
VSI OpenVMS

DEC Text Processing Utility Reference
Manual

Operating System and Version: VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

DEC Text Processing Utility Reference Manual

Copyright © 2025 VMS Software, Inc. (VSI), Burlington, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

ii

DEC Text Processing Utility Reference Manual

Table of Contents
Preface ... v

1. About VSI .. v
2. Intended Audience ... v
3. Document Structure ... v
4. VSI Encourages Your Comments .. v
5. OpenVMS Documentation ... v
6. Conventions .. v

Chapter 1. DECTPU Built-In Procedures Grouped According to Function 1
Chapter 2. Descriptions of the DECTPU Built-In Procedures ... 5

2.1. DECTPU Built-In Procedures .. 5
Appendix A. Sample DECwindows DECTPU Procedures .. 431

A.1. Creating a Mouse Pad .. 431
A.2. Implementing an EDT-Style APPEND Command ... 436
A.3. Testing and Returning a Select Range .. 438
A.4. Handling Callbacks from a Scroll Bar Widget ... 439
A.5. Reactivating a Select Range ... 441
A.6. Copying Selected Material from EVE to Another DECwindows Application 442

Appendix B. DECTPU Messages ... 445
Appendix C. DECTPU Cursor Behavior .. 457

C.1. Cursor Position Compared to Editing Point ... 457
C.2. Built-In Padding ... 458

iii

DEC Text Processing Utility Reference Manual

iv

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is a reference for experienced programmers who want to program in the DEC Text
Processing Utility (DECTPU). Some features of DECTPU, for example, the callable interface and the
built-in procedure FILE_PARSE, are intended for system programmers who have a good understanding
of VSI Open VMS operating system concepts.

3. Document Structure
This manual is organized as follows:

● Chapter 1, "DECTPU Built-In Procedures Grouped According to Function" lists DECTPU built-in
features according to their function.

● Chapter 2, "Descriptions of the DECTPU Built-In Procedures" contains complete descriptions of the
DECTPU built-in functions.

● Appendix A, "Sample DECwindows DECTPU Procedures" contains sample procedures written in
DECwindows DECTPU.

● Appendix B, "DECTPU Messages" contains DECTPU messages.

● Appendix C, "DECTPU Cursor Behavior" discusses cursor behavior in DECTPU applications.

4. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the
key labeled Ctrl while you press another key or a pointing device
button.

v

https://docs.vmssoftware.com

Preface

PFn PFn indicates that you press the key labeled PFn on the numeric
keypad, where n is 1, 2, 3, or 4.

x A lowercase italic x indicates the generic use of a letter. For
example, xxx indicates any combination of three alphabetic
characters.

n A lowercase italic n indicates the generic use of a number. For
example, 19nn indicates a 4-digit number in which the last 2 digits
are unknown.

PF1 x A sequence such as PF1 x indicates that you must first press and
release the key labeled PF1 and then press and release another key
or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a
key on the keyboard. (In text, a key name is not enclosed in a box.)

In the HTML version of this document, this convention appears as
brackets, rather than a box.

{ } In command format descriptions, braces indicate required elements;
you must choose one of the options listed.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options. (Brackets
are not optional, however, in the syntax of a directory name in
an OpenVMS file specification or in the syntax of a substring
specification in an assignment statement.)

[|] In command format descriptions, vertical bars separating items
inside brackets indicate that you choose one, none, or more than one
of the options.

() In command format descriptions, parentheses indicate that you must
enclose the options in parentheses if you choose more than one.

" " Quotation marks enclose system messages that are specified in text.
. . . A horizontal ellipsis in examples indicates one of the following

possibilities:

● Additional optional arguments in a statement have been
omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because they
are not important to the topic being discussed.

italic text Italic text indicates important information, complete titles of
manuals, or variables. Variables include information that varies
in system output (Internal error number), in command lines (/
PRODUCER=name), and in command parameters in text (where dd
represents the predefined code for the device type).

vi

Preface

bold text This text style represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

In the HTML version of this document, this convention appears as
italic text.

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine, the
name of a file, or the abbreviation for a system privilege.

lowercase In format descriptions, words in lowercase indicate parameters or
arguments to be specified by the user.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text identifies
the following elements: keywords, the names of independently
compiled external functions and files, syntax summaries, and
references to variables or identifiers introduced in an example.

- A hyphen at the end of a command format description, command
line, or code line indicates that the command or statement continues
on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise
noted. Nondecimal radixes—binary, octal, or hexadecimal—are
explicitly indicated.

mouse The term mouse refers to any pointing device, such as a mouse, a
puck, or a stylus.

MB1, MB2, MB3 MB1 indicates the left mouse button. MB2 indicates the middle
mouse button. MB3 indicates the right mouse button. (Users can
redefine the mouse buttons.)

vii

Preface

viii

Chapter 1. DECTPU Built-In
Procedures Grouped According
to Function
This chapter groups each of the DECTPU built-in procedures in a table according to the functions that
they perform so you can see at a glance which built-in is related to what task.

When you want to perform editing tasks, use the following table to help you identify which built-in
procedures are related to a particular task.

Chapter 2, "Descriptions of the DECTPU Built-In Procedures" lists the built-in procedures alphabetically
and describes them in detail.

Some entries in this manual describe language elements or keywords that are not built-in procedures.
These elements and keywords are included because they are used in the same way built-ins are used.
Table 1.1, "List of DECTPU Built-In Procedures by Function" lists all the DECTPU built-in procedures,
grouped by the functions they perform (screen layout, moving the cursor, matching patterns, and so on).

Table 1.1. List of DECTPU Built-In Procedures by Function

 Screen Layout
ADJUST_WINDOW SET (PAD) SET (VIDEO)
CREATE_WINDOW SET (PROMPT_AREA) SET (WIDTH)
MAP SET (SCREEN_UPDATE) SHIFT
REFRESH SET (SCROLLING) UNMAP
SET (DISPLAY_VALUE) SET (STATUS_LINE) UPDATE
SET (HEIGHT) SET (TEXT)
 Moving the Cursor
CURSOR_HORIZONTAL SET

(COLUMN_MOVE_VERTICAL)
SET (DETACHED_ACTION)

CURSOR_VERTICAL SET
(CROSS_WINDOW_BOUNDS)

SET
(MOVE_VERTICAL_CONTEXT)

SCROLL
 Moving the Editing Position
MOVE_HORIZONTAL MOVE_VERTICAL POSITION
 Manipulating Text
APPEND_LINE ERASE_LINE SEARCH_QUIETLY
BEGINNING_OF FILE_PARSE SELECT
CHANGE_CASE FILE_SEARCH SELECT_RANGE
COPY_TEXT FILL SET (ERASE_UNMODIFIABLE)
CREATE_BUFFER MARK SET (MODIFIABLE)
CREATE_RANGE MESSSAGE_TEXT SET (MODIFIED)
EDIT MODIFY_RANGE SPLIT_LINE

1

Chapter 1. DECTPU Built-In Procedures Grouped According to Function

END_OF MOVE_TEXT TRANSLATE
ERASE READ_FILE WRITE_FILE
ERASE_CHARACTER SEARCH
 Matching Patterns
ANCHOR MATCH SCANL
ANY NOTANY SPAN
ARB PAGE_BREAK SPANL
LINE_BEGIN REMAIN UNANCHOR
LINE_END SCAN
 Status of the Editing Context
CURRENT_BUFFER SET (DEBUG) SET (NO_WRITE)
CURRENT_CHARACTER SET (DEFAULT_DIRECTORY) SET (OUTPUT_FILE)
CURRENT_COLUMN SET (FACILITY_NAME) SET (OVERSTRIKE)
CURRENT_DIRECTION SET (FORWARD) SET

(PAD_OVERSTRUCK_TABS)
CURRENT_LINE SET (INFORMATIONAL) SET (PERMANENT)
CURRENT_OFFSET SET (INSERT) SET (RECORD_ATTRIBUTE)
CURRENT_ROW SET (JOURNALING) SET (RECORD_MODE)
CURRENT_WINDOW SET

(KEYSTROKE_RECOVERY)
SET (REVERSE)

DEBUG_LINE SET (LEFT_MARGIN) SET (RIGHT_MARGIN)
ERROR SET (LEFT_MARGIN_ACTION) SET

(RIGHT_MARGIN_ACTION)
ERROR_LINE SET (LINE_NUMBER) SET

(SPECIAL_ERROR_SYMBOL)
ERROR_TEXT SET (MARGINS) SET (SUCCESS)
GET_INFO SET (MAX_LINES) SET (SYSTEM)
LOCATE_MOUSE SET

(MESSAGE_ACTION_LEVEL)
SET (TAB_STOPS)

RECOVER_BUFFER SET
(MESSAGE_ACTION_TYPE)

SET (TIMER)

SET (AUTO_REPEAT) SET (MESSAGE_FLAGS) SET (TRACEBACK)
SET (BELL) SET (MOUSE) SHOW
 Defining Keys
ADD_KEY_MAP LAST KEY SET (PRE_KEY_PROCEDURE)
CREATE_KEY_MAP LOOKUP_KEY SET (SELF_INSERT)
CREATE_KEY_MAP_LIST REMOVE_KEY_MAP SET (SHIFT_KEY)
DEFINE_KEY SET (KEY_MAP_LIST) SET (UNDEFINED_KEY)
KEY_NAME SET

(POST_KEY_PROCEDURE)
UNDEFINE_KEY

 Multiple Processing

2

Chapter 1. DECTPU Built-In Procedures Grouped According to Function

ATTACH SEND SPAWN
CREATE_PROCESS SEND_EOF
 Executing Programs
ABORT COMPILE RETURN
BREAK EXECUTE SAVE
 Specific to DECwindows
CREATE_WIDGET SET (DRM_HIERARCHY) SET (MENU_POSITION)
DEFINE_WIDGET_CLASS SET (ENABLE_RESIZE) SET (RESIZE_ACTION)
GET_CLIPBOARD SET (FIRST_INPUT_ACTION) SET (SCREEN_LIMITS)
GET_DEFAULT SET (GLOBAL_SELECT) SET (SCROLL_BAR)
GET_GLOBAL_SELECT SET

(GLOBAL_SELECT_GRAB)
SET
(SCROLL_BAR_AUTO_THUMB)

LOWER_WIDGET SET
(GLOBAL_SELECT_READ)

SET (UID)

MANAGE_WIDGET SET (GLOBAL_SELECT_TIME) SET (WIDGET)
RAISE_WIDGET SET

(GLOBAL_SELECT_UNGRAB)
SET (WIDGET_CALLBACK)

READ_CLIPBOARD SET (ICON_NAME) SET (WIDGET_CALL_DATA)
READ_GLOBAL_SELECT SET (ICON_PIXMAP) SET

(WIDGET_CONTEXT_HELP)
REALIZE_WIDGET SET (INPUT_FOCUS) SET

(WIDGET_RESOURCE_TYPES)
SEND_CLIENT_MESSAGE SET (INPUT_FOCUS_GRAB) UNMANAGE_WIDGET
SET (ACTIVE_AREA) SET

(INPUT_FOCUS_UNGRAB)
WRITE_CLIPBOARD

SET (CLIENT_MESSAGE) SET
(MAPPED_WHEN_MANAGED)

WRITE_GLOBAL_SELECT

SET (DEFAULT_FILE)
 Miscellaneous
ASCII INDEX QUIT
CALL_USER INT READ_CHAR
CONVERT JOURNAL_CLOSE READ_KEY
CREATE_ARRAY JOURNAL_OPEN READ_LINE
DELETE LEARN_ABORT SET (EOB_TEXT)
EXIT LEARN_BEGIN SLEEP
EXPAND_NAME LEARN_END STR
FAO LENGTH SUBSTR
HELP_TEXT MESSAGE

3

Chapter 1. DECTPU Built-In Procedures Grouped According to Function

4

Chapter 2. Descriptions of the
DECTPU Built-In Procedures
This chapter describes the DECTPU built-in procedures. The discussion of each procedure is divided, as
applicable, into the following parts:

● Syntax

● Parameter(s)

● Return Value(s)

● Description

● Signaled Errors (listing the warnings and errors signaled, if applicable)

● Examples

2.1. DECTPU Built-In Procedures
This section lists the DECTPU built-in procedures in alphabetical order and describes each in detail.

The descriptions of built-in procedures that return useful values show a return value in the format
section. The built-in procedure descriptions that do not show a return value in the format section either
return 0 or the following message:

TPU$_NORETURNVALUE, "Built-in does not return a value."

ABORT

Syntax

Parameters
None.

Description
The ABORT procedure stops any executing procedures and causes DECTPU to wait for the next key
press. ABORT returns control to DECTPU’s main control loop. It causes an immediate exit from all
invoked procedures.

Although ABORT behaves much like a built-in, it is actually a DECTPU language element.

ABORT is evaluated for correct syntax at com pile time. In contrast, DECTPU procedures are usually
evaluated for a correct parameter count and parameter types at execution time.

Signaled Errors
ABORT is a language element and has no completion codes.

5

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Example
The following example stops execution of the current procedure and returns to DECTPU’s main loop.
The error handler does not try to recover from an error.

ON_ERROR
MESSAGE ("Aborting command because of error.");
ABORT;
ENDON_ERROR;

ADD_KEY_MAP

Syntax

Parameters
key-map-list-name

A string that specifies the name of the key map list.

"first"

A string that directs DECTPU to add the key map to the beginning of the key map list. In cases
where a key is defined in multiple key maps, the first definition found for that key in any of the key
maps in a key map list is used.

"last"

A string that directs DECTPU to add the key map to the end of the key map list. In cases where a
key is defined in multiple key maps, the first definition found for that key in any of the key maps in a
key map list is used.

key-map-name

A string that specifies the name of the key map to be added to the key map list. You can specify
more than one key map. Key maps are added to the key map list in the order specified. The order of
a key map in a key map list determines precedence among any conflicting key definitions.

Description
The ADD_KEY_MAP procedure adds one or more key maps to a key map list. Key maps are added, in
the order specified, to either the top or the bottom of the key map list. Key map precedence in a key map
list is used to resolve any conflicts between key definitions. The key definition in a preceding key map
overrides any conflicting key definitions in key maps that follow in the key map list.

See the descriptions of the DEFINE_KEY, CREATE_KEY_MAP, and CREATE_KEY_MAP_LIST
built-in procedures for more information on key definitions, key maps, and key map lists, respectively.
Also, see the description of the REMOVE_KEY_MAP built-in procedure for information on removing
key maps from a key map list.

6

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_NOKEYMAP WARNING Third argument is not a defined
key map.

TPU$_KEYMAPNTFND WARNING The key map listed in the third
argument is not found.

TPU$_TOOFEW ERROR Too few arguments passed to the
ADD_KEY_MAP built-in.

TPU$_TOOMANY ERROR Too many arguments passed to
the ADD_KEY_MAP built-in.

TPU$_NOKEYMAPLIST WARNING Attempt to access an undefined
key map list.

TPU$_INVPARAM ERROR Wrong type of data sent to the
ADD_KEY_MAP built-in.

TPU$_ILLREQUEST WARNING The position string must be either
"first" or "last".

TPU$_BADREQUEST WARNING The position string must be either
"first" or "last".

Examples
1. The following example adds the default key map TPU$KEY_MAP to the default key map list,

TPU$KEY_MAP_LIST. Usually (except in the EVE editor), TPU$KEY_MAP is a member of the
default key map list.

ADD_KEY_MAP ("TPU$KEY_MAP_LIST", "last", "TPU$KEY_MAP");

2. The following example creates a key map called HELP_KEYS and adds it to the beginning of the
default key map list, TPU$KEY_MAP_LIST. Key definitions in the new key map are invoked over
definitions in the key maps already in the list.

help_keys := CREATE_KEY_MAP ("help_keys");
ADD_KEY_MAP ("TPU$KEY_MAP_LIST", "first", help_keys);

ADJUST_WINDOW

Syntax

Parameters
window

The window whose size or location you want to change. The window that you specify becomes the
current window, and the buffer mapped to that window becomes the current buffer.

integer1

The signed integer value that you add to the screen line number at the top of the window.

7

Chapter 2. Descriptions of the DECTPU Built-In Procedures

integer2

The signed integer value that you add to the screen line number at the bottom of the window.

Description
The ADJUST_WINDOW procedure changes the size or screen location, or both, of a window and
makes the window that you specify the current window. If you want to check the visible size or location,
or both, of a window before making an adjustment to it, use any of the following statements:

SHOW (WINDOW);

SHOW (WINDOWS);

top := GET_INFO (window, "top", VISIBLE_WINDOW);
MESSAGE (STR (top));

bottom := GET_INFO (window, "bottom", VISIBLE_WINDOW);
MESSAGE (STR (bottom));

There are screen line numbers at both the top and bottom of the visible window. Adjust the size of a
visible window by changing either or both of these screen line numbers. Make these changes by adding
to or subtracting from the current screen line number, not by specifying the screen line number itself.

You can enlarge a window by decreasing the screen line number at the top of the window. (Specify a
negative value for integer1.) You can also enlarge a window by increasing the screen line number at the
bottom of the window. (Specify a positive value for integer2.) The following example adds four lines to
the current window, provided that the values fall within the screen boundaries:

ADJUST_WINDOW (CURRENT_WINDOW, -2, +2)

If you specify integers that attempt to set the screen line number beyond the screen boundaries,
DECTPU issues a warning message. DECTPU then sets the window boundary at the edge (top or
bottom, as appropriate) of the screen.

You can reduce a window by increasing the screen line number at the top of the window. (Specify a
positive value for integer1.) You can also reduce a window by decreasing the screen line number at the
bottom of the window. (Specify a negative value for integer2.) If you attempt to make the size of the
window smaller than one line (two lines if the window has a status line, three lines if the window has a
status line and a horizontal scroll bar), DECTPU issues an error message and no adjustment occurs. The
following example reduces the current window by four lines:

ADJUST_WINDOW (CURRENT_WINDOW, +2, -2)

You can also use ADJUST_WINDOW to change the position of the window on the screen without
changing the size of the window. The following command moves the current window two lines higher on
the screen, provided that the values fall within the screen boundaries:

ADJUST_WINDOW (CURRENT_WINDOW, -2, -2)

Figure 2.1, "Screen Layout Before Using ADJUST_WINDOW" below shows a screen layout that appears
when you invoke DECTPU with EVE and a user-written command file. In this case, the user-written
command file divides the screen into two windows. The top window has 15 text lines (including the
"End-of-file" message) and a status line. The bottom window has five text lines and a status line. The
two bottom lines of the screen are the command window and message window, each consisting of one
line.

8

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Figure 2.1. Screen Layout Before Using ADJUST_WINDOW

The user-written command file uses the variable second_window to identify the bottom window.
Figure 2.2, "Screen Layout After Using ADJUST_WINDOW" shows the screen layout after you enter
ADJUST_WINDOW (second_window, –5, 0) after the appropriate prompt from EVE. Both the top
and bottom windows now contain 10 lines of text and a status line; the cursor is located in the bottom
window. The command and message windows still contain one line each.

ADJUST_WINDOW adds (+/–) integer1 to the "visible_top" and (+/–) integer2 to the "visible_bottom"
of a window. The mapping of the window to its buffer is not changed. The new values for the screen
line numbers become the values for the original top and original bottom. See the Guide to the DEC Text
Processing Utility for more information on window dimensions and window values.

Figure 2.2. Screen Layout After Using ADJUST_WINDOW

Using ADJUST_WINDOW on a window makes it the current window; that is, DECTPU puts the cursor
in that window if the cursor was not already there, and DECTPU marks that window as current in

9

Chapter 2. Descriptions of the DECTPU Built-In Procedures

DECTPU’s internal tracking system. DECTPU may scroll or adjust the text in the window to keep the
current position visible after the adjustment occurs.

Both ADJUST_WINDOW and MAP may split or occlu de other windows.

If you execute ADJUST_WINDOW within a procedure, the screen is not immediately updated to reflect
the adjustment. The adjustment is made after the entire procedure is finished executing and control
returns to the screen manager. If you want the screen to reflect the adjustment to the window before the
entire procedure is executed, you can force the immediate update of a window by adding an UPDATE
statement to the procedure. See the UPDATE built-in procedure for more information.

If you have defined a top or bottom scroll margin, and the window is adjusted so that the scroll margins
no longer fit, DECTPU signals TPU$_ADJSCROLLREG and the scroll margins shrink proportionally.
For example, if you have a 10-line window, with an 8-line top scroll margin, shrinking the window to a
5-line window also reduces the top scroll margin to four lines.

Signaled Errors

TPU$_AD JSCROLLREG INFO The window’s scrolling region has been
adjusted to fit the new window.

TPU$_BOTLINETRUNC INFO Bottom line cannot exceed bottom of
screen.

TPU$_TOPLINETRUNC INFO Top line cannot exceed top of screen.
TPU$_WINDNOTMAPPED WARNING Cannot adjust a window that is not

mapped.
TPU$_BADWINDADJUST WARNING Cannot adjust window to less than the

minimum number of lines.
TPU$_WINDNOTVIS WARNING No adjustment if window is not visible.
TPU$_TOOFEW ERROR You specified less than three parameters.
TPU$_TOOMANY ERROR You specified more than three

parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters

have the wrong type.

Examples
1. The following example reduces the current window by removing five lines from the top of the

window. If the top line of the window is screen line number 11, this statement changes the top line
of the window to screen line number 16. If the bottom line of the window is less than screen line
number 16, DECTPU signals an error.

ADJUST_WINDOW (CURRENT_WINDOW, +5, 0)

2. The following example removes five lines from the top of a window and puts a help window in their
place:

PROCEDURE user_display_help
 top_of_window := GET_INFO (CURRENT_WINDOW, "VISIBLE_TOP");
 !
 ! Remove the top five lines from the current window
 ! and replace them with a help window
 !

10

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 ADJUST_WINDOW (CURRENT_WINDOW, +5, 0);
 example_window := CREATE_WINDOW (top_of_window, 5, ON);
 example_buffer := CREATE_BUFFER ("EXAMPLE",
 "sys$login:template.txt");
 MAP (example_window, example_buffer);
ENDPROCEDURE;

ANCHOR

Syntax

Parameters
None.

Description
The ANCHOR procedure forces the next pattern element either to match immediately or else to fail.
When SEARCH fails to find a match for a pattern, it usually tries the search again. To try again, the
SEARCH built-in procedure moves the starting position one character forward or backward, depending
upon the direction of the search. SEARCH continues this operation until it either finds a match for the
pattern or reaches the end or beginning of the buffer or range being searched.

If ANCHOR appears as the first element of a com plex pattern, the search does not move the starting
position. Instead, the search examines the next (or previous) character to determine if it matches the
next character or element in the complex pattern. If the pattern does not match starting in the original
position, the search fails. SEARCH does not move the starting position nor try the search again.

When you use the plus sign (+) operator rather than the ampersand (&) operator to build complex
patterns, ANCHOR is useful only as the first element of a complex pattern. It is legal elsewhere in a
pattern but has no effect.

Although ANCHOR behaves much like a built-in, it is actually a keyword.

For more information on patterns or modes of pattern searching, see the Guide to the DEC Text
Processing Utility.

Signaled Errors
ANCHOR is a keyword and has no completion codes.

Examples
1. The following example creates a pattern that matches the string a123 . Because ANCHOR appears

as the first element of the pattern, SEARCH will find a123 only if the string appears at the starting
position for the search.

pat1 := ANCHOR + "a123";

2. The following example starts at the beginning of a buffer and searches forward, removing all
comments that begin in column 1. The ANCHOR keyword in this example ties the search to the

11

Chapter 2. Descriptions of the DECTPU Built-In Procedures

first character of a line (the current character). This prevents the search function from finding and
removing exclamation points in the middle of a line (for example, in the FAO directive !AS).

PROCEDURE user_remove_comments
 LOCAL pat1,
 number_removed,
 end_mark;
 pat1 := ANCHOR + "!";
 number_removed := 0;
 end_mark := END_OF (CURRENT_BUFFER);

 POSITION (BEGINNING_OF (CURRENT_BUFFER));
 LOOP
 EXITIF MARK (NONE) = end_mark;
 r1 := SEARCH_QUIETLY (pat1, FORWARD);
 IF r1 <> 0
 THEN ! comment found so erase it
 ERASE_LINE;
 number_removed := number_removed + 1;
 ENDIF;
 MOVE_VERTICAL (1); ! move to the next line
 ENDLOOP;
 MESSAGE (FAO ("!ZL comment!%S removed.", number_removed));
ENDPROCEDURE;

ANY

Syntax

Parameters
buffer

An expression that evaluates to a buffer. ANY matches any of the characters in the resulting buffer.

range

An expression that evaluates to a range. ANY matches any of the characters in the resulting range.

string

An expression that evaluates to a string. ANY matches any of the characters in the resulting string.

integer1

A value that indicates how many contiguous characters ANY matches. The default value for this
integer is 1.

Return Value
A pattern matching one or more characters that appear in the string, buffer, or range passed as the first
parameter to ANY.

12

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The ANY procedure returns a pattern that matches one or more characters from the set specified. You
use ANY to construct patterns.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR ANY must appear in the right-hand side
of an assignment statement.

TPU$_TOOFEW ERROR ANY requires at least one argument.
TPU$_TOOMANY ERROR ANY accepts no more than two

arguments.
TPU$_ARGMISMATCH ERROR The argument you passed to the ANY

built-in was of the wrong type.
TPU$_INVPARAM ERROR The argument you passed to the ANY

built-in was of the wrong type.
TPU$_MINVALUE WARNING The argument you passed to the ANY

built-in was less than the minimum
accepted value.

TPU$_CONTROLC ERROR You pressed Ctrl/C during the execution
of the ANY built-in.

Examples
1. The following example creates a pattern that matches any one of the characters h, i, j, k, and l:

pat1 := ANY ("hijkl")

2. The following example creates a pattern that matches any one of the characters a, b, c, x, and y:

a_buf := CREATE_BUFFER ("new buffer");
POSITION (a_buf);
COPY_TEXT ("xy");
SPLIT_LINE;
COPY_TEXT ("abc");
pat1 := ANY (a_buf);

3. The following example finds an ENDPROCEDURE statement that starts in column 1 and moves the
editing point to the end of the statement:

PROCEDURE user_find_endprocedure
 LOCAL endprocedure_pattern,
 search_range;
 endprocedure_pattern := (LINE_BEGIN + "ENDPROCEDURE") +
 (LINE_END | ANY (";! " + ASCII (9)));
 search_range := SEARCH_QUIETLY (endprocedure_pattern, FORWARD);
 IF search_range = 0
 THEN
 MESSAGE ("Endprocedure statement not found");
 ELSE
 POSITION (END_OF (search_range));
 ENDIF;
ENDPROCEDURE;

13

Chapter 2. Descriptions of the DECTPU Built-In Procedures

APPEND_LINE

Syntax

Parameters
None.

Description
The APPEND_LINE procedure places the current line at the end of the previous line. You can use
APPEND_LINE to delete line terminators.

The editing point in the line that was the current line before APPEND_LINE was executed becomes the
editing point.

Using APPEND_LINE may cause DECTPU to insert padding spaces or blank lines in the buffer.
APPEND_LINE causes the screen manager to place the editing point at the cursor position if the current
buffer is mapped to a visible window.

For more information on the distinction between the cursor position and the editing point, see Appendix
C, "DECTPU Cursor Behavior".

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

Signaled Errors
TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
TPU$_NOCACHE ERROR There is not enough memory to allocate

a new cache.
TPU$_TOOMANY ERROR APPEND_LINE does not accept

arguments.
TPU$_NOTMODIFIABLE WARNING You cannot modify an unmodifiable

buffer.
TPU$_LINETOOLONG WARNING DECTPU cannot append the line

because the length of the resulting line
would exceed DECTPU’s maximum line
length.

Examples
1. The following example adds the current line to the end of the previous line:

APPEND_LINE

2. The following example deletes the character to the left of the cursor. If you are at the beginning of
a line, the procedure appends the current line to the end of the previous line. The procedure works
correctly even if the window is shifted.

14

Chapter 2. Descriptions of the DECTPU Built-In Procedures

! The following procedure deletes the character
! to the left of the cursor. If the cursor is at the
! beginning of a line, it appends the current line
! to the end of the previous line.
!
PROCEDURE user_delete_char
 IF CURRENT_OFFSET = 0
 THEN
 APPEND_LINE;
 ELSE
 ERASE_CHARACTER (-1);
 ENDIF;
ENDPROCEDURE;

You can bind this procedure to the delete key with the following statement:

DEFINE_KEY ("user_delete_char", DEL_KEY);

ARB

Syntax

Parameter
integer

The number of characters in the pattern. This integer must be positive.

Return Value
A pattern that matches an arbitrary sequence of characters starting at the editing point and extending for
the length you specify.

Description
The ARB procedure returns a pattern that matches an arbitrary sequence of characters starting at the
editing point and extending for the length you specify. You can use ARB for wildcard matches of fixed
length.

For more information on patterns, see the Guide to the DEC Text Processing Utility.

Signaled Errors
TPU$_NEEDTOASSIGN ERROR ARB must appear on the right-hand side

of an assignment statement.
TPU$_TOOFEW ERROR ARB requires at least one argument.
TPU$_TOOMANY ERROR ARB accepts no more than one

argument.
TPU$_INVPARAM ERROR The argument to ARB must be an

integer.
TPU$_MINVALUE WARNING The argument to ARB must be positive.

15

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Examples
1. The following example creates a pattern that matches the next five characters starting at the editing

point. The characters themselves are arbitrary; it is the number of characters that is important for a
pattern created with ARB.

pat1 := ARB (5)

2. The following example replaces a prefix of any three characters followed by an underscore (xxx_) in
the current buffer with the string "user_". It does not change the current position.

PROCEDURE user_replace_prefix
 LOCAL cur_mode,
 here,
 pat1,
 found_range;

 pat1 := (LINE_BEGIN | NOTANY ("ABCDEFGHIJKLMNOPQRSTUVWXYZ_$"))
 + ((ARB (3) + "_") @ found_range);
 here := MARK (NONE);
 cur_mode := GET_INFO (current_buffer, "mode");

 POSITION (BEGINNING_OF (CURRENT_BUFFER));
 LOOP
 found_range := 0;
 SEARCH_QUIETLY (pat1, FORWARD);
 EXITIF found_range = 0;
 ERASE (found_range);
 POSITION (END_OF (found_range));
 COPY_TEXT ("user_");
 ENDLOOP;
 POSITION (here);
 SET (cur_mode, current_buffer);
ENDPROCEDURE;

ASCII

Syntax

Parameters
integer1

The decimal value of a character in the DEC Multinational Character Set.

keyword

Must be a key name. If the key name is the name of a key that produces a printing character, ASCII
returns that character; otherwise it returns the character whose ASCII value is 0.

16

Chapter 2. Descriptions of the DECTPU Built-In Procedures

string1

The character whose ASCII value you want. If the string has a length greater than 1, the ASCII
built-in returns the ASCII value of the first character in the string.

Return Value
The character with the specified ASCII value (if you specify an integer or keyword parameter).

The ASCII value of the string you specify (if you specify a string parameter).

Description
The ASCII procedure returns the ASCII value of a character or the character that has the specified
ASCII value. The result of ASCII depends upon its argument. If the argument is an integer, ASCII
returns a string of length 1 that represents the character of the DEC Multinational Character Set
corresponding to the integer you specify. If the argument is a string, ASCII takes the first character of the
string and returns the integer corresponding to the ASCII value of that character.

If the argument to ASCII is a keyword, that keyword must be a key name. The KEY_NAME built-in
produces key names. In addition, there are several predefined keywords that are key names. See the
Guide to the DEC Text Processing Utility for a list of these keywords.

If the keyword is a key name and the key produces a printing character, ASCII returns that character;
otherwise, it returns the character whose ASCII value is 0.

Signaled Errors
TPU$_NEEDTOASSIGN ERROR ASCII must be on the right-hand side of

an assignment statement.
TPU$_TOOFEW ERROR ASCII requires one argument.
TPU$_TOOMANY ERROR ASCII accept s only one argument.
TPU$_ARGMISMATCH ERROR The parameter you passed to ASCII is of

the wrong type.
TPU$_NULLSTRING WARNING You passed a string of length 0 to

ASCII.

Examples
1. The following example assigns a string of length 1 to the variable my_character . This string contains

the form-feed character because that character has the ASCII value 12.

my_character := ASCII(12)

2. The following example assigns the integer value 97 to the variable ascii_value . The a is specified in
quotation marks because it is a parameter of type string.

ascii_value := ASCII ("a");

3. The following example prompts you to press a key. When you do so, the procedure reads the key. If
the key is associated with a printing character, ASCII tells you what character is produced. If the key
is not associated with a printable character, ASCII informs you of this.

PROCEDURE user_test_key

17

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 LOCAL key_struck,
 key_value;
 MESSAGE ("Press a key");
 key_struck := READ_KEY;
 key_value := ASCII (key_struck);

 IF key_value = ASCII (0)
 THEN
 MESSAGE ("That is not a typing key");
 ELSE
 MESSAGE (FAO ("That key produces the letter "!AS".", key_value));
 ENDIF;
ENDPROCEDURE;

ATTACH

Syntax

Parameters
integer

An integer that DECTPU interprets as the process identification (PID) of the process to which
terminal control is to be switched. You must use decimal numbers to specify the PID to DECTPU.

string

A string that DECTPU interprets as the name of the process to which terminal control is to be
switched.

Description
The ATTACH procedure enables you to switch control from your current process to another OpenVMS
process that you previously created.

To use ATTACH you must have previously created a subprocess. If the process you specify is not part of
the current job or does not exist, an error message is displayed. For information on creating subprocesses,
see the description of SPAWN.

ATTACH suspends the current DECTPU process and switches context to the process you use as a
parameter. If you do not specify a parameter for ATTACH, DECTPU switches control to the parent or
owner process. A subsequent use of the DCL ATTACH command (or a logout from any process except
the parent process) resumes the execution of the suspended DECTPU process.

In all cases, DECTPU first deassigns the terminal. If a DECTPU process is resumed following a SPAWN
or ATTACH command, DECTPU reassigns the terminal and refreshes the screen.

If the current buffer is mapped to a visible window, the ATTACH built-in causes the screen manager to
synchronize the editing point (which is a buffer location) with the cursor position (which is a window
location). This may result in the insertion of padding spaces or lines into the buffer if the cursor position

18

Chapter 2. Descriptions of the DECTPU Built-In Procedures

is before the beginning of a line, in the middle of a tab, beyond the end of a line, or after the last line in
the file.

ATTACH is not a valid built-in in DECwindows DECTPU. However, if you are running non
DECwindows DECTPU in a DECwindows terminal emulator, ATTACH works as described.

Signaled Errors

TPU$_NOPARENT WARNING There is no parent process to which you
can attach. Your current process is the
top-level process.

TPU$_TOOMANY ERROR Too many arguments passed to the
ATTACH built-in.

TPU$_SYSERROR ERROR Error requesting information about the
process being attached to.

TPU$_ARGMISMATCH ERROR Wrong type of data sent to the ATTACH
built-in. Only process name strings and
process IDs are allowed.

TPU$_CREATEFAIL WARNING Unable to attach to the process.
TPU$_REQUIRESTERM ERROR Feature requires a terminal.

Examples
1. The following example causes DECTPU to attach to the OpenVMS subprocess with the PID 97899:

ATTACH (97899)

2. The following example switches the terminal’s control to the OpenVMS process JONES_2:

ATTACH ("JONES_2")

BEGINNING_OF

Syntax

Parameters
buffer

The buffer whose beginning you want to mark.

range

The range whose beginning you want to mark.

Return Value
A marker that points to the first character position of the specified buffer or range.

19

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The BEGINNING_OF procedure returns a marker that points to the first position of a buffer or a
range. If you use the marker returned by BEGINNING_OF as a parameter for the POSITION built-in
procedure, the editing point moves to the marker.

Signaled Errors
TPU$_NEEDTOASSIGN ERROR BEGINNING_OF must appear on

the right-hand side of an assignment
statement.

TPU$_TOOFEW ERROR BEGINNING_OF requires one
argument.

TPU$_TOOMANY ERROR BEGINNING_OF accepts only one
argument.

TPU$_ARGMISMATCH ERROR You passed something other than a
range or a buffer to BEGINNING_OF.

Examples
1. The following example uses two built-in procedures to move your current character position to the

beginning of my_range. If my_range is in a visible buffer in which the cursor is located, the cursor
position is also moved to the beginning of my_range.

POSITION (BEGINNING_OF (my_range))

2. The following example creates a new buffer, associates the buffer with the main window, and maps
the main window to the screen. It positions to the top of the buffer, prompts you for the name of a
file to include, and reads the file into the buffer.

PROCEDURE user_include_file
! Create scratch buffer
 b1 := CREATE_BUFFER ("Scratch Buffer");

! Map scratch buffer to main window
 MAP (main_window, b1);

! Read in file name given
 READ_FILE (READ_LINE ("File to Include:"));

! Go to top of file
 POSITION (BEGINNING_OF (b1));
ENDPROCEDURE;

BREAK

Syntax

Parameters
None.

20

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The BREAK procedure activates the debugger if DECTPU was invoked with the /DEBUG qualifier. If
there is no debugger, BREAK causes the following message to be displayed in the message window:

Breakpoint at line xxx

It has no other effect. Although BREAK behaves much like a built-in, it is actually a DECTPU language
element.

BREAK is evaluated for correct syntax at compile time. In contrast, DECTPU procedures are usually
evaluated for a correct parameter count and parameter types at execution time.

Signaled Errors
BREAK is a language element and has no completion codes.

Example
The following example contains a break statement. If the statement is executed, DECTPU’s debugger is
activated, enabling you to debug that section of the code.

PROCEDURE user_not_quite_working
 .
 .
 .
 BREAK;
 .
 .
 .
ENDPROCEDURE;

CALL_USER

Syntax

Parameters
integer

The integer that is passed to the user-written program.

string1

The string that is passed to the user-written program.

Return Value
The value returned by the called program.

Description
The CALL_USER procedure calls a program written in another language from within DECTPU. The
CALL_USER parameters are passed to the external routine exactly as you enter them; DECTPU does
not process the parameters in any way.

21

Chapter 2. Descriptions of the DECTPU Built-In Procedures

The integer is passed by reference, and string1 is passed by descriptor. String2 is the value returned by
the external program.

In addition to returning the value string2 to CALL_USER, the external program returns a status code
that tells whether the program executed successfully. You can trap this status code in an ON_ERROR
statement. An even-numbered status code (low bit in R0 clear) causes the ON_ERROR statement to
be executed. The ERROR lexical element returns the status value from the program in the form of a
keyword.

The CALL_USER parameters are input parameters for the external program you are calling. DECTPU
does not process the parameters in any way but passes them to the external procedure exactly as you
enter them. You must supply both parameters even if the routine you are calling does not require that
information be passed to it. Enter the following null parameters to indicate that you are not passing any
actual values:

CALL_USER (0,"")

For information on the DECTPU callable interface, see the VSI OpenVMS Utility Routines Manual.

Signaled Errors

TPU$_REQUIRESVMS ERROR Feature not available on this operating
system.

TPU$_BADUSERDESC ERROR User-written routine incorrectly filled in
the return descriptor.

TPU$_NOCALLUSER ERROR Could not find a routine to invoke.
TPU$_TOOFEW ERROR Too few arguments passed to

CALL_USER.
TPU$_TOOMANY ERROR Too many arguments passed to

CALL_USER.
TPU$_NEEDTOASSIGN ERROR The call to CALL_USER must be on

the right-hand side of the assignment
statement.

TPU$_INVPARAM ERROR Wrong type of data sent to
CALL_USER.

TPU$_ARGMISMATCH ERROR Parameter is of the wrong data type.
TPU$_CALLUSERFAIL WARNING CALL_USER routine failed with status

%X’status’. The value returned by
ERROR after this type of error will
be the status value reported by this
message.

Examples
1. The following example calls a program that you wrote. Before invoking DECTPU, you created a

logical name, TPU$CALLUSER, that points to the file containing the program you want called
by CALL_USER. DECTPU passes the first parameter (6) by reference, and the second parameter
("ABC") by descriptor. If, for example, you use an integer and a string as input values, the program
processes the integer 6 and the string "ABC". If the program is designed to return a result, the result
is returned in the variable ret_value.

22

Chapter 2. Descriptions of the DECTPU Built-In Procedures

ret_value := CALL_USER (6, "ABC")

2. The following example shows the steps required to use the CALL_USER built-in procedure. The
routine that is called to do floating-point arithmetic is written in BASIC.

Step-by-Step Example of Using CALL_USER

 1. Write a program in BASIC that does floating-point arithmetic on the
 values passed to it:

! Filename:FLOATARITH.BAS

1 sub TPU$CALLUSER (some_integer% , input_string$, return_string$)

10 ! don’t check some_integer% because this function only does
 ! floating-point arithmetic

20 ! parse the input string
 ! find and extract the operation
 comma_location = pos (input_string$, ",", 1%)
 if comma_location = 0 then go to all_done
 end if

 operation$ = seg$(input_string$, 1%, comma_location - 1%)

 ! find and extract the 1st operand
 operand1_location = pos (input_string$, ",", comma_location +1)
 if operand1_location = 0 then go to all_done
 end if

 operand1$ = seg$(input_string$, comma_location + 1% , &
 operand1_location -1)
 ! find and extract the 2nd operand
 operand2_location = pos (input_string$, ",", operand1_location +1)
 if operand2_location = 0 then
 operand2_location = len(input_string$) + 1
 end if

 operand2$ = seg$(input_string$, operand1_location + 1% , &
 operand2_location -1)

 select operation$! do the operation
 case "+"
 result$ = sum$(operand1$, operand2$) !
 case "-"
 result$ = dif$(operand1$, operand2$) !
 case "*"
 result$ = num1$(Val(operand1$) * Val(operand2$))
 case "/"
 result$ = num1$(Val(operand1$) / Val(operand2$))
 case else
 result$ = "unknown operation."
 end select

 return_string$ = result$

999 all_done: end sub

23

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 2. Compile the program with the following statement:

 $ BASIC/LIST floatarith

 3. Create an options file to be used by the linker when you link
 the BASIC program.
 !+
 ! File: FLOATARITH.OPT
 !
 ! Options file to link floatarith BASIC program with DECTPU
 !
 !-
 floatarith.obj
 !
 ! For OpenVMS VAX, use the following link option:
 !
 UNIVERSAL=TPU$CALLUSER
 !
 ! For OpenVMS Alpha, use the following link option:
 !
 SYMBOL_VECTOR=(TPU$CALLUSER=PROCEDURE)
 !

 4. Link the program (using the options file) to create a shareable
 image.

 $ LINK floatarith/SHARE/OPT/MAP/FULL

 5. Define the logical name TPU$CALLUSER to point to the executable
 image of the BASIC program.

 $ DEFINE TPU$CALLUSER device:[directory]floatarith.EXE

 6. Invoke DECTPU.

 7. Write and compile the following DECTPU procedure:

 PROCEDURE my_call_user

 ! test the built-in procedure call_user

 LOCAL output,
 input;

 input := READ_LINE ("Call user >"); ! Provide a parameter
 for routine
 output := CALL_USER (0, input); ! Value this routine
 returns
 MESSAGE (output);
 ENDPROCEDURE;

 8. When you call the procedure my_call_user, you are prompted
for parameters to pass to the BASIC routine. The order of the parameters is
operator, number, number. For example, if you enter +, 3.33, 4.44
after the prompt, the result 7.77 is displayed in the message area.

24

Chapter 2. Descriptions of the DECTPU Built-In Procedures

CHANGE_CASE

Syntax

Parameters
buffer

The buffer in which you want DECTPU to change the case. You cannot use the NOT_IN_PLACE
keyword if you specify a buffer for the first parameter.

range

The range in which you want DECTPU to change the case. You cannot use the NOT_IN_PLACE
keyword if you specify a range for the first parameter.

string

The string in which you want DECTPU to change the case. If you specify IN_PLACE for the
third parameter, CHANGE_CASE makes the specified change to the string specified in the first
parameter. If string is a constant, IN_PLACE has no effect.

INVERT

A keyword that directs DECTPU to change uppercase letters to lowercase and lowercase letters to
uppercase.

LOWER

A keyword that directs DECTPU to change letters to all lowercase.

UPPER

A keyword that directs DECTPU to change letters to all uppercase.

IN_PLACE

A keyword that directs DECTPU to make the indicated change in the buffer, range, or string
specified. This is the default.

NOT_IN_PLACE

A keyword that directs DECTPU to leave the specified string unchanged and return a string that is
the result of the specified change in case. You cannot use NOT_IN_PLACE if the first parameter
is specified as a range or buffer. To use NOT_IN_PLACE, you must specify a return value for
CHANGE_CASE.

25

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Return Values
returned_buffer

A variable of type buffer that points to the buffer containing the modified text, if you specify a
buffer for the first parameter. The variable returned_buffer points to the same buffer pointed to by
the buffer variable specified as the first parameter.

returned_range

A range that contains the modified text, if you specify a range for the first parameter. The returned
range spans the same text as the range specified as a parameter, but they are two separate ranges. If
you subsequently change or delete one of the ranges, this has no effect on the other range.

returned_string

A string that contains the modified text, if you specify a string for the first parameter.
CHANGE_CASE can return a string even if you specify IN_PLACE.

The CHANGE_CASE procedure changes the case of all alphabetic characters in a buffer, range,
or string, according to the keyword that you specify. Optionally, CHANGE_CASE returns a string,
range, or buffer containing the changed text.

Description
The CHANGE_CASE procedure changes the case of all alphabetic characters in a buffer, range, or
string, according to the keyword that you specify. Optionally, CHANGE_CASE returns a string, range, or
buffer containing the changed text.

Signaled Errors
TPU$_TOOFEW ERROR CHANGE_CASE requires two

parameters.
TPU$_TOOMANY ERROR CHANGE_CASE accept s only

two parameters.
TPU$_ARGMISMATCH ERROR One of the parameters to

CHANGE_CASE is of the wrong
data type.

TPU$_INVPARAM ERROR One of the parameters to
CHANGE_CASE is of the wrong
data type.

TPU$_BADKEY WARNING You gave the wrong keyword to
CHANGE_CASE.

TPU$_NOTMODIFIABLE WARNING You cannot change the case of
text in an unmodifiable buffer.

TPU$_CONTROLC ERROR You pressed Ctrl/C during the
execution of CHANGE_CASE.

Examples
1. The following example makes all the characters in the current buffer uppercase. If you enter this

statement on the command line of your interface, you see the effects immediately. If you use this
statement within a procedure, you see the effect of the statement at the next screen update.

26

Chapter 2. Descriptions of the DECTPU Built-In Procedures

CHANGE_CASE (CURRENT_BUFFER, UPPER)

2. The following example puts the current text object in uppercase:

PROCEDURE user_upcase_item
 ON_ERROR
 ! In case no string is found during search
 MESSAGE ("No current item.");
 RETURN;
 ENDON_ERROR;

 delimiters := " " + ASCII(9);
 current_item := ANCHOR & SCAN (delimiters);
 item_range := SEARCH (current_item, FORWARD, NO_EXACT);
 CHANGE_CASE (item_range, UPPER);
ENDPROCEDURE;

3. The following example inverts the case of all characters in the string pointed to by the_string and
returns the modified string in the variable returned_value. It does not change the_string in any way.

returned_value := CHANGE_CASE (the_string, INVERT, NOT_IN_PLACE);

COMPILE

Syntax

Parameters
buffer

A buffer that contains only valid DECTPU declarations and statements.

range

A range that contains only valid DECTPU declarations and statements.

string

A string that contains only valid DECTPU declarations and statements.

Return Value
The program created by compiling the declarations and statements in the string, range, or buffer. If the
program fails to compile, an integer zero is returned.

Description
The COMPILE procedure converts DECTPU procedures and statements into an internal, compiled
format. Valid items for compilation can be represented by a string, a range, or a buffer. COMPILE
optionally returns a program.

27

Chapter 2. Descriptions of the DECTPU Built-In Procedures

The program that COMPILE optionally returns is the compiled form of valid DECTPU procedures,
statements, or both. You can assign the compiled version of DECTPU code to a variable name. DECTPU
statements, as well as procedure definitions, can be stored by DECTPU in the program returned by
COMPILE. Later in your editing session, you can execute the DECTPU code that you com piled by
using the program as a parameter for the EXECUTE built-in procedure. You can also use the program as
a parameter for the DEFINE_KEY built-in procedure to define a key to execute the program. Then you
can execute the program by pressing that key.

COMPILE returns a program variable only if the compilation generates executable statements.
COMPILE does not return a program variable if you compile any of the following:

● Null strings or buffers

● Procedure definitions that do not have any executable statements following them

● Programs with syntax errors

DECTPU cannot compile a string or line of text in a buffer or range longer than 256 characters. If
DECTPU encounters a longer string or line, DECTPU truncates characters after the 256th character and
attempts to compile the truncated string.

If necessary, use the SET (INFORMATIONAL, ON) built-in procedure before compiling a procedure
interactively to see the compiler messages.

To check the results of a compilation to determine whether execution is possible, use the following
statement in a program:

x := COMPILE (my_range);
!if the program is nonzero, continue
IF x <> 0

THEN

 .
 .
 .

ENDIF;

If x = 0, no program is generated because of compilation errors or because there are no executable
statements. The statement "IF x <> 0 THEN" allows your program to continue as long as a program is
generated.

You can also use an ON_ERROR statement to check the result of a com pilation. This statement tells
you whether the compilation completed successfully; it does not tell you whether execution is possible.

Signaled Errors
TPU$_COMPILEFAIL ERROR Compilation aborted because of

syntax errors.
TPU$_ARGMISMATCH ERROR The data type of a parameter

passed to the COMPILE built-in
is unsupported.

TPU$_TOOFEW ERROR Too few arguments.
TPU$_TOOMANY ERROR Too many arguments.

28

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Examples
1. The following example associates the MOVE_VERTICAL (1) function with the variable dwn. You

can use the variable dwn with the EXECUTE built-in procedure to move the editing point down one
line.

dwn := COMPILE ("MOVE_VERTICAL (1)")

2. The following example compiles the contents of the main buffer:

user_program := COMPILE (main_buffer)

If the buffer contains executable statements, DECTPU returns a program that stores these executable
commands. If the buffer contains procedure definitions, DECTPU compiles the procedures and lists
them in the procedure definition table so that you could call them by either entering the name of the
procedure after the appropriate prompt from the interface you are using; or calling the procedure
from within other procedures.

CONVERT

Syntax

Parameters
DECW_ROOT_WINDOW

Specifies the coordinate system to be that used by the root window of the screen on which DECTPU
is running.

SCREEN

Specifies the coordinate system to be that used by the DECwindows window associated with
DECTPU’s top-level widget.

window

Specifies the coordinate system to be that used by the DECTPU window.

CHARACTERS

Specifies a system that measures screen distances in rows and columns, as a character-cell terminal
does. In a character-cell-based system, the cell in the top row and the leftmost column has the
coordinates (1,1).

29

Chapter 2. Descriptions of the DECTPU Built-In Procedures

COORDINATES

Specifies a DECwindows coordinate system in which coordinate units correspond to pixels. The
pixel in the upper left corner has the coordinates (0, 0).

from_x_integer
from_y_integer

Integer values that represent a point in the original coordinate system and units.

to_x_integer
to_y_integer

Variables of type integer that represent a point in the specified coordinate system and units. The
previous contents of the parameters are deleted when DECTPU places the resulting values in them.
You must specify DECTPU variables for the parameters to_x_integer and to_y_integer. Passing a
constant integer, string, or keyword value causes an error. This requirement does not apply to the
parameters from_x_integer and from_y_integer.

Description
The CONVERT procedure, given the coordinates of a point in one coordinate system, returns the
corresponding coordinates for the point in the coordinate system you specify. The converted coordinates
are returned using the to_x_integer and to_y_integer parameters. Coordinate systems are distinguished
both by units employed and where each places its origin.

Signaled Errors

TPU$_ARGMISMATCH ERROR The data type of the indicated parameter
is not supported by CONVERT.

TPU$_BADDELETE ERROR You are attempting to modify an integer,
keyword, or string constant.

TPU$_INVPARAM ERROR One of the parameters was specified
with data of the wrong type.

TPU$_TOOFEW ERROR Too few arguments passed to
CONVERT.

TPU$_TOOMANY ERROR Too many arguments passed to
CONVERT.

TPU$_BADKEY WARNING You specified an invalid keyword as a
parameter.

TPU$_WINDNOTVIS WARNING CONVERT cannot operate on an
invisible window.

Example
The following example converts a point’s location from the current window’s coordinate system (with
the origin in the upper left-hand corner of the window) to the DECTPU screen’s coordinate system (with
the origin in the upper left-hand corner of the DECTPU screen).

PROCEDURE user_convert

LOCAL source_x,

30

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 source_y,
 dest_x,
 dest_y;

source_x := 1;
source_y := 1;
dest_x := 0;
dest_y := 0;

CONVERT (CURRENT_WINDOW, COORDINATES, source_x, source_y,
 SCREEN, COORDINATES, dest_x, dest_y);

ENDPROCEDURE;

If the current window is not the top window, CONVERT changes the value of the y coordinate to reflect
the difference in the DECTPU screen’s coordinate system. For more information about the difference
between a DECTPU window and the DECTPU screen, see the program development chapter in the
Guide to the DEC Text Processing Utility.

COPY_TEXT

Syntax

Parameters
buffer

The buffer containing the text that you want to copy.

range1

The range containing the text that you want to copy.

string

A string representing the text that you want to copy.

Return Value
The range where the copied text has been placed.

Description
The COPY_TEXT procedure makes a copy of the text you specify and places it in the current buffer.
If the current buffer is in insert mode, the text you specify is inserted before the current position in the
current buffer. If the current buffer is in overstrike mode, the text you specify replaces text starting at the
current position and continuing for the length of the string, range, or buffer.

31

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Note

You cannot add a buffer or a range to itself. If you try to add a buffer to itself, DECTPU issues an error
message. If you try to insert a range into itself, part of the range is copied before DECTPU signals an
error. If you try to overstrike a range into itself, DECTPU may or may not signal an error.

Using COPY_TEXT may cause DECTPU to insert padding spaces or blank lines in the buffer.
COPY_TEXT causes the screen manager to place the editing point at the cursor position if the current
buffer is mapped to a visible window. For more information on the distinction between the cursor
position and the editing point, see Appendix C.

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

Signaled Errors

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
TPU$_NOCOPYBUF WARNING Trying to copy a buffer to itself is not

allowed.
TPU$_NOCACHE ERROR There is not enough memory to allocate

a new cache.
TPU$_OVERLAPRANGE ERROR You tried to put the contents of a range

into that same range instead of into
another structure.

TPU$_TOOFEW ERROR COPY_TEXT requires one argument.
TPU$_TOOMANY ERROR COPY_TEXT accepts only one

argument.
TPU$_ARGMISMATCH ERROR The argument to COPY_TEXT must be

a string, range, or buffer.
TPU$_NOTMODIFIABLE ERROR You cannot copy text into an

unmodifiable buffer.
TPU$_LINETOOLONG WARNING The line exceeds DECTPU’s maximum

line length.
TPU$_TRUNCATE WARNING Characters have been truncated because

you tried to add text that would exceed
the maximum line length.

Examples
1. The following example causes the string "Perseus is near Andromeda" to be placed just before the

current position in the current buffer when the buffer is set to insert mode:

COPY_TEXT ("Perseus is near Andromeda")

2. The following example implements a simple INSERT HERE function. It assumes that there is a paste
buffer and that this buffer contains the most recently deleted text. The procedure copies the text from
that buffer into the current buffer.

PROCEDURE user_simple_insert

32

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 IF BEGINNING_OF (paste_buffer) = END_OF (paste_buffer)
 THEN
 MESSAGE ("Nothing to INSERT");
 ELSE
 COPY_TEXT (paste_buffer);
 ENDIF;
ENDPROCEDURE;

CREATE_ARRAY

Syntax

Parameters
integer1

The number of integer-indexed elements to be created when the array is created. DECTPU processes
elements specified by this parameter more quickly than elements created dynamically. You can add
integer-indexed elements dynamically, but they are not processed as quickly as predeclared integer-
indexed elements.

integer2

The first predeclared integer index of the array. The predeclared integer indexes of the array extend
from this integer through to integer2 + integer1 –1. This parameter defaults to 1.

Return Value
The variable that is to contain the newly created array

Description
The CREATE_ARRAY procedure creates an array. In DECTPU, an array is a one-dimensional
collection of data values that you can consider or manipulate as a unit.

To create an array variable called bat , use the CREATE_ARRAY built-in as follows:

bat := CREATE_aARRAY;

DECTPU arrays can have a static portion, a dynamic portion, or both. A static array or portion of an
array contains predeclared integer-indexed elements.

These elements are allocated contiguous memory locations to support quick processing. To create an
array with a static portion, specify the number of contiguous integer-indexed elements when you create
the array. You also have the option of specifying a beginning index number other than 1. For example,
the following statement creates an array with 100 predeclared integer-indexed elements starting at 15:

bat := CREATE_ARRAY (100, 15);

All static elements of a newly created array are initialized to the data type unspecified.

A dynamic portion of an array contains elements indexed with expressions evaluating to any DECTPU
data type except unspecified, learn, pattern, or program. Dynamic array elements are dynamically created

33

Chapter 2. Descriptions of the DECTPU Built-In Procedures

and deleted as needed. To create a dynamic array element, assign a value to an element of an existing
array. For example, the following statement creates a dynamic element in the array bat indexed by the
string "bar" and assigns the integer value 10 to the element:

bat{"bar"} := 10;

To create an array with both static and dynamic elements, first create the static portion of the array. Then
use assignment statements to create as many dynamic elements as you wish. For example, the following
code fragment creates an array stored in the variable small_array. The array has 15 static elements and
one dynamic element. The first static element is given the value 10. The dynamic element is indexed by
the string "fred" and contains the value 100.

small_array := CREATE_ARRAY (15);
small_array{1} := 10;
small_array{"fred"} := 100;

To delete a dynamic array element, assign to it the constant TPU$K_UNSPECIFIED, which is of type
unspecified.

One array can contain elements indexed with several data types. For example, you can create an array
containing elements indexed with integers, buffers, windows, markers, and strings. An array element can
be of any data type. All array elements of a newly created array are of type unspecified.

If the same array has been assigned to more than one variable, DECTPU does not create multiple copies
of the array. Instead, each variable points to the array that has been assigned to it. DECTPU arrays are
reference counted, meaning that each array has a counter keeping track of how many variables point to
it.

DECTPU arrays are autodelete data types, meaning that when no variables point to an array, the array is
deleted automatically. You can also delete an array explicitly by using the DELETE built-in. For example,
the following statement deletes the array bat:

DELETE (bat);

If you delete an array that still has variables pointing to it, the variables receive the data type unspecified
after the deletion.

If you modify an array pointed to by more than one variable, modifications made using one variable
show up when another variable references the modified element. To duplicate an array, you must write a
procedure to create a new array and copy the old array’s elements to the new array.

To refer to an array element, use the array variable name followed by an index expression enclosed in
braces or parentheses. For example, if bar were a variable of type marker, the following statement would
assign the integer value 10 to the element indexed by bar:

bat{bar} := 10;

You can perform the same operations on array elements that you can on other DECTPU variables, with
one exception: you cannot make partial pattern assignments to array elements.

See the Guide to the DEC Text Processing Utility for additional information about arrays.

Signaled Errors

TPU$_TOOMANY ERROR CREATE_ARRAY accept s no more
than two arguments.

34

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_NEEDTOASSIGN ERROR CREATE_ARRAY must appear on
the right-hand side of an assignment
statement.

TPU$_INVPARAM ERROR The arguments to CREATE_ARRAY
must be integers.

TPU$_MINVALUE WARNING The first argument to
CREATE_ARRAY must be 1 or greater.

TPU$_MAXVALUE WARNING The first argument to
CREATE_ARRAY must be no greater
than 65,535.

TPU$_GETMEM ERROR DECTPU could not create the array
because DECTPU did not have enough
memory.

Examples
1. The following example creates an array that has ten predeclared integer-indexed elements that can

be processed quickly by DECTPU. It can also be indexed by any other DECTPU data type except
pattern, program, learn, and unspecified.

array2 := CREATE_ARRAY(10);

2. The following example creates an array that can be indexed by the integers –5 through 5. It can also
be indexed by any other DECTPU data type other than patterns and learn sequences.

array3 := CREATE_ARRAY(11, -5);

CREATE_BUFFER

Syntax

Parameters
string1

A string representing the name of the buffer that you want to create.

string2

A string representing the file specification of an input file that is read into the buffer.

buffer1

The buffer that you want to use as a template for the buffer to be created. The information copied
from the template buffer includes the following:

● End-of-buffer text

● Direction (FORWARD/REVERSE)

35

Chapter 2. Descriptions of the DECTPU Built-In Procedures

● Text entry mode (INSERT/OVERSTRIKE)

● Margins (right and left)

● Margin action routines

● Maximum number of lines

● Write-on-exit status (NO_WRITE)

● Modifiable status

● Tab stops

● Key map list

DECTPU does not copy the following attributes of the template buffer to the new buffer:

● Buffer contents

● Marks or ranges

● Input file name

● Mapping to windows

● Cursor position

● Editing point

● Associated subprocesses

● Buffer name

● Permanent status, if that is an attribute of the template buffer

● System status, if that is an attribute of the template buffer

string3

The name of the journal file to be used with the buffer. DECTPU does not copy the journal file
name from the template buffer. Instead, CREATE_BUFFER uses string3 as the new journal file
name. If you do not specify string3, DECTPU names the journal file by using its journal file naming
algorithm. For more information on the naming algorithm, see the Guide to the DEC Text Processing
Utility.

EVE turns on buffer-change journaling by default for each new buffer. However, the
CREATE_BUFFER built-in procedure does not automatically turn on journaling. If you are layering
directly on DECTPU, your application must use SET (JOURNALING) to turn journaling on.

Caution

Journal files contain a record of all information being edited. Therefore, when editing files
containing secure or confidential data, be sure to keep the journal files secure as well.

36

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Return Value
The buffer created by CREATE_BUFFER.

Description
The CREATE_BUFFER procedure defines a new work space for editing text. You can create an empty
buffer or you can associate an input file name with the buffer. CREATE_BUFFER optionally returns a
buffer.

