements of array
A to the value 1/X.

Line Source Code
---- -----------
 5 DO 100 I=1, 10
 6 A(I) = 1/X
 7 100 CONTINUE

Optimization may produce the following scenario: As the compiler processes the source program,
it determines that the reciprocal of X need only be computed once, not 10 times as the source code
specifies, because the value of X never changes in the DO loop. The compiler thus may generate
optimized code equivalent to the following code segment:

Line Optimized Code Equivalent
---- -------------------------
 5 TEMP = 1/X
 DO 100 I=1, 10
 6 A(I) = TEMP
 7 100 CONTINUE

Depending on the compiler implementation, the moved code maybe associated with the first line of the
loop or may retain its original line number (common on Alpha systems).

If a discrepancy occurs, it is not obvious from looking at the displayed source line. Furthermore, if the
computation of 1/X were to fail because X is 0, it would appear from inspecting the source display that a
division by 0 had occurred on a source line that contains no division at all.

275

Chapter 14. Debugging Special Cases

This kind of apparent mismatch between source code and executable code should be expected from time
to time when you debug optimized programs. It can be caused not only by code motions out of loops, as
in the previous example, but by a number of other optimization methods as well.

14.1.3. Semantic Stepping (Alpha Only)
Semantic stepping (available only on Alpha systems) makes stepping through optimized code less
confusing. The semantic-stepping mode complements the traditional step-by-line and step-by-instruction
modes. There are two commands for semantic stepping: SET STEP SEMANTIC_EVENT and
STEP/SEMANTIC_EVENT.

Semantic Events
One problem of stepping through optimized code is that the apparent source program location "bounces"
back and forth with the same line often appearing again and again. Indeed, sometimes the forward
progress in STEP LINE mode averages barely more than one instruction per STEP command.

This problem is addressed through annotating instructions that are semantic events. Semantic events are
important for two reasons:

• They represent the points in the program where the effects of the program actually happen.

• These effects tend to happen in an order that remains close to the source order of events in the
program.

A semantic event is one of the following:

• Data event - An assignment to a user variable

• Control event - A control flow decision, with a conditional or unconditional transfer of control, other
than a call

• Call event - A call (to a routine that is not stepped over)or a return from a call

It is important to understand that not every assignment, transfer of control, or call is necessarily a
semantic event. The major exceptions are as follows:

• When two instructions are required to assign to a complex or X_floating value, only the first
instruction is treated as a semantic event.

• When there are multiple branches that are part of a single higher-level construct, such as a decision
tree of branches that implement a case or select construct, then only the first is treated as a semantic
event.

• When a call is made to a routine that is a compiler-specific helper routine, such as a call to OTS
$MOVE, which handles certain kinds of string or storage copy operations, the call is not considered
a semantic event. This means that control will not stop at the call.

To step into such a routine, you must do either of the following:

• Set a breakpoint at the routine entry point

• Use a series of STEP/INSTRUCTION commands to reach the call of interest and then use
STEP/INSTRUCTION/INTO to enter the called routine.

276

Chapter 14. Debugging Special Cases

• When there is more than one semantic event in a row with the same line number, then only the first
is used.

SET STEP SEMANTIC_EVENT Command
The SET STEP SEMANTIC_EVENT command establishes the default stepping mode as semantic.

STEP/SEMANTIC_EVENT Command
STEP/SEMANTIC_EVENT, or simply STEP when semantic mode is in effect, causes a breakpoint
to be set at the next semantic event, whether an assignment, a transfer of control, or a call. Execution
proceeds to that next event. Parts of any number of different lines/statements may be executed along the
way without interfering with progress. When the semantic event is reached (that is, when the instruction
associated with that event is reached but not yet executed), execution is suspended (similar to reaching
the next line when STEP/LINE is used).

Example of Semantic Stepping
The comments in the following C program, doct2, point out some considerations for optimization:

#include <stdio.h>
#include <stdlib.h>
int main(unsigned argc, char **argv) {
 int w, x, y, z=0;
 x = atoi(argv[1]);
 printf("%d\n", x);
 x = 5;
 y = x;
 if (y > 2) { /* always true */
 printf("y > 2");
 }
 else {
 printf("y <= 2");
 }
 if (z) { /* always false */
 printf("z");
 }
 else {
 printf("not z");
 }
 printf("\n");
 }

Contrast the following two examples, which show stepping by line and stepping by semantic event
through the optimized doct2 program:

• Stepping by line:

$ doct2:=sysdisk:[]doct2
$ doct2 6
 Debugger Banner and Version Number
Language:: Module: Doct2: GO to reach DBG> go
break at routine DOCT2\main
 654: x = atoi(argv[1]);
DBG> step
stepped to DOCT2\main\%LINE 651
 651: int main(unsigned argc, char **argv) {

277

Chapter 14. Debugging Special Cases

DBG> step
stepped to DOCT2\main\%LINE 654
 654: x = atoi(argv[1]);
DBG> step
stepped to DOCT2\main\%LINE 651
 651: int main(unsigned argc, char **argv) {
DBG> step
stepped to DOCT2\main\%LINE 654
 654: x = atoi(argv[1]);
DBG> step
stepped to DOCT2\main\%LINE 655
 655: printf("%d\n", x);
DBG> step
stepped to DOCT2\main\%LINE 654
 654: x = atoi(argv[1]);
DBG> step
stepped to DOCT2\main\%LINE 655
 655: printf("%d\n", x);
DBG> step
6
stepped to DOCT2\main\%LINE 661
 661: printf("y > 2");
DBG> step
y > 2
stepped to DOCT2\main\%LINE 671
 671: printf("not z");
DBG> step
not z
stepped to DOCT2\main\%LINE 674
 674: printf("\n");
DBG> step
stepped to DOCT2\main\%LINE 675
 675: }
DBG> step
'Normal successful completion'
DBG>

• Stepping by semantic event:

$ doct2:=sysdisk:[]doct2
$ doct2 6
 Debugger Banner and Version Number
Language:: Module: Doct2: GO to reach DBG> set step semantic_event
DBG> go
break at routine DOCT2\main
 654: x = atoi(argv[1]);
DBG> step
stepped to DOCT2\main\%LINE 654+8
 654: x = atoi(argv[1]);
DBG> step
stepped to DOCT2\main\%LINE 655+12
 655: printf("%d\n", x);
DBG> step
6
stepped to DOCT2\main\%LINE 661+16
 661: printf("y > 2");
DBG> step
y > 2

278

Chapter 14. Debugging Special Cases

stepped to DOCT2\main\%LINE 671+16
 671: printf("not z");
DBG> step
not z
stepped to DOCT2\main\%LINE 674+16
 674: printf("\n");
DBG> step
stepped to DOCT2\main\%LINE 675+24
 675: }
DBG> step
stepped to DOCT2__main+104
DBG> step
'Normal successful completion'
DBG>

Notice that the semantic stepping behavior is much smoother and more straightforward than the
stepping-by-line example. Further, semantic stepping results in stopping at significant points of the
program. In general, semantic stepping significantly reduces or eliminates the confusion of "bouncing"
around the code non sequentially, which characteristically happens with stepping by line through
optimized code. Although some reordering of the source program may be done to take advantage of
better execution characteristics, generally the flow is from top to bottom.

The granularity of stepping is different between stepping by line and stepping semantically. Sometimes
it is greater, sometimes smaller. For example, a statement that would by its semantic nature constitute
a semantic event will not show up with semantic stepping if it has been optimized away. Thus, the
semantic region will span across several lines, skipping the line that has been optimized away.

14.1.4. Use of Registers
A compiler might determine that the value of an expression does not change between two given
occurrences and might save the value in a register. In such cases, the compiler does not recompute the
value for the next occurrence, but assumes the value saved in the register is valid.

If, while debugging a program, you use the DEPOSIT command to change the value of the variable
in the expression, the corresponding value stored in the register might not be changed. Thus, when
execution continues, the value in the register might be used instead of the changed value in the
expression, which will cause unexpected results.

In addition, when the value of a non static variable (see Section 3.4.3) is held in a register, its value in
memory is generally invalid; therefore, a spurious value might be displayed if you enter the EXAMINE
command for a variable under these circumstances.

14.1.5. Split-Lifetime Variables
In compiling with optimization, the compiler sometimes performs split-lifetime analysis on a variable,
"splitting"it into several independent subvariables that can be independently allocated. The effect is
that the original variable can be thought to reside in different locations at different points in time -
sometimes in a register, sometimes in memory, and sometimes nowhere. It is even possible for the
different subvariables to be simultaneously active.

On Alpha systems, in response to the EXAMINE command, the debugger tells you at which
locations in the program the variable was defined. When the variable has an inappropriate value,
this location information can help you determine where the value of the variable was assigned. (The
/DEFINITIONS qualifier enables you to specify more or fewer than the default five locations.)

279

Chapter 14. Debugging Special Cases

Split-lifetime analysis applies only to scalar variables and parameters. It does not apply to arrays, records,
structures, or other aggregates.

Examples of Split-Lifetime Processing
The following examples illustrate the use of split-lifetime processing. For the first example, a small C
program, the numbers in the left column are listing line numbers.

385 doct8 () {
386
387 int i, j, k;
388
389 i = 1;
390 j = 2;
391 k = 3;
392
393 if (foo(i)) {
394 j = 17;
395 }
396 else {
397 k = 18;
398 }
399
400 printf("%d, %d, %d\n", i, j, k);
401
402 }

When compiled, linked, and executed for debugging, the optimized program results in this dialogue:

$ run doct8

⋮
 DBG> step/into
 stepped to DOCT8\doct8\%LINE 391
 391: k = 3;
 DBG> examine i
 %W, entity 'i' was not allocated in memory (was optimized away)
 DBG> examine j
 %W, entity 'j' does not have a value at the current PC
 DBG> examine k
 %W, entity 'k' does not have a value at the current PC

Note the difference in the message for the variable i compared to j or k. The variable i was not allocated
in memory (registers, core, or otherwise) at all, so there is no point in ever trying to examine its value
again. By contrast, j and k do not have a value "at the current PC" here; somewhere later in the program
they will.

Stepping one more line results in this:

 DBG> step
 stepped to DOCT8\doct8\%LINE 385
 385: doct8 () {

This looks like a step backward - a common phenomenon in optimized (scheduled) code. (This problem
is dealt with by "semantic stepping mode, " discussed in Section 14.1.2.) Continuing to step results in
this:

 DBG> step 5

280

Chapter 14. Debugging Special Cases

 stepped to DOCT8\doct8\%LINE 391
 391: k = 3;
 DBG> examine k
 %W, entity 'k' does not have a value at the current PC
 DBG> step
 stepped to DOCT8\doct8\%LINE 393
 393: if (foo(i)) {
 DBG> examine j
 %W, entity 'j' does not have a value at the current PC
 DBG> examine k
 DOCT8\doct8\k: 3
 value defined at DOCT8\doct8\%LINE 391

Here j is still undefined, but k now has a value, namely 3. That value was assigned at line 391.

Recall from the source that j was assigned a value before k (at line 390), but that has yet to show up.
Again, this is common with optimized (scheduled) code.

 DBG> step
 stepped to DOCT8\doct8\%LINE 390
 390: j = 2;

Here the value of j appears. Thus:

 DBG> examine j
 %W, entity 'j' does not have a value at the current PC
 DBG> step stepped to DOCT8\doct8\%LINE 393
 393: if (foo(i)) {
 DBG> examine j
 DOCT8\doct8\j: 2
 value defined at DOCT8\doct8\%LINE 390

Skipping ahead to the print statement at line 400, examine j again.

 DBG> set break %line 400
 DBG> g break at DOCT8\doct8\%LINE 400
 400: printf("%d, %d, %d\n", i, j, k);
 DBG> examine j DOCT8\doct8\j: 2
 value defined at DOCT8\doct8\%LINE 390
 value defined at DOCT8\doct8\%LINE 394

Here there is more than one definition location given for j. Which applies depends on which path was
taken in the IF clause. If a variable has an apparently inappropriate value, this mechanism provides a
means to take a closer look at those places, and only those, where that value might have come from.

You can use the SHOW SYMBOL/ADDRESS command to display the split-lifetime information for a
symbol, as in the following example:

DBG> show symbol/address j
 data DOCT8\doct8\j
 between PC 131128 and 131140
 PC definition locations are at: 131124
 address: %R3
 between PC 131144 and 131148
 PC definition locations are at: 131140
 address: %R3
 between PC 131152 and 131156
 PC definition locations are at: 131124

281

Chapter 14. Debugging Special Cases

 address: %R3
 between PC 131160 and 131208
 PC definition locations are at: 131124, 131140
 address: %R3

The variable j has four lifetime segments. The PC addresses are the result of linking the image, and the
comments relate them to line numbers in the source program.

• The first segment starts at the assignment of 2 to j and extends through the test to just before the
assignment of 17 to j.

• The second segment starts at the assignment of 17 to j and extends up to the ELSE part of the IF
statement.

• The third segment corresponds to the ELSE clause. There is no assignment to j in this range of PCs.
Note that the definition of j that applies here is from the first segment.

• The fourth segment starts at the join point following the IF clause and extends to the end of the
program. The definition of j comes from either line 390 or line 394 depending on which path was
taken through the IF statement.

On Alpha systems, the debugger tracks and reports which assignments and definitions might have
provided the displayed value of a variable. This additional information can help you cope with some of
the effects of code motion and other optimizations - effects that cause a variable to have a value coming
from an unexpected place in the program.

EXAMINE/DEFINITIONS Command (Alpha Only)
For a split-lifetime variable, the EXAMINE command not only displays the value of the active lifetime,
it also displays the lifetime's definition points. The definition points are places where the lifetime could
have received an initial value (if there is only one definition point, then that is the only place.)

There is more than one definition point if a lifetime's initial value can come from more than one
place. In the previous example when the program is suspended at the printf, examining j results in the
following:

DBG> examine j
DOCT8\doct8\j: 2
 value defined at DOCT8\doct8\%LINE 390
 value defined at DOCT8\doct8\%LINE 394

Here, the lifetime of j has two definition points, because the value could have come from either line 390
or line 394, depending on whether or not the expression at line 393 was TRUE.

By default, up to five definition locations are displayed when the contents of a variable are examined.
You can specify the number of definition locations to display with the /DEFINITIONS= n qualifier,
as in the following example:

DBG> EXAMINE/DEFINITIONS=74 FOO

Note that the minimum abbreviation is /DEFI.

If you want a default number of definitions other than five, you can use a command definition like the
following:

DBG> DEFINE/COMMAND E = "EXAMINE/DEFINITIONS=100"

282

Chapter 14. Debugging Special Cases

If the /DEFINITIONS qualifier is set to 100, and the split-lifetime variable examined has 120
definition points, the debugger displays the 100 as specified, and then reports:

there are 20 more definition points

14.2. Debugging Screen-Oriented Programs
The debugger uses the terminal screen for input and output (I/O) during a debugging session. If you use
a single terminal to debug a screen-oriented program that uses most or all of the screen, debugger I/O
can overwrite, or can be overwritten by, program I/O.

Using one terminal for both program I/O and debugger I/O is even more complicated if you are
debugging in screen mode and your screen-oriented program calls any Run-Time Library (RTL) Screen
Management (SMG$) routines. This is because the debugger's screen mode also calls SMG routines.
In such cases, the debugger and your program share the same SMG pasteboard, which causes further
interference.

To avoid these problems when debugging a screen-oriented program, use one of the following techniques
to separate debugger I/O from program I/O:

• If you are at a workstation running VWS, start your debugging session and then enter the debugger
command SET MODE SEPARATE. It creates a separate terminal-emulator window for debugger I/
O. Program I/O continues to be displayed in the window from which you started the debugger.

• If you are at a workstation running HPE DECwindows Motif:

• To display the debugger's DECwindows Motif interface on a separate workstation (also running
DECwindows Motif), see Section 9.8.3.1.

• To use the debugger's command interface rather than the DECwindows Motif interface, see
Section 9.8.3.3. It explains how to create a separate DECterm window for debugger I/O. The
effect is similar to using the command SET MODE SEPARATE on a workstation running VWS.

• If you do not have a workstation, use two terminals - one for program I/O and another for debugger
I/O. This technique is described in the rest of this section.

Assume that TTD1: is your current terminal from which you plan to start the debugger. You want to
display debugger I/O on terminal TTD2: so that TTD1: is devoted exclusively to program I/O.

Follow these steps:

1. Provide the necessary protection to TTD2: so that you can allocate that terminal from TTD1: (see
Section 14.2.1).

The remaining steps are all performed from TTD1:.

2. Allocate TTD2:. This provides your process on TTD1: with exclusive access to TTD2: as follows:

$ ALLOCATE TTD2:

3. Assign the debugger logical names DBG$INPUT and DBG$OUTPUT to TTD2:as follows:

$ DEFINE DBG$INPUT TTD2:
$ DEFINE DBG$OUTPUT TTD2:

DBG$INPUT and DBG$OUTPUT specify the debugger input device and output device, respectively.
By default, these logical names are equated to SYS$INPUT and SYS$OUTPUT, respectively.

283

Chapter 14. Debugging Special Cases

Assigning DBG$INPUT and DBG$OUTPUT to TTD2: enables you to display debugger commands
and debugger output on TTD2:.

4. Make sure that the terminal type is known to the system. Enter the following command:

$ SHOW DEVICE/FULL TTD2:

If the device type is unknown, your system manager (or a user with LOG_IO or PHY_IO privilege)
must make it known to the system as shown in the following example. In the example, the terminal is
assumed to be a VT200:

$ SET TERMINAL/PERMANENT/DEVICE=VT200 TTD2:

5. Run the program to be debugged:

$ DEBUG/KEEP
⋮
DBG> RUN prog-name

You can now observe debugger I/O on TTD2:.

6. When finished with the debugging session, deallocate TTD2: as follows (or log out):

$ DEALLOCATE TTD2:

14.2.1. Setting the Protection to Allocate a Terminal
On a properly secured system, terminals are protected so that you cannot allocate a terminal from
another terminal.

To set the necessary protection, your system manager (or a user with the privileges indicated) should
follow the steps shown in the following example.

In the example, TTD1: is your current terminal (from which you plan to start the debugger), and TTD2:
is the terminal to be allocated so that it can display debugger I/O.

1. If both TTD1: and TTD2: are hardwired to the system, go to Step 4.

If TTD1: and TTD2: are connected to the system over a LAT (local area transport), go to Step 2.

2. Log in to TTD2:.

3. Enter these commands (you need LOG_IO or PHY_IO privilege):

$ SET PROCESS/PRIV=LOG_IO
$ SET TERMINAL/NOHANG/PERMANENT
$ LOGOUT/NOHANG

4. Enter one of the following commands (you need OPER privilege):

$ SET ACL/OBJECT_TYPE=DEVICE/ACL=(IDENT=[PROJ, JONES], ACCESS=READ
+WRITE) TTD2:
$ SET PROTECTION=WORLD:RW/DEVICE TTD2:

The SET ACL command line is preferred because it uses an access control list (ACL). In the
example, access is restricted to user identification code (UIC) [PROJ, JONES].

284

Chapter 14. Debugging Special Cases

The SET PROTECTION command line provides world read/write access, which allows any
user to allocate and perform I/O to TTD2:.

14.3. Debugging Multilanguage Programs
The debugger enables you to debug modules whose source code is written indifferent languages within
the same debugging session. This section highlights some language-specific behavior that you should be
aware of to minimize possible confusion.

When debugging in any language, be sure to consult:

• The debugger's online help (type HELP Language)

• The documentation supplied with that language

14.3.1. Controlling the Current Debugger Language
When you bring a program under debugger control, the debugger sets the current language to that
in which the module containing the main program (usually the routine containing the image transfer
address) is written. The current language is identified at that point. For example:

$ DEBUG/KEEP
 Debugger Banner and Version Number
DBG> RUN prog-name
Language: PASCAL, Module: FORMS
DBG>

The current language setting determines how the debugger parses and interprets the names, operators,
and expressions you specify in debugger commands, including things like the typing of variables, array
and record syntax, the default radix for integer data, case sensitivity, and so on. The language setting also
determines how the debugger displays data associated with your program.

Many programs include modules that are written in languages other than that of the main program. To
minimize confusion, by default the debugger language remains set to the language of the main program
throughout a debugging session, even if execution is paused within a module written in another language.

To take full advantage of symbolic debugging with such modules, use the SET LANGUAGE command
to set the debugging context to that of another language. For example, the following command causes
the debugger to interpret any symbols, expressions, and so on according to the rules of the COBOL
language:

DBG> SET LANGUAGE COBOL

In addition, when debugging a program that is written in an unsupported language, you can specify the
SET LANGUAGE UNKNOWN command. To maximize the usability of the debugger with unsupported
languages, the SET LANGUAGE UNKNOWN command causes the debugger to accept a large set of data
formats and operators, including some that might be specific to only a few supported languages. The
operators and constructs that are recognized when the language is set to UNKNOWN are identified in
the debugger's online help (type HELP Language).

14.3.2. Specific Differences Among Languages
This section lists some of the differences you should keep in mind when debugging in various languages.
Included are differences that are affected by the SET LANGUAGE command and other differences (for
example, language-specific initialization code and predefined breakpoints).

285

Chapter 14. Debugging Special Cases

This section is not intended to be complete. Seethe debugger's online help (type HELP Language) and
your language documentation for complete details.

14.3.2.1. Default Radix
The default radix for entering and displaying integer data is decimalfor most languages.

On Alpha systems, the exceptions are BLISS, MACRO--32, and MACRO--64, which have a
hexadecimal default radix.

Use the SET RADIX command to establish a new default radix.

14.3.2.2. Evaluating Language Expressions
Several debugger commands and constructs evaluate language expressions:

• The EVALUATE, DEPOSIT, IF, FOR, REPEAT, and WHILE commands

• WHEN clauses, which are used with the SET BREAK, SET TRACE, and SET WATCH commands

When processing these commands, the debugger evaluates language expressions in the syntax of the
current language and in the current radix as discussed in Section 4.1.6. At each execution (not when you
enter the command), the debugger checks the syntax of any expressions in WHEN or DO clauses, and
then evaluates them.

Note that operators vary widely among different languages. For example, the following two commands
evaluate equivalent expressions in Pascal and Fortran, respectively:

DBG> SET WATCH X WHEN (Y < 5) ! Pascal
DBG> SET WATCH X WHEN (Y .LT. 5) ! FORTRAN

Assume that the language is set to Pascal and you have entered the first (Pascal) command. You now
step into a Fortran routine, set the language to Fortran, and resume execution. While the language
is set to Fortran, the debugger is not able to evaluate the expression (Y < 5). As a result, it sets an
unconditional watchpoint and, when the watchpoint is triggered, returns a syntax error for the < operator.

This type of discrepancy can also occur if you use commands that evaluate language expressions in
debugger command procedures and initialization files.

When the language is set to BLISS, the debugger processes language expressions that contain
variable names (or other address expressions) differently than when it is set to another language. See
Section 4.1.6 for details.

14.3.2.3. Arrays and Records
The syntax for denoting array elements and record components (if applicable) varies among languages.

For example, some languages use brackets ([]), and others use parentheses (()), to delimit array
elements.

Some languages have zero-based arrays. Some languages have one-based arrays, as in the following
example:

DBG> EXAMINE INTEGER_ARRAY
PROG2\INTEGER_ARRA

286

Chapter 14. Debugging Special Cases

Y (1, 1): 27
 (1, 2): 31
 (1, 3): 12
 (2, 1): 15
 (2, 2): 22
 (2, 3): 18
DBG>

For some languages (like Pascal and Ada) the specific array declaration determines how the array is
based.

14.3.2.4. Case Sensitivity
Names and language expressions are case sensitive in C. You must specify them exactly as they appear in
the source code. For example, the following two commands are not equivalent when the language is set
to C:

DBG> SET BREAK SCREEN_IO\%LINE 10
DBG> SET BREAK screen_io\%LINE 10

14.3.2.5. Initialization Code
Many programs issue a NOTATMAIN message when a program is brought under debugger control. For
example:

$ DEBUG/KEEP
 Debugger Banner and Version Number
DBG> RUN prog-name
Language: ADA, Module: MONITOR
Type GO to reach main program
DBG>

The NOTATMAIN message indicates that execution is paused before the beginning of the main program.
This enables you to execute and check some initialization code under debugger control.

The initialization code is created by the compiler and is placed in a special PSECT named LIB
$INITIALIZE. For example, in the case of an Ada package, the initialization code belongs to
the package body (which might contain statements to initialize variables, and so on). In the case
of a Fortran program, the initialization code declares the handler that is needed if you specify the
/CHECK=UNDERFLOW or /CHECK=ALL qualifier.

The NOTATMAIN message indicates that, if you do not want to debug the initialization code, you can
execute immediately to the beginning of the main program by entering a GO command. You are then at
the same point as when you start debugging any other program. Entering the GO command again starts
program execution.

14.3.2.6. Predefined Breakpoints
If your program is a tasking program, two breakpoints that are associated with tasking exception events
are automatically established when the program is brought under debugger control. These breakpoints
are not affected by a SET LANGUAGE command. They are established automatically during debugger
initialization when appropriate run-time libraries are present.

To identify these predefined breakpoints, enter the SHOW BREAK command. For example:

DBG> SHOW BREAK

287

Chapter 14. Debugging Special Cases

Predefined breakpoint on ADA event "EXCEPTION_TERMINATED" for any value
Predefined breakpoint on ADA event "DEPENDENTS_EXCEPTION" for any value
DBG>

14.4. Recovering from Stack Corruption
The debugger allocates a certain amount of memory at startup and shares the stack with the user's
program. If a user process exception results in exhaustion of resources or corruption of the stack, the
debugger may be incapable of regaining control, and the debug session may terminate.

Be aware of this potential behavior after the occurrence of stack corruption messages or warnings about
continuing from a severe error. In either case, the integrity of the debug session cannot be guaranteed.

You should try one of the following measures:

• Change your source code, temporarily or permanently, to reduce resource consumption or lessen the
use of stack space

• Increase quotas

• Specify a larger stack size when linking your program

14.5. Debugging Exceptions and Condition
Handlers
A condition handler is a procedure that the operating system executes when an exception occurs.

Exceptions include hardware conditions (such as an arithmetic overflow or a memory access violation)
or signaled software exceptions (for example, an exception signaled because a file could not be found).

Operating system conventions specify how, and in what order, various condition handlers established by
the operating system, the debugger, or your own program are invoked - for example, the primary handler,
call frame (application-declared) handlers, and so on. Section 14.5.3describes condition handling when
you are using the debugger. See the VMS Run-Time Library Routines Volume for additional general
information about condition handling.

Tools for debugging exceptions and condition handlers include the following:

• The SET BREAK/EXCEPTION and SET TRACE/EXCEPTION commands, which direct the
debugger to treat any exception generated by your program as a breakpoint or tracepoint, respectively
(see Section 14.5.1 and Section 14.5.2).

• Several built-in symbols (such as %EXC_NAME), which enable you to qualify exception
breakpoints and tracepoints (see Section 14.5.4).

• The SET BREAK/EVENT and SET TRACE/EVENT commands, which enable you to break
on or trace exception events that are specific to Ada, SCAN, or multithread programs (see the
corresponding documentation for more information).

14.5.1. Setting Breakpoints or Tracepoints on
Exceptions

288

Chapter 14. Debugging Special Cases

When you enter a SET BREAK/EXCEPTION or SET TRACE/EXCEPTION command, you direct
the debugger to treat any exception generated by your program as a breakpoint or tracepoint. As a result
of a SET BREAK/EXCEPTION command, if your program generates an exception, the debugger
suspends execution, reports the exception and the line where execution is paused, and prompts for
commands. The following example shows the effect:

DBG> SET BREAK/EXCEPTION
DBG> GO
⋮
%SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero at PC=0000066C,
 PSL=03C00022
break on exception preceding TEST\%LINE 13
 6: X := 3/Y;
DBG>

Note that an exception breakpoint (or tracepoint) is triggered even if your program has a condition
handler to handle the exception. The SET BREAK/EXCEPTION command causes a breakpoint to
occur before any handler can execute (and possibly dismiss the exception). Without the exception
breakpoint, the handler will be executed, and the debugger would get control only if no handler
dismissed the exception (see Section 14.5.2 and Section 14.5.3).

The following command line is useful for identifying where an exception occurred. It causes the
debugger to automatically display the sequence of active calls and the PC value at an exception
breakpoint:

DBG> SET BREAK/EXCEPTION DO (SET MODULE/CALLS; SHOW CALLS)

You can also create a screen-mode DO display that issues a SHOW CALLS command whenever the
debugger interrupts execution. For example:

DBG> DISPLAY CALLS DO (SET MODULE/CALLS; SHOW CALLS)

An exception tracepoint (established with the SET TRACE/EXCEPTION command) is like an
exception breakpoint followed by a GO command without an address expression specified.

An exception breakpoint cancels an exception tracepoint, and vice versa.

To cancel exception breakpoints or tracepoints, use the CANCEL BREAK/EXCEPTION or
CANCEL TRACE/EXCEPTION command, respectively.

14.5.2. Resuming Execution at an Exception Breakpoint
When an exception breakpoint is triggered, execution is paused before any application-declared
condition handler is invoked. When you resume execution from the breakpoint with the GO, STEP, or
CALL commands, the behavior is as follows:

• Entering a GO command without an address-expression parameter, or entering a STEP
command, causes the debugger to resignal the exception. The GO command enables you to observe
which application-declared handler, if any, next handles the exception. The STEP command causes
you to step into that handler (see the next example).

• Entering a GO command with an address-expression parameter causes execution to resume at the
specified location, which inhibits the execution of any application-declared handlers.

• A common debugging technique at an exception breakpoint is to call a dump routine with the CALL
command (see Chapter 13). When you enter the CALL command at an exception breakpoint,

289

Chapter 14. Debugging Special Cases

no breakpoints, tracepoints, or watchpoints that were previously set within the called routine are
active, so that the debugger does not lose the exception context. After the routine has executed, the
debugger prompts for input. Entering a GO or STEP command at this point causes the debugger to
resignal the exception.

The following Fortran example shows how to determine the presence of a condition handler at an
exception breakpoint and how a STEP command, entered at the breakpoint, enables you to step into the
handler.

At the exception breakpoint, the SHOW CALLS command indicates that the exception was generated
during a call to routine SYS$QIOW:

DBG> SET BREAK/EXCEPTION
DBG> GO
⋮
%SYSTEM-F-SSFAIL, system service failure exception, status=0000013C,
 PC=7FFEDE06, PSL=03C00000
break on exception preceding SYS$QIOW+6
DBG> SHOW CALLS
module name routine name line rel PC abs PC
 SYS$QIOW 00000006 7FFEDE06
*EXC$MAIN EXC$MAIN 23 0000003B 0000063B
DBG>

On VAX, the following SHOW STACK command indicates that no handler is declared in routine SYS
$QIOW. However, one level down the call stack, routine EXC$MAIN has declared a handler named
SSHAND:

DBG> SHOW STACK
stack frame 0 (2146296644)
 condition handler: 0
 SPA: 0
 S: 0
 mask: ^M<R2, R3, R4, R5, R6, R7, R8, R9, R10, R11>
 PSW: 0020 (hexadecimal)
 saved AP: 2146296780
 saved FP: 2146296704
 saved PC: EXC$MAIN\%LINE 25
⋮
stack frame 1 (2146296704)
 condition handler: SSHAND
 SPA: 0
 S: 0
 mask: ^M<R11>
 PSW: 0000 (hexadecimal)
 saved AP: 2146296780
 saved FP: 2146296760
 saved PC: SHARE$DEBUG+2217
⋮

At this exception breakpoint, entering a STEP command enables you to step directly into condition
handler SSHAND:

DBG> STEP
stepped to routine SSHAND
 2: INTEGER*4 FUNCTION SSHAND (SIGARGS, MECHARGS)
DBG> SHOW CALLS

290

Chapter 14. Debugging Special Cases

 module name routine name line rel PC abs PC
*SSHAND SSHAND 2 00000002 00000642
----- above condition handler called with exception 0000045C:
%SYSTEM-F-SSFAIL, system service failure exception, status=0000013C,
 PC=7FFEDE06, PSL=03C00000
----- end of exception message
 SYS$QIOW 00000006 7FFEDE06
*EXC$MAIN EXC$MAIN 23 0000003B 0000063B
DBG>

The debugger symbolizes the addresses of condition handlers into names if that is possible. However,
note that with some languages, exceptions are first handled by a Run-Time Library (RTL) routine, before
any application-declared condition handler is invoked. In such cases, the address of the first condition
handler might be symbolized to an offset from an RTL shareable image address.

14.5.3. Effect of the Debugger on Condition Handling
When you run your program with the debugger, at least one of the following condition handlers is
invoked, in the order given, to handle any exceptions caused by the execution of your program:

1. Primary handler

2. Secondary handler

3. Call-frame handlers (application-declared) - also known as stack handlers

4. Final handler

5. Last-chance handler

6. Catchall handler

A handler can return one of the following three status codes to the Condition Handling Facility:

• SS$_RESIGNAL - The operating system searches for the next handler.

• SS$_CONTINUE - The condition is assumed to be corrected and execution continues.

• SS$_UNWIND - The call stack is unwound some number of frames, if necessary, and the signal is
dismissed.

For more information about condition handling, see the OpenVMS Programming Concepts Manual.

14.5.3.1. Primary Handler
When you run your program with the debugger, the primary handler is the debugger. Therefore, the
debugger has the first opportunity to handle an exception, whether or not the exception is caused by the
debugger.

If you enter a SET BREAK/EXCEPTION or SET TRACE/EXCEPTION command, the debugger
breaks on (or traces) any exceptions caused by your program. The break (or trace) action occurs before
any application-declared handler is invoked.

If you do not enter a SET BREAK/EXCEPTION or SET TRACE/EXCEPTION command, the
primary handler resignals any exceptions caused by your program.

291

Chapter 14. Debugging Special Cases

14.5.3.2. Secondary Handler
The secondary handler is used for special purposes and does not apply to the types of programs covered
in this manual.

14.5.3.3. Call-Frame Handlers (Application-Declared)
Each routine of your program can establish a condition handler, also known as a call-frame handler. The
operating system searches for these handlers starting with the routine that is currently executing. If no
handler was established for that routine, the system searches for a handler established by the next routine
down the call stack, and so on back to the main program, if necessary.

After it is invoked, a handler might perform one of the following actions:

• It handles the exception, which allows the program to continue execution.

• It resignals the exception. The operating system then searches for another handler down the call
stack.

• It encounters a breakpoint or watchpoint, which suspends execution at the breakpoint or watchpoint.

• It generates its own exception. In this case, the primary handler is invoked again.

• It exits, which terminates program execution.

14.5.3.4. Final and Last-Chance Handlers
These handlers are controlled by the debugger. They enable the debugger to regain control and display
the DBG > prompt if no application-declared handler has handled an exception. Otherwise, the
debugging session will terminate and control will pass to the DCL command interpreter.

The final handler is the last frame on the call stack and the first of these two handlers to be invoked. The
following example shows what happens when an unhandled exception is propagated from an exception
breakpoint to the final handler:

DBG> SET BREAK/EXCEPTION
DBG> GO
⋮
%SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero at PC=0000066C,
 PSL=03C00022
break on exception preceding TEST\%LINE 13
 6: X := 3/Y;
DBG> GO
%SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero at PC=0000066C,
 PSL=03C00022
DBG>

In this example, the first INTDIV message is issued by the primary handler, and the second is issued by
the final handler, which then displays the DBG > prompt.

The last-chance handler is invoked only if the final handler cannot gain control because the call stack is
corrupted. For example:

DBG> DEPOSIT %FP = 10
DBG> GO
⋮

292

Chapter 14. Debugging Special Cases

%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual
 address=0000000A, PC=0000319C, PSL=03C00000
%DEBUG-E-LASTCHANCE, stack exception handlers lost, re-initializing stack
DBG>

The catchall handler, which is part of the operating system, is invoked if the last-chance handler cannot
gain control. The catchall handler produces a register dump. This should never occur if the debugger has
control of your program, but it can occur if your program encounters an error when running without the
debugger.

If, during a debugging session, you observe a register dump and are returned to DCL level ($), contact
your VSI support representative.

14.5.4. Exception-Related Built-In Symbols
When an exception is signaled, the debugger sets the following exception-related built-in symbols:

Symbol Description

%EXC_FACILITY Name of facility that issued the current exception
%EXC_NAME Name of current exception
%ADAEXC_NAME Ada exception name of current exception (for Ada

programs only)
%EXC_NUMBER Number of current exception
%EXC_SEVERITY Severity code of current exception

You can use these symbols as follows:

• To obtain information about the fields of the condition code of the current exception.

• To qualify exception breakpoints or tracepoints so that they trigger only on certain kinds of
exceptions.

The following examples show the use of some of these symbols. Note that the conditional expressions in
the WHEN clauses are language-specific.

DBG> EVALUATE %EXC_NAME
'ACCVIO'
DBG> SET TRACE/EXCEPTION WHEN (%EXC_NAME = "ACCVIO")
DBG> EVALUATE %EXC_FACILITY
'SYSTEM'
DBG> EVALUATE %EXC_NUMBER
12
DBG> EVALUATE/CONDITION_VALUE %EXC_NUMBER
%SYSTEM-F-ACCVIO, access violation, reason mask=01, virtual
 address=FFFFFF30, PC=00007552, PSL=03C00000
DBG> SET BREAK/EXCEPTION WHEN (%EXC_NUMBER = 12)
DBG> SET BREAK/EXCEPTION WHEN (%EXC_SEVERITY .NE. "I" .AND.
 %EXC_SEVERITY .NE. "S")

14.6. Debugging Exit Handlers
Exit handlers are procedures that are called whenever an image requests the $EXIT system service or
runs to completion. A user program can declare one or more exit handlers. The debugger always declares
its own exit handler.

293

Chapter 14. Debugging Special Cases

At program termination, the debugger exit handler executes after all application-declared exit handlers
have executed.

To debug an application-declared exit handler:

1. Set a breakpoint in that exit handler.

2. Cause the exit handler to execute by using one of the following techniques:

• Include in your program an instruction that invokes the exit handler(usually a call to $EXIT).

• Allow your program to terminate.

• Enter the EXIT command. (Note that the QUIT command does not execute any user-declared
exit handlers.)

When the exit handler executes, the breakpoint is activated and control is then returned to the
debugger, which prompts for commands.

The SHOW EXIT_HANDLERS command gives a display of the exit handlers that your program has
declared. The exit handler routines are displayed in the order that they are called. A routine name is
displayed symbolically, if possible. Otherwise, its address is displayed. The debugger's exit handlers are
not displayed. For example:

DBG> SHOW EXIT_HANDLERS
exit handler at STACKS\CLEANUP
exit handler at BLIHANDLER\HANDLER1
DBG>

14.7. Debugging AST-Driven Programs
A program can use asynchronous system traps (ASTs) either explicitly or implicitly by calling system
services or Run-Time Library (RTL) routines that call application-defined AST routines. Section 14.7.1
explains how to facilitate debugging by disabling and enabling the delivery of ASTs originating with your
program.

14.7.1. Disabling and Enabling the Delivery of ASTs
Debugging AST-driven programs can be confusing because interrupts originating from the program
being debugged can occur, but are not processed, while the debugger is running (processing commands,
tracing execution, displaying information, and so on).

By default, the delivery of ASTs is enabled while the program is running. The DISABLE AST
command disables the delivery of ASTs while the program is running and causes any such potential
interrupts to be queued.

The delivery of ASTs is always disabled when the debugger is running.

If a static watchpoint is in effect, the debugger deactivates the static watchpoint, ASTs, and thread
switching, just before a system service call. The debugger reactivates them just after the system service
call completes. (For more information, see the SET WATCH command description.)

The ENABLE AST command reenables the delivery of ASTs, including any pending ASTs. The
SHOW AST command indicates whether the delivery of ASTs is enabled or disabled.

294

Chapter 14. Debugging Special Cases

 To control the delivery of ASTs during the execution of a routine called with the CALL command, use
the /[NO]AST qualifiers. The command CALL/AST enables the delivery of ASTs in the called routine.
The command CALL/NOAST disables the delivery of ASTs in the called routine. If you do not specify
/AST or /NOAST with the CALL command, the delivery of ASTs is enabled unless you have previously
entered the DISABLE AST command.

14.8. Debugging Translated Images (Alpha
and Integrity servers Only)
On OpenVMS Alpha and Integrity server systems, the debugger does not support attempts to debug
translated images. If you must debug a translated image, use the Delta/XDelta Debugger. For more
information on this debugger, see the VSI OpenVMS Delta/XDelta Debugger Manual.

14.9. Debugging Programs That Perform
Synchronization or Communication Functions
Some programs that perform synchronization or communication can pose problems for debugging. For
example, an application being debugged includes the LCK$M_DEQALL modifier in a $DEQ system
service call (this modifier breaks communication links between the portion of the debugger in the user
process (the kernel) and the debugger main process).

14.10. Debugging Inlined Routines
 On OpenVMS systems, the debugger does not support attempts to debug inlined routines. If you attempt
to debug an inlined routine, the debugger issues a message that it cannot access the routine, as shown in
the following example:

%DEBUG-E-ACCESSR, no read access to address 00000000

To work around this problem, compile your program with the /NOOPTIMIZE qualifier.

295

Chapter 14. Debugging Special Cases

296

Chapter 15. Debugging Multiprocess
Programs
This chapter describes features of the debugger that are specific to multiprocess programs (programs
that run in more than one process). With these features, you can display process information and control
the execution of specific processes. You can use these features in addition to those explained in other
chapters.

Images discussed in this chapter are debuggable images - that is, images that can be controlled by
debugger. An image that is linked with the /NOTRACEBACK qualifier cannot be brought under control
of the debugger. As explained in Section 1.2, you get full symbolic information when debugging an
image only for modules that are compiled and linked with the /DEBUG qualifier.

15.1. Basic Multiprocess Debugging
Techniques
This section introduces basic concepts of multiprocess debugging. Refer to subsequent sections for
complete details.

15.1.1. Starting a Multiprocess Debugging Session
This section explains the easiest way to start a multiprocess debugging session. Section 15.16.4 describes
additional ways to start the debugger.

To start a multiprocess debugging session, start the kept debugger. For example:

$ debug/keep
 OpenVMS Integrity server Debug64
 Version T8.2-008
DBG>

In a multiprocess debugging session, the debugger traces each new process that is brought under control.
The debugger identifies each process with a decimal process number, as shown in Example 15.1.

Example 15.1. RUN/NEW Command

DBG> SHOW PROCESS
 Number Name State Current PC
* 1 DBGK$$2727282C activated SERVER__main
DBG> RUN/NEW CLIENT
process 2
 %DEBUG-I-INITIAL, Language: C, Module: CLIENT
 %DEBUG-I-NOTATMAIN, Type GO to reach MAIN program
 predefined trace on activation at CLIENT__main
all> SHOW PROCESS
 Number Name State Current PC
* 1 DBGK$$2727282C activated SERVER__main
 2 USER_2 activated CLIENT__mainall>

The RUN/NEW CLIENT command in Example 15.1 starts the program CLIENT in a new process.
The first time (in a debugging session) that the debugger has more than one process under its control, it
changes its prompt to all> to identify the set of all processes under its control.

297

Chapter 15. Debugging Multiprocess Programs

Processes and Process Sets
Once the debugger is aware of more than one process, the debugger prompt changes to the identifier of
the current process set, followed by a right angle bracket (>).

Conceptually, each process belongs to a set of one, identified by default by the unique decimal number
assigned to it when the debugger takes control of the process. A process can belong to more than one set.
All processes under debugger control are grouped by default into a set named all.

You can group processes into user-named sets with the DEFINE /PROCESS_SET command.

Current Process Set
Debugger commands apply by default to the current process set. By default, the current process set is
the set named all. You can change the current process set with the SET PROCESS command.

Command Process Set
The set of processes at which a command is directed is called the command process set. The default
command process set is the current process set.

Process Set Prefix
You can give a debugger command that applies to a command process set other than the current process
set without changing the current process set. To do so, prefix the command with the name of the process
set followed by a right angle bracket (>). For example:

all> 1,2,5> GO

1,2,5> is a process set prefix. This syntax allows you to cut and paste commands from a previous
command line.

Visible Process
The visible process is the process that is shown in current displays, and is identified by an asterisk
(*) in column 1 in a SHOW PROCESS display. You can change the visible process with the
SET PROCESS/VISIBLE command. For example:

all> SHOW PROCESS
 Number Name State Current PC
* 1 DBGK$$2727282C activated SERVER__main
 2 USER_2 activated CLIENT__main
all>

In the above example, process number 1 is the visible process.

15.2. Obtaining Information About Processes
Use the SHOW PROCESS command to obtain information about processes that are currently under
control of your debugging session. By default, SHOW PROCESS displays information about all
processes under control of the debugger. (These are the processes in process set all.) Example 15.2
shows the type of information displayed immediately after you start the debugger.

Example 15.2. SHOW PROCESS Command

DBG> SHOW PROCESS/BRIEF/ALL

298

Chapter 15. Debugging Multiprocess Programs

 Number Name State Current PC
* 1 JONES activated MAIN_PROG\%LINE 2
DBG>

Note that the qualifiers /BRIEF and /ALL are the default. Note also that the debugger displays its
default prompt, because the debugger still has only one process under its control. The SHOW PROCESS
command provides the following information about each process specified:

• The process number assigned by the debugger. In Example 15.2, the process number is 1 because
this is the first process known to the debugger. The asterisk in the leftmost column (*) marks the
visible process.

• The process name. In this case, the process name is JONES.

• The current debugging state for that process. A process is in the activated state when it is first
brought under debugger control (that is, before it has executed any part of the program under
debugger control). Table 15.1 summarizes the possible debugging states of a process under debugger
control.

• The location (symbolized, if possible) where execution of the image is paused in that process. In
Example 15.2, the image has not yet started execution.

Table 15.1. Debugging States

State Description

Running Executing under control of the debugger.
Stopped

Activated The image and its process have just been brought under
debugger control.

Break 1 A breakpoint was triggered.
Interrupted Execution was interrupted in that process, in one of the

following ways:

• Execution was suspended in another process.

• It was interrupted with the abort-key sequence (Ctrl/C,
by default).

• It was interrupted by the STOP command.
Step 1 A STEP command has completed.
Trace 1 A tracepoint was triggered.
Unhandled exception An unhandled exception was encountered.
Watch of A watchpoint was triggered.
Terminated The image has terminated execution but the process is

still under debugger control. Therefore, you can obtain
information about the image and its process.

1See the SHOW PROCESS command description for a list of additional states.

Returning to Example 15.2, if you now enter a STEP command followed by a SHOW PROCESS
command, the state column in the SHOW PROCESS display indicates that execution is paused at the
completion of a step. For example:

299

Chapter 15. Debugging Multiprocess Programs

DBG> STEP
DBG> SHOW PROCESS
 Number Name State Current PC
* 1 JONES step MAIN_PROG\%LINE 3
DBG>

Similarly, if you were to set a breakpoint and then enter a GO command, a SHOW PROCESS command
entered once the breakpoint has triggered identifies the state as break.

15.3. Process Specification
Each new process to which the debugger connects is identified by a process-number. The first process
is process-number 1, the second process is process-number 2, and so on. When a process stops, its
process number is recycled and is available to the debugger for assignment to a subsequent process.

Processes are referred to using the process-spec.The most simple process-spec is either a process-name
created by OpenVMS when the process is created, or a process-number created by the debugger when
the debugger gains control of the process. A process-spec that consists of only numbers is interpreted
as a process number. Within debugger commands, you can use process-numbers to specify individual
processes (for example, "2, 3, 4, 5").

A process-spec-item can be a name, in which case it can refer to a process-name or a process-set-
name. The debugger tries first to find a process-set with that name. If unsuccessful, the debugger
then tries to match a process to the name. You can explicitly specify the process-name by using the
%PROCESS_NAME lexical function.

Example 15.3 contains the complete process specification syntax.

Example 15.3. Process Specification Syntax

 process-spec ::= process-spec-item [, process-spec-item]
 process-spec-item ::= named-item |
 numbered-item |
 pid-item |
 process-set-name |
 special-item
 named-item ::= [%PROCESS_NAME] wildcard-name
 numbered-item ::= numbered-process
 numbered-process ::= [%PROCESS_NUMBER] decimal-number
 pid-item ::= %PROCESS_ID VMS-process-identifier
 process-set-name ::= name
 special-item ::= %NEXT_PROCESS |
 %PREVIOUS_PROCESS |
 %VISIBLE_PROCESS

15.4. Process Sets
You can place processes into groups called process sets with the DEFINE PROCESS_SET command
followed by a list of processes separated by commas (,). For example:

all> DEFINE/PROCESS CLIENTS = 2,3
all> SET PROCESS CLIENTS
clients> STEP
process 2,3
 stepped to CLIENT\main\%LINE 18796
 18796: status = sys$crembx (0, &mbxchan, 0, 0, 0,

300

Chapter 15. Debugging Multiprocess Programs

 0, &mbxname_dsc, CMB$M_READONLY, 0);
clients> SHOW PROCESS CLIENTS
 Number Name State Current PC
 2 USER1_2 step CLIENT\main\%LINE 18796
 3 USER1_3 step CLIENT\main\%LINE 18796
clients>

There is a predefined process set named all, which is the default process set when the debugger is first
invoked. You cannot redefine this process set.

Current Process Set
At any time during a debugging session, there is a current process set in effect. The current process
set is the group of processes to which debugger process-sensitive commands apply by default. See
Section 15.6 for a list of debugger commands that are process-sensitive.

By default, the current process set is the set of all processes, with the process set name all. You can
change the current process set with the SET PROCESS command.

The SET PROCESS command does three things:

• It specifies the current process set.

• It controls the visible process with the /VISIBLE qualifier.

• It turns dynamic process setting on or off with the /[NO]DYNAMIC qualifier.

When used without a qualifier, the SET PROCESS command takes a single parameter, a process-spec,
which specifies the current process set. For example:

all> SET PROCESS 1
1> STEP
process 1 stepped to SERVER\main\%LINE 18800
 18800: if (!(status & 1))
1> SET PROCESS ALL
all>

The SET PROCESS/DYNAMIC command directs the debugger to change the visible process when a
debugger event occurs, such as the completion of a STEP command, or the triggering of a breakpoint.
The visible process becomes the process that triggered the event. For example:

all> SET PROCESS/DYNAMIC
all> 1> STEP
process 1
 stepped to SERVER\main\%LINE 18808
 18808: df_p = fopen (datafile, "r+");
all> SHOW PROCESS/VISIBLE
 Number Name State Current PC
* 1 DBGK$$2727282C step SERVER\main\%LINE 18808
all>

Command Process Set
The command process set is the group of processes to which a debugger command is directed. By
default, the command process set is the current process set. You can use a process set prefix to specify
a command process set for the current command, which overrides the current process set for that single
command. For example:

301

Chapter 15. Debugging Multiprocess Programs

all> 2,3> STEP
processes 2,3
 stepped to CLIENT\main\%LINE 18797
 18797: if (!(status & 1))
all> clients> STEP
processes 2,3
 stepped to CLIENT\main\%LINE 18805
 18805: memset (&myiosb, 0, sizeof(myiosb));
all>

Process-independent commands ignore any process set prefix, just as they ignore the current process set.

15.5. Debugger Prompts
By default, the debugger command prompt indicates the current process set, using the same syntax as
the process-spec. The command prompt is the current process set process-spec followed by a right angle
bracket (>). When you define the current process set, the debugger changes its prompt to the name of the
current process set, followed by a right angle bracket. For example:

 all> ! by default, current process set is all processes
 all>
 all> SET PROCESS 2,3,4,5
 2,3,4,5> DEFINE /PROCESS_SET interesting 1,2,3,7
 2,3,4,5> SET PROCESS interesting
 interesting> SET PROCESS *
 all> SET PROCESS 3
 3>

Note

The debugger does not use the process-spec format for the debugger prompt until the debugger becomes
aware of more than one process.

15.6. Process-Sensitive Commands
There are two types of commands, process-sensitive and process-independent.

Process-sensitive commands are those that depend on the state of a process, such as GO, STEP, CALL,
and SET BREAK.

Process-independent commands are those that depend on and affect the state of the debugger and ignore
the state of processes, such as SET DISPLAY, WAIT, ATTACH, and SPAWN.

15.7. Visible Process and Process-Sensitive
Commands
The visible process is the process shown by default in the source display (and other such process-
oriented displays). When the current process set is changed with the SET PROCESS command,
the visible process is set to be the first process specified in that command. You can use the
SET PROCESS/VISIBLE command to specify a particular process as the visible one without
changing the current process set.

302

Chapter 15. Debugging Multiprocess Programs

15.8. Controlling Process Execution
When debugging an application with multiple processes, it is common to have some process stopped
while other processes are still running. It can be useful to be able to give commands only to those
processes that are stopped without waiting for all processes to stop. Wait mode provides that capability.

15.8.1. WAIT Mode
With regard to executing processes, the debugger has two modes: wait and nowait. You can control
whether or not the debugger waits for all running processes to stop before the debugger accepts and
executes another command by toggling wait mode with the SET MODE [NO]WAIT command. Wait
mode is the default.

When the debugger is in wait mode and you enter the GO, STEP, or CALL command, the debugger
executes the command in all processes in the command process set, and waits until all those processes
stop (for example, at breakpoints) before displaying a prompt and accepting another command.

When the debugger is in nowait mode and you enter the GO, STEP, or CALL command, the debugger
executes the command in all processes in the command process set, and immediately displays a prompt.
You can enter a new command immediately, regardless of whether any or all processes have stopped.
This provides great flexibility, especially when debugging multiprocess programs.

Control over WAIT mode allows you to do the following:

• While the program is running, you can use the debugger as a source browser. Because the source
view is process-independent, you can change its focus while processes are executing.

• You can control separate processes one at a time.

• You can control more than one process at a time.

A SET MODE [NO]WAIT command remains in effect until the next SET MODE [NO]WAIT
command. For example:

all> SET MODE NOWAIT
all> clients> STEP
all> SHOW PROCESS
 Number Name State Current PC
 1 DBGK$$2727282C step SERVER\main\%LINE 18819
 2 USER1_2 running not available
* 3 USER1_3 running not available
all>

You can use the WAIT command to override nowait mode for the duration of one command, to direct
the debugger to wait until all processes in the command process set stop before prompting for another
command. Nowait mode remains in effect when the command completes. For example:

all> GO;WAIT
processes 2,3
 break at CLIENT\main\%LINE 18814
 18814: status = sys$qiow (EFN$C_ENF, mbxchan,
 IO$_READVBLK|IO$M_WRITERCHECK, &myiosb,
process 1
 break at SERVER\main\%LINE 18834
 18834: if ((myiosb.iosb$w_status ==
 SS$_NOREADER) && (pos_status != -1))
all>

303

Chapter 15. Debugging Multiprocess Programs

When commands are processed in a non-interactive manner (within debugger command sequences
within FOR, REPEAT, WHILE, IF, and @ commands, and within WHEN clauses), WAIT mode is
enabled by default during the execution of the command sequence.

During NOWAIT mode, an EXAMINE command (similar to all process-independent commands) displays
results for those processes in its command process set that are stopped. If all processes in its command
process set are running, the EXAMINE command reports that condition and the debugger displays a
prompt and accepts a new command. Similarly, a GO command during NOWAIT mode starts all stopped
processes in the command process set.

15.8.2. Interrupt Mode
Use the SET MODE [NO]INTERRUPT command to toggle the state of interrupt mode. When
interrupt mode is toggled on, the debugger stops all processes when one process stops. This can be a
disadvantage if an interrupted process is deep into a RTL or system service call because it can leave
many irrelevant non-symbolic frames on top of the process stack.

When interrupt mode is toggled off, the debugger does not stop any other process unless you enter a
STOP command. This is the default mode.

15.8.3. STOP Command
Use the STOP command to interrupt running processes. The STOP command interrupts all of the
running processes in its command process set.

The STOP command completes as soon as it sends a stop request to every running process in the
command set. For example:

all> SHOW PROCESS
 Number Name State Current PC
 1 DBGK$$2727282C break SERVER\main\%LINE 18834
 2 USER1_2 running not available
* 3 USER1_3 running not available
all> clients> STOP
all> SHOW PROCESS
 Number Name State Current PC
 1 DBGK$$2727282C break SERVER\main\%LINE 18834
 2 USER1_2 interrupted 0FFFFFFFF800F7A20
* 3 USER1_3 interrupted 0FFFFFFFF800F7A20
all>

15.9. Connecting to Another Program
You can bring a debuggable program under control of the debugger from a kept debugger session. This
could be a client program that runs independently in another process. Because the debugger is not yet
aware of that process, you cannot obtain information about it from a SHOW PROCESS command.
Enter the CONNECT command and specify the process name of the client program with the debugger
%PROCESS_NAME lexical function. For example:

all> CONNECT %PROCESS_NAME CLIENT2
process 3
 predefined trace on activation at 0FFFFFFFF800F7A20
all> SHOW PROCESS
 Number Name State Current PC
* 1 DBGK$$2727282C activated SERVER__main

304

Chapter 15. Debugging Multiprocess Programs

 2 USER1_2 activated CLIENT__main
 3 CLIENT2 interrupted 0FFFFFFFF800F7A20
 activated
all>

Unexpected results can occur if you enter the CONNECT command if any of the debugger
logicals (DEBUG, DEBUGSHR, DEBUGUISHR, DBGTBKMSG, DBG$HELP, DBG$UIHELP,
DEBUGAPPCLASS, and VMSDEBUGUIL) differ between the debugger main process and the process in
which the client runs.

15.10. Connecting to a Spawned Process
When a program you are debugging (with the kept debugger) spawns a debuggable process, the spawned
process waits to be connected to the debugger. At this time the debugger has no information about the
newly spawned process, and you cannot get information about that process from a SHOW PROCESS
command. You can bring the newly spawned process under debugger control using either of the
following methods:

• Enter a command, such as STEP, that starts execution (if, as in the following example, your program
is of the hierarchical model).

• Enter the CONNECT command without specifying a parameter. The CONNECT command is useful in
cases when you do not want the process to execute further.

The following example shows this use of the CONNECT command:

1> STEP
stepped to MAIN_PROG\%LINE 18 in %PROCESS_NUMBER 1
18: LIB$SPAWN("RUN/DEBUG TEST",,,1)
1> STEP
stepped to MAIN_PROG\%LINE 21 in %PROCESS_NUMBER 1
21: X = 7
1> CONNECT
predefined trace on activation at routine TEST in %PROCESS_NUMBER 2
all>

In this example, the second STEP command takes you past the LIB$SPAWN call that spawns the
process. The CONNECT command brings the waiting process under debugger control. After entering the
CONNECT command, you might need to wait a moment for the process to connect. The "predefined
trace on …" message indicates that the debugger has taken control of a new process which is identified
as process 2.

A SHOW PROCESS command, entered at this point, identifies the debugging state for each process and
the location at which execution is paused:

all> SHOW PROCESS
 Number Name State Current PC
* 1 JONES step MAIN_PROG\%LINE 21
 2 JONES_1 activated TEST\%LINE 1+2
all>

Note that the CONNECT command brings all processes that are waiting to be connected to the debugger
under debugger control. If no processes are waiting, you can press Ctrl/C to abort the CONNECT
command and display the debugger prompt.

Unexpected results can occur if you enter the CONNECT command if any of the debugger
logicals (DEBUG, DEBUGSHR, DEBUGUISHR, DBGTBKMSG, DBG$HELP, DBG$UIHELP,

305

Chapter 15. Debugging Multiprocess Programs

DEBUGAPPCLASS, and VMSDEBUGUIL) differ between the debugger process and the spawned
process.

15.11. Monitoring the Termination of Images
When the main image of a process runs to completion, the process goes into the terminated debugging
state (not to be confused with process termination in the operating system sense). This condition is
traced by default, as if you had entered the SET TRACE/TERMINATING command.

When a process is in the terminated debugging state, it is still known to the debugger and appears in a
SHOW PROCESS display. You can enter commands to examine variables, and so on.

15.12. Releasing a Process From Debugger
Control
To release a process from debugger control without terminating the process,enter the DISCONNECT
command. (In contrast, when you specify a process with the EXIT or QUIT command, the process is
terminated.) This command is required for programs of the client/server model. For example:

all> SHOW PROCESS
 Number Name State Current PC
* 1 DBGK$$2727282C step SERVER\main\%LINE 18823
 2 USER1_2 step CLIENT\main\%LINE 18805
 3 USER1_3 step CLIENT\main\%LINE 18805
all> DISCONNECT 3all> SHOW PROCESS
 Number Name State Current PC
* 1 DBGK$$2727282C step SERVER\main\%LINE 18823
 2 USER1_2 step CLIENT\main\%LINE 18805
all> QUIT 1,2
DBG> SHOW PROCESS
 %DEBUG-W-NOPROCDEBUG, there are currently no processes being debugged
DBG> EXIT
$

Bear in mind that the debugger kernel runs in the same process as the image being debugged. If you
issue the DISCONNECT command for this process,you release your process, but the kernel remains
activated. This activation continues until the program image finishes running. If you install a new version
of the debugger while one or more disconnected but activated kernels inhabit user program space, you
can experience problems with debugger behavior if you try to reconnect to that program image.

15.13. Terminating Specified Processes
To terminate specified processes without ending the debugging session, use the EXIT or QUIT
command, specifying one or more process specifications as parameters. For example:

all> SHOW PROCESS
 Number Name State Current PC
* 1 DBGK$$2727282C step SERVER\main\%LINE 18823
 2 USER1_2 step CLIENT\main\%LINE 18805
all> QUIT 1,2
DBG> SHOW PROCESS
 %DEBUG-W-NOPROCDEBUG, there are currently no processes being debugged
DBG> EXIT
$

306

Chapter 15. Debugging Multiprocess Programs

15.14. Interrupting Program Execution
Pressing Ctrl/C (or the abort-key sequence established with the SETABORT_KEY command) interrupts
execution in every process that is currently running an image. This is indicated as an interrupted state in
a SHOW PROCESS display.

Note that you can also use Ctrl/C to abort a debugger command.

You can also stop a process with the debugger STOP command.

15.15. Ending the Debugging Session
To end the entire debugging session, use the EXIT or QUIT command without specifying any
parameters.

EXIT executes any exit handlers that are declared in the program. QUIT does not.

QUIT Command
 Use the QUIT command to terminate running processes. The QUIT command terminates all of the
running processes in its command process set without allowing any exit handlers to run. A process set
prefix is ignored before a QUIT command. For example:

all> SHOW PROCESS
 Number Name State Current PC
* 1 DBGK$$2727282C step SERVER\main\%LINE 18823
 2 USER1_2 step CLIENT\main\%LINE 18805
all> QUIT 1,2
DBG> SHOW PROCESS
 %DEBUG-W-NOPROCDEBUG, there are currently no processes being debugged
DBG> EXIT
$

The QUIT command ignores the current process set. If you do not specify a process, the QUIT
command terminates all processes and then terminates the debugging session.

EXIT Command
Use the EXIT command to terminate running processes. The EXIT command terminates all of the
running processes in its command process set without allowing any exit handlers to run. A process set
prefix is ignored before an EXIT command. For example:

all> SHOW PROCESS
 Number Name State Current PC
* 1 DBGK$$2727282C step SERVER\main\%LINE 18823
 2 USER1_2 step CLIENT\main\%LINE 18805
all> EXIT 1,2
DBG> SHOW PROCESS
 %DEBUG-W-NOPROCDEBUG, there are currently no processes being debugged
DBG> EXIT
$

The EXIT command ignores the current process set. If you do not specify a process, the EXIT
command terminates all processes and then terminates the debugging session.

307

Chapter 15. Debugging Multiprocess Programs

15.16. Supplemental Information
This section provides additional details or more advanced concepts and usages than those covered in
Section 15.1.

15.16.1. Process Relationships When Debugging
The debugger consists of two parts: a main debugger image (DEBUGSHR.EXE) that contains most
of the debugger code and a smaller kernel debugger image (DEBUG.EXE). This separation reduces
potential interference between the debugger and the program being debugged and also makes it possible
to have a multiprocess debugging configuration.

When you bring a program under control of the kept debugger, the main debugger spawns a subprocess
to run the program along with the kernel debugger.

An application being debugged might run in several processes. Each process under debugger control is
running a local copy of the kernel debugger. The main debugger, which is running in its own process,
communicates with the other processes through their kernel debuggers.

Although all processes must be in the same UIC group, they do not have to be related in a particular
process/subprocess hierarchy. Moreover, the program images running in separate processes do not have
to communicate with each other.

See Section 15.16.7 for system requirements related to multiprocess debugging.

15.16.2. Specifying Processes in Debugger Commands
When specifying processes in debugger commands, you can use any of the forms listed in Table 15.2,
except when specifying processes with the CONNECT command (see Section 15.9).

Use the CONNECT command to bring a process that is not yet known to the debugger under debugger
control. Until you bring a new process under control of the debugger, the process does not have a
debugger-assigned process number, nor can you reference it with any of the built-in process symbols (for
example, %NEXT_PROCESS). Therefore, when specifying a process with CONNECT, you can use only
its process name or process identifier (PID).

Table 15.2. Process Specifications

Format Usage

[%PROCESS_NAME] process-name The process name, if that name does not contain
spaces or lowercase characters. The process name
can include the asterisk (*) wildcard character.

[%PROCESS_NAME] " process-name " The process name, if that name contains spaces or
lowercase characters. You can also use apostrophes
(') instead of quotation marks (").

%PROCESS_PID process_id The process identifier (PID, a hexadecimal
number).

[%PROCESS_NUMBER] process-number
(or %PROC process-number)

The number assigned to a process when it
comes under debugger control. A new number
is assigned sequentially, starting with 1, to each
process. If a process is terminated with the
EXIT or QUIT command, the number can be

308

Chapter 15. Debugging Multiprocess Programs

Format Usage
assigned again during the debugging session.
Process numbers appear in a SHOW PROCESS
display. Processes are ordered in a circular
list so they can be indexed with the built-
in symbols %PREVIOUS_PROCESS and
%NEXT_PROCESS.

process-set-name A symbol defined with the
DEFINE/PROCESS_SET command to represent
a group of processes.

%NEXT_PROCESS The next process after the visible process in the
debugger's circular process list.

%PREVIOUS_PROCESS The process previous to the visible process in the
debugger's circular process list.

%VISIBLE_PROCESS The process whose stack, register set, and images
are the current context for looking up symbols,
register values, routine calls, breakpoints, and so
on.

You can omit the %PROCESS_NAME and %PROCESS_NUMBER built-in symbols when entering
commands. For example:

2> SHOW PROCESS 2, JONES_3

The built-in symbols %VISIBLE_PROCESS, %NEXT_PROCESS, and %PREVIOUS_PROCESS
are useful in control structures based on the IF, WHILE, or REPEAT commands and in command
procedures.

15.16.3. Monitoring Process Activation and Termination
By default, a tracepoint is triggered when a process comes under debugger control and when
it performs an image exit. These predefined tracepoints are equivalent to those resulting from
entering the SET TRACE/ACTIVATING and SET TRACE/TERMINATING commands,
respectively. You can set breakpoints on these events with the SET BREAK/ACTIVATING and
SET BREAK/TERMINATING commands.

To cancel the predefined tracepoints, use the CANCEL TRACE/PREDEFINED command with the
/ACTIVATING and /TERMINATING qualifiers. To cancel any user-defined activation and termination
breakpoints, use the CANCEL BREAK command with the /ACTIVATING and /TERMINATING
qualifiers (the /USER qualifier is the default when canceling breakpoints or tracepoints).

The debugger prompt is displayed when the first process comes under debugger control. This enables
you to enter commands before the main image has started execution, as with a one-process program.

Similarly, the debugger prompt is displayed when the last process performs an image exit. This enables
you to enter commands after the program has completed execution, as with a one-process program.

15.16.4. Interrupting the Execution of an Image to
Connect It to the Debugger
You can interrupt a debuggable image that is running without debugger control in a process and connect
that process to the debugger.

309

Chapter 15. Debugging Multiprocess Programs

• To start a new debugging session, use the Ctrl/Y - DEBUG sequence from DCL level. Note that this
starts the unkept debugger, which you cannot use for debugging multiprocess programs.

• To interrupt an image and connect it to an existing multiprocess debugging session, use the debugger
CONNECT command.

15.16.5. Screen Mode Features for Multiprocess
Debugging
By default, the source, instruction, and register displays show information about the visible process.

By using the /PROCESS qualifier with the DISPLAY command, you can create process-specific
displays or make existing displays process specific,respectively. The contents of a process-specific display
are generated and modified in the context of that process. You can make any display process specific
except for the PROMPT display. For example, the following command creates the automatically updated
source display SRC_3, which shows the source code where execution is suspended in process 3:

2> DISPLAY/PROCESS=(3) SRC_3 AT RS23 -
2> SOURCE (EXAM/SOURCE .%SOURCE_SCOPE\%PC)

Assign attributes to process-specific displays in the same way as for displays that are not process specific.
For example, the following command makes display SRC_3 the current scrolling and source display; that
is, the output of SCROLL, TYPE, and EXAMINE/SOURCE commands are then directed at SRC_3:

2> SELECT/SCROLL/SOURCE SRC_3

If you enter a DISPLAY/PROCESS command without specifying a process, the specified display is
then specific to the process that was the visible process when you entered the command. For example,
the following command makes display OUT_X specific to process 2:

2> DISPLAY/PROCESS OUT_X

In a multiprocess configuration, the predefined tracepoint on process activation automatically creates
a new source display and a new instruction display for each new process that comes under debugger
control. The displays have the names SRC_ n and INST_ n, respectively, where n is the process number.
These displays are initially marked as removed. They are automatically deleted on process termination.

 Several predefined keypad key sequences enable you to configure your screen with the process-specific
source and instruction displays that are created automatically when a process is activated. Key sequences
that are specific to multiprocess programs are as follows: PF1 KP9, PF4 KP9, PF4 KP7, PF4 KP3,PF4
KP1. See Section A.5 for the general effect of these sequences. Use the SHOW KEY command to
determine the exact commands.

15.16.6. Setting Watchpoints in Global Sections (Alpha
and Integrity servers Only)
On Alpha and Integrity servers, you can set watchpoints in global sections. A global section is a region
of memory that is shared among all processes of a multiprocess program. A watchpoint that is set on a
location in a global section (a global section watchpoint) triggers when any process modifies the contents
of that location.

When setting watchpoints on arrays or records, note that performance is improved if you specify
individual elements rather than the entire structure with the SET WATCH command.

If you set a watchpoint on a location that is not yet mapped to a global section, the watchpoint is treated
as a conventional static watchpoint. For example:

310

Chapter 15. Debugging Multiprocess Programs

1> SET WATCH ARR(1)
1> SHOW WATCH
watchpoint of PPL3\ARR(1)

When ARR is subsequently mapped to a global section, the watchpoint is automatically treated as a
global section watchpoint and an informational message is issued. For example:

1> GO
%DEBUG-I-WATVARNOWGBL, watched variable PPL3\ARR(1) has
 been remapped to a global section
predefined trace on activation at routine PPL3 in %PROCESS_NUMBER 2
predefined trace on activation at routine PPL3 in %PROCESS_NUMBER 3
watch of PPL3\ARR(1) at PPL3\%LINE 93 in %PROCESS_NUMBER 2
 93: ARR(1) = INDEX
 old value: 0
 new value: 1
break at PPL3\%LINE 94 in %PROCESS_NUMBER 2
 94: ARR(I) = I

After the watched location is mapped to a global section, the watchpoint is visible from each process.
For example:

all> SHOW WATCH
For %PROCESS_NUMBER 1
 watchpoint of PPL3\ARR(1) [global-section watchpoint]
For %PROCESS_NUMBER 2
 watchpoint of PPL3\ARR(1) [global-section watchpoint]
For %PROCESS_NUMBER 3
 watchpoint of PPL3\ARR(1) [global-section watchpoint]
all>

15.16.7. System Requirements for Debugging
 Several users debugging programs simultaneously can place a load on a system. This section describes
the resources used by the debugger, so that you or your system manager can tune your system for this
activity.

Note that the discussion covers only the resources used by the debugger. You might also have to tune
your system to support the programs themselves.

15.16.7.1. User Quotas
Each user needs a PRCLM quota sufficient to create an additional process for the debugger, beyond the
number of processes needed by the program.

BYTLM, ENQLM, FILLM, and PGFLQUOTA are pooled quotas. They may need to be increased to
account for the debugger process as follows:

• Each user's ENQLM quota should be increased by at least the number of processes being debugged.

• Each user's PGFLQUOTA might need to be increased. If a user has an insufficient PGFLQUOTA,
the debugger might fail to activate or might cause "virtual memory exceeded" errors during
execution.

• Each user's BYTLM and FILLM quotas might need to be increased. The debugger requires BYTLM
and FILLM quotas sufficient to open each image file being debugged, the corresponding source files,
and the debugger input,output, and log files.

311

Chapter 15. Debugging Multiprocess Programs

15.16.7.2. System Resources
The kernel debugger and main debugger communicate through global sections. Each main debugger,
regardless of platform, uses at least one64-Kbyte global section. On Alpha, the main debugger can
communicate with up to six kernel debuggers. On Integrity servers, it can only communicate with up to2
kernel debuggers.

15.17. Examples
Example 15.4 and Example 15.5 contain the C code for the server and client programs used in examples
throughout this chapter.

Example 15.4. server.c

#include <stdio.h>
#include <starlet.h>
#include <cmbdef.h>
#include <types.h>
#include <descrip.h>
#include <efndef.h>
#include <iodef.h>
#include <iosbdef.h>
#include <ssdef.h>
#include <string.h>
#include "mbxtest.h"
int main (int argc, char **argv)
{
 unsigned int status, write_ef;
 char line_buf [LINE_MAX_LEN + 1];
 iosb myiosb; short mbxchan;
 /* Get event flag. Look for or create the mailbox.
 */
 status = lib$get_ef (&write_ef);
 if (!(status & 1))
 {
fprintf (stderr, "Server unable to get eventflag,
 status = %x", status);
return 0;
 }
 status = sys$crembx (0, &mbxchan, 0, 0, 0, 0, &mbxname_dsc,
 CMB$M_WRITEONLY, 0);
 if (!(status & 1))
 {
fprintf (stderr, "Server unable to open mailbox,
 status = %x", status);
return 0;
 }
 /* Open for business. Loop looking for and processing requests.
 */
 while (TRUE)
 {
printf ("Input command: ");
gets (&line_buf);
status = sys$clref (write_ef);
if (!(status & 1))
{
 fprintf (stderr, "Client unable to clear read event flag,

312

Chapter 15. Debugging Multiprocess Programs

 status = %x", status);
 return 0;
}
status = sys$qiow (write_ef, mbxchan,
 IO$_SETMODE | IO$M_READERWAIT, &myiosb,
 0, 0, 0, 0, 0, 0, 0, 0);
if ((status) && (myiosb.iosb$w_status))
{
 status = sys$clref (write_ef);
 if (!(status & 1))
 {
fprintf (stderr, "Client unable to clear read event flag,
 status = %x", status);
return 0;
 }
 if (strlen (line_buf) == 0)
status = sys$qio (write_ef, mbxchan, IO$_WRITEOF | IO$M_READERCHECK,
 &myiosb,
 0, 0, 0, 0, 0, 0, 0, 0);
 else
status = sys$qio (write_ef, mbxchan, IO$_WRITEVBLK | IO$M_READERCHECK,
 &myiosb,
 0, 0, line_buf, strlen (line_buf), 0, 0, 0, 0);
 if (status)
 {
status = sys$waitfr (write_ef);
if ((myiosb.iosb$w_status & 1) && (status & 1))
 {
 if (strlen (line_buf) == 0)
break;
}
else
 fprintf (stderr, "Server failure during write,
 status = %x, iosb$w_status = %x\n",
 status, myiosb.iosb$w_status);
 }
 else
fprintf (stderr, "Server failure for write request,
 status = %x\n", status);
}
else
 fprintf (stderr, "Server failure during wait for reader,
 status = %x, iosb$w_status = %x\n",
 status, myiosb.iosb$w_status);
 }
 printf ("\n\nServer done...exiting\n");
 return 1;}

Example 15.5. client.c

#include <stdio.h>
#include <starlet.h>
#include <cmbdef.h>
#include <types.h>
#include <descrip.h>
#include <efndef.h>
#include <iodef.h>
#include <iosbdef.h>

313

Chapter 15. Debugging Multiprocess Programs

#include <ssdef.h>
#include <string.h>
#include "mbxtest.h"
int main (int argc, char **argv)
{
 unsigned int status, read_ef;
 iosb myiosb;
 short mbxchan;
 char line_buf [LINE_MAX_LEN];
 /* Get event flag. Look for or create the mailbox.
 */
 status = lib$get_ef (&read_ef);
 if (!(status & 1))
 {
fprintf (stderr, "Client unable to get eventflag, status = %x", status);
return 0;
 }
 status = sys$crembx (0, &mbxchan, 0, 0, 0, 0, &mbxname_dsc, CMB
$M_READONLY, 0);
 if (!(status & 1))
 {
fprintf (stderr, "Client unable to open mailbox, status = %x", status);
return 0;
 }
 /* Loop requesting, receiving, and processing new data.
 */
 memset (&myiosb, 0, sizeof(myiosb));
 while (myiosb.iosb$w_status != SS$_ENDOFFILE)
 {
status = sys$qiow (read_ef, mbxchan, IO$_SETMODE | IO$M_WRITERWAIT,
 &myiosb,
 0, 0, 0, 0, 0, 0, 0, 0);
if ((status) && (myiosb.iosb$w_status))
{
 status = sys$clref (read_ef);
 if (!(status & 1))
 {
fprintf (stderr, "Client unable to clear read event flag, status = %x",
 status);
return 0;
 }
 status = sys$qio (read_ef, mbxchan, IO$_READVBLK | IO$M_WRITERCHECK,
 &myiosb,
 0, 0, line_buf, sizeof(line_buf), 0, 0, 0, 0);
 if (status)
 {
status = sys$waitfr (read_ef);
if ((myiosb.iosb$w_status & 1) && (status & 1))
 puts (line_buf);
else if ((myiosb.iosb$w_status != SS$_NOWRITER) &&
 (myiosb.iosb$w_status != SS$_ENDOFFILE))
 fprintf (stderr, "Client failure during read,
 status = %x, iosb$w_status = %x\n",
 status, myiosb.iosb$w_status);
 }
 else
fprintf (stderr, "Client failure for read request, status = %x\n", status);
}

314

Chapter 15. Debugging Multiprocess Programs

else
 fprintf (stderr, "Client failure during wait for writer,
 status = %x, iosb$w_status = %x\n",
 status, myiosb.iosb$w_status);
status = sys$clref (read_ef);
if (!(status & 1))
{
 fprintf (stderr, "Client unable to clear read event flag,
 status = %x", status);
 return 0;
}
 }
 printf ("\nClient done...exiting\n");
 return 1;
}

The header file included in Example 15.4 and Example 15.5, mbxtest.h is shown below.

$DESCRIPTOR(mbxname_dsc, "dbg$mptest_mbx");
#define LINE_MAX_LEN 255

315

Chapter 15. Debugging Multiprocess Programs

316

Chapter 16. Debugging Tasking
Programs
This chapter describes features of the debugger that are specific to multithread programs (also called
tasking programs). Tasking programs consist of multiple tasks, or threads, executing concurrently
in a single process. Within the debugger, the term task denotes such a flow of control regardless of
the language or implementation. The debugger's tasking support applies to all such programs. These
programs include the following:

• Programs written in any language that use POSIX Threads or POSIX1003.1b services. When
debugging these programs, the debugger default event facility is THREADS. Alpha and Integrity
servers makes use of POSIX Threads services.

• Programs that use language-specific tasking services (services provided directly by the language).
Currently, Ada is the only language with built-in tasking services that the debugger supports. When
debugging Ada programs, the debugger default event facility is ADA.

Note

Within the debugger, the terms task and thread are synonyms.

When you are debugging programs linked with PTHREAD$RTL Version 7.1 or greater, you can directly
access the HPE POSIX Threads debugger with the PTHREAD command.

In this chapter, any language-specific information or information specific to POSIX Threads is identified
as such. Section 16.1 provides a cross-reference between POSIX Threads terminology and Ada tasking
terminology.

The features described in this chapter enable you to perform functions such as:

• Displaying task information

• Modifying task characteristics to control task execution, priority, state transitions, and so on

• Monitoring task-specific events and state transitions

When using these features, remember that the debugger might alter the behavior of a tasking program
from run to run. For example, while you are suspending execution of the currently active task at a
breakpoint, the delivery of an asynchronous system trap (AST) or a POSIX signal as some input/output
(I/O) completes might make some other task eligible to run as soon as you allow execution to continue.

For more information about POSIX Threads, see the Guide to POSIX Threads Library. For more
information about Ada tasks, see the HPE Ada documentation.

The debugging of multiprocess programs (programs that run in more than one process) is described in
Chapter 15.

16.1. Comparison of POSIX Threads and Ada
Terminology
Table 16.1 compares POSIX Threads and Ada terminology and concepts.

317

Chapter 16. Debugging Tasking Programs

Table 16.1. Comparison of POSIX Threads and Ada Terminology

POSIX Threads Terminology Ada Terminology Description

Thread Task The flow of control within a
process

Thread object Task object The data item that represents the
flow of control

Object name or expression Task name or expression The data item that represents the
flow of control

Start routine Task body The code that is executed by the
flow of control

Not applicable Master task A parent flow of control
Not applicable Dependent task A child flow of control that is

controlled by some parent
Synchronization object (mutex,
condition variable)

Rendezvous construct such as an
entry call or accept statement

Method of synchronizing flows
of control

Scheduling policy and scheduling
priority

Task priority Method of scheduling execution

Alert operation Abort statement Method of canceling a flow of
control

Thread state Task state Execution state (waiting, ready,
running, terminated)

Thread creation attribute
(priority, scheduling policy, and
so on)

Pragma Attributes of the parallel entity

16.2. Sample Tasking Programs
The following sections present sample tasking programs with common errors that you might encounter
when debugging tasking programs:

• Section 16.2.1 describes a C program that uses POSIX Threads services

• Section 16.2.2 describes an Ada program that uses the built-in Ada tasking services

Some other examples in this chapter are derived from these programs.

16.2.1. Sample C Multithread Program
Example 16.1 is a multithread C program that shows incorrect use of condition variables, which results
in blocking.

Explanatory notes are included after the example. Following these notes are instructions showing how to
use the debugger to diagnose the blocking by controlling the relative execution of the threads.

In Example 16.1, the initial thread creates two worker threads that do some computational work.
After the worker threads are created, a SHOW TASK/ALL command will show three tasks, each
corresponding to a thread (Section 16.4 explains how to use the SHOW TASK command).

• %TASK 1 is the initial thread, which executes from main(). (Section 16.3.3 defines task IDs, such as
%TASK 1.)

318

Chapter 16. Debugging Tasking Programs

• %TASK 2 and %TASK 3 are the worker threads.

In Example 16.1, a synchronization point (a condition wait) has been placed in the workers' path at
line 3893. (The comment starting at line 3877 indicates that a straight call such as this one is incorrect
programming and shows the correct code.)

When the program executes, the worker threads are busy computing when the initial thread broadcasts
on the condition variable. The first thread to wait on the condition variable detects the initial thread's
broadcast and clears it, which leaves any remaining threads stranded. Execution is blocked and the
program cannot terminate.

Example 16.1. Sample C Multithread Program

3777 /* DEFINES */
3778 #define NUM_WORKERS 2 /* Number of worker threads */
3779
3780 /* MACROS */
3781 #define check(status, string) \
3782 if (status == -1) perror (string); \
3783
3784 /* GLOBALS */
3785 int cv_pred1; /* Condition Variable predicate */
3786 pthread_mutex_t cv_mutex; /* Condition Variable mutex */
3787 pthread_cond_t cv; /* Condition Variable */
3788 pthread_mutex_t print_mutex; /* Print mutex */
3799
3790 /* ROUTINES */
3791 static pthread_startroutine_t
3792 worker_routine (pthread_addr_t arg);
3793
3794 main ()
3795 {
3796 pthread_t threads[NUM_WORKERS]; /* Worker threads */
3787 int status; /* Return statuses */
3798 int exit; /* Join exit status */
3799 int result; /* Join result value */
3800 int i; /* Loop index */
3801
3802 /* Initialize mutexes */
3803 status = pthread_mutex_init (&cv_mutex,
 pthread_mutexattr_default);
3804 check (status, "cv_mutex initialization bad status");
3805 status = pthread_mutex_init (&print_mutex,
 pthread_mutexattr_default);
3806 check (status, "print_mutex intialization bad status");
3807
3808 /* Initialize condition variable */
3809 status = pthread_cond_init (&cv, pthread_condattr_default);
3810 check (status, "cv condition init bad status");
3811
3812 /* Initialize condition variable predicate. */
3813 cv_pred1 = 1;
3814
3815 /* Create worker threads */
3816 for (i = 0; i < NUM_WORKERS; i++) {
3817 status = pthread_create (
3818 &threads[i],

319

Chapter 16. Debugging Tasking Programs

3819 pthread_attr_default,
3820 worker_routine,
3821 0);
3822 check (status, "threads create bad status");
3823 }
3824
3825 /* Set cv_pred1 to false; do this inside the lock to insure
 visibility. */
3826
3827 status = pthread_mutex_lock (&cv_mutex);
3828 check (status, "cv_mutex lock bad status");
3829
3830 cv_pred1 = 0;
3831
3832 status = pthread_mutex_unlock (&cv_mutex);
3833 check (status, "cv_mutex unlock bad status");
3834
3835 /* Broadcast. */
3836 status = pthread_cond_broadcast (&cv);
3837 check (status, "cv broadcast bad status");
3838
3839 /* Attempt to join both of the worker threads. */
3840 for (i = 0; i < NUM_WORKERS; i++) {
3841 exit = pthread_join (threads[i], (pthread_addr_t*)&result);
3842 check (exit, "threads join bad status");
3843 }
3844 }
3845
3846 static pthread_startroutine_t
3847 worker_routine(arg)
3848 pthread_addr_t arg;
3849 {
3850 int sum;
3851 int iterations;
3852 int count;
3853 int status;
3854
3855 /* Do many calculations */
3856 for (iterations = 1; iterations < 10001; iterations++) {
3857 sum = 1;
3858 for (count = 1; count < 10001; count++) {
3859 sum = sum + count;
3860 }
3861 }
3862
3863 /* Printf may not be reentrant, so allow 1 thread at a time */
3864
3865 status = pthread_mutex_lock (&print_mutex);
3866 check (status, "print_mutex lock bad status");
3867 printf (" The sum is %d \n", sum);
3868 status = pthread_mutex_unlock (&print_mutex);
3869 check (status, "print_mutex unlock bad status");
3870
3871 /* Lock the mutex associated with this condition variable.
 pthread_cond_wait will */
3872 /* unlock the mutex if the thread blocks on the condition
 variable. */
3873

320

Chapter 16. Debugging Tasking Programs

3874 status = pthread_mutex_lock (&cv_mutex);
3875 check (status, "cv_mutex lock bad status");
3876
3877 /* In the next statement, the correct condition-wait syntax would
 be to loop */
3878 /* around the condition-wait call, checking the predicate
 associated with the */
3879 /* condition variable. This would guard against condition waiting
 on a condition */
3880 /* variable that may have already been broadcast upon, as well as
 spurious wake */
3881 /* ups. Execution would resume when the thread is woken AND the
 predicate is */
3882 /* false. The call would look like this:
 */
3883 /*
 */
3884 /* while (cv_pred1) {
 */
3885 /* status = pthread_cond_wait (&cv, &cv_mutex);
 */
3886 /* check (status, "cv condition wait bad status");
 */
3887 /* }
 */
3888 /*
 */
3888 /* A straight call, as used in the following code, might cause a
 thread to */
3890 /* wake up when it should not (spurious) or become permanently
 blocked, as */
3891 /* should one of the worker threads here.
 */
38923893 status = pthread_cond_wait (&cv, &cv_mutex);
3894 check (status, "cv condition wait bad status");
3895
3896 /* While blocking in the condition wait, the routine lets go of
 the mutex, but */
3897 /* it retrieves it upon return.
 */
3898
3899 status = pthread_mutex_unlock (&cv_mutex);
3900 check (status, "cv_mutex unlock bad status");
3901
3902 return (int)arg;
3903 }

Key to Example 16.1:

The first few statements of main() initialize the synchronization objects used by the threads, as
well as the predicate that is to be associated with the condition variable. The synchronization
objects are initialized with the default attributes. The condition variable predicate is initialized
such that a thread that is looping on it will continue to loop. At this point in the program, a
SHOW TASK/ALL display lists %TASK 1.
The worker threads %TASK 2 and %TASK 3 are created. Here the created threads execute the
same start routine (worker_routine) and can also reuse the same call to pthread_create with a slight

321

Chapter 16. Debugging Tasking Programs

change to store the different thread IDs. The threads are created using the default attributes and are
passed an argument that is not used in this example.
The predicate associated with the condition variable is cleared in preparation to broadcast. This
ensures that any thread awaking off the condition variable has received a valid wake-up and not a
spurious one. Clearing the predicate also prevents any new arrivals from waiting on the condition
variable because it has been broadcast or signaled upon. (The desired effect depends on correct
coding being used for the condition wait call at line 3893, which is not the case in this example.)
The initial thread issues the broadcast call almost immediately, so that none of the worker threads
should yet be at the condition wait. A broadcast should wake any threads currently waiting on the
condition variable.

As the programmer, you should ensure that a broadcast is seen by either ensuring that all threads
are waiting on the condition variable at the time of broadcast or ensuring that an associated
predicate is used to flag that the broadcast has already happened. (These measures have been left
out of this example on purpose.)
The initial thread attempts to join with the worker threads to ensure that they exited properly.
When the worker threads execute worker_routine, they spend time doing many computations. This
allows the initial thread to broadcast on the condition variable before either of the worker threads is
waiting on it.
The worker threads then proceed to execute a pthread_cond_waitcall by performing locks around
the call as required. It is here that both worker threads will block, having missed the broadcast.
A SHOW TASK/ALL command entered at this point will show both of the worker threads
waiting on a condition variable. (After the program is deadlocked in this way, you must press
Ctrl/C to return control to the debugger.)

The debugger enables you to control the relative execution of threads to diagnose problems of the kind
shown in Example 16.1. In this case, you can suspend the execution of the initial thread and let the
worker threads complete their computations so that they will be waiting on the condition variable at the
time of broadcast. The following procedure explains how:

1. At the start of the debugging session, set a breakpoint on line 3836 to suspend execution of the initial
thread just before broadcast.

2. Enter the GO command to execute the initial thread and create the worker threads.

3. At this breakpoint, which causes the execution of all threads to be suspended, put the initial thread
on hold with the SET TASK/HOLD %TASK 1 command.

4. Enter the GO command to let the worker threads continue execution. The initial thread is on hold and
cannot execute.

5. When the worker threads block on the condition variable, press Ctrl/C to return control to the
debugger at that point. A SHOW TASK/ALL command should indicate that both worker threads
are suspended in a condition wait substate. (If not, enter GO to let the worker threads execute, press
Ctrl/C, and enter SHOW TASK/ALL, repeating the sequence until both worker threads are in a
condition wait substate.)

6. Enter the SET TASK/NOHOLD %TASK command 1 and then the GO command to allow the initial
thread to resume execution and broadcast. This will enable the worker threads to join and terminate
properly.

16.2.2. Sample Ada Tasking Program
Example 16.2 demonstrates a number of common errors that you may encounter when debugging
tasking programs. This is an example from an OpenVMS Alpha system running the OpenVMS

322

Chapter 16. Debugging Tasking Programs

Debugger. The calls to procedure BREAK in the example mark points of interest where breakpoints
could be set and the state of each task observed. If you ran the example under debugger control, you
could enter the following commands to set breakpoints at each call to the procedure BREAK and display
the current state of each task:

DBG> SET BREAK %LINE 37 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 61 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 65 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 81 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 87 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 91 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 105 DO (SHOW TASK/ALL)

The program creates four tasks:

• An environment task that runs the main program, TASK_EXAMPLE. This task is created before
any library packages are elaborated (in this case, TEXT_IO). The environment task has the task ID
%TASK 1 in the SHOW TASK displays.

• A task object named FATHER. This task is declared by the main program, and is designated %TASK
3 in the SHOW TASK displays.

• A single task named CHILD. This task is declared by task FATHER, and is designated %TASK 4 in
the SHOW TASK displays.

• A single task named MOTHER. This task is declared by the main program, and is designated
%TASK 2 in the SHOW TASK displays.

Example 16.2. Sample Ada Tasking Program

1 --Tasking program that demonstrates various tasking conditions.
2
3 with TEXT_IO; use TEXT_IO;
4 procedure TASK_EXAMPLE is
5
6 pragma TIME_SLICE(0.0); -- Disable time slicing.
7
8 task type FATHER_TYPE is
9 entry START;
10 entry RENDEZVOUS;
11 entry BOGUS; -- Never accepted, caller deadlocks.
12 end FATHER_TYPE;
13
14 FATHER : FATHER_TYPE;
15
16 task body FATHER_TYPE is
17 SOME_ERROR : exception;
18
19 task CHILD is
20 entry E;
21 end CHILD;
22
23 task body CHILD is
24 begin
25 FATHER_TYPE.BOGUS; -- Deadlocks on call to its parent.
26 end CHILD; -- Whenever a task-type name
27 -- (here, FATHER_TYPE) is used within the
28 -- task body, the name denotes the task

323

Chapter 16. Debugging Tasking Programs

29 -- currently executing the body.
30 begin -- (of FATHER_TYPE body)
31
32 accept START do
33 -- Main program is now waiting for this rendezvous completion,
34 -- and CHILD is suspended when it calls the entry
 BOGUS.
35
36 null;
37 <<B1>> end START;
38
39 PUT_LINE("FATHER is now active and");
40 PUT_LINE("is going to rendezvous with main program.");
41
42 for I in 1..2 loop
43 select
44 accept RENDEZVOUS do
45 PUT_LINE("FATHER now in rendezvous with main program");
46 end RENDEZVOUS;
47 or
48 terminate;
49 end select;
50
51 if I = 2 then52 raise SOME_ERROR;
53 end if;
54 end loop;
55
56 exception
57 when OTHERS =>
58 -- CHILD is suspended on entry call to BOGUS.
59 -- Main program is going to delay while FATHER terminates.
60 -- Mother in suspended state with "Not yet activated" sub
 state.
61<<B2>> abort CHILD;
62 -- CHILD is now abnormal due to the abort statement.
63
64
65<<B3>> raise; -- SOME_ERROR exception terminates
66 FATHER.
67 end FATHER_TYPE;
68
69 task MOTHER is
70 entry START;
71 pragma PRIORITY (6);
72 end MOTHER;
73
74 task body MOTHER is
75 begin
76 accept START;
77 -- At this point, the main program is waiting for its
 dependents
78 -- (FATHER and MOTHER) to terminate. FATHER is
 terminated.
79
80 null;
81<<B4>> end MOTHER;
82
83 begin -- (of TASK_EXAMPLE)

324

Chapter 16. Debugging Tasking Programs

84 -- FATHER is suspended at accept start, and
85 -- CHILD is suspended in its deadlock.
86 -- Mother in suspended state with "Not yet activated" sub
 state.
87<<B5>> FATHER.START;
88 -- FATHER is suspended at the 'select' or 'terminate'
 statement.
89
90
91<<B6>> FATHER.RENDEZVOUS;
92 FATHER.RENDEZVOUS;
93 loop
94 -- This loop causes the main program to busy wait for
 termination of
95 -- FATHER, so that FATHER can be observed in its terminated
 state.
96 if FATHER'TERMINATED then
97 exit;
98 end if;
99 delay 10.0; -- 10.0 so that MOTHER is suspended
100 end loop; -- at the 'accept' statement (increases
 determinism).
101
102 -- FATHER has terminated by now with an unhandled
103 -- exception, and CHILD no longer exists because its
104 -- master (FATHER) has terminated. Task MOTHER is
 ready.
105<<B7>> MOTHER.START;
106 -- The main program enters a wait-for-dependents state
107 -- so that MOTHER can finish executing.
108 end TASK_EXAMPLE;

Key to Example 16.2:

After all of the Ada library packages are elaborated (in this case, TEXT_IO), the main program is
automatically called and begins to elaborate its declarative part (lines 5 through 68).
To ensure repeatability from run to run, the example uses no time slicing The 0.0 value for the
pragma TIME_SLICE documents that the procedure TASK_EXAMPLE needs to have time slicing
disabled.