Although you do not have to assign the buffer that you create to a variable, you need to make a variable
assignment if you want to refer to the buffer for future use. The buffer variable on the left-hand side of
an assignment statement is the item that you must use when you specify a buffer as a parameter for other
DECTPU built-in procedures. For example, to move to a buffer for editing, enter the buffer variable after
the POSITION built-in procedure:

my_buffer_variable := CREATE_BUFFER ("my_buffer_name", "my_file_name");
POSITION (my_buffer_variable);

The buffer name that you specify as the first parameter for the CREATE_BUFFER built-in procedure
(for example, "my_buffer_name") is used by DECTPU to identify the buffer on the status line. To
change the status line, use the SET (STATUS_LINE) built-in procedure.

If you want to skip an optional parameter and specify a subsequent optional parameter, you must use a
comma as a placeholder for the skipped parameter.

You can create multiple buffers. Buffers can be empty or they can contain text. The current buffer is
the buffer in which any DECTPU commands that you execute take effect (unless you specify another
buffer). Only one buffer can be the current buffer. See the CURRENT_BUFFER built-in procedure for
more information.

A buffer is visible when it is associated with a window that is mapped to the screen. A buffer can be
associated with multiple windows, in which case any edits that you make to the buffer are reflected in all
of the windows in which the buffer is visible. To get a list of all the buffers in your editing context, use
the SHOW (BUFFERS) built-in procedure.

When you use the following keywords with the SET built-in procedure, you can establish attributes for
buffers. The text describes the default for the attributes:

● SET (EOB_TEXT, buffer, string)—The default end-of-buffer text is [EOB].

● SET (ERASE_UNMODIFIABLE, buffer,)—By default, unmodifiable records can be
deleted from buffers by built-ins such as ERASE_LINE.

● SET (FORWARD, buffer)—The default direction is forward.

● SET (INSERT, buffer)—The default mode of text entry is insert.

● SET (JOURNALING, buffer,)—By default, buffer-change journaling is turned off.

● SET (LEFT_MARGIN, buffer, integer)—The default left margin is 1 (that is, the left margin is set in
column 1).

● SET (LEFT_MARGIN_ACTION, buffer, program_source)—By default, buffers do not have left
margin action routines.

37

Chapter 2. Descriptions of the DECTPU Built-In Procedures

● SET (MARGINS, buffer, integer1, integer2)—The default left margin is 1 and the default right
margin is 80.

● SET (MAX_LINES, buffer, integer)—The default maximum number of lines is 0 (in other words,
this feature is turned off).

● SET (MODIFIABLE, buffer,)—By default, a buffer can be modified. Using the OFF
keyword makes a buffer unmodifiable.

● SET (MODIFIED, buffer,)—Turn s on or turns off the bit indicating that the specified
buffer has been modified.

● SET (NO_WRITE, buffer ⟦,keyword⟧)—By default, when you exit from DECTPU, the buffer is
written if it has been modified.

● SET (OUTPUT_FILE, buffer, string)—The default output file is the input file specification with the
highest existing version number for that file plus 1.

● SET (OVERSTRIKE, buffer)—The default mode of text entry is insert.

● SET (PERMANENT, buffer)—By default, the buffer can be deleted.

● SET (RECORD_ATTRIBUTE, marker, range, buffer)

● SET (REVERSE, buffer)—The default direction is forward.

● SET (RIGHT_MARGIN, buffer, integer)—The default right margin is 80.

● SET (RIGHT_MARGIN_ACTION, buffer, program_source)—By default, buffers do not have right
margin action routines.

● SET (SYSTEM, buffer)—By default, the buffer is a user buffer.

●
SET (TAB_STOPS, buffer,)—The default tab stops are set every eight character

positions.

See the SET built-in procedure for more information on these keywords.

Signaled Errors

TPU$_DUPBUFNAME WARNING First argument to the
CREATE_BUFFER built-in must be a
unique string.

TPU$_TRUNCATE WARNING A record was truncated to the maximum
record length.

TPU$_TOOMANY ERROR The CREATE_BUFFER built-in takes a
maximum of two arguments.

TPU$_TOOFEW ERROR The CREATE_BUFFER built-in
requires at least one argument.

TPU$_INVPARAM ERROR The CREATE_BUFFER built-in accepts
parameters of type string or buffer only.

38

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_GETMEM ERROR DECTPU ran out of virtual memory
trying to create the buffer.

TPU$_OPENIN ERROR CREATE_BUFFER could not open the
specified input file.

TPU$_OPENOUT ERROR CREATE_BUFFER could not open the
journal file.

Examples
1. The following example creates a buffer called NEW_BUFFER and stores a pointer to the buffer

in the variable nb. Use the variable nb when you want to specify this buffer as a parameter
for DECTPU built-in procedures. The file specification "login.com" reads the input file for
NEW_BUFFER from LOGIN.COM.

nb := CREATE_BUFFER ("new_buffer", "login.com")

2. The first statement in the following example creates a buffer called DEFAULTS and stores a pointer
to the buffer in the variable default_buffer. The second statement sets the direction of default_buffer
to reverse. The third statement creates a buffer called BUFFER_B and stores a pointer to the buffer
in the variable b. This statement takes default information from default_buffer. Buffer b does not
receive any text, marks, or ranges from the buffer default_buffer.

default_buffer := CREATE_BUFFER ("defaults");
SET (REVERSE, default_buffer);
b := CREATE_BUFFER ("buffer_b", "", default_buffer);

3. The following example creates the help buffer:

PROCEDURE user_help_buffer
 help_buf := CREATE_BUFFER("help_buf");
 SET (EOB_TEXT, help_buf, "[End of HELP]");
 SET (NO_WRITE, help_buf);
 SET (SYSTEM, help_buf);
ENDPROCEDURE;

4. The following example creates a buffer named scratch. It directs DECTPU to name the associated
buffer-change journal file SCRATCH_JL. JL. You must use commas as placeholders for the two
unspecified optional parameters. Also, by default DECTPU puts journal files in the directory defined
by the logical name TPU$JOURNAL. TPU$JOURNAL points to the same directory that SYS
$SCRATCH points to. You can reassign TPU$JOURNAL to point to a different directory.

buf1 := CREATE_BUFFER ("Scratch",,,"Scratch_jl.jl");

5. The following example creates a template buffer called DEFAULTS, changes the end-of-buffer text
for the template buffer, and then creates a user buffer. The user buffer is created with the same end-
of-buffer text that the defaults buffer has.

defaults_buffer := CREATE_BUFFER ("Defaults");

SET (EOB_TEXT, defaults_buffer, "[That’s all, folks!]");

user_buffer := CREATE_BUFFER ("User1.txt", "", defaults_buffer);

CREATE_KEY_MAP

39

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameter
string1

A string that specifies the name of the key map you create.

Return Value
A string that is the name of the key map created.

Description
The CREATE_KEY_MAP procedure creates and names a key map. CREATE_KEY_MAP optionally
returns a string that is the name of the key map created. A key map is a set of key definitions. Key maps
let you manipulate key definitions as a group. Key maps and their key definitions are saved in section
files. The default key map for DECTPU is TPU$KEY_MAP, contained in the default key map list TPU
$KEY_MAP_LIST. See the description on key map lists in CREATE_KEY_MAP_LIST.

The EVE editor does not use the default key map TPU$KEY_MAP. In EVE, the name of a key
map is not the same as the variable that contains the key map. For example, the EVE variable EVE
$X_USER_KEYS contains the key map named EVE$USER_KEYS, which stores your key definitions.
EVE stores all its key maps in the default key map list TPU$KEY_MAP_LIST. However, the default key
map, TPU$KEY_MAP, is removed from the default key map list by the standard EVE section file.

When you create a key map, its keys are undefined. Each key map can hold definitions for all characters
in the DEC Multinational Character Set and all the keypad keys and the function keys, in both their
shifted and unshifted forms. Each key map has its own name (a string). This name cannot be the same as
that of either another key map or a key map list.

Signaled Errors

TPU$_DUPKEYMAP WARNING A key map with this name already
exists.

TPU$_TOOFEW ERROR Too few arguments passed to the
CREATE_KEY_MAP built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the
CREATE_KEY_MAP built-in.

TPU$_INVPARAM ERROR Wrong type of data sent to the
CREATE_KEY_MAP built-in.

Examples
The following example creates a key map and defines two keys in the key map. The name of the key
map is stored in the variable sample_key_map.

PROCEDURE init_sample_key_map

sample_key_map := CREATE_KEY_MAP ("sample_key_map");

40

Chapter 2. Descriptions of the DECTPU Built-In Procedures

DEFINE_KEY ("EXIT", Ctrl_Z_KEY, "Exit application", sample_key_map);
DEFINE_KEY ("COPY_TEXT (’XYZZY’)", Ctrl_B_KEY, "Magic Word",
 sample_key_map);

ENDPROCEDURE;

CREATE_KEY_MAP_LIST

Syntax

Parameters
string1

A string that specifies the name of the key map list that you create.

string2

A string that specifies the names of the initial key maps within the key map list you create.

Return Value
A string that is the name of the key map list created.

Description
The CREATE_KEY_MAP_LIST procedure creates and names a key map list, and also specifies the
initial key maps in the key map list it creates. CREATE_KEY_MAP_LIST optionally returns a string
that is the name of the key map list created. A key map list is an ordered set of key maps. Key map
lists let you change the procedures bound to your keys. To find the definition of a given key, DECTPU
searches through the key maps in the specified or default key map list until DECTPU either finds a
definition for the key or reaches the end of the last key map in the list.

DECTPU provides the default key map list TPU$KEY_MAP_LIST, which contains the default key
map TPU$KEY_MAP. See the description of the CREATE_KEY_MAP built-in procedure for more
information on key maps.

The CREATE_KEY_MAP_LIST built-in procedure creates a new key map list, names the key map list,
and specifies the initial key maps contained in the list.

Key map lists store directions on what DECTPU is to do when you press an undefined key associated
with a printable character. By default, a key map list directs DECTPU to insert undefined printable
characters into the current buffer. To change the default, use the SET (SELF_INSERT) built-in
procedure.

A newly created key map list is not bound to any buffer. To bind a key map list to a buffer, use the SET
(KEY_MAP_LIST) built-in procedure. When you use the POSITION built-in to select a current buffer,
the key map list that is bound to the buffer is automatically activated.

41

Chapter 2. Descriptions of the DECTPU Built-In Procedures

A newly created key map list has no procedure defined to be called when an undefined key is referenced.
You can define such a procedure with the SET (UNDEFINED_KEY) built-in procedure. The default is
to display the message "key has no definition".

Key map lists are saved in section files, along with any undefined key procedures and the
SELF_INSERT settings.

Signaled Errors

TPU$_DUPKEYMAP WARNING The string argument is already defined
as a key map.

TPU$_DUPKEYMAPLIST WARNING The string argument is already defined
as a key map list.

TPU$_NOKEYMAP WARNING The string argument is not a defined key
map.

TPU$_TOOFEW ERROR Too few arguments passed to the
CREATE_KEY_MAP_LIST built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the
CREATE_KEY_MAP_LIST built-in.

TPU$_INVPARAM ERROR Wrong type of data sent to the
CREATE_KEY_MAP_LIST built-in.

Examples
The following example creates two key maps and groups them into a key map list:

PROCEDURE init_help_key_map_list

help_user_keys := CREATE_KEY_MAP ("help_user_keys");
help_keys := CREATE_KEY_MAP ("help_keys");
help_key_list := CREATE_KEY_MAP_LIST ("help_key_list", help_user_keys,
 help_keys);
ENDPROCEDURE;

CREATE_PROCESS

Syntax

Parameters
buffer

The buffer in which DECTPU stores output from the subprocess.

string

A string that represents the first command that you want to send to the subprocess. If you do not
want to include the first command when you use the CREATE_PROCESS built-in procedure, see

42

Chapter 2. Descriptions of the DECTPU Built-In Procedures

the SEND built-in procedure for a description of how to send the first or subsequent commands to a
subprocess.

Return Value
The process created.

Description
The CREATE_PROCESS procedure starts a subprocess and associates a buffer with it. You can
optionally specify an initial command to send to the subprocess.

You can create multiple subprocesses. When you exit from DECTPU, any subprocesses you have created
with CREATE_PROCESS are deleted. If you want to remove a subprocess before exiting, use the
DELETE built-in procedure with the process as a parameter (DELETE (proc1)), or set the variable to
integer zero, as follows:

proc1 := 0

CREATE_PROCESS creates a subprocess of a DECTPU session and all of the output from the
subprocess goes into a DECTPU buffer. You cannot run a program or utility that takes over control of
the screen from a process created with this built-in procedure. You can, however, use the SPAWN built-
in procedure to create a subprocess that suspends your DECTPU process and places you directly at the
system command prompt. You can then run programs that control the whole screen.

See the Guide to the DEC Text Processing Utility for a list of subprocess restrictions.

Signaled Errors
TPU$_DUPBUFNAME WARNING First argument must be a unique string.
TPU$_CREATEFAIL WARNING Unable to activate the subprocess.
TPU$_TOOFEW ERROR Too few arguments passed to the

CREATE_PROCESS built-in.
TPU$_TOOMANY ERROR Too many arguments passed to the

CREATE_PROCESS built-in.
TPU$_NEEDTOASSIGN ERROR The CREATE_PROCESS built-in call

must be on the right-hand side of an
assignment statement.

TPU$_INVPARAM ERROR Wrong type of data sent to the
CREATE_PROCESS built-in.

TPU$_CAPTIVE WARNING Unable to create a subprocess in a
captive account.

TPU$_NOTMODIFIABLE WARNING Attempt to change unmodifiable buffer.
You can write only the output of the
subprocess to a modifiable buffer.

TPU$_NOPROCESS WARNING No subprocess to interact with. The
process was deleted between the time
that it was created and when DECTPU
attempted to send information to it.

TPU$_SENDFAIL WARNING Unable to send data to the subprocess.
TPU$_DELETEFAIL WARNING Unable to terminate the subprocess.

43

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Examples
The following example creates a buffer to hold the output from the DCL commands executed by the
OpenVMS subprocess:

! Create a buffer to hold the output from the DCL commands
! "SET NOON" and "DIRECTORY".

PROCEDURE user_dcl_process
 dcl_buffer := CREATE_BUFFER ("dcl_buffer");
 MAP (main_window, dcl_buffer);
 my_dcl_process := CREATE_PROCESS (dcl_buffer, "SET NOON");
 MESSAGE ("Creating DCL subprocess...");
 SEND ("DIRECTORY", my_dcl_process);
ENDPROCEDURE;

CREATE_RANGE

Syntax

Parameters
marker1

The marker that indicates the point in the buffer where the range begins.

marker2

The marker that indicates the point in the buffer where the range ends.

keyword1

A keyword that indicates the point in the buffer where you want the range to begin or end. Table
2.1, "CREATE_RANGE Keyword Parameters" shows the valid keywords and their meanings.

Table 2.1. CREATE_RANGE Keyword Parameters

Keyword Meaning

LINE_BEGIN The beginning of the current buffer’s current
line.

LINE_END The end of the current buffer’s current line.
BUFFER_BEGIN Line 1, offset 0 in the current buffer. This is the

first position where a character could be inserted,
regardless of whether there is a character there.
This is the same as the point referred to by
BEGINNING_OF (CURRENT_BUFFER).

BUFFER_END The last position in the buffer where a
character could be inserted. This is the
same as the point referred to by END_OF
(CURRENT_BUFFER).

44

Chapter 2. Descriptions of the DECTPU Built-In Procedures

keyword2

The video attribute for the range: BLINK, BOLD, NONE, REVERSE, or UNDERLINE. If you omit
the parameter, the default is NONE.

Return Value
The range created by CREATE_RANGE.

Description
The CREATE_RANGE procedure returns a range that includes two delimiters and all the characters
between them, and sets the video attributes for displaying the characters when they are visible on the
screen. A range delimiter can be a marker, the beginning or end of a line, or the beginning or end of a
buffer. The beginning and ending delimiters do not have to be of the same type but must be in the same
buffer.

CREATE_RANGE establishes a range that is delimited by the markers you specify. You can create
multiple ranges in a buffer. When you apply video attributes to a range, you can see the range if it is in a
visible buffer. A range may overlap another range.

If you clear the contents of a range with the ERASE built-in procedure, the range structure still exists.
The range and its video attributes, if any, move to the next character or position beyond where the range
ended before the range was erased.

To remove the range structure, use the DELETE built-in procedure or set the variable to which the range
is assigned to zero (r1 := 0).

In portions of a range that either are associated with nonprintable characters or are not associated with
characters at all, DECTPU does not display any of the video attributes of the range. However, if you
insert new characters into portions of a range where the video attributes have not been displayed, the
new characters do display the video attributes that apply to the range.

CREATE_RANGE checks whether the markers you specify as parameters are free markers. A free
marker is a marker not bound to a character. For more information on free markers, see the description
of the MARK built-in procedure.

If a marker defining a range is a free marker, DECTPU ties the range to the character or end-of-line
nearest to the free marker to use as the range delimiter. An end-of-line is not a character but is a point to
which a marker can be bound.

Signaled Errors

TPU$_NOTSAMEBUF WARNING First and second marker are in different
buffers.

TPU$_TOOFEW ERROR CREATE_RANGE requires three
parameters.

TPU$_TOOMANY ERROR CREATE_RANGE accepts no more
than three parameters.

TPU$_NEEDTOASSIGN ERROR CREATE_RANGE must appear on
the right-hand side of an assignment
statement.

45

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_INVPARAM ERROR One of your arguments to
CREATE_RANGE is of the wrong type.

TPU$_BADKEY WARNING You specified an illegal keyword.

Examples
1. The following example creates a range starting at start_mark and ending at end_mark. When this

range is visible on the screen, the characters in the range are bolded.

my_range := CREATE_RANGE (start_mark, end_mark, BOLD)

2. The following example erases the text in the current buffer, starting at the editing point and erasing
text until the end of the buffer is reached:

PROCEDURE user_erase_to_eob

 LOCAL start_of_range,
 here_to_eob;

 start_of_range := MARK (NONE);
 here_to_EOB := CREATE_RANGE (start_of_range,
 END_OF (CURRENT_BUFFER),
 NONE);
 ERASE (here_to_eob);
ENDPROCEDURE;

3. The following example creates a range starting at the first point in the buffer where a character
can be inserted and ending at the point marked by mark2. If the range is visible on the screen, the
characters in it are highlighted with the reverse video attribute.

the_range := CREATE_RANGE (BUFFER_BEGIN, mark2, REVERSE);

CREATE_WIDGET
CREATE_WIDGET — The CREATE_WIDGET built-in procedure has two variants with separate
syntaxes.

Syntax

Low-Level Variant

This variant uses the Intrinsics or Motif Toolkit low-level creation routine to create and return a
widget. Although it has been created, the returned widget is not managed and therefore not visible.
The application must call the MANAGE_WIDGET built-in procedure to make the widget visible.

46

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Hierarchy Variant

This variant creates and returns an entire hierarchy of widgets (as defined in a Motif Resource
Manager database) and returns the topmost widget. All children of the returned widget are also
created and managed. The topmost widget is not managed, so none of the widgets created is visible.

Parameters
widget_class

The integer returned by DEFINE_WIDGET_CLASS that specifies the class of widget to be created.

widget_name

A string that is the name to be given to the widget.

parent_widget

The widget that is to be the parent of the newly created widget.

SCREEN

A keyword indicating that the newly created widget is to be the child of DECTPU’s main window
widget.

buffer

The buffer that contains the interface callback routine. This code is executed when the widget
performs a callback to DECTPU; all widgets created with a single CREATE_WIDGET call use the
same callback code. If you do not specify this parameter, DECTPU does not execute any callback
code when the widget performs a callback to DECTPU.

learn_sequence

The learn sequence that is the interface callback routine. This is executed when the widget performs
a callback to DECTPU; all widgets created with a single CREATE_WIDGET call use the same
callback code. If you do not specify this parameter, DECTPU does not execute any callback code
when the widget performs a callback to DECTPU.

program

The program that is the interface callback routine. This is executed when the widget performs
a callback to DECTPU; all widgets created with a single CREATE_WIDGET call use the same

47

Chapter 2. Descriptions of the DECTPU Built-In Procedures

callback code. If you do not specify this parameter, DECTPU does not execute any callback code
when the widget performs a callback to DECTPU.

range

The range that contains the interface callback routine. This is executed when the widget performs
a callback to DECTPU; all widgets created with a single CREATE_WIDGET call use the same
callback code. If you do not specify this parameter, DECTPU does not execute any callback code
when the widget performs a callback to DECTPU.

string

The string that contains the interface callback routine. This is executed when the widget performs
a callback to DECTPU; all widgets created with a single CREATE_WIDGET call use the same
callback code. If you do not specify this parameter, DECTPU does not execute any callback code
when the widget performs a callback to DECTPU.

closure

A string or integer. DECTPU passes the value to the application when the widget performs a
callback to DECTPU. For more information about using closures, see the Guide to the DEC Text
Processing Utility.

If you do not specify this parameter, DECTPU passes the closure value (if any) given to the
widget in the User Interface Language (UIL) file defining the widget. If you specify the closure
value with CREATE_WIDGET instead of in the UIL file, all widgets created with the same
CREATE_WIDGET call have the same closure value.

widget_args

One or more pairs of resource names and resource values. You can specify a pair in an array or as a
pair of separate parameters. If you use an array, you index the array with a string that is the name of
the resource you want to set.

Resource names are case sensitive. The corresponding array element contains the value you want to
assign to that resource. The array can contain any number of elements. If you use a pair of separate
parameters, use the following format:

resource_name_string, resource_value

Arrays and string/value pairs may be interspersed. Each array index and its corresponding element
value, or each string and its corresponding value, must be valid widget arguments for the class of
widget you are creating.

resource_manager_name

A case-sensitive string that is the name assigned to the widget in the UIL file defining the widget.

hierarchy_id

The hierarchy identifier returned by the SET (UID) built-in procedure. This identifier is passed to
the Motif Resource Manager, which uses the identifier to find the resource name in the database.

Return Value
The newly created widget.

48

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description

The CREATE_WIDGET procedure creates a widget. The widget name that you specify in the User
Interface Definition (UID) file must match the case of the widget name that you specify as a parameter
to CREATE_WIDGET. If you specify case-sensitive widget names in your User Interface Language
(UIL) file, you must use the same widget name case with CREATE_WIDGET as you used in the UIL
file. If you specify case-insensitive widget names in your UIL file, the UIL compiler translates all widget
names to uppercase, so in this instance you must use uppercase widget names with CREATE_WIDGET.
Example 1 in the Examples section specifies case-insensitive widget names in the UIL file and specifies
an uppercase name for the widget with the CREATE_WIDGET built-in procedure.

If you specify one or more callback arguments in your UIL file, specify either the routine TPU
$WIDGET_INTEGER_CALLBACK or the routine TPU$WIDGET_STRING_CALLBACK. For more
information about specifying callbacks, see the Guide to the DEC Text Processing Utility. For more
information about UIL files, see the VMS DECwindows Guide to Application Programming. DECTPU
uses the Motif Version 1.1-3 compatibility libraries and requires that UID files are produced using the
1.1-3 UIL compiler and not the version 1.2 UIL compiler provided with new releases of DECwindows.
Procedures for using the 1.1-3 UIL com piler are described in the DECwindows release notes.

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_UNDWIDCLA WARNING You specified a widget class
integer that is not known to
DECTPU.

TPU$_INVPARAM ERROR You specified one of the
parameters with data of the
wrong type.

TPU$_NEEDTOASSIGN ERROR CREATE_WIDGET must return
a value.

TPU$_REQUIRESDECW ERROR You can use CREATE_WIDGET
only if you are using
DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to
CREATE_WIDGET.

TPU$_TOOMANY ERROR Too many arguments passed to
CREATE_WIDGET.

TPU$_WIDMISMATCH ERROR You specified a widget whose
class is not supported.

TPU$_ARGMISMATCH ERROR A widget argument was not an
array or a string/value pair.

TPU$_COMPILEFAIL WARNING Compilation of the widget
interface callback routine failed
due to syntax errors.

TPU$_NONAMES WARNING A widget argument is not
supported by the specified
widget.

49

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_EXTRANEOUSARGS ERROR You specified one or more
extraneous widget arguments.

TPU$_BADHIERARCHY ERROR You specified an invalid
hierarchy identifier.

Examples

1. The following example, eve_display_example , creates a modal dialog box widget and maps the
widget to the DECTPU screen.

The example shows how to use the variant of CREATE_WIDGET that returns an entire widget
hierarchy. To use this variant to create a widget or widget hierarchy, you must have available the
compiled form of a User Interface Language (UIL) file specifying the characteristics of the widgets
you want to create. VSI recommends that you use one or more UIL files and the corresponding
variant of CREATE_WIDGET whenever possible. UIL is efficient and UIL files make it easy to
translate your application into other languages.

PROCEDURE eve_display_example

LOCAL example_widget, ! Variable assigned to the created widget.
 example_widget_name, ! The name of the widget assigned
 ! to this variable must be uppercase
 ! if you specified case insensitive
 ! widget names in the UIL file.

 example_hierarchy; ! Resource Manager
 ! hierarchy for this example.

ON_ERROR
 [OTHERWISE]: ! Traps errors.
ENDON_ERROR;

! Set the widget hierarchy. The default file spec is "SYS$LIBRARY: .UID"

example_hierarchy := SET (UID, "mynode$dua0:[smith]example");

! The DECTPU CREATE_WIDGET built-in needs the name of the widget
! defined in the UIL file.

example_widget_name := "EXAMPLE_BOX"; ! The widget EXAMPLE_BOX is
 ! defined in the file
 EXAMPLE.UIL.

! Create the widget if it has not already been created.

IF GET_INFO (example_widget, "type") <> WIDGET
THEN
 example_widget := CREATE_WIDGET (example_widget_name,
 example_hierarchy,
 SCREEN, eve$kt_callback_routine);
 ! EVE defines eve$callback_dispatch to be EVE’s callback routine.
 ! You do not need to define it again if you are extending EVE.

ENDIF;

! Map "example_widget" to the screen using MANAGE_WIDGET.

50

Chapter 2. Descriptions of the DECTPU Built-In Procedures

MANAGE_WIDGET (example_widget);

RETURN (TRUE);

ENDPROCEDURE;

2. The following example shows a sample UIL file describing the modal dialog box called
example_box. The UIL file specifies where the widget appears on the screen, what label appears on
the box’s OK button, and what message the widget displays.

module example
version = ’V00-000’

! This is a sample UIL file that creates a message box containing
! the message "Hello World".

names = case_insensitive

value
 example_ok : compound_string ("OK");
 example_message : compound_string ("Hello World");

object
 example_box : XmMessageBox {

 arguments {
 XmNdefaultPosition = true; ! puts box in center work
 area
 XmNokLabelString = example_ok;
 XmNmessageString = example_message;
 };
 };

end module;

For an example showing how to use the variant of CREATE_WIDGET that calls the Toolkit low-
level creation routine, see Example A.1, "Procedure That Creates a Mouse Pad".

CREATE_WINDOW

Syntax

Parameters
integer1

The screen line number at which the window starts.

51

Chapter 2. Descriptions of the DECTPU Built-In Procedures

integer2

The number of rows in the window.

ON, 1

A keyword that directs DECTPU to display a status line in the new window.

The status line occupies the last row of a window. By default, the status line is displayed in reverse
video and contains the following information about the buffer that is currently mapped to the
window:

● The name of the buffer that is associated with the window

● The name of the file that is associated with the buffer, if one exists

See SET (STATUS_LINE) for information on changing the video attributes of the status line, the
information displayed on the status line, or both.

OFF, 0

Suppresses the display of the status line.

Return Value
The window created by CREATE_WINDOW.

Description
The CREATE_WINDOW procedure defines a screen area called a window. You must specify the screen
line number at which the window starts, the length of the window, and whether the status line is to
be displayed. CREATE_WINDOW optionally returns the newly created window. If you want to use
the window that you create as a parameter for any other built-in procedure, then you should specify a
variable into which the window is returned.

You can create multiple windows on the screen, but only one window can be the current window.
The cursor is positioned in the current window. The current window and the current buffer are not
necessarily the same.

To make a window visible, you must associate a buffer with the window and then map the window to the
screen. The following command maps main_window to the screen:

MAP (main_window, main_buffer)

See the MAP built-in procedure for more information.

The following keywords used with the SET built-in procedure let you establish attributes for windows.
This list shows the defaults for the attributes:

● SET (PAD, window, keyword)—By default, there is no blank padding on the right.

● SET (SCROLL_BAR)—By default, DECTPU does not create vertical and horizontal scroll bars for
a window in the DECwindows environment.

● SET (SCROLL_BAR_AUTO_THUMB)—By default, DECTPU controls the slider in any scroll
bars in a window.

52

Chapter 2. Descriptions of the DECTPU Built-In Procedures

● SET (SCROLLING, window, keyword, integer1, integer2, integer3)—The default cursor limit for
scrolling at the top of the screen is the first line of the window; the default cursor limit for scrolling
at the bottom of the screen is the bottom line of the window. If the terminal type you are using does
not let you set scrolling regions, the window is repainted.

● SET (STATUS_LINE, window, keyword, string)—The status line may be ON or OFF accor ding to
the keyword specified for the CREATE_WINDOW built-in procedure. See the preceding description
of the ON keyword for information about the default attributes of a status line.

● SET (TEXT, window, keyword)—By default, the text is set to BLANK_TABS (tabs are displayed as
blank spaces).

● SET (VID EO, window, keyword)—There are no video attributes by default.

● SET (WIDTH, window, integer)—By default, the width is the same as the physical width of the
terminal screen when the window is created.

See the SET built-in procedure for more information on these keywords.

Use the SHIFT built-in procedure to display text that lies to the right of the window’s right edge in an
unshifted window. For more information, see the description of the SHIFT built-in in this chapter.

Signaled Errors

TPU$_TOOFEW ERROR The CREATE_WINDOW built-in
requires exactly three parameters.

TPU$_TOOMANY ERROR The CREATE_WINDOW built-in
accepts exactly three parameters.

TPU$_BADKEY ERROR The keyword must be either ON or OFF.
TPU$_INVPARAM ERROR One or more of the specified parameters

have the wrong type.
TPU$_BADWINDLEN WARNING Invalid window length.
TPU$_BADFIRSTLINE WARNING Invalid first line for window.

Examples
1. The following example creates a window that starts at screen line 11 and is 10 rows long, and assigns

the window to the variable new_window :

new_window := CREATE_WINDOW (11, 10, ON)

2. A status line is displayed as the last line of the window. To make this window visible, you must
associate an existing buffer with it and map the window to the screen with the following command:

MAP (new_window, buffer_variable)

3. The following example creates a window called new_window that starts at screen line 1 and is 21
lines long. No status line is displayed. Tabs are displayed as special graphic characters. The buffer
new_buffer, which is set to NO_WRITE, is associated with the window and the window is mapped
to the screen.

PROCEDURE user_make_window

53

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 new_window := CREATE_WINDOW(1, 21, OFF);
 SET (TEXT, new_window, GRAPHIC_TABS);
 new_buffer := CREATE_BUFFER ("user_buffer_name");
 SET (NO_WRITE, new_buffer);
 MAP (new_window, new_buffer);
ENDPROCEDURE;

CURRENT_BUFFER

Syntax

Parameters
None.

Return Value
The buffer in which you are currently positioned.

Description
The CURRENT_BUFFER procedure returns the buffer in which you are currently positioned. The
current buffer is the work space in which any DECTPU statements you execute take effect. The editing
point is in the current buffer. The editing point is not necessarily the same as the cursor position.

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_BUFFER takes no
parameters.

TPU$_NEEDTOASSIGN ERROR The CURRENT_BUFFER built-in
must be on the right-hand side of an
assignment statement.

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.

Examples
1. The following example stores a pointer to the current buffer in the variable my_cur_buf:

my_cur_buf := CURRENT_BUFFER

2. The following example reverses the direction of the current buffer:

PROCEDURE user_toggle_direction
 IF CURRENT_DIRECTION = FORWARD
 THEN
 SET (REVERSE, CURRENT_BUFFER);
 ELSE
 SET (FORWARD, CURRENT_BUFFER);
 ENDIF;

54

Chapter 2. Descriptions of the DECTPU Built-In Procedures

ENDPROCEDURE;

CURRENT_CHARACTER

Syntax

Parameters
None.

Return Value
A string that consists of the character at the editing point in the current buffer.

Description
The CURRENT_CHARACTER procedure returns the character at the editing point in the current buffer
at which most editing operations are carried out. Each buffer maintains its own editing point, but only
the editing point in the current buffer is the active editing point. An editing point, which always refers to
a character position in a buffer, is not necessarily the same as the cursor position, which always refers to
a location in a window. For more information on the distinction between the editing point and the cursor
position, see Appendix C, "DECTPU Cursor Behavior".

If the editing point is at the end of a line, CURRENT_CHARACTER returns a null string. If the editing
point is at the end of a buffer, CURRENT_CHARACTER returns a null string and also signals a
warning.

Using CURRENT_CHARACTER may cause DECTPU to insert padding spaces or blank lines in the
buffer. CURRENT_CHARACTER causes the screen manager to place the editing point at the cursor
position if the current buffer is mapped to a visible window. For more information on the distinction
between the cursor position and the editing point, see Appendix C, "DECTPU Cursor Behavior".

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_CHARACTER takes no
parameters.

TPU$_NEEDTOASSIGN ERROR The CURRENT_CHARACTER built-in
must be on the right-hand side of

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
TPU$_NOEOBSTR WARNING You are positioned at the EOB (end-of-

buffer) mark.

Examples
1. The following example stores the string that represents the editing point in the variable my_cur_char:

55

Chapter 2. Descriptions of the DECTPU Built-In Procedures

my_cur_char := CURRENT_CHARACTER

2. The following example writes the character that is at the current character position into the message
area:

PROCEDURE user_display_current_character

! This procedure returns the ASCII character in the editing point.

 ascii_char := CURRENT_CHARACTER;
 IF ascii_char <> ""
 THEN
 MESSAGE ("The current character is ’" + ascii_char + "’");
 ELSE
 MESSAGE ("There is no current character.");
 ENDIF;
ENDPROCEDURE;

CURRENT_COLUMN

Syntax

Parameters
None.

Return Value
An integer that is the column number of the current cursor position on the screen.

Description
The CURRENT_COLUMN procedure returns an integer that is the current column number of the
cursor position on the screen. The column numbers range from 1 on the extreme left of the screen to the
maximum value allowed for the terminal type you are using on the extreme right of the screen.

The value returned by CURRENT_COLUMN and the value returned by GET_INFO (SCREEN,
"current_column") are equivalent.

When used in a procedure, CURRENT_COLUMN does not necessarily return the position where the
cursor has been placed by other statements in the procedure. DECTPU generally does not update the
screen until all statements in a procedure are executed. If you want the cursor position to reflect the
actual editing location, put an UPDATE statement in your procedure immediately before any statements
containing CURRENT_COLUMN, as follows:

UPDATE (CURRENT_WINDOW);

If you do not want to update a window to get the current value for CURRENT_COLUMN, you can use
the GET_INFO built-in procedure (buffer_variable, "offset_column"). This built-in returns the column
number that the current offset in the buffer would have if it were mapped to a window, and if you were
to force a screen update. This built-in returns an accurate value only if both of the following conditions
are true:

56

Chapter 2. Descriptions of the DECTPU Built-In Procedures

● You are using bound cursor movement (MOVE_VERTICAL, MOVE_HORIZONTAL) or other
built-in procedures that cause cursor movement because of character movement within a buffer.

● The window is not shifted.

GET_INFO (window_variable, "current_column") does not necessarily return the column number that
the cursor would occupy if you caused an explicit screen update.

If a window is shifted, CURRENT_COLUMN still returns the current column number of the cursor
on the screen. However, the value returned by x := GET_INFO (buffer, "offset_column") includes
the number of columns by which the window is shifted. For example, if a window is shifted to the
left by eight column s, CURRENT_COLUMN returns the value 1, while x := GET_INFO (buffer,
"offset_column") returns the value 9.

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_COLUMN takes no
parameters.

TPU$_NEEDTOASSIGN ERROR The CURRENT_COLUMN built-in
must be on the right- hand side of an
assignment statement.

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.

Examples
1. The following example combines three DECTPU built-in procedures. CURRENT_COLUMN

returns the integer that is the current column position, STR converts the integer to a string, and
MESSAGE writes this string to the message buffer.

MESSAGE (STR (CURRENT_COLUMN))

2. The following example splits a line at the editing point. If the editing point is row 1, column 1, the
procedure causes the screen to scroll.

PROCEDURE user_split_line
 LOCAL old_position, new_position;

 SPLIT_LINE;
 IF (CURRENT_ROW = 1) AND (CURRENT_COLUMN = 1)
 THEN
 old_position := MARK (NONE);
 SCROLL (CURRENT_WINDOW, -1);
 new_position := MARK (NONE);
 !Make sure we scrolled before doing CURSOR_VERTICAL
 IF new_position <> old_position
 THEN
 CURSOR_VERTICAL (1);
 ENDIF;
 ENDIF;
ENDPROCEDURE;

CURRENT_DIRECTION

57

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters

None.

Return Value
A keyword (FORWARD or REVERSE) that indicates the current direction of the current buffer.

Description

The CURRENT_DIRECTION procedure returns a keyword (FORWARD or REVERSE) that indicates
the current direction of the current buffer. See also the descriptions of the SET (FORWARD) and SET
(REVERSE) built-in procedures. If the FORWARD keyword is returned, the current direction is toward
the end of the buffer. If the REVERSE keyword is returned, the current direction is toward the beginning
of the buffer.

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_DIRECTION takes no
parameters.

TPU$_NEEDTOASSIGN ERROR The CURRENT_DIRECTION built-
in must be on the right-hand side of an
assignment statement.

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.

Examples

1. The following example stores in the variable my_cur_dir the keyword that indicates whether the
current direction setting for the buffer is FORWARD or REVERSE:

my_cur_dir := CURRENT_DIRECTION

2. The following example writes to the message buffer a message indicating the current direction of
character movement in the buffer:

PROCEDURE user_show_direction

 IF CURRENT_DIRECTION = FORWARD
 THEN
 my_message1 := MESSAGE ("Forward");
 ELSE
 my_message2 := MESSAGE ("Reverse");
 ENDIF;
ENDPROCEDURE;

CURRENT_LINE

58

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
None.

Return Value
A string that represents the current line.

Description
The CURRENT_LINE procedure returns a string that represents the current line. The current line
is the line that contains the editing point. If you are positioned on a line that has a length of 0,
CURRENT_LINE returns a null string. If you are positioned at the end of the buffer, CURRENT_LINE
returns a null string and also signals a warning.

Using CURRENT_LINE may cause DECTPU to insert padding spaces or blank lines in the buffer.
CURRENT_LINE causes the screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. For more information on the distinction between the cursor
position and the editing point, see Appendix C, "DECTPU Cursor Behavior".

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_LINE takes no parameters.
TPU$_NEEDTOASSIGN ERROR The CURRENT_LINE built-in must be

on the right-hand side of an assignment
statement.

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
TPU$_NOEOBSTR WARNING You are positioned at or beyond the

EOB (end-of- buffer) mark.

Examples
1. The following example stores in the variable my_cur_lin the string that represents the current line.

The current line is the line in the current buffer that contains the editing point.

my_cur_lin := CURRENT_LINE

2. The following example returns true if the current line has the format of a DSR command (starts
with a period followed by an alphabetic character, a semicolon, or an exclamation point). If not, the
procedure returns false. The procedure assumes that the cursor was at the beginning of the line and
moves it back to the beginning of the line when done.

PROCEDURE user_runoff_line

IF LENGTH (CURRENT_LINE) < 2

59

Chapter 2. Descriptions of the DECTPU Built-In Procedures

THEN
 user_runoff_line := 0;
ELSE
 IF CURRENT_CHARACTER <> "."
 THEN
 user_runoff_line := 0;
 ELSE
 MOVE_HORIZONTAL (1);
 IF INDEX
 ("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!;",
 CURRENT_CHARACTER) = 0
 THEN
 user_runoff_line := 0;
 ELSE
 user_runoff_line := 1;
 ENDIF;
 MOVE_HORIZONTAL (-1);
 ENDIF;
ENDIF;
ENDPROCEDURE;

CURRENT_OFFSET

Syntax

Parameters
None.

Return Value
An integer that is the offset of the editing point within the current line.

Description
The CURRENT_OFFSET procedure returns an integer for the offse t of the editing point within the
current line. The current offset is the number of positions a character is located from the first character
position in the current line (offse t 0). In DECTPU, the leftmost character position is offset 0, and this
offset is increased by 1 for each character position (including the tab character) to the right. DECTPU
numbers columns starting with the leftmost position on the screen where a character could be placed,
regardless of where the margin is. This leftmost position is numbered 1.

Note

The current offset value is not the same as the position of the cursor on the screen. See the
CURRENT_COLUMN built-in procedure if you want to determine where the cursor is. For example,
if you have a line with a left margin of 10 and if the cursor is on the first character in that line, then
CURRENT_OFFSET returns 0 while CURRENT_COLUMN returns 10.

Using CURRENT_OFFSET may cause DECTPU to insert padding spaces or blank lines in the buffer.
CURRENT_OFFSET causes the screen manager to place the editing point at the cursor position if the

60

Chapter 2. Descriptions of the DECTPU Built-In Procedures

current buffer is mapped to a visible window. For more information on the distinction between the cursor
position and the editing point, see Appendix C.

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

If you are using an interface with free cursor motion, when you move beyond the end of a line
CURRENT_OFFSET makes the current cursor position the new end-of-line.

If the current offset equals the length of the current line, you are positioned at the end of the line.

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_OFFSET takes no
parameters.

TPU$_NEEDTOASSIGN ERROR The CURRENT_OFFSET built-in
must be on the right- hand side of an
assignment statement.

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.

Examples
1. The following example stores the integer that is the offset position of the current character in the

variable my_cur_off:

my_cur_off := CURRENT_OFFSET

2. The following example uses the CURRENT_OFFSET built-in procedure to determine whether
the editing position is at the beginning of a line. If the position is at the beginning, the procedure
appends the current line to the previous line; otherwise, it deletes the previous character. Compare
this procedure with the procedure used as an example for the APPEND_LINE built-in procedure.

PROCEDURE user_delete

 IF CURRENT_OFFSET = 0
 THEN
 APPEND_LINE;
 ELSE
 ERASE_CHARACTER (-1);
 ENDIF;
ENDPROCEDURE;

CURRENT_ROW

Syntax

Parameters
None.

61

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Return Value
An integer that represents the screen line on which the cursor is located.

Description
The CURRENT_ROW procedure returns an integer that is the screen line on which the cursor is
located. The screen lines are numbered from 1 at the top of the screen to the maximum number of lines
available on the terminal. You can get the value of the current row by using the GET_INFO (SCREEN,
"current_ row") built-in procedure.

When used in a procedure, CURRENT_ROW does not necessarily return the position where the cursor
has been placed by other statements in the procedure. The value returned by CURRENT_ROW may
not be the current value because DECTPU generally does not update the screen until all statements in
a procedure are executed. If you want the cursor position to reflect the actual editing location, put an
UPDATE statement in your procedure immediately before any statements containing CURRENT_ROW,
as follows:

UPDATE (CURRENT_WINDOW);

Signaled Errors

TPU$_NEEDTOASSIGN ERROR The CURRENT_ROW built-in must be
on the right-hand side of an assignment
statement.

TPU$_TOOMANY ERROR CURRENT_ROW takes no parameters.

Examples
1. The following example causes the cursor to move up the screen:

PROCEDURE user_go_up
 IF CURRENT_ROW = GET_INFO (CURRENT_WINDOW, "visible_top")
 THEN
 SCROLL (CURRENT_WINDOW, -1);
 ELSE
 CURSOR_VERTICAL (-1);
 ENDIF;
ENDPROCEDURE;

2. The following example causes the cursor to move down the screen. Because CURSOR_VERTICAL
crosses window boundaries, you must use the SCROLL built-in procedure to keep the cursor motion
within a single window if you are using free cursor motion. See CURSOR_HORIZONTAL and
CURSOR_VERTICAL for more information.

If the movement of the cursor would take it outside the window, the preceding procedures scroll text
into the window to keep the cursor visible. You can bind these procedures to a key so that the cursor
motion can be accomplished with a single keystroke.

PROCEDURE user_go_down
 IF CURRENT_ROW = GET_INFO (CURRENT_WINDOW, "visible_bottom")
 THEN
 SCROLL (CURRENT_WINDOW, 1);
 ELSE

62

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 CURSOR_VERTICAL (1);
 ENDIF;
ENDPROCEDURE;

CURRENT_WINDOW

Syntax

Parameters

None.

Return Value

The window in which the cursor is visible.

Description

The CURRENT_WINDOW procedure returns the window in which the cursor is visible. The current
window is the window on which you have most recently performed one of the following operations:

● Selection by using the POSITION built-in

● Mapping to the screen by using the MAP built-in

● Adjustment by using the ADJUST_WINDOW built-in

The current window contains the cursor at the screen coordinates current_row and current_column. The
current buffer is not necessarily associated with the current window.

Signaled Errors

TPU$_TOOMANY ERROR CURRENT_WINDOW takes no
parameters.

TPU$_NEEDTOASSIGN ERROR The CURRENT_WINDOW built-in
must be on the right-hand side of an
assignment statement.

TPU$_WINDNOTMAPPED WARNING No windows are mapped to the screen.

Examples

1. The following example stores the window that holds the cursor in the variable my_cur_win:

my_cur_win := CURRENT_WINDOW

2. The following example determines the length of the current window and then uses that value as a
parameter for the SCROLL built-in procedure.

63

Chapter 2. Descriptions of the DECTPU Built-In Procedures

PROCEDURE user_next_screen

 LOCAL how_much_scroll;

 how_much_scroll := GET_INFO (CURRENT_WINDOW, "visible_length");

 SCROLL (CURRENT_WINDOW, how_much_scroll);
ENDPROCEDURE;

CURSOR_HORIZONTAL

Syntax

Parameter
integer1

The signed plus or minus integer value that specifies the number of screen columns to move the
cursor position. A positive value directs DECTPU to move the cursor to the right; a negative value
directs DECTPU to move the cursor to the left. The value 0 causes DECTPU to synchronize the
active editing point with the cursor position.

Return Value
An integer that represents the number of columns the cursor moved. If DECTPU cannot move the cursor
as many columns as specified by integer1, DECTPU moves the cursor as many columns as possible.
The return value may be negative. This notation is reserved for future versions of DECTPU. A negative
return value does not denote that the cursor moved to the left. Rather, the integer shows the number of
spaces that the cursor moved right or left. If the cursor did not move, integer2 has the value 0. If the
CURSOR_HORIZONTAL built-in produces an error, the value of integer2 is indeterminate.

Description
The CURSOR_HORIZONTAL procedure moves the cursor position across the screen and optionally
returns the cursor movement status. You can use CURSOR_HORIZONTAL to provide free cursor
movement in a horizontal direction. Free cursor movement means that the cursor is not tied to text, but
can move across all available columns in a screen line.

If you move before the beginning of a line, after the end of a line, in the middle of a tab, or beyond the
end-of-file mark, other built-ins may cause padding lines or spaces to be added to the buffer.

If you use the CURSOR_HORIZONTAL built-in within a procedure, screen updating occurs in the
following manner:

● When you execute a built-in that modifies the buffer or the editing point before you issue the call
to CURSOR_HORIZONTAL, the screen is updated before CURSOR_HORIZONTAL is executed.
This action ensures that the horizontal movement of the cursor starts at the correct character
position. Otherwise, the screen manager does not update the screen until the procedure has finished
executing and control is returned to the screen manager.

64

Chapter 2. Descriptions of the DECTPU Built-In Procedures

● CURSOR_HORIZONTAL does not move the cursor beyond the left or right edge of the window in
which it is located. You cannot move the cursor outside the bounds of a window.

● CURSOR_HORIZONTAL has no effect if you use any input device other than a video terminal
supported by DECTPU.

Signaled Errors

TPU$_TOOFEW ERROR CURSOR_HORIZONTAL requires one
parameter.

TPU$_TOOMANY ERROR CURSOR_HORIZONTAL accepts only
one parameter.

TPU$_INVPARAM ERROR One or more of the specified parameters
have the wrong type.

Examples
1. The following example moves the cursor position one screen column to the right:

int_x := CURSOR_HORIZONTAL (1)

2. The following example provides for free cursor motion to the left. You can bind these procedures
to keys (for example, the arrow keys) so that the movement can be accomplished with a single
keystroke.

PROCEDURE user_free_cursor_left
 move_left := CURSOR_HORIZONTAL (-1);
ENDPROCEDURE;

CURSOR_VERTICAL

Syntax

Parameters
integer1

The signed integer value that specifies how many screen lines to move the cursor position. A positive
value for integer1 moves the cursor position down. A negative integer moves the cursor position up.

Return Value
An integer that represents the number of rows that the cursor moved up or down. If DECTPU could not
move the cursor as many rows as specified by integer1, DECTPU moves the cursor as many rows as
possible.

If CROSS_WINDOW_BOUNDS is set to ON, CURSOR_VERTICAL may position the cursor to
another window. In this case, CURSOR_VERTICAL returns the negative of the number of rows the
cursor moved. A negative return value does not denote that the cursor moved upward.

65

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If the cursor did not move, integer2 has the value 0. If the CURSOR_VERTICAL built-in procedure
produced an error, the value of integer2 is indeterminate.

Description
The CURSOR_VERTICAL procedure moves the cursor position up or down the screen and optionally
returns the cursor movement status. You can use CURSOR_VERTICAL to provide free cursor
movement in a vertical direction. Free cursor movement means that the cursor is not tied to text, but that
it can move up and down to all lines on the screen that can be edited, whether or not there is text at that
column in the new line.

The cursor does not move beyond the top or the bottom edges of the screen. However,
CURSOR_VERTICAL can cross window boundaries, depending upon the current setting of the
CROSS_WINDOW_BOUNDS flag. See SET (CROSS_WINDOW_BOUNDS) for information on how
to set this flag. Use the POSITION built-in to move the cursor to a different window on the screen.

When CROSS_WINDOW_BOUNDS is set to ON, CURSOR_VERTICAL can move the cursor
position to a new window. The new window in which the cursor is positioned becomes the current
window. The column position of the cursor remains unchanged unless vertical movement would position
the cursor outside the bounds of a window narrower than the previous window. In this instance, the
cursor moves to the left until it is positioned within the right boundary of the narrower window.

When CROSS_WINDOW_BOUNDS is set to OFF, CURSOR_VERTICAL does not move the cursor
outside the current window. If the SET (SCROLLING) built-in has been used to set scrolling margins,
CURSOR_VERTICAL also attempts to keep the cursor within the scroll margins.

CURSOR_VERTICAL positions the cursor only in screen areas in which editing can occur. For example,
CURSOR_VERTICAL does not position the cursor on the status line of a window, in the prompt area,
or in an area of the screen that is not part of a window. The blank portion of a segmented window is not
considered part of a window for this purpose.

If you use CURSOR_VERTICAL within a procedure, screen updating occur s in the following manner:

● When you execute a built-in that modifies the buffer or the current character position before you
issue the call to CURSOR_VERTICAL, the screen is updated before CURSOR_VERTICAL is
executed. This action ensures that the vertical movement of the cursor starts at the correct character
position. Otherwise, the screen manager does not update the screen until the procedure has finished
executing and control is returned to the screen manager.

● CURSOR_VERTICAL has no effect if you use an input device other than a video terminal
supported by DECTPU.

Signaled Errors
TPU$_TOOFEW ERROR CURSOR_VERTICAL requires at least

one parameter.
TPU$_TOOMANY ERROR CURSOR_VERTICAL accepts at most

one parameter.
TPU$_INVPARAM ERROR You did not specify an integer as the

parameter.

Examples
1. The following example moves the cursor position five lines toward the bottom of the screen:

66

Chapter 2. Descriptions of the DECTPU Built-In Procedures

int_y := CURSOR_VERTICAL (5)

2. The following example provides for free cursor motion up and down the screen. These procedures
can be bound to keys (for example, the arrow keys) so that you can make the movement with a single
keystroke.

PROCEDURE user_free_cursor_down

 IF GET_INFO (CURRENT_WINDOW, "CURRENT_ROW") =
 GET_INFO (CURRENT_WINDOW, "VISIBLE_BOTTOM")
 THEN
 SCROLL (CURRENT_WINDOW, 1);
 ELSE
 right_x := CURSOR_VERTICAL (1);
 ENDIF;
ENDPROCEDURE;

These examples work regardless of the setting of CROSS_WINDOW_BOUNDS because the
SCROLL built-in procedure keeps the cursor motion within a single window.

DEBUG_LINE

Syntax

Parameters
None.

Return Value
An integer that represents the line number of the current breakpoint.

Description
The DEBUG_LINE procedure returns the line number of the current breakpoint. Use DEBUG_LINE
when writing your own DECTPU debugger.

VSI recommends that you use the debugger provided in SYS$SHARE:TPU$DEBUG.TPU.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR The DEBUG_LINE built-in must
appear on the right-hand side of
an assignment statement.

Examples
1. In the following example, the code fragment first uses GET_INFO to request the line number of the

breakpoint in the current procedure. If the line number is 0, meaning that the breakpoint is not in a

67

Chapter 2. Descriptions of the DECTPU Built-In Procedures

procedure, the code uses DEBUG_LINE to determine the breakpoint’s line number relative to the
buffer.

the_line := GET_INFO (DEBUG, "line_number");
IF the_line = 0
 THEN the_line := DEBUG_LINE;
ENDIF;

DEFINE_KEY

Syntax

Parameters

buffer

A buffer that contains the DECTPU statements to be associated with a key.

learn

A learn sequence that specifies the executable code associated with a key.

program

A program that contains the executable code to be associated with a key.

range

A range that contains the DECTPU statements to be associated with a key.

string1

A string that specifies the DECTPU statements to be associated with a key.

A DECTPU key name for a key or a combination of keys. See the Guide to the DEC Text Processing
Utility for a list of the DECTPU key names for the LK0201 and LK0401 series of keyboards. You
can also use the SHOW (KEYWORDS) built-in procedure to display all the DECTPU keywords.

See the Description section of this built-in procedure for information on keys that you cannot define.

To define a key for which there is no DECTPU key name, use the KEY_NAME built-in procedure
to create your own key name for the key. For example, KEY_NAME ("A", SHIFT_KEY) creates a
key name for the combination of PF1, the default shift key for DECTPU, and the keyboard character
A. For more information, see the description of the KEY_NAME built-in procedure.

68

Chapter 2. Descriptions of the DECTPU Built-In Procedures

string2

An optional string associated with a key that you define. The string is treated as a comment that you
can retrieve with the LOOKUP_KEY built-in procedure. You might want to use the comment if you
are creating a help procedure for keys that you have defined.

string3

A key map or a key map list in which the key is to be defined. If a key map list is specified,
the key is defined in the first key map in the key map list. If neither a key map nor a key map
list is specified, the key is defined in the first key map in the key map list bound to the current
buffer. See the descriptions of the CREATE_KEY_MAP, CREATE_KEY_MAP_LIST, and SET
(KEY_MAP_LIST) built-in procedures for more information on key maps and key map lists.

Description
The DEFINE_KEY procedure associates executable DECTPU code with a key or a combination of keys.
DEFINE_KEY com piles the first parameter if it is a string, buffer, or range.

If you use DEFINE_KEY to change the definition of a key that was previously defined, DECTPU does
not save the previous definition.

You can define all the keys on the LK201 and LK401 keyboards and keypads with the following
exceptions:

● The Compose Character key and Alt function key

● The Shift keys

● The Escape key

● The keys F1 through F5

There are some keys that you can define but that VSI strongly recommends you avoid defining.
DECTPU does not signal an error when you use them as keyword parameters. However, on character-
cell terminals the definitions you assign to these key combinations are not executed unless you set
your terminal in special ways at the DCL level. VSI recommends that you do not use the following
special terminal settings. The settings may cause unpredictable results if you do not understand all the
implications of changing the default settings:

● Ctrl/C, Ctrl/O, Ctrl/X, and F6—To execute programs that you bind to these keys, you must first
enter the DCL SET TERMINAL/PASTHRU command.

● Ctrl/T, Ctrl/Y—To execute programs that you bind to these keys, you must first enter the DCL SET
TERMINAL/PASTHRU command, the DCL SET NOCONTROL comman d, or both.

● Ctrl/S, Ctrl/Q—To execute programs that you bind to these keys, you must first enter the DCL SET
TERMINAL/NOTTSYNC command.

The PF1 key is the default shift key for the editor. You cannot define PF1 unless you use either the SET
(SHIFT_KEY, keyword) built-in procedure or the EVE SET GOLD KEY command to define a different
key as the shift key for the editor.

Whenever you extend EVE by writing a procedure that can be bound to a key, the procedure must return
true or false, as needed, to indicate whether execution of the procedure completed successfully. EVE’s

69

Chapter 2. Descriptions of the DECTPU Built-In Procedures

REPEAT command relies on this return value to determine whether to halt repetition of a command, a
procedure bound to a key, or a learn sequence.

Signaled Errors

TPU$_NOTDEFINABLE WARNING Second argument is not a valid
reference to a key.

TPU$_RECURLEARN WARNING This key definition was used as
a part of a learn sequence. You
cannot use it in this context.

TPU$_NOKEYMAP WARNING Fourth argument is not a defined
key map.

TPU$_NOKEYMAPLIST WARNING Fourth argument is not a defined
key map list.

TPU$_KEYMAPNTFND WARNING The key map listed in the fourth
argument is not found.

TPU$_EMPTYKMLIST WARNING The key map list specified in the
fourth argument contains no key
maps.

TPU$_TOOFEW ERROR Too few arguments passed to the
DEFINE_KEY built-in.

TPU$_TOOMANY ERROR Too many arguments passed to
the DEFINE_KEY built-in.

TPU$_INVPARAM ERROR Wrong type of data sent to the
DEFINE_KEY built-in.

TPU$_COMPILEFAIL WARNING Compilation aborted.
TPU$_UNKKEYWORD ERROR An unknown keyword has been

used as an argument.
TPU$_BADKEY ERROR An unknown keyword has been

used as an argument.
TPU$_KEYSUPERSEDED INFORMATIONAL Key definition superseded.

Examples
1. The following example associates the DECTPU statement POSITION (main_window) with the key

combination Ctrl/B. You must use quotation marks around the DECTPU statement.

DEFINE_KEY ("POSITION (main_window)", Ctrl_B_KEY)

2. The following example prompts you for the DECTPU statements to be bound to the key that you
specify:

PROCEDURE user_define_key

 def := READ_LINE ("Definition: ");
 key := READ_LINE ("Press key to define.",1);

 IF LENGTH (key) > 0
 THEN
 key := KEY_NAME (key)

70

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 ELSE
 key := LAST_KEY;
 ENDIF;

 DEFINE_KEY (def,key);
ENDPROCEDURE;

3. The following example changes the mode of text entry from insert to overstrike, or from overstrike to
insert:

PROCEDURE user_change_mode

! Toggle mode between insert and overstrike

 IF GET_INFO (CURRENT_BUFFER, "mode") = OVERSTRIKE
 THEN
 SET (INSERT, CURRENT_BUFFER);
 ELSE
 SET (OVERSTRIKE, CURRENT_BUFFER);
 ENDIF;
ENDPROCEDURE;

! The following statement binds this procedure to the
! key combination Ctrl/A. This emulates the OpenVMS key binding
! that toggles between insert and overstrike for text entry
! in command line editing.

DEFINE_KEY ("user_change_mode", Ctrl_A_KEY);

DEFINE_WIDGET_CLASS

Syntax

Parameters
class_name

A string that is the name of the desired widget class record. This string is a universal symbol
exported by the Toolkit or the widget writer.

creation_routine_name

A string that is the name of the low-level widget creation routine for this widget class.

If you do not specify this parameter, DECTPU uses the X Toolkit XtCreateWidget routine to create
the widget. The routine you specify must have the same calling sequence as the Motif Toolkit widget
creation routines.

You can specify a C-binding or OpenVMS binding name for this parameter, as follows:

● C-binding name

71

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If you specify a C-binding name for this parameter, be sure not to use a dollar sign ($) in
your binding name. C-binding creation routine names are case sensitive. For example, Xm
CreateScrollBar is not identical to xmcreatescrollbar. To determine the correct case of the string,
consult the documentation for the widget whose class you are defining.

● OpenVMS binding name

If you specify an OpenVMS binding name for this parameter, you can use the dollar sign ($)
character in the name. OpenVMS binding names are not case sensitive.

creation_routine_image_name

A string that is the name of the shareable image that contains the widget class record. If you specify
a low-level creation routine in the second parameter,

DEFINE_WIDGET_CLASS also looks for the routine in the program image. If you do not specify
an image, DECTPU assumes the widget is defined in the Motif image SYS$LIBRARY:DECW
$XMLIBSHR.EXE. This parameter can specify only the name of the shareable image. If the
parameter contains anything else, such as a device name, directory name, file type, or version
number, DECTPU signals an error.

Return Value
An integer used by the CREATE_WIDGET built-in to identify the class of widget to be created.

Description
The DEFINE_WIDGET_CLASS procedure defines a widget class and optional creation routine for later
use in creating widgets of that class.

Defining a class that is already defined returns the existing class integer. Defining a new class also
defines the widget creation routine as the second parameter, if specified, or the X toolkit routine
XtCreateWidget.

Signaled Errors

TPU$_ARGMISMATCH ERROR The data type of the indicated
parameter is not supported by
DEFINE_WIDGET_CLASS.

TPU$_NEEDTOASSIGN ERROR DEFINE_WIDGET_CLASS must
return a value.

TPU$_TOOFEW ERROR Too few arguments passed to
DEFINE_WIDGET_CLASS.

TPU$_TOOMANY ERROR Too many arguments passed to
DEFINE_WIDGET_CLASS.

TPU$_REQUIRESDECW ERROR You can use
DEFINE_WIDGET_CLASS only if you
are using DECwindows DECTPU.

TPU$_SYSERROR ERROR Could not find class record or creation
routine in shareable image.

72

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_INVWIDGETCLASS ERROR The widget class cannot be defined.

Examples
For a sample procedure using the DEFINE_WIDGET_CLASS built-in, see Example A.1, "Procedure
That Creates a Mouse Pad".

DELETE

Syntax

Parameters
array

The array that you want to delete. The memory used by the array is freed for later use. If some other
data structure, such as a pattern, is referenced only in the array, then that data structure is deleted
when the array is deleted.

buffer

The buffer that you want to delete. Any ranges or markers that point to this buffer, any subprocess
that is associated with this buffer, the memory for the buffer control structure, the pages for storing
text, and the memory for ranges and markers associated with the buffer are deleted also. If the buffer
is associated with a window that is mapped to the screen, the window is unmapped. Any associated
buffer-change journal file is also closed and deleted.

integer

The integer that you want to delete. Integers use no internal structures or resources, so deleting a
variable of type integer simply changes that variable to type unspecified.

keyword

The keyword that you want to delete. Keywords use no internal structures or resources, so deleting a
variable of type keyword simply assigns to that variable the type unspecified.

73

Chapter 2. Descriptions of the DECTPU Built-In Procedures

learn

The learn sequence that you want to delete. The memory used by the learn sequence is freed for
later use.

marker

The marker that you want to delete. The memory for the marker control structure is deleted also.

pattern

The pattern that you want to delete. The memory used by the pattern is freed for later use. If you
delete a pattern that has multiple references to it, the pattern does not go away. If you delete a pattern
that has no other references to it, the pattern goes away.

process

The process that you want to delete. The memory for the process control structure and the
subprocess are deleted also.

program

The program that you want to delete. The memory for the program control structure and the
memory for the program code are deleted also.

range

The range that you want to delete. The memory for the range control structure is deleted also. The
text in a range does not belong to the range; rather, it belongs to the buffer in which it is located.
A range is merely a way of manipulating sections of text within a buffer. When you delete a range,
the text delimited by the range is not deleted. See the ERASE built-in procedure for a description of
how to remove the text in a range.

string

The string that you want to delete. The memory used by the string is freed for later use.

unspecified

Deleting a variable of type unspecified is allowed but does nothing.

widget

The widget that you want to delete. When you use the DELETE (widget) built-in, all variables and
array elements that refer to the widget are set to unspecified. If an array element is indexed by the
deleted widget, the array element is deleted as well.

window

The window that you want to delete. Along with the window, the memory for the window control
structure and the record history associated with the window are deleted. If you delete a window that
is mapped to the screen, DECTPU unmaps the window before deleting it. The screen appears just as
it does when you use the UNMAP built-in procedure.

Description
The DELETE procedure removes DECTPU structures from your editing context. When you delete a
structure (for example, a range), all variables that refer to that structure are reset to unspecified. If the

74

Chapter 2. Descriptions of the DECTPU Built-In Procedures

deleted structure had any associated resources, these resources are returned to the editor. When a buffer
is deleted, the associated journal file (if any) is closed and deleted.

Depending upon how many variables are referencing an entity, or how many other entities are associated
with the entity you are deleting, processing the DELETE built-in procedure can be time consuming.
DELETE cannot be terminated by a Ctrl/C.

Any variables that reference the deleted entity are set to unspecified and all other entities that are
associated with the deleted entity are also deleted. Use the DELETE built-in procedure with caution.

Signaled Errors

TPU$_TOOFEW ERROR DELETE requires one argument.
TPU$_TOOMANY ERROR DELETE accepts only one argument.
TPU$_BADDELETE ERROR You attempted to delete a constant.
TPU$_DELETEFAIL WARNING DELETE could not delete the process.
TPU$_INVBUFDELETE WARNING You cannot delete a permanent buffer.

Examples
1. The following example deletes the main buffer and any associated resources that DECTPU allocated

for the main buffer. As a result of this command, the SHOW (BUFFERS) command does not list
MAIN_BUFFER as one of the buffers in your editing context.

DELETE (main_buffer)

2. The following example creates a modal dialog box widget and later deletes it. For purposes of this
example, the procedure user_callback_dispatch_routine is assumed to be a user-written procedure
that handles widget callbacks. For a sample DECwindows User Interface Language (UIL) file to be
used with DECTPU code creating a modal dialog box widget, see the example in the description of
the CREATE_WIDGET built-in procedure.

PROCEDURE sample_create_and_delete

LOCAL example_widget,
 example_widget_name,
 example_hierarchy;

example_hierarchy := SET (UID, "mynode$dua0:[smith]example.uid");
example_widget_name := "EXAMPLE_BOX";
example_widget := CREATE_WIDGET (example_widget_name,
 example_hierarchy, SCREEN,
 "user_callback_dispatch_routine");
! .
! .
! .

DELETE (example_widget);

ENDPROCEDURE;

EDIT

75

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
buffer2

The buffer in which you want DECTPU to edit text. You cannot use the NOT_IN_PLACE keyword
if you specify a buffer for the first parameter.

range2

The range in which you want DECTPU to edit text. You cannot use the NOT_IN_PLACE keyword
if you specify a range for the first parameter.

string2

The string that you want to modify. If you specify a return value, the returned string consists of
the string you specify for the first parameter, modified in the way you specify in the second and
subsequent parameters. If you specify IN_PLACE for the third parameter, EDIT makes the specified
change to the string specified in the first parameter. If string2 is a constant, IN_PLACE has no
effect.

keyword1

A keyword specifying the editing operation that you want to perform on the string. The valid
keywords and their meaning are as follows.

Keyword Meaning

COLLAPSE Removes all spaces and tabs.
COMPRESS Replaces multiple spaces and tabs with a single

space.
TRIM Removes leading and trailing spaces and tabs.
TRIM_LEADING Removes leading spaces and tabs.
TRIM_TRAILING Removes trailing spaces and tabs.
LOWER Converts all uppercase characters to lowercase.
UPPER Converts all lowercase characters to uppercase.
INVERT Changes the current case of the specified

characters; uppercase characters become
lowercase and lowercase characters become
uppercase.

keyword2

A keyword specifying whether DECTPU quote characters are used as quote characters or as regular
text. The valid keywords are ON, OFF, 1, or 0. The integer 1 is equivalent to ON. The integer 0 is
equivalent to OFF. The default is ON or 1.

76

Chapter 2. Descriptions of the DECTPU Built-In Procedures

keyword3

A keyword indicating where DECTPU is to make the indicated change. The valid keywords and
their meanings are as follows:

Keyword Meaning

IN_PLACE Makes the indicated change in place. This is the
default.

NOT_IN_PLACE Leaves the specified string unchanged and
returns a string that is the result of the specified
editing. You cannot use NOT_IN_PLACE if the
first parameter is specified as a range or buffer.
To use NOT_IN_PLACE, you must specify a
return value for EDIT.

This keyword is ignored if string2 is a string constant. EDIT never edits string constants in place. It
does return the edited string.

Return Values
buffer1

A variable of type buffer pointing to the buffer containing the modified text, if you specify a buffer
for the first parameter. The variable returned_buffer points to the same buffer pointed to by the
buffer variable specified as the first parameter.

range1

A range containing the modified text, if you specify a range for the first parameter. The returned
range spans the same text as the range specified as a parameter, but they are two separate ranges. If
you subsequently change or delete one of the ranges, this has no effect on the other range.

string1

A string containing the modified text, when you specify a string for the first parameter. EDIT can
return a string even if you specify IN_PLACE.

Description
The EDIT procedure modifies a string accor ding to the keywords you specify. EDIT is similar (although
not identical) to the DCL lexical function F$EDIT. DECTPU modifies the first parameter of the EDIT
built-in in place. EDIT does not modify a literal string.

By default, EDIT does not modify quoted text that occurs within a string. For example, the following
code does not change the case of WELL:

string_to_change := ’HE SANG "WELL"’; edit (string_to_change, LOWER);

The variable string_to_change has the value he sang "WELL" .

If you specify more than one of the TRIM keywords (TRIM, TRIM_LEADING, TRIM_TRAILING),
all of the TRIM operations you specify are performed.

If you specify more than one of the case conversion keywords (UPPER, LOWER, INVERT), the last
keyword that you specify determines how the characters in the string are modified.

77

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If you specify both of the quote recognition keywords (ON, OFF), the last keyword you specify
determines whether EDIT modifies quoted text.

If you specify no keywords, EDIT does nothing to the passed string.

You can disable the recognition of quotation marks and apostrophes as DECTPU quote characters by
using the OFF keyword as a parameter for EDIT. When you use the OFF keyword, DECTPU preserves
any quotation marks and apostrophes in the edited text and performs the editing tasks you specify on the
text within the quotation marks and apostrophes. OFF may appear anywhere in the keyword list. It need
not be the final parameter.

If the string you specify has opening quotation marks but not closing quotation marks, the status TPU
$_MISSINGQUOTE is returned. All text starting at the unclosed opening quotation mark and continuing
to the end of the string is considered to be part of the quoted string and is not modified.

EDIT is similar to the DCL lexical function F$EDIT, with the following differences:

● EDIT modifies the characters in place, while F$EDIT returns a result.

● EDIT takes keywords as parameters, while F$EDIT requires that the edit commands be specified by
a string.

Signaled Errors

TPU$_MISSINGQUOTE ERROR Character string is missing terminating
quotation marks.

TPU$_TOOFEW ERROR EDIT requires at least one parameter.
TPU$_TOOMANY ERROR You supplied keywords that are the

same or contradictory.
TPU$_ARGMISMATCH ERROR One of the parameters to EDIT is of the

wrong data type.
TPU$_INVPARAM ERROR One of the parameters to EDIT is of the

wrong data type.
TPU$_BADKEY WARNING You gave the wrong keyword to EDIT.

Examples
1. The following example edits the string "PRODUCT NAME" by changing it to lowercase, and

displays the edited string in the message window:

pn := "PRODUCT NAME";
EDIT (pn, LOWER);
MESSAGE (pn);

2. The following example shows a generalized way of changing any input string to lowercase:

PROCEDURE user_edit_string (input_string)

 is := input_string;

 EDIT (is, LOWER);
 MESSAGE (is);
ENDPROCEDURE;

78

Chapter 2. Descriptions of the DECTPU Built-In Procedures

After compiling the preceding procedure, you can direct DECTPU to print the lowercase word
zephyr in the message area by entering the following command:

user_edit_string ("ZEPHYR")

END_OF

Syntax

Parameters

buffer

The buffer whose last character position you want to mark.

range

The range whose last character position you want to mark.

Return Value

A marker pointing to the last character position in a buffer or range.

Description

The END_OF procedure returns a marker that points to the last character position in a buffer or a range.
If you use the marker returned by the END_OF built-in as a parameter for the POSITION built-in
procedure, the editing point moves to this marker.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR END_OF must appear on the right-hand
side of an assignment statement.

TPU$_TOOFEW ERROR END_OF requires one argument.
TPU$_TOOMANY ERROR END_OF accept s only one argument.
TPU$_ARGMISMATCH ERROR You passed something other than a

range or a buffer to END_OF.

Examples

1. The following example stores the last position in the current buffer in the variable

the_end := END_OF (CURRENT_BUFFER)

2. The following example implements a simple INSERT HERE function. The variable paste_buffer
points to a buffer that holds previously cut text.

79

Chapter 2. Descriptions of the DECTPU Built-In Procedures

PROCEDURE user_paste

 LOCAL paste_text;

 IF (BEGINNING_OF (paste_buffer) <> END_OF (paste_buffer))
 THEN
 COPY_TEXT (paste_buffer);
 ENDIF;

ENDPROCEDURE;

ERASE

Syntax

Parameters
buffer

The buffer whose contents you want to remove.

range

The range whose contents you want to remove.

Description
The ERASE procedure removes the contents of the buffer or range that you specify. However, the buffer
structure still remains a part of your editing context and the editing point remains in the buffer even
if you remove the contents of the buffer. The space that was occupied by the contents of the buffer is
returned to the system and is available for reuse. Only the end-of-buffer line remains.

When you erase a range, the contents of the range are removed from the buffer. The range structure is
still a part of your editing context. You can use the range structure later in your editing session to delimit
an area of text within a buffer.

Note that text does not belong to a range; it belongs to a buffer. Ranges are merely a way of
manipulating portions of text within a buffer. For more information on ranges, see the Guide to the DEC
Text Processing Utility.

Signaled Errors

TPU$_TOOFEW ERROR ERASE requires one argument.
TPU$_TOOMANY ERROR ERASE accept s only one argument.
TPU$_INVPARAM ERROR The argument to ERASE is of the wrong

type.
TPU$_NOTMODIFIABLE WARNING You cannot erase text in an

unmodifiable buffer.

80

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Examples
1. The following example erases all the text in the buffer referenced by main_buffer. Because the buffer

still exists, you can select the buffer by using the POSITION built-in or by mapping the buffer to a
window. The procedure simply removes all text from the buffer. All markers in the buffer now mark
the end of the buffer.

ERASE (main_buffer)

2. The following example deletes embedded carriage-return/line-feed pairs:

PROCEDURE user_remove_crlfs

 LOCAL crlf,
 here,
 cr_range;

 crlf := ASCII (13) + ASCII (10);
 here := MARK (NONE);
 POSITION (BEGINNING_OF (CURRENT_BUFFER));

 LOOP
 cr_range := SEARCH_QUIETLY (crlf, FORWARD, EXACT);
 EXITIF cr_range = 0;
 ERASE (cr_range);
 POSITION (cr_range);
 ENDLOOP;

 POSITION (here);
ENDPROCEDURE;

ERASE_CHARACTER

Syntax

Parameters
integer

An expression that evaluates to an integer, which may be signed. The value indicates which
characters, and how many of them, are to be erased.

Return Value
A string that represents the characters deleted by ERASE_CHARACTER.

Description
The ERASE_CHARACTER procedure deletes up to the number of characters that you specify and
optionally returns a string that represents the characters you deleted.

If the argument to ERASE_CHARACTER is a positive integer, ERASE_CHARACTER deletes that
many characters, starting at the current position and continuing toward the end of the line. If the

81

Chapter 2. Descriptions of the DECTPU Built-In Procedures

argument is negative, ERASE_CHARACTER deletes characters to the left of the current character. It
uses the absolute value of the parameter to determine the number of characters to delete.

ERASE_CHARACTER stops deleting characters if it reaches the beginning or the end of the line before
deleting the specified number of characters.

Using ERASE_CHARACTER may cause DECTPU to insert padding spaces or blank lines in the buffer.
ERASE_CHARACTER causes the screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. For more information on the distinction between the cursor
position and the editing point, see Appendix C, "DECTPU Cursor Behavior".

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

ERASE_CHARACTER optionally returns a string that contains the characters that it deleted.

Signaled Errors

TPU$_TOOFEW ERROR ERASE_CHARACTER requires
one argument.

TPU$_TOOMANY ERROR ERASE_CHARACTER accepts
only one argument.

TPU$_INVPARAM ERROR The argument to
ERASE_CHARACTER must be
an integer.

TPU$_NOCURRENTBUF WARNING There is no current buffer to
erase characters from.

TPU$_NOTMODIFIABLE WARNING You cannot modify an
unmodifiable buffer.

Examples
1. The following example removes the current character and the nine characters following it and copies

them in the string variable take_out_chars . If there are only five characters following the current
character, then this statement deletes only the current character and the five following it. It does not
also delete characters on the next line.

take_out_chars := ERASE_CHARACTER (10)

2. The following example deletes the character to the left of the editing point. If the editing point is at
the beginning of a line, the procedure appends the current line to the previous line.

! This procedure deletes the character to the
! left of the current character. If at the
! beginning of a line, it appends the current
! line to the previous line.

PROCEDURE user_delete_key

 LOCAL deleted_char;

 deleted_char := ERASE_CHARACTER (-1);

82

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 IF deleted_char = "" ! nothing deleted
 THEN
 APPEND_LINE;
 ENDIF;
ENDPROCEDURE;

ERASE_LINE

Syntax

Parameters
None.

Return Value
A string that contains the text of the deleted line.

Description
The ERASE_LINE procedure removes the current line from the current buffer. The current position
moves to the first character of the line following the deleted line. ERASE_LINE optionally returns a
string containing the text of the deleted line.

Using ERASE_LINE may cause DECTPU to insert padding spaces or blank lines in the buffer.
ERASE_LINE causes the screen manager to place the editing point at the cursor position if the current
buffer is mapped to a visible window. For more information on the distinction between the cursor
position and the editing point, see Appendix C, "DECTPU Cursor Behavior".

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

If the screen manager inserts padding spaces, ERASE_LINE deletes these spaces when it deletes the
line. The spaces appear in the returned string. If the screen manager inserts padding lines into the buffer,
ERASE_LINE deletes only the last of these lines.

Signaled Errors

TPU$_TOOMANY ERROR ERASE_LINE accepts no arguments.
TPU$_NOTMODIFIABLE WARNING You cannot erase a line in an

unmodifiable buffer.
TPU$_NOCURRENTBUF ERROR You must select a buffer before erasing a

line.

Examples
1. The following example removes the current line from the current buffer:

83

Chapter 2. Descriptions of the DECTPU Built-In Procedures

ERASE_LINE

2. The following example removes the current line from the current buffer and stores the string of
characters representing that line in the variable take_out_ line:

take_out_line := ERASE_LINE

ERROR

Syntax

Parameters
None.

Return Value
A keyword that represents the most recent error.

Description
The ERROR procedure returns a keyword for the latest error. The possible error and warning codes for
each built-in procedure are included in the description of each built-in procedure. The OpenVMS System
Messages and Recovery Procedures Reference Manual includes all the possible completion codes for
DECTPU as well as the appropriate explanations and suggested user actions.

The value returned by ERROR is meaningful only inside an error handler after an error has occurred.
The value outside an error handler is indeterminate.

Although ERROR behaves much like a built-in, it is actually a DECTPU language element.

ERROR is evaluated for correct syntax at com pile time. In contra st, DECTPU procedures are usually
evaluated for a correct parameter count and parameter types at execution.

Signaled Errors
ERROR is a language element and has no completion codes.

Examples
The following example uses the ERROR language element to determine the error that invoked the
error handler. If the error was that SEARCH could not find the specified string, then the procedure
returns normally. If the error was something else, then the text of the error message is written to the
MESSAGES buffer and any executing procedures are terminated.

PROCEDURE strip_blanks

! Remove trailing blanks from all the lines in a buffer

 LOCAL blank_chars,

84

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 blank_pattern,
 blank_range;

 ON_ERROR
 IF ERROR = TPU$_STRNOTFOUND
 THEN
 RETURN;
 ELSE
 MESSAGE (ERROR_TEXT);
 ABORT;
 ENDIF;
ENDON_ERROR;
 blank_chars := ASCII (32) + ASCII (9);
 blank_pattern := (SPAN (blank_chars) @ blank_range) + LINE_END;
 LOOP
 SEARCH (blank_pattern, FORWARD);
 POSITION (BEGINNING_OF (blank_range));
 ERASE (blank_range);
 ENDLOOP;
ENDPROCEDURE;

ERROR_LINE

Syntax

Parameters
None.

Return Value
An integer that represents the line number of the most recent error.

Description
The ERROR_LINE procedure returns the line number at which the latest error or warning occur s. If
a procedure was com piled from a buffer or range, ERROR_LINE returns the line number within the
buffer. This may be different from the line number within the procedure. If the procedure was compiled
from a string, ERROR_LINE returns 1.

The value returned by ERROR_LINE is meaningful only inside an error handler after an error has
occurred. The value outside an error handler is indeterminate.

Although ERROR_LINE behaves much like a built-in, it is actually a DECTPU language element.

ERROR_LINE is evaluated for correct syntax at com pile time. In contra st, DECTPU procedures are
usually evaluated for a correct parameter count and parameter types at execution.

Signaled Errors
ERROR is a language element and has no completion codes.

85

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Examples
The following example uses the ERROR_LINE built-in procedure to report the line in which the error
occurred:

PROCEDURE strip_blanks

! Remove trailing blanks from all the lines in a buffer

 LOCAL blank_chars,
 blank_pattern,
 blank_range;

 ON_ERROR
 MESSAGE (ERROR_TEXT);
 MESSAGE ("Error on line " + STR (ERROR_LINE));
 RETURN;
 ENDON_ERROR;

 blank_chars := ASCII (32) + ASCII (9);
 blank_pattern := (SPAN (blank_chars) @ blank_range) + LINE_END;

 LOOP
 SEARCH (blank_pattern, FORWARD);
 POSITION (blank_range);
 ERASE (blank_range);
 ENDLOOP;
ENDPROCEDURE;

ERROR_TEXT

Syntax

Parameters
None.

Return Value
A string that contains the text of the most recent error message.

Description
The ERROR_TEXT procedure returns the text of the most recent error or warning message.

The possible error and warning codes for each built-in procedure are included in the description of each
built-in procedure. The OpenVMS System Messages and Recovery Procedures Reference Manual includes
all the possible completion codes for DECTPU as well as the appropriate explanations and suggested
user actions.

The value returned by ERROR_TEXT is meaningful only inside an error handler after an error has
occurred. The value outside an error handler is indeterminate.

86

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Although ERROR_TEXT behaves much like a built-in, it is actually a DECTPU language element.

ERROR_TEXT is evaluated for correct syntax at com pile time. In contrast, DECTPU procedures are
usually evaluated for a correct parameter count and parameter types at execution.

Signaled Errors
ERROR_TEXT is a language element and has no completion codes.

Examples
The following example uses the ERROR_TEXT built-in procedure to report what happened and where:

PROCEDURE strip_blanks

! Remove Trailing blanks from all the lines in a buffer

 LOCAL blank_chars,
 blank_pattern,
 blank_range;

 ON_ERROR
 MESSAGE (ERROR_TEXT);
 MESSAGE ("Error on line " + STR (ERROR_LINE));
 RETURN;
 ENDON_ERROR;

blank_chars := ASCII (32) + ASCII (9);
blank_pattern := (SPAN (blank_chars) @ blank_range) + LINE_END;

 LOOP
 SEARCH (blank_pattern, FOREWARD);
 POSITION (BEGINNING_OF (blank_range));
 ERASE (blank_range);
 ENDLOOP;
ENDPROCEDURE;

EXECUTE

Syntax

Parameters
buffer

The buffer that you want to execute.

87

Chapter 2. Descriptions of the DECTPU Built-In Procedures

key-name

The DECTPU key name for a key or a combination of keys. DECTPU locates and executes the
definition bound to the key.

key-map-list-name

The name of the key map list in which the key is defined. This optional parameter is valid only when
the first parameter is a key name. If you specify a key map list as the second parameter, DECTPU
uses the first definition of the key specified by key_name found in any of the key maps specified by
the key map list. If you do not specify any value for the second parameter, DECTPU uses the first
definition of the key specified by key_name found in the key map list bound to the current buffer.

key-map-name

The name of the key map in which the key is defined. This optional parameter is valid only when
the first parameter is a key name. Use this parameter only if the key specified by the first parameter
is defined in the key map specified as the second parameter. If you do not specify any value for the
second parameter, DECTPU uses the first definition of the key specified by key_name found in the
key map list bound to the current buffer.

learn

The learn sequence that you want to replay.

program

The program that you want to execute.

range

The range that you want to execute.

string

The string that you want to execute.

Description

The EXECUTE procedure does one of the following:

● Executes programs that you have previously compiled

● Compiles and then executes any executable statements in a buffer, a range, or a string

● Replays a learn sequence

● Executes a program bound to a key

EXECUTE performs different actions depending upon the data type of the parameter.

If the parameter is a string or the contents of a buffer or range, it must contain only valid DECTPU
statements; otherwise, you get an error message and no action is taken. See the description of the
COMPILE built-in procedure for restrictions and other information on compiling strings or the contents

88

Chapter 2. Descriptions of the DECTPU Built-In Procedures

of a buffer or range. When you pass a string to EXECUTE, the string cannot be longer than 256
characters.

Procedures are usually executed by entering the name of a compiled procedure at the appropriate prompt
from your editing interface, or by calling the procedure from within another procedure. However, you
can execute procedures with the EXECUTE built-in procedure if the procedure returns a data type that
is a valid parameter.

Signaled Errors

TPU$_NODEFINITION WARNING There is no definition for this key.
TPU$_REPLAYWARNING WARNING Inconsistency during the execution

of a learn sequence . . . sequence is
proceeding.

TPU$_REPLAYFAIL WARNING Inconsistency during the execution of a
learn sequence . . . execution stopped.

TPU$_RECURLEARN ERROR You cannot execute learn sequences
recursively.

TPU$_CONTROLC ERROR The execution of the command
terminated because you pressed Ctrl/C.

TPU$_EXECUTEFAIL WARNING Execution of the indicated item halted
because it contains an error.

TPU$_COMPILEFAIL WARNING Compilation aborted because of syntax
errors.

TPU$_ARGMISMATCH ERROR A parameter’s data type is unsupported.
TPU$_TOOFEW ERROR Too few arguments.
TPU$_TOOMANY ERROR Too many arguments.
TPU$_NOTDEFINABLE WARNING Key cannot be defined.
TPU$_NOCURRENTBUF WARNING Key map or key map list not specified,

and there is no current buffer.
TPU$_NOKEYMAP WARNING Key map or key map list not defined.
TPU$_NOTMODIFIABLE WARNING You cannot copy text into an

unmodifiable buffer.
TPU$_NODEFINITION WARNING Key not defined.

Examples

1. In the following example, the procedure test returns a program data type. If you execute a buffer
or range that contains the following code, DECTPU com piles and executes the procedure test. A
program data type is then returned, the program is used as the parameter for the EXECUTE built-in
procedure, and the string "abc" is written to the message area.

PROCEDURE test

! After compiling the string ’MESSAGE ("abc")’,
! DECTPU returns a program that is the compiled
! form of the string.

89

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 RETURN COMPILE (’MESSAGE ("abc")’);
ENDPROCEDURE;

! The built-in procedure EXECUTE executes the
! program returned by the procedure "test."

EXECUTE (test);

2. The following example compiles the contents of main_buffer and then executes any executable
statements. If you have any text in the main buffer other than DECTPU statements, you get an error
message. If there are procedure definitions in main_buffer , they are compiled; they are not executed
until you run the procedure (either by entering the procedure name after the appropriate prompt
from your interface or by calling the procedure from within another procedure).

EXECUTE (main_buffer)

3. The following example prompts you for a DECTPU command to execute and then executes the
command:

PROCEDURE user_do

 command_string := READ_LINE ("Enter DECTPU command to execute: ");
 EXECUTE (command_string);
ENDPROCEDURE;

4. The following example executes a command with informational messages turned on, and then turns
the informational messages off after the command is executed. You must replace the parameter
TPU_COMMAND with the DECTPU statement that you want.

PROCEDURE user_tpu (TPU_COMMAND)

 SET (INFORMATIONAL, ON);
 EXECUTE (TPU_COMMAND);
 SET (INFORMATIONAL, OFF);
ENDPROCEDURE;

EXIT

Syntax

Parameters

None.

Description

The EXIT command terminates the editing session and writes out any modified buffers that have
associated files. DECTPU queries you for a file name for any buffer that you have modified that does
not already have an associated file.

Buffers that have the NO_WRITE attribute are not written out. See SET (NO_WRITE, buffer).

90

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If you do not modify a buffer, DECTPU does not write out the buffer to a file when you use EXIT. If
you modify a buffer that has an associated file name (because you specified a file name for the second
parameter of CREATE_BUFFER),

DECTPU writes out a new version of the file. DECTPU requires the application to make backup copies
of existing files before using EXIT.

If you modify a buffer that does not have an associated file name, DECTPU asks you to specify a
file name if you want to write the buffer. If you press the Return key rather than entering a file name,
the modified buffer is discarded. DECTPU queries you about all modified buffers that do not have
associated file names. The order of the query is the order in which the buffers were created.

DECTPU deletes journal files (if any) upon exiting.

If an error occurs while you are exiting, the exit halts and control returns to the application.

Signaled Errors

TPU$_EXITFAIL WARNING The EXIT did not complete successfully
because of problems writing modified
buffers.

TPU$_TOOMANY ERROR EXIT takes no arguments.

EXPAND_NAME

Syntax

Parameters
string1

An expression that evaluates to a string. If the string contains one or more asterisks (*) or percent
signs (%), then the string is a wildcard specification of the DECTPU names to match. An asterisk
matches zero or more characters and a percent sign matches exactly one character. If the string does
not contain any asterisks or percent signs, then the string is the initial substring of a DECTPU name.

ALL

A keyword specifying that you want DECTPU to match all names.

KEYWORDS

A keyword specifying that you want DECTPU to match only keyword names.

PROCEDURES

A keyword specifying that you want DECTPU to match only procedure names.

91

Chapter 2. Descriptions of the DECTPU Built-In Procedures

VARIABLES

A keyword specifying that you want DECTPU to match only global variable names.
EXPAND_NAME does not expand the names of local variables.

Return Value

Returns a string that contains the names that begin with the string you specify.

Description

The EXPAND_NAME procedure returns a string that contains the names of any DECTPU global
variables, keywords, or procedures (built-in or user-written) that begin with the string that you specify.
DECTPU searches its internal symbol tables to find a match, using your input string as the directive for
the match.

If there are no matches for the substring you specify, a null string is returned and a warning (TPU
$_NONAMES) is signaled. If only one DECTPU name matches the substring you specify, the name
is returned with no trailing space. If more than one DECTPU name matches your substring, all of the
matching names are returned. The matching names are returned as a concatenated string with words
separated by a single space. Multiple names signal a warning (TPU$_MULTIPLENAMES).

Use EXPAND_NAME in procedures that perform command completion or that interpret abbreviated
names.

EXPAND_NAME does not expand the names of local variables.

Signaled Errors

TPU$_NONAMES WARNING No names were found matching the one
requested.

TPU$_MULTIPLENAMES WARNING More than one name matching the one
requested was found.

TPU$_NEEDTOASSIGN ERROR EXPAND_NAME must appear on
the right-hand side of an assignment
statement.

TPU$_TOOFEW ERROR EXPAND_NAME requires two
arguments.

TPU$_TOOMANY ERROR EXPAND_NAME accepts no more
than two arguments.

TPU$_INVPARAM ERROR One of the arguments you passed to
EXPAND_NAME has the wrong data
type.

TPU$_BADKEY WARNING You specified an invalid keyword as the
second argument.

Examples

1. In the following example, the assignment statement requests all the keywords whose names are two
characters long:

92

Chapter 2. Descriptions of the DECTPU Built-In Procedures

full_name := EXPAND_NAME ("%%", KEYWORDS)

This assignment statement returns the following DECTPU keyword names in the string full_name:

ON UP DO E5 F6 E4 F7 F4 F5 E6 E1 F2 F3 E3 F1 E2 F8 F9

2. The following example uses the string that you enter as the parameter, and puts the expanded form
of a valid DECTPU procedure name that matches the string in the message area. If the initial string
matches multiple procedure names, or if it is not a valid DECTPU procedure name, an explanatory
message is written to the message area.

PROCEDURE user_quick_parse (abbreviated_name)

 ON_ERROR
 IF ERROR = TPU$_NONAMES
 THEN
 MESSAGE ("No such procedure.");
 ELSE
 IF ERROR = TPU$_MULTIPLENAMES
 THEN
 MESSAGE ("Ambiguous abbreviation.");
 ENDIF;
 ENDIF;
 RETURN;
ENDON_ERROR;

 expanded_name := EXPAND_NAME (abbreviated_name, PROCEDURES);
 MESSAGE ("The procedure is " + expanded_name + ".");
ENDPROCEDURE;

FAO

Syntax

Parameters
string1

A string that consists of the fixed text of the output string and Formatted ASCII Output (FAO)
directives.

Some FAO directives that you can use as part of the string are the following:

!AS Inserts a string as is
!OL Converts a longword to octal notation
!XL Converts a longword to hexadecimal notation
!ZL Converts a longword to decimal notation
!UL Converts a longword to decimal notation without adjusting for negative numbers
!SL Converts a longword to decimal notation with negative numbers converted

93

Chapter 2. Descriptions of the DECTPU Built-In Procedures

!/ Inserts a new line (carriage return/line feed)
!_ Inserts a tab
!} Inserts a form feed
!! Inserts an exclamation mark
!%S Inserts an s if the most recently converted number is not 1
!%T Inserts the current time if you enter 0 as the parameter (you cannot pass a specific

time because DECTPU does not use quadwords)
!%D Inserts the current date and time if you enter 0 as the parameter (you cannot pass a

specific date because DECTPU does not use quadwords)

integer1 ... integer_n

An expression that evaluates to an integer. $FAO uses these integers as arguments to the FAO
directives in string2 to form string1.

string3 ... string_n

An expression that evaluates to a string. $FAO uses these strings as arguments to the FAO directives
in string2 to form string1.

Return Value
A string that contains the output you specify in ASCII format.

Description
The FAO procedure invokes the Formatted ASCII Output ($FAO) system service to convert a control
string to a formatted ASCII output string. By specifying arguments for FAO directives in the control
string, you can control the processing performed by the $FAO system service. The FAO procedure
returns a string that contains the formatted ASCII output, constructed according to the rules of the $FAO
system service. The control string directs the formatting process, and the optional arguments are values
to be substituted into the control string.

FAO accepts up to 127 parameters. It can return strings of 65535 characters maximum.

For complete information on the $FAO system service, see the VSI OpenVMS System Services
Reference Manual [https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-
getuai/].

To ensure that you get meaningful results, you should use the !AS directive for strings and the !OL, !
XL, !ZL, !UL, or !SL directive for integers.

Signaled Errors

TPU$_INVFAOPARAM WARNING Argument was not a string or an integer.
TPU$_NEEDTOASSIGN ERROR FAO must appear on the right-hand side

of an assignment statement.
TPU$_INVPARAM ERROR The first argument to FAO must be a

string.
TPU$_TOOFEW ERROR FAO requires at least one parameter.

94

https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-getuai/
https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-getuai/
https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-getuai/
https://docs.vmssoftware.com/vsi-openvms-system-services-reference-manual-a-getuai/

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Examples
1. The following example stores the current date and time in the variable date_and_time:

date_and_time := FAO ("!%D",0)

2. The following example uses the FAO directive !SL in a control string to convert the number equated
to the variable count to a string. The converted string is stored in the variable report and then written
to the message area.

PROCEDURE user_fao_conversion (count)

 report := FAO ("number of forms = !SL", count);
 MESSAGE (report);
ENDPROCEDURE;

FILE_PARSE

Syntax

Parameters
filespec

The file specification to be parsed.

string1

A default file specification. If you fail to specify a field in filespec and that field is present in the
default file specification, DECTPU substitutes the field from string1 in the output string.

string2

A related file specification. If you fail to specify a field in filespec and string1 and that field is
present in the related file specification and is not the version field, DECTPU substitutes the field
from string2 in the output string.

NODE

Keyword specifying that FILE_PARSE should return a file specification, including the node if one
of the files specified in filespec , string1 , or string2 contains a node field. For more information on
using the optional keyword parameters to FILE_PARSE, see the Description section. DECTPU can

95

Chapter 2. Descriptions of the DECTPU Built-In Procedures

parse file specifications that contain a node field, but it cannot search, read, or write them. DECTPU
parses the node field only for compatibility with OpenVMS file specifications.

DEVICE

VMS keyword specifying that FILE_PARSE should return a file specification, including the device.
For more information on using the optional keyword parameters to FILE_PARSE, see the the
section called “Description”.

DIRECTORY

Keyword specifying that FILE_PARSE should return a file specification, including the directory. For
more information on using the optional keyword parameters to FILE_PARSE, see the the section
called “Description”.

NAME

Keyword specifying that FILE_PARSE should return a file specification, including the name. For
more information on using the optional keyword parameters to FILE_PARSE, see the the section
called “Description”.

TYPE

Keyword specifying that FILE_PARSE should return a file specification, including the type. For
more information on using the optional keyword parameters to FILE_PARSE, see the the section
called “Description”.

VERSION

Keyword specifying that FILE_PARSE should return a file specification, including the version. For
more information on using the optional keyword parameters to FILE_PARSE, see the the section
called “Description”.

HEAD

Keyword specifying that FILE_PARSE should return a file specification, including the node,
device, and directory fields. For more information on using the optional keyword parameters to
FILE_PARSE, see the Description section.

TAIL

Keyword specifying that FILE_PARSE should return a file specification, including the file name,
type, and version fields. For more information on using the optional keyword parameters to
FILE_PARSE, see the Description section.

Return Value
A string that contains an expanded file specification or the file specification field that you specify.

Description
The FILE_PARSE procedure parses a file specification and returns a string that contains the expanded
file specification or the field that you specify. If you do not provide a complete file specification,
FILE_PARSE supplies defaults in the return string.

96

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If an error occurs during the parse, FILE_PARSE returns a null string. With FILE_PARSE, you can
parse file specification s into their individual fields and merge fields from three file specifications into
one file specification.

Specify the first three parameters as strings. The remaining parameters are keywords. File specifications
that include OpenVMS logical names and device names must terminate with a colon. If you omit
optional parameters to the left of a given parameter, you must include null strings as placeholders for the
missing parameters.

If you omit any fields from the file specified in filespec , FILE_PARSE supplies defaults, first from
string1 and then from string2 . The exception to this is that the version field is not supplied from string2.

If you omit the device, directory, type, or version fields from the files specified in filespec , string1 , or
string2 , FILE_PARSE supplies default values. The default values are the current device and directory,
the file type delimiter (.), and the file version delimiter (;). The exception to this is that the current device
and directory are not supplied if either string1 or string2 contains a node field.

You can specify as many of the keywords for field names as you wish as long as you do not specify
fields that are duplicates of fields returned by the head or tail keywords. For example, you cannot request
the head field along with the node, device, or directory fields; and you cannot request the tail field along
with the name, type, or version fields. If valid keyword combinations are present, FILE_PARSE returns
a string containing only those fields requested. The fields are returned in normal file specification order.
The normal delimiters are included, but there are no other characters separating the fields. For example,
suppose you direct DECTPU to execute the following statements:

result := FILE_PARSE ("junk.txt","work::","disk1:",NODE, DEPROVICE, TYPE);
MESSAGE (result);

When the statements execute, DECTPU displays the following string:

WORK::DISK1:.TXT

The FILE_PARSE built-in procedure parses the file specification provided and returns the portions of
the resultant file specification requested. It does not check that the file exists.

You can use wildcard directives in supplying file specifications.

The table gives an example of the parsing of the following OpenVMS file specification:

node1::usera$:[flamingo.work]eve$section.tpu$section;12

Table 2.2. OpenVMS File Parse Example

Requested
Element

Returned Information Example

NODE Node name, including trailing colons NODE1::
DEVICE Device name, including colon USERA$:
DIRECTORY Entire directory string [FLAMINGO.WORK]
NAME File name EVE$SECTION
TYPE File type, including period .TPU$SECTION
VERSION File version, including semicolon ;12
HEAD Node, device, and directory NODE1::USERA$:

[FLAMINGO.WORK]

97

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Requested
Element

Returned Information Example

TAIL Name, type, and version EVE$SECTION.TPU$SECTION;12

Signaled Errors
TPU$_PARSEFAIL WARNING FILE_PARSE detected an

error while parsing the file
specification.

TPU$_NEEDTOASSIGN ERROR FILE_PARSE must appear on the
right-hand side of an assignment
statement.

TPU$_TOOFEW ERROR FILE_PARSE requires at least
one argument.

TPU$_INVPARAM ERROR One of the parameters to
FILE_PARSE has the wrong data
type.

TPU$_BADKEY ERROR You specified an invalid keyword
to FILE_PARSE.

TPU$_INCKWDCOM WARNING You specified HEAD along
with NODE, DEVICE, or
DIRECTORY; or TAIL
along with NAME, TYPE, or
VERSION.

Examples
The following example returns a full file specification for the file PROGRAM.PAS. The second
parameter provides the name of the directory in which the file can be found. Because the device and
version fields are missing from the two parameters, FILE_PARSE includes the current device and the
version delimiter (;) in the returned file specification.

spec := FILE_PARSE ("program.pass", "[abbott]")

FILE_SEARCH

Syntax

98

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
filespec

The file specification that you want to find.

string1

A default file specification. If you fail to specify a field in filespec and that field is present in the
default file specification, DECTPU uses the field from string1 when searching for the file.

string2

A related file specification. If you fail to specify a field in filespec and string1 and that field is
present in the related file specification and is not the version field, DECTPU uses the field from
string2 when searching for the file.

NODE

Keyword specifying that FILE_SEARCH should return a file specification, including the node. For
more information on using the optional keyword parameters to FILE_SEARCH, see the Description
section.

DEVICE

Keyword specifying that FILE_SEARCH should return a file specification, including the device. For
more information on using the optional keyword parameters to FILE_SEARCH, see the Description
section.

DIRECTORY

Keyword specifying that FILE_SEARCH should return a file specification, including the directory.
For more information on using the optional keyword parameters to FILE_SEARCH, see the
Description section.

NAME

Keyword specifying that FILE_SEARCH should return a file specification, including the name. For
more information on using the optional keyword parameters to FILE_SEARCH, see the Description
section.

TYPE

Keyword specifying that FILE_SEARCH should return a file specification, including the type. For
more information on using the optional keyword parameters to FILE_SEARCH, see the Description
section.

VERSION

Keyword specifying that FILE_SEARCH should return a file specification, including the version.
For more information on using the optional keyword parameters to FILE_SEARCH, see the
Description section.

HEAD

Keyword specifying that FILE_SEARCH should return a file specification, including the node,
device, and directory fields. For more information on using the optional keyword parameters to
FILE_SEARCH, see the Description section.

99

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TAIL

Keyword specifying that FILE_SEARCH should return a file specification, including the file
name, type, and version fields. For more information on using the optional keyword parameters to
FILE_SEARCH, see the Description section.

Return Value
A string that contains the partial or full file specification that you request from $SEARCH.

Description
The FILE_SEARCH procedure searches one or more directories and returns the partial or full file
specification that matches your request. You must use this built-in procedure multiple times with the
same parameter to get all of the occurrences of a file name in the directories.

Specify the first three parameters as strings. The remaining parameters are keywords. File specifications
that include OpenVMS logical names and device names must terminate with a colon. If you omit
optional parameters to the left of a given parameter, you must include null strings as placeholders for the
missing parameters.

Unlike the FILE_PARSE built-in, FILE_SEARCH verifies that the file you specify exists.

If FILE_SEARCH does not find a matching file, or if the built-in finds one or more matches but is
invoked again and does not find another match, FILE SEARCH returns a null string but not an error
status. Thus, the null string can act as an "end of matching files" indicator. When FILE_SEARCH
returns the status TPU$_SEARCHFAIL, look in the message buffer to see why the search was
unsuccessful.

Refer to the description of the FILE_PARSE built-in for more information on using the optional
parameters to FILE_SEARCH.

Signaled Errors
TPU$_SEARCHFAIL WARNING FILE_SEARCH detected an error while

searching for the file.
TPU$_TOOFEW ERROR FILE_SEARCH requires at least one

parameter.
TPU$_NEEDTOASSIGN ERROR FILE_SEARCH must be on the right-

hand side of an assignment statement.
TPU$_INVPARAM ERROR One of the arguments you passed to

FILE_SEARCH has the wrong type.
TPU$_BADKEY WARNING One of the keyword arguments

you specified is not one of those
FILE_SEARCH accepts.

TPU$_INCKWDCOM WARNING You specified HEAD along with
NODE, DEVICE, or DIRECTORY;
or TAIL along with NAME, TYPE, or
VERSION.

Examples
1. In the following example, each time this assignment statement is executed on OpenVMS systems, it

returns a string that contains the resulting file specification of a file of type .EXE in SYS$SYSTEM.

100

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Because no version number is specified, only the latest version is returned. When executing the
statement returns a null string, there are no more .EXE files in the directory.

fil := FILE_SEARCH ("SYS$SYSTEM:*.EXE")

2. The following example is similar to the previous example. It makes use of the fact that you are
looking for files in the current OpenVMS directory and that FILE_SEARCH can return parts of the
file specification to eliminate the call to FILE_PARSE.

PROCEDURE user_collect_rnos

 LOCAL filename;

 ! Reset the file_search context

 filename := FILE_SEARCH ("");

 LOOP
 filename := FILE_SEARCH ("*.RNO", "", "", NAME, TYPE);
 EXITIF filespec = "";
 CREATE_BUFFER (filename, filename);
 ENDLOOP;
ENDPROCEDURE;

FILL

Syntax

Parameters
buffer

The buffer whose text you want to fill.

range

The range whose text you want to fill.

string

The list of additional word separators. The space character is always a word separator.

integer1

The value for the left margin. The left margin value must be at least 1 and must be less than the right
margin value. This value defaults to the same value as the buffer’s left margin.

integer2

The value for the right margin. This value defaults to the same value as the buffer’s right margin.
Integer2 must be greater than the left margin and cannot exceed the maximum record size for the
buffer.

101

Chapter 2. Descriptions of the DECTPU Built-In Procedures

integer3

The value for the first line indent. This value modifies the left margin of the first filled line. It can be
positive or negative. The result of adding the first line indent to the left margin must be greater than
1 and less than the right margin. This value defaults to 0.

Description

The FILL procedure reformat s the text in the specified buffer or range so that the lines of text are
approximately the same length. FILL recognizes two classes of characters: text characters and word
separators. Any character can be a word separator, and any character other than the space character can
be a text character. The space character is always a word separator, even if it is not present in the second
parameter passed to FILL.

A word is a contiguous sequence of text characters, all of which are included on the same line,
immediately preceded by a word separator or a line break, and immediately followed by a word
separator or line break. If the first or last character in the specified range is a text character, that
character marks the beginning or end of a word, regardless of any characters outside the range. Filling a
range that starts or ends in the middle of a word may result in the insertion of a line break between that
part of the word inside the filled range and that part of the word outside the range.

When filling a range or buffer, FILL does the following to each line:

● Removes any spaces at the beginning of the line

● Sets the left margin of the line

● Moves text up to the previous line if it fits

● Deletes the line if it contains no text

● Splits the line if it is too long

FILL sets the line’s left margin to the default left margin unless that line is the first line of the buffer or
range being filled. In this case, FILL sets the line’s left margin to the fill left margin plus the first line
indent. However, if you are filling a range and the range does not start at the beginning of a line, FILL
does not change the left margin of that line.

FILL moves a word up to the previous line if the previous line is in the range to be filled and if the word
fits on the previous line without extending beyond the fill right margin. Before moving the word up,
FILL appends a space to the end of the previous line if that line ends in a space or a text character. It
does not append a space if the previous line ends in a word separator other than the space character.

When moving a word up, FILL also moves up any word separators that follow the word, even if these
word separators extend beyond the default right margin. Fill does not move up any word separator that
would cause the length of the previous line to exceed the buffer’s maximum record size. If the previous
line now ends in a space, FILL deletes that space. FILL does not delete more than one such space.

FILL moves any word separators at the beginning of a line up to the previous line. It does this even if the
word separators extend beyond the fill right margin.

FILL splits a line into two lines whenever the line contains two or more words and one of the words
extends beyond the fill right margin. FILL splits the line at the first character of the first word that

102

Chapter 2. Descriptions of the DECTPU Built-In Procedures

contains characters to the right of the fill right margin, unless that word starts at the beginning of the line.
In this case, FILL does not split the line.

When operating on a range that does not begin at the first character of a line but does begin left of the
fill left margin, FILL splits the line at the first character of the range.

FILL places the cursor at the end of the filled text after completing the previously described tasks.

Signaled Errors

TPU$_INVRANGE WARNING You specified an invalid range
enclosure.

TPU$_TOOFEW ERROR FILL requires at least one
argument.

TPU$_TOOMANY ERROR FILL accept s no more than five
arguments.

TPU$_ARGMISMATCH ERROR One of the parameters to FILL is
of the wrong type.

TPU$_BADMARGINS WARNING You specified one of the fill
margins incorrectly.

TPU$_INVPARAM ERROR One of the parameters to FILL is
of the wrong type.

TPU$_NOTMODIFIABLE WARNING You cannot fill text in an
unmodifiable buffer.

TPU$_NOCACHE ERROR FILL could not create a new line
because there was no memory
allocated for it.

TPU$_CONTROLC ERROR FILL terminated because you
pressed Ctrl/C.

Examples

1. The following example fills the current buffer. It uses the buffer’s left and right margins for the fill
left and right margins. The space character is the only word separator. Upon completion, the current
buffer contains no blank lines. All lines begin with a word. Unless the buffer contains a word too
long to fit between the left and right margins, all text is between the buffer’s left and right margins.
Spaces may appear beyond the buffer’s right margin.

FILL (current_buffer)

2. In the following example, if paragraph_range references a range that contains a paragraph, this
statement fills a paragraph. FILL uses a left margin of 5 and a right margin of 65. It indents the
first line of the paragraph an additional five characters. The space character and the hyphen are the
two word separators. If the paragraph contains a hyphenated word, FILL breaks the word after the
hyphen if necessary.

FILL (paragraph_range, "-", 5, 65, 5)

3. The next example is like the previous one except that FILL unindents the first line of the paragraph
by three characters. This is useful for filling numbered paragraphs.

103

Chapter 2. Descriptions of the DECTPU Built-In Procedures

FILL (paragraph_range, "-", 10, 65, -3)

GET_CLIPBOARD

Syntax

Parameters
None.

Return Value
A string that consists of the data read from the clipboard. Line breaks are indicated by a line-feed
character (ASCII (10)).

Description
The GET_CLIPBOARD procedure reads STRING format data from the clipboard and returns a string
that contains this data. DECwindows provides a clipboard that lets you move data between applications.
Applications can write to the clipboard to replace previous data, and can read from the clipboard to get a
copy of existing data. The data in the clipboard can be in multiple format s, but all the information in the
clipboard must be written at the same time.

DECTPU provides no clipboard support for applications not written for DECwindows.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR GET_CLIPBOARD must return
a value.

TPU$_TOOMANY ERROR Too many arguments passed to
GET_CLIPBOARD.

TPU$_CLIPBOARDFAIL WARNING The clipboard did not return any
data.

TPU$_CLIPBOARDLOCKED WARNING DECTPU cannot read from the
clipboard because some other
application has locked it.

TPU$_CLIPBOARDNODATA WARNING There is no string format data in
the clipboard.

TPU$_TRUNCATE WARNING Characters were truncated
because you tried to add text that
would exceed the maximum line
length.

TPU$_STRTOOLARGE ERROR The amount of data in the
clipboard exceeds 65535
characters.

104

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_REQUIRESDECW ERROR You can use GET_CLIPBOARD
only if you are using
DECwindows DECTPU.

Examples
The following statement reads what is currently in the clipboard and assigns it to new_string :

new_string := GET_CLIPBOARD;

GET_DEFAULT

Syntax

Parameters
string1

The name of the resource whose value you want GET_DEFAULT to fetch. Resource names are case
sensitive.

string2

The class of the resource. Resource class names are case sensitive.

Return Value
The string equivalent of the resource value or 0 if the specified resource is not defined. If necessary, the
application must convert the string to the data type appropriate to the resource.

Description
The GET_DEFAULT procedure returns the value of an X resource from the X resources database.
GET_DEFAULT is useful for initializing a layered application that uses an X defaults file. You can use
GET_DEFAULT only in the DECwindows environment.

If you use the SET (DEFAULT_FILE) built-in to merge a new X resource database into the display’s
database, this affect s the values returned by GET_DEFAULT.

Signaled Errors

TPU$_INVPARAM ERROR One of the parameters was specified
with data of the wrong type.

TPU$_TOOFEW ERROR Too few arguments passed to
GET_DEFAULT.

TPU$_TOOMANY ERROR Too many arguments passed to
GET_DEFAULT.

105

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_NEEDTOASSIGN ERROR GET_DEFAULT must return a value.
TPU$_REQUIRESDECW ERROR You can use GET_DEFAULT only if

you are using

DECwindows DECTPU.

Examples
The following example shows the portion of a module_init procedure directing DECTPU to fetch the
value of a resource from the X resources database. For more information on module_init procedures, see
the Extensible Versatile Editor Reference Manual.

If you want to create an extension of EVE that enables use of an X defaults file to choose a keypad
setting, you can use a GET_DEFAULT statement in a module_init procedure.

PROCEDURE application_module_init

LOCAL
 keypad_name;

 :
 :
 :

keypad_name := GET_DEFAULT ("user.keypad", "User.Keypad");

EDIT (keypad_name, UPPER); ! Convert the returned string to uppercase.

IF keypad_name <> ’0’
THEN

 CASE keypad_name

 "EDT" : eve_set_keypad_edt ();
 "NOEDT" : eve_set_keypad_noedt ();
 "WPS" : eve_set_keypad_wps ();
 "NOWPS" : eve_set_keypad_nowps ();
 "NUMERIC" : eve_set_keypad_numeric ();
 "VT100" : eve_set_keypad_vt100 ();
 [INRANGE, OUTRANGE] : eve_set_keypad_numeric; ! If you have
 ! used invalid value,
 ! set the keypad to
 ! NUMERIC setting.
 ENDCASE;

ENDIF;

 :
 :
 :

ENDPROCEDURE;

To provide a value for the GET_DEFAULT statement to fetch, an X defaults file would contain an entry
similar to the following:

User.Keypad : EDT

106

Chapter 2. Descriptions of the DECTPU Built-In Procedures

GET_GLOBAL_SELECT

Syntax

Parameters
PRIMARY

A keyword indicating that the layered application is requesting information about a property of the
primary global selection.

SECONDARY

A keyword indicating that the layered application is requesting information about a property of the
secondary global selection.

selection_name

A string identifying the global selection whose property is the subject of the layered application’s
information request. Specify the selection name as a string if the layered application needs
information about a selection other than the primary or secondary global selection.

selection_property_name

A string specifying the property whose value the layered application is requesting.

Return Values
array

An array that passes information about a global selection whose contents describe information that
is not of a data type supported by DECTPU.

DECTPU does not use or alter the information in the array; the application layered on DECTPU
is responsible for determining how the information is used, if at all. Because the array is used to
receive information from other DECwindows applications, all applications that exchange information
whose data type is not supported by DECTPU must adopt a convention on how the information is to
be used.

The element array {0} contains a string that names the data type of the information being passed.
For example, if the information being passed is a span, the element contains the string "SPAN". The
element array {1} contains either the integer 8, indicating that the information is passed as a series
of bytes, or the integer 32, indicating that the information is passed as a series of longwords.

If array {1} contains the value 8, the element array {2} contains a string and there are no array
elements after array {2} . The string does not name anything, but rather is a series of bytes of
information. As mentioned, the meaning and use of the information is agreed upon by convention
among the DECwindows applications. To interpret this string, the application can use the SUBSTR

107

Chapter 2. Descriptions of the DECTPU Built-In Procedures

built-in procedure to obtain substrings one at a time, and the ASCII built-in procedure to convert the
data to integer format if necessary. For more information about using these DECTPU elements, see
the description of the SUBSTR and ASCII built-in procedures.

integer

The value of the specified global selection property. The return value is of type integer if the value of
the specified global selection property is of type integer.

string

The value of the specified global selection property. The return value is of type string if the value of
the specified global selection property is of type string.

unspecified

A data type that indicates that the information requested by the layered application was not available.

Description
The GET_GLOBAL_SELECT procedure supplies information about a global selection. If an owner for
the global selection exists, and if the owner provides the information requested in a format that DECTPU
can recognize, GET_GLOBAL_SELECT returns the information.

Signaled Errors

TPU$_ARGMISMATCH ERROR Wrong type of data sent to
GLOBAL_SELECT.

TPU$_NEEDTOASSIGN ERROR GLOBAL_SELECT must return
a value.

TPU$_INVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_REQUIRESDECW ERROR You can use GLOBAL_SELECT
only if you are using
DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to
GLOBAL_SELECT.

TPU$_TOOMANY ERROR Too many arguments passed to
GLOBAL_SELECT.

TPU$_GBLSELOWNER WARNING DECTPU owns the global
selection.

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_INVGBLSELDATA WARNING The global selection owner
provided data that DECTPU
cannot process.

TPU$_NOGBLSELDATA WARNING The global selection owner
indicated that it cannot provide
the information requested.

108

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_NOGBLSELOWNER WARNING You requested information about
an unowned global selection.

TPU$_TIMEOUT WARNING The global selection owner did
not respond before the timeout
period expired.

Examples
The following example fetches the text in the primary global selection and assigns it to the variable
string_to_paste:

string_to_paste := GET_GLOBAL_SELECT (PRIMARY, "STRING");

For another example of how to use the GET_GLOBAL_SELECT built-in procedure, see Example A.3,
"EVE Procedure That Returns a Select Range".

GET_INFO

Description
The GET_INFO procedure returns information about the current status of the editor.

For information on how to get a screen display of the status of your editor, see the description of the
SHOW built-in procedure.

This description provides general information on the GET_INFO built-in procedures. Included are
descriptions of individual GET_INFO built-ins. The individual GET_INFO built-ins are grouped
according to the value of their first parameter. For a list of the groups of GET_INFO built-ins, see Table
2.3, "GET_INFO Built-In Procedures by First Parameter".

All GET_INFO built-in procedures have the following two characteristics in common:

● They return a value that is the piece of information you have requested.

● They consist of the GET_INFO statement followed by at least two parameters, as follows:

○ The first parameter specifies the general topic about which you want information. If you want
the GET_INFO built-in to return information on a given variable, use that variable as the first
parameter. For example, if you want to know what row contains the cursor in a window stored in
the variable command_window , you would specify the variable command_ window as the first
parameter. For example:

the_row := GET_INFO (command_window, "current_row");

Otherwise, the first parameter is a keyword specifying the general subject about which
GET_INFO is to return information. The valid keywords for the first parameter are as follows:

ARRAY
BUFFER
COMMAND_LINE
DEBUG
DEFINED_KEY
KEY_MAP

109

Chapter 2. Descriptions of the DECTPU Built-In Procedures

KEY_MAP_LIST
mouse_event_keyword
PROCEDURES
PROCESS
SCREEN
SYSTEM
WIDGET
WINDOW

For a list of valid mouse event keywords, see Table 2.4, "DECTPU Keywords Representing
Mouse Events".

Do not confuse a GET_INFO built-in whose first parameter is a keyword (such as ARRAY)
with a GET_INFO built-in whose first parameter is a variable of a given data type, such as
array_variable . For example, the GET_INFO (array_variable) built-in procedure shows what
string constants can be used when the first parameter is an array variable; the GET_INFO
(ARRAY) built-in shows what can be used when the first parameter is the ARRAY keyword.

● The second parameter (a DECTPU string) specifies the exact piece of information you want.

● The third and subsequent parameters, if necessary, provide additional information that DECTPU
uses to identify and return the requested value or structure.

Each GET_INFO built-in procedure in this section shows the possible return values for a given
combination of the first and second parameters. For example, the GET_INFO (any_variable) built-
in shows that when you use any variable as the first parameter and the string "type" as the second
parameter, GET_INFO returns a keyword for the data type of the variable.

Depending upon the kind of information requested, GET_INFO returns any one of the following:

● An array

● A buffer

● An integer

● A keyword

● A marker

● A process

● A range

● A string

● A window

DECTPU maintains internal lists of the following items:

● Arrays

● Array elements

● Breakpoints

● Buffers

110

Chapter 2. Descriptions of the DECTPU Built-In Procedures

● Defined keys

● Key maps

● Key map lists

● Processes

● Windows

You can step through an internally maintained list by using "first", "next", "previous", or "last" as the
second parameter to GET_INFO. The order in which DECTPU maintains these lists is private and may
change in a future version.

Do not write code that depends on a list being maintained in a particular order. When you write code to
search a list, remember that DECTPU keeps only one pointer for each list. If you create nested loops that
attempt to search the same list, the results are unpredictable.

For example, suppose that a program intended to search two key map lists for common key maps sets up
a loop within a loop. The outer loop might contain the following statement:

GET_INFO (KEY_MAP, "previous", name_of_second_key_map)

The inner loop might contain the following statement:

GET_INFO (KEY_MAP, "next", name_of_first_key_map)

In DECTPU, the behavior of such a nested loop is unpredictable.

Unless documented otherwise, the order of the internal list is not defined.

The syntax of GET_INFO depends on the kind of information you are trying to get. For more
information on specific GET_INFO built-in procedures, see the descriptions in this section. GET_INFO
built-ins whose first parameter is a keyword are grouped separately from GET_INFO built-ins whose
first parameter is a variable.

Table 2.3. GET_INFO Built-In Procedures by First Parameter

Variable Keyword Any Keyword or Key Name

GET_INFO (any_variable) GET_INFO (ARRAY) GET_INFO (any_keyname)
GET_INFO (array_variable) GET_INFO (BUFFER) GET_INFO (any_keyword)
GET_INFO (buffer_variable) GET_INFO

(COMMAND_LINE)

GET_INFO (integer_variable) GET_INFO (DEBUG)
GET_INFO (marker_variable) GET_INFO (DEFINED_KEY)
GET_INFO (process_variable) GET_INFO (KEY_MAP)
GET_INFO (range_variable) GET_INFO (KEY_MAP_LIST)
GET_INFO (string_variable) GET_INFO

(mouse_event_keyword)

GET_INFO (widget_variable) GET_INFO (PROCEDURES)
GET_INFO (window_variable) GET_INFO (PROCESS)
 GET_INFO (SCREEN)

111

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Variable Keyword Any Keyword or Key Name

 GET_INFO (SYSTEM)
 GET_INFO (WIDGET)
 GET_INFO (WINDOW)

Signaled Errors

TPU$_BADREQUEST WARNING Request represented by second argument
is not understood for data type of first
argument.

TPU$_BADKEY WARNING Bad keyword value or unrecognized data
type is passed as the first argument.

TPU$_NOCURRENTBUF WARNING Current buffer is not defined.
TPU$_NOKEYMAP WARNING Key map is not defined.
TPU$_NOKEYMAPLIST WARNING Key map list is not defined.
TPU$_INVPARAM ERROR One or more of the specified parameters

have the wrong data type.
TPU$_NEEDTOASSIGN ERROR The GET_INFO built-in can be used

only on the right-hand side of an
assignment statement.

TPU$_NOBREAKPOINT WARNING This string con stant is valid only after a
breakpoint.

TPU$_NONAMES WARNING There are no names matching the one
requested.

TPU$_TOOFEW ERROR Too few arguments passed to the
GET_INFO built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the
GET_INFO built-in.

TPU$_UNKKEYWORD ERROR An unknown keyword was used as an
argument.

Examples
1. The following example stores the pointer to the current buffer in the variable my_buffer:

my_buffer := GET_INFO (BUFFERS, "current");

2. The following example stores the integer 1 or 0 in the variable is_buf_mod. A value of 1 means the
current buffer has been modified. A value of 0 means the current buffer has not been modified.

is_buf_mod := GET_INFO (CURRENT_BUFFER, "modified");

3. The following example uses GET_INFO to find the top of the current window. It then removes the
top five lines and replaces them with an example window.