On Alpha systems, pragma TIME_SLICE (0.0) must be used to disable time slicing.
Task object FATHER is elaborated, and a task designated %TASK 3 is created. FATHER has no
pragma PRIORITY, and thus assumes a default priority. FATHER (%TASK 3) is created in a
suspended state and is not activated until the beginning of the statement part of the main program
(line 69), in accordance with Ada rules. The elaboration of the task body on lines 16 through 67
defines the statements that tasks of type FATHER_TYPE will execute.
Task FATHER declares a single task named CHILD (line 19). A single task represents both a
task object and an anonymous task type. Task CHILD is not created or activated until FATHER is
activated.
The only source of asynchronous system traps (ASTs) is this series of TEXT_IO.PUT_LINE
statements(I/O completion delivers ASTs).
The task FATHER is activated while the main program waits. FATHER has no pragma PRIORITY
and this assumes a default priority of 7. (See the DEC Ada Language Reference Manual for the
rules about default priorities.) FATHER's activation consists of the elaboration of lines 16 through
29.

325

Chapter 16. Debugging Tasking Programs

When task FATHER is activated, it waits while its task CHILD is activated and a task designated
%TASK 4 is created. CHILD executes one entry call on line 25, and then deadlocks because the
entry is never accepted (see Section 16.7.1).

Because time slicing is disabled and there are no higher priority tasks to be run, FATHER will
continue to execute past its activation until it is blocked at the ACCEPT statement at line 32.
A single task, MOTHER, is defined, and a task designated%TASK 2 is created. The pragma
PRIORITY gives MOTHER a priority of 6.
The task MOTHER begins its activation and executes line 74. After MOTHER is activated, the
main program (%TASK 1) is eligible to resume its execution. Because %TASK 1 has the default
priority 7, which is higher than MOTHER's priority, the main program resumes execution.
This is the first rendezvous the main program makes with task FATHER. After the rendezvous
FATHER will suspend at the SELECT with TERMINATE statement at line 43.
At the third rendezvous with FATHER, FATHER raises the exception SOME_ERROR on line 52.
The handler on line 57 catches the exception, aborts the suspended CHILD task, and then reraises
the exception; FATHER then terminates.
A loop with a delay statement ensures that when control reaches line 102, FATHER has executed
far enough to be terminated.
This entry call ensures that MOTHER does not wait forever for its rendezvous on line 76.
MOTHER executes the accept statement (which involves no other statements), the rendezvous is
completed, and MOTHER is immediately switched off the processor at line 77 because its priority
is only 6.
After its rendezvous with MOTHER, the main program (%TASK 1) executes lines 106 through
108. At line 108, the main program must wait for all its dependent tasks to terminate. When the
main program reaches line 108, the only non terminated task is MOTHER (MOTHER cannot
terminate until the null statement at line 80 has been executed). MOTHER finally executes to its
completion at line 81. Now that all tasks are terminated, the main program completes its execution.
The main program then returns and execution resumes with the command line interpreter.

16.3. Specifying Tasks in Debugger
Commands
A task is an entity that executes in parallel with other tasks. A task is characterized by a unique task ID
(see Section 16.3.3), a separate stack, and a separate register set.

The current definition of the active task and the visible task determine the context for manipulating tasks.
See Section 16.3.1.

When specifying tasks in debugger commands, you can use any of the following forms:

• A task (thread) name as declared in the program (for example, FATHER in Section 16.2.2) or a
language expression that yields a task value. Section 16.3.2 describes Ada language expressions for
tasks.

• A task ID (for example, %TASK 2). See Section 16.3.3.

• A task built-in symbol (for example, %ACTIVE_TASK). See Section 16.3.4.

16.3.1. Definition of Active Task and Visible Task

326

Chapter 16. Debugging Tasking Programs

The active task is the task that runs when a STEP, GO, CALL, or EXIT command executes. Initially,
it is the task in which execution is suspended when the program is brought under debugger control. To
change the active task during a debugging session, use the SET TASK/ACTIVE command.

Note

The SET TASK/ACTIVE command does not work for POSIX Threads (on OpenVMS Alpha
and Integrity server systems)or for Ada on OpenVMS Alpha and Integrity server systems, the
tasking for which is implemented via POSIX Threads. Instead of SET TASK/ACTIVE, use the
SET TASK/VISIBLE command on POSIX Threads for query-type actions. Or, to gain control to step
through a particular thread, use a strategic placement of breakpoints.

The following command makes the task named CHILD the active task:

DBG> SET TASK/ACTIVE CHILD

The visible task is the task whose stack and register set are the current context that the debugger
uses when looking up symbols, register values, routine calls, breakpoints, and so on. For example, the
following command displays the value of the variable KEEP_COUNT in the context of the visible task:

DBG> EXAMINE KEEP_COUNT

Initially, the visible task is the active task. To change the visible task, use the SET TASK/VISIBLE
command. This enables you to look at the state of other tasks without affecting the active task.

You can specify the active and visible tasks in debugger commands by using the built-in symbols
%ACTIVE_TASK and %VISIBLE_TASK, respectively (see Section 16.3.4).

See Section 16.5 for more information about using the SET TASK command to modify task
characteristics.

16.3.2. Ada Tasking Syntax
You declare a task either by declaring a single task or by declaring an object of a task type. For example:

-- TASK TYPE declaration.
--
task type FATHER_TYPE
is
…
end FATHER_TYPE;
task body FATHER_TYPE
is
…
end FATHER_TYPE;
-- A single task.
--
task MOTHER
is
…
end MOTHER;
task body MOTHER
is
…

327

Chapter 16. Debugging Tasking Programs

end MOTHER;

A task object is a data item that contains a task value. A task object is created when the program
elaborates a single task or task object, when you declare a record or array containing a task component,
or when a task allocator is evaluated. For example:

-- Task object declaration.
--
FATHER : FATHER_TYPE;
-- Task object (T) as a component of a record.
--
type SOME_RECORD_TYPE is
 record
 A, B: INTEGER;
 T : FATHER_TYPE;
 end record;
HAS_TASK : SOME_RECORD_TYPE;
-- Task object (POINTER1) via allocator.
--
type A is access FATHER_TYPE;
POINTER1 : A := new FATHER_TYPE;

A task object is comparable to any other object. You refer to a task object in debugger commands either
by name or by path name. For example:

DBG> EXAMINE FATHER
DBG> EXAMINE FATHER_TYPE$TASK_BODY.CHILD

When a task object is elaborated, a task is created by the HPE Ada Run-Time Library, and the task
object is assigned its task value. As with other Ada objects, the value of a task object is undefined before
the object is initialized, and the results of using an uninitialized value are unpredictable.

The task body of a task type or single task is implemented in HPE Ada as a procedure. This procedure
is called by the HPE Ada Run-Time Library when a task of that type is activated. A task body is treated
by the debugger as a normal Ada procedure, except that it has a specially constructed name.

To specify the task body in a debugger command, use the following syntax to refer to tasks declared as
task types:

task-type-identifier$TASK_BODY

Use the following syntax to refer to single tasks:

task-identifier$TASK_BODY

For example:

DBG> SET BREAK FATHER_TYPE$TASK_BODY

The debugger does not support the task-specific Ada attributes T'CALLABLE, E'COUNT,
T'STORAGE_SIZE, and T'TERMINATED, where T is a task type and E is a task entry (see the HPE
Ada documentation for more information on these attributes). You cannot enter commands such as
EVALUATE CHILD'CALLABLE. However, you can get the information provided by each of these
attributes with the debugger SHOW TASK command. For more information, see Section 16.4.

328

Chapter 16. Debugging Tasking Programs

16.3.3. Task ID
A task ID is the number assigned to a task when it is created by the tasking system. The task ID
uniquely identifies a task during the entire execution of a program.

A task ID has the following syntax, where n is a positive decimal integer:

%TASK n

 You can determine the task ID of a task object by evaluating or examining the task object. For example
(using Ada path-name syntax):

DBG> EVALUATE FATHER
%TASK 3
DBG> EXAMINE FATHER
TASK_EXAMPLE.FATHER: %TASK 3

If the programming language does not have built-in tasking services, you must use the EXAMINE/TASK
command to obtain the task ID of a task.

Note that the EXAMINE/TASK/HEXADECIMAL command, when applied to a task object, yields the
hexadecimal task value. The task value is the address of the task (or thread) control block of that task.
For example (Ada example):

DBG> EXAMINE/HEXADECIMAL FATHER
TASK_EXAMPLE.FATHER: 0085A448
DBG>

The SHOW TASK/ALL command enables you to identify the task IDs that have been assigned to all
currently existing tasks. Some of these existing tasks may not be immediately familiar to you for the
following reasons:

• A SHOW TASK/ALL display includes tasks created by subsystems such as POSIX Threads, Remote
Procedure Call services, and the C Run-Time Library, not just the tasks associated with your
application.

• A SHOW TASK/ALL display includes task ID assignments that depend on your operating system,
your tasking service, and the generating subsystem. The same tasking program, run on different
systems or adjusted for different services, will not identify tasks with the same decimal integer. The
only exception is %TASK 1, which all systems and services assign to the task that executes the main
program.

The following examples are derived from Example 16.1 and Example 16.2, respectively:

DBG> SHOW TASK/ALL
 task id state hold pri substate thread_object
 %TASK 1 READY HOLD 12 Initial thread
 %TASK 2 SUSP 12 Condition Wait THREAD_EX1\main
\threads[0].field1
 %TASK 3 SUSP 12 Condition Wait THREAD_EX1\main
\threads[1].field1
DBG>

DBG> SHOW TASK/ALL
 task id state hold pri substate thread_object

329

Chapter 16. Debugging Tasking Programs

 %TASK 1 7 SUSP Entry call SHARE$ADARTL+393712
* %TASK 3 7 READY TASK_EXAMPLE.FATHER
 %TASK 4 7 SUSP Entry call TASK_EXAMPLE.FATHER_TYPE
$TASK_BODY.CHILD
 %TASK 2 6 SUSP Not yet activated TASK_EXAMPLE.MOTHER

You can use task IDs to refer to nonexistent tasks in debugger conditional statements. For example, if
you ran your program once, and you discovered that %TASK 2 and 3 were of interest, you could enter
the following commands at the beginning of your next debugging session before %TASK 2 or 3 was
created:

DBG> SET BREAK %LINE 30 WHEN (%ACTIVE_TASK=%TASK 2)
DBG> IF (%CALLER=%TASK 3) THEN (SHOW TASK/FULL)

You can use a task ID in certain debugger commands before the task has been created without the
debugger reporting an error (as it would if you used a task object name before the task object came into
existence). A task does not exist until the task is created. Later the task becomes nonexistent sometime
after it terminates. A nonexistent task never appears in a debugger SHOW TASK display.

Each time a program runs, the same task IDs are assigned to the same tasks so long as the program
statements are executed in the same order. Different execution orders can result from ASTs (caused by
delay statement expiration or I/O completion) being delivered in a different order. Different execution
orders can also result from time slicing being enabled. A given task ID is never reassigned during the
execution of the program.

16.3.4. Task Built-In Symbols
The debugger built-in symbols defined in Table 16.2enable you to specify tasks in command procedures
and command constructs.

Table 16.2. Task Built-In Symbols

Built-in Symbol Description

%ACTIVE_TASK The task that runs when a GO, STEP, CALL, or
EXIT command executes.

%CALLER_TASK (Applies only to Ada programs.) When an accept
statement executes, the task that called the entry
that is associated with the accept statement.

%NEXT_TASK The task after the visible task in the debugger's task
list. The ordering of tasks is arbitrary but consistent
within a single run of a program.

%PREVIOUS_TASK The task previous to the visible task in the
debugger's task list.

%VISIBLE_TASK The task whose call stack and register set are the
current context for looking up symbols, register
values, routine calls, breakpoints, and so on.

Examples using these task built-in symbols follow.

The following command displays the task ID of the visible task:

DBG> EVALUATE %VISIBLE_TASK

330

Chapter 16. Debugging Tasking Programs

The following command places the active task on hold:

DBG> SET TASK/HOLD %ACTIVE_TASK

The following command sets a breakpoint on line 25 that triggers only when task CHILD executes that
line:

DBG> SET BREAK %LINE 25 WHEN (%ACTIVE_TASK=CHILD)

The symbols %NEXT_TASK and %PREVIOUS_TASK enable you to cycle through the total set of tasks
that currently exist. For example:

DBG> SHOW TASK %VISIBLE_TASK; SET TASK/VISIBLE %NEXT_TASK
DBG> SHOW TASK %VISIBLE_TASK; SET TASK/VISIBLE %NEXT_TASK
⋮
DBG> EXAMINE MONITOR_TASK
MOD\MONITOR_TASK: %TASK 2
DBG> WHILE %NEXT_TASK NEQ %ACTIVE DO (SET TASK %NEXT_TASK; SHOW CALLS)

16.3.4.1. Caller Task Symbol (Ada Only)

The symbol %CALLER_TASK is specific to Ada tasks. It evaluates to the task ID of the task that
called the entry associated with the accept statement. Otherwise, it evaluates to %TASK 0. For example,
%CALLER_TASK evaluates to %TASK 0 if the active task is not currently executing the sequence of
statements associated with the accept statement.

For example, suppose a breakpoint has been set on line 46 of Example 16.2 (within an accept statement).
The accept statement in this case is executed by task FATHER (%TASK 3) in response to a call of
entry RENDEZVOUS by the main program (%TASK 1). Thus, when an EVALUATE%CALLER_TASK
command is entered at this point, the result is the task ID of the calling task, the main program:

DBG> EVALUATE %CALLER_TASK
%TASK 1
DBG>

When the rendezvous is the result of an AST entry call, %CALLER_TASK evaluates to %TASK 0
because the caller is not a task.

16.4. Displaying Information About Tasks
To display information about one or more tasks of your program, use the SHOW TASK command.

The SHOW TASK command displays information about existing (nonterminated) tasks. By default, the
command displays one line of information about the visible task.

Section 16.4.1 and Section 16.4.2describe the information displayed by a SHOW TASK command for
POSIX Threads and Ada tasks, respectively.

16.4.1. Displaying Information About POSIX Threads
Tasks
The command SHOW TASK displays information about all of the tasks of the program that currently
exist (see Example 16.3).

331

Chapter 16. Debugging Tasking Programs

Example 16.3. Sample SHOW TASK/ALL Display for POSIX Threads Tasks

task id state hold pri substate thread_object
 %TASK 1 SUSP 12 Condition Wait Initial thread
 %TASK 2 SUSP 12 Mutex Wait T_EXAMP\main\threads[0].field1
 %TASK 3 SUSP 12 Delay T_EXAMP\main\threads[1].field1
 %TASK 4 SUSP 12 Mutex Wait T_EXAMP\main\threads[2].field1
* %TASK 5 RUN 12 T_EXAMP\main\threads[3].field1
 %TASK 6 READY 12 T_EXAMP\main\threads[4].field1
 %TASK 7 SUSP 12 Mutex Wait T_EXAMP\main\threads[5].field1
 %TASK 8 READY 12 T_EXAMP\main\threads[6].field1
 %TASK 9 TERM 12 Term. by alert T_EXAMP\main\threads[7].field1
DBG>

Key to Example 16.3:

The task ID (see Section 16.3.3). The active task is marked with an asterisk (*) in the leftmost
column.
The current state of the task (see Table 16.3). The task in the RUN (RUNNING) state is the active
task. Table 16.3 lists the state transitions possible during program execution.
Whether the task has been put on hold with a SET TASK/HOLD command as explained in
Section 16.5.1.
The task priority.
The current substate of the task. The substate helps indicate the possible cause of a task's state. See
Table 16.4.
A debugger path name for the task (thread) object or the address of the task object if the debugger
cannot symbolize the task object.

Table 16.3. Generic Task States

Task State Description

RUNNING Task is currently running on the processor. This is the active task. A task in this
state can make a transition to the READY, SUSPENDED, or TERMINATED
state.

READY Task is eligible to execute and waiting for the processor to be made available. A
task in this state can make a transition only to the RUNNING state.

SUSPENDED Task is suspended, that is, waiting for an event rather than for the availability of the
processor. For example, when a task is created, it remains in the suspended state
until it is activated. A task in this state can make a transition only to the READY
or TERMINATED state.

TERMINATED Task is terminated. A task in this state cannot make a transition to another state.

Table 16.4. POSIX Threads Task Substates

Task Substate Description

Condition Wait Task is waiting on a POSIX Threads condition
variable.

Delay Task is waiting at a call to a POSIX Threads delay.
Mutex Wait Task is waiting on a POSIX Threads mutex.
Not yet started Task has not yet executed its start routine.

332

Chapter 16. Debugging Tasking Programs

Task Substate Description

Term. by alert Task has been terminated by an alert operation.
Term. by exc Task has been terminated by an exception.
Timed Cond Wait Task is waiting on a timed POSIX Threads

condition variable.

The SHOW TASK/FULL command provides detailed information about each task selected for
display.Example 16.4 shows the output of this command for a sample POSIX Threads task.

Example 16.4. Sample SHOW TASK/FULL Display for a POSIX Threads Task

 task id state hold pri substate thread_object
 %TASK 4 SUSP 12 Delay T_EXAMP\main\threads[1].field1
 Alert is pending

 Alerts are deferred
 Next pc: SHARECMARTL+46136

 Start routine: T_EXAMP\thread_action
 Scheduling policy: throughput
 Stack storage:

 Bytes in use: 1288 Base: 00334C00
 Bytes available: 40185 SP: 003346F8
 Reserved Bytes: 10752 Top: 00329A00
 Guard Bytes: 4095
 Thread control block:

 Size: 293 Address: 00311B78
 Total storage: 56613

DBG>

Key to Example 16.4:

Identifying information about the task.
Bulletin-type information about something unusual.
Next execution PC value and start routine.
Task scheduling policy.
Stack storage information:

• "Bytes in use:" the number of bytes of stack currently allocated.

• "Bytes available:" the unused space in bytes.

• "Reserved Bytes:" the storage allocated for handling stack overflow.

• "Guard Bytes:" the size of the guard area or unwritable part of the stack.
Minimum and maximum addresses of the task stack.
Task (thread) control block information. The task value is the address, in hexadecimal notation, of
the task control block.
The total storage used by the task. Adds together the task control block size, the number of
reserved bytes, the top guard size, and the storage size.

Figure 16.1 shows a task stack.

333

Chapter 16. Debugging Tasking Programs

Figure 16.1. Diagram of a Task Stack

The SHOW TASK/STATISTICS command reports some statistics about all tasks in your program.
Example 16.5 shows the output of the SHOW TASK/STATISTICS/FULL command for a sample
program with POSIX Threads tasks. This information enables you to measure the performance of your
program. The larger the number of total schedulings (also known as context switches), the more tasking
overhead there is.

Example 16.5. Sample SHOW TASK/STAT/FULL Display for POSIX Threads Tasks

task statistics
 Total context switches: 0
 Number of existing threads: 0
 Total threads created: 0
DBG>

16.4.2. Displaying Task Information About Ada Tasks
The SHOW TASK/ALL command displays information about all of the tasks of the program that
currently exist -- namely, tasks that have been created and whose master has not yet terminated (see
Example 16.6).

Example 16.6. Sample SHOW TASK/ALL Display for Ada Tasks

DBG> SHOW TASK/ALL

334

Chapter 16. Debugging Tasking Programs

task id state hold pri substate thread_object
 %TASK 1 READY 24 main thread
* %TASK 2 RUN 24 1515464
 %TASK 3 READY 19 1519768
 %TASK 4 SUSP 24 Timed Condition Wait 4932680
DBG>

Key to Example 16.6:

The task ID (see Section 16.3.3). An asterisk indicates that the task is a visible task.
The current state of the task (see Table 16.3). The task that is in the RUN (RUNNING) state is the
active task.Table 16.3 lists the state transitions possible during program execution.
Whether the task has been put on hold with a SET TASK/HOLD command as explained in
Section 16.5.1. Placing a task on HOLD restricts the state transitions it can make after the program
is subsequently allowed to execute.
The task priority. Ada priorities range from 0 to 15. On Alpha systems, a task with an undefined
priority competes with other tasks, as if having a mid-range priority (between 7 and 8).Ada
provides the following two mechanisms for controlling task priorities:

• Pragma PRIORITY A priority is associated with a task if a pragma PRIORITY appears in the
corresponding task specification or in the outermost declarative part of a main subprogram.

• Types and operations in the Ada package SET_TASK_PRIORITY. Ada allows task priorities
to be changed dynamically at run-time to values of the subtype PRIORITY.

The current substate of the task. The substate helps indicate the possible cause of a task's state. See
Table 16.5.
A debugger path name for the task object or the address of the task object if the debugger cannot
symbolize the task object.

Table 16.5. Ada Task Substates

Task Substate Description

Abnormal Task has been aborted.
Accept Task is waiting at an accept statement that is not

inside a select statement.
Activating Task is elaborating its declarative part.
Activating tasks Task is waiting for tasks it has created to finish

activating.
Completed [abn] Task is completed due to an abort statement but

is not yet terminated. In Ada, a completed task
is one that is waiting for dependent tasks at its
end statement. After the dependent tasks are
terminated, the state changes to terminated.

Completed [exc] Task is completed due to an unhandled exception
1 but is not yet terminated. In Ada, a completed
task is one that is waiting for dependent tasks at
its end statement. After the dependent tasks are
terminated, the state changes to terminated.

Completed Task is completed. No abort statement was issued
and no unhandled exception 1 occurred.

Delay Task is waiting at a delay statement.

335

Chapter 16. Debugging Tasking Programs

Task Substate Description

Dependents Task is waiting for dependent tasks to terminate.
Dependents [exc] Task is waiting for dependent tasks to allow an

unhandled exception 1 to propagate.
Entry call Task is waiting for its entry call to be accepted.
Invalid state There is an error in the HPE Ada Run-Time

Library.
I/O or AST Task is waiting for I/O completion or some AST.
Not yet activated Task is waiting to be activated by the task that

created it.
Select or delay Task is waiting at a select statement with a delay

alternative.
Select or terminate Task is waiting at a select statement with a

terminate alternative.
Select Task is waiting at a select statement with no else,

delay, or terminate alternative.
Shared resource Task is waiting for an internal shared resource.
Terminated [abn] Task was terminated by an abort statement.
Terminated [exc] Task was terminated because of an unhandled

exception. 1

Terminated Task terminated normally.
Timed entry call Task is waiting in a timed entry call.

1An unhandled exception is one for which there is no handler in the current frame or for which there is a handler that executes a raise statement
and propagates the exception to an outer scope.

Figure 16.1 shows a task stack.

The SHOW TASK/FULL command provides detailed information about each tasks elected for display.
Example 16.7 shows the output of this command for a sample Ada task.

Example 16.7. Sample SHOW TASK/FULL Display for an Ada Task

 task id state hold pri substate thread_object
 %TASK 1 RUN 24 1515464
 Cancellation is enabled

 Next pc: (unknown)
 Start routine: 1380128
 Scheduling policy: fifo (real-time)
 Stack storage:

 Bytes in use: 7069696 Base: 00000000006BE000
 Bytes available: -4972544 SP:
 0000000000000000
 Reserved Bytes: 0 Top:
 00000000004BE000
 Guard Bytes: 0
 Thread control block: Size: 5856

 Address: 00000000006BF280
 Total storage: 2103008

DBG>

Key to Example 16.7:

336

Chapter 16. Debugging Tasking Programs

Identifying information about the task.
Rendezvous information. If the task is a caller task, it lists the entries for which it is queued. If the
task is to be called, it gives information about the kind of rendezvous that will take place and lists
the callers that are currently queued for any of the task's entries.
Stack storage information:

• "Bytes in use:" the number of bytes of stack currently allocated.

• "Bytes available:" the unused space in bytes.

• "Reserved Bytes:" the storage allocated for handling stack overflow.

• "Guard Bytes:" the size of the guard area or unwritable part of the stack.
Minimum and maximum addresses of the task stack.

• "SP:" Stack Pointer indicates a location in the stack memory.

• "TOP:" indicates the last allocated stack location.
Task (thread) control block information. The task value is the address, in hexadecimal notation, of
the task control block.
The total storage used by the task. Adds together the task control block size, the number of
reserved bytes, the top guard size, and the storage size.

The SHOW TASK/STATISTICS command reports some statistics about all tasks in your program.
Example 16.8 shows the output of the SHOW TASK/STATISTICS/FULL command for a sample
Ada tasking program on a VAX system. This information enables you to measure the performance of
your program. The larger the number of total schedulings (also known as context switches), the more
tasking overhead there is.

Example 16.8. Sample SHOW TASK/STATISTICS/FULL Display for Ada Tasks

DBG> SHOW TASK/STATISTICS/FULL
task statistics
 Total context switches: 0
 Number of existing threads: 6
 Total threads created: 4
DBG>

16.5. Changing Task Characteristics
To modify a task's characteristics or the tasking environment while debugging, use the SET TASK
command, as shown in the following table:

Command Description

SET TASK/ACTIVE Makes a specified task the active task; not for
POSIX Threads (on OpenVMS Alpha or Integrity
servers) or Ada on OpenVMS Alpha and Integrity
servers (see Section 16.3.1).

SET TASK/VISIBLE Makes a specified task the visible task (see
Section 16.3.1).

SET TASK/ABORT Requests that a task be terminated at the next
allowed opportunity. The exact effect depends on
the current event facility (language dependent). For

337

Chapter 16. Debugging Tasking Programs

Command Description
Ada tasks, this is equivalent to executing an abort
statement.

SET TASK/PRIORITY Sets a task's priority. The exact effect depends on
the current event facility (language dependent).

SET TASK/RESTORE Restores a task's priority. The exact effect depends
on the current event facility (language dependent).

SET TASK/[NO]HOLD Controls task switching (task state transitions, see
Section 16.5.1).

For more information, see the SET TASK command description.

16.5.1. Putting Tasks on Hold to Control Task Switching
Task switching might be confusing when you are debugging a program. Placing a task on hold with
the SET TASK/HOLD command restricts the state transitions the task can make once the program is
subsequently allowed to execute.

A task placed on hold can enter any state except the RUNNING state. If necessary, you can force it into
the RUNNING state by using the SET TASK/ACTIVE command.

The SET TASK/HOLD/ALL command freezes the state of all tasks except the active task. You can use
this command in combination with the SET TASK/ACTIVE command, to observe the behavior of one
or more specified tasks in isolation, by executing the active task with the STEP or GO command, and
then switching execution to another task with the SET TASK/ACTIVE command. For example:

DBG> SET TASK/HOLD/ALL
DBG> SET TASK/ACTIVE %TASK 1
DBG> GO
⋮
DBG> SET TASK/ACTIVE %TASK 3
DBG> STEP
⋮

When you no longer want to hold a task, use the SET TASK/NOHOLD command.

16.6. Controlling and Monitoring Execution
The following sections explain how to do the following functions:

• Set task-specific and task-independent eventpoints (breakpoints, tracepoints, and so on)

• Set breakpoints and tracepoints on task locations specific to POSIX Threads

• Set breakpoints and tracepoints on task locations specific to Ada

• Monitor task events with the SET BREAK/EVENT or SET TRACE/EVENT commands

16.6.1. Setting Task-Specific and Task-Independent
Debugger Eventpoints
An eventpoint is an event that you can use to return control to the debugger. Breakpoints, tracepoints,
watchpoints, and the completion of STEP commands are eventpoints.

338

Chapter 16. Debugging Tasking Programs

A task-independent eventpoint can be triggered by the execution of any task in a program, regardless
of which task is active when the eventpoint is set. Task-independent event points are generally specified
by an address expression such as a line number or a name. All watchpoints are task-independent
eventpoints. The following are examples of setting task-independent eventpoints:

DBG> SET BREAK COUNTER
DBG> SET BREAK/NOSOURCE %LINE 55, CHILD$TASK_BODY
DBG> SET WATCH/AFTER=3 KEEP_COUNT

A task-specific eventpoint can be set only for the task that is active when the command is entered. A
task-specific eventpoint is triggered only when that same task is active. For example, the STEP/LINE
command is a task-specific eventpoint: other tasks might execute the same source line and not trigger the
event.

If you use the SET BREAK, SET TRACE, or STEP commands with the following qualifiers, the
resulting eventpoints are task specific:

/BRANCH
/CALL
/INSTRUCTION
/LINE
/RETURN

Any other eventpoints that you set with those commands and any eventpoints that you set with the
SET WATCH command are task independent. The following are examples of setting task-specific
eventpoints:

DBG> SET BREAK/INSTRUCTION
DBG> SET TRACE/INSTRUCTION/SILENT DO (EXAMINE KEEP_COUNT)
DBG> STEP/CALL/NOSOURCE

You can conditionalize eventpoints that are normally task-independent to make them task specific. For
example:

DBG> SET BREAK %LINE 11 WHEN (%ACTIVE_TASK=FATHER)

16.6.2. Setting Breakpoints on POSIX Threads Tasking
Constructs
You can set a breakpoint on a thread start routine. The breakpoint will trigger just before the start routine
begins execution. In Example 16.1, this type of breakpoint is set as follows:

DBG> SET BREAK worker_routine

Unlike Ada tasks, you cannot specify the body of a POSIX Threads task byname but the start routine is
similar.

Specifying a WHEN clause with the SET BREAK command ensures that you catch the point at which a
particular thread begins execution. For example:

DBG> SET BREAK worker_routine -
_DBG> WHEN (%ACTIVE_TASK = %TASK 4)

In Example 16.1, this conditional breakpoint will trigger when the second worker thread begins
executing its start routine.

Other useful places to set breakpoints are just prior to and immediately after condition waits, joins, and
locking of mutexes. You can set such breakpoints by specifying either a line number or the routine name.

339

Chapter 16. Debugging Tasking Programs

16.6.3. Setting Breakpoints on Ada Task Bodies, Entry
Calls, and Accept Statements
You can set a breakpoint on a task body by using one of the following syntaxes to refer to the task body
(see Section 16.3.2):

task-type-identifier$TASK_BODY

task-identifier$TASK_BODY

For example, the following command sets a breakpoint on the body of task CHILD. This breakpoint is
triggered just before the elaboration of the task's declarative part (also called the task's activation).

DBG> SET BREAK CHILD$TASK_BODY

CHILD$TASK_BODY is a name for the address of the first instruction the task will execute. It is
meaningful to set a breakpoint on an instruction, and hence on this name. However, you must not name
the task object (for example, CHILD) in a SET BREAK command. The task-object name designates the
address of a data item (the task value). Just as it is erroneous to set a breakpoint on an integer object, it is
erroneous to set a breakpoint on a task object.

You can monitor the execution of communicating tasks by setting breakpoints or tracepoints on entry
calls and accept statements.

Note

Ada task entry calls are not the same as subprogram calls because task entry calls are queued and may
not execute right away. If you use the STEP command to move execution into a task entry call, the
results might not be what you expect.

There are several points in and around an accept statement where you might want to set a breakpoint or
tracepoint. For example, consider the following program segment, which has two accept statements for
the same entry, RENDEZVOUS:

 8 task body TWO_ACCEPTS is
 9 begin
10 for I in 1..2 loop
11 select
12 accept RENDEZVOUS do
13 PUT_LINE("This is the first accept statement");
14 end RENDEZVOUS;
15 or
16 terminate;
17 end select;
18 end loop;
19 accept RENDEZVOUS do
20 PUT_LINE("This is the second accept statement");
21 end RENDEZVOUS;
22 end TWO_ACCEPTS;

You can set a breakpoint or tracepoint in the following places in this example:

• At the start of an accept statement (line 12 or 19). By setting a breakpoint or tracepoint here, you
can monitor when execution reaches the start of the accept statement, where the accepting task might
become suspended before a rendezvous actually occurs.

340

Chapter 16. Debugging Tasking Programs

• At the start of the body (sequence of statements) of an accept statement (line 13 or 20). By setting
a breakpoint or tracepoint here, you can monitor when a rendezvous has started - that is, when the
accept statement actually begins execution.

• At the end of an accept statement (line 14 or 21). By setting a breakpoint or tracepoint here, you can
monitor when the rendezvous has completed, and execution is about to switch back to the caller task.

To set a breakpoint or tracepoint in and around an accept statement, you can specify the associated line
number. For example, the following command sets a breakpoint on the start and also on the body of the
first accept statement in the preceding example:

DBG> SET BREAK %LINE 12, %LINE 13

To set a breakpoint or a tracepoint on an accept statement body, you can also use the entry name
(specifying its expanded name to identify the task body where the entry is declared). For example:

DBG> SET BREAK TWO_ACCEPTS$TASK_BODY.RENDEZVOUS

If there is more than one accept statement for an entry, the debugger treats the entry as an overloaded
name. The debugger issues a message indicating that the symbol is overloaded, and you must use the
SHOW SYMBOL command to identify the overloaded names that have been assigned by the debugger.
For example:

DBG> SHOW SYMBOL RENDEZVOUS
overloaded symbol TEST.TWO_ACCEPTS$TASK_BODY.RENDEZVOUS
 overloaded instance TEST.TWO_ACCEPTS$TASK_BODY.RENDEZVOUS__1
 overloaded instance TEST.TWO_ACCEPTS$TASK_BODY.RENDEZVOUS__2

Overloaded names have an integer suffix preceded by two underscores. For more information on
overloaded names, see the debugger's online help (type Help Language_Support Ada).

To determine which of these overloaded names is associated with a particular accept statement, use the
EXAMINE/SOURCE command. For example:

DBG> EXAMINE/SOURCE TWO_ACCEPTS$TASK_BODY.RENDEZVOUS__1
module TEST_ACCEPTS
 12: accept RENDEZVOUS do
DBG> EXAMINE/SOURCE TWO_ACCEPTS$TASK_BODY.RENDEZVOUS__2
module TEST_ACCEPTS
 19: accept RENDEZVOUS do

In the following example, when the breakpoint triggers, the caller task is evaluated (see Section 16.3.4
for information about the symbol %CALLER_TASK):

DBG> SET BREAK TWO_ACCEPTS$TASK_BODY.RENDEZVOUS__2 -
_DBG> DO (EVALUATE %CALLER_TASK)

The following breakpoint triggers only when the caller task is %TASK 2:

DBG> SET BREAK TWO_ACCEPTS$TASK_BODY.RENDEZVOUS__2 -
_DBG> WHEN (%CALLER_TASK = %TASK 2)

If the calling task has more than one entry call to the same accept statement, you can use the
SHOW TASK/CALLS command to identify the source line where the entry call was issued. For
example:

DBG> SET BREAK TWO_ACCEPTS$TASK_BODY.RENDEZVOUS__2 -
_DBG> DO (SHOW TASK/CALLS %CALLER_TASK)

341

Chapter 16. Debugging Tasking Programs

16.6.4. Monitoring Task Events
The SET BREAK/EVENT and SET TRACE/EVENT commands enable you to set breakpoints and
tracepoints that are triggered by task and exception events. For example, the following command sets
tracepoints that trigger whenever task CHILD or %TASK 2 makes a transition to the RUN state:

DBG> SET TRACE/EVENT=RUN CHILD, %TASK 2

When a breakpoint or tracepoint is triggered as a result of an event, the debugger identifies the event and
gives additional information.

The following tables list the event-name keywords that you can specify with the SET BREAK/EVENT
and SET TRACE/EVENT commands:

• Table 16.6 lists the generic language-independent events common to all tasks.

• Table 16.7 lists the events specific to POSIX Threads tasks.

• Table 16.8 lists the events specific to Ada tasks.

Table 16.6. Generic Low-Level Task Scheduling Events

Event Name Description

RUN Triggers when a task is about to run.
PREEMPTED Triggers when a task is being preempted from the

RUN state and its state changes to READY. (See
Table 16.3.)

ACTIVATING Triggers when a task is about to begin its
execution.

SUSPENDED Triggers when a task is about to be suspended.

Table 16.7. POSIX Threads-Specific Events

Event Name Description

HANDLED Triggers when an exception is about to be handled
in some TRY block.

TERMINATED Triggers when a task is terminating (including by
alert or exception).

EXCEPTION_TERMINATED Triggers when a task is terminating because of an
exception.

FORCED_TERM Triggers when a task is terminating due to an alert
operation.

Table 16.8. Ada-Specific Events

Event Name Description

HANDLED Triggers when an exception is about to be handled
in some Ada exception handler, including an others
handler.

HANDLED_OTHERS Triggers only when an exception is about to be
handled in an others Ada exception handler.

342

Chapter 16. Debugging Tasking Programs

Event Name Description

RENDEZVOUS_EXCEPTION Triggers when an exception begins to propagate
out of a rendezvous.

DEPENDENTS_EXCEPTION Triggers when an exception causes a task to wait
for dependent tasks in some scope (includes
unhandled exceptions, 1 which, in turn, include
special exceptions internal to the HPE Ada Run-
Time Library; for more information, see the HPE
Ada documentation). Often immediately precedes
a deadlock.

TERMINATED Triggers when a task is terminating, whether
normally, by an abort statement, or by an
exception.

EXCEPTION_TERMINATED Triggers when a task is terminating due to an
unhandled exception. 1

ABORT_TERMINATED Triggers when a task is terminating due to an abort
statement.

1An unhandled exception is an exception for which there is no handler in the current frame or for which there is a handler that executes a raise
statement and propagates the exception to an outer scope.

In the previous tables, the exception-related events are included for completeness. Only the task events
are discussed in the following paragraphs. For more information about the exception events, seethe
debugger's online help (type Help Language_Support Ada).

You can abbreviate an event-name keyword to the minimum number of characters that make it unique.

The event-name keywords that you can specify with the SET BREAK/EVENT or
SET TRACE/EVENT command depend on the current event facility, which is either THREADS or
ADA in the case of task events. The appropriate event facility is set automatically when the program is
brought under debugger control. The SHOW EVENT_FACILITY command identifies the facility that
is currently set and lists the valid event name keywords for that facility (including those for the generic
events).

Several examples follow showing the use of the /EVENT qualifier:

DBG> SET BREAK/EVENT=PREEMPTED
DBG> GO
break on THREADS event PREEMPTED
 Task %TASK 4 is getting preempted by %TASK 3
⋮
DBG> SET BREAK/EVENT=SUSPENDED
DBG> GO
break on THREADS event SUSPENDED
 Task %TASK 1 is about to be suspended
⋮
DBG> SET BREAK/EVENT=TERMINATED
DBG> GO
break on THREADS event TERMINATED
 Task %TASK 4 is terminating normally
DBG>

 The following predefined event breakpoints are set automatically when the program is brought under
debugger control:

343

Chapter 16. Debugging Tasking Programs

• EXCEPTION_TERMINATED event breakpoints are predefined for programs that call POSIX
Threads routines.

• EXCEPTION_TERMINATED and DEPENDENTS_EXCEPTION event breakpoints are predefined
for Ada programs or programs that call Ada routines.

Ada examples of the predefined and other types of event breakpoints follow.

Example of EXCEPTION_TERMINATED Event
When the EXCEPTION_TERMINATED event is triggered, it usually indicates an unanticipated
program error. For example:

…
break on ADA event EXCEPTION_TERMINATED
 Task %TASK 2 is terminating because of an exception
 %ADA-F-EXCCOP, Exception was copied at a "raise;" or "accept"
 -ADA-F-EXCEPTION, Exception SOME_ERROR
 -ADA-F-EXCRAIPRI, Exception raised prior to PC = 00000B61
DBG>

Example of DEPENDENTS_EXCEPTION Event (Ada)
For Ada programs, the DEPENDENTS_EXCEPTION event often unexpectedly precedes a deadlock.
For example:

…
break on ADA event DEPENDENTS_EXCEPTION Task
 %TASK 2 may await dependent tasks because of this exception:
 %ADA-F-EXCCOP, Exception was copied at a "raise;" or "accept"
 -ADA-F-EXCEPTION, Exception SOME_ERROR
 -ADA-F-EXCRAIPRI, Exception raised prior to PC = 00000B61
DBG>

Example of RENDEZVOUS_EXCEPTION Event (Ada)
For Ada programs, the RENDEZVOUS_EXCEPTION event enables you to see an exception before it
leaves a rendezvous (before exception information has been lost due to copying the exception into the
calling task). For example:

…
break on ADA event RENDEZVOUS_EXCEPTION
 Exception is propagating out of a rendezvous in task %TASK 2
 %ADA-F-CONSTRAINT_ERRO, CONSTRAINT_ERROR
 -ADA-I-EXCRAIPRI, Exception raised prior to PC = 00000BA6
DBG>

To cancel breakpoints (or tracepoints) set with the /EVENT qualifier, use the
CANCEL BREAK/EVENT (or CANCEL TRACE/EVENT) command. Specify the event qualifier and
optional task expression in the CANCEL command exactly as you did with the SET command, excluding
any WHEN or DO clauses.

You might want to set event breakpoints and tracepoints in a debugger initialization file for your tasking
programs. For example:

SET BREAK/EVENT=ACTIVATING

344

Chapter 16. Debugging Tasking Programs

SET BREAK/EVENT=HANDLED DO (SHOW CALLS)
SET BREAK/EVENT=ABORT_TERMINATED DO (SHOW CALLS)
SET BREAK/EVENT=EXCEPTION_TERM DO (SHOW CALLS)
SET BREAK/EVENT=TERMINATED

16.7. Additional Task-Debugging Topics
The following sections discuss additional topics related to task debugging:

• Deadlock

• Automatic stack checking

• Using Ctrl/Y

16.7.1. Debugging Programs with Deadlock Conditions
A deadlock is an error condition in which each task in a group of tasks is suspended and no task in the
group can resume execution until some other task in the group executes. Deadlock is a typical error
in tasking programs (in much the same way that infinite loops are typical errors in programs that use
WHILE statements).

A deadlock is easy to detect: it causes your program to appear to suspend, or hang, in mid execution.
When deadlock occurs in a program that is running under debugger control, press Ctrl/C to interrupt the
deadlock and display the debugger prompt.

In general, the SHOW TASK/ALL command (see Section 16.4) or the
SHOW TASK/STATE=SUSPENDED command is useful because it shows which tasks are suspended
in your program and why. The command SET TASK/VISIBLE%NEXT_TASK is particularly useful
when debugging in screen mode. It enables you to cycle through all tasks and display the code that each
task is executing, including the code in which execution is stopped.

The SHOW TASK/FULL command gives detailed task state information, including information about
rendezvous, entry calls, and entry index values. The SET BREAK/EVENT or SET TRACE/EVENT
command (see Section 16.6.4)enables you to set breakpoints or tracepoints at or near locations that
might lead to deadlock. The SET TASK/PRIORITY and SET TASK/RESTORE commands enable
you to see if a low-priority task that never runs is causing the deadlock.

Table 16.9 lists a number of tasking deadlock conditions and suggests debugger commands that are
useful in diagnosing the cause.

Table 16.9. Ada Tasking Deadlock Conditions and Debugger Commands for Diagnosing
Them

Deadlock Condition Debugger Commands

Self-calling deadlock (a task calls one of its own
entries)

SHOW TASK/ALL

SHOW TASK/STATE=SUSPENDED

SHOW TASK/FULL

Circular-calling deadlock (a task calls another task,
which calls the first task)

SHOW TASK/ALL

345

Chapter 16. Debugging Tasking Programs

Deadlock Condition Debugger Commands
SHOW TASK/STATE=SUSPENDED

SHOW TASK/FULL

Dynamic-calling deadlock (a circular series of
entry calls exists, and at least one of the calls is a
timed or conditional entry call in a loop)

SHOW TASK/ALL

SHOW TASK/STATE=SUSPENDED

SHOW TASK/FULL

Exception-induced deadlock (an exception prevents
a task from answering one of its entry calls, or
the propagation of an exception must wait for
dependent tasks)

SHOW TASK/ALL

SHOW TASK/STATE=SUSPENDED

SHOW TASK/FULL

SET BREAK/EVENT=DEPENDENTS_EXCEPTION

(for Ada programs)
Deadlock because of incorrect run-time
calculations for entry indexes, when conditions,
and delay statements within select statements

SHOW TASK/ALL

SHOW TASK/STATE=SUSPENDED

SHOW TASK/FULL

EXAMINE

Deadlock due to entries being called in the wrong
order

SHOW TASK/ALL

SHOW TASK/STATE=SUSPENDED

SHOW TASK/FULL

Deadlock due to busy-waiting on a variable used as
a flag that is to be set by a lower priority task, and
the lower priority task never runs because a higher
priority task is always ready to execute

SHOW TASK/ALL

SHOW TASK/STATE=SUSPENDED

SHOW TASK/FULL

SET TASK/PRIORITY

SET TASK/RESTORE

16.7.2. Automatic Stack Checking in the Debugger
In tasking programs, an undetected stack overflow can occur in certain circumstances and can lead to
unpredictable execution. (For more information on task stack overflow, see the HPE Ada or POSIX
Threads documentation.) The debugger automatically does the following stack checks to help you detect
the source of stack overflow problems (if the stack pointer is out of bounds, the debugger displays an
error message):

• A stack check is done for the active task after a STEP command executes or a breakpoint triggers
(see Section 16.6.1). (This check is not done if you have used the /SILENT qualifier with the
STEP or SET BREAKPOINT command.)

• A stack check is done for each task whose state is displayed in a SHOW TASK command. Thus, a
SHOW TASK/ALL command automatically causes the stacks of all tasks to be checked.

346

Chapter 16. Debugging Tasking Programs

The following examples show the kinds of error messages displayed by the debugger when a stack
check fails. A warning is issued when most of the stack has been used up, even if the stack has not yet
overflowed.

warning: %TASK 2 has used up over 90% of its stack
 SP: 0011194C Stack top at: 00111200 Remaining bytes: 1868
error: %TASK 2 has overflowed its stack
 SP: 0010E93C Stack top at: 00111200 Remaining bytes: -10436
error: %TASK 2 has underflowed its stack
 SP: 7FF363A4 Stack base at: 001189FC Stack top at: 00111200

One of the unpredictable events that can happen after a stack overflows is that the stack can then
underflow. For example, if a task stack overflows and the stack pointer remains in the top guard area,
the operating system will attempt to signal an ACCVIO condition. However, because the top guard
area is not a writable area of the stack, the operating system cannot write the signal arguments for the
ACCVIO. When this happens, the operating system cuts back the stack: it causes the frame pointer and
stack pointer to point to the base of the main program stack area, writes the signal arguments, and then
modifies the program counter to force an image exit.

If a time-slice AST or other AST occurs at this instant, execution can resume in a different task, and for
a while, the program may continue to execute, although not normally (the task whose stack overflowed
may use - and overwrite - the main program stack). The debugger stack checks help you to detect this
situation. If you step into at ask whose stack has been cut back by the operating system, or if you use the
SHOW TASK/ALL command at that time, the debugger issues its stack underflow message.

16.7.3. Using Ctrl/Y When Debugging Ada Tasks
Pressing Ctrl/C is the recommended method of interrupting program execution or a debugger command
during a debugging session. This returns control to the debugger; pressing Ctrl/Y returns control to DCL
level.

If you interrupt a task debugging session by pressing Ctrl/Y, you might have some problems when you
then start the debugger at DCL level with the DEBUG command. In such cases, you should insert the
following two lines in the source code at the beginning of your main program to name the HPE Ada
predefined package CONTROL_C_INTERCEPTION:

with CONTROL_C_INTERCEPTION;
pragma ELABORATE(CONTROL_C_INTERCEPTION);

For information on this package, see the HPE Ada documentation.

347

Chapter 16. Debugging Tasking Programs

348

Part VI. Debugger
Command Dictionary

349

350

Chapter 17. Debugger Command
Dictionary
Overview
The Debugger Command Dictionary contains detailed reference information about all debugger
commands, organized as follows:

• the section called “Debugger Command Format” explains how to enter debugger commands.

• the section called “Commands Disabled in the Debugger's VSI DECwindows Motif for OpenVMS
User Interface” lists commands that are disabled in the command/message view of the debugger's
VSI DECwindows Motif for OpenVMS user interface.

• the section called “Debugger Diagnostic Messages” gives general information about debugger
diagnostic messages.

• the section called “Debugger Command Dictionary” contains detailed reference information about
the debugger commands.

Debugger Command Format
You can enter debugger commands interactively at the keyboard or store them within a command
procedure to be executed later with the execute procedure (@) command.

This section provides the following information:

• General format for debugger commands

• Rules for entering commands interactively at the keyboard

• Rules for entering commands in debugger command procedures

General Format
A command string is the complete specification of a debugger command. Although you can continue a
command on more than one line, the term command string is used to define an entire command that is
passed to the debugger.

A debugger command string consists of a verb and, possibly, parameters and qualifiers.

The verb specifies the command to be executed. Some debugger command strings might consist of only
a verb or a verb pair. For example:

DBG> GO
DBG> SHOW IMAGE

A parameter specifies what the verb acts on (for example, a file specification). A qualifier describes or
modifies the action taken by the verb. Some command strings might include one or more parameters or

351

Chapter 17. Debugger Command Dictionary

qualifiers. In the following examples, COUNT, I, J, and K, OUT2, and PROG4.COM are parameters (@
is the execute procedure command); /SCROLL and /OUTPUT are qualifiers.

DBG> SET WATCH COUNT
DBG> EXAMINE I, J, K
DBG> SELECT/SCROLL/OUTPUT OUT2
DBG> @PROG4.COM

Some commands accept optional WHEN or DO clauses. DO clauses are also used in some screen
display definitions.

A WHEN clause consists of the keyword WHEN followed by a conditional expression (within
parentheses) that evaluates to true or false in the current language. A DO clause consists of the keyword
DO followed by one or more command strings (within parentheses) that are to be executed in the order
that they are listed. You must separate multiple command strings with semicolons (;). These points are
illustrated in the next example.

The following command string sets a breakpoint on routine SWAP. The breakpoint is triggered whenever
the value of J equals 4 during execution. When the breakpoint is triggered, the debugger executes the two
commands SHOW CALLS and EXAMINE I, K, in the order indicated.

DBG> SET BREAK SWAP WHEN (J = 4) DO (SHOW CALLS; EXAMINE I, K)

 The debugger checks the syntax of the commands in a DO clause when it executes the DO clause. You
can nest commands within DO clauses.

Entering Commands at the Keyboard
When entering a debugger command interactively at the keyboard, you can abbreviate a keyword (verb,
qualifier, parameter) to as few characters as are needed to make it unique within the set of all debugger
keywords. However, some commonly used commands (for example, EXAMINE, DEPOSIT, GO, STEP)
can be abbreviated to their first characters. Also, in some cases, the debugger interprets non unique
abbreviations correctly on the basis of context.

Pressing the Return key terminates the current line, causing the debugger to process it. To continue a
long command string on another line, type a hyphen (-) before pressing Return. As a result, the debugger
prompt is prefixed with an underscore character (_DBG>), indicating that the command string is still
being accepted.

You can enter more than one command string on one line by separating command strings with
semicolons (;).

 To enter a comment (explanatory text recorded in a debugger log file but otherwise ignored by the
debugger), precede the comment text with an exclamation point (!). If the comment wraps to another
line, start that line with an exclamation point.

The command line editing functions that are available at the DCL prompt ($) are also available at
the debugger prompt (DBG >), including command recall with the up arrow and down arrow keys.
For example, pressing the left arrow and right arrow keys moves the cursor one character to the left
and right, respectively; pressing Ctrl/H or Ctrl/E moves the cursor to the start or end of the line,
respectively; pressing Ctrl/U deletes all the characters to the left of the cursor, and so on.

To interrupt a command that is being processed by the debugger, press Ctrl/C. See the Ctrl/C
command.

352

Chapter 17. Debugger Command Dictionary

Entering Commands in Command Procedures
To maximize legibility, it is best not to abbreviate command keywords in a command procedure. Do not
abbreviate command keywords to less than four significant characters (not counting the negation /NO
…), to avoid potential conflicts in future releases.

Start a debugger command line at the left margin. (Do not start a command line with a dollar sign ($) as
you do when writing a DCL command procedure.)

The beginning of a new line ends the previous command line (the end-of-file character also ends the
previous command line). To continue a command string on another line, type a hyphen (-) before
starting the new line.

You can enter more than one command string on one line by separating command strings with
semicolons (;).

To enter a comment (explanatory text that does not affect the execution of the command procedure),
precede the comment text with an exclamation point (!). If the comment wraps to another line, start that
line with an exclamation point.

Commands Disabled in the Debugger's VSI
DECwindows Motif for OpenVMS User Interface
The following commands are disabled in the debugger's VSI DECwindows Motif for OpenVMS user
interface. Several of these commands are relevant only to the command interface's screen mode.

ATTACH SELECT
CANCEL MODE (SET, SHOW) ABORT_KEY
CANCEL WINDOW (SET, SHOW) KEY
DEFINE/KEY (SET, SHOW) MARGINS
DELETE/KEY SET MODE [NO]KEYPAD
DISPLAY SET MODE [NO]SCREEN
EXAMINE/SOURCE SET MODE [NO]SCROLL
EXPAND SET OUTPUT [NO]TERMINAL
EXTRACT (SET, SHOW) TERMINAL
HELP 1 (SET, SHOW) WINDOW
MOVE (SHOW, CANCEL) DISPLAY
SAVE SHOW SELECT
SCROLL SPAWN

1Help on commands is available from the Help menu in a debugger window.

The debugger issues an error message if you try to enter any of these disabled commands at the
command prompt or when the debugger executes a command procedure containing any of these
commands.

The MONITOR command works only with the VSI DECwindows Motif for OpenVMS user interface
(because the command uses the Monitor View).

353

Chapter 17. Debugger Command Dictionary

Debugger Diagnostic Messages
The following example shows the elements of a debugger diagnostic message:

%DEBUG-W-NOSYMBOL, symbol 'X' is not in the symbol table

The facility name (DEBUG).
The severity level (W, in this example).
The message identifier (NOSYMBOL, in this example). The message identifier is an abbreviation
of the message text.
The message text.

The identifier enables you to find the explanation for a diagnostic message from the debugger's online
help (and the action you need to take, if any).

To get online help about a debugger message, use the following command format:

HELP MESSAGES message-identifier

The possible severity levels for diagnostic messages are as follows:

S (success)
I (informational)
W (warning)
E (error)
F (fatal, or severe error)

Success and informational messages inform you that the debugger has performed your request.

Warning messages indicate that the debugger might have performed some, but not all, of your request
and that you should verify the result.

Error messages indicate that the debugger could not perform your request, but that the state of the
debugging session was not changed. The only exceptions are if the message identifier was DBGERR or
INTERR. These identifiers signify an internal debugger error, and you should contact your HP support
representative.

Fatal messages indicate that the debugger could not perform your request and that the debugging
session is in an indeterminate state from which you cannot recover reliably. Typically, the error ends the
debugging session.

Debugger Command Dictionary
The Debugger Command Dictionary describes each debugger command in detail. Commands are listed
alphabetically. The following information is provided for each command: command description, format,
parameters, qualifiers, and one or more examples. See the preface of this manual for documentation
conventions.

@ (Execute Procedure)
@ (Execute Procedure) — Executes a debugger command procedure.

354

Chapter 17. Debugger Command Dictionary

Synopsis
@ file-spec [parameter […]]

Parameters
file-spec

Specifies the command procedure to be executed. For any part of the full file specification not provided,
the debugger uses the file specification established with the last SET ATSIGN command, if any. If the
missing part of the file specification was not established by a SET ATSIGN command, the debugger
assumes SYS$DISK:[]DEBUG.COM as the default file specification. You can specify a logical name.

[parameter]

Specifies a parameter that is passed to the command procedure. The parameter can be an address
expression, a value expression in the current language, or a debugger command; the command must
be enclosed within quotation marks ("). Unlike with DCL, you must separate parameters by commas.
Also, you can pass as many parameters as there are formal parameter declarations within the command
procedure. For more information about passing parameters to command procedures, see the DECLARE
command.

Description
A debugger command procedure can contain any debugger commands, including another execute
procedure (@) command. The debugger executes commands from the command procedure until it
reaches an EXIT or QUIT command or reaches the end of the command procedure. At that point, the
debugger returns control to the command stream that invoked the command procedure. A command
stream can be the terminal, an outer (containing) command procedure, a DO clause in a command such
as SET BREAK, or a DO clause in a screen display definition.

By default, commands read from a command procedure are not echoed. If you enter the
SET OUTPUT VERIFY command, all commands read from a command procedure are echoed on the
current output device, as specified by DBG$OUTPUT (the default output device is SYS$OUTPUT).

For information about passing parameters to command procedures, seethe DECLARE command.

Related commands:

DECLARE
(SET, SHOW ATSIGN
SET OUTPUT [NO]VERIFY
SHOW OUTPUT

Example
DBG> SET ATSIGN USER:[JONES.DEBUG].DBG
DBG> SET OUTPUT VERIFY
DBG> @CHECKOUT
%DEBUG-I-VERIFYICF, entering command procedure CHECKOUT
 SET MODULE/ALL
 SET BREAK SUB1
 GO

355

Chapter 17. Debugger Command Dictionary

break at routine PROG5\SUB2
 EXAMINE XPROG5\SUB2\X: 376
 …
%DEBUG-I-VERIFYICF, exiting command procedure MAIN
DBG>

In this example, the SET ATSIGN command establishes that debugger command procedures are, by
default, in USER:[JONES.DEBUG] and have a file type of .DBG. The @CHECKOUT command
executes the command procedure USER:[JONES.DEBUG]CHECKOUT.DBG. The debugger echoes
commands in the command because of the SET OUTPUT VERIFY command.

ACTIVATE BREAK
ACTIVATE BREAK — Activates a breakpoint that you have previously set and then deactivated.

Synopsis
ACTIVATE BREAK [address-expression[, …]]

Parameters
[address-expression]

Specifies a breakpoint to be activated. Do not use the asterisk (*) wild card character. Instead, use
the /ALL qualifier. Do not specify an address expression when using any qualifiers except /EVENT,
/PREDEFINED, or /USER.

Qualifiers
/ACTIVATING

Activates a breakpoint established by a previous SET BREAK/ACTIVATING command.

/ALL

By default, activates all user-defined breakpoints. When used with /PREDEFINED, activates
all predefined breakpoints but no user-defined breakpoints. To activate all breakpoints, use
/ALL/USER/PREDEFINED.

/BRANCH

Activates a breakpoint established by a previous SET BREAK/BRANCH command.

/CALL

Activates a breakpoint established by a previous SET BREAK/CALL command.

/EVENT=event-name

Activates a breakpoint established by a previous SET BREAK/EVENT= event-name
command. Specify the event name (and address expression, if any) exactly as specified with the
SET BREAK/EVENT command.

356

Chapter 17. Debugger Command Dictionary

To identify the current event facility and the associated event names, use the
SHOW EVENT_FACILITY command.

/EXCEPTION

 Activates a breakpoint established by a previous SET BREAK/EXCEPTION command.

/HANDLER

Activates a breakpoint established by a previous SET BREAK/HANDLER command.

/INSTRUCTION

Activates a breakpoint established by a previous SET BREAK/INSTRUCTION command.

/LINE

Activates a breakpoint established by a previous SET BREAK/LINE command. Do not specify an
address expression with this qualifier.

/PREDEFINED

Activates a specified predefined breakpoint without affecting any user-defined breakpoints. When
used with /ALL, activates all predefined breakpoints.

/SYSEMULATE

(Alpha only) Activates a breakpoint established by a previous SET BREAK/SYSEMULATE
command.

/TERMINATING

Activates a breakpoint established by a previous SET BREAK/TERMINATING command.

/UNALIGNED_DATA

(Integrity servers and Alpha only) Activates a breakpoint established by a previous
SET BREAK/UNALIGNED_DATA command, or reactivates a breakpoint previously disabled by a
DEACTIVATE BREAK/UNALIGNED_DATA command.

/USER

Activates a specified user-defined breakpoint without affecting any predefined breakpoints. To
activate all user-defined breakpoints, use the /ALL qualifier.

Description
User-defined breakpoints are activated when you set them with the SET BREAK command. Predefined
breakpoints are activated by default. Use the ACTIVATE BREAK command to activate one or more
breakpoints that you deactivated with DEACTIVATE BREAK.

Activating and deactivating breakpoints enables you to run and rerun your program with or without
breakpoints without having to cancel and then reset them. By default, the RERUN command saves the
current state of all breakpoints (activated or deactivated).

357

Chapter 17. Debugger Command Dictionary

You can activate and deactivate user-defined breakpoints or predefined breakpoints or both. To check if
a breakpoint is activated, use the SHOW BREAK command.

Related commands:

CANCEL ALL
RERUN
(SET, SHOW, CANCEL, DEACTIVATE) BREAK
(SET, SHOW) EVENT_FACILITY

Examples
1. DBG> ACTIVATE BREAK MAIN\LOOP+10

This command activates the user-defined breakpoint set at the address expression
MAIN \LOOP+10.

2. DBG> ACTIVATE BREAK/ALL

This command activates all user-defined breakpoints.

3. DBG> ACTIVATE BREAK/ALL/USER/PREDEFINED

This command activates all breakpoints, both user-defined and predefined.

ACTIVATE TRACE
ACTIVATE TRACE — Activates a tracepoint that you have previously set and then deactivated.

Synopsis
ACTIVATE TRACE [address-expression[, …]]

Parameters
[address-expression]

Specifies a tracepoint to be activated. Do not use the asterisk (*) wildcard character. Instead, use the
/ALL qualifier. Do not specify an address expression when using any qualifiers except /EVENT,
/PREDEFINED, or /USER.

Qualifiers
/ACTIVATING

Activates a tracepoint established with a previous SET TRACE/ACTIVATING command.

/ALL

By default, activates all user-defined tracepoints. When used with /PREDEFINED, activates
all predefined tracepoints but no user-defined tracepoints. To activate all tracepoints, use
/ALL/USER/PREDEFINED.

358

Chapter 17. Debugger Command Dictionary

/BRANCH

Activates a tracepoint established with a previous SET TRACE/BRANCH command.

/CALL

Activates a tracepoint established with a previous SET TRACE/CALL command.

/EVENT=event-name

Activates a tracepoint established with a previous SET TRACE/EVENT= event-name
command. Specify the event name (and address expression, if any) exactly as specified with the
SET TRACE/EVENT command.

To identify the current event facility and the associated event names, use the
SHOW EVENT_FACILITY command.

/EXCEPTION

 Activates a tracepoint established with a previous SET TRACE/EXCEPTION command.

/INSTRUCTION

Activates a tracepoint established with a previous SET TRACE/INSTRUCTION command.

/LINE

Activates a tracepoint established with a previous SET TRACE/LINE command.

/PREDEFINED

Activates a specified predefined tracepoint without affecting any user-defined tracepoints. When
used with /ALL, activates all predefined tracepoints.

/TERMINATING

Activates a tracepoint established with a previous SET TRACE/TERMINATING command.

/USER

Activates a specified user-defined tracepoint without affecting any predefined tracepoints. To
activate all user-defined tracepoints, use the /ALL qualifier.

Description
User-defined tracepoints are activated when you set them with the SET TRACE command. Predefined
tracepoints are activated by default. Use the ACTIVATE TRACE command to activate one or more
tracepoints that you deactivated with DEACTIVATE TRACE.

Activating and deactivating tracepoints enables you to run and rerun your program with or without
tracepoints without having to cancel and then reset them. By default, the RERUN command saves the
current state of all tracepoints (activated or deactivated).

You can activate and deactivate user-defined tracepoints or predefined tracepoints or both. To check if a
tracepoint is activated, use the SHOW TRACE command.

359

Chapter 17. Debugger Command Dictionary

Related commands:

CANCEL ALL
RERUN
(SET, SHOW) EVENT_FACILITY
(SET, SHOW, CANCEL, DEACTIVATE) TRACE

Examples
1. DBG> ACTIVATE TRACE MAIN\LOOP+10

This command activates the user-defined tracepoint at the location MAIN \LOOP+10.

2. DBG> ACTIVATE TRACE/ALL

This command activates all user-defined tracepoints.

ACTIVATE WATCH
ACTIVATE WATCH — Activates a watchpoint that you have previously set and then deactivated.

Synopsis
ACTIVATE WATCH [address-expression[, …]]

Parameters
[address-expression]

Specifies a watchpoint to be activated. With high-level languages, this is typically the name of a variable.
Do not use the asterisk (*) wildcard character. Instead, use the /ALL qualifier. Do not specify an address
expression with /ALL.

Qualifiers
/ALL

Activates all watchpoints.

Description
Watchpoints are activated when you set them with the SET WATCH command. Use the
ACTIVATE WATCH command to activate one or more watchpoints that you deactivated with
DEACTIVATE WATCH.

Activating and deactivating watchpoints enables you to run and rerun your program with or without
watchpoints without having to cancel and then reset them.

By default, the RERUN command saves the current state of all static watchpoints (activated or
deactivated). The state of a particular nonstatic watchpoint might or might not be saved depending on the
scope of the variable being watched relative to the main program unit (where execution restarts).

360

Chapter 17. Debugger Command Dictionary

To check if a watchpoint is activated, use the SHOW WATCH command.

Related commands:

CANCEL ALL
RERUN
(SET, SHOW, CANCEL, DEACTIVATE) WATCH

Examples
1. DBG> ACTIVATE WATCH SUB2\TOTAL

This command activates the watchpoint at variable TOTAL in module SUB2.

2. DBG> ACTIVATE WATCH/ALL

This command activates all watchpoints you have set and deactivated.

ANALYZE/CRASH_DUMP
ANALYZE/CRASH_DUMP — Opens a system dump for analysis by the System Dump Debugger (kept
debugger only).

Synopsis
ANALYZE/CRASH_DUMP []

Description
For OpenVMS Integrity servers and Alpha systems, invokes the System Dump Debugger (SDD) to
analyze a system dump.

SDD is similar in concept to the System Code Debugger (SCD). While SCD allows connection to
a running system, with control of the system's execution and the examination and modification of
variables, SDD allows analysis of memory as recorded in a system dump.

Use of SDD usually involves two systems, although all of the required environment can be set up on a
single system. The description that follows assumes that two systems are being used:

• The build system, where the image that causes the system crash has been built

• The test system, where the image is executed and the system crash occurs

In common with SCD, the OpenVMS debugger user interface allows you to specify variable names,
routine names, and soon, precisely as they appear in your source code. Also, SDD can display the source
code where the software was executing at the time of the system crash.

SDD recognizes the syntax, data typing, operators, expressions, scoping rules, and other constructs
of a given language. If your code or driver is written in more than one language, you can change the
debugging context from one language to another during a debugging session.

361

Chapter 17. Debugger Command Dictionary

To use SDD you must do the following:

• Build the system image or device driver that is causing the system crash.

• Boot a system, including the system image or device driver, and perform the necessary steps to cause
the system crash.

• Reboot the system and save the dump file.

• Invoke SDD, which is integrated with the OpenVMS debugger.

For more information about using the SDD, including a sample SDD session, see the VSI OpenVMS
System Analysis Tools Manual.

Related commands:

ANALYZE/PROCESS_DUMP
CONNECT %NODE
SDA

Example
DBG> ANALYZE/CRASH_DUMP
DBG>

Invokes SDD from within the kept debugger.

ANALYZE/PROCESS_DUMP
ANALYZE/PROCESS_DUMP — Opens a process dump for analysis with the System Code Debugger
(kept debugger only)

Synopsis
ANALYZE/PROCESS_DUMP [dumpfile]

Parameters
[dumpfile]

The name of the process dump file to be analyzed. The file type must be .DMP.

Qualifiers
/IMAGE_PATH=directory-spec

Specifies the search path for the debugger to find the files that contains the debugger symbol tables
(DSTs). The files must be of type .DSF or .EXE, with the same name as the image names in the
dump file. For example, if image name foo.exe is in the dump file, then the debugger searches for
foo.dsf or foo.exe.

362

Chapter 17. Debugger Command Dictionary

Description
(Kept debugger only.) Opens a process dump for analysis with the System Code Debugger (SCD). The
qualifier /PROCESS_DUMP is required and distinguishes this command from the one that invokes the
System Dump Debugger (SDD), ANALYZE/CRASH_DUMP.

The qualifier /IMAGE_PATH= directory-spec is optional, and specifies the search path the
debugger is to use to find the debugger symbol table (DST) files. The debugger builds an image list from
the saved process image list. When you set an image (the main image is automatically set), the debugger
attempts to open that image in order to find the DSTs.

If you include the /IMAGE_PATH= directory-spec qualifier, the debugger searches for the
.DST file in the specified directory. The debugger first tries to translate directory-spec as the
logical name of a directory search list. If that fails, the debugger interprets directory-spec as a
directory specification, and searches that directory for matching .DSF or .EXE files. A .DSF file takes
precedence over an .EXE file. The name of the .DSF or .EXE file must match the image name.

If you do not include the /IMAGE_PATH= directory-spec qualifier, the debugger looks for
the DST file first in the directory that contains the dump file. If that fails, the debugger next searches
directory SYS$SHARE and then directory SYS$MESSAGE. If the debugger fails to find a DST file
for the image, symbolic information available to the debugger is limited to global and universal symbol
names.

The debugger checks for link date-time mismatches between the dump file image and the DST file and
issues a warning if one is discovered.

The parameter dumpfile is the name of the process dump file to be analyzed. Note that the process
dump file type must be .DMP and the DST file type must be either .DSF or .EXE.

For more information about using SCD, see the VSI OpenVMS System Analysis Tools Manual.

Related commands:

ANALYZE/CRASH_DUMP
CONNECT %NODE
SDA

Example
DBG> ANALYZE/PROCESS/IMAGE_DUMP=my_disk$:[my_dir]
my_disk$:[my_dir]wecrash.dmp
%SYSTEM-F-IMGDMP, dynamic image dump signal at PC=001C0FA0B280099C,
 PS=001C003C
break on unhandled exception preceding WECRASH\
 th_run
\%LINE 26412 in THREAD 8
 26412: if (verify) {
DBG> SET RADIX HEXADECIMAL; EXAMINE PC
WECRASH\th_run\%PC: 0000000000030244DBG>

ATTACH
ATTACH — Passes control of your terminal from the current process to another process.

363

Chapter 17. Debugger Command Dictionary

Synopsis
ATTACH process-name

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
process-name

Specifies the process to which your terminal is to be attached. The process must already exist before you
try to attach to it. If the process name contains non alphanumeric or space characters, you must enclose it
in quotation marks (").

Description
The ATTACH command enables you to go back and forth between a debugging session and your
command interpreter, or between two debugging sessions. To do so, you must first use the SPAWN
command to create a subprocess. You can then attach to it whenever you want. To return to your original
process with minimal system overhead, use another ATTACH command.

Related command:

SPAWN

Examples
1. DBG> SPAWN

$ ATTACH JONES
%DEBUG-I-RETURNED, control returned to process JONES
DBG> ATTACH JONES_1
$

In this example, the series of commands creates a subprocess named JONES_1 from the debugger
(currently running in the process JONES) and then attaches to that subprocess.

2. DBG> ATTACH "Alpha One"
$

This example illustrates using quotation marks to enclose a process name that contains a space
character.

CALL
CALL — Calls a routine that was linked with your program.

Synopsis
CALL routine-name [(argument[, …])]

364

Chapter 17. Debugger Command Dictionary

Parameters
routine-name

Specifies the name or the memory address of the routine to be called.

[argument]

Specifies an argument required by the routine. Arguments can be passed by address, by descriptor, by
reference, and by value, as follows:

%ADDR (Default, except for C and C++.) Passes the
argument by address. The format is as follows:

CALL routine-name (%ADDR address-
expression)

The debugger evaluates the address expression and
passes that address to the routine specified. For
simple variables (such as X), the address of X is
passed into the routine. This passing mechanism
is how Fortran implements ROUTINE(X). In
other words, for named variables, using %ADDR
corresponds to a call by reference in Fortran. For
other expressions, however, you must use the
%REF function to call by reference. For complex
or composite variables(such as arrays, records,
and access types), the address is passed when you
specify %ADDR, but the called routine might not
handle the passed data properly. Do not specify a
literal value (a number or an expression composed
of numbers) with %ADDR.

%DESCR Passes the argument by descriptor. The format is
as follows:

CALL routine-name (%DESCR language-
expression)

The debugger evaluates the language expression
and builds a standard descriptor to describe the
value. The descriptor is then passed to the routine
you named. You would use this technique to pass
strings to a Fortran routine.

%REF Passes the argument by reference. The format is as
follows:

CALL routine-name (%REF language-
expression)

The debugger evaluates the language expression
and passes a pointer to the value, into the called
routine. This passing mechanism corresponds to
the way Fortran passes the result of an expression.

365

Chapter 17. Debugger Command Dictionary

%VAL (Default for C and C++.) Passes the argument by
value. The format is as follows:

CALL routine-name (%VAL language-
expression)

The debugger evaluates the language expression
and passes the value directly to the called routine.

Qualifiers
/AST (default)
/NOAST

Controls whether the delivery of asynchronous system traps (ASTs) is enabled or disabled during
the execution of the called routine. The /AST qualifier enables the delivery of ASTs in the called
routine. The /NOAST qualifier disables the delivery of ASTs in the called routine. If you do not
specify /AST or /NOAST with the CALL command, the delivery of ASTs is enabled unless you
have previously entered the DISABLE AST command.

/SAVE_VECTOR_STATE
/NOSAVE_VECTOR_STATE (default)

Applies to VAX vectorized programs. Controls whether the current state of the vector processor is
saved and then restored when a routine is called with the CALL command.

The state of the vector processor comprises the following:

• The values of the vector registers (V0 to V15) and the vector control registers (VCR, VLR, and
VMR)

• Any vector exception (an exception caused by the execution of a vector instruction) that might
be pending delivery

When you use the CALL command to execute a routine, execution of the routine might change the
state of the vector processor as follows:

• By changing the values of vector registers or vector control registers

• By causing a vector exception

• By causing the delivery of a vector exception that was pending when the CALL command was
issued

The /SAVE_VECTOR_STATE qualifier specifies that after the called routine has completed
execution, the debugger restores the state of the vector processor that exists before the CALL
command is issued. This ensures that, after the called routine has completed execution:

• Any vector exception that was pending delivery before the CALL command was issued is still
pending delivery

• No vector exception that was triggered during the routine call is still pending delivery

• The values of the vector registers are identical to their values before the CALL command was
issued

366

Chapter 17. Debugger Command Dictionary

The /NOSAVE_VECTOR_STATE qualifier (which is the default) specifies that the state of the
vector processor that exists before the CALL command is issued is not restored by the debugger after
the called routine has completed execution. In this case, the state of the vector processor after the
routine call depends on the effect (if any) of the called routine.

The /[NO]SAVE_VECTOR_STATE qualifiers have no effect on the general registers. The
values of these registers are always saved and restored when you execute a routine with the CALL
command.

Description
The CALL command is one of the four debugger commands that can be used to execute your program
(the others are GO, STEP, and EXIT). The CALL command enables you to execute a routine
independently of the normal execution of your program. The CALL command executes a routine
whether or not your program actually includes a call to that routine, as long as the routine was linked
with your program.

When you enter a CALL command, the debugger takes the following actions. For more information, see
the qualifier descriptions.

1. Saves the current values of the general registers.

2. Constructs an argument list.

3. Executes a call to the routine specified in the command and passes any arguments.

4. Executes the routine.

5. Displays the value returned by the routine in the return status register. By convention, after a called
routine has executed, register R0 contains the function return value (if the routine is a function) or
the procedure completion status (if the routine is a procedure that returns a status value). If a called
procedure does not return a status value or function value, the value in R0 might be meaningless, and
the "value returned" message can be ignored.

6. Restores the values of the general registers to the values they had just before the CALL command
was executed.

7. Issues the prompt.

The debugger assumes that the called routine conforms to the procedure calling standard (see the
OpenVMS Calling Standard). However, the debugger does not know about all the argument-passing
mechanisms for all supported languages. Therefore, you might need to specify how to pass parameters,
for example, use CALL SUB1(%VAL X) rather than CALL SUB1(X). For complete information
about how arguments are passed to routines, see your language documentation.

When the current language is C or C++, the CALL command by default now passes arguments by value
rather than by reference. In addition, you can now pass the following arguments without using a passing
mechanism lexical (such as %REF or %VAL):

• Routine references

• Quoted strings (treated as %REF strings)

• Structures, records, and objects

367

Chapter 17. Debugger Command Dictionary

• Floating-point parameters by value in F_, D_, G_, S_, and T_floating format by dereferencing a
variable of that type.

If the routine contains parameters that are not read-only, the values assigned to parameters may not be
visible, and access to values is unreliable. This is because the debugger adjusts parameter values in an
internal argument list, not the program argument list. To examine changing values, consider using static
variables instead of parameters.

The CALL command converts all floating-point literals to F_floating format for Alpha systems and
T_floating format for Integrity servers.

On Alpha, passing a floating-point literal in a format other than F_floating is not supported, as shown in
the example below.

A common debugging technique at an exception breakpoint (resulting from a
SET BREAK/EXCEPTION or STEP/EXCEPTION command) is to call a dump routine with the
CALL command. When you enter the CALL command at an exception breakpoint, any breakpoints,
tracepoints, or watchpoints that were previously set within the called routine are temporarily disabled so
that the debugger does not lose the exception context. However, such eventpoints are active if you enter
the CALL command at a location other than an exception breakpoint.

When an exception breakpoint is triggered, execution is suspended before any application-declared
condition handler is invoked. At an exception breakpoint, entering a GO or STEP command after
executing a routine with the CALL command causes the debugger to resignal the exception (see the GO
and STEP commands).

On Alpha, you cannot debug routines that are activated before the routine activated by a CALL
command. For example, your program is stopped in routine MAIN, and you set a breakpoint in routine
SORT. You issue the debugger command CALL SORT. While debugging routine SORT, you cannot
debug routine MAIN. You must first return from the call to routine SORT.

If you are debugging a multiprocess program, the CALL command is executed in the context of the
current process set. In addition, when debugging a multiprocess program, the way in which execution
continues in your process depends on whether you entered a SET MODE [NO]INTERRUPT
command or a SET MODE [NO]WAIT command. By default (SET MODE NOINTERRUPT), when
one process stops, the debugger takes no action with regard to the other processes. Also by default
(SET MODE WAIT), the debugger waits until all processes in the current process set have stopped
before prompting for a new command. See Chapter 15 for more information.

Related commands:

GO
EXIT
SET PROCESS
SET MODE [NO]INTERRUPT
STEP

Examples
1. DBG> CALL SUB1(X)

value returned is 19
DBG>

This command calls routine SUB1, with parameter X (by default, the address of X is passed). In this
case, the routine returns the value 19.

368

Chapter 17. Debugger Command Dictionary

2. DBG> CALL SUB(%REF 1)
value returned is 1
DBG>

This command passes a pointer to a memory location containing the numeric literal 1, into the
routine SUB.

3. DBG> SET MODULE SHARE$LIBRTL
DBG> CALL LIB$SHOW_VM
 1785 calls to LIB$GET_VM, 284 calls to LIB$FREE_VM, 122216 bytes
 still allocated, value returned is 00000001
DBG>

This example calls Run-Time Library routine LIB$SHOW_VM (in shareable image LIBRTL) to
display memory statistics. The SET MODULE command makes the universal symbols (routine
names) in LIBRTL visible in the main image. See also the SHOW MODULE/SHARE command.

4. DBG> CALL testsub (%val 11.11, %val 22.22, %val 33.33)

This example passes floating-point parameters by value, to a C subroutine with the function
prototype void testsub (float, float, float). The floating-point parameters are
passed in F_floating format.

5. SUBROUTINE CHECK_TEMP(TEMPERATURE, ERROR_MESSAGE)
 REAL TOLERANCE /4.7/
 REAL TARGET_TEMP /92.0/
 CHARACTER*(*) ERROR_MESSAGE
 IF (TEMPERATURE .GT. (TARGET_TEMP + TOLERANCE)) THEN
 TYPE *, 'Input temperature out of range:', TEMPERATURE
 TYPE *, ERROR_MESSAGE
 ELSE
 TYPE *, 'Input temperature in range:', TEMPERATURE
 END IF
 RETURN
 END
DBG> CALL CHECK_TEMP(%REF 100.0, %DESCR 'TOLERANCE-CHECK 1 FAILED')
Input temperature out of range: 100.0000
TOLERANCE-CHECK 1 FAILED
value returned is 0
DBG> CALL CHECK_TEMP(%REF 95.2, %DESCR 'TOLERANCE-CHECK 2 FAILED')
Input temperature in range: 95.2000
value returned is 0
DBG>

This Fortran routine (CHECK_TEMP) accepts two parameters, TEMPERATURE (a real number)
and ERROR_MESSAGE (a string). Depending on the value of TEMPERATURE, the routine prints
different output. Each CALL command passes a temperature value (by reference) and an error
message (by descriptor). Because this routine does not have a formal return value, the value returned
is undefined, in this case, 0.

CANCEL ALL
CANCEL ALL — Cancels all breakpoints, tracepoints, and watchpoints. Restores the scope and type to
their default values. Restores the line, symbolic, and G_floating modes established with the SET MODE
command to their default values.

369

Chapter 17. Debugger Command Dictionary

Synopsis
CANCEL ALL

Qualifiers
/PREDEFINED

Cancels all predefined (but no user-defined) breakpoints and tracepoints.

/USER

Cancels all user-defined (but no predefined) breakpoints, tracepoints, and watchpoints. This is the
default unless you specify /PREDEFINED.

Description
The CANCEL ALL command does the following:

1. Cancels all user-defined eventpoints (those created with the commands SET BREAK, SET TRACE,
and SET WATCH). This is equivalent to entering the commands CANCEL BREAK/ALL,
CANCEL TRACE/ALL, and CANCEL WATCH/ALL. Depending on the type of program
(for example Ada, multiprocess), certain predefined breakpoints or tracepoints might be set
automatically when you start the debugger. To cancel all predefined but no user-defined eventpoints,
use CANCEL ALL/PREDEFINED. To cancel all predefined and user-defined eventpoints, use
CANCEL ALL/PREDEFINED/USER.

2. Restores the scope search list to its default value(0, 1, 2, …, n). This is equivalent to entering the
CANCEL SCOPE command.

3. Restores the data type for memory locations that are associated with a compiler-generated type to
the associated type. Restores the type for locations that are not associated with a compiler-generated
type to "longword integer". This is equivalent to entering the CANCEL TYPE/OVERRIDE and
SET TYPE LONGWORD commands.

4. Restores the line, symbolic, and G_floating modes established with the SET MODE command to
their default values. This is equivalent to entering the following command:

DBG> SET MODE LINE, SYMBOLIC, NOG_FLOAT

The CANCEL ALL command does not affect the current language setting or modules included in the
run-time symbol table.

Related commands:

(CANCEL, DEACTIVATE) BREAK
CANCEL SCOPE
(CANCEL, DEACTIVATE) TRACE
CANCEL TYPE/OVERRIDE
(CANCEL, DEACTIVATE) WATCH
(SET, CANCEL) MODE
SET TYPE

370

Chapter 17. Debugger Command Dictionary

Examples
1. DBG> CANCEL ALL

This command cancels all user-defined breakpoints and tracepoints and all watchpoints, and restores
scopes, types, and some modes to their default values. In this example, there are no predefined
breakpoints or tracepoints.

2. DBG> CANCEL ALL
%DEBUG-I-PREDEPTNOT, predefined eventpoint(s) not canceled

This command cancels all user-defined breakpoints and tracepoints and all watchpoints, and
restores scopes, types, and some modes to their default values. In this example, there is a predefined
breakpoint or tracepoint; this is not canceled by default.

3. DBG> CANCEL ALL/PREDEFINED

This command cancels all predefined breakpoints and tracepoints, and restores scopes, types, and
some modes to their default values. No user-defined breakpoints or tracepoints are affected.

CANCEL BREAK
CANCEL BREAK — Cancels a breakpoint.

Synopsis
CANCEL BREAK [address-expression[, …]]

Parameters
[address-expression]

Specifies a breakpoint to be canceled. Do not use the asterisk (*) wildcard character. Instead, use the
/ALL qualifier. Do not specify an address expression when using any qualifiers except /EVENT,
/PREDEFINED, or /USER.

Qualifiers
/ACTIVATING

 Cancels the effect of a previous SET BREAK/ACTIVATING command.

/ALL

By default, cancels all user-defined breakpoints. When used with /PREDEFINED, cancels
all predefined breakpoints but no user-defined breakpoints. To cancel all breakpoints, use
CANCEL BREAK/ALL/USER/PREDEFINED.

/BRANCH

Cancels the effect of a previous SET BREAK/BRANCH command.

371

Chapter 17. Debugger Command Dictionary

/CALL

Cancels the effect of a previous SET BREAK/CALL command.

/EVENT=event-name

Cancels the effect of a previous SET BREAK/EVENT= event-name command. Specify the
event name (and address expression, if any) exactly as specified with the SET BREAK/EVENT
command. To identify the current event facility and the associated event names, use the
SHOW EVENT_FACILITY command.

/EXCEPTION

 Cancels the effect of a previous SET BREAK/EXCEPTION command.

/HANDLER

Cancels the effect of a previous SET BREAK/HANDLER command.

/INSTRUCTION

Cancels the effect of a previous SET BREAK/INSTRUCTION command.

/LINE

Cancels the effect of a previous SET BREAK/LINE command.

/PREDEFINED

Cancels a specified predefined breakpoint without affecting any user-defined breakpoints. When
used with /ALL, cancels all predefined breakpoints.

/SYSEMULATE

(Alpha only) Cancels the effect of a previous SET BREAK/SYSEMULATE command.

/TERMINATING

Cancels the effect of a previous SET BREAK/TERMINATING command.

/UNALIGNED_DATA

(Alpha only) Cancels the effect of a previous SET BREAK/UNALIGNED_DATA command.

/USER

Cancels a specified user-defined breakpoint without affecting any predefined breakpoints. This is the
default unless you specify /PREDEFINED. To cancel all user-defined breakpoints, use the /ALL
qualifier.

Description
Breakpoints can be user defined or predefined. User-defined breakpoints are set explicitly with the
SET BREAK command. Predefined breakpoints, which depend on the type of program you are

372

Chapter 17. Debugger Command Dictionary

debugging (for example, Ada or ZQUIT multiprocess), are established automatically when you start
the debugger. Use the SHOW BREAK command to identify all breakpoints that are currently set. Any
predefined breakpoints are identified as such.

User-defined and predefined breakpoints are set and canceled independently. For example, a location or
event can have both a user-defined and a predefined breakpoint. Canceling the user-defined breakpoint
does not affect the predefined breakpoint, and conversely.

To cancel only user-defined breakpoints, do not specify /PREDEFINED with the CANCEL BREAK
command (the default is /USER). To cancel only predefined breakpoints, specify /PREDEFINED but
not /USER. To cancel both predefined and user-defined breakpoints, specify both /PREDEFINED and
/USER.

In general, the effect of the CANCEL BREAK command is symmetrical with that of the SET BREAK
command (even though the SET BREAK command is used only with user-defined breakpoints). Thus,
to cancel a breakpoint that was established at a specific location, specify that same location (address
expression) with the CANCEL BREAK command. To cancel breakpoints that were established on a
class of instructions or events, specify the class of instructions or events with the corresponding qualifier
(/LINE, /BRANCH, /ACTIVATING, /EVENT=, and so on). For more information, see the qualifier
descriptions.

If you want the debugger to ignore a breakpoint without your having to cancel it (for example, if you
want to rerun the program with and without breakpoints), use the DEACTIVATE BREAK instead of the
CANCEL BREAK command. Later, you can activate the breakpoint (with ACTIVATE BREAK).

Related commands:

(ACTIVATE, DEACTIVATE) BREAK
CANCEL ALL
(SET, SHOW) BREAK
(SET, SHOW) EVENT_FACILITY
(SET, SHOW, CANCEL) TRACE

Examples
1. DBG> CANCEL BREAK MAIN\LOOP+10

This command cancels the user-defined breakpoint set at the address expression MAIN \LOOP+10.

2. DBG> CANCEL BREAK/ALL

This command cancels all user-defined breakpoints.

3. DBG> CANCEL BREAK/ALL/USER/PREDEFINED

This command cancels all user-defined and predefined breakpoints.

4. all> CANCEL BREAK/ACTIVATING

This command cancels a previous user-defined SET BREAK/ACTIVATING command. As a
result, the debugger does not suspend execution when a new process is brought under debugger
control.

5. DBG> CANCEL BREAK/EVENT=EXCEPTION_TERMINATED/PREDEFINED

373

Chapter 17. Debugger Command Dictionary

This command cancels the predefined breakpoint set on task terminations due to unhandled
exceptions. This breakpoint is predefined for Ada programs and programs that call POSIX Threads
or Ada routines.

CANCEL DISPLAY
CANCEL DISPLAY — Permanently deletes a screen display.

Synopsis
CANCEL DISPLAY [display-name[, …]]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[display-name]

Specifies the name of a display to be canceled. Do not specify the PROMPT display, which cannot be
canceled. Do not use the asterisk (*) wildcard character. Instead, use the /ALL qualifier. Do not specify
a display name with /ALL.

Qualifiers
/ALL

Cancels all displays, except the PROMPT display.

Description
When a display is canceled, its contents are permanently lost, it is deleted from the display list, and all
the memory that was allocated to it is released.

You cannot cancel the PROMPT display.

Related commands:

(SHOW) DISPLAY
(SET, SHOW, CANCEL) WINDOW

Examples
1. DBG> CANCEL DISPLAY SRC2

This command deletes display SRC2.

2. DBG> CANCEL DISPLAY/ALL

374

Chapter 17. Debugger Command Dictionary

This command deletes all displays, except the PROMPT display.

CANCEL MODE
CANCEL MODE — Restores the line, symbolic, and G_floating modes established by the SET MODE
command to their default values. Also restores the default input/output radix.

Synopsis
CANCEL MODE

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Description
The effect of the CANCEL MODE command is equivalent to the following commands:

DBG> SET MODE LINE, SYMBOLIC, NOG_FLOAT
DBG> CANCEL RADIX

The default radix for both data entry and display is decimal for most languages.

On Integrity servers, the exceptions are BLISS, MACRO, and Intel ® Assembler (IAS).

On Alpha, the exceptions are BLISS, MACRO--32, and MACRO--64, which have a default radix of
hexadecimal.

Related commands:

(SET, SHOW) MODE
(SET, SHOW, CANCEL) RADIX

Example
DBG> CANCEL MODE

This command restores the default radix mode and all default mode values.

CANCEL RADIX
CANCEL RADIX — Restores the default radix for the entry and display of integer data.

Synopsis
CANCEL RADIX

375

Chapter 17. Debugger Command Dictionary

Qualifiers
/OVERRIDE

Cancels the override radix established by a previous SET RADIX/OVERRIDE command.
This sets the current 0 override radix to "none" and restores the output radix mode to the value
established with a previous SET RADIX or SET RADIX/OUTPUT command. If you did
not change the radix mode with a SET RADIX or SET RADIX/OUTPUT command, the
CANCEL RADIX/OVERRIDE command restores the radix mode to its default value.

Description
The CANCEL RADIX command cancels the effect of any previous SET RADIX and
SET RADIX/OVERRIDE commands. It restores the input and output radix to their default value.

The default radix for both data entry and display is decimal for most languages. The exceptions are
BLISS and MACRO, which have a default radix of hexadecimal.

The effect of the CANCEL RADIX/OVERRIDE command is more limited and is explained in the
description of the /OVERRIDE qualifier.

Related commands:

EVALUATE
(SET, SHOW) RADIX

Examples
1. DBG> CANCEL RADIX

This command restores the default input and output radix.

2. DBG> CANCEL RADIX/OVERRIDE

This command cancels any override radix you might have set with the SET RADIX/OVERRIDE
command.

CANCEL SCOPE
CANCEL SCOPE — Restores the default scope search list for symbol lookup.

Synopsis
CANCEL SCOPE

Description
The CANCEL SCOPE command cancels the current scope search list established by a previous
SET SCOPE command and restores the default scope search list, namely 0, 1, 2, …, n, where n is the
number of calls in the call stack.

376

Chapter 17. Debugger Command Dictionary

The default scope search list specifies that, for a symbol without a path-name prefix, a symbol lookup
such as EXAMINE X first looks for X in the routine that is currently executing (scope 0); if no X is
visible there, the debugger looks in the caller of that routine (scope 1), and so on down the call stack;
if X is not found in scope n, the debugger searches the rest of the run-time symbol table (RST), then
searches the global symbol table (GST), if necessary.

Related commands:

(SET, SHOW) SCOPE

Example
DBG> CANCEL SCOPE

This command cancels the current scope.

CANCEL SOURCE
CANCEL SOURCE — Cancels a source directory search list, a source directory search method, or both
a list and method established by a previous SET SOURCE command.

Synopsis
CANCEL SOURCE []

Qualifiers
/DISPLAY

Cancels the effect of a previous SET SOURCE/DISPLAY command, which specifies the directory
search list to be used by the debugger when displaying source code. Canceling this command means
the debugger searches for a source file in the directory in which it was compiled.

/EDIT

Cancels the effect of a previous SET SOURCE/EDIT command, which specifies the directory
search list to be used during execution of the debugger's EDIT command. Canceling this command
means the debugger searches for a source file in the directory in which it was compiled.

/EXACT

Cancels the effect of a previous SET SOURCE/EXACT command, which specifies a directory
search method. Canceling this command means that the debugger no longer searches for the exact
version of the source file from compilation; it reverts to the default behavior of searching for the
latest version of the file.

/LATEST

Cancels the effect of a previous SET SOURCE/LATEST command, which specifies a directory
search method. In this case, the CANCEL SOURCE/LATEST command directs the debugger to
return to searching for the exact version of the source file from compilation. Because /LATEST

377

Chapter 17. Debugger Command Dictionary

is the default setting, this qualifier only makes sense when used with other qualifiers, for example,
/MODULE.

/MODULE=module-name

Cancels the effect of a previous SET SOURCE/MODULE= module-name command in which
the same module name and qualifiers were specified. (The /MODULE qualifier allows you to
specify a unique directory search list, directory search method, or both, for the named module.)
You can append one or more of the qualifiers listed above to the SET SOURCE/MODULE and
CANCEL SOURCE/MODULE commands.

If you issue a CANCEL SOURCE/MODULE command with additional qualifiers, you
cancel the effect of the specified qualifiers on the module. If you issue an unqualified
CANCEL SOURCE/MODULE command, the debugger no longer differentiates the module from any
other module in your directories.

/ORIGINAL

(Applies to STDL programs only. Requires the installation of the Correlation Facility (a
separate layered product) and invocation of the kept debugger.) Cancels the effect of a previous
SET SOURCE/ORIGINAL command. The SET SOURCE/ORIGINAL command is required
to debug STDL source files, and must be canceled when you debug source files written in other
languages.