PROCEDURE user_getinfo

 top_of_window := GET_INFO (CURRENT_WINDOW, "top", visible_window);

112

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 ! Remove the top five lines from the main window
 ADJUST_WINDOW (CURRENT_WINDOW, +5, 0);

 ! Replace removed lines with an example window
 example_window := CREATE_WINDOW (top_of_window, 5, ON);
 example_buffer := CREATE_BUFFER ("EXAMPLE",
 "sys$login:template.txt");
 MAP (example_window, example_buffer);
ENDPROCEDURE;

4. The following example shows whether the key map list associated with the current buffer inserts
undefined printable characters:

PROCEDURE show_self_insert

 LOCAL key_map_list_name;

 key_map_list_name := GET_INFO (CURRENT_BUFFER, "key_map_list");

 IF GET_INFO (key_map_list_name, "self_insert")
 THEN
 MESSAGE ("Undefined printable characters will be inserted");
 ELSE
 MESSAGE ("Undefined printable characters will cause an error");
 ENDIF;
ENDPROCEDURE;

GET_INFO (any_keyname)

Syntax

Parameters
"key_modifiers"

Returns a bit-encoded integer that indicates what key modifier or modifiers were used to create
the DECTPU key name specified by the parameter any_keyname. For more information about the
meaning and possible values of key modifiers, see the description of the KEY_NAME built-in
procedure.

DECTPU defines four constants to be used when referring to or testing the numerical value of key
modifiers. The correspondence between key modifiers, defined constants, and bit-encoded integers is
as follows:

Key Modifier Constant Bit-Encoded Integer

SHIFT_MODIFIED TPU$K_SHIFT_MODIFIED 1
CTRL_MODIFIED TPU$K_CTRL_MODIFIED 2
HELP_MODIFIED TPU$K_HELP_MODIFIED 4
ALT_MODIFIED TPU$K_ALT_MODIFIED 8

113

Chapter 2. Descriptions of the DECTPU Built-In Procedures

You may have used the SHIFT_KEY keyword to create a DECTPU key name. SHIFT_KEY is not
a modifier; it is a prefix. The Shift key is also called the GOLD key by the EVE editor. To use the
Shift key, press and release it before you press any other key.

In DECwindows, to use modifying keys (such as Ctrl), press and hold the modifying key while you
press the modified key.

If you use more than one key modifier with the KEY_NAME built-in procedure, the value of
the returned integer is the sum of the integer representations of the key modifiers. For example,
if you create a key name by using the modifiers HELP_MODIFIED and ALT_MODIFIED, the
GET_INFO (any_keyname, "key_ modifiers") built-in returns the integer 12.

"key_type"

Returns a keyword that describes the type of key named by any_keyname. The keywords that
can be returned are PRINTING, KEYPAD, FUNCTION, CONTROL, SHIFT_PRINTING,
SHIFT_KEYPAD, SHIFT_FUNCTION, and SHIFT_CONTROL. Returns 0 if parameter1 is
not a valid key name. There are cases in which GET_INFO (any_keyname, "name") returns
the PRINTING keyword but the key described by the key name is not associated with a
printable character. For example, if you use the KEY_NAME built-in to define a key name
as the combination of the character A and the ALT modifier, and if you then use GET_INFO
(any_keyname, "name") to find out how DECTPU classifies the key, the GET_INFO built-in returns
the PRINTING keyword. However, if you use the ASCII built-in to obtain the string representation
of the key, the ASCII built-in returns a null string because ALT/A is not printable.

"unmodified"

Returns a keyword that describes the key name specified by any_keyname without any modifiers.
For example, if you create a key name for the F20 key with the ALT_MODIFIED modifier, the
GET_INFO (any_keyname, "unmodified") built-in returns the F20 keyword.

Return Values
integer

Returns requested information about the integer you specify.

keyword

Returns requested information about the keyword you specify.

Description
The GET_INFO (any_keyname) procedure returns a keyword that describes the type of key named by
any_keyname.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

Examples
In the following example, the first statement creates a DECTPU key name for the key sequence
produced by pressing the Ctrl key, the Shift key, and the 4 key on the keypad all at once. The new key
name is assigned to the variable new_key. The second statement fetches the integer equivalent of this
combination of key modifiers. The third statement displays the integer 3 in the message buffer. The

114

Chapter 2. Descriptions of the DECTPU Built-In Procedures

IF clause of the fourth statement shows how to test whether a key name was created using a modifier.
This statement does not detect whether a key name was created using the SHIFT_KEY keyword. The
THEN clause shows how to fetch the key modifier keyword or keywords used to create a key name. The
final statement displays the string KEY_NAME (KP4, SHIFT_MODIFIED, CTRL_MODIFIED) in the
message buffer.

new_key := KEY_NAME (KP4, SHIFT_MODIFIED, CTRL_MODIFIED);
modifier_value := GET_INFO (new_key, "key_modifiers");
MESSAGE (STR (modifier_value));
IF GET_INFO (new_key, "key_modifiers")
THEN
 the_name := GET_INFO (new_key, "name")
 MESSAGE (STR (the_name));
ENDIF;

GET_INFO (any_keyword)

Syntax

Parameters
"name"

Returns the string equivalent of the specified keyword.

You can use GET_INFO (any_keyword, "name") to obtain the string equivalent of a key name. This
is useful for displaying screen messages about keys. For example, to obtain the string equivalent of
the key name PF1, you could use the following statement:

the_string := GET_INFO (PF1, "name");

If a key name is created using several key modifiers, the built-in returns the string representations of
all the keywords used to create the key name. For more information on creating key names, see the
description of the KEY_NAME built-in procedure.

Return Value
Returns the requested information about the string you specify.

Description
The GET_INFO (any_keyword) procedure returns the string representation of the keyword specified in
the first parameter to GET_INFO.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO. See also the description of GET_INFO (integer_ variable).

Examples
The following example shows one possible use of GET_INFO (any_keyword, "name"). The first
statement creates a DECTPU key name for the key sequence produced by pressing the Ctrl key, the Shift

115

Chapter 2. Descriptions of the DECTPU Built-In Procedures

key, and the 4 key on the keypad all at once. The new key name is assigned to the variable key_name.
The IF clause of the statement shows how to test whether a key name was created using one or more
key modifier keywords. This statement does not detect whether a key name was created using the
SHIFT_KEY keyword. The GET_INFO (any_ keyname, "key_modifiers") built-in returns 0 even if
the key name was created using SHIFT_KEY. The THEN clause shows how to fetch the key modifier
keyword or keywords used to create a key name. The final statement displays the string KEY_NAME
(KP4, SHIFT_MODIFIED, ALT_MODIFIED) in the message buffer.

new_key := KEY_NAME (KP4, SHIFT_MODIFIED, CTRL_MODIFIED);
! .
! .
! .
IF GET_INFO (new_key, "key_modifiers") <> 0
THEN
 the_name := GET_INFO (new_key, "name")
ENDIF;
MESSAGE (STR (the_name));

GET_INFO (any_variable)

Syntax

Parameter
"type"

Returns a keyword that is the data type of the variable specified in any_variable.

Return Value
Returns the requested information about the keyword you specify.

Description
The GET_INFO (any_variable) procedure returns a keyword that specifies the data type of the variable.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

Examples
The following example tests whether the variable select_popup has been assigned a value of type widget.
If not, the code causes a message to be displayed on the screen.

IF GET_INFO (select_popup, "type") <> WIDGET
 THEN
 MESSAGE ("Select_popup widget not created.")
ENDIF;

GET_INFO (ARRAY)

116

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
"current"

Returns the current array in DECTPU’s internal list of arrays. You must use either GET_INFO
(ARRAY, "fir st") or GET_INFO (ARRAY, "last") before you can use GET_INFO (ARRAY,
"current"). If you use these built-ins in the wrong order or if no arrays have been created,
GET_INFO (ARRAY, "current") returns 0.

"first"

Returns the first array in the DECTPU internal list of arrays; returns 0 if no arrays are defined.

"last"

Returns the last array in the DECTPU internal list of arrays; returns 0 if no arrays are defined.

"next"

Returns the next array in DECTPU’s internal list of arrays. This parameter is valid whenever
GET_INFO (ARRAY, "current") would return an array. That is, the intended usage of this
parameter is that you use GET_INFO (ARRAY, "fir st") before you can use GET_INFO (ARRAY,
"next").

Returns 0 if you use this parameter immediately after GET_INFO (ARRAY, "last"), or if you have
not created an array.

"previous"

Returns the previous array in DECTPU’s internal list of arrays. The intended usage of this parameter
is that you use either GET_INFO (ARRAY, "current") or GET_INFO (ARRAY, "last") before you
use GET_INFO (ARRAY, "previous").

Returns 0 if you use this parameter immediately after GET_INFO (ARRAY, "first"), or if you have
not created an array.

Return Value
Returns the requested information about the array you specify.

Description
The GET_INFO (ARRAY) procedure returns an array in DECTPU’s internal list of arrays.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

117

Chapter 2. Descriptions of the DECTPU Built-In Procedures

GET_INFO (array_variable)

Syntax

Parameters
"current"

Returns the index value of the current element of the specified array, whether the index is of
type integer or some other type. Returns any type except program, pattern, or learn. Returns the
UNSPECIFIED keyword if there is no current element.

You must use either GET_INFO (array_variable, "first") or GET_INFO (array_ variable, "last")
before you can use GET_INFO (array_variable, "current").

"first"

Returns the index value of the first element of the specified array, whether the index is of type
integer or some other type. Returns any type except program, pattern, or learn. Returns the
UNSPECIFIED keyword if there is no first element.

"high_index"

Returns an integer that is the highest valid integer index for the static predeclared portion of the
array. If the GET_INFO call returns a high index lower than the low index, the array has no static
portion.

"last"

Returns the index value of the last element of the specified array, whether the index is of type integer
or some other type. Returns any type except program, pattern, or learn. Returns the UNSPECIFIED
keyword if there is no last element.

"low_index"

Returns an integer that is the lowest valid integer index for the static predeclared portion of the array.
If the GET_INFO call returns a high index lower than the low index, the array has no static portion.

"next"

Returns the index value of the next element of the specified array, whether the index is of type
integer or some other type. Returns any type except program, pattern, or learn. Returns the
UNSPECIFIED keyword if there is no next element.

118

Chapter 2. Descriptions of the DECTPU Built-In Procedures

You must use GET_INFO (array_variable, "first") before you can use GET_INFO (array_variable,
"next").

"previous"

Returns the index value of the previous element of the specified array, whether the index is of
type integer or some other type. Returns any type except program, pattern, or learn. Returns the
UNSPECIFIED keyword if there is no previous element.

You must use either GET_INFO (array_variable, "current") or GET_INFO (array_ variable, "last")
before you can use GET_INFO (array_variable, "previous").

Return Values
array

Returns requested information about the array you specify.

buffer

Returns requested information about the buffer you specify.

integer

Returns requested information about the integer you specify.

keyword

Returns requested information about the keyword you specify.

marker

Returns requested information about the marker you specify.

process

Returns requested information about the process you specify.

range

Returns requested information about the range you specify.

string

Returns requested information about the string you specify.

widget

Returns requested information about the widget you specify.

window

Returns requested information about the window you specify.

Description
The GET_INFO (array_variable) procedure returns information about a specified array.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

119

Chapter 2. Descriptions of the DECTPU Built-In Procedures

GET_INFO (BUFFER)

Syntax

Parameters
"current"

Returns the current buffer in DECTPU’s internal list of buffers; returns 0 if there is no current
buffer.

GET_INFO (BUFFER⟦S⟧, "current") always returns the current buffer, regardless of whether you
have first used GET_INFO (BUFFER⟦S⟧, "fir st") or GET_INFO (BUFFER⟦S⟧, "last"). Thus,
GET_INFO (BUFFER⟦S⟧, "current") is equivalent to the CURRENT_BUFFER built-in procedure.

"find_buffer", buffer_name

Returns the buffer whose name you specify (as a string) as the third parameter; returns 0 if no buffer
with the name you specify is found.

"first"

Returns the first buffer in DECTPU’s internal list of buffers; returns 0 if there is none.

"last"

Returns the last buffer in DECTPU’s internal list of buffers; returns 0 if there is none.

"next"

The next buffer in DECTPU’s internal list of buffers; returns 0 if there are no more.

"previous"

Returns the preceding buffer in DECTPU’s internal list of buffers; returns 0 if there is none.

Return Value
Returns the requested information about the buffer you specify.

Description
The GET_INFO (BUFFER) procedure returns a buffer in DECTPU’s internal list of buffers.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (buffer_variable)

120

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters

"before_bol"

Returns an integer (1 or 0) that indicates whether the editing point is located before the beginning of
a line.

121

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"beyond_eob"

Returns an integer (1 or 0) that indicates whether the editing point is located beyond the end of a
buffer.

"beyond_eol"

Returns an integer (1 or 0) that indicates whether the editing point is located beyond the end of a
line.

"bound"

Returns an integer (1 or 0) that indicates whether the marker that is the specified buffer’s editing
point is bound to text. For more information about bound markers, see the Guide to the DEC Text
Processing Utility.

"character"

Returns a string that is the character at the editing point for the buffer.

"direction"

Returns the FORWARD or REVERSE keyword. Use the SET (FORWARD) and SET (REVERSE)
built-in procedures to establish or change this parameter.

"eob_text"

Returns a string that represents the end-of-buffer text. Use the SET (EOB_TEXT) built-in procedure
to establish or change this parameter.

"erase_unmodifiable"

Returns 1 if unmodifiable records can be erased from the specified buffer and returns 0 if the
records cannot be erased.

"file_name"

Returns a string that is the name of a file given as the second parameter to CREATE_BUFFER.
Returns the null string if none was specified.

"first_marker"

Returns the first marker in DECTPU’s internal list of markers for the buffer. Returns 0 if there is
none. You must use GET_INFO (buffer_variable, "fir st_ marker" before the first use of GET_INFO
(buffer_variable, "next_marker"). If you do not follow this rule, GET_INFO (buffer_variable,
"next_marker") returns 0.

There is no corresponding "last_marker or "prev_marker" parameter.

Do not write code that relies on DECTPU storing markers in one particular order. Creating markers
or ranges may alter the internal order.

"first_range"

Returns the first range in DECTPU’s internal list of ranges for the buffer. Returns 0 if there are
none. You must use GET_INFO (buffer_variable, "first_range") before you use GET_INFO
(buffer_variable,"next_range") or the "next_ range" parameter returns 0.

122

Chapter 2. Descriptions of the DECTPU Built-In Procedures

There is no corresponding "last_range" or "prev_range" parameter.

Do not write code that relies on DECTPU storing ranges in one particular order. Creating markers or
ranges may alter the internal order.

"journaling"

Returns 1 if the specified buffer is being journaled or returns 0 if it is not.

"journal_file"

Returns a string that is the name of the journal file for the specified buffer. If the buffer is not being
journaled, the call returns 0.

"journal_name"

Converts a buffer’s name to a journal file name by using the DECTPU default journal file name
algorithm. DECTPU converts the buffer name to a journal file name regardless of journaling status.
The GET_INFO call does not require journaling to be turned on for the specified buffer. For more
information on this algorithm, see the Guide to the DEC Text Processing Utility.

"key_map_list"

Returns a string that is the key map list bound to the buffer. Use the SET built-in procedure to
establish or change this parameter.

"left_margin"

Returns an integer that is the current left margin setting. Use the SET (LEFT_MARGIN) built-in
procedure to establish or change this parameter.

"left_margin_action"

Returns a program or learn sequence that specifies what DECTPU should do if you try to insert text
to the left of the left margin. Returns the UNSPECIFIED keyword if no left margin action routine
has been set. Use the SET (LEFT_MARGIN_ACTION) built-in procedure to establish or change
this parameter.

"line"

Returns a string that is the line of text at the editing point for the buffer.

"map_count"

Returns an integer that is the number of windows associated with the buffer.

"max_lines"

Returns an integer that is the maximum number of records (lines) in the buffer. Use the SET built-in
procedure to establish or change this parameter.

"middle_of_tab"

Returns an integer (1 or 0) that indicates whether the editing point is located in the white space
within a tab.

123

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"mode"

Returns the INSERT or OVERSTRIKE keyword. Use the SET (INSERT) and SET (OVERSTRIKE)
built-in procedures to establish or change this parameter.

"modifiable"

Returns an integer (1 or 0) that indicates whether the buffer is modifiable.

"modified"

Returns an integer (1 or 0) that indicates whether the buffer has been modified.

"move_vertical_context"

Returns the encoded integer that describes the column where DECTPU attempts to position the
cursor during MOVE_VERTICAL operations. See the SET (MOVE_VERTICAL_CONTEXT)
built-in procedure for more information.

"name"

Returns a string that is the name given to the buffer when it was created.

"next_marker"

Returns the next marker in DECTPU’s internal list of markers for the buffer. Returns 0 if there are
no more. You must use GET_INFO (buffer_variable, "fir st_marker") before you use GET_INFO
(buffer_variable, "next_marker") or the "next_marker" parameter returns 0.

There is no corresponding "last_marker" or "prev_marke" parameter.

Do not write code that relies on DECTPU storing markers in one particular order. Creating markers
or ranges may alter the internal order.

"next_range"

Returns the next range in DECTPU’s internal list of ranges for the buffer. Returns 0 if there are
no more. You must use GET_INFO (buffer_variable, "fir st_range") before you use GET_INFO
(buffer_variable, "next_range") or the "next_range" parameter returns 0.

There is no corresponding "last_range" or "prev_range" parameter.

Do not write code that relies on DECTPU storing ranges in one particular order. Creating markers or
ranges may alter the internal order.

"no_write"

Returns an integer (1 or 0) that indicates whether the buffer should be written to a file at exit time.
DECTPU writes the buffer to a file only if the buffer has been modified during the editing session.
Use the SET (NO_WRITE) built-in procedure to establish or change this parameter.

"offset"

Returns an integer that is the number of characters between the left margin and the editing point.
The left margin is counted as character 0. A tab is counted as one character, regardless of width.

124

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Window shifts have no effect on the value returned when you use "offset". The value returned has no
relation to the visible screen column in which a character is displayed.

"offset_column"

Returns an integer that is the screen column in which DECTPU displays the character at the editing
point. When calculating this value, DECTPU does not take window shifts into account; DECTPU
assumes that any window mapped to the current buffer is not shifted. The value returned when
you use "offset_column" reflects the location of the left margin and the width of tabs preceding the
editing point. In contrast, the value returned when you use "offset" is not affected by the location of
the left margin or the width of tabs.

"output_file"

Returns a string that is the name of the file used with the SET (OUTPUT_FILE) built-in
procedure. Returns 0 if there is no output file associated with the specified buffer. Use the SET
(OUTPUT_FILE) built-in procedure to establish or change this parameter.

"permanent"

Returns an integer (1 or 0) that indicates whether the buffer is permanent or can be deleted. Use the
SET (PERMANENT) built-in procedure to establish or change the parameter.

"read_routine"

Use with DECwindows only.

Returns the program or learn sequence that DECTPU executes when it owns a global selection
and another application has requested information about that selection. If the application has not
specified a global selection read routine, 0 is returned.

GLOBAL_SELECT is a keyword indicating that the built-in is to return the global selection read
routine. When you use "read_routine" as the second parameter to this built-in, you must use the
GLOBAL_SELECT keyword as the third parameter, as follows:

GET_INFO (buffer_variable, "read_routine", GLOBAL_SELECT)

"record_count"

Returns an integer that is the number of records (lines) in the buffer. GET_INFO (buffer,
"record_count") does not count the end-of-buffer text as a record, but GET_INFO (marker,
"record_number") does if the specified marker is on the end-of-buffer text. Thus, the maximum
value returned by GET_INFO (buffer, "record_count") is one less than the maximum value returned
by GET_INFO (marker, "record_number") if the specified marker is on the end-of-buffer text.

"record_number"

Returns the record number of the editing point.

"record_size"

Returns an integer that is the maximum length for records (lines) in the buffer.

"right_margin"

Returns an integer that is the current right margin setting. Use the SET (RIGHT_MARGIN) built-in
procedure to establish or change the parameter.

125

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"right_margin_action"

Returns a program or learn sequence that specifies what DECTPU should do if you try to insert text
to the right of the right margin. Returns the UNSPECIFIED keyword if the buffer does not have a
right margin action.

Use the SET (RIGHT_MARGIN_ACTION) built-in procedure to establish or change the parameter.

"safe_for_journaling"

Returns 1 if the specified buffer is safe for journaling or returns 0 if it is not. "Safe for journaling"
means that you can use the SET (JOURNALING) built-in procedure to turn on journaling. A buffer
is safe for journaling if it is empty, has never been modified, or has not been modified since the last
time it was written to a file.

"system"

Returns an integer (1 or 0) that indicates whether the buffer is a system buffer. Use the SET
(SYSTEM) built-in procedure to establish or change the parameter.

"tab_stops"

Returns either an integer or a string. Use the SET (TAB_STOPS) built-in procedure to determine
the data type of the return value. If you specify a return value of type string, the GET_INFO
(buffer_variable, "tab_stops") built-in procedure returns a string representation of all the column
numbers where tab stops are set. The column numbers are separated by spaces. If you specify a
return value of type integer, the return value is the number of columns between tab stops.

"unmodifiable_records"

Returns 1 if the specified buffer contains one or more unmodifiable records. The call returns 0 if no
unmodifiable records are present in the specified buffer.

Return Values
integer

Returns requested information about the integer you specify.

keyword

Returns requested information about the keyword you specify.

learn_sequence

Returns requested information about the learn_sequence you specify.

marker

Returns requested information about the marker you specify.

program

Returns requested information about the program you specify.

range

Returns requested information about the range you specify.

126

Chapter 2. Descriptions of the DECTPU Built-In Procedures

string

Returns requested information about the string you specify.

Description
The GET_INFO (buffer_variable) procedure returns information about a specified buffer.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (COMMAND_LINE)

Syntax

Parameters
"character"

Returns an integer that is the column number of the character position specified by the /
START_POSITION qualifier. This parameter is useful in a procedure to determine where DECTPU

127

Chapter 2. Descriptions of the DECTPU Built-In Procedures

should place the cursor at startup time. The default is 1 if you do not specify the qualifier or option.
This parameter is the same as the "start_character" parameter.

"character_set"

Returns a keyword that indicates the character set that you specified by the /CHARACTER_SET
qualifier. DECTPU can return the following keywords: DEC_MCS (default), ISO_LATIN1, and
GENERAL.

"command"

Returns an integer (1 or 0) that indicates whether the /COMMAND qualifier is active (either by
default or because the qualifier or option was specified when you invoked DECTPU).

"command_file"

Returns a string that is the command file specification from the /COMMAND qualifier.

"create"

Returns an integer (1 or 0) that indicates whether the /CREATE qualifier is active (either by default
or because the qualifier was specified when you invoked DECTPU).

"display"

Returns an integer (1 or 0) that indicates whether the /DISPLAY or /INTERFACE qualifier is
active (either by default or because /DISPLAY or /INTERFACE was specified when you invoked
DECTPU).

"file_name"

Returns a string that is the first file specification used as a parameter when you invoke DECTPU.
Returns a null string if you did not specify an input file name on the command line.

"first_file_name"

Returns a string that is the first file specification used as a parameter when you invoke DECTPU.
Returns 0 if you did not specify any file name on the command line. There is a single input
parameter that can be a list of comma-separated file specifications. This GET_INFO returns only the
first file specification.

"initialization"

Returns an integer (1 or 0) that indicates whether the /INITIALIZATION qualifier is active (either
by default or because the qualifier was specified when you invoked DECTPU).

"initialization_file"

Returns a string that is the initialization file specification for the /INITIALIZATION qualifier.

"init_file"

This is a synonym for GET_INFO (COMMAND_LINE, "initialization_file").

128

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"journal"

Returns an integer (1 or 0) that indicates whether the /JOURNAL qualifier is active (either by
default or because the qualifier was specified when you invoked DECTPU).

"journal_file"

Returns a string that is the journal file specification for the /JOURNAL qualifier.

"line"

Returns an integer that is the record number of the line specified by the /START_POSITION
qualifier. This parameter is useful in a procedure to determine where DECTPU should place the
cursor at startup time. The default is 1 if the qualifier or option is not specified. This parameter is the
same as the "start_record" parameter.

"modify"

Returns an integer (1 or 0) that indicates whether the /MODIFY qualifier was specified when you
invoked DECTPU.

"next_file_name"

Returns the next file name entered on the command line that invoked TPU. Returns 0 if no file name
was specified on the command line, or if there are no more file names to return.

"nomodify"

Returns an integer (1 or 0) that indicates whether the /NOMODIFY qualifier was specified when
you invoked DECTPU.

"output"

Returns an integer (1 or 0) that indicates whether the /OUTPUT qualifier is active (either by default
or because the qualifier was specified when you invoked DECTPU).

"output_file"

Returns a string that is the output file specification for the /OUTPUT qualifier.

"read_only"

Returns an integer (1 or 0) that indicates whether the /READ_ONLY qualifier was specified when
you invoked DECTPU.

"recover"

Returns an integer (1 or 0) that indicates whether the /RECOVER qualifier was specified when you
invoked DECTPU.

"section"

Returns an integer (1 or 0) that indicates whether the /SECTION qualifier is active (either by default
or because the qualifier was specified when you invoked DECTPU).

129

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"section_file"

Returns a string that is the section file specification for the /SECTION qualifier.

"start_character"

Returns an integer that is the column number of the character position specified by the /
START_POSITION qualifier. This parameter is useful in a procedure to determine where DECTPU
should place the cursor at startup time. The default is 1 if you do not specify qualifier. This
parameter is a synonym for "character".

"start_record"

Returns an integer that is the record number of the line specified by the /START_ POSITION
qualifier. This parameter is useful in a procedure to determine where DECTPU should place the
cursor at startup time. The default is 1 if you do not specify the qualifier. This parameter is a
synonym for "line".

"work"

Returns an integer (1 or 0) that indicates whether the /WORK qualifier is active (either by default or
because the qualifier was specified when you invoked DECTPU).

"work_file"

Returns a string that is the work file specification for the /WORK qualifier.

"write"

Returns an integer (1 or 0) that indicates whether the /WRITE qualifier was specified when you
invoked DECTPU.

Return Values

integer

Returns requested information about the integer you specify.

string

Returns requested information about the string you specify.

Description

The GET_INFO (COMMAND_LINE) procedure returns information about the command line used to
invoke DECTPU.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (DEBUG)

130

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
"breakpoint"

Returns a string that is the name of the first breakpoint. This establishes a breakpoint context for the
next and previous parameters. TPU$_NONAMES is returned if there are no breakpoints.

"examine", variable_name

Returns the contents of the specified variable. TPU$_NONAMES is returned if the specified
variable cannot be found.

You must specify a string that contains the name of the variable as the third parameter to
GET_INFO (DEBUG, "examine").

"line_number"

Returns an integer that is the line number of the breakpoint within the procedure. If the procedure is
unnamed, 0 is returned.

"local"

Returns the first local variable in the procedure. This establishes a context for the next and previous
parameters. TPU$_NONAMES is returned if there are no local variables.

"next"

Returns the next parameter, local variable, or breakpoint. Before using GET_INFO (DEBUG,
"next"), you must use one of the following built-ins:

● GET_INFO (DEBUG, "local")

● GET_INFO (DEBUG, "breakpoint")

● GET_INFO (DEBUG, "parameter")

TPU$_NONAMES is returned if there are no more.

"parameter"

Returns the first parameter of the procedure. GET_INFO (DEBUG, "parameter") causes the
DECTPU Debugger to construct a list of all the formal parameters of the procedure you are

131

Chapter 2. Descriptions of the DECTPU Built-In Procedures

debugging. Once this list is constructed, you can use GET_INFO (DEBUG, "next") and GET_INFO
(DEBUG, "previous"). DECTPU signals TPU$_NONAMES if the procedure you are debugging
does not have any parameters.

"previous"

Returns the previous parameter, local variable, or breakpoint. TPU$_NONAMES is returned if there
are no more.

"procedure"

Returns a string that is the name of the procedure containing the breakpoint. The null string is
returned if the procedure has no name.

Return Values
contents

Returns requested information about the contents you specify.

integer

Returns requested information about the integer you specify.

parameter

Returns requested information about the parameter you specify.

string

Returns requested information about the string you specify.

variable

Returns requested information about the variable you specify.

Description
The GET_INFO (DEBUG) procedure returns information about the status of a debugging session when
you are using the DECTPU Debugger.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (DEFINED_KEY)

Syntax

132

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters

"first"

Returns a keyword that is the key name of the first key in the specified key map or key map list.

"last"

Returns a keyword that is the key name of the last key in the specified key map or key map list.

"next"

Returns a keyword that is the key name of the next key in the specified key map or key map list.
Returns 0 if last. Use "first" before "next".

"previous"

Returns a keyword that is the key name of the previous key in the specified key map or key map list.
Returns 0 if first. Use "last" before "previous".

string

The string that specifies the name of either the key map or key map list to be searched.

Return Value

Returns the requested information about the keyword you specify.

Description

The GET_INFO (DEFINED_KEY) procedure returns a keyword that is the key name of a specified key.

"Current" is not valid when the first parameter is DEFINED_KEY or KEY_MAP, although it is valid
when the first parameter is KEY_MAP_LIST.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (integer_variable)

Syntax

Parameters

integer

Returns an integer that is the equivalent of a DECTPU keyword. When you use GET_INFO (integer,
"name"), the built-in returns the string representation of the keyword that is equivalent to the
specified integer.

133

Chapter 2. Descriptions of the DECTPU Built-In Procedures

For example, the following statement assigns the string process to the variable equiv_string:

equiv_string := GET_INFO (10, "name");

The value 10 is the integer equivalent of the PROCESS keyword.

You should not use the integer equivalents of keywords in DECTPU code. VSI does not guarantee
that the existing equivalences between integers and keywords will always remain the same.

"name"

Returns the string equivalent of the specified integer or keyword.

Return Value
Returns the string representation of any integer that is an equivalent of a keyword.

Description
The GET_INFO (integer_variable) procedure returns the string representation of any integer that is an
equivalent of a keyword.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO. See also the description of GET_INFO (any_keyword).

GET_INFO (KEY_MAP)

Syntax

Parameters
"first"

Returns a string that is the name of the first key map in the key map list; returns 0 if there is none.

"last"

Returns a string that is the name of the last key map in the key map list; returns 0 if there is none.

"next"

Returns a string that is the name of the next key map in the key map list; returns 0 if there is none.
Use "first" before "next".

"previous"

Returns a string that is the name of the previous key map in the key map list; returns 0 if there is
none. Use "last" before "previous".

134

Chapter 2. Descriptions of the DECTPU Built-In Procedures

name_string

The string that specifies the name of either the key map or key map list to be searched.

Return Values
integer

Returns requested information about the integer you specify.

string

Returns requested information about the string you specify.

Description
The GET_INFO (KEY_MAP) procedure returns information about a key map in a specified key map
list. GET_INFO (KEY_MAP) takes a string as a third parameter. The string specifies the name of the
key map list to be searched.

The parameter "current" is not valid when the first keyword is DEFINED_KEY or KEY_MAP,
although it is valid when the first keyword is KEY_MAP_LIST.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (KEY_MAP_LIST)

Syntax

Parameters
"current"

Returns a string that is the name of the current key map list; returns 0 if there is none.

"first"

Returns a string that is the name of the first key map list; returns 0 if there is none.

"last"

Returns a string that is the name of the last key map list; returns 0 if there is none.

"next"

Returns a string that is the name of the next key map list; returns 0 if there is none. Use "current" or
"first" before "next".

135

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"previous"

Returns a string that is the name of the previous key map list; returns 0 if there is none. Use
"current" or "last" before "previous".

Return Values
integer

Returns requested information about the integer you specify.

string

Returns requested information about the string you specify.

Description
The GET_INFO (KEY_MAP_LIST) procedure returns information about a key map list.

The parameter "current" is not valid when the first keyword is DEFINED_KEY or KEY_MAP,
although it is valid when the first keyword is KEY_MAP_LIST.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (marker_variable)

Syntax

Parameters
marker_variable

The marker for which the information is requested.

136

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"before_bol"

Returns 1 if the specified marker is located before the beginning of a line; returns 0 if it is not.

"beyond_eob"

Returns 1 if the specified marker is located beyond the end of a buffer; returns 0 if it is not.

"beyond_eol"

Returns 1 if the specified marker is located beyond the end of a line; returns 0 if it is not.

"bound"

Returns 1 if the specified marker is attached to a character; returns 0 if the marker is free. For more
information on bound and free markers, see the Guide to the DEC Text Processing Utility.

"buffer"

Returns the buffer in which the marker is located.

"display_value"

Returns the display value of the record in which the specified marker is located. For more
information about display values, see the descriptions of the SET (DISPLAY_VALUE) and SET
(RECORD_ATTRIBUTE S) built-in procedures.

"left_margin"

Returns an integer that is the current left margin setting of the line containing the marker.

"middle_of_tab"

Returns an integer (1 or 0) that indicates whether the marker is located in the white space created by
a tab.

"offset"

Returns an integer that is the number of characters between the left margin and the marker. The left
margin is counted as character 0. A tab is counted as one character, regardless of width. Window
shifts have no effect on the value returned when you use "offset". The value returned has no relation
to the visible screen column in which the character bound to the marker is displayed.

"offset_column"

Returns an integer that is the screen column in which DECTPU displays the character to which the
marker is bound. When calculating this value, DECTPU does not take window shifts into account;
DECTPU assumes that any window mapped to the current buffer is not shifted. The value returned
when you use "offset_colu mn" does reflect the location of the left margin and the width of tabs
preceding the editing point. In contrast, the value returned when you use "offset" is not affected by
the location of the left margin or the width of tabs.

"record_number"

Returns an integer that is the number associated with the record (line) containing the specified
marker.

137

Chapter 2. Descriptions of the DECTPU Built-In Procedures

A record number indicates the location of a record in a buffer. Record numbers are dynamic. As
you add or delete records, DECTPU changes the number associated with a particular record, as
appropriate. DECTPU counts each record in a buffer, regardless of whether the line is visible in a
window or whether the record contains text. GET_INFO (marker, "record_number") counts the end-
of-buffer text as a record if the specified marker is on the end-of-buffer text, but GET_INFO (buffer,
"record_count") never counts the end-of-buffer text as a record. Thus, it is possible for the value
returned by GET_INFO (buffer, "record_count") to be one less than the maximum value returned by
GET_INFO (marker, "record_number").

"right_margin"

Returns an integer that is the current right margin setting of the line containing the marker.

"unmodifiable_records"

Returns 1 if the record that contains the specified marker is unmodifiable; returns 0 if the record is
modifiable.

"video"

Returns a keyword that is the video attribute of the marker; returns 0 if the marker is a free marker.

"within_range"

Returns an integer (1 or 0) that indicates whether the marker is in the range specified by the third
parameter.

Return Values
buffer

Returns requested information about the buffer you specify.

integer

Returns requested information about the integer you specify.

keyword

Returns requested information about the keyword you specify.

Description
The GET_INFO (marker_variable) procedure returns information about a specified marker.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (mouse_event_keyword)

Syntax

138

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
"mouse_button"

Returns an integer that is the number of the mouse button specified with a mouse event keyword.

Table 2.4, "DECTPU Keywords Representing Mouse Events" lists the valid keywords for the first
parameter when you use "mouse_button" as the second parameter.

Table 2.4. DECTPU Keywords Representing Mouse Events

M1UP M2UP M3UP M4UP M5UP
M1DOWN M2DOWN M3DOWN M4DOWN M5DOWN
M1DRAG M2DRAG M3DRAG M4DRAG M5DRAG
M1CLICK M2CLICK M3CLICK M4CLICK M5CLICK
M1CLICK2 M2CLICK2 M3CLICK2 M4CLICK2 M5CLICK2
M1CLICK3 M2CLICK3 M3CLICK3 M4CLICK3 M5CLICK3
M1CLICK4 M2CLICK4 M3CLICK4 M4CLICK4 M5CLICK4
M1CLICK5 M2CLICK5 M3CLICK5 M4CLICK5 M5CLICK5

"window"

Returns the window in which the downstroke occurred that started the current drag operation.
Returns 0 if no drag operation is in progress for the specified mouse button when the built-in is
executed.

The valid keywords for the first parameter when you use "window" as the second parameter are
M1DOWN, M2DOWN, M3DOWN, M4DOWN, and M5DOWN.

Return Values
integer

Returns requested information about the integer you specify.

window

Returns requested information about the window you specify.

Description
The GET_INFO (mouse_event_keyword) procedure returns information about a mouse event. A
mouse_event_keyword is a keyword that represents a single click, multiple clicks, upstroke, downstroke,
or drag of a mouse button.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

Examples
1. In the following example, the statement causes DECTPU to assign the value 3 to the variable x:

x := GET_INFO (M3CLICK2, "mouse_button");

139

Chapter 2. Descriptions of the DECTPU Built-In Procedures

2. In the following example, when bound to M1DRAG, that procedure is called by DECTPU
to respond to a drag event by checking whether you have dragged the mouse across window
boundaries; if you have, the procedure displays a message. If not, the procedure outputs a message
that you are dragging the mouse.

PROCEDURE sample_m1_drag

LOCAL the_window,
 new_window,
 column,
 row,
 temp;

the_window := GET_INFO (M1DOWN, "window");
IF the_window = 0
THEN
 RETURN (FALSE)
ENDIF;

LOCATE_MOUSE (new_window, column, row);

IF the_window <> new_window
THEN
 MESSAGE ("Invalid drag of pointer across window boundaries.");
ENDIF;
MESSAGE ("Dragging the mouse...");
ENDPROCEDURE;

GET_INFO (PROCEDURES)

Syntax

Parameters
"defined"

Returns an integer (1 or 0) that indicates whether the specified procedure is user defined.

"minimum_parameters"

Returns an integer that is the minimum number of parameters required for the specified user-defined
procedure.

"maximum_parameters"

Returns an integer that is the maximum number of parameters required for the specified user-
defined procedure.

string

A string that is the name of the procedure about which you want information.

140

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Return Value
Returns the requested information about the integer you specify.

Description
The GET_INFO (PROCEDURES) procedure returns information about a specified procedure.
GET_INFO (PROCEDURES) takes a string as a third parameter. The string specifies the name of the
procedure about which you are requesting information.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (PROCESS)

Syntax

Parameters
"current"

Returns the current process in DECTPU’s internal list of processes. You can use GET_INFO
(PROCESS, "current") only after you have used GET_INFO (PROCESS, "fir st") or GET_INFO
(PROCESS, "last"). The built-in returns 0 if you do not use these GET_INFO built-ins in the correct
order.

"first"

Returns the first process in DECTPU’s internal list of processes; returns 0 if there is none.

"last"

Returns the last process in DECTPU’s internal list of processes; returns 0 if there is none.

"next"

Returns the next process in DECTPU’s internal list of processes; returns 0 if there are no more
processes. Use "first" before "next".

"previous"

Returns the preceding process in DECTPU’s internal list of processes; returns 0 if there is no
previous process. Use "last" before "previous".

Return Value
Returns the requested information about the process you specify.

141

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description

The GET_INFO (PROCESS) procedure returns a specified process in DECTPU’s internal list of
processes.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (process_variable)

Syntax

Parameters

"buffer"

Returns the buffer associated with the process.

"pid"

Returns an integer that is the process identification number.

Return Values

buffer

Returns requested information about the buffer you specify.

integer

Returns requested information about the integer you specify.

Description

The GET_INFO (process_variable) procedure returns information about a specified process.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (range_variable)

Syntax

142

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters

"buffer"

Returns the buffer in which the range is located.

"unmodifiable_records"

Returns 1 if the specified range contains one or more unmodifiable records; returns 0 if no
unmodifiable records are present in the specified range.

"video"

Returns a keyword that is the video attribute of the range.

Return Values

buffer

Returns requested information about the buffer you specify.

keyword

Returns requested information about the keyword you specify.

Description

The GET_INFO (range_variable) procedure returns information about a specified range.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (SCREEN)

143

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

144

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
"active_area"

Returns an array that contains information on the location and dimensions of the application’s active
area; returns the integer 0 if there is no active area. The active area is the region in a window in
which DECTPU ignores movements of the pointer cursor for purposes of distinguishing clicks
from drags. When you press down a mouse button, DECTPU interprets the event as a click if the
upstroke occurs in the active area with the downstroke. If the upstroke occurs outside the active area,
DECTPU interprets the event as a drag operation.

A DECTPU layered application can have only one active area at a time, even if the application has
more than one window visible on the screen. An active area is valid only if you are pressing a mouse
button. The default active area occupies one character cell. By default, the active area is located on
the character cell pointed to by the cursor.

GET_INFO (SCREEN, "active_area") returns five pieces of information about the active area in
integer-indexed elements of the returned array. You need not use the CREATE_ARRAY built-
in procedure before using GET_INFO (SCREEN, "active_area"); DECTPU assigns a properly
structured array to the return variable you specify. The structure of the array is as follows:

Array Element Contents

array {1} Window that contains the active area
array {2} Column that forms the leftmost edge of the

active area
array {3} Row that forms the top edge of the active area
array {4} Width of the active area, expressed in columns
array {5} Height of the active area, expressed in rows

"ansi_crt"

Returns an integer (1 or 0) that indicates whether the terminal is an ANSI_CRT.

"auto_repeat"

Returns an integer (1 or 0) that indicates whether the terminal’s autorepeat feature is on.

"avo"

Returns an integer (1 or 0) that indicates whether the ADVANCED_VID EO attribute has been set
for the terminal.

"client_message"

Returns a keyword that indicates whether DECTPU has received a KILL_SELECTION client
message or a STUFF_SELECTION client message. If the call is used when there is no current client
message, the integer 0 is returned.

GET_INFO (SCREEN, "client_message") is used in a DECTPU layered or EVE layered
application’s client message routine. This routine provides the application’s response to a client
message received from another application.

GET_INFO (SCREEN, "client_message") returns the KILL_SELECTION keyword when you are
copying the primary global selection between DECwindows applications.

145

Chapter 2. Descriptions of the DECTPU Built-In Procedures

GET_INFO (SCREEN, "client_message") returns the STUFF_SELECTION keyword when you are
copying the secondary global selection between DECwindows applications. For more information,
see SEND_CLIENT_MESSAGE.

"client_message_routine"

Returns the program or learn sequence designated as an application’s client message action routine;
returns 0 if none is designated.

"cross_window_bounds"

Returns an integer (1 or 0) that indicates whether the CURSOR_VERTICAL built-in procedure
causes the cursor to cross a window boundary if the cursor is at the top or bottom of the window.

"current_column"

Returns an integer that is the number of the current column.

"current_row"

Returns an integer that is the number of the current row.

"dec_crt"

Returns an integer (1 or 0) that indicates whether the terminal is a DEC_CRT. For more information
on this terminal characteristic, see the SET TERMINAL command in your VMS overview
documentation.

"dec_crt2"

Returns an integer (1 or 0) that indicates whether the terminal is a DEC_CRT2. For more
information on this terminal characteristic, see the SET TERMINAL command in your OpenVMS
overview documentation.

"dec_crt3"

Returns an integer (1 or 0) that indicates whether the terminal is a DEC_CRT3. For more
information on this terminal characteristic, see the SET TERMINAL command in your VMS
overview documentation.

"dec_crt4"

Returns an integer (1 or 0) that indicates whether the terminal is a DEC_CRT4. For more
information on this terminal characteristic, see the SET TERMINAL command in your VMS
overview documentation.

"decwindows"

Returns 1 if your system is running the DECwindows Motif updater version of DECTPU. Returns 0
if you are using the character-cell updater. For more information about the DECwindows version of
DECTPU, see the Guide to the DEC Text Processing Utility.

"default_file"

Returns the name of the X resource file merged into the display’s database during editor
initialization or by SET (DEFAULT_FILE).

146

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"detached_action"

Returns the current detached action routine. If no such routine is designated, returns the
UNSPECIFIED keyword.

"detached_reason"

Returns a bit-encoded integer indicating which of the five possible detached states the cursor is in.

VSI recommends that you use the DECTPU predefined constants rather than the actual integers
to refer to the reasons for detachment. Table 2.5, "Detached Cursor Flag Constants" shows the
correspondence of constants, integers, and reasons.

Table 2.5. Detached Cursor Flag Constants

Constant Value Reason

TPU$K_OFF_LEFT 1 The editing point is off the left
side of the current window.

TPU$K_OFF_RIGHT 2 The editing point is off the right
side of the current window.

TPU$K_INVISIBLE 4 The editing point is on a record
that is invisible in the current
window.

TPU$K_DISJOINT 8 The current buffer is not
mapped to the current window.

TPU$K_UNMAPPED 16 No current window exists.
TPU$K_NO_UPDATE 32 The current window is a no-

update window.

You can set TPU$K_INVISIBLE in combination with either the TPU$K_OFF_LEFT or TPU
$K_OFF_RIGHT flags.

You can set TPU$K_NO_UPDATE in conjunction with any other detached reason, with the
exception of TPU$K_UNMAPPED. Use of TPU$K_UNMAPPED is a detached cursor situation
because, with its use, the cursor does not accurately reflect the editing point within the current
buffer. Applications that use "no_ update" windows should trap the TPU$K_UNMAPPED detached
cursor reason, and position to a normal window. EVE traps this condition in its detached cursor
action routine and sets its position to the topmost normal window.

"edit_mode"

Returns an integer (1 or 0) that indicates whether the terminal is set to edit mode.

"eightbit"

Returns an integer (1 or 0) that indicates whether the terminal uses 8-bit characters.

"event"

Use with DECwindows only.

When you use "event" as the second parameter, you must specify the GLOBAL_SELECT keyword
as the third parameter. GLOBAL_SELECT indicates that GET_INFO is to supply information about
a global selection.

147

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If called from within a global selection grab or ungrab routine, GET_INFO (SCREEN, "event",
GLOBAL_SELECT) identifies the global selection that was grabbed or lost. GET_INFO (SCREEN,
"event", GLOBAL_SELECT) returns a keyword if the global selection was the primary or
secondary selection. The built- in returns a string naming the global selection if the grab or ungrab
involves a global selection other than the primary or secondary selection.

If called from within a routine that responds to requests for information about a global selection,
GET_INFO (SCREEN, "event", GLOBAL_SELECT) returns an array. The array contains the
information an application needs to respond to the request for information about the global selection.
The array contains the following information:

array {1} The PRIMARY keyword, the SECONDARY
keyword, or a string. This element identifies the
global selection about which information was
requested.

array {2} A string. This element identifies the global
selection property about which information has
been requested.

The GET_INFO (SCREEN, "event") built-in returns 0 if the built-in is not responding to a grab, an
ungrab, or a selection information request.

For more information about grabbing and ungrabbing a global selection, see the VMS DECwindows
Guide to Application Programming.

"first_input"

Use with DECwindows only.

Returns integer 1 if DECTPU has received its first key or button event; otherwise returns 0.

"first_input_routine"

Use with DECwindows only.

Returns the program or learn sequence that implements the application’s first input action routine.
Returns 0 if no input action routine is set.

"global_select"

Use with DECwindows only.

Returns the integer 1 if DECTPU currently owns the specified global selection; returns 0 if it does
not.

You must specify one of the following parameters as a third parameter to GET_ INFO (SCREEN,
"global_select"):

PRIMARY Keyword that directs DECTPU to get
information on the primary global selection

SECONDARY Keyword that directs DECTPU to get
information on the secondary global selection

148

Chapter 2. Descriptions of the DECTPU Built-In Procedures

selection_name String that identifies the global selection about
which DECTPU is to get information

For more information about grabbing and ungrabbing a global selection, see the VMS DECwindows
Guide to Application Programming.

"grab_routine"

Use with DECwindows only.

Returns the program or learn sequence designated as the application’s global selection or input focus
grab routine. Returns the integer 0 if the requested grab routine is not present.

You must specify one of the following keywords as a third parameter to GET_INFO (SCREEN,
"grab_routine"):

GLOBAL_SELECT Keyword indicating that GET_INFO is to return
the global selection grab routine

INPUT_FOCUS Keyword indicating that GET_INFO is to return
the input focus grab routine

"icon_name"

Use with DECwindows only.

Returns the string used as the layered application’s name in the DECwindows icon box.

"input_focus"

Use with DECwindows only.

Returns an integer (1 or 0) that indicates whether DECTPU currently owns the input focus. Input
focus is the ability to process user input from the keyboard.

"jump_scroll"

Returns an integer (1 or 0) that indicates whether the SET (SCROLLING, J UMP) built-in
procedure has been used to direct DECTPU to use the J UMP mode of scrolling (that is, to perform
all currently specified scrolling before repainting the screen).

"length"

Returns an integer that is the current length of the screen (in rows).

"line_editing"

Returns information that indicates whether you are using the insert or overstrike method of line
editing; returns 0 if you are using neither method. In DECwindows DECTPU, this parameter always
returns 0.

"motif"

Returns 1 if DECTPU is using the VMS Motif screen updater TPU$MOTIFSHR; returns 0 if any
other screen updater is in use.

149

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"mouse"

Returns an integer (1 or 0) that indicates whether DECTPU’s mouse support capability is turned on.

"new_length"

Use with DECwindows only.

Returns an integer that is the length (in rows) of the screen after the resize action routine is executed.

Resize action routines should use the length returned by GET_INFO (SCREEN, "new_length") to
determine the length of their windows. If the call is made outside a resize action routine, this length
is the same as the current length of the screen.

"new_width"

Use with DECwindows only.

Returns an integer that is the width (in columns) of the screen after the resize action routine is
executed.

Resize action routines should use the length returned by GET_INFO (SCREEN, "new_width") to
determine the width of their windows. If the call is made outside a resize action routine, this width is
the same as the current width of the screen.

"old_length"

Use with DECwindows only.

Returns an integer that is the length (in rows) of the screen before the most recent resize event.

The "old_length" value is initially set to the length of the screen at startup. This value is reset after
DECTPU processes a resize event and before DECTPU executes the resize action routine.

"old_width"

Use with DECwindows only.

Returns the width (in columns) of the screen before the most recent resize event. The "old_width"
value is initially set to the width of the screen at startup. This value is reset after DECTPU processes
a resize event and before DECTPU executes the resize action routine.

"original_length"

Returns an integer that is the number of lines the screen had when DECTPU was invoked.

"original_width"

Returns an integer that is the width of the screen when DECTPU was invoked.

"pixel_length"

Use with DECwindows only.

Returns the length (height) of the current display device in pixels. If you use this parameter on a
character-cell terminal, you get the error message TPU$_ REQUIRESDECW.

150

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"pixel_width"

Use with DECwindows only.

Returns the width of the current display device in pixels. If you use this parameter on a character-cell
terminal, you get the error message TPU$_ REQUIRESDECW.

"pop_up_parent_widget"

Use with DECwindows only.

Returns the Motif parent widget for application pop-up widgets. You must specify the parent widget
when you create pop-up widgets that use the CREATE_WIDGET built-in procedure.

"prompt_length"

Returns an integer that is the number of lines in the prompt area.

"prompt_row"

Returns an integer that is the screen line number at which the prompt area begins.

"read_routine"

Use with DECwindows only.

Returns the program or learn sequence that DECTPU executes when it owns a global selection
and another application has requested information about that selection. If the application has not
specified a global selection read routine, 0 is returned.

You must specify the GLOBAL_SELECT keyword as the third parameter to GET_INFO
(SCREEN, "read_routine"). GLOBAL_SELECT indicates that GET_INFO is to return the global
selection read routine.

"screen_limits"

Returns an integer-indexed array that specifies the minimum and maximum screen length and width.

An integer-indexed array uses four elements to specify the minimum and maximum screen width
and length. The array indices and the contents of their corresponding elements are as follows:

Array Element Contents

array {1} Minimum screen width, in columns. This value
must be at least 0 and less than or equal to the
maximum screen width. The default value is 0.

array {2} Minimum screen length, in lines. This value
must be at least 0 and less than or equal to the
maximum screen length. The default value is 0.

array {3} Maximum screen width, in columns. This value
must be greater than or equal to the minimum
screen width and less than or equal to 255. The
default value is 255.

array {4} Maximum screen length, in lines. This value
must be greater than or equal to the minimum

151

Chapter 2. Descriptions of the DECTPU Built-In Procedures

screen length and less than or equal to 255. The
default value is 255.

"screen_update"

Returns an integer (1 or 0) that indicates whether screen updating is turned on.

"scroll"

Returns an integer (1 or 0) that indicates whether the terminal has scrolling regions. For more
information on scrolling regions, see the description of the SET (SCROLLING) built-in procedure.

"time"

Use with DECwindows only.

Returns a string in OpenVMS delta time format that indicates the amount of time after requesting
global selection information that DECTPU waits for a reply. When the time has expired, DECTPU
assumes the request will not be answered.

You must specify the GLOBAL_SELECT keyword as the third parameter to GET_INFO
(SCREEN, "time").

"ungrab_routine"

Use with DECwindows only.

Returns the program or learn sequence that DECTPU executes when it loses ownership of a global
selection or of the input focus. Returns 0 if the requested ungrab routine is not present.

You must specify one of the following keywords as a third parameter to GET_INFO (SCREEN,
"ungrab_routine"):

GLOBAL_SELECT Keyword indicating that GET_INFO is to return
the global selection ungrab routine

INPUT_FOCUS Keyword indicating that GET_INFO is to return
the input focus ungrab routine

"visible_length"

Returns an integer that is the page length of the terminal.

"vk100"

Returns an integer (1 or 0) that indicates whether the terminal is a GIGI.

"vt100"

Returns an integer (1 or 0) that indicates whether the terminal is in the VT100 series.

"vt200"

Returns an integer (1 or 0) that indicates whether the terminal is in the VT200 series.

"vt300"

Returns an integer (1 or 0) that indicates whether the terminal is in the VT300 series.

152

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"vt400"

Returns an integer (1 or 0) that indicates whether the terminal is in the VT400 series.

"widget"

Use with DECwindows only.

Returns DECTPU’s top-level widget regardless of the active DECwindows user interface. In Motif
this widget is created by XtAPPCreateShell. In character-cell environments, this built-in signals the
error message TPU$_REQUIRESDECW.

"width"

Returns an integer that is the current physical width of the screen.

"xui"

Returns 0. DECTPU no longer supports the XUI interface.

Return Values
array

Returns requested information about the array you specify.

integer

Returns requested information about the integer you specify.

keyword

Returns requested information about the keyword you specify.

learn_sequence

Returns requested information about the learn sequence you specify.

PRIMARY

Returns requested information about the primary global selection you specify.

program

Returns requested information about the program you specify.

SECONDARY

Returns requested information about the secondary global selection you specify.

selection_name

Returns requested information about the selection name you specify.

string

Returns requested information about the string you specify.

153

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The GET_INFO (SCREEN) procedure returns information about the screen.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

GET_INFO (string_variable)

Syntax

Parameters
"journal"

Returns an array that contains information about the buffer-change journal file whose name you
specify with the string parameter. If the specified file is not a journal file, the integer 0 is returned.

The array indices and the contents of the corresponding elements of the returned array are as follows
(all elements are of type string):

Index Contents of Element

1 Name of the buffer whose contents were
journaled.

2 Date and time the journal file was created.
3 Date and time the edit session started.
4 Name of the source file. A source file is a file to

which the buffer has been written. The journal
file maintains a pointer to the source file. This
enables the journal file to retrieve from the
source file the buffer contents as they were after
the last write operation. If the buffer has not
been written out, or if none of the source files is
available during recovery, this element contains a
null string.

5 Name of the output file associated with the
buffer. This is the file name specified with the
SET (OUTPUT_FILE) built-in.

6 Name of the original input file associated with
the buffer by the CREATE_BUFFER built-in. If
there is no associated input file or if the input file
is not available during a recovery, this element
contains a null string.

154

Chapter 2. Descriptions of the DECTPU Built-In Procedures

7 Identification string for the version of DECTPU
that wrote the journal file.

"pre_key_procedure"

Returns the program (stored in the specified key map or key map list) that is called before execution
of code bound to keys. Returns 0 if no procedure was defined by SET (PRE_KEY_PROCEDURE).

"post_key_procedure"

Returns the program (stored in the specified key map or key map list) that is called
before execution of code bound to keys. Returns 0 if no procedure was defined by SET
(POST_KEY_PROCEDURE).

"self_insert"

Returns an integer (1 or 0) that indicates whether printable characters are to be inserted into the
buffer if they are not defined. Use the SET (SELF_INSERT) built-in procedure to establish or
change this parameter.

"shift_key"

Returns a keyword that is the key name for the key currently used as the shift key. Use the SET
(SHIFT_KEY) built-in procedure to establish or change this parameter.

"undefined_key"

Returns the program that is called when an undefined character is entered. Returns 0 if the program
issues the default message. Use the SET (UNDEFINED_KEY) built-in procedure to establish or
change this parameter.

Return Values
array

Returns requested information about the array you specify.

integer

Returns requested information about the integer you specify.

keyword

Returns requested information about the keyword you specify.

program

Returns requested information about the program you specify.

Description
The GET_INFO (string_variable) procedure returns information about the specified string. The string
must be the name of a key map or key map list.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

155

Chapter 2. Descriptions of the DECTPU Built-In Procedures

GET_INFO (SYSTEM)

Syntax

Parameters
"bell"

Returns the ALL keyword if the bell is on for all messages. Returns the BROADCAST keyword if
the bell is on for broadcast messages only. Returns 0 if the SET (BELL) feature is off. Use the SET
built-in procedure to establish or change this parameter.

"column_move_vertical"

Returns 1 if the MOVE_VERTICAL built-in procedure is set to keep the cursor in the same
column as the cursor moves from line to line. Returns 0 if the MOVE_ VERTICAL built-
in preserves the offse t, rather than the column position, from line to line. Use the SET
(COLUMN_MOVE_VERTICAL) built-in procedure to establish or change this parameter.

"default_directory"

Returns the name of the current default directory.

156

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"display"

Returns 1 if you have specified the /DISPLAY qualifier or if it is the default; otherwise, returns 0.

"enable_resize"

Returns 1 if resize operations are enabled; otherwise returns 0. By default, resize operations are not
enabled. You can turn resizing on or off with the SET (ENABLE_RESIZE) built-in procedure.

"facility_name"

Returns a string that is the current facility name. Use the SET (FACILITY_NAME) built-in
procedure to establish or change this parameter.

"informational"

Returns an integer (1 or 0) that indicates whether informational messages are displayed. Use the SET
(INFORMATIONAL) built-in procedure to establish or change this parameter.

"journaling_frequency"

Returns an integer that indicates how frequently records are written to the journal file. Use the SET
(JOURNALING) built-in procedure to establish or change this parameter.

"journal_file"

Returns a string that is the name of the journal file.

"line_number"

Returns an integer (1 or 0) that indicates whether DECTPU displays the line number at which
an error occurred. Use the SET (LINE_NUMBER) built-in procedure to establish or change this
parameter.

"message_action_level"

Returns an integer that is the completion status severity level at which DECTPU performs
the message action you specify. The valid values, in ascending order of severity, are
as follows: 1 (success), 3 (informational), 0 (warning), and 2 (error). Use the SET
(MESSAGE_ACTION_LEVEL) built-in procedure to establish or change this parameter.

"message_action_type"

Returns a keyword describing the action to be taken when DECTPU signals an error,
warning, or message whose severity level is greater than or equal to the level set with SET
(MESSAGE_ACTION_LEVEL). The possible keywords are NONE, BELL, and REVERSE. Use
the SET (MESSAGE_ACTION_TYPE) built-in procedure to establish or change this parameter.

"message_flags"

Returns an integer that is the current value of the message flag setting. Use the SET
(MESSAGE_FLAGS) built-in procedure to establish or change this parameter.

"operating_system"

Returns a DECTPU keyword that indicates which operating system is in use. When operating
on OpenVMS VAX systems, OPENVMS is returned. When operating on OpenVMS Alpha,

157

Chapter 2. Descriptions of the DECTPU Built-In Procedures

OPENVMS_ALPHA is returned. There is no GET_INFO call to determine the type of CPU being
used.

"pad_overstruck_tabs"

Returns an integer (1 or 0) that indicates whether DECTPU preserves the white space created by a
tab character. Use the SET (PAD_OVERSTRUCK_TABS) built-in procedure to establish or change
this parameter.

"record_mode"

Returns a keyword for the default record format and attributes for all files written from buffers
having no input file. To change the default record mode for the operating system VARIABLE_CR,
use the SET (RECORD_MODE, SYSTEM) built-in procedure. The possible keyword returns, and
what record format and attributes they imply, are as follows:

Keyword Record Format Record Attributes

VARIABLE_NONE fab$c_var 0
VARIABLE_FTN fab$c_var fab$m_ftn
VARIABLE_CR fab$c_var fab$m_cr
STREAM fab$c_stm fab$m_cr
STREAM_LF fab$c_stmlf fab$m_cr
STREAM_CR fab$c_stmcr fab$m_cr

"recover"

Returns an integer (1 or 0) that indicates whether a recovery using a keystroke journal file is
currently in progress. Be careful when using this built-in— specifying different DECTPU actions
during a recovery rather than during an ordinary editing session may cause DECTPU journaling to
fail.

"resize_action"

Returns the program or learn sequence designated as the application’s resize action routine. Returns
the UNSPECIFIED keyword if the requested resize action routine is not present. You can designate
a resize action routine by using the SET (RESIZE_ACTION) built-in procedure.

"section_file"

Returns a string that is the name of the section file used when you invoked DECTPU.

"shift_key"

Returns a keyword that is the value of the current shift key set with SET (SHIFT_KEY) for the
current buffer.

"success"

Returns an integer (1 or 0) that indicates whether success messages are displayed. Use the SET
(SUCCESS) built-in procedure to establish or change this parameter.

"system_default"

Keyword for the operating system’s default record format and attributes for all files written from
buffers having no input file: VARIABLE_CR for VMS systems.

158

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"timed_message"

Returns a string of text that DECTPU displays at 1-second intervals in the prompt area if the SET
(TIMER) feature is on.

"timer"

Returns the integer 1 if SET (TIMER) has been enabled; otherwise returns 0.

"traceback"

Returns an integer (1 or 0) that indicates whether DECTPU displays the call stack for DECTPU
procedures when an error occur s. Use the SET (TRACEBACK) built-in procedure to establish or
change this parameter.

"update"

Returns an integer that is the update number of this version of DECTPU.

"version"

Returns an integer that is the version number of DECTPU.

"work_file"

Returns a string that is the name of the work file opened during startup.

Return Values
integer

Returns requested information about the integer you specify.

keyword

Returns requested information about the keyword you specify.

learn_sequence

Returns requested information about the learn sequence you specify.

program

Returns requested information about the program you specify.

string

Returns requested information about the string you specify.

Description
The GET_INFO (SYSTEM) procedure returns information about the system.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

159

Chapter 2. Descriptions of the DECTPU Built-In Procedures

GET_INFO (WIDGET)

Syntax

Parameters
"callback_parameters"

Returns the widget that performs the callback, the closure value associated with the widget, and the
reason for the callback. In DECwindows documentation, the closure is called the tag.

array

An array used to return values for the callback, the closure, and the reason. The array has the
following indices of type string: "widget", "closure", and "reason_code". GET_INFO (WIDGET,
"callback_parameters") places the corresponding values in the array elements. DECTPU
automatically creates the array in which the return values are placed.

To use this parameter, specify a variable that has been declared or initialized before you use
it. The initial type and value of the variable are unimportant. When GET_INFO (WIDGET,
"callback_parameters") places the return values in the array, the initial values are lost.

The integer on the left side of the assignment operator indicates whether GET_INFO was used
correctly.

GET_INFO (WIDGET, "callback_parameters") should be used in a widget callback procedure. If
you use this built-in outside a widget callback procedure, the value returned is indeterminate. If you
use the built-in inside a widget callback procedure and callback information is available, the built-in
returns 1.

For more information about callbacks and closure values in DECwindows DECTPU, see the Guide
to the DEC Text Processing Utility. For general information about using callbacks and closure values,
see the VMS overview documentation.

"children"

Returns the number of widget children controlled by the specified widget. The array parameter
returns the children themselves. If the SCREEN keyword is specified instead of a widget, the built-in
returns the number of children controlled by the DECTPU main window widget.

"menu_position"

Returns information about any pop-up widgets that are set for menu positioning when you press the
specified mouse button. If no pop-up widgets are set, returns the NONE keyword; otherwise, returns
an integer-indexed array of all pop-ups set for menu positioning.

160

Chapter 2. Descriptions of the DECTPU Built-In Procedures

mouse_down_button This keyword (M1DOWN, M2DOWN,
M3DOWN, M4DOWN, or M5DOWN)
indicates the mouse button associated with the
pop-up menus.

"widget_id"

Returns the widget whose name matches the specified widget name. The remaining parameters are
as follows:

parent_widget The widget that is an ancestor of the widget
returned by the GET_INFO (WIDGET) built-in
procedure.

SCREEN A keyword indicating that DECTPU’s main
window widget is the ancestor of the widget that
you want the GET_INFO (WIDGET) built-in
procedure to return.

widget_name A string that is the fully qualified name of the
widget you want the built-in to return. To specify
this parameter correctly, start the string with
either the name of the widget’s parent, or the
name of a child of the parent. If you used the
SCREEN parameter instead of the parent_widget
parameter, start the string with the name of a
child of that widget.

Next, specify the names of the ancestors, if
any, that occur in the widget hierarchy between
the widget named above and the widget itself.
Finally, specify the name of the widget you want
the GET_INFO (WIDGET) built-in procedure to
return. Separate all widget names with periods.

The fully qualified widget name is case sensitive.

"widget_resource_types"

Returns an array indexed by strings that are the widget resource data types supported by DECTPU,
such as boolean or callback. Each array element is another array that is integer-indexed from 0, and
contains the names of widget resources or resource types that are of the specified data type.

For more information on DECwindows concepts such as parent widgets, ancestor widgets, and the
distinction between widget classes and widgets, see the VMS DECwindows Guide to Application
Programming.

Return Values
array

Returns requested information about the array you specify.

integer

Returns requested information about the integer you specify.

161

Chapter 2. Descriptions of the DECTPU Built-In Procedures

widget

Returns requested information about the widget you specify.

Description
The GET_INFO (WIDGET) procedure returns information about DECTPU widgets in general or about
a specific widget whose name you do not know at the time you use the built-in.

Use the GET_INFO (WIDGET) built-in procedure with DECwindows only.

For general information about using all forms of GET_INFO built-in procedure, see the description of
GET_INFO.

Examples
The following example is a simplified version of the EVE EVE$CALLBACK_DISPATCH procedure.
The original version is in SYS$EXAMPLE S:EVE$MENUS.TPU. (For more information about
using the files in SYS$EXAMPLES as examples, see Appendix A, "Sample DECwindows DECTPU
Procedures".)

1. PROCEDURE eve$callback_dispatch

LOCAL the_program,
 status,
 temp_array;

ON_ERROR
 [TPU$_CONTROLC]:
 eve$$x_state_array {eve$$k_command_line_flag} := eve
$k_invoked_by_key;
 eve$learn_abort;
 ABORT;
 [OTHERWISE]:
 eve$$x_state_array {eve$$k_command_line_flag} := eve
$k_invoked_by_key;
ENDON_ERROR

IF NOT eve$x_decwindows_active
THEN
 RETURN (FALSE);
ENDIF;

eve$$x_state_array {eve$$k_command_line_flag} := eve$k_invoked_by_menu;

status :=
 GET_INFO (WIDGET, "callback_parameters", temp_array); ! This
 statement using
 ! GET_INFO
 (WIDGET)
 ! returns the
 calling
 ! widget, the
 closure,
 ! and the
 reason code.

162

Chapter 2. Descriptions of the DECTPU Built-In Procedures

! The following statements make the contents of "temp_array"
! available to all the eve$$widget_xxx procedures

eve$x_widget := temp_array {"widget"};
 ! This array element contains the widget
 ! that called back.
eve$x_widget_tag := temp_array {"closure"};
 ! This array element contains the widget tag
 ! that is assigned to the widget in the UIL file.
eve$x_widget_reason := temp_array {"reason_code"};
 ! This array element contains callback reason code.

! The next statements get the callback routine from the widget arrays.
loop
 exitif an_array = tpu$k_unspecified; ! silence if no widget matches
 an_array := eve$$x_widget_arrays {an_array};
 the_program := an_array {eve$x_widget_tag};
 if the_program <> tpu$k_unspecified
 then
 execute (the_program);
 eve$$found_post_filter; ! in case menu function moved cursor
 endif;
endloop;

eve$$x_state_array {eve$$k_command_line_flag} := eve$k_invoked_by_key;
RETURN;

ENDPROCEDURE;

This version of EVE$CALLBACK_DISPATCH handles callbacks from EVE widgets. The statement
GET_INFO (WIDGET, "callback_parameters", temp_ array) copies the following three items into
elements of the array temp_array:

● Widget that is calling back

● Widget’s integer closure

● Reason why the widget is calling back

The array eve$$x_widget_array contains pointers to all of EVE’s callback routines in elements
indexed by the appropriate integer closure values. This procedure locates the correct index in the
array and executes the corresponding callback routine.

Warning

This simplified version of EVE$CALLBACK_DISPATCH does not completely replace the version
in existing EVE code. This example is presented solely to illustrate how EVE uses the GET_INFO
(WIDGET, "callback_parameters", array) built-in procedure in a callback handling procedure.

The following example assigns to the variable the_text_widget the widget named by the string
NEW_DIALOG. NEW_TEXT. The name of the parent widget, NEW_DIALOG, is optional. The
returned widget is the child of the widget assigned to the variable new_dialog.

2.

163

Chapter 2. Descriptions of the DECTPU Built-In Procedures

the_text_widget := GET_INFO (WIDGET, "widget_id", new_dialog,
 "NEW_DIALOG.NEW_TEXT");

The following example shows how to use GET_INFO (WIDGET, "children") to display the entire
hierarchy of widgets known to a DECTPU session:

3. PROCEDURE eve_show_widgets ! Display the widget hierarchy

local
 num_topmost,
 widget_array;

widget_array := 0;
num_topmost := GET_INFO (WIDGET, "children", SCREEN, widget_array);

IF num_topmost > 0
THEN
 show_widget_tree (widget_array, "");
ENDIF;

ENDPROCEDURE;

PROCEDURE show_widget_tree ! Recursively display the widget tree
 (the_array, the_string)

LOCAL
 child_array,
 highest,
 loop_index,
 num_children;

child_array := 0;
loop_index := 1;
highest := get_info (the_array, "high_index");
LOOP
 EXITIF loop_index > highest;
 MESSAGE (the_string + GET_INFO (the_array {loop_index}, "name")
 + ASCII (%o11)
 + GET_INFO (the_array {loop_index}, "class"));
 num_children := GET_INFO (WIDGET, "children",
 the_array {loop_index}, child_array);
 IF num_children > 0
 THEN
 show_widget_tree (child_array, the_string + " ");
 ENDIF;
 loop_index := loop_index + 1;
ENDLOOP;

ENDPROCEDURE;

GET_INFO (widget_variable)

164

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
"callback_routine"

Returns the program or learn sequence designated as the application’s callback routine for the
specified widget. This is the program or learn sequence that DECTPU should execute when a widget
callback occurs for the specified widget. For more information about callbacks, see the Guide to the
DEC Text Processing Utility.

"class"

Returns the name of the class to which the specified widget belongs.

"input_focus"

Returns 1 if the specified widget has input focus; otherwise, it returns 0. You cannot set or get
the input_focus state of a widget unless that widget is a shell widget that has a resource named
XtNinput.

"insertion_position"

Returns the location of the insertion position in the specified text widget. The insertion position is
between characters in a text widget and starts at position 0 when to the left of the first character.
Returns the NONE keyword if the specified widget is not a text widget.

"is_managed"

Returns 1 if the specified widget is managed; otherwise, it returns 0.

"is_subclass"

Returns 1 if the specified widget belongs to the class referred to by the specified integer or belongs
to a subclass of that class. A 1 value indicates only that the widget is equal to or is a subclass of the
specified class. The value does not indicate how far down the class hierarchy the widget’s class or
subclass is. If the widget is not in the class, or one of its subclasses, this GET_INFO call returns 0.

widget_class The integer specifying the widget class to use in
the subclass test. This value is returned from the
DEFINE_WIDGET_CLASS built-in procedure.

165

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"name"

Returns a string that is the name of the specified widget.

"parent"

Returns the parent of the specified widget. If the widget has no parent, the call returns 0.

"resources"

Returns a string-indexed array in which each index is a valid resource name for the specified
widget. The corresponding array element is a string that contains the resource’s data type and class,
separated by a line feed (ASCII (10)).

"text"

Returns a string that is the value of the specified simple text widget. (The value of a text widget
is the text you enter into the text widget in response to a prompt in a dialog box.) If the specified
widget is not a text widget, DECTPU returns the NONE keyword.

"widget_info"

Returns the current values for one or more resources of the specified widget. The values are returned
in the array or series of argument pairs that is passed as the third parameter. The integer on the left
side of the assignment operator indicates whether the built-in executed successfully.

The third parameter is either an array or a series of paired arguments, specified as follows:

array Each array index must be a string that names a
valid resource for the specified widget. Resource
names are case sensitive. The corresponding
array element contains the value of the resource.
The array can contain any number of elements.

arg_pair A string that names a valid resource for the
widget followed by a variable to store the value
of the resource. Separate the resource name
string from the variable with a comma and a
space, as follows:

resource_name_string,
 resource_value

You can fetch as many resources as you want by
using multiple pairs of arguments.

If you specify the name of a resource that the widget does not support, DECTPU signals the error
TPU$_ARGMISMATCH.

If the requested resource is a list of items and the list contains no entries, the GET_INFO call uses
either the element of the array parameter or the value parameter to return an array that has no
elements.

For more information about specifying resources, see the Guide to the DEC Text Processing Utility.

166

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Return Values
array

Returns requested information about the array you specify.

integer

Returns requested information about the integer you specify.

learn_sequence

Returns requested information about the learn sequence you specify.

program

Returns requested information about the program you specify.

string

Returns requested information about the string you specify.

widget

Returns requested information about the widget you specify.

Description
The GET_INFO (widget_variable) procedure returns information about a specified widget variable.

Use the GET_INFO (widget_variable) built-in procedure with DECwindows only.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

Examples
The following example executes the callback routine for the widget eve$x_replace_ dialog. The
statement is valid only after the Replace dialog box has been used at least once because EVE does not
create any dialog box until you have invoked it.

1. EXECUTE (GET_INFO (eve$x_replace_dialog,
 "callback_routine"));

The following example displays the name of the widget specified by the variable eve
$x_replace_dialog. To confirm that the widget has been created as expected, the procedure also
displays a message that identifies the data type of the variable’s contents. The procedure is valid only
after the Replace dialog box has been used at least once because EVE does not create any dialog box
until you have invoked it.

A statement that contains the GET_INFO (widget, "name") built-in procedure is useful in code
implementing a debugging command that evaluates DECTPU statements, expressions, and variables.

2. PROCEDURE sample_return_name

LOCAL status;

167

Chapter 2. Descriptions of the DECTPU Built-In Procedures

status := GET_INFO (eve$x_replace_dialog,
 "name");

MESSAGE ("The data type of status is: ");
MESSAGE (STR (GET_INFO(status, "type")));
MESSAGE ("The value of status is: ");
MESSAGE (STR (status));

ENDPROCEDURE;

The following example creates an EVE file name dialog box widget and assigns the widget to the
variable eve$x_needfilename_dialog. Next, the fragment assigns to the variable the_value a string that
prompts you for the name of a file to which the buffer’s contents should be written. The fragment
uses the GET_INFO (WIDGET, "widget_id") built-in procedure to assign the dialog box’s label
widget to the variable child_of_box. Finally, the fragment assigns to the label widget’s "labelString"
resource the string contained in the_value.

3.
eve$x_needfilename_dialog := CREATE_WIDGET ("NEEDFILENAME_DIALOG",
 eve$X_widget_hierarchy,
 SCREEN,
 eve$kt_callback_routine);

the_value := "Type filename for writing buffer " +
 get_info (the_buffer, "name");

child_of_box := get_info (WIDGET, "widget_id",
 eve$x_needfilename_dialog,
 "NEEDFILENAME_DIALOG.NEEDFILENAME_LABEL");

status := set (WIDGET, child_of_box, "labelString", the_value);

GET_INFO (WINDOW)

Syntax

Parameters
"current"

Returns the current window on the screen; returns 0 if there is none. GET_INFO (WINDOW[[S]],
"current") always returns the current window, regardless of whether you have first used GET_INFO
(WINDOW[[S]], "fir st") or GET_INFO (WINDOW[[S]], "last").

"first"

Returns the first window in DECTPU’s internal list of windows; returns 0 if there is none.

168

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"last"

Returns the last window in DECTPU’s internal list of windows; returns 0 if there is none.

"next"

Returns the next window in DECTPU’s internal list of windows; returns 0 if there are no more
windows in the list. Use "current" or "first" before "next".

"previous"

Returns the preceding window in DECTPU’s internal list of windows; returns 0 if there are no
previous windows in the list. Use "current" or "last" before "previous".

Return Value

Returns the requested information about the window you specify.

Description

The GET_INFO (WINDOW) procedure returns a window from DECTPU’s internal list of windows or
the current window on the screen. For general information about using all forms of GET_INFO built-in
procedures, see the description of GET_INFO.

GET_INFO (window_variable)

169

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

170

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters

"before_bol"

Returns an integer (1 or 0) that indicates whether the cursor is to the left of the current line’s left
margin. The return value has no meaning if "beyond_eob" is true. Returns 0 if the window you
specified is not mapped.

"beyond_eob"

Returns an integer (1 or 0) that indicates whether the cursor is below the bottom of the buffer.
Returns 0 if the window you specified is not mapped.

"beyond_eol"

Returns an integer (1 or 0) that indicates whether the cursor is beyond the end of the current line.
The return value has no meaning if "beyond_eob" is true. Returns 0 if the window you specified is
not mapped.

"blink_status"

Returns an integer (1 or 0) that indicates whether BLINK is one of the video attributes of the
window’s status line. Use the SET (STATUS_LINE) built-in procedure to establish or change this
parameter.

"blink_video"

Returns an integer (1 or 0) that indicates whether BLINK is one of the video attributes of the
window. Use the SET (VID EO) built-in procedure to establish or change this parameter.

"bold_status"

Returns an integer (1 or 0) that indicates whether BOLD is one of the video attributes of the
window’s status line. Use the SET (STATUS) built-in procedure to establish or change this
parameter.

"bold_video"

Returns an integer (1 or 0) that indicates whether BOLD is one of the video attributes of the
window. Use the SET (VID EO) built-in procedure to establish or change this parameter.

"bound"

Returns an integer (1 or 0) that indicates whether the cursor is located on a character.

"bottom"

Returns an integer that is the number of the last row or last visible row of the specified window,
or the specified window’s text area. The window row whose number is returned depends on the
keyword you specify as the third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords for the third parameter when the second parameter is "bottom", "left", "length",
"right", "top", or "width" are listed in Table 2.6, "GET_INFO (Window_Variable): Valid Keywords
for the Third Parameter".

171

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Table 2.6. GET_INFO (Window_Variable): Valid Keywords for the Third Parameter

Keyword Definition

TEXT A keyword that directs the built-in to return the
specified (left, right, top, or bottom) window
row or column or the number of window rows
or columns on which text can be displayed. By
specifying TEXT instead of VISIBLE_TEXT,
you obtain information about a window’s rows
and columns even if they are invisible because
the window is occluded. If the window is not
occluded, the value returned is the same as the
value returned with VISIBLE_TEXT.

VISIBLE_TEXT A keyword that directs the built-in to return
the specified (left, right, top, or bottom) visible
window row or column or the number of visible
window rows or columns on which text can
be displayed. When DECTPU determines a
window’s last visible text row, DECTPU does
not consider the status line or the bottom scroll
bar to be a text row.

VISIBLE_WINDOW A keyword that directs the built-in to return
the specified (left, right, top, or bottom) visible
window row or column or the number of visible
window rows or columns in the window.

WINDOW A keyword that directs the built-in to return the
specified (left, right, top, or bottom) window
row or column or the number of window
rows or columns in the window. By specifying
WINDOW instead of TEXT, you get the
window’s last row or column, even if it cannot
contain text because it contains a scroll bar or
status line.

By specifying WINDOW instead of
VISIBLE_WINDOW, you get information
about a window’s rows and columns even
if they are invisible because the window is
occluded. If the window is not occluded, the
value returned is the same as the value returned
with VISIBLE_WINDOW.

GET_INFO (window_variable, "bottom", TEXT) is a synonym for GET_INFO (window_variable,
"original_bottom"). The call GET_INFO (window_variable, "bottom", VISIBLE_TEXT) is a
synonym for GET_INFO (window_variable, "visible_bottom").

"buffer"

Returns the buffer that is associated with the window; returns 0 if there is none.

"current_column"

Returns an integer that is the column in which the cursor was most recently located.

172

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"current_row"

Returns an integer that is the row in which the cursor was most recently located.

"display_value"

Returns the display value of the specified window.

"key_map_list"

Returns the string that is the name of the key map list associated with the window you specify.

"left"

Returns an integer that is the number of the leftmost column or leftmost visible column of the
specified window, or the specified window’s text area. The column whose number is returned
depends on the keyword you specify as the third parameter. If you do not specify a keyword, the
default is TEXT. Valid keywords are shown in Table 2–6.

"length"

Returns an integer that is the number of rows or visible rows in the specified window or the specified
window’s text area. The number of rows returned depends on the keyword you specify as the third
parameter. If you do not specify a keyword, the default is TEXT. Valid keywords are shown in Table
2–6.

"middle_of_tab"

Returns an integer (1 or 0) that indicates whether the cursor is in the middle of a tab. The return
value has no meaning if "beyond_eob" is true. This call returns 0 if the window you specified is not
mapped.

"next"

Returns the next window in DECTPU’s internal list of windows; returns 0 if there are no more
windows in the list.

"no_video"

Returns an integer (1 or 0) that indicates whether the video attribute of the window is NONE. Use
the SET (VIDEO) built-in procedure to establish or change this parameter.

"no_video_status"

Returns an integer (1 or 0) that indicates whether the video attribute of the window’s status line is
NONE. Use the SET (STATUS) built-in procedure to establish or change this parameter.

"original_bottom"

Returns an integer that is the screen line number of the bottom of the window when it was created
or last adjusted (does not include status line or scroll bar). Compaq recommends that you use
GET_INFO (window, "bottom", text) to retrieve this information.

"original_length"

Returns an integer that is the number of lines in the window when it was created. The value returned
includes the status line. Compaq recommends that you use GET_INFO (window, "length", window)
to retrieve this information.

173

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"original_top"

Returns an integer that is the screen line number of the top of the window when it was created.

"pad"

Returns an integer (1 or 0) that indicates whether padding blanks have been displayed from column 1
to the left margin (if the left margin is greater than 1) and from the ends of lines to the right margin.
Use the SET (PAD) built-in procedure to establish or change this parameter.

"previous"

Returns the previous window in DECTPU’s internal list of windows; returns 0 if there are no
previous windows in the list.

"reverse_status"

Returns an integer (1 or 0) that indicates whether REVERSE is one of the video attributes of
the window’s status line. Use the SET (STATUS) built-in procedure to establish or change this
parameter.

"reverse_video"

Returns an integer (1 or 0) that indicates whether REVERSE is one of the video attributes of the
window. Use the SET (VIDEO) built-in procedure to establish or change this parameter.

"right"

Returns an integer that is the number of the last column or last visible column of the specified
window or the specified window’s text area. The window column whose number is returned depends
on the keyword you specify as the third parameter. If you do not specify a keyword, the default is
TEXT. Valid keywords are shown in Table 2.6, "GET_INFO (Window_Variable): Valid Keywords
for the Third Parameter".

"screen_update"

Returns the update status of a window. A 0 indicates that updates are off. A 1 indicates that the
window is updated normally. See the SET (SCREEN_UPDATE) built-in procedure in this chapter
for more information.

"scroll"

Returns an integer (1 or 0) that indicates whether scrolling is enabled for the window. Use the SET
(SCROLLING) built-in procedure to establish or change this parameter.

"scroll_amount"

Returns an integer that is the number of lines to scroll. Use the SET built-in procedure to establish or
change this parameter.

"scroll_bar"

Use with DECwindows only.

Returns the specified scroll bar widget that implements the scroll bar associated with a window if it
exists; otherwise it returns 0.

174

Chapter 2. Descriptions of the DECTPU Built-In Procedures

You must specify the HORIZONTAL or VERTICAL keyword as the third parameter to GET_INFO
(window_variable, "scroll_bar"). HORIZONTAL directs DECTPU to return the window’s
horizontal scroll bar; VERTICAL directs DECTPU to return the window’s vertical scroll bar.

"scroll_bar_auto_thumb"

Use with DECwindows only.

Returns an integer (1 or 0) that indicates whether automatic adjustment of the specified scroll bar
slider is enabled. Returns 1 if automatic adjustment is enabled and 0 if it is disabled.

You must specify the HORIZONTAL or VERTICAL keyword as the third parameter to GET_INFO
(window_variable, "scroll_bar_auto_thumb"). HORIZONTAL directs DECTPU to return
information about the window’s horizontal scroll bar; VERTICAL directs DECTPU to return
information about the window’s vertical scroll bar.

"scroll_bottom"

Returns an integer that is the bottom of the scrolling area, an offset from the bottom screen line. Use
the SET (SCROLLING) built-in procedure to establish or change this parameter.

"scroll_top"

Returns an integer that is the top of the scrolling area, an offset from the top screen line. Use the
SET (SCROLLING) built-in procedure to establish or change this parameter.

"shift_amount"

Returns an integer that is the number of columns the window is shifted to the left.

"special_graphics_status"

Returns an integer (1 or 0) that indicates whether SPECIAL_GRAPHICS is one of the video
attributes of the window’s status line. Use the SET (STATUS_LINE) built-in procedure to establish
or change this parameter.

"status_line"

Returns a string that is the text of the status line; returns 0 if there is none. Use the SET
(STATUS_LINE) built-in procedure to establish or change this parameter.

"status_video"

If there is no video attribute or only one video attribute for the window’s status line, the appropriate
video keyword (NONE, BLINK, BOLD, REVERSE, UNDERLINE, or SPECIAL_GRAPHICS) is
returned. If there are multiple video attributes for the window’s status line, the integer 1 is returned.
If there is no status line for the window, the integer 0 is returned. Use the SET (STATUS_LINE)
built-in procedure to establish or change this parameter.

"text"

Returns a keyword that indicates which keyword was used with SET (TEXT). SET (TEXT) controls
text display in a window. Valid keywords are as follows: BLANK_TABS, GRAPHIC_TABS, or
NO_TRANSLATE.

175

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"top"

Returns an integer that is the number of the first row or first visible row of the specified window
or the specified window’s text area. The window row whose number is returned depends on the
keyword you specify as the third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords are shown in Table 2–6.

"underline_status"

Returns an integer (1 or 0) that indicates whether UNDERLINE is one of the video attributes of the
window’s status line. Use the SET (STATUS_LINE) built-in procedure to establish or change this
parameter.

"underline_video"

Returns an integer (1 or 0) that indicates whether UNDERLINE is one of the video attributes of the
window. Use the SET (VID EO) built-in procedure to establish or change this parameter.

"video"

If there is no video attribute or only one video attribute for the window, the appropriate video
keyword (NONE, BLINK, BOLD, REVERSE, or UNDERLINE) is returned. If there are multiple
video attributes for the window, the integer 1 is returned. If you get the return value 1 and you
want to know more about the window’s video attributes, use the specific parameters, such as
"underline_video" and "reverse_video".

Use the SET (VIDEO) built-in procedure to establish or change this parameter.

"visible"

Returns an integer (1 or 0) that indicates whether the window is mapped to the screen and whether it
is occluded.

"visible_bottom"

Returns an integer that is the screen line number of the visible bottom of the window (does not
include status line). Use the ADJUST_WINDOW built-in procedure, create other windows, or map
a window to change this value.

Compaq recommends that you use GET_INFO (window, "bottom", visible_text) to retrieve this
information.

"visible_length"

Returns an integer that is the visible length of the window (includes status line). This value differ
s from the value returned by GET_INFO (window_variable, "original_length") in that the value
returned by "visible_length" is the original length minus the number of window lines (if any) hidden
by occluding windows. Use the ADJUST_WINDOW built-in procedure, create other windows, or
map a window to change this value.

Compaq recommends that you use GET_INFO (window, "length", visible_window) to retrieve this
information.

"visible_top"

Returns an integer that is the screen line number of the visible top of the window. Use the
ADJUST_WINDOW built-in procedure, create other windows, or map a window on top of the
current window to change this value.

176

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Compaq recommends that you use GET_INFO (window, "top", visible_window) to retrieve this
information.

"width"

Returns an integer that is the number of columns or the number of visible columns in the specified
window or the specified window’s text area. The number of columns returned depends on the
keyword you specify as the third parameter. If you do not specify a keyword, the default is TEXT.
Valid keywords are shown in Table 2.6, "GET_INFO (Window_Variable): Valid Keywords for the
Third Parameter".

Use the SET built-in procedure to establish or change this parameter.

Return Values
buffer

Returns requested information about the buffer you specify.

integer

Returns requested information about the array you specify.

keyword

Returns requested information about the keyword you specify.

string

Returns requested information about the string you specify.

widget

Returns requested information about the widget you specify.

window

Returns requested information about the window you specify.

Description
The GET_INFO (window_variable) procedure returns information about a specified window.

For general information about using all forms of GET_INFO built-in procedures, see the description of
GET_INFO.

Examples
1. The following example returns the last line of the window bottom_window . The value returned is the

line that contains the status line or scroll bar, whichever comes last, if the window has a status line or
scroll bar.

last_line := GET_INFO (bottom_window, "bottom", WINDOW);

2. The following example returns the number of the rightmost column in the current window. The
column whose number is returned can be occupied by a vertical scroll bar if one is present. Also, the

177

Chapter 2. Descriptions of the DECTPU Built-In Procedures

returned value changes if you widen the window, but not if you move the window without widening
it.

last_column := GET_INFO (CURRENT_WINDOW, "right", WINDOW);

3. The following example returns the number of the first row in the current window. The row number
returned is relative to the top of the DECTPU screen. Thus, if the current window is not the top
window on the DECTPU screen, the row number returned is not 1.

first_row := GET_INFO (CURRENT_WINDOW, "top", WINDOW);

HELP_TEXT

Syntax

Parameters
library-file

A string that is the file specification of the help library. The string can be a logical name.

topic

A string that is the initial library topic. If this string is empty, the top level of help is displayed.

ON, 1

A keyword or integer that specifies that the VMS Help utility should prompt you for input.

OFF, 0

A keyword or integer that specifies that prompting should be turned off.

buffer

The buffer to which the help information is written.

Description
The HELP_TEXT procedure provides help information on the topic you specify. You must specify the
help library to be used for help information, the initial library topic, the prompting mode for the Help
utility, and the buffer to which DECTPU will write the help information. You can enter a complete file
specification for the help library as the first parameter. However, if you enter only a file name, the Help
utility provides a default device (SYS$HELP) and default file type (.HLB).

If you do not specify an initial topic as the second parameter, you must enter a null string as a
placeholder. The Help utility then displays the top level of help available in the specified library.

When the prompting mode is ON for the HELP_TEXT built-in procedure, the following prompt appears
if the help text contains more than one window of information:

178

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Press RETURN to continue ...

Before DECTPU invokes the Help utility, it erases the buffer specified as the help buffer. (In EVE,
the buffer to which the help information is written is represented by the variable help_buffer.) If the
help buffer is associated with a window that is mapped to the screen, the window is updated each time
DECTPU prompts you for input. If you set the prompting mode to OFF, the window is not updated.

If help_buffer is not associated with a window that is mapped to the screen, the information from the
Help utility is not visible.

Signaled Errors

TPU$_BADKEY ERROR Only ON and OFF are allowed.
TPU$_INVPARAM ERROR One or more of the specified

parameters have the wrong type.
TPU$_NOTMODIFIABLE WARNING The output buffer is currently

unmodifiable.
TPU$_OPENIN ERROR Error opening help library.
TPU$_SYSERROR ERROR Error activating the help library.
TPU$_TOOFEW ERROR The HELP_TEXT built-in

requires four parameters.
TPU$_TOOMANY ERROR You specified more than four

parameters.

Examples
1. The code in the following example causes the top level of help information from the SYS

$HELP:TPUHELP.HLB library to be written to the help buffer. The Help utility prompting mode is
not turned on.

HELP_TEXT ("tpuhelp", "", OFF ,help_buffer)

2. This procedure displays information about getting out of help mode on the status line, prompts you
for input, and maps help_buffer to the screen:

! Interactive HELP

PROCEDURE user_help

 SET (STATUS_LINE, info_window, UNDERLINE,
 "Press Ctrl/Z to leave prompts then Ctrl/F to resume editing");

 MAP (info_window, help_buffer);
 HELP_TEXT ("USERHELP", READ_LINE ("Topic: "), ON, help_buffer);
ENDPROCEDURE;

INDEX

Syntax

179

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
string

The string within which you want to find a character or a substring.

substring

A character or a substring whose leftmost character location you want to find within string1 .

Return Value
An integer that shows the character position within a string of the substring you specify.

Description
The INDEX procedure locates a character or a substring within a string and returns its location within
the string. INDEX finds the leftmost occurrence of substring within string. It returns an integer that
indicates the character position in string at which substring was found. If string is not found, DECTPU
returns a 0. The character positions within string start at the left with 1.

Signaled Errors
TPU$_NEEDTOASSIGN ERROR INDEX must be on the right-

hand side of an assignment
statement.

TPU$_TOOFEW ERROR INDEX requires two arguments.
TPU$_TOOMANY ERROR INDEX accepts only two

arguments.
TPU$_INVPARAM ERROR The arguments to INDEX must

be strings.

Examples
1. The following example stores an integer value of 6 in the variable loc because the substring "67" is

found starting at character position 6 within the string "1234567":

loc := INDEX ("1234567","67")

2. The following example uses the INDEX built-in procedure to return true if a given item is an
alphanumeric character; otherwise, it returns false. (The list of characters in this example does
not include characters that are not in the ASCII range of the DEC Multinational Character Set.
However, you can write a procedure that uses such characters because DECTPU supports the DEC
Multinational Character Set.) The parameter that is passed to this procedure is assumed to be a single
character.

PROCEDURE user_is_character (c)

 LOCAL symbol_characters;

 symbol_characters :=
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";

 RETURN INDEX(symbol_characters, c) > 0;

180

Chapter 2. Descriptions of the DECTPU Built-In Procedures

ENDPROCEDURE;

INT

Syntax

Parameters
integer1

Any integer value. INT accepts a parameter of type integer so you need not check the type of the
parameter you supply.

keyword

A keyword whose internal value you want.

string

A string that consists of numeric characters.

integer2

An integer that specifies the radix (base) of the string being converted. The default radix is 10. The
other allowable values are 8 and 16.

Return Value
The integer equivalent of the parameter you specify.

Description
The INT procedure converts a keyword or a string that consists of numeric characters into an integer.
You can use INT to store an integer value for a keyword or a string of numeric characters in a variable.
You can then use the variable name in operations that require integer data types.

INT signals a warning and returns 0 if the string is not a number.

Signaled Errors
TPU$_NEEDTOASSIGN ERROR INT returns a value that must be

used.
TPU$_TOOFEW ERROR INT requires one parameter.
TPU$_TOOMANY ERROR INT accepts only one parameter.
TPU$_ARGMISMATCH The parameter to INT was not a

keyword or string.
TPU$_INVNUMSTR WARNING The string you passed to INT was

not a number.

181

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_NULLSTRING WARNING You passed a string of length 0 to
INT.

TPU$_BADVALUE ERROR You specified a value other
than 8, 10, or 16 for the radix
parameter.

Examples

1. The following example converts the string "12345" into an integer value and stores it in the variable
user_int:

user_int := INT ("12345")

2. The following example is used by commands that prompt for integers. The procedure returns true
if prompting worked or was not needed; otherwise it returns false. The number that is returned is
returned in the output parameter.

! Parameters:
!
! new_number New integer value - output
! prompt_string Text of prompt - input
! no_value_message Message printed if you press the
! RETURN key to get out of the command - input

PROCEDURE user_prompt_number (new_number, prompt_string,
 no_value_message)
 LOCAL read_line_string;

 ON_ERROR
 IF ERROR = TPU$_NULLSTRING
 THEN
 MESSAGE (no_value_message);
 ELSE
 IF ERROR = TPU$_INVNUMSTR
 THEN
 MESSAGE (FAO ("Don’t understand !AS",
 read_line_string));
 ELSE
 MESSAGE (ERROR_TEXT);
 ENDIF;
 ENDIF;
 user_prompt_number := 0;
 ENDON_ERROR;

 user_prompt_number := 1;
 read_line_string := READ_LINE (prompt_string);

 EDIT (read_line_string, TRIM);
 TRANSLATE (read_line_string, "1", "l");

 new_number := INT (read_line_string);
ENDPROCEDURE;

JOURNAL_CLOSE

182

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
None

Description
JOURNAL_CLOSE None. The JOURNAL_CLOSE procedure closes an open keystroke journal file
(if one exists for your session) and saves the journal file. JOURNAL_CLOSE applies only to keystroke
journaling. Once you specify JOURNAL_CLOSE, DECTPU does not keep a keystroke journal of your
work until you specify JOURNAL_OPEN. Calling the JOURNAL_OPEN built-in procedure causes
DECTPU to open a new keystroke journal file for your session.

To turn off buffer-change journaling, see the description of the SET (JOURNALING) built-in procedure.

Caution

Journal files contain a record of all information being edited. Therefore, when editing files that
containsecure or confidential data, be sure to keep the journal files secure as well.

Signaled Errors

TPU$_TOOMANY ERROR JOURNAL_CLOSE accepts no
arguments.

JOURNAL_OPEN

Syntax

Parameters
file-name

A string that is the name of the keystroke journal file created for your editing session.

Return Value
The file specification of the file journaled.

Description
The JOURNAL_OPEN procedure opens a keystroke journal file and starts making a copy of your
editing session by recording every keystroke you make. If you invoked DECTPU with the /RECOVER
qualifier, then DECTPU recovers the previous aborted session before recording new keystrokes.
JOURNAL_OPEN optionally returns a string that contains the file specification of the file journaled.
JOURNAL_OPEN applies only to keystroke journaling.

183

Chapter 2. Descriptions of the DECTPU Built-In Procedures

DECTPU saves the keystrokes of your editing session by storing them in a buffer. DECTPU writes the
contents of this buffer to the file that you specify as a journal file. If DECTPU terminates unexpectedly,
you can recover your editing session by using this journal file. To do this, invoke DECTPU with the /
RECOVER qualifier. See the Guide to the DEC Text Processing Utility for information on recovering
files.

To turn on buffer-change journaling, see the description of the SET (JOURNALING) built-in procedure.

By default, DECTPU writes keystrokes to the journal file whenever the journal buffer contains 500 bytes
of data. DECTPU also tries to write keystrokes to the journal file when it aborts.

When you recover a DECTPU session, your terminal characteristics should be the same as they were
when the journal file was created. If they are not the same, DECTPU informs you what characteristics
are different and asks whether you want to continue recovering. If you answer yes, DECTPU tries to
recover; however, the different terminal settings may cause differences between the recovered session
and the original session.

There are no keystrokes in batch mode. You can use JOURNAL_OPEN nodisplay mode with the /
NODISPLAY qualifier; however, when you do this, nothing is journaled.

Caution

Journal files contain a record of all information being edited. Therefore, when editing files that
containsecure or confidential data, be sure to keep the journal files secure as well.

Signaled Errors

TPU$_BADJOUFILE ERROR JOURNAL_OPEN could not
open the journal file.

TPU$_TOOFEW ERROR JOURNAL_OPEN requires one
argument.

TPU$_TOOMANY ERROR JOURNAL_OPEN accept s only
one argument.

TPU$_INVPARAM ERROR The parameter to
JOURNAL_OPEN must be a
string.

TPU$_ASYNCACTIVE WARNING You cannot journal with
asynchronous handlers declared.

TPU$_J NLOPEN ERROR A journal file is already open.

Examples
1. The following example causes DECTPU to open a file named TEST.FIL as the journal file for

your editing session. DECTPU uses your current default device and directory to complete the file
specification.

JOURNAL_OPEN ("test.fil")

2. The following example starts journaling. It can be called from the TPU$INIT_ PROCEDURE after a
file is read into the current buffer.

PROCEDURE user_start_journal

184

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 LOCAL default_journal_name, ! Default journal name
 aux_journal_name; ! Auxiliary journal name derived
 ! from file name
 IF (GET_INFO (COMMAND_LINE, "journal") = 1)
 AND
 (GET_INFO (COMMAND_LINE, "read_only") <> 1)
 THEN
 aux_journal_name := GET_INFO (CURRENT_BUFFER, "file_name");

 IF aux_journal_name = ""
 THEN
 aux_journal_name := GET_INFO (CURRENT_BUFFER, "output_file");
 ENDIF;

 IF (aux_journal_name = "") or (aux_journal_name = 0)
 THEN
 default_journal_name := "user.TJL";
 ELSE
 default_journal_name := ".TJL";
 ENDIF;

 journal_file := GET_INFO (COMMAND_LINE, "journal_file");
 journal_file := FILE_PARSE (journal_file, default_journal_name,
 aux_journal_name);
 JOURNAL_OPEN (journal_file);
 ENDIF;
ENDPROCEDURE;

KEY_NAME

Syntax

Parameters
integer

An integer that is either the integer representation of a keyword for a key, or is a value between 0
and 255 that DECTPU interprets as the value of a character in the DEC Multinational Character Set.

key_name

A keyword that is the DECTPU name for a key.

185

Chapter 2. Descriptions of the DECTPU Built-In Procedures

string

A string that is the value of a key from the main keyboard.

SHIFT_KEY

A keyword that specifies that the key name created includes one or more shift keys. The
SHIFT_KEY keyword specifies the DECTPU shift key, not the key on the keyboard marked
Shift. The shift key is also referred to as the GOLD key in EVE. (See the description of the SET
(SHIFT_KEY) built-in procedure in the VAX Text Processing Utility Manual.)

SHIFT_MODIFIED

A keyword that specifies that the key name created by the built-in includes the key marked Shift on
the keyboard that toggles between uppercase and lowercase, not the key known as the GOLD key.

Compaq recommends that you avoid using this keyword in the non-DECwindows version of
DECTPU. In non-DECwindows DECTPU, when you use this keyword to create a key name, the
keyboard cannot generate a corresponding key.

ALT_MODIFIED

A keyword that specifies that the key name created by the built-in includes the Alt key. On most
Compaq keyboards, the Alt key is labeled Compose Character.

ALT_MODIFIED modifies only function keys and keypad keys.

Compaq recommends that you avoid using this keyword in the non-DECwindows version of
DECTPU. In non-DECwindows DECTPU, when you use this keyword to create a key name, the
keyboard cannot generate a corresponding key.

CTRL_MODIFIED

A keyword that specifies that the key name created by the built-in includes the Ctrl key.

CTRL_MODIFIED modifies only function keys and keypad keys.

Compaq recommends that you avoid using this keyword in the non-DECwindows version of
DECTPU. In non-DECwindows DECTPU, when you use this keyword to create a key name, the
keyboard cannot generate a corresponding key.

HELP_MODIFIED

A keyword that specifies that the key name created by the built-in includes the Help key.
HELP_MODIFIED modifies only function keys and keypad keys.

Compaq recommends that you avoid using this keyword in the non-DECwindows version of
DECTPU. In non-DECwindows DECTPU, when you use this keyword to create a key name, the
keyboard cannot generate a corresponding key.

FUNCTION

A parameter that specifies that the resulting key name is to be that of a function key.

KEYPAD

A parameter that specifies that the resulting key name is to be that of a keypad key.

186

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Return Value
A DECTPU keyword to be used as the name of a key.

Description
The KEY_NAME procedure returns a DECTPU keyword for a key or a combination of keys, or creates
a keyword used as a key name by DECTPU. With KEY_NAME, you can create key names that are
modified by more than one key. For example, you can create a name for a key sequence that consists of
the GOLD key, the Ctrl key, and an alphanumeric or keypad key.

The GET_INFO (key_name, "key_modifiers") built-in procedure returns a bit-encoded integer whose
value represents the key modifier or combination of key modifiers used to create a given key name. For
more information about interpreting the integer returned, see the description of GET_INFO (key_name,
"key_modifiers").

The GET_INFO (keyword, "name") built-in procedure has been extended to return a string that includes
all the key modifier keywords used to create a key name. For more information about fetching the string
equivalent of a key name, see the description of GET_INFO (keyword, "name").

If you specify only one DECTPU key name as an argument to KEY_NAME, KEY_NAME is sensitive
to the case of the argument. For example, the following expressions do not evaluate to the same value:

KEY_NAME ("Z");
KEY_NAME ("z");

When you use the optional parameter SHIFT_KEY with KEY_NAME, however, KEY_NAME is case
insensitive and the following statements return the same keyword:

KEY_NAME ("Z", SHIFT_KEY);
KEY_NAME ("z", SHIFT_KEY);

Signaled Errors

TPU&_INCKWDCOM WARNING Inconsistent keyword
combination.

TPU$_MUSTBEONE WARNING String must be one character
long.

TPU$_NOTDEFINABLE WARNING Second argument is not a valid
reference to a key.

TPU$_NEEDTOASSIGN ERROR KEY_NAME call must be on the
right-hand side of an assignment
statement.

TPU$_ARGMISMATCH ERROR Wrong type of data sent to the
KEY_NAME built-in.

TPU$_BADKEY ERROR KEY_NAME accepts
SHIFT_KEY, FUNCTION,
or KEYPAD as a keyword
argument.

TPU$_TOOFEW ERROR Too few arguments passed to the
KEY_NAME built-in.

187

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_TOOMANY ERROR Too many arguments passed to
the KEY_NAME built-in.

Examples
1. The following example creates a name for the key sequence GOLD/Ctrl/KP4 and binds the EVE

FILL command to the resulting key sequence:

new_key := KEY_NAME (KP4, Ctrl_MODIFIED, SHIFT_KEY);
DEFINE_KEY ("eve_fill", new_key);

2. The following example shows a portion of a command file that defines the keys for an editing
interface that emulates EDT:

! Procedure to define keys to emulate EDT

PROCEDURE user_define_edtkey

! Bind the EDT Fndnxt function to PF3

 DEFINE_KEY ("edt$search_next", PF3);

! Bind the EDT Find function to SHIFT PF3

 DEFINE_KEY ("edt$search", KEY_NAME (PF3, SHIFT_KEY));
ENDPROCEDURE;

LAST_KEY

Syntax

Parameters
None.

Return Value
A marker that returns a keyword for the last key that was entered, read, or executed.

Description
The LAST_KEY procedure returns a DECTPU keyword for the last key that was entered, read, or
executed. When DECTPU is replaying a learn sequence or executing the program bound to a key,
LAST_KEY returns the last key replayed or processed so far—not the last key that was pressed to invoke
the learn sequence or program.

When you invoke DECTPU with the /NODISPLAY qualifier, the value 0 is returned for LAST_KEY,
except in the following case: If you precede the LAST_KEY statement with a READ_LINE statement,
LAST_KEY can return a key name that represents the last key read by READ_LINE, Ctrl/Z, or the
Return key. See the description of READ_LINE for more information on the values that LAST_KEY can
return when you use LAST_KEY while running DECTPU in /NO_DISPLAY mode.

188

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors
TPU$_TOOMANY ERROR Too many arguments passed to

the LAST_KEY built-in.

Examples
The following example prompts you for input for key definitions:

PROCEDURE user_define_key

 def := READ_LINE ("Definition: ");
 key := READ_LINE ("Press key to define.",1);
 IF LENGTH (key) > 0
 THEN
 key := KEY_NAME (key)
 ELSE
 key := LAST_KEY;
 ENDIF;
 DEFINE_KEY (def, key);
ENDPROCEDURE;

LEARN_ABORT

Syntax

Parameters
None

Return Value
An integer that indicates whether a learn sequence was actually replaying at the time the
LEARN_ABORT statement was executed. The value 1 is returned if a learn sequence was being
replayed; otherwise it returns 0. The value 1 is returned each time LEARN_ABORT executes until
DECTPU gets back to its main key-reading loop.

Description
The LEARN_ABORT procedure causes a learn sequence being replayed to be terminated whether or not
the learn sequence has completed. Only the currently executing learn sequence is aborted.

Whenever you write a procedure that can be bound to a key, the procedure should invoke the
LEARN_ABORT built-in procedure in case of error. Using LEARN_ABORT prevents a learn sequence
from finishing if the learn sequence calls the user-written procedure and the procedure is not executed
successfully.

Signaled Errors
TPU$_TOOMANY ERROR The LEARN_ABORT built-in

takes no parameters.

189

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Example
If an error occurs, the following error handler aborts any executing learn sequence:

ON_ERROR
 MESSAGE ("Aborting command because of error.");
 LEARN_ABORT;
 ABORT;
ENDON_ERROR

LEARN_BEGIN and LEARN_END

Syntax

Parameters
EXACT

Causes DECTPU to reuse the input, or learn sequence, that you entered for each READ_LINE,
READ_KEY, or READ_CHAR built-in procedure.

NO_EXACT

Causes DECTPU to prompt for new input each time a READ_LINE, READ_KEY, or
READ_CHAR built-in procedure is replayed within a learn sequence.

Return Value
A variable of type learn that stores the keystrokes you specify.

Description
The LEARN_BEGIN and LEARN_END procedures saves all keystrokes typed between
LEARN_BEGIN and LEARN_END. LEARN_BEGIN starts saving all keystrokes that you type.
LEARN_END stops the “learn mode” of DECTPU and returns a learn sequence that consists of all the
keystrokes that you entered.

You can use the variable name that you assign to a learn sequence as the parameter for the
EXECUTE built-in procedure to replay a learn sequence. You can also use the variable name with the
DEFINE_KEY built-in procedure to bind the sequence to a key so that the learn sequence is executed
when you press that key.

Learn sequences are different from other DECTPU programs because they are created with keystrokes
rather than with DECTPU statements. You create the learn sequence as you are entering text and
executing DECTPU commands. Because learn sequences make it easy to collect and execute a sequence

190

Chapter 2. Descriptions of the DECTPU Built-In Procedures

of DECTPU commands, they are convenient for creating temporary “programs”. You can replay these
learn sequences during the editing session in which you create them.

Learn sequences are not flexible enough to use for writing general programs. Learn sequences are best
suited for saving a series of editing actions that you perform many times during a single editing session.

You can save learn sequences from session to session so that you can replay them in an editing session
other than the one in which you created them. To save a learn sequence, bind it to a key. Before ending
your editing session, use the SAVE built-in procedure to do an incremental save to the section file you
are using. Using the SAVE built-in procedure causes the new definitions from the current session to be
added to the section file with which you invoked DECTPU. For more information, see the SAVE built-in
procedure. Learn sequences cannot be transferred from one version of DECTPU to another.

Note

You should not use built-in procedures that can return WARNING or ERROR messages as a part of
a learn sequence because learn sequences do not stop on error conditions. Because the learn sequence
continues executing after an error or warning condition, the editing actions that are executed after an
error or a warning may not take effect at the character position you desire.

If, for example, a SEARCH built-in procedure that you use as a part of a learn sequence fails to find the
string you specify and issues a warning, the learn sequence does not stop executing. This can cause the
rest of the learn sequence to take inappropriate editing actions.

Prekey and postkey procedures interact with learn sequences in the following order:

1. When you press the key or key sequence to which the learn sequence is bound, DECTPU executes
the prekey procedure of that key if a prekey procedure has been set.

2. For each key in the learn sequence, DECTPU executes procedures or programs in the following
order:

a. DECTPU executes the prekey procedure of that key if a prekey procedure has been set.

b. DECTPU executes the code bound to the key itself.

c. DECTPU executes the postkey procedure of that key if a postkey procedure has been set.

3. When all keys in the learn sequence have been processed, DECTPU executes the postkey procedure,
if one has been set, for the key to which the entire learn sequence was bound.

Note

If, during the recording of a learn sequence, a margin action route is executed (for example EVE’s word
wrap), the margin action routine is not executed when the learn sequence is replayed.

Signaled Errors

TPU$_NOTLEARNING WARNING LEARN_BEGIN was not
used since the last call to
LEARN_END.

TPU$_ONELEARN WARNING A learn sequence is already in
progress.

191

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_TOOFEW ERROR LEARN_BEGIN requires one
argument.

TPU$_TOOMANY ERROR LEARN_BEGIN accepts only
one argument.

TPU$_INVPARAM ERROR The specified parameter has the
wrong type.

Examples
The following example shows how to combine LEARN_BEGIN and LEARN_END so that all of the
keystrokes that you enter between them are saved. The (EXACT) keyword specifies that if you use
READ_LINE, READ_CHAR, or READ_KEY within the learn sequence, any input that you enter for
these built-in procedures is repeated exactly when you replay the learn sequence.

LEARN_BEGIN (EXACT)
 .
 .
 .
This represents a typical editing session,
in which you perform commands that are
bound to keys.
 .
 .
 .
do_again := LEARN_END

LENGTH

Syntax

Parameters
buffer

The buffer whose length you want to determine. If you specify a buffer, line terminators are not
counted as character positions.

range

The range whose length you want to determine. If you specify a range, line terminators are not
counted as character positions.

string

The string whose length you want to determine.

Return Value
An integer that indicates the number of character positions in a buffer, range, or string you specify.

192

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The LENGTH procedure returns an integer that is the number of character positions in a buffer, range, or
string.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR LENGTH must be on the right-
hand side of an assignment
statement.

TPU$_TOOFEW ERROR LENGTH requires one argument.
TPU$_TOOMANY ERROR LENGTH accepts only one

argument.
TPU$_ARGMISMATCH ERROR The argument to LENGTH must

be a string or a range.
TPU$_CONTROLC ERROR You pressed Ctrl/C while

LENGTH was executing.

Examples
1. The following example stores the number of characters in the string "Don Quixote" in the variable

str_len . In this example, the integer value is 11:

str_len := LENGTH ("Don Quixote")

2. The following example puts a marker without any video attributes at the current position. The
marker is assigned to a variable that begins with user_mark_ and ends with the string you pass as a
parameter. The procedure writes a message to the message area verifying the mark name that comes
from the input parameter.

! Parameters:
!
! mark_parameter is user-supplied string,
! which is used as a mark name

PROCEDURE user_mark_ (mark_parameter)

! Local copy of mark_parameter

 LOCAL mark_name;

 ON_ERROR
 MESSAGE (FAO ("Cannot use !AS as a mark name", mark_name));
 RETURN;
 ENDON_ERROR;

! 132 - length ("user_mark_")

 IF LENGTH (mark_parameter) > 122
 THEN
 mark_name := SUBSTR (mark_name, 1, 122);
 ELSE
 mark_name := mark_parameter;

193

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 ENDIF;

 EXECUTE ("user_mark_" + mark_name + " := MARK (NONE)");
 MESSAGE (FAO ("Current position marked as !AS", mark_name));
ENDPROCEDURE;

LINE_BEGIN

Syntax

Parameters
None.

Description
The LINE_BEGIN procedure matches the beginning of a line when used as part of a complex pattern
or as an argument to SEARCH. Although LINE_BEGIN behaves much like a built-in, it is actually a
keyword.

LINE_BEGIN lets you search for complex strings by creating patterns that match certain conditions. For
example, if you want to find all occurrences of the exclamation point (!) when it is the first character in
the line, use LINE_BEGIN to create the following pattern:

pat1 := LINE_BEGIN + "!";

For more information on patterns, see the Guide to the DEC Text Processing Utility.

Signaled Errors
LINE_BEGIN is a keyword and has no completion codes.

Examples
1. The following example stores the beginning-of-line condition in the variable pat1 :

pat1 := LINE_BEGIN

2. The following example removes all lines that start with Compaq Standard Runoff (DSR) commands
from a file by searching for a pattern that has a period (.) at the beginning of a line and then
removing the lines that match this condition:

PROCEDURE user_remove_dsrlines

 LOCAL s1,
 pat1;

 pat1 := LINE_BEGIN + ".";

 LOOP
 s1 := SEARCH_QUIETLY (pat1, FORWARD);
 EXITIF s1 = 0;
 POSITION (s1);

194

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 ERASE_LINE;
 ENDLOOP;
ENDPROCEDURE;

LINE_END

Syntax

Parameters
None

Description
The LINE_END procedure matches the end of a line when used as part of a complex pattern or as an
argument to SEARCH. Although LINE_END behaves much like a built-in, it is actually a keyword.

The end-of-line condition is one character position to the right of the last character on a line.

For more information on patterns, see the Guide to the DEC Text Processing Utility.

Signaled Errors
LINE_END is a keyword and has no completion codes.

Examples
1. The following example stores the LINE_END keyword in the variable pat1. You can use Pat1 as an

argument to the SEARCH built-in or as part of a complex pattern.

pat1 := LINE_END

2. In the following example, if you are not already at the end of the current line, the preceding
procedure moves the editing point to the end of the line:

2. PROCEDURE user_end_of_line

 LOCAL eol_range;

 eol_range := SEARCH_QUIETLY (LINE_END, FORWARD);

 IF eol_range <> 0
 THEN
 POSITION (eol_range);
 ENDIF;
ENDPROCEDURE;

LOCATE_MOUSE

Syntax

195

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
buffer

The buffer whose length you want to determine. If you specify a buffer, line terminators are not
counted as character positions.

range

The range whose length you want to determine. If you specify a range, line terminators are not
counted as character positions.

string

The string whose length you want to determine.

Return Value
An integer that indicates whether the pointer was found in a window. The value is 1 if DECTPU finds a
window position; otherwise it is 0.

Description
The LOCATE_MOUSE procedure locates the window position of the pointer at the time
LOCATE_MOUSE is invoked. LOCATE_MOUSE returns the window name and the window position
of the pointer and optionally returns a status that indicates whether the pointer was found in a window.
When you press a mouse button, DECTPU determines the location of the mouse pointer and makes
that information available while the code bound to the mouse button is being processed. Mouse pointer
location information is not available at any other time.

In DECwindows DECTPU, you can use the LOCATE_MOUSE built-in procedure anytime after the first
keyboard or mouse-button event. The built-in returns the location occupied by the pointer cursor at the
time of the most recent keyboard or mouse button event.

If there is no mouse information available (because no mouse button has been pressed or if the mouse
has been disabled using SET (MOUSE)), LOCATE_MOUSE signals the status TPU$_MOUSEINV.

Signaled Errors

TPU$_MOUSEINV WARNING The mouse position is not
currently valid.

TPU$_TOOFEW ERROR LOCATE_MOUSE requires three
parameters.

TPU$_TOOMANY ERROR LOCATE_MOUSE accepts at
most three parameters.

TPU$_BADDELETE ERROR You specified a constant as one
or more of the parameters.

Examples
1. The following example statement returns an integer in the variable status that indicates whether the

pointer cursor was found in a window; returns the window in the parameter new_window where

196

Chapter 2. Descriptions of the DECTPU Built-In Procedures

the mouse was found; returns an integer in the parameter x_value that specifies the pointer cursor’s
location in the horizontal dimension; and returns an integer in the parameter y_value that specifies
the pointer cursor’s location in the vertical dimension.

status := LOCATE_MOUSE (new_window, x_value, y_value);

2. In the following example, binding the user_move_to_mouse procedure to a mouse button moves
the cursor to the mouse location. The user_move_to_mouse procedure is essentially equivalent to
POSITION (MOUSE).

PROCEDURE user_move_to_mouse

 LOCAL my_window,
 x_1,
 y1;

 IF (LOCATE_MOUSE (my_window, x_1, Y1) <> 0)
 THEN
 IF (CURRENT_WINDOW <> my_window)
 THEN
 POSITION (my_window);
 UPDATE (my_window);
 ENDIF;
 CURSOR_VERTICAL (y1 - (CURRENT_ROW - GET_INFO
 (my_window,"visible_top") + 1));
 CURSOR_HORIZONTAL (CURRENT_COLUMN - x_1);
 ENDIF;
ENDPROCEDURE;

CURRENT_ROW and CURRENT_COLUMN return screen-relative location information, while
LOCATE_MOUSE returns window-relative location information.

LOOKUP_KEY

Syntax

Parameters

key-name

A DECTPU key name for a key or a combination of keys. See the Guide to the DEC Text Processing
Utility for a list of the DECTPU key names for the LK201, LK401, and VT100-series keyboards.

COMMENT

A keyword that specifies that the LOOKUP_KEY built-in procedure is to return the comment
supplied when the key was defined. If no comment was supplied, the LOOKUP_KEY built-in
returns the integer zero.

197

Chapter 2. Descriptions of the DECTPU Built-In Procedures

KEY_MAP

A keyword that specifies that the LOOKUP_KEY built-in procedure is to return the key map
in which the key’s definition is stored. If you specify a key that is not defined in any key map,
LOOKUP_KEY returns a null string.

PROGRAM

A keyword that specifies that the LOOKUP_KEY built-in procedure is to return the program or
learn sequence bound to the key specified. If the key is not defined, the LOOKUP_KEY built-in
returns the integer 0.

string1

The name of the key map from which the LOOKUP_KEY built-in procedure is to get the key
definition. Use this optional parameter if the key is defined in more than one key map. If you do
not specify a key map or a key map list for the third parameter, the first definition found for the
specified key in the key map list bound to the current buffer is returned.

string2

The name of the key map list from which the LOOKUP_KEY built-in procedure is to get the key
definition. Use this optional parameter if the key is defined in more than one key map list. If you
do not specify a key map or a key map list for the third parameter, the first definition found for the
specified key in the key map list bound to the current buffer is returned.

Return Values
integer

The integer 0. This value is returned if the key specified as a parameter has no definition.

learn_sequence

The learn sequence bound to the key specified as a parameter.

program

The program bound to the key specified as a parameter.

string3

If you specified COMMENT as the second parameter, string3 is the comment bound to the key
specified as the first parameter. If you specified KEY_MAP as the second parameter, string3 is the
string naming the key map in which the key definition was found.

Description
The LOOKUP_KEY procedure returns the executable code or the comment that is associated with the
key that you specify. The code can be returned as a program or as a learn sequence. The comment is
returned as a string. LOOKUP_KEY can return a program, a learn sequence, a string, or the integer 0 (0
means that the key has no definition).

LOOKUP_KEY is useful when you are defining keys temporarily during an editing session and you
want to check the existing definitions of a key.

198

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_NOTDEFINABLE WARNING Argument is not a valid reference
to a key.

TPU$_NOKEYMAP WARNING Argument is not a defined key
map.

TPU$_NOKEYMAPLIST WARNING Argument is not a defined key
map list.

TPU$_KEYMAPNTFND WARNING The specified key map is not
found.

TPU$_EMPTYKMLIST WARNING The specified key map list
contains no key maps.

TPU$_TOOFEW ERROR Too few arguments passed to the
LOOKUP_KEY built-in.

TPU$_TOOMANY ERROR Too many arguments passed to
the LOOKUP_KEY built- in.

TPU$_NEEDTOASSIGN ERROR LOOKUP_KEY must be on the
right-hand side of an assignment
statement.

TPU$_INVPARAM ERROR Wrong type of data sent to the
LOOKUP_KEY built-in.

TPU$_BADKEY ERROR An unknown keyword was
used as an argument. Only
PROGRAM, COMMENT, and
KEY_MAP are valid keywords.

Examples
1. The following example returns the executable code that is associated with key1. The second

keyword, PROGRAM, indicates that the result is returned to a variable of type program or learn.

programx := LOOKUP_KEY (key1, PROGRAM)

2. The following example returns the comment associated with a particular key:

PROCEDURE user_get_key_info
 LOCAL key_to_interpret,
 key_info;

 MESSAGE ("Press the key you want information on: ");

 key_to_interpret := READ_KEY;
 key_info := LOOKUP_KEY (key_to_interpret, COMMENT);

 IF key_info <> ""
 THEN
 MESSAGE ("Comment: " + key_info);
 ELSE
 MESSAGE ("No comment is associated with that key.");
 ENDIF;
ENDPROCEDURE;

199

Chapter 2. Descriptions of the DECTPU Built-In Procedures

3. The following example implements multiple shift keys:

PROCEDURE shift_key_handler (key_map_list_name);

 LOCAL bound_program;

 bound_program := LOOKUP_KEY (READ_KEY, PROGRAM, "key_map_list_name");

 IF bound_program <> 0
 THEN
 EXECUTE (bound_program);
 ELSE
 MESSAGE ("Attempt to execute undefined key");
 ENDIF;
ENDPROCEDURE;

red_keys := CREATE_KEY_MAP ("red_keys");

red_key_map_list := CREATE_KEY_MAP_LIST ("red_key_map_list",
 red_keys);
DEFINE_KEY ("shift_key_handler (red_key_map_list)", PF3,
 "RED shift key");

LOWER_WIDGET

Syntax

Parameters

widget

The widget you want DECTPU to lower. The specified widget must be a subclass of
WindowObjClass.

Description

The LOWER_WIDGET procedure places the widget at the bottom of a viewing stack. This prevents
the widget window associated with the widget from obscuring any sibling windows. LOWER_WIDGET
calls the XLIB routine XLowerWindow.

Signaled Errors

TPU$_INVPARAM ERROR The parameter to
LOWER_WIDGET has the
wrong data type.

TPU$_NORETURNVALUE ERROR This built-in does not return a
result.