Description
CANCEL SOURCE cancels the effect of a previous SET SOURCE command. The nature of this
cancellation depends on the qualifiers activated in previous SET SOURCE commands. See the
CANCEL SOURCE examples to see how CANCEL SOURCE and SET SOURCE interact.

When you issue a SET SOURCE command, be aware that one of the two qualifiers - /LATEST
or /EXACT - will always be active. These qualifiers affect the debugger search method. The
/LATEST qualifier directs the debugger to search for the version last created (the highest-numbered
version in your directory). The /EXACT qualifier directs the debugger to search for the version last
compiled (the version recorded in the debugger symbol table created at compile time). For example, a
SET SOURCE/LATEST command might search for SORT.FOR;3 while a SET SOURCE/EXACT
command might search for SORT.FOR;1.

CANCEL SOURCE without the /DISPLAY or /EDIT qualifier cancels the effect of both
SET SOURCE/DISPLAY and SET SOURCE/EDIT, if both were previously given.

The /DISPLAY qualifier is needed when the files to be displayed are no longer in the compilation
directory.

The /EDIT qualifier is needed when the files used for the display of source code are different from
the editable files. This is the case with Ada programs. For Ada programs, the (SET, SHOW, CANCEL)
SOURCE commands affect the search of files used for source display (the "copied" source files in Ada
program libraries); the (SET, SHOW, CANCEL) SOURCE/EDIT commands affect the search of the
source files that you edit when using the EDIT command.

For information specific to Ada programs, type HELP Language_Support Ada.

Related commands:

378

Chapter 17. Debugger Command Dictionary

(SET, SHOW) SOURCE

Examples
1. DBG> SET SOURCE/MODULE=CTEST/EXACT [], SYSTEM::DEVICE:[PROJD]

DBG> SET SOURCE [PROJA], [PROJB], [PETER.PROJC]
…
DBG> SHOW SOURCE
 source directory search list for CTEST,
 match the exact source file version:
 []
 SYSTEM::DEVICE:[PROJD]
 source directory list for all other modules,
 match the latest source file version:
 [PROJA]
 [PROJB]
 [PETER.PROJC]
DBG> CANCEL SOURCE
DBG> SHOW SOURCE
 source directory search list for CTEST,
 match the exact source file version:
 []
 SYSTEM::DEVICE:[PROJD]
 all other source files will try to match
 the latest source file version

In this example, the SET SOURCE command establishes a directory search list and a search method
(the default, latest version) for source files other than CTEST. The CANCEL SOURCE command
cancels the directory search list but does not cancel the search method.

2. DBG> SET SOURCE/MODULE=CTEST/EXACT [], SYSTEM::DEVICE:[PROJD]
DBG> SET SOURCE [PROJA], [PROJB], [PETER.PROJC]
…
DBG> SHOW SOURCE
 source directory search list for CTEST,
 match the exact source file version:
 []
 SYSTEM::DEVICE:[PROJD]
 source directory list for all other modules,
 match the latest source file version:
 [PROJA]
 [PROJB]
 [PETER.PROJC]
DBG> CANCEL SOURCE/MODULE=CTEST/EXACT
DBG> SHOW SOURCE
 source directory search list for CTEST,
 match the latest source file version:
 [] SYSTEM::DEVICE:[PROJD]
 source directory list for all other modules,
 match the latest source file version:
 [PROJA]
 [PROJB]
 [PETER.PROJC]
DBG> CANCEL SOURCE/MODULE=CTEST
DBG> SHOW SOURCE
 source directory list for all modules,
 match the latest source file version:

379

Chapter 17. Debugger Command Dictionary

 [PROJA]
 [PROJB]
 [PETER.PROJC]

In this example, the SET SOURCE/MODULE=CTEST/EXACT command establishes a
directory search list and a search method (exact version) for the source file CTEST. The
CANCEL SOURCE/MODULE=CTEST/EXACT command cancels the CTEST search method
(returning to the default latest version), and the CANCEL SOURCE/MODULE=CTEST command
cancels the CTEST directory search list.

3. DBG> SET SOURCE /EXACT
DBG> SHOW SOURCE
 no directory search list in effect,
 match the exact source file
DBG> SET SOURCE [JONES]
DBG> SHOW SOURCE
 source directory list for all modules,
 match the exact source file version:
 [JONES]
DBG> CANCEL SOURCE /EXACT
DBG> SHOW SOURCE
 source directory list for all modules,
 match the latest source file version:
 [JONES]

In this example, the SET SOURCE/EXACT command establishes a search method
(exact version) that remains in effect for the SET SOURCE [JONES] command. The
CANCEL SOURCE/EXACT command not only cancels the SET SOURCE/EXACT command, but
also affects the SET SOURCE [JONES] command.

CANCEL TRACE
CANCEL TRACE — Cancels a tracepoint.

Synopsis
CANCEL TRACE [address-expression[, …]]

Parameters
[address-expression]

Specifies a tracepoint to be canceled. Do not use the asterisk (*) wildcard character. Instead, use the
/ALL qualifier. Do not specify an address expression when using any qualifiers except /EVENT,
/PREDEFINED, or /USER.

Qualifiers
/ACTIVATING

 Cancels the effect of a previous SET TRACE/ACTIVATING command.

380

Chapter 17. Debugger Command Dictionary

/ALL

By default, cancels all user-defined tracepoints. When used with /PREDEFINED, it cancels
all predefined tracepoints but no user-defined tracepoints. To cancel all tracepoints, use
/ALL/USER/PREDEFINED.

/BRANCH

Cancels the effect of a previous SET TRACE/BRANCH command.

/CALL

Cancels the effect of a previous SET TRACE/CALL command.

/EVENT=event-name

Cancels the effect of a previous SET TRACE/EVENT= event-name command. Specify the
event name (and address expression, if any) exactly as specified with the SET TRACE/EVENT
command. To identify the current event facility and the associated event names, use the
SHOW EVENT_FACILITY command.

/EXCEPTION

Cancels the effect of a previous SET TRACE/EXCEPTION command.

/INSTRUCTION

Cancels the effect of a previous SET TRACE/INSTRUCTION command.

/LINE

Cancels the effect of a previous SET TRACE/LINE command.

/PREDEFINED

Cancels a specified predefined tracepoint without affecting any user-defined tracepoints. When used
with /ALL, it cancels all predefined tracepoints.

/TERMINATING

Cancels the effect of a previous SET TRACE/TERMINATING command.

/USER

Cancels a specified user-defined tracepoint without affecting any predefined tracepoints. This is the
default unless you specify /PREDEFINED. To cancel all user-defined tracepoints, use /ALL.

Description
Tracepoints can be user defined or predefined. User-defined tracepoints are explicitly set with the
SET TRACE command. Predefined tracepoints, which depend on the type of program you are
debugging (for example, Ada or multiprocess), are established automatically when you start the debugger.
Use the SHOW TRACE command to identify all tracepoints that are currently set. Any predefined
tracepoints are identified as such.

381

Chapter 17. Debugger Command Dictionary

User-defined and predefined tracepoints are set and canceled independently. For example, a location or
event can have both a user-defined and a predefined tracepoint. Canceling the user-defined tracepoint
does not affect the predefined tracepoint, and conversely.

To cancel only user-defined tracepoints, do not specify /PREDEFINED with the
CANCEL TRACE command (the default is /USER). To cancel only predefined tracepoints, specify
/PREDEFINED but not /USER. To cancel both user-defined and predefined tracepoints, use
CANCEL TRACE/ALL/USER/PREDEFINED.

In general, the effect of CANCEL TRACE is symmetrical with that of SET TRACE (even though
SET TRACE is used only with user-defined tracepoints). Thus, to cancel a tracepoint that was
established at a specific location, specify that same location (address expression) with CANCEL TRACE.
To cancel tracepoints that were established on a class of instructions or events, specify the class
of instructions or events with the corresponding qualifier (/LINE, /BRANCH, /ACTIVATING,
/EVENT=, and so on). For more information, see the qualifier descriptions.

To cause the debugger to temporarily ignore a tracepoint, but retain definition of the tracepoint, use the
command DEACTIVATE TRACE. You can later activate the tracepoint (with ACTIVATE TRACE).

Related commands:

(ACTIVATE, DEACTIVATE, SET, SHOW) TRACE
CANCEL ALL
(SET, SHOW, CANCEL) BREAK
(SET, SHOW) EVENT_FACILITY

Examples
1. DBG> CANCEL TRACE MAIN\LOOP+10

This command cancels the user-defined tracepoint at the location MAIN \LOOP+10.

2. DBG> CANCEL TRACE/ALL

This command cancels all user-defined tracepoints.

3. all> CANCEL TRACE/TERMINATING

This command cancels a previous SET TRACE/TERMINATING command. As a result, a user-
defined tracepoint is not triggered when a process does an image exit.

4. DBG> CANCEL TRACE/EVENT=RUN %TASK 3

This command cancels the tracepoint that was set to trigger when task 3 (task ID = 3) entered the
RUN state.

CANCEL TYPE/OVERRIDE
CANCEL TYPE/OVERRIDE — Cancels the override type established by a previous
SET TYPE/OVERRIDE command.

Synopsis

382

Chapter 17. Debugger Command Dictionary

CANCEL TYPE/OVERRIDE

Description
The CANCEL TYPE/OVERRIDE command sets the current override type to "none". As a result, a
program location associated with a compiler-generated type is interpreted according to that type.

Related commands:

DEPOSIT
EXAMINE
(SET, SHOW) EVENT_FACILITY
(SET, SHOW) TYPE/OVERRIDE

Example
DBG> CANCEL TYPE/OVERRIDE

This command cancels the effect of a previous SET TYPE/OVERRIDE command.

CANCEL WATCH
CANCEL WATCH — Cancels a watchpoint.

Synopsis
CANCEL WATCH [address-expression[, …]]

Parameters
[address-expression]

Specifies a watchpoint to be canceled. With high-level languages, this is typically the name of a variable.
Do not use the asterisk (*) wildcard character. Instead, use the /ALL qualifier. Do not specify an address
expression with /ALL.

Qualifiers
/ALL

Cancels all watchpoints.

Description
The effect of the CANCEL WATCH command is symmetrical with the effect of the SET WATCH
command. To cancel a watchpoint that was established at a specific location with the
SET WATCH command, specify that same location with CANCEL WATCH. Thus, to cancel a
watchpoint that was set on an entire aggregate, specify the aggregate in the CANCEL WATCH command;
to cancel a watchpoint that was set on one element of an aggregate, specify that element in the
CANCEL WATCH command.

The CANCEL ALL command also cancels all watchpoints.

383

Chapter 17. Debugger Command Dictionary

To cause the debugger to temporarily ignore a watchpoint, but not delete the definition of the
watchpoint, use the command DEACTIVATE WATCH. You can later activate the watchpoint (with
ACTIVATE WATCH).

Related commands:

(ACTIVATE, DEACTIVATE, SET, SHOW) WATCH
CANCEL ALL
(SET, SHOW, CANCEL) BREAK
(SET, SHOW, CANCEL) TRACE

Examples
1. DBG> CANCEL WATCH SUB2\TOTAL

This command cancels the watchpoint at variable TOTAL in module SUB2.

2. DBG> CANCEL WATCH/ALL

This command cancels all watchpoints you have set.

CANCEL WINDOW
CANCEL WINDOW — Permanently deletes a screen window definition.

Synopsis
CANCEL WINDOW [window-name[, …]]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[window-name]

Specifies the name of a screen window definition to be canceled. Do not use the asterisk (*) wildcard
character. Instead, use the /ALL qualifier. Do not specify a window definition name with /ALL.

Qualifiers
/ALL

Cancels all predefined and user-defined window definitions.

Description
When a window definition is canceled, you can no longer use its name in a DISPLAY command. The
CANCEL WINDOW command does not affect any displays.

384

Chapter 17. Debugger Command Dictionary

Related commands:

(SHOW, CANCEL) DISPLAY
(SET, SHOW) WATCH

Example
DBG> CANCEL WINDOW MIDDLE

This command permanently deletes the screen window definition MIDDLE.

CONNECT
CONNECT — (Kept debugger only.) Interrupts an image that is running without debugger control
in another process and brings that process under debugger control. When used without a parameter,
CONNECT brings any spawned process that is waiting to connect to the debugger under debugger
control. On Alpha systems, the debugger command CONNECT can also be used to bring a target
system running the Alpha operating system under the control of the OpenVMS Alpha System-Code
Debugger. The OpenVMS Alpha System-Code Debugger is a kernel debugger that you activate through
the OpenVMS Debugger. On Integrity servers, the debugger command CONNECT can also be used to
bring a target system running the Integrity server operating system under the control of the OpenVMS
Integrity server System-Code Debugger. The OpenVMS Integrity server System-Code Debugger is a
kernel debugger that you activate through the OpenVMS Debugger. If you are using the CONNECT
command to debug the Alpha operating system, you must complete the instructions described in the
System Code Debugger chapter of the VSI OpenVMS System Analysis Tools Manual before you issue the
command. (These instructions include the creation of an Alpha device driver and the setup commands
activating the OpenVMS Alpha System-Code Debugger.) You must also have started the OpenVMS
Debugger with the DCL command DEBUG/KEEP.

Synopsis
CONNECT [process-spec]CONNECT [%NODE_NAME node-name]

Parameters
[process-spec]

Specifies a process in which an image to be interrupted is running. The process must be in the same
OpenVMS job as the process in which the debugger was started. Use any of the following forms:

[%PROCESS_NAME] proc-name The OpenVMS process name, if that name
contains no space or lowercase characters. The
process name can include the asterisk (*) wildcard
character.

[%PROCESS_NAME] " proc-name " The OpenVMS process name, if that name
contains space or lowercase characters. You can
also use apostrophes (') instead of quotation marks
(").

%PROCESS_PID proc-id The OpenVMS process identifier (PID, a
hexadecimal number).

385

Chapter 17. Debugger Command Dictionary

[node-name]

(Alpha or Integrity servers only) When you are debugging an Alpha or Integrity server operating system,
specifies the node name of the machine to which you are connecting (the target machine running the
Alpha or Integrity server operating system).

Qualifiers
/PASSWORD="password"

(Alpha or Integrity servers only)When you are debugging an Alpha or Integrity server operating
system, specifies the password for the machine to which you are connecting(the target machine
running the Alpha or Integrity server operating system).If a password has not been established for
that machine, this qualifier can be omitted.

/IMAGE_PATH="image-path"

(Alpha or Integrity servers only)When you are debugging an Alpha operating system, specifies the
image-path for the machine from which you are connecting(the host machine running the debugger).
The image-path is a logical name that points to the location of system images. The default logical
name is DBGHK$IMAGE_PATH:.

Description
(Kept debugger only.) When you specify a process, the CONNECT command enables you to interrupt
an image that is running without debugger control in that process and bring the process under debugger
control. The command is useful if, for example, you run a debuggable image with the DCL command
RUN/NODEBUG, or if your program issues a LIB$SPAWN Run-Time Library call that does not start
the debugger. You can connect to a process created through a $CREPRC system service call only if you
specify LOGINOUT.EXE as the executable image.

Depending on the version of the debugger you are running on your system, you may be restricted to
connection with processes you created, or you may be able to connect to processes created by any
member of your user identification code (UIC) group. (In some cases, you may have to set the SYSGEN
SECURITY_POLICY parameter to 8 before you create the process.)

If debugger logicals (DEBUG, DEBUGSHR, DEBUGUISHR, DBGTBKMSG, DBG$PROCESS, DBG
$HELP, DBG$UIHELP, DEBUGAPPCLASS, and VMSDEBUGUIL) exist, they must translate to the
same definitions in both the debugger and the target process.

The code in the image must be compiled with the /DEBUG qualifier and the image must be linked with
either /DEBUG or /DSF. The image must not be linked with the /NOTRACEBACK qualifier.

When the process is brought under debugger control, execution of the image is suspended at the point at
which it was interrupted.

When you do not specify a process, the CONNECT command brings any processes that are waiting to
connect to your debugging session under debugger control. If no process is waiting, you can press Ctrl/C
to abort the CONNECT command.

By default, a tracepoint is triggered when a process is brought under debugger control. This predefined
tracepoint is equivalent to that resulting from entering the SET TRACE/ACTIVATING command. The
process is then known to the debugger and can be identified in a SHOW PROCESS display.

386

Chapter 17. Debugger Command Dictionary

You cannot use the CONNECT command to connect to a subprocess of a process running under
debugger control. Use the SET PROCESS command to connect to such a subprocess.

Related commands:

DISCONNECT
Ctrl/Y
(SET, SHOW, CANCEL) TRACE

Using the CONNECT Command to Debug the OpenVMS Operating
System (Integrity servers and Alpha only)
You can use the CONNECT command to debug Alpha or Integrity server operating system code with
the OpenVMS System Code Debugger (SCD). This capability requires two systems, one called the host
and the other called the target. The host and target must be running the same operating system (Alpha
or Integrity servers). The host is configured as a standard OpenVMS system, from which you run the
debugger using DEBUG/KEEP, then enter the CONNECT command. The target is a standalone system
that is booted in a special way that enables SCD. Communication between the host and the target occurs
over the Ethernet network.

For complete information on using the OpenVMS System Code Debugger, see the VSI OpenVMS System
Analysis Tools Manual.

Examples
1. DBG_1> CONNECT

This command brings under debugger control any processes that are waiting to be connected to the
debugger.

2. DBG_1> CONNECT JONES_3

This command interrupts the image running in process JONES_3 and brings the process under
debugger control. Process JONES_3 must be in the same UIC group as the process in which the
debugger was started. Also, the image must not have been linked with the /NOTRACEBACK
qualifier.

3. DBG> CONNECT %NODE_NAME SCDTST /PASSWORD="eager_beaver"
%DEBUG-I-NOLOCALS, image does not contain local symbols
DBG>

This CONNECT command brings the target system running the OpenVMS operating system under
debugger control. This example specifies that the target system has a node name of SCDTST and a
password of eager_beaver.

Ctrl/C
Ctrl/C — When entered from within a debugging session, Ctrl/C aborts the execution of a
debugger command or interrupts program execution without interrupting the debugging session.

Synopsis

387

Chapter 17. Debugger Command Dictionary

Ctrl/C

Note

Do not use Ctrl/Y from within a debugging session.

Description
Pressing Ctrl/C enables you to abort the execution of a debugger command or to interrupt program
execution without interrupting the debugging session. This is useful when, for example, the program is
executing an infinite loop that does not have a breakpoint, or you want to abort a debugger command
that takes a long time to complete. The debugger prompt is then displayed, so that you can enter
debugger commands.

If your program already has a Ctrl/C AST service routine enabled, use the SET ABORT_KEY
command to assign the debugger's abort function to another Ctrl-key sequence. Note, however, that many
Ctrl-key sequences have predefined functions, and the SET ABORT_KEY command enables you to
override such definitions (see the OpenVMS User's Manual). Some of the Ctrl-key characters not used
by the operating system are G, K, N, and P.

If your program does not have a Ctrl/C AST service routine enabled and you assign the debugger's
abort function to another Ctrl-key sequence, then Ctrl/C behaves like Ctrl/Y - that is, it interrupts
the debugging session and returns you to DCL level.

Do not use Ctrl/Y from within a debugging session. Instead, use either Ctrl/C or an equivalent Ctrl-
key sequence established with the SET ABORT_KEY command.

You can use the SPAWN and ATTACH commands to leave and return to a debugging session without
losing the debugging context.

Note

Pressing Ctrl/C to interrupt a program running under debugger control works only once. Thereafter,
the Ctrl/C interrupt is ignored. The same is true when using the DECwindows STOP button; the
action is acknowledged only the first time the button is pressed.

Related commands:

ATTACH
Ctrl/Y
(SET, SHOW) ABORT_KEY
SPAWN

Example
DBG> GO
 …
 Ctrl/C
DBG> EXAMINE/BYTE 1000:101000 !should have typed 1000:1010
1000: 0
1004: 0
1008: 0

388

Chapter 17. Debugger Command Dictionary

1012: 0
1016: 0
 Ctrl/C
%DEBUG-W-ABORTED, command aborted by user request
DBG>

This example shows how to use Ctrl/C to interrupt program execution and then to abort the execution
of a debugger command.

Ctrl/W
Ctrl/W — Ctrl/W refreshes the screen in screen mode (like DISPLAY/REFRESH).

Synopsis
Ctrl/W

Description
For more information about Ctrl/W, see the /REFRESH qualifier to the DISPLAY command.

Ctrl/Y
Ctrl/Y — When entered from DCL level, Ctrl/Y interrupts an image that is running without
debugger control, enabling you then to start the debugger with the DCL command DEBUG.

Synopsis
Ctrl/Y

Notes

Do not use Ctrl/Y from within a debugging session. Instead, use Ctrl/C or an equivalent abort-key
sequence established with the SET ABORT_KEY command.

When you start the debugger with the Ctrl/Y--DEBUG sequence, you cannot then use the debugger
RUN or RERUN commands.

Description
Pressing Ctrl/Y at DCL level enables you to interrupt an image that is running without debugger
control, so that you can then start the debugger with the DCL command DEBUG.

You can bring an image under debugger control only if, as a minimum, that image was linked with the
/TRACEBACK qualifier (/TRACEBACK is the default for the LINK command).

When you press Ctrl/Y to interrupt the image's execution, control is passed to DCL. If you then
enter the DCL command DEBUG, the interrupted image is brought under control of the debugger.
The debugger sets its language-dependent parameters to the source language of the module in which

389

Chapter 17. Debugger Command Dictionary

execution was interrupted and displays its prompt. You can then determine where execution was
suspended by entering a SHOW CALLS command.

The Ctrl/Y--DEBUG sequence is not supported in the kept debugger configuration.

The Ctrl/Y--DEBUG sequence is not supported in the VSI DECwindows Motif for OpenVMS user
interface to the debugger. Instead, use the STOP button.

Within a debugging session, you can use the CONNECT command to connect an image that is running
without debugger control in another process (of the same job) to that debugging session.

Related commands:

CONNECT
Ctrl/C
DEBUG (DCL command)
RUN (DCL command)

Examples
1. $ RUN/NODEBUG TEST_B

 …
 Ctrl/Y
Interrupt
$ DEBUG
 Debugger Banner and Version Number
Language: ADA, Module: SWAP
DBG>

In this example, the RUN/NODEBUG command executes the image TEST_B without debugger
control. Execution is interrupted with Ctrl/Y. The DEBUG command then causes the debugger to
be started. The debugger displays its banner, sets the language-dependent parameters to the language
(Ada, in this case) of the module (SWAP) in which execution was interrupted, and displays the
prompt.

2. $ RUN/NODEBUG PROG2
 …
 Ctrl/Y
Interrupt
$ DEBUG
 Debugger Banner and Version Number
Language: FORTRAN, Module: SUB4
predefined trace on activation at SUB4\%LINE 12 in %PROCESS_NUMBER 1
DBG>

In this example, the DEFINE/JOB command establishes a multiprocess debugging configuration.
The RUN/NODEBUG command executes the image PROG2 without debugger control. The
Ctrl/Y--DEBUG sequence interrupts execution and starts the debugger. The banner indicates that
a new debugging session has been started. The activation tracepoint indicates where execution was
interrupted when the debugger took control of the process.

Ctrl/Z
Ctrl/Z — Ctrl/Z ends a debugging session (like EXIT).

390

Chapter 17. Debugger Command Dictionary

Synopsis
Ctrl/Z

Description
For more information about Ctrl/Z, see the EXIT command.

DEACTIVATE BREAK
DEACTIVATE BREAK — Deactivates a breakpoint, which you can later activate.

Synopsis
DEACTIVATE BREAK [address-expression[, …]]

Parameters
[address-expression]

Specifies a breakpoint to be deactivated. Do not use the asterisk (*) wildcard character. Instead, use
the /ALL qualifier. Do not specify an address expression when using any qualifiers except /EVENT,
/PREDEFINED, or /USER.

Qualifiers
/ACTIVATING

Deactivates a breakpoint established by a previous SET BREAK/ACTIVATING command.

/ALL

By default, deactivates all user-defined breakpoints. When used with /PREDEFINED, deactivates
all predefined breakpoints but no user-defined breakpoints. To deactivate all breakpoints, use
/ALL/USER/PREDEFINED.

/BRANCH

Deactivates a breakpoint established by a previous SET BREAK/BRANCH command.

/CALL

Deactivates a breakpoint established by a previous SET BREAK/CALL command.

/EVENT=event-name

Deactivates a breakpoint established by a previous SETBREAK/EVENT=event-name
command. Specify the event name (and address expression, if any) exactly as specified with the
SET BREAK/EVENT command.

391

Chapter 17. Debugger Command Dictionary

To identify the current event facility and the associated event names, use the
SHOW EVENT_FACILITY command.

/EXCEPTION

 Deactivates a breakpoint established by a previous SET BREAK/EXCEPTION command.

/HANDLER

Deactivates a breakpoint established by a previous SET BREAK/HANDLER command.

/INSTRUCTION

Deactivates a breakpoint established by a previous SET BREAK/INSTRUCTION command.

/LINE

Deactivates a breakpoint established by a previous SET BREAK/LINE command.

/PREDEFINED

Deactivates a specified predefined breakpoint without affecting any user-defined breakpoints. When
used with /ALL, deactivates all predefined breakpoints.

/SYSEMULATE

(Alpha only) Deactivates a breakpoint established by a previous SET BREAK/SYSEMULATE
command.

/TERMINATING

Deactivates a breakpoint established by a previous SET BREAK/TERMINATING command.

/UNALIGNED_DATA

(Alpha only) Deactivates a breakpoint established by a previous
SET BREAK/UNALIGNED_DATA command.

/USER

Deactivates a specified user-defined breakpoint. To deactivate all user-defined breakpoints, use the
/ALL qualifier.

Description
User-defined breakpoints are activated when you set them with the SET BREAK command. Predefined
breakpoints are activated by default. Use the DEACTIVATE BREAK command to deactivate one or
more breakpoints.

If you deactivate a breakpoint, the debugger ignores the breakpoint during program execution. To
activate a deactivated breakpoint, use the ACTIVATE BREAK command. You can activate and
deactivate user-defined and predefined breakpoints separately. Activating and deactivating breakpoints
enables you to run and rerun your program with or without breakpoints without having to cancel and

392

Chapter 17. Debugger Command Dictionary

then reset them. By default, the RERUN command saves the current state of all breakpoints(activated or
deactivated).

To check if a breakpoint is deactivated, use the SHOW BREAK command.

Related commands:

CANCEL ALL
RERUN
(SET, SHOW, CANCEL, ACTIVATE) BREAK
(SET, SHOW) EVENT_FACILITY

Examples
1. DBG> DEACTIVATE BREAK MAIN\LOOP+10

This command deactivates the user-defined breakpoint set at the address expression
MAIN \LOOP+10.

2. DBG> DEACTIVATE BREAK/ALL

This command deactivates all user-defined breakpoints.

DEACTIVATE TRACE
DEACTIVATE TRACE — Deactivates a tracepoint, which you can later activate.

Synopsis
DEACTIVATE TRACE [address-expression[, …]]

Parameters
[address-expression]

Specifies a tracepoint to be deactivated. Do not use the asterisk (*) wildcard character. Instead, use
the /ALL qualifier. Do not specify an address expression when using any qualifiers except /EVENT,
/PREDEFINED, or /USER.

Qualifiers
/ACTIVATING

 Deactivates a tracepoint established with a previous SET TRACE/ACTIVATING command.

/ALL

By default, deactivates all user-defined tracepoints. When used with /PREDEFINED, it deactivates
all predefined tracepoints but no user-defined tracepoints. To deactivate all tracepoints, use
/ALL/USER/PREDEFINED.

393

Chapter 17. Debugger Command Dictionary

/BRANCH

Deactivates a tracepoint established with a previous SET TRACE/BRANCH command.

/CALL

Deactivates a tracepoint established with a previous SET TRACE/CALL command.

/EVENT=event-name

Deactivates a tracepoint established with a previous SET TRACE/EVENT= event-name
command. Specify the event name (and address expression, if any) exactly as specified with the
SET TRACE/EVENT command.

To identify the current event facility and the associated event names, use the
SHOW EVENT_FACILITY command.

/EXCEPTION

 Deactivates a tracepoint established with a previous SET TRACE/EXCEPTION command.

/INSTRUCTION

Deactivates a tracepoint established with a previous SET TRACE/INSTRUCTION command.

/LINE

Deactivates a tracepoint established with a previous SET TRACE/LINE command.

/PREDEFINED

Deactivates a specified predefined tracepoint without affecting any user-defined tracepoints. When
used with /ALL, it deactivates all predefined tracepoints.

/TERMINATING

Deactivates a tracepoint established with a previous SET TRACE/TERMINATING command.

/USER

Deactivates a specified user-defined tracepoint without affecting any predefined tracepoints. When
used with /ALL, it deactivates all user-defined tracepoints. The /USER qualifier is the default unless
you specify /PREDEFINED.

Description
User-defined tracepoints are activated when you set them with the SET TRACE command. Predefined
tracepoints are activated by default. Use the DEACTIVATE TRACE command to deactivate one or
more tracepoints.

If you deactivate a tracepoint, the debugger ignores the tracepoint during program execution. To activate
a deactivated tracepoint, use the ACTIVATE TRACE command. You can activate and deactivate user-
defined and predefined tracepoints separately. Activating and deactivating tracepoints enables you to run

394

Chapter 17. Debugger Command Dictionary

and rerun your program with or without tracepoints without having to cancel and then reset them. By
default, the RERUN command saves the current state of all tracepoints (activated or deactivated).

To check if a tracepoint is deactivated, use the SHOW TRACE command.

Related commands:

CANCEL ALL
RERUN
(SET, SHOW) EVENT_FACILITY
(SET, SHOW, CANCEL, ACTIVATE) TRACE

Examples
1. DBG> DEACTIVATE TRACE MAIN\LOOP+10

This command deactivates the user-defined tracepoint at the location MAIN \LOOP+10.

2. DBG> DEACTIVATE TRACE/ALL

This command deactivates all user-defined tracepoints.

DEACTIVATE WATCH
DEACTIVATE WATCH — Deactivates a watchpoint, which you can later activate.

Synopsis
DEACTIVATE WATCH [address-expression[, …]]

Parameters
[address-expression]

Specifies a watchpoint to be deactivated. With high-level languages, this is typically the name of a
variable. Do not use the asterisk (*) wildcard character. Instead, use the /ALL qualifier. Do not specify
an address expression with /ALL.

Qualifiers
/ALL

Deactivates all watchpoints.

Description
Watchpoints are activated when you set them with the SET WATCH command. Use the
DEACTIVATE WATCH command to deactivate one or more watchpoints.

If you deactivate a watchpoint, the debugger ignores the watchpoint during program execution. To
activate a deactivated watchpoint, use the ACTIVATE WATCH command. Activating and deactivating

395

Chapter 17. Debugger Command Dictionary

watchpoints enables you to run and rerun your program with or without watchpoints without having to
cancel and then reset them.

By default, the RERUN command saves the current state of all static watchpoints (activated or
deactivated). The state of a particular nonstatic watchpoint might or might not be saved depending on the
scope of the variable being watched relative to the main program unit (where execution restarts).

To check if a watchpoint is deactivated, use the SHOW WATCH command.

Related commands:

CANCEL ALL
RERUN
(SET, SHOW, CANCEL, ACTIVATE) WATCH

Examples
1. DBG> DEACTIVATE WATCH SUB2\TOTAL

This command deactivates the watchpoint at variable TOTAL in module SUB2.

2. DBG> DEACTIVATE WATCH/ALL

This command deactivates all watchpoints you have set.

DECLARE
DECLARE — Declares a formal parameter within a command procedure. This enables you to pass an
actual parameter to the procedure when entering an execute procedure (@) command.

Synopsis
DECLARE [p-name:p-kind [, p-name:p-kind[, …]]]

Parameters
[p-name]

Specifies a formal parameter (a symbol) that is declared within the command procedure.

Do not specify a null parameter (represented either by two consecutive commas or by a comma at the
end of the command).

[p-kind]

Specifies the parameter kind of a formal parameter. Valid keywords are as follows:

ADDRESS Specifies that the actual parameter is interpreted
as an address expression. Same effect as
DEFINE/ADDRESS symbol-name = actual-parameter.

396

Chapter 17. Debugger Command Dictionary

COMMAND Specifies that the actual parameter is
interpreted as a command. Same effect as
DEFINE/COMMAND symbol-name = actual-parameter.

VALUE Specifies that the actual parameter is
interpreted as a value expression in
the current language. Same effect as
DEFINE/VALUE symbol-name = actual-parameter.

Description
The DECLARE command is valid only within a command procedure.

The DECLARE command binds one or more actual parameters, specified on the command line following
the execute procedure (@) command, to formal parameters (symbols) declared within a command
procedure.

Each p-name:p-kind pair specified by a DECLARE command binds one formal parameter to
one actual parameter. Formal parameters are bound to actual parameters in the order in which the
debugger processes the parameter declarations. If you specify several formal parameters on a single
DECLARE command, the leftmost formal parameter is bound to the first actual parameter, the next
formal parameter is bound to the second, and soon. If you use a DECLARE command in a loop, the
formal parameter is bound to the first actual parameter on the first iteration of the loop; the same formal
parameter is bound to the second actual parameter on the next iteration, and so on.

Each parameter declaration acts like a DEFINE command: it associates a formal parameter with an
address expression, a command, or a value expression in the current language, according to the parameter
kind specified. The formal parameters themselves are consistent with those accepted by the DEFINE
command and can in fact be deleted from the symbol table with the DELETE command.

The %PARCNT built-in symbol, which can be used only within a command procedure, enables you to
pass a variable number of parameters to a command procedure. The value of %PARCNT is the number
of actual parameters passed to the command procedure.

Related commands:

@ (Execute Procedure)
DEFINE
DELETE

Examples
1. ! ***** Command Procedure EXAM.COM *****

SET OUTPUT VERIFY
DECLARE K:ADDRESS
EXAMINE K
DBG> @EXAM ARR4
%DEBUG-I-VERIFYIC, entering command procedure EXAM
 DECLARE K:ADDRESS
 EXAMINE K
PROG_8\ARR4
 (1): 18
 (2): 1
 (3): 0

397

Chapter 17. Debugger Command Dictionary

 (4): 1
%DEBUG-I-VERIFYIC, exiting command procedure EXAM
DBG>

In this example, the DECLARE K:ADDRESS command declares the formal parameter K within
command procedure EXAM.COM. When EXAM.COM is executed, the actual parameter passed to
EXAM.COM is interpreted as an address expression, and the EXAMINE K command displays the
value of that address expression. The SET OUTPUT VERIFY command causes the commands to
echo when they are read by the debugger.

At the debugger prompt, the @EXAM ARR4 command executes EXAM.COM, passing the actual
parameter ARR4. Within EXAM.COM, ARR4 is interpreted as an address expression (an array
variable, in this case).

2. ! ***** Debugger Command Procedure EXAM_GO.COM *****
DECLARE L:ADDRESS, M:COMMAND
EXAMINE L; M
DBG> @EXAM_GO X "@DUMP"

In this example, the command procedure EXAM_GO.COM accepts two parameters, an address
expression (L) and a command string (M).The address expression is then examined and the
command is executed.

At the debugger prompt, the @EXAM_GO X "@DUMP" command executes EXAM_GO.COM,
passing the address expression X and the command string @DUMP.

3. ! ***** Debugger Command Procedure VAR.DBG *****
SET OUTPUT VERIFY
FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)
DBG> @VAR.DBG 12, 37, 45
%DEBUG-I-VERIFYIC, entering command procedure VAR.DBG
 FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)
12
37
45
%DEBUG-I-VERIFYIC, exiting command procedure VAR.DBG
DBG>

In this example, the command procedure VAR.DBG accepts a variable number of parameters. That
number is stored in the built-in symbol %PARCNT.

At the debugger prompt, the @VAR.DBG command executes VAR.DBG, passing the actual
parameters 12, 37, and 45. Therefore, %PARCNT has the value 3, and the FOR loop is repeated 3
times. The FOR loop causes the DECLARE command to bind each of the three actual parameters
(starting with 12) to a new declaration of X. Each actual parameter is interpreted as a value
expression in the current language, and the EVALUATE X command displays that value.

DEFINE
DEFINE — Assigns a symbolic name to an address expression, command, or value.

Synopsis
DEFINE [symbol-name=parameter [, symbol-name=parameter[, …]]]

398

Chapter 17. Debugger Command Dictionary

Parameters
[symbol-name]

Specifies a symbolic name to be assigned to an address, command, or value. The symbolic name can
be composed of alphanumeric characters and underscores. The debugger converts lowercase alphabetic
characters to uppercase. The first character must not be a number. The symbolic name must be no more
than 31 characters long.

[parameter]

Depends on the qualifier specified.

Qualifiers
/ADDRESS

(Default) Specifies that the defined symbol is an abbreviation for an address expression. In this case,
parameter is an address expression.

/COMMAND

Specifies that the defined symbol is treated as a new debugger command. In this case, parameter
is a quoted character string. This qualifier provides, in simple cases, essentially the same capability as
the following DCL command:

$ symbol := string

To define complex commands, you might need to use command procedures with formal parameters.
For more information about declaring parameters to command procedures, see the DECLARE
command.

/LOCAL

Specifies that the definition is valid only in the command procedure in which it is defined. The
defined symbol is not visible at debugger command level. By default, a symbol defined within a
command procedure is visible outside that procedure.

/VALUE

Specifies that the defined symbol is an abbreviation for a value. In this case, parameter is a
language expression in the current language.

Description
The DEFINE/ADDRESS command assigns a symbolic name to an address expression in a program.
You can define a symbol for a nonsymbolic program location or for a symbolic program location having
a long path-name prefix. You can then refer to that program location with the symbolic name. The
/ADDRESS qualifier is the default.

The DEFINE/COMMAND command enables you to define abbreviations for debugger commands or
even define new commands, either from the debugger command level or from command procedures.

The DEFINE/VALUE command enables you to assign a symbolic name to a value(or the result of
evaluating a language expression).

399

Chapter 17. Debugger Command Dictionary

The DEFINE/LOCAL command confines symbol definitions to command procedures. By default,
defined symbols are global (visible outside the command procedure).

To enter several DEFINE commands with the same qualifier, first use the SET DEFINE command to
establish a new default qualifier (for example, SET DEFINE COMMAND makes subsequent DEFINE
commands behave like DEFINE/COMMAND). You can override the current default qualifier for a single
DEFINE command by specifying another qualifier.

In symbol translation, the debugger searches symbols you define during the debugging session first. So if
you define a symbol that already exists in your program, the debugger translates the symbol according to
its defined definition, unless you specify a path-name prefix.

If a symbol is redefined, the previous definition is canceled, even if you used different qualifiers with the
DEFINE command.

Definitions created with the DEFINE/ADDRESS and DEFINE/VALUE commands are available only
when the image in whose context they were created is the current image. If you use the SET IMAGE
command to establish a new current image, these definitions are temporarily unavailable. However,
definitions created with the DEFINE/COMMAND and DEFINE/KEY commands are always available for
all images.

Use the SHOW SYMBOL/DEFINED command to determine the equivalence value of a symbol.

Use the DELETE command to cancel a symbol definition.

Related commands:

DECLARE
DELETE
SET IMAGE
SHOW DEFINE
SHOW SYMBOL/DEFINED

Examples
1. DBG> DEFINE CHK=MAIN\LOOP+10

This command assigns the symbol CHK to the address MAIN \LOOP+10.

2. DBG> DEFINE/VALUE COUNTER=0
DBG> SET TRACE/SILENT R DO (DEFINE/VALUE COUNTER = COUNTER+1)

In this example, the DEFINE/VALUE command assigns a value of 0 to the symbol COUNTER. The
SET TRACE command causes the debugger to increment the value of the symbol COUNTER by 1
whenever address R is encountered. In other words, this example counts the number of calls to R.

3. DBG> DEFINE/COMMAND BRE = "SET BREAK"

This command assigns the symbol BRE to the debugger command SET BREAK.

DEFINE/KEY
DEFINE/KEY — Assigns a string to a function key.

400

Chapter 17. Debugger Command Dictionary

Synopsis
DEFINE/KEY [key-name "equivalence-string"]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[key-name]

Specifies a function key to be assigned a string. Valid key names are as follows:

Key Name LK201 Keyboard VT100-type VT52-type

PF1 PF1 PF1 Blue
PF2 PF2 PF2 Red
PF3 PF3 PF3 Black
PF4 PF4 PF4
KP0--KP9 Keypad 0--9 Keypad 0--9 Keypad 0--9
PERIOD Keypad period (.) Keypad period (.)
COMMA Keypad comma (,) Keypad comma (,)
E1 Find
E2 Insert Here
E3 Remove
E4 Select
E5 Prev Screen
E6 Next Screen
HELP Help
DO Do
F6--F20 F6--F20

On LK201 keyboards:

• You cannot define keys F1 to F5 or the arrow keys (E7 to E10).

• You can define keys F6 to F14 only if you have first entered the DCL command
SET TERMINAL/NOLINE_EDITING. In that case, the line-editing functions of the left and right
arrow keys (E8 and E9) are disabled.

[equivalence-string]

Specifies the string to be processed when you press the specified key. Typically, this is one or more
debugger commands. If the string includes any space or non alphanumeric characters (for example, a
semicolon separating two commands), enclose the string in quotation marks (").

401

Chapter 17. Debugger Command Dictionary

Qualifiers
/ECHO (default)
/NOECHO

Controls whether the command line is displayed after the key has been pressed. Do not use
/NOECHO with /NOTERMINATE.

/IF_STATE=(state-name[, …])
/NOIF_STATE (default)

Specifies one or more states to which a key definition applies. The /IF_STATE qualifier assigns
the key definition to the specified states. You can specify predefined states, such as DEFAULT
and GOLD, or user-defined states. A state name can be any appropriate alphanumeric string. The
/NOIF_STATE qualifier assigns the key definition to the current state.

/LOCK_STATE
/NOLOCK_STATE (default)

Controls how long the state set by /SET_STATE remains in effect after the specified key is
pressed. The /LOCK_STATE qualifier causes the state to remain in effect until it is changed
explicitly (for example, with a SET KEY/STATE command). The /NOLOCK_STATE qualifier
causes the state to remain in effect only until the next terminator character is typed, or until the next
defined function key is pressed.

/LOG (default)
/NOLOG

Controls whether a message is displayed indicating that the key definition has been successfully
created. The /LOG qualifier displays the message. The /NOLOG qualifier suppresses the message.

/SET_STATE=state-name
/NOSET_STATE (default)

Controls whether pressing the key changes the current key state. The /SET_STATE qualifier causes
the current state to change to the specified state when you press the key. The /NOSET_STATE
qualifier causes the current state to remain in effect.

/TERMINATE
/NOTERMINATE (default)

Controls whether the specified string is terminated (processed) when the key is pressed. The
/TERMINATE qualifier causes the string to be terminated when the key is pressed. The
/NOTERMINATE qualifier enables you to press other keys before terminating the string by pressing
the Return key.

Description
Keypad mode must be enabled (SET MODE KEYPAD) before you can use this command. Keypad
mode is enabled by default.

The DEFINE/KEY command enables you to assign a string to a function key, overriding any predefined
function that was bound to that key. When you then press the key, the debugger enters the currently

402

Chapter 17. Debugger Command Dictionary

associated string into your command line. The DEFINE/KEY command is like the DCL command
DEFINE/KEY.

For a list of the predefined key functions, see the Keypad_Definitions_CI online help topic.

On VT52- and VT100-series terminals, the function keys you can use include all of the numeric keypad
keys. Newer terminals and workstations have the LK201 keyboard. On LK201 keyboards, the function
keys you can use include all of the numeric keypad keys, the non arrow keys of the editing keypad (Find,
Insert Here, and so on), and keys F6 to F20 at the top of the keyboard.

A key definition remains in effect until you redefine the key, enter the DELETE/KEY command for
that key, or exit the debugger. You can include key definitions in a command procedure, such as your
debugger initialization file.

The /IF_STATE qualifier enables you to increase the number of key definitions available on your
terminal. The same key can be assigned any number of definitions as long as each definition is associated
with a different state.

By default, the current key state is the DEFAULT state. The current state can be changed with the
SET KEY/STATE command, or by pressing a key that causes a state change (a key that was defined
with DEFINE/KEY/LOCK_STATE/SET_STATE).

Related commands:

DELETE/KEY
(SET, SHOW) KEY

Examples
1. DBG> SET KEY/STATE=GOLD

%DEBUG-I-SETKEY, keypad state has been set to GOLD
DBG> DEFINE/KEY/TERMINATE KP9 "SET RADIX/OVERRIDE HEX"
%DEBUG-I-DEFKEY, GOLD key KP9 has been defined

In this example, the SET KEY command establishes GOLD as the current key state. The
DEFINE/KEY command assigns the SET RADIX/OVERRIDE HEX command to keypad key 9
(KP9) for the current state (GOLD). The command is processed when you press the key.

2. DBG> DEFINE/KEY/IF_STATE=BLUE KP9 "SET BREAK %LINE "
%DEBUG-I-DEFKEY, BLUE key KP9 has been defined

This command assigns the unterminated command string "SETBREAK %LINE" to keypad key 9 for
the BLUE state. After pressing BLUE-KP9, you can enter a line number and then press the Return
key to terminate and process the SET BREAK command.

3. DBG> SET KEY/STATE=DEFAULT
%DEBUG-I-SETKEY, keypad state has been set to DEFAULT
DBG> DEFINE/KEY/SET_STATE=RED/LOCK_STATE F12 ""
%DEBUG-I-DEFKEY, DEFAULT key F12 has been defined

In this example, the SET KEY command establishes DEFAULT as the current state. The
DEFINE/KEY command makes the F12 key (on an LK201 keyboard) a state key. Pressing F12
while in the DEFAULT state causes the current state to become RED. The key definition is not
terminated and has no other effect (a null string is assigned to F12). After pressing F12, you can
enter "RED" commands by pressing keys that have definitions associated with the RED state.

403

Chapter 17. Debugger Command Dictionary

DEFINE/PROCESS_SET
DEFINE/PROCESS_SET — Assigns a symbolic name to a list of process specifications.

Synopsis
DEFINE/PROCESS_SET [process-set-name =process-spec[, …]]

Parameters
[process-set-name]

Specifies a symbolic name to be assigned to a list of process specifications. The symbolic name can be
composed of alphanumeric characters and underscores. The debugger converts lowercase alphabetic
characters to uppercase. The first character must not be a number. The symbolic name must be no more
than 31 characters long.

[process-spec]

Specifies a process currently under debugger control. Use any of the following forms:

[%PROCESS_NAME] process-name The process name, if that name does not contain
spaces or lowercase characters. The process name
can include the asterisk (*) wildcard character.

[%PROCESS_NAME] " process-name " The process name, if that name contains spaces or
lowercase characters. You can also use apostrophes
(') instead of quotation marks (").

%PROCESS_PID process_id The process identifier (PID, a hexadecimal
number).

[%PROCESS_NUMBER] process-number
(or %PROC process-number)

The number assigned to a process when it
comes under debugger control. A new number
is assigned sequentially, starting with 1, to each
process. If a process is terminated with the
EXIT or QUIT command, the number can be
assigned again during the debugging session.
Process numbers appear in a SHOW PROCESS
display. Processes are ordered in a circular
list so they can be indexed with the built-
in symbols %PREVIOUS_PROCESS and
%NEXT_PROCESS.

process-set-name A symbol defined with the
DEFINE/PROCESS_SET command to represent
a group of processes.

%NEXT_PROCESS The next process after the visible process in the
debugger's circular process list.

%PREVIOUS_PROCESS The process previous to the visible process in the
debugger's circular process list.

404

Chapter 17. Debugger Command Dictionary

%VISIBLE_PROCESS The process whose stack, register set, and images
are the current context for looking up symbols,
register values, routine calls, breakpoints, and so
on.

If you do not specify a process, the symbolic name is created but contains no process entries.

Description
The DEFINE/PROCESS_SET command assigns a symbol to a list of process specifications. You can
then use the symbol in any command where a list of process specifications is allowed.

The DEFINE/PROCESS_SET command does not verify the existence of a specified process. This
enables you to specify processes that do not yet exist.

To identify a symbol that was defined with the DEFINE/PROCESS_SET command, use
the SHOW SYMBOL/DEFINED command. To delete a symbol that was defined with the
DEFINE/PROCESS_SET command, use the DELETE command.

Related commands:

DELETE
(SET, SHOW) DEFINE
SHOW SYMBOL/DEFINED

Examples
1. all> DEFINE/PROCESS_SET SERVERS=FILE_SERVER, NETWORK_SERVER

all> SHOW PROCESS SERVERS
 Number Name State Current PC
* 1 FILE_SERVER step FS_PROG\%LINE 37
 2 NETWORK_SERVER break NET_PROG\%LINE 24
all>

This DEFINE/PROCESS_SET command assigns the symbolic name SERVERS to the process
set consisting of FILE_SERVER and NETWORK_SERVER. The SHOW PROCESS SERVERS
command displays information about the processes that makeup the set SERVERS.

2. all> DEFINE/PROCESS_SET G1=%PROCESS_NUMBER 1, %VISIBLE_PROCESS
all> SHOW SYMBOL/DEFINED G1
defined G1
 bound to: "%PROCESS_NUMBER 1, %VISIBLE_PROCESS"
 was defined /process_set
all> DELETE G1

This DEFINE/PROCESS_SET command assigns the symbolic name G1 to the process set
consisting of process 1 and the visible process (process 3). The SHOW SYMBOL/DEFINED G1
command identifies the defined symbol G1. The DELETE G1 command deletes the symbol from
the DEFINE symbol table.

3. all> DEFINE/PROCESS_SET A = B, C, D
all> DEFINE/PROCESS_SET B = E, F, G
all> DEFINE/PROCESS_SET E = I, J, A
%DEBUG-E-NORECSYM, recursive PROCESS_SET symbol definition
 encountered at or near "A"

405

Chapter 17. Debugger Command Dictionary

This series of DEFINE/PROCESS_SET commands illustrate valid and invalid uses of the
command.

DELETE
DELETE — Deletes a symbol definition that was established with the DEFINE command.

Synopsis
DELETE [symbol-name[, …]]

Parameters
[symbol-name]

Specifies a symbol whose definition is to be deleted from the DEFINE symbol table. Do not use the
asterisk (*) wildcard character. Instead, use the /ALL qualifier. Do not specify a symbol name with
/ALL. If you use the /LOCAL qualifier, the symbol specified must have been previously defined with
the DEFINE/LOCAL command. If you do not specify /LOCAL, the symbol specified must have been
previously defined with the DEFINE command without /LOCAL.

Qualifiers
/ALL

Deletes all global DEFINE definitions. Using /ALL/LOCAL deletes all local DEFINE definitions
associated with the current command procedure (but not the global DEFINE definitions).

/LOCAL

Deletes the (local) definition of the specified symbol from the current command procedure. The
symbol must have been previously defined with the DEFINE/LOCAL command.

Description
The DELETE command deletes either a global DEFINE symbol or a local DEFINE symbol. A global
DEFINE symbol is defined with the DEFINE command without the /LOCAL qualifier. A local
DEFINE symbol is defined in a debugger command procedure with the DEFINE/LOCAL command, so
that its definition is confined to that command procedure.

Related commands:

DECLARE
DEFINE
SHOW DEFINE
SHOW SYMBOL/DEFINED

Examples
1. DBG> DEFINE X = INARR, Y = OUTARR

406

Chapter 17. Debugger Command Dictionary

DBG> DELETE X, Y

In this example, the DEFINE command defines X and Y as global symbols corresponding to
INARR and OUTARR, respectively. The DELETE command deletes these two symbol definitions
from the global symbol table.

2. DBG> DELETE/ALL/LOCAL

This command deletes all local symbol definitions from the current command procedure.

DELETE/KEY
DELETE/KEY — Deletes a key definition that was established with the DEFINE/KEY command or, by
default, by the debugger.

Synopsis
DELETE/KEY [key-name]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[key-name]

Specifies a key whose definition is to be deleted. Do not use the asterisk (*) wildcard character. Instead,
use the /ALL qualifier. Do not specify a key name with /ALL. Valid key names are as follows:

Key Name LK201 Keyboard VT100-type VT52-type

PF1 PF1 PF1 Blue
PF2 PF2 PF2 Red
PF3 PF3 PF3 Black
PF4 PF4 PF4
KP0--KP9 Keypad 0--9 Keypad 0--9 Keypad 0--9
PERIOD Keypad period (.) Keypad period (.)
COMMA Keypad comma (,) Keypad comma (,)
ENTER Enter ENTER ENTER
E1 Find
E2 Insert Here
E3 Remove
E4 Select
E5 Prev Screen
E6 Next Screen

407

Chapter 17. Debugger Command Dictionary

Key Name LK201 Keyboard VT100-type VT52-type

HELP Help
DO Do
F6--F20 F6--F20

Qualifiers
/ALL

Deletes all key definitions in the specified state. If you do not specify a state, all key definitions in
the current state are deleted. To specify one or more states, use /STATE= state-name.

/LOG (default)
/NOLOG

Controls whether a message is displayed indicating that the specified key definitions have been
deleted. The /LOG qualifier (which is the default) displays the message. The /NOLOG qualifier
suppresses the message.

/STATE=(state-name [, …])
/NOSTATE (default)

Selects one or more states for which a key definition is to be deleted. The /STATE qualifier deletes
key definitions for the specified states. You can specify predefined key states, such as DEFAULT
and GOLD, or user-defined states. A state name can be any appropriate alphanumeric string. The
/NOSTATE qualifier deletes the key definition for the current state only.

By default, the current key state is the DEFAULT state. The current state can be changed with
the SET KEY/STATE command, or by pressing a key that causes a state change (a key that was
defined with DEFINE/KEY/LOCK_STATE/SET_STATE).

Description
The DELETE/KEY command is like the DCL command DELETE/KEY.

Keypad mode must be enabled (SET MODE KEYPAD) before you can use this command. Keypad
mode is enabled by default.

Related commands:

DEFINE/KEY
(SET, SHOW) KEY

Examples
1. DBG> DELETE/KEY KP4

%DEBUG-I-DELKEY, DEFAULT key KP4 has been deleted

This command deletes the key definition for KP4 in the state last set by the SET KEY command (by
default, this is the DEFAULT state).

2. DBG> DELETE/KEY/STATE=(BLUE, RED) COMMA
%DEBUG-I-DELKEY, BLUE key COMMA has been deleted

408

Chapter 17. Debugger Command Dictionary

%DEBUG-I-DELKEY, RED key COMMA has been deleted

This command deletes the key definition for the COMMA key in the BLUE and RED states.

DEPOSIT
DEPOSIT — Changes the value of a program variable. More generally, deposits a new value at the
location denoted by an address expression.

Synopsis
DEPOSIT [address-expression = language-expression]

Parameters
[address-expression]

Specifies the location into which the value of the language expression is to be deposited. With high-level
languages, this is typically the name of a variable and can include a path name to specify the variable
uniquely. More generally, an address expression can also be a memory address or a register and can be
composed of numbers (offsets) and symbols, as well as one or more operators, operands, or delimiters.
For information about the debugger symbols for the registers and about the operators you can use in
address expressions, see the Built_in_Symbols and Address_Expressions help topics.

You cannot specify an entire aggregate variable (a composite data structure such as an array or a record).
To specify an individual array element or are cord component, follow the syntax of the current language.

[language-expression]

Specifies the value to be deposited. You can specify any language expression that is valid in the current
language. For most languages, the expression can include the names of simple (non composite, single-
valued) variables but not the names of aggregate variables (such as arrays or records). If the expression
contains symbols with different compiler-generated types, the debugger uses the rules of the current
language to evaluate the expression.

If the expression is an ASCII string or an assembly-language instruction, you must enclose it in quotation
marks (") or apostrophes ('). If the string contains quotation marks or apostrophes, use the other
delimiter to enclose the string.

If the string has more characters (1-byte ASCII) than can fit into the program location denoted by the
address expression, the debugger truncates the extra characters from the right. If the string has fewer
characters, the debugger pads the remaining characters to the right of the string by inserting ASCII space
characters.

Qualifiers
/ASCIC
/AC

Deposits a counted ASCII string into the specified location. You must specify a quoted string on the
right-hand side of the equal sign. The deposited string is preceded by a 1-byte count field that gives
the length of the string.

409

Chapter 17. Debugger Command Dictionary

/ASCID
/AD

Deposits an ASCII string into the address given by a string descriptor that is at the specified
location. You must specify a quoted string on the right-hand side of the equal sign. The specified
location must contain a string descriptor. If the string lengths do not match, the string is either
truncated on the right or padded with space characters on the right.

/ASCII:n

Deposits n bytes of an ASCII string into the specified location. You must specify a quoted string
on the right-hand side of the equal sign. If its length is not n, the string is truncated or padded
with space characters on the right. If you omit n, the actual length of the data item at the specified
location is used.

/ASCIW
/AW

Deposits a counted ASCII string into the specified location. You must specify a quoted string on the
right-hand side of the equal sign. The deposited string is preceded by a 2-byte count field that gives
the length of the string.

/ASCIZ
/AZ

Deposits a zero-terminated ASCII string into the specified location. You must specify a quoted
string on the right-hand side of the equal sign. The deposited string is terminated by a zero byte that
indicates the end of the string.

/BYTE

Deposits a 1-byte integer into the specified location.

/D_FLOAT

Converts the expression on the right-hand side of the equal sign to the D_floating type (length 8
bytes) and deposits the result into the specified location.

/DATE_TIME

Converts a string representing a date and time (for example, 21-DEC-198821:08:47.15) to the
internal format for date and time and deposits that value (length 8 bytes) into the specified location.
Specify an absolute date and time in the following format:

[dd-mmm-yyyy[:]] [hh:mm:ss.cc]

/EXTENDED_FLOAT
/X_FLOAT

(Alpha only) Converts the expression on the right-hand side of the equal sign to the IEEE X_floating
type (length 16 bytes) and deposits the result into the specified location.

/FLOAT

On Alpha, converts the expression on the right-hand side of the equal sign to the IEEE T_floating
type (double precision, length 8 bytes) and deposits the result into the specified location.

410

Chapter 17. Debugger Command Dictionary

/G_FLOAT

Converts the expression on the right-hand side of the equal sign to the G_floating type (length 8
bytes) and deposits the result into the specified location.

/LONG_FLOAT
/S_FLOAT

(Integrity servers and Alpha only) Converts the expression on the right-hand side of the equal sign to
the IEEE S_floating type (single precision, length 4 bytes) and deposits the result into the specified
location.

/LONG_LONG_FLOAT
/T_FLOAT

(Integrity servers and Alpha only) Converts the expression on the right-hand side of the equal sign to
the IEEE T_floating type (double precision, length 8 bytes) and deposits the result into the specified
location.

/LONGWORD

Deposits a longword integer (length 4 bytes) into the specified location.

/OCTAWORD

Deposits an octaword integer (length 16 bytes) into the specified location.

/PACKED:n

Converts the expression on the right-hand side of the equal sign to a packed decimal representation
and deposits the resulting value into the specified location. The value of n is the number of decimal
digits. Each digit occupies one nibble (4 bits).

/QUADWORD

Deposits a quadword integer (length 8 bytes) into the specified location.

/TASK

Applies to tasking (multithread) programs. Deposits a task value (a task name or a task ID such as
%TASK 3) into the specified location. The deposited value must be a valid task value.

/TYPE=(name)

Converts the expression to be deposited to the type denoted by name (which must be the name of
a variable or data type declared in the program), then deposits the resulting value into the specified
location. This enables you to specify a user-declared type. You must use parentheses around the type
expression.

/WCHAR_T[:n]

Deposits up to n longwords (n characters) of a converted multibyte file code sequence into the
specified location. The default is 1 longword. You must specify a string on the right-hand side of the
equal sign.

When converting the specified string, the debugger uses the locale database of the process in which
the debugger runs. The default is C locale.

411

Chapter 17. Debugger Command Dictionary

/WORD

Deposits a word integer (length 2 bytes) into the specified location.

Description
You can use the DEPOSIT command to change the contents of any memory location or register that is
accessible in your program. For high-level languages the command is used mostly to change the value of
a variable (an integer, real, string, array, record, and so on).

The DEPOSIT command is like an assignment statement in most programming languages. The value
of the expression specified to the right of the equal sign is assigned to the variable or other location
specified to the left of the equal sign. For Ada and Pascal, you can use ":=" instead of "= " in the
command syntax.

The debugger recognizes the compiler-generated types associated with symbolic address expressions
(symbolic names declared in your program). Symbolic address expressions include the following entities:

• Variable names. When specifying a variable with the DEPOSIT command, use the same syntax that
is used in the source code.

• Routine names, labels, and line numbers.

In general, when you enter a DEPOSIT command, the debugger takes the following actions:

• It evaluates the address expression specified to the left of the equal sign, to yield a program location.

• If the program location has a symbolic name, the debugger associates the location with the symbol's
compiler-generated type. If the location does not have a symbolic name (and, therefore, no associated
compiler-generated type) the debugger associates the location with the type longword integer by
default. This means that, by default, you can deposit integer values that do not exceed 4 bytes into
these locations.

• It evaluates the language expression specified to the right of the equal sign, in the syntax of
the current language and in the current radix, to yield a value. The current language is the
language last established with the SET LANGUAGE command. By default, if you did not enter a
SET LANGUAGE command, the current language is the language of the module containing the main
program.

• It checks that the value and type of the language expression is consistent with the type of the address
expression. If you try to deposit a value that is incompatible with the type of the address expression,
the debugger issues a diagnostic message. If the value is compatible, the debugger deposits the value
into the location denoted by the address expression.

The debugger might do type conversion during a deposit operation if the language rules allow it. For
example, a real value specified to the right of the equal sign might be converted to an integer value if
it is being deposited into a location with an integer type. In general, the debugger tries to follow the
assignment rules for the current language.

There are several ways of changing the type associated with a program location so that you can deposit
data of a different type into that location:

• To change the default type for all locations that do nothave a symbolic name, you can specify a new
type with the SET TYPE command.

412

Chapter 17. Debugger Command Dictionary

• To change the default type for all locations (both those that do and do not have a symbolic name),
you can specify a new type with the SET TYPE/OVERRIDE command.

• To override the type currently associated with a particular location for the duration of a single
DEPOSIT command, you can specify a new type by using a qualifier (/ASCII: n, /BYTE,
/TYPE=(name), and so on).

When debugging a C program, or a program in any case-specific language, you cannot use the
DEPOSIT/TYPE command if the type specified is a mixed or lowercase name. For example, suppose
the program has a function like the following:

xyzzy_type foo (){xyzzy_type z;z = get_z ();return (z);}

If you try to enter the following command, the debugger issues a message that it cannot find the type
“xyzzy_type”:

DBG> DEPOSIT/TYPE=(xyzzy_type) z="whatever"

The debugger can interpret and display integer data in any one of four radixes: binary, decimal,
hexadecimal, and octal.

The default radix for both data entry and display is decimal for most languages. The exceptions are
BLISS and MACRO, which have a default radix of hexadecimal.

You can use the SET RADIX and SET RADIX/OVERRIDE commands to change the default radix.

The DEPOSIT command sets the current entity built-in symbols %CURLOC and period (.) to the
location denoted by the address expression specified. Logical predecessors (%PREVLOC or the
circumflex character (^)) and successors (%NEXTLOC) are based on the value of the current entity.

Related commands:

CANCEL TYPE/OVERRIDE
EVALUATE
EXAMINE
MONITOR
(SET, SHOW, CANCEL) RADIX
(SET, SHOW) TYPE

Examples
1. DBG> DEPOSIT I = 7

This command deposits the value 7 into the integer variable I.

2. DBG> DEPOSIT WIDTH = CURRENT_WIDTH + 24.80

This command deposits the value of the expression CURRENT_WIDTH + 24.80 into the real
variable WIDTH.

3. DBG> DEPOSIT STATUS = FALSE

This command deposits the value FALSE into the Boolean variable STATUS.

4. DBG> DEPOSIT PART_NUMBER = "WG-7619.3-84"

413

Chapter 17. Debugger Command Dictionary

This command deposits the string WG-7619.3-84 into the string variable PART_NUMBER.

5. DBG> DEPOSIT EMPLOYEE.ZIPCODE = 02172

This command deposits the value 02172 into component ZIPCODE of record EMPLOYEE.

6. DBG> DEPOSIT ARR(8) = 35
DBG> DEPOSIT ^ = 14

In this example, the first DEPOSIT command deposits the value 35 into element 8 of array ARR. As
a result, element 8 becomes the current entity. The second command deposits the value 14 into the
logical predecessor of element 8, namely element 7.

7. DBG> FOR I = 1 TO 4 DO (DEPOSIT ARR(I) = 0)

This command deposits the value 0 into elements 1 to 4 of array ARR.

8. DBG> DEPOSIT COLOR = 3
%DEBUG-E-OPTNOTALLOW, operator "DEPOSIT" not allowed on
 given data type

The debugger alerts you when you try to deposit data of the wrong type into a variable (in this
case, if you try to deposit an integer value into an enumerated type variable). The E (error) message
severity indicates that the debugger does not make the assignment.

9. DBG> DEPOSIT VOLUME = - 100
%DEBUG-I-IVALOUTBNDS, value assigned is out of bounds
 at or near '-'

The debugger alerts you when you try to deposit an out-of-bounds value into a variable (in this case
a negative value). The I (informational) message severity indicates that the debugger does make the
assignment.

10. DBG> DEPOSIT/BYTE WORK = %HEX 21

This command deposits the expression %HEX 21 into location WORK and converts it to a byte
integer.

11. DBG> DEPOSIT/OCTAWORD BIGINT = 111222333444555

This command deposits the expression 111222333444555 into location BIGINT and converts it to
an octaword integer.

12. DBG> DEPOSIT/FLOAT BIGFLT = 1.11949*10**35

This command converts 1.11949*10**35 to an F_floating type value and deposits it into location
BIGFLT.

13. DBG> DEPOSIT/ASCII:10 WORK+20 = 'abcdefghij'

This command deposits the string "abcdefghij" into the location that is 20 bytes beyond that denoted
by the symbol WORK.

14. DBG> DEPOSIT/TASK VAR = %TASK 2
DBG> EXAMINE/HEX VAR
SAMPLE.VAR: 0016A040
DBG> EXAMINE/TASK VAR
SAMPLE.VAR: %TASK 2

414

Chapter 17. Debugger Command Dictionary

DBG>

The DEPOSIT command deposits the Ada task value %TASK 2 into location VAR. The subsequent
EXAMINE commands display the contents of VAR in hexadecimal format and as a task value,
respectively.

DISABLE AST
DISABLE AST — Disables the delivery of asynchronous system traps (ASTs) in your program.

Synopsis
DISABLE AST []

Description
The DISABLE AST command disables the delivery of ASTs in your program and thereby prevents
interrupts from occurring while the program is running. If ASTs are delivered while the debugger is
running (processing commands, and so on), they are queued and are delivered when control is returned
to the program.

The ENABLE AST command reenables the delivery of ASTs, including any pending ASTs (ASTs
waiting to be delivered).

Note

Any call by your program to the $SETAST system service that enables ASTs overrides a previous
DISABLE AST command.

Related commands:

(ENABLE, SHOW) AST

Example
DBG> DISABLE AST
DBG> SHOW AST
ASTs are disabled
DBG>

The DISABLE AST command disables the delivery of ASTs in your program, as confirmed by the
SHOW AST command.

DISCONNECT
DISCONNECT — Releases a process from debugger control without terminating the process (kept
debugger only).

Synopsis
DISCONNECT [process-spec]

415

Chapter 17. Debugger Command Dictionary

Parameters
[process-spec]

Specifies a process currently under debugger control. Use any of the following forms:

[%PROCESS_NAME] process-name The process name, if that name does not contain
spaces or lowercase characters. The process name
can include the asterisk (*) wildcard character.

[%PROCESS_NAME] " process-name " The process name, if that name contains spaces or
lowercase characters. You can also use apostrophes
(') instead of quotation marks (").

%PROCESS_PID process_id The process identifier (PID, a hexadecimal
number).

[%PROCESS_NUMBER] process-number
(or %PROC process-number)

The number assigned to a process when it
comes under debugger control. A new number
is assigned sequentially, starting with 1, to each
process. If a process is terminated with the
EXIT or QUIT command, the number can be
assigned again during the debugging session.
Process numbers appear in a SHOW PROCESS
display. Processes are ordered in a circular
list so they can be indexed with the built-
in symbols %PREVIOUS_PROCESS and
%NEXT_PROCESS.

process-set-name A symbol defined with the
DEFINE/PROCESS_SET command to represent
a group of processes.

%NEXT_PROCESS The next process after the visible process in the
debugger's circular process list.

%PREVIOUS_PROCESS The process previous to the visible process in the
debugger's circular process list.

%VISIBLE_PROCESS The process whose stack, register set, and images
are the current context for looking up symbols,
register values, routine calls, breakpoints, and so
on.

Description
(Kept debugger only.) The DISCONNECT command releases a specified process from debugger control
without terminating the process. This is useful if, for example, you have brought a running program
under debugger control with a CONNECT command and you now want to release it without terminating
the image. (In contrast, when you specify a process with the EXIT or QUIT command, the process is
terminated.)

Caution

The debugger kernel runs in the same process as the image being debugged. If you issue the
DISCONNECT command for this process, you release your process, but the kernel remains activated.

416

Chapter 17. Debugger Command Dictionary

This activation continues until the program image finishes running.

If you install a new version of the debugger while one or more disconnected but activated kernels inhabit
user program space, you can experience problems with debugger behavior if you try to reconnect to one
of those kernels.

Related commands:

EXIT
QUIT
CONNECT

Example
DBG> DISCONNECT JONES

This command releases process JONES from debugger control without terminating the process.

DISPLAY
DISPLAY — Creates a new screen display or modifies an existing display.

Synopsis
DISPLAY [display-name [AT window-spec] [display-kind] [, …]]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[display-name]

Specifies the display to be created or modified.

If you are creating a new display, specify a name that is not already used as a display name.

If you are modifying an existing display, you can specify any of the following entities:

• A predefined display:

SRC
OUT
PROMPT
INST
REG
FREG (Integrity servers and Alpha only)
IREG

417

Chapter 17. Debugger Command Dictionary

• A display previously created with the DISPLAY command

• A display built-in symbol:

%CURDISP
%CURSCROLL
%NEXTDISP
%NEXTINST
%NEXTOUTPUT
%NEXTSCROLL
%NEXTSOURCE

You must specify a display unless you use /GENERATE (parameter optional), or /REFRESH
(parameter not allowed).

You can specify more than one display, each with an optional window specification and display kind.

[window-spec]

Specifies the screen window at which the display is to be positioned. You can specify any of the
following entities:

• A predefined window. For example, RH1 (right top half).

• A window definition previously established with the SET WINDOW command.

• A window specification of the form (start-line, line-count[, start-column,
column-count]). The specification can include expressions which can be based on the built-in
symbols %PAGE and %WIDTH(for example, %WIDTH/4).

If you omit the window specification, the screen position depends on whether you are specifying an
existing display or a new display:

• If you are specifying an existing display, the position of the display is not changed.

• If you are specifying a new display, it is positioned at window H1 orH2, alternating between H1 and
H2 each time you create another display.

[display-kind]

Specifies the display kind. Valid keywords are as follows:

DO (command[; …]) Specifies an automatically updated output display.
The commands are executed in the order listed
each time the debugger gains control. Their output
forms the contents of the display. If you specify
more than one command, the commands must be
separated by semicolons.

INSTRUCTION Specifies an instruction display. If selected
as the current instruction display with the
SELECT/INSTRUCTION command,
it displays the output from subsequent
EXAMINE/INSTRUCTION commands.

418

Chapter 17. Debugger Command Dictionary

OUTPUT Specifies an output display. If selected as the
current output display with the SELECT/OUTPUT
command, it displays any debugger output
that is not directed to another display. If
selected as the current input display with the
SELECT/INPUT command, it echoes debugger
input. If selected as the current error display
with the SELECT/ERROR command, it displays
debugger diagnostic messages.

REGISTER Specifies an automatically updated register display.
The display is updated each time the debugger
gains control.

SOURCE Specifies a source display. If selected as the current
source display with the SELECT/SOURCE
command, it displays the output from subsequent
TYPE or EXAMINE/SOURCE commands.

SOURCE (command) Specifies an automatically updated source display.
The command specified must be a TYPE or
EXAMINE/SOURCE command. The source
display is updated each time the debugger gains
control.

You cannot change the display kind of the PROMPT display.

If you omit the display-kind parameter, the display kind depends on whether you are specifying an
existing display or a new display:

• If you specify an existing display, the display kind is not changed.

• If you specify a new display, an OUTPUT display is created.

Qualifiers
/CLEAR

Erases the entire contents of a specified display. Do not use this qualifier with /GENERATE or when
creating a new display.

/DYNAMIC (default)
/NODYNAMIC

Controls whether a display automatically adjusts its window dimensions proportionally when the
screen height or width is changed by a SET TERMINAL command. By default (/DYNAMIC), all
user-defined and predefined displays adjust their dimensions automatically.

/GENERATE

Regenerates the contents of a specified display. Only automatically generated displays are
regenerated. These include DO displays, register displays, source (cmd-list) displays, and
instruction (cmd-list) displays. The debugger automatically regenerates all these kinds of displays
before each prompt. If you do not specify a display, it regenerates the contents of all automatically
generated displays. Do not use this qualifier with /CLEAR or when creating a new display.

419

Chapter 17. Debugger Command Dictionary

/HIDE

 Places a specified display at the bottom of the display pasteboard (same as /PUSH). This hides the
specified display behind any other displays that share the same region of the screen. You cannot hide
the PROMPT display.

/MARK_CHANGE
/NOMARK_CHANGE (default)

Controls whether the lines that change in a DO display each time it is automatically updated are
marked. Not applicable to other kinds of displays.

When you use /MARK_CHANGE, any lines in which some contents have changed since the last time
the display was updated are highlighted in reverse video. This qualifier is particularly useful when
you want any variables in an automatically updated display to be highlighted when they change.

The /NOMARK_CHANGE qualifier (default) specifies that any lines that change in DO displays are
not to be marked. This qualifier cancels the effect of a previous /MARK_CHANGE on the specified
display.

/POP (default)
/NOPOP

Controls whether a specified display is placed at the top of the display pasteboard, ahead of any
other displays but behind the PROMPT display. By default (/POP), the display is placed at the top
of the pasteboard and hides any other displays that share the same region of the screen, except the
PROMPT display.

The /NOPOP qualifier preserves the order of all displays on the pasteboard (same as /NOPUSH).

/PROCESS[=(process-spec)]
/NOPROCESS (default)

Used only when debugging multiprocess programs (kept debugger only). Controls whether the
specified display is process specific(that is, whether the specified display is associated only with a
particular process). The contents of a process-specific display are generated and modified in the
context of that process. You can make any display process specific, except the PROMPT display.

The /PROCESS=(process-spec) qualifier causes the specified display to be associated with
the specified process. You must include the parentheses. Use any of the following process-spec
forms:

[%PROCESS_NAME] proc-name The process name, if that name contains no
space or lowercase characters. The process name
can include the asterisk (*) wildcard character.

[%PROCESS_NAME] " proc-name " The process name, if that name contains space
or lowercase characters. You can also use
apostrophes (') instead of quotation marks (").

%PROCESS_PID proc-id The process identifier (PID, a hexadecimal
number).

%PROCESS_NUMBER proc-number (or
%PROC proc-number)

The number assigned to a process when it comes
under debugger control. Process numbers appear
in a SHOW PROCESS display.

420

Chapter 17. Debugger Command Dictionary

proc-group-name A symbol defined with the
DEFINE/PROCESS_GROUP command to
represent a group of processes. Do not specify a
recursive symbol definition.

%NEXT_PROCESS The process after the visible process in the
debugger's circular process list.

%PREVIOUS_PROCESS The process previous to the visible process in the
debugger's circular process list.

%VISIBLE_PROCESS The process whose call stack, register set, and
images are the current context for looking
up symbols, register values, routine calls,
breakpoints, and so on.

The /PROCESS qualifier causes the specified display to be associated with the process that was the
visible process when the DISPLAY/PROCESS command was executed.

The /NOPROCESS qualifier (which is the default) causes the specified display to be associated with
the visible process, which might change during program execution.

If you do not specify /PROCESS, the current process-specific behavior (if any) of the specified
display remains unchanged.

/PUSH
/NOPUSH

The /PUSH qualifier has the same effect as /HIDE. The /NOPUSH qualifier preserves the order of
all displays on the pasteboard (same as /NOPOP).

/REFRESH

 Refreshes the terminal screen. Do not specify any command parameters with this qualifier. You can
also use Ctrl/W to refresh the screen.

/REMOVE

 Marks the display as being removed from the display pasteboard, so it is not shown on the screen
unless you explicitly request it with another DISPLAY command. Although a removed display is not
visible on the screen, it still exists and its contents are preserved. You cannot remove the PROMPT
display.

/SIZE:n

Sets the maximum size of a display to n lines. If more than n lines are written to the display, the
oldest lines are lost as the new lines are added. If you omit this qualifier, the maximum size of the
display is as follows:

• If you specify an existing display, the maximum size is unchanged.

• If you are creating a display, the default size is 64 lines.

For an output or DO display, /SIZE:n specifies that the display should hold the n most recent
lines of output. For a source or instruction display, n gives the number of source lines or lines of
instructions that can be placed in the memory buffer at any onetime. However, you can scroll a

421

Chapter 17. Debugger Command Dictionary

source display over the entire source code of the module whose code is displayed (source lines
are paged into the buffer as needed). Similarly, you can scroll an instruction display overall of the
instructions of the routine whose instructions are displayed (instructions are decoded from the image
as needed).

Description
You can use the DISPLAY command to create a display or to modify an existing display.

To create a display, specify a name that is not already used as a display name (the SHOW DISPLAY
command identifies all existing displays).

By default, the DISPLAY command places a specified display on top of the display pasteboard, ahead
of any other displays but behind the PROMPT display, which cannot be hidden. The specified display
thus hides the portions of other displays (except the PROMPT display) that share the same region of the
screen.

For a list of the key definitions associated with the DISPLAY command, type Help
Keypad_Definitions_CI. Also, use the SHOW KEY command to determine the current key definitions.

Related commands:

Ctrl/W
EXPAND
MOVE
SET PROMPT
(SET, SHOW) TERMINAL
(SET, SHOW, CANCEL) WINDOW
SELECT
(SHOW, CANCEL) DISPLAY

Examples
1. DBG> DISPLAY REG

This command shows the predefined register display, REG, at its current window location.

2. DBG> DISPLAY/PUSH INST

This command pushes display INST to the bottom of the display pasteboard, behind all other
displays.

3. DBG> DISPLAY NEWDISP AT RT2
DBG> SELECT/INPUT NEWDISP

In this example, the DISPLAY command shows the user-defined display NEWDISP at the right
middle third of the screen. The SELECT/INPUT command selects NEWDISP as the current input
display. NEWDISP now echoes debugger input.

4. DBG> DISPLAY DISP2 AT RS45
DBG> SELECT/OUTPUT DISP2

In this example, the DISPLAY command creates a display named DISP2 essentially at the right
bottom half of the screen, above the PROMPT display, which is located at S6. This is an output

422

Chapter 17. Debugger Command Dictionary

display by default. The SELECT/OUTPUT command then selects DISP2 as the current output
display.

5. DBG> SET WINDOW TOP AT (1, 8, 45, 30)
DBG> DISPLAY NEWINST AT TOP INSTRUCTION
DBG> SELECT/INST NEWINST

In this example, the SET WINDOW command creates a window named TOP starting at line 1
and column 45, and extending down for 8 lines and to the right for 30 columns. The DISPLAY
command creates an instruction display named NEWINST to be displayed through TOP. The
SELECT/INST command selects NEWINST as the current instruction display.

6. DBG> DISPLAY CALLS AT Q3 DO (SHOW CALLS)

This command creates a DO display named CALLS at window Q3. Each time the debugger gains
control from the program, the SHOW CALLS command is executed and the output is displayed in
display CALLS, replacing any previous contents.

7. DBG> DISPLAY/MARK EXAM AT Q2 DO (EXAMINE A, B, C)

This command creates a DO display named EXAM at window Q2. The display shows the current
values of variables A, B, and C whenever the debugger prompts for input. Any changed values are
highlighted.

8. all> DISPLAY/PROCESS OUT_X AT S4

This command makes display OUT_X specific to the visible process (process 3) and puts the display
at window S4.

DUMP
DUMP — Displays the contents of memory.

Synopsis
DUMP [address-expression1 [:address-expression2]]

Parameters
[address-expression1]

Specifies the first memory location to be displayed.

[address-expression2]

Specifies the last memory location to be displayed (default is address-expression 1).

Qualifiers
/BINARY

Displays each examined entity as a binary integer.

423

Chapter 17. Debugger Command Dictionary

/BYTE

Displays each examined entity as a byte integer (length 1 byte).

/DECIMAL

Displays each examined entity as a decimal integer.

/HEXADECIMAL

Displays each examined entity as a hexadecimal integer.

/LONGWORD (default)

Displays each examined entity in the longword integer type (length 4 bytes). This is the default type
for program locations that do not have a compiler-generated type.

/OCTAL

Displays each examined entity as an octal integer.

/QUADWORD

Displays each examined entity in the quadword integer type (length 8 bytes).

/WORD

Displays each examined entity in the word integer type (length 2 bytes).

Description
The DUMP command displays the contents of memory, including registers, variables, and arrays. The
DUMP command formats its output in a manner similar to the DCL command DUMP. The debugger
DUMP command makes no attempt to interpret the structure of aggregates.

In general, when you enter a DUMP command, the debugger evaluates address-expression 1 to
yield a program location. The debugger then displays the entity stored at that location as follows:

• If the entity has a symbolic name, the debugger uses the size of the entity to determine the address
range to display.

• If the entity does not have a symbolic name (and, therefore, no associated compiler-generated
type) the debugger displays address-expression1 through address-expression2 (if
specified).

In either case, the DUMP command displays the contents of these locations as longword (by default)
integer values in the current radix.

The default radix for display is decimal for most languages. The exceptions are BLISS and MACRO,
which have a default radix of hexadecimal.

Use one of the four radix qualifiers (/BINARY, /DECIMAL, /HEXADECIMAL, /OCTAL) to display
data in another radix. You can also use the SET RADIX and SET RADIX/OVERRIDE commands to
change the default radix.

424

Chapter 17. Debugger Command Dictionary

Use one of the size qualifiers (/BYTE, /WORD, /LONGWORD, /QUADWORD) to change the format of
the display.

The DUMP command sets the current entity built-in symbols %CURLOC and period (.) to the location
denoted by the address expression specified. Logical predecessors (%PREVLOC or the circumflex
character (^)) and successors (%NEXTLOC) are based on the value of the current entity.

Related command:

EXAMINE

Examples
1. DBG> DUMP/QUAD R16:R25

 0000000000000078 0000000000030038 8.......x....... %R16
 000000202020786B 0000000000030041 A.......kx ... %R18
 0000000000030140 0000000000007800 .x......@....... %R20
 0000000000010038 00000000000000078....... %R22
 0000000000000006 0000000000000000 %R24
DBG>

This command displays general registers R16 through R25 in quadword format and hexadecimal
radix.

2. DBG> DUMP APPLES
 00000000 00030048 00000000 00004220 B......H....... 00000000000300B0
 63724F20 746E6F6D 646F6F57 000041B0 �A..Woodmont Orc 00000000000300C0
 20202020 20202020 20202073 64726168 hards 00000000000300D0
 6166202C 73646E61 6C747275 6F432020 Courtlands, fa 00000000000300E0
 00002020 2079636E ncy .. 00000000000300F0
DBG>

This command displays an entity named APPLES in longword format and hexadecimal radix.

3. DBG> DUMP/BYTE/DECIMAL 30000:30040
 0 0 0 0 0 3 0 -80 �....... 0000000000030000
 0 0 0 0 0 3 1 64 @....... 0000000000030008
 0 0 0 0 0 3 0 48 0....... 0000000000030010
 0 0 0 0 0 3 0 56 8....... 0000000000030018
 0 0 0 0 0 3 0 -64 �....... 0000000000030020
 0 0 0 0 0 3 0 -80 �....... 0000000000030028
 0 0 0 0 0 0 7 -50 �....... 0000000000030030
 101 101 119 32 116 120 101 110 next wee 0000000000030038
 107 k 0000000000030040
DBG>

This command displays locations 30000 through 30040 in byte format and decimal radix.

EDIT
EDIT — Starts the editor established with the SET EDITOR command. If you did not enter a
SET EDITOR command, starts the Language-Sensitive Editor (LSE), if that editor is installed on your
system.

Synopsis

425

Chapter 17. Debugger Command Dictionary

EDIT [[module-name \] line-number]

Parameters
[module-name]

Specifies the name of the module whose source file is to be edited. If you specify a module name, you
must also specify a line number. If you omit the module name parameter, the source file whose code
appears in the current source display is chosen for editing.

[line-number]

A positive integer that specifies the source line on which the editor's cursor is initially placed. If
you omit this parameter, the cursor is initially positioned at the beginning of the source line that is
centered in the debugger's current source display, or at the beginning of line 1 if the editor was set to
/NOSTART_POSITION (see the SET EDITOR command.)

Qualifiers
/EXIT
/NOEXIT (default)

Controls whether you end the debugging session prior to starting the editor. If you specify /EXIT,
the debugging session is terminated and the editor is then started. If you specify /NOEXIT, the
editing session is started and you return to your debugging session after terminating the editing
session.

Description
If you have not specified an editor with the SET EDITOR command, the EDIT command starts
the Language-Sensitive Editor (LSE) in a spawned subprocess (if LSE is installed on your system).
The typical (default)way to use the EDIT command is not to specify any parameters. In this case, the
editing cursor is initially positioned at the beginning of the line that is centered in the currently selected
debugger source display (the current source display).

The SET EDITOR command provides options for starting different editors, either in a subprocess or
through a callable interface.

Related commands:

(SET, SHOW) EDITOR
(SET, SHOW, CANCEL) SOURCE

Examples
1. DBG> EDIT

This command spawns the Language-Sensitive Editor (LSE) in a subprocess to edit the source file
whose code appears in the current source display. The editing cursor is positioned at the beginning of
the line that was centered in the source display.

2. DBG> EDIT SWAP\12

426

Chapter 17. Debugger Command Dictionary

This command spawns the Language-Sensitive Editor (LSE) in a subprocess to edit the source file
containing the module SWAP. The editing cursor is positioned at the beginning of source line 12.

3. DBG> SET EDITOR/CALLABLE_EDT
DBG> EDIT

In this example, the SET EDITOR/CALLABLE_EDT command establishes that EDT is the
default editor and is started through its callable interface (rather than spawned in a subprocess). The
EDIT command starts EDT to edit the source file whose code appears in the current source display.
The editing cursor is positioned at the beginning of source line 1, because the default qualifier
/NOSTART_POSITION applies to EDT.

ENABLE AST
ENABLE AST — Enables the delivery of asynchronous system traps (ASTs) in your program.

Synopsis
ENABLE AST

Description
The ENABLE AST command enables the delivery of ASTs while your program is running, including
any pending ASTs (ASTs waiting to be delivered). If ASTs are delivered while the debugger is running
(processing commands, and soon), they are queued and are delivered when control is returned to the
program. Delivery of ASTs in your program is initially enabled by default.

Note

Any call by your program to the $SETAST system service that disables ASTs overrides a previous
ENABLE AST command.

Related commands:

(DISABLE, SHOW) AST

Example
DBG> ENABLE AST
DBG> SHOW AST
ASTs are enabled
DBG>

The ENABLE AST command enables the delivery of ASTs in your program, as confirmed with the
SHOW AST command.

EVALUATE
EVALUATE — Displays the value of a language expression in the current language (by default, the
language of the module containing the main program).

427

Chapter 17. Debugger Command Dictionary

Synopsis
EVALUATE [language-expression[, …]]

Parameters
[language-expression]

Specifies any valid expression in the current language.

Qualifiers
/BINARY

Specifies that the result be displayed in binary radix.

/CONDITION_VALUE

Specifies that the expression be interpreted as a condition value (the kind of condition value you
would specify using the condition-handling mechanism). The message text corresponding to that
condition value is then displayed. The specified value must be an integer value.

/DECIMAL

Specifies that the result be displayed in decimal radix.

/HEXADECIMAL

Specifies that the result be displayed in hexadecimal radix.

/OCTAL

Specifies that the result be displayed in octal radix.

Description
The debugger interprets the expression specified in an EVALUATE command as a language expression,
evaluates it in the syntax of the current language and in the current radix, and displays its value as a
literal (for example, an integer value) in the current language.

The current language is the language last established with the SET LANGUAGE command. If you did
not enter a SET LANGUAGE command, the current language is, by default, the language of the module
containing the main program.

If an expression contains symbols with different compiler-generated types, the debugger uses the type-
conversion rules of the current language to evaluate the expression.

The debugger can interpret and display integer data in any one of four radixes: binary, decimal,
hexadecimal, and octal. The current radix is the radix last established with the SET RADIX command.

If you did not enter a SET RADIX command, the default radix for both data entry and display is
decimal for most languages. The exceptions are BLISS and MACRO, which have a default radix of
hexadecimal.

428

Chapter 17. Debugger Command Dictionary

You can use a radix qualifier (/BINARY, /OCTAL, and so on) to display integer data in another radix.
These qualifiers do not affect how the debugger interprets the data you specify;they override the current
output radix, but not the input radix.

The EVALUATE command sets the current value of built-in symbols %CURVAL and backslash (\) to
the value denoted by the specified expression.

You cannot evaluate a language expression that includes a function call. For example, if PRODUCT is
a function that multiplies two integers, you cannot use the command EVALUATE PRODUCT (3, 5). If
your program assigns the returned value of a function to a variable, you can examine the resulting value
of that variable. On Alpha, the command EVALUATE procedure-name displays the procedure
descriptor address (not the code address) of a specified routine, entry point, or Ada package.

For more information about debugger support for language-specific operators and constructs, type HELP
Language.

Related commands:

EVALUATE/ADDRESS
MONITOR
(SET, SHOW) LANGUAGE
(SET, SHOW, CANCEL) RADIX
(SET, SHOW) TYPE

Examples
1. DBG> EVALUATE 100.34 * (14.2 + 7.9)

2217.514
DBG>

This command uses the debugger as a calculator by multiplying 100.34 by (14.2+ 7.9).

2. DBG> EVALUATE/OCTAL X
00000001512
DBG>

This command evaluates the symbol X and displays the result in octal radix.

3. DBG> EVALUATE TOTAL + CURR_AMOUNT
8247.20
DBG>

This command evaluates the sum of the values of two real variables, TOTAL and
CURR_AMOUNT.

4. DBG> DEPOSIT WILLING = TRUE
DBG> DEPOSIT ABLE = FALSE
DBG> EVALUATE WILLING AND ABLE
False
DBG>

In this example, the EVALUATE command evaluates the logical AND of the current values of two
Boolean variables, WILLING and ABLE.

5. DBG> EVALUATE COLOR'FIRST

429

Chapter 17. Debugger Command Dictionary

RED
DBG>

In this Ada example, this command evaluates the first element of the enumeration type COLOR.

EVALUATE/ADDRESS
EVALUATE/ADDRESS — Evaluates an address expression and displays the result as a memory address
or a register name.

Synopsis
EVALUATE/ADDRESS [address-expression[, …]]

Parameters
[address-expression]

Specifies an address expression of any valid form (for example, a routine name, variable name, label, line
number, and so on).

Qualifiers
/BINARY

Displays the memory address in binary radix.

/DECIMAL

Displays the memory address in decimal radix.

/HEXADECIMAL

Displays the memory address in hexadecimal radix.

/OCTAL

Displays the memory address in octal radix.

Description
The EVALUATE/ADDRESS command enables you to determine the memory address or register
associated with an address expression.

The debugger can interpret and display integer data in any one of four radixes: binary, decimal,
hexadecimal, and octal.

The default radix for both data entry and display is decimal for most languages. The exceptions are
BLISS and MACRO, which have a default radix of hexadecimal.

430

Chapter 17. Debugger Command Dictionary

You can use a radix qualifier (/BINARY, /OCTAL, and so on) to display address values in another
radix. These qualifiers do not affect how the debugger interprets the data you specify;that is, they
override the current output radix, but not the input radix.

If the value of a variable is currently stored in a register instead of memory, the EVALUATE/ADDRESS
command identifies the register. The radix qualifiers have no effect in that case.

The EVALUATE/ADDRESS command sets the current entity built-in symbols %CURLOC and period
(.) to the location denoted by the address expression specified. Logical predecessors (%PREVLOC or
the circumflex character (^)) and successors (%NEXTLOC) are based on the value of the current entity.

On Alpha, the command EVALUATE/ADDRESS procedure-name displays the procedure
descriptor address (not the code address) of a specified routine, entry point, or Ada package.

Related commands:

EVALUATE
(SET, SHOW, CANCEL) RADIX
SHOW SYMBOL/ADDRESS
SYMBOLIZE

Routine names in debugger expressions have different meanings on Integrity server and Alpha systems.

On Alpha systems, the command EVALUATE/ADDRESS RTN-NAME evaluates to the address of the
procedure descriptor:

Examples
1. DBG> EVALUATE/ADDRESS RTN-NAME

On Integrity server systems, instead of displaying the address of the official function descriptor, the
debugger just displays the code address. For example, on Alpha systems, you can enter the following
command and then set a breakpoint when a variable contains the address, FOO:

2. DBG> SET BREAK .PC WHEN (.SOME_VARIABLE EQLA FOO)

The breakpoint occurs when the variable contains the address of the procedure descriptor. However,
when you enter the same command on Integrity server systems, the breakpoint is never reached
because, although the user variable might contain the address of the function descriptor for FOO, the
"EQLA FOO" in the WHEN clause compares it to the code address for FOO. As a result, the user
variable never contains the code address of FOO. However, the first quadword of an Integrity server
function descriptor contains the code address, you can write it as:

3. DBG> SET BREAK .PC WHEN (..SOME_VARIABLE EQLA FOO)

Note

On Integrity server systems, you cannot copy the following line from your BLISS code:

IF .SOME_VARIABLE EQLA FOO THEN do-something;

4. DBG> EVALUATE/ADDRESS MODNAME\%LINE 110
3942

431

Chapter 17. Debugger Command Dictionary

DBG>

This command displays the memory address denoted by the address expression MODNAME \
%LINE 110.

5. DBG> EVALUATE/ADDRESS/HEX A, B, C
000004A4000004AC000004A0
DBG>

This command displays the memory addresses denoted by the address expressions A, B, and C in
hexadecimal radix.

6. DBG> EVALUATE/ADDRESS X
MOD3\%R1
DBG>

This command indicates that variable X is associated with register R1. X is a nonstatic (register)
variable.

EXAMINE
EXAMINE — Displays the current value of a program variable. More generally, displays the value of the
entity denoted by an address expression.

Synopsis
EXAMINE [address-expression[:address-expression] [, …]]

Parameters
[address-expression]

Specifies an entity to be examined. With high-level languages, this is typically the name of a variable
and can include a path name to specify the variable uniquely. More generally, an address expression can
also be a memory address or a register and can be composed of numbers (offsets) and symbols, as well
as one or more operators, operands, or delimiters. For information about the debugger symbols for the
registers and about the operators you can use in address expressions, type Help Built_in_Symbols or
Help Address_Expressions.