TPU$_NOTSUBCLASS WARNING The parameter to
LOWER_WIDGET is not a

200

Chapter 2. Descriptions of the DECTPU Built-In Procedures

widget that has an associated
widget window.

TPU$_TOOFEW ERROR You specified too few
parameters.

TPU$_TOOMANY ERROR You specified too many
parameters.

MANAGE_WIDGET

Syntax

Parameters
widget

The widget to be managed.

Description
The MANAGE_WIDGET procedure makes the specified widget or widgets visible, provided that their
parent widget is also visible.

MANAGE_WIDGET allows the specified widget’s parent to allocate space for the widget by laying out
all its children for display. The parent ignores unmanaged children so that they do not take up space on
the screen. If the parent widget is realized, and the specified widget’s mappedWhenManaged resource is
true (the default), then the widget becomes visible on the screen.

If you have multiple children of a single widget that you want to manage, include them in a single call to
MANAGE_WIDGET. Managing several widgets at once is more efficient than managing one widget at
a time.

All widgets passed in the same MANAGE_WIDGET operation must have the same parent.

Signaled Errors

TPU$_INVPARAM ERROR You specified a parameter of the
wrong type.

TPU$_TOOFEW ERROR Too few arguments passed to the
MANAGE_WIDGET built-in.

TPU$_NORETURNVALUE ERROR MANAGE_WIDGET cannot
return a value.

TPU$_REQUIRESDECW ERROR You can use the
MANAGE_WIDGET built-
in only if you are using
DECwindows DECTPU.

TPU$_WIDMISMATCH ERROR You have specified a widget
whose class is not supported.

201

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Example
For a sample procedure using the MANAGE_WIDGET built-in procedure, see Example A.1, "Procedure
That Creates a Mouse Pad".

MAP

Syntax

Parameters
window

The window you want to map to the screen.

buffer

The buffer you want to associate with the window.

widget

The widget you want to make visible.

Description
The MAP procedure associates a buffer with a window and causes the window or widget to
become visible on the screen. Before using MAP, you must already have created the widget, buffer,
and window that you specify as parameters. See CREATE_WIDGET, CREATE_BUFFER, and
CREATE_WINDOW.

The window and buffer that you use as parameters become the current window and the current buffer,
respectively. The map operation synchronizes the cursor position with the editing point in the buffer. If
the window is not already mapped to the buffer when you use MAP, DECTPU puts the cursor back in
the last position the cursor occupied the last time the window was the current window.

MAP may cause other windows that are mapped to the screen to be partially or completely occluded.
If MAP causes the new window to segment another window into two pieces, only the upper part of
the segmented window remains visible and continues to be updated. The lower part of the segmented
window is erased on the next screen update. If you remove the window that is segmenting another
window, DECTPU repaints the screen so that the window that was segmented regains its original size
and position on the screen.

In DECwindows, MAP also maps the DECTPU main widget if it has not already been mapped.

If you execute MAP within a procedure, the screen is not updated to reflect such operations as window
repainting, line erasure, or new mapping until the procedure has finished executing and control has
returned to the screen manager. If you want the screen to reflect the changes before the entire program
is executed, you can force the immediate update of a window by including the following statement in the
procedure before any statements containing the MAP built-in:

UPDATE(WINDOW);

202

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_TOOFEW ERROR MAP requires at least two
parameters.

TPU$_TOOMANY ERROR You specified more than two
parameters.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_MAXMAPPEDBUF WARNING The buffer is already mapped
to the maximum number of
windows allowed by DECTPU.

Examples
1. The following example associates the main buffer with the main window and maps the main

window to the screen. You must have established the main buffer and the main window with
CREATE_BUFFER and CREATE_WINDOW before you can use them as parameters for MAP.

MAP (main_window, main_buffer)

2. The following example creates a message buffer and a message window. It then associates the
message buffer with the message window and maps the message window to the screen.

PROCEDURE user_message_window

 message_buffer := CREATE_BUFFER ("message");
 SET (EOB_TEXT, message_buffer, "");
 SET (NO_WRITE, message_buffer);
 SET (SYSTEM, message_buffer);

 message_window := CREATE_WINDOW (23, 2, OFF);
 SET (VIDEO, message_window, NONE);
 MAP (message_window, message_buffer);
ENDPROCEDURE;

MARK

Syntax

Parameters
BLINK

A keyword that directs DECTPU to display the marker in blinking rendition.

203

Chapter 2. Descriptions of the DECTPU Built-In Procedures

BOLD

A keyword that directs DECTPU to display the marker in bold rendition.

FREE_CURSOR

A keyword that directs DECTPU to create a free marker (that is, a marker not bound to a character).
A free marker has no video attribute.

REVERSE

A keyword that directs DECTPU to display the marker in reverse video.

UNDERLINE

A keyword that directs DECTPU to underline the marker.

NONE

A keyword that directs DECTPU to apply no video attributes to the marker.

buffer

The buffer in which the marker is to be located. By default, DECTPU locates markers in the current
buffer.

window

The window that is mapped to the buffer in which the marker is to be located. You can specify a
window variable only if the window is mapped to a buffer. By default, DECTPU locates markers in
the current buffer.

integer1

An integer for the screen column where the marker is to be located. You can specify an integer from
1 to 32767. However, if you specify an integer smaller than the record’s left margin or larger than
the end of the record, DECTPU inserts padding spaces between the marker and the nearest text. The
default is to locate the marker at the buffer offset that corresponds to the current screen column.

integer2

An integer for the record in the buffer where the marker is to be located. You can specify any
integer greater than 1 but less than the maximum number of lines in the buffer, if it has been set with
the SET (MAX_LINES) built-in procedure. The default is to locate the marker in the current record.

Return Value
A marker for the location in a buffer that you specify.

Description
The MARK procedure returns a marker for a specified location in a buffer. You must specify how the
marker is to be displayed on the screen (no special video, reverse video, bolded, blinking, or underlined).
You can use MARK to establish placeholders or “bookmarks.”

A marker can be either bound or free. For more information on how these markers differ, see the Guide
to the DEC Text Processing Utility.

204

Chapter 2. Descriptions of the DECTPU Built-In Procedures

To create a bound marker, use the MARK built-in procedure with any of its parameters except
FREE_CURSOR. This operation creates a bound marker even if the editing point is beyond the end of
a line, before the beginning of a line, in the middle of a tab, or beyond the end of a buffer. To create a
bound cursor in a location where there is no character, DECTPU fills the space between the marker and
the nearest character with padding space characters.

A bound marker is tied to the character at which it is created. If the character tied to the marker moves,
the marker moves also. If the character tied to the marker is deleted, the marker moves to the nearest
character position. The nearest character position is determined in the following ways:

● If there is a character position on the same line and to the right, the marker moves to this position,
even if the position is at the end of the line.

● If the line on which the marker is located is deleted, the marker moves to the first position on the
following line.

You can move one column past the last character in a line and place a marker there. However, the video
attribute for the marker is not visible unless a subsequent operation puts a character under the marker.

If you use a marker at the end of a line as part of a range, the end of line is included in the range even
though the marker is not positioned on a character.

A marker is free if the following conditions are true:

● You used the FREE_CURSOR keyword to create the marker.

● There was no character in the position where you created the marker.

DECTPU keeps track of the location of a free marker by measuring the distance between the marker and
the character nearest to the marker. If you move the character from which DECTPU measures distance
to a free marker, the marker moves too. DECTPU preserves a uniform distance between the character
and the marker. If you collapse white space that contains one or more free markers (for example, if you
delete a tab or use the APPEND_LINE built-in procedure), DECTPU preserves the markers and binds
them to the nearest character.

Unless you specify the parameter FREE_CURSOR, using the MARK built-in may result in the insertion
of padding spaces or lines into the buffer if the new mar\ker is one of the following:

● Before the beginning of a line

● In the middle of a tab

● Beyond the end of a line

● After the last line in the buffer

Signaled Errors

TPU$_TOOFEW ERROR MARK requires one parameter.
TPU$_TOOMANY ERROR MARK accepts only one

parameter.
TPU$_NEEDTOASSIGN ERROR The MARK built-in must be

on the right-hand side of an
assignment statement.

205

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_NOCURRENTBUF WARNING You must be positioned in a
buffer to set a marker.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR The keyword must be NONE,
BOLD, BLINK, REVERSE,
UNDERLINE, or FREE_
CURSOR.

TPU$_UNKKEYWORD ERROR You specified an unknown
keyword.

TPU$_INSVIRMEM FATAL There is not enough memory to
create the marker.

Examples
1. The following example places a marker at the editing point. There are no video attributes applied to

the marker.

user_mark := MARK (NONE)

2. The following example marks a temporary position at the current character position, and then goes
to the paste buffer and creates a range of the contents of the paste buffer. DECTPU then goes to
temp_pos and copies the text from the paste buffer at the temporary position.

3. PROCEDURE user_paste

 temp_pos := MARK (NONE);

 POSITION (END_OF (paste_buffer));
 MOVE_HORIZONTAL (-2);

 paste_text := CREATE_RANGE (BEGINNING_OF (paste_buffer),
 MARK (NONE), NONE);
 POSITION (temp_pos);
 COPY_TEXT (paste_text);
ENDPROCEDURE;

MATCH

Syntax

Parameters
buffer

An expression that evaluates to a buffer. MATCH forms a string from the contents of the buffer and
stops matching when it finds the resulting string.

206

Chapter 2. Descriptions of the DECTPU Built-In Procedures

range

An expression that evaluates to a range. MATCH forms a string from the contents of the range and
stops matching when it finds the resulting string.

string

An expression that evaluates to a string. MATCH stops matching when it finds this string.

Return Value

A variable of type pattern that matches text from the editing point up to and including the characters
specified in the parameter.

Description

The MATCH procedure returns a pattern that matches from the editing point up to and including the
sequence of characters specified in the parameter. The matched string does not contain line terminators.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR MATCH must appear on the
right-hand side of an assignment
statement.

TPU$_TOOFEW ERROR MATCH requires at least one
argument.

TPU$_TOOMANY ERROR MATCH requires no more than
one argument.

TPU$_ARGMISMATCH ERROR Argument to MATCH has the
wrong type.

TPU$_CONTROLC ERROR You pressed Ctrl/C during the
execution of MATCH.

Examples

1. The following example stores in pat1 a pattern that matches a string of characters starting with the
editing point up to and including the characters "abc":

pat1 := MATCH ("abc")

2. The following example finds text within double parentheses. It moves the editing point to the
beginning of the parenthesized text, if it is found.

PROCEDURE user_double_parens

 paren_text := "((" + MATCH (’))’);
 found_range := SEARCH_QUIETLY (paren_text, FORWARD, NO_EXACT);

 IF found_range = 0 ! No match
 THEN
 MESSAGE ("No match found.");
 ELSE

207

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 POSITION (found_range);
 ENDIF;
ENDPROCEDURE;

MESSAGE

Syntax

Parameters
buffer

The buffer that contains the text that you want to include in the message buffer.

range

The range that contains the text that you want to include in the message buffer.

integer1

An integer that indicates the severity of the message placed in the message buffer. If you do not
specify this parameter, no severity code is associated with the message. The allowable integer values
and their meanings are as follows:

Integer Meaning

0 Warning
1 Success
2 Error
3 Informational

integer2

The integer that represents the message code associated with the text to be fetched.

keyword

The DECTPU keyword that represents the message code associated with the text to be fetched.
DECTPU provides keywords for all of the message codes used by DECTPU and EVE.

string

Either a quoted string or a variable that represents the text you want to include in the message buffer.

208

Chapter 2. Descriptions of the DECTPU Built-In Procedures

integer3

A bit-encoded integer that specifies what fields of the message text associated with the message code
from the first parameter are to be fetched. If the message flags are not specified or the value is 0,
then the message flags set by the SET (MESSAGE_FLAGS) built-in procedure are used. Table 2.7,
"Message Flag Values for MESSAGE" shows the message flags.

Table 2.7. Message Flag Values for MESSAGE

Bit Constant Meaning

0 TPU$K_MESSAGE_TEXT Include text of message.
1 TPU$K_MESSAGE_ID Include message identifier.
2 TPU

$K_MESSAGE_SEVERITY
Include severity level indicator.

3 TPU
$K_MESSAGE_FACILITY

Include facility name.

FAO-parameter

One or more expressions that evaluate to an integer or string. The MESSAGE_TEXT built-in
procedure uses these integers and strings as arguments to the $FAO system service, substituting the
values into the text associated with the message code to form the resultant string.

The FAO directives are listed in the description of $FAO in the VSI OpenVMS System Services
Reference Manual.

Description

The MESSAGE procedure, depending on the format you choose, either puts the characters that you
specify into the message buffer or else fetches text associated with a message code, format s the text
using FAO directives, and puts it in the message buffer.

If you use the first format, MESSAGE inserts the characters in the string, range, or buffer that you
specify into the message buffer, if one exists. (By default, DECTPU looks for a buffer variable that is
named MESSAGE_BUFFER.) If there is no message buffer, DECTPU displays the message at the
current location on the device pointed to by SYS$OUTPUT (usually your terminal).

If you use the first format, MESSAGE provides the user who is writing an editing interface with a
method for displaying messages in a way that is consistent with the DECTPU language.

If you use the second format, MESSAGE fetches the text associated with a message code, uses FAO
directives to format the text, and displays the formatted message in the message buffer. However, if there
is no message buffer, DECTPU displays the message on SYS$OUTPUT (usually your terminal).

If you use the second format, MESSAGE writes a formatted string in the message buffer. The difference
between MESSAGE and MESSAGE_TEXT is that MESSAGE_TEXT returns the resulting string while
MESSAGE places the resulting string in the message buffer. The string is specified by the message
code passed as the first parameter and constructed according to the rules of the $FAO system service.
The control string associated with the message code directs the formatting process, and the optional
arguments are values to be substituted into the control string.

MESSAGE accepts up to 127 parameters. This built-in can return strings of 65535 characters maximum.

209

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If you have associated a message buffer with a message window, and if the message window is mapped
to the screen, the range you specify appears immediately in the message window on the screen.

If you have not associated a message buffer with a message window, messages are written to the buffer
but do not appear on the screen.

MESSAGE capitalizes the first character of the string placed in the message buffer. The
MESSAGE_TEXT built-in procedure, on the other hand, does not capitalize the first character of the
returned string.

You can include the following FAO directives as part of the message text:

!AS Inserts a string as is
!OL Converts an integer to octal notation
!XL Converts an integer to hexadecimal notation
!ZL Converts an integer to decimal notation
!UL Converts an integer to decimal notation without

adjusting for negative numbers
!SL Converts an integer to decimal notation with

negative numbers converted
!/ Inserts a new line character (carriage return/line

feed)
!_ Inserts a tab
!} Inserts a form feed
!! Inserts an exclamation point
!%S Inserts an s if the most recently converted number

is not 1
!%T Inserts the current time if you enter 0 as the

parameter (you cannot pass a specific time because
DECTPU does not use quadwords)

!%D Inserts the current date and time if you enter 0
as the parameter (you cannot pass a specific date
because DECTPU does not use quadwords)

Signaled Errors

TPU$_TOOFEW ERROR MESSAGE requires at least one
argument.

TPU$_TOOMANY ERROR MESSAGE cannot accept as
many arguments as you specified.

TPU$_ARGMISMATCH ERROR You specified an argument of the
wrong type.

TPU$_INVFAOPARAM WARNING Argument was not a string or
integer.

TPU$_INVPARAM ERROR You specified an argument of the
wrong type.

TPU$_FLAGTRUNC INFORMATIONAL Message flag truncated to 4 bits.

210

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_SYSERROR ERROR Error fetching the message text.
TPU$_ILLSEVERITY WARNING Illegal severity specified;

DECTPU used the severity
“error.”

TPU$_MSGNOTFND WARNING Message not found. DECTPU
returned default message.

Examples
1. The following example writes the text "Hello" in the message area:

MESSAGE ("Hello")

2. The following example determines whether the cursor is at the end of the line. It sends a text
message to the message area on the screen about the position of the cursor.

PROCEDURE user_on_eol

! test if at eol, return true or false

 MOVE_HORIZONTAL (1);
 IF CURRENT_OFFSET = 0 ! then we are on eol
 THEN
 user_on_end_of_line := 1; ! return true
 MESSAGE ("Cursor at end of line");
 ELSE
 user_on_end_of_line := 0; ! return false
 MESSAGE ("Cursor is not at the end of line");
 ENDIF;
 MOVE_HORIZONTAL (-1); ! move back
ENDPROCEDURE;

3. The following example fetches the text associated with the message code TPU$_ OPENIN and
substitutes the string "BAT.BAR" into the message:

MESSAGE (TPU$_OPENIN, TPU$K_MESSAGE_TEXT, "bat.bar");

All of the text of the message is fetched. The following string is displayed in the message buffer:

Error opening BAT.BAR as input

MESSAGE_TEXT

Syntax

Parameters
integer1

The integer for the message code associated with the text that is to be fetched.

211

Chapter 2. Descriptions of the DECTPU Built-In Procedures

keyword

The keyword for the message code associated with the text that is to be fetched. DECTPU provides
keywords for all of the message codes used by DECTPU and the EVE editor.

integer2

A bit-encoded integer that specifies what fields of the message text associated with the message code
from the first parameter are to be fetched. If the message flags are not specified or the value is 0,
then the message flags set by the SET (MESSAGE_FLAGS) built-in procedure are used. Table 2.8,
"Message Flag Values for MESSAGE_TEXT" shows the message flags.

Table 2.8. Message Flag Values for MESSAGE_TEXT

Bit Constant Meaning

0 TPU$K_MESSAGE_TEXT Include text of message.
1 TPU$K_MESSAGE_ID Include message identifier.
2 TPU

$K_MESSAGE_SEVERITY
Include severity level indicator.

3 TPU
$K_MESSAGE_FACILITY

Include facility name.

FAO-parameter

One or more expressions that evaluate to an integer or string. The MESSAGE_TEXT built-
in procedure uses these integers and strings as arguments to the $FAO system service. It then
substitutes the resultant values into the text associated with the message code to form the returned
string.

Return Value
The text associated with a message code that is fetched and formatted by MESSAGE_TEXT.

Description
The MESSAGE_TEXT procedure fetches the text associated with a message code. MESSAGE_TEXT
uses FAO directives to specify how strings and integers should be substituted into the text.

MESSAGE_TEXT accepts up to 127 parameters. This built-in can return strings of 65535 characters
maximum.

MESSAGE_TEXT returns a formatted string, specified by the message code passed as the first
parameter and constructed according to the rules of the $FAO system service. The control string
associated with the message code directs the formatting process, and the optional arguments are values
to be substituted into the control string.

MESSAGE_TEXT does not capitalize the first character of the returned string. The MESSAGE built-in
procedure, on the other hand, does capitalize the first character.

You can include the following FAO directives as part of the message text:

!AS Inserts a string as is
!OL Converts an integer to octal notation

212

Chapter 2. Descriptions of the DECTPU Built-In Procedures

!XL Converts an integer to hexadecimal notation
!ZL Converts an integer to decimal notation
!UL Converts an integer to decimal notation without

adjusting for negative numbers
!SL Converts an integer to decimal notation with

negative numbers converted
!/ Inserts a new line character (carriage return/line

feed)
!_ Inserts a tab
!} Inserts a form feed
!! Inserts an exclamation point
!%S Inserts an s if the most recently converted number

is not 1
!%T Inserts the current time if you enter 0 as the

parameter (you cannot pass a specific time because
DECTPU does not use quadwords)

!%D Inserts the current date and time if you enter 0
as the parameter (you cannot pass a specific date
because DECTPU does not use quadwords)

For complete information on the $FAO and $GETMSG system services, see the VSI OpenVMS System
Services Reference Manual.

Signaled Errors

TPU$_INVFAOPARAM WARNING Argument was not a string or
integer.

TPU$_NEEDTOASSIGN ERROR MESSAGE_TEXT must appear
on the right-hand side of an
assignment statement.

TPU$_INVPARAM ERROR You specified an argument of the
wrong type.

TPU$_TOOFEW ERROR MESSAGE_TEXT requires at
least one parameter.

TPU$_TOOMANY ERROR MESSAGE_TEXT accepts up to
20 FAO directives.

TPU$_FLAGTRUNC INFORMATIONAL Message flag truncated to bits.
TPU$_SYSERROR ERROR Error fetching the message text.

Example
The following example fetches the text associated with the message code TPU$_OPENIN and substitutes
the string "BAT.BAR" into the message:

all_message_flags := TPU$K_MESSAGE_TEXT OR
 TPU$K_MESSAGE_ID OR
 TPU$K_MESSAGE_SEVERITY OR

213

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 TPU$K_MESSAGE_FACILITY;
openin_text := MESSAGE_TEXT (TPU$_OPENIN, all_message_flags,
 bat.bar");

All of the text of the message is fetched. The following string is stored in the variable openin_text:

%TPU-E-OPENIN, error opening BAT.BAR as input

MODIFY_RANGE

Syntax

Parameters
range

The range to be modified.

marker1

The starting mark for the range.

marker2

The ending mark for the range.

keyword1

A keyword that indicates the point in the buffer where you want the range to begin or end. Table
2.9, "MODIFY_RANGE Keyword Parameters" shows the valid keywords and their meanings. Use
of the delimiting keywords is more efficient than the BEGINNING_OF and END_OF built-in
procedures.

Table 2.9. MODIFY_RANGE Keyword Parameters

Keyword Meaning

LINE_BEGIN The beginning of the current buffer’s current
line.

LINE_END The end of the current buffer’s current line.
BUFFER_BEGIN Line 1, offset 0 in the current buffer. This is the

first position where a character could be inserted,
regardless of whether there is a character there.
This is the same as the point referred to by
BEGINNING_OF (CURRENT_BUFFER).

BUFFER_END The last position in the buffer where a
character could be inserted, regardless of
whether there is a character there. This is the
same as the point referred to by END_OF
(CURRENT_BUFFER).

214

Chapter 2. Descriptions of the DECTPU Built-In Procedures

keyword2

A keyword that specifies the new video attribute for the range. By default, the attribute is not
modified. You can use the NONE, REVERSE, UNDERLINE, BLINK, or BOLD keywords to
specify this parameter.

Description
The MODIFY_RANGE procedure dynamically modifies a range. You can use MODIFY_RANGE to
specify a new starting mark and ending mark for an existing range.

MODIFY_RANGE can also change the characteristics of the range without deleting, re-creating, and
repainting all the characters in the range. Using MODIFY_RANGE, you can direct DECTPU to apply or
remove the range’s video attribute to or from characters as you select and unselect text.

Ranges are limited to one video attribute at a time. Specifying a video attribute different from the present
attribute causes DECTPU to apply the new attribute to the entire visible portion of the range.

If the video attribute stays the same and only the markers move, the only characters that are refreshed
are those visible characters newly added to the range and those visible characters that are no longer part
of the range.

Signaled Errors

TPU$_NOTSAMEBUF WARNING The first and second marker are
in different buffers.

TPU$_ARGMISMATCH ERROR The data type of the indicated
parameter is not supported by the
MODIFY_ RANGE built-in.

TPU$_BADKEY WARNING You specified an illegal keyword.
TPU$_INVPARAM ERROR You specified a parameter of the

wrong type.
TPU$_MODRANGEMARKS ERROR MODIFY_RANGE requires

either two marker parameters or
none.

TPU$_TOOFEW ERROR Too few arguments passed to the
MODIFY_RANGE built-in.

TPU$_TOOMANY ERROR Too many arguments passed to
the MODIFY_RANGE built-in.

TPU$_NORETURNVALUE ERROR MODIFY_RANGE cannot return
a value.

Examples
1. The following example creates a range between the editing point and the pointer cursor location. At a

point in the program after you might have moved the pointer cursor, the code fragment modifies the
range to reflect the new pointer cursor location.

begin_mark := MARK (BOLD);
POSITION (MOUSE);
finish_mark := MARK (BOLD);

215

Chapter 2. Descriptions of the DECTPU Built-In Procedures

this_range := CREATE_RANGE (begin_mark, finish_mark, BOLD);
! .
! . (User may have moved mouse)
! .
POSITION (MOUSE);
new_mark := MARK (BOLD);
IF new_mark <> finish_mark
THEN
 MODIFY_RANGE (this_range, begin_mark, new_mark, BOLD);
ENDIF;

2. The following example causes the range dynamic_range to shrink to one character, then grow until it
becomes as large as the range remembered_range:

PROCEDURE move_mark (place_to_start, direction);

 POSITION (place_to_start);

 IF direction = 1
 THEN
 MOVE_HORIZONTAL (1);
 ELSE
 MOVE_HORIZONTAL (-1);
 ENDIF;

 RETURN MARK (NONE);

ENDPROCEDURE;

PROCEDURE user_shrink_and_enlarge_range

 LOCAL start_mark,
 end_mark,
 direction,
 dynamic_range,
 rendition,
 remembered_range;

 ! The following lines
 ! create a range that
 ! shrinks and grows and
 ! a range that defines
 ! the limits of the dynamic
 ! range.

 POSITION (LINE_BEGIN);
 start_mark := MARK (NONE);
 POSITION (LINE_END);
 end_mark := MARK (NONE);
 rendition := REVERSE;
 remembered_range := CREATE_RANGE (start_mark, end_mark, NONE);
 dynamic_range := CREATE_RANGE (start_mark, end_mark, rendition);

 ! The following lines
 ! shrink and enlarge
 ! the dynamic range.

 direction := 1;

216

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 LOOP
 UPDATE (CURRENT_WINDOW);

 start_mark := move_mark (BEGINNING_OF (dynamic_range),
 direction);
 end_mark := move_mark (END_OF (dynamic_range), 1 - direction);

 MODIFY_RANGE (dynamic_range, start_mark, end_mark);

 IF start_mark > end_mark
 THEN
 EXITIF READ_KEY = Ctrl_Z_KEY;
 direction := 0;
 IF rendition = REVERSE
 THEN
 rendition := BOLD;
 ELSE
 rendition := REVERSE;
 ENDIF;
 MODIFY_RANGE (dynamic_range, , , rendition);

 ENDIF;

 IF (start_mark = BEGINNING_OF (remembered_range)) OR
 (end_mark = END_OF (remembered_range))
 THEN
 direction := 1;
 ENDIF;
 ENDLOOP;

ENDPROCEDURE;

3. The following example aligns text that conforms to the pattern specified in the second parameter.
For example, if you want to align all comments in a piece of DECTPU code, you would pass as the
second parameter a pattern defined as an exclamation point followed by an arbitrary amount of text
or white space and terminated by a line end.

The procedure is passed a range of text. As the procedure searches the range to identify the
rightmost piece of text that matches the pattern, the procedure modifies the range to exclude any
matching text. Next, the procedure searches the original range again and inserts padding spaces in
front of each instance of matching text, making the text align with the rightmost instance of matching
text.

PROCEDURE line_up_characters (text_range, lined_chars_pat)

LOCAL
 range_start,
 range_end,
 temp_range,
 max_cols;

range_end := END_OF (text_range); ! These statements store
 ! the ends of the range
 ! containing the text operated on.

range_start := BEGINNING_OF (text_range);

217

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 ! The following statements
 ! locate the portions of
 ! text that match the pattern
 ! and determine which is
 ! furthest to the right.
max_cols := 0;
LOOP
 temp_range := SEARCH_QUIETLY (lined_chars_pat, REVERSE, EXACT, text_range);
 EXITIF temp_range = 0;
 POSITION (temp_range);
 IF GET_INFO (MARK (NONE), "offset_column") > max_cols
 THEN
 max_cols := GET_INFO (MARK (NONE), "offset_column");
 ENDIF;
 MOVE_HORIZONTAL (-1);
 MODIFY_RANGE (text_range, BEGINNING_OF (text_range), MARK (NONE));
ENDLOOP;

 ! The following lines
 ! locate matches to the
text_range := CREATE_RANGE (range_start, range_end); ! pattern and align them
 ! with the rightmost
 ! piece of matching text.
LOOP
 temp_range := SEARCH_QUIETLY (lined_chars_pat, FORWARD, EXACT, text_range);
 EXITIF temp_range = 0;
 POSITION (temp_range);
 IF GET_INFO (MARK (NONE), "offset_column") < max_cols
 THEN
 COPY_TEXT (" " * (max_cols - GET_INFO (MARK (NONE), "offset_column")));
 ENDIF;
 MOVE_HORIZONTAL (1);
 MODIFY_RANGE (text_range, END_OF (text_range), MARK (NONE));
ENDLOOP;

!
! Restore the range to its original state, plus a reverse attribute.
!
text_range := CREATE_RANGE (range_start, range_end, REVERSE); ! This line
 ! restores the
 ! range to its
 ! original state
 ! and displays
 ! the contents
 ! in reverse
 ! video.
ENDPROCEDURE;

MOVE_HORIZONTAL

Syntax

Parameters
integer

The signed integer value that indicates the number of characters the editing point should be moved.
A positive integer specifies movement toward the end of the buffer. A negative integer specifies
movement toward the beginning of the buffer.

218

Chapter 2. Descriptions of the DECTPU Built-In Procedures

DECTPU does not count the column where the editing point is located when determining where to
establish the new editing point. DECTPU does count the end-of-line (the column after the last text
character on the line) when determining where to establish the new editing point.

Description
The MOVE_HORIZONTAL procedure changes the editing point in the current buffer by the
number of characters you specify. The horizontal adjustment of the editing point is tied to text.
MOVE_HORIZONTAL crosses line boundaries to adjust the current character position.

You cannot see the adjustment caused by MOVE_HORIZONTAL unless the current buffer is mapped to
a visible window. If it is, DECTPU scrolls text in the window, if necessary, so that the editing point you
establish with MOVE_HORIZONTAL is within the scrolling limits set for the window.

If you try to move past the beginning or the end of a buffer, DECTPU displays a warning message.

Using MOVE_HORIZONTAL may cause DECTPU to insert padding spaces or blank lines in the buffer.
MOVE_HORIZONTAL causes the screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. For more information on the distinction between the cursor
position and the editing point, see Appendix C, "DECTPU Cursor Behavior".

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text

Signaled Errors

TPU$_TOOFEW ERROR MOVE_HORIZONTAL requires
one parameter.

TPU$_TOOMANY ERROR You specified more than one
parameter.

TPU$_INVPARAM ERROR The specified parameter has the
wrong type.

TPU$_NOCURRENTBUF WARNING You are not positioned in a
buffer.

TPU$_ENDOFBUF WARNING You are trying to move forward
past the last character of the
buffer.

TPU$_BEGOFBUF WARNING You are trying to move in reverse
past the first character of the
buffer.

Examples
1. The following example moves the editing point five characters toward the end of the current buffer:

MOVE_HORIZONTAL (+5)

2. The following example moves the editing point by sections that are eight lines long and uses
MOVE_HORIZONTAL to put the editing point at the beginning of the line:

PROCEDURE user_move_by_lines

219

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 IF CURRENT_DIRECTION = FORWARD
 THEN
 MOVE_VERTICAL (8)
 ELSE
 MOVE_VERTICAL(- 8)
 ENDIF;
 MOVE_HORIZONTAL (-CURRENT_OFFSET);
ENDPROCEDURE;

MOVE_TEXT

Syntax

Parameters
buffer

The buffer from which text is moved.

range1

The range from which text is moved.

string

A string that represents the text you want to move. Text is not removed from its original location
with this argument.

Return Value
The range where the copied text has been placed.

Description
The MOVE_TEXT procedure moves the text you specify and inserts or overwrites it in the current
buffer, depending on the mode of the current buffer. When you move text with range and buffer
parameters, you remove it from its original location. For information on how to copy text instead of
removing it, see the description of the COPY_TEXT built-in procedure.

If the current buffer is in insert mode, the text you specify is inserted before the editing point in the
current buffer. If the current buffer is in overstrike mode, the text you specify replaces text starting at the
current position and continuing for the length of the string, range, or buffer.

Markers and ranges are not moved with the text. If the text of a marker or a range is moved, the marker
or range structure and any video attribute that you specified for the marker or range are moved to the
next closest character, which is always the character following the marker or range. To remove the
marker or range structure, use the DELETE built-in procedure or set the variable to which the range is
assigned to 0.

220

Chapter 2. Descriptions of the DECTPU Built-In Procedures

MOVE_TEXT is similar to COPY_TEXT. However, MOVE_TEXT erases the text from its original
string, range, or buffer, while COPY_TEXT just makes a copy of the text and places the copy at the new
location.

You cannot add a buffer or a range to itself. If you try to do so, DECTPU issues an error message. If you
try to insert a range into itself, part of the range is copied before DECTPU signals an error. If you try to
overstrike a range into itself, DECTPU may or may not signal an error.

MOVE_TEXT may cause DECTPU to insert padding spaces or blank lines in the buffer. MOVE_TEXT
causes the screen manager to place the editing point at the cursor position if the current buffer is mapped
to a visible window. For more information on the distinction between the cursor position and the editing
point, see Appendix C, "DECTPU Cursor Behavior".

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

Signaled Errors

TPU$_NOCACHE ERROR There is not enough memory to
allocate a new cache.

TPU$_TOOFEW ERROR MOVE_TEXT requires one
argument.

TPU$_TOOMANY ERROR MOVE_TEXT accepts only one
argument.

TPU$_ARGMISMATCH ERROR The argument to MOVE_TEXT
must be a buffer, range, or string.

TPU$_NOTMODIFIABLE ERROR You cannot copy text into an
unmodifiable buffer.

TPU$_MOVETOCOPY WARNING MOVE_TEXT was able to copy
the text into the current buffer
but could not delete it from the
source buffer because the source
buffer is unmodifiable.

Examples
1. If you are using insert mode for text entry, the following statement causes the text from main_buffer

to be placed in front of the current position in the current buffer. The text is removed from
main_buffer .

MOVE_TEXT (main_buffer)

2. The following example puts the text from the scratch buffer before the editing point in the main
buffer. The text in the scratch buffer is removed; no copy of it is left there.

PROCEDURE user_move_text

 LOCAL this_mode;

! Save mode of current buffer in this_mode
 this_mode := GET_INFO (CURRENT_BUFFER, "mode");

221

Chapter 2. Descriptions of the DECTPU Built-In Procedures

! Set current buffer to insert mode
 SET (INSERT, CURRENT_BUFFER);

! Move the scratch buffer text to the current buffer
 MOVE_TEXT (scratch_buffer);

! Reset current buffer to original mode
 SET (this_mode, CURRENT_BUFFER);
ENDPROCEDURE;

MOVE_VERTICAL

Syntax

Parameters

integer

The signed integer value that indicates the number of lines that the editing point should be moved.
A positive integer specifies movement toward the end of the buffer. A negative integer specifies
movement toward the beginning of the buffer.

Description

The MOVE_VERTICAL procedure modifies the editing point in the current buffer by the number of
lines you specify. The adjustment that MOVE_VERTICAL makes is tied to text. DECTPU tries to retain
the same character offset relative to the beginning of the line when moving vertically. However, if there
are tabs in the lines, or the lines have different margins, the editing point does not necessarily retain the
same column position on the screen.

By default, DECTPU keeps the cursor at the same offset on each line. However, because DECTPU
counts a tab as one character regardless of how wide the tab is, the cursor’s column position may vary
greatly even though the offset is the same.

To keep the cursor in approximately the same column on each line, use the following statement:

SET (COLUMN_MOVE_VERTICAL, ON)

This statement directs DECTPU to keep the cursor in the same column unless a tab character makes this
impossible. If a tab occupies the column position, DECTPU moves the cursor to the beginning of the tab.

You cannot see the adjustment caused by MOVE_VERTICAL unless the current buffer is mapped to a
visible window. If it is, DECTPU scrolls text in the window, if necessary, so that the editing point you
establish with MOVE_VERTICAL is within the scrolling limits set for the window.

Using MOVE_VERTICAL may cause DECTPU to insert padding spaces or blank lines in the buffer.
MOVE_VERTICAL causes the screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. For more information on the distinction between the cursor
position and the editing point, see Appendix C, "DECTPU Cursor Behavior".

222

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

If you try to move past the beginning or end of a buffer, DECTPU signals a warning message.

Signaled Errors

TPU$_TOOFEW ERROR MOVE_VERTICAL requires at
least one parameter.

TPU$_TOOMANY ERROR You specified more than one
parameter.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BEGOFBUF WARNING You are trying to move backward
past the first character of the
buffer.

TPU$_ENDOFBUF WARNING You are trying to move forward
past the last character of the
buffer.

TPU$_NOCURRENTBUF WARNING You are not positioned in a
buffer.

Examples
1. The following example moves the editing point in the current buffer down five lines toward the end

of the buffer:

MOVE_VERTICAL (+5)

2. The following example moves the editing point by sections that are eight lines long:

PROCEDURE user_move_8_lines

 IF CURRENT_DIRECTION = FORWARD
 THEN
 MOVE_VERTICAL (8);
 ELSE
 MOVE_VERTICAL (- 8);
 ENDIF;
 MOVE_HORIZONTAL(- CURRENT_OFFSET);
ENDPROCEDURE;

NOTANY

Syntax

223

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
buffer

An expression that evaluates to a buffer. NOTANY matches any character not in the resulting buffer.

range

An expression that evaluates to a range. NOTANY matches any character not in the resulting range.

string

An expression that evaluates to a string. NOTANY matches any character not in the resulting string.

integer1

This integer value indicates how many contiguous characters NOTANY matches. The default value
for this integer is 1.

Return Value
A pattern that matches characters not in the string, buffer, or range used as a parameter.

Description
The NOTANY procedure returns a pattern that matches a specific number of contiguous characters not
in the string, buffer, or range that is used as the first parameter. The second parameter determines the
number of characters NOTANY must match. NOTANY does not match across line breaks.

Signaled Errors
TPU$_NEEDTOASSIGN ERROR NOTANY must appear on the

right-hand side of an assignment
statement.

TPU$_TOOFEW ERROR NOTANY requires at least one
argument.

TPU$_TOOMANY ERROR NOTANY accepts no more than
two arguments.

TPU$_ARGMISMATCH ERROR NOTANY was given an argument
of the wrong type.

TPU$_INVPARAM ERROR NOTANY was given an argument
of the wrong type.

TPU$_MINVALUE WARNING NOTANY was given an argument
less than the minimum value.

TPU$_CONTROLC ERROR You pressed Ctrl/C during the
execution of NOTANY.

Examples
1. The following example creates a pattern that matches the first character that is not an X, a Y, or a Z.

The match fails if no character other than X, Y, or Z is found.

pat1 := NOTANY ("XYZ")

224

Chapter 2. Descriptions of the DECTPU Built-In Procedures

2. The following example creates a pattern that matches any single character other than one of the
characters a, b, c, x, and y:

a_buf := CREATE_BUFFER ("new buffer");
POSITION (a_buf);
COPY_TEXT ("xy");
SPLIT_LINE;
COPY_TEXT ("abc");
pat1 := NOTANY (a_buf);

3. The following example starts at the current location and looks for the first nonalphabetic,
nonlowercase character. The variable non_alpha_range stores the character that matches these
conditions.

!
! The following procedure returns a marker pointing to
! the next nonalphabetic character or the integer zero
! if there are no more nonalphabetic characters. You
! call the procedure in the following way:
!
! non_alpha_marker := user_search_for_nonalpha;

PROCEDURE user_search_for_nonalpha

 LOCAL pat,
 first_non_alpha;

 pat := NOTANY ("abcdefghijklmnopqrstuvwxyz");

 first_non_alpha := SEARCH_QUIETLY (pat, FORWARD, NO_EXACT);

 IF first_non_alpha <> 0

 THEN
 first_non_alpha := BEGINNING_OF (first_non_alpha);
 ENDIF;

 RETURN first_non_alpha;
ENDPROCEDURE;

PAGE_BREAK

Syntax

Parameters
None.

Description
The PAGE_BREAK procedure specifies the form-feed character, ASCII(12), as a portion of a pattern
to be matched. This character has an ASCII value of 12. Although PAGE_BREAK behaves much

225

Chapter 2. Descriptions of the DECTPU Built-In Procedures

like a built-in, it is actually a keyword. If the form-feed character is the only character on a line,
PAGE_BREAK matches the whole line. If the form-feed character is not the only character on a line,
PAGE_BREAK matches only the form-feed character.

Signaled Error
PAGE_BREAK is a keyword and has no completion codes.

Example
The following example places the cursor on the next page in the current buffer. If you are already on the
last page of a document, it places the cursor at the end of that document.

PROCEDURE user_next_page

 LOCAL next_page;

 next_page := SEARCH_QUIETLY (PAGE_BREAK, FORWARD);
 IF next_page <> 0
 THEN
 POSITION (next_page);
 ELSE
 POSITION (end_of (current_buffer));
 ENDIF;
ENDPROCEDURE;

POSITION

Syntax

Parameters
buffer

The buffer in which you want to establish the editing point.

DECTPU maintains an editing point in each buffer even when the buffer is not the current buffer.
When you position to a buffer, the editing point that DECTPU maintains becomes the active editing
point. The location at which POSITION establishes the editing point is the last character that the
cursor was on when the buffer was most recently current.

226

Chapter 2. Descriptions of the DECTPU Built-In Procedures

BUFFER_BEGIN

A keyword that directs DECTPU to establish the editing point at the beginning of the current buffer.
This is more efficient than using POSITION (BEGINNING_OF (CURRENT_BUFFER)).

BUFFER_END

A keyword that directs DECTPU to establish the editing point at the end of the current buffer. This
is more efficient than using POSITION (END_OF (CURRENT_BUFFER)).

integer

The number of the record where you want DECTPU to position the editing point.

A record number indicates the location of a record in a buffer. Record numbers are dynamic; as
you add or delete records, DECTPU changes the number associated with a particular record, as
appropriate. DECTPU counts each record in a buffer, regardless of whether the line is visible in a
window, or whether the record contains text.

To position the editing point to a given record, specify the record number. The number can be in
the range from 1 to the number of records in the buffer plus 1. For example, the following statement
positions the editing point to record number 8 in the current buffer:

POSITION (8);

DECTPU places the editing point on the first character of the record.

Specifying a value of 0 has no effect. Specifying a negative number or a number greater than the
number of records in the buffer plus 1 causes DECTPU to signal an error.

LINE_BEGIN

A keyword that directs DECTPU to establish the editing point at the beginning of the current line.

LINE_END

A keyword that directs DECTPU to establish the editing point at the end of the current line.

marker

The marker to which you want to tie the editing point. You can position to either a bound marker
or a free marker. For more information on the distinction between bound and free markers, see the
Guide to the DEC Text Processing Utility. Positioning to a free marker does not cause DECTPU to
insert padding blanks between the nearest text and the free marker; such positioning establishes the
editing point as free. For more information on the distinction between free and detached editing
points, see Appendix C, "DECTPU Cursor Behavior".

MOUSE

A keyword that directs DECTPU to associate the editing point with the location of the pointer
cursor.

In DECwindows DECTPU, you can use the statement POSITION (MOUSE) at any point after
the first keyboard or mouse button event. The statement positions the editing point to the location
occupied by the pointer cursor at the time of the most recent keyboard or mouse-button event.

If the pointer cursor is on a window’s status line when POSITION (MOUSE) is executed, DECTPU
positions the editing point at the line just above the status line.

227

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Note

Be sure that you do not have scroll margins active when you execute POSITION (MOUSE). If scroll
margins are active, the result can be unpredictable. Use the SET (CROSS_WINDOW_BOUNDS,
OFF) command prior to using POSITION (MOUSE).

If the pointer cursor is not located in a DECTPU window at the time of the most recent keyboard or
mouse-button event, POSITION (MOUSE) returns the status TPU$_NOWINDOW.

In non-DECwindows DECTPU, POSITION (MOUSE) is valid only during a procedure that is
executed as the result of a mouse click. At all other times, the mouse position is not updated.

The statement POSITION (MOUSE) makes the window in which the pointer cursor is located the
current window, and the buffer in which the pointer cursor is located the current buffer.

range

The range in which you want to place the editing point. The editing point is established at the
beginning of the range. To establish the editing point at the end of the range, use the statement
POSITION (END_OF (range)).

TEXT

A keyword that indicates that if the editing point is at a free-cursor location (a portion of the screen
where there is no text), the POSITION built-in procedure is to establish the editing point at the
nearest location that has a text character in it. The character may be a space or an end of line. If you
use POSITION (TEXT) when the editing point is already bound to a character, the built-in has no
effect.

window

The window in which you want to establish the editing point. The window must be mapped to the
screen.

The location at which POSITION establishes the editing point is the last character that the cursor
was on when the window was most recently current. If that character has been deleted, the editing
point is the character closest to the last character that the cursor was on when the window was
current.

Positioning to a window causes the buffer associated with the window to become the current buffer.
This is true whether you directly position to a window, or a new window is mapped as the result of a
POSITION (MOUSE) statement.

Description
The POSITION procedure ties the editing point to a specific character in a specific buffer, and moves the
editing point to a specified record in the current buffer. The character and buffer in which POSITION
establishes the editing point depend on which parameter you pass to POSITION.

The editing point is the location in the current buffer where most editing operations are carried out.
DECTPU maintains a marker pointing to an editing point in each buffer, but only the editing point in the
current buffer is active. An editing point, whose location is always tied to a character in a buffer, is not
necessarily the same as the cursor position, whose location is always tied to a position in a window.

228

Chapter 2. Descriptions of the DECTPU Built-In Procedures

The POSITION built-in procedure synchronizes the editing point and the cursor position if the current
buffer is mapped to a visible window. POSITION also moves the editing point to the specified record in
the current buffer.

When you pass the MOUSE keyword to POSITION, the built-in establishes the mouse pointer’s location
as the cursor position. POSITION also establishes the window in which the mouse pointer is located as
the current window, and establishes the buffer mapped to that window as the current buffer.

Positioning to a buffer, a marker, or a range does not necessarily move the cursor. DECTPU does not
change the cursor position unless the cursor is in a window that is mapped to the buffer specified or
implied by the POSITION parameter. For example, if you use POSITION to establish the editing point
in a buffer that is not mapped to a window, the cursor is unaffected by the POSITION operation. If you
want to do visible editing, you should position to a window rather than a buffer.

If you try to position to an invisible window, DECTPU issues a warning message.

For more information on the relationship between the editing point and the cursor position, see Appendix
C, "DECTPU Cursor Behavior".

Signaled Errors

TPU$_TOOFEW ERROR POSITION requires one
parameter.

TPU$_TOOMANY ERROR You specified more than one
parameter.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_ARGMISMATCH ERROR Wrong type of data sent to the
built-in.

TPU$_BADKEY WARNING You specified an invalid
keyword.

TPU$_UNKKEYWORD ERROR You specified an unknown
keyword.

TPU$_BADVALUE ERROR You specified a record number
less than 0 or greater than the
length of the buffer plus 1.

TPU$_MOUSEINV WARNING The mouse position is not
currently valid.

TPU$_NOWINDOW WARNING The pointer cursor was not
located in a DECTPU window
at the time of the most recent
keyboard or mouse-button event.

TPU$_WINDNOTMAPPED WARNING Window is not mapped to the
screens

TPU$_WINDNOTVIS WARNING Window is totally occluded.

Examples
1. The following example establishes the editing point in the message window. Your position in the

window is the same character position you occupied when you were last positioned in the window.

229

Chapter 2. Descriptions of the DECTPU Built-In Procedures

POSITION (message_window)

2. The following example toggles the active editing point between two windows:

PROCEDURE user_change_windows

 IF CURRENT_WINDOW = main_window
 THEN
 POSITION (extra_window);
 ELSE
 POSITION (main_window);
 ENDIF;
ENDPROCEDURE;

QUIT

Syntax

Parameters
ON, 1

Either keyword, ON or 1, indicates that DECTPU should prompt you to find out whether you want
to quit with modified buffers. This is the default value.

OFF, 0

Either keyword, OFF or 0, indicates that DECTPU should quit without asking you whether to quit
with modified buffers.

severity

If present, the least significant two bits of this integer are used as the severity of the status DECTPU
returns to whatever invoked it. The following shows the values and their severity:

Value Severity

0 Warning
1 Success
2 Error
3 Informational

You cannot force DECTPU to return a fatal severity status.

Description
The QUIT procedure leaves the editor without writing to a file. If you modify any buffers that are not
set to NO_WRITE and you do not specify OFF as the first parameter to the QUIT built-in procedure,

230

Chapter 2. Descriptions of the DECTPU Built-In Procedures

DECTPU tells you that you have modified buffers and asks whether you want to quit. Enter Y (YES)
if you want to quit without writing out any modified buffers. Enter N (NO) if you want to retain the
modifications you have made and return to the editor. If you specify OFF as the first parameter to QUIT,
DECTPU quits without informing you that you have modified buffers. All modifications are lost because
DECTPU does not write out buffers when quitting.

Journal files (if any) are deleted upon quitting.

Use the EXIT built-in procedure when you have made changes and want to save them when you leave
the editor. (For more information, see the description of EXIT.)

When DECTPU quits, it usually returns a status of TPU$_QUITTING to whatever invoked it. This is a
success status.

This feature is useful if you are using DECTPU to create an application in which quitting, especially
before the end of a series of statements executing in batch mode, is an error.

A special use of QUIT is at the end of your section file when you are compiling it for the first time. See
the Guide to the DEC Text Processing Utility for information on creating section files.

Signaled Errors

TPU$_CANCELQUIT WARNING A NO response was received
from the " . . . continue quitting?"
prompt.

TPU$_TOOMANY ERROR QUIT accepts no more than two
arguments.

TPU$_INVPARAM ERROR One of the arguments to QUIT
has the wrong data type.

TPU$_BADKEY WARNING QUIT accepts only the keywords
ON and OFF.

TPU$_NORETURNVALUE ERROR QUIT does not return a value.

Examples
1. The following example returns control of execution from an editor layered on DECTPU to the

program, application, or operating system that called DECTPU:

QUIT;

If you have modified any buffers, you see the following prompt:

 Buffer modifications will not be saved, continue quitting (Y or N)?

Enter YES if you want to quit and not save the modifications. Enter NO if you want to return to the
editor.

2. The following example turns off the display of the success message “Editor successfully quitting”
when you use QUIT to leave an editing interface:

PROCEDURE user_quit

 SET (SUCCESS, OFF);
 QUIT;

231

Chapter 2. Descriptions of the DECTPU Built-In Procedures

! Turn message back on in case user answers "No" to the
! prompt "Buffer modifications will not be saved, continue
! quitting (Y or N)?"

 SET (SUCCESS, ON);
ENDPROCEDURE;

RAISE_WIDGET

Syntax

Parameters
widget

The widget you want DECTPU to raise. The specified widget must be a subclass of
WindowObjClass.

Description
The RAISE_WIDGET procedure places the widget at the top of a viewing stack above all sibling
widgets. This ensures that the widget window associated with the widget is not obscured by any sibling
windows. It calls the XLIB routine XRaiseWindow. The widget window is mapped if it is not already
mapped.

Signaled Errors

TPU$_INVPARAM ERROR The parameter to
LOWER_WIDGET has the
wrong data type.

TPU$_NORETURNVALUE ERROR This built-in does not return a
result.

TPU$_NOTSUBCLASS WARNING The parameter to
LOWER_WIDGET is not a
widget that has an associated
widget window.

TPU$_TOOFEW ERROR You specified too few
parameters.

TPU$_TOOMANY ERROR You specified too many
parameters.

READ_CHAR

Syntax

232

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
None.

Return Value
A variable of type string that contains a character entered from the keyboard.

Description
The READ_CHAR procedure stores the next character entered from the keyboard in a string variable.
The character read by READ_CHAR is not echoed on the screen; therefore, the cursor position does not
move.

READ_CHAR does not process escape sequences. If a DECTPU procedure uses READ_CHAR for an
escape sequence, only part of the escape sequence is read. The remaining part of the escape sequence is
treated as text characters. If control then returns to DECTPU, or a READ_KEY or READ_LINE built-in
procedure is executed, the results may be unpredictable.

In DECwindows DECTPU, READ_CHAR maps the main window if it is not already mapped.

In the DECwindows environment, READ_CHAR cannot read a keypad or function key. If a DECTPU
procedure uses READ_CHAR and you press a keypad or function key, READ_CHAR returns a null
string and signals the warning TPU$_NOCHARREAD.

DECwindows applications that execute READ_CHAR built-ins should use error handlers that contain
the TPU$_READABORTED selector. DECTPU signals that error if a READ_CHAR built-in is aborted
by any of the following events: resize, widget callback, loss of primary selection, and client message.

The code associated with that selector should return from the procedure by executing either an ABORT
or RETURN statement. If instead of returning, the procedure executes another READ_CHAR built-in,
DECTPU enters an infinite loop.

READ_CHAR does not abort for input focus events.

When you use the /NODISPLAY qualifier to invoke DECTPU, READ_CHAR signals TPU
$_REQUIRESTERM, "Feature requires a terminal", if SYS$INPUT is not a terminal.

Signaled Errors

TPU$_NOCHARREAD WARNING READ_CHAR did not read a
character.

TPU$_NEEDTOASSIGN ERROR READ_CHAR must be on the
right-hand side of an assignment
statement.

TPU$_TOOMANY ERROR READ_CHAR takes no
arguments.

Examples
1. The following example stores the next character that is entered on the keyboard in the string

new_char:

233

Chapter 2. Descriptions of the DECTPU Built-In Procedures

new_char := READ_CHAR

2. The following example enters the next character that is entered from the keyboard in the current
buffer. If a key that sends an escape sequence is pressed, the first character of the escape sequence
is copied into the buffer. Subsequent keystrokes are interpreted as self-inserting characters, defined
keys, or undefined keys, as appropriate.

PROCEDURE user_quote
 COPY_TEXT (READ_CHAR);
ENDPROCEDURE;

3. The following example uses a coding style that avoids an infinite loop. In this example, DECTPU
aborts a READ_CHAR built-in when a widget callback occurs. The error handler then returns from
that procedure.

procedure get_a_char (the_char)
on_error
 [TPU$_READABORTED]:
 message ("Prompt terminated.", 0);
 return;
endon_error;
loop
...
 the_key := read_char;
...
endloop;
endprocedure;

READ_CLIPBOARD

Syntax

Parameters
None.

Return Values
range

A range that contains the text copied into the current buffer.

unspecified

A data type that indicates that no data was obtained from the clipboard.

Description
The READ_CLIPBOARD procedure reads string format data from the clipboard and copies it into the
current buffer, at the editing point, using the buffer’s current text mode (insert or overstrike). If DECTPU

234

Chapter 2. Descriptions of the DECTPU Built-In Procedures

finds a line-feed character in the data, it removes the line feed and any adjacent carriage returns and puts
the data after the line feed on the next line of the buffer. If DECTPU must truncate the data from the
clipboard, DECTPU copies the truncated text into the current buffer.

All text read from the clipboard is copied into the buffer starting at the editing point. If DECTPU must
start a new line to fit all the text into the buffer, the new line starts at column 1, even if the current left
margin is not set at column 1.

Signaled Errors

TPU$_CLIPBOARDLOCKED WARNING DECTPU cannot read from the
clipboard because some other
application has locked it.

TPU$_CLIPBOARDNODATA WARNING There is no string format data in
the clipboard.

TPU$_CLIPBOARDFAIL WARNING The clipboard did not return any
data.

TPU$_REQUIRESDECW ERROR You can use the
READ_CLIPBOARD built-
in only if you are using
DECwindows TPU.

TPU$_STRTOOLARGE ERROR The amount of data in the
clipboard exceeds 65535
characters.

TPU$_TOOMANY ERROR Too many arguments passed to
the READ_CLIPBOARD built-
in.

Example
The following example shows one possible way that an application can use the READ_CLIPBOARD
built-in procedure. This procedure is a modified version of the EVE procedure EVE$
$INSERT_CLIPBOARD. The original version is in SYS$EXAMPLE S:EVE$DECWINDOWS.TPU.

PROCEDURE eve$$insert_clipboard

ON_ERROR
 [TPU$_CLIPBOARDNODATA]:
 eve$message (EVE$_NOINSUSESEL);
 eve$learn_abort;
 RETURN (FALSE);
 [TPU$_CLIPBOARDLOCKED]:
 eve$message (EVE$_CLIPBDREADLOCK);
 eve$learn_abort;
 RETURN (FALSE);
 [TPU$_TRUNCATE]:
 [OTHERWISE]:
 eve$learn_abort;
 ENDON_ERROR;

IF eve$test_if_modifiable (CURRENT_BUFFER)
THEN
 READ_CLIPBOARD; ! This statement using

235

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 ! READ_CLIPBOARD reads
 ! data from the clipboard
 ! and copies it into the
 ! current buffer.
 RETURN (TRUE);
ENDIF;

eve$learn_abort;
RETURN (FALSE);

ENDPROCEDURE;

EVE$$INSERT_CLIPBOARD fetches the contents of the clipboard and places them in the current
buffer.

READ_FILE

Syntax

Parameter
string1

A string that is the name of the file you want to read and include in the current buffer.

Return Value
A string that is the specification of the file read.

Description
The READ_FILE procedure reads a file and inserts the content s of the file immediately before
the current line in the current buffer. READ_FILE optionally returns a string that contains the file
specification of the file read.

If the current buffer is mapped to a visible window, the READ_FILE built-in procedure causes the
screen manager to synchronize the editing point (which is a buffer location) with the cursor position
(which is a window location). This may result in the insertion of padding spaces or lines into the buffer
if the cursor position is before the beginning of a line, in the middle of a tab, beyond the end of a line, or
after the last line in the buffer.

DECTPU writes a message that indicates how many records (lines) were read.

If you try to read a file that contains lines longer than 32767 characters, DECTPU truncates the lines to
the first 32767 characters and issues a warning.

Note

If you delete a file after using READ-FILE to insert the file into a buffer, you will not be able to recover
the buffer. This is because DECTPU requires the original source file to recover when using a buffer-
change journal file.

236

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_NOCURRENTBUF WARNING You are not positioned in a
buffer.

TPU$_CONTROLC ERROR The execution of the read
terminated because you pressed
Ctrl/C.

TPU$_NOCACHE ERROR There is not enough memory to
allocate a new cache.

TPU$_TOOFEW ERROR READ_FILE requires at least one
parameter.

TPU$_TOOMANY ERROR READ_FILE accepts no more
than one parameter.

TPU$_INVPARAM ERROR The parameter to READ_FILE
must be a string.

TPU$_TRUNCATE WARNING One of the lines in the file was
too long to fit in a DECTPU
buffer.

The following errors, warnings, and messages can be signaled by DECTPU’s file I/O routine. You can
provide your own file I/O routine by using DECTPU’s callable interface. If you do so, READ_FILE’s
signaled errors, warnings, and messages depend upon what status you signaled in your file I/O routine.

TPU$_OPENIN ERROR READ_FILE could not open the
file you specified.

TPU$_READERR ERROR READ_FILE did not finish
reading the file because it
encountered a file system error.

TPU$_CLOSEIN ERROR READ_FILE did not finish
closing the file because it
encountered a file system error.

Examples
1. The following example reads the file LOGIN.COM and adds it to your current buffer:

READ_FILE ("login.com")

2. The following example creates a second window and a second buffer and maps the window to the
screen. The procedure also prompts you for a file name to include in the buffer and defines the key
sequence Shift/W (the Shift key follow by W) as the sequence with which to move to the second
window. (The default shift key is PF1.)

PROCEDURE user_two_windows

 w := CREATE_WINDOW (1, 10, ON);
 b := CREATE_BUFFER ("buf2");

 MAP (w, b);

237

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 READ_FILE (READ_LINE ("Enter file name for 2nd window : "));

 POSITION (BEGINNING_OF (b));

 DEFINE_KEY ("POSITION (w)", KEY_NAME ("W", SHIFT_KEY));
ENDPROCEDURE;

READ_GLOBAL_SELECT

Syntax

Parameters
PRIMARY

A keyword that indicates that the application is requesting information about a property of the
primary global selection.

SECONDARY

A keyword that indicates that the application is requesting information about a property of the
secondary global selection.

selection_name

A string that identifies the global selection whose property is the subject of the application’s
information request. Specify the selection name as a string if the layered application needs
information about a selection other than the primary or secondary global selection.

selection_property_name

A string that specifies the property whose value the application is requesting.

Return Values
range

A range that contains the text copied into the current buffer.

unspecified

A data type that indicates that the information requested by the application was not available.

Description
The READ_GLOBAL_SELECT procedure requests information about the specified global selection
from the owner of the global selection. For example, you can ask about the global selection’s font, the

238

Chapter 2. Descriptions of the DECTPU Built-In Procedures

number of lines it contains, or the string- formatted data it contains, if any. If the owner provides the
information, READ_GLOBAL_SELECT reads it and copies it into the current buffer at the editing
point, using the buffer’s current text mode (insert or overstrike). The READ_GLOBAL_SELECT built-
in procedure also puts line breaks in the text copied into the buffer.

All text read from the global selection is copied into the current buffer, starting at the editing point. If
DECTPU must start a new line to fit all the text into the buffer, the new line starts at column 1, even if
the current left margin is not set at column 1.

If the global selection information requested is an integer, the built-in converts the integer into a string
before copying it into the current buffer. If the information requested is a string, the built-in copies the
string into the buffer, replacing any line feeds with line breaks. Carriage returns adjacent to line feeds are
not copied into the buffer.

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_GBLSELOWNER WARNING DECTPU owns the global
selection.

TPU$_INVGBLSELDATA WARNING The global selection owner
provided data that DECTPU
cannot process.

TPU$_NOGBLSELDATA WARNING The global selection owner
indicated that it cannot provide
the information requested.

TPU$_NOGBLSELOWNER WARNING You requested information about
an unowned global selection.

TPU$_TIMEOUT WARNING The global selection owner did
not respond before the timeout
period expired.

TPU$_ARGMISMATCH ERROR Wrong type of data sent to the
READ_GLOBAL_SELECT
built-in.

TPU$_REQUIRESDECW ERROR You can use the
READ_GLOBAL_SELECT
built- in only if you are using
DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to
the READ_GLOBAL_SELECT
built-in.

TPU$_TOOMANY ERROR Too many arguments passed to
the READ_GLOBAL_SELECT
built-in.

Examples

The following example reads the string-formatted contents of the primary global selection and copies it
into the current buffer at the current location:

239

Chapter 2. Descriptions of the DECTPU Built-In Procedures

READ_GLOBAL_SELECTION (PRIMARY, "STRING");

READ_KEY

Syntax

Parameters

None.

Return Value

A key name for the key just pressed.

Description

The READ_KEY procedure waits for you to press a key and then returns the key name for that key.
READ_KEY should be used rather than READ_CHAR when you are entering escape sequences,
control characters, or any characters other than text characters. READ_KEY processes escape sequences
and DECTPU’s shift key (PF1 by default).

The key that is read by READ_KEY is not echoed on the terminal screen.

When you invoke DECTPU with the /NODISPLAY qualifier, READ_KEY signals TPU
$_REQUIRESTERM, "Feature requires a terminal", if SYS$INPUT is not a terminal.

In DECwindows DECTPU, READ_KEY maps the main window if it is not already mapped.

DECwindows applications that execute READ_KEY built-ins should use error handlers that contain the
TPU$_READABORTED selector. DECTPU signals that error if a READ_KEY built-in is aborted by
any of the following events: resize, widget callback, loss of primary selection, and client message.

The code associated with that selector should return from the procedure by executing either an ABORT
or RETURN statement. If instead of returning, the procedure executes another READ_KEY built-in,
DECTPU enters an infinite loop.

READ_KEY does not abort for input focus events.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR READ_KEY must be on the
right-hand side of an assignment
statement.

TPU$_TOOMANY ERROR READ_KEY accepts no
arguments.

TPU$_CONTROLC ERROR You pressed Ctrl/C during the
execution of READ_KEY.

240

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_REQUIRESTERM ERROR You cannot use READ_
KEY when DECTPU is in
NODISPLAY mode.

Examples
1. The following example reads the next key that is entered and stores the keyword for that key in the

variable my_key:

my_key := READ_KEY

2. The following example looks in the current key map list for the next key pressed. If the key is found,
any comment associated with that key is put into the message buffer.

PROCEDURE user_help_on_key

 LOCAL key_pressed,
 key_comment;

 MESSAGE ("Press the key you want help on.");

 key_pressed := READ_KEY;
 key_comment := LOOKUP_KEY (key_pressed, COMMENT);

 IF key_comment = 0
 THEN MESSAGE
 ("That key is not defined.");
 ELSE
 IF key_comment = ""
 THEN
 MESSAGE ("There is no comment for that key.");
 ELSE
 MESSAGE (key_comment);
 ENDIF;
 ENDIF;
ENDPROCEDURE;

3. The following example uses a coding style that avoids an infinite loop. In this example, DECTPU
aborts a READ_KEY built-in when a widget callback occur s. The error handler then returns from
that procedure.

procedure get_a_key (the_key)
on_error
 [TPU$_READABORTED]:
 message ("Prompt terminated.", 0);
 return;
endon_error;
loop
...
 the_key := read_key;
...
endloop;
endprocedure;

READ_LINE

241

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters

string1

A string that is the text used as a prompt for input. The maximum length is 255 characters. This
parameter is optional.

integer

The integer value that indicates how many characters to read from the input entered in response
to the prompt. The maximum number is 132. This parameter is optional. If not present, control of
execution passes from READ_LINE to DECTPU’s main loop when you press Return, Ctrl/Z, or the
one hundred thirty-second character.

Return Value

A string that stores your response to a prompt.

Description

The READ_LINE procedure displays the text that you specify as a prompt for input and reads the
information entered in response to the prompt. You can optionally specify the maximum number of
characters to be read. READ_LINE returns your data string response to the prompt.

The terminators for READ_LINE are the standard OpenVMS terminators such as Ctrl/Z and the Return
key. READ_LINE is not affected by DECTPU key definitions; the built-in takes literally all keys except
standard OpenVMS terminators.

By default, the text you specify as a prompt is written in the prompt area on the screen. The prompt area
is established with the SET (PROMPT_AREA) built-in procedure. See SET (PROMPT_AREA) for
more information.

If no prompt area is defined, the text specified as a prompt is displayed at the current location on the
device pointed to by SYS$OUTPUT (usually your terminal).

If READ_LINE terminates because it reaches the limit of characters specified as the second parameter,
the last character read becomes the last key. See the example section for a procedure that tests for the last
key entered in a prompt string.

In DECwindows DECTPU, READ_LINE maps the main widget if it is not already mapped.

When you invoke DECTPU with the /NODISPLAY qualifier, terminal functions such as screen display
and key definitions are not used. The READ_LINE built-in procedure calls the LIB$GET_INPUT
routine to issue a prompt to SYS$INPUT and accept input from you. A read done this way does not
terminate when the number of keys you specified as the second parameter (integer) are entered.
However, string2 contains the number of characters specified by the integer parameter, and LAST_KEY
contains the value of the key that corresponds to the integer specified as the last key to be read, except in
the following cases: If the read is terminated by Ctrl/Z, LAST_KEY has the value Ctrl/Z; if the read is

242

Chapter 2. Descriptions of the DECTPU Built-In Procedures

terminated by a carriage return before the specified integer limit is reached, LAST_KEY has the value of
the Return key.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR READ_LINE must appear on the
right-hand side of an assignment
statement.

TPU$_TOOMANY ERROR READ_LINE accepts no more
than two arguments.

TPU$_INVPARAM ERROR One of the arguments to
READ_LINE has the wrong data
type.

Examples
1. The following example displays the text "Enter key definition:" in the prompt area, and stores the

first character of your response in the variable my_prompt:

my_prompt := READ_LINE ("Enter key definition:", 1)

2. The following example prompts for three characters and stores them in the variable my_input:

PROCEDURE user_test_lastkey

 LOCAL my_key,
 k;

 my_input := READ_LINE ("Enter 3 characters:", 3);

! Press the keys "ABC"

 my_key := LAST_KEY;
 IF my_key = KEY_NAME ("C")
 THEN
 MESSAGE (" C key ");
 ELSE
 MESSAGE (" Error ");
 ENDIF;
ENDPROCEDURE;

It then tests for the last key entered.

3. The following example is used by commands that prompt for integers. The procedure returns true if
prompting worked or was not needed; it returns false otherwise. The returned value is passed back as
an output parameter.

! Parameters:
!
! old_number Old integer value - input
! new_number New integer value - output
! prompt_string Text of prompt - input
! no_value_message Message printed if user hits RETURN to
 get out of the command - input

243

Chapter 2. Descriptions of the DECTPU Built-In Procedures

PROCEDURE user_prompt_number (old_number, new_number,
 prompt_string, no_value_message)
! String read after prompt

 LOCAL read_line_string;

 new_number := old_number;
 IF old_number < 0
 THEN
 read_line_string := READ_LINE (prompt_string);
 EDIT (read_line_string, TRIM);
 IF read_line_string = "
 THEN
 MESSAGE (no_value_message);
 new_number := 0;
 RETURN (0);
 ELSE
 ! Change lowercase l to #1
 TRANSLATE (read_line_string, "1", "l");
 new_number := INT (read_line_string);
 IF (new_number = 0) and (read_line_string <> "0")
 THEN
 MESSAGE (FAO ("Don’t understand !AS",
 read_line_string));
 RETURN (0);
 ELSE
 RETURN (1);
 ENDIF;
 ENDIF;
 ELSE
 RETURN (1);
 ENDIF;
ENDPROCEDURE;

REALIZE_WIDGET

Syntax

Parameters

widget

The widget you want DECTPU to realize.

Description

The REALIZE_WIDGET procedure creates a widget window for the specified widget and, if a
composite widget, recursively realizes all the widget’s managed children. REALIZE_WIDGET interacts
with the widget’s mapped_when_managed bit. The setting of this bit determines whether or not
DECTPU maps the widget window to the display. See the VMS DECwindows Toolkit Routines Reference
Manual for a complete explanation.

244

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_NEEDTOASSIGN ERROR REALIZE_WIDGET must return
a value.

TPU$_TOOMANY ERROR Too many arguments specified.
TPU$_TOOFEW ERROR Too few arguments specified.
TPU$_INVPARAM ERROR The argument to

REALIZE_WIDGET has the
wrong data type.

TPU$_REQUIRESDECW ERROR Requires the DECTPU
DECwindows screen updater.

RECOVER_BUFFER

Syntax

Parameters
string1

The name of the buffer you are trying to recover.

string2

The name of the journal file you want DECTPU to use to recover your buffer. If you did not use
SET (JOURNALING) to set a journal file name, in most cases DECTPU will have created the
journal file by using its default journal file naming algorithm. If the journal file was named by
default, you need not specify a journal file name with RECOVER_BUFFER. If you specified a
journal file name by using SET (JOURNALING), use the same name with RECOVER_BUFFER.

Do not specify any directory name in this string. Specify only the buffer name and the extension, if
any.

buffer2

The buffer whose attributes you want applied to the newly created buffer. For more information on
using a buffer as a template, see the description of the CREATE_BUFFER built-in procedure.

Return Value
The buffer that contains the recovered text. If the recovery failed, the integer 0 is returned.

Description
The RECOVER_BUFFER procedure reconstructs the work done in the buffer whose name you specify.
DECTPU uses the specified buffer name to create a new buffer. It then uses the information in the

245

Chapter 2. Descriptions of the DECTPU Built-In Procedures

original buffer’s journal file to recover all the changes made to records in the original file. The resulting
recovery is written to the newly created buffer.

Do not confuse the RECOVER_BUFFER built-in procedure with the /RECOVER qualifier. You use
the /RECOVER qualifier to invoke DECTPU to recover a session or buffer. RECOVER_BUFFER, on
the other hand, is used after DECTPU has been invoked. It uses a buffer-change journal file to recover
the changes made to a specified buffer.

RECOVER_BUFFER works only with buffer-change journaling; you cannot recover a keystroke journal
file with RECOVER_BUFFER.

Only the first parameter (the old buffer name) is required. If you want to specify the third parameter but
not the second, you must use a comma as a placeholder, as follows:

RECOVER_BUFFER ("junk.txt", , template_buffer);

The third parameter is optional.

If some text is missing after recovery, the reason might be that the last few changes did not trigger a
write operation. For more information on how DECTPU manages write operations to a journal file, see
the description of the SET (JOURNALING) built-in procedure.

Buffer-change journaling does not journal changes in buffer attributes (such as modifiability of the
buffer or visibility of tabs). Buffer-change journaling tracks only changes to records in the buffer, such as
addition, deletion, or modification of a record or changes in a record’s attributes.

If you press Ctrl/C during a recovery, DECTPU terminates the recovery, closes the journal file, and
deletes the newly created buffer.

If possible, after a successful recovery, DECTPU continues journaling new changes into the journal file
that was used during the recovery. However, it is likely that the journal file contains partial records at the
end. In this case, DECTPU cannot continue journaling to the same file. DECTPU closes the journal file,
marks the buffer unsafe for journaling, and signals an error.

Note

Be careful when using the default naming algorithm while editing multiple buffers. If DECTPU
created your journal file as a result of editing multiple buffers with the same or similar names,
RECOVER_BUFFER might not recover the buffer you intend.

For more information on the default journal file naming algorithm, see the Guide to the DEC Text
Processing Utility. For example, suppose you were editing two buffers, one called TEST! and the other
called TEST?. The default journal file naming algorithm creates for each buffer a journal file named
TEST_ .TPU$JOURNAL. The journal file for the buffer created first has the lower version number. If
there were a system interruption while you were editing both buffers, and if the journal file for TEST!
had the lower version number, then RECOVER_BUFFER would recover the journal file created for the
buffer TEST?.

When you write the contents of a buffer to a file, DECTPU erases the journal file. If you write the
contents of the buffer to a file other than the default output file, the journal file contains a pointer to
the file to which you last wrote the buffer. For example, if the buffer is called MAIN but you write
the contents of the buffer to a file called OPUS.TXT, the journal file contains a pointer to the file
OPUS.TXT. OPUS.TXT is known as the “source file” because during a recovery DECTPU uses

246

Chapter 2. Descriptions of the DECTPU Built-In Procedures

OPUS.TXT as the source for the contents of the buffer as they were when the write operation was
performed.

Caution

If you delete the source file, or any of the files read into the buffer, the buffer becomes unrecoverable.

Similarly, if you have changed the name of the original files required for a recovery, the buffer will be
unrecoverable. DECTPU prompts for a new file name if it cannot find the original file. Be careful to
specify the correct file name in this case.

You must use the same major version of DECTPU to recover the journal that you used to create it.

Signaled Errors

TPU$_JRNLNOTSAFE WARNING The buffer is not safe for
journaling.

TPU$_NOTJOURNAL ERROR The file specified is not a valid
journal file.

TPU$_RECOVERABORT WARNING An inconsistency was found
between the journal file and the
currently executing procedure.
Recovery is aborted and the
journal file closed.

TPU$_RECOVERFAIL ERROR Recovery was terminated
abnormally due to journal file
inconsistency.

TPU$_RECOVERQUIT WARNING You did not specify a valid
source file name.

Examples

1. The following example directs DECTPU to find the buffer-change journal file associated with
the original buffer JUNK.TXT and to create a new buffer called JUNK.TXT. Also, it uses the
information from the journal file to recover the changes made in the original JUNK.TXT buffer. The
results of the recovery are placed in the new JUNK.TXT buffer.

RECOVER_BUFFER ("JUNK.TXT");

2. The following example creates a default buffer, changes an attribute of the default buffer, and creates
a user buffer. The fourth statement turns on buffer-change journaling and designates the file named
USER1_JOURNAL.TPU$JOURNAL as the journaling file. At some later point in the session
(represented by the ellipsis) the RECOVER_BUFFER statement is used to recover the content s of
the old USER1.TXT by using the journal file USER1_JOURNAL.TPU$JOURNAL. The attributes
of the defaults buffer are applied to the newly created buffer USER1.TXT. In this case, the new
buffer has the end-of-buffer text "[That’s all, folks!]".

defaults_buffer := CREATE_BUFFER ("Defaults");

SET (EOB_TEST, defaults_buffer, "[That’s all, folks!]");

247

Chapter 2. Descriptions of the DECTPU Built-In Procedures

user_buffer := CREATE_BUFFER ("User1.txt", "", defaults_buffer);

SET (JOURNALING, user_buffer, ON, "user1_journal.tpu$journal");
 .
 .
 .
RECOVER_BUFFER ("User1.txt", "user1_journal.tpu$journal",
 defaults_buffer);

REFRESH

Syntax

Parameters
None.

Description
The REFRESH procedure repaints the whole screen. REFRESH erases any extraneous characters, such
as those caused by noise on a communication line, and repositions the text so that the screen represents
the last known state of the editing context.

REFRESH causes a redrawing of every line of every window that is mapped to the screen. The prompt
area is erased. This built-in procedure causes the screen to change immediately. Even if REFRESH is
issued from within a procedure, the action takes place immediately; DECTPU does not wait until the
entire procedure is completed to execute REFRESH.

If screen updating is disabled when DECTPU executes the REFRESH command, DECTPU performs the
refresh operation when updating is enabled again.

DECTPU reissues escape sequences as appropriate to do any of the following:

● To set the width of the terminal

● To set the scrolling region

● To set the keypad to applications mode

● To set the video attributes to a known state

● To clear the screen of a Compaq-supported terminal

● To reset the nonalphanumeric character sets

REFRESH repaints the whole screen. See UPDATE for a description of how to update a single window
to make it reflect the current state of its associated buffer. If you want to update every visible window
without erasing the screen, use the UPDATE (ALL) built-in procedure.

See Appendix C, "DECTPU Cursor Behavior" for an explanation of how the screen is updated under
various circumstances.

248

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_TOOMANY ERROR REFRESH takes no parameters.

Examples
1. The following example causes the screen manager to repaint the whole screen so that it reflects the

current internal state of the editor:

REFRESH

2. The following example removes the contents of the message buffer and then repaints the whole
screen:

PROCEDURE user_repaint
 ERASE (message_buffer);
 REFRESH;
ENDPROCEDURE;

REMAIN

Syntax

Parameters
None.

Description
The REMAIN procedure specifies that all characters from the current position to the end of the line
should be included in a pattern. When used as part of a complex pattern or as an argument to SEARCH,
REMAIN matches the rest of the characters on a line. REMAIN matches successfully even if there are
no more characters on the line. Although REMAIN behaves much like a built-in, it is actually a keyword.

Signaled Errors
REMAIN is a keyword and has no completion codes.

Examples
1. The following example stores in the variable pat1 a pattern that matches all lines that have an

exclamation point at the beginning of the line:

pat1 := LINE_BEGIN + "!" + REMAIN

2. The following example removes all comments from the current buffer. It does not correctly handle
quoted strings that contain exclamation points.

PROCEDURE remove_comments

249

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 LOCAL pat1,
 here,
 comment_range;
 here := MARK (NONE); ! Remember our location
 pat1 := "!" + REMAIN;

 POSITION (BEGINNING_OF (CURRENT_BUFFER));
 LOOP
 comment_range := SEARCH_QUIETLY (pat1, FORWARD);
 EXITIF comment_range = 0;

 ERASE (comment_range);
 POSITION (comment_range);
 ENDLOOP;

 POSITION (here);
ENDPROCEDURE;

REMOVE_KEY_MAP

Syntax

Parameters
string1

A quoted string, or a variable name representing a string constant, that specifies the name of the key
map list containing the key map to be removed.

string2

A quoted string, or a variable name representing a string constant, that specifies the name of the key
map to be removed from the key map list.

ALL

This keyword is an optional argument. It specifies that all the key maps with the name specified by
string2 in the key map list are to be removed.

Description
The REMOVE_KEY_MAP procedure removes one or more key maps from a key map list. If the
optional ALL keyword is specified, all of the key maps with the specified name in the key map list are
removed from the list; otherwise, only the first entry with the specified name is removed.

Signaled Errors

TPU$_NOKEYMAP WARNING You specified an argument that is
not a defined key map.

TPU$_NOKEYMAPLIST WARNING You specified an argument that is
not a defined key map list.

250

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_KEYMAPNOTFND WARNING The key map you specified is not
found.

TPU$_EMPTYKMLIST WARNING The key map list you specified
contains no key maps.

TPU$_TOOFEW ERROR Too few arguments passed to the
REMOVE_KEY_MAP built-in.

TPU$_TOOMANY ERROR Too many arguments passed to
the REMOVE_KEY_MAP built-
in.

TPU$_INVPARAM ERROR Wrong type of data sent to the
REMOVE_KEY_MAP built-in.

TPU$_UNKKEYWORD ERROR An unknown keyword was used
as an argument. Only the ALL
keyword is allowed.

TPU$_BADKEY ERROR An unknown keyword was used
as an argument. Only the ALL
keyword is allowed.

Example
In the following example, a key map list named KEYMAP_LIST is created. The call to SHOW
(KEY_MAP_LISTS) shows that the key map list contains three key maps: KEYMAP_1,
KEYMAP_2, and KEYMAP_1 again. After the call to REMOVE_KEY_MAP, the call to SHOW
(KEY_MAP_LISTS) shows that the key map list contains only KEYMAP_2.

user$keymap_1 := CREATE_KEY_MAP ("keymap_1");

user$keymap_2 := CREATE_KEY_MAP ("keymap_2");

user$keymap_list := CREATE_KEY_MAP_LIST ("keymap_list", user$keymap_1,
 user$keymap_2);

ADD_KEY_MAP (user$keymap_list, "last", user$keymap_1);
 .
 .
 .
SHOW (KEY_MAP_LISTS);
 .
 .
 .
REMOVE_KEY_MAP (user$keymap_list, user$keymap_1, ALL);
 .
 .
 .
SHOW (KEY_MAP_LISTS);

RETURN

Syntax

251

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters

expression

This expression can be any DECTPU expression, variable, or built-in. It specifies what the current
procedure should return to its caller. If not specified, RETURN returns 0. The expression can be
enclosed within optional parentheses.

Description

The RETURN procedure is a DECTPU language element; it returns control from the current procedure
to its caller, optionally specifying the value the current procedure returns to the caller.

RETURN is evaluated for correct syntax at compile time. In contrast, DECTPU procedures are usually
evaluated for a correct parameter count and parameter types at execution time.

Signaled Errors

RETURN is a language element and signals no errors or warnings.

Examples

1. The following example erases the message buffer. If the current buffer is the message buffer, it
returns without erasing it.

PROCEDURE user_erase_message_buffer
 IF CURRENT_BUFFER = message_buffer
 THEN
 RETURN;
 ENDIF;

 ERASE (message_buffer);
ENDPROCEDURE;

2. The following example searches for a string. If it does not find the string, it returns the string “String
not found”; otherwise, it returns the range containing the found string.

PROCEDURE user_find_string (look_for)
 ON_ERROR
 RETURN "String not found";
 ENDON_ERROR;

 RETURN SEARCH (look_for, FORWARD);
ENDPROCEDURE;

SAVE

Syntax

252

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
string1

A string that is a valid file specification. If you supply only a file name, DECTPU uses the current
device and directory, not necessarily the SYS$LOGIN device and directory, in the file specification.

"NO_DEBUG_NAMES"

A string that prevents DECTPU from writing debugging information to the section file. When you
use "NO_DEBUG_NAMES", DECTPU does not write procedure parameter names or local variable
names. You can reduce the size of the section file by specifying this string. Do not specify this string
if you intend to use the DECTPU debugger on the section file.

"NO_PROCEDURE_NAMES"

A string, or a variable or constant name representing this string, that prevents DECTPU from writing
procedure names to the section file. You can reduce the size of the section file by specifying this
string. However, the procedure names are required to display a meaningful traceback when an error
occurs. Therefore, do not specify this string if you want to use the application created by the section
file with the TRACEBACK or LINE_NUMBER function set to ON.

"IDENT"

A string that specifies that you want to assign an identifying string, such as a version number, to the
section file.

string2

The string (usually a version number) that you want to assign to the section file.

Description
The SAVE procedure writes the binary forms of all currently defined procedures, variables, key
definitions, key maps, and key map lists to the section file you specify. Use SAVE to create DECTPU
section files. If you are adding to an existing section file, the new section file contains all of the items
from the original section file and the new items from the current editing session.

Section files enable DECTPU interfaces to start up quickly because they contain the following items in
binary form:

● All com piled PROCEDURE . . . ENDPROCEDURE statements

● Every variable created (only the variable’s name is saved, not its contents)

● Every key definition that binds a statement, procedure, program, or learn sequence to a key,
including the comments that you add to key definitions

● Every key map and key map list created

● All defined constants

When you use the SAVE built-in procedure during an editing session to add items to an existing section
file, SAVE does not keep items that were established interactively with the SET built-in procedure (for
example, margin settings for buffers, or setting the editor’s shift key to something other than the PF1
key).

253

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If you do not specify a device and directory in the string parameter, DECTPU uses your current device
and directory. The default file type is TPU$SECTION.

File backups are automatically provided by RMS.

When you use the SAVE built-in procedure, informational messages are generated for any undefined
procedures or ambiguous symbols as they are written to the section file. If the display of informational
messages has been disabled, these messages are not displayed.

Signaled Errors
TPU$_SAVEERROR ERROR The section cannot be created

because of errors in the context
being saved.

TPU$_TOOFEW ERROR Too few arguments passed to the
SAVE built-in.

TPU$_TOOMANY ERROR Too many arguments passed to
the SAVE built-in.

TPU$_INVPARAM ERROR Wrong type of data sent to the
SAVE built-in.

TPU$_SECTUNDEFPROC WARNING Undefined procedures or
ambiguous symbols were found
while the section file was being
written.

TPU$_BADSYMTAB ERROR DECTPU’s symbol tables are
inconsistent.

TPU$_SAVEUNDEFPROC INFORMATIONAL An undefined procedure is being
written to the section file.

TPU$_SAVEAMBIGSYM INFORMATIONAL An ambiguous symbol is being
written to the section file.

Examples
1. The following example procedure, issued just before exiting from the editor, adds all of the

procedure definitions, key definitions, and variables from your current editing session to the
OpenVMS section file with which you invoked DECTPU. The new file that you specify, SYS
$LOGIN:mysection.TPU$SECTION, contains initialization items from the original section file and
from your editing session.

SAVE ("SYS$LOGIN:mysection.TPU$SECTION")

To invoke DECTPU with the new section file, enter the following command at the DCL level:

$ EDIT/TPU/SECTION=sys$login:mysection

2. The following example shows how you can use SAVE in a command file to extend an application.
The first procedure moves the cursor to the beginning of the next paragraph. The second procedure
defines a shift key and binds the procedure eve_next_paragraph to the period key on the keypad.
The SAVE statement directs DECTPU to write the binary form of eve_next_paragraph and the key
definition to a section file called MY_S ECTION.TPU$SECTION. The second and third parameters
to the SAVE statement direct DECTPU to assign the string "V1.5" to the section file. The QUIT
statement terminates the DECTPU session.

254

Chapter 2. Descriptions of the DECTPU Built-In Procedures

PROCEDURE eve_next_paragraph

 LOCAL pat1,
 the_range;

 pat1 := LINE_BEGIN + LINE_BEGIN + ARB (1);
 the_range := SEARCH_QUIETLY (pat1, FORWARD, EXACT);

 IF the_range <> 0
 THEN
 POSITION (END_OF (the_range));
 ENDIF;
ENDPROCEDURE;

PROCEDURE tpu$local_init
 SET (SHIFT_KEY, KP0);
 DEFINE_KEY ("eve_next_paragraph", PERIOD, "Next Para");
ENDPROCEDURE;

SAVE ("my_section", "ident", "V1.5");
QUIT;

SCAN

Syntax

Parameters
buffer

An expression that evaluates to a buffer. SCAN does not match any of the characters that appear in
the buffer.

range

An expression that evaluates to a range. SCAN does not match any of the characters that appear in
the range.

string

An expression that evaluates to a string. SCAN does not match any of the characters that appear in
the string.

FORWARD

A keyword that directs DECTPU to match characters in the forward direction. This is the default.

REVERSE

A keyword that directs DECTPU to match characters as follows: first, match characters in the
forward direction until DECTPU finds a character that is a member of the set of characters. Next,

255

Chapter 2. Descriptions of the DECTPU Built-In Procedures

return to the first character matched and start matching characters in the reverse direction until
DECTPU finds a character that is in the set.

You can specify REVERSE only if you are using SCAN in the first element of a pattern being used
in a reverse search. In all other contexts, specifying REVERSE has no effect.

The behavior enabled by REVERSE allows an alternate form of reverse search. By default, a reverse
search stops as soon as a successful match occurs, even if there might have been a longer successful
match in the reverse direction. By specifying REVERSE, you direct DECTPU not to stop matching
in either direction until it has matched as many characters as possible.

Return Value
A pattern matching only characters that do not appear in the buffer, range, or string used as the
parameter.

Description
The SCAN procedure returns a pattern that matches only characters that do not appear in the string,
buffer, or range used as its parameter. SCAN matches as many characters as possible, stopping only
if it finds a character that is present in its parameter or if it reaches the end of a line. If SCAN is part
of a larger pattern, SCAN does not match a character if doing so prevents the rest of the pattern from
matching.

SCAN does not cross line boundaries. To match a string of characters that may cross one or more line
boundaries, use SCANL.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR SCAN must appear on the right-
hand side of an assignment
statement.

TPU$_TOOFEW ERROR SCAN requires at least one
argument.

TPU$_TOOMANY ERROR SCAN accepts no more than one
argument.

TPU$_ARGMISMATCH ERROR SCAN was given an argument of
the wrong type.

TPU$_CONTROLC ERROR You pressed Ctrl/C during the
execution of SCAN.

Examples
1. The following example stores a pattern that matches the longest string of characters that does not

contain a, b, or c in pat1:

pat1 := SCAN ("abc")

2. The following example identifies parenthesized text within a single line. It moves the editing point to
the beginning of the parenthesized text, if it is found.

PROCEDURE user_find_parens

256

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 paren_text := ANY("(’) + SCAN (’)");
 found_range := SEARCH (paren_text, FORWARD, NO_EXACT);

 IF found_range = 0 ! No parentheses.
 THEN
 MESSAGE ("No parentheses found.");
 ELSE
 POSITION (found_range);
 ENDIF;
ENDPROCEDURE;

3. The following example goes through the current file, deleting all characters that are not numbers,
letters, or spaces:

PROCEDURE user_remove_odd_characters
 LOCAL pat1,
 odd_text;

 pat1 := SCAN ("abcdefghijklmnopqrstuvwxyz 0123456789");
 POSITION (BEGINNING_OF (CURRENT_BUFFER));
 LOOP
 odd_text := SEARCH_QUIETLY (pat1, FORWARD);
 EXITIF odd_text = 0;
 ERASE (odd_text);
 POSITION (odd_text);
 ENDLOOP;
 POSITION (END_OF (CURRENT_BUFFER));
ENDPROCEDURE;

SCANL

Syntax

Parameters
buffer

An expression that evaluates to a buffer. SCANL does not match any of the characters that appear in
the buffer.

range

An expression that evaluates to a range. SCANL does not match any of the characters that appear in
the range.

string

An expression that evaluates to a string. SCANL does not match any of the characters that appear in
the string.

257

Chapter 2. Descriptions of the DECTPU Built-In Procedures

FORWARD

A keyword that directs DECTPU to match characters in the forward direction. This is the default.

REVERSE

A keyword that directs DECTPU to match characters as follows: first, match characters in the
forward direction until DECTPU finds a character that is a member of the set of characters. Next,
return to the first character matched and start matching characters in the reverse direction until
DECTPU finds a character that is in the set.

You can specify REVERSE only if you are using SCANL in the first element of a pattern being used
in a reverse search. In all other contexts, specifying REVERSE has no effect.

The behavior enabled by REVERSE allows an alternate form of reverse search. By default, a reverse
search stops as soon as a successful match occurs, even if there might have been a longer successful
match in the reverse direction. By specifying REVERSE, you direct DECTPU not to stop matching
in either direction until it has matched as many characters as possible.

Return Value

A pattern that may contain line breaks and that matches only characters that do not appear in the buffer,
range, or string used as the parameter.

Description

The SCANL procedure returns a pattern that matches a string of characters, including line breaks, none
of which appear in the buffer, range, or string used as its parameter. The returned pattern contains as
many characters and line breaks as possible.

SCANL is similar to SCAN in that it matches one or more characters that do not appear in the string,
buffer, or range used as its parameter. Unlike SCAN, however, SCANL does not stop matching when
it reaches the end of a line. Rather, it successfully matches the line end and continues trying to match
characters on the next line.

If SCANL is part of a larger pattern, it does not match a character or line boundary if doing so prevents
the rest of the pattern from matching.

SCANL must match at least one character.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR SCANL must appear on the
right-hand side of an assignment
statement.

TPU$_TOOFEW ERROR SCANL requires at least one
argument.

TPU$_TOOMANY ERROR SCANL requires no more than
one argument.

TPU$_ARGMISMATCH ERROR Argument to SCANL has the
wrong type.

258

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_CONTROLC ERROR You pressed Ctrl/C during the
execution of SCANL.

Examples

1. The following example creates a pattern that matches a sentence. It assumes that a sentence ends in
one of the following characters: a period (.), an exclamation point (!), or a question mark (?).
The matched text does not include the punctuation mark ending the sentence.

sentence_pattern := any ("ABCDEFGHIJKLMNOPQRSTUVWXYZ") + scanl (".!?);

2. The following example goes through the current buffer, erasing anything that is not a number. The
only line breaks it leaves in the file are those between a line ending with a number and one beginning
with a number.

PROCEDURE user_remove_non_numbers
 LOCAL pat1,
 non_number_region;

 pat1 := SCANL ("0123456789");

 POSITION (BEGINNING_OF (CURRENT_BUFFER));

 LOOP
 non_number_region := SEARCH_QUIETLY (pat1, FORWARD);
 EXITIF non_number_region = 0;
 ERASE (non_number_region);
 POSITION (non_number_region);
 ENDLOOP;

 POSITION (BEGINNING_OF (CURRENT_BUFFER));
ENDPROCEDURE;

SCROLL

Syntax

Parameters

window

The window associated with the buffer whose text you want to scroll.

integer1

The signed integer value that indicates how many lines you want the text to scroll. If you supply a
negative value for the second parameter, the lines of text scroll off the top of the screen, leaving the
cursor closer to the beginning of the buffer. If you supply a positive value for the second parameter,
the lines of text scroll off the bottom of the screen, leaving the cursor closer to the end of the buffer.
If you specify 0 as the integer value, no scrolling occurs.

259

Chapter 2. Descriptions of the DECTPU Built-In Procedures

This parameter is optional. If you omit the second parameter, the text scrolls continuously until it
reaches a buffer boundary or until you press a key. If the current direction of the buffer is forward,
the text scrolls to the end of the buffer. If the current direction of the buffer is reverse, the text
scrolls to the beginning of the buffer. If you press a key that has commands bound to it, the scrolling
stops and DECTPU executes the commands bound to the key.

Return Value
An integer that indicates the number and direction of lines actually scrolled as a result of using SCROLL.

Description
The SCROLL procedure moves the lines of text in the buffer up or down on the screen by the number of
lines you specify. You can scroll text only in a visible window. If the window is not currently visible on
the screen, DECTPU issues an error message.

During scrolling, the cursor does not move but stays positioned at the same relative screen location. The
current editing point is different from the editing point that was current before you issued the SCROLL
built-in procedure.

SCROLL optionally returns an integer that indicates the number and direction of lines actually scrolled.
If you supply a negative value for the second parameter, the lines of text scroll off the bottom of the
screen, leaving the cursor closer to the beginning of the buffer. If you supply a positive value for the
second parameter, the lines of text scroll off the top of the screen, leaving the cursor closer to the end of
the buffer. The value of integer2 may differ from what was specified in integer1.

SCROLL causes the screen to scroll immediately. Unlike screen updates, SCROLL does not wait to take
effect until after the completion of a procedure.

If the buffer has been modified or the window display has altered since the last update, the window is
updated before the scrolling operation begins.

SCROLL does not work if:

● you have turned off the screen update flag with SET (SCREEN_UPDATE, OFF);

● you used the /NODISPLAY qualifier when invoking DECTPU on an unsupported device;

● the window that you specify is not visible on the screen.

When the scrolling is complete, the editing point (record and offset) is set to match the cursor position
(screen line and column position).

After the scrolling stops, the cursor may be located to the right of the last character in the new current
record, to the left of the left margin, or in the middle of a tab. In this instance, any DECTPU built-in
procedure that requires a record offset (for example, CURRENT_OFFSET, MOVE_HORIZONTAL,
MOVE_VERTICAL, MARK, and so on) causes the record to be padded with blanks to the cursor
location.

If the screen you are using does not have hardware scrolling regions, the window being scrolled is
repainted for each scroll that would have occurred. For instance, the statement SCROLL (my_window,3)
repaints the window three times.

If you use SCROLL while positioned after the end of the buffer, SCROLL completes successfully and
returns 0 as the amount scrolled.

260

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_CONTROLC ERROR You pressed Ctrl/C to stop
scrolling.

TPU$_WINDNOTMAPPED WARNING You are trying to scroll an
unmapped window.

TPU$_TOOFEW ERROR SCROLL requires at least one
parameter.

TPU$_TOOMANY ERROR You specified more than two
parameters.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

Examples
1. The following example causes the text of the buffer that is mapped to the main window to scroll

forward 10 lines:

SCROLL (main_window,+10)

2. The following example scrolls the buffer MAIN until you press a key. The procedure returns the
number of lines scrolled.

PROCEDURE user_scroll_buffer

 LOCAL scrolled_lines;

 MESSAGE ("Press any key to stop scrolling...");
 scrolled_lines := SCROLL (main_window);
 dummy_key := READ_KEY;
 RETURN scrolled_lines;
ENDPROCEDURE;

SEARCH

Syntax

261

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
ANCHOR

A keyword that directs SEARCH to start a search at the current character position. Use this keyword
as part of a complex pattern.

BUFFER_BEGIN

A keyword used to match the beginning of a buffer.

BUFFER_END

A keyword used to match the end of a buffer.

LINE_BEGIN

A keyword used to match the beginning of a line.

LINE_END

A keyword used to match the end of a line.

PAGE_BREAK

A keyword used to match a form-feed character.

pattern

The pattern that you want to match.

REMAIN

A keyword that specifies a match starting at the current character and continuing to the end of the
current line.

string

The string that you want to match.

UNANCHOR

A keyword that specifies that the next pattern element can match anywhere after the previous pattern
element. Use this keyword as part of a complex pattern. For more information on these keywords,
refer to the individual descriptions of them in this chapter.

FORWARD

Indicates a search in the forward direction.

REVERSE

Indicates a search in the reverse direction.

EXACT

Indicates that the characters SEARCH is trying to match must be the same case and have the same
diacritical markings as those in the string or pattern used as the first parameter to SEARCH.

262

Chapter 2. Descriptions of the DECTPU Built-In Procedures

NO_EXACT

Indicates that the characters SEARCH is trying to match need not be the same case nor have the
same diacritical markings as those in the string or pattern used as the first parameter to SEARCH.
NO_EXACT is the default value for the optional third parameter.

integer

Specifies how SEARCH should handle case and diacritical information if you want to match one
attribute and ignore the other. VSI recommends that you use the defined constants available for
specifying this integer. The defined constants are as follows:

● TPU$K_SEARCH_CASE—Equivalent to the integer 1. This specifies that the search should
match the case of the first parameter but be insensitive to the diacritical markings of the first
parameter.

● TPU$K_SEARCH_DIACRITICAL—Equivalent to the integer 2. This specifies that the search
should match the diacritical markings of the first parameter but be insensitive to the case of the
first parameter.

buffer

The buffer in which to search. SEARCH starts at the beginning of the buffer when doing a forward
search and at the end of the buffer when doing a reverse search.

range1

The range in which to search. SEARCH starts at the beginning of the range when doing a forward
search and at the end of the range when doing a reverse search.

To search a range for all occurrences of a pattern, you must define the range dynamically after each
successful match; otherwise, SEARCH positions to the beginning of the range and finds the same
occurrence over and over. See the example section for a procedure that searches for all occurrences
of a pattern in a range.

Return Value
The range that contains characters that match the pattern or string specified as a parameter.

Description
The SEARCH procedure looks for a particular arrangement of characters in a buffer or range and
returns a range that contains those characters. SEARCH looks for text that matches the string, pattern,
or keyword specified as its first parameter. If it finds such text, it creates a range that contains this
text and returns it. If SEARCH does not find a match, SEARCH returns 0 and signals the error TPU
$_STRNOTFOUND. To perform a search that does not signal an error when there is no match, use the
SEARCH_QUIETLY built-in procedure.

The starting position for the search depends on the optional fourth parameter and the search direction. If
you do not specify the fourth parameter, the search starts at the editing point.

If you specify a range for the fourth parameter, the search starts at the beginning of the range for a
forward search or the end of the range for a reverse search. When searching a range, SEARCH matches
only text inside the range. It does not look at text outside the range.

If you specify a buffer for the fourth parameter, the search starts at the beginning of the buffer for a
forward search or the end of the buffer for a reverse search.

263

Chapter 2. Descriptions of the DECTPU Built-In Procedures

To determine whether the searched text contains a match, SEARCH examines the character at the
starting position and attempts to match the character against the pattern, text, or keyword specified. By
default, the search is unanchored. This allows SEARCH to move one character in the direction of the
search if the character at the start position does not match. SEARCH continues in this manner until it
finds a match or reaches the bounds of the buffer or range.

To prevent SEARCH from moving the starting position in the direction of the search, use the ANCHOR
keyword when you define the pattern to be matched.

SEARCH does not change the current buffer or the editing point in that buffer. For more information
about searching, see the Guide to the DEC Text Processing Utility.

Signaled Errors

TPU$_STRNOTFOUND WARNING Search for a string or pattern was
unsuccessful.

TPU$_TOOFEW ERROR SEARCH requires at least two
arguments.

TPU$_TOOMANY ERROR SEARCH accepts no more than
four arguments.

TPU$_ARGMISMATCH ERROR One of the parameters to
SEARCH is of the wrong type.

TPU$_INVPARAM ERROR One of the parameters to
SEARCH is of the wrong type.

TPU$_BADKEY WARNING You specified an incorrect
keyword to SEARCH.

TPU$_MINVALUE WARNING The integer parameter to
SEARCH must be greater than or
equal to –1.

TPU$_MAXVALUE WARNING The integer parameter to
SEARCH must be less than or
equal to 3.

TPU$_NOCURRENTBUF ERROR If you do not specify a buffer
or range to search, you must
position to a buffer before
searching.

TPU$_CONTROLC ERROR You pressed Ctrl/C while
SEARCH was executing.

TPU$_ILLPATAS ERROR The pattern to SEARCH
contained a partial pattern
assignment to a variable not
defined in the current context.

Examples
1. In the following example, if you search a buffer in which the string "Reflections of Monet" appears,

this assignment statement stores the characters "Reflections of Monet" in the range user_range. The
search finds a successful match even though the characters in the word "Monet" do not match in case
because you specified NO_EXACT.

264

Chapter 2. Descriptions of the DECTPU Built-In Procedures

user_range := SEARCH ("Reflections of MONET", FORWARD, NO_EXACT)

2. The following example searches the range the_range for all occurrences of the pattern "blue skies
". If SEARCH finds the pattern, the procedure redefines the_range to begin after the end of the
pattern just found. If the procedure did not redefine the range, SEARCH would keep finding the first
occurrence over and over. The procedure reports the number of occurrences of the pattern.

PROCEDURE user_search_range

 LOCAL found_count;

 ON_ERROR
 [TPU$_STRNOTFOUND, TPU$_CONTROLC]:
 MESSAGE (FAO ("Found !SL occurrences.", found_count));
 RETURN;
 [OTHERWISE]:ABORT;
 ENDON_ERROR;

 found_count := 0;
 the_pattern := "blue skies";
 the_range := CREATE_RANGE (BEGINNING_OF (CURRENT_BUFFER),
 END_OF (CURRENT_BUFFER),
 NONE);
 found_range := CREATE_RANGE (BEGINNING_OF (CURRENT_BUFFER),
 BEGINNING_OF (CURRENT_BUFFER),
 NONE);
 LOOP
 the_range := CREATE_RANGE (END_OF (found_range),
 END_OF (the_range), NONE);
 found_range := SEARCH (the_pattern, FORWARD, NO_EXACT,
 the_range);
 found_count := found_count + 1;
 ENDLOOP;
ENDPROCEDURE;

SEARCH_QUIETLY

Syntax

265

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters

ANCHOR

A keyword that directs SEARCH_QUIETLY to start a search at the current character position. Use
this keyword as part of a complex pattern.

BUFFER_BEGIN

A keyword used to match the beginning of a buffer.

BUFFER_END

A keyword used to match the end of a buffer.

LINE_BEGIN

A keyword used to match the beginning of a line.

LINE_END

A keyword used to match the end of a line.

PAGE_BREAK

A keyword used to match a form-feed character.

pattern

The pattern that you want to match.

REMAIN

A keyword that specifies a match starting at the current character and continuing to the end of the
current line.

string

The string that you want to match.

UNANCHOR

A keyword that specifies that the next pattern element can match anywhere after the previous pattern
element. Use this keyword as part of a complex pattern. For more information on these keywords,
refer to the individual descriptions of them in this chapter.

FORWARD

Indicates a search in the forward direction.

REVERSE

Indicates a search in the reverse direction.

266

Chapter 2. Descriptions of the DECTPU Built-In Procedures

EXACT

Indicates that the characters SEARCH_QUIETLY is trying to match must be the same case and
have the same diacritical markings as those in the string or pattern used as the first parameter to
SEARCH_QUIETLY.

NO_EXACT

Indicates that the characters SEARCH_QUIETLY is trying to match need not be the same case nor
have the same diacritical markings as those in the string or pattern used as the first parameter to
SEARCH. NO_EXACT is the default value for the optional third parameter.

integer

Specifies how SEARCH_QUIETLY should handle case and diacritical information if you want
to match one attribute and ignore the other. VSI recommends that you use the defined constants
available for specifying this integer. The defined constants are as follows:

● TPU$K_SEARCH_CASE—Equivalent to the integer 1. This specifies that the search should
match the case of the first parameter but be insensitive to the diacritical markings of the first
parameter.

● TPU$K_SEARCH_DIACRITICAL—Equivalent to the integer 2. This specifies that the search
should match the diacritical markings of the first parameter but be insensitive to the case of the
first parameter.

buffer

The buffer in which to search. SEARCH_QUIETLY starts at the beginning of the buffer when doing
a forward search and at the end of the buffer when doing a reverse search.

range1

The range in which to search. SEARCH_QUIETLY starts at the beginning of the range when doing
a forward search and at the end of the range when doing a reverse search.

To search a range for all occurrences of a pattern, you must define the range dynamically after each
successful match; otherwise, SEARCH_QUIETLY positions to the beginning of the range and finds
the same occurrence over and over. See the example section for a procedure that searches for all
occurrences of a pattern in a range.

Return Value
The range that contains characters that match the pattern or string specified as a parameter.

Description
The SEARCH_QUIETLY procedure looks for a particular arrangement of characters in a buffer or
range and returns a range that contains those characters. Unlike the SEARCH built-in procedure,
SEARCH_QUIETLY does not signal TPU$_STRNOTFOUND when it fails to find a string.

SEARCH_QUIETLY looks for text that matches the string, pattern, or keyword specified as
its first parameter. If it finds such text, it creates a range that contains this text and returns it.
If SEARCH_QUIETLY does not find a match, the built-in returns 0 without signaling TPU
$_STRNOTFOUND.

267

Chapter 2. Descriptions of the DECTPU Built-In Procedures

The starting position for the search depends on the optional fourth parameter and the search direction. If
you do not specify the fourth parameter, the search starts at the editing point.

If you specify a range for the fourth parameter, the search starts at the beginning of the range
for a forward search or the end of the range for a reverse search. When searching a range,
SEARCH_QUIETLY matches only text inside the range. It does not look at text outside the range.

If you specify a buffer for the fourth parameter, the search starts at the beginning of the buffer for a
forward search or the end of the buffer for a reverse search.

To determine whether the searched text contains a match, SEARCH_QUIETLY examines the character
at the starting position and attempts to match the character against the pattern, text, or keyword
specified. By default, the search is unanchored. This allows SEARCH_QUIETLY to move one character
in the direction of the search if the character at the start position does not match. SEARCH_QUIETLY
continues in this manner until it finds a match or reaches the bounds of the buffer or range.

To prevent SEARCH_QUIETLY from moving the starting position in the direction of the search, use the
ANCHOR keyword when you define the pattern to be matched.

SEARCH_QUIETLY does not change the current buffer or the editing point in that buffer. For more
information about searching, see the Guide to the DEC Text Processing Utility.

Signaled Errors

TPU$_TOOFEW ERROR SEARCH_QUIETLY requires at
least two arguments.

TPU$_TOOMANY ERROR SEARCH_QUIETLY accepts no
more than four arguments.

TPU$_ARGMISMATCH ERROR One of the parameters to
SEARCH_QUIETLY is of the
wrong type.

TPU$_INVPARAM ERROR One of the parameters to
SEARCH_QUIETLY is of the
wrong type.

TPU$_BADKEY WARNING You specified an
incorrect keyword to
SEARCH_QUIETLY.

TPU$_MINVALUE WARNING The integer parameter to
SEARCH_QUIETLY must be
greater than or equal to –1.

TPU$_MAXVALUE WARNING The integer parameter to
SEARCH_QUIETLY must be
less than or equal to 3.

TPU$_NOCURRENTBUF ERROR If you do not specify a buffer
or range to search, you must
position to a buffer before
searching.

TPU$_CONTROLC ERROR You pressed Ctrl/C while
SEARCH_QUIETLY was
executing.

268

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_ILLPATAS ERROR The pattern to
SEARCH_QUIETLY contained
a partial pattern assignment to a
variable not defined in the current
context.

Example

The following example searches the range the_range for all occurrences of the pattern "blue skies". If
SEARCH_QUIETLY finds the pattern, the procedure redefines the_range to begin after the end of the
pattern just found. If the procedure did not redefine the range, SEARCH_QUIETLY would keep finding
the first occurrence over and over. The procedure reports the number of occurrences of the pattern. A
procedure that uses SEARCH_QUIETLY does not trap the TPU$_STRNOTFOUND error because
SEARCH_QUIETLY does not signal this error.

PROCEDURE user_search_range
 LOCAL found_count;

 ON_ERROR
 [TPU$_CONTROLC]:
 MESSAGE (FAO ("Found !SL occurrences.", found_count));
 RETURN;
 [OTHERWISE]:
 ABORT;
 ENDON_ERROR;

 found_count := 0;
 the_pattern := "blue skies";
 the_range := CREATE_RANGE (BEGINNING_OF (CURRENT_BUFFER),
 END_OF (CURRENT_BUFFER), NONE);

 found_range := CREATE_RANGE (BEGINNING_OF (CURRENT_BUFFER),
 BEGINNING_OF (CURRENT_BUFFER), NONE);

 LOOP
 the_range := CREATE_RANGE (END_OF (found_range),
 END_OF (the_range), NONE);

 found_range := SEARCH_QUIETLY (the_pattern, FORWARD,
 NO_EXACT, the_range);
 found_count := found_count + 1;
 ENDLOOP;
ENDPROCEDURE;

SELECT

Syntax

269

Chapter 2. Descriptions of the DECTPU Built-In Procedures

BLINK

Specifies that the selected characters are to blink.

BOLD

Specifies that the selected characters are to be bolded.

NONE

Applies no video attributes to selected characters.

REVERSE

Specifies that the selected characters are to be displayed in reverse video.

UNDERLINE

Specifies that the selected characters are to be underlined.

Return Value
A marker for the editing point in the current buffer.

Description
The SELECT procedure returns a marker for the editing point in the current buffer. You must specify
how the marker is to be displayed on the screen (no special video, reverse video, bolded, blinking, or
underlined).

The marker returned by SELECT indicates the first character position in a select range. The video
attribute that you specify for the marker applies to all the characters in a select range. For information on
creating a select range, see SELECT_RANGE.

SELECT returns a special marker that establishes the beginning of a select range. The marker is
positioned at the character position that is the editing point when the SELECT built-in procedure is
executed. (The marker is actually positioned between character positions, rather than on a character
position.) A select range includes all the characters between the select marker and the current position,
but not the character at the current position.

Using SELECT may cause DECTPU to insert padding spaces or blank lines in the buffer. SELECT
causes the screen manager to place the editing point at the cursor position if the current buffer is mapped
to a visible window. For more information on the distinction between the cursor position and the editing
point, see Appendix C, "DECTPU Cursor Behavior".

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

Only one select marker for a buffer can be active at any one time. If a buffer is associated with more
than one visible window, the select range is displayed in only one window (the current or most recent
window).

If the buffer in which you are selecting text is associated with the current window, as you move from the
select marker to another character position in the same buffer, all the characters over which you move
the cursor are included in the select range, and the video attribute that you specify for the select marker
is applied to the characters in the range. The video attribute of a selected character is not visible when

270

Chapter 2. Descriptions of the DECTPU Built-In Procedures

you are positioned on the character, but once you move beyond the character, the character is displayed
with the attribute you specify.

If two or more windows are mapped to the same buffer and one of the windows is the current window,
only the current window displays the select area. If two or more windows are mapped to different
buffers, you can have more than one visible select area on the screen at the same time. If none of the
windows on the screen is the current window, the visible window that was most recently current displays
the select area.

If the current character is deleted, the marker moves to the nearest character position. The nearest
character position is determined in the following way:

1. If there is a character position on the same line to the right, the marker moves to this position, even if
the position is at the end of the line.

2. If the line on which the marker is located is deleted, the marker moves to the first position on the
following line.

If you are positioned at the select marker and you insert text, the select marker moves to the first
character of the inserted text. You can move one column past the last character in a line. (With free
cursor motion, you can move even further beyond the last character of a line.) However, if you establish a
select marker beyond the last character in a line, no video attribute is visible for the marker.

Signaled Errors
TPU$_ONESELECT WARNING SELECT is already active in the

current buffer.
TPU$_TOOFEW ERROR SELECT requires one argument.
TPU$_TOOMANY ERROR SELECT accepts only one

argument.
TPU$_NEEDTOASSIGN ERROR SELECT must be on the right-

hand side of an assignment
statement.

TPU$_NOCURRENTBUF ERROR You must position to a buffer
before using SELECT.

TPU$_BADKEY WARNING You specified the wrong keyword
to SELECT.

TPU$_INVPARAM ERROR SELECT’s parameter is not a
keyword.

Examples
1. The following example places a marker at the editing point. Because NONE is specified, no video

attributes are applied to a select range that has this marker as its beginning.

select_mark := SELECT (NONE)

2. The following example creates a bold marker that is used as the beginning of a select region. As you
move the cursor, the characters that you select are bolded. To turn off the selection of characters, set
the variable user_v_beginning_of_select to 0.

! Bold selected text

271

Chapter 2. Descriptions of the DECTPU Built-In Procedures

PROCEDURE user_start_select

 user_v_beginning_of_select := SELECT (BOLD);

ENDPROCEDURE;

SELECT_RANGE

Syntax

Parameters
None.

Return Value
A range that contains all the characters between the marker established with SELECT and the editing
point.

Description
The SELECT_RANGE procedure returns a range that contains all the characters between the marker
established with the SELECT built-in procedure and the editing point. SELECT_RANGE does not
include the current character.

If you select text in a forward direction, the select range includes the marked character and all characters
up to but not including the current character. If you select text in a reverse direction from the marker,
the select range includes the current character and all characters up to but not including the marked
character.

You use SELECT_RANGE in conjunction with SELECT to let you mark a section of text for treatment
as an entity.

Using SELECT_RANGE may cause DECTPU to insert padding spaces or blank lines in the buffer.
SELECT_RANGE causes the screen manager to place the editing point at the cursor position if the
current buffer is mapped to a visible window. For more information on the distinction between the cursor
position and the editing point, see Appendix C, "DECTPU Cursor Behavior".

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

Signaled Errors
TPU$_NOSELECT WARNING There is no active select range in

the current buffer.
TPU$_SELRANGEZERO WARNING The select range contains no

selected characters.
TPU$_NEEDTOASSIGN ERROR SELECT_RANGE must be

on the right-hand side of an
assignment statement.

272

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_TOOMANY ERROR SELECT_RANGE takes no
arguments.

TPU$_NOCURRENTBUF WARNING There is no current buffer.

Examples
1. The following example puts the range for the currently selected characters in the variable select_1:

select_1 := SELECT_RANGE

2. The following example shows the use of SELECT_RANGE multiple times in the same procedure:

PROCEDURE user_select

! Start a select region

 user_select_position := SELECT (REVERSE);
 MESSAGE ("Selection started.");

! Move 5 lines and create a select region

 MOVE_VERTICAL (5);

 SR1 := SELECT_RANGE;

! Move 5 lines and create another select region

 MOVE_VERTICAL (5);
 SR2 := SELECT_RANGE;

! Stop the selection by setting the select marker to 0.

 user_select_position := 0;

ENDPROCEDURE;

SEND

Syntax

Parameters
buffer

The buffer whose contents you want to send to the subprocess.

range

The range whose contents you want to send to the subprocess.

273

Chapter 2. Descriptions of the DECTPU Built-In Procedures

string

The string that you want to send to the subprocess.

process

The process to which you want to send data.

Description
The SEND procedure passes data to an OpenVMS subprocess. All output from the process is stored in
the buffer that was associated with the process when you created it. See the CREATE_PROCESS built-
in procedure. Your editing stops until the process responds to what is sent.

If you specify a buffer or a range as the data to pass to a process, the lines of the buffer or range are sent
as separate records.

The maximum length of data that you can send in one SEND statement is 1024 characters. If you are
constructing a command line for DCL processing that is longer than the maximum limit of a DCL line,
the subprocess outputs a message stating that the record you are sending is too large for DCL to process.
The process then terminates.

Note

At this time, the DCL line limit is 256 characters. This is less than the character length that the SEND
built-in procedure is capable of sending to a process.

Before you send a string to a process that is running DCL, you should verify that the length of the string
does not exceed the limit specified in your OpenVMS documentation. If your string is longer than that
limit, you must break the string into two or more strings, use the DCL line continuation character, and
send each string separately.

Signaled Errors
TPU$_NOPROCESS WARNING Subprocess that you tried to send

to has already terminated.
TPU$_SENDFAIL WARNING Unable to send input to a

subprocess.
TPU$_TOOFEW ERROR Too few arguments passed to the

SEND built-in.
TPU$_TOOMANY ERROR Too many arguments passed to

the SEND built-in.
TPU$_INVPARAM ERROR Wrong type of data sent to the

SEND built-in.
TPU$_NOTMODIFIABLE WARNING Attempt to change unmodifiable

buffer. The buffer to which a
subprocess writes output must be
modifiable.

TPU$_DELETEFAIL WARNING Unable to terminate the
subprocess.

TPU$_NOSENDBUF WARNING Input buffer is the same as the
output buffer.

274

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_CONTROLC ERROR The execution of the command
you sent terminated because you
pressed Ctrl/C.

Example
The following example sends the DCL DIRECTORY command to the OpenVMS process named
user_process. The process must already be created with the CREATE_PROCESS built-in procedure so
that the output can be stored in the buffer associated with the process.

SEND ("directory", user_process)

SEND_CLIENT_MESSAGE

Syntax

Parameters
STUFF_SELECTION

A keyword that indicates that the client message to be sent is the STUFF_SELECTION client
message.

KILL_SELECTION

A keyword that indicates that the client message to be sent is the KILL_SELECTION client
message.

Description
The SEND_CLIENT_MESSAGE procedure sends either of two client messages—STUFF_SELECTION
or KILL_SELECTION—to other DECwindows applications. The EVE layered application cannot
designate the application that is to receive the client message. DECTPU handles sending the message to
the correct DECwindows application.

Signaled Errors

TPU$_NORETURNVALUE ERROR Does not return a value.
TPU$_TOOFEW ERROR SEND_CLIENT_MESSAGE

requires one argument.
TPU$_TOOMANY ERROR SEND_CLIENT_MESSAGE

accepts only one argument.
TPU$_BADKEY WARNING Keyword must be either

KILL_SELECTION or
STUFF_SELECTION.

TPU$_INVPARAM ERROR The parameter must be a
keyword.

275

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_NOGBLSELDATA WARNING There is no owner of the
PRIMARY global selection to
send a client message to.

TPU$_NOFOCUSOWNER WARNING There is no owner of the input
focus to send a client message to.

SEND_EOF

Syntax

Parameters
process

The process to which the end-of-file message is being sent.

Description
The SEND_EOF procedure uses features of the mailbox driver to send an end- of-file message (IO
$_WRITEOF) to a subprocess. The end-of-file message causes a pending read from a subprocess to be
completed with an SS$_ENDOFFILE status.

Signaled Errors
TPU$_SENDFAIL WARNING Unable to send input to a

subprocess.
TPU$_NOPROCESS WARNING No subprocess to send to.
TPU$_TOOFEW ERROR Too few arguments passed to the

SEND_EOF built-in.
TPU$_TOOMANY ERROR Too many arguments passed to

the SEND_EOF built-in.
TPU$_INVPARAM ERROR Wrong type of data sent to the

SEND_EOF built-in.
TPU$_NOTMODIFIABLE WARNING Attempt to change unmodifiable

buffer. The buffer to which a
subprocess writes output must be
modifiable.

TPU$_DELETEFAIL WARNING Unable to terminate the
subprocess.

Example
The following example sends an end-of-file to sub_proc1:

SEND_EOF (sub_proc1)

SET

276

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters

keyword

The keyword used as the first parameter specifies which feature is being established or changed.
Following are the valid keywords for SET:

ACTIVE_AREA
AUTO_REPEAT
BELL
CLIENT_MESSAGE
COLUMN_MOVE_VERTICAL
CROSS_WINDOW_BOUNDS
DEBUG
DEFAULT_DIRECTORY
DEFAULT_FILE
DETACHED_ACTION
DISPLAY_VALUE
DRM_HIERARCHY
ENABLE_RESIZE
EOB_TEXT
ERASE_UNMODIFIABLE
FACILITY_NAME
FIRST_INPUT_ACTION
FORWARD
GLOBAL_SELECT
GLOBAL_SELECT_GRAB
GLOBAL_SELECT_READ
GLOBAL_SELECT_TIME
GLOBAL_SELECT_UNGRAB
HEIGHT
ICON_NAME
ICON_PIXMAP
INFORMATIONAL
INPUT_FOCUS
INPUT_FOCUS_GRAB
INPUT_FOCUS_UNGRAB
INSERT
JOURNALING
KEY_MAP_LIST
KEYSTROKE_RECOVERY
LEFT_MARGIN
LEFT_MARGIN_ACTION
LINE_NUMBER
MAPPED_WHEN_MANAGED
MARGINS
MAX_LINES
MENU_POSITION

277

Chapter 2. Descriptions of the DECTPU Built-In Procedures

MESSAGE_ACTION_LEVEL
MESSAGE_ACTION_TYPE
MESSAGE_FLAGS
MODIFIABLE
MODIFIED
MOUSE
MOVE_VERTICAL_CONTEXT
NO_WRITE
OUTPUT_FILE
OVERSTRIKE
PAD
PAD_OVERSTRUCK_TABS
PERMANENT
POST_KEY_PROCEDURE
PRE_KEY_PROCEDURE
PROMPT_AREA
RECORD_ATTRIBUTE
RECORD_MODE
RESIZE_ACTION
REVERSE
RIGHT_MARGIN
RIGHT_MARGIN_ACTION
SCREEN_LIMITS
SCREEN_UPDATE
SCROLL_BAR
SCROLL_BAR_AUTO_THUMB
SCROLLING
SELF_INSERT
SHIFT_KEY
SPECIAL_ERROR_SYMBOL
STATUS_LINE
SUCCESS
SYSTEM
TAB_STOPS
TEXT
TIMER
TRACEBACK
UID
UNDEFINED_KEY
VIDEO
WIDGET
WIDGET_CALLBACK
WIDGET_CALL_DATA
WIDGET_CONTEXT_HELP
WIDGET_RESOURCE_TYPES
WIDTH
These keywords and the parameters that follow them are described on the following pages. The
descriptions of the keywords are organized alphabetically.

parameter ⟦, ...⟧

The number of parameters following the first parameter varies according to the keyword you use.
The parameters are listed in the format section of the applicable keyword description.

278

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
With the SET procedure, you can establish or change certain features of a DECTPU session. SET
requires a keyword as its first parameter. The keyword indicates which feature of the editor is being set.
You can set the mode for entering text, the text that is to be displayed on certain parts of the screen, the
direction of a buffer, the status of a buffer, and so on.

Both the programmer creating an editing interface and the person using the interface can use SET. The
programmer can establish certain default behavior and screen displays for an editing interface. The user
can change the default behavior and do some simple customizing of an existing DECTPU interface.

SET (ACTIVE_AREA)

Syntax

Parameters
ACTIVE_AREA

A keyword that directs DECTPU to set an attribute of the active area.

window

The window in which you want to define the active region.

column

An integer that specifies the leftmost column of the active region.

row

An integer that specifies the topmost row of the active region. If you use 0, the active row is the
status line.

width

An integer that specifies the width in columns of the active region. Defaults to 1.

height

An integer that specifies the height in rows of the active region. Defaults to 1.