If you specify the name of an aggregate variable (a composite data structure such as an array or record
structure) the debugger displays the values of all elements. For an array, the display shows the subscript
(index) and value of each array element. For a record, the display shows the name and value of each
record component.

To specify an individual array element, array slice, or record component, follow the syntax of the current
language.

If you specify a range of entities, the value of the address expression that denotes the first entity in the
range must be less than the value of the address expression that denotes the last entity in the range. The
debugger displays the entity specified by the first address expression, the logical successor of that address
expression, the next logical successor, and so on, until it displays the entity specified by the last address
expression. You can specify a list of ranges by separating ranges with a comma.

432

Chapter 17. Debugger Command Dictionary

For information specific to vector registers and vector instructions, see /TMASK, /FMASK, /VMR, and
/OPERANDS qualifiers.

Qualifiers
/ASCIC
/AC

Interprets each examined entity as a counted ASCII string preceded by a1-byte count field that gives
the length of the string. The string is then displayed.

/ASCID
/AD

Interprets each examined entity as the address of a string descriptor pointing to an ASCII string. The
CLASS and DTYPE fields of the descriptor are not checked, but the LENGTH and POINTER fields
provide the character length and address of the ASCII string. The string is then displayed.

/ASCII:n

Interprets and displays each examined entity as an ASCII string of length n bytes (n characters). If
you omit n, the debugger attempts to determine a length from the type of the address expression.

/ASCIW
/AW

Interprets each examined entity as a counted ASCII string preceded by a2-byte count field that gives
the length of the string. The string is then displayed.

/ASCIZ
/AZ

Interprets each examined entity as a zero-terminated ASCII string. The ending zero byte indicates
the end of the string. The string is then displayed.

/BINARY

Displays each examined entity as a binary integer.

/BYTE

Displays each examined entity in the byte integer type (length 1 byte).

/CONDITION_VALUE

Interprets each examined entity as a condition-value return status and displays the message
associated with that return status.

/D_FLOAT

Displays each examined entity in the D_floating type (length 8 bytes).

/DATE_TIME

Interprets each examined entity as a quadword integer (length 8 bytes)containing the internal
representation of date and time. Displays the value in the format dd-mmm-yyyy hh:mm:ss.cc.

433

Chapter 17. Debugger Command Dictionary

/DECIMAL

Displays each examined entity as a decimal integer.

/DEFAULT

Displays each examined entity in the default radix.

The minimum abbreviation is /DEFA.

/DEFINITIONS=n

(Alpha only, Integrity servers when optimized code is supported)When the code is optimized,
displays n definition points for a split-lifetime variable. A definition point is a location in the
program where the variable could have received its value. By default, up to five definition points
are displayed. If more than the given number of definitions (explicit or default) are available, then
the number of additional definitions is reported as well. (For more information on split-lifetime
variables, see Section 14.1.5.

The minimum abbreviation is /DEFI.

/EXTENDED_FLOAT
/X_FLOAT

(Integrity servers and Alpha only) Displays each examined entity in the IEEE X_floating type
(length 16 bytes).

/FLOAT

On Alpha, same as T_FLOAT. Displays each examined entity in the IEEE T_floating type (double
precision, length 8 bytes).

/FPCR

(Alpha only) Displays each examined entity in FPCR (floating-point control register) format.

/G_FLOAT

Displays each examined entity in the G_floating type (length 8 bytes).

/HEXADECIMAL

Displays each examined entity as a hexadecimal integer.

/INSTRUCTION

Displays each examined entity as an assembly-language instruction(variable length, depending on the
number of instruction operands and the kind of addressing modes used). See also the /OPERANDS
qualifier.

In screen mode, the output of an EXAMINE/INSTRUCTION command is directed at the current
instruction display, if any, not at an output or DO display. The arrow in the instruction display points
to the examined instruction.

On Alpha, the command EXAMINE/INSTRUCTION procedure-name displays the first
instruction at the code address of a specified routine, entry point, or Ada package.

434

Chapter 17. Debugger Command Dictionary

/LINE (default)
/NOLINE

Controls whether program locations are displayed in terms of line numbers (%LINE x) or as
routine-name + byte-offset. By default (/LINE), the debugger symbolizes program
locations in terms of line numbers.

/LONG_FLOAT
/S_FLOAT

(Integrity servers and Alpha only) Displays each examined entity in the IEEE S_floating type (single
precision, length 4 bytes).

/LONG_LONG_FLOAT
/T_FLOAT

(Integrity servers and Alpha only) Displays each examined entity in the IEEE T_floating type
(double precision, length 8 bytes).

/LONGWORD

Displays each examined entity in the longword integer type (length 4 bytes). This is the default type
for program locations that do not have a compiler-generated type.

/OCTAL

Displays each examined entity as an octal integer.

/OCTAWORD

Displays each examined entity in the octaword integer type (length 16 bytes).

/PACKED:n

Interprets each examined entity as a packed decimal number. The value of n is the number of
decimal digits. Each digit occupies one nibble (4 bits).

/PS

(Alpha only) Displays each examined entity in PS (processor status register) format.

/PSR

(Integrity servers only)Displays each examined entity in PSR (processor status register) format.

/PSR

(Integrity servers only) Displays each examined entity in PSR (processor status register) format.

/QUADWORD

Displays each examined entity in the quadword integer type (length 8 bytes).

/S_FLOAT

(Alpha only) Displays each examined entity in the IEEE S_floating type (single precision, length 4
bytes).

435

Chapter 17. Debugger Command Dictionary

/SFPCR

(Alpha only) Displays each examined entity in SFPCR (software floating-point control register)
format.

/SOURCE

Note

This qualifier is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Displays the source line corresponding to the location of each examined entity. The examined entity
must be associated with a machine code instruction and, therefore, must be a line number, a label,
a routine name, or the memory address of an instruction. The examined entity cannot be a variable
name or any other address expression that is associated with data.

In screen mode, the output of an EXAMINE/SOURCE command is directed at the current source
display, if any, not at an output or DO display. The arrow in the source display points to the source
line associated with the last entity specified (or the last one specified in a list of entities).

On Alpha, the command EXAMINE/SOURCE procedure-name displays the source code at
the code address of a specified routine, entry point, or Ada package.

/SYMBOLIC (default)
/NOSYMBOLIC

Controls whether symbolization occurs. By default (/SYMBOLIC), the debugger symbolizes all
addresses, if possible; that is, it converts numeric addresses into their symbolic representation.
If you specify /NOSYMBOLIC, the debugger suppresses symbolization of entities you specify
as absolute addresses. If you specify entities as variable names, symbolization still occurs. The
/NOSYMBOLIC qualifier is useful if you are interested in identifying numeric addresses rather than
their symbolic names (if symbolic names exist for those addresses). Using /NOSYMBOLIC may
speed up command processing because the debugger does not need to convert numbers to names.

/TASK

Applies to tasking (multithread) programs. Interprets each examined entity as a task (thread) object
and displays the task value (the name or task ID) of that task object. When examining a task object,
use /TASK only if the programming language does not have built-in tasking services.

/TYPE=(name)
/TYPE:(name)
/TYPE(name)

 Interprets and displays each examined entity according to the type specified by name and (which
must be the name of a variable or data type declared in the program). This enables you to specify a
user-declared type. You must use parentheses around the type expression.

/VARIANT=variant-selector address-expression
/VARIANT=(variant-selector, ...) address-expression

Enables the debugger to display the correct item when it encounters an anonymous variant.

436

Chapter 17. Debugger Command Dictionary

In a C program, a union contains members, only one of which is valid at any one time. When
displaying a union, the debugger does not know which member is currently valid.

In a PASCAL program, a record with a variant part contains variants, only one of which is valid
at any one time. When displaying a record with an anonymous variant part, the debugger does not
know which variant is currently valid, and displays all variants by default.

You can use the /VARIANT qualifier of the EXAMINE command to select which member of a
union (C) or anonymous variant (PASCAL) to display.

/WCHAR_T[:n]

Interprets and displays each examined entity as a multibyte file code sequence of length n longwords
(n characters). The default is 1 longword.

When converting the examined string, the debugger uses the locale database of the process in which
the debugger runs. The default is C locale.

/WORD

Displays each examined entity in the word integer type (length 2 bytes).

/X_FLOAT

(Alpha and Integrity servers only) Displays each examined entity in the IEEE X_floating type
(length 16 bytes).

Description
The EXAMINE command displays the entity at the location denoted by an address expression. You can
use the command to display the contents of any memory location or register that is accessible in your
program. For high-level languages, the command is used mostly to obtain the current value of a variable
(an integer, real, string, array, record, and so on).

If you are debugging optimized code on Alpha systems, the EXAMINE command displays the definition
points at which a split-lifetime variable could have received its value. Split-lifetime variables are
discussed in Chapter 14. By default, the EXAMINE command displays up to five definition points. With
the /DEFINITIONS qualifier, you can specify the number of definition points.

The debugger recognizes the compiler-generated types associated with symbolic address expressions
(symbolic names declared in your program). Symbolic address expressions include the following entities:

• Variable names. When specifying a variable with the EXAMINE command, use the same syntax that
is used in the source code.

• Routine names, labels, and line numbers. These are associated with instructions. You can examine
instructions using the same techniques as when examining variables.

In general, when you enter an EXAMINE command, the debugger evaluates the address expression
specified to yield a program location. The debugger then displays the value stored at that location as
follows:

• If the location has a symbolic name, the debugger formats the value according to the compiler-
generated type associated with that symbol (that is, as a variable of a particular type or as an
instruction).

437

Chapter 17. Debugger Command Dictionary

• If the location does not have a symbolic name (and, therefore, no associated compiler-generated
type) the debugger formats the value in the type longword integer by default. This means
that, by default, the EXAMINE command displays the contents of these locations as longword (4-
byte) integer values.

There are several ways of changing the type associated with a program location so that you can display
the data at that location in another data format:

• To change the default type for all locations that do not have a symbolic name, you can specify a new
type with the SET TYPE command.

• To change the default type for all locations (both those that do and do not have a symbolic name),
you can specify a new type with the SET TYPE/OVERRIDE command.

• To override the type currently associated with a particular location for the duration of a single
EXAMINE command, you can specify a new type by using a type qualifier (/ASCII:n, /BYTE,
/TYPE=(name), and so on). Most qualifiers for the EXAMINE command are type qualifiers.

The debugger can interpret and display integer data in any one of four radixes: binary, decimal,
hexadecimal, and octal.

The default radix for both data entry and display is decimal for most languages. The exceptions are
BLISS and MACRO, which have a default radix of hexadecimal.

The EXAMINE command has four radix qualifiers (/BINARY, /DECIMAL, /HEXADECIMAL,
/OCTAL) that enable you to display data in another radix. You can also use the SET RADIX and
SET RADIX/OVERRIDE commands to change the default radix.

In addition to the type and radix qualifiers, the EXAMINE command has qualifiers for other purposes:

• The /SOURCE qualifier enables you to identify the line of source code corresponding to a line
number, routine name, label, or any other address expression that is associated with an instruction
rather than data.

• The /[NO]LINE and /[NO]SYMBOLIC qualifiers enable you to control the symbolization of
address expressions.

The EXAMINE command sets the current entity built-in symbols %CURLOC and period (.) to the
location denoted by the address expression specified. Logical predecessors (%PREVLOC or the
circumflex character (^)) and successors (%NEXTLOC) are based on the value of the current entity.

The /VARIANT qualifier enables the debugger to display the correct item when it encounters an
anonymous variant.

In a C program, a union contains members, only one of which is valid at any one time. When displaying
a union, the debugger does not know which member is currently valid. In a PASCAL program, a record
with a variant part contains variants, only one of which is valid at any one time. When displaying a
record with an anonymous variant part, the debugger does not know which variant is currently valid, and
displays all variants by default.

You can use the /VARIANT qualifier of the EXAMINE command to select which member of a union (C
program) or anonymous variant (PASCAL program) to display. The format is as follows:

DBG> EXAMINE /VARIANT=variant-selector address-expression

438

Chapter 17. Debugger Command Dictionary

DBG> EXAMINE /VARIANT=(variant-selector, ...) address-expression

The variant selector variant-selector specifies a name, a discriminant (PASCAL only), or a position; that
is, one of the following:

• NAME = name-string

• DISCRIMINANT = expression

• POSITION = expression

The /VARIANT qualifier takes a list of zero or more variant selectors. /VARIANT without any variant
selectors is the default: the first variant of all anonymous variant lists will be displayed.

Each variant selector specifies either the name, the discriminant, or the position of the variant to be
displayed.

The debugger uses the variant selector as follows:

1. If the debugger encounters an anonymous variable list while displaying address-expression, the
debugger uses the variant selector to choose which variant to display.

2. Each time the debugger encounters an anonymous variant list, it attempts to use the next variant
selector to choose which variant to display. If the variant selector matches one of the variants of the
variant list (union), the debugger displays that variant.

3. The debugger walks the structure top-to-bottom, depth first, so that children are encountered before
siblings.

4. If the debugger encounters an anonymous variant list and does not have a variant selector to match it
with, the debugger displays the first variant.

5. If the variant selector does not match any of the variants of an anonymous variant list, the debugger
displays a single line to indicate that. This is similar to what the debugger does if the discriminant
value fails to match any of the variants in a discriminated variant list. For example:

[Variant Record omitted - null or illegal Tag Value: 3]

A name specifies a name string. A name matches a variant if that variant contains a field with the name
specified by name.

A discriminant specifies a language expression that must be type compatible with the tag type of the
variant part it is meant to match. The discriminant expression matches a variant if it evaluates to a value
in the variant's case-label list. Discriminants apply only to Pascal programs, because C and C++ unions
do not have discriminants.

A positional-selector specifies a language expression, which should evaluate to a integer between 1 and
N, where N is the number of variants in a variant list. A positional-selector that evaluates to I specifies
that the Ith variant is to be displayed.

You can use asterisk (*) as a wildcard, which matches all variants of an anonymous variant list.

Each of these variant selectors can be used to match all variants. In particular, each of the following
variant selectors indicates that all of the variants of the first anonymous variant list are to be displayed.

439

Chapter 17. Debugger Command Dictionary

/VAR=D=*
/VAR=N=*
/VAR=P=*

The variant selectors can themselves contain a list of selectors. For example, the following commands all
mean the same thing.

 EXAMINE /VARIANT=(DIS=3, DIS=1, DIS=54) x
 EXAMINE /VARIANT=(DIS=(3, 1, 54)) x
 EXAMINE /VARIANT=DIS=(3, 1, 54) x

You can specify a single discriminant or position value without parentheses if the value is a simple
decimal integer. To use a general expression to specify the value, you enclose the expression in
parentheses. In the following list of commands, the first four are legal while the last three are not.

 EXAMINE /VARIANT=POS=3
 EXAMINE /VARIANT=POS=(3) ! parentheses unnecessary
 EXAMINE /VARIANT=(POS=(3)) ! parentheses unnecessary
 EXAMINE /VARIANT=(POS=3) ! parentheses unnecessary
 EXAMINE /VARIANT=(POS=foo) ! parentheses necessary
 EXAMINE /VARIANT=POS=(foo) ! parentheses necessary
 EXAMINE /VARIANT=(POS=3-1) ! parentheses necessary

Related Commands:

CANCEL TYPE/OVERRIDE
DEPOSIT
DUMP
EVALUATE
SET MODE [NO]OPERANDS
SET MODE [NO]SYMBOLIC
(SET, SHOW, CANCEL) RADIX
(SET, SHOW) TYPE

Examples
1. DBG> EXAMINE COUNT

SUB2\COUNT: 27
DBG>

This command displays the value of the integer variable COUNT in module SUB2.

2. DBG> EXAMINE PART_NUMBER
INVENTORY\PART_NUMBER: "LP-3592.6-84"
DBG>

This command displays the value of the string variable PART_NUMBER.

3. DBG> EXAMINE SUB1\ARR3
SUB1\ARR3
 (1, 1): 27.01000
 (1, 2): 31.01000
 (1, 3): 12.48000
 (2, 1): 15.08000
 (2, 2): 22.30000
 (2, 3): 18.73000

440

Chapter 17. Debugger Command Dictionary

DBG>

This command displays the value of all elements in array ARR3 in module SUB1.ARR3 is a 2 by 3
element array of real numbers.

4. DBG> EXAMINE SUB1\ARR3(2, 1:3)
SUB1\ARR3
 (2, 1): 15.08000
 (2, 2): 22.30000
 (2, 3): 18.73000
DBG>

This command displays the value of the elements in a slice of array SUB1 \ARR3. The slice includes
"columns" 1 to 3 of "row" 2.

5. DBG> EXAMINE VALVES.INTAKE.STATUS
MONITOR\VALVES.INTAKE.STATUS: OFF
DBG>

This command displays the value of the nested record component VALVES.INTAKE.STATUS in
module MONITOR.

6. DBG> EXAMINE/SOURCE SWAP
module MAIN 47: procedure SWAP(X, Y: in out INTEGER) is
DBG>

This command displays the source line in which routine SWAP is declared (the location of routine
SWAP).

7. DBG> DEPOSIT/ASCII:7 WORK+20 = 'abcdefg'
DBG> EXAMINE/ASCII:7 WORK+20
DETAT\WORK+20: "abcdefg"
DBG> EXAMINE/ASCII:5 WORK+20
DETAT\WORK+20: "abcde"
DBG>

In this example, the DEPOSIT command deposits the entity 'abcdefg' as an ASCII string of length 7
bytes in to the location that is 20 bytes beyond the location denoted by the symbol WORK. The first
EXAMINE command displays the value of the entity at that location as an ASCII string of length 7
bytes (abcdefg). The second EXAMINE command displays the value of the entity at that location as
an ASCII string of length 5 bytes (abcde).

8. DBG> EXAMINE/OPERANDS=FULL .0\%PC
X\X$START+0C: mov r12 = r15 ;;
DBG>

On Integrity servers, this command displays the instruction (MOV) at the current PC value. Using
/OPERANDS=FULL displays the maximum level of operand information.

9. DBG> SET RADIX HEXADECIMAL
DBG> EVALUATE/ADDRESS WORKDATA
0000086F
DBG> EXAMINE/SYMBOLIC 0000086F
MOD3\WORKDATA: 03020100
DBG> EXAMINE/NOSYMBOLIC 0000086F
0000086F: 03020100
DBG>

441

Chapter 17. Debugger Command Dictionary

In this example, the EVALUATE/ADDRESS command indicates that the memory address of
variable WORKDATA is 0000086F, hexadecimal. The two EXAMINE commands display the value
contained at that address using /[NO]SYMBOL to control whether the address is symbolized to
WORKDATA.

10. DBG> EXAMINE/HEX FIDBLK
FDEX1$MAIN\FIDBLK
 (1): 00000008
 (2): 00000100
 (3): 000000AB
DBG>

This command displays the value of the array variable FIDBLK in hexadecimal radix.

11. DBG> EXAMINE/DECIMAL/WORD NEWDATA:NEWDATA+6
SUB2\NEWDATA: 256
SUB2\NEWDATA+2: 770
SUB2\NEWDATA+4: 1284
SUB2\NEWDATA+6: 1798
DBG>

This command displays, in decimal radix, the values of word integer entities (2-byte entities) that are
in the range of locations denoted by NEWDATA to NEWDATA + 6 bytes.

12. DBG> EXAMINE/TASK SORT_INPUT
MOD3\SORT_INPUT: %TASK 12
DBG>

This command displays the task ID of a task object named SORT_INPUT.

13. DBG> EXAMINE /VARIANT=(NAME=m, DIS=4, POS=1) x

This command specifies that, for the first anonymous variant list encountered, display the variant
part containing a field named "m", for the second anonymous variant list, display the part with the
discriminant value 4, and, for the third anonymous variant list, display the first variant part.

14. DBG> ex %r9:%r12
 TEST\%R9: 0000000000000000
 TEST\%R10: 0000000000000000
 TEST\%R11: 0000000000000000
 TEST\%SP: 000000007AC8FB70
DBG> ex/bin grnat0 <9, 4, 0>
TEST\%GRNAT0+1: 0110
DBG>

Debugger displays the string "NaT" when the integer register's NaT bit is set.

EXIT
EXIT — Ends a debugging session, or terminates one or more processes of a multiprocess program,
allowing any application-declared exit handlers to run. If used within a command procedure or DO
clause and no process is specified, it exits the command procedure or DO clause at that point.

Synopsis

442

Chapter 17. Debugger Command Dictionary

EXIT [process-spec[, …]]

Parameters
[process-spec]

Specifies a process currently under debugger control. Use any of the following forms:

[%PROCESS_NAME] process-name The process name, if that name does not contain
spaces or lowercase characters. The process name
can include the asterisk (*) wildcard character.

[%PROCESS_NAME] " process-name " The process name, if that name contains spaces or
lowercase characters. You can also use apostrophes
(') instead of quotation marks (").

%PROCESS_PID process_id The process identifier (PID, a hexadecimal
number).

[%PROCESS_NUMBER] process-number
(or %PROC process-number)

The number assigned to a process when it
comes under debugger control. A new number
is assigned sequentially, starting with 1, to each
process. If a process is terminated with the
EXIT or QUIT command, the number can be
assigned again during the debugging session.
Process numbers appear in a SHOW PROCESS
display. Processes are ordered in a circular
list so they can be indexed with the built-
in symbols %PREVIOUS_PROCESS and
%NEXT_PROCESS.

process-set-name A symbol defined with the
DEFINE/PROCESS_SET command to represent
a group of processes.

%NEXT_PROCESS The next process after the visible process in the
debugger's circular process list.

%PREVIOUS_PROCESS The process previous to the visible process in the
debugger's circular process list.

%VISIBLE_PROCESS The process whose stack, register set, and images
are the current context for looking up symbols,
register values, routine calls, breakpoints, and so
on.

You can also use the asterisk (*) wildcard character to specify all processes.

Description
The EXIT command is one of the four debugger commands that can be used to execute your program
(the others are CALL, GO, and STEP).

Ending a Debugging Session
To end a debugging session, enter the EXIT command at the debugger prompt without specifying any
parameters. This causes orderly termination of the session: the program's application-declared exit

443

Chapter 17. Debugger Command Dictionary

handlers (if any) are executed, the debugger exit handler is executed (closing log files, restoring the
screen and keypad states, and so on), and control is returned to the command interpreter. You cannot
then continue to debug your program by entering the DCL command DEBUG or CONTINUE (you must
restart the debugger).

Because EXIT runs any application-declared exit handlers, you can set breakpoints in such exit handlers,
and the breakpoints are triggered upon typing EXIT. Thus, you can use EXIT to debug your exit
handlers.

To end a debugging session without running any application-declared exit handlers, use the QUIT
command instead of EXIT.

Using the EXIT Command in Command Procedures and DO
Clauses
When the debugger executes an EXIT command (without any parameters) in a command procedure,
control returns to the command stream that invoked the command procedure. A command stream can be
the terminal, an outer (containing) command procedure, or a DO clause in a command or screen display
definition. For example, if the command procedure was invoked from within a DO clause, control returns
to that DO clause, where the debugger executes the next command (if any remain in the command
sequence).

When the debugger executes an EXIT command (without any parameters) in a DO clause, it ignores any
remaining commands in that clause and displays its prompt.

Terminating Specified Processes
If you are debugging a multiprocess program you can use the EXIT command to terminate specified
processes without ending the debugging session. The same techniques and behavior apply, whether you
enter the EXIT command at the prompt or use it within a command procedure or DO clause.

To terminate one or more processes, enter the EXIT command, specifying these processes as
parameters. This causes orderly termination of the images in these processes, executing any application-
declared exit handlers associated with these images. Subsequently, the specified processes are no longer
identified in a SHOW PROCESS/ALL display. If any specified processes were on hold as the result of a
SET PROCESS command, the hold condition is ignored.

When the specified processes begin to exit, any unspecified process that is not on hold begins
execution. After execution is started, the way in which it continues depends on whether you entered
a SET MODE [NO]INTERRUPT command. By default (SET MODE INTERRUPT), execution
continues until it is suspended in any process. At that point, execution is interrupted in any other
processes that were executing images, and the debugger prompts for input.

To terminate specified processes without running any application-declared exit handlers or otherwise
starting execution, use the QUIT command instead of EXIT.

Related commands:

DISCONNECT
@ (Execute Procedure)
Ctrl/C
Ctrl/Y
Ctrl/Z
QUIT

444

Chapter 17. Debugger Command Dictionary

RERUN
RUN
SET ABORT_KEY
SET MODE [NO]INTERRUPT
SET PROCESS

Examples
1. DBG> EXIT

$

This command ends the debugging session and returns you to DCL level.

2. all> EXIT %NEXT_PROCESS, JONES_3, %PROC 5
all>

This command causes orderly termination of three processes of a multiprocess program: the process
after the visible process on the process list, process JONES_3, and process 5. Control is returned to
the debugger after the specified processes have exited.

EXITLOOP
EXITLOOP — Exits one or more enclosing FOR, REPEAT, or WHILE loops.

Synopsis
EXITLOOP [integer]

Parameters
[integer]

A decimal integer that specifies the number of nested loops to exit from. The default is 1.

Description
Use the EXITLOOP command to exit one or more enclosing FOR, REPEAT, or WHILE loops.

Related commands:

FOR
REPEAT
WHILE

Example
DBG> WHILE 1 DO (STEP; IF X .GT. 3 THEN EXITLOOP)

The WHILE 1 command generates an endless loop that executes a STEP command with each iteration.
After each STEP, the value of X is tested. If X is greater than 3, the EXITLOOP command terminates
the loop (Fortran example).

445

Chapter 17. Debugger Command Dictionary

EXPAND
EXPAND — Expands or contracts the window associated with a screen display.

Synopsis
EXPAND [display-name[, …]]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[display-name]

Specifies a display to be expanded or contracted. You can specify any of the following entities:

• A predefined display:

SRC
OUT
PROMPT
INST
REG
FREG (Integrity servers and Alpha only)
IREG

• A display previously created with the DISPLAY command

• A display built-in symbol:

%CURDISP
%CURSCROLL
%NEXTDISP
%NEXTINST
%NEXTOUTPUT
%NEXTSCROLL
%NEXTSOURCE

If you do not specify a display, the current scrolling display, as established by the SELECT command, is
chosen.

Qualifiers
/DOWN[:n]

Moves the bottom border of the display down by n lines (if n is positive) or up by n lines (if n is
negative). If you omit n, the border is moved down by 1 line.

446

Chapter 17. Debugger Command Dictionary

/LEFT[:n]

Moves the left border of the display to the left by n lines (if n is positive) or to the right by n lines
(if n is negative). If you omit n, the border is moved to the left by 1 line.

/RIGHT[:n]

Moves the right border of the display to the right by n lines (if n is positive) or to the left by n lines
(if n is negative). If you omit n, the border is moved to the right by 1 line.

/UP[:n]

Moves the top border of the display up by n lines (if n is positive) or down by n lines (if n is
negative). If you omit n, the border is moved up by 1 line.

Description
You must specify at least one qualifier.

The EXPAND command moves one or more display-window borders according to the qualifiers specified
(/UP:[n], /DOWN:[n], RIGHT:[n], /LEFT:[n]).

The EXPAND command does not affect the order of a display on the display pasteboard. Depending on
the relative order of displays, the EXPAND command can cause the specified display to hide or uncover
another display or be hidden by another display, partially or totally.

Except for the PROMPT display, any display can be contracted to the point where it disappears (at which
point it is marked as "removed"). It can then be expanded from that point. Contracting a display to the
point where it disappears causes it to lose any attributes that were selected for it. The PROMPT display
cannot be contracted or expanded horizontally but can be contracted vertically to a height of 2 lines.

A window border can be expanded only up to the edge of the screen. The left and top window borders
cannot be expanded beyond the left and top edges of the display, respectively. The right border can be
expanded up to 255 columns from the left display edge. The bottom border of a source or instruction
display can be expanded down only to the bottom edge of the display (to the end of the source module or
routine's instructions). A register display cannot be expanded beyond its full size.

For a list of the key definitions associated with the EXPAND command, type Help
Keypad_Definitions_CI.Also, use the SHOW KEY command to determine the current key definitions.

Related commands:

DISPLAY
MOVE
SELECT/SCROLL
(SET, SHOW) TERMINAL

Examples
1. DBG> EXPAND/RIGHT:6

This command moves the right border of the current scrolling display to the right by 6 columns.

2. DBG> EXPAND/UP/RIGHT:-12 OUT2

This command moves the top border of display OUT2 up by 1 line, and the right border to the left
by 12 columns.

447

Chapter 17. Debugger Command Dictionary

3. DBG> EXPAND/DOWN:99 SRC

This command moves the bottom border of display SRC down to the bottom edge of the screen.

EXTRACT
EXTRACT — Saves the contents of screen displays in a file or creates a debugger command procedure
with all of the commands necessary to re-create the current screen state later on.

Synopsis
EXTRACT [display-name[, …]] [file-spec]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[display-name]

Specifies a display to be extracted. You can specify any of the following entities:

• A predefined display:

SRC
OUT
PROMPT
INST
REG
FREG (Integrity servers and Alpha only)
IREG

• A display previously created with the DISPLAY command

You can use the asterisk (*) wildcard character in a display name. Do not specify a display name with the
/ALL qualifier.

[file-spec]

Specifies the file to which the information is written. You can specify a logical name.

If you specify /SCREEN_LAYOUT, the default specification for the file is SYS$DISK:
[]DBGSCREEN.COM. Otherwise, the default specification is SYS$DISK:[]DEBUG.TXT.

Qualifiers
/ALL

Extracts all displays. Do not specify /SCREEN_LAYOUT with this qualifier.

448

Chapter 17. Debugger Command Dictionary

/APPEND

Appends the information at the end of the file, rather than creating a new file. By default, a new file
is created. Do not specify /SCREEN_LAYOUT with this qualifier.

/SCREEN_LAYOUT

Writes a file that contains the debugger commands describing the current state of the screen. This
information includes the screen height and width, message wrap setting, and the position, display
kind, and display attributes of every existing display. This file can then be executed with the execute
procedure (@) command to reconstruct the screen at a later time. Do not specify /ALL with this
qualifier.

Description
When you use the EXTRACT command to save the contents of a display into a file, only those lines
that are currently stored in the display's memory buffer (as determined by the /SIZE qualifier on the
DISPLAY command) are written to the file.

You cannot extract the PROMPT display into a file.

Related commands:

DISPLAY
SAVE

Examples
1. DBG> EXTRACT SRC

This command writes all the lines in display SRC into file SYS$DISK:[]DEBUG.TXT.

2. DBG> EXTRACT/APPEND OUT [JONES.WORK]MYFILE

This command appends all the lines in display OUT to the end of file
[JONES.WORK]MYFILE.TXT.

3. DBG> EXTRACT/SCREEN_LAYOUT

This command writes the debugger commands needed to reconstruct the screen into file SYS
$DISK:[]DBGSCREEN.COM.

FOR
FOR — Executes a sequence of commands while incrementing a variable a specified number of times.

Synopsis
FOR [name=expression1 TO expression2 [BY expression3] DO (command[; …])]

Parameters
[name]

449

Chapter 17. Debugger Command Dictionary

Specifies the name of a count variable.

[expression1]

Specifies an integer or enumeration type value. The expression1 and expression2 parameters
must be of the same type.

[expression2]

Specifies an integer or enumeration type value. The expression1 and expression2 parameters
must be of the same type.

[expression3]

Specifies an integer.

[command]

Specifies a debugger command. If you specify more than one command, you must separate the
commands with semicolons. At each execution, the debugger checks the syntax of any expressions in the
commands and then evaluates them.

Description
The behavior of the FOR command depends on the value of the expression3 parameter, as detailed
in the following table:

expression3 Action of the FOR Command

Positive name parameter is incremented from the value of
expression1 by the value of expression3
until it is greater than the value of expression2

Negative name is decremented from the value
of expression1 by the value of
expression3until it is less than the value of
expression2

0 The debugger returns an error message
Omitted The debugger assumes it to have the value +1

Related commands:

EXITLOOP
REPEAT
WHILE

Examples
1. DBG> FOR I = 10 TO 1 BY -1 DO (EXAMINE A(I))

This command examines an array backwards.

2. DBG> FOR I = 1 TO 10 DO (DEPOSIT A(I) = 0)

This command initializes an array to zero.

450

Chapter 17. Debugger Command Dictionary

GO
GO — Starts or resumes program execution.

Synopsis
GO [address-expression]

Parameters
[address-expression]

Specifies that program execution resume at the location denoted by the address expression. If you do not
specify an address expression, execution resumes at the point of suspension or, in the case of debugger
startup, at the image transfer address.

Description
The GO command starts program execution or resumes execution from the point at which it is currently
suspended. GO is one of the four debugger commands that can be used to execute your program (the
others are CALL, EXIT, and STEP).

Specifying an address expression with the GO command can produce unexpected results because it
alters the normal control flow of your program. For example, during a debugging session you can restart
execution at the beginning of the program by entering the GO %LINE 1 command. However, because
the program has executed, the contents of some variables might now be initialized differently from when
you first ran the program.

If an exception breakpoint is triggered (resulting from a SET BREAK/EXCEPTION or a
STEP/EXCEPTION command), execution is suspended before any application-declared condition
handler is invoked. If you then resume execution with the GO command, the behavior is as follows:

• Entering a GO command to resume execution from the current location causes the debugger to
resignal the exception. This enables you to observe which application-declared handler, if any, next
handles the exception.

• Entering a GO command to resume execution from a location other than the current location inhibits
the execution of any application-declared handler for that exception.

If you are debugging a multiprocess program, the GO command is executed in the context of the
current process set. In addition, when debugging a multiprocess program, the way in which execution
continues in your process depends on whether you entered a SET MODE [NO]INTERRUPT
command or a SET MODE [NO]WAIT command. By default (SET MODE NOINTERRUPT), when
one process stops, the debugger takes no action with regard to the other processes. Also by default
(SET MODE WAIT), the debugger waits until all process in the current process set have stopped before
prompting for a new command. See Chapter 15 for more information.

Related commands:

CALL
EXIT
RERUN
SET BREAK
SET MODE [NO]INTERRUPT

451

Chapter 17. Debugger Command Dictionary

SET MODE [NO]WAIT
SET PROCESS
SET STEP
SET TRACE
SET WATCH
STEP
WAIT

Examples
1. DBG> GO

…
'Normal successful completion'
DBG>

This command starts program execution, which then completes successfully.

2. DBG> SET BREAK RESTORE
DBG> GO ! start execution
 …
break at routine INVENTORY\RESTORE137: procedure RESTORE;
DBG> GO ! resume execution
 …

In this example, the SET BREAK command sets a breakpoint on routine RESTORE. The first
GO command starts program execution, which is then suspended at the breakpoint on routine
RESTORE. The second GO command resumes execution from the breakpoint.

3. DBG> GO %LINE 42

This command resumes program execution at line 42 of the module in which execution is currently
suspended.

HELP
HELP — Displays online help on debugger commands and selected topics.

Synopsis
HELP [topic [subtopic […]]]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger. Help on commands is available from the Help menu in a DECwindows debugger window.

Parameters
[topic]

Specifies the name of a debugger command or topic about which you want help. You can specify the
asterisk (*) wildcard character, either singly or within a name.

452

Chapter 17. Debugger Command Dictionary

[subtopic]

Specifies a subtopic, qualifier, or parameter about which you want further information. You can specify
the asterisk wildcard (*), either singly or within a name.

Description
The debugger's online help facility provides the following information about any debugger command,
including a description of the command, its format, explanations of any parameters that can be specified
with the command, and explanations of any qualifiers that can be specified with the command.

To get information about a particular qualifier or parameter, specify it as a subtopic. If you want
information about all qualifiers, specify "qualifier" as a subtopic. If you want information about all
parameters, specify "parameter" as a subtopic. If you want information about all parameters, qualifiers,
and any other subtopics related to a command, specify an asterisk (*) as a subtopic.

In addition to help on commands, you can get online help on various topics such as screen features,
keypad mode, and so on. Topic keywords are listed along with the commands when you type HELP.

For help on the predefined keypad-key functions, type Help Keypad_Definitions_CI. Also, use the
SHOW KEY command to determine the current key definitions.

Example
DBG> HELP GO

This command displays help for the GO command.

IF
IF — Executes a sequence of commands if a language expression (Boolean expression) is evaluated as
true.

Synopsis
IF [Boolean-expression THEN (command [; …]) [ELSE (command [; …])]]

Parameters
[Boolean-expression]

Specifies a language expression that evaluates as a Boolean value (true or false) in the currently set
language.

[command]

Specifies a debugger command. If you specify more than one command, you must separate the
commands with semicolons (;).

Description
The IF command evaluates a Boolean expression. If the value is true (as defined in the current language),
the command list in the THEN clause is executed. If the expression is false, the command list in the
ELSE clause (if any) is executed.

453

Chapter 17. Debugger Command Dictionary

Related commands:

EXITLOOP
FOR
REPEAT
WHILE

Example
DBG> SET BREAK R DO (IF X .LT. 5 THEN (GO) ELSE (EXAMINE X))

This command causes the debugger to suspend program execution at location R (a breakpoint) and then
resume program execution if the value of X is less than 5 (Fortran example). If the value of X is 5 or
more, its value is displayed.

MONITOR
MONITOR — Displays the current value of a program variable or language expression in the monitor
view of the VSI DECwindows Motif for OpenVMS user interface.

Synopsis
MONITOR [expression]

Note

Requires the VSI DECwindows Motif for OpenVMS user interface.

Parameters
[expression]

Specifies an entity to be monitored. With high-level languages, this is typically the name of a variable.
Currently, MONITOR does not handle composite expressions (language expressions containing
operators).

If you specify the name of an aggregate variable (a composite data structure such as an array or record
structure), the monitor view lists “Aggregate” for the value of the variable. You can then double-click on
the variable name to get the values of all the elements (see Section 10.5.4.1).

To specify an individual array element, array slice, or record component, follow the syntax of the current
language.

Qualifiers
/ASCIC
/AC

Interprets each monitored entity as a counted ASCII string preceded by a1-byte count field that
gives the length of the string. The string is then displayed.

454

Chapter 17. Debugger Command Dictionary

/ASCID
/AD

Interprets each monitored entity as the address of a string descriptor pointing to an ASCII string.
The CLASS and DTYPE fields of the descriptor are not checked, but the LENGTH and POINTER
fields provide the character length and address of the ASCII string. The string is then displayed.

/ASCII:n

Interprets and displays each monitored entity as an ASCII string of length n bytes (n characters). If
you omit n, the debugger attempts to determine a length from the type of the address expression.

/ASCIW
/AW

Interprets each monitored entity as a counted ASCII string preceded by a2-byte count field that
gives the length of the string. The string is then displayed.

/ASCIZ
/AZ

Interprets each monitored entity as a zero-terminated ASCII string. The ending zero byte indicates
the end of the string. The string is then displayed.

/BINARY

Displays each monitored entity as a binary integer.

/BYTE

Displays each monitored entity in the byte integer type (length 1 byte).

/DATE_TIME

Interprets each monitored entity as a quadword integer (length 8 bytes) containing the internal
OpenVMS representation of date and time. Displays the value in the format dd-mmm-yyyy
hh:mm:ss.cc.

/DECIMAL

Displays each monitored entity as a decimal integer.

/DEFAULT

Displays each monitored entity in the default radix.

/EXTENDED_FLOAT

(Integrity servers and Alpha only) Displays each monitored entity in the IEEE X_floating type
(length 16 bytes).

/FLOAT

455

Chapter 17. Debugger Command Dictionary

On Alpha, displays each monitored entity in the IEEE T_floating type (double precision, length 8
bytes).

/G_FLOAT

Displays each monitored entity in the G_floating type (length 8 bytes).

/HEXADECIMAL

Displays each monitored entity as a hexadecimal integer.

/INSTRUCTION

Displays each monitored entity as an assembly-language instruction(variable length, depending
on the number of instruction operands and the kind of addressing modes used). See also the
/OPERANDS qualifier.

/INT

Same as /LONGWORD qualifier.

/LONG_FLOAT

(Integrity servers and Alpha only) Displays each monitored entity in the IEEE S_floating type
(single precision, length 4 bytes).

/LONG_LONG_FLOAT

(Integrity servers and Alpha only) Displays each monitored entity in the IEEE T_floating type
(double precision, length 8 bytes).

/LONGWORD
/INT
/LONG

 Displays each monitored entity in the longword integer type (length 4bytes). This is the default type
for program locations that do not have a compiler-generated type.

/OCTAL

Displays each monitored entity as an octal integer.

/OCTAWORD

Displays each monitored entity in the octaword integer type (length 16 bytes).

/QUADWORD

Displays each monitored entity in the quadword integer type (length 8 bytes).

/REMOVE

Removes a monitored item or items with the address expression specified from the Monitor View.

/SHORT

Same as /WORD qualifier.

456

Chapter 17. Debugger Command Dictionary

/TASK

Applies to tasking (multithread) programs. Interprets each monitored entity as a task (thread) object
and displays the task value (the name or task ID) of that task object. When monitoring a task object,
use /TASK only if the programming language does not have built-in tasking services.

/WORD
/SHORT

 Displays each monitored entity in the word integer type (length 2 bytes).

Description
You can use the MONITOR command only with the debugger's VSI DECwindows Motif for OpenVMS
user interface, because the output of that command is directed at the monitor view. With the command
interface, you typically use the EVALUATE, EXAMINE or SET WATCH command instead.

The MONITOR command does the following:

1. Displays the monitor view (if it is not already displayed by a previous MONITOR command).

2. Puts the name of the specified variable or expression and its current value in the monitor view.

The debugger updates the monitor view whenever the debugger regains control from the program,
regardless of whether the value of the variable or location you are monitoring has changed. (By contrast,
a watchpoint halts execution when the value of the watched variable changes.)

For more information about the monitor view and the MONITOR command, see Section 10.5.4.

Related commands:

DEPOSIT
EVALUATE
EXAMINE
SET WATCH

Example
DBG> MONITOR COUNT

This command displays the name and current value of the variable COUNT in the monitor view of the
debugger's VSI DECwindows Motif for OpenVMS user interface. The value is updated whenever the
debugger regains control from the program.

MOVE
MOVE — Moves a screen display vertically or horizontally across the screen.

Synopsis
MOVE [display-name[, …]]

457

Chapter 17. Debugger Command Dictionary

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[display-name]

Specifies a display to be moved. You can specify any of the following entities:

• A predefined display:

SRC
OUT
PROMPT
INST
REG
FREG (Integrity servers and Alpha only)
IREG

• A display previously created with the DISPLAY command

• A display built-in symbol:

%CURDISP
%CURSCROLL
%NEXTDISP
%NEXTINST
%NEXTOUTPUT
%NEXTSCROLL
%NEXTSOURCE

If you do not specify a display, the current scrolling display, as established by the SELECT command, is
chosen.

Qualifiers
/DOWN[:n]

Moves the display down by n lines (if n is positive)or up by n lines (if n is negative). If you omit n,
the display is moved down by 1 line.

/LEFT[:n]

Moves the display to the left by n lines (if n is positive) or right by n lines (if n is negative). If you
omit n, the display is moved to the left by 1 line.

/RIGHT[:n]

Moves the display to the right by n lines (if n is positive) or left by n lines (if n is negative). If you
omit n, the display is moved to the right by 1 line.

458

Chapter 17. Debugger Command Dictionary

/UP[:n]

Moves the display up by n lines (if n is positive) or down by n lines (if n is negative). If you omit n,
the display is moved up by 1 line.

Description
You must specify at least one qualifier.

For each display specified, the MOVE command simply creates a window of the same dimensions
elsewhere on the screen and maps the display to it, while maintaining the relative position of the text
within the window.

The MOVE command does not change the order of a display on the display pasteboard. Depending on the
relative order of displays, the MOVE command can cause the display to hide or uncover another display or
be hidden by another display, partially or totally.

A display can be moved only up to the edge of the screen.

For a list of the keypad-key definitions associated with the MOVE command, type Help
Keypad_Definitions_CI.Also, use the SHOW KEY command to determine the current key definitions.

Related commands:

DISPLAY
EXPAND
SELECT/SCROLL
(SET, SHOW) TERMINAL

Examples
1. DBG> MOVE/LEFT

This command moves the current scrolling display to the left by 1 column.

2. DBG> MOVE/UP:3/RIGHT:5 NEW_OUT

This command moves display NEW_OUT up by 3 lines and to the right by 5 columns.

PTHREAD
PTHREAD — Passes a command to the POSIX Threads debugger for execution.

Synopsis
PTHREAD [command]

Note

This command is valid only when the event facility is THREADS and the program is running POSIX
Threads 3.13 or later.

459

Chapter 17. Debugger Command Dictionary

Parameters
[command]

A POSIX Threads debugger command.

Description
Passes a command to the POSIX Threads debugger for execution. The results appear in the command
view. Once the POSIX Threads debugger command has been completed, control is returned to the
OpenVMS debugger. You can get help on POSIX Threads debugger commands by typing PTHREAD
HELP.

See the Guide to POSIX Threads Library for more information about using the POSIX Threads
debugger.

Related commands:

• SET EVENT FACILITY

• SET TASK|THREAD

• SHOW EVENT FACILITY

• SHOW TASK|THREAD

Example
DBG_1> PTHREAD HELP
 conditions [-afhwqrs] [-N <n>] [id]...: list condition variables
 exit: exit from DECthreads debugger
 help [topic]: display help information
 keys [-v] [-N <n>] [id]...: list keys
 mutexes [-afhilqrs] [-N <n>] [id]...: list mutexes
 quit: exit from DECthreads debugger
 show [-csuv]: show stuff
 squeue [-c <n>] [-fhq] [-t <t>] [a]: format queue
 stacks [-fs] [sp]...: list stacks
 system: show system information
 threads [-1] [-N <n>] [-abcdfhklmnor] [-s <v>] [-tz] [id]...: list
 threads
 tset [-chna] [-s <v>] <id>: set state of thread
 versions: display versions
 write <st>: write a string
All keywords may be abbreviated: if the abbreviation is ambiguous,
the first match will be used. For more help, type 'help <topic>'.
DBG_1>

This command invokes the POSIX Threads debugger help file, then returns control to the OpenVMS
debugger. To get specific help on a POSIX Threads debugger Help topic, type PTHREAD HELP topic.

QUIT
QUIT — Ends a debugging session, or terminates one or more processes of a multiprocess program
(similar to EXIT), but without allowing any application-declared exit handlers to run. If used within a

460

Chapter 17. Debugger Command Dictionary

command procedure or DO clause and no process is specified, it exits the command procedure or DO
clause at that point.

Synopsis
QUIT [process-spec[, …]]

Parameters
[process-spec]

(Kept debugger only.) Specifies a process currently under debugger control. Use any of the following
forms:

[%PROCESS_NAME] process-name The process name, if that name does not contain
spaces or lowercase characters. The process name
can include the asterisk (*) wildcard character.

[%PROCESS_NAME] " process-name " The process name, if that name contains spaces or
lowercase characters. You can also use apostrophes
(') instead of quotation marks (").

%PROCESS_PID process_id The process identifier (PID, a hexadecimal
number).

[%PROCESS_NUMBER] process-number
(or %PROC process-number)

The number assigned to a process when it
comes under debugger control. A new number
is assigned sequentially, starting with 1, to each
process. If a process is terminated with the
EXIT or QUIT command, the number can be
assigned again during the debugging session.
Process numbers appear in a SHOW PROCESS
display. Processes are ordered in a circular
list so they can be indexed with the built-
in symbols %PREVIOUS_PROCESS and
%NEXT_PROCESS.

process-set-name A symbol defined with the
DEFINE/PROCESS_SET command to represent
a group of processes.

%NEXT_PROCESS The next process after the visible process in the
debugger's circular process list.

%PREVIOUS_PROCESS The process previous to the visible process in the
debugger's circular process list.

%VISIBLE_PROCESS The process whose stack, register set, and images
are the current context for looking up symbols,
register values, routine calls, breakpoints, and so
on.

You can also use the asterisk (*) wildcard character to specify all processes.

Description
The QUIT command is similar to the EXIT command, except that QUIT does not cause your program
to execute and, therefore, does not execute any application-declared exit handlers in your program.

461

Chapter 17. Debugger Command Dictionary

Ending a Debugging Session
To end a debugging session, enter the QUIT command at the debugger prompt without specifying any
parameters. This causes orderly termination of the session: the debugger exit handler is executed (closing
log files, restoring the screen and keypad states, and so on), and control is returned to DCL level. You
cannot then continue to debug your program by entering the DCL command DEBUG or CONTINUE
(you must restart the debugger).

Using the QUIT Command in Command Procedures and DO
Clauses
When the debugger executes a QUIT command (without any parameters) in a command procedure,
control returns to the command stream that invoked the command procedure. A command stream can be
the terminal, an outer (containing) command procedure, or a DO clause in a command or screen display
definition. For example, if the command procedure was invoked from within a DO clause, control returns
to that DO clause, where the debugger executes the next command (if any remain in the command
sequence).

When the debugger executes a QUIT command (without any parameters) in a DO clause, it ignores any
remaining commands in that clause and displays its prompt.

Terminating Specified Processes
If you are debugging a multiprocess program, you can use the QUIT command to terminate specified
processes without ending the debugging session. The same techniques and behavior apply, whether you
enter the QUIT command at the prompt or use it within a command procedure or DO clause.

To terminate one or more processes, enter the QUIT command, specifying these processes as
parameters. This causes orderly termination of the images in these processes without executing any
application-declared exit handlers associated with these images. Subsequently, the specified processes are
no longer identified in a SHOW PROCESS/ALL display.

In contrast to the EXIT command, the QUIT command does not cause any process to start execution.

Related commands:

DISCONNECT
@ (Execute Procedure)
Ctrl/C
Ctrl/Y
Ctrl/Z
EXIT
RERUN
RUN
SET ABORT_KEY
SET PROCESS

Examples
1. DBG> QUIT

$

This command ends the debugging session and returns you to DCL level.

462

Chapter 17. Debugger Command Dictionary

2. all> QUIT %NEXT_PROCESS, JONES_3, %PROC 5
all>

This command causes orderly termination of three processes of a multiprocess program: the process
after the visible process on the process list, process JONES_3, and process 5. Control is returned to
the debugger after the specified processes have exited.

REBOOT (Integrity servers and Alpha Only)
REBOOT (Integrity servers and Alpha Only) — When debugging operating system code with the
OpenVMS System-Code Debugger, reboots the target machine running the operating system code and
executes (or reexecutes) your system program. The REBOOT command, in other words, is similar to the
RUN or RERUN commands when you are within the OpenVMS System-Code Debugger environment.
(The OpenVMS System-Code Debugger is a kernel debugger that is activated through the OpenVMS
Debugger.) Before you issue this command, you must create an Alpha or Integrity server device
driver, activate the OpenVMS System-Code Debugger, and use the CONNECT command that provides
debugging capability. You must also have started the OpenVMS Debugger with the DEBUG/KEEP
command.

Synopsis
REBOOT

Description
For complete information on using the OpenVMS System-Code Debugger, see the VSI OpenVMS System
Analysis Tools Manual.

Related commands:

CONNECT
DISCONNECT

Example
DBG> REBOOT

This command reboots the target machine where you will be debugging the OpenVMS operating system
and reruns your program.

REPEAT
REPEAT — Executes a sequence of commands a specified number of times.

Synopsis
REPEAT [language-expression DO (command [; …])]

Parameters
[language-expression]

463

Chapter 17. Debugger Command Dictionary

Denotes any expression in the currently set language that evaluates to a positive integer.

[command]

Specifies a debugger command. If you specify more than one command, you must separate the
commands with semicolons (;). At each execution, the debugger checks the syntax of any expressions in
the commands and then evaluates them.

Description
The REPEAT command is a simple form of the FOR command. The REPEAT command executes
a sequence of commands repetitively a specified number of times, without providing the options for
establishing count parameters that the FOR command does.

Related commands:

EXITLOOP
FOR
WHILE

Example
DBG> REPEAT 10 DO (EXAMINE Y; STEP)

This command line sets up a loop that issues a sequence of two commands (EXAMINE Y, then STEP)
10 times.

RERUN
RERUN — Reruns the program currently under debugger control.

Synopsis
RERUN

Note

Requires that you started your debugging session with the DCL command DEBUG/KEEP and
then executed the debugger RUN command. If you began your session with the DCL command
RUN filespec instead, you cannot use the debugger RERUN command.

Qualifiers
/ARGUMENTS="arg-list"

Specifies a list of arguments. If you specify a quoted string, you might have to add quotation marks
because the debugger strips them when parsing the string. If you do not specify arguments, any
arguments that were specified previously when running or rerunning that program are applied, by
default.

464

Chapter 17. Debugger Command Dictionary

/HEAP_ANALYZER

(Applies only to workstation users.) Invokes the Heap Analyzer, a debugger feature that helps you
understand how memory is used by your application. For more information on using the Heap
Analyzer, see Chapter 12.

/SAVE (default)
/NOSAVE

Controls whether to save the current state (activated or deactivated) of all breakpoints, tracepoints,
and static watchpoints for the next run of the program. The /SAVE qualifier specifies that their state
is saved, and /NOSAVE specifies that their state is not saved. /SAVE may or may not save the state
of a particular nonstatic watchpoint depending on the scope of the variable being watched relative to
the main program unit (where execution restarts).

Description
If you invoked the debugger with the DCL command DEBUG/KEEP and subsequently used the
debugger RUN command to begin debugging your program, you can then use the RERUN command to
rerun the program currently under debugger control.

The RERUN command terminates the image you were debugging and then restarts that image under
debugger control. Execution is paused at the start of the main program unit, as if you had used the
debugger RUN command or the DCL command RUN/DEBUG.

The RERUN command uses the same version of the image that is currently under debugger control. To
debug a different version of that program (or a different program) from the same debugging session, use
the RUN command.

Related commands:

RUN (debugger command)
RUN (DCL command)
(ACTIVATE, DEACTIVATE) BREAK
(ACTIVATE, DEACTIVATE) TRACE
(ACTIVATE, DEACTIVATE) WATCH

Examples
1. DBG> RERUN

This command reruns the current program. By default, the debugger saves the current state of all
breakpoints, tracepoints, and static watchpoints (activated or deactivated).

2. DBG> RERUN/NOSAVE

This command reruns the current program without saving the current state of breakpoints,
tracepoints, and watchpoints - in effect, the same as using the RUN command and specifying the
image name.

3. DBG> RERUN/ARGUMENTS="fee fii foo fum"

This command reruns the current program with new arguments.

465

Chapter 17. Debugger Command Dictionary

RUN
RUN — Runs a program under debugger control.

Synopsis
RUN [program-image]

Note

Requires that you started your debugging session with the DCL command DEBUG/KEEP. If you began
your session with the DCL command RUN filespec instead, you cannot use the debugger RUN
command.

Parameters
[program-image]

Specifies the executable image of the program to be debugged. Do not specify an image if you use the
/COMMAND= cmd-symbol qualifier.

Qualifiers
/ARGUMENTS="arg-list"

Specifies a list of arguments. If you specify a quoted string, you might have to add quotation marks
because the debuggers trips quotes when parsing the string.

/COMMAND="cmd-symbol"

Specifies a DCL foreign command for running the program.

Do not use this qualifier if you specify a program-image parameter.

Do not specify a DCL command or any other command definition that was created with the
SET COMMAND command.

/HEAP_ANALYZER

(Applies only to workstation users.) Invokes the Heap Analyzer, a debugger feature that helps you
understand how memory is used by your application. For more information on using the Heap
Analyzer, see Chapter 12.

/NEW

Runs a new program under debugger control without terminating any programs already running.

Description
If you invoked the debugger with the DCL command DEBUG/KEEP, you can use the debugger RUN
command at any time during a debugging session to start a program under debugger control. If you

466

Chapter 17. Debugger Command Dictionary

are in the midst of debugging a program when you issue the RUN command, that program will first be
terminated unless you use the /NEW qualifier.

To run the same program again (that is, the same version of the program that is currently under
debugger control), use the RERUN command. RERUN enables you to save the current state (activated or
deactivated) of any breakpoints, tracepoints, and static watchpoints.

For a discussion of passing arguments when you use the RUN or RERUN command, see Chapter 1.

Note the following restrictions about the debugger RUN command:

• You can use the RUN command only if you started the debugger with the DCL command
DEBUG/KEEP.

• You cannot use the RUN command to connect the debugger to a running program. See the
description of Ctrl/Y.

• You cannot run a program under debugger control over a DECnet link. Both the image to be
debugged and the debugger must reside on the same node.

Related commands:

RERUN
RUN (DCL command)
Ctrl/Y--DEBUG (DCL command)
DEBUG (DCL command)

Examples
1. DBG> RUN EIGHTQUEENS

Language: C, Module: EIGHTQUEENS

This command brings the program EIGHTQUEENS under debugger control.

2. $ RUNPROG == "$ DISK3:[SMITH]MYPROG.EXE"
$ DEBUG/KEEP
 …
DBG> RUN/COMMAND="RUNPROG"/ARGUMENTS="X Y Z"

The first line of this example creates a command symbol RUNPROG (at DCL level) to run an image
named MYPROG.EXE. The second line starts the debugger. The debugger RUN command then
brings the image MYPROG.EXE under debugger control. The /COMMAND qualifier specifies the
command symbol previously created (in this case RUNPROG), and the /ARGUMENTS qualifier
passes the arguments X Y Z to the image.

3. DBG> RUN/ARGUMENTS="X Y Z" MYPROG

This command brings the program MYPROG.EXE under debugger control and passes the arguments
X Y Z.

SAVE
SAVE — Preserves the contents of an existing screen display in a new display.

467

Chapter 17. Debugger Command Dictionary

Synopsis
SAVE [old-display AS new-display [, …]]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[old-display]

Specifies the display whose contents are saved. You can specify any of the following entities:

• A predefined display:

SRC
OUT
PROMPT
INST
REG
FREG (Integrity servers and Alpha only)
IREG

• A display previously created with the DISPLAY command.

• A display built-in symbol:

%CURDISP
%CURSCROLL
%NEXTDISP
%NEXTINST
%NEXTOUTPUT
%NEXTSCROLL
%NEXTSOURCE

[new-display]

Specifies the name of the new display to be created. This new display then receives the contents of the
old-disp display.

Description
The SAVE command enables you to save a snaps hot copy of an existing display in a new display for
later reference. The new display is created with the same text contents as the existing display. In general,
the new display is given all the attributes or characteristics of the old display except that it is removed
from the screen and is never automatically updated. You can later recall the saved display to the terminal
screen with the DISPLAY command.

When you use the SAVE command, only those lines that are currently stored in the display's memory
buffer (as determined by the /SIZE qualifier on the DISPLAY command) are stored in the saved
display. However, in the case of a saved source or instruction display, you can also see any other source

468

Chapter 17. Debugger Command Dictionary

lines associated with that module or any other instructions associated with that routine (by scrolling the
saved display).

You cannot save the PROMPT display.

Related commands:

DISPLAY
EXITLOOP

Example
DBG> SAVE REG AS OLDREG

This command saves the contents of the display named REG into the newly created display named
OLDREG.

SCROLL
SCROLL — Scrolls a screen display to make other parts of the text visible through the display window.

Synopsis
SCROLL [display-name]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[display-name]

Specifies a display to be scrolled. You can specify any of the following entities:

• A predefined display:

SRC
OUT
PROMPT
INST
REG
FREG (Integrity servers and Alpha only)
IREG

• A display previously created with the DISPLAY command

• A display built-in symbol:

%CURDISP
%CURSCROLL

469

Chapter 17. Debugger Command Dictionary

%NEXTDISP
%NEXTINST
%NEXTOUTPUT
%NEXTSCROLL
%NEXTSOURCE

If you do not specify a display, the current scrolling display, as established by the SELECT command, is
chosen.

Qualifiers
/BOTTOM

Scrolls down to the bottom of the display's text.

/DOWN:[n]

Scrolls down over the display's text by n lines to reveal text further down in the display. If you omit
n, the display is scrolled by approximately 3/4 of its window height.

/LEFT:[n]

Scrolls left over the display's text by n columns to reveal text beyond the left window border. You
cannot scroll past column 1. If you omit n, the display is scrolled left by 8 columns.

/RIGHT[:n]

Scrolls right over the display's text by n columns to reveal text beyond the right window border. You
cannot scroll past column 255. If you omit n, the display is scrolled right by 8 columns.

/TOP

Scrolls up to the top of the display's text.

/UP[:n]

Scrolls up over the display's text by n lines to reveal text further up in the display. If you omit n, the
display is scrolled by approximately 3/4 of its window height.

Description
The SCROLL command moves a display up, down, right, or left relative to its window so that various
parts of the display text can be made visible through the window.

Use the SELECT/SCROLL command to select the target display for the SCROLL command (the
current scrolling display).

For a list of the key definitions associated with the SCROLL command, type Help
Keypad_Definitions_CI. Also, use the SHOW KEY command to determine the current key definitions.

Related command: SELECT.

Examples
1. DBG> SCROLL/LEFT

470

Chapter 17. Debugger Command Dictionary

This command scrolls the current scrolling display to the left by 8 columns.

2. DBG> SCROLL/UP:4 ALPHA

This command scrolls display ALPHA 4 lines up.

SEARCH
SEARCH — Searches the source code for a specified string and displays source lines that contain an
occurrence of the string.

Synopsis
SEARCH [range] [string]

Parameters
[range]

Specifies a program region to be searched. Use any of the following formats:

mod-name Searches the specified module from line 0 to the
end of the module.

mod-name \line-num Searches the specified module from the specified
line number to the end of the module.

mod-name \line-num:line-num Searches the specified module from the line
number specified on the left of the colon to the line
number specified on the right.

line-num Uses the current scope to find a module and
searches that module from the specified line
number to the end of the module. The current
scope is established by a previous SET SCOPE
command, or the PC scope if you did not enter a
SET SCOPE command. If you specify a scope
search list with the SET SCOPE command, the
debugger searches only the module associated with
the first named scope.

line-num:line-num Uses the current scope to find a module and
searches that module from the line number
specified on the left of the colon to the line
number specified on the right. The current
scope is established by a previous SET SCOPE
command, or the PC scope if you did not enter a
SET SCOPE command. If you specify a scope
search list with the SET SCOPE command, the
debugger searches only the module associated with
the first named scope.

null (no entry) Searches the same module as that from which a
source line was most recently displayed (as a result

471

Chapter 17. Debugger Command Dictionary

of a TYPE, EXAMINE/SOURCE, or SEARCH
command, for example), beginning at the first
line following the line most recently displayed and
continuing to the end of the module.

[string]

Specifies the source code characters for which to search. If you do not specify a string, the string
specified in the last SEARCH command, if any, is used.

You must enclose the string in quotation marks (")or apostrophes (') under the following conditions:

• The string has any leading or ending space or tab characters

• The string contains an embedded semicolon

• The range parameter is null

If the string is enclosed in quotation marks, use two consecutive quotation marks (" ") to indicate an
enclosed quotation mark. If the string is enclosed in apostrophes, use two consecutive apostrophes (' ') to
indicate an enclosed apostrophe.

Qualifiers
/ALL

Specifies that the debugger search for all occurrences of the string in the specified range and display
every line containing an occurrence of the string.

/IDENTIFIER

Specifies that the debugger search for an occurrence of the string in the specified range but display
the string only if it is not bounded on either side by a character that can be part of an identifier in the
current language.

/NEXT

(Default) Specifies that the debugger search for the next occurrence of the string in the specified
range and display only the line containing this occurrence.

/STRING

(Default) Specifies that the debugger search for and display the string as specified, and not interpret
the context surrounding an occurrence of the string, as it does in the case of /IDENTIFIER.

Description
The SEARCH command displays the lines of source code that contain an occurrence of a specified string.

If you specify a module name with the SEARCH command, that module must be set. To determine
whether a particular module is set, use the SHOW MODULE command, then use the SET MODULE
command, if necessary.

Qualifiers for the SEARCH command determine whether the debugger: (1) searches for all occurrences
(/ALL) of the string or only the next occurrence (/NEXT); and (2) displays any occurrence of the string

472

Chapter 17. Debugger Command Dictionary

(/STRING) or only those occurrences in which the string is not bounded on either side by a character
that can be part of an identifier in the current language (/IDENTIFIER).

If you plan to enter several SEARCH commands with the same qualifier, you can first use the
SET SEARCH command to establish a new default qualifier (for example, SET SEARCH ALL makes
the SEARCH command behave like SEARCH/ALL). Then you do not have to use that qualifier with the
SEARCH command. You can override the current default qualifiers for the duration of a single SEARCH
command by specifying other qualifiers. Related commands:

(SET, SHOW) LANGUAGE
(SET, SHOW) MODULE
(SET, SHOW) SCOPE
(SET, SHOW) SEARCH

Examples
1. DBG> SEARCH/STRING/ALL 40:50 D

module COBOLTEST
 40: 02 D2N COMP-2 VALUE -234560000000.
 41: 02 D COMP-2 VALUE 222222.33.
 42: 02 DN COMP-2 VALUE -222222.333333.
 47: 02 DR0 COMP-2 VALUE 0.1.
 48: 02 DR5 COMP-2 VALUE 0.000001.
 49: 02 DR10 COMP-2 VALUE 0.00000000001.
 50: 02 DR15 COMP-2 VALUE 0.0000000000000001.
DBG>

This command searches for all occurrences of the letter D in lines 40 to 50 of the module
COBOLTEST, the module that is in the current scope.

2. DBG> SEARCH/IDENTIFIER/ALL 40:50 D
module COBOLTEST
 41: 02 D COMP-2 VALUE 222222.33.
DBG>

This command searches for all occurrences of the letter D in lines 40 to 50 of the module
COBOLTEST. The debugger displays the only line where the letter D (the search string) is not
bounded on either side by a character that can be part of an identifier in the current language.

3. DBG> SEARCH/NEXT 40:50 D
module COBOLTEST
 40: 02 D2N COMP-2 VALUE -234560000000.
DBG>

This command searches for the next occurrence of the letter D in lines 40 to 50 of the module
COBOLTEST.

4. DBG> SEARCH/NEXT
module COBOLTEST
 41: 02 D COMP-2 VALUE 222222.33.
DBG>

This command searches for the next occurrence of the letter D. The debugger assumes D to be the
search string because D was the last one entered and no other search string was specified.

5. DBG> SEARCH 43 D

473

Chapter 17. Debugger Command Dictionary

module COBOLTEST
 47: 02 DR0 COMP-2 VALUE 0.1.
DBG>

This command searches for the next occurrence (by default) of the letter D, starting with line 43.

SDA
SDA — Invokes the System Dump Analyzer (SDA) from within the OpenVMS debugger without
terminating a debugger session.

Synopsis
SDA [sda-command]

Parameters
[sda-command]

One SDA command to be executed before returning control to the OpenVMS debugger.

Description
The SDA command allows you to use the System Dump Analyzer (SDA) within the debugger for the
following tasks:

• System code debugging with the System Code Debugger (SCD) (Alpha and Integrity servers only)

• System dump analysis with the System Dump Debugger (SDD) (Alpha and Integrity servers only)

• Process dump analysis with the System Dump Analyzer (SDA) (Integrity servers and Alpha only)

This gives you access to all SDA commands within the debugging session. When you exit SDA, you
return to the same debugging session. Note that you do not have access to debugger commands within
the SDA session.

Note

The SDA command is not available when debugging user-mode programs.

Related commands:

ANALYZE/CRASH_DUMP
ANALYZE/PROCESS_DUMP
CONNECT %NODE

Example
1. DBG>SDA

OpenVMS (TM) Alpha process dump analyzer
SDA> .
.

474

Chapter 17. Debugger Command Dictionary

.

.
SDA> EXIT
DBG>

This example opens an SDA session within the OpenVMS debugger, performs some analysis, closes
the SDA session and returns control to the debugger.

2. DBG> SDA SHOW PROCESS
.
.
DBG>

This example show the execution of a single SDA command from within the debugger, followed by a
return of control to the debugger.

SELECT
SELECT — Selects a screen display as the current error, input, instruction, output, program, prompt,
scrolling, or source display.

Synopsis
SELECT [display-name]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[display-name]

Specifies the display to be selected. You can specify any one of the following, with the restrictions noted
in the qualifier descriptions:

• A predefined display:

SRC
OUT
PROMPT
INST
REG
FREG (Integrity servers and Alpha only)
IREG

• A display previously created with the DISPLAY command

• A display built-in symbol:

%CURDISP
%CURSCROLL

475

Chapter 17. Debugger Command Dictionary

%NEXTDISP
%NEXTINST
%NEXTOUTPUT
%NEXTSCROLL
%NEXTSOURCE

If you omit this parameter and do not specify a qualifier, you "unselect" the current scrolling display
(no display then has the scrolling attribute). If you omit this parameter but specify a qualifier
(/INPUT, /SOURCE, and so on), you unselect the current display with that attribute (see the qualifier
descriptions).

Qualifiers
/ERROR

Selects the specified display as the current error display. This causes all debugger diagnostic
messages to go to that display. The display specified must be either an output display or the
PROMPT display. If you do not specify a display, this qualifier selects the PROMPT display current
error display. By default, the PROMPT display has the error attribute.

/INPUT

Selects the specified display as the current input display. This causes that display to echo debugger
input (which appears in the PROMPT display). The display specified must be an output display.

If you do not specify a display, the current input display is unselected and debugger input is not
echoed to any display (debugger input appears only in the PROMPT display). By default, no display
has the input attribute.

/INSTRUCTION

Selects the specified display as the current instruction display. This causes the output of all
EXAMINE/INSTRUCTION commands to go to that display. The display specified must be an
instruction display.

If you do not specify a display, the current instruction display is unselected and no display has the
instruction attribute.

By default, for all languages except MACRO--32, no display has the instruction attribute. If the
language is set to MACRO--32, the INST display has the instruction attribute by default.

/OUTPUT

Selects the specified display as the current output display. This causes debugger output that is not
already directed to another display to go to that display. The display specified must be either an
output display or the PROMPT display.

If you do not specify a display, the PROMPT display is selected as the current output display. By
default, the OUT display has the output attribute.

/PROGRAM

Selects the specified display as the current program display. This causes the debugger to try
to force program input and output to that display. Currently, only the PROMPT display can be
specified.

476

Chapter 17. Debugger Command Dictionary

If you do not specify a display, the current program display is unselected and program input and
output are no longer forced to the specified display.

By default, the PROMPT display has the program attribute, except on workstations, where the
program attribute is unselected.

/PROMPT

Selects the specified display as the current prompt display. This is where the debugger prompts
for input. Currently, only the PROMPT display can be specified. Moreover, you cannot unselect the
PROMPT display (the PROMPT display always has the prompt attribute).

/SCROLL

(Default) Selects the specified display as the current scrolling display. This is the default display
for the SCROLL, MOVE, and EXPAND commands. Although any display can have the scroll
attribute, you can use only the MOVE and EXPAND commands (not the SCROLL command) with
the PROMPT display.

If you do not specify a display, the current scrolling display is unselected and no display has the
scroll attribute.

By default, for all languages except MACRO-32, the SRC display has the scroll attribute. If the
language is set to MACRO-32, the INST display has the scroll attribute by default.

/SOURCE

Selects the specified display as the current source display. This causes the output of all TYPE and
EXAMINE/SOURCE commands to go to that display. The display specified must be a source
display.

If you do not specify a display, the current source display is unselected and no display has the source
attribute.

By default, for all languages except MACRO--32, the SRC display has the source attribute. If the
language is set to MACRO--32, no display has the source attribute by default.

Description
Attributes are used to select the current scrolling display and to direct various types of debugger output
to particular displays. This gives you the option of mixing or isolating different types of information,
such as debugger input, output, diagnostic messages, and so on in scrollable displays.

Use the SELECT command with one or more qualifiers (/ERROR, /SOURCE, and so on) to assign one
or more corresponding attributes to a display. By default, if you do not specify a qualifier, /SCROLL is
assumed.

If you use the SELECT command without specifying a display name, the attribute assignment indicated
by the qualifier is canceled (unselected). To reassign display attributes, you must use another SELECT
command. For more information, see the individual qualifier.

For a list of the key definitions associated with the SELECT command, type Help
Keypad_Definitions_CI. Also, use the SHOW KEY command to determine the current key definitions.

477

Chapter 17. Debugger Command Dictionary

Related commands:

DISPLAY
EXPAND
MOVE
SCROLL
SHOW SELECT

Examples
1. DBG> SELECT/SOURCE/SCROLL SRC2

This command selects display SRC2 as the current source and scrolling display.

2. DBG> SELECT/INPUT/ERROR OUT

This command selects display OUT as the current input and error display. This causes debugger
input, debugger output (assuming OUT is the current output display), and debugger diagnostic
messages to be logged in the OUT display in the correct sequence.

3. DBG> SELECT/SOURCE

This command unselects (deletes the source attribute from) the currently selected source display.
The output of a TYPE or EXAMINE/SOURCE command then goes to the currently selected output
display.

SET ABORT_KEY
SET ABORT_KEY — Assigns the debugger's abort function to another Ctrl-key sequence. By default,
Ctrl/C does the abort function.

Synopsis
SET ABORT_KEY [= CTRL_character]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[character]

Specifies the key you press while holding down the Ctrl key. You can specify any alphabetic character.

Description
By default, the Ctrl/C sequence, when entered within a debugging session, aborts the execution of a
debugger command and interrupts program execution. The SET ABORT_KEY command enables you

478

Chapter 17. Debugger Command Dictionary

to assign the abort function to another Ctrl-key sequence. This might be necessary if your program has a
Ctrl/C AST service routine enabled.

Many Ctrl-key sequences have predefined functions, and the SET ABORT_KEY command enables you
to override such definitions (see the OpenVMS User's Manual). Some of the Ctrl-key characters not used
by the operating system are G, K, N, and P.

The SHOW ABORT_KEY command identifies the Ctrl-key sequence currently in effect for the abort
function.

Do not use Ctrl/Y from within a debugging session. Instead, use either Ctrl/C or an equivalent Ctrl-
key sequence established with the SET ABORT_KEY command.

Related commands:

Ctrl/C
Ctrl/Y
SHOW ABORT_KEY

Example
DBG> SHOW ABORT_KEY
Abort Command Key is CTRL_C
DBG> GO
 …
 Ctrl/C
DBG> EXAMINE/BYTE 1000:101000 !should have typed 1000:1010
1000: 01004: 01008: 01012: 01016: 0
 Ctrl/C
%DEBUG-W-ABORTED, command aborted by user request
DBG> SET ABORT_KEY = CTRL_P
DBG> GO
 …
 Ctrl/P
DBG> EXAMINE/BYTE 1000:101000 !should have typed 1000:1010
1000: 01004: 01008: 01012: 01016: 0
 Ctrl/P
%DEBUG-W-ABORTED, command aborted by user request
DBG>

This example shows the following:

• Use of Ctrl/C for the abort function (default).

• Use of the SET ABORT_KEY command to reassign the abort function to Ctrl/P.

SET ATSIGN
SET ATSIGN — Establishes the default file specification that the debugger uses when searching for
command procedures.

Synopsis

479

Chapter 17. Debugger Command Dictionary

SET ATSIGN [file-spec]

Parameters
[file-spec]

Specifies any part of a file specification (for example, a directory name or a file type) that the
debugger is to use by default when searching fora command procedure. If you do not supply a full file
specification, the debugger assumes SYS$DISK:[]DEBUG.COM as the default file specification for
any missing field.

You can specify a logical name that translates to a search list. In this case, the debugger processes the file
specifications in the order they appear in the search list until the command procedure is found.

Description
When you invoke a debugger command procedure with the execute procedure (@) command,
the debugger assumes, by default, that the command procedure file specification is SYS$DISK:
[]DEBUG.COM. The SET ATSIGN command enables you to override this default.

Related commands:

@ (Execute Procedure)
SHOW ATSIGN

Example
DBG> SET ATSIGN USER:[JONES.DEBUG].DBG
DBG> @TEST

In this example, when you use the @TEST command, the debugger looks for the file TEST.DBG in
USER:[JONES.DEBUG].

SET BREAK
SET BREAK — Establishes a breakpoint at the location denoted by an address expression, at
instructions of a particular class, or at the occurrence of specified events.

Synopsis
SET BREAK [address-expression[, …]]

[WHEN(conditional-expression)]

[DO(command [; …])]

Parameters
[address-expression]

Specifies an address expression (a program location) at which a breakpoint is to be set. With high-level
languages, this is typically a line number, a routine name, or a label, and can include a path name to

480

Chapter 17. Debugger Command Dictionary

specify the entity uniquely. More generally, an address expression can also be a memory address or
a register and can be composed of numbers (offsets) and symbols, as well as one or more operators,
operands, or delimiters. For information about the operators that you can use in address expressions, see
the Address_Expressions help topic.

Do not specify the asterisk (*) wildcard character. Do not specify an address expression with any of the
following qualifiers:

/ACTIVATING
/BRANCH
/CALL
/EXCEPTION
/HANDLER
/INSTRUCTION
/INTO
/LINE
/OVER
/[NO]SHARE
/[NO]SYSTEM
/SYSEMULATE (Alpha only)
/TERMINATING
/UNALIGNED_DATA (Integrity servers and Alpha only)

The /MODIFY and /RETURN qualifiers are used with specific kinds of address expressions.

If you specify a memory address or an address expression whose value is not a symbolic location, check
(with the EXAMINE command) that an instruction actually begins at the byte of memory so indicated.
If an instruction does not begin at this byte, a run-time error can occur when an instruction including
that byte is executed. When you set a breakpoint by specifying an address expression whose value is not
a symbolic location, the debugger does not verify that the location specified marks the beginning of an
instruction.

[conditional-expression]

Specifies a conditional expression in the currently set language that is to be evaluated whenever
execution reaches the breakpoint. (The debugger checks the syntax of the expressions in the WHEN
clause when execution reaches the breakpoint, not when the breakpoint is set.)If the expression is true,
the debugger reports that a breakpoint has been triggered. If an action (DO clause) is associated with
the breakpoint, it will occur at this time. If the expression is false, a report is not issued, the commands
specified by the DO clause (if one was specified) are not executed, and program execution is continued.

[command]

Specifies a debugger command to be executed as part of the DO clause when break action is taken. The
debugger checks the syntax of the commands in a DO clause when it executes the DO clause, not when
the breakpoint is set.

Qualifiers
/ACTIVATING

Causes the debugger to break when a new process comes under debugger control. The debugger
prompt is displayed when the first process comes under debugger control. This enables you to enter

481

Chapter 17. Debugger Command Dictionary

debugger commands before the program has started execution. See also the /TERMINATING
qualifier.

/AFTER:n

 Specifies that break action not be taken until the nth time the designated breakpoint is encountered
(n is a decimal integer). Thereafter, the breakpoint occurs every time it is encountered provided that
conditions in the WHEN clause (if specified) are true. The SET BREAK/AFTER:1 command has
the same effect as SET BREAK.

/BRANCH

Causes the debugger to break on every branch instruction encountered during program execution.
See also the /INTO and /OVER qualifiers.

/CALL

Causes the debugger to break on every call instruction encountered during program execution,
including the RET instruction. See also the /INTO and /OVER qualifiers.

/EVENT=event-name

Causes the debugger to break on the specified event (if that event is defined and detected by the
current event facility). If you specify an address expression with /EVENT, causes the debugger
to break whenever the specified event occurs for that address expression. You cannot specify an
address expression with certain event names.

Event facilities are available for programs that call Ada or SCAN routines or that use POSIX
Threads services. Use the SHOW EVENT_FACILITY command to identify the current event
facility and the associated event names.

/EXCEPTION

 Causes the debugger to break whenever an exception is signaled. The break action occurs before
any application-declared exception handlers are invoked.

As a result of a SET BREAK/EXCEPTION command, whenever your program generates an
exception, the debugger suspends program execution, reports the exception, and displays its prompt.
When you resume execution from an exception breakpoint, the behavior is as follows:

• If you enter a GO command without an address-expressionparameter, the exception is
resignaled, thus allowing any application-declared exception handler to execute.

• If you enter a GO command with an address-expressionparameter, program execution
continues at the specified location, thus inhibiting the execution of any application-declared
exception handler.

On Alpha, you must explicitly set a breakpoint in the exception handler before entering a STEP
or a GO command to get the debugger to suspend execution within the handler.

• If you enter a CALL command, the routine specified is executed.

On Alpha, an exception might not be delivered (to the program or debugger) immediately after
the execution of the instruction that caused the exception. Therefore, the debugger might suspend
execution on an instruction beyond the one that actually caused the exception.

482

Chapter 17. Debugger Command Dictionary

/HANDLER

Causes the debugger to scan the call stack and attempt to set a breakpoint on every established
frame-based handler whenever the program being debugged has an exception. The debugger does
not discriminate between standard RTL handlers and user-established handlers.

On Integrity servers and Alpha systems, most RTLs establish a jacket RTL handler on a frame where
the user program has defined a handler. The RTL jacket performs setup, argument manipulation, and
dispatch to the user written handlers. When processing the exception, the debugger can only set the
breakpoint on the RTL jacket handler, because that is the address on the call stack. If the debugger
suspends program execution in a jacket RTL handler, you can usually reach the user-defined handler
by finding the dispatch point(s) via some number of STEP/CALLs followed by a STEP/INTO.

See the OpenVMS Calling Standard for more information on frame-based handlers.

If the jacket RTL handler is part of an installed shared image such as ALPHA LIBOTS, the debugger
cannot set a breakpoint on it(no private user mode write access). In this case, activate ALL RTLs as
private images via logical names. For example:

$DEFINE LIBOTS SYS$SHARE:LIBOTS.EXE;

Note that the trailing semicolon (;) is required. Note also that all (or none) of your shared installed
RTLs should be activated privately. Use SHOW IMAGE/FULL data to realize the list of images with
system space code sections and then define logicals for all of them and rerun your debug session.

/INSTRUCTION
/INSTRUCTION[=(opcode[, …])]

When you do not specify an opcode, causes the debugger to break on every instruction encountered
during program execution.

See also the /INTO and /OVER qualifiers.

/INTO

(Default) Applies only to breakpoints set with the following qualifiers (that is, when an address
expression is not explicitly specified):

/BRANCH
/CALL
/INSTRUCTION
/LINE

When used with those qualifiers, /INTO causes the debugger to break at the specified points within
called routines (as well as within the routine in which execution is currently suspended). The /INTO
qualifier is the default and is the opposite of /OVER.

When using /INTO, you can further qualify the break action with /[NO]JSB, /[NO]SHARE, and
/[NO]SYSTEM.

/LINE

Causes the debugger to break on the beginning of each source line encountered during program
execution. See also the /INTO and /OVER qualifiers.

483

Chapter 17. Debugger Command Dictionary

/MODIFY

Causes the debugger to break on every instruction that writes to and modifies the value of the
location indicated by the address expression. The address expression is typically a variable name.

The SET BREAK/MODIFY command acts exactly like a SET WATCH command and operates
under the same restrictions.

If you specify an absolute address for the address expression, the debugger might not be able
to associate the address with a particular data object. In this case, the debugger uses a default
length of 4 bytes. You can change this length, however, by setting the type to either WORD
(SET TYPE WORD, which changes the default length to 2 bytes) or BYTE (SET TYPE BYTE,
which changes the default length to 1 byte). SET TYPE LONGWORD restores the default length of
4 bytes.

/OVER

Applies only to breakpoints set with the following qualifiers (that is, when an address expression is
not explicitly specified):

/BRANCH
/CALL
/INSTRUCTION
/LINE

When used with those qualifiers, /OVER causes the debugger to break at the specified points only
within the routine in which execution is currently suspended (not within called routines). The
/OVER qualifier is the opposite of /INTO (which is the default).

/RETURN

Causes the debugger to break on the return instruction of the routine associated with the specified
address expression (which can be a routine name, line number, and so on). Breaking on the return
instruction enables you to inspect the local environment (for example, obtain the values of local
variables) while the routine is still active. Note that the view of a local environment may differ
depending on your architecture.

The address-expression parameter is an instruction address within a routine. It can simply
be a routine name, in which case it specifies the routine start address. However, you can also specify
another location in a routine, so you can see only those returns that are taken after a certain code
path is followed.

A SET BREAK/RETURN command cancels a previous SET BREAK if you specify the same
address expression.

/SHARE (default)
/NOSHARE

 Qualifies /INTO. Use with /INTO and one of the following qualifiers:

/BRANCH
/CALL
/INSTRUCTION
/LINE

484

Chapter 17. Debugger Command Dictionary

The /SHARE qualifier permits the debugger to break within shareable image routines as well as
other routines. The /NOSHARE qualifier specifies that breakpoints not be set within shareable
images.

/SILENT
/NOSILENT (default)

Controls whether the "break …" message and the source line for the current location are displayed
at the breakpoint. The /NOSILENT qualifier specifies that the message is displayed. The /SILENT
qualifier specifies that the message and the source line are not displayed. The /SILENT qualifier
overrides /SOURCE. See also the SET STEP [NO]SOURCE command.

/SOURCE (default)
/NOSOURCE

Controls whether the source line for the current location is displayed at the breakpoint. The
/SOURCE qualifier specifies that the source line is displayed. The /NOSOURCE qualifier specifies
that no source line is displayed. The /SILENT qualifier overrides /SOURCE. See also the
SET STEP [NO]SOURCE command.

/SYSEMULATE[=mask]

(Alpha only) Stops program execution and returns control to the debugger after the operating system
emulates an instruction. The optional argument mask is an unsigned quadword with bits set to
specify which emulated instruction groups shall cause breakpoints. The only emulated instruction
group currently defined consists of the BYTE and WORD instructions. Select this instruction group
by setting bit 0 of mask to 1.

If mask is not specified or if mask = FFFFFFFFFFFFFFFF, the debugger stops program
execution when the operating system emulates any instruction.

/SYSTEM (default)
/NOSYSTEM

 Qualifies /INTO. Use with /INTO and one of the following qualifiers:

/BRANCH
/CALL
/INSTRUCTION
/LINE

The /SYSTEM qualifier permits the debugger to break within system routines(P1 space) as well
as other routines. The /NOSYSTEM qualifier specifies that breakpoints not be set within system
routines.

/TEMPORARY

Causes the breakpoint to disappear after it is triggered (the breakpoint does not remain permanently
set).

/TERMINATING

Causes the debugger to break when a process does an image exit. The debugger gains control and
displays its prompt when the last image of a one-process or multiprocess program exits. A process is

485

Chapter 17. Debugger Command Dictionary

terminated when the image has executed the $EXIT system service and all of its exit handlers have
executed. See also the /ACTIVATING qualifier.

/UNALIGNED_DATA

 (Integrity servers and Alpha only)Causes the debugger to break directly after any instruction that
accesses unaligned data (for example, after a load word instruction that accesses data that is not on a
word boundary).

Description
When a breakpoint is triggered, the debugger takes the following actions:

1. Suspends program execution at the breakpoint location.

2. If you specified /AFTER when you set the breakpoint, checks the AFTER count. If the specified
number of counts has not been reached, execution resumes and the debugger does not do the
remaining steps.

3. Evaluates the expression in a WHEN clause, if you specified one when you set the breakpoint. If the
value of the expression is false, execution resumes and the debugger does not do the remaining steps.

4. Reports that execution has reached the breakpoint location by issuing a "break …" message, unless
you specified /SILENT.

5. Displays the line of source code at which execution is suspended, unless you specified
/NOSOURCE or /SILENT when you set the breakpoint or unless you previously entered
SET STEP NOSOURCE.

6. Executes the commands in a DO clause, if you specified one when you set the breakpoint. If the DO
clause contains a GO command, execution continues and the debugger does not perform the next
step.

7. Issues the prompt.

You set a breakpoint at a particular location in your program by specifying an address expression with
the SET BREAK command. You set a breakpoint on consecutive source lines, classes of instructions, or
events by specifying a qualifier with the SET BREAK command. Generally, you must specify either an
address expression or a qualifier, but not both. Exceptions are /EVENT and /RETURN.

The /LINE qualifier sets a breakpoint on each line of source code.

The following qualifiers set breakpoints on classes of instructions. Using these qualifiers with /LINE
causes the debugger to trace every instruction of your program as it executes and thus significantly slows
down execution:

/BRANCH
/CALL
/INSTRUCTION
/RETURN

The following qualifiers affect what happens at a routine call:

/INTO

486

Chapter 17. Debugger Command Dictionary

/OVER
/[NO]SHARE
/[NO]SYSTEM

The following qualifiers affect what output is displayed when a breakpoint is reached:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect the timing and duration of breakpoints:

/AFTER:n
/TEMPORARY

Use the /MODIFY qualifier to monitor changes at program locations (typically changes in the values of
variables).

If you set a breakpoint at a location currently used as a tracepoint, the tracepoint is canceled in favor of
the breakpoint, and vice versa.

On OpenVMS Integrity server and Alpha systems, the SET BREAK/UNALIGNED_DATA command
calls the $START_ALIGN_FAULT_REPORT system service routine. Do not issue this command if the
program you are debugging includes a call to the same $START_ALIGN_FAULT_REPORT routine. If
you issue the command before the program call, the program call fails. If the program call occurs before
you issue the command, unaligned breaks are not set.

Breakpoints can be user defined or predefined. User-defined breakpoints are set explicitly with the
SET BREAK command. Predefined breakpoints, which depend on the type of program you are
debugging (for example, Ada or multiprocess), are established automatically when you start the debugger.
Use the SHOW BREAK command to identify all breakpoints that are currently set. Any predefined
breakpoints are identified as such.

User-defined and predefined breakpoints are set and canceled independently. For example, a location or
event can have both a user-defined and a predefined breakpoint. Canceling the user-defined breakpoint
does not affect the predefined breakpoint, and conversely.

Related commands:

(ACTIVATE, DEACTIVATE, SHOW, CANCEL) BREAK
CANCEL ALL
GO
(SET, SHOW) EVENT_FACILITY
SET STEP [NO]SOURCE
SET TRACE
SET WATCH
STEP

Examples
1. DBG> SET BREAK SWAP\%LINE 12

This command causes the debugger to break on line 12 of module SWAP.

2. DBG> SET BREAK/AFTER:3 SUB2

487

Chapter 17. Debugger Command Dictionary

This command causes the debugger to break on the third and subsequent times that SUB2 (a routine)
is executed.

3. DBG> SET BREAK/NOSOURCE LOOP1 DO (EXAMINE D; STEP; EXAMINE Y; GO)

This command causes the debugger to break at location LOOP1. At the breakpoint, the following
commands are issued, in the order given: (1) EXAMINE D, (2) STEP, (3) EXAMINE Y, and (4)
GO. The /NOSOURCE qualifier suppresses the display of source code at the breakpoint.

4. DBG> SET BREAK ROUT3 WHEN (X > 4) DO (EXAMINE Y)

This command causes the debugger to break on routine ROUT3 when X is greater than 4. At the
breakpoint, the EXAMINE Y command is issued. The syntax of the conditional expression in the
WHEN clause is language-dependent.

5. DBG> SET BREAK/TEMPORARY 1440
DBG> SHOW BREAK
breakpoint at 1440 [temporary]
DBG>

This command sets a temporary breakpoint at memory address 1440. After that breakpoint is
triggered, it disappears.

6. DBG> SET BREAK/LINE

This command causes the debugger to break on the beginning of every source line encountered
during program execution.

7. DBG> SET BREAK/LINE WHEN (X .NE. 0)
DBG> SET BREAK/INSTRUCTION WHEN (X .NE. 0)

These two commands cause the debugger to break when X is not equal to 0.The first command tests
for the condition at the beginning of every source line encountered during execution. The second
command tests for the condition at each instruction. The syntax of the conditional expression in the
WHEN clause is language-dependent.

8. DBG> SET BREAK/LINE/INTO/NOSHARE/NOSYSTEM

This command causes the debugger to break on the beginning of every source line, including lines
in called routines (/INTO) but not in shareable image routines (/NOSHARE) or system routines
(/NOSYSTEM).

9. DBG> SET BREAK/RETURN ROUT4

This command causes the debugger to break whenever the return instruction of routine ROUT4 is
about to be executed.

10. DBG> SET BREAK/RETURN %LINE 14

This command causes the debugger to break whenever the return instruction of the routine that
includes line 14 is about to be executed. This form of the command is useful if execution is currently
suspended within a routine and you want to set a breakpoint on that routine's return instruction.

11. DBG> SET BREAK/EXCEPTION DO (SET MODULE/CALLS; SHOW CALLS)

This command causes the debugger to break whenever an exception is signaled. At the breakpoint,
the SET MODULE/CALLS and SHOW CALLS commands are issued.

488

Chapter 17. Debugger Command Dictionary

12. DBG> SET BREAK/EVENT=RUN RESERVE, %TASK 3

This command sets two breakpoints, which are associated with task RESERVE and task 3 (task ID
= 3), respectively. Each breakpoint is triggered whenever its associated task makes a transition to the
RUN state.

13. all> SET BREAK/ACTIVATING

This command causes the debugger to break whenever a process of a multiprocess program is
brought under debugger control.

SET DEFINE
SET DEFINE — Establishes a default qualifier (/ADDRESS, /COMMAND, /PROCESS_GROUP, or
/VALUE) for the DEFINE command.

Synopsis
SET DEFINE [define-default]

Parameters
[define-default]

Specifies the default to be established for the DEFINE command. Valid keywords (which correspond to
DEFINE command qualifiers) are as follows:

ADDRESS Subsequent DEFINE commands are treated as
DEFINE/ADDRESS. This is the default.

COMMAND Subsequent DEFINE commands are treated as
DEFINE/COMMAND.

PROCESS_SET Subsequent DEFINE commands are treated as
DEFINE/PROCESS_SET.

VALUE Subsequent DEFINE commands are treated as
DEFINE/VALUE.

Description
The SET DEFINE command establishes a default qualifier for subsequent DEFINE commands. The
parameters that you specify in the SET DEFINE command have the same names as the qualifiers for
the DEFINE command. The qualifiers determine whether the DEFINE command binds a symbol to an
address, a command string, a list of processes, or a value.

You can override the current DEFINE default for the duration of a single DEFINE command by
specifying another qualifier. Use the SHOW DEFINE command to identify the current DEFINE
defaults.

Related commands:

DEFINE

489

Chapter 17. Debugger Command Dictionary

DEFINE/PROCESS_SET
DELETE
SHOW DEFINE
SHOW SYMBOL/DEFINED

Example
DBG> SET DEFINE VALUE

The SET DEFINE VALUE command specifies that subsequent DEFINE commands are treated as
DEFINE/VALUE.

SET EDITOR
SET EDITOR — Establishes the editor that is started by the EDIT command.

Synopsis
SET EDITOR [command-line]

Parameters
[command-line]

Specifies a command line to start a particular editor on your system when you use the EDIT command.

You need not specify a command line if you use /CALLABLE_EDT, /CALLABLE_LSEDIT, or
/CALLABLE_TPU. If you do not use one of these qualifiers, the editor specified in the SET EDITOR
command line is spawned to a subprocess when you enter the EDIT command.

You can specify a command line with /CALLABLE_LSEDIT or /CALLABLE_TPU but not with
/CALLABLE_EDT.

Qualifiers
/CALLABLE_EDT

Specifies that the callable version of the EDT editor is started when you use the EDIT command.
Do not specify a command line with this qualifier (a command line of "EDT" is used).

/CALLABLE_TPU

Specifies that the callable version of the DEC Text Processing Utility (DECTPU) is started when you
use the EDIT command. If you also specify a command line, it is passed to callable DECTPU. If
you do not specify a command line, the default command line is TPU.

/START_POSITION
/NOSTART_POSITION (default)

Controls whether the /START_POSITION qualifier is appended to the specified or default
command line when you enter the EDIT command. Currently, only DECTPU and the

490

Chapter 17. Debugger Command Dictionary

DEC Language-Sensitive Editor (specified as TPU or /CALLABLE_TPU, and LSEDIT or
/CALLABLE_LSEDIT, respectively) support this qualifier.

The /START_POSITION qualifier affects the initial position of the editor's cursor. By default
(/NOSTART_POSITION), the editor's cursor is placed at the beginning of source line 1, regardless
of which line is centered in the debugger's source display or whether you specify a line number in
the EDIT command. If you specify /START_POSITION, the cursor is placed either on the line
whose number you specify in the EDIT command, or (if you do not specify a line number) on the
line that is centered in the current source display.

Description
The SET EDITOR command enables you to specify any editor that is installed on your system. In
general, the command line specified as parameter to the SET EDITOR command is spawned and
executed in a subprocess.

On Alpha and Integrity servers, if you use EDT, LSEDIT, or DECTPU, you can start these editors in
a more efficient way. You can specify /CALLABLE_EDT or /CALLABLE_TPU which causes the
callable versions of EDT and DECTPU respectively, to be invoked by the EDIT command. In the case of
DECTPU, you can also specify a command line that is executed by the callable editor.

Related commands:

EDIT
(SET, SHOW, CANCEL) SOURCE
SHOW DEFINE

Examples
1. DBG> SET EDITOR '@MAIL$EDIT ""'

This command causes the EDIT command to spawn the command line '@MAIL$EDIT ""',
which starts the same editor as you use in MAIL.

2. DBG> SET EDITOR/CALLABLE_TPU

This command causes the EDIT command to start callable DECTPU with the default command line
of TPU.

3. DBG> SET EDITOR/CALLABLE_TPU TPU/SECTION=MYSECINI.TPU$SECTION

This command causes the EDIT command to start callable DECTPU with the command line
TPU/SECTION=MYSECINI.TPU$SECTION.

4. DBG> SET EDITOR/CALLABLE_EDT/START_POSITION

This command causes the EDIT command to start callable EDT with the default command line of
EDT. Also the /START_POSITION qualifier is appended to the command line, so that the editing
session starts on the source line that is centered in the debugger's current source display.

SET EVENT_FACILITY
SET EVENT_FACILITY — Establishes the current event facility. Event facilities are available for
programs that call Ada or SCAN routines or that use POSIX Threads services.

491

Chapter 17. Debugger Command Dictionary

Synopsis
SET EVENT_FACILITY [facility-name]

Parameters
[facility-name]

Specifies an event facility. Valid facility-name keywords are as follows:

ADA If the event facility is set to ADA, the (SET,
CANCEL) BREAK and (SET, CANCEL) TRACE
commands recognize Ada-specific events as well as
generic, low-level task events. (Ada events consist
of task and exception events.)

You can set the event facility to ADA only if the
main program is written in Ada or if the program
calls an Ada routine.

THREADS If the event facility is set to THREADS, the (SET,
CANCEL) BREAK and (SET, CANCEL) TRACE
commands recognize POSIX Threads-specific as
well as generic, low-level task events. All POSIX
Threads events are task (thread) events.

You can set the event facility to THREADS only
if the shareable image CMA$RTL is currently part
of the program's process (if that image is listed in a
SHOW IMAGE display).

Description
The current event facility (ADA, THREADS, or SCAN) defines the eventpoints that you can set with the
SET BREAK/EVENT and SET TRACE/EVENT commands.

When started with a program that is linked with an event facility, the debugger automatically sets the
facility in a manner appropriate for the type of program. For example, if the main program is written in
Ada or SCAN, the event facility is set to ADA or SCAN, respectively.

The SET EVENT_FACILITY command enables you to change the event facility and thereby change
your debugging context. This is useful if you have a multilanguage program and want to debug a routine
that is associated with an event facility but that facility is not currently set.

Use the SHOW EVENT_FACILITY command to identify the event names associated with the current
event facility. These are the keywords that you can specify with the (SET, CANCEL) BREAK/EVENT
and (SET, CANCEL) TRACE/EVENT commands.

Related commands:

(SET, CANCEL) BREAK/EVENT
(SET, CANCEL) TRACE/EVENT
SHOW BREAK

492

Chapter 17. Debugger Command Dictionary

SHOW EVENT_FACILITY
SHOW IMAGE
SHOW TASK
SHOW TRACE

Example
DBG> SET EVENT_FACILITY THREADS

This command establishes THREADS (POSIX Threads) as the current event facility.

SET IMAGE
SET IMAGE — Loads symbol information for one or more shareable images and establishes the current
image.

Synopsis
SET IMAGE [image-name[, …]]

Parameters
[image-name]

Specifies a shareable image to be set. Do not use the asterisk (*) wildcard character. Instead, use the
/ALL qualifier. Do not specify an image name with /ALL.

Qualifiers
/ALL

Specifies that all shareable images are set.

Description
The SET IMAGE command builds data structures for one or more specified images but does not set any
modules within the images specified.

The current image is the current debugging context: you have access to symbols in the current image. If
you specify only one image with the SET IMAGE command, that image becomes the current image. If
you specify a list of images, the last one in the list becomes the current image. If you specify /ALL, the
current image is unchanged.

Before an image can be set with the SET IMAGE command, it must have been linked with the /DEBUG
or /TRACEBACK qualifier on the DCL command LINK. If an image was linked /NOTRACEBACK,
no symbol information is available for that image and you cannot specify it with the SET IMAGE
command.

Definitions created with the DEFINE/ADDRESS and DEFINE/VALUE commands are available
only when the image in whose context they were created is the current image. When you use the
SET IMAGE command to establish a new current image, these definitions are temporarily unavailable.

493

Chapter 17. Debugger Command Dictionary

However, definitions created with the DEFINE/COMMAND and DEFINE/KEY commands are available
for all images.

Related commands:

SET MODE [NO]DYNAMIC
(SET, SHOW, CANCEL) MODULE
(SHOW, CANCEL) IMAGE

Example
DBG> SET IMAGE SHARE1
DBG> SET MODULE SUBR
DBG> SET BREAK SUBR

This sequence of commands shows how to set a breakpoint on routine SUBR in module SUBR of
shareable image SHARE1. The SET IMAGE command sets the debugging context to SHARE1. The
SET MODULE command loads the symbol records of module SUBR into the run-time symbol table
(RST). The SET BREAK command sets a breakpoint on routine SUBR.

SET KEY
SET KEY — Establishes the current key state.

Synopsis
SET KEY

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Qualifiers
/LOG (default)
/NOLOG

Controls whether a message is displayed indicating that the key state has been set. The /LOG
qualifier displays the message. The /NOLOG qualifier suppresses the message.

/STATE[=state-name]
/NOSTATE (default)

Specifies a key state to be established as the current state. You can specify a predefined key state,
such as GOLD, or a user-defined state. A state name can be any appropriate alphanumeric string.
The /NOSTATE qualifier leaves the current state unchanged.

Description
Keypad mode must be enabled (SET MODE KEYPAD) before you can use this command. Keypad
mode is enabled by default.

494

Chapter 17. Debugger Command Dictionary

By default, the current key state is the DEFAULT state. When you define function keys, you can use the
DEFINE/KEY/IF_STATE command to assign a specific state name to the key definition. If that state
is not set when you press the key, the definition is not processed. The SET KEY/STATE command
enables you to change the current state to the appropriate state.

You can also change the current state by pressing a key that causes a state change (a key that was defined
with DEFINE/KEY/LOCK_STATE/SET_STATE).

Related commands:

DELETE/KEY
DEFINE/KEY
SHOW KEY

Example
DBG> SET KEY/STATE=PROG3

This command changes the key state to the PROG3 state. You can now use the key definitions that are
associated with this state.

SET LANGUAGE
SET LANGUAGE — Establishes the current language.

Synopsis
SET LANGUAGE [language-name]

Parameters
[language-name]

Specifies a language.

On Integrity servers, valid keywords are:

AMACRO BASIC BLISS C
C++ COBOL Fortran PASCAL
UNKNOWN

On Alpha, valid keywords are:

ADA AMACRO BASIC BLISS
C C_PLUS_PLUS COBOL FORTRAN
MACRO MACRO64 PASCAL PLI
UNKNOWN

MACRO-32 must be compiled with the AMACRO compiler.

495

Chapter 17. Debugger Command Dictionary

Description
When you start the debugger, the current language is set to that in which the module containing the main
program is written. This is usually the module containing the image transfer address. To debug a module
written in a different source language from that of the main program, you can change the language with
the SET LANGUAGE command.

The current language setting determines how the debugger parses and interprets the names, operators,
and expressions you specify in debugger commands, including things like the typing of variables, array
and record syntax, the default radix for the entry and display of integer data, case sensitivity, and so on.
The language setting also determines how the debugger formats and displays data associated with your
program.

The default radix for both data entry and display is decimal for most languages. The exceptions are
BLISS and MACRO, which have a default radix of hexadecimal.

The default type for program locations that do not have a compiler-generated type is longword integer.
This is appropriate for debugging 32-bit applications.

It is advisable to change the default type to quadword for debugging applications that use the
64-bit address space (on OpenVMS Integrity servers, the default type is quadword). Use the
SET TYPE QUADWORD command.

Use the SET LANGUAGE UNKNOWN command when debugging a program written in an
unsupported language. To maximize the usability of the debugger with unsupported languages,
SET LANGUAGE UNKNOWN causes the debugger to accept a large set of data formats and operators,
including some that might be specific to only a few supported languages.

Note that SET LANGUAGE UNKNOWN can be an easy, quick workaround for language-related
problems because it uses the "loosest" set of rules.

For information about debugger support for language-specific operators and constructs, type HELP
Language. See the Language_Support help topic.

Related commands:

EVALUATE
EXAMINE
DEPOSIT
SET MODE
SET RADIX
SET TYPE
SHOW LANGUAGE

Examples
1. DBG> SET LANGUAGE COBOL

This command establishes COBOL as the current language.

2. DBG> SET LANGUAGE PASCAL

This command establishes Pascal as the current language.

496

Chapter 17. Debugger Command Dictionary

SET LANGUAGE/DYNAMIC
SET LANGUAGE/DYNAMIC — Toggles the state of automatic language setting.

Synopsis
SET LANGUAGE/DYNAMIC

Description
When you start the debugger, the current language is set to that in which the module containing the
main program is written. This is usually the module containing the image transfer address. By default,
when the scope of the program being executed changes to a module written in a different language, the
debugger changes the current language to that of the module.

You can prevent the debugger from automatically changing the current language with the
SET LANGUAGE/NODYNAMIC command.

Related commands:

SET LANGUAGE
SHOW LANGUAGE

Examples
DBG> SET LANGUAGE/NODYNAMIC

This command prevents the debugger from changing the current language until you enter a
SET LANGUAGE or SET LANGUAGE/DYNAMIC command.

SET LOG
SET LOG — Specifies a log file to which the debugger writes after a SET OUTPUT LOG command
has been entered.

Synopsis
SET LOG [file-spec]

Parameters
[file-spec]

Denotes the file specification of the log file. If you do not supply a full file specification, the debugger
assumes SYS$DISK:[]DEBUG.LOG as the default file specification for any missing field.

If you specify a version number and that version of the file already exists, the debugger writes to the file
specified, appending the log of the debugging session onto the end of that file.

497

Chapter 17. Debugger Command Dictionary

Description
The SET LOG command determines only the name of a log file; it does not cause the debugger to
create or write to the specified file. The SET OUTPUT LOG command accomplishes that.

If you entered a SET OUTPUT LOG command but no SET LOG command, the debugger writes to the
file SYS$DISK:[]DEBUG.LOG by default.

If the debugger is writing to a log file and you specify another log file with the SET LOG command, the
debugger closes the former file and begins writing to the file specified in the SET LOG command.

Related commands:

SET OUTPUT LOG
SET OUTPUT SCREEN_LOG
SHOW LOG

Examples
1. DBG> SET LOG CALC

DBG> SET OUTPUT LOG

In this example, the SET LOG command specifies the debugger log file to be SYS$DISK:
[]CALC.LOG. The SET OUTPUT LOG command causes user input and debugger output to be
logged to that file.

2. DBG> SET LOG [CODEPROJ]FEB29.TMP
DBG> SET OUTPUT LOG

In this example, the SET LOG command specifies the debugger log file to be
[CODEPROJ]FEB29.TMP. The SET OUTPUT LOG command causes user input and debugger
output to be logged to that file.

SET MARGINS
SET MARGINS — Specifies the leftmost and rightmost source-line character position at which to begin
and end display of a source line.

Synopsis
SET MARGINS [rm lm:rm lm: :rm]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[lm]

498

Chapter 17. Debugger Command Dictionary

The source-line character position at which to begin display of the line of source code (the left margin).

[rm]

The source-line character position at which to end display of the line of source code (the right margin).

Description
The SET MARGINS command affects only the display of source lines. It does not affect the display of
other debugger output, as from an EXAMINE command.

The SET MARGINS command is useful for controlling the display of source code when, for example,
the code is deeply indented or long lines wrap at the right margin. In such cases, you can set the left
margin to eliminate indented space in the source display, and you can decrease the right margin setting
(from its default value of 255) to truncate lines and prevent them from wrapping.

The SET MARGINS command is useful mostly in line (no screen) mode. In line mode,
the SET MARGINS command affects the display of source lines resulting from a TYPE,
EXAMINE/SOURCE, SEARCH, or STEP command, or when a breakpoint, tracepoint, or watchpoint is
triggered.

In screen mode, the SET MARGINS command has no effect on the display of source lines in a source
display, such as the predefined display SRC. Therefore it does not affect the output of a TYPE or
EXAMINE/SOURCE command, since that output is directed at a source display. The SET MARGINS
command affects only the display of any source code that might appear in an output or DO display
(for example, after a STEP command has been executed). However, such source-code display is
normally suppressed if you enable screen mode by pressing PF1-PF3, because that sequence issues the
SET STEP NOSOURCE command as well as SET MODE SCREEN to eliminate redundant source
display.

By default, the debugger displays a source line starting at character position 1 of the source line. This is
actually character position 9 on your terminal screen. The first eight character positions on the screen are
reserved for the line number and cannot be manipulated by the SET MARGINS command.

If you specify a single number, the debugger sets the left margin to 1 and the right margin to the number
specified.

If you specify two numbers, separated with a colon, the debugger sets the left margin to the number on
the left of the colon and the right margin to the number on the right.

If you specify a single number followed by a colon, the debugger sets the left margin to that number and
leaves the right margin unchanged.

If you specify a colon followed by a single number, the debugger sets the right margin to that number
and leaves the left margin unchanged.

Related commands:

SET STEP [NO]SOURCE
SHOW MARGINS

Examples
1. DBG> SHOW MARGINS

499

Chapter 17. Debugger Command Dictionary

left margin: 1 , right margin: 255
DBG> TYPE 14
module FORARRAY
 14: DIMENSION IARRAY(4:5, 5), VECTOR(10), I3D(3, 3, 4)
DBG>

This example displays the default margin settings for a line of source code (1and 255).

2. DBG> SET MARGINS 39
DBG> SHOW MARGINS
left margin: 1 , right margin: 39
DBG> TYPE 14
module FORARRAY 14: DIMENSION IARRAY(4:5, 5), VECTOR
DBG>

This example shows how the display of a line of source code changes when you change the right
margin setting from 255 to 39.

3. DBG> SET MARGINS 10:45
DBG> SHOW MARGINS
left margin: 10 , right margin: 45
DBG> TYPE 14
module FORARRAY 14: IMENSION IARRAY(4:5, 5), VECTOR(10),
DBG>

This example shows the display of the same line of source code after both margins are changed.

4. DBG> SET MARGINS :100
DBG> SHOW MARGINS
left margin: 10 , right margin: 100
DBG>

This example shows how to change the right margin setting while retaining the previous left margin
setting.

5. DBG> SET MARGINS 5:
DBG> SHOW MARGINS
left margin: 5 , right margin: 100
DBG>

This example shows how to change the left margin setting while retaining the previous right margin
setting.

SET MODE
SET MODE — Enables or disables a debugger mode.

Synopsis
SET MODE [mode[, …]]

Parameters
[mode]

500

Chapter 17. Debugger Command Dictionary

Specifies a debugger mode to be enabled or disabled. Valid keywords are as follows:

DYNAMIC (Default) Enables dynamic mode. When dynamic
mode is enabled, the debugger sets modules and
images automatically during program execution
so that you typically do not have to enter the
SET MODULE or SET IMAGE command.
Specifically, whenever the debugger interrupts
execution (whenever the debugger prompt is
displayed), the debugger automatically sets the
module and image that contain the routine in
which execution is currently suspended. If the
module or image is already set, dynamic mode has
no effect on that module or image. The debugger
issues an informational message when it sets a
module or image automatically.

NODYNAMIC Disables dynamic mode. Because additional
memory is allocated when a module or image is
set, you might want to disable dynamic mode if
performance becomes a problem (you can also free
up memory by canceling modules and images with
the CANCEL MODULE and CANCEL IMAGE
commands). When dynamic mode is disabled, you
must set modules and images explicitly with the
SET MODULE and SET IMAGE commands.

G_FLOAT Specifies that the debugger interpret double-
precision floating-point constants entered in
expressions as G_FLOAT (does not affect the
interpretation of variables declared in your
program).

NOG_FLOAT (Default) Specifies that the debugger interpret
double-precision floating-point constants entered
in expressions as D_FLOAT (does not affect
the interpretation of variables declared in your
program).

INTERRUPT Useful when debugging a multiprocess program.
Specifies that, when program execution is
suspended in any process, the debugger interrupts
execution in all other processes that were executing
images and prompts for input. See Chapter 15 for
more information.

NOINTERRUPT (Default) Useful when debugging a multiprocess
program. Specifies that, when program execution
is suspended in any process, the debugger take no
action with regard to other processes.

KEYPAD (Default) Enables keypad mode. Note that this
parameter is not available in the VSI DECwindows
Motif for OpenVMS user interface to the debugger.
When keypad mode is enabled, you can use the
keys on the numeric keypad to perform certain
predefined functions. Several debugger commands,

501

Chapter 17. Debugger Command Dictionary

especially useful in screen mode, are bound to the
keypad keys. (Type Help Keypad_Definitions_CI;
also, use the SHOW KEY command to determine
the current key definitions.) You can also redefine
the key functions with the DEFINE/KEY
command.

NOKEYPAD Disables keypad mode. Note that this parameter
is not available in the VSI DECwindows Motif for
OpenVMS user interface to the debugger. When
keypad mode is disabled, the keys on the numeric
keypad do not have predefined functions, nor can
you assign debugger functions to those keys with
DEFINE/KEY commands.

LINE (Default) Specifies that the debugger display
program locations in terms of line numbers, if
possible.

NOLINE Specifies that the debugger display program
locations as routine-name + byte-
offset rather than in terms of line numbers.

SCREEN Enables screen mode. Note that this parameter
is not available in the VSI DECwindows Motif
for OpenVMS user interface the debugger.
When screen mode is enabled, you can divide
the terminal screen into rectangular regions,
so different data can be displayed in different
regions. Screen mode enables you to view more
information more conveniently than the default,
line-oriented, no screen mode. You can use the
predefined displays, or you can define your own.

NOSCREEN (Default) Disables screen mode. Note that this
parameter is not available in the VSI DECwindows
Motif for OpenVMS user interface to the debugger.

SCROLL (Default) Enables scroll mode. Note that this
parameter is not available in the VSI DECwindows
Motif for OpenVMS user interface to the debugger.
When scroll mode is enabled, a screen-mode
output or DO display is updated by scrolling the
output line byline, as it is generated.

NOSCROLL Note that this parameter is not available in the
VSI DECwindows Motif for OpenVMS user
interface to the debugger. Disables scroll mode.
Note that this parameter is not available in the VSI
DECwindows Motif for OpenVMS user interface
to the debugger. When scroll mode is disabled,
a screen-mode output or DO display is updated
only once per command, instead of line by line as
it is generated. Disabling scroll mode reduces the
amount of screen updating that takes place and can
be useful with slow terminals.

502

Chapter 17. Debugger Command Dictionary

SYMBOLIC (Default) Enables symbolic mode. When
symbolic mode is enabled, the debugger
displays the locations denoted by address
expressions symbolically (if possible) and displays
instruction operands symbolically (if possible).
EXAMINE/NOSYMBOLIC can be used to
override SET MODE SYMBOLIC for the duration
of an EXAMINE command.

NOSYMBOLIC Disables symbolic mode. When symbolic mode
is disabled, the debugger does not attempt to
symbolize numeric addresses (it does not cause the
debugger to convert numbers to names). This is
useful if you are interested in identifying numeric
addresses rather than their symbolic names (if
symbolic names exist for those addresses). When
symbolic mode is disabled, command processing
might speed up somewhat, because the debugger
does not need to convert numbers to names.
EXAMINE/SYMBOLIC can be used to override
SET MODE NOSYMBOLIC for the duration of an
EXAMINE command.

WAIT (Default) Enables wait mode. In wait mode
the debugger waits until all processes under its
control have stopped before prompting for a new
command. See Chapter 15 for more information.

NOWAIT Disable wait mode. In no wait mode, the debugger
immediately prompts for new commands even if
some or all processes are still running.

Description
For details about the SET MODE command, see the parameter descriptions. The default values of these
modes are the same for all languages.

Related commands:

EVALUATE
EXAMINE
DEFINE/KEY
DEPOSIT
DISPLAY
(SET, SHOW, CANCEL) IMAGE
(SET, SHOW, CANCEL) MODULE
SET PROMPT
(SET, SHOW, CANCEL) RADIX
(SET, SHOW) TYPE
(SHOW, CANCEL) MODE
SYMBOLIZE

Example
DBG> SET MODE SCREEN

503

Chapter 17. Debugger Command Dictionary

This command puts the debugger in screen mode.

SET MODULE
SET MODULE — Loads the symbol records of a module in the current image into the run-time symbol
table (RST) of that image.

Synopsis
SET MODULE [module-name[, …]]

Note

The current image is either the main image (by default) or the image established as the current image by
a previous SET IMAGE command.

By default, the debugger automatically loads symbols in a module as needed. As such, this behavior
makes the use of an explicit SET MODULE command optional. For more information, see
SET MODE DYNAMIC.

Parameters
[module-name]

Specifies a module of the current image whose symbol records are loaded into the RST. Do not use the
asterisk (*) wildcard character. Instead, use the /ALL qualifier. Do not specify a module name with
/ALL or /CALLS.

Qualifiers
/ALL

Specifies that the symbol records of all modules in the current image be loaded into the RST.

/CALLS

Sets all the modules that currently have routines on the call stack. If a module is already set,
/CALLS has no effect on that module.

/RELATED (default)
/NORELATED

(Applies to Ada programs.) Controls whether the debugger loads into the RST the symbol records
of a module that is related to a specified module through a with-clause or subunit relationship. Once
loaded, you can reference names declared in related modules within debugger commands exactly as
you reference them within the Ada source code.

Description
The SET MODULE command loads the symbol records of a module in the current image into the run-
time symbol table (RST) of that image. Symbol records must be present in the RST if the debugger is

504

Chapter 17. Debugger Command Dictionary

to recognize and properly interpret the symbols declared in your program. The process by which the
symbol records of a module are loaded into the RST is called setting a module. This command also
supports user-provided mixed-case and lowercase module names on Alpha and Integrity servers.

At debugger startup, the debugger sets the module containing the transfer address (the main program).
By default, dynamic mode is enabled (SET MODE DYNAMIC). Therefore, the debugger sets modules
(and images) automatically as the program executes so that you can reference symbols as you need them.
Specifically, whenever execution is suspended, the debugger sets the module and image containing the
routine in which execution is suspended. In the case of Ada programs, as a module is set dynamically,
its related modules are also set automatically, by default, to make the appropriate symbols accessible
(visible).

Dynamic mode makes accessible most of the symbols you might need to reference. If you need to
reference a symbol in a module that is not already set, proceed as follows:

• If the module is in the current image, use the SET MODULE command to set the module where the
symbol is defined or reference the symbol with a fully-qualified path name. For example:

DBG>SET BREAK X\Y

• If the module is in another image, use the SET IMAGE command to make that image the current
image, then use the SET MODULE command to set the module where the symbol is defined.

If dynamic mode is disabled (SET MODE NODYNAMIC), only the module containing the transfer
address is set automatically. You must set any other modules explicitly.

If you use the SET IMAGE command to establish a new current image, all modules previously set
remain set. However, only the symbols in the set modules of the current image are accessible. Symbols in
the set modules of other images are temporarily inaccessible.

When dynamic mode is enabled, memory is allocated automatically to accommodate the increasing size
of the RST. If dynamic mode is disabled, the debugger automatically allocates more memory as needed
when you set a module or an image.

If a parameter in a SET SCOPE command designates a program location in a module that is not already
set, the SET SCOPE command sets that module.

For information specific to Ada programs, type Help Language_Support Ada.

Related commands:

(SET, SHOW, CANCEL) IMAGE
SET MODE [NO]DYNAMIC
(SHOW) MODULE

Examples
1. DBG> SET MODULE SUB1

This command sets module SUB1 (loads the symbol records of module SUB1 into the RST).

2. DBG> SET IMAGE SHARE3
DBG> SET MODULE MATH
DBG> SET BREAK %LINE 31

505

Chapter 17. Debugger Command Dictionary

In this example, the SET IMAGE command makes shareable image SHARE3 the current image.
The SET MODULE command sets module MATH in image SHARE3. The SET BREAK command
sets a breakpoint on line 31 of module MATH.

3. DBG> SHOW MODULE/SHARE
module name symbols language size
FOO yes MACRO 432
MAIN no FORTRAN 280
 …
SHARE$DEBUG no Image 0
SHARE$LIBRTL no Image 0
SHARE$MTHRTL no Image 0
SHARE$SHARE1 no Image 0
SHARE$SHARE2 no Image 0
total modules: 17. bytes allocated: 162280.
DBG> SET MODULE SHARE$SHARE2
DBG> SHOW SYMBOL * IN SHARE$SHARE2

In this example, the SHOW MODULE/SHARE command identifies all modules in the current image
and all shareable images (the names of the shareable images are prefixed with SHARE$). The
SET MODULE SHARE$SHARE2 command sets the shareable image module SHARE$SHARE2.
The SHOW SYMBOL command identifies any universal symbols defined in the shareable image
SHARE2. For more information, see the SHOW MODULE/SHARE command.

4. DBG> SET BREAK X/Y:

In this example, the debugger automatically loads the module information when you specify the
module name in the command. Debugger ensures that the module information for module X is
loaded, and then locates the information for the routine named Y.

SET OUTPUT
SET OUTPUT — Enables or disables a debugger output option.

Synopsis
SET OUTPUT [output-option[, …]]

Parameters
[output-option]

Specifies an output option to be enabled or disabled. Valid keywords are as follows:

LOG Specifies that debugger input and output be
recorded in a log file. If you specify the log file by
the SET LOG command, the debugger writes to
that file; otherwise, by default the debugger writes
to SYS$DISK[]:DEBUG.LOG.

NOLOG (Default) Specifies that debugger input and output
not be recorded in a log file.

506

Chapter 17. Debugger Command Dictionary

SCREEN_LOG Specifies that, while in screen mode, the screen
contents be recorded in a log file as the screen is
updated. To log the screen contents, you must also
specify SET OUTPUT LOG. See the description
of the LOG option regarding specifying the log
file.

NOSCREEN_LOG (Default) Specifies that the screen contents, while
in screen mode, not be recorded in a log file.

TERMINAL Note

This parameter is not available in the VSI
DECwindows Motif for OpenVMS user interface
to the debugger.

(Default) Specifies that debugger output be
displayed at the terminal.

NOTERMINAL Note

This parameter is not available in the VSI
DECwindows Motif for OpenVMS user interface
to the debugger.

Specifies that debugger output, except diagnostic
messages, not be displayed at the terminal.

VERIFY Specifies that the debugger echo, on the current
output device, each input command string that it
is executing from a command procedure or DO
clause. The current output device is by default SYS
$OUTPUT (your terminal) but can be redefined
with the logical name DBG$OUTPUT.

NOVERIFY (Default) Specifies that the debugger not display
each input command string that it is executing from
a command procedure or DO clause.

Description
Debugger output options control the way in which debugger responses to commands are displayed and
recorded. For details about the SET OUTPUT command, see the parameter descriptions.

Related commands:

@ (Execute Procedure)
(SET, SHOW) ATSIGN
(SET, SHOW) LOG
SET MODE SCREEN
SHOW OUTPUT

Example
DBG> SET OUTPUT VERIFY, LOG, NOTERMINAL

507

Chapter 17. Debugger Command Dictionary

This command specifies that the debugger take the following actions:

• Output each command string that it is executing from a command procedure or DO clause
(VERIFY)

• Record debugger output and user input in a log file (LOG)

• Not display output at the terminal, except diagnostic messages (NOTERMINAL)

SET PROCESS
SET PROCESS — Establishes the visible process or enables/disables dynamic process setting. Used
only when debugging multiprocess programs (kept debugger only).

Synopsis
SET PROCESS [process-spec[, …]]

Parameters
[process-spec]

Specifies a process currently under debugger control. Use any of the following forms:

[%PROCESS_NAME] process-name The process name, if that name does not contain
spaces or lowercase characters. The process name
can include the asterisk (*) wildcard character.

[%PROCESS_NAME] "process-name The process name, if that name contains spaces or
lowercase characters. You can also use apostrophes
(') instead of quotation marks (").

%PROCESS_PID process_id The process identifier (PID, a hexadecimal
number).

[%PROCESS_NUMBER] process-number
(or %PROC process-number)

The number assigned to a process when it
comes under debugger control. A new number
is assigned sequentially, starting with 1, to each
process. If a process is terminated with the
EXIT or QUIT command, the number can be
assigned again during the debugging session.
Process numbers appear in a SHOW PROCESS
display. Processes are ordered in a circular
list so they can be indexed with the built-
in symbols %PREVIOUS_PROCESS and
%NEXT_PROCESS.

process-set-name A symbol defined with the
DEFINE/PROCESS_SET command to represent
a group of processes.

%NEXT_PROCESS The next process after the visible process in the
debugger's circular process list.

%PREVIOUS_PROCESS The process previous to the visible process in the
debugger's circular process list.

508

Chapter 17. Debugger Command Dictionary

%VISIBLE_PROCESS The process whose stack, register set, and images
are the current context for looking up symbols,
register values, routine calls, breakpoints, and so
on.

You can also use the asterisk (*) wildcard character to specify process set all.

Do not specify a process with the /[NO]DYNAMIC qualifier.

Qualifiers
/DYNAMIC (default)
/NODYNAMIC

Controls whether dynamic process setting is enabled or disabled. When dynamic process setting
is enabled (/DYNAMIC), whenever the debugger suspends execution and displays its prompt, the
process in which execution is suspended automatically becomes the visible process. When dynamic
process setting is disabled (/NODYNAMIC), the visible process remains unchanged until you specify
another process with the SET PROCESS/VISIBLE command.

/VISIBLE

Makes the specified process the visible process. This switches your debugging context to the
specified process, so that symbol lookups and the setting of breakpoints, and so on, are done in the
context of that process. When using /VISIBLE, you must specify one process.

Description
The SET PROCESS command establishes the visible process, defines the current process set, or defines
the visible process.

By default, commands are executed in the context of the visible process (the process that is your current
debugging context). Symbol lookups, the setting of breakpoints, and so on, are done in the context of the
visible process.

Dynamic process setting is enabled by default and is controlled with /[NO]DYNAMIC. When dynamic
process setting is enabled, whenever the debugger suspends program execution and displays its prompt,
the process in which execution is suspended becomes the visible process automatically.

Related commands:

CALL
EXIT
GO
QUIT
SHOW PROCESS
STEP

Example
all> SET PROCESS TEST_Y
all> SHOW PROCESS
 Number Name State Current PC
* 2 TEST_Y break PROG\%LINE 71

509

Chapter 17. Debugger Command Dictionary

all>

The SET PROCESS TEST_Y command makes process TEST_Y the visible process. The
SHOW PROCESS command displays information about the visible process by default.

SET PROMPT
SET PROMPT — Changes the debugger prompt string to your personal preference.

Synopsis
SET PROMPT [prompt-parameter]

Parameters
[prompt-parameter]

Specifies the new prompt string. If the string contains spaces, semicolons (;), or lowercase characters,
you must enclose it in quotation marks (") or apostrophes ('). If you do not specify a string, the current
prompt string remains unchanged.

By default, the prompt string is DBG> when debugging a single process program.

By default, when debugging a multiprocess program, the prompt string is the name of the current
process set followed by a right angle bracket (>). You should not use the SET PROMPT command when
debugging multiprocess programs.

Qualifiers
/POP
/NOPOP (default)

(Applies only to workstations running VWS.) The /POP qualifier causes the debugger window
to pop over other windows and become attached to the keyboard when the debugger prompts for
input. The /NOPOP qualifier disables this behavior (the debugger window is not popped over other
windows and is not attached to the keyboard automatically when the debugger prompts for input).

Description
The SET PROMPT command enables you to tailor the debugger prompt string to your individual
preference.

If you are debugging a multiprocess program, you should not use the SET PROMPT command.

If you are using the debugger at a workstation, /[NO]POP enables you to control whether the debugger
window is popped over other windows whenever the debugger prompts for input.

Related commands:

(SET, SHOW)PROCESS

Examples
DBG> SET PROMPT "$ "

510

Chapter 17. Debugger Command Dictionary

$ SET PROMPT "d b g : "
d b g : SET PROMPT "DBG> "
DBG>

In this example, the successive SET PROMPT commands change the debugger prompt from “DBG>” to
“$”, to “d b g :”, then back to “DBG>”.

SET RADIX
SET RADIX — Establishes the radix for the entry and display of integer data. When used with
/OVERRIDE, it causes all data to be displayed as integer data of the specified radix.

Synopsis
SET RADIX [radix]

Parameters
[radix]

Specifies the radix to be established. Valid keywords are as follows:

BINARY Sets the radix to binary.
DECIMAL Sets the radix to decimal. This is the default for

all languages except BLISS, MACRO--32, and
MACRO--64 (Integrity servers and Alpha only).

DEFAULT Sets the radix to the language default.
OCTAL Sets the radix to octal.
HEXADECIMAL Sets the default radix to hexadecimal. This is the

default for BLISS, MACRO--32, and MACRO--64
(Integrity servers and Alpha only).

Qualifiers
/INPUT

Sets only the input radix (the radix for entering integer data) to the specified radix.

/OUTPUT

Sets only the output radix (the radix for displaying integer data) to the specified radix.

/OVERRIDE

Causes all data to be displayed as integer data of the specified radix.

Description
The current radix setting influences how the debugger interprets and displays integer data in the
following contexts:

511

Chapter 17. Debugger Command Dictionary

• Integer data that you specify in address expressions or language expressions.

• Integer data that is displayed by the EXAMINE and EVALUATE commands.

The default radix for both data entry and display is decimal for most languages. The exceptions are
BLISS and MACRO, which have a default radix of hexadecimal.

The SET RADIX command enables you to specify a new radix for data entry or display (the input radix
and output radix, respectively).

If you do not specify a qualifier, the SET RADIX command changes both the input and output radix. If
you specify /INPUT or /OUTPUT, the command changes the input or output radix, respectively.

Using SET RADIX/OVERRIDE changes only the output radix but causes all data (not just data that
has an integer type) to be displayed as integer data of the specified radix.

Except when used with /OVERRIDE, the SET RADIX command does not affect the interpretation or
display of non integer values (such as real or enumeration type values).

The EVALUATE, EXAMINE, and DEPOSIT commands have radix qualifiers (/BINARY,
/HEXADECIMAL, and so on) which enable you to override, for the duration of that command, any radix
previously established with SET RADIX or SET RADIX/OVERRIDE.

You can also use the built-in symbols %BIN, %DEC, %HEX, and %OCT in address expressions
and language expressions to specify that an integer literal should be interpreted in binary, decimal,
hexadecimal, or octal radix.

Related commands:

DEPOSIT
EVALUATE
EXAMINE
(SET, SHOW, CANCEL) MODE
(SHOW, CANCEL)RADIX

Examples
1. DBG> SET RADIX HEX

This command sets the radix to hexadecimal. This means that, by default, integer data is interpreted
and displayed in hexadecimal radix.

2. DBG> SET RADIX/INPUT OCT

This command sets the radix for input to octal. This means that, by default, integer data that is
entered is interpreted in octal radix.

3. DBG> SET RADIX/OUTPUT BIN

This command sets the radix for output to binary. This means that, by default, integer data is
displayed in binary radix.

4. DBG> SET RADIX/OVERRIDE DECIMAL

This command sets the override radix to decimal. This means that, by default, all data (not just data
that has an integer type) is displayed as decimal integer data.

512

Chapter 17. Debugger Command Dictionary

SET SCOPE
SET SCOPE — Establishes how the debugger looks up symbols (variable names, routine names, line
numbers, and so on) when a path-name prefix is not specified.

Synopsis
SET SCOPE [location[, …]]

Parameters
[location]

Denotes a program region (scope) to be used for the interpretation of symbols that you specify without a
path-name prefix. A location can be any of the following, unless you specify /CURRENT or /MODULE.

path-name prefix Specifies the scope denoted by the path-name
prefix. A path-name prefix consists of the names
of one or more nesting program elements (module,
routine, block, and so on), with each name
separated by a backslash character (\). When a
path-name prefix consists of more than one name,
list a nesting element to the left of the backslash
and a nested element to the right of the backslash.
A common path-name prefix format is module
\routine \block \.

If you specify only a module name and that
name is the same as the name of a routine, use
/MODULE; otherwise, the debugger assumes that
you are specifying the routine.

n Specifies the scope denoted by the routine which
is n levels down the call stack (n is a decimal
integer). A scope specified by an integer changes
dynamically as the program executes. The value 0
denotes the routine that is currently executing, the
value 1 denotes the caller of that routine, and so on
down the call stack. The default scope search list is
0, 1, 2, …, n, where n is the number of calls in the
call stack.

\ (backslash) Specifies the global scope - that is, the set of all
program locations in which a global symbol is
known. The definition of a global symbol and the
way it is declared depends on the language.

When you specify more than one location parameter, you establish a scope search list. If the debugger
cannot interpret the symbol using the first parameter, it uses the next parameter, and continues using
parameters in order of their specification until it successfully interprets the symbol or until it exhausts the
parameters specified.

513

Chapter 17. Debugger Command Dictionary

Qualifiers
/CURRENT

Establishes a scope search list that is like the default search list (0, 1, 2, …, n), numeric scope
specified as the command parameter. Scope 0 is the PC scope, and n is the number of calls in the
call stack.

When using SET SCOPE/CURRENT, note the following conventions and behavior:

• The default scope search list must be in effect when the command is entered. To restore the
default scope search list, enter the CANCEL SCOPE command.

• The command parameter specified must be one (and only one) decimal integer from 0 to n.

• In screen mode, the command updates the predefined source, instruction, and register displays
SRC, INST, and REG, respectively, to show the routine on the call stack in which symbol
searches are to start.

• The default scope search list is restored when program execution is resumed.

/MODULE

Indicates that the name specified as the command parameter is a module name and not a routine
name. You need to use /MODULE only if you specify a module name as the command parameter
and that module name is the same as the name of a routine.

Description
 By default, the debugger looks up a symbol specified without a path-name prefix according to the scope
search list 0, 1, 2, …, n, where n is the number of calls in the call stack. This scope search list is based
on the current PC value and changes dynamically as the program executes. The default scope search
list specifies that a symbol lookup such as EXAMINE X first looks for X in the routine that is currently
executing (scope 0, also known as the PC scope); if no X is visible there, the debugger looks in the
caller of that routine (scope 1), and so on down the call stack; if X is not found in scope n, the debugger
searches the rest of the run-time symbol table (RST) - that is, all set modules and the global symbol table
(GST), if necessary.

In most cases, this default scope search list enables you to resolve ambiguities in a predictable, natural
way that is consistent with language rules. But if you cannot access a symbol that is defined multiple
times, use either of the following techniques:

• Specify the symbol with a path-name prefix. The path-name prefix consists of any nesting program
units (for example, module \routine \block) that are necessary to specify the symbol
uniquely. For example:

DBG> EXAMINE MOD4\ROUT3\X
DBG> TYPE MOD4\27

• Establish a new default scope (or a scope search list) for symbol lookup by using the SET SCOPE
command. You can then specify the symbol without using a path-name prefix. For example:

DBG> SET SCOPE MOD4\ROUT3
DBG> EXAMINE X
DBG> TYPE 27

514

Chapter 17. Debugger Command Dictionary

The SET SCOPE command is useful in those cases where otherwise you would need to use a path
name repeatedly to specify symbols.

SET SCOPE changes the debugger's language setting to the language of the specified scope.

To restore the default scope search list, use the CANCEL SCOPE command.

When the default scope search list is in effect, you can use the SET SCOPE/CURRENT command to
specify that symbol searches start at a numeric scope other than scope 0, relative to the call stack (for
example, scope 2).

When you use the SET SCOPE command, the debugger searches only the program locations you
specify explicitly, unless you specify /CURRENT. Also, the scope or scope search list established with a
SET SCOPE command remains in effect until you restore the default scope search list or enter another
SET SCOPE command. However, if you specify /CURRENT, the default scope search list is restored
whenever program execution is resumed.

The SET SCOPE command updates a screen-mode source or instruction display only if you specify
/CURRENT.

If a name you specify in a SET SCOPE command is the name of both a module and a routine, the
debugger sets the scope to the routine. In such cases, use the SET SCOPE/MODULE command if you
want to set the scope to the module.

If you specify a module name in a SET SCOPE command, the debugger sets that module if it is not
already set. However, if you want only to set a module, use the SET MODULE command rather than the
SET SCOPE command, to avoid the possibility of disturbing the current scope search list.

Related commands:

CANCEL ALL
SEARCH
SET MODULE
(SHOW, CANCEL) SCOPE
SHOW SYMBOL
SYMBOLIZE
TYPE

Examples
1. DBG> EXAMINE Y

%DEBUG-W-NOUNIQUE, symbol 'Y' is not unique
DBG> SHOW SYMBOL Y
 data CHECK_IN\Y
 data INVENTORY\COUNT\Y
DBG> SET SCOPE INVENTORY\COUNT
DBG> EXAMINE Y
INVENTORY\COUNT\Y: 347.15
DBG>

In this example, the first EXAMINE Y command indicates that symbol Y is defined multiple times
and cannot be resolved from the current scope search list. The SHOW SYMBOL command displays
the different declarations of symbol Y. The SET SCOPE command directs the debugger to look for
symbols without path-name prefixes in routine COUNT of module INVENTORY. The subsequent
EXAMINE command can now interpret Y unambiguously.

515

Chapter 17. Debugger Command Dictionary

2. DBG> CANCEL SCOPE
DBG> SET SCOPE/CURRENT 1

In this example, the CANCEL SCOPE command restores the default scope search list (0, 1, 2, …,
n). The SET SCOPE/CURRENT command then changes the scope search list to 1, 2, …, n, so
that symbol searches start with scope 1 (that is, with the caller of the routine in which execution is
currently suspended). The predefined source and instruction displays SRC and INST, respectively, are
updated and now show the source and instructions for the caller of the routine in which execution is
suspended.

3. DBG> SET SCOPE 1
DBG> EXAMINE %R5

In this example, the SET SCOPE command directs the debugger to look for symbols without
pathname prefixes in scope 1 (that is, in the caller of the routine in which execution is suspended).
The EXAMINE command then displays the value of register R5 in the caller routine. The
SET SCOPE command without /CURRENT does not update any source or instruction display.

4. DBG> SET SCOPE 0, STACKS\R2, SCREEN

This command directs the debugger to look for symbols without path-name prefixes according to the
following scope search list. First the debugger looks in the PC scope (denoted by 0). If the debugger
cannot find a specified symbol in the PC scope, it then looks in routine R2 of module STACKS. If
necessary, it then looks in module SCREEN. If the debugger still cannot find a specified symbol, it
looks no further.

5. DBG> SHOW SYMBOL X
data ALPHA\X ! global X
data ALPHA\BETA\X ! local X
data X (global) ! same as ALPHA\X
DBG> SHOW SCOPE
scope: 0 [= ALPHA\BETA]
DBG> SYMBOLIZE X
address ALPHA\BETA\%R0:
 ALPHA\BETA\X
DBG> SET SCOPE \
DBG> SYMBOLIZE X
address 00000200:
 ALPHA\X
address 00000200: (global)
 X
DBG>

In this example, the SHOW SYMBOL command indicates that there are two declarations of the
symbol X - a global ALPHA \X (shown twice) and a local ALPHA \BETA \X. Within the current
scope, the local declaration of X (ALPHA \BETA \X) is visible. After the scope is set to the global
scope (SET SCOPE \), the global declaration of X is made visible.

SET SEARCH
SET SEARCH — Establishes default qualifiers (/ALL or /NEXT, /IDENTIFIER or /STRING) for
the SEARCH command.

Synopsis

516

Chapter 17. Debugger Command Dictionary

SET SEARCH [search-default[, …]]

Parameters
[search-default]

Specifies a default to be established for the SEARCH command. Valid keywords(which correspond to
SEARCH command qualifiers) are as follows:

ALL Subsequent SEARCH commands are treated as
SEARCH/ALL, rather than SEARCH/NEXT.

IDENTIFIER Subsequent SEARCH commands are treated
as SEARCH/IDENTIFIER, rather than
SEARCH/STRING.

NEXT (Default) Subsequent SEARCH commands
are treated as SEARCH/NEXT, rather than
SEARCH/ALL.

STRING (Default) Subsequent SEARCH commands
are treated as SEARCH/STRING, rather than
SEARCH/IDENTIFIER.

Description
The SET SEARCH command establishes default qualifiers for subsequent SEARCH commands. The
parameters that you specify with SET SEARCH have the same names as the qualifiers for the SEARCH
command. The qualifiers determine whether the SEARCH command: (1) searches for all occurrences
of a string (ALL) or only the next occurrence (NEXT); and (2) displays any occurrence of the string
(STRING) or only those occurrences in which the string is not bounded on either side by a character that
can be part of an identifier in the current language (IDENTIFIER).

You can override the current SEARCH default for the duration of a single SEARCH command by
specifying other qualifiers. Use the SHOW SEARCH command to identify the current SEARCH defaults.

Related commands:

SEARCH
(SET, SHOW) LANGUAGE
SHOW SEARCH

Example
DBG> SHOW SEARCH
search settings: search for next occurrence, as a string
DBG> SET SEARCH IDENTIFIER
DBG> SHOW SEARCH
search settings: search for next occurrence, as an identifier
DBG> SET SEARCH ALL
DBG> SHOW SEARCH
search settings: search for all occurrences, as an identifier
DBG>

In this example, the SET SEARCH IDENTIFIER command directs the debugger to search for an
occurrence of the string in the specified range but display the string only if it is not bounded on either
side by a character that can be part of an identifier in the current language.

517

Chapter 17. Debugger Command Dictionary

The SET SEARCH ALL command directs the debugger to search for (and display) all occurrences of
the string in the specified range.

SET SOURCE
SET SOURCE — Specifies a directory search list, a directory search method, or both a list and a
method for source files.

Synopsis
SET SOURCE [directory-spec[, …]]

Parameters
[directory-spec]

Specifies any part of an OpenVMS file specification (typically a device/directory) that the debugger is
to use by default when searching for a source file. For any part of a full file specification that you do
not supply, the debugger uses the file specification stored in the module's symbol record (that is, the file
specification that the source file had at compile time).

If you specify more than one directory in a single SET SOURCE command, you create a source
directory search list (you can also specify a search list logical name that is defined at your process level).
In this case, the debugger locates the source file by searching the first directory specified, then the
second, and so on, until it either locates the source file or exhausts the list of directories.

Qualifiers
/DISPLAY

Specifies the directory search list used when the debugger displays source code. The default display
search directory is the compilation directory.

/EDIT

Specifies the directory search list used during execution of the debugger's EDIT command. The
default edit search directory is the compilation directory.

/EXACT (default)

Specifies the directory search method used. In this case, the debugger searches for the exact version
of the source file, as indicated in the debugger symbol table.

/LATEST

Specifies the directory search method used. In this case, the debugger searches for the latest version
of the source file, that is, the highest-numbered version in your directory.

/MODULE=module-name

Specifies the directory search list used only for the designated module. You can append one or more
of the qualifiers listed above to the SET SOURCE/MODULE command.

518

Chapter 17. Debugger Command Dictionary

/ORIGINAL

(Applies to STDL programs only. Requires installation of the Correlation Facility (a separate layered
product) and invocation of the kept debugger.) Specifies that the debugger display the original STDL
source file, rather than the intermediate files produced during STDL compilation.

Description
By default, the debugger expects a source file to be in the same directory it was in at compile time. If a
source file has been moved to a different directory since compile time, use the SET SOURCE command
to specify a directory search list and search method to locate the file.

Specifying the Directory Search List
A complete ODS-2 OpenVMS file specification has the following format:

node::device:[directory]file-name.file-type;version-number

This format reflects the DECnet node name functionality used in DECnet Phase IV that shipped with
the OpenVMS operating system. For more information, see the VSI OpenVMS DECnet Networking
Manual.

On OpenVMS systems running Version 6.1 or later and DECnet-Plus, a complete file specification can
include expanded node designations, called full names. Full names are hierarchically structured DECnet-
Plus node names that can be stored in a DECdns naming service. Full names can be a maximum of 255
bytes long, in the following format:

namespace:.directorydirectory.node-name

In this syntax statement, namespace identifies the global naming service, directorydirectory defines
the hierarchical directory path within the naming service, and node-name is the specific object defining
the DECnet node.

For information on full names and suggestions for setting up a system of names, see the VSI OpenVMS
System Manager's Manual, Volume 1: Essentials and VSI OpenVMS System Manager's Manual, Volume
2: Tuning, Monitoring, and Complex Systems. For information on DECnet-Plus, see the VSI DECnet-Plus
for OpenVMS Introduction and User's Guide

If the full file specification of a source file exceeds 255 characters, the debugger cannot locate the file.
You can work around this problem by first defining a logical name "X" (at DCL level) to expand to your
long file specification, and then using the SET SOURCE X command.

A SET SOURCE command with neither the /DISPLAY nor the /EDIT qualifier changes both the
display and edit search directories.

When compiling a program with the /DEBUG qualifier, if you use a rooted-directory logical name to
specify the location of the source file, make sure that it is a concealed rooted-directory logical name. If it
is not concealed and you move the source file to another directory after compilation, you cannot then use
the debugger SET SOURCE command to specify the new location of the source file.

To create a concealed rooted-directory logical name, use the DCL command DEFINE with the
/TRANSLATION_ATTR=CONCEALED qualifier.

Specifying the Directory Search Method
When you issue a SET SOURCE command, be aware that one of the two qualifiers - /LATEST
or /EXACT - will always be active. These qualifiers affect the debugger search method. The

519

Chapter 17. Debugger Command Dictionary

/LATEST qualifier directs the debugger to search for the version last created (the highest-numbered
version in your directory). The /EXACT qualifier directs the debugger to search for the version last
compiled (the version recorded in the debugger symbol table created at compile time).For example, a
SET SOURCE/LATEST command might search for SORT.FOR;3 while a SET SOURCE/EXACT
command might search for SORT.FOR;1.

If the debugger locates this version using the directory search list, it checks that the creation or revision
date and time, file size, record format, and file organization are the same as the original compile-time
source file. If these characteristics match, the debugger concludes that the original source file has been
located in its new directory.

If the debugger cannot locate this version using the directory search list, it identifies the file that has the
closest revision date and time (if such a file exists in that directory) and issues a NOTORIGSRC message
("original version of source file not found") when first displaying the source code.

Specifying the /EDIT Qualifier
The /EDIT qualifier is needed when the files used for the display of source code are different from the
files to be edited by using the EDIT command. This is the case with Ada programs. For Ada programs,
the (SET, SHOW, CANCEL) SOURCE commands affect the search of files used for source display
(the "copied" source files in Ada program libraries); the (SET, SHOW, CANCEL) SOURCE/EDIT
commands affect the search of the source files you edit when using the EDIT command. If you use
/MODULE with /EDIT, the effect of /EDIT is further qualified by /MODULE.

For information specific to Ada programs, type HELP Language_Support Ada.

Specifying the /ORIGINAL Qualifier
Before you can use the /ORIGINAL qualifier in a SET SOURCE command, the Correlation Facility (a
separate layered product) must be installed on your system. Refer to Correlation Facility documentation
for information on creating a correlation library before debugging.

Then, invoke the kept debugger and issue the SET SOURCE/ORIGINAL command as follows:

$ DEBUG/KEEP
DBG> SET SOURCE/ORIGINAL
DBG> RUN filename.EXE

After issuing these commands, you can debug STDL source code in the same way you debug any other
supported language program.

Related commands:

(SHOW, CANCEL) SOURCE

Examples
1. DBG> SHOW SOURCE

 no directory search list in effect
DBG> SET SOURCE [PROJA], [PROJB], [PETER.PROJC]
DBG> SHOW SOURCE
 source directory list for all modules,
 match the latest source file version:
 [PROJA]
 [PROJB]

520

Chapter 17. Debugger Command Dictionary

 [PETER.PROJC]

In this example, the SET SOURCE command specifies that the debugger should search directories
[PROJA], [PROJB], and [PETER.PROJC], in that order, for the latest version of source files.

2. DBG> SET SOURCE/MODULE=CTEST/EXACT [], SYSTEM::DEVICE:[PROJD]
DBG> SHOW SOURCE
 source directory search list for CTEST,
 match the exact source file version:
 []
 SYSTEM::DEVICE:[PROJD]
 source directory list for all other modules,
 match the latest source file version:
 [PROJA]
 [PROJB]
 [PETER.PROJC]

In this continuation of the previous example, the SET SOURCE/MODULE=CTEST
command specifies that the debugger should search the current default directory ([]) and
SYSTEM::DEVICE:[PROJD], in that order, for source files to use with the module CTEST. The
/EXACT qualifier specifies that the search will try to locate the exact version of the CTEST source
files found in the debug symbol table.

3. DBG> SET SOURCE /EXACT
DBG> SHOW SOURCE
 no directory search list in effect,
 match the exact source file
DBG> SET SOURCE [JONES]
DBG> SHOW SOURCE
 source directory list for all modules,
 match the exact source file version:
 [JONES]
DBG> CANCEL SOURCE /EXACT
DBG> SHOW SOURCE
 source directory list for all modules,
 match the latest source file version:
 [JONES]

In this example, the SET SOURCE/EXACT command establishes a search method
(exact version) that remains in effect for the SET SOURCE [JONES] command. The
CANCEL SOURCE/EXACT command not only cancels SET SOURCE/EXACT command, but
also affects the SET SOURCE [JONES] command.

SET STEP
SET STEP — Establishes default qualifiers (/LINE, /INTO, and so on) for the STEP command.

Synopsis
SET STEP [step-default[, …]]

Parameters
[step-default]

521

Chapter 17. Debugger Command Dictionary

Specifies a default to be established for the STEP command. Valid keywords(which correspond to STEP
command qualifiers) are as follows:

BRANCH Subsequent STEP commands are treated as
STEP/BRANCH (step to the next branch
instruction).

CALL Subsequent STEP commands are treated as
STEP/CALL (step to the next call instruction).

EXCEPTION Subsequent STEP commands are treated as
STEP/EXCEPTION (step to the next exception).

INSTRUCTION Subsequent STEP commands are treated as
STEP/INSTRUCTION (step to the next
instruction).

INTO Subsequent STEP commands are treated as
STEP/INTO (step into called routines) rather
than STEP/OVER (step over called routines).
When INTO is in effect, you can qualify the
types of routines to step into by using the
[NO]JSB, [NO]SHARE, and [NO]SYSTEM
parameters, or by using the STEP/[NO]JSB,
STEP/[NO]SHARE, and STEP/[NO]SYSTEM
command/qualifier combinations (the latter
three take effect only for the immediate STEP
command).

LINE (Default) Subsequent STEP commands are treated
as STEP/LINE (step to the next line).

OVER (Default) Subsequent STEP commands are
treated as STEP/OVER (step over all called
routines) rather than STEP/INTO (step into called
routines).

RETURN Subsequent STEP commands are treated as
STEP/RETURN (step to the return instruction of
the routine that is currently executing - that is, up
to the point just prior to transferring control back
to the calling routine).

SEMANTIC_EVENT (Alpha only) Subsequent STEP commands are
treated as STEP/SEMANTIC_EVENT (step to the
next semantic event). This simplifies debugging
optimized programs (see Chapter 14 for more
information).

SHARE (Default) If INTO is in effect, subsequent STEP
commands are treated as STEP/INTO/SHARE
(step into called routines in shareable images as
well as into other called routines).

NOSHARE If INTO is in effect, subsequent STEP commands
are treated as STEP/INTO/NOSHARE (step over
called routines in shareable images, but step into
other routines).

522

Chapter 17. Debugger Command Dictionary

SILENT Subsequent STEP commands are treated as
STEP/SILENT (after a step, do not display the
"stepped to …" message or the source line for the
current location).

NOSILENT (Default) Subsequent STEP commands are treated
as STEP/NOSILENT (after a step, display the
"stepped to …" message).

SOURCE (Default) Subsequent STEP commands are
treated as STEP/SOURCE (after a step, display
the source line for the current location). Also,
subsequent SET BREAK, SET TRACE,
and SET WATCH commands are treated as
SET BREAK/SOURCE, SET TRACE/SOURCE,
and SET WATCH/SOURCE, respectively (at a
breakpoint, tracepoint, or watchpoint, display the
source line for the current location).

NOSOURCE Subsequent STEP commands are treated
as STEP/NOSOURCE (after a step, do
not display the source line for the current
location). Also, subsequent SET BREAK,
SET TRACE, and SET WATCH commands
are treated as SET BREAK/NOSOURCE,
SET TRACE/NOSOURCE, and
SET WATCH/NOSOURCE, respectively (at a
breakpoint, tracepoint, or watchpoint, do not
display the source line for the current location).

SYSTEM (Default) If INTO is in effect, subsequent STEP
commands are treated as STEP/INTO/SYSTEM
(step into called routines in system space (P1
space) as well as into other called routines).

NOSYSTEM If INTO is in effect, subsequent STEP commands
are treated as STEP/INTO/NOSYSTEM (step
over called routines in system space, but step into
other routines).

Description
The SET STEP command establishes default qualifiers for subsequent STEP commands. The
parameters that you specify in the SET STEP command have the same names as the qualifiers for the
STEP command. The following parameters affect where the STEP command suspends execution after a
step:

BRANCH
CALL
EXCEPTION
INSTRUCTION
LINE
RETURN
SEMANTIC_EVENT (Alpha only)

The following parameters affect what output is seen when a STEP command is executed:

523

Chapter 17. Debugger Command Dictionary

[NO]SILENT
[NO]SOURCE

The following parameters affect what happens at a routine call:

INTO
OVER
[NO]SHARE
[NO]SYSTEM

You can override the current STEP defaults for the duration of a single STEP command by specifying
other qualifiers. Use the SHOW STEP command to identify the current STEP defaults.

Enabling screen mode by pressing PF1-PF3 enters the SET STEP NOSOURCE command as well as
the SET MODE SCREEN command. Therefore, any display of source code in output and DO displays
that would result from a STEP command or from a breakpoint, tracepoint, or watchpoint being triggered
is suppressed, to eliminate redundancy with the source display.

Related commands:

SHOW STEP
STEP

Examples
1. DBG> SET STEP INSTRUCTION, NOSOURCE

This command causes the debugger to execute the program to the next instruction when a STEP
command is entered, and not to display lines of source code with each STEP command.

2. DBG> SET STEP LINE, INTO, NOSYSTEM, NOSHARE

This command causes the debugger to execute the program to the next line when a STEP command
is entered, and to step into called routines in user space only. The debugger steps over routines in
system space and in shareable images.

SET TASK |THREAD
SET TASK |THREAD — Changes characteristics of one or more tasks of a tasking program (also
called a multithread program).

Synopsis
SET TASK|THREAD [task-spec[, …]]

Note

SET TASK and SET THREAD are synonymous commands. They perform identically.

Parameters
[task-spec]

524

Chapter 17. Debugger Command Dictionary

Specifies a task value. Use any of the following forms:

• When the event facility is THREADS:

• A task (thread) ID number as declared in the program, or a language expression that yields a task
ID number.

• A task ID number (for example, 2), as indicated in a SHOW TASK display.

• When the event facility is ADA:

• A task (thread) name as declared in the program, or a language expression that yields a task
value. You can use a path name.

• A task ID (for example, %TASK 2), as indicated in a SHOW TASK display.

• One of the following task built-in symbols:

%ACTIVE_TASK The task that runs when a GO, STEP, CALL, or
EXIT command executes.

%CALLER_TASK (Applies only to Ada programs.) When an accept
statement executes, the task that called the entry
associated with the accept statement.

%NEXT_TASK The task after the visible task in the debugger's
task list. The ordering of tasks is arbitrary but
consistent within a single run of a program.

%PREVIOUS_TASK The task previous to the visible task in the
debugger's task list.

%VISIBLE_TASK The task whose call stack and register set are the
current context for looking up symbols, register
values, routine calls, breakpoints, and so on.

Do not use the asterisk (*) wildcard character. Instead, use the /ALL qualifier. Do not specify a task
with /ALL or /TIME_SLICE. If you do not specify a task or /ALL with /ABORT, /[NO]HOLD,
/PRIORITY, or /RESTORE, the visible task is selected.

Qualifiers
/ABORT

Marks the specified tasks for termination. Termination occurs at the next allowable point after a
specified task resumes execution.

For HP Ada tasks, the effect is identical to executing an Ada abort statement for the tasks specified
and causes these tasks to be marked as abnormal. Any dependent tasks are also marked for
termination.

For POSIX Threads threads, use the following command:

PTHREAD tset -c thread-number

You can get help on POSIX Threads debugger commands by typing PTHREAD HELP.

See the Guide to POSIX Threads Library for more information about using the POSIX Threads
debugger.

525

Chapter 17. Debugger Command Dictionary

/ACTIVE

Makes the specified task the active task, which is the task that runs when a STEP, GO, CALL, or
EXIT command executes. This causes a task switch to the new active task and makes that task
the visible task. The specified task must be in either the RUNNING or READY state. When using
/ACTIVE, you must specify one task.

For POSIX Threads programs or HP Ada on Alpha programs, use one of the following alternatives:

• For query-type actions, use the SET TASK/VISIBLE command.

• To gain control of execution, use a strategic placement of breakpoints.

• Use the PTHREAD tset -a thread-number command.

You can get help on POSIX Threads debugger commands by typing PTHREAD HELP.

See the Guide to POSIX Threads Library for more information about using the POSIX Threads
debugger.

/ALL

Applies the SET TASK command to all tasks.

/HOLD
/NOHOLD (default)

When the event facility is THREADS, use the PTHREAD tset -h thread-number or the
PTHREAD tset -n thread-num command.

Controls whether a specified task is put on hold. The /HOLD qualifier puts a specified task on hold.

Putting a task on hold prevents a task from entering the RUNNING state. A task put on hold is
allowed to make other state transitions; in particular, it can change from the SUSPENDED to the
READY state.

Putting a task on hold prevents a task from entering the RUNNING state. A task put on hold is
allowed to make other state transitions; in particular, it can change from the SUSPENDED to the
READY state.

A task already in the RUNNING state (the active task) can continue to execute as long as it remains
in the RUNNING state, even though it is put on hold. If the task leaves the RUNNING state for
any reason (including expiration of a time slice, if time slicing is enabled), it will not return to the
RUNNING state until released from the hold condition.

You can override the hold condition and force a task into the RUNNING state with the
SET TASK/ACTIVE command even if the task is on hold.

The /NOHOLD qualifier releases a specified task from hold.

You can get help on POSIX Threads debugger commands by typing PTHREAD HELP.

See the Guide to POSIX Threads Library for more information about using the POSIX Threads
debugger.

/PRIORITY=n

When the event facility is THREADS, use the PTHREAD tset -s thread-number
command.

526

Chapter 17. Debugger Command Dictionary

Or, sets the priority of a specified task to n, where n is a decimal integer from 0 to 15. This does
not prevent the priority from later changing in the course of execution, for example, while executing
an Ada rendezvous or POSIX Threads synchronization event. This qualifier does not affect a task's
scheduling policy.

You can get help on POSIX Threads debugger commands by typing PTHREAD HELP.

See the Guide to POSIX Threads Library for more information about using the POSIX Threads
debugger.

/VISIBLE

Makes the specified task the visible task, which is the task whose call stack and register set are
the current context for looking up symbols, register values, routine calls, breakpoints, and so on.
Commands such as EXAMINE are directed at the visible task. The /VISIBLE qualifier does not
affect the active task. When using /VISIBLE, you must specify one task.

Description
The SET TASK (or SET THREAD) command enables you to establish the visible task and the active
task, control the execution of tasks, and cause task state transitions, directly or indirectly.

To determine the current state of a task, use the SHOW TASK command. The possible states are
RUNNING, READY, SUSPENDED, and TERMINATED.

Related commands:

DEPOSIT/TASK
EXAMINE/TASK
SET BREAK/EVENT
SET TRACE/EVENT
(SET, SHOW) EVENT_FACILITY
SHOW TASK|THREAD

Examples
1. DBG> SET TASK/ACTIVE %TASK 3

(Event facility = ADA) This command makes task 3 (task ID = 3) the active task.

2. DBG> PTHREAD tset -a 3

(Event facility = THREADS) This command makes task 3 (task ID = 3) the active task.

3. DBG> SET TASK %NEXT_TASK

This command makes the next task in the debugger's task list the visible task. (The /VISIBLE
qualifier is a default for the SET TASK command.)

4. DBG> SET TASK/HOLD/ALL
DBG> SET TASK/ACTIVE %TASK 1
DBG> GO
 …
DBG> SET TASK/ACTIVE %TASK 3
DBG> STEP
 …

527

Chapter 17. Debugger Command Dictionary

In this example, the SET TASK/HOLD/ALL command freezes the state of all tasks except
the active task. Then, SET TASK/ACTIVE is used selectively (along with the GO and STEP
commands) to observe the behavior of one or more specified tasks in isolation.

SET TERMINAL
SET TERMINAL — Sets the terminal-screen height or width that the debugger uses when it formats
screen and other output.

Synopsis
SET TERMINAL []

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Qualifiers
/PAGE:n

Specifies that the terminal screen height should be set to n lines. You can use any value from 18 to
100.

/WIDTH:n

Specifies that the terminal screen width should be set to ncolumns. You can use any value from 20
to 255. For a VT100-, VT200-, or VT300 series terminal, n is typically either 80 or 132.

/WRAP

Tells the debugger to wrap output text in predefined display OUT at the column specified by the
/WIDTH qualifier. If you do not specify /WIDTH in the current command, /WRAP defaults to the
%WIDTH setting.

Description
The SET TERMINAL command enables you to define the portion of the screen that the debugger has
available for formatting screen output.

This command is useful with VT100-, VT200-, or VT300-series terminals, where you can set the screen
width to typically 80 or 132 columns. It is also useful with workstations, where you can modify the size
of the terminal-emulator window that the debugger uses.

You must specify at least one qualifier. You can specify all. The /PAGE and /WIDTH qualifiers each
require a value.

When you enter the SET TERMINAL command, all display window definitions are automatically
adjusted to reflect the new screen dimensions. For example, RH1 changes dimensions proportionally to
remain in the top right half of the screen.

528

Chapter 17. Debugger Command Dictionary

Similarly, all "dynamic" display windows are automatically adjusted to maintain their
relative proportions. Note that all display windows are dynamic unless referenced with the
DISPLAY/NODYNAMIC command. In that case, the display window retains its current dimensions
after subsequent SET TERMINAL commands. However, you can use the DISPLAY command to
reconfigure the display window (you can also use keypad-key combinations, such as BLUE-MINUS, to
enter predefined DISPLAY commands).

Related commands:

DISPLAY/[NO]DYNAMIC
EXPAND
(SET, SHOW, CANCEL) WINDOW
SHOW TERMINAL

Example
DBG> SET TERMINAL/WIDTH:132

This command specifies that the terminal screen width be set to 132 columns.

SET TRACE
SET TRACE — Establishes a tracepoint at the location denoted by an address expression, at instructions
of a particular class, or at the occurrence of specified events.

Synopsis
SET TRACE [address-expression[, …]]

[WHEN(conditional-expression)]

[DO(command [; …])]

Parameters
[address-expression]

Specifies an address expression (a program location) at which a tracepoint is to be set. With high-level
languages, this is typically a line number, a routine name, or a label, and can include a path name to
specify the entity uniquely. More generally, an address expression can also be a memory address or
a register and can be composed of numbers (offsets) and symbols, as well as one or more operators,
operands, or delimiters. For information about the operators that you can use in address expressions, type
Help Address_Expressions.

Do not specify the asterisk (*) wildcard character. Do not specify an address expression with the
following qualifiers:

/ACTIVATING
/BRANCH
/CALL
/EXCEPTION
/INSTRUCTION
/INTO
/LINE

529

Chapter 17. Debugger Command Dictionary

/OVER
/[NO]SHARE
/[NO]SYSTEM
/TERMINATING

The /MODIFY and /RETURN qualifiers are used with specific kinds of address expressions.

If you specify a memory address or an address expression whose value is not a symbolic location, check
(with the EXAMINE command) that an instruction actually begins at the byte of memory so indicated.
If an instruction does not begin at this byte, a run-time error can occur when an instruction including
that byte is executed. When you set a tracepoint by specifying an address expression whose value is not
a symbolic location, the debugger does not verify that the location specified marks the beginning of an
instruction.

[conditional-expression]

Specifies a conditional expression in the currently set language that is to be evaluated whenever
execution reaches the tracepoint. (The debugger checks the syntax of the expressions in the WHEN
clause when execution reaches the tracepoint, not when the tracepoint is set.) If the expression is true,
the debugger reports that a tracepoint has been triggered. If an action (DO clause) is associated with
the tracepoint, it will occur at this time. If the expression is false, a report is not issued, the commands
specified by the DO clause (if one was specified) are not executed, and program execution is continued.

[command]

Specifies a debugger command to be executed as part of the DO clause when trace action is taken. The
debugger checks the syntax of the commands in a DO clause when it executes the DO clause, not when
the tracepoint is set.

Qualifiers
/ACTIVATING

Causes the debugger to trace when a new process comes under debugger control. See also the
/TERMINATING qualifier.

/AFTER:n

 Specifies that trace action not be taken until the nth time the designated tracepoint is encountered
(n is a decimal integer).Thereafter, the tracepoint occurs every time it is encountered provided that
conditions in the WHEN clause (if specified) are true. The SET TRACE/AFTER:1 command has
the same effect as SET TRACE.

/BRANCH

Causes the debugger to trace every branch instruction encountered during program execution. See
also the /INTO and /OVER qualifiers.

/CALL

Causes the debugger to trace every call instruction encountered during program execution, including
the return instruction. See also the /INTO and /OVER qualifiers.

/EVENT=event-name

Causes the debugger to trace the specified event (if that event is defined and detected by the current
event facility). If you specify an address expression with /EVENT, causes the debugger to trace

530

Chapter 17. Debugger Command Dictionary

whenever the specified event occurs for that address expression. You cannot specify an address
expression with certain event names.

Event facilities are available for programs that call Ada or SCAN routines or that use POSIX
Threads services. To identify the current event facility and the associated event names, use the
SHOW EVENT_FACILITY command.

/EXCEPTION

 Causes the debugger to trace every exception that is signaled. The trace action occurs before any
application-declared exception handlers are invoked.

As a result of a SET TRACE/EXCEPTION command, whenever your program generates an
exception, the debugger reports the exception and resignals the exception, thus allowing any
application-declared exception handler to execute.

/INSTRUCTION

When you do not specify an opcode, causes the debugger to trace every instruction encountered
during program execution.

See also the /INTO and /OVER qualifiers.

/INTO

(Default) Applies only to tracepoints set with the following qualifiers (that is, when an address
expression is not explicitly specified):

/BRANCH
/CALL
/INSTRUCTION
/LINE

When used with those qualifiers, /INTO causes the debugger to trace the specified points within
called routines (as well as within the routine in which execution is currently suspended). The /INTO
qualifier is the default and is the opposite of /OVER.

When using /INTO, you can further qualify the trace action with the /[NO]JSB, /[NO]SHARE,
and /[NO]SYSTEM qualifiers.

/LINE

Causes the debugger to trace the beginning of each source line encountered during program
execution. See also the /INTO and /OVER qualifiers.

/MODIFY

Causes the debugger to trace when an instruction writes to and changes the value of a location
indicated by a specified address expression. The address expression is typically a variable name.

The SET TRACE/MODIFY X command is equivalent to SET WATCH X DO (GO). The
SET TRACE/MODIFY command operates under the same restrictions as SET WATCH.

If you specify an absolute address for the address expression, the debugger might not be able
to associate the address with a particular data object. In this case, the debugger uses a default
length of 4 bytes. You can change this length, however, by setting the type to either WORD

531

Chapter 17. Debugger Command Dictionary

(SET TYPE WORD, which changes the default length to 2 bytes) or BYTE (SET TYPE BYTE,
which changes the default length to 1 byte). The SET TYPE LONGWORD command restores the
default length of 4 bytes.

/OVER

Applies only to tracepoints set with the following qualifiers (that is, when an address expression is
not explicitly specified):

/BRANCH
/CALL
/INSTRUCTION
/LINE

When used with those qualifiers, /OVER causes the debugger to trace the specified points only
within the routine in which execution is currently suspended (not within called routines). The
/OVER qualifier is the opposite of /INTO (which is the default).

/RETURN

Causes the debugger to break on the return instruction of the routine associated with the specified
address expression (which can be a routine name, line number, and so on). Breaking on the return
instruction enables you to inspect the local environment(for example, obtain the values of local
variables)while the routine is still active. Note that the view of a local environment may differ
depending on your architecture. On Alpha, this qualifier can be applied to any routine.

The address-expression parameter is an instruction address within a routine. It can simply
be a routine name, in which case it specifies the routine start address. However, you can also specify
another location in a routine, so you can see only those returns that are taken after a certain code
path is followed.

A SET TRACE/RETURN command cancels a previous SET TRACE if you specify the same
address expression.

/SHARE (default)
/NOSHARE

 Qualifies /INTO. Use with /INTO and one of the following qualifiers:

/BRANCH
/CALL
/INSTRUCTION
/LINE

The /SHARE qualifier permits the debugger to set tracepoints with in shareable image routines
as well as other routines. The /NOSHARE qualifier specifies that tracepoints not be set within
shareable images.

/SILENT
/NOSILENT (default)

Controls whether the "trace …" message and the source line for the current location are displayed
at the tracepoint. The /NOSILENT qualifier specifies that the message is displayed. The /SILENT
qualifier specifies that the message and source line are not displayed. The /SILENT qualifier
overrides /SOURCE.

532

Chapter 17. Debugger Command Dictionary

/SOURCE
/NOSOURCE (default)

Controls whether the source line for the current location is displayed at the tracepoint. The
/SOURCE qualifier specifies that the source line is displayed. The /NOSOURCE qualifier specifies
that the source line is not displayed. The /SILENT qualifier overrides /SOURCE. See also the
SET STEP [NO]SOURCE command.

/SYSTEM (default)
/NOSYSTEM

 Qualifies /INTO. Use with /INTO and one of the following qualifiers:

/BRANCH
/CALL
/INSTRUCTION
/LINE

The /SYSTEM qualifier permits the debugger to set tracepoints within system routines (P1 space) as
well as other routines. The /NOSYSTEM qualifier specifies that tracepoints not be set within system
routines.

/TEMPORARY

Causes the tracepoint to disappear after it is triggered (the tracepoint does not remain permanently
set).

/TERMINATING

(Default) Causes the debugger to trace when a process does an image exit. The debugger gains
control and displays its prompt when the last image of a one-process or multiprocess program exits.
See also the /ACTIVATING qualifier.

Description
When a tracepoint is triggered, the debugger takes the following actions:

1. Suspends program execution at the tracepoint location.

2. If you specified /AFTER when you set the tracepoint, checks the AFTER count. If the specified
number of counts has not been reached, execution is resumed and the debugger does not perform the
remaining steps.

3. Evaluates the expression in a WHEN clause, if you specified one when you set the tracepoint. If
the value of the expression is false, execution is resumed and the debugger does not perform the
remaining steps.

4. Reports that execution has reached the tracepoint location by issuing a "trace …" message, unless
you specified /SILENT.

5. Displays the line of source code corresponding to the tracepoint, unless you specified /NOSOURCE
or /SILENT when you set the tracepoint or entered a previous SET STEP NOSOURCE
command.

6. Executes the commands in a DO clause, if you specified one when you set the tracepoint.

7. Resumes execution.

533

Chapter 17. Debugger Command Dictionary

You set a tracepoint at a particular location in your program by specifying an address expression with
the SET TRACE command. You set a tracepoint on consecutive source lines, classes of instructions, or
events by specifying a qualifier with the SET TRACE command. Generally, you must specify either an
address expression or a qualifier, but not both. Exceptions are /EVENT and /RETURN.

The /LINE qualifier sets a tracepoint on each line of source code.

The following qualifiers set tracepoints on classes of instructions. Using these qualifiers and /LINE
causes the debugger to trace every instruction of your program as it executes and thus significantly slows
down execution.

/BRANCH
/CALL
/INSTRUCTION
/RETURN
/SYSEMULATE (Alpha only)

The following qualifiers set tracepoints on classes of events:

/ACTIVATING
/EVENT= event-name
/EXCEPTION
/TERMINATING

The following qualifiers affect what happens at a routine call:

/INTO
/OVER
/[NO]SHARE
/[NO]SYSTEM

The following qualifiers affect what output is displayed when a tracepoint is reached:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect the timing and duration of tracepoints:

/AFTER: n
/TEMPORARY

Use the /MODIFY qualifier to monitor changes at program locations (typically changes in the values of
variables).

If you set a tracepoint at a location currently used as a breakpoint, the breakpoint is canceled in favor of
the tracepoint, and conversely.

Tracepoints can be user defined or predefined. User-defined tracepoints are set explicitly with the
SET TRACE command. Predefined tracepoints, which depend on the type of program you are
debugging (for example, Ada or multiprocess), are established automatically when you start the debugger.
Use the SHOW TRACE command to identify all tracepoints that are currently set. Any predefined
tracepoints are identified as such.

User-defined and predefined tracepoints are set and canceled independently. For example, a location or
event can have both a user-defined and a predefined tracepoint. Canceling the user-defined tracepoint
does not affect the predefined tracepoint, and conversely.

534

Chapter 17. Debugger Command Dictionary

Related commands:

(ACTIVATE, DEACTIVATE, SHOW, CANCEL) TRACE
CANCEL ALL
GO
SET BREAK
(SET, SHOW) EVENT_FACILITY
SET STEP [NO]SOURCE
SET WATCH

Examples
1. DBG> SET TRACE SUB3

This command causes the debugger to trace the beginning of routine SUB3 when that routine is
executed.

2. DBG> SET TRACE/BRANCH/CALL

This command causes the debugger to trace every BRANCH instruction and every CALL instruction
encountered during program execution.

3. DBG> SET TRACE/LINE/INTO/NOSHARE/NOSYSTEM

This command causes the debugger to trace the beginning of every source line, including lines
in called routines (/INTO) but not in shareable image routines (/NOSHARE) or system routines
(/NOSYSTEM).

4. DBG> SET TRACE/NOSOURCE TEST5\%LINE 14 WHEN (X .NE. 2) DO (EXAMINE Y)

This command causes the debugger to trace line 14 of module TEST5 when X is not equal to 2.
At the tracepoint, the EXAMINE Y command is issued. The /NOSOURCE qualifier suppresses the
display of source code at the tracepoint. The syntax of the conditional expression in the WHEN
clause is language-dependent.

5. DBG> SET TRACE/INSTRUCTION WHEN (X .NE. 0)

This command causes the debugger to trace when X is not equal to 0. The condition is tested at each
instruction encountered during execution. The syntax of the conditional expression in the WHEN
clause is language-dependent.

6. DBG> SET TRACE/SILENT SUB2 DO (SET WATCH K)

This command causes the debugger to trace the beginning of routine SUB2 during execution. At
the tracepoint, the DO clause sets a watchpoint on variable K. The /SILENT qualifier suppresses
the "trace …" message and the display of source code at the tracepoint. This example shows a
convenient way of setting a watchpoint on a nonstatic (stack or register) variable. A nonstatic variable
is defined only when its defining routine (SUB2, in this case) is active (on the call stack).

7. DBG> SET TRACE/RETURN ROUT4 DO (EXAMINE X)

This command causes the debugger to trace the return instruction of routine ROUT4 (that is,
just before execution returns to the calling routine). At the tracepoint, the DO clause issues the
EXAMINE X command. This example shows a convenient way of obtaining the value of a nonstatic
variable just before execution leaves that variable's defining routine.

8. DBG> SET TRACE/EVENT=TERMINATED

535

Chapter 17. Debugger Command Dictionary

This command causes the debugger to trace the point at which any task makes a transition to the
TERMINATED state.

SET TYPE
SET TYPE — Establishes the default type to be associated with program locations that do not have a
symbolic name (and, therefore, do not have an associated compiler-generated type). When used with
/OVERRIDE, it establishes the default type to be associated with all locations, overriding any compiler-
generated types.

Synopsis
SET TYPE [type-keyword]

Parameters
[type-keyword]

Specifies the default type to be established. Valid keywords are as follows:

ASCIC Sets the default type to counted ASCII string with
a 1-byte count field that precedes the string and
gives its length. AC is also accepted as a keyword.

ASCID Sets the default type to ASCII string descriptor.
The CLASS and DTYPE fields of the descriptor
are not checked, but the LENGTH and POINTER
fields provide the character length and address of
the ASCII string. The string is then displayed. AD
is also accepted as a keyword.

ASCII: n Sets the default type to ASCII character string
(length n bytes). The length indicates both the
number of bytes of memory to be examined and
the number of ASCII characters to be displayed.
If you do not specify a value for n, the debugger
uses the default value of 4 bytes. The value n is
interpreted in decimal radix.

ASCIW Sets the default type to counted ASCII string with
a 2-byte count field that precedes the string and
gives its length. This data type occurs in Pascal and
PL/I. AW is also accepted as a keyword.

ASCIZ Sets the default type to zero-terminated ASCII
string. The ending zero byte indicates the end of
the string. AZ is also accepted as a keyword.

BYTE Sets the default type to byte integer (length 1 byte).
D_FLOAT Sets the default type to D_floating (length 8 bytes).
DATE_TIME Sets the default type to date and time. This is a

quadword integer (length 8 bytes) containing the
internal representation of date and time. Values

536

Chapter 17. Debugger Command Dictionary

are displayed in the format dd-mmm-yyyy
hh:mm:ss.cc. Specify an absolute date and
time as follows:

[dd-mmm-yyyy[:]] [hh:mm:ss.cc]

EXTENDED_FLOAT (Integrity servers and Alpha only) Sets the default
type to IEEE X_floating (length 16 bytes).

G_FLOAT Sets the default type to G_floating (length 8 bytes).
INSTRUCTION Sets the default type to instruction (variable length,

depending on the number of instruction operands
and the kind of addressing modes used).

LONG_FLOAT (Integrity servers and Alpha only) Sets the default
type to IEEE S_Floating type (single precision,
length 4 bytes).

LONG_LONG_FLOAT (Integrity servers and Alpha only) Sets the default
type to IEEE T_Floating type (double precision,
length 8 bytes).

LONGWORD Sets the default type to longword integer (length
4 bytes). This is the default type for program
locations that do not have a symbolic name (do not
have a compiler-generated type).

OCTAWORD Sets the default type to octaword integer (length 16
bytes).

PACKED: n Sets the default type to packed decimal. The value
of n is the number of decimal digits. Each digit
occupies one nibble (4 bits).

QUADWORD Sets the default type to quadword integer (length 8
bytes). This might be advisable for debugging 64-
bit applications.

TYPE=(expression) Sets the default type to the type denoted by
expression (the name of a variable or data
type declared in the program). This enables you to
specify an application-declared type.

S_FLOAT (Integrity servers and Alpha only)Same as
LONG_FLOAT.

T_FLOAT (Integrity servers and Alpha only)Same as
LONG_LONG_FLOAT.

WORD Sets the default type to word integer (length 2
bytes).

X_FLOAT (Integrity servers and Alpha only) Same as
EXTENDED_FLOAT.

Qualifiers
/OVERRIDE

Associates the type specified with all program locations, whether or not they have a symbolic name
(whether or not they have an associated compiler-generated type).

537

Chapter 17. Debugger Command Dictionary

Description
When you use EXAMINE, DEPOSIT, or EVALUATE commands, the default types associated with
address expressions affect how the debugger interprets and displays program entities.

The debugger recognizes the compiler-generated types associated with symbolic address expressions
(symbolic names declared in your program), and it interprets and displays the contents of these locations
accordingly. For program locations that do not have a symbolic name and, therefore, no associated
compiler-generated type, the default type in all languages is longword integer, which is appropriate for
debugging 32-bit applications.

The default data type for untyped storage locations is changed from longword (32-bits) to quadword (64-
bits).

On Alpha systems, when debugging applications that use the 64-bit address space, you should use the
SET TYPE QUADWORD command.

The SET TYPE command enables you to change the default type associated with locations that do not
have a symbolic name. The SET TYPE/OVERRIDE command enables you to set a default type for all
program locations, both those that do and do not have a symbolic name.

The EXAMINE and DEPOSIT commands have type qualifiers (/ASCII, /BYTE, /G_FLOAT, and so
on) which enable you to override, for the duration of a single command, the type previously associated
with any program location.

Related commands:

CANCEL TYPE/OVERRIDE
DEPOSIT
EXAMINE
(SET, SHOW, CANCEL) RADIX
(SET, SHOW, CANCEL) MODE
SHOW TYPE

Examples
1. DBG> SET TYPE ASCII:8

This command establishes an 8-byte ASCII character string as the default type associated with
untyped program locations.

2. DBG> SET TYPE/OVERRIDE LONGWORD

This command establishes longword integer as the default type associated with both untyped
program locations and program locations that have compiler-generated types.

3. DBG> SET TYPE D_FLOAT

This command establishes D_Floating as the default type associated with untyped program locations.

4. DBG> SET TYPE TYPE=(S_ARRAY)

This command establishes the type of the variable S_ARRAY as the default type associated with
untyped program locations.

538

Chapter 17. Debugger Command Dictionary

SET WATCH
SET WATCH — Establishes a watchpoint at the location denoted by an address expression.

Synopsis
SET WATCH [address-expression[, …]]

[WHEN(conditional-expression)]

[DO(command [; …])]

Parameters
[address-expression]

Specifies an address expression (a program location) at which a watchpoint is to be set. With high-level
languages, this is typically the name of a program variable and can include a path name to uniquely
specify the variable. More generally, an address expression can also be a memory address or a register
and can be composed of numbers (offsets) and symbols, as well as one or more operators, operands,
or delimiters. For information about the operators that you can use in address expressions, type Help
Address_Expressions.

Do not specify the asterisk (*) wildcard character.

[conditional-expression]

Specifies a conditional expression in the currently set language;the expression is to be evaluated
whenever execution reaches the watchpoint. (The debugger checks the syntax of the expressions in the
WHEN clause when execution reaches the watchpoint, not when the watchpoint is set.) If the expression
is true, the debugger reports that a watchpoint has been triggered. If an action (DO clause) is associated
with the watchpoint, it will occur at this time. If the expression is false, a report is not issued, the
commands specified by the DO clause (if one was specified) are not executed, and program execution is
continued.

[command]

Specifies a debugger command to be executed as part of the DO clause when watch action is taken. The
debugger checks the syntax of the commands in a DO clause when it executes the DO clause, not when
the watchpoint is set.

Qualifiers
/AFTER:n

Specifies that watch action not be taken until the nth time the designated watchpoint is encountered
(n is a decimal integer).Thereafter, the watchpoint occurs every time it is encountered provided that
conditions in the WHEN clause are true. The SET WATCH/AFTER:1 command has the same
effect as SET WATCH.

/INTO

Specifies that the debugger is to monitor a nonstatic variable by tracing instructions not only within
the defining routine, but also within a routine that is called from the defining routine (and any other
such nested calls). The SET WATCH/INTO command enables you to monitor nonstatic variables

539

Chapter 17. Debugger Command Dictionary

within called routines more precisely than SET WATCH/OVER; but the speed of execution within
called routines is faster with SET WATCH/OVER.

/OVER

Specifies that the debugger is to monitor a nonstatic variable by tracing instructions only within the
defining routine, not within a routine that is called by the defining routine. As a result, the debugger
executes a called routine at normal speed and resumes tracing instructions only when execution
returns to the defining routine. The SET WATCH/OVER command provides faster execution than
SET WATCH/INTO; but if a called routine modifies the watched variable, execution is interrupted
only upon returning to the defining routine. When you set watchpoints on nonstatic variables,
SET WATCH/OVER is the default.

/SILENT
/NOSILENT (default)

Controls whether the "watch …" message and the source line for the current location are displayed
at the watchpoint. The /NOSILENT qualifier specifies that the message is displayed. The
/SILENT qualifier specifies that the message and source line are not displayed. The /SILENT
qualifier overrides /SOURCE.

/SOURCE (default)
/NOSOURCE

Controls whether the source line for the current location is displayed at the watchpoint. The
/SOURCE qualifier specifies that the source line is displayed. The /NOSOURCE qualifier specifies
that the source line is not displayed. The /SILENT qualifier overrides /SOURCE. See also the
SET STEP [NO]SOURCE command.

/STATIC
/NOSTATIC

Enables you to override the debugger's default determination of whether a specified variable
(watchpoint location) is static or nonstatic. The /STATIC qualifier specifies that the debugger
should treat the variable as a static variable, even though it might be allocated in P1 space. This
causes the debugger to monitor the location by using the faster write-protection method rather than
by tracing every instruction. The /NOSTATIC qualifier specifies that the debugger should treat
the variable as a nonstatic variable, even though it might be allocated in P0 space, and causes the
debugger to monitor the location by tracing every instruction. Be careful when using these qualifiers.

/TEMPORARY

Causes the watchpoint to disappear after it is triggered (the watchpoint does not remain permanently
set).

Description
When an instruction causes the modification of a watchpoint location, the debugger takes the following
actions:

1. Suspends program execution after that instruction has completed execution.

2. If you specified /AFTER when you set the watchpoint, checks the AFTER count. If the specified
number of counts has not been reached, execution continues and the debugger does not perform the
remaining steps.

540

Chapter 17. Debugger Command Dictionary

3. Evaluates the expression in a WHEN clause, if you specified one when you set the watchpoint. If
the value of the expression is false, execution continues and the debugger does not perform the
remaining steps.

4. Reports that execution has reached the watchpoint location ("watch of …") unless you specified
/SILENT.

5. Reports the old (unmodified) value at the watchpoint location.

6. Reports the new (modified) value at the watchpoint location.

7. Displays the line of source code at which execution is suspended, unless you specified /NOSOURCE
or /SILENT when you set the watchpoint or entered a previous SET STEP NOSOURCE
command.

8. Executes the commands in a DO clause, if you specified one when you set the watchpoint. If the DO
clause contains a GO command, execution continues and the debugger does not perform the next
step.

9. Issues the prompt.

For high-level language programs, the address expressions you specify with the SET WATCH command
are typically variable names. If you specify an absolute memory address that is associated with a
compiler-generated type, the debugger symbolizes the address and uses the length in bytes associated
with that type to determine the length in bytes of the watchpoint location. If you specify an absolute
memory address that the debugger cannot associate with a compiler-generated type, the debugger
watches 4 bytes of memory (by default), beginning at the byte identified by the address expression.
You can change this length, however, by setting the type to either WORD (SET TYPE WORD, which
changes the default length to 2 bytes) or BYTE (SET TYPE BYTE, which changes the default length to
1 byte). SET TYPE LONGWORD restores the default length of 4 bytes.

You can set a watchpoint on a range, for example,

SET WATCH 30000:300018

The debugger establishes a series of longword watches that cover the range.

You can set watchpoints on aggregates (that is, entire arrays or records). A watchpoint set on an array or
record triggers if any element of the array or record changes. Thus, you do not need to set watchpoints
on individual array elements or record components. Note, however, that you cannot set an aggregate
watchpoint on a variant record.

You can also set a watchpoint on a record component, on an individual array element, or on an array
slice (a range of array elements). A watchpoint set on an array slice triggers if any element within that
slice changes. When setting the watchpoint, follow the syntax of the current language.

The following qualifiers affect what output is seen when a watchpoint is reached:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect the timing and duration of watchpoints:

/AFTER: n
/TEMPORARY

541

Chapter 17. Debugger Command Dictionary

The following qualifiers apply only to nonstatic variables:

/INTO
/OVER

The following qualifier overrides the debugger's determination of whether a variable is static or
nonstatic:

/[NO]STATIC

Static and Nonstatic Watchpoints
The technique for setting a watchpoint depends on whether the variable is static or nonstatic.

A static variable is associated with the same memory address throughout execution of the program. You
can always set a watchpoint on a static variable throughout execution.

A nonstatic variable is allocated on the call stack or in a register and has a value only when its defining
routine is active (on the call stack). Therefore, you can set a watchpoint on a nonstatic variable only
when execution is currently suspended within the scope of the defining routine (including any routine
called by the defining routine). The watchpoint is canceled when execution returns from the defining
routine. With a nonstatic variable, the debugger traces every instruction to detect any changes in the
value of a watched variable or location.

Another distinction between static and nonstatic watchpoints is speed of execution. To watch a static
variable, the debugger write-protects the page containing the variable. If your program attempts to write
to that page, an access violation occurs and the debugger handles the exception, determining whether the
watched variable was modified. Except when writing to that page, the program executes at normal speed.

To watch a nonstatic variable, the debugger traces every instruction in the variable's defining routine and
checks the value of the variable after each instruction has been executed. Since this significantly slows
execution, the debugger issues a message when you set a nonstatic watchpoint.

As explained in the next paragraphs, /[NO]STATIC, /INTO, and /OVER enable you to exercise some
control over speed of execution and other factors when watching variables.

The debugger determines whether a variable is static or nonstatic by checking how it is allocated.
Typically, a static variable is in P0 space (0 to 3FFFFFFF, hexadecimal); a nonstatic variable is in
P1 space (40000000 to 7FFFFFFF) or in a register. The debugger issues a warning if you try to set a
watchpoint on a variable that is allocated in P1 space or in a register when execution is not currently
suspended within the scope of the defining routine.

The /[NO]STATIC qualifiers enable you to override this default behavior. For example, if you have
allocated nonstack storage in P1 space, use /STATIC when setting a watchpoint on a variable that is
allocated in that storage area. This enables the debugger to use the faster write-protection method of
watching the location instead of tracing every instruction. Conversely, if, for example, you have allocated
your own call stack in P0 space, use /NOSTATIC when setting a watchpoint on a variable that is
allocated on that call stack. This enables the debugger to treat the watchpoint as a nonstatic watchpoint.

You can also control the execution speed for nonstatic watchpoints in called routines by using /INTO
and /OVER.

 On Alpha processors both static and nonstatic watchpoints are available. With static watchpoints, the
debugger write-protects the page of memory in which the watched variable is stored. Static watchpoints,

542

Chapter 17. Debugger Command Dictionary

therefore, would interfere with the system service itself if not for the debugger's use of system service
interception (SSI).

If a static watchpoint is in effect then, through system service interception, the debugger deactivates
the static watchpoint, asynchronous traps (ASTs), and thread switching, just before the system service
call. The debugger reactivates them just after the system service call completes, putting the watchpoint,
AST enabling, and thread switching back to their original state and, finally, checking for any watchpoint
hits. This behavior is designed to allow the system service to run as it normally would (that is, without
write-protected pages) and to prevent the AST code or a different thread from potentially changing the
watchpointed location while the watchpoint is deactivated. Be aware of this behavior if, for example,
your application tests to see if ASTs are enabled.

 An active static watchpoint can cause a system service to fail, likely with an ACCVIO status, if the
system service is not supported by the system service interception (SSI) vehicle (SYS$SSISHR on
OpenVMS Alpha systems). Any system service that is not in SYS$PUBLIC_VECTORS is unsupported
by SSI, including User Written System Services (UWSS) and any loadable system services, such as
$MOUNT.

When a static watchpoint is active, the debugger write-protects the page containing the variable to
be watched. A system service call not supported by SSI can fail if it tries to write to that page of user
memory.

To avoid this failure, do either of the following:

• Deactivate the static watchpoint before the service call. When the call completes, check the
watchpoint manually and reactivate it.

• Use nonstatic watchpoints. Note that nonstatic watchpoints can slow execution.

If a watched location changes during a system service routine, you will be notified, as usual, that the
watchpoint occurred. Note that, on rare occasions, stack may show one or more debugger frames
on top of the frame or frames for your program. To work around this problem, enter one or more
STEP/RETURN commands to get back to your program.

System service interception is on by default, but on Alpha processors only, you can disable interception
prior to a debugging session by issuing the following command:

$ DEFINE SSI$AUTO_ACTIVATE OFF

To reenable system service interception, issue one of the following commands:

$ DEFINE SSI$AUTO_ACTIVATE ON
$ DEASSIGN SSI$AUTO_ACTIVATE

Global Section Watchpoints (Integrity servers and Alpha Only)
On Alpha, you can set watchpoints on variables or arbitrary program locations in global sections. A
global section is a region of memory that is shared among all processes of a multiprocess program. A
watchpoint that is set on a location in a global section (a global section watchpoint) triggers when any
process modifies the contents of that location.

You set a global section watchpoint just as you would set a watchpoint on a static variable. However,
because of the way the debugger monitors global section watchpoints, note the following point. When
setting watchpoints on arrays or records, performance is improved if you specify individual elements
rather than the entire structure with the SET WATCH command.

543

Chapter 17. Debugger Command Dictionary

If you set a watchpoint on a location that is not yet mapped to a global section, the watchpoint is treated
as a conventional static watchpoint. When the location is subsequently mapped to a global section,
the watchpoint is automatically treated as a global section watchpoint and an informational message is
issued. The watchpoint is then visible from each process of the multiprocess program.

Related commands:

(ACTIVATE, DEACTIVATE, SHOW, CANCEL) WATCH
MONITOR
SET BREAK
SET STEP [NO]SOURCE
SET TRACE

Examples
1. DBG> SET WATCH MAXCOUNT

This command establishes a watchpoint on the variable MAXCOUNT.

2. DBG> SET WATCH ARR
DBG> GO
 …
watch of SUBR\ARR at SUBR\%LINE 12+8
 old value:
 (1): 7
 (2): 12
 (3): 3
 new value:
 (1): 7
 (2): 12
 (3): 28
break at SUBR\%LINE 14
DBG>

In this example, the SET WATCH command sets a watchpoint on the three-element integer array,
ARR. Execution is then resumed with the GO command. The watchpoint triggers whenever any array
element changes. In this case, the third element changed.

3. DBG> SET WATCH ARR(3)

This command sets a watchpoint on element 3 of array ARR (Fortran array syntax). The watchpoint
triggers whenever element 3 changes.

4. DBG> SET WATCH P_ARR[3:5]

This command sets a watchpoint on the array slice consisting of elements 3 to 5 of array P_ARR
(Pascal array syntax). The watchpoint triggers whenever any of these elements change.

5. DBG> SET WATCH P_ARR[3]:P_ARR[5]

This command sets a separate watchpoint on each of elements 3 to 5 of array P_ARR (Pascal array
syntax). Each watchpoint triggers whenever its target element changes.

6. DBG> SET TRACE/SILENT SUB2 DO (SET WATCH K)

In this example, variable K is a nonstatic variable and is defined only when its defining routine,
SUB2, is active (on the call stack). The SET TRACE command sets a tracepoint on SUB2. When

544

Chapter 17. Debugger Command Dictionary

the tracepoint is triggered during execution, the DO clause sets a watchpoint on K. The watchpoint
is then canceled when execution returns from routine SUB2. The /SILENT qualifier suppresses the
"trace …" message and the display of source code at the tracepoint.

7. DBG> GO
%DEBUG-I-ASYNCSSWAT, possible asynchronous system service and static
watchpoint collision break at LARGE_UNION\main\%LINE 24192+60
DBG> SHOW CALL
module name routine name line rel PC abs PC
*LARGE_UNION main 24192 00000000000003A0
 00000000000303A0
*LARGE_UNION __main 24155 0000000000000110
 0000000000030110
 FFFFFFFF80B90630
 FFFFFFFF80B90630
DBG> EX/SOURCE %line 24192
module LARGE_UNION
24192: sstatus = sys$getsyi (EFN$C_ENF, &sysid, 0, &syi_ile, &myiosb,
 0, 0);

In this example, an asynchronous write by SYS$QIO to its IOSB output parameter fails if that IOSB
is being watched directly or even if it simply lives on the same page as an active static watchpoint.

Debugger notices this problem and warns the user about potential collisions between static
watchpoints and asynchronous system services.

Type HELP MESSAGE ASYNCSSWAT in the debugger to learn more about the actions to take
when this condition is detected.

SET WINDOW
SET WINDOW — Creates a screen window definition.

Synopsis
SET WINDOW [window-name]

[AT (start-line, line-count [, start-column, column-count])]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[window-name]

Specifies the name of the window you are defining. If a window definition with that name already exists,
it is canceled in favor of the new definition.

[start-line]

545

Chapter 17. Debugger Command Dictionary

Specifies the starting line number of the window. This line displays the window title, or header line. The
top line of the screen is line 1.

[line-count]

Specifies the number of text lines in the window, not counting the header line. The value must be at least
1. The sum of start-line and line-count must not exceed the current screen height.

[start-column]

Specifies the starting column number of the window. This is the column at which the first character of
the window is displayed. The leftmost column of the screen is column 1.

[column-count]

Specifies the number of characters per line in the window. The value must be at least 1. The sum of
start-column and column-countmust not exceed the current screen width.

Description
A screen window is a rectangular region on the terminal screen through which you can view a display.
The SET WINDOW command establishes a window definition by associating a window name with
a screen region. You specify the screen region in terms of a starting line and height (line count) and,
optionally, a starting column and width (column count). If you do not specify the starting column and
column count, the starting column defaults to column 1 and the column count defaults to the current
screen width.

You can specify a window region in terms of expressions that use the built-in symbols %PAGE and
%WIDTH.

You can use the names of any windows you have defined with the SET WINDOW command in a
DISPLAY command to position displays on the screen.

Window definitions are dynamic - that is, window dimensions expand and contract proportionally when
a SET TERMINAL command changes the screen width or height.

Related commands:

DISPLAY
(SHOW, CANCEL) DISPLAY
(SET, SHOW) TERMINAL
(SHOW, CANCEL) WINDOW

Examples
1. DBG> SET WINDOW ONELINE AT (1, 1)

This command defines a window named ONELINE at the top of the screen. The window is one line
deep and, by default, spans the width of the screen.

2. DBG> SET WINDOW MIDDLE AT (9, 4, 30, 20)

This command defines a window named MIDDLE at the middle of the screen. The window is 4
lines deep starting at line 9, and 20 columns wide starting at column 30.

546

Chapter 17. Debugger Command Dictionary

3. DBG> SET WINDOW FLEX AT (%PAGE/4, %PAGE/2, %WIDTH/4, %WIDTH/2)

This command defines a window named FLEX that occupies a region around the middle of the
screen and is defined in terms of the current screen height (%PAGE) and width (%WIDTH).

SHOW ABORT_KEY
SHOW ABORT_KEY — Identifies the Ctrl-key sequence currently defined to abort the execution of a
debugger command or to interrupt program execution.

Synopsis
SHOW ABORT_KEY

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Description
By default, the Ctrl/C sequence, when entered within a debugging session, aborts the execution of a
debugger command and interrupts program execution. The SET ABORT_KEY command enables you
to assign the abort function to another Ctrl-key sequence. The SHOW ABORT_KEY command identifies
the Ctrl-key sequence currently in effect for the abort function.

Related commands:

Ctrl/C
SET ABORT_KEY

Example
DBG> SHOW ABORT_KEY
Abort Command Key is CTRL_C
DBG> SET ABORT_KEY = CTRL_P
DBG> SHOW ABORT_KEY
Abort Command Key is CTRL_P
DBG>

In this example, the first SHOW ABORT_KEY command identifies the default abort command key
sequence, Ctrl/C. The SET ABORT_KEY = CTRL_P command assigns the abort-command
function to Ctrl/P, as confirmed by the second SHOW ABORT_KEY command.

SHOW AST
SHOW AST — Indicates whether delivery of asynchronous system traps (ASTs) is enabled or disabled.

Synopsis

547

Chapter 17. Debugger Command Dictionary

SHOW AST

Description
The SHOW AST command indicates whether delivery of ASTs is enabled or disabled. The command
does not identify an AST whose delivery is pending. The delivery of ASTs is enabled by default and with
the ENABLE AST command. The delivery of ASTs is disabled with the DISABLE AST command.

Related commands:

(ENABLE, DISABLE) AST

Example
DBG> SHOW AST
ASTs are enabled
DBG> DISABLE AST
DBG> SHOW AST
ASTs are disabled
DBG>

The SHOW AST command indicates whether the delivery of ASTs is enabled.

SHOW ATSIGN
SHOW ATSIGN — Identifies the default file specification established with the last SET ATSIGN
command. The debugger uses this file specification when processing the execute procedure (@)
command.

Synopsis
SHOW ATSIGN

Description
Related commands:

@ (Execute Procedure)
SET ATSIGN

Examples
1. DBG> SHOW ATSIGN

No indirect command file default in effect, using DEBUG.COM
DBG>

This example shows that if you did not use the SET ATSIGN command, the debugger assumes
command procedures have the default file specification SYS$DISK:[]DEBUG.COM.

2. DBG> SET ATSIGN USER:[JONES.DEBUG].DBG
DBG> SHOW ATSIGN
Indirect command file default is USER:[JONES.DEBUG].DBG
DBG>

548

Chapter 17. Debugger Command Dictionary

In this example, the SHOW ATSIGN command indicates the default file specification for command
procedures, as previously established with the SET ATSIGN command.

SHOW BREAK
SHOW BREAK — Displays information about breakpoints.

Synopsis
SHOW BREAK

Qualifiers
/PREDEFINED

Displays information about predefined breakpoints.

/USER

Displays information about user-defined breakpoints.

Description
The SHOW BREAK command displays information about breakpoints that are currently set, including
any options such as WHEN or DO clauses, /AFTER counts, and so on, and whether the breakpoints are
deactivated.

By default, SHOW BREAK displays information about both user-defined and predefined breakpoints (if
any). This is equivalent to entering the SHOW BREAK/USER/PREDEFINED command. User-defined
breakpoints are set with the SET BREAK command. Predefined breakpoints are set automatically when
you start the debugger, and they depend on the type of program you are debugging.

If you established a breakpoint using SET BREAK/AFTER: n, the SHOW BREAK command displays
the current value of the decimal integer n, that is, the originally specified integer value minus 1 for each
time the breakpoint location was reached. (The debugger decrements n each time the breakpoint location
is reached until the value of n is 0, at which time the debugger takes break action.)

On Alpha systems, the SHOW BREAK command does not display individual instructions when the break
is on a particular class of instruction (as with SET BREAK/CALL or SET BREAK/RETURN).

Related commands:

(ACTIVATE, CANCEL, DEACTIVATE, SET) BREAK

Examples
1. DBG> SHOW BREAK

breakpoint at SUB1\LOOP
breakpoint at MAIN\MAIN+1F
 do (EX SUB1\D ; EX/SYMBOLIC PSL; GO)
breakpoint at routine SUB2\SUB2
 /after: 2
DBG>

549

Chapter 17. Debugger Command Dictionary

The SHOW BREAK command identifies all breakpoints that are currently set. This example indicates
user-defined breakpoints that are triggered whenever execution reaches SUB1 \LOOP, MAIN
\MAIN, and SUB2 \SUB2, respectively.

2. DBG> SHOW BREAK/PREDEFINED
predefined breakpoint on Ada event "DEPENDENTS_EXCEPTION"
 for any value
predefined breakpoint on Ada event "EXCEPTION_TERMINATED"
 for any value
DBG>

This command identifies the predefined breakpoints that are currently set. The example shows two
predefined breakpoints, which are associated with Ada tasking exception events. These breakpoints
are set automatically by the debugger for all Ada programs and for any mixed language program that
is linked with an Ada module.

SHOW CALLS
SHOW CALLS — Identifies the currently active routine calls.

Synopsis
SHOW CALLS [integer]

Parameters
[integer]

A decimal integer that specifies the number of routine calls to be identified. If you omit the parameter,
the debugger identifies all routine calls for which it has information.

Qualifiers
/IMAGE

Displays the image name for each active call on the call stack.

Description
The SHOW CALLS command shows a traceback that lists the sequence of active routine calls that lead
to the routine in which execution appears suspended. Each recursive routine call is shown in the display,
that is, you can use the SHOW CALLS command to examine the chain of recursion.

SHOW CALLS displays one line of information for each call frame on the call stack, starting with the
most recent call. The top line identifies the currently executing routine, the next line identifies its caller,
the following line identifies the caller of the caller, and so on.

Even if your program contains no routine calls, the SHOW CALLS command displays an active call
because your program has at least one stack frame built for it when it is first activated.

On Integrity server and Alpha processors, you also usually see a system and sometimes a DCL base
frame. Note that if the SHOW CALLS display shows no active calls, either your program has terminated

550

Chapter 17. Debugger Command Dictionary

or the call stack has been corrupted. As your program executes, whenever a call is made to a routine a
new call frame is built on the stack(s) or in the register set. Each call frame stores information about
the calling or current routine. For example, the frame PC value enables the SHOW CALLS command to
symbolize to module and routine information.

On Alpha processors, a routine invocation results in either a stack frame procedure (with a call frame
on the memory stack), a register frame procedure (with a call frame stored in the register set), or a null
frame procedure (without a call frame).

On Integrity server processors, a routine invocation can result in a memory stack frame and/or a
register stack frame. That is, there two stacks on Integrity servers, register and memory. An Integrity
server routine invocation could result in call frames on one or the other or both of those stacks. Also,
an Integrity server leaf routine invocation (that does not itself make calls)can result in a null frame
procedure, without a call frame on either stack. SHOW CALLS provides one line of information,
regardless of the which stack or register results. (See the examples below.)

The following information is provided for each line of the SHOW CALLS display:

• The name of the enclosing module. An asterisk (*) to the left of a module name indicates that the
module is set.

• The name of the calling routine, provided the module is set (the first line shows the currently
executing routine).

• The line number where the call was made in that routine, provided the module is set (the first line
shows the line number at which execution is suspended).

• The value of the PC in the calling routine at the time that control was transferred to the called
routine.On Integrity server and Alpha processors, the PC is shown as a memory address relative to
the first code address in the module and also as an absolute address.

When you specify the /IMAGE qualifier, the debugger first does a SET IMAGE command for
each image that has debug information (that is, it was linked using the /DEBUG or /TRACEBACK
qualifier). The debugger then displays the image name for each active call on the calls stack. The
output display has been expanded and displays the image name in the first column.

The debugger suppresses the share$image_name module name, because that information is provided
by the /IMAGE qualifier.

The SET IMAGE command lasts only for the duration of the SHOW CALLS/IMAGE command.
The debugger restores the set image state when the SHOW CALLS/IMAGE command is complete.

On Integrity server and Alpha processors, the output of a SHOW CALLS command may include system
call frames in addition to the user call frames associated with your program. System call frames appear
in the following circumstances:

• During exception dispatch

• During asynchronous system trap dispatch

• During system service dispatch

• When a watchpoint triggers in system space

• When stepping into system (includes installed resident RTLs) space

• As the call stack base frame

551

Chapter 17. Debugger Command Dictionary

The display of system call frames does not indicate a problem.

Related commands:

SHOW SCOPE
SHOW STACK

Examples
1. DBG> SHOW CALLS

 module name routine name line rel PC abs PC
*MAIN FFFF 31 00000000000002B8
 00000000000203C4
-the above appears to be a null frame in the same scope as the frame
 below
*MAIN MAIN 13 00000000000000A8
 00000000000200A8

This example is on an Alpha system. Note that sections of routine prologues and epilogues appear to
the debugger to be null frames. The portion of the prologue before the change in the frame pointer
(FP) and the portion of the epilogue after restoration of the FP each look like a null frame, and are
reported accordingly.

2. DBG> SHOW CALLS
 module name routine name line rel PC abs
 PC
*MAIN FFFF 18 0000000000000190
 0000000000010190
*MAIN MAIN 14 0000000000000180
 0000000000010180
 FFFFFFFF80C2A200
 FFFFFFFF80C2A200

This example is on Integrity servers. Note that Integrity server prologues do not appear to be null
frames to the debugger.

SHOW DEFINE
SHOW DEFINE — Identifies the default (/ADDRESS, /COMMAND, /PROCESS_GROUP, or
/VALUE) currently in effect for the DEFINE command.

Synopsis
SHOW DEFINE []

Description
The default qualifier for the DEFINE command is the one last established with the SET DEFINE
command. If you did not enter a SET DEFINE command, the default qualifier is /ADDRESS.

To identify a symbol defined with the DEFINE command, use the SHOW SYMBOL/DEFINED
command.

Related commands:

552

Chapter 17. Debugger Command Dictionary

DEFINE
DEFINE/PROCESS_SET
DELETE
SET DEFINE
SHOW SYMBOL/DEFINED

Example
DBG> SHOW DEFINE
Current setting is: DEFINE/ADDRESS
DBG>

This command indicates that the DEFINE command is set for definition by address.

SHOW DISPLAY
SHOW DISPLAY — Identifies one or more existing screen displays.

Synopsis
SHOW DISPLAY [display-name[, …]]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[display-name]

Specifies the name of a display. If you do not specify a name, or if you specify the asterisk (*) wildcard
character by itself, all display definitions are listed. You can use the wildcard within a display name. Do
not specify a display name with the /ALL qualifier.

Qualifiers
/ALL

Lists all display definitions.

Description
The SHOW DISPLAY command lists all displays according to their order in the display list. The most
hidden display is listed first, and the display that is on top of the display pasteboard is listed last.

For each display, the SHOW DISPLAY command lists its name, maximum size, screen window, and
display kind (including any debug command list). It also identifies whether the display is removed from
the pasteboard or is dynamic (a dynamic display automatically adjusts its window dimensions if the
screen size is changed with the SET TERMINAL command).

Related commands:

553

Chapter 17. Debugger Command Dictionary

DISPLAY
EXTRACT/SCREEN_LAYOUT
(CANCEL) DISPLAY
(SET, CANCEL, SHOW) WINDOW
SHOW SELECT

Example
DBG> SHOW DISPLAY
display SRC at H1, size = 64, dynamic
 kind = SOURCE (EXAMINE/SOURCE .%SOURCE_SCOPE\%PC)
display INST at H1, size = 64, removed, dynamic
 kind = INSTRUCTION (EXAMINE/INSTRUCTION .0\%PC)
display REG at RH1, size = 64, removed, dynamic, kind = REGISTER
display OUT at S45, size = 100, dynamic, kind = OUTPUT
display EXSUM at Q3, size = 64, dynamic, kind = DO (EXAMINE SUM)
display PROMPT at S6, size = 64, dynamic, kind = PROGRAM
DBG>

The SHOW DISPLAY command lists all displays currently defined. In this example, they include the
five predefined displays (SRC, INST, REG, OUT, and PROMPT), and the user-defined DO display
EXSUM. Displays INST and REG are removed from the display pasteboard: the DISPLAY command
must be used to display them on the screen.

SHOW EDITOR
SHOW EDITOR — Indicates the action taken by the EDIT command, as established by the
SET EDITOR command.

Synopsis
SHOW EDITOR

Description
Related commands:

EDIT
SET EDITOR

Examples
1. DBG> SHOW EDITOR

The editor is SPAWNed, with command line
 "EDT/START_POSITION=(n, 1)"
DBG>

In this example, the EDIT command spawns the EDT editor in a subprocess. The
/START_POSITION qualifier appended to the command line indicates that the editing cursor
is initially positioned at the beginning of the line that is centered in the debugger's current source
display.

2. DBG> SET EDITOR/CALLABLE_TPU

554

Chapter 17. Debugger Command Dictionary

DBG> SHOW EDITOR
The editor is CALLABLE_TPU, with command line "TPU"
DBG>

In this example, the SHOW EDITOR command indicates that the EDIT command invokes the
callable version of the DEC Text Processing Utility (DECTPU). The editing cursor is initially
positioned at the beginning of source line 1.

SHOW EVENT_FACILITY
SHOW EVENT_FACILITY — Identifies the current event facility and the associated event names.
Event facilities are available for programs that call Ada routines or that use POSIX Threads services. On
VAX, event facilities are also available for programs that call SCAN routines.

Synopsis
SHOW EVENT_FACILITY

Description
The current event facility (ADA, THREADS, or SCAN) defines the event points that you can set with
the SET BREAK/EVENT and SET TRACE/EVENT commands.

The SHOW EVENT_FACILITY command identifies the event names associated with the current event
facility. These are the keywords that you can specify with the (SET, CANCEL) BREAK/EVENT and
(SET, CANCEL) TRACE/EVENT commands.

Related commands:

(SET, CANCEL) BREAK/EVENT
SET EVENT_FACILITY
(SET, CANCEL) TRACE/EVENT
SHOW BREAK
SHOW TASK
SHOW TRACE

Example
DBG> SHOW EVENT_FACILITY
event facility is THREADS
 …

This command identifies the current event facility to be THREADS (POSIX Threads) and lists the
associated event names that can be used with SET BREAK/EVENT or SET TRACE/EVENT
commands.

SHOW EXIT_HANDLERS
SHOW EXIT_HANDLERS — Identifies the exit handlers that have been declared in your program.

Synopsis

555

Chapter 17. Debugger Command Dictionary

SHOW EXIT_HANDLERS

Description
The exit handler routines are displayed in the order that they are called (that is, last in, first out). The
routine name is displayed symbolically, if possible. Otherwise, its address is displayed. The debugger's
exit handlers are not displayed.

Example
DBG> SHOW EXIT_HANDLERS
exit handler at STACKS\CLEANUP
DBG>

This command identifies the exit handler routine CLEANUP, which is declared in module STACKS.

SHOW IMAGE
SHOW IMAGE — Displays information about one or more images that are part of your running
program.

Synopsis
SHOW IMAGE [image-name]

Parameters
[image-name]

Specifies the name of an image to be included in the display. If you do not specify a name, or if you
specify the asterisk (*) wildcard character by itself, all images are listed. You can use the wildcard within
an image name.

Qualifiers
/FULL

Displays complete information for a running image. This information includes all of the image
sections and their addresses.

/ALL

Displays all the images, including those for which the Debugger was unable to complete processing.
In that case, the debugger shows the image name without the base and end address.

Description
The SHOW IMAGE command displays the following information:

• Name of the image

• Start and end addresses of the image

556

Chapter 17. Debugger Command Dictionary

• Whether the image has been set with the SET IMAGE command (loaded into the run-time symbol
table, RST)

• Current image that is your debugging context (marked with an asterisk (*))

• Total number of images selected in the display

• Approximate number of bytes allocated for the RST and other internal structures

• A summary of the address space occupied by the images in your process

On Integrity servers and Alpha, if you specify an image name or use the /FULL qualifier, the image
sections for the image are also displayed.

On Integrity servers, the /ALL qualifier displays all the images, including those for which the Debugger
is unable to complete processing. In that case, the debugger shows the image name without the base and
end address.

In the following example, the Debugger is unable to complete processing for the SYS
$PUBLIC_VECTORS image:

DBG> SHOW IMAGE/ALL
 image name set base address end address
 CMA$TIS_SHR no 000000007B54A000 000000007B5694EF
 *C_MAIN yes 0000000000010000 00000000000400F7
 C_SHARED_AV no 0000000000042000 00000000000A20DF
 DBGTBKMSG no 000000000068A000 0000000000697D03
 DCL no 000000007ADCC000 000000007AEF7217
 DEBUG no 00000000002DC000 000000000062F037
 DECC$MSG no 000000000067E000 0000000000681F5F
 DECC$SHR no 000000007B8F6000 000000007B95803F
 DPML$SHR no 000000007B6DC000 000000007B738C97
 LIBOTS no 000000007B37C000 000000007B38D9B7
 LIBRTL no 000000007B34A000 000000007B37A06F
 SHRIMGMSG no 0000000000682000 000000000068881C
 SYS$PUBLIC_VECTORS no
 SYS$SSISHR no 0000000000630000 00000000006442F7
 SYS$SSISHRP no 0000000000646000 00000000006501F7
 TIE$SHARE no 00000000000A4000 00000000002A87CF

SHOW IMAGE does not display all of the memory ranges of an image installed using the /RESIDENT
qualifier. Instead, this command displays only the process data region.

Related commands:

(SET, CANCEL) IMAGE
(SET, SHOW) MODULE

Example
DBG> SHOW IMAGE SHARE*
 image name set base address end address
*SHARE yes 00000200 00000FFF
 SHARE1 no 00001000 000017FF
 SHARE2 yes 00018C00 000191FF
 SHARE3 no 00019200 000195FF
 SHARE4 no 00019600 0001B7FF
 total images: 5 bytes allocated: 33032

557

Chapter 17. Debugger Command Dictionary

DBG>

This SHOW IMAGE command identifies all of the images whose names start with SHARE and which
are associated with the program. Images SHARE and SHARE2 are set. The asterisk (*) identifies
SHARE as the current image.

SHOW KEY
SHOW KEY — Displays the debugger predefined key definitions and those created by the
DEFINE/KEY command.

Synopsis
SHOW KEY [key-name]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[key-name]

Specifies a function key whose definition is displayed. Do not use the asterisk (*) wildcard character.
Instead, use the /ALL qualifier. Do not specify a key name with /ALL or /DIRECTORY. Valid key
names are as follows:

Key Name LK201 Keyboard VT100-type VT52-type

PF1 PF1 PF1 Blue
PF2 PF2 PF2 Red
PF3 PF3 PF3 Black
PF4 PF4 PF4
KP0--KP9 Keypad 0--9 Keypad 0--9 Keypad 0--9
PERIOD Keypad period (.) Keypad period (.)
COMMA Keypad comma (,) Keypad comma (,)
ENTER Enter ENTER ENTER
E1 Find
E2 Insert Here
E3 Remove
E4 Select
E5 Prev Screen
E6 Next Screen
HELP Help
DO Do
F6--F20 F6--F20

558

Chapter 17. Debugger Command Dictionary

Qualifiers
/ALL

Displays all key definitions for the current state, by default, or for the states specified with /STATE.

/BRIEF

Displays only the key definitions (by default, all qualifiers associated with a key definition are also
shown, including any specified state).

/DIRECTORY

Displays the names of all the states for which keys have been defined. Do not specify other qualifiers
with this qualifier.

/STATE=(state-name [, …])
/NOSTATE (default)

Selects one or more states for which a key definition is displayed. The /STATE qualifier displays
key definitions for the specified states. You can specify predefined key states, such as DEFAULT
and GOLD, or user-defined states. A state name can be any appropriate alphanumeric string. The
/NOSTATE qualifier displays key definitions for the current state only.

Description
Keypad mode must be enabled (SET MODE KEYPAD) before you can use this command. Keypad
mode is enabled by default.

By default, the current key state is the DEFAULT state. You can change the current state by using the
SET KEY/STATE command or by pressing a key that causes a state change (that is, a key that was
defined with DEFINE/KEY/LOCK_STATE or /SET_STATE).

Related commands:

DEFINE/KEY
DELETE/KEY
SET KEY

Examples
1. DBG> SHOW KEY/ALL

This command displays all the key definitions for the current state.

2. DBG> SHOW KEY/STATE=BLUE KP8
GOLD keypad definitions:
 KP8 = "Scroll/Top" (noecho, terminate, nolock)
DBG>

This command displays the definition for keypad key 8 in the BLUE state.

3. DBG> SHOW KEY/BRIEF KP8
DEFAULT keypad definitions:
 KP8 = "Scroll/Up"
DBG>

559

Chapter 17. Debugger Command Dictionary

This command displays the definition for keypad key 8 in the current state.

4. DBG> SHOW KEY/DIRECTORY
MOVE_GOLD
MOVE_BLUE
MOVE
GOLD
EXPAND_GOLD
EXPAND_BLUE
EXPAND
DEFAULT
CONTRACT_GOLD
CONTRACT_BLUE
CONTRACT
BLUE
DBG>

This command displays the names of the states for which keys have been defined.

SHOW LANGUAGE
SHOW LANGUAGE — Identifies the current language.

Synopsis
SHOW LANGUAGE

Description
The current language is the language last established with the SET LANGUAGE command. If you did
not enter a SET LANGUAGE command, the current language is, by default, the language of the module
containing the main program.

Related command:

SET LANGUAGE

Example
DBG> SHOW LANGUAGE
language: BASIC
DBG>

This command displays the name of the current language as BASIC.

SHOW LOG
SHOW LOG — Indicates whether the debugger is writing to a log file and identifies the current log file.

Synopsis
SHOW LOG

560

Chapter 17. Debugger Command Dictionary

Description
The current log file is the log file last established by a SET LOG command. By default, if you did not
enter a SET LOG command, the current log file is the file SYS$DISK:[]DEBUG.LOG.

Related commands:

SET LOG
SET OUTPUT [NO]LOG
SET OUTPUT [NO]SCREEN_LOG

Examples
1. DBG> SHOW LOG

not logging to DEBUG.LOG
DBG>

This command displays the name of the current log file as DEBUG.LOG (the default log file) and
reports that the debugger is not writing to it.

2. DBG> SET LOG PROG4
DBG> SET OUTPUT LOG
DBG> SHOW LOG
logging to USER$:[JONES.WORK]PROG4.LOG
DBG>

In this example, the SET LOG command establishes that the current log file is PROG4.LOG (in the
current default directory). The SET OUTPUT LOG command causes the debugger to log debugger
input and output into that file. The SHOW LOG command confirms that the debugger is writing to
the log file PROG4.COM in your current default directory.

SHOW MARGINS
SHOW MARGINS — Identifies the current source-line margin settings for displaying source code.

Synopsis
SHOW MARGINS

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Description
The current margin settings are the margin settings last established with the SET MARGINS command.
By default, if you did not enter a SET MARGINS command, the left margin is set to 1 and the right
margin is set to 255.

Related command:

561

Chapter 17. Debugger Command Dictionary

SET MARGINS

Examples
1. DBG> SHOW MARGINS

left margin: 1 , right margin: 255
DBG>

This command displays the default margin settings of 1 and 255.

2. DBG> SET MARGINS 50
DBG> SHOW MARGINS
left margin: 1 , right margin: 50
DBG>

This command displays the default left margin setting of 1 and the modified right margin setting of
50.

3. DBG> SET MARGINS 10:60
DBG> SHOW MARGINS
left margin: 10 , right margin: 60
DBG>

This command displays both margin settings modified to 10 and 60.

SHOW MODE
SHOW MODE — Identifies the current debugger modes (screen or no screen, keypad or no keypad, and
so on) and the current radix.

Synopsis
SHOW MODE

Description
The current debugger modes are the modes last established with the SET MODE command. By default,
if you did not enter a SET MODE command, the current modes are the following:

DYNAMIC
NOG_FLOAT (D_float)
INTERRUPT
KEYPAD
LINE
NOSCREEN
SCROLL
NOSEPARATE
SYMBOLIC

Related commands:

(SET, CANCEL) MODE
(SET, SHOW, CANCEL) RADIX

562

Chapter 17. Debugger Command Dictionary

Example
DBG> SHOW MODE
modes: symbolic, line, d_float, screen, scroll, keypad,
 dynamic, interrupt, no separate window
input radix :decimal
output radix:decimal
DBG>

The SHOW MODE command displays the current modes and current input and output radix.

SHOW MODULE
SHOW MODULE — Displays information about the modules in the current image.

Synopsis
SHOW MODULE [module-name]

Parameters
[module-name]

Specifies the name of a module to be included in the display. If you do not specify a name, or if you
specify the asterisk (*) wildcard character by itself, all modules are listed. You can use a wildcard within
a module name. Shareable image modules are selected only if you specify /SHARE.

Qualifiers
/RELATED
/NORELATED (default)

(Applies to Ada programs.) Controls whether the debugger includes, in the SHOW MODULE display,
any module that is related to a specified module through a with-clause or subunit relationship.

The SHOW MODULE/RELATED command displays related modules as well as those specified. The
display identifies the exact relationship. By default (/NORELATED), no related modules are selected
for display (only the modules specified are selected).

/SHARE
/NOSHARE (default)

Controls whether the debugger includes, in the SHOW MODULE display, any shareable images that
have been linked with your program. By default (/NOSHARE) no shareable image modules are
selected for display.

The debugger creates dummy modules for each shareable image in your program. The names of
these shareable "image modules" have the prefix SHARE$.The SHOW MODULE/SHARE command
identifies these shareable image modules, as well as the modules in the current image.

Setting a shareable image module loads the universal symbols for that image into the run-time
symbol table so that you can reference these symbols from the current image. However, you cannot

563

Chapter 17. Debugger Command Dictionary

reference other (local or global) symbols in that image from the current image. This feature overlaps
the effect of the newer SET IMAGE and SHOW IMAGE commands.

Description
The SHOW MODULE command displays the following information about one or more modules selected
for display:

• Name of the module

• Programming language in which the module is coded, unless all modules are coded in the same
language

• Whether the module has been set with the SET MODULE command. That is, whether the symbol
records of the module have been loaded into the debugger's run-time symbol table (RST)

• Space (in bytes) required in the RST for symbol records in that module

• Total number of modules selected in the display

• Number of bytes allocated for the RST and other internal structures (the amount of heap space in use
in the main debugger's process)

Note

The current image is either the main image (by default) or the image established as the current image by
a previous SET IMAGE command.

For information specific to Ada programs, type Help Language_Support Ada.

Related commands:

(SET, SHOW, CANCEL) IMAGE
SET MODE [NO]DYNAMIC
(SET) MODULE
(SET, SHOW, CANCEL) SCOPE
SHOW SYMBOL

Examples
1. DBG> SHOW MODULE

module name symbols size
TEST yes 432
SCREEN_IO no 280
total PASCAL modules: 2. bytes allocated: 2740.
DBG>

In this example, the SHOW MODULE command, without a parameter, displays information about all
of the modules in the current image, which is the main image by default. This example shows the
display format when all modules have the same source language. The symbols column shows that
module TEST has been set, but module SCREEN_IO has not.

2. DBG> SHOW MODULE FOO, MAIN, SUB*
module name symbols language size
FOO yes MACRO 432

564

Chapter 17. Debugger Command Dictionary

MAIN no FORTRAN 280
SUB1 no FORTRAN 164
SUB2 no FORTRAN 204
total modules: 4. bytes allocated: 60720.
DBG>

In this example, the SHOW MODULE command displays information about the modules FOO and
MAIN, and all modules having the prefix SUB. This example shows the display format when the
modules do not have the same source language.

3. DBG> SHOW MODULE/SHARE
module name symbols language size
FOO yes MACRO 432
MAIN no FORTRAN 280
 …
SHARE$DEBUG no Image 0
SHARE$LIBRTL no Image 0
SHARE$MTHRTL no Image 0
SHARE$SHARE1 no Image 0
SHARE$SHARE2 no Image 0
total modules: 17. bytes allocated: 162280.
DBG> SET MODULE SHARE$SHARE2
DBG> SHOW SYMBOL * IN SHARE$SHARE2

In this example, the SHOW MODULE/SHARE command identifies all of the modules in the current
image and all of the shareable images (the names of the shareable images are prefixed with SHARE
$. The SET MODULE SHARE$SHARE2 command sets the shareable image module SHARE
$SHARE2. The SHOW SYMBOL command identifies any universal symbols defined in the shareable
image SHARE2.

SHOW OUTPUT
SHOW OUTPUT — Identifies the current output options.

Synopsis
SHOW OUTPUT

Description
The current output options are the options last established with the SET OUTPUT command.
By default, if you did not enter a SET OUTPUT command, the output options are: NOLOG,
NOSCREEN_LOG, TERMINAL, NOVERIFY.

Related commands:

SET LOG
SET MODE SCREEN
SET OUTPUT

Example
DBG> SHOW OUTPUT

565

Chapter 17. Debugger Command Dictionary

noverify, terminal, screen_log,
 logging to USER$:[JONES.WORK]DEBUG.LOG;9
DBG>

This command shows the following current output options:

• Debugger commands read from debugger command procedures are not echoed on the terminal.

• Debugger output is being displayed on the terminal.

• The debugging session is being logged to the log file USER$:[JONES.WORK]DEBUG.LOG;9.

• The screen contents are logged as they are updated in screen mode.

SHOW PROCESS
SHOW PROCESS — Displays information about processes that are currently under debugger control.

Synopsis
SHOW PROCESS [process-spec[, …]]

Parameters
[process-spec]

Specifies a process currently under debugger control. Use any of the following forms:

[%PROCESS_NAME] process-name The process name, if that name does not contain
spaces or lowercase characters. The process name
can include the asterisk (*) wildcard character.

[%PROCESS_NAME] " process-name " The process name, if that name contains spaces or
lowercase characters. You can also use apostrophes
(') instead of quotation marks (").

%PROCESS_PID process_id The process identifier (PID, a hexadecimal
number).

[%PROCESS_NUMBER] process-number
(or %PROC process-number)

The number assigned to a process when it
comes under debugger control. A new number
is assigned sequentially, starting with 1, to each
process. If a process is terminated with the
EXIT or QUIT command, the number can be
assigned again during the debugging session.
Process numbers appear in a SHOW PROCESS
display. Processes are ordered in a circular
list so they can be indexed with the built-
in symbols %PREVIOUS_PROCESS and
%NEXT_PROCESS.

process-set-name A symbol defined with the
DEFINE/PROCESS_SET command to represent
a group of processes.

566

Chapter 17. Debugger Command Dictionary

%NEXT_PROCESS The next process after the visible process in the
debugger's circular process list.

%PREVIOUS_PROCESS The process previous to the visible process in the
debugger's circular process list.

%VISIBLE_PROCESS The process whose stack, register set, and images
are the current context for looking up symbols,
register values, routine calls, breakpoints, and so
on.

You can also use the asterisk (*) wildcard character or the /ALL qualifier to specify all processes. Do
not specify a process with /ALL or /DYNAMIC. If you do not specify a process or /ALL with /BRIEF,
/FULL, or /[NO]HOLD, the visible process is selected.

Qualifiers
/ALL

Selects all processes known to the debugger for display.

/BRIEF

(Default) Displays only one line of information for each process selected for display.

/DYNAMIC

Shows whether dynamic process setting is enabled or disabled. Dynamic process setting is enabled
by default and is controlled with the SET PROCESS/[NO]DYNAMIC command.

/FULL

Displays maximum information for each process selected for display.

/VISIBLE

(Default). Selects the visible process for display.

Description
The SHOW PROCESS command displays information about specified processes and any images running
in those processes.

The SHOW PROCESS/FULL command also displays information about the availability and use of the
vector processor. This information is useful if you are debugging a program that uses vector instructions.

A process can first appear in a SHOW PROCESS display as soon as it comes under debugger control.
A process can no longer appear in a SHOW PROCESS display if it is terminated through an EXIT or
QUIT command.

By default (/BRIEF), one line of information is displayed for each process, including the following:

• The process number assigned by the debugger. A process number is assigned sequentially, starting
with process 1, to each process that comes under debugger control. If a process is terminated by
an EXIT or QUIT command, its process number is not reused during that debugging session. The
visible process is marked with an asterisk (*) in the leftmost column.

567

Chapter 17. Debugger Command Dictionary

• The process name.

• The current debugging state for that process.(See Table 17.1.)

• The location (symbolized, if possible) at which execution of the image is suspended in that process.

Table 17.1. Debugging States

State Description

Activated The image and its process have just been brought
under debugger control.

Break

Break on branch

Break on call

Break on instruction

Break on lines

Break on modify of

Break on return

Exception break

Exception break preceding

A breakpoint was triggered.

Interrupted Execution was interrupted in that process, either
because execution was suspended in another
process, or because the user interrupted program
execution with the abort-key sequence (by default,
Ctrl/C).

Step

Step on return

A STEP command has completed.

Terminated The image indicated has terminated execution
but the process is still under debugger control.
Therefore, you can obtain information about the
image and its process. You can use the EXIT or
QUIT command to terminate the process.

Trace

Trace on branch

Trace on call

Trace on instruction

Trace on lines

Trace on modify of

Trace on return

A tracepoint was triggered.

568

Chapter 17. Debugger Command Dictionary

State Description
Exception trace

Exception trace preceding
Unhandled exception An unhandled exception was encountered.
Watch of A watchpoint was triggered.

The SHOW PROCESS/FULL command gives additional information about processes (see the
examples).

Related commands:

CONNECT
Ctrl/C
DEFINE/PROCESS_SET
EXIT
QUIT
SET PROCESS

Examples
1. all> SHOW PROCESS

 Number Name State Current PC
* 2 _WTA3: break SCREEN\%LINE 47
all>

By default, the SHOW PROCESS command displays one line of information about the visible
process (which is identified with an asterisk (*) in the leftmost column). The process has the process
name _WTA3:. It is the second process brought under debugger control (process number 2). It is on
hold, and the image's execution is suspended at a breakpoint at line 47 of module SCREEN.

2. all> SHOW PROCESS TEST_3
 Number Name State Current PC
 7 TEST_3 watch of TEST_3\ROUT4\COUNT
 TEST_3\%LINE 54
all>

This SHOW PROCESS command displays one line of information about process TEST_3. The
image is suspended at a watchpoint of variable COUNT.

3. all> SHOW PROCESS/DYNAMIC
Dynamic process setting is enabled
all>

This command indicates that dynamic process setting is enabled.

SHOW RADIX
SHOW RADIX — Identifies the current radix for the entry and display of integer data or, if you specify
/OVERRIDE, the current override radix.

Synopsis

569

Chapter 17. Debugger Command Dictionary

SHOW RADIX

Qualifiers
/OVERRIDE

Identifies the current override radix.

Description
The debugger can interpret and display integer data in any one of four radixes: binary, decimal,
hexadecimal, and octal. The current radix for the entry and display of integer data is the radix last
established with the SET RADIX command.

If you did not enter a SET RADIX command, the default radix for both data entry and display is
decimal for most languages. The exceptions are BLISS and MACRO, which have a default radix of
hexadecimal.

The current override radix for the display of all data is the override radix last established with the
SET RADIX/OVERRIDE command. If you did not enter a SET RADIX/OVERRIDE command, the
override radix is "none".

Related commands:

DEPOSIT
EVALUATE
EXAMINE
(SET, CANCEL) RADIX

Examples
1. DBG> SHOW RADIX

input radix: decimal
output radix: decimal
DBG>

This command identifies the input radix and output radix as decimal.

2. DBG> SET RADIX/OVERRIDE HEX
DBG> SHOW RADIX/OVERRIDE
output override radix: hexadecimal
DBG>

In this example, the SET RADIX/OVERRIDE command sets the override radix to hexadecimal
and the SHOW RADIX/OVERRIDE command indicates the override radix. This means that
commands such as EXAMINE display all data as hexadecimal integer data.

SHOW SCOPE
SHOW SCOPE — Identifies the current scope search list for symbol lookup.

Synopsis

570

Chapter 17. Debugger Command Dictionary

SHOW SCOPE

Description
The current scope search list designates one or more program locations(specified by path names or
other special characters) to be used in the interpretation of symbols that are specified without pathname
prefixes in debugger commands.

The current scope search list is the scope search list last established with the SET SCOPE command.
By default, if you did not enter a SET SCOPE command, the current scope search list is 0, 1, 2, …, n.

The default scope search list specifies that, for a symbol without a pathname prefix, a symbol lookup
such as EXAMINE X first looks for X in the routine that is currently executing (scope 0); if no X is
visible there, the debugger looks in the caller of that routine (scope 1), and so on down the call stack; if
X is not found in scope n, the debugger searches the rest of the run-time symbol table (RST) - that is, all
set modules and the global symbol table (GST), if necessary.

If you used a decimal integer in the SET SCOPE command to represent a routine in the call stack, the
SHOW SCOPE command displays the name of the routine represented by the integer, if possible.

Related commands:

(SET, CANCEL) SCOPE

Examples
1. DBG> CANCEL SCOPE

DBG> SHOW SCOPE
scope:
 * 0 [= EIGHTQUEENS\TRYCOL\REMOVEQUEEN],
 1 [= EIGHTQUEENS\TRYCOL],
 2 [= EIGHTQUEENS\TRYCOL 1],
 3 [= EIGHTQUEENS\TRYCOL 2],
 4 [= EIGHTQUEENS\TRYCOL 3],
 5 [= EIGHTQUEENS\TRYCOL 4],
 6 [= EIGHTQUEENS]
DBG> SET SCOPE/CURRENT 2
DBG> SHOW SCOPE
scope:
 0 [= EIGHTQUEENS\TRYCOL\REMOVEQUEEN],
 1 [= EIGHTQUEENS\TRYCOL],
 * 2 [= EIGHTQUEENS\TRYCOL 1],
 3 [= EIGHTQUEENS\TRYCOL 2],
 4 [= EIGHTQUEENS\TRYCOL 3],
 5 [= EIGHTQUEENS\TRYCOL 4],
 6 [= EIGHTQUEENS]
DBG>

The CANCEL SCOPE command restores the default scope search list, which is displayed by the
(first) SHOW SCOPE command. In this example, execution is suspended at routine REMOVE
QUEEN, after several recursive calls to routine TRYCOL. The asterisk (*) indicates that the scope
search list starts with scope 0, the scope of the routine in which execution is suspended.

The SET SCOPE/CURRENT command resets the start of the scope search list to scope 2. Scope 2
is the scope of the caller of the routine in which execution is suspended. The asterisk in the output of
the (second) SHOW SCOPE command indicates that the scope search list now starts with scope 2.

571

Chapter 17. Debugger Command Dictionary

2. DBG> SET SCOPE 0, STACKS\R2, SCREEN_IO, \
DBG> SHOW SCOPE
scope:
 0, [= TEST],
 STACKS\R2,
 SCREEN_IO,
 \
DBG>

In this example, the SET SCOPE command directs the debugger to look for symbols without
pathname prefixes according to the following scope search list. First the debugger looks in the PC
scope (denoted by 0, which is in module TEST). If the debugger cannot find a specified symbol in
the PC scope, it then looks in routine R2 of module STACKS; if necessary, it then looks in module
SCREEN_IO, and then finally in the global symbol table (denoted by the global scope (\)). The
SHOW SCOPE command identifies the current scope search list for symbol lookup. No asterisk
is shown in the SHOW SCOPE display unless the default scope search list is in effect or you have
entered a SET SCOPE/CURRENT command.

SHOW SEARCH
SHOW SEARCH — Identifies the default qualifiers (/ALL or /NEXT, /IDENTIFIER or /STRING)
currently in effect for the SEARCH command.

Synopsis
SHOW SEARCH

Description
The default qualifiers for the SEARCH command are the default qualifiers last established with the
SET SEARCH command. If you did not enter a SET SEARCH command, the default qualifiers are
/NEXT and /STRING.

Related commands:

SEARCH
(SET, SHOW) LANGUAGE
SET SEARCH

Example
DBG> SHOW SEARCH
search settings: search for next occurrence, as a string
DBG> SET SEARCH IDENT
DBG> SHOW SEARCH
search settings: search for next occurrence, as an identifier
DBG> SET SEARCH ALL
DBG> SHOW SEARCH
search settings: search for all occurrences, as an identifier
DBG>

In this example, the first SHOW SEARCH command displays the default settings for the SET SEARCH
command. By default, the debugger searches for and displays the next occurrence of the string.

572

Chapter 17. Debugger Command Dictionary

The second SHOW SEARCH command indicates that the debugger searches for the next occurrence of
the string, but displays the string only if it is not bounded on either side by a character that can be part of
an identifier in the current language.

The third SHOW SEARCH command indicates that the debugger searches for all occurrences of the
string, but displays the strings only if they are not bounded on either side by a character that can be part
of an identifier in the current language.

SHOW SELECT
SHOW SELECT — Identifies the displays currently selected for each of the display attributes: error,
input, instruction, output, program, prompt, scroll, and source.

Synopsis
SHOW SELECT

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Description
The display attributes have the following properties:

• A display that has the error attribute displays debugger diagnostic messages.

• A display that has the input attribute echoes your debugger input.

• A display that has the instruction attribute displays the decoded instruction stream of the routine
being debugged. The display is updated when you enter an EXAMINE/INSTRUCTION command.

• A display that has the output attribute displays any debugger output that is not directed to another
display.

• A display that has the program attribute displays program input and output. Currently only the
PROMPT display can have the program attribute.

• A display that has the prompt attribute is where the debugger prompts for input. Currently, only the
PROMPT display can have the PROMPT attribute.

• A display that has the scroll attribute is the default display for the SCROLL, MOVE, and EXPAND
commands.

• A display that has the source attribute displays the source code of the module being debugged, if
available. The display is updated when you enter a TYPE or EXAMINE/SOURCE command.

Related commands:

SELECT
SHOW DISPLAY

573

Chapter 17. Debugger Command Dictionary

Example
DBG> SHOW SELECT
display selections:
 scroll = SRC
 input = none
 output = OUT
 error = PROMPT
 source = SRC
 instruction = none
 program = PROMPT
 prompt = PROMPT
DBG>

The SHOW SELECT command identifies the displays currently selected for each of the display
attributes. These selections are the defaults for languages.

SHOW SOURCE
SHOW SOURCE — Identifies the source directory search lists and search methods currently in effect.

Synopsis
SHOW SOURCE

Qualifiers
/DISPLAY

Identifies the search list used when the debugger displays source code.

/EDIT

Identifies the search list to be used during execution of the debugger's EDIT command.

Description
The SET SOURCE/MODULE= module-name command establishes a source directory search list
for a particular module. The SET SOURCE command establishes a source directory search list for all
modules not explicitly mentioned in a SET SOURCE/MODULE= module-name command. When
you have used those commands, SHOW SOURCE identifies the source directory search list associated
with each search category.

If a source directory search list has not been established by using the SET SOURCE or
SET SOURCE/MODULE= module-name command, the SHOW SOURCE command indicates that
no directory search list is currently in effect. In this case, the debugger expects each source file to be in
the same directory that it was in at compile time (the debugger also checks that the version number and
the creation date and time of a source file match the information in the debugger's symbol table).

The /EDIT qualifier is needed when the files used for the display of source code are different from the
files to be edited by using the EDIT command. This is the case with Ada programs. For Ada programs,
the SHOW SOURCE command identifies the search list of files used for source display (the copied
source files in Ada program libraries); the SHOW SOURCE/EDIT command identifies the search list
for the source files you edit when using the EDIT command.

574

Chapter 17. Debugger Command Dictionary

For information specific to Ada programs, type Help Language_Support Ada.

Related commands:

(SET, CANCEL) SOURCE

Examples
1. DBG> SHOW SOURCE

no directory search list in effect,
 match the latest source file version
DBG> SET SOURCE [PROJA], [PROJB], DISK:[PETER.PROJC]
DBG> SHOW SOURCE
source directory search list for all modules,
 match the latest source file version:
 [PROJA]
 [PROJB]
 DISK:[PETER.PROJC]
DBG>

In this example, the SET SOURCE command directs the debugger to search the directories
[PROJA], [PROJB], and DISK:[PETER.PROJC]. By default, the debugger searches for the
latest version of source files.

2. DBG> SET SOURCE/MODULE=CTEST/EXACT [], DISK$2:[PROJD]
DBG> SHOW SOURCE
source directory search list for CTEST,
 match the exact source file version:
 []
 DISK$2:[PROJD]
source directory search list for all other modules, match the latest
 source file version:
 [PROJA]
 [PROJB]
 DISK:[PETER.PROJC]
DBG>

In this example, the SET SOURCE command directs the debugger to search the current default
directory ([]) and directory DISK$2:[PROJD] for source files to use with the module CTEST.
The /EXACT qualifier specifies that the search will locate the exact version of the CTEST source
files found in the debug symbol table.

SHOW STACK
SHOW STACK — Displays information on the currently active routine calls.

Synopsis
SHOW STACK [integer]

Parameters
[integer]

575

Chapter 17. Debugger Command Dictionary

Specifies the number of frames to display. If you omit the parameter, the debugger displays information
about all call frames.

Qualifiers
/START_LEVEL= n

Directs SHOW STACK to begin displaying information at call frame level n. For example, to see
stack information for only frame 3, enter the following command:

DBG> SHOW STACK/START=3 1

To see details for the 4th and 5th stack frames, enter the following command:

DBG> SHOW STACK/START=4 2

Description
For each call frame, the SHOW STACK command displays information such as stack pointers, condition
handler, saved register values (Alpha), and local register allocation (Integrity servers). Note that an
argument passed through a register or an argument list may contain the addresses of the actual argument.
In such cases, use the EXAMINE address-expression command to display the values of these
arguments.

On Integrity server and Alpha processors, a routine invocation can result in:

• A stack frame procedure, with a call frame on the memory stack,

• A register frame procedure, with a call frame stored in the register set (Alpha) or on the register stack
(Integrity servers), or

• A null frame procedure, without a call frame

The SHOW STACK command provides information on all three procedures: stack frame, register frame,
and null frame. (See the examples below.)

Related command:

SHOW CALLS

Examples
Alpha example:

DBG> SHOW STACK
invocation block 0
 FP: 000000007F907AD0
 Detected what appears to be a NULL frame
 NULL frames operate in the same invocation context as their caller
 NULL Procedure Descriptor (0000000000010050):
 Flags: 3089
 KIND: PDSC$K_KIND_FP_STACK (09)
 Signature Offset 0000
 Entry Address: MAIN\FFFF
 Procedure Descriptor (0000000000010000):
 Flags: 3089

576

Chapter 17. Debugger Command Dictionary

 KIND: PDSC$K_KIND_FP_STACK (09)
 FP is Base Register
 Rsa Offset: 0008
 Signature Offset 0000
 Entry Address: MAIN
 Ireg Mask: 20000004 <R2, FP>
 RA Saved @ 000000007F907AD8: FFFFFFFF8255A1F8
 R2 Saved @ 000000007F907AE0: 000000007FFBF880
 FP Saved @ 000000007F907AE8: 000000007F907B30
 Freg Mask: 00000000
 Size: 00000020
invocation block 1
 FP: 000000007F907B30
 Procedure Descriptor (FFFFFFFF8255D910):
 Flags: 3099
 KIND: PDSC$K_KIND_FP_STACK (09)
 Handler Valid
 FP is Base Register
 Rsa Offset: 0048
 Signature Offset 0001
 Entry Address: -2108317536
 Ireg Mask: 20002084 <R2, R7, R13, FP>
 RA Saved @ 000000007F907B78: 000000007FA28160
 R2 Saved @ 000000007F907B80: 0000000000000000
 R7 Saved @ 000000007F907B88: 000000007FF9C9E0
 R13 Saved @ 000000007F907B90: 000000007FA00900
 FP Saved @ 000000007F907B98: 000000007F907BB0
 Freg Mask: 00000000
 Size: 00000070
 Condition Handler: -2108303104
DBG>

In the above example, note that sections of routine prologues and epilogues appear to the debugger to be
null frames. The portion of the prologue before the change in the frame pointer (FP) and the portion of
the epilogue after restoration of the FP each look like a null frame, and are reported accordingly.

Integrity servers example:

The following abbreviations are used in the example:

GP -- Global data segment Pointer (%R1)
PC -- Program Counter (Instruction Pointer + instruction slot number)
SP -- Stack Pointer (memory stack)
BSP -- Backing Store Pointer (register stack)
CFM -- Current Frame Marker

DBG> SHOW STACK
Invocation block 0 Invocation handle 000007FDC0000270
 GP: 0000000000240000
 PC: MAIN\FFFF
 In prologue region
 RETURN PC: MAIN\%LINE 15
 SP: 000000007AD13B40
 Is memory stack frame:
 previous SP: 000000007AD13B40
 BSP: 000007FDC0000270
 Is register stack frame:
 previous BSP: 000007FDC0000248

577

Chapter 17. Debugger Command Dictionary

 CFM: 0000000000000005
 No locals Outs R32 : R36
Invocation block 1 Invocation handle 000007FDC0000248
 GP: 0000000000240000
 PC: MAIN\%LINE 15
 RETURN PC: 0FFFFFFFF80C2A200
 SP: 000000007AD13B40
 Is memory stack frame:
 previous SP: 000000007AD13B70
 BSP: 000007FDC0000248
 Is register stack frame:
 previous BSP: 000007FDC0000180
 CFM: 000000000000028A
 Ins/Locals R32 : R36 Outs R37 : R41
Invocation block 2
 Invocation handle 000007FDC0000180
 GP: 0FFFFFFFF844DEC00
 PC: 0FFFFFFFF80C2A200
 RETURN PC: SHARE$DCL_CODE0+5AB9F
 SP: 000000007AD13B70
 Is memory stack frame:
 previous SP: 000000007AD13BC0
 BSP: 000007FDC0000180
 Is register stack frame:
 previous BSP: 000007FDC00000B8
 Has handler:
 function value: 0FFFFFFFF842DFBD0
 CFM: 0000000000000C20
 Ins/Locals R32 : R55 Outs R56 : R63
DBG>

See VSI OpenVMS Calling Standard for more information.

SHOW STEP
SHOW STEP — Identifies the default qualifiers (/INTO, /INSTRUCTION, /NOSILENT and so
on)currently in effect for the STEP command.

Synopsis
SHOW STEP

Description
The default qualifiers for the STEP command are the default qualifiers last established by the
SET STEP command. If you did not enter a SET STEP command, the default qualifiers are /LINE,
/OVER, /NOSILENT, and /SOURCE.

Enabling screen mode by pressing PF1-PF3 enters the SET STEP NOSOURCE command as well as
the SET MODE SCREEN command (to eliminate redundant source display in output and DO displays).
In that case, the default qualifiers are /LINE, /OVER, /NOSILENT, and /NOSOURCE.

Related commands:

STEP

578

Chapter 17. Debugger Command Dictionary

SET STEP

Example
DBG> SET STEP INTO, NOSYSTEM, NOSHARE, INSTRUCTION, NOSOURCE
DBG> SHOW STEP
step type: nosystem, noshare, nosource, nosilent, into routine calls,
 by instruction
DBG>

In this example, the SHOW STEP command indicates that the debugger take the following actions:

• Steps into called routines, but not those in system space or in shareable images

• Steps by instruction

• Does not display lines of source code while stepping

SHOW SYMBOL
SHOW SYMBOL — Displays information about the symbols in the debugger's run-time symbol table
(RST) for the current image.

Synopsis
SHOW SYMBOL [symbol-name[, …]]

[IN scope [, …]]

Note

The current image is either the main image (by default) or the image established as the current image by
a previous SET IMAGE command.

Parameters
[symbol-name]

Specifies a symbol to be identified. A valid symbol name is a single identifier or a label name of the
form %LABEL n, where n is an integer. Compound names such as RECORD.FIELD or ARRAY[1, 2]
are not valid. If you specify the asterisk (*) wildcard character by itself, all symbols are listed. You can
use the wildcard within a symbol name.

[scope]

Specifies the name of a module, routine, or lexical block, or a numeric scope. It has the same syntax
as the scope specification in a SET SCOPE command and can include path-name qualification. All
specified scopes must be in set modules in the current image.

The SHOW SYMBOL command displays only those symbols in the RST for the current image that both
match the specified name and are declared within the lexical entity specified by the scope parameter.

579

Chapter 17. Debugger Command Dictionary

If you omit this parameter, all set modules and the global symbol table (GST) for the current image are
searched for symbols that match the name specified by the symbol-name parameter.

Qualifiers
/ADDRESS

Displays the address specification for each selected symbol. The address specification is the method
of computing the symbol's address. It can merely be the symbol's memory address, but it can also
involve indirection or an offset from a register value. Some symbols have address specifications too
complicated to present in any understandable way. These address specifications are labeled "complex
address specifications."

On Alpha, the command SHOW SYMBOL/ADDRESS procedure-name displays both the code
address and procedure descriptor address of a specified routine, entry point, or Ada package.

/DEFINED

Displays symbols you have defined with the DEFINE command (symbol definitions that are in the
DEFINE symbol table).

/DIRECT

Displays only those symbols that are declared directly in the scope parameter. Symbols declared in
lexical entities nested within the scope specified by the scope parameters are not shown.

/FULL

Displays all information associated with the /ADDRESS, /TYPE, and /USE_CLAUSE qualifiers.

For C++ modules, if symbol-name is a class, SHOW SYMBOL/FULL also displays information
about the class.

/LOCAL

Displays symbols that are defined with the DEFINE/LOCAL command (symbol definitions that are
in the DEFINE symbol table).

/TYPE

 Displays data type information for each selected symbol.

/USE_CLAUSE

(Applies to Ada programs.) Identifies any Ada package that a specified block, subprogram, or
package names in a use clause. If the symbol specified is a package, also identifies any block,
subprogram, package, and so on, that names the specified symbol in a use clause.

Description
The SHOW SYMBOL command displays information that the debugger has about a given symbol in the
current image. This information might not be the same as what the compiler had or even what you see in
your source code. Nonetheless, it is useful for understanding why the debugger might act as it does when
handling symbols.

580

Chapter 17. Debugger Command Dictionary

By default, the SHOW SYMBOL command lists all of the possible declarations or definitions of a
specified symbol that exist in the RST for the current image (that is, in all set modules and in the
GST for that image). Symbols are displayed with their path names. A path name identifies the search
scope (module, nested routines, blocks, and so on)that the debugger must follow to reach a particular
declaration of a symbol. When specifying symbolic address expressions in debugger commands, use path
names only if a symbol is defined multiple times and the debugger cannot resolve the ambiguity.

The /DEFINED and /LOCAL qualifiers display information about symbols defined with the DEFINE
command (not the symbols that are derived from your program). The other qualifiers display information
about symbols defined within your program.

For information specific to Ada programs, type Help Language_Support Ada.

Related commands:

DEFINE
DELETE
SET MODE [NO]LINE
SET MODE [NO]SYMBOLIC
SHOW DEFINE
SYMBOLIZE

Examples
1. DBG> SHOW SYMBOL I

data FORARRAY\I
DBG>

This command shows that symbol I is defined in module FORARRAY and is a variable (data) rather
than a routine.

2. DBG> SHOW SYMBOL/ADDRESS INTARRAY1
data FORARRAY\INTARRAY1
 descriptor address: 0009DE8B
DBG>

This command shows that symbol INTARRAY1 is defined in module FORARRAY and has a
memory address of 0009DE8B.

3. DBG> SHOW SYMBOL *PL*

This command lists all the symbols whose names contain the string "PL".

4. DBG> SHOW SYMBOL/TYPE COLOR
data SCALARS\MAIN\COLOR
 enumeration type (primary, 3 elements), size: 4 bytes

This command shows that the variable COLOR is an enumeration type.

5. DBG> SHOW SYMBOL/TYPE/ADDRESS *

This command displays all information about all symbols.

6. DBG> SHOW SYMBOL * IN MOD3\COUNTER
 routine MOD3\COUNTER
 data MOD3\COUNTER\X

581

Chapter 17. Debugger Command Dictionary

 data MOD3\COUNTER\Y
DBG>

This command lists all the symbols that are defined in the scope denoted by the path name
MOD3 \COUNTER.

7. DBG> DEFINE/COMMAND SB=SET BREAK
DBG> SHOW SYMBOL/DEFINED SB
defined SB
 bound to: SET BREAK
 was defined /command
DBG>

In this example, the DEFINE/COMMAND command defines SB as a symbol for the SET BREAK
command. The SHOW SYMBOL/DEFINED command displays that definition.

SHOW TASK |THREAD
SHOW TASK |THREAD — Displays information about the tasks of a multithread program (also called
a tasking program).

Synopsis
SHOW TASK |THREAD [task-spec[, …]]

Note

SHOW TASK and SHOW THREAD are synonymous commands. They perform identically.

Parameters
[task-spec]

Specifies a task value. Use any of the following forms:

• When the event facility is THREADS:

• A task (thread) name as declared in the program, or a language expression that yields a task ID
number.

• A task ID number (for example, 2), as indicated in a SHOW TASK display.

• When the event facility is ADA:

• A task (thread) name as declared in the program, or a language expression that yields a task
value. You can use a path name.

• A task ID (for example, 2), as indicated in a SHOW THREAD display.

• One of the following task built-in symbols:

%ACTIVE_TASK The task that runs when a GO, STEP, CALL, or
EXIT command executes.

582

Chapter 17. Debugger Command Dictionary

%CALLER_TASK (Applies only to Ada programs.) When an accept
statement executes, the task that called the entry
associated with the accept statement.

%NEXT_TASK The task after the visible task in the debugger's
task list. The ordering of tasks is arbitrary but
consistent within a single run of a program.

%PREVIOUS_TASK The task previous to the visible task in the
debugger's task list.

%VISIBLE_TASK The task whose call stack and register set are the
current context for looking up symbols, register
values, routine calls, breakpoints, and so on.

Do not use the asterisk (*) wildcard character. Instead, use the /ALL qualifier. Do not specify a task
with /ALL, /STATISTICS, or /TIME_SLICE.

Qualifiers
/ALL

Selects all existing tasks for display - namely, tasks that have been created and (in the case of Ada
tasks) whose master has not yet terminated.

/CALLS[=n]

Does a SHOW CALLS command for each task selected for display. This identifies the currently
active routine calls (the call stack) for a task.

/FULL

When the event facility is THREADS, use the following command:

PTHREAD thread -f thread-number

Displays additional information for each task selected for display. The additional information is
provided if you use /FULL by itself or with /CALLS or /STATISTICS.

You can get help on POSIX Threads debugger commands by typing PTHREAD HELP.

See the Guide to POSIX Threads Library for more information about using the POSIX Threads
debugger.

/HOLD
/NOHOLD (default)

SHOW TERMINAL When the event facility is THREADS, use the following command:

PTHREAD tset -n thread-number

Selects either tasks that are on hold, or tasks that are not on hold for display.

If you do not specify a task, /HOLD selects all tasks that are on hold. If you specify a task list,
/HOLD selects the tasks in the task list that are on hold.

If you do not specify a task, /NOHOLD selects all tasks that are not on hold. If you specify a task
list, /NOHOLD selects the tasks in the task list that are not on hold.

583

Chapter 17. Debugger Command Dictionary

/IMAGE

Displays the image name for each active call on the call stack. Valid only with the /CALLS qualifier.

/PRIORITY=(n[, …])

When the event facility is THREADS, use the following command:

PTHREAD tset -s thread-number

If you do not specify a task, selects all tasks having any of the specified priorities, n, where n is a
decimal integer from 0 to 15. If you specify a task list, selects the tasks in the task list that have any
of the priorities specified.

/STATE=(state[, …])

If you do not specify a task, selects all tasks that are in any of the specified states - RUNNING,
READY, SUSPENDED, or TERMINATED. If you specify a task list, selects the tasks in the task list
that are in any of the states specified.

Description
A task can first appear in a SHOW TASK display as soon as it is created. A task can no longer appear
in a SHOW TASK display if it is terminated or (in the case of an Ada tasking program) if its master
is terminated. By default, the SHOW TASK command displays one line of information for each task
selected.

When you specify the /IMAGE qualifier, the debugger first does a SET IMAGE command for
each image that has debug information (that is, it was linked using the /DEBUG or /TRACEBACK
qualifier).The debugger then displays the image name for each active call on the calls stack. The output
display has been expanded and displays the image name in the first column.

The debugger suppresses the share$image_name module name, because that information is provided by
the /IMAGE qualifier.

The SET IMAGE command lasts only for the duration of the SHOW TASK/CALLS/IMAGE
command. The debugger restores the set image state when the SHOW TASK/CALLS/IMAGE
command is complete.

Related commands:

DEPOSIT/TASK
EXAMINE/TASK
(SET, SHOW) EVENT_FACILITY
SET TASK |THREAD

Examples
1. DBG> SHOW EVENT_FACILITY

event facility is ADA
 …
DBG> SHOW TASK/ALL
 task id pri hold state substate task object
* %TASK 1 7 RUN 122624
 %TASK 2 7 HOLD SUSP Accept H4.MONITOR

584

Chapter 17. Debugger Command Dictionary

 %TASK 3 6 READY Entry call H4.CHECK_IN
DBG>

In this example, the SHOW EVENT_FACILITY command identifies ADA as the current event
facility. The SHOW TASK/ALL command provides basic information about all the tasks that were
created through Ada services and currently exist. One line is devoted to each task. The active task
is marked with an asterisk (*). In this example, it is also the active task (the task that is in the RUN
state).

2. DBG> SHOW TASK %ACTIVE_TASK, 3, MONITOR

This command selects the active task, 3, and task MONITOR for display.

3. DBG> SHOW TASK/PRIORITY=6

This command selects all tasks with priority 6 for display.

4. DBG> SHOW TASK/STATE=(RUN, SUSP)

This command selects all tasks that are either running or suspended for display.

5. DBG> SHOW TASK/STATE=SUSP/NOHOLD

This command selects all tasks that are both suspended and not on hold for display.

6. DBG> SHOW TASK/STATE=(RUN, SUSP)/PRIO=7 %VISIBLE_TASK, 3

This command selects for display those tasks among the visible task and %TASK3 that are in either
the RUNNING or SUSPENDED state and have priority 7.

SHOW TERMINAL
SHOW TERMINAL — Identifies the current terminal screen height (page) and width being used to
format output.

Synopsis
SHOW TERMINAL

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Description
The current terminal screen height and width are the height and width last established by the
SET TERMINAL command. By default, if you did not enter a SET TERMINAL command, the
current height and width are the height and width known to the terminal driver, as displayed by the DCL
command SHOW TERMINAL (usually 24 lines and 80 columns for VT-series terminals).

Related commands:

585

Chapter 17. Debugger Command Dictionary

SET TERMINAL
SHOW DISPLAY
SHOW WINDOW

Example
DBG> SHOW TERMINAL
terminal width: 80
 page: 24
 wrap: 80
DBG>

This command displays the current terminal screen width and height (page) as 80 columns and 24 lines,
and the message wrap setting at column 80.

SHOW TRACE
SHOW TRACE — Displays information about tracepoints.

Synopsis
SHOW TRACE

Qualifiers
/PREDEFINED

Displays information about predefined tracepoints.

/USER

Displays information about user-defined tracepoints.

Description
The SHOW TRACE command displays information about tracepoints that are currently set, including
any options such as WHEN or DO clauses, /AFTER counts, and so on, and whether the tracepoints are
deactivated.

By default, SHOW TRACE displays information about both user-defined and predefined tracepoints (if
any). This is equivalent to entering the SHOW TRACE/USER/PREDEFINED command. User-defined
tracepoints are set with the SET TRACE command. Predefined tracepoints are set automatically when
you start the debugger, and they depend on the type of program you are debugging.

If you established a tracepoint using SET TRACE/AFTER: n, the SHOW TRACE command displays
the current value of the decimal integer n, that is, the originally specified integer value minus 1 for each
time the tracepoint location was reached. (The debugger decrements n each time the tracepoint location
is reached until the value of n is 0, at which time the debugger takes trace action.)

On Alpha systems, the SHOW TRACE command does not display individual instructions when the trace
is on a particular class of instruction (as with SET TRACE/CALL or SET TRACE/RETURN).

Related commands:

586

Chapter 17. Debugger Command Dictionary

(ACTIVATE, DEACTIVATE, SET, CANCEL) TRACE

Examples
1. DBG> SHOW TRACE

tracepoint at routine CALC
\MULTtracepoint on calls:
 RET RSB BSBB JSB BSBW CALLG CALLS
DBG>

In this VAX example, the SHOW TRACE command identifies all tracepoints that are currently
set. This example indicates user-defined tracepoints that are triggered whenever execution reaches
routine MULT in module CALC or one of the instructions RET, RSB, BSBB, JSB, BSBW, CALLG,
or CALLS.

2. all> SHOW TRACE/PREDEFINED
predefined tracepoint on program activation
 DO (SET DISP/DYN/REM/SIZE:64/PROC SRC_ AT H1 SOURCE
 (EXAM/SOURCE .%SOURCE_SCOPE\%PC);
 SET DISP/DYN/REM/SIZE:64/PROC INST_ AT H1 INST
 (EXAM/INSTRUCTION .0\%PC))
predefined tracepoint on program termination
all>

This command identifies the predefined tracepoints that are currently set. The example shows
the predefined tracepoints that are set automatically by the debugger for a multiprocess program.
The tracepoint on program activation triggers whenever a new process comes under debugger
control. The DO clause creates a process-specific source display named SRC_n and a process-
specific instruction display named INST_n whenever a process activation tracepoint is triggered. The
tracepoint on program termination triggers whenever a process does an image exit.

SHOW TYPE
SHOW TYPE — Identifies the current type for program locations that do not have a compiler-generated
type or, if you specify /OVERRIDE, the current override type.

Synopsis
SHOW TYPE

Qualifiers
/OVERRIDE

Identifies the current override type.

Description
The current type for program locations that do not have a compiler-generated type is the type last
established by the SET TYPE command. If you did not enter a SET TYPE command, the type for
those locations is longword integer.

587

Chapter 17. Debugger Command Dictionary

The current override type for all program locations is the override type last established by the
SET TYPE/OVERRIDE command. If you did not enter a SET TYPE/OVERRIDE command, the
override type is "none".

Related commands:

CANCEL TYPE/OVERRIDE
DEPOSIT
EXAMINE
(SET, SHOW, CANCEL) MODE
(SET, SHOW, CANCEL) RADIX
SET TYPE

Examples
1. DBG> SET TYPE QUADWORD

DBG> SHOW TYPE
type: quadword integer
DBG>

In this example, you set the type to quadword for locations that do not have a compiler-generated
type. The SHOW TYPE command displays the current default type for those locations as quadword
integer. This means that the debugger interprets and displays entities at those locations as quadword
integers unless you specify otherwise (for example with a type qualifier on the EXAMINE
command).

2. DBG> SHOW TYPE/OVERRIDE
type/override: none
DBG>

This command indicates that no override type has been defined.

SHOW WATCH
SHOW WATCH — Displays information about watchpoints.

Synopsis
SHOW WATCH

Description
The SHOW WATCH command displays information about watchpoints that are currently set, including
any options such as WHEN or DO clauses, /AFTER counts, and so on, and whether the watchpoints are
deactivated.

If you established a watchpoint using SET WATCH/AFTER: n, the SHOW WATCH command displays
the current value of the decimal integer n, that is, the originally specified integer value minus 1 for
each time the watchpoint location was reached. (The debugger decrements n each time the watchpoint
location is reached until the value of n is 0, at which time the debugger takes watch action.)

Related commands:

588

Chapter 17. Debugger Command Dictionary

(ACTIVATE, CANCEL, DEACTIVATE, SET) WATCH

Example
DBG> SHOW WATCH
watchpoint of MAIN\X
watchpoint of SUB2\TABLE+20
DBG>

This command displays two watchpoints: one at the variable X (defined in module MAIN), and the
other at the location SUB2 \TABLE+20 (20 bytes beyond the address denoted by the address expression
TABLE).

SHOW WINDOW
SHOW WINDOW — Identifies the name and screen position of predefined and user-defined screen-mode
windows.

Synopsis
SHOW WINDOW [window-name[, …]]

Parameters
[window-name]

Specifies the name of a screen window definition. If you do not specify a name, or if you specify the
asterisk (*) wildcard character by itself, all window definitions are listed. You can use the wildcard
within a window name. Do not specify a window definition name with the /ALL qualifier.

Qualifiers
/ALL

Lists all window definitions.

Description
This command identifies the name and screen position of predefined and user-defined screen-mode
windows.

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Related commands:

(SHOW, CANCEL) DISPLAY
(SET, SHOW) TERMINAL
(SET, CANCEL) WINDOW

589

Chapter 17. Debugger Command Dictionary

SHOW SELECT

Example
DBG> SHOW WINDOW LH*, RH*
window LH1 at (1, 11, 1, 40)
window LH12 at (1, 23, 1, 40)
window LH2 at (13, 11, 1, 40)
window RH1 at (1, 11, 42, 39)
window RH12 at (1, 23, 42, 39)
window RH2 at (13, 11, 42, 39)
DBG>

This command displays the name and screen position of all screen window definitions whose names start
with LH or RH.

SPAWN
SPAWN — Creates a subprocess, enabling you to execute DCL commands without terminating a
debugging session or losing your debugging context.

Synopsis
SPAWN [DCL-command]

Note

This command is not available in the VSI DECwindows Motif for OpenVMS user interface to the
debugger.

Parameters
[DCL-command]

Specifies a DCL command which is then executed in a subprocess. Control is returned to the debugging
session when the DCL command terminates.

If you do not specify a DCL command, a subprocess is created and you can then enter DCL commands.
Either logging out of the spawned process or attaching to the parent process (with the DCL command
ATTACH) returns you to your debugging session.

If the DCL command contains a semicolon, you must enclose the command in quotation marks (").
Otherwise the semicolon is interpreted as a debugger command separator. To include a quotation mark
in the string, enter two consecutive quotation marks ("").

Qualifiers
/INPUT=file-spec

Specifies an input DCL command procedure containing one or more DCL commands to be executed
by the spawned subprocess. The default file type is .COM. If you specify a DCL command string

590

Chapter 17. Debugger Command Dictionary

with the SPAWN command and an input file with /INPUT, the command string is processed before
the input file. After processing of the input file is complete, the subprocess is terminated. Do not use
the asterisk (*) wildcard character in the file specification.

/OUTPUT=file-spec

Writes the output from the SPAWN operation to the specified file. The default file type is .LOG. Do
not use the asterisk (*) wildcard character in the file specification.

/WAIT (default)
/NOWAIT

Controls whether the debugging session (the parent process) is suspended while the subprocess
is running. The /WAIT qualifier (default) suspends the debugging session until the subprocess is
terminated. You cannot enter debugger commands until control returns to the parent process.

The /NOWAIT qualifier executes the subprocess in parallel with the debugging session. You can
enter debugger commands while the subprocess is running. If you use /NOWAIT, you should specify
a DCL command with the SPAWN command; the DCL command is then executed in the subprocess.
A message indicates when the spawned subprocess completes.

The kept debugger (that is, the debugger invoked with the DCL command DEBUG/KEEP)shares I/O
channels with the parent process when it is run by a SPAWN/NOWAIT command. Therefore, in the
VSI DECwindows Motif for OpenVMS user interface, you must press the Return key twice on the
DEC term from which the debugger was run after the debugger version number has appeared in the
command view.

Optionally, you can execute the kept debugger in the following manner:

$ DEFINE DBG$INPUT NL:
$ SPAWN/NOWAIT RUN DEBUG/KEEP

Description
The SPAWN command acts exactly like the DCL command SPAWN. You can edit files, compile
programs, read mail, and so on without ending your debugging session or losing your current debugging
context.

In addition, you can spawn a DCL command SPAWN. DCL processes the second SPAWN command,
including any qualifier specified with that command.

Related command:

ATTACH

Examples
1. DBG> SPAWN

$

This example shows that the SPAWN command, without a parameter, creates a subprocess at DCL
level. You can now enter DCL commands. Log out to return to the debugger prompt.

2. DBG> SPAWN/NOWAIT/INPUT=READ_NOTES/OUTPUT=0428NOTES

591

Chapter 17. Debugger Command Dictionary

This command creates a subprocess that is executed in parallel with the debugging session. This
subprocess executes the DCL command procedure READ_NOTES.COM. The output from the
spawned operation is written to the file 0428NOTES.LOG.

3. DBG> SPAWN/NOWAIT SPAWN/OUT=MYCOM.LOG @MYCOM

This command creates a subprocess that is executed in parallel with the debugging session. This
subprocess creates another subprocess to execute the DCL command procedure MYCOM.COM. The
output from that operation is written to the file MYCOM.LOG.

START HEAP_ANALYZER (Integrity servers
only)
START HEAP_ANALYZER (Integrity servers only) — Starts the Heap Analyzer to diagnose heap
memory problems.

Synopsis
START HEAP_ANALYZER [integer]

Note

The Heap Analyzer requires a DEC windows display.

Description
Invokes the Heap Analyzer for a graphical display of the ongoing memory usage by the image being
debugged. Once the Heap Analyzer main window is displayed, the Heap Analyzer is populated with the
currently loaded images. Press the Heap Analyzer START button to return to the Debugger command
prompt (DBG>).

Note

Heap memory operations that occur before you enter the START HEAP_ANALYZER command are not
recorded by the Heap Analyzer. To ensure all heap memory operations are recorded, HP recommends
that you start the Heap Analyzer early in the life of the image being monitored.

See Chapter 12 for full information about using the Heap Analyzer.

Related commands:

RUN
RERUN

Example
DBG> START HEAP_ANALYZER

592

Chapter 17. Debugger Command Dictionary

Invokes the Heap Analyzer for a graphical display of the ongoing memory usage by the program being
debugged.

STEP
STEP — Executes the program up to the next line, instruction, or other specified location.

Synopsis
STEP [integer]

Parameters
[integer]

A decimal integer that specifies the number of step units (lines, instructions, and so on) to be executed. If
you omit the parameter, the debugger executes one step unit.

Qualifiers
/BRANCH

Executes the program to the next branch instruction. STEP/BRANCH has the same effect as
SET BREAK/TEMPORARY/BRANCH;GO.

/CALL

Executes the program to the next call or return instruction. STEP/CALL has the same effect as
SET BREAK/TEMPORARY/CALL;GO.

/EXCEPTION

Executes the program to the next exception, if any. STEP/EXCEPTION has the same effect as
SET BREAK/TEMPORARY/EXCEPTION;GO. If no exception occurs, STEP/EXCEPTION has
the same effect as GO.

/INSTRUCTION

When you do not specify an opcode, executes the program to the next instruction.
STEP/INSTRUCTION has the same effect as SET BREAK/TEMPORARY/INSTRUCTION;GO.

/INTO

If execution is currently suspended at a routine call, STEP/INTO executes the program up to the
beginning of that routine (steps into that routine). Otherwise, STEP/INTO has the same effect as
STEP without a qualifier. The /INTO qualifier is the opposite of /OVER (the default behavior).

Note

On Alpha, when execution is stopped at an exception break, STEP/INTO does not transfer control
to a user exception handler. Stop execution within the handler by setting a breakpoint in the handler.

593

Chapter 17. Debugger Command Dictionary

The STEP/INTO behavior can be changed by also using the /[NO]JSB, /[NO]SHARE, and
/[NO]SYSTEM qualifiers.

/LINE

Executes the program to the next line of source code. However, the debugger skips over any
source lines that do not result in executable code when compiled (for example, comment lines).
STEP/LINE has the same effect as SET BREAK/TEMPORARY/LINE;GO. This is the default
behavior for all languages.

/OVER

If execution is currently suspended at a routine call, STEP/OVER executes the routine up to and
including the routine's return instruction (steps over that routine). The /OVER qualifier is the default
behavior and is the opposite of /INTO.

Note

On Alpha, when execution is suspended at a source line that contains a loop with a routine call,
STEP/OVER steps into the called routine. To step to the next program statement, set a temporary
breakpoint at the statement and enter GO.

/RETURN

Executes the routine in which execution is currently suspended up to its return instruction (that is,
up to the point just prior to transferring control back to the calling routine). This enables you to
inspect the local environment (for example, obtain the values of local variables) before the return
instruction deletes the routine's call frame from the call stack. STEP/RETURN has the same effect
as SET BREAK/TEMPORARY/RETURN;GO.

STEP/RETURN n executes the program up n levels of the call stack.

/SEMANTIC_EVENT

(Alpha only) Executes the program to the next semantic event.

STEP/SEMANTIC_EVENT simplifies debugging optimized code. (Seethe Description section.)

/SHARE (default)
/NOSHARE

 Qualifies a previous SET STEP INTO command or a current STEP/INTO command.

If execution is currently suspended at a call to a shareable image routine, STEP/INTO/NOSHARE
has the same effect as STEP/OVER. Otherwise, STEP/INTO/NOSHARE has the same effect as
STEP/INTO.

Use STEP/INTO/SHARE to override a previous SET STEP NOSHARE command.
STEP/INTO/SHARE enables STEP/INTO to step into shareable image routines, as well as into
other kinds of routines.

/SILENT
/NOSILENT (default)

Controls whether the "stepped to …" message and the source line for the current location are
displayed after the STEP has completed. The /NOSILENT qualifier specifies that the message is

594

Chapter 17. Debugger Command Dictionary

displayed. The /SILENT qualifier specifies that the message and source line are not displayed. The
/SILENT qualifier overrides /SOURCE.

/SOURCE (default)
/NOSOURCE

Controls whether the source line for the current location is displayed after the STEP has completed.
The /SOURCE qualifier specifies that the source line is displayed. The /NOSOURCE qualifier
specifies that the source line is not displayed. The /SILENT qualifier overrides /SOURCE. See also
the SET STEP [NO]SOURCE command.

/SYSTEM (default)
/NOSYSTEM

 Qualifies a previous SET STEP INTO command or a current STEP/INTO command.

If execution is currently suspended at a call to a system routine (in P1 space),
STEP/INTO/NOSYSTEM has the same effect as STEP/OVER. Otherwise,
STEP/INTO/NOSYSTEM has the same effect as STEP/INTO.

Use STEP/INTO/SYSTEM to override a previous SET STEP NOSYSTEM command.
STEP/INTO/SYSTEM enables STEP/INTO to step into system routines, as well as into other
kinds of routines.

Description
The STEP command is one of the four debugger commands that can be used to execute your program
(the others are CALL, EXIT, and GO).

The behavior of the STEP command depends on the following factors:

• The default STEP mode previously established with a SET STEP command, if any

• The qualifier specified with the STEP command, if any

• The number of step units specified as the parameter to the STEP command, if any

If no SET STEP command was previously entered, the debugger takes the following default actions
when you enter a STEP command without specifying a qualifier or parameter:

1. Executes a line of source code (the default is STEP/LINE).

2. Reports that execution has completed by issuing a "stepped to …" message (the default is
STEP/NOSILENT).

3. Displays the line of source code at which execution is suspended (the default is STEP/SOURCE).

4. Issues the prompt.

The following qualifiers affect the location to which you step:

/BRANCH
/CALL
/EXCEPTION

595

Chapter 17. Debugger Command Dictionary

/INSTRUCTION
/LINE
/RETURN
/SEMANTIC_EVENT (Alpha only)

The following qualifiers affect what output is seen upon completion of a step:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect what happens at a routine call:

/INTO
/OVER
/[NO]SHARE
/[NO]SYSTEM

If you plan to enter several STEP commands with the same qualifiers, you can first use the SET STEP
command to establish new default qualifiers (for example, SET STEP INTO, NOSYSTEM makes the
STEP command behave like STEP/INTO/NOSYSTEM). Then you do not have to use those qualifiers
with the STEP command. You can override the current default qualifiers for the duration of a single
STEP command by specifying other qualifiers. Use the SHOW STEP command to identify the current
STEP defaults.

If an exception breakpoint is triggered (resulting from a SET BREAK/EXCEPTION or a
STEP/EXCEPTION command), execution is suspended be fore any application-declared condition
handler is started. If you then resume execution with the STEP command, the debugger resignals the
exception and the program executes to the beginning of (steps into) the condition handler, if any.

On Alpha systems, if your program has been compiled with the /OPTIMIZE qualifier,
semantic stepping mode is available, with the STEP/SEMANTIC_EVENT and
SET STEP SEMANTIC_EVENT commands. When you are debugging optimized code, the apparent
source program location tends to bounce back and forth, with the same line appearing repeatedly. In
semantic stepping mode, the program executes to the next point in the program where a significant effect
(semantic event) occurs.

A semantic event is one of the following:

• Data event - An assignment to a user variable

• Control event - A control flow decision, with a conditional or unconditional transfer of control, other
than a call

• Call event - A call (to a routine that is not stepped over)or a return from a call

Not every assignment, transfer of control, or call is a semantic event. The major exceptions are as
follows:

• When two instructions are required to assign to a complex or X_floating value, only the first
instruction is treated as a semantic event.

• When there are multiple branches that are part of a single higher-level construct, such as a decision
tree of branches that implement a case or select construct, then only the first is treated as a semantic
event.

596

Chapter 17. Debugger Command Dictionary

• When a call is made to a routine that is a compiler-specific helper routine, such as a call to OTS
$MOVE, which handles certain kinds of string or storage copy operations, the call is not considered
a semantic event. Control will not stop at the call.

To step into such a routine, you must do either of the following:

• Set a breakpoint at the routine entry point.

• Use a series of STEP/INSTRUCTION commands to reach the call of interest and then use
STEP/INSTRUCTION/INTO to enter the called routine.

• When there is more than one potential semantic event in a row with the same line number, only the
first is treated as a semantic event.

 The STEP/SEMANTIC_EVENT command causes a breakpoint to be set at the next semantic event.
Execution proceeds to that next event. Parts of any number of different lines and statements may be
executed along the way, without interfering with progress. When the semantic event is reached (that is,
when the instruction associated with that event is reached but not yet executed), execution is suspended
(similar to reaching the next line when STEP/LINE is used).

For more information on debugging optimized programs, see Chapter 14.

If you are debugging a multiprocess program, the STEP command is executed in the context of the
current process set. In addition, when debugging a multiprocess program, the way in which execution
continues in your process depends on whether you entered a SET MODE [NO]INTERRUPT
command or a SET MODE [NO]WAIT command. By default (SET MODE NOINTERRUPT), when
one process stops, the debugger takes no action with regard to the other processes. Also by default
(SET MODE WAIT), the debugger waits until all process in the current process set have stopped before
prompting for a new command. See Chapter 15 for more information.

Related commands:

CALL
EXIT
GO
SET BREAK/EXCEPTION
SET MODE [NO]INTERRUPT
SET PROCESS
(SET, SHOW) STEP

Examples
1. DBG> SHOW STEP

step type: source, nosilent, by line,
 over routine calls
DBG> STEP
stepped to SQUARES$MAIN\%LINE 4
 4: OPEN(UNIT=8, FILE='DATAFILE.DAT', STATUS='OLD')
DBG>

In this example, the SHOW STEP command identifies the default qualifiers currently in effect for the
STEP command. In this case, the STEP command, without any parameters or qualifiers, executes
the next line of source code. After the STEP command has completed, execution is suspended at the
beginning of line 4.

597

Chapter 17. Debugger Command Dictionary

2. DBG> STEP 5
stepped to MAIN\%LINE 47
 47: SWAP(X, Y);
DBG>

This command executes the next 5 lines of source code. After the STEP command has completed,
execution is suspended at the beginning of line 47.

3. DBG> STEP/INTO
stepped to routine SWAP
 23: procedure SWAP (A, B: in out integer) is
DBG> STEP
stepped to MAIN\SWAP\%LINE 24
 24: TEMP: integer := 0;
DBG> STEP/RETURN
stepped on return from MAIN\SWAP\%LINE 24 to MAIN\SWAP\%LINE 29
 29: end SWAP;
DBG>

In this example, execution is paused at a call to routine SWAP, and the STEP/INTO command
executes the program up to the beginning of the called routine. The STEP command executes the
next line of source code. The STEP/RETURN command executes the rest of routine SWAP up to its
RET instruction (that is, up to the point just prior to transferring control back to the calling routine).

4. DBG> SET STEP INSTRUCTION
DBG> SHOW STEP
step type: source, nosilent, by instruction,
 over routine calls
DBG> STEP
stepped to SUB1\%LINE 26: MOVL
 S^#4, B^-20(FP)
 26: Z:integer:=4;
DBG>

In this example, the SET STEP INSTRUCTION command establishes /INSTRUCTION as
the default STEP command qualifier. This is verified by the SHOW STEP command. The STEP
command executes the next instruction. After the STEP command has completed, execution is
suspended at the first instruction (MOVL) of line 26 in module SUB1.

STOP
STOP — Interrupts all specified processes that are running.

Synopsis
STOP [[process-spec[, …]]

Parameters
[process-spec]

This parameter specifies the process set to be stopped. The default is the current process set. Use any of
the following forms:

598

Chapter 17. Debugger Command Dictionary

[%PROCESS_NAME] process-name The process name, if that name does not contain
spaces or lowercase characters. The process name
can include the asterisk (*) wildcard character.

[%PROCESS_NAME] " process-name " The process name, if that name contains spaces or
lowercase characters. You can also use apostrophes
(') instead of quotation marks (").

%PROCESS_PID process_id The process identifier (PID, a hexadecimal
number).

[%PROCESS_NUMBER] process-number
(or %PROC process-number)

The number assigned to a process when it
comes under debugger control. A new number
is assigned sequentially, starting with 1, to each
process. If a process is terminated with the
EXIT or QUIT command, the number can be
assigned again during the debugging session.
Process numbers appear in a SHOW PROCESS
display. Processes are ordered in a circular
list so they can be indexed with the built-
in symbols %PREVIOUS_PROCESS and
%NEXT_PROCESS.

process-set-name A symbol defined with the
DEFINE/PROCESS_SET command to represent
a group of processes.

%NEXT_PROCESS The next process after the visible process in the
debugger's circular process list.

%PREVIOUS_PROCESS The process previous to the visible process in the
debugger's circular process list.

%VISIBLE_PROCESS The process whose stack, register set, and images
are the current context for looking up symbols,
register values, routine calls, breakpoints, and so
on.

You can also use the asterisk (*) wildcard character to specify all processes.

Description
The STOP command interrupts the specified processes. You can use the STOP command in no wait
mode to stop processes that are still running.

Examples
all>SHOW PROCESS
 Number Name State Current PC
 1 DBGK$$2727282C break SERVER\
main\%LINE 18834
 2 USER1_2 running not available
* 3 USER1_3 running not available
all> CLIENTS> STOP
all> show process
 Number Name State Current PC
 1 DBGK$$2727282C break SERVER
main<literal>\main\%LINE 18834

599

Chapter 17. Debugger Command Dictionary

 2 USER1_2 interrupted 0FFFFFFFF800F7A20
* 3 USER1_3 interrupted 0FFFFFFFF800F7A20all>)

This command sequence first shows all processes, then stops the processes in process set clients. The last
SHOW PROCESS command shows the new process states.

SYMBOLIZE
SYMBOLIZE — Converts a memory address to a symbolic representation, if possible.

Synopsis
SYMBOLIZE [address-expression[, …]]

Parameters
[address-expression]

Specifies an address expression to be symbolized. Do not use the asterisk (*) wildcard character.

Description
If the address is a static address, it is symbolized as the nearest preceding symbol name, plus an offset.
If the address is also a code address and a line number can be found that covers the address, the line
number is included in the symbolization.

If the address is a register address, the debugger displays all symbols in all set modules that are bound to
that register. The full path name of each such symbol is displayed. The register name itself ("%R5", for
example) is also displayed.

If the address is a call stack location in the call frame of a routine in a set module, the debugger searches
for all symbols in that routine whose addresses are relative to the frame pointer (FP) or the stack pointer
(SP). The closest preceding symbol name plus an offset is displayed as the symbolization of the address.
A symbol whose address specification is too complex is ignored.

On Alpha, the commands SYMBOLIZE procedure-code-address and
SYMBOLIZE procedure-descriptor-address both display the path name of the routine,
entry point, or Ada package specified by these addresses.

If the debugger cannot symbolize the address, a message is displayed.

Related commands:

EVALUATE/ADDRESS
SET MODE [NO]LINE
SET MODE [NO]SYMBOLIC
(SET, SHOW) MODULE
SHOW SYMBOL

Examples
1. DBG> SYMBOLIZE %R5

600

Chapter 17. Debugger Command Dictionary

address PROG\%R5:
 PROG\X
DBG>

This example shows that the local variable X in routine PROG is located in register R5.

2. DBG> SYMBOLIZE %HEX 27C9E3
address 0027C9E3:
 MOD5\X
DBG>

This command directs the debugger to treat the integer literal 27C9E3 as a hexadecimal value and
convert that address to a symbolic representation, if possible. The address converts to the symbol X
in module MOD5.

TYPE
TYPE — Displays lines of source code.

Synopsis
TYPE [[[module-name \]line-number[:line-number][, [module-name \]line-number[:line-number][,
…]]]]

Parameters
[module-name]

Specifies the module that contains the source lines to be displayed. If you specify a module name along
with the line numbers, use standard pathname notation: insert a backslash (\) between the module name
and the line numbers.

If you do not specify a module name, the debugger uses the current scope(as established by a previous
SET SCOPE command, or the PC scope if you did not enter a SET SCOPE command) to find source
lines for display. If you specify a scope search list with the SET SCOPE command, the debugger
searches for source lines only in the module associated with the first named scope.

[line-number]

Specifies a compiler-generated line number (a number used to label a source language statement or
statements).

If you specify a single line number, the debugger displays the source code corresponding to that line
number.

If you specify a list of line numbers, separating each with a comma, the debugger displays the source
code corresponding to each of the line numbers.

If you specify a range of line numbers, separating the beginning and ending line numbers in the range
with a colon (:), the debugger displays the source code corresponding to that range of line numbers.

You can display all the source lines of a module by specifying a range of line numbers starting from 1
and ending at a number equal to or greater than the largest line number in the module.

601

Chapter 17. Debugger Command Dictionary

After displaying a single line of source code, you can display the next line of that module by entering a
TYPE command without a line number (that is, by entering TYPE and then pressing the Return key).
You can then display the next line and successive lines by repeating this sequence, in effect, reading
through your source program one line at a time.

Description
The TYPE command displays the lines of source code that correspond to the specified line numbers. The
line numbers used by the debugger to identify lines of source code are generated by the compiler. They
appear in a compiler-generated listing and in a screen-mode source display.

If you specify a module name with the TYPE command, the module must be set. Use the
SHOW MODULE command to determine whether a particular module is set. Then use the
SET MODULE command, if necessary.

In screen mode, the output of a TYPE command is directed at the current source display, not at an
output or DO display. The source display shows the lines specified and any surrounding lines that fit in
the display window.

Related commands:

EXAMINE/SOURCE
SET (BREAK, TRACE, WATCH)/[NO]SOURCE
SET MODE [NO]SCREEN
(SET, SHOW, CANCEL) SCOPE
SET STEP [NO]SOURCE
STEP/[NO]SOURCE

Examples
1. DBG> TYPE 160

module COBOLTEST
 160: START-IT-PARA.
DBG> TYPE
module COBOLTEST
 161: MOVE SC1 TO ES0.
DBG>

In this example, the first TYPE command displays line 160, using the current scope to locate the
module containing that line number. The second TYPE command, entered without specifying a line
number, displays the next line in that module.

2. DBG> TYPE 160:163
module COBOLTEST
 160: START-IT-PARA.
 161: MOVE SC1 TO ES0.
 162: DISPLAY ES0.
 163: MOVE SC1 TO ES1.
DBG>

This command displays lines 160 to 163, using the current scope to locate the module.

3. DBG> TYPE SCREEN_IO\7, 22:24

This command displays line 7 and lines 22 to 24 in module SCREEN_IO.

602

Chapter 17. Debugger Command Dictionary

WAIT
WAIT — Causes the debugger to wait until the target processes have stopped before prompting for the
next command.

Synopsis
WAIT

Description
When debugging multiprocess programs, the WAIT command causes the debugger to complete executing
all process specified by the previous command before displaying a prompt to accept and execute another
command.

Related commands:

STOP
SET MODE [NO]INTERRUPT
SET MODE [NO]WAIT

Example
all> 2, 3> GO;WAIT
processes 2, 3
 break at CLIENT\main\%LINE 18814
 18814: status = sys$qiow (EFN$C_ENF, mbxchan,
 IO$_READVBLK|IO$M_WRITERCHECK, &myiosb)
process 1 break at SERVER\main\%LINE 18834
 18834: if ((myiosb.iosb$w_status ==
 SS$_NOREADER) && (pos_status != -1))
all>

This command sequence executes the target processes (in this case, 2 and 3), and the debugger waits
until both processes reach breakpoints before prompting for the next command.

WHILE
WHILE — Executes a sequence of commands while the language expression (Boolean expression) you
have specified evaluates as true.

Synopsis
WHILE [Boolean-expression DO (command[; …])]

Parameters
[Boolean-expression]

Specifies a language expression that evaluates as a Boolean value (true or false) in the currently set
language.

603

Chapter 17. Debugger Command Dictionary

[command]

Specifies a debugger command. If you specify more than one command, separate the commands with
semicolons (;). At each execution, the debugger checks the syntax of any expressions in the commands
and then evaluates them.

Description
The WHILE command evaluates a Boolean expression in the current language. If the value is true, the
command list in the DO clause is executed. The command then repeats the sequence, reevaluating the
Boolean expression and executing the command list until the expression is evaluated as false.

If the Boolean expression is false, the WHILE command terminates.

Related commands:

EXIT LOOP
FOR
REPEAT

Example
DBG> WHILE (X .EQ. 0) DO (STEP/SILENT)

This command directs the debugger to keep stepping through the program until X no longer equals 0
(Fortran example).

604

Appendix A. Predefined Key
Functions
When you start the debugger, certain predefined functions (commands, sequences of commands, and
command terminators) are assigned to keys on the numeric keypad, to the right of the main keyboard.
By using these keys you can enter certain commands with fewer keystrokes than if you were to type
the mat the keyboard. For example, pressing the COMMA key (,) on the keypad is equivalent to typing
GO and then pressing the Return key. Terminals and workstations that have an LK201 keyboard
have additional programmable keys compared to those on VT100 keyboards (for example, “Help” or
“Remove”), and some of these keys are also assigned debugger functions.

To use function keys, keypad mode must be enabled (SET MODE KEYPAD). Keypad mode is
enabled when you start the debugger. If you do not want keypad mode enabled, perhaps because the
program being debugged uses the keypad for itself, you can disable keypad mode by entering the
SET MODE NOKEYPAD command.

The keypad key functions that are predefined when you start the debugger are identified in summary
form in Figure A.1. Table A.1, Table A.2, Table A.3, and Table A.4 identify all key definitions in detail.
Most keys are used for manipulating screen displays in screen mode. To use screen mode commands,
you must first enable screen mode by pressing the PF3 key (SET MODE SCREEN). In screen mode,
tore-create the default layout of various windows, press the keypad key sequence BLUE-MINUS (PF4
followed by the MINUS key (--)).

To use the keypad keys to enter numbers rather than debugger commands, enter the command
SET MODE NOKEYPAD.

605

Appendix A. Predefined Key Functions

Figure A.1. Keypad Key Functions Predefined by the Debugger-Command Interface

A.1. DEFAULT, GOLD, BLUE Functions
A given key typically has three predefined functions:

• You enter the Default function by pressing the given key.

• You enter the GOLD function by pressing and releasing the PF1 key, which is also called the GOLD
key, and then pressing the given key.

606

Appendix A. Predefined Key Functions

• You enter the BLUE function by pressing and releasing the PF4 key, which is also called the BLUE
key, and then pressing the given key.

In Figure A.1, the DEFAULT, GOLD, and BLUE functions are listed within each key's outline, from top
to bottom, respectively. For example, pressing keypad key KP0 enters the command STEP (DEFAULT
function); pressing PF1 and then KP0 enters the command STEP/INTO (GOLD function); pressing
PF4 and then KP0 enters the command STEP/OVER (BLUE function).

All command sequences assigned to keypad keys are terminated (executed immediately) except for the
BLUE functions of keys KP2, KP4, KP6, and KP8. These unterminated commands are symbolized
with a trailing ellipsis (…) in Figure A.1. To terminate the command, supply a parameter and then press
Return. For example, to scroll down 12 lines:

1. Press the PF4 key.

2. Press keypad key KP2.

3. Type:12 at the keyboard.

4. Press the Return key.

A.2. Key Definitions Specific to LK201
Keyboards
Table A.1 lists keys that are specific to LK201 keyboard sand do not appear on VT100 keyboards. For
each key, the table identifies the equivalent command and, for some keys, an equivalent keypad key that
you can use if you do not have an LK201 keyboard.

Table A.1. Key Definitions Specific to LK201 Keyboards

LK201 Key Command Sequence Invoked Equivalent Keypad Key

F17 SET KEY/STATE=DEFAULT None
F18 SET KEY/STATE=MOVE None
F19 SET KEY/STATE=EXPAND None
F20 SET KEY/STATE=CONTRACT None
Help HELP KEYPAD SUMMARY None
Next Screen SCROLL/DOWN KP2
Prev Screen SCROLL/UP KP8
Remove DISPLAY/REMOVE %CURSCROLLNone
Select SELECT/SCROLL %NEXTSCROLLKP3

A.3. Keys That Scroll, Move, Expand, Contract
Displays
By default, keypad keys KP2, KP4, KP6, and KP8 scroll the current scrolling display. Each key controls
a direction (down, left, right, and up, respectively). By pressing F18, F19, or F20, you can place the key
pad in the MOVE, EXPAND, or CONTRACT states. When the keypad is in the MOVE state, you can

607

Appendix A. Predefined Key Functions

use KP2, KP4, KP6, and KP8 to move the current scrolling display down, left, and so on. Similarly,
in the EXPAND and CONTRACT states, you can use the four keys to expand or contract the current
scrolling display. (See Figure A.1 and Table A.2. Alternative key definitions for VT100 keyboards are
described later in this section.)

To scroll, move, expand, or contract a display:

1. Press KP3 repeatedly, as needed, to select the current scrolling display from the display list.

2. Press F17, F18, F19, or F20 to put the keypad in the DEFAULT (scroll), MOVE, EXPAND, or
CONTRACT state, respectively.

3. Press KP2, KP4, KP6, and KP8 to do the desired function. Use the PF1 (GOLD) and PF4 (BLUE)
keys to control the amount of scrolling or movement.

Table A.2. Keys That Change the Key State

Key Description

PF1 Invokes the GOLD function of the next key you
press.

PF4 Invokes the BLUE function of the next key you
press.

F17 Puts the keypad in the DEFAULT state, enabling
the scroll-display functions of KP2, KP4, KP6, and
KP8. The keypad is in the DEFAULT state when
you invoke the debugger.

F18 Puts the keypad in the MOVE state, enabling the
move-display functions of KP2, KP4, KP6, and
KP8.

F19 Puts the keypad in the EXPAND state, enabling
the expand-display functions of KP2, KP4, KP6,
and KP8.

F20 Puts the keypad in the CONTRACT state, enabling
the contract-display functions of KP2, KP4, KP6,
and KP8.

If you have a VT100 keyboard, you can simulate the effect of LK201 keys F17 to F20 by assigning the
functions of those keys to other key sequences. You can make key assignments in a command procedure,
such as your debugger initialization file (see init_sec).The following code contains key assignments
that allow key sequences GOLD-KP9 and BLUE-KP9 (currently undefined) to mimic the effects of
cycling through keys F17 to F20). When these key assignments are in effect, press GOLD-KP9 to put
the keypad in the DEFAULT (scroll) state; press BLUE-KP9 repeatedly to cycle the keypad through the
DEFAULT, MOVE, EXPAND, and CONTRACT states.

DEFINE/KEY/IF_STATE=(GOLD, MOVE_GOLD, EXPAND_GOLD, CONTRACT_GOLD)-
 /TERMINATE KP9 "SET KEY/STATE=DEFAULT/NOLOG"
DEFINE/KEY/IF_STATE=(BLUE)-
 /TERMINATE KP9 "SET KEY/STATE=MOVE/NOLOG"
DEFINE/KEY/IF_STATE=(MOVE_BLUE)-
 /TERMINATE KP9 "SET KEY/STATE=EXPAND/NOLOG"
DEFINE/KEY/IF_STATE=(EXPAND_BLUE)-
 /TERMINATE KP9 "SET KEY/STATE=CONTRACT/NOLOG"
DEFINE/KEY/IF_STATE=(CONTRACT_BLUE)-

608

Appendix A. Predefined Key Functions

 /TERMINATE KP9 "SET KEY/STATE=DEFAULT/NOLOG"

A.4. Online Keypad Key Diagrams
Online help for the keypad keys is available by pressing the Help key and also the PF2 key, either by
itself or with other keys (see Table A.3). You can also use the SHOW KEY command to identify key
definitions.

Table A.3. Keys That Invoke Online Help to Display Keypad Diagrams

Key or Key Sequence Command Sequence Invoked Description

Help HELP KEYPAD SUMMARY Shows a diagram of the keypad
keys and summarizes each key's
function

PF2 HELP KEYPAD DEFAULT Shows a diagram of the keypad
keys and their DEFAULT
functions

PF1-PF2 HELP KEYPAD GOLD Shows a diagram of the keypad
keys and their GOLD functions

PF4-PF2 HELP KEYPAD BLUE Shows a diagram of the keypad
keys and their BLUE functions

F18-PF2 HELP KEYPAD MOVE Shows a diagram of the keypad
keys and their MOVE DEFAULT
functions

F18-PF1-PF2 HELP KEYPAD MOVE_GOLD Shows a diagram of the keypad
keys and their MOVE GOLD
functions

F18-PF4-PF2 HELP KEYPAD MOVE_BLUE Shows a diagram of the keypad
keys and their MOVE BLUE
functions

F19-PF2 HELP KEYPAD EXPAND Shows a diagram of the keypad
keys and their EXPAND
DEFAULT functions

F19-PF1-PF2 HELP KEYPAD EXPAND_GOLDShows a diagram of the keypad
keys and their EXPAND GOLD
functions

F19-PF4-PF2 HELP KEYPAD EXPAND_BLUEShows a diagram of the keypad
keys and their EXPAND BLUE
functions

F20-PF2 HELP KEYPAD CONTRACT Shows a diagram of the keypad
keys and their CONTRACT
DEFAULT functions

F20-PF1-PF2 HELP KEYPAD CONTRACT_GOLDShows a diagram of the keypad
keys and their CONTRACT
GOLD functions

F20-PF4-PF2 HELP KEYPAD CONTRACT_BLUEShows a diagram of the keypad
keys and their CONTRACT
BLUE functions

609

Appendix A. Predefined Key Functions

A.5. Debugger Key Definitions
Table A.4 identifies all key definitions.

Table A.4. Debugger Key Definitions

Key State Command Invoked or Function

KP0 DEFAULT STEP

GOLD STEP/INTO

BLUE STEP/OVER

KP1 DEFAULT EXAMINE.

Examines the logical successor
of the current entity, if one is
defined (the next location).

GOLD EXAMINE ^.

Enables you to examine the
logical predecessor of the current
entity, if one is defined (the
previous location).

BLUE Displays three sets of predefined
process-specific source and
instruction displays, SRC_ n
and INST_ n. These consist of
source and instruction displays
for the visible process at S2
and RS2, respectively; source
and instruction displays for the
previous process on the process
list at S1 and RS1, respectively;
and source and instruction
displays for the next process on
the process list at S3 and RS3,
respectively.

KP2 DEFAULT SCROLL/DOWN

GOLD SCROLL/BOTTOM

BLUE SCROLL/DOWN

(not terminated). To terminate
the command, supply the number
of lines to be scrolled (: n) or a
display name.

MOVE MOVE/DOWN

MOVE_GOLD MOVE/DOWN:999

MOVE_BLUE MOVE/DOWN:5

EXPAND EXPAND/DOWN

EXPAND_GOLD EXPAND/DOWN:999

610

Appendix A. Predefined Key Functions

Key State Command Invoked or Function

EXPAND_BLUE EXPAND/DOWN:5

CONTRACT EXPAND/DOWN:-1

CONTRACT_GOLD EXPAND/DOWN:-999

CONTRACT_BLUE EXPAND/DOWN:-5

KP3 DEFAULT SELECT/SCROLL %NEXTSCROLL.
Selects as the current scrolling
display the next display in the
display list after the current
scrolling display.

GOLD SELECT/OUTPUT %NEXTOUTPUT.
Selects the next output display
in the display list as the current
output display.

BLUE Displays three predefined
process-specific source displays,
SRC_ n. These are located at S1,
S2, and S3, respectively, for the
previous, current (visible), and
next process on the process list.

KP4 DEFAULT SCROLL/LEFT

GOLD SCROLL/LEFT:255

BLUE SCROLL/LEFT (not
terminated). To terminate the
command, supply the number
of lines to be scrolled (: n) or a
display name.

MOVE MOVE/LEFT

MOVE_GOLD MOVE/LEFT:999

MOVE_BLUE MOVE/LEFT:10

EXPAND EXPAND/LEFT

EXPAND_GOLD EXPAND/LEFT:999

EXPAND_BLUE EXPAND/LEFT:10

CONTRACT EXPAND/LEFT:-1

CONTRACT_GOLD EXPAND/LEFT:-999

CONTRACT_BLUE EXPAND/LEFT:-10

KP5 DEFAULT EXAMINE/SOURCE .%SOURCE_SCOPE \%PC;
EXAMINE/INST .%INST_SCOPE \%PC.
In line (noscreen) mode, displays
the source line and the instruction
to be executed next. In screen
mode, centers the current source
display on the next source line
to be executed, and the current

611

Appendix A. Predefined Key Functions

Key State Command Invoked or Function
instruction display on the next
instruction to be executed.

GOLD SHOW CALLS

BLUE SHOW CALLS 3

KP6 DEFAULT SCROLL/RIGHT

GOLD SCROLL/RIGHT:255

BLUE SCROLL/RIGHT (not
terminated). To terminate the
command, supply the number
of lines to be scrolled (: n) or a
display name.

MOVE MOVE/RIGHT

MOVE_GOLD MOVE/RIGHT:999

MOVE_BLUE MOVE/RIGHT:10

EXPAND EXPAND/RIGHT

EXPAND_GOLD EXPAND/RIGHT:999

EXPAND_BLUE EXPAND/RIGHT:10

CONTRACT EXPAND/RIGHT:-1

CONTRACT_GOLD EXPAND/RIGHT:-999

CONTRACT_BLUE EXPAND/RIGHT:-10

KP7 DEFAULT DISPLAY SRC AT LH1,
INST AT RH1,
OUT AT S45,
PROMPT AT S6;
SELECT/SCROLL/SOURCE SRC;
SELECT/INST INST;
SELECT/OUT OUT. Displays
the SRC, INST, OUT, and
PROMPT displays with the
proper attributes.

GOLD DISPLAY INST AT LH1,
REG AT RH1, OUT AT S45,
PROMPT AT S6;
SELECT/SCROLL/INST INST;
SELECT/OUT OUT. Displays
the INST, REG, OUT, and
PROMPT displays with the
proper attributes.

BLUE Displays two sets of predefined
process-specific source and
instruction displays, SRC_ n
and INST_ n. These consist of
source and instruction displays
for the visible process at Q1 and
RQ1, respectively, and source and

612

Appendix A. Predefined Key Functions

Key State Command Invoked or Function
instruction displays for the next
process on the process list at Q2
and RQ2, respectively.

KP8 DEFAULT SCROLL/UP

GOLD SCROLL/TOP

BLUE SCROLL/UP (not terminated).
To terminate the command,
supply the number of lines to be
scrolled (: n) or a display name.

MOVE MOVE/UP

MOVE_GOLD MOVE/UP:999

MOVE_BLUE MOVE/UP:5

EXPAND EXPAND/UP

EXPAND_GOLD EXPAND/UP:999

EXPAND_BLUE EXPAND/UP:5

CONTRACT EXPAND/UP:-1

CONTRACT_GOLD EXPAND/UP:-999

CONTRACT_BLUE EXPAND/UP:-5

KP9 DEFAULT DISPLAY %NEXTDISP.
Displays the next display in the
display list through its current
window (removed displays are
not included).

GOLD SET PROCESS/VISIBLE %NEXT_PROCESS.
Makes the next process in the
process list the visible process.

BLUE Displays two predefined process-
specific source displays, SRC_
n. These are located at Q1 and
Q2, respectively, for the visible
process and for the next process
on the process list.

PF1 Invokes the GOLD function of
the next key you press.

PF2 Shows a diagram of the keypad
keys and their DEFAULT
functions

PF3 DEFAULT SET MODE SCREEN;
SET STEP NOSOURCE.
Enables screen mode and
suppresses the output of source
lines that would normally appear
in the output display (since that
output is redundant when the
source display is present).

613

Appendix A. Predefined Key Functions

Key State Command Invoked or Function

GOLD SET MODE NOSCREEN;
SET STEP SOURCE. Disables
screen mode and restores the
output of source lines.

BLUE DISPLAY/GENERATE.
Regenerates the contents of all
automatically updated displays.

PF4 Invokes the BLUE function of the
next key you press.

COMMA DEFAULT GO

GOLD SELECT/SOURCE %NEXT_SOURCE.
Selects the next source display
in the display list as the current
source display.

BLUE SELECT/INSTRUCTION %NEXTINST.
Selects the next instruction
display in the display list as the
current instruction display.

MINUS DEFAULT DISPLAY %NEXTDISP AT S12345,
PROMPT AT S6;
SELECT/SCROLL %CURDISP.
Displays the next display in the
display list at essentially full
screen (top of screen to top of
PROMPT display). Selects that
display as the current scrolling
display.

GOLD Undefined.
BLUE DISPLAY SRC AT H1,

OUT AT S45,
PROMPT AT S6; SELECT/SCROLL/SOURCE SRC;
SELECT/OUT OUT. Displays
the SRC, OUT, and PROMPT
displays with the proper
attributes. This is the default
display configuration.

Enter Enables you to enter (terminate) a
command. Same effect as Return.

PERIOD All states Cancels the effect of pressing
state keys that do not lock the
state, such as GOLD and BLUE.
Does not affect the operation
of state keys that lock the state,
such as MOVE, EXPAND, and
CONTRACT.

Next Screen (E6) DEFAULT SCROLL/DOWN

Prev Screen (E5) DEFAULT SCROLL/UP

614

Appendix A. Predefined Key Functions

Key State Command Invoked or Function

Remove (E3) DEFAULT DISPLAY/REMOVE %CURSCROLL.
Removes the current scrolling
display from the display list.

Select (E4) DEFAULT SELECT/SCROLL
%NEXTSCROLL. Selects as the
current scrolling display the next
display in the display list after the
current scrolling display.

F17 Puts the keypad in the DEFAULT
state, enabling the scroll-display
functions of KP2, KP4, KP6,
and KP8. The keypad is in the
DEFAULT state when you invoke
the debugger.

F18 Puts the keypad in the MOVE
state, enabling the move-display
functions of KP2, KP4, KP6, and
KP8.

F19 Puts the keypad in the EXPAND
state, enabling the expand-display
functions of KP2, KP4, KP6, and
KP8.

F20 Puts the keypad in the
CONTRACT state, enabling the
contract-display functions of
KP2, KP4, KP6, and KP8.

Ctrl/W DISPLAY/REFRESH

Ctrl/Z EXIT

615

Appendix A. Predefined Key Functions

616

Appendix B. Built-In Symbols and
Logical Names
This appendix identifies all the debugger built-in symbols and logical names.

B.1. SS$_DEBUG Condition
SS$_DEBUG (defined in SYS$LIBRARY:STARLET.OLB) is a condition you can signal from your
program to start the debugger. Signaling SS$_DEBUG from your program is equivalent to pressing
Ctrl/Y followed by the DCL command DEBUG at that point.

You can pass commands to the debugger at the time you signal it with SS$_DEBUG. The commands
you want the debugger to execute should be specified as you would enter them at the DBG> prompt.
Multiple commands should be separated by semicolons. The commands should be passed by reference as
an ASCIC string. See your language documentation for details on constructing an ASCIC string.

For example, to start the debugger and enter a SHOW CALLS command at a given point in your
program, you can insert the following code in your program (BLISS example):

LIB$SIGNAL(SS$_DEBUG, 1, UPLIT BYTE(%ASCIC 'SHOW CALLS'));

You can obtain the definition of SS$_DEBUG at compile time from the appropriate STARLET or
SYSDEF file for your language (for example, STARLET.L32 for BLISS or FORSYSDEF.TLB
for Fortran). You can also obtain the definition of SS$_DEBUG at link time in SYS
$LIBRARY:STARLET.OLB (this method is less desirable).

B.2. Logical Names
The following table identifies debugger-specific logical names:

Logical Name Description

DBG$DECW$DISPLAY Applies only to workstations running VSI
DECwindows Motif for OpenVMS. Specifies
the debugger interface (VSI DECwindows Motif
for OpenVMS or command) or the display
device. Default: DBG$DECW$DISPLAY is
either undefined or has the same definition as the
application wide logical name DECW$DISPLAY.
See Section 9.8.3 for information about using DBG
$DECW$DISPLAY to override the debugger's
default interface in the VSI DECwindows Motif for
OpenVMS environment.

DBG$IMAGE_DSF_PATH (Alpha and Integrity servers only) Specifies the
directory that contains the .DSF (debug symbol
table) files of the image being debugged. The
file name of each .DSF file must be the same
as the file name of the image being debugged.
See Section 5.1.5 for more information about
creating .DSF files.

617

Appendix B. Built-In Symbols and Logical Names

Logical Name Description

DBG$INIT Specifies your debugger initialization file. Default:
no debugger initialization file. DBG$INIT accepts
a full or partial file specification as well as a
search list. See Section 13.2 for information about
debugger initialization files.

DBG$INPUT Specifies the debugger input device. Default: SYS
$INPUT. See Section 14.2 for information about
using DBG$INPUT and DBG$OUTPUT to debug
screen-oriented programs at two terminals. DBG
$INPUT is ignored in the VSI DECwindows Motif
for OpenVMS user interface (see DBG$DECW
$DISPLAY). You can use DBG$INPUT if you are
displaying the debugger's command interface in a
DECterm window.

DBG$OUTPUT Specifies the debugger output device. Default: SYS
$OUTPUT. See Section 14.2 for information about
using DBG$INPUT and DBG$OUTPUT to debug
screen-oriented programs at two terminals. DBG
$OUTPUT is ignored in the VSI DECwindows
Motif for OpenVMS user interface (see DBG
$DECW$DISPLAY). You can use DBG$OUTPUT
if you are displaying the debugger's command
interface in a DECterm window.

SSI$AUTO_ACTIVATE (Alpha only) Specifies whether system service
interception (SSI) is enabled. If you are having
trouble with your watchpoints, disable SSI with the
DCL command

$DEFINE SSI$AUTO_ACTIVATE OFF

See SET WATCH for more information about the
interaction between static watchpoints, ASTs, and
system service interception.

Use the DCL command DEFINE or ASSIGN to assign values to these logical names. For example, the
following command specifies the location of the debugger initialization file:

$ DEFINE DBG$INIT DISK$:[JONES.COMFILES]DEBUGINIT.COM

Note the following points about the logical name DBG$INPUT. If you plan to debug a program that
takes its input from a file (for example, PROG_IN.DAT) and your debugger input from the terminal,
establish the following definitions before starting the debugger:

$ DEFINE SYS$INPUT PROG_IN.DAT
$ DEFINE/PROCESS DBG$INPUT 'F$LOGICAL("SYS$COMMAND")

That is, define DBG$INPUT to point to the translation of SYS$COMMAND. If you define DBG$INPUT
to point to SYS$COMMAND, the debugger tries to get its input from the file PROG_IN.DAT.

B.3. Built-In Symbols
The debugger's built-in symbols provide options for specifying program entities and values.

618

Appendix B. Built-In Symbols and Logical Names

Most of the debugger built-in symbols have a percent sign (%) prefix.

The following symbols are described in this appendix:

• %NAME - Used to construct identifiers.

• %PARCNT - Used in command procedures to count parameters passed.

• %DECWINDOWS - Used in debugger command procedures or initialization files to determine
whether the debugger's command interface or VSI DECwindows Motif for OpenVMS user interface
was displayed.

• %BIN, %DEC, %HEX, %OCT - Used to control the input radix.

• Period (.), Return key, circumflex (^), backslash (\), %CURLOC, %NEXTLOC, %PREVLOC,
%CURVAL - Used to specify consecutive program locations and the current value of an entity.

• Plus sign (+), minus sign (--), multiplication sign (*), division sign (/), at sign (@), period (.), bit
field operator (<p, s, e>), %LABEL, %LINE, backslash (\) - Used as operators in address
expressions.

• %ADAEXC_NAME, %EXC_FACILITY, %EXC_NAME, %EXC_NUMBER,
%EXC_SEVERITY - Used to obtain information about exceptions.

• %CURRENT_SCOPE_ENTRY, %NEXT_SCOPE_ENTRY, %PREVIOUS_SCOPE_ENTRY -
Used to specify the current, next, and previous scope relative to the call stack.

• On Alpha systems,

• %R0 to %R28, %FP, %SP, %R31, %PC, %PS - Used to specify the Alpha general registers.

• %F0 to %F30, %F31 - Used to specify the Alpha floating-point registers.

• On Integrity server processors,

• %R0 to %R127, %GP, %SP, %TP, %AP, %OUT0 to %OUT7 - Used to specify the Integrity
server general registers.

• %F0 to %F127 - Used to specify the Integrity server floating-point registers.

• P0 to %P63, %PR - Used to specify the Integrity server predicate registers.

• %B0 to %B7, %RP - Used to specify the Integrity server branch registers.

• %AR0 to %AR7. %AR17 to %AR19, %AR32, %AR36, %AR40, %AR64 to %AR66, %KR0
to %KR7, %RSC, %BSP, %RNAT, %CCV, %UNAT, %FPSR, %PFS, %LC, %EC, %CSD, and
%SSD - Used to specify the Integrity server application registers.

• %CR0 to %CR2, %CR8, %CR16, %CR17, %CR19 to %CR25, %CR64, %CR66, %CR68
to %CR74, %CR80, %CR81, %DCR, %ITM, %IVA, %PTA, %PSR, %IPSR, %ISR, %IIP,
%IFA, %ITIR, %IIPA, %IFS, %IIM, %IHA, %LID, %TPR, %IRR0 to %IRR3, %ITV, %PMV,
%CMCV, and %IRR0 to %IRR3 - Used to specify the Integrity server control registers.

• %SR0, %IH, %PREV_BSP, %PC, %IP, %RETURN_PC, %CFM, %NEXT_PFS, %PSP,
%CHTCTX_ADDR, %OSSD, %HANDLER_FV, %LSDA, and %UM - Used to specify the
Integrity server special registers.

619

Appendix B. Built-In Symbols and Logical Names

• %ADDR, %DESCR, %REF, %VAL - Used to specify the argument-passing mechanism for the
CALL command. See the CALL command description in the command dictionary.

• %PROCESS_NAME, %PROCESS_PID, %PROCESS_NUMBER, %NEXT_PROCESS,
%PREVIOUS_PROCESS, %VISIBLE_PROCESS - Used to specify processes in multiprocess
programs. See Section 15.16.2.

• %ACTIVE_TASK, %CALLER_TASK, %NEXT_TASK, %PREVIOUS_TASK, %TASK,
%VISIBLE_TASK - Used to specify tasks or threads in tasking or multithread programs. See
Section 16.3.4.

• %PAGE, %WIDTH - Used to specify the current screen height and width. See Section 7.11.1.

• %SOURCE_SCOPE, %INST_SCOPE - Used to specify the scope for source and instruction display
in screen mode. See Section 7.4.1 and Section 7.4.4, respectively.

• %CURDISP, %CURSCROLL, %NEXTDISP, %NEXTINST, %NEXTOUTPUT, %NEXTSCROLL,
%NEXTSOURCE - Used in screen mode to specify displays in the display list. See Section 7.11.2.

B.3.1. Specifying Registers
The debugger built-in symbol for a Alpha or Integrity server register is the register name preceded by the
percent sign (%). When specifying a register symbol, you can omit the percent sign (%) prefix if your
program has not declared a symbol with the same name.

You can examine the contents of all the registers. You can deposit values into all the registers except for
SP. Use caution when depositing values into FP.

Table B.1 identifies the Alpha register symbols.

Table B.1. Debugger Symbols for Alpha Registers (Alpha Only)

Symbol Description

Alpha Integer Registers
%R0…%R28 Registers R0…R28
%FP (%R29) Stack frame base register (FP)
%SP (%R30) Stack pointer (SP)
%R31 ReadAsZero/Sink (RZ)
%PC Program counter (PC)
%PS Processor status register (PS). The built-in symbols

%PSL and %PSW are disabled for Alpha systems.
Alpha Floating-Point Registers

%F0 …%F30 Registers F0 …F30
%F31 ReadAsZero/Sink

The debugger does not provide a screen-mode register display.

On Alpha systems:

• You cannot deposit a value into registers R31 or F31. They are permanently assigned the value 0.

620

Appendix B. Built-In Symbols and Logical Names

• There are no vector registers.

See Section 4.4 and Section 4.4.1 for more information about the Alpha general registers.

Table B.2 identifies the Integrity server register symbols.

Table B.2. Debugger Symbols for Integrity server Registers (Integrity servers Only)

Symbol Description

I64 Application Registers
%KR0 …%KR7 Kernel registers 0 …7
%RSC (%AR16) Register Stack Configuration
%BSP (%AR17) Backing Store Pointer
%BSPSTORE (%AR18) Backing Store Pointer for Memory Stores
%RNAT (%AR19) RSE NaT Collection
%CCV ($AR32) Compare and Exchange Compare Value
%UNAT (%AR36) User NaT Collection
%FPSR (%AR40) Floating-point Status
%PFS (%AR64) Previous Function State
%LC (%AR65) Loop Count
%EC (%AR66) Epilog Count
%CSD Code Segment
%SSD Stack Segment

Control Registers
%DCR (%CR0) Default Control
%ITM (%CR1) Interval Timer Match (only visible for SCD)
%IVA (%CR2) Interruption Vector Address (only visible for SCD)
%PTA (%CR8) Page Table Address (only visible for SCD)
%PSR (%CR9, %ISPR) Interruption Processor Status
%ISR (%CR17) Interruption Status
%IIP (%CR19) Interruption Instruction Pointer
%IFA (%CR20) Interruption Faulting Address
%ITIR (%CR21) Interruption TLB Insertion
%IIPA (%CR22) Interruption Instruction Previous
%IFS (%CR23) Interruption Function State
%IIM (%CR24) Interruption Immediate
%IHA (%CR25) Interruption Hash Address
%LID (%CR64) Local Interrupt ID (only visible for SCD)
%TPR (%CR66) Task Priority (only visible for SCD)
%IRR0 …%IRR3 (%CR68 …%CR71) External Interrupt Request 0 …3 (only visible for

SCD)
%ITV (%CR72) Interval Timer (only visible for SCD)

621

Appendix B. Built-In Symbols and Logical Names

Symbol Description

%PMV (%CR73) Performance Monitoring (only visible for SCD)
%CMCV (%CR74) Corrected Machine Check Vector (only visible for

SCD)
%IRR0 and %IRR1 (%CR80 and %CR81) Local Redirection 0:1 (only visible for SCD)

Special Registers
%IH (%SR0) Invocation Handle
%PREV_BSP Previous Backing Store Pointer
%PC (%IP) Program Counter (Instruction Pointer | slot

number)
%RETURN_PC Return Program Counter
%CFM Current Frame Marker
%NEXT_PFS Next Previous Frame State
%PSP Previous Stack Pointer
%CHFCTX_ADDR Condition Handling Facility Context Address
%OSSD Operating System Specific Data
%HANDLER_FV Handler Function Value
%LSDA Language Specific Data Area
%UM User Mask

Predicate Registers
%PR (%PRED) Predicate Collection Register -- Collection of %P0

…%P63
%P0 …%P63 Predicate (single-bit)Registers 0 …63

Branch Registers
%RP (%B0) Return Pointer
%B1 …%B7 Branch Registers 1 …7

General Integer Registers
%R0 General Integer Register 0
%GP (%R1) Global Data Pointer
%R2 …%R11 General Integer Registers 2 …11
%SP (%R12) Stack Pointer
%TP (%R13) Thread Pointer
%R14 …%R24 General Integer Registers 14 …24
%AP (%R25) Argument Information
%R26 …%R127 General Integer Registers 26 …127

Output Registers
%OUT0 …%OUT7 Output Registers, runtime aliases (i.e., If the frame

has allocated output registers, then %OUT0 maps
to the first allocated output registers, for example,
%R38, etc.)

622

Appendix B. Built-In Symbols and Logical Names

Symbol Description

General Registers
%GRNAT0 and %GRNAT1 General Register Not A Thing (NAT) collection

registers 64 bits each, for example, %GRNAT0 <3,
1, 0> is the NAT bit for %R3.

Floating Point Registers
%F0 …%F127 Floating Poing Registers 0 …127

See Section 4.4 and reference (I64_reg_status_sec) for more information about the Integrity server
registers.

B.3.2. Constructing Identifiers
The %NAME built-in symbol enables you to construct identifiers that are not ordinarily legal in the
current language. The syntax is as follows:

%NAME 'character-string'

In the following example, the variable with the name '12' is examined:

DBG> EXAMINE %NAME '12'

In the following example, the compiler-generated label P.AAA is examined:

DBG> EXAMINE %NAME 'P.AAA'

B.3.3. Counting Parameters Passed to Command
Procedures
You can use the %PARCNT built-in symbol within a command procedure that accepts a variable
number of actual parameters (%PARCNT is defined only within a debugger command procedure).

%PARCNT specifies the number of actual parameters passed to the current command procedure. In the
following example, command procedure ABC.COM is invoked and three parameters are passed:

DBG> @ABC 111, 222, 333

Within ABC.COM, %PARCNT now has the value 3. %PARCNT is then used as a loop counter to obtain
the value of each parameter passed to ABC.COM:

DBG> FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)

B.3.4. Determining the Debugger Interface (Command
or VSI DECwindows Motif for OpenVMS)
The %DECWINDOWS built-in symbol enables you to determine whether the debugger's VSI
DECwindows Motif for OpenVMS or command interface was displayed. When the VSI DECwindows
Motif for OpenVMS user interface is being used, the value of %DECWINDOWS is 1 (TRUE). When
the command interface is being used, the value of %DECWINDOWS is 0 (FALSE). For example:

DBG> EVALUATE %DECWINDOWS
0

623

Appendix B. Built-In Symbols and Logical Names

The following example shows how to use %DECWINDOWS in a debugger initialization file to position
the debugger source window, SRC, at debugger startup:

IF %DECWINDOWS THEN
 ! DECwindows Motif (workstation) syntax:
 (DISPLAY SRC AT (100, 300, 100, 700))
 ELSE
 ! Screen-mode (terminal) syntax:
 (DISPLAY SRC AT (AT H1))

B.3.5. Controlling the Input Radix
The built-in symbols %BIN, %DEC, %HEX, and %OCT can be used in address expressions and
language expressions to specify that an integer literal that follows (or all integer literals in a parenthesized
expression that follows) should be interpreted in binary, decimal, hexadecimal, or octal radix,
respectively. Use these radix built-in symbols only with integer literals. For example:

DBG> EVALUATE/DEC %HEX 10
16
DBG> EVALUATE/DEC %HEX (10 + 10)
32
DBG> EVALUATE/DEC %BIN 10
2
DBG> EVALUATE/DEC %OCT (10 + 10)
16
DBG> EVALUATE/HEX %DEC 10
0A
DBG> SET RADIX DECIMAL
DBG> EVALUATE %HEX 20 + 33 ! Treat 20 as hexadecimal, 33 as decimal
65 ! Resulting value is decimal
DBG> EVALUATE %HEX (20+33) ! Treat both 20 and 33 as hexadecimal
83
DBG> EVALUATE %HEX (20+ %OCT 10 +33) ! Treat 20 and 33 as
91 ! hexadecimal and 10 as octal
DBG> SYMBOLIZE %HEX 27C9E3 ! Symbolize a hexadecimal address
DBG> DEPOSIT/INST %HEX 5432 = 'MOVL ^O%DEC 222, R1'
DBG> ! Treat address 5432 as hexadecimal, and operand 222 as decimal

B.3.6. Specifying Program Locations and the Current
Value of an Entity
The following built-in symbols enable you to specify program locations and the current value of an
entity:

Symbol Description

%CURLOC. (period) Current logical entity - the program location
last referenced by an EXAMINE, DEPOSIT, or
EVALUATE/ADDRESS command.

%NEXTLOC Return key Logical successor of the current entity - the
program location that logically follows the location
last referenced by an EXAMINE, DEPOSIT,
or EVALUATE/ADDRESS command. Because
the Return key is a command terminator, it can
be used only where a command terminator is

624

Appendix B. Built-In Symbols and Logical Names

Symbol Description
appropriate (for example, immediately after
EXAMINE, but not immediately after DEPOSIT or
EVALUATE/ADDRESS).

%PREVLOC ^ (circumflex) Logical predecessor of current entity - the program
location that logically precedes the location last
referenced by an EXAMINE, DEPOSIT, or
EVALUATE/ADDRESS command.

%CURVAL \ (backslash) Value last displayed by an EVALUATE or
EXAMINE command, or deposited by a DEPOSIT
command. These two symbols are not affected by
an EVALUATE/ADDRESS command.

In the following example, the variable WIDTH is examined; the value 12 is then deposited into the
current location (WIDTH); this is verified by examining the current location:

DBG> EXAMINE WIDTH
MOD\WIDTH: 7
DBG> DEPOSIT . = 12
DBG> EXAMINE .
MOD\WIDTH: 12
DBG> EXAMINE %CURLOC
MOD\WIDTH: 12
DBG>

In the next example, the next and previous locations in an array are examined:

DBG> EXAMINE PRIMES(4)
MOD\PRIMES(4): 7
DBG> EXAMINE %NEXTLOC
MOD\PRIMES(5): 11
DBG> EXAMINE Return ! Examine next location
MOD\PRIMES(6): 13
DBG> EXAMINE %PREVLOC
MOD\PRIMES(5): 11
DBG> EXAMINE ^
MOD\PRIMES(4): 7
DBG>

Note that using the Return key to signify the logical successor does not apply to all contexts. For
example, you cannot press the Return key after typing the command DEPOSIT to indicate the next
location, but you can always use the symbol %NEXTLOC for that purpose.

B.3.7. Using Symbols and Operators in Address
Expressions
The following list describes the symbols and operators that you can use in address expressions. A unary
operator has one operand. A binary operator has two operands.

Symbol Description

%LABEL Specifies that the numeric literal that follows is a program label (for
languages like Fortran that have numeric program labels). You can
qualify the label with a pathname prefix that specifies the containing
module.

625

Appendix B. Built-In Symbols and Logical Names

Symbol Description

%LINE Specifies that the numeric literal that follows is a line number in
your program. You can qualify the line number with a pathname
prefix that specifies the containing module.

Backslash (\) When used within a path name, delimits each element of the path
name. In this context, the backslash cannot be the leftmost element
of the complete path name.

When used as the prefix to a symbol, specifies that the symbol is to
be interpreted as a global symbol. In this context, the backslash must
be the leftmost element of the symbol's complete path name.

At sign (@) Period (.) Unary operators. In an address expression, the at sign (@) and
period (.) each function as a contents-of operator. The contents-of
operator causes its operand to be interpreted as a memory address
and thus requests the contents of (or value residing at) that address.

Bit field <p, s, e> Unary operator. You can apply bit field selection to an address-
expression. To select a bit field, you supply a bit offset (p), a bit
length (s), and a sign extension bit (e), which is optional.

Plus sign (+) Unary or binary operator. As a unary operator, indicates the
unchanged value of its operand. As a binary operator, adds the
preceding operand and succeeding operand together.

Minus sign (--) Unary or binary operator. As a unary operator, indicates the
negation of the value of its operand. As a binary operator, subtracts
the succeeding operand from the preceding operand.

Multiplication sign (*) Binary operator. Multiplies the preceding operand by the succeeding
operand.

Division sign (/) Binary operator. Divides the preceding operand by the succeeding
operand.

The following examples show the use of built-in symbols and operators in address expressions.

%LINE and %LABEL Operators
The following command sets a tracepoint at line 26 of the module in which execution is currently
suspended:

DBG> SET TRACE %LINE 26

The next command displays the source line associated with line 47:

DBG> EXAMINE/SOURCE %LINE 47
module MAIN
 47: procedure SWAP(X, Y: in out INTEGER) is
DBG>

The next command sets a breakpoint at label 10 of module MOD4:

DBG> SET BREAK MOD4\%LABEL 10

Path-Name Operators
The following command displays the value of the variable COUNT that is declared in routine ROUT2 of
module MOD4. The backslash (\) pathname delimiter separates the pathname elements:

626

Appendix B. Built-In Symbols and Logical Names

DBG> EXAMINE MOD4\ROUT2\COUNT
MOD4\ROUT2\COUNT: 12
DBG>

The following command sets a breakpoint on line 26 of the module QUEUMAN:

DBG> SET BREAK QUEUMAN\%LINE 26

The following command displays the value of the global symbol X:

DBG> EXAMINE \X

Arithmetic Operators
The order in which the debugger evaluates the elements of an address expression is similar to that
used by most programming languages. The order is determined by the following three factors, listed in
decreasing order of precedence (first listed have higher precedence):

1. The use of delimiters (usually parentheses or brackets) to group operands with particular operators

2. The assignment of relative priority to each operator

3. Left-to-right priority of operators

The debugger operators are listed in decreasing order of precedence as follows:

1. Unary operators (., @, +, -)

2. Multiplication and division operators (*, /)

3. Addition and subtraction operators (+, -)

For example, when evaluating the following expression, the debugger first adds the operands within
parentheses, then divides the result by 4, then subtracts the result from 5:

5-(T+5)/4

The following command displays the value contained in the memory location X+ 4 bytes:

DBG> EXAMINE X + 4

Contents-of Operator
The following examples show the use of the contents-of operator. In the first example, the instruction
at the current PC value is obtained (the instruction whose address is contained in the PC and which is
about to execute):

DBG> EXAMINE .%PC
MOD\%LINE 5: PUSHL S^#8
DBG>

In the next example, the source line at the PC value one level down the call stack is obtained (at the call
to routine SWAP):

DBG> EXAMINE/SOURCE .1\%PC
module MAINMAIN\%LINE 134: SWAP(X, Y);

627

Appendix B. Built-In Symbols and Logical Names

DBG>

For the next example, the value of the pointer variable PTR is 7FF00000 hexadecimal, the address of
an entity that you want to examine. The value of this entity is 3FF00000 hexadecimal. The following
command shows how to examine the entity:

DBG> EXAMINE/LONG .PTR
7FF00000: 3FF00000
DBG>

In the next example, the contents-of operator (at sign or period) is used with the current location
operator (period) to examine a linked list of three quadword-integer pointer variables (identified as L1,
L2, and L3 in the following figure). P is a pointer to the start of the list. The low longword of each
pointer variable contains the address of the next variable;the high longword of each variable contains its
integer value (8, 6, and 12, respectively).

DBG> SET TYPE QUADWORD; SET RADIX HEX
DBG> EXAMINE .P ! Examine the entity whose address
 ! is contained in P.zz
00009BC2: 00000008 00009BDA ! High word has value 8, low word
 ! has address of next entity (9BDA).
DBG> EXAMINE @. ! Examine the entity whose address
 ! is contained in the current entity.
00009BDA: 00000006 00009BF4 ! High word has value 6, low word
 ! has address of next entity (9BF4).
DBG> EXAMINE .. ! Examine the entity whose address
 ! is contained in the current entity.
00009BF4: 0000000C 00000000 ! High word has value 12 (dec.), low word
 ! has address 0 (end of list).

Bit-Field Operator
The following example shows how to use the bit-field operator. For example, to examine the address
expression X_NAME starting at bit 3 with a length of 4 bits and no sign extension, enter the following
command:

DBG> EXAMINE X_NAME <3, 4, 0>

B.3.8. Obtaining Information About Exceptions
The following built-in symbols enable you to obtain information about the current exception and use that
information to qualify breakpoints or tracepoints:

Symbol Description

%EXC_FACILITY Name of facility that issued the current exception
%EXC_NAME Name of current exception

628

Appendix B. Built-In Symbols and Logical Names

Symbol Description

%ADAEXC_NAME Ada exception name of current exception (for Ada
programs only)

%EXC_NUMBER Number of current exception
%EXC_SEVERITY Severity code of current exception

For example:

DBG> EVALUATE %EXC_NAME
"FLTDIV_F"
DBG> SET BREAK/EXCEPTION WHEN (%EXC_NAME = "FLTDIV_F")
⋮
DBG> EVALUATE %EXC_NUMBER
12
DBG> EVALUATE/CONDITION_VALUE %EXC_NUMBER
%SYSTEM-F-ACCVIO, access violation at PC !XL, virtual address !XL
DBG> SET BREAK/EXCEPTION WHEN (%EXC_NUMBER = 12)

The conditional expressions in the WHEN clauses are language-specific.

B.3.9. Specifying the Current, Next, and Previous Scope
on the Call Stack
You can use the following built-in symbols to obtain and manipulate the scope for symbol lookup and
for source or instruction display relative to the routine call stack:

Built-in Symbol Description

%CURRENT_SCOPE_ENTRY The call frame that the debugger is currently
using as reference when displaying source code
or decoded instructions, or when searching for
symbols. By default, this is call frame 0.

%NEXT_SCOPE_ENTRY The next call frame down the call
stack from the call frame denoted by
%CURRENT_SCOPE_ENTRY.

%PREVIOUS_SCOPE_ENTRY The next call frame up the call stack from the call
frame denoted by %CURRENT_SCOPE_ENTRY.

These symbols return integer values that denote a call frame on the call stack. Call frame 0 denotes the
routine at the top of the stack, where execution is suspended. Call frame 1 denotes the calling routine,
and so on.

For example, the following command specifies that the debugger search for symbols starting with the
scope denoted by the next routine down the call stack (rather than starting with the routine at the top of
the call stack):

DBG> SET SCOPE/CURRENT %NEXT_SCOPE_ENTRY

629

Appendix B. Built-In Symbols and Logical Names

630

Appendix C. Summary of Debugger
Support for Languages
The OpenVMS Debugger supports languages on Integrity servers and Alpha systems.

On Integrity server systems, you can use the debugger with programs written in the following HP
languages:

Ada 1 Assembler (IAS) BASIC BLISS
C C++ COBOL Fortran
MACRO--32 2 IMACRO Pascal

1Integrity servers support the GNAT Pro Ada 95 compiler from AdaCore.
2MACRO--32 must be compiled with the AMACRO compiler.

C.1. Overview
The debugger recognizes the syntax, data typing, and scoping rules of each language. It also recognizes
each language's operators and expression syntax. Therefore, when using debugger commands you can
specify variables and other program entities as you might in the source code of the program. You can
also compute the value of a source-language expression using the syntax of that language.

This appendix describes debugging techniques that are common to most of the supported languages. The
help topics provide further information specific to each language:

• Supported operators in language expressions

• Supported constructs in language expressions and address expressions

• Supported data types

• Any other language-specific information, including restrictions in debugger support, if any

For more information about language-specific debugger support, refer to the documentation furnished
with a particular language.

If your program is written in more than one language, you can change the debugging context from one
language to another during a debugging session. Use the SET LANGUAGE command with the keyword
corresponding to your language choice.

On Integrity servers, you can specify one of the following keywords:

AMACRO BASIC BLISS C
C++ COBOL Fortran PASCAL
UNKNOWN

On Alpha systems, you can specify one of the following keywords:

ADA AMACRO BASIC BLISS

631

Appendix C. Summary of Debugger Support for Languages

C C++ COBOL FORTRAN
MACRO MACRO64 PASCAL UNKNOWN

When you are debugging a program written in an unsupported language, enter the
SET LANGUAGE UNKNOWN command. To maximize the usability of the debugger with unsupported
languages, this setting causes the debugger to accept a large set of data formats and operators,
including some that might be specific to only a few supported languages. For information about the
operators and constructs that are recognized when the language is set to UNKNOWN, type Help
Language_UNKNOWN.

C.2. GNAT Ada (Integrity servers only)
The GNAT Pro (Ada 95) compiler is supported on OpenVMS for Integrity server systems. For
information on this product, contact Ada core directly.

Note

HP is not porting the HP Ada (Ada 83) compiler from OpenVMS Alpha to OpenVMS for Integrity
servers.

Integrity servers use GNAT Pro Ada 95 from Ada Core Technologies, Inc. For information about this
product, see the following online documents from Ada Core:

• GNAT Pro Users Guide -- This guide describes the use of GNAT Pro, a compiler and software
development tool set for the full Ada 95 programming language. It can be found at the following
URL: http://www.gnat.com/wp-content/files/auto_update/gnat-unw-
docs/html/gnat_ugn.html

• GNAT Pro Reference Manual -- This manual contains information for writing programs using the
GNAT Pro compiler. It includes information on implementation-dependent characteristics of GNAT
Pro, including all the information required by Annex M of the standard. It can be found at the
following URL: http://www.gnat.com/wp-content/files/auto_update/gnat-
unw-docs/html/gnat_rm.html

For information about HP Ada on OpenVMS Alpha, see Section C.3.

C.3. HP Ada
The following subtopics describe debugger support for HP Ada on Alpha systems. For information
specific to Ada tasking programs, see also Chapter 16.

C.3.1. Ada Names and Symbols
The following subtopics describe debugger support for Ada names and symbols, including predefined
attributes.

Note that parts of names may be language expressions - for example, attributes
such as 'FIRST or 'POS. This affects how you use the EXAMINE, EVALUATE, and
DEPOSIT commands with such names. For examples of enumeration types, type Help
Specifying_Attributes_with_Enumeration_Types.

632

Appendix C. Summary of Debugger Support for Languages

C.3.1.1. Ada Names
Supported Ada names follow:

Kind of Name Debugger Support

Lexical elements Full support for Ada rules for the syntax of
identifiers.

Function designators that are operator symbols (for
example, + and *) rather than identifiers must be
prefixed with %NAME. Also, the operator symbol
must be enclosed in quotation marks.

Full support for Ada rules for numeric literals,
character literals, string literals, and reserved
words.

The debugger accepts signed integer literals in the
range --2147483648 to 2147483647.

Depending on context and architecture, the
debugger interprets floating-point types as
F_floating, D_floating, G_floating, H_floating,
S_floating, or T_floating.

Indexed components Full support.
Slices You can examine and evaluate an entire slice or an

indexed component of a slice.

You can deposit only to an indexed component of
a slice. You cannot deposit an entire slice.

Selected components Full support, including use of the keyword all in
.all.

Literals Full support, including the keyword null.
Boolean symbols Full support (TRUE, FALSE).
Aggregates You can examine the entire record and array

objects with the EXAMINE command. You can
deposit a value in a component of an array or
record. You cannot use the DEPOSIT command
with aggregates, except to deposit character string
values.

C.3.1.2. Predefined Attributes
Supported Ada predefined attributes follow. Note that the debugger SHOW SYMBOL/TYPE command
provides the same information that is provided by the P'FIRST, P'LAST, P'LENGTH, P'SIZE, and
P'CONSTRAINED attributes.

Attribute Debugger Support

P'CONSTRAINED For a prefix P that denotes a record object with
discriminants. The value of P'CONSTRAINED

633

Appendix C. Summary of Debugger Support for Languages

Attribute Debugger Support
reflects the current state of P (constrained or
unconstrained).

P'FIRST For a prefix P that denotes an enumeration type or
a subtype of an enumeration type. Yields the lower
bound of P.

P'FIRST For a prefix P that is appropriate for an array type,
or that denotes a constrained array subtype. Yields
the lower bound of the first index range.

P'FIRST(N) For a prefix P that is appropriate for an array type,
or that denotes a constrained array subtype. Yields
the lower bound of the Nth index range.

P'LAST For a prefix P that denotes an enumeration type, or
a subtype of an enumeration type. Yields the upper
bound of P.

P'LAST For a prefix P that is appropriate for an array type,
or that denotes a constrained array subtype. Yields
the upper bound of the first index range.

P'LAST(N) For a prefix P that is appropriate for an array type,
or that denotes a constrained array subtype. Yields
the upper bound of the Nth index range.

P'LENGTH For a prefix P that is appropriate for an array type,
or that denotes a constrained array subtype. Yields
the number of values of the first index range (zero
for a null range).

P'LENGTH(N) For a prefix P that is appropriate for an array type,
or that denotes a constrained array subtype. Yields
the number of values of the Nth index range (zero
for a null range).

P'POS(X) For a prefix P that denotes an enumeration type
or a subtype of an enumeration type. Yields the
position number of the value X. The first position
is 0.

P'PRED(X) For a prefix P that denotes an enumeration type or
a subtype of an enumeration type. Yields the value
of type P which has a position number one less
than that of X.

P'SIZE For a prefix P that denotes an object. Yields the
number of bits allocated to hold the object.

P'SUCC(X) For a prefix P that denotes an enumeration type or
a subtype of an enumeration type. Yields the value
of type P which has a position number one more
than that of X.

P'VAL(N) For a prefix P that denotes an enumeration type or
a subtype of an enumeration type. Yields the value
of type P which has the position number N. The
first position is 0.

634

Appendix C. Summary of Debugger Support for Languages

C.3.1.2.1. Specifying Attributes with Enumeration Types

Consider the following declarations:

type DAY is
 (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY);
MY_DAY : DAY;

The following examples show the use of attributes with enumeration types. Note that you cannot use the
EXAMINE command to determine the value of attributes, because attributes are not variable names. You
must use the EVALUATE command instead. For the same reason, attributes can appear only on the right
of the:= operator in a DEPOSIT command.

DBG> EVALUATE DAY'FIRST
MON
DBG> EVALUATE DAY'POS(WEDNESDAY)
2
DBG> EVALUATE DAY'VAL(4)
FRI
DBG> DEPOSIT MY_DAY := TUESDAY
DBG> EVALUATE DAY'SUCC(MY_DAY)
WED
DBG> DEPOSIT . := DAY'PRED(MY_DAY)
DBG> EXAMINE .
EXAMPLE.MY_DAY: MONDAY
DBG> EVALUATE DAY'PRED(MY_DAY)
%DEBUG-W-ILLENUMVAL, enumeration value out of legal range

C.3.1.2.2. Resolving Overloaded Enumeration Literals

Consider the following declarations:

type MASK is (DEC, FIX, EXP);
type CODE is (FIX, CLA, DEC);
MY_MASK : MASK;
MY_CODE : CODE;

In the following example, the qualified expression CODE' (FIX) resolves the overloaded enumeration
literal FIX, which belongs to both type CODE and type MASK:

DBG> DEPOSIT MY_CODE := FIX
%DEBUG-W-NOUNIQUE, symbol 'FIX' is not unique
DBG> SHOW SYMBOL/TYPE FIX
data EXAMPLE.FIX
 enumeration type (CODE, 3 elements), size: 1 byte
data EXAMPLE.FIX
 enumeration type (MASK, 3 elements), size: 1 byte
DBG> DEPOSIT MY_CODE := CODE'(FIX)
DBG> EXAMINE MY_CODE
EXAMPLE.MY_CODE: FIX

C.3.2. Operators and Expressions
The following sections describe debugger support for Ada operators and language expressions.

C.3.2.1. Operators and Expressions
Supported Ada operators in language expressions include:

635

Appendix C. Summary of Debugger Support for Languages

Kind Symbol Function

Prefix + Unary plus (identity)
Infix + Addition
Infix * Multiplication
Infix / Division
Infix MOD Modulus
Infix REM Remainder
Prefix ABS Absolute value
Infix & Concatenation (only string types)
Infix = Equality (only scalar and string

types)
Infix /= Inequality (only scalar and string

types)
Infix > Greater than (only scalar and

string types)
Infix >= Greater than or equal (only scalar

and string types)
Infix < Less than (only scalar and string

types)
Infix <= Less than or equal (only scalar

and string types)
Prefix NOT Logical NOT
Infix AND Logical AND (not for bit arrays)
Infix OR Logical OR (not for bit arrays)
Infix XOR Logical exclusive OR (not for bit

arrays)

The debugger does not support the following items:

• Operations on entire arrays or records

• The short-circuit control forms: and then, or else

• The membership tests: in, not in

• User-defined operators

C.3.2.2. Language Expressions
Supported Ada expressions include:

Kind of Expression Debugger Support

Type conversions No support for any of the explicit type conversions
specified in Ada. However, the debugger performs
certain implicit type conversions between numeric
types during the evaluation of expressions.

636

Appendix C. Summary of Debugger Support for Languages

Kind of Expression Debugger Support
The debugger converts lower-precision types
to higher-precision types before evaluating
expressions involving types of different precision:

• If integer and floating-point types are mixed,
the integer type is converted to floating-point
type.

• If integer and fixed-point types are mixed, the
integer type is converted to fixed-point type.

• If integer types of different sizes are mixed (for
example, byte-integer and word-integer), the
one with the smaller size is converted to the
larger size.

Subtypes Full support. Note that the debugger denotes
subtypes and types that have range constraints as
“subrange” types.

Qualified expressions Supported as required to resolve overloaded
enumeration literals (literals that have the same
identifier but belong to different enumeration
types). The debugger does not support qualified
expressions for any other purpose.

Allocators No support for any operations with allocators.
Universal expressions No support.

C.3.3. Data Types
Supported Ada data types follow:

Ada Data Type Operating System Data Type Name

INTEGER Longword Integer (L)
SHORT_INTEGER Word Integer (W)
SHORT_SHORT_INTEGER Byte Integer (B)
SYSTEM.UNSIGNED_QUADWORD Quadword Unsigned (QU)
SYSTEM.UNSIGNED_LONGWORD Longword Unsigned (LU)
SYSTEM.UNSIGNED_WORD Word Unsigned (WU)
SYSTEM.UNSIGNED_BYTE Byte Unsigned (BU)
FLOAT F_Floating (F)
SYSTEM.F_FLOAT F_Floating (F)
SYSTEM.D_FLOAT D_Floating (D)
LONG_FLOAT D_Floating (D), if pragma LONG_FLOAT

(D_FLOAT) is in effect. G_Floating (G), if pragma
LONG_FLOAT (G_FLOAT) is in effect.

SYSTEM.G_FLOAT G_Floating (G)
IEEE_SINGLE_FLOAT (Alpha specific) S_Floating (FS)

637

Appendix C. Summary of Debugger Support for Languages

Ada Data Type Operating System Data Type Name

IEEE_DOUBLE_FLOAT (Alpha specific) T_Floating (FT)
Fixed (None)
STRING ASCII Text (T)
BOOLEAN Aligned Bit String (V)
BOOLEAN Unaligned Bit String (VU)
Enumeration For any enumeration type whose value fits into

an unsigned byte or word: Byte Unsigned (BU) or
Word Unsigned (WU), respectively. Otherwise: No
corresponding operating system data type.

Arrays (None)
Records (None)
Access (pointers) (None)
Tasks (None)

C.3.4. Compiling and Linking
The Ada predefined units in the ADA$PREDEFINED program library on your system have
been compiled with the /NODEBUG qualifier. Before using the debugger to refer to names
declared in the predefined units, you must first copy the predefined unit source files using the
ACS EXTRACT SOURCE command. Then, you must compile the copies into the appropriate library
with the /DEBUG qualifier, and relink the program with the /DEBUG qualifier.

If you use the /NODEBUG qualifier with one of the Ada compilation commands, only global symbol
records are included in the modules for debugging. Global symbols in this case are names that the
program exports to modules in other languages by means of the Ada export pragm as:

EXPORT_PROCEDURE
EXPORT_VALUED_PROCEDURE
EXPORT_FUNCTION
EXPORT_OBJECT
EXPORT_EXCEPTION
PSECT_OBJECT

The /DEBUG qualifier on the ACS LINK command causes the linker to include all debugging
information in the closure of the specified unit in the executable image.

C.3.5. Source Display
Source code may not be available for display for the following reasons that are specific to Ada programs:

• Execution is paused within Ada initialization or elaboration code, for which no source code is
available.

• The copied source file is not in the program library where the unit was originally compiled.

• The external source file is not where it was when the unit was originally compiled.

• The source file has been modified since the executable image was generated, and the original copied
source file or external source file no longer exists.

638

Appendix C. Summary of Debugger Support for Languages

The following paragraphs explain how to control the display of source code with Ada programs.

If the compiler command's /COPY_SOURCE qualifier (the default) was in effect when you compiled
your program, the debugger obtains the displayed Ada source code from the copied source files located
in the program library where the program was originally compiled. If you compiled your program with
the /NOCOPY_SOURCE qualifier, the debugger obtains the displayed Ada source code from the external
source files associated with your program's compilation units.

The file specifications of the copied or external source files are embedded in the associated object files.
For example, if you have used the ACS COPYUNIT command to copy units, or the DCL command
COPY or BACKUP to copy an entire library, the debugger still searches the original program library for
copied source files. If, after copying, the original units have been modified or the original library has
been deleted, the debugger may not find the original copied source files. Similarly, if you have moved the
external source files to another disk or directory, the debugger may not find them.

In such cases, use the SET SOURCE command to locate the correct files for source display. You can
specify a search list of one or more program library or source code directories. For example (ADA$LIB
is the logical name that the program library manager equates to the current program library):

DBG> SET SOURCE ADA$LIB, DISK:[SMITH.SHARE.ADALIB]

The SET SOURCE command does not affect the search list for the external source files that the
debugger fetches when you use the debugger EDIT command. To tell the EDIT command where to
look for your source files, use the SET SOURCE/EDIT command.

C.3.6. EDIT Command
With Ada programs, by default the debugger EDIT command fetches the external source file that was
compiled to produce the compilation unit in which execution is currently paused. You do not edit the
copied source file, in the program library, that the debugger uses for source display.

The file specifications of the source files you edit are embedded in the associated object files during
compilation (unless you specify /NODEBUG). If some source files have been relocated after compilation,
the debugger may not find them.

In such cases, you can use the debugger SET SOURCE/EDIT command to specify a search list of one
or more directories where the debugger should look for source files. For example:

DBG> SET SOURCE/EDIT [], USER:[JONES.PROJ.SOURCES]

The SET SOURCE/EDIT command does not affect the search list for copied source files that the
debugger uses for source display.

The SHOW SOURCE/EDIT command displays the source-file search list currently being used for the
EDIT command. The CANCEL SOURCE/EDIT command cancels the source-file search list currently
being used for the EDIT command and restores the default search mode.

C.3.7. GO and STEP Commands
Note the following points about using the GO and STEP commands with Ada programs:

• When starting a debugging session, use the GO command rather than the STEP command to avoid
stepping through compiler-generated initialization code.

• Use the GO command to go directly to the preset breakpoint at the start of the main program,
past the initialization and package elaboration code.

639

Appendix C. Summary of Debugger Support for Languages

• Use the GO command and breakpoints to suspend execution at the start of the elaboration of
library packages, before execution reaches the main program.

For information on how to monitor the package elaboration phase, type Help
Debugging_Ada_Library_Packages.

• If a line contains more than one statement, a STEP command executes all the statements on that line
as part of a single step.

• Ada task entry calls are not the same as subprogram calls because task entry calls are queued and
may not execute right away. If you use the STEP command to move execution into a task entry call,
the results might not be what you expect.

C.3.8. Debugging Ada Library Packages
When an Ada main program (or a non-Ada main program that calls Ada code) is executed, initialization
code is executed for the Ada run-time library and elaboration code for all library units that the program
depends on. The elaboration code causes the library units to be elaborated in appropriate order before
the main program is executed. Library specifications, bodies, and some of their subunits are also
elaborated by this process.

The elaboration of library packages accomplishes the following operations:

• Causes package declarations to take effect

• Initializes any variables whose declaration includes initialization code

• Executes any sequence of statements that appear between the begin and end statements of package
bodies

When you bring an Ada program under debugger control, execution is paused initially before the
initialization code is executed and before the elaboration of library units. For example:

DBG> RUN FORMS
Language: ADA, Module: FORMS
Type GO to reach main program
DBG>

At that point, before typing GO to get to the start of the main program, you can step through and
examine parts of the library packages by setting breakpoints at the package specifications or bodies you
are interested in. You then use the GO command to get to the start of each package. To set a breakpoint
on a package body, specify the package unit name with the SET BREAK command. To set a breakpoint
on a package specification, specify the package unit name followed by a trailing underscore character
(_).

Even if you have set a breakpoint on a package body, the break will not occur if the debugger module for
that body is not set. If the module is not set, the break will occur at the package specification. This effect
occurs because the debugger automatically sets modules for the specifications of packages named in with
clauses; it does not automatically set modules for the associated package bodies.

Also, to set a breakpoint on a subprogram declared in a package specification, you must set the module
for the package body.

Note that the compiler generates unique names for subprograms declared in library packages that are
or could be overloaded names. The debugger uses these unique names in its output, and requires them

640

Appendix C. Summary of Debugger Support for Languages

in commands where the names would otherwise be ambiguous. For more information on resolving
overloaded names and symbols, Section C.3.15.

C.3.9. Predefined Breakpoints
When you start the debugger with an Ada program (or a non-Ada program that calls Ada code), two
breakpoints that are associated with Ada tasking exception events are automatically established. These
breakpoints are established automatically during debugger initialization when the Ada run-time library is
present.

When you enter a SHOW BREAK command under these conditions, the following breakpoints are
displayed:

DBG> SHOW BREAK
Predefined breakpoint on ADA event "EXCEPTION_TERMINATED"
 for any value
Predefined breakpoint on ADA event "DEPENDENTS_EXCEPTION"
 for any value
DBG>

C.3.10. Monitoring Exceptions
The debugger recognizes three kinds of exceptions in Ada programs:

• A user-defined exception - an exception declared with the Ada reserved word exception in an Ada
compilation unit

• An Ada predefined exception, such as PROGRAM_ERROR or CONSTRAINT_ERROR

• Any other (non-Ada) exception or condition

The following subtopics explain how to monitor such exceptions.

C.3.10.1. Monitoring Any Exception
The SET BREAK/EXCEPTION command enables you to set a breakpoint on any exception or
condition. This includes certain conditions that are signaled internally within the Ada run-time library.
These conditions are an implementation mechanism; they do not represent program failures, and they
cannot be handled by Ada exception handlers. If these conditions appear while you are debugging your
program, you may want to consider specifying the kind of exceptions when setting breakpoints.

The following example shows a tracepoint occurring for an Ada CONSTRAINT_ERROR exception as
the result of a SET TRACE/EXCEPTION command:

DBG> SET TRACE/EXCEPTION
DBG> GO
 …
%ADA-F-CONSTRAINT_ERRO, CONSTRAINT_ERROR
-ADA-I-EXCRAIPRI, Exception raised prior to PC = 00000A7C
trace on exception preceding
 ADA$RAISE\ADA$RAISE_CONDITION.%LINE 333+12
 …

In the next example, the SHOW CALLS command displays a traceback of the calls leading to the
subprogram where the exception occurred or to which the exception was raised:

DBG> SET BREAK/EXCEPTION DO (SHOW CALLS)

641

Appendix C. Summary of Debugger Support for Languages

DBG> GO
 …
%SYSTEM-F-INTDIV, arithmetic trap, integer divide
 by zero at PC=000008AF,
PSL=03C000A2 break on exception preceding
 SYSTEM_OPS.DIVIDE.%LINE 17+6
 17: return X/Y;
 module name routine name line rel PC abs PC
*SYSTEM_OPS DIVIDE 17 00000015 000008AF
*PROCESSOR PROCESSOR 19 000000AE 00000BAD
*ADA$ELAB_PROCESSOR
 ADA$ELAB_PROCESSOR 00000009 00000809
 LIB$INITIALIZE 00000054 00000C36
 SHARE$ADARTL 00000000 000398BE
*ADA$ELAB_PROCESSOR
 ADA$ELAB_PROCESSOR 0000001B 0000081B
 LIB$INITIALIZE 0000002F 00000C21

In this example, the condition SS$_INTDIV is raised at line 17 of the subprogram DIVIDE in the
package SYSTEM_OPS. The example shows an important effect: some conditions (such as SS
$_INTDIV) are treated as being equivalent to some Ada predefined exceptions.

The matching of a condition and an Ada predefined exception is performed by the condition handler
provided by Ada for any frame that includes an exception part. Therefore, when an exception breakpoint
or tracepoint is triggered by a condition that has an equivalent Ada exception name, the message displays
only the system condition code name, and not the name of the corresponding Ada exception.

C.3.10.2. Monitoring Specific Exceptions
Whenever an exception is raised, the debugger sets the following built-in symbols. You can use them to
qualify exception breakpoints or tracepoints so that they trigger only on certain exceptions.

%EXC_FACILITY A string that names the facility that issued the
exception. The facility name for Ada predefined
exceptions and user-defined exceptions is ADA.

%EXC_NAME An uppercase string that names the exception.
If the exception raised is an Ada predefined
exception, its name is truncated if it exceeds 15
characters. For example, CONSTRAINT_ERROR
is truncated to CONSTRAINT_ERRO. If
the exception is a user-defined exception,
%EXC_NAME contains the string
"EXCEPTION", and the name of the user-defined
exception is contained in %ADAEXC_NAME.

%ADAEXC_NAME If the exception raised is user-defined,
%ADAEXC_NAME contains a string that names
the exception, and %EXC_NAME contains the
string "EXCEPTION". If the exception is not user-
defined, %ADAEXC_NAME contains a null
string, and the name of the exception is contained
in %EXC_NAME.

%EXC_NUM The number of the exception.
%EXC_SEVERITY A string that gives the exception severity level (F,

E, W, I, S, or ?).

642

Appendix C. Summary of Debugger Support for Languages

C.3.10.3. Monitoring Handled Exceptions and Exception Handlers
The SET BREAK/EVENT and SET TRACE/EVENT commands let you set breakpoints and
tracepoints on exceptions that are about to be handled by Ada exception handlers. These commands let
you observe the execution of each Ada exception handler that gains control.

You can specify two event names with these commands:

HANDLED Triggers when an exception is about to be
handled in an Ada exception handler (includes
HANDLED_OTHERS events).

HANDLED_OTHERS Triggers only when an exception is about to be
handled in an Ada exception handler choice
others.

For example, the following command sets a breakpoint that triggers whenever an exception is about to be
handled by an Ada exception handler:

DBG> SET BREAK/EVENT=HANDLED

When the breakpoint triggers, the debugger identifies the exception that is about to be handled and the
exception handler that is about to be executed. You can then use that information to set a breakpoint
on a particular handler, or you can enter the GO command, and see which Ada handler next attempts to
handle the exception. For example:

DBG> GO
 …
break on Ada event HANDLED
 task %TASK 1 is about to handle an exception
 The Ada exception handler is at: PROCESSOR.%LINE 21
 %ADA-F-CONSTRAINT_ERRO, CONSTRAINT_ERROR
 -ADA-I-EXCRAIPRI, Exception raised prior to PC = 00000A7C
DBG> SET BREAK PROCESSOR.%LINE 21; GO

C.3.11. Examining and Manipulating Data
When examining and manipulating data, note the following considerations:

• Before you can examine or deposit into a nonstatic variable (any variable not declared in a library
package), its defining subprogram, task, and so on, must be active on the call stack.

• Before you can examine, deposit, or evaluate an Ada subprogram formal parameter or an Ada
variable, the parameter or variable must be elaborated. In other words, you should step or otherwise
move execution past the parameter or variable's declaration. The value contained in any variable or
formal parameter whose declaration has not been elaborated might be invalid.

In most cases, the debugger enables you to specify variables and expressions in debugger commands
exactly as you would specify them in the source code of the program, including use of qualified
expressions. The following subtopics discuss some additional points about debugger support for records
and access types.

C.3.11.1. Records
Note the following points about debugger support for records:

643

Appendix C. Summary of Debugger Support for Languages

• With certain Ada record variables, the debugger fails to show the record components correctly
(possibly with a NO ACCESSR error message) when the type declaration is in a different scope than
the record (symbol) declaration.

• With variant records, the debugger lets you examine or assign a value to a component of a variant
part that is not active. But because this is an illegal action in Ada, the debugger also issues an
informational message. For example, assume that record REC1 has a variant field named STATUS
and that the value of STATUS is such that REC1.COMP3 is inactive:

DBG> EXAMINE REC1.COMP3
%DEBUG-I-BADDISCVAL, incorrect value of 1 in discriminant
 field STATUS
MAIN.REC1.COMP3: 438

C.3.11.2. Access Types
Note the following points about debugger support for access types:

• The debugger does not support allocators, so you cannot create new access objects with the
debugger.

• When you specify the name of an access object with the EXAMINE command, the debugger displays
the memory location of the object it designates.

• To examine the value of a designated object, you must use selected component notation, specifying
.ALL. For example, to examine the value of a record access object designated by A:

DBG> EXAMINE A.ALL
EXAMPLE.A.ALL
 NAME(1..10): "John Doe "
 AGE : 6
 NEXT: 1462808

• To examine one component of a designated object, you can omit .ALL from the selected component
syntax. For example:

DBG> EXAMINE A.NAME
EXAMPLE.A.ALL.NAME(1..10): "John Doe"

The following example shows the debugger support for incomplete types. Consider the following
declarations:

package P is
 type T is private;
private
 type T_TYPE;
 type T is access T_TYPE;
end P;
package body P is
 type T_TYPE
is
 record
 A: NATURAL := 5;
 B: NATURAL := 4;
 end record;
 T_REC: T_TYPE;
 T_PTR: T := new T_TYPE'(T_REC);

644

Appendix C. Summary of Debugger Support for Languages

end P;
with P; use P;
procedure INCOMPLETE is
 VAR: T;
begin
 …
end INCOMPLETE;

The debugger does not have complete information about the type T, so you cannot manipulate the
variable VAR. However, the debugger does have information about objects declared in the package body
P. Thus, you can manipulate the variables T_PTR and T_REC.

C.3.12. Module Names and Path Names
The names of Ada debugger modules are the same as the names of the corresponding compilation
units, with the following provision. To eliminate ambiguity, an underscore character (_) is appended
to a specification name to distinguish it from its body name. For example, TEST (body), TEST_
(specification). To determine the exact names of the modules in your program, use the SHOW MODULE
command.

In most cases when you specify a path name, the debugger can distinguish body names and specification
names from the context. Therefore, use this naming convention only if needed to resolve an ambiguity.

When the debugger language is set to Ada, the debugger generally constructs pathnames that follow the
Ada rules, using selected component notation to separate path name elements (with other languages, a
backslash is used to separate elements). For example:

TEST_.A1 ! A1 is declared in the package
 ! specification of unit TEST
TEST.B1 ! B1 is declared in the package
 ! body of unit TEST

The maximum length that you can specify for a subunit path name (expanded name) is 247 characters.

When a use clause makes a symbol declared in a package directly visible outside the package, you do not
need to specify an expanded name (package-name.symbol) to refer to the symbol, either in the
program itself or in debugger commands.

The SHOW SYMBOL/USE_CLAUSE command identifies any package (library or otherwise) that a
specified block, subprogram, or package mentions in a use clause. If the entity specified is a package
(library or otherwise), the command also identifies any block, subprogram, package, and so on, that
names the specified module in a use clause. For example:

DBG> SHOW SYMBOL/USE_CLAUSE B_
package spec B_
 used by: F
 uses: A_

If a label has been assigned to a loop statement or declare block in the source code, the debugger
displays the label; otherwise, the debugger displays LOOP$ n for a loop statement or BLOCK$ n for a
declare block, where n is the line number at which the statement or block begins.

C.3.13. Symbol Lookup Conventions
For Ada programs, when you do not specify a path name (including an Ada expanded name), the
debugger searches the run-time symbol table as follows.

645

Appendix C. Summary of Debugger Support for Languages

1. The debugger looks for the symbol within the block or routine surrounding the current PC value
(where execution is currently paused).

2. If the symbol is not found, the debugger then searches any package that is mentioned in a use clause.
The debugger does not distinguish between a library package and a package whose declaration is
in the same module as the current scope region. If the same symbol is declared in two or more
packages that are visible, the symbol is not unique (according to Ada rules), and the debugger issues
a message similar to the following:

%DEBUG-E-NOUNIQUE, symbol 'X' is not unique

3. If the symbol is still not found, the debugger searches the call stack and other scopes, as for other
languages.

C.3.14. Setting Modules
When you or the debugger sets an Ada module, by default the debugger also sets any “related” module
(that is, any module whose symbols should be visible within the module being set). Such modules are
related to the one being set through either a with-clause or a subunit relationship.

Related module setting takes place as follows. If M1 is the module that is being set, then the following
modules are considered related and are also set:

• If M1 is a library body, the debugger also sets the associated library specification, if any.

• If M1 is a subunit, the debugger also sets its parent unit and, therefore, any parent of the parent.

• If M1 mentions a library package P1 in a with clause, the debugger also sets P1's specification.
Neither the body of P1 nor any possible subunits of P1 are set, because symbols declared within
them should not be visible outside.

If P1's specification mentions a package P2 in a with clause, the debugger also sets P2's specification.
Likewise, if P2's specification mentions a package P3 in a with clause, the debugger also sets P3's
specification, and so on. The specifications of all such library packages are set so that you can access
data components (for example, record components) that may have been declared in other packages.

• If M1 mentions a library subprogram in a with clause, the debugger does not set the subprogram.
Only the subprogram name needs to be visible in M1 (no declaration within a library subprogram
should be visible outside the subprogram). Therefore, the debugger inserts the name of the library
subprogram into the RST when M1 is set.

If debugger performance becomes a problem as more modules are set, use the
SET MODE NODYNAMIC command, which disables related module setting as well as dynamic module
setting. You must then set individual modules explicitly with the SET MODULE command.

By default, the SET MODULE command sets related modules simultaneously with the module specified
in the command.

The SET MODULE/NORELATED command sets only the modules you specify explicitly. However,
if you use SET MODULE/NORELATED, you may find that a symbol that is declared in another unit
and that should be visible at the point of execution is no longer visible or that a symbol which should be
hidden by a redeclaration of that same symbol is now visible.

The CANCEL MODULE/NORELATED command deletes from the RST only the modules you specify
explicitly. This command, which is the default, deletes related modules in a manner consistent with the
intent of Ada's scope and visibility rules. The exact effect depends on module relationships.

646

Appendix C. Summary of Debugger Support for Languages

The distinction between related and directly related for subunits is analogous to that for library packages.

C.3.14.1. Setting Modules for Package Bodies
Modules for package bodies are not automatically set by the debugger.

You may need to set the modules for library package bodies yourself so that you can debug the package
body or debug subprograms declared in the corresponding package specification.

C.3.15. Resolving Overloaded Names and Symbols
When you encounter overloaded names and symbols, the debugger issues a message like the following:

%DEBUG-E-NOTUNQOVR, symbol 'ADD' is overloaded
 use SHOW SYMBOL to find the unique symbol names

If the overloaded symbol is an enumeration literal, you can use qualified expressions to resolve the
overloadings.

If the overloaded symbol represents a subprogram or task accept statement, you can use the unique
name generated by the compiler for the debugger. The compiler always generates unique names for
subprograms declared in library package specifications, because the names might later be overloaded in
the package body. Unique names are generated for task accept statements and subprograms declared in
other places only if the task accept statements or subprograms are actually overloaded.

Overloaded task accept statement names and subprogram names are distinguished by a suffix consisting
of two underscores followed by an integer that uniquely identifies the given symbol. You must use
the unique naming notation in debugger commands to uniquely specify a subprogram whose name is
overloaded. However, if there is no ambiguity, you do not need to use the unique name, even though one
was generated.

C.3.16. CALL Command
With Ada programs, you can use the CALL command reliably only with a subprogram that has been
exported. An exported subprogram must be a library subprogram or must be declared in the outermost
declarative part of a library package.

The CALL command does not check whether or not the subprogram can be exported, nor does it check
the parameter-passing mechanisms that you specify. Note that you cannot use the CALL command to
modify the value of a parameter.

A CALL command may result in a deadlock if it is entered when the Ada run-time library is executing.
The run-time library routines acquire and release internal locks that allow the routines to operate in a
tasking environment. Deadlock can result if a subprogram called from the CALL command requires
a resource that has been locked by an executing run-time library routine. To avoid this situation in a
nontasking program, enter the CALL command immediately before or after an Ada statement has been
executed. However, this approach is not sufficient to assure that deadlock will not occur in a tasking
program, as some other task may be executing a run-time library routine at the time of the call. If you
must use the CALL command in a tasking program, you can avoid deadlock if the called subprogram
does not do any tasking or input-output operations.

C.4. BASIC
The following subtopics describe debugger support for BASIC.

647

Appendix C. Summary of Debugger Support for Languages

C.4.1. Operators in Language Expressions
Supported BASIC operators in language expressions include:

Kind Symbol Function

Prefix + Unary plus
Infix + Addition, String concatenation
Infix * Multiplication
Infix / Division
Infix ** Exponentiation
Infix ^ Exponentiation
Infix = Equal to
Infix <> Not equal to
Infix > < Not equal to
Infix > Greater than
Infix >= Greater than or equal to
Infix => Greater than or equal to
Infix < Less than
Infix <= Less than or equal to
Infix = < Less than or equal to
Prefix NOT Bit-wise NOT
Infix AND Bit-wise AND
Infix OR Bit-wise OR
Infix XOR Bit-wise exclusive OR
Infix IMP Bit-wise implication
Infix EQV Bit-wise equivalence

C.4.2. Constructs in Language and Address
Expressions
Supported constructs in language and address expressions for BASIC follow:

Symbol Construct

() Subscripting
:: Record component selection

C.4.3. Data Types
Supported BASIC data types follow:

BASIC Data Type Operating System Data Type Name

BYTE Byte Integer (B)
WORD Word Integer (W)

648

Appendix C. Summary of Debugger Support for Languages

BASIC Data Type Operating System Data Type Name

LONG Longword Integer (L)
SINGLE F_Floating (F)
DOUBLE D_Floating (D)
GFLOAT G_Floating (G)
DECIMAL Packed Decimal (P)
STRING ASCII Text (T)
RFA (None)
RECORD (None)
Arrays (None)

C.4.4. Compiling for Debugging
If you make changes to a program in the BASIC environment and attempt to compile the program with
the /DEBUG qualifier without first saving or replacing the program, BASIC signals the error “Unsaved
changes, no source line debugging available.” To avoid this problem, save or replace the program, and
then recompile the program with the /DEBUG qualifier.

C.4.5. Constants
BASIC constants of the form[radix] “ numeric-string”[type] (such as “12.34”GFLOAT) or
the form n% (such as 25% for integer 25) are not supported in debugger expressions.

C.4.6. Evaluating Expressions
Expressions that overflow in the BASIC language do not necessarily overflow when evaluated by the
debugger. The debugger tries to compute a numerically correct result, even when the BASIC rules call for
overflows. This difference is particularly likely to affect DECIMAL computations.

C.4.7. Line Numbers
The sequential line numbers that you refer to in a debugging session and that are displayed in a source
code display are those generated by the compiler. When a BASIC program includes or appends code
from another file, the included lines of code are also numbered in sequence by the compiler.

C.4.8. Stepping into Routines
The STEP/INTO command is useful for examining external functions. However, if you use this
command to stop execution at an internal subroutine or a DEF, the debugger initially steps into run-time
library (RTL) routines, providing you with no useful information. In the following example, execution is
paused at line 8, at a call to Print_routine:

 …
-> 8 GOSUB Print_routine
 9 STOP
 …
 20 Print_routine:
 21 IF Competition = Done
 22 THEN PRINT "The winning ticket is #";Winning_ticket
 23 ELSE PRINT "The game goes on."

649

Appendix C. Summary of Debugger Support for Languages

 24 END IF
 25 RETURN

A STEP/INTO command would cause the debugger to step into the relevant RTL code and would
inform you that no source lines are available for display. On the other hand, a STEP command alone
would cause the debugger to proceed directly to source line 9, past the call to Print_routine. To examine
the source code of subroutines or DEF functions, set a breakpoint on the routine label (for example, enter
the SET BREAK PRINT_ROUTINE command). You can then suspend execution exactly at the start
of the routine (line 20, in this example) and then step directly into the code.

C.4.9. Symbolic References
All variable and label names within a single BASIC program must be unique. Otherwise the debugger
cannot resolve the symbol ambiguity.

C.5. BLISS
The following subtopics describe debugger support for BLISS.

C.5.1. Operators in Language Expressions
Supported BLISS operators in language expressions include:

Kind Symbol Function

Prefix . Indirection
Prefix + Unary plus
Infix + Addition
Infix * Multiplication
Infix / Division
Infix MOD Remainder
Infix ^ Left shift
Infix EQL Equal to
Infix EQLU Equal to
Infix EQLA Equal to
Infix NEQ Not equal to
Infix NEQU Not equal to
Infix NEQA Not equal to
Infix GTR Greater than
Infix GTRU Greater than unsigned
Infix GTRA Greater than unsigned
Infix GEQ Greater than or equal to
Infix GEQU Greater than or equal to unsigned
Infix GEQA Greater than or equal to unsigned
Infix LSS Less than
Infix LSSU Less than unsigned

650

Appendix C. Summary of Debugger Support for Languages

Kind Symbol Function

Infix LSSA Less than unsigned
Infix LEQ Less than or equal to
Infix LEQU Less than or equal to unsigned
Infix LEQA Less than or equal to unsigned
Prefix NOT Bit-wise NOT
Infix AND Bit-wise AND
Infix OR Bit-wise OR
Infix XOR Bit-wise exclusive OR
Infix EQV Bit-wise equivalence

C.5.2. Constructs in Language and Address
Expressions
Supported constructs in language and address expressions for BLISS follow:

Symbol Construct

[] Subscripting
[fldname] Field selection
<p, s, e> Bit field selection

C.5.3. Data Types
Supported BLISS data types follow:

BLISS Data Type Operating System Data Type Name

BYTE Byte Integer (B)
WORD Word Integer (W)
LONG Longword Integer (L)
QUAD (Alpha and Integrity servers-specific) Quadword (Q)
BYTE UNSIGNED Byte Unsigned (BU)
WORD UNSIGNED Word Unsigned (WU)
LONG UNSIGNED Longword Unsigned (LU)
QUAD UNSIGNED (Alpha and Integrity servers-
specific)

Quadword Unsigned (QU)

VECTOR (None)
BITVECTOR (None)
BLOCK (None)
BLOCKVECTOR (None)
REF VECTOR (None)
REF BITVECTOR (None)
REF BLOCK (None)

651

Appendix C. Summary of Debugger Support for Languages

BLISS Data Type Operating System Data Type Name

REF BLOCKVECTOR (None)

C.6. C
The following subtopics describe debugger support for C.

C.6.1. Operators in Language Expressions
Supported C operators in language expressions include:

Kind Symbol Function

Prefix * Indirection
Prefix & Address of
Prefix sizeof size of
Infix + Addition
Infix * Multiplication
Infix / Division
Infix % Remainder
Infix < < Left shift
Infix >> Right shift
Infix == Equal to
Infix != Not equal to
Infix > Greater than
Infix >= Greater than or equal to
Infix < Less than
Infix <= Less than or equal to
Prefix ~ (tilde) Bit-wise NOT
Infix & Bit-wise AND
Infix | Bit-wise OR
Infix ^ Bit-wise exclusive OR
Prefix ! Logical NOT
Infix & & Logical AND
Infix | | Logical OR

Because the exclamation point (!) is an operator in C, it cannot be used as the comment delimiter.
When the language is set to C, the debugger instead accepts /* as the comment delimiter. The comment
continues to the end of the current line. (A matching */ is neither needed nor recognized.) To permit
debugger log files to be used as debugger input, the debugger still recognizes an exclamation point (!) as
a comment delimiter if it is the first nonspace character on a line.

The debugger accepts the prefix asterisk (*) as an indirection operator in both C language expressions
and debugger address expressions. In address expressions, prefix “*” is synonymous to prefix “.” or “@”
when the language is set to C.

652

Appendix C. Summary of Debugger Support for Languages

The debugger does not support any of the assignment operators in C (or any other language) in order
to prevent unintended modifications to the program being debugged. Hence such operators as =, +=,
++, and −− are not recognized. To alter the contents of a memory location, you must use an explicit
DEPOSIT command.

C.6.2. Constructs in Language and Address
Expressions
Supported constructs in language and address expressions for C follow:

Symbol Construct

[] Subscripting
. (period) Structure component selection
-> Pointer dereferencing

C.6.3. Data Types
Supported C data types follow:

C Data Type Operating System Data Type Name

__int64 (Alpha and Integrity servers specific) Quadword Integer (Q)
unsigned __int64 (Alpha specific) Quadword Unsigned (QU)
__int32 (Alpha and Integrity servers specific) Longword Integer (L)
unsigned __int32 (Alpha and Integrity servers
specific)

Longword Unsigned (LU)

int Longword Integer (L)
unsigned int Longword Unsigned (LU)
__int16 (Alpha and Integrity servers specific) Word Integer (W)
unsigned __int16 (Alpha and Integrity servers
specific)

Word Unsigned (WU)

short int Word Integer (W)
unsigned short int Word Unsigned (WU)
char Byte Integer (B)
unsigned char Byte Unsigned (BU)
float F_Floating (F)
__f_float (Alpha and Integrity servers specific) F_Floating (F)
double D_Floating (D)
double G_Floating (G)
__g_float (Alpha and Integrity servers specific) G_Floating (G)
float (Alpha and Integrity servers specific) IEEE S_Floating (FS)
__s_float (Alpha and Integrity servers specific) IEEE S_Floating (FS)
double (Alpha and Integrity servers specific) IEEE T_Floating (FT)
__t_float (Alpha and Integrity servers specific) IEEE T_Floating (FT)

653

Appendix C. Summary of Debugger Support for Languages

C Data Type Operating System Data Type Name

enum (None)
struct (None)
union (None)
Pointer Type (None)
Array Type (None)

Floating-point numbers of type float may be represented by F_Floating or IEEE S_Floating, depending
on compiler switches.

Floating-point numbers of type double may be represented by IEEE T_Floating, D_Floating, or
G_Floating, depending on compiler switches.

C.6.4. Case Sensitivity
Symbol names are case sensitive for language C, meaning that uppercase and lowercase letters are
treated as different characters.

C.6.5. Static and Nonstatic Variables
Variables of the following storage classes are allocated statically:static, globaldef, globalref, and extern.

Variables of the following storage classes are allocated nonstatically (on the stack or in registers): auto
and register. Such variables can be accessed only when their defining routine is active (on the call stack).

C.6.6. Scalar Variables
You can specify scalar variables of any C type in debugger commands exactly as you would specify them
in the source code of the program.

The following paragraphs provide additional information about char variables and pointers.

The char variables are interpreted by the debugger as byte integers, not ASCII characters. To display the
contents of a char variable ch as a character, you must use the /ASCII qualifier:

DBG> EXAMINE/ASCII ch
SCALARS\main\ch: "A"

You also must use the /ASCII qualifier when depositing into a char variable, to translate the byte
integer into its ASCII equivalent. For example:

DBG> DEPOSIT/ASCII ch = 'z'
DBG> EXAMINE/ASCII ch
SCALARS\main\ch: "z"

The following example shows use of pointer syntax with the EXAMINE command. Assume the following
declarations and assignments:

static long li = 790374270;
static int *ptr = &li;

DBG> EXAMINE *ptr

654

Appendix C. Summary of Debugger Support for Languages

*SCALARS\main\ptr: 790374270

C.6.7. Arrays
The debugger handles C arrays as for most other languages. That is, you can examine an entire array
aggregate, a slice of an array, or an individual array element, using array syntax (for example EXAMINE
arr[3]). And you can deposit into only one array element at a time.

C.6.8. Character Strings
Character strings are implemented in C as null-terminated ASCII strings (ASCIZ strings). To examine
and deposit data in an entire string, use the /ASCIZ (or /AZ) qualifier so that the debugger can
interpret the end of the string properly. You can examine and deposit individual characters in the string
using the C array subscripting operators ([]). When you examine and deposit individual characters, use
the /ASCII qualifier.

Assume the following declarations and assignments:

static char *s = "vaxie";static char **t = &s;

The EXAMINE/AZ command displays the contents of the character string pointed to by *s and * *t:

DBG> EXAMINE/AZ *s
*STRING\main\s: "vaxie"
DBG> EXAMINE/AZ **t
**STRING\main\t: "vaxie"

The DEPOSIT/AZ command deposits a new ASCIZ string in the variable pointed to by *s. The
EXAMINE/AZ command displays the new contents of the string:

DBG> DEPOSIT/AZ *s = "DEC C"
DBG> EXAMINE/AZ *s, **t
*STRING\main\s: "DEC C"**STRING\main\t:
 "DEC C"

You can use array subscripting to examine individual characters in the string and deposit new ASCII
values at specific locations within the string. When accessing individual members of a string, use the
/ASCII qualifier. A subsequent EXAMINE/AZ command shows the entire string containing the
deposited value:

DBG> EXAMINE/ASCII s[3]
[3]: " "
DBG> DEPOSIT/ASCII s[3] = "-"
DBG> EXAMINE/AZ *s, **t
*STRING\main\s: "VAX-C"
**STRING\main\t: "VAX-C"

C.6.9. Structures and Unions
You can examine structures in their entirety or on a member-by-member basis, and deposit data into
structures one member at a time.

To reference members of a structure or union, use the usual C syntax for such references. That is, if
variable p is a pointer to a structure, you can reference member y of that structure with the expression p
->y. If variable x refers to the base of the storage allocated for a structure, you can refer to a member of
that structure with the x.y expression.

655

Appendix C. Summary of Debugger Support for Languages

The debugger uses C type-checking rules to reference members of a structure or union. For example,
in the case of x.y, y need not be a member of x; it is treated as an offset with a type. When such a
reference is ambiguous - when there is more than one structure with a member y - the debugger attempts
to resolve the reference according to the following rules. The same rules for resolving the ambiguity of a
reference to a member of a structure or union apply to both x.y and p ->y.

• If only one of the members, y, belongs in the structure or union, x, that is the one that is referenced.

• If only one of the members, y, is in the same scope as x, then that is the one that is referenced.

You can always give a path name with the reference tox to narrow the scope that is used and to resolve
the ambiguity. The same pathname is used to look up both x and y.

C.7. C++ Version 5.5 and Later (Alpha and
Integrity servers Only)
On Alpha and Integrity server systems, the OpenVMS debugger provides enhanced support for
debugging C++ modules compiled with the Version 5.5 compiler or later (Alpha and Integrity servers
only).

The debugger supports the following C++ features:

• C++ names and expressions, including:

• Explicit and implicit this pointer to refer to class members

• Scope resolution operator (::)

• Member access operators: period (.) and right arrow (->)

• Template instantiations

• Template names

• Setting breakpoints in:

• Member functions, including static and virtual functions

• Overloaded functions

• Constructors and destructors

• Template instantiations

• Operators

• Calling functions, including overloaded functions

• Debugging programs containing a mixture of C++ code and code in other languages

The following subtopics describe debugger support for C++.

C.7.1. Operators in Language Expressions
Supported C++ operators in language expressions follow:

656

Appendix C. Summary of Debugger Support for Languages

Kind Symbol Function

Prefix * Indirection
Prefix & Address of
Prefix sizeof size of
Prefix -- Unary minus (negation)
Infix + Addition
Infix -- Subtraction
Infix * Multiplication
Infix / Division
Infix % Remainder
Infix < < Left shift
Infix >> Right shift
Infix == Equal to
Infix != Not equal to
Infix > Greater than
Infix >= Greater than or equal to
Infix < Less than
Infix <= Less than or equal to
Prefix ~ (tilde) Bit-wise NOT
Infix & Bit-wise AND
Infix | Bit-wise OR
Infix ^ Bit-wise exclusive OR
Prefix ! Logical NOT
Infix & & Logical AND
Infix | | Logical OR

Because the exclamation point (!) is an operator, it cannot be used in C++ programs as a comment
delimiter. However, to permit debugger log files to be used as debugger input, the debugger interprets !
as a comment delimiter when it is the first nonspace character on a line. In C++ language mode, the
debugger also interprets /* or // as preceding a comment that continues to the end of the current line.

The debugger accepts the asterisk (*) prefix as an indirection operator in both C++ language expressions
and debugger address expressions. In address expressions, the * prefix is synonymous with either the
period (.) prefix or at sign (@) prefix when the debugger is in C++ language mode.

To prevent unintended modifications to the program being debugged, the debugger does not support any
of the assignment operators in C++ (or any other language). Thus, such operators as =, +=, --=, ++, and
−− are not recognized in debugger commands. To alter the contents of a memory location, you must use
the debugger DEPOSIT command.

C.7.2. Constructs in Language and Address
Expressions
Supported constructs in language and address expressions for C++ follow:

657

Appendix C. Summary of Debugger Support for Languages

Symbol Construct

[] Subscripting
. (period) Structure component selection
-> Pointer dereferencing
:: Scope resolution

C.7.3. Data Types
Supported C++ data types follow:

C++ Data Type Operating System Data Type Name

__int64 (Alpha and Integrity servers) Quadword Integer (Q)
unsigned __int64 (Alpha and Integrity servers) Quadword Unsigned (QU)
__int32 (Alpha and Integrity servers) Longword Integer (L)
unsigned __int32 (Alpha and Integrity servers) Longword Unsigned (LU)
int Longword Integer (L)
unsigned int Longword Unsigned (LU)
__int16 (Alpha and Integrity servers) Word Integer (W)
unsigned __int16 (Alpha and Integrity servers) Word Unsigned (WU)
short int Word Integer (W)
unsigned short int Word Unsigned (WU)
char Byte Integer (B)
unsigned char Byte Unsigned (BU)
float F_Floating (F)
__f_float (Alpha and Integrity servers) F_Floating (F)
double D_Floating (D)
double G_Floating (G)
__g_float (Alpha and Integrity servers) G_Floating (G)
float (Alpha and Integrity servers) IEEE S_Floating (FS)
__s_float (Alpha and Integrity servers) IEEE S_Floating (FS)
double (Alpha and Integrity servers) IEEE T_Floating (FT)
__t_float (Alpha and Integrity servers) IEEE T_Floating (FT)
enum (None)
struct (None)
class (None)
union (None)
Pointer Type (None)
Array Type (None)

Floating-point numbers of type float may be represented by F_Floating or IEEE S_Floating, depending
on compiler switches.

658

Appendix C. Summary of Debugger Support for Languages

Floating-point numbers of type double may be represented by IEEE T_Floating, D_Floating, or
G_Floating, depending on compiler switches.

C.7.4. Case Sensitivity
Symbol names are case sensitive in C++. This means that uppercase and lowercase letters are treated as
different characters.

C.7.5. Displaying Information About a Class
 Use the command SHOW SYMBOL to display static information about a class declaration. Use the
command EXAMINE to view dynamic information about class objects (see Section C.7.6).

The command SHOW SYMBOL/FULL displays the class type declaration, including:

Data members (including static data members)
Member functions (including static member functions)
Constructors and destructors
Base classes and derived classes

For example:

dbg> SHOW SYMBOL /TYPE C
type C
 struct (C, 13 components), size: 40 bytes
overloaded name C
 instance C::C(void)
 instance C::C(const C &)
dbg> SHOW SYMBOL /FULL C
type C
 struct (C, 13 components), size: 40 bytes
 inherits: B1, size: 24 bytes, offset: 0 bytes
 B2, size: 24 bytes, offset: 12 bytes
 contains the following members:
 overloaded name C::g
 instance C::g(int)
 instance C::g(long)
 instance C::g(char)
 j : longword integer, size: 4 bytes, offset: 24 bytes
 s : longword integer, size: 4 bytes, address: # [static]
 overloaded name C
 int ==(C &)
 C & =(const C &)
 void h(void) [virtual]
 ~C(void)
 __vptr : typed pointer type, size: 4 bytes, offset: 4 bytes
 __bptr : typed pointer type, size: 4 bytes, offset: 8 bytes
 structure has been padded, size: 4 bytes, offset: 36 bytes
 overloaded name C
 instance C::C(void)
 instance C::C(const C &)
DBG>

Note that SHOW SYMBOL/FULL does not display members of base classes or derived classes. Use the
commands SHOW SYMBOL/FULL base_class_name and SHOW SYMBOL/FULL derived_class_name
to display information about members of those classes. For example:

659

Appendix C. Summary of Debugger Support for Languages

DBG> SHOW SYMBOL /FULL B1
type B1
 struct (B1, 8 components), size: 24 bytes
 inherits: virtual A
 is inherited by: C
 contains the following members:
 i : longword integer, size: 4 bytes, offset: 0 bytes
 overloaded name B1
 void f(void)
 B1 & =(const B1 &)
 void h(void) [virtual]
 __vptr : typed pointer type, size: 4 bytes, offset: 4 bytes
 __bptr : typed pointer type, size: 4 bytes, offset: 8 bytes
 structure has been padded, size: 12 bytes, offset: 12 bytes
overloaded name B1
 instance B1::B1(void)
 instance B1::B1(const B1 &)
DBG>

Use the command SHOW SYMBOL/FULL class_member_name to display information about class
members. For example:

DBG> SHOW SYMBOL /FULL j
record component C::j
 address: offset 24 bytes from beginning of record
 atomic type, longword integer, size: 4 bytes
record component A::j
 address: offset 4 bytes from beginning of record
 atomic type, longword integer, size: 4 bytes
DBG>

Use the SHOW SYMBOL/FULL command to display detailed information about an object.

Note that SHOW SYMBOL does not currently support qualified names. For example, the following
commands are not currently supported:

SHOW SYMBOL object_name.function_name
SHOW SYMBOL class_name::member_name

C.7.6. Displaying Information About an Object
The debugger uses C++ symbol lookup rules to display information about objects. Use the command
EXAMINE to display the current value of an object. For example:

DBG> EXAMINE a
CXXDOCEXAMPLE\main\a: struct A
 i: 0
 j: 1
 __vptr: 131168
DBG>

You can also display individual object members using the member access operators, period (.) and right
arrow (->), with the EXAMINE command. For example:

DBG> EXAMINE ptr
CXXDOCEXAMPLE\main\ptr: 40
DBG> EXAMINE *ptr
*CXXDOCEXAMPLE\main\ptr: struct A
 i: 0

660

Appendix C. Summary of Debugger Support for Languages

 j: 1
 __vptr: 131168
DBG> EXAMINE a.i
CXXDOCEXAMPLE\main\a.i: 0
DBG> EXAMINE ptr->i
CXXDOCEXAMPLE\main\ptr->i: 0
DBG>

The debugger correctly interprets virtual inheritance. For example:

DBG> EXAMINE c
CXXDOCEXAMPLE\main\c: struct C
 inherit B1
 inherit virtual A
 i: 8
 j: 9
 __vptr: 131200
 i: 10
 __vptr: 131232
 __bptr: 131104
 inherit B2
 inherit virtual A (already printed, see above)
 i: 11
 __vptr: 131280
 __bptr: 131152
 j: 12
 __vptr: 131232
 __bptr: 131104
DBG>

Use the scope resolution operator (::) to reference global variables, to reference hidden members in base
classes, to explicitly reference a member that is inherited, or otherwise to name a member hidden by the
current context. For example:

DBG> EXAMINE c.j
CXXDOCEXAMPLE\main\c.j: 12
DBG> EXAMINE c.A::j
CXXDOCEXAMPLE\main\c.A::j: 9
DBG> EXAMINE x
CXXDOCEXAMPLE\main\x: 101
DBG> EXAMINE ::x
CXXDOCEXAMPLE\x: 13
DBG>

To resolve ambiguous member references, the debugger lists the members that satisfy the reference and
requests an unambiguous reference to the member. For example:

DBG> EXAMINE c.i
%DEBUG-I-AMBIGUOUS, 'i' is ambiguous, matching the following
 CXXDOCEXAMPLE\main\c.B1::i
 CXXDOCEXAMPLE\main\c.B2::i
%DEBUG-E-REENTER, reenter the command using a more precise pathname
DBG> EXAMINE c.B1::i
CXXDOCEXAMPLE\main\c.B1::i: 10
DBG>

Use the scope resolution operator (::) to refer to static data members. For example:

DBG> EXAMINE c.s

661

Appendix C. Summary of Debugger Support for Languages

CXXDOCEXAMPLE\main\c.s: 42
DBG> EXAMINE C::s
C::s: 42
DBG>

Use the SHOW SYMBOL/FULL to display the class type of an object (see Section C.7.5).

C.7.7. Setting Watchpoints
You can set watchpoints on objects. All nonstatic data members are watched (including those in base
classes). Static data members are not watched when you set a watchpoint on the object. However, you
can explicitly set watchpoints on static data members. For example:

DBG> SET WATCH c
%DEBUG-I-WPTTRACE, non-static watchpoint, tracing every instruction
DBG> GO
watch of CXXDOCEXAMPLE\main\c.i at CXXDOCEXAMPLE\main\%LINE 50+8
 50: c.B2::i++;
 old value: 11
 new value: 12
break at CXXDOCEXAMPLE\main\%LINE 51
 51: c.s++;
DBG> SET WATCH c.s
DBG> GO
watch of CXXDOCEXAMPLE\main\c.s at CXXDOCEXAMPLE\main\%LINE 51+16
 51: c.s++;
 old value: 43
 new value: 44
break at CXXDOCEXAMPLE\main\%LINE 53
 53: b1.f();
DBG>

C.7.8. Debugging Functions
The debugger uses C++ symbol lookup rules to display information on member functions. For example:

DBG> EXAMINE /SOURCE b1.f
module CXXDOCEXAMPLE
 14: void f() {}
DBG> SET BREAK B1::f
DBG> GO
break at routine B1::f
 14: void f() {}
DBG>

The debugger correctly interprets references to the this pointer. For example:

DBG> EXAMINE this
B1::f::this: 16
DBG> EXAMINE *this*
B1::f::this: struct B1
 inherit virtual A
 i: 2
 j: 3
 __vptr: 131184
 i: 4
 __vptr: 131248
 __bptr: 131120

662

Appendix C. Summary of Debugger Support for Languages

DBG> EXAMINE this->i
B1::f::this->i: 4
DBG> EXAMINE this->j
B1::f::this->A::j: 3
DBG>EXAMINE i
B1::f::this->i: 4
DBG> EXAMINE j
B1::f::this->A::j: 3
DBG>

The debugger correctly references virtual member functions. For example:

DBG> EXAMINE /SOURCE %LINE 53
module CXXDOCEXAMPLE
 53: b1.f();
DBG> SET BREAK this->h
DBG> SHOW BREAK
breakpoint at routine B1::f
breakpoint at routine B1::h
!!!! We are at the call to B1::f made at 'c.B1::f()'.
!! Here this->h matches C::h.
!!
DBG> GO
break at routine B1::f
 14: void f() {}
DBG> EXAMINE /SOURCE %LINE 54
module CXXDOCEXAMPLE
 54: c.B1::f();
DBG> SET BREAK this->h
DBG> SHOW BREAK
breakpoint at routine B1::f
breakpoint at routine B1::h
breakpoint at routine C::h
!!
!! Handling overloaded functions
!!
DBG> show symbol/full g
overloaded name C::g
routine C::g(char)
type signature: void g(char)
address: 132224, size: 128 bytes
routine C::g(long)
type signature: void g(long)
address: 132480, size: 96 bytes
DBG> SET BREAK g
%DEBUG-I-NOTUNQOVR, symbol 'g' is overloaded
overloaded name C::g
 instance C::g(int)
 instance C::g(long)
 instance C::g(char)
%DEBUG-E-REENTER, reenter the command using a more precise pathname
DBG> SET BREAK g(int)
DBG> CANCEL BREAK/ALL
DBG>

If you try to set a break on an overloaded function, the debugger lists the instances of the function and
requests that you specify the correct instance. For example, with Debugger Version 7.2:

DBG> SET BREAK g

663

Appendix C. Summary of Debugger Support for Languages

%DEBUG-I-NOTUNQOVR, symbol 'g' is overloaded
overloaded name C::g
 instance void g(int)
 instance void g(long)
 instance void g(char *)
%DEBUG-E-REENTER, reenter the command using a more precise pathname
DBG> SET BREAK g(int)
DBG>

Note

The means of displaying and specifying overloaded functions is different than in the OpenVMS
Debugger Version 7.1C.

The debugger provides support for debugging constructors, destructors, and operators. For example:

DBG> SET BREAK C
%DEBUG-I-NOTUNQOVR, symbol 'C' is overloaded
overloaded name C
 instance C::C(void)
 instance C::C(const C &)
%DEBUG-E-REENTER, reenter the command using a more precise pathname
DBG> SHOW SYMBOL /FULL ~C
routine C::~C
 type signature: ~C(void)
 code address: #, size: 152 bytes
 procedure descriptor address: #
DBG> SET BREAK ~C
DBG> SET BREAK %NAME'=='
%DEBUG-W-UNALLOCATED, '==' is not allocated in memory (optimized away)
%DEBUG-E-CMDFAILED, the SET BREAK command has failed
DBG> SHOW SYMBOL /FULL ==,
 routine c::operator==, type
signature: bool operator==�
code address: 198716, size:40 bytes,
procedure descriptor address: 65752
DBG> SET BREAK operator==
DBG> SHOW SYMBOL /FULL ==
routine C::==
 type signature: int ==(C &)
 address: unallocated
DBG> SHOW BREAK
breakpoint at routine C::~C
DBG>
DBG> examine C::~C
C::~C: alloc r35 = ar.pfs, 3F, 01, 00
DBG>
DBG> ex/source ~C
module CXXDOCEXAMPLE
37: ~C() {}

C.7.9. Limitations on Debugger Support for C++
The following limitations apply when you debug a C++ program:

• You cannot specify a template by name in a debugger command. You must use the name of the
instantiation of the template.

664

Appendix C. Summary of Debugger Support for Languages

• In C++, expressions in the instantiated template name can be full constant expressions, such as stack
<double, f*10>. This form is not yet supported in the debugger; you must enter the value of the
expression (for example, if f is 10 in the stack example, you must enter 100).

Example C.1 contains CXXDOCEXAMPLE.C, a C++ example program.

Example C.1. C++ Example Program CXXDOCEXAMPLE.C

int x = 0;
struct A
 {
 int i,j;
 void f() {}
 virtual void h() {};
 A() { i=x++; j=x++; }
 };
struct B1 : virtual A
 {
 int i;
 void f() {}
 virtual void h() {} B1() { i=x++; } };
struct B2 : virtual A
 {
 int i;
 void f() {}
 virtual void h() {}
 B2() { i=x++; }
 };
struct C : B1, B2
 {
 int j;
 static int s;
 void g(int) {}
 void g(long) {}
 void g(char) {}
 void h() {}
 operator ==(C&) { return 0; }
 C() { j=x++; }
 ~C() {}
 };
int C::s = 42;
main()
 {
 A a; B1 b1; B2 b2; C c;
 A *ptr = &a;
 int x = 101;
 x++;
 c.s++;
 c.B2::i++;
 c.s++;
 b1.f();
 c.B1::f();
 c.g(1);
 c.g((long) 1);
 c.g('a');
 }

Example C.2 contains a sample debugging session of the program contained in Example C.1.

665

Appendix C. Summary of Debugger Support for Languages

Example C.2. C++ Debugging Example

DBG> GO
break at routine CXXDOCEXAMPLE\main
 44: A a; B1 b1; B2 b2; C c;
DBG> STEP
stepped to CXXDOCEXAMPLE\main\%LINE 45
 45: A *ptr = &a;
DBG> STEP
stepped to CXXDOCEXAMPLE\main\%LINE 46
 46: int x = 101;
DBG> STEP
stepped to CXXDOCEXAMPLE\main\%LINE 47
 47: x++;
!!
!! Displaying class information
!!
DBG> SHOW SYMBOL /TYPE C
type C
 struct (C, 13 components), size: 40 bytes
overloaded name C
 instance C::C(void)
 instance C::C(const C &)
DBG> SHOW SYMBOL /FULL C
type C
 struct (C, 13 components), size: 40 bytes
 inherits: B1, size: 24 bytes, offset: 0 bytes
 B2, size: 24 bytes, offset: 12 bytes
 contains the following members:
 overloaded name C::g
 instance C::g(int)
 instance C::g(long)
 instance C::g(char)
 j : longword integer, size: 4 bytes, offset: 24 bytes
 s : longword integer, size: 4 bytes, address: # [static]
 overloaded name C
 int ==(C &)
 C & =(const C &)
 void h(void) [virtual]
 ~C(void)
 __vptr : typed pointer type, size: 4 bytes, offset: 4 bytes
 __bptr : typed pointer type, size: 4 bytes, offset: 8 bytes
 structure has been padded, size: 4 bytes, offset: 36 bytes
overloaded name C
 instance C::C(void)
 instance C::C(const C &)
!!
!! Displaying information about base classes!!
DBG> SHOW SYMBOL /FULL B1
type B1
 struct (B1, 8 components), size: 24 bytes
 inherits: virtual A
 is inherited by: C
 contains the following members:
 i : longword integer, size: 4 bytes, offset: 0 bytes
 overloaded name B1
 void f(void)
 B1 & =(const B1 &)

666

Appendix C. Summary of Debugger Support for Languages

 void h(void) [virtual]
 __vptr : typed pointer type, size: 4 bytes, offset: 4 bytes
 __bptr : typed pointer type, size: 4 bytes, offset: 8 bytes
 structure has been padded, size: 12 bytes, offset: 12 bytes
overloaded name B1
 instance B1::B1(void)
 instance B1::B1(const B1 &)
!!
!! Displaying class member information
!!
DBG> SHOW SYMBOL /FULL j
record component C::j
 address: offset 24 bytes from beginning of record
 atomic type, longword integer, size: 4 bytes
record component A::j
 address: offset 4 bytes from beginning of record
 atomic type, longword integer, size: 4 bytes
!!
!! Simple object display
!!
DBG> EXAMINE a
CXXDOCEXAMPLE\main\a: struct A
 i: 0
 j: 1
 __vptr: 131168
!!
!! Using *, -> and . to access objects and members
!!
DBG> EXAMINE ptr
CXXDOCEXAMPLE\main\ptr: 40
DBG> EXAMINE *ptr
*CXXDOCEXAMPLE\main\ptr: struct A
 i: 0
 j: 1
 __vptr: 131168
DBG> EXAMINE a.i
CXXDOCEXAMPLE\main\a.i: 0
DBG> EXAMINE ptr->i
CXXDOCEXAMPLE\main\ptr->i: 0
!!
!! Complicated object example
!!
DBG> EXAMINE c
CXXDOCEXAMPLE\main\c: struct C
 inherit B1
 inherit virtual A
 i: 8
 j: 9
 __vptr: 131200
 i: 10
 __vptr: 131232
 __bptr: 131104
 inherit B2
 inherit virtual A (already printed, see above)
 i: 11
 __vptr: 131280
 __bptr: 131152
 j: 12

667

Appendix C. Summary of Debugger Support for Languages

 __vptr: 131232
 __bptr: 131104
!!
!! The debugger using C++ symbol lookup rules (to match c.j)
!! and then the use of :: to specify a particular member named j.
!!
DBG> EXAMINE c.j
CXXDOCEXAMPLE\main\c.j: 12
DBG> EXAMINE c.A::j
CXXDOCEXAMPLE\main\c.A::j: 9
!!
!! Using the global scope resolution operator.
!!
DBG> EXAMINE x
CXXDOCEXAMPLE\main\x: 101
DBG> EXAMINE ::x
CXXDOCEXAMPLE\x: 13
!!
!! Handling ambiguous member references.
!!
DBG> EXAMINE c.i
%DEBUG-I-AMBIGUOUS, 'i' is ambiguous, matching the following
 CXXDOCEXAMPLE\main\c.B1::i
 CXXDOCEXAMPLE\main\c.B2::i
%DEBUG-E-REENTER, reenter the command using a more precise pathname
DBG> EXAMINE c.B1::i
CXXDOCEXAMPLE\main\c.B1::i: 10
!!
!! Refering to static data members: with . and with ::
!!
DBG> EXAMINE c.s
CXXDOCEXAMPLE\main\c.s: 42
DBG> EXAMINE C::sC::s: 42
!!
!! Setting watchpoints on objects. All non-static data members
!! are watched (including those in base classes). Static data
!! members are not watched. Of course watchpoints on static data
!! members can be set explicitly.
!!
DBG> SET WATCH c
%DEBUG-I-WPTTRACE, non-static watchpoint, tracing every instruction
DBG> GO
watch of CXXDOCEXAMPLE\main\c.i at CXXDOCEXAMPLE\main\%LINE 50+8
 50: c.B2::i++;
 old value: 11
 new value: 12
break at CXXDOCEXAMPLE\main\%LINE 51
 51: c.s++;
DBG> SET WATCH c.s
DBG> GO
watch of CXXDOCEXAMPLE\main\c.s at CXXDOCEXAMPLE\main\%LINE 51+16
 51: c.s++;
 old value: 43
 new value: 44
break at CXXDOCEXAMPLE\main\%LINE 53
 53: b1.f();
!!
!! Basic member lookup applies to functions.

668

Appendix C. Summary of Debugger Support for Languages

!!
DBG> EXAMINE /SOURCE b1.f
module CXXDOCEXAMPLE
 14: void f() {}
DBG> SET BREAK B1::f
DBG> GO
break at routine B1::f
 14: void f() {}
!!
!! Support for 'this'.
!!
DBG> EXAMINE this
B1::f::this: 16
DBG> EXAMINE *this
*B1::f::this: struct B1
 inherit virtual A
 i: 2
 j: 3
 __vptr: 131184
 i: 4
 __vptr: 131248
 __bptr: 131120
DBG> EXAMINE this->i
B1::f::this->i: 4
DBG> EXAMINE this->j
B1::f::this->A::j: 3
DBG>EXAMINE i
B1::f::this->i: 4
DBG> EXAMINE j
B1::f::this->A::j: 3
!!
!! Support for virtual functions.
!!
!! We are at the call to B1::f made at 'b1.f()'.
!! Here this->h matches B1::h.
!!
DBG> EXAMINE /SOURCE %LINE 53
module CXXDOCEXAMPLE
 53: b1.f();
DBG> SET BREAK this->h
DBG> SHOW BREAK
breakpoint at routine B1::f
breakpoint at routine B1::h
!!
!! We are at the call to B1::f made at 'c.B1::f()'.
!! Here this->h matches C::h.
!!
DBG> GO
break at routine B1::f
 14: void f() {}
DBG> EXAMINE /SOURCE %LINE 54
module CXXDOCEXAMPLE
 54: c.B1::f();
DBG> SET BREAK this->h
DBG> SHOW BREAK
breakpoint at routine B1::f
breakpoint at routine B1::h
breakpoint at routine C::h

669

Appendix C. Summary of Debugger Support for Languages

!!
!! Handling overloaded functions
!!
DBG> SET BREAK g
%DEBUG-I-NOTUNQOVR, symbol 'g' is overloaded
overloaded name C::g
 instance C::g(int)
 instance C::g(long)
 instance C::g(char)
%DEBUG-E-REENTER, reenter the command using a more precise pathname
DBG> SET BREAK g(int)
DBG> CANCEL BREAK/ALL
!!
!! Working with constructors, destructors, and operators.
!!
DBG> SET BREAK C
%DEBUG-I-NOTUNQOVR, symbol 'C' is overloaded
overloaded name C
 instance C::C(void)
 instance C::C(const C &)
%DEBUG-E-REENTER, reenter the command using a more precise pathname
DBG> SHOW SYMBOL /FULL ~C
routine C::~C
 type signature: ~C(void)
 code address: #, size: 152 bytes
 procedure descriptor address: #
DBG> SET BREAK %NAME'~C'
DBG> SET BREAK %NAME'=='
%DEBUG-W-UNALLOCATED, '==' is not allocated in memory (optimized away)
%DEBUG-E-CMDFAILED, the SET BREAK command has failed
DBG> SHOW SYMBOL /FULL ==
routine C::==
 type signature: int ==(C &)
 address: unallocated
DBG> SHOW BREAK
breakpoint at routine C::~C
DBG> EXIT

C.8. COBOL
The following subtopics describe debugger support for COBOL.

C.8.1. Operators in Language Expressions
Supported COBOL operators in language expressions include:

Kind Symbol Function

Prefix + Unary plus
Infix + Addition
Infix * Multiplication
Infix / Division
Infix = Equal to
Infix NOT = Not equal to

670

Appendix C. Summary of Debugger Support for Languages

Kind Symbol Function

Infix > Greater than
Infix NOT < Greater than or equal to
Infix < Less than
Infix NOT > Less than or equal to
Infix NOT Logical NOT
Infix AND Logical AND
Infix OR Logical OR

C.8.2. Constructs in Language and Address
Expressions
Supported constructs in language and address expressions for COBOL follow:

Symbol Construct

() Subscripting
OF Record component selection
IN Record component selection

C.8.3. Data Types
Supported COBOL data types follow:

COBOL Data Type Operating System Data Type Name

COMP Longword Integer (L, LU)
COMP Word Integer (W, WU)
COMP Quadword Integer (Q, QU)
COMP-1 F_Floating (F)
COMP-1 (Alpha and Integrity servers specific) S_Floating (FS)
COMP-2 D_Floating (D)
COMP-2 (Alpha and Integrity servers specific) T_Floating (FT)
COMP-3 Packed Decimal (P)
INDEX Longword Integer (L)
Alphanumeric ASCII Text (T)
Records (None)
Numeric Unsigned Numeric string, unsigned (NU)
Leading Separate Sign Numeric string, left separate sign (NL)
Leading Overpunched Sign Numeric string, left overpunched sign (NLO)
Trailing Separate Sign Numeric string, right separate sign (NR)
Trailing Overpunched Sign Numeric string, right overpunched sign (NRO)

Floating-point numbers of type COMP-1 may be represented by F_Floating or IEEE S_Floating,
depending on compiler switches.

671

Appendix C. Summary of Debugger Support for Languages

Floating-point numbers of type COMP-2 may be represented by D_Floating or IEEE T_Floating,
depending on compiler switches.

C.8.4. Source Display
The debugger can show source text included in a program with the COPY, COPY REPLACING, or
REPLACE statement. However, when COPY REPLACING or REPLACE is used, the debugger shows
the original source text instead of the modified source text generated by the COPY REPLACING or
REPLACE statement.

The debugger cannot show the original source lines associated with the code for a REPORT section.
You can see the DATA SECTION source lines associated with a REPORT, but no source lines are
associated with the compiled code that generates the report.

C.8.5. COBOL INITIALIZE Statement and Arrays (Alpha
Only)
On OpenVMS Alpha systems, the debugger can take an unusually great amount of time and resources if
you use the STEP command to execute an INITIALIZE statement in a COBOL program when a large
table (array) is being initialized.

To work around this problem, set a breakpoint on the first executable line past the INITIALIZE
statement, rather than stepping across the INITIALIZE statement.

C.9. Fortran
The following subtopics describe debugger support for Fortran.

C.9.1. Operators in Language Expressions
Supported Fortran operators in language expressions include:

Kind Symbol Function

Prefix + Unary plus
Infix + Addition
Infix * Multiplication
Infix / Division
Infix // Concatenation
Infix .EQ. Equal to
Infix == Equal to
Infix .NE. Not equal to
Infix /= Not equal to
Infix .GT. Greater than
Infix > Greater than
Infix .GE. Greater than or equal to
Infix >= Greater than or equal to
Infix .LT. Less than

672

Appendix C. Summary of Debugger Support for Languages

Kind Symbol Function

Infix < Less than
Infix .LE. Less than or equal to
Infix <= Less than or equal to
Prefix .NOT. Logical NOT
Infix .AND. Logical AND
Infix .OR. Logical OR
Infix .XOR. Exclusive OR
Infix .EQV. Equivalence
Infix .NEQV. Exclusive OR

C.9.2. Constructs in Language and Address
Expressions
Supported constructs in language and address expressions for Fortran follow:

Symbol Construct

() Subscripting
. (period) Record component selection
% (percent sign) Record component selection

C.9.3. Predefined Symbols
Supported Fortran predefined symbols follow:

Symbol Description

.TRUE. Logical True

.FALSE. Logical False

C.9.4. Data Types
Supported Fortran data types follow:

Fortran Data Type Operating System Data Type Name

LOGICAL*1 Byte Unsigned (BU)
LOGICAL*2 Word Unsigned (WU)
LOGICAL*4 Longword Unsigned (LU)
LOGICAL*8 (Alpha and Integrity servers specific) Quadword Unsigned (QU)
BYTE Byte (B)
INTEGER*1 Byte Integer (B)
INTEGER*2 Word Integer (W)
INTEGER*4 Longword Integer (L)
INTEGER*8 (Alpha and Integrity servers specific) Quadword Integer (Q)

673

Appendix C. Summary of Debugger Support for Languages

Fortran Data Type Operating System Data Type Name

REAL*4 F_Floating (F)
REAL*4 (Alpha and Integrity servers specific) IEEE S_Floating (FS)
REAL*8 D_Floating (D)
REAL*8 G_Floating (G)
REAL*8 (Alpha and Integrity servers specific) IEEE T_Floating (FT)
REAL*16 (Alpha and Integrity servers specific) H_Floating (H)
COMPLEX*8 F_Complex (FC)
COMPLEX*8 (Alpha and Integrity servers
specific)

IEEE S_Floating (SC)

COMPLEX*16 D_Complex (DC)
COMPLEX*16 G_Complex (GC)
COMPLEX*16 (Alpha and Integrity servers
specific)

IEEE T_Floating (TC)

CHARACTER ASCII Text (T)
Arrays (None)
Records (None)

Even though the data type codes for unsigned integers (BU, WU, LU, QU) are used internally to describe
the LOGICAL data types, the debugger (like the compiler) treats LOGICAL variables and values as
being signed when they are used in language expressions.

The debugger prints the numeric values of LOGICAL variables or expressions instead of .TRUE.
or .FALSE. Normally, only the low-order bit of a LOGICAL variable or value is significant (0
is .FALSE. and 1 is .TRUE.). However, Fortran does allow all bits in a LOGICAL value to be
manipulated and LOGICAL values can be used in integer expressions. For this reason, it is at times
necessary to see the entire integer value of a LOGICAL variable or expression, and that is what the
debugger shows.

COMPLEX constants such as (1.0, 2.0) are not supported in debugger expressions.

Floating-point numbers of type REAL*4 and COMPLEX*8 may be represented by F_Floating or IEEE
S_Floating, depending on compiler switches.

Floating-point numbers of type REAL*8 and COMPLEX*16 may be represented by D_Floating,
G_Floating, or IEEE T_Floating, depending on compiler switches.

On OpenVMS Alpha systems, the debugger cannot evaluate expressions that contain complex variables.
To work around this problem, examine the complex variable and then evaluate the expression using the
real and imaginary parts of the complex variable as shown by the EXAMINE command.

C.9.5. Initialization Code
When you debug a program that compiled with the /CHECK=UNDERFLOW or /PARALLEL qualifier, a
message appears, as in the following example:

DBG> RUN FORMS
Language: FORTRAN, Module: FORMS
Type GO to reach main program

674

Appendix C. Summary of Debugger Support for Languages

DBG>

The “Type GO to reach MAIN program” message indicates that execution is suspended before the start
of the main program, so that you can execute initialization code under debugger control. Entering the
GO command places you at the start of the main program. At that point, enter the GO command again to
start program execution, as with other types of Fortran programs.

The following subtopics describe debugger support for MACRO-32.

C.10. MACRO-32
The following subtopics describe debugger support for MACRO--32.

C.10.1. Operators in Language Expressions
The MACRO--32 language does not have expressions in the same sense as high-level languages. Only
assembly-time expressions and only a limited set of operators are accepted. To permit the MACRO--32
programmer to use expressions at debug-time as freely as in other languages, the debugger accepts a
number of operators in MACRO--32 language expressions that are not found in MACRO--32 itself.
In particular, the debugger accepts a complete set of comparison and Boolean operators modeled after
BLISS. It also accepts the indirection operator and the normal arithmetic operators.

Kind Symbol Function

Prefix @ Indirection
Prefix . Indirection
Prefix + Unary plus
Prefix -- Unary minus (negation)
Infix + Addition
Infix -- Subtraction
Infix * Multiplication
Infix / Division
Infix MOD Remainder
Infix @ Left shift
Infix EQL Equal to
Infix EQLU Equal to
Infix NEQ Not equal to
Infix NEQU Not equal to
Infix GTR Greater than
Infix GTRU Greater than unsigned
Infix GEQ Greater than or equal to
Infix GEQU Greater than or equal to unsigned
Infix LSS Less than
Infix LSSU Less than unsigned
Infix LEQ Less than or equal to
Infix LEQU Less than or equal to unsigned

675

Appendix C. Summary of Debugger Support for Languages

Kind Symbol Function

Prefix NOT Bit-wise NOT
Infix AND Bit-wise AND
Infix OR Bit-wise OR
Infix XOR Bit-wise exclusive OR
Infix EQV Bit-wise equivalence

C.10.2. Constructs in Language and Address
Expressions
Supported constructs in language and address expressions for MACRO--32 follow:

Symbol Construct

[] Subscripting
<p, s, e> Bit field selection as in BLISS

The DST information generated by the MACRO--32 assembler treats a label that is followed by an
assembler directive for storage allocation as an array variable whose name is the label. This enables you
to use the array syntax of a high-level language when examining or manipulating such data.

In the following example of MACRO--32 source code, the label LAB4 designates hexadecimal data
stored in four words:

LAB4: .WORD ^X3F, 5[2], ^X3C

The debugger treats LAB4 as an array variable. For example, the following command displays the value
stored in each element (word):

DBG> EXAMINE LAB4
.MAIN.\MAIN\LAB4
 [0]: 003F
 [1]: 0005
 [2]: 0005
 [3]: 003C

The following command displays the value stored in the fourth word (the first word is indexed as
element “0”):

DBG> EXAMINE LAB4[3]
.MAIN.\MAIN\LAB4[3]: 03C

C.10.3. Data Types
MACRO--32 binds a data type to a label name according to the assembler directive that follows the label
definition. Supported MACRO--32 directives follow:

MACRO--32 Directives Operating System Data Type Name

.BYTE Byte Unsigned (BU)

.WORD Word Unsigned (WU)

.LONG Longword Unsigned (LU)

.SIGNED_BYTE Byte Integer (B)

676

Appendix C. Summary of Debugger Support for Languages

MACRO--32 Directives Operating System Data Type Name

.SIGNED_WORD Word Integer (W)

.LONG Longword Integer (L)

.QUAD Quadword Integer (Q)

.F_FLOATING F_Floating (F)

.D_FLOATING D_Floating (D)

.G_FLOATING G_Floating (G)
(Not applicable) Packed decimal (P)

C.10.4. MACRO--32 Compiler (AMACRO - Alpha Only;
IMACRO - Integrity servers Only)
Programmers who are porting applications written in MACRO--32 to Alpha systems use the
MACRO--32 compiler (AMACRO). A debugging session for compiled MACRO--32 code is similar
to that for assembled code. However, there are some important differences that are described in this
section. For complete information on porting these applications, see the Porting VAX MACRO Code from
OpenVMS VAX to OpenVMS Alpha manual.

C.10.4.1. Code Relocation
One major difference is the fact that the code is compiled. On a VAX system, each MACRO--32
instruction is a single machine instruction. On an Alpha system, each MACRO--32 instruction may be
compiled into many Alpha machine instructions. A major side effect of this difference is the relocation
and rescheduling of code if you do not specify /NOOPTIMIZE in your compile command. After you
have debugged your code, you can recompile without /NOOPTIMIZE to improve performance.

C.10.4.2. Symbolic Variables
Another major difference between debugging compiled code and debugging assembled code is a new
concept to MACRO--32, the definition of symbolic variables for examining routine arguments. The
arguments do not reside in a vector in memory on Alpha and Integrity servers.

In the compiled code, the arguments can reside in some combination of:

• Registers

• On the stack above the routine's stack frame

• In the stack frame, if the argument list was “homed”or if there are calls out of the routine that
require the register arguments to be saved.

The compiler does not require that you read the generated code to locate the arguments. Instead, it
provides $ARG n symbols that point to the correct argument locations. $ARG1 is the first argument,
$ARG2 is the second argument, and so forth. These symbols are defined in CALL_ENTRY and
JSB_ENTRY directives, but not in EXCEPTION_ENTRY directives.

C.10.4.3. Locating Arguments Without $ARG n Symbols
There may be additional arguments in your code for which the compiler did not generate a $ARG
n symbol. The number of $ARG n symbols defined for a .CALL_ENTRY routine is the maximum
number detected by the compiler (either by automatic detection or as specified by MAX_ARGS) or16,

677

Appendix C. Summary of Debugger Support for Languages

whichever is less. For a .JSB_ENTRY routine, since the arguments are homed in the caller's stack frame
and the compiler cannot detect the actual number, it always creates eight $ARG n symbols.

In most cases, you can easily find any additional arguments, but in some cases you cannot.

C.10.4.4. Arguments That Are Easy to Locate
You can easily find additional arguments if:

• The argument list is not homed, and $ARG n symbols are defined to $ARG7 or higher. If the
argument list is not homed, the $ARG n symbols $ARG7 and above always point into the list of
parameters passed as quadwords on the stack. Subsequent arguments will be in quadwords following
the last defined $ARG nsymbol.

• The argument list has been homed, and you want to examine an argument that is less than or equal
to the maximum number detected by the compiler (either by automatic detection or as specified
by MAX_ARGS). If the argument list is homed, $ARG n symbols always point into the homed
argument list. Subsequent arguments will be in longwords following the last defined $ARG n
symbol.

For example, you can examine arguments beyond the eighth argument in a JSB routine (where the
argument list must be homed in the caller), as follows:

DBG> EX $ARG8 ; highest defined $ARGn
.
.
.
DBG> EX .+4 ; next arg is in next longword
.

.

.
DBG> EX .+4 ; and so on

This example assumes that the caller detected at least ten arguments when homing the argument list.

To find arguments beyond the last $ARG n symbol in a routine that did not home the arguments,
proceed exactly as in the previous example except substitute EX .+8 for EX .+4.

C.10.4.5. Arguments That Are Not Easy to Locate
You cannot easily find additional arguments if:

• The argument list is homed, and you want to examine arguments beyond the number detected by
the compiler. The $ARG n symbols point to the longwords that are stored in the homed argument
list. The compiler only moves as many arguments as it can detect into this list. Examining longwords
beyond the last argument that was homed will result in examining various other stack context.

• The argument list is not homed, and $ARG n symbols are defined only as high as $ARG6. In this
case, the existing $ARG n symbols will either point to registers or to quadword locations in the stack
frame. In both cases, subsequent arguments cannot be examined by looking at quadword locations
beyond the defined $ARG n symbols.

The only way to find the additional arguments in these cases is to examine the compiled machine code
to determine where the arguments reside. Both of these problems are eliminated if MAX_ARGS is
specified correctly for the maximum argument that you want to examine.

678

Appendix C. Summary of Debugger Support for Languages

C.10.4.6. Debugging Code with Floating-Point Data
The following list provides important information about debugging compiled MACRO--32 code with
floating-point data on an Alpha system:

• You can use the EXAMINE/FLOAT command to examine an Alpha integer register for a floating-
point value.

Even though there is a set of registers for floating-point operations on Alpha systems, those registers
are not used by compiled MACRO--32 code that contains floating-point operations. Only the Alpha
integer registers are used.

Floating-point operations in compiled MACRO--32 code are performed by emulation routines that
operate outside the compiler. Therefore, performing MACRO--32 floating-point operations on, say,
R7, has no effect on Alpha floating-point register 7.

• When using the EXAMINE command to examine a location that was declared with a .FLOAT
directive or other floating-point storage directives, the debugger automatically displays the value as
floating-point data.

• When using the EXAMINE command to examine the G_FLOAT data type the debugger
automatically displays the value as floating-point data.

• You can deposit floating-point data in an Alpha integer register with the DEPOSIT command.

• H_FLOAT is unsupported.

C.10.4.7. Debugging Code with Packed Decimal Data
The following list provides important information about debugging compiled MACRO--32 code with
packed decimal data on an Alpha system:

• When using the EXAMINE command to examine a location that was declared with a .PACKED
directive, the debugger automatically displays the value as a packed decimal data type.

• You can deposit packed decimal data. The syntax is the same as it is on VAX.

C.11. MACRO--64 (Alpha Only)
The following subtopics describe debugger support for MACRO--64.

C.11.1. Operators in Language Expressions
Language MACRO--64 does not have expressions in the same sense as high-level languages. Only
assembly-time expressions and only a limited set of operators are accepted. To permit the MACRO--64
programmer to use expressions at debug-time as freely as in other languages, the debugger accepts a
number of operators in MACRO--64 language expressions that are not found in MACRO--64 itself.
In particular, the debugger accepts a complete set of comparison and Boolean operators modeled after
BLISS. It also accepts the indirection operator and the normal arithmetic operators.

Kind Symbol Function

Prefix @ Indirection

679

Appendix C. Summary of Debugger Support for Languages

Kind Symbol Function

Prefix . Indirection
Prefix + Unary plus
Prefix -- Unary minus (negation)
Infix + Addition
Infix -- Subtraction
Infix * Multiplication
Infix / Division
Infix MOD Remainder
Infix @ Left shift
Infix EQL Equal to
Infix EQLU Equal to
Infix NEQ Not equal to
Infix NEQU Not equal to
Infix GTR Greater than
Infix GTRU Greater than unsigned
Infix GEQ Greater than or equal to
Infix GEQU Greater than or equal to unsigned
Infix LSS Less than
Infix LSSU Less than unsigned
Infix LEQ Less than or equal to
Infix LEQU Less than or equal to unsigned
Prefix NOT Bit-wise NOT
Infix AND Bit-wise AND
Infix OR Bit-wise OR
Infix XOR Bit-wise exclusive OR
Infix EQV Bit-wise equivalence

C.11.2. Constructs in Language and Address
Expressions
Supported constructs in language and address expressions for MACRO--64 follow:

Symbol Construct

<p, s, e> Bit field selection as in BLISS

C.11.3. Data Types
MACRO--64 binds a data type to a label name according to the data directive that follows the label
definition. For example, in the following code fragment, the .LONG data directive directs MACRO--64
to bind the longword integer data type to labels V1, V2, and V3:

.PSECT A, NOEXE.BYTE 5V1:V2:V3: .LONG 7

680

Appendix C. Summary of Debugger Support for Languages

To confirm the type bound to V1, V2, and V3, issue a SHOW SYMBOL/TYPE command with a V*
parameter. The following display results:

data .MAIN.\V1
 atomic type, longword integer, size: 4 bytes
data .MAIN.\V2
 atomic type, longword integer, size: 4 bytes
data .MAIN.\V3
 atomic type, longword integer, size: 4 bytes)

Supported MACRO--64 directives follow:

MACRO--64 Directives Operating System Data Type Name

.BYTE Byte Unsigned (BU)

.WORD Word Unsigned (WU)

.LONG Longword Unsigned (LU)

.SIGNED_BYTE Byte Integer (B)

.SIGNED_WORD Word Integer (W)

.LONG Longword Integer (L)

.QUAD Quadword Integer (Q)

.F_FLOATING F_Floating (F)

.D_FLOATING D_Floating (D)

.G_FLOATING G_Floating (G)

.S_FLOATING (Alpha specific) S_Floating (S)

.T_FLOATING (Alpha specific) T_Floating (T)
(Not applicable) Packed decimal (P)

C.12. Pascal
The following subtopics describe debugger support for Pascal.

C.12.1. Operators in Language Expressions
Supported Pascal operators in language expressions include:

Kind Symbol Function

Prefix + Unary plus
Prefix -- Unary minus (negation)
Infix + Addition, concatenation
Infix -- Subtraction
Infix * Multiplication
Infix / Real division
Infix DIV Integer division
Infix MOD Modulus
Infix REM Remainder

681

Appendix C. Summary of Debugger Support for Languages

Kind Symbol Function

Infix IN Set membership
Infix = Equal to
Infix <> Not equal to
Infix > Greater than
Infix >= Greater than or equal to
Infix < Less than
Infix <= Less than or equal to
Prefix NOT Logical NOT
Infix AND Logical AND
Infix OR Logical OR

The typecast operator (::) is not supported in language expressions.

C.12.2. Constructs in Language and Address
Expressions
Supported constructs in language and address expressions for Pascal follow:

Symbol Construct

[] Subscripting
. (period) Record component selection
^ (circumflex) Pointer dereferencing

C.12.3. Predefined Symbols
Supported Pascal predefined symbols follow:

Symbol Meaning

TRUE Boolean True
FALSE Boolean False
NIL Nil pointer

C.12.4. Built-In Functions
Supported Pascal built-in functions follow:

Symbol Meaning

SUCC Logical successor
PRED Logical predecessor

C.12.5. Data Types
Supported Pascal data types follow:

682

Appendix C. Summary of Debugger Support for Languages

Pascal Data Type Operating System Data Type Name

INTEGER Longword Integer (L)
INTEGER Word Integer (W, WU)
INTEGER Byte Integer (B, BU)
UNSIGNED Longword Unsigned (LU)
UNSIGNED Word Unsigned (WU)
UNSIGNED Byte Unsigned (BU)
SINGLE, REAL F_Floating (F)
REAL (Alpha and Integrity servers specific) IEEE S_Floating (FS)
DOUBLE D_Floating (D)
DOUBLE G_Floating (G)
DOUBLE (Alpha and Integrity servers specific) IEEE T_Floating (FT)
QUADRUPLE (Integrity servers specific) H_Floating (H)
BOOLEAN (None)
CHAR ASCII Text (T)
VARYING OF CHAR Varying Text (VT)
SET (None)
FILE (None)
Enumerations (None)
Subranges (None)
Typed Pointers (None)
Arrays (None)
Records (None)
Variant records (None)

The debugger accepts Pascal set constants such as [1, 2, 5, 8..10] or [RED, BLUE] in Pascal language
expressions.

Floating-point numbers of type REAL may be represented by F_Floating or IEEE S_Floating, depending
on compiler switches or source code attributes.

Floating-point numbers of type DOUBLE may be represented by D_Floating, G_Floating, or IEEE
T_Floating, depending on compiler switches or source code attributes.

C.12.6. Additional Information
In general, you can examine, evaluate, and deposit into variables, record fields, and array components.
An exception to this occurs under the following circumstances: if a variable is not referenced in a
program, the Pascal compiler might not allocate the variable. If the variable is not allocated and you try
to examine it or deposit into it, you will receive an error message.

When you deposit data into a variable, the debugger truncates the high-order bits if the value being
deposited is larger than the variable;the debugger fills the high-order bits with zeros if the value being
deposited is smaller than the variable. If the deposit violates the rules of assignment compatibility, the
debugger displays an informational message.

683

Appendix C. Summary of Debugger Support for Languages

You can examine and deposit into automatic variables (within any active block); however, because
automatic variables are allocated in stack storage and are contained in registers, their values are
considered undefined until the variables are initialized or assigned a value.

C.12.7. Restrictions
Restrictions in debugger support for Pascal are as follows.

You can examine a VARYING OF CHAR string, but you cannot examine the .LENGTH or .BODY
fields using the normal language syntax. For example, if VARS is the name of a string variable, the
following commands are not supported:

DBG> EXAMINE VARS.LENGTH
DBG> EXAMINE VARS.BODY

To examine these fields, use the techniques illustrated in the following examples.

Use Instead of

EXAMINE/WORD VARS EXAMINE VARS.LENGTH
EXAMINE/ASCII VARS+2 EXAMINE VARS.BODY

C.13. PL/I (Alpha Only)
The following subtopics describe debugger support for PL/I.

C.13.1. Operators in Language Expressions
Supported PL/I operators in language expressions include:

Kind Symbol Function

Prefix + Unary plus
Prefix -- Unary minus (negation)
Infix + Addition
Infix -- Subtraction
Infix * Multiplication
Infix / Division
Infix ** Exponentiation
Infix | | Concatenation
Infix = Equal to
Infix ^= Not equal to
Infix > Greater than
Infix >= Greater than or equal to
Infix ^ < Greater than or equal to
Infix < Less than
Infix <= Less than or equal to
Infix ^> Less than or equal to

684

Appendix C. Summary of Debugger Support for Languages

Kind Symbol Function

Prefix ^ Bit-wise NOT
Infix & Bit-wise AND
Infix | Bit-wise OR

C.13.2. Constructs in Language and Address
Expressions
Supported constructs in language and address expressions for PL/I follow:

Symbol Construct

() Subscripting
. (period) Structure component selection
-> Pointer dereferencing

C.13.3. Data Types
Supported PL/I data types follow:

PL/I Data Type Operating System Data Type Name

FIXED BINARY Byte- (B), Word- (W), or Longword- (L) Integer
FIXED DECIMAL Packed Decimal (P)
FLOAT BIN/DEC F_Floating (F)
FLOAT BIN/ DEC D_Floating (D)
FLOAT BIN/DEC G_Floating (G)
BIT Bit (V)
BIT Bit Unaligned (VU)
CHARACTER ASCII Text (T)
CHARACTER VARYING Varying Text (VT)
FILE (None)
Labels (None)
Pointers (None)
Arrays (None)
Structures (None)

C.13.4. Static and Nonstatic Variables
Variables of the following storage classes are allocated statically:

STATIC
EXTERNAL
GLOBALDEF
GLOBALREF

685

Appendix C. Summary of Debugger Support for Languages

Variables of the following storage classes are allocated non statically (on the stack or in registers):

AUTOMATIC
BASED
CONTROLLED
DEFINED
PARAMETER

C.13.5. Examining and Manipulating Data
The following subtopics give examples of the EXAMINE command with PL/I data types. They also
highlight aspects of debugger support that are specific to PL/I.

C.13.5.1. EXAMINE Command Examples
The following examples show use of the EXAMINE command with a few selected PL/I data types.

• Examine the value of a variable declared as FIXED DECIMAL (10, 5):

DBG> EXAMINE X
PROG4\X: 540.02700

• Examine the value of a structure variable:

DBG> EXAMINE PART
MAIN_PROG\INVENTORY_PROG\PART
 ITEM: "WF-1247"
 PRICE: 49.95
 IN_STOCK: 24

• Examine the value of a pictured variable (note that the debugger displays the value in quotation
marks):

DBG> EXAMINE Q
MAIN\Q: "666.3330"

• Examine the value of a pointer (which is the virtual address of the variable it accesses) and display
the value in hexadecimal radix instead of decimal (the default):

DBG> EXAMINE/HEXADECIMAL P
PROG4\SAMPLE.P: 0000B2A4

• Examine the value of a variable with the BASED attribute; in this case, the variable X has been
declared as BASED (PTR), with PTR its pointer:

DBG> EXAMINE X
PROG\X: "A"

• Examine the value of a variable X declared as BASED with a variable PTR declared as POINTER;
here, PTR is associated with X by the following line of PL/I code (instead of X having been declared
as BASED (PTR) as in the preceding example):

ALLOCATE X SET (PTR);

In this case, you examine the value of X as follows:

DBG> EXAMINE PTR->X

686

Appendix C. Summary of Debugger Support for Languages

PROG6\PTR->X: "A"

C.13.5.2. Notes on Debugger Support
Note the following points about debugger support for PL/I.

You cannot use the DEPOSIT command with entry or label variables or formats, or with entire arrays or
structures. You cannot use the EXAMINE command with entry or label variables or formats; instead, use
the EVALUATE/ADDRESS command.

You cannot use the EXAMINE command to determine the values or attributes of global literals (such
as GLOBALDEF VALUE literals) because they are static expressions. Instead, use the EVALUATE
command.

You cannot use the EXAMINE, EVALUATE, and DEPOSIT commands with compile-time variables and
procedures. However, you can use EVALUATE and DEPOSIT (but not EXAMINE) with a compile-
time constant, as long as the constant is the source and not the destination.

Note that an uninitialized automatic variable does not have valid contents until after a value has been
assigned to it. If you examine it before that point, the value displayed is unpredictable.

You can deposit a value into a pointer variable either by depositing another pointer's value into it, thus
making symbolic reference to both pointers, or by depositing a virtual address into it. (You can find out
the virtual address of a variable by using the EVALUATE/ADDRESS command, and then deposit that
address into the pointer.) When you examine a pointer, the debugger displays its value in the form of the
virtual address of the variable that the pointer points to.

The debugger treats all numeric constants of the form n or n.n in PL/I language expressions as packed
decimal constants, not integer or floating-point constants, in order to conform to PL/I language rules.
The internal representation of 10 is therefore 0C01hexadecimal, not 0A hexadecimal.

You can enter floating-point constants using the syntax nEn or n.nEn.

There is no PL/I syntax for entering constants whose internal representation is Longword Integer.
This limitation is not normally significant when debugging, since the debugger supports the PL/I type
conversion rules. However, it is possible to enter integer constants by using the debugger's %HEX,
%OCT, and %BIN operators, because nondecimal radix constants are assumed to be FIXED BINARY.
For example, the EVALUATE/HEXADECIMAL 53 + %HEX 0 command displays 00000035.

C.14. Language UNKNOWN
The following subtopics describe debugger support for language UNKNOWN.

C.14.1. Operators in Language Expressions
Supported operators in language expressions for language UNKNOWN follow:

Kind Symbol Function

Prefix + Unary plus
Prefix -- Unary minus (negation)
Infix + Addition
Infix -- Subtraction

687

Appendix C. Summary of Debugger Support for Languages

Kind Symbol Function

Infix * Multiplication
Infix / Division
Infix & Concatenation
Infix // Concatenation
Infix = Equal to
Infix <> Not equal to
Infix /= Not equal to
Infix > Greater than
Infix >= Greater than or equal to
Infix < Less than
Infix <= Less than or equal to
Infix EQL Equal to
Infix NEQ Not equal to
Infix GTR Greater than
Infix GEQ Greater than or equal to
Infix LSS Less than
Infix LEQ Less than or equal to
Prefix NOT Logical NOT
Infix AND Logical AND
Infix OR Logical OR
Infix XOR Exclusive OR
Infix EQV Equivalence

C.14.2. Constructs in Language and Address
Expressions
Supported constructs in language and address expressions for language UNKNOWN follow:

Symbol Construct

[] Subscripting
() Subscripting
. (period) Record component selection
^ (circumflex) Pointer dereferencing

C.14.3. Predefined Symbols
Supported predefined symbols for language UNKNOWN follow:

Symbol Meaning

TRUE Boolean True
FALSE Boolean False

688

Appendix C. Summary of Debugger Support for Languages

Symbol Meaning

NIL Nil pointer

C.14.4. Data Types
When the language is set to UNKNOWN, the debugger understands all data types accepted by other
languages except a few very language-specific types, such as picture types and file types. In UNKNOWN
language expressions, the debugger accepts most scalar OpenVMS calling standard data types.

• For language UNKNOWN, the debugger accepts the dot-notation for record component selection.
For example, if C is a component of a record B which in turn is a component of a record A, then C
can be referenced as A.B.C. Subscripts can be attached to any array components; for example, if B is
an array, then C can be referenced as A.B [2, 3].C.

• For language UNKNOWN, the debugger accepts brackets and parentheses for subscripts. For
example, A [2, 3] and A(2, 3) are equivalent.

689

Appendix C. Summary of Debugger Support for Languages

690

Appendix D. EIGHTQUEENS.C
This appendix contains the source code for the programs used in many figures of Chapter 8, Chapter 9,
and Chapter 10, EIGHTQUEENS.C and 8QUEENS.C. These programs are presented here only to assist
in understanding the procedures described in those chapters.

D.1. EIGHTQUEENS.C
Example D.1 contains EIGHTQUEENS.C, the single-module program that solves the eightqueens
problem.

Example D.1. Single-Module Program EIGHTQUEENS.C

extern void setqueen()
;extern void removequeen();
extern void trycol();
extern void print(); int a[8]; /* a : array[1..8] of boolean */
 int b[16]; /* b : array[2..16] of boolean */
 int c[15]; /* c : array[-7..7] of boolean */
 int x[8];
/* Solve eight-queens problem */
main()
{
 int i;
 for (i=0; i <=7; i++)
 a[i] = 1;
 for (i=0; i <=15; i++)
 b[i] = 1;
 for (i=0; i <=14; i++)
 c[i] = 1;
 trycol(0);
} /* End main */
void trycol(j)
 int j;
{
 int m;
 int safe;
 m = -1;
 while (m++ < 7)
 {
 safe = (a[m] ==1) && (b[m + j] == 1) && (c[m - j + 7] ==1);
 if (safe)
 {
 setqueen(m, j);
 x[j] = m + 1;
 if (j < 7)
 trycol(j + 1);
 else
 print();
 removequeen(m, j);
 }
 }
} /* End trycol */
void setqueen(m, j)
 int m;

691

Appendix D. EIGHTQUEENS.C

 int j;
{
 a[m] = 0;
 b[m + j] = 0;
 c[m - j + 7] = 0;
} /* End setqueen */
void removequeen(m, j)
 int m;
 int j;
{
 a[m] = 1;
 b[m + j] = 1;
 c[m - j + 7] = 1;
} /* End removequeen */
void print()
{
 int k;
 for (k=0; k<=7; k++)
 {
 printf(" %d", x[k]);
 }
 printf("\n");
}/* End print */

D.2. 8QUEENS.C
8QUEENS.C is the multiple-module program that solves the eightqueens problem. This program consists
of two modules, 8QUEENS.C (Example D.2) and 8QUEENS_SUB.C (Example D.3).

Example D.2. Main Module 8QUEENS.C

extern void trycol();
 int a[8]; /* a : array[1..8] of boolean */
 int b[16]; /* b : array[2..16] of boolean */
 int c[15]; /* c : array[-7..7] of boolean */
 int x[8];
main() /* Solve eight-queens problem */
{
 int i;
 for (i=0; i <=7; i++)
 a[i] = 1;
 for (i=0; i <=15; i++)
 b[i] = 1;
 for (i=0; i <=14; i++)
 c[i] = 1;
 trycol(0);
 printf(" Solved eight-queens problem!\n");
} /* End main */

Example D.3. Submodule 8QUEENS_SUB.C

extern int a[8];
extern int b[16];
extern int c[15];
extern void setqueen();
extern void removequeen();
extern void print();

692

Appendix D. EIGHTQUEENS.C

 int x[8];
void trycol(j)
 int j;
{
 int m;
 int safe;
 m = -1;
 while (m++ < 7)
 {
 safe = (a[m] ==1) && (b[m + j] == 1) && (c[m - j + 7] ==1);
 if (safe)
 {
 setqueen(m, j);
 x[j] = m + 1;
 if (j < 7)
 trycol(j + 1);
 else
 print();
 removequeen(m, j);
 }
 }
} /* End trycol */
void setqueen(m, j)
 int m;
 int j;
{
 a[m] = 0;
 b[m + j] = 0;
 c[m - j + 7] = 0;
} /* End setqueen */
void removequeen(m, j)
 int m;
 int j;
{
 a[m] = 1;
 b[m + j] = 1;
 c[m - j + 7] = 1;
} /* End removequeen */
void print()
{
 int k;
 for (k=0; k<=7; k++)
 {
 printf(" %d", x[k]);
 }
 printf("\n");
} /* End print */

693

Appendix D. EIGHTQUEENS.C

694

	VSI OpenVMS Debugger Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Part I. Introduction to the Debugger
	Chapter 1. Introduction to the Debugger
	1.1. Overview of the Debugger
	1.1.1. Functional Features
	1.1.2. Convenience Features

	1.2. Preparing an Executable Image for Debugging
	1.2.1. Compiling a Program for Debugging
	1.2.2. Linking a Program for Debugging
	1.2.3. Controlling Debugger Activation with the LINK and RUN Commands

	1.3. Debugging a Program with the Kept Debugger
	1.3.1. Starting the Kept Debugger
	1.3.2. When Your Program Completes Execution
	1.3.3. Rerunning the Same Program from the Kept Debugger
	1.3.4. Running Another Program from the Kept Debugger

	1.4. Interrupting Program Execution and Aborting Debugger Commands
	1.5. Pausing and Resuming a Debugging Session
	1.6. Starting the Debugger by Running a Program
	1.7. Starting the Debugger After Interrupting a Running Program
	1.8. Ending a Debugging Session
	1.9. Debugging a Program on a Workstation Running DECwindows Motif
	1.10. Debugging a Program from a PC Running the Debug Client
	1.11. Debugging Detached Processes That Run with No CLI
	1.12. Configuring Process Quotas for the Debugger
	1.13. Debugger Command Summary
	1.13.1. Starting and Ending a Debugging Session
	1.13.2. Controlling and Monitoring Program Execution
	1.13.3. Examining and Manipulating Data
	1.13.4. Controlling Type Selection and Radix
	1.13.5. Controlling Symbol Searches and Symbolization
	1.13.6. Displaying Source Code
	1.13.7. Using Screen Mode
	1.13.8. Editing Source Code
	1.13.9. Defining Symbols
	1.13.10. Using Keypad Mode
	1.13.11. Using Command Procedures, Log Files, and Initialization Files
	1.13.12. Using Control Structures
	1.13.13. Debugging Multiprocess Programs
	1.13.14. Additional Commands

	Part II. Command Interface
	Chapter 2. Getting Started with the Debugger
	2.1. Entering Debugger Commands and Accessing Online Help
	2.2. Displaying Source Code
	2.2.1. Noscreen Mode
	2.2.2. Screen Mode

	2.3. Controlling and Monitoring Program Execution
	2.3.1. Starting or Resuming Program Execution
	2.3.2. Executing the Program by Step Unit
	2.3.3. Determining Where Execution Is Paused
	2.3.4. Suspending Program Execution with Breakpoints
	2.3.5. Tracing Program Execution with Tracepoints
	2.3.6. Monitoring Changes in Variables with Watchpoints

	2.4. Examining and Manipulating Program Data
	2.4.1. Displaying the Value of a Variable
	2.4.2. Assigning a Value to a Variable
	2.4.3. Evaluating Language Expressions

	2.5. Controlling Access to Symbols in Your Program
	2.5.1. Setting and Canceling Modules
	2.5.2. Resolving Symbol Ambiguities

	2.6. Sample Debugging Session

	Chapter 3. Controlling and Monitoring Program Execution
	3.1. Commands Used to Execute the Program
	3.2. Executing the Program by Step Unit
	3.2.1. Changing the STEP Command Behavior
	3.2.2. Stepping Into and Over Routines

	3.3. Suspending and Tracing Execution with Breakpoints and Tracepoints
	3.3.1. Setting Breakpoints or Tracepoints on Individual Program Locations
	3.3.1.1. Specifying Symbolic Addresses
	3.3.1.2. Specifying Locations in Memory
	3.3.1.3. Obtaining and Symbolizing Memory Addresses

	3.3.2. Setting Breakpoints or Tracepoints on Lines or Instructions
	3.3.3. Setting Breakpoints on Emulated Instructions (Alpha Only)
	3.3.4. Controlling Debugger Action at Breakpoints or Tracepoints
	3.3.5. Setting Breakpoints or Tracepoints on Exceptions
	3.3.6. Setting Breakpoints or Tracepoints on Events
	3.3.7. Deactivating, Activating, and Canceling Breakpoints or Tracepoints

	3.4. Monitoring Changes in Variables and Other Program Locations
	3.4.1. Deactivating, Activating, and Canceling Watchpoints
	3.4.2. Watchpoint Options
	3.4.3. Watching Nonstatic Variables
	3.4.3.1. Execution Speed
	3.4.3.2. Setting a Watchpoint on a Nonstatic Variable
	3.4.3.3. Options for Watching Nonstatic Variables
	3.4.3.4. Setting Watchpoints in Installed Writable Shareable Images

	Chapter 4. Examining and Manipulating Program Data
	4.1. General Concepts
	4.1.1. Accessing Variables While Debugging
	4.1.2. Using the EXAMINE Command
	4.1.3. Using the DUMP Command
	4.1.4. Using the DEPOSIT Command
	4.1.5. Address Expressions and Their Associated Types
	4.1.6. Evaluating Language Expressions
	4.1.6.1. Using Variables in Language Expressions
	4.1.6.2. Numeric Type Conversion by the Debugger

	4.1.7. Address Expressions Compared to Language Expressions
	4.1.8. Specifying the Current, Previous, and Next Entity
	4.1.9. Language Dependencies and the Current Language
	4.1.10. Specifying a Radix for Entering or Displaying Integer Data
	4.1.11. Obtaining and Symbolizing Memory Addresses

	4.2. Examining and Depositing into Variables
	4.2.1. Scalar Types
	4.2.2. ASCII String Types
	4.2.3. Array Types
	4.2.4. Record Types
	4.2.5. Pointer (Access) Types

	4.3. Examining and Depositing Instructions
	4.3.1. Examining Instructions

	4.4. Examining and Depositing into Registers
	4.4.1. Examining and Depositing into Alpha Registers
	4.4.2. Examining and Depositing into Integrity server Registers

	4.5. Specifying a Type When Examining and Depositing
	4.5.1. Defining a Type for Locations Without a Symbolic Name
	4.5.2. Overriding the Current Type
	4.5.2.1. Integer Types
	4.5.2.2. ASCII String Type
	4.5.2.3. User-Declared Types

	Chapter 5. Controlling Access to Symbols in Your Program
	5.1. Controlling Symbol Information When Compiling and Linking
	5.1.1. Compiling
	5.1.2. Local and Global Symbols
	5.1.3. Linking
	5.1.4. Controlling Symbol Information in Debugged Images
	5.1.5. Creating Separate Symbol Files (Alpha Only)

	5.2. Setting and Canceling Modules
	5.3. Resolving Symbol Ambiguities
	5.3.1. Symbol Lookup Conventions
	5.3.2. Using SHOW SYMBOL and Path Names to Specify Symbols Uniquely
	5.3.2.1. Simplifying Path Names
	5.3.2.2. Specifying Symbols in Routines on the Call Stack
	5.3.2.3. Specifying Global Symbols
	5.3.2.4. Specifying Routine Invocations

	5.3.3. Using SET SCOPE to Specify a Symbol Search Scope

	5.4. Debugging Shareable Images
	5.4.1. Compiling and Linking Shareable Images for Debugging
	5.4.2. Accessing Symbols in Shareable Images
	5.4.2.1. Accessing Symbols in the PC Scope (Dynamic Mode)
	5.4.2.2. Accessing Symbols in Arbitrary Images
	5.4.2.3. Accessing Universal Symbols in Run-Time Libraries and System Images

	5.4.3. Debugging Resident Images (Alpha Only)

	Chapter 6. Controlling the Display of Source Code
	6.1. How the Debugger Obtains Source Code Information
	6.2. Specifying the Location of Source Files
	6.3. Displaying Source Code by Specifying Line Numbers
	6.4. Displaying Source Code by Specifying Code Address Expressions
	6.5. Displaying Source Code by Searching for Strings
	6.6. Controlling Source Display After Stepping and at Event points
	6.7. Setting Margins for Source Display

	Chapter 7. Screen Mode
	7.1. Concepts and Terminology
	7.2. Display Kinds
	7.2.1. DO (Command[; …]) Display Kind
	7.2.2. INSTRUCTION Display Kind
	7.2.3. INSTRUCTION (Command) Display Kind
	7.2.4. OUTPUT Display Kind
	7.2.5. REGISTER Display Kind
	7.2.6. SOURCE Display Kind
	7.2.7. SOURCE (Command) Display Kind
	7.2.8. PROGRAM Display Kind

	7.3. Display Attributes
	7.4. Predefined Displays
	7.4.1. Predefined Source Display (SRC)
	7.4.1.1. Displaying Source Code in Arbitrary Program Locations
	7.4.1.2. Displaying Source Code for a Routine on the Call Stack

	7.4.2. Predefined Output Display (OUT)
	7.4.3. Predefined Prompt Display (PROMPT)
	7.4.4. Predefined Instruction Display (INST)
	7.4.4.1. Displaying the Instruction Display
	7.4.4.2. Displaying Instructions in Arbitrary Program Locations
	7.4.4.3. Displaying Instructions for a Routine on the Call Stack
	7.4.4.4. Displaying Register Values for a Routine on the Call Stack

	7.5. Manipulating Existing Displays
	7.5.1. Scrolling a Display
	7.5.2. Showing, Hiding, Removing, and Canceling a Display
	7.5.3. Moving a Display Across the Screen
	7.5.4. Expanding or Contracting a Display

	7.6. Creating a New Display
	7.7. Specifying a Display Window
	7.7.1. Specifying a Window in Terms of Lines and Columns
	7.7.2. Using a Predefined Window
	7.7.3. Creating a New Window Definition

	7.8. Sample Display Configuration
	7.9. Saving Displays and the Screen State
	7.10. Changing the Screen Height and Width
	7.11. Screen-Related Built-In Symbols
	7.11.1. Screen Height and Width
	7.11.2. Display Built-In Symbols

	7.12. Screen Dimensions and Predefined Windows
	7.13. Internationalization of Screen Mode

	Part III. DECwindows Interface
	Chapter 8. Introduction
	8.1. Introduction
	8.1.1. Convenience Features

	8.2. Debugger Windows and Menus
	8.2.1. Default Window Configuration
	8.2.2. Main Window
	8.2.2.1. Title Bar
	8.2.2.2. Source View
	8.2.2.3. Menus on Main Window
	8.2.2.4. Call Stack Menu
	8.2.2.5. Push Button View
	8.2.2.6. Command View

	8.2.3. Optional Views Window
	8.2.3.1. Menus on Optional Views Window

	8.3. Entering Commands at the Prompt
	8.3.1. Debugger Commands That Are Not Available in the VSI DECwindows Motif for OpenVMS Interface

	8.4. Displaying Online Help About the Debugger
	8.4.1. Displaying Context-Sensitive Help
	8.4.2. Displaying the Overview Help Topic and Subtopic
	8.4.3. Displaying Help on Debugger Commands
	8.4.4. Displaying Help on Debugger Diagnostic Messages

	Chapter 9. Starting and Ending a Debugging Session
	9.1. Starting the Kept Debugger
	9.2. When Your Program Completes Execution
	9.3. Rerunning the Same Program from the Current Debugging Session
	9.4. Running Another Program from the Current Debugging Session
	9.5. Debugging an Already Running Program
	9.6. Interrupting Program Execution and Aborting Debugger Operations
	9.7. Ending a Debugging Session
	9.8. Additional Options for Starting the Debugger
	9.8.1. Starting the Debugger by Running a Program
	9.8.2. Starting the Debugger After Interrupting a Running Program
	9.8.3. Overriding the Debugger's Default Interface
	9.8.3.1. Displaying the Debugger's VSI DECwindows Motif for OpenVMS User Interface on Another Workstation
	9.8.3.2. Displaying the Debugger's Command User Interface in a DECterm Window
	9.8.3.3. Displaying the Command Interface and Program Input/Output in Separate DECterm Windows
	9.8.3.4. Explanation of DBG$DECW$DISPLAY and DECW$DISPLAY

	9.9. Starting the Motif Debug Client
	9.9.1. Software Requirements
	9.9.2. Starting the Server
	9.9.3. Primary Clients and Secondary Clients
	9.9.4. Starting the Motif Client
	9.9.5. Switching Between Sessions
	9.9.6. Closing a Client/Server Session

	Chapter 10. Using the Debugger
	10.1. Displaying the Source Code of Your Program
	10.1.1. Displaying the Source Code of Another Routine
	10.1.2. Displaying the Source Code of Another Module
	10.1.3. Making Source Code Available for Display
	10.1.4. Specifying the Location of Source Files

	10.2. Editing Your Program
	10.3. Executing Your Program
	10.3.1. Determining Where Execution Is Currently Paused
	10.3.2. Starting or Resuming Program Execution
	10.3.3. Executing Your Program One Source Line at a Time
	10.3.4. Stepping into a Called Routine
	10.3.5. Returning from a Called Routine

	10.4. Suspending Execution by Setting Breakpoints
	10.4.1. Setting Breakpoints on Source Lines
	10.4.2. Setting Breakpoints on Routines with Source Browser
	10.4.3. Setting an Exception Breakpoint
	10.4.4. Identifying the Currently Set Breakpoints
	10.4.5. Deactivating, Activating, and Canceling Breakpoints
	10.4.6. Setting a Conditional Breakpoint
	10.4.7. Setting an Action Breakpoint

	10.5. Examining and Manipulating Variables
	10.5.1. Selecting Variable Names from Windows
	10.5.2. Displaying the Current Value of a Variable
	10.5.3. Changing the Current Value of a Variable
	10.5.4. Monitoring a Variable
	10.5.4.1. Monitoring an Aggregate (Array or Structure) Variable
	10.5.4.2. Monitoring a Pointer (Access) Variable

	10.5.5. Watching a Variable
	10.5.6. Changing the Value of a Monitored Scalar Variable

	10.6. Accessing Program Variables
	10.6.1. Accessing Static and Nonstatic (Automatic) Variables
	10.6.2. Setting the Current Scope Relative to the Call Stack
	10.6.3. How the Debugger Searches for Variables and Other Symbols

	10.7. Displaying and Modifying Values Stored in Registers
	10.8. Displaying the Decoded Instruction Stream of Your Program
	10.9. Debugging Tasking (Multithread) Programs
	10.9.1. Displaying Information About Tasks (Threads)
	10.9.2. Changing Task (Threads) Characteristics

	10.10. Customizing the Debugger's VSI DECwindows Motif for OpenVMS Interface
	10.10.1. Defining the Startup Configuration of Debugger Views
	10.10.2. Displaying or Hiding Line Numbers inSource View and Instruction View
	10.10.3. Modifying, Adding, Removing, and Resequencing Push Buttons
	10.10.3.1. Changing a Button's Label or Associated Command
	10.10.3.2. Adding a New Button and Associated Command
	10.10.3.3. Removing a Button
	10.10.3.4. Resequencing a Button

	10.10.4. Editing the Debugger Resource File
	10.10.4.1. Defining the Key Sequence to Display the Breakpoint Dialog Box
	10.10.4.2. Defining the Key Sequence for Language-Sensitive Text Selection
	10.10.4.3. Defining the Font for Displayed Text
	10.10.4.4. Defining the Key Bindings on the Keypad

	10.11. Debugging Detached Processes

	Part IV. PC Client Interface
	Chapter 11. Using the Debugger PC Client/Server Interface
	11.1. Introduction
	11.2. Installation of PC Client
	11.3. Primary Clients and Secondary Clients
	11.4. The PC Client Workspace
	11.5. Establishing a Server Connection
	11.5.1. Choosing a Transport
	11.5.2. Secondary Connections

	11.6. Terminating a Server Connection
	11.6.1. Exiting Both Client and Server
	11.6.2. Exiting the Client Only
	11.6.3. Stopping Only the Server

	11.7. Documentation

	Part V. Advanced Topics
	Chapter 12. Using the Heap Analyzer
	12.1. Starting a Heap Analyzer Session
	12.1.1. Invoking the Heap Analyzer
	12.1.2. Viewing Heap Analyzer Windows
	12.1.3. Viewing Heap Analyzer Pull-Down Menus
	12.1.4. Viewing Heap Analyzer Context-Sensitive Menus
	12.1.5. Setting a Source Directory
	12.1.6. Starting Your Application
	12.1.7. Controlling the Speed of Display

	12.2. Working with the Default Display
	12.2.1. Memory Map Display
	12.2.2. Options for Memory Map Display
	12.2.3. Options for Further Information
	12.2.4. Requesting Traceback Information
	12.2.5. Correlating Traceback Information with Source Code

	12.3. Adjusting Type Determination and Display
	12.3.1. Options for Further Information
	12.3.2. Altering Type Determination
	12.3.3. Altering the Views-and-Types Display
	12.3.3.1. Selecting the Scope of Your Change
	12.3.3.2. Choosing a Display Option

	12.4. Exiting the Heap Analyzer
	12.5. Sample Session
	12.5.1. Isolating Display of Interactive Command
	12.5.2. Adjusting Type Determination
	12.5.3. Requesting Traceback Information
	12.5.4. Correlating Traceback with Source Code
	12.5.5. Locating an Allocation Error in Source Code

	Chapter 13. Additional Convenience Features
	13.1. Using Debugger Command Procedures
	13.1.1. Basic Conventions
	13.1.2. Passing Parameters to Command Procedures

	13.2. Using a Debugger Initialization File
	13.3. Logging a Debugging Session into a File
	13.4. Defining Symbols for Commands, Address Expressions, and Values
	13.4.1. Defining Symbols for Commands
	13.4.2. Defining Symbols for Address Expressions
	13.4.3. Defining Symbols for Values

	13.5. Assigning Commands to Function Keys
	13.5.1. Basic Conventions
	13.5.2. Advanced Techniques

	13.6. Using Control Structures to Enter Commands
	13.6.1. FOR Command
	13.6.2. IF Command
	13.6.3. REPEAT Command
	13.6.4. WHILE Command
	13.6.5. EXITLOOP Command

	13.7. Calling Routines Independently of Program Execution

	Chapter 14. Debugging Special Cases
	14.1. Debugging Optimized Code
	14.1.1. Eliminated Variables
	14.1.2. Changes in Coding Order
	14.1.3. Semantic Stepping (Alpha Only)
	14.1.4. Use of Registers
	14.1.5. Split-Lifetime Variables

	14.2. Debugging Screen-Oriented Programs
	14.2.1. Setting the Protection to Allocate a Terminal

	14.3. Debugging Multilanguage Programs
	14.3.1. Controlling the Current Debugger Language
	14.3.2. Specific Differences Among Languages
	14.3.2.1. Default Radix
	14.3.2.2. Evaluating Language Expressions
	14.3.2.3. Arrays and Records
	14.3.2.4. Case Sensitivity
	14.3.2.5. Initialization Code
	14.3.2.6. Predefined Breakpoints

	14.4. Recovering from Stack Corruption
	14.5. Debugging Exceptions and Condition Handlers
	14.5.1. Setting Breakpoints or Tracepoints on Exceptions
	14.5.2. Resuming Execution at an Exception Breakpoint
	14.5.3. Effect of the Debugger on Condition Handling
	14.5.3.1. Primary Handler
	14.5.3.2. Secondary Handler
	14.5.3.3. Call-Frame Handlers (Application-Declared)
	14.5.3.4. Final and Last-Chance Handlers

	14.5.4. Exception-Related Built-In Symbols

	14.6. Debugging Exit Handlers
	14.7. Debugging AST-Driven Programs
	14.7.1. Disabling and Enabling the Delivery of ASTs

	14.8. Debugging Translated Images (Alpha and Integrity servers Only)
	14.9. Debugging Programs That Perform Synchronization or Communication Functions
	14.10. Debugging Inlined Routines

	Chapter 15. Debugging Multiprocess Programs
	15.1. Basic Multiprocess Debugging Techniques
	15.1.1. Starting a Multiprocess Debugging Session

	15.2. Obtaining Information About Processes
	15.3. Process Specification
	15.4. Process Sets
	15.5. Debugger Prompts
	15.6. Process-Sensitive Commands
	15.7. Visible Process and Process-Sensitive Commands
	15.8. Controlling Process Execution
	15.8.1. WAIT Mode
	15.8.2. Interrupt Mode
	15.8.3. STOP Command

	15.9. Connecting to Another Program
	15.10. Connecting to a Spawned Process
	15.11. Monitoring the Termination of Images
	15.12. Releasing a Process From Debugger Control
	15.13. Terminating Specified Processes
	15.14. Interrupting Program Execution
	15.15. Ending the Debugging Session
	15.16. Supplemental Information
	15.16.1. Process Relationships When Debugging
	15.16.2. Specifying Processes in Debugger Commands
	15.16.3. Monitoring Process Activation and Termination
	15.16.4. Interrupting the Execution of an Image to Connect It to the Debugger
	15.16.5. Screen Mode Features for Multiprocess Debugging
	15.16.6. Setting Watchpoints in Global Sections (Alpha and Integrity servers Only)
	15.16.7. System Requirements for Debugging
	15.16.7.1. User Quotas
	15.16.7.2. System Resources

	15.17. Examples

	Chapter 16. Debugging Tasking Programs
	16.1. Comparison of POSIX Threads and Ada Terminology
	16.2. Sample Tasking Programs
	16.2.1. Sample C Multithread Program
	16.2.2. Sample Ada Tasking Program

	16.3. Specifying Tasks in Debugger Commands
	16.3.1. Definition of Active Task and Visible Task
	16.3.2. Ada Tasking Syntax
	16.3.3. Task ID
	16.3.4. Task Built-In Symbols
	16.3.4.1. Caller Task Symbol (Ada Only)

	16.4. Displaying Information About Tasks
	16.4.1. Displaying Information About POSIX Threads Tasks
	16.4.2. Displaying Task Information About Ada Tasks

	16.5. Changing Task Characteristics
	16.5.1. Putting Tasks on Hold to Control Task Switching

	16.6. Controlling and Monitoring Execution
	16.6.1. Setting Task-Specific and Task-Independent Debugger Eventpoints
	16.6.2. Setting Breakpoints on POSIX Threads Tasking Constructs
	16.6.3. Setting Breakpoints on Ada Task Bodies, Entry Calls, and Accept Statements
	16.6.4. Monitoring Task Events

	16.7. Additional Task-Debugging Topics
	16.7.1. Debugging Programs with Deadlock Conditions
	16.7.2. Automatic Stack Checking in the Debugger
	16.7.3. Using Ctrl/Y When Debugging Ada Tasks

	Part VI. Debugger Command Dictionary
	Chapter 17. Debugger Command Dictionary
	@ (Execute Procedure)
	ACTIVATE BREAK
	ACTIVATE TRACE
	ACTIVATE WATCH
	ANALYZE/CRASH_DUMP
	ANALYZE/PROCESS_DUMP
	ATTACH
	CALL
	CANCEL ALL
	CANCEL BREAK
	CANCEL DISPLAY
	CANCEL MODE
	CANCEL RADIX
	CANCEL SCOPE
	CANCEL SOURCE
	CANCEL TRACE
	CANCEL TYPE/OVERRIDE
	CANCEL WATCH
	CANCEL WINDOW
	CONNECT
	Ctrl/C
	Ctrl/W
	Ctrl/Y
	Ctrl/Z
	DEACTIVATE BREAK
	DEACTIVATE TRACE
	DEACTIVATE WATCH
	DECLARE
	DEFINE
	DEFINE/KEY
	DEFINE/PROCESS_SET
	DELETE
	DELETE/KEY
	DEPOSIT
	DISABLE AST
	DISCONNECT
	DISPLAY
	DUMP
	EDIT
	ENABLE AST
	EVALUATE
	EVALUATE/ADDRESS
	EXAMINE
	EXIT
	EXITLOOP
	EXPAND
	EXTRACT
	FOR
	GO
	HELP
	IF
	MONITOR
	MOVE
	PTHREAD
	QUIT
	REBOOT (Integrity servers and Alpha Only)
	REPEAT
	RERUN
	RUN
	SAVE
	SCROLL
	SEARCH
	SDA
	SELECT
	SET ABORT_KEY
	SET ATSIGN
	SET BREAK
	SET DEFINE
	SET EDITOR
	SET EVENT_FACILITY
	SET IMAGE
	SET KEY
	SET LANGUAGE
	SET LANGUAGE/DYNAMIC
	SET LOG
	SET MARGINS
	SET MODE
	SET MODULE
	SET OUTPUT
	SET PROCESS
	SET PROMPT
	SET RADIX
	SET SCOPE
	SET SEARCH
	SET SOURCE
	SET STEP
	SET TASK |THREAD
	SET TERMINAL
	SET TRACE
	SET TYPE
	SET WATCH
	SET WINDOW
	SHOW ABORT_KEY
	SHOW AST
	SHOW ATSIGN
	SHOW BREAK
	SHOW CALLS
	SHOW DEFINE
	SHOW DISPLAY
	SHOW EDITOR
	SHOW EVENT_FACILITY
	SHOW EXIT_HANDLERS
	SHOW IMAGE
	SHOW KEY
	SHOW LANGUAGE
	SHOW LOG
	SHOW MARGINS
	SHOW MODE
	SHOW MODULE
	SHOW OUTPUT
	SHOW PROCESS
	SHOW RADIX
	SHOW SCOPE
	SHOW SEARCH
	SHOW SELECT
	SHOW SOURCE
	SHOW STACK
	SHOW STEP
	SHOW SYMBOL
	SHOW TASK |THREAD
	SHOW TERMINAL
	SHOW TRACE
	SHOW TYPE
	SHOW WATCH
	SHOW WINDOW
	SPAWN
	START HEAP_ANALYZER (Integrity servers only)
	STEP
	STOP
	SYMBOLIZE
	TYPE
	WAIT
	WHILE

	Appendix A. Predefined Key Functions
	A.1. DEFAULT, GOLD, BLUE Functions
	A.2. Key Definitions Specific to LK201 Keyboards
	A.3. Keys That Scroll, Move, Expand, Contract Displays
	A.4. Online Keypad Key Diagrams
	A.5. Debugger Key Definitions

	Appendix B. Built-In Symbols and Logical Names
	B.1. SS$_DEBUG Condition
	B.2. Logical Names
	B.3. Built-In Symbols
	B.3.1. Specifying Registers
	B.3.2. Constructing Identifiers
	B.3.3. Counting Parameters Passed to Command Procedures
	B.3.4. Determining the Debugger Interface (Command or VSI DECwindows Motif for OpenVMS)
	B.3.5. Controlling the Input Radix
	B.3.6. Specifying Program Locations and the Current Value of an Entity
	B.3.7. Using Symbols and Operators in Address Expressions
	B.3.8. Obtaining Information About Exceptions
	B.3.9. Specifying the Current, Next, and Previous Scope on the Call Stack

	Appendix C. Summary of Debugger Support for Languages
	C.1. Overview
	C.2. GNAT Ada (Integrity servers only)
	C.3. HP Ada
	C.3.1. Ada Names and Symbols
	C.3.1.1. Ada Names
	C.3.1.2. Predefined Attributes
	C.3.1.2.1. Specifying Attributes with Enumeration Types
	C.3.1.2.2. Resolving Overloaded Enumeration Literals

	C.3.2. Operators and Expressions
	C.3.2.1. Operators and Expressions
	C.3.2.2. Language Expressions

	C.3.3. Data Types
	C.3.4. Compiling and Linking
	C.3.5. Source Display
	C.3.6. EDIT Command
	C.3.7. GO and STEP Commands
	C.3.8. Debugging Ada Library Packages
	C.3.9. Predefined Breakpoints
	C.3.10. Monitoring Exceptions
	C.3.10.1. Monitoring Any Exception
	C.3.10.2. Monitoring Specific Exceptions
	C.3.10.3. Monitoring Handled Exceptions and Exception Handlers

	C.3.11. Examining and Manipulating Data
	C.3.11.1. Records
	C.3.11.2. Access Types

	C.3.12. Module Names and Path Names
	C.3.13. Symbol Lookup Conventions
	C.3.14. Setting Modules
	C.3.14.1. Setting Modules for Package Bodies

	C.3.15. Resolving Overloaded Names and Symbols
	C.3.16. CALL Command

	C.4. BASIC
	C.4.1. Operators in Language Expressions
	C.4.2. Constructs in Language and Address Expressions
	C.4.3. Data Types
	C.4.4. Compiling for Debugging
	C.4.5. Constants
	C.4.6. Evaluating Expressions
	C.4.7. Line Numbers
	C.4.8. Stepping into Routines
	C.4.9. Symbolic References

	C.5. BLISS
	C.5.1. Operators in Language Expressions
	C.5.2. Constructs in Language and Address Expressions
	C.5.3. Data Types

	C.6. C
	C.6.1. Operators in Language Expressions
	C.6.2. Constructs in Language and Address Expressions
	C.6.3. Data Types
	C.6.4. Case Sensitivity
	C.6.5. Static and Nonstatic Variables
	C.6.6. Scalar Variables
	C.6.7. Arrays
	C.6.8. Character Strings
	C.6.9. Structures and Unions

	C.7. C++ Version 5.5 and Later (Alpha and Integrity servers Only)
	C.7.1. Operators in Language Expressions
	C.7.2. Constructs in Language and Address Expressions
	C.7.3. Data Types
	C.7.4. Case Sensitivity
	C.7.5. Displaying Information About a Class
	C.7.6. Displaying Information About an Object
	C.7.7. Setting Watchpoints
	C.7.8. Debugging Functions
	C.7.9. Limitations on Debugger Support for C++

	C.8. COBOL
	C.8.1. Operators in Language Expressions
	C.8.2. Constructs in Language and Address Expressions
	C.8.3. Data Types
	C.8.4. Source Display
	C.8.5. COBOL INITIALIZE Statement and Arrays (Alpha Only)

	C.9. Fortran
	C.9.1. Operators in Language Expressions
	C.9.2. Constructs in Language and Address Expressions
	C.9.3. Predefined Symbols
	C.9.4. Data Types
	C.9.5. Initialization Code

	C.10. MACRO-32
	C.10.1. Operators in Language Expressions
	C.10.2. Constructs in Language and Address Expressions
	C.10.3. Data Types
	C.10.4. MACRO--32 Compiler (AMACRO - Alpha Only; IMACRO - Integrity servers Only)
	C.10.4.1. Code Relocation
	C.10.4.2. Symbolic Variables
	C.10.4.3. Locating Arguments Without $ARG n Symbols
	C.10.4.4. Arguments That Are Easy to Locate
	C.10.4.5. Arguments That Are Not Easy to Locate
	C.10.4.6. Debugging Code with Floating-Point Data
	C.10.4.7. Debugging Code with Packed Decimal Data

	C.11. MACRO--64 (Alpha Only)
	C.11.1. Operators in Language Expressions
	C.11.2. Constructs in Language and Address Expressions
	C.11.3. Data Types

	C.12. Pascal
	C.12.1. Operators in Language Expressions
	C.12.2. Constructs in Language and Address Expressions
	C.12.3. Predefined Symbols
	C.12.4. Built-In Functions
	C.12.5. Data Types
	C.12.6. Additional Information
	C.12.7. Restrictions

	C.13. PL/I (Alpha Only)
	C.13.1. Operators in Language Expressions
	C.13.2. Constructs in Language and Address Expressions
	C.13.3. Data Types
	C.13.4. Static and Nonstatic Variables
	C.13.5. Examining and Manipulating Data
	C.13.5.1. EXAMINE Command Examples
	C.13.5.2. Notes on Debugger Support

	C.14. Language UNKNOWN
	C.14.1. Operators in Language Expressions
	C.14.2. Constructs in Language and Address Expressions
	C.14.3. Predefined Symbols
	C.14.4. Data Types

	Appendix D. EIGHTQUEENS.C
	D.1. EIGHTQUEENS.C
	D.2. 8QUEENS.C