Description
The SET (ACTIVE_AREA) procedure designates the specified area as the active area in a DECTPU
window. The active area is the region in a window in which DECTPU ignores movements of the
mouse pointer for purposes of distinguishing clicks from drags. When you press down a mouse button,
DECTPU interprets the event as a click if the upstroke occurs in the active area with the downstroke.
If the upstroke occurs outside the active area, DECTPU interprets the event as a drag operation. A
DECTPU layered application can have only one active area at a time, even if the application has more
than one window visible on the screen. An active area is valid only if you are pressing a mouse button.

279

Chapter 2. Descriptions of the DECTPU Built-In Procedures

The default active area occupies one character cell. By default, the active area is located on the character
cell that contains the cursor. For information on mouse button clicks, see the OSF / Motif Style Guide.

Signaled Errors
TPU$_BADVALUE ERROR An integer parameter was

specified with a value outside the
valid range.

TPU$_EXTRANEOUSARGS ERROR One or more extraneous
arguments were specified for a
DECwindows built-in.

TPU$_INVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR SET (ACTIVE_AREA) cannot
return a value.

TPU$_TOOFEW ERROR Too few arguments passed to the
SET (ACTIVE_AREA) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to
the SET (ACTIVE_AREA) built-
in.

Examples
The following example creates a rectangular active area from the upperleft character position to the
character in column 10 of row 2:

SET (ACTIVE_AREA, CURRENT_WINDOW, 1, 1, 10, 2);

SET (AUTO_REPEAT)

Syntax

Parameters
AUTO_REPEAT

A keyword that indicates that SET is to control whether DECTPU repeats keystrokes as long as you
hold down a key. By default, AUTO_REPEAT is set ON (1).

ON, 1

Specifies that a key press should continue to generate characters until the key is released.

OFF, 0

Requires a separate keystroke for each character generated.

280

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The SET (AUTO_REPEAT) procedure controls whether DECTPU repeats keystrokes as long as you
hold down a key. DECTPU sends an escape sequence to the terminal to set AUTO_REPEAT on or off.

The autorepeat feature affect s all keyboard keys on the VT100 series of terminals except the following
keys:

● Set-up

● Esc

● No Scroll

● Tab

● Return

● Ctrl and another key

The autorepeat feature affect s all keyboard keys on the VT400, VT300, and VT200 series of terminals
except the following keys:

● F1, F2, F3, F4, F5

● Return

If you want to slow down the movement of the cursor, you can use SET (AUTO_REPEAT) within a
procedure that causes cursor motion. Because of the time the terminal requires to process the escape
sequence that DECTPU sends, if you turn AUTO_REPEAT off before moving the cursor and on after
moving the cursor, you slow down the cursor movement. You may find it useful to slow the cursor
motion at the top or bottom of a window. The second example in the example section shows how to do
this.

SET (AUTO_REPEAT) has no effect if you use it in DECwindows DECTPU.

Signaled Errors

TPU$_TOOFEW ERROR SET (AUTO_REPEAT) requires
two parameters.

TPU$_TOOMANY ERROR You specified more than two
parameters.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR The keyword must be either ON
or OFF.

TPU$_UNKKEYWORD ERROR You specified an unknown
keyword.

Examples
1. The following example turns AUTO_REPEAT off:

SET (AUTO_REPEAT, OFF)

281

Chapter 2. Descriptions of the DECTPU Built-In Procedures

2. The following example shows how to turn AUTO_REPEAT off and on to slow the cursor
movement:

! Two procedures that slow the scrolling action

PROCEDURE user_slow_up_arrow
 SET (AUTO_REPEAT, OFF);
 MOVE_VERTICAL (-1);
 SET (AUTO_REPEAT, ON);
ENDPROCEDURE;

PROCEDURE user_slow_down_arrow
 SET (AUTO_REPEAT, OFF);
 MOVE_VERTICAL (1);
 SET (AUTO_REPEAT, ON);
ENDPROCEDURE;

SET (BELL)

Syntax

Parameters
BELL

A keyword that indicates that SET is to control whether DECTPU rings the terminal bell when a
message is written to the message window.

ALL

Indicates that the second parameter (ON or OFF) applies to all messages.

BROADCAST

Indicates that the second parameter applies to broadcast messages only.

ON, 1

Causes the terminal bell to ring when a message is written to the message window.

OFF, 0

Turns off the audible signal of the terminal bell.

Description
The SET (BELL) procedure controls whether DECTPU rings the terminal bell when a message is
written to the message window. When the bell is on, the terminal bell rings to signal the fact that a
message is being written to the message window. When you use ALL, internal DECTPU messages

282

Chapter 2. Descriptions of the DECTPU Built-In Procedures

as well as broadcast messages cause the terminal bell to ring. To cause DECTPU messages of success
and informational severity level to be written to the message buffer, you must have used the SET
({INFORMATIONAL | SUCCESS}, ON) built-in procedure. When you use BROADCAST, only
broadcast messages such as mail notifications and REPLY messages cause the bell to ring.

SET (BELL, ALL, {ON | OFF}) affects the setting of SET (BELL, BROADCAST, {ON | OFF}). If
you want the behavior of broadcast messages to be different from other messages, use the SET (BELL,
BROADCAST, {ON | OFF}) built-in procedure after using SET (BELL, ALL, {ON | OFF}).

DECTPU causes the bell to ring as a signal that a message is being written to the message window,
not as an interpretation of a bell character in the message text. Bell characters in the message text are
not interpreted; they are displayed. Positioning to the message window and moving the cursor to a bell
character in the message text do not cause the terminal bell to ring.

You can also use DCL commands to affect the display of broadcast messages within DECTPU. If you
use the SET TERMINAL/NOBROADCAST command at the DCL level, no broadcast messages are
sent to your terminal. With the DCL SET BROADCAST command, you can enable or disable certain
classification s of broadcast messages.

The bell is off by default.

Signaled Errors

TPU$_TOOFEW ERROR SET (BELL) requires three
parameters.

TPU$_TOOMANY ERROR You specified more than three
parameters.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid
keyword.

Examples
1. The following example causes the terminal bell to ring when a broadcast message is written to the

message window:

SET (BELL, BROADCAST, ON)

2. The following example uses SET (BELL, ALL, ON) to cause the bell to ring for the message that is
being sent in the second statement. After the message is written, the bell is turned off. You use SET
(BELL, BROADCAST, ON) to cause broadcast messages to ring the terminal bell.

PROCEDURE user_ring_bell (msg_string)

 SET (BELL, ALL, ON); ! Turn bell on
 MESSAGE (msg_string); ! Write message text to message buffer
 SET (BELL, ALL, OFF); ! Turn bell off
 SET (BELL, BROADCAST,ON); ! Turn bell on for broadcast messages
ENDPROCEDURE;

SET (CLIENT_MESSAGE)

283

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
CLIENT_MESSAGE

A keyword that indicates that SET is being used to designate a client message action routine.

SCREEN

A keyword used to preserve compatibility with future versions of DECTPU.

buffer

The buffer that contains the code to be executed when DECTPU receives a client message.

learn_sequence

The learn sequence to be executed when DECTPU receives a client message.

program

The program to be executed when DECTPU receives a client message.

range

The range that contains the code to be executed when DECTPU receives a client message.

string

The string that contains the code to be executed when DECTPU receives a client message.

NONE

A keyword that directs DECTPU to delete the current client message routine. This is the default if
you do not specify the optional third parameter.

Description
The SET (CLIENT_MESSAGE) procedure designates the action routine to be executed when
DECwindows DECTPU receives a client message from another DECwindows application. A client
message is a communication from one DECwindows application to another. The message enables the
sending application to generate an event on the queue of the receiving application.

If the optional parameter is not specified, NONE is the default. When NONE is specified or used by
default, DECTPU deletes the current client message routine. When no client message routine is defined,
your application is not informed when DECTPU receives a client message.

284

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors
TPU$_COMPILEFAIL WARNING Compilation failed.
TPU$_TOOFEW ERROR You specified too few

parameters.
TPU$_TOOMANY ERROR You specified too many

parameters.
TPU$_BADKEY ERROR You specified an invalid

keyword.
TPU$_ARGMISMATCH ERROR Argument has the wrong type.
TPU$_REQUIRESDECW ERROR SET(CLI...) is valid only in

DECwindows DECTPU.

SET (COLUMN_MOVE_VERTICAL)

Syntax

Parameters
COLUMN_MOVE_VERTICAL

Specifies that you want to use SET to control how the MOVE_VERTICAL built-in procedure
moves the cursor.

ON, 1

Directs the MOVE_VERTICAL built-in procedure to place the cursor in the same column on each
new line unless doing so would put the cursor in the middle of a tab. If the cursor would be placed in
a tab, MOVE_VERTICAL places the cursor at the beginning of the tab.

OFF, 0

Directs the MOVE_VERTICAL built-in procedure to place the cursor at the same offset
in each new record to which the cursor moves. This behavior is the default for SET
(COLUMN_MOVE_VERTICAL). Because DECTPU count s a tab as one character when
determining the offset, the cursor’s column location can change dramatically after you use
MOVE_VERTICAL.

Description
The SET (COLUMN_MOVE_VERTICAL) procedure controls how the cursor moves when the
MOVE_VERTICAL built-in procedure moves the cursor. When SET (COLUMN_MOVE_VERTICAL)
is set to ON, you can get a different result from using MOVE_VERTICAL (n) than from using
MOVE_VERTICAL (1) n times. When you use MOVE_VERTICAL (3), for example, the built-in tries
to keep the cursor in the column the cursor occupied just before execution of MOVE_VERTICAL (3).
When you use MOVE_VERTICAL (1) three times, the built-in resets the column where DECTPU

285

Chapter 2. Descriptions of the DECTPU Built-In Procedures

is trying to keep the cursor. Thus, if the first MOVE_VERTICAL (1) moves the cursor left to the
beginning of a tab, the second MOVE_VERTICAL (1) does not move the cursor to the right again.

When SET (COLUMN_MOVE_VERTICAL) is set to OFF, MOVE_VERTICAL (n) produces the same
results as MOVE_VERTICAL (1) n times.

To determine whether COLUMN_MOVE_VERTICAL is set to ON or OFF, use the following
statement:

boolean := GET_INFO (SYSTEM, "COLUMN_MOVE_VERTICAL")

This GET_INFO call returns 1 if COLUMN_MOVE_VERTICAL is set to ON; 0 if it is set to OFF.

If you have previously written extensions to EVE and want to layer the extensions on EVE, you may
have to rewrite some procedures because EVE sets COLUMN_MOVE_VERTICAL to ON.

For instance, if your extension contains the following code and if the first line has a left margin further to
the right than the second line, the code may not work as intended:

MOVE_HORIZONTAL (-CURRENT_OFFSET); ! Go to beginning of line
MOVE_VERTICAL (1); ! Move down a line

To compensate for the fact that EVE sets COLUMN_MOVE_VERTICAL to ON, you can substitute the
following code for the previous code:

POSITION (LINE_END); ! Go to end of existing line
MOVE_HORIZONTAL (1); ! Advance to start of next line

Signaled Errors
TPU$_TOOFEW ERROR SET

(COLUMN_MOVE_VERTICAL)
requires two parameters.

TPU$_TOOMANY ERROR You specified more than two
parameters.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR The keyword must be either ON
or OFF.

Examples
In the following example, the symbol > represents a tab character. The underscore shows the cursor
location. Suppose you have the following two lines of text in a buffer, with the cursor on the c in the first
line:

 abcdefg
 a>......bcdefg

If you use the following code, the cursor ends up pointing to the b on the second line:

 SET (COLUMN_MOVE_VERTICAL, OFF);
 MOVE_VERTICAL (1);

After the MOVE_VERTICAL (1) statement, the cursor location is as follows:

abcdefg a>......bcdefg

286

Chapter 2. Descriptions of the DECTPU Built-In Procedures

On the other hand, suppose you have the same text, as follows:

 abcdefg
 a>......bcdefg

If you use the following code, the cursor ends up pointing to the beginning of the tab on the second line:

 SET (COLUMN_MOVE_VERTICAL, ON);
 MOVE_VERTICAL (1);

After the MOVE_VERTICAL (1) statement, the cursor location is as follows:

 abcdefg
 a>......bcdefg

SET (CROSS_WINDOW_BOUNDS)

Syntax

Parameters
CROSS_WINDOW_BOUNDS

A keyword that specifies that SET is to control the way the CURSOR_VERTICAL built-in
procedure behaves at a window boundary. The default setting for CROSS_WINDOW_BOUNDS is
ON (preserving the behavior from previous versions of DECTPU).

ON, 1

Causes the CURSOR_VERTICAL built-in procedure to cross window boundaries and
to ignore scrolling regions. However, even when crossing of window bounds is enabled,
the CURSOR_VERTICAL built-in procedure still obeys screen boundaries. That is, if
CURSOR_VERTICAL brings the cursor to the edge of the screen, DECTPU scrolls text into the
window rather than making the cursor invisible.

OFF, 0

Prevents the CURSOR_VERTICAL built-in procedure from crossing window boundaries and causes
CURSOR_VERTICAL to obey scrolling regions.

Description
The SET (CROSS_WINDOW_BOUNDS) procedure controls how the cursor behaves when the
CURSOR_VERTICAL built-in executes at a window boundary.

Signaled Errors

TPU$_TOOFEW ERROR SET
(CROSS_WINDOW_BOUNDS)
requires two parameters.

287

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_TOOMANY ERROR You specified more than two
parameters.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_BADKEY ERROR You specified an invalid
keyword.

Example
The following example prevents subsequent invocations of the CURSOR_VERTICAL built-in from
crossing window boundaries and causes the screen to scroll if the cursor moves into a scrolling region.
This is the EVE default.

SET (CROSS_WINDOW_BOUNDS, OFF)

SET (DEBUG)
SET (DEBUG) — This built-in has five valid syntax permutations. You cannot use any combinations of
parameters not shown in this description.

Syntax

Parameters
DEBUG

A keyword that indicates that SET is to control various attributes of a debugging program that helps
locate DECTPU programming errors.

PROGRAM

A keyword that indicates that DECTPU is to use a user-written debugger.

buffer

An expression evaluating to a buffer that contains a procedure or program. The statement SET
(DEBUG, PROGRAM, buffer) directs DECTPU to use the user- written debugger contained in the
specified buffer during the current debugging session.

program

A variable of type program. The statement SET (DEBUG, PROGRAM, program) directs DECTPU
to use the user-written debugger contained in the specified program during the current debugging
session.

range

An expression evaluating to a range that contains a procedure or program. The statement SET
(DEBUG, PROGRAM, range) directs DECTPU to use the user- written debugger contained in the
specified range during the current debugging session.

288

Chapter 2. Descriptions of the DECTPU Built-In Procedures

string1

A string that contains executable DECTPU statements. The statement SET (DEBUG, PROGRAM,
string1) directs DECTPU to use the DECTPU statements in the specified string during the current
debugging session.

Syntax

Parameters
DEBUG

A keyword that indicates that SET is to control various attributes of a debugging program that helps
locate DECTPU programming errors.

ON, 1

Enables single-stepping. The statement SET (DEBUG, ON) directs DECTPU to execute just one line
of code and then return control to the debugger.

OFF, 0

Disables single-stepping. The statement SET (DEBUG, OFF) disables single-step execution. Because
single-stepping is off by default, this format is useful only to turn off single-stepping after single-
stepping has been turned on.

Syntax

Parameters
DEBUG

A keyword that indicates that SET is to control various attributes of a debugging program that helps
locate DECTPU programming errors.

ON, 1

Sets a breakpoint. The statement SET (DEBUG, ON, string2) directs DECTPU to set a breakpoint
at the procedure named by string2.

OFF, 0

Cancels one or more breakpoints. The statement SET (DEBUG, OFF, string2) cancels a breakpoint
previously set at the procedure named by string2 .

289

Chapter 2. Descriptions of the DECTPU Built-In Procedures

string2

The name of a procedure. The format SET (DEBUG, ON, string2) or SET (DEBUG, OFF, string2)
sets or cancels a breakpoint at the procedure specified by string2.

Syntax

Parameters
DEBUG

A keyword that indicates that SET is to control various attributes of a debugging program that helps
locate DECTPU programming errors.

OFF, 0

Cancels breakpoints. The statement SET (DEBUG, OFF, ALL) cancels all breakpoints set during the
debugging session.

ALL

A keyword that indicates that all breakpoints are to be canceled. The statement SET (DEBUG, OFF,
ALL) clears all breakpoints.

Syntax

Parameters
DEBUG

A keyword that indicates that SET is to control various attributes of a debugging program that helps
locate DECTPU programming errors.

string3

The name of a global variable, local variable, or parameter. When you use string3 to specify a
local variable or a parameter, the variable or parameter must be in the procedure you are currently
debugging. The statement SET (DEBUG, string3, value) deposits the specified value in the variable
or parameter specified by string3.

value

A value of any data type in DECTPU. The statement SET (DEBUG, string, value) deposits the
specified value in the global variable, local variable, or parameter named by the string.

Description
The SET (DEBUG) procedure controls various attributes of a debugging program that helps locate
DECTPU programming errors.

You use SET (DEBUG) to write or use user-written debuggers. You cannot freely mix parameters when
using SET (DEBUG). The only valid usages are those shown in the format sections of this built-in.

290

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors
TPU$_NOCURRENTBUF WARNING There is no current buffer.
TPU$_NONAMES WARNING No names match the one

requested.
TPU$_BADKEY ERROR An unknown keyword was used

as an argument.
TPU$_ARGMISMATCH ERROR You specified an unsupported

data type.

Examples
1. The following example causes the debugger to be invoked each time the procedure "user_remove" is

called:

SET (DEBUG, ON, "user_remove")

2. The following example causes the user-written program "user_debugger" to be called as the program
to help locate programming errors:

SET (DEBUG, PROGRAM, "user_debugger")

SET (DEFAULT_DIRECTORY)

Syntax

Parameters
DEFAULT_DIRECTORY

A keyword that indicates that the SET built-in procedure is being used to control which directory is
used as the default.

new_default_string

A string that names the directory to which you want the default changed.

Return Value
The string that you optionally specify returns the current default directory.

Description
The SET (DEFAULT_DIRECTORY) procedure determines the directory that will be used as the default
for file operations. When you exit from DECTPU, the default directory is not restored to the default that
was set when you invoked DECTPU.

When you issue the EVE DCL SHOW DEFAULT command, the default shown is not always the new
default directory, even though the setting has actually been changed. To update DCL tracking of the
current default directory, use the EVE DCL SET DEFAULT command instead of calling this built-in
procedure directly.

291

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_TOOMANY ERROR You specified more than two
parameters.

TPU$_TOOFEW ERROR SET (DEFAULT_DIRECTORY)
requires two parameters.

TPU$_SYSERROR ERROR One of the system routines used
has failed. The system routine’s
error message will be in the
message buffer.

TPU$_INVPARAM ERROR The second parameter must be a
string.

TPU$_PARSEFAIL WARNING Parameter is not a valid RMS file
specification.

Example
The following example sets the default directory to [WALSH.PINK] on the device DISK1. The variable
prev_dir contains the string that names the previous default directory.

prev_dir := SET (DEFAULT_DIRECTORY, "DISK1:[WALSH.PINK]");

SET (DEFAULT_FILE)

Syntax

Parameters
DEFAULT_FILE

A keyword that indicates that the SET built-in procedure is being used to merge a new X resource
file into the display’s resource database.

string

A file specification for the X resource file.

Description
The SET (DEFAULT_F ILE) procedure sets a new file specification as the X resource file to merge
into the display’s resource database. The current database, merged during editor initialization or by a
previous SET (DEFAULT_F ILE), is lost. The new resource file will affect values returned from the
GET_DEFAULT built-in procedure.

Signaled Errors

TPU$_TOOMANY ERROR You specified more than two
parameters.

292

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_TOOFEW ERROR SET (DEFAULT_FILE) requires
two parameters.

TPU$_INVPARAM ERROR The second parameter must be a
string.

SET (DETACHED_ACTION)

Syntax

Parameters
DETACHED_ACTION

A keyword that indicates that the SET built-in procedure is being used to designate the detached
cursor action routine.

SCREEN

A keyword that indicates that the detached action routine is being set for all buffers and windows
used during the session.

buffer

The buffer that contains the detached cursor action routine.

learn

The learn sequence that is executed as the detached cursor action routine.

program

The program that contains the detached cursor action routine.

range

The range that contains the detached cursor action routine.

string

The string that contains the detached cursor action routine.

Description
The SET (DETACHED_ACTION) procedure specifies the code to be executed when the DECTPU main
input loop detects that the current cursor position is detached (that is, that the cursor position cannot
accurately represent the editing point in the current window).

293

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If DECTPU determines that the current editing point is on a record that is not visible in the
current window, the screen updater positions the cursor on the next visible record, placing the
cursor in the comparable screen column. This condition is known as a detached cursor. Use SET
(DETACHED_ACTION) to designate code to be executed when the cursor is detached.

There are five reasons for a detached cursor. The following table shows these reasons, along with their
constants and values.

Constant Value Reason

TPU$K_OFF_LEFT 1 The editing point is off the left
side of the current window.

TPU$K_OFF_RIGHT 2 The editing point is off the right
side of the current window.

TPU$K_INVISIBLE 4 The editing point is on a recor
d that is invisible in the current
window.

TPU$K_DISJOINT 8 The current buffer is not mapped
to the current window.

TPU$K_UNMAPPED 16 No current window exists.

If you do not specify the optional third parameter, SET (DETACHED_ACTION) deletes the current
detached action routine.

To fetch the current detached action routine, use GET_INFO (SCREEN, "detached_action"). To
find out which of the five possible detached states the cursor is in, use GET_INFO (SCREEN,
"detached_reason").

Signaled Errors

TPU$_TOOMANY ERROR You specified too many
parameters.

TPU$_TOOFEW ERROR You specified too few
parameters.

TPU$_INVPARAM ERROR The second parameter must be a
keyword.

TPU$_ARGMISMATCH ERROR The third parameter must be a
program or a learn key sequence.

TPU$_BADKEY WARNING The second parameter must be
SCREEN.

TPU$_COMPILEFAIL WARNING The third parameter did not
compile successfully.

TPU$_COMPILED SUCCESS The third parameter successfully
compiled.

Examples
1. The following example designates the procedure as an application’s detached action routine:

SET (DETACHED_ACTION, SCREEN, "detached_routine");

294

Chapter 2. Descriptions of the DECTPU Built-In Procedures

2. In the following example, the detached action routine shifts the current window to the right if the
editing point is to the right of the last displayed column:

PROCEDURE detached_routine

LOCAL rightmost_column,
 the_offset;

IF GET_INFO (SCREEN, "detached_reason") < > tpu$k_off_right

 THEN RETURN;

ENDIF;

rightmost_column := GET_INFO (CURRENT_WINDOW, "right", VISIBLE_TEXT);

the_offset := GET_INFO (CURRENT_BUFFER, "offset_column");

IF the_offset > rightmost_column

 THEN SHIFT (CURRENT_WINDOW, the_offset - rightmost_column + 2)

ENDIF;

UPDATE (CURRENT_WINDOW);

ENDPROCEDURE;

SET (DISPLAY_VALUE)

Syntax

Parameters
DISPLAY_VALUE

A keyword that indicates that the SET built-in procedure is being used to set the display value for a
window.

window

The window whose display value you want to set.

display_value_integer

An integer from -127 to +127.

Description
The SET (DISPLAY_VALUE) procedure sets the display value of the specified window. DECTPU uses
a window’s display value, which is an integer value, to determine if a given record in a buffer should be
made visible in the window mapped to the buffer. If the record’s display value is greater than or equal to
the window’s setting, DECTPU makes the record visible in that window; otherwise, DECTPU makes the
record invisible.

295

Chapter 2. Descriptions of the DECTPU Built-In Procedures

You use SET (RECORD_ATTRIBUTE S) to set the record’s display values.

Signaled Errors
TPU$_TOOMANY ERROR You specified too many

parameters.
TPU$_TOOFEW ERROR You specified too few

parameters.
TPU$_INVPARAM ERROR The second parameter must be a

window.
TPU$_BADDISPVAL WARNING Display values must be between

-127 and +127.

Example
The following example gives the current window a display value of 10. This means that any record
whose display value is less than 10 is invisible in the specified window.

SET (DISPLAY_VALUE, CURRENT_WINDOW, 10);

SET (DRM_HIERARCHY)

Syntax

Parameter
filespec

A string that specifies the UID file to be used. DECTPU does not apply a default file specification to
the UID file specification. You must specify at least one file name.

Return Value
An integer that is the identification number for the Motif Resource Manager hierarchy.

Description
The SET (DRM_HIERARCHY) procedure sets the user interface definition (UID) file or files to
be used with DECTPU. However, the preferred built-in for UID files is SET (UID). Using UID
files to specify hierarchies makes it easy to translate the product into other languages and to modify
an application’s interface without recompiling all the code implementing the application. For more
information about UID files, see the VMS DECwindows Guide to Application Programming.

Signaled Errors
TPU$_ARGMISMATCH ERROR The data type of the indicated

parameter is not supported by
the SET (DRM_HIERARCHY)
built-in.

296

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_TOOFEW ERROR Too few arguments passed to
the SET (DRM_HIERARCHY)
built-in.

TPU$_TOOMANY ERROR Too many arguments passed to
the SET (DRM_HIERARCHY)
built-in.

TPU$_FAILURE_STATUS ERROR The Compaq Resource Manager
returned an error status.

TPU$_INVPARAM ERROR You specified an invalid
parameter.

TPU$_REQUIRESDECW ERROR Requires the DECTPU
DECwindows screen updater.

Example
The following example designates the OpenVMS user interface definition (UID) file MYNODE$DUA0:
[SMIT H]EXAMPLE.UID as a file to be used with DECTPU to create widgets needed by the layered
application:

example_hierarchy := SET (DRM_HIERARCHY, "mynode$dua0:[smith]example.uid");

SET (ENABLE_RESIZE)

Syntax

Parameters
ENABLE_RESIZE

A keyword that directs DECTPU to enable or disable screen resizing.

ON, 1

Enables screen resizing.

OFF, 0

Disables screen resizing.

Description
The SET (ENABLE_RESIZE) procedure enables or disables resizing of the DECTPU screen. If you
specify the ON or 1 keyword, DECTPU gives the DECwindows window manager hints (parameters that
the window manager is free to use or ignore) on the allowable maximum and minimum sizes for the
DECTPU screen. The hints are set by the SET (SCREEN_LIMITS, array) built- in procedure. If you
specify the OFF or 0 keyword, DECTPU uses the screen’s current width and length as the maximum and
minimum size.

297

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword
as a parameter.

TPU$_INVPARAM ERROR One of the parameters was
specified with data of the wrong
type.

TPU$_NORETURNVALUE ERROR SET (ENABLE_RESIZE) cannot
return a value.

TPU$_REQUIRESDECW ERROR You can use the SET
(ENABLE_RESIZE) built-
in only if you are using
DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the
SET (ENABLE_RESIZE) built-
in.

TPU$_TOOMANY ERROR Too many arguments passed to
the SET (ENABLE_RESIZE)
built-in.

Examples
The following example enables screen resizing. For a sample of this statement used in an initializing
procedure, see the example in the description of the SET (SCREEN_LIMITS) built-in procedure.

SET (ENABLE_RESIZE, ON);

SET (EOB_TEXT)

Syntax

Parameters
EOB_TEXT

A keyword that indicates that SET is to determine the text displayed at the end of a buffer. This text
is merely a visual marker in a buffer and does not become part of the file that is written when a
buffer is saved. The default end-of-buffer text is [EOB].

buffer

The buffer in which the text for the end-of-buffer is being set.

Description
The SET (EOB_TEXT) procedure sets the end-of-buffer text for the specified buffer. You may specify
ranges that include the end-of-buffer text, but you cannot set the record_attributes of the end-of-buffer

298

Chapter 2. Descriptions of the DECTPU Built-In Procedures

“record.” Therefore, the end-of-buffer text is always visible, is left-justified on the screen, and cannot be
modified using normal editing operations.

Setting a blank EOB_TEXT is the only way to remove the end-of-buffer text. Note, however, that a
blank line will still remain.

Signaled Errors

TPU$_TOOFEW ERROR This SET built-in requires three
parameters.

TPU$_TOOMANY ERROR You specified more than three
parameters.

TPU$_INVPARAM ERROR One or more of the specified
parameters have the wrong type.

TPU$_FAILURE FATAL DECTPU could not create the
record for the EOB text.

Example
The following example causes [END OF MAIN EDITING BUFFER] to be displayed as the end-of-
buffer text for the main buffer:

SET (EOB_TEXT, main_buffer, "[END OF MAIN EDITING BUFFER]")

SET (ERASE_UNMODIFIABLE)

Syntax

Parameters
ERASE_UNMODIFIABLE

A keyword that indicates that the SET built-in procedure is being used to control whether
unmodifiable records are deleted in response to built-ins that erase lines in a buffer.

buffer

The buffer for which you want to turn on or turn off erasing of unmodifiable records.

ON, 1

Enables erasing of unmodifiable records.

OFF, 0

Disables erasing of unmodifiable records.

299

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Return Value
The keyword ON (1) or OFF (0), indicating the previous setting of ERASE_UNMODIFIABLE.

Description
The SET (ERASE_UNMODIFIABLE) procedure controls whether DECTPU erases unmodifiable
records in response to built-ins that delete lines from a buffer.

The default setting lets you use built-ins such as ERASE_LINE to delete unmodifiable records. For
example, ERASE_LINE deletes an unmodifiable record only if ERASE_UNMODIFIABLE is turned
on. If ERASE_UNMODIFIABLE is turned off when ERASE_LINE or a similar built-in encounters an
unmodifiable record, the built-in returns an error and does not delete the record.

Some built-ins delete records as a side effect of their normal action. Table 2.10, "Selected Built-In Actions
with ERASE_UNMODIFIABLE Turned Off" shows the built-ins that can delete records as a side effect
and shows what these built-ins do instead when the ERASE_UNMODIFIABLE setting is turned off.

The SET (ERASE_UNMODIFIABLE) built-in procedure prevents these built-ins from unintentionally
deleting unmodifiable records.

Table 2.10. Selected Built-In Actions with ERASE_UNMODIFIABLE Turned Off

Built-In Action

APPEND_LINE Signals a warning if an attempt is made to append to an
unmodifiable line.

CHANGE_CASE Signals a warning if any of the lines in the range or buffer are
unmodifiable.

COPY_TEXT Copies all records, preserving modifiability attribute while in
insert mode.

Signals a warning if the current editing position is in an
unmodifiable line.

Signals a warning if in overstrike mode and any of the lines to
be overstruck are unmodifiable.

EDIT Signals a warning if any of the lines in the range or buffer are
unmodifiable.

EDIT Signals a warning if any of the lines in the range or buffer are
unmodifiable.

ERASE (buffer) Signals a warning if any line in the buffer is unmodifiable.
ERASE (range) Signals a warning if the start or the end of the range is in the

middle of an unmodifiable line.

Signals a warning if any of the lines in the range are
unmodifiable.

ERASE_CHARACTER Signals a warning if the current character is unmodifiable.
ERASE_LINE Signals a warning if the current line is unmodifiable.
FILL Signals a warning if any of the lines in the range or buffer are

unmodifiable.

300

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Built-In Action

MOVE_TEXT Moves all records, preserving modifiability attribute while in
insert mode.

Signals a warning if the current editing point is in an
unmodifiable line.

Signals a warning if in overstrike mode and any of the lines to
be overstruck are unmodifiable.

If the start or the end of the range is in the middle of an
unmodifiable line, the MOVE_TEXT is turned into a
COPY_TEXT and a warning is issued.

If any of the lines in the buffer or range are unmodifiable, the
MOVE_TEXT is turned into a COPY_TEXT and a warning is
issued.

SPLIT_LINE Signals a warning if the current editing position is in the middle
of an unmodifiable line.

If the current editing position is at the beginning of an
unmodifiable line, a new modifiable line is created before it.

If the current editing position is at the end of an unmodifiable
line, a new modifiable line is created after it.

If the current editing position is on an empty unmodifiable line,
then a new modifiable line is created after it.

TRANSLATE Signals a warning if any of the lines in the range or buffer are
unmodifiable.

SET (ERASE_UNMODIFIABLE) optionally returns an integer (0 or 1) indicating whether
ERASE_UNMODIFIABLE was turned on before the current call wasexecuted. This makes it easier to
return to the previous setting later in the program.

Signaled Errors
TPU$_TOOMANY ERROR You specified too many parameters.
TPU$_TOOFEW ERROR You specified too few parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters

have the wrong type.
TPU$_BADKEY WARNING The third parameter must be ON or OFF.

Example
The following example turns off erasing of unmodifiable records in the current buffer and returns the
previous setting of ERASE_UNMODIFIABLE:

old_setting := SET (ERASE_UNMODIFIABLE, CURRENT_BUFFER, OFF);

SET (FACILITY_NAME)

301

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
FACILITY_NAME

A keyword that indicates that the SET built-in procedure is being used to set the first item (the
facility name) in a message generated by DECTPU.

string

The string that you specify as the facility name for messages. The maximum length of this name is
10 characters.

Description
The SET (FACILITY_NAME) procedure sets the facility name for messages. The facility name appears
in messages if you have used the SET (MESSAGE_FLAGS) built-in procedure either to explicitly
include the facility name in messages or to include the facility name only if enabled by the default
message flags for your OpenVMS process.

Signaled Errors

TPU$_FACTOOLONG WARNING Name specified is longer than maximum
allowed.

TPU$_MINVALUE WARNING Argument specified is less than the
minimum allowed.

TPU$_ARGMISMATCH ERROR The second parameter must be a string.
TPU$_INVPARAM ERROR One or more of the specified parameters

have the wrong type.

Example
The following example causes "new_editor" to be used as the facility name in messages:

SET (FACILITY_NAME, "new_editor")

SET (FIRST_INPUT_ACTION)

Syntax

Parameters
FIRST_INPUT_ACTION

A keyword that specifies that DECTPU is to implement the application’s first input action routine.

302

Chapter 2. Descriptions of the DECTPU Built-In Procedures

NONE

A keyword that disables the current action routine.

program_source

Specifies the program or learn sequence that DECTPU executes when it gets the first key or button
event.

Description
The SET (FIRST_INPUT_ACTION) procedure specifies the program or learn sequence that
DECwindows DECTPU executes when it gets the first key or button event. DECwindows EVE uses
FIRST_INPUT_ACTION to set an action routine that removes the copyright notice from the title bar
when you first press a key or mouse button.

This built-in is valid only until DECTPU gets the first key or mouse event. After that first event,
DECTPU signals TPU$_BUILTININV, “Built-in is invalid at this time.”

Signaled Errors

TPU$_BUILTININV ERROR This indicates that the first key or button
event has already occurred.

TPU$_REQUIRESDECW ERROR This built-in is valid on DECwindows only.
TPU$_TOOFEW ERROR This SET built-in requires two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR The second parameter is not of type string.

Example
The following example causes the procedure REMOVE_COPYRIGHT to be executed when you press
the first key or mouse button in the DECwindows application. That procedure typically sets the "title"
resource of the application’s shell widget to be the name of the application, removing the original
copyright notice in the title bar.

SET (FIRST_INPUT_ACTION, "remove_copyright")

SET (FORWARD)

Syntax

Parameters
FORWARD

A keyword that specifies the direction of the buffer. FORWARD means to go toward the end of the
buffer. The default direction for a buffer is forward.

303

Chapter 2. Descriptions of the DECTPU Built-In Procedures

buffer

The buffer whose direction you want to set.

Description
The SET (FORWARD) procedure sets the specified buffer’s direction to forward. The editor uses this
feature to keep track of direction for searching or movement.

Signaled Errors

TPU$_TOOFEW ERROR SET (FORWARD) requires two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.

Example
The following example causes the direction of the buffer to be toward the end of the buffer:

SET (FORWARD, my_buffer)

SET (GLOBAL_SELECT)

Syntax

Parameters
GLOBAL_SELECT

A keyword that indicates that the SET built-in procedure is being used to request a global selection
property.

SCREEN

A keyword used to preserve compatibility with future versions of DECTPU.

PRIMARY

A keyword that directs DECTPU to request ownership of the primary global selection.

SECONDARY

A keyword that directs DECTPU to request ownership of the secondary global selection.

304

Chapter 2. Descriptions of the DECTPU Built-In Procedures

selection_name

A string that names the global selection whose ownership DECTPU is to request.

GLOBAL_SELECT_GRAB

A keyword that tells DECTPU to grab the selection. This is the default.

GLOBAL_SELECT_UNGRAB

A keyword that tells DECTPU to relinquish the grab of the selection.

Return Value
Returns 1 if the global selection ownership request was granted; otherwise, returns 0.

Description
The SET (GLOBAL_SELECT) procedure requests ownership of the specified global selection property.
SET (GLOBAL_SELECT) returns the integer 1 if the request for ownership of a global selection was
granted; otherwise 0.

DECTPU is notified immediately if its request is granted. Therefore, DECTPU does not automatically
execute the global selection grab routine when it encounters SET (GLOBAL_SELECT). DECTPU
executes the routine only when it automatically grabs the primary selection after it receives input focus.

Applications can voluntarily relinquish global selections through the optional
GLOBAL_SELECT_UNGRAB parameter.

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword as a
parameter.

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_REQUIRESDECW ERROR You can use the SET (GLOBAL_SELECT)
builtin only if you are using DECwindows
DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(GLOBAL_SELECT) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(GLOBAL_SELECT) built-in.

Examples
1. The following example requests ownership of the primary global selection:

SET (GLOBAL_SELECT, SCREEN, PRIMARY);

2. The following example shows the use of the GLOBAL_SELECT_UNGRAB

parameter. In this statement, global selection is relinquished.

SET (GLOBAL_SELECT, SCREEN, PRIMARY, GLOBAL_SELECT_UNGRAB);

305

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (GLOBAL_SELECT_GRAB)

Syntax

Parameters
GLOBAL_SELECT_GRAB

A keyword that indicates that the SET built-in procedure is being used to set the global select grab
routine.

SCREEN

A keyword used to preserve compatibility with future versions of DECTPU.

buffer

The buffer that contains the grab routine.

learn_sequence

The learn sequence that specifies the grab routine.

program

The program that specifies the grab routine.

range

The range that contains the grab routine.

string

The string that contains the grab routine.

NONE

A keyword that directs DECTPU to delete the current global selection grab routine. This is the
default if you do not specify the optional third parameter.

Description
The SET (GLOBAL_SELECT_GRAB) procedure specifies the program or learn sequence that
DECTPU should execute whenever it automatically grabs ownership of the primary selection. For more
information about DECTPU global selection support, see the Guide to the DEC Text Processing Utility.

306

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If the optional parameter is not specified, NONE is the default. When NONE is specified or used by
default, DECTPU deletes the current global selection grab routine. When no global selection grab routine
is defined, your application is not informed when DECTPU grabs the primary global selection.

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword as a
parameter.

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_NORETURNVALUE ERROR SET (GLOBAL_SELECT_GRAB) cannot
return a value.

TPU$_REQUIRESDECW ERROR You can use the SET
(GLOBAL_SELECT_GRAB) built-in only if
you are using DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(GLOBAL_SELECT_GRAB) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(GLOBAL_SELECT_GRAB) built-in.

Example
The following example designates the procedure user_grab_global as a global selection read routine:

SET (GLOBAL_SELECT_GRAB, SCREEN, "user_grab_global");

SET (GLOBAL_SELECT_READ)

Syntax

Parameters
GLOBAL_SELECT_READ

A keyword that indicates that the SET built-in procedure is being used to set the global select read
routine.

buffer1

The buffer with which the global selection read routine is to be associated.

307

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SCREEN

A keyword that indicates that the specified routine is to be the application’s default global selection
read routine.

buffer2

The buffer that contains the global selection read routine.

learn_sequence

The learn sequence that specifies the global selection read routine.

program

The program that specifies the global selection read routine.

range

The range that contains the global selection read routine.

string

The string that contains the global selection read routine.

NONE

A keyword that indicates that the global selection read routine should be deleted. If you do not
specify the optional third parameter, NONE is the default.

Description
The SET (GLOBAL_SELECT_READ) procedure specifies the program or learn sequence that
DECTPU should execute whenever it receives a selection request event on a global selection it owns.
To specify a buffer-specific global selection read routine, use the buffer1 parameter. To specify a global
selection read routine for the entire application, use the SCREEN keyword.

When DECTPU receives a request for information about a global selection it owns, it checks to see if the
current buffer has a global selection read routine. If so, it executes that routine. If not, it checks to see if
there is an application-wideglobal selection read routine. If so, it executes that routine. If not, it tries to
respond to the request itself.

If the optional parameter is not specified, NONE is the default. When NONE is specified or used by
default, DECTPU deletes the current global selection read routine.

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword as a
parameter.

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_NORETURNVALUE ERROR SET (GLOBAL_SELECT_READ) cannot
return a value.

308

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_REQUIRESDECW ERROR You can use the SET
(GLOBAL_SELECT_READ) built-in only if
you are using DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(GLOBAL_SELECT_READ) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(GLOBAL_SELECT_READ) built-in.

Example
The following example designates the procedure user_read_global as a global selection read routine:

SET (GLOBAL_SELECT_READ, SCREEN, "user_read_global");

SET (GLOBAL_SELECT_TIME)

Syntax

Parameters
GLOBAL_SELECT_TIME

A keyword that indicates that the SET built-in procedure is directing DECTPU to set the expiration
time for a global selection information request.

SCREEN

A keyword used to maintain compatibility with future versions of DECTPU.

integer

The number of seconds that DECTPU should wait.

string

A string that indicates how long DECTPU should wait. The format of the string is "dd hh:mm:ss.cc"
where dd is the number of days (0-24), hh is the number of hours (0-23), mm is the number of
minutes (0-59), ss is the number of seconds (0-59), and cc is the number of hundredths of seconds
(0-99).

Description
The SET (GLOBAL_SELECT_TIME) procedure specifies how long DECTPU should wait before it
assumes that a request for information about a global selection will not be satisfied. The default waiting
time is set by DECwindows. The maximum waiting time you can set is 24 days, 20 hours.

Signaled Errors
TPU$_BADKEY WARNING You specified an invalid keyword as a

parameter.

309

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_INVTIME WARNING You specified an invalid time interval.
TPU$_INVPARAM ERROR One of the parameters was specified with data

of the wrong type.
TPU$_NORETURNVALUE ERROR The SET (GLOBAL_SELECT_TIME) built-in

cannot return a value.
TPU$_REQUIRESDECW ERROR You can use the SET

(GLOBAL_SELECT_TIME) built-in only if
you are using DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(GLOBAL_SELECT_TIME) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(GLOBAL_SELECT_TIME) built-in.

Example
The following example sets the waiting time for a global selection response to 3 seconds:

SET (GLOBAL_SELECT_TIME, SCREEN, 3);

SET (GLOBAL_SELECT_UNGRAB)

Syntax

Parameters
GLOBAL_SELECT_UNGRAB

A keyword that indicates that the SET built-in procedure is being used to set the global select ungrab
routine.

SCREEN

A keyword used to preserve compatibility with future versions of DECTPU.

buffer

The buffer that contains the global selection ungrab routine.

learn_sequence

The learn sequence that specifies the global selection ungrab routine.

program

The program that specifies the global selection ungrab routine.

310

Chapter 2. Descriptions of the DECTPU Built-In Procedures

range

The range that contains the global selection ungrab routine.

string

The string that contains the global selection ungrab routine.

NONE

A keyword that directs DECTPU to delete the current global selection ungrab routine. This is the
default if you do not specify the optional third parameter.

Description
The SET (GLOBAL_SELECT_UNGRAB) procedure specifies the program or learn sequence that
DECTPU should execute whenever it loses ownership of a selection. For more information about
DECTPU global selection support, see the Guide to the DEC Text Processing Utility.

If the optional parameter is not specified, NONE is the default. When NONE is specified or used by
default, DECTPU deletes the current global selection ungrab routine. When no global selection ungrab
routine is defined, your application is not informed when DECTPU loses ownership of the primary
global selection.

Signaled Errors
TPU$_BADKEY WARNING You specified an invalid keyword as a

parameter.
TPU$_INVPARAM ERROR One of the parameters was specified with data

of the wrong type.
TPU$_NORETURNVALUE ERROR SET (GLOBAL_SELECT_UNGRAB) cannot

return a value.
TPU$_REQUIRESDECW ERROR You can use the SET

(GLOBAL_SELECT_UNGRAB) built-in only
if you are using DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(GLOBAL_SELECT_UNGRAB) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(GLOBAL_SELECT_UNGRAB) built-in.

Example
The following example designates the procedure user_ungrab_global as a global selection ungrab
routine:

SET (GLOBAL_SELECT_UNGRAB, SCREEN, "user_ungrab_global");

SET (HEIGHT)

Syntax

311

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
HEIGHT

A keyword that indicates that the SET built-in procedure is setting the height of the DECTPU main
window.

SCREEN

A keyword that indicates that the screen is being resized.

length

The length (in lines) that you want the screen to have. The value must be an integer between 1 and
255.

Description
The SET (HEIGHT) procedure sets the height of the DECTPU screen without modifying the height or
location of any DECTPU window. SET (HEIGHT) does not alter any DECTPU windows. However, the
default EVE behavior when the screen is made smaller is to unmap windows from the screen, starting
with the bottom-most window and working upward until there is room on the screen for the remaining
windows. If the screen is subsequently made larger, the unmapped windows are not remapped by default.

Signaled Errors
TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_TOOFEW ERROR SET (HEIGHT) requires three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY WARNING The second parameter must be SCREEN.
TPU$_BADLENGTHCHANGE WARNING The terminal’s characteristics will not allow the

height of the screen to change.
TPU$_BADVALUE ERROR The terminal cannot be set to the requested

height.

Example
The following example causes the screen to have a height of 20 lines:

SET (HEIGHT, SCREEN, 20);

SET (ICON_NAME)

Syntax

Parameters
ICON_NAME

A keyword that instructs DECTPU to set the text of an icon.

312

Chapter 2. Descriptions of the DECTPU Built-In Procedures

string

The text you want to appear in the icon.

Description
The SET (ICON_NAME) procedure designates the string used as the layered application’s name in the
DECwindows icon box.

Signaled Errors
TPU$_INVPARAM ERROR One of the parameters was specified with data

of the wrong type.
TPU$_NORETURNVALUE ERROR SET (ICON_NAME) cannot return a value.
TPU$_REQUIRESDECW ERROR You can use the SET (ICON_NAME) built-in

only if you are using DECwindows DECTPU.
TPU$_TOOFEW ERROR Too few arguments passed to the SET

(ICON_NAME) built-in.
TPU$_TOOMANY ERROR Too many arguments passed to the SET

(ICON_NAME) built-in.

Example
The following example sets the text naming the layered application to be the string WordMonger:

SET (ICON_NAME, "WordMonger");

SET (ICON_PIXMAP)

Syntax

Parameters
ICON_PIXMAP

A keyword that indicates that the SET built-in procedure is being used to determine the pixmap that
the application uses to create its icon in the DECwindows icon box.

integer

The hierarchy identifier returned by the SET (UID) built-in procedure. This identifier is passed to
the Motif Resource Manager, which uses the identifier to find the hierarchy’s resource name in the
resource database.

icon_pixmap

A case-sensitive string that is the name assigned to the icon in the User Interface Language (UIL)
file defining the icon pixmap. The icon must be declared EXPORTED in the UIL file.

Applications must have three icons in their UIL file, as supported by the Motif window manager:

313

Chapter 2. Descriptions of the DECTPU Built-In Procedures

● A small icon that is 32 pixels by 32 pixels

● A medium icon that is 50 pixels by 50 pixels

● A large icon that is 75 pixels by 75 pixels

The icon name that you pass to this built-in must match the root name of the three icon names in the
UIL file.

The UIL names start with the root name and end with the dimension _nXn. For example,
EVE’s root name is EVE_ICON. The three icon names in EVE’s Motif UIL file are therefore
EVE_ICON_32X32, EVE_ICON_50X50, and EVE_ICON_75X75.

When you use the SET (ICON_PIXMAP) built-in procedure, or change thewindow manager icon
size and restart the Motif Window Manager, DECTPU automatically selects the application’s largest
icon currently allowed by the Motif Window Manager. Thus, the icon pixmap can correctly fill the
image area decoration of the icon. This means that a Motif application cannot specify which icon to
display; DECTPU decides for it.

widget

The widget whose icon pixmap is to be set. By default, DECTPU sets the icon pixmap of its top-
level widget.

bitmap_file_name

The file specification of a bitmap file. SET (ICON_PIXMAP) requires these files to be in the format
created by the Xlib routine WRITE BITMAP FILE. To create a file with the correct format, you can
use the OpenVMS program SYS$SYSTEM:DECW$PAINT.EXE (the DECpaint application) or the
program DECW$EXAMPLES:BITMAP.EXE. If you use the paint application, use the Customize
Picture Size option to set the picture size to nonstandard. Use the Zoom option to manipulate this
small image. Choose the X11 format when you save the file.

On DECwindows, set the height and width to 75 pixels for large icons, to 50 pixels for medium
icons, and to 32 pixels for small icons.

Description
The SET (ICON_PIXMAP) procedure determines the pixmap the application uses to create its icon in
the DECwindows icon box. To specify an icon pixmap defined in a UIL file, use the first format variant
shown in the format section. To specify an icon created in a bitmap file, use the second format variant
shown in the format section.

Signaled Errors

TPU$_FAILURE_STATUS ERROR The Resource Manager returned an error status.
TPU$_INVPARAM ERROR One of the parameters was specified with data

of the wrong type.
TPU$_REQUIRESDECW ERROR Requires the DECTPU DECwindows screen

updater.
TPU$_TOOFEW ERROR You specified too few parameters.
TPU$_TOOMANY ERROR You specified too many parameters.
TPU$_BADHIERARCHY ERROR You specified an invalid hierarchy identifier.

314

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Example
The following example causes the icon pixmap stored in the file ICON_FLAMINGO.X11 to be
displayed in the application’s icon:

SET (ICON_PIXMAP, "DISK1:[SMITH]ICON_FLAMINGO.X11")

SET (INFORMATIONAL)

Syntax

Parameters
INFORMATIONAL

Informational messages that DECTPU writes.

ON, 1

Causes the informational messages to be displayed.

OFF, 0

Suppresses the display of informational messages.

Description
The SET (INFORMATIONAL) procedure sets whether or not you see informational messages. If
you specify a section file when invoking DECTPU (either by default or by using the /NOSECTION
qualifier), DECTPU may not display informational messages. You can cause informational messages to
be written by using SET (INFORMATIONAL, ON).

If you use the /NOSECTION qualifier when invoking DECTPU, informational messages are written by
default.

When you are developing DECTPU programs, the informational messages help you find errors in your
program, so it is a good idea to use the SET (INFORMATIONAL) built-in procedure to cause the
messages to be displayed.

See Appendix B, "DECTPU Messages" for a list of the DECTPU informational messages.

Signaled Errors
TPU$_TOOFEW ERROR SET (INFORMATIONAL) requires two

parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.

315

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Example
The following example causes the display of informational messages to be turned off:

SET (INFORMATIONAL, OFF)

SET (INPUT_FOCUS)

Syntax

Parameters
INPUT_FOCUS

A keyword that directs DECTPU to request the input focus.

SCREEN

An optional keyword that indicates that the top-level widget associated with DECTPU’s screen is to
receive the input focus. This keyword is the default.

widget

The widget that is to receive the input focus. If you specify a widget for this parameter, the DECTPU
key bindings are not available to process keyboard input into the specified widget.

You can set or get the input-focus state of a widget only if that widget is a shell widget, that is, if it
has a resource named XtNinput.

Description
The SET (INPUT_FOCUS) procedure requests ownership of the input focus. Ownership of the input
focus determines which application or widget processes user input from the keyboard. It does not
guarantee that DECTPU or the widget gets the input focus. If DECTPU or the widget receives the input
focus, it gets a focus-in event. When DECTPU gets this event, it calls the input focus grab routine. For
more information about the role of events in DECwindows applications, see the VMS DECwindows
Guide to Application Programming.

When the top-level widget for DECTPU’s screen has the input focus, DECTPU processes keystrokes
normally. That is, undefined printable keys insert characters in the current buffer, and defined keys
execute the code bound to them.

If a child widget in the widget hierarchy has the input focus, keystrokes are processed by that widget. For
example, when a text widget in an EVE dialog box has the input focus, keystrokes are processed by the
text widget, not by DECTPU. No DECTPU key bindings are in effect.

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword as a
parameter.

316

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_REQUIRESDECW ERROR You can use the SET (INPUT_FOCUS) built-in
only if you are using DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(INPUT_FOCUS) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(INPUT_FOCUS) built-in.

Example
The following example is a modified version of the EVE procedure EVE$
$WIDGET_REPLACE_EACH_OK. The original version is in SYS$EXAMPLES:EVE$MENUS.TPU.
For more information about using the files in SYS$EXAMPLES as examples, see Appendix A, "Sample
DECwindows DECTPU Procedures".

PROCEDURE eve$$widget_replace_each_ok
SET (INPUT_FOCUS); ! This statement grabs input focus
 ! so Ctrl/C events will be detected.
eve$$replace_loop (0, eve$x_yes);
ENDPROCEDURE;

Procedure EVE$$WIDGET_REPLACE_EACH_OK responds when you press the OK button in the
REPLACE dialog box that asks if an occurrence of the old string should be replaced with the new string.

SET (INPUT_FOCUS_GRAB)

Syntax

Parameters
INPUT_FOCUS_GRAB

A keyword that indicates that the SET built-in procedure is being used to set the input focus grab
routine.

SCREEN

A keyword used for compatibility with future versions of DECTPU.

buffer

The buffer that specifies the actions that DECTPU should take whenever it processes a focus-in
event.

317

Chapter 2. Descriptions of the DECTPU Built-In Procedures

learn_sequence

The learn sequence that specifies the actions that DECTPU should take whenever it processes a
focus-in event.

program

The program that specifies the actions that DECTPU should take whenever it processes a focus-in
event.

range

The range that specifies the actions that DECTPU should take whenever it processes a focus-in
event.

string

The string that specifies the actions that DECTPU should take whenever it processes a focus-in
event.

NONE

A keyword that directs DECTPU to delete the input focus grab routine. If you specify this keyword
or do not specify the parameter at all, the application is not notified when input focus is received.

Description
The SET (INPUT_FOCUS_GRAB) procedure specifies the program or learn sequence that DECTPU
should execute whenever it processes a focus-in event. For more information about DECTPU input focus
support, see the Guide to the DEC Text Processing Utility

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword as a
parameter.

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_NORETURNVALUE ERROR SET (INPUT_FOCUS_GRAB) cannot return a
value.

TPU$_REQUIRESDECW ERROR You can use the SET (INPUT_FOCUS_GRAB)
built-in only if you are using DECwindows
DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(INPUT_FOCUS_GRAB) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(INPUT_FOCUS_GRAB) built-in.

Example
The following example designates the procedure user_grab_focus as an input focus grab routine:

SET (INPUT_FOCUS_GRAB, SCREEN, "user_grab_focus");

318

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (INPUT_FOCUS_UNGRAB)

Syntax

Parameters
INPUT_FOCUS_UNGRAB

A keyword that indicates that the SET built-in procedure is being used to set the input focus ungrab
routine.

SCREEN

A keyword used for compatibility with future versions of DECTPU.

buffer

The buffer that specifies the actions that DECTPU should take whenever it processes a focus-out
event.

learn_sequence

The learn sequence that specifies the actions that DECTPU should take whenever it processes a
focus-out event.

program

The program that specifies the actions that DECTPU should take whenever it processes a focus-out
event.

range

The range that specifies the actions that DECTPU should take whenever it processes a focus-out
event.

string

The string that specifies the actions that DECTPU should take whenever it processes a focus-out
event.

NONE

A keyword that directs DECTPU to delete the input focus ungrab routine. If you specify this
keyword or do not specify the parameter at all, the application is not notified when input focus is
received.

319

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The SET (INPUT_FOCUS_UNGRAB) procedure specifies the program or learn sequence that
DECTPU should execute whenever it processes a focus-out event. For more information about DECTPU
input focus support, see the Guide to the DEC Text Processing Utility.

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword as a
parameter.

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_NORETURNVALUE ERROR SET (INPUT_FOCUS_UNGRAB) cannot
return a value.

TPU$_REQUIRESDECW ERROR You can use the SET
(INPUT_FOCUS_UNGRAB) built-in only if
you are using DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(INPUT_FOCUS_UNGRAB) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(INPUT_FOCUS_UNGRAB) built-in.

Example
The following example designates the procedure user_ungrab_focus as an input focus grab routine:

SET (INPUT_FOCUS_UNGRAB, SCREEN, "user_ungrab_focus");

SET (INSERT)

Syntax

Parameters
INSERT

A keyword that specifies the mode of entering text. INSERT means that characters are added to the
buffer immediately before the editing point. See also the description of the SET (OVERSTRIKE)
built-in procedure. The default mode for text entry is insert.

buffer

The buffer whose mode of text entry you want to set.

Description
The SET (INSERT) procedure sets the specified buffer to insert mode.

320

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors
TPU$_TOOFEW ERROR SET (INSERT) requires two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.

Example
The following example causes the characters that you add to the buffer to be added immediately before
the editing point:

SET (INSERT, my_buffer)

SET (JOURNALING)

Syntax

Parameters
JOURNALING

A keyword that indicates that the SET built-in procedure is being used to enable or disable buffer-
change journaling or set the frequency of journaling.

buffer

The buffer for which you want to enable or disable buffer-change journaling.

ON, 1

A keyword that turns on buffer-change journaling.

OFF, 0

A keyword that turns off buffer-change journaling.

integer

The integer that you specify that determines how frequently records are written to the journal file.
The value of this integer must be between 1 and 10.

file_name_string

The string that names the file you want to use as the buffer’s journal file. If the file does not exist,
DECTPU automatically creates it. You cannot specify this parameter if you have specified the OFF
keyword. If you do not specify any file name when you turn journaling on, DECTPU creates a
journal file for you and names the file by using the default naming algorithm.

You can set a default journaling directory.

321

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The SET (JOURNALING) procedure turns buffer-change journaling on or off, sets the journaling
frequency, and specifies a journal file name. You can turn on journaling only if the buffer is safe for
journaling. For a buffer to be safe for journaling, it must either be empty, have never been modified, or
be unmodified since the last time it was written to a file. (Whether the buffer has been modified is not
the same as whether the buffer is marked as modified. The modified flag can be set or cleared by the
application or by you.)

Once a buffer that is being journaled is written to a file, the journal file is closed and deleted and a
new journal file is started that references the newly created file. Similarly, reading a file into an empty
buffer does not copy the file into the journal—it simply inserts a reference to the file in the journal. This
behavior must be taken into account when you perform operations that use temporary files. For example,
writing a buffer to a temporary file (which is modified by an external program), then erasing the buffer
and rereading a (modified) temporary file will point the journal file at the temporary file. If you then
delete the temporary file, the buffer will be unrecoverable.

You can supply a journal file name only if journaling is turned on. If a journal file name is supplied,
DECTPU creates a journal file that uses the name you specified. If this parameter is omitted, DECTPU
creates a journal file name based on the buffer’s name.

If journaling is turned off for the specified buffer, DECTPU closes the journal file but does not delete it.

DECTPU signals a warning or error if any of the following conditions apply:

● Journaling is turned on and one or more of the following is also true:

○ The specified buffer is not safe for journaling.

○ The specified buffer is already being journaled.

○ An RMS error was returned when DECTPU tried to create the journal file.

● Journaling is turned off and a journal file name is specified in the built-in call.

Caution

This setting is determined by how your computer accesses the rest of your network from the VM. In the
example described here, the target machines are connected via VPN, which requires the NAT adapter
type. If you are using a local network, change the adapter type to Bridged.

The integer parameter specifies the journaling frequency. DECTPU provides a 500-byte buffer for
journaling keystrokes. If journaling is enabled, a write to the journal file occurs when the buffer is full.
With this built-in procedure, you can determine the frequency with which records are written to the
journal file; the lower the integer you specify, the more often journal records are written to disk.

A value of 1 causes a record to be written for approximately every 10 keys pressed. A value of 10
causes a record to be written for approximately every 125 keys. If you are entering only text (rather
than procedures that are bound to keys), the number of keystrokes included in a record is greater. For a
value of 1, a record is written for approximately every 30 to 35 keystrokes; for a value of 10, a record is
written for approximately every 400 keystrokes.

Signaled Errors
TPU$_MINVALUE WARNING Argument is less than minimum allowed.

322

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_MAXVALUE WARNING Argument is greater than maximum allowed.
TPU$_TOOMANY ERROR You specified too many parameters.
TPU$_TOOFEW ERROR You specified too few parameters.
TPU$_INVPARAM ERROR You specified a parameter with the wrong data

type.
TPU$_BADKEY ERROR You specified an invalid keyword.
TPU$_JRNLOPEN ERROR A journal file for this buffer is already open.

Examples
1. The following example turns on buffer-change journaling for the current buffer and directs DECTPU

to use the file JOURNAL.JNL in the directory [JONES] as the journal file:

SET (JOURNALING, CURRENT_BUFFER, ON, "disk1:[jones]journal.jnl");

2. The following example causes a record to be written from the buffer to a journal file at intervals of
approximately 10 user keystrokes. If all or most of the keys pressed have procedures bound to them,
DECTPU may write out the contents of the buffer after fewer than 10 keystrokes. The journaling
interval shown in this statement is the shortest that you can specify.

SET (JOURNALING, 1)

SET (KEY_MAP_LIST)

Syntax

Parameters
KEY_MAP_LIST

The key map list that you bind to a buffer or window. The default key map list is TPU
$KEY_MAP_LIST.

string

A quoted string, or a variable name representing a string constant, that specifies the key map list that
you bind to a buffer or window.

buffer

The buffer to which you bind the specified key map list. The default is the buffer to which you are
positioned.

window

The window with which you want to associate the key map list.

You use the key map list manipulated by SET (KEY_MAP_LIST) only to process mouse events in
the specified window. Keystrokes are processed using the key map list associated with the buffer.

323

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The SET (KEY_MAP_LIST) procedure binds a specified key map list to a buffer or window. If the
buffer or window is not specified, the default is to bind the key map list to the current buffer. A buffer
or window can be associated with only one key map list at a time. A key map list can be associated with
many buffers or windows simultaneously.

Signaled Errors

TPU$_NOKEYMAPLIST WARNING Attempt to access an undefined key map list.
TPU$_TOOFEW ERROR Too few arguments passed to the SET

(KEY_MAP_LIST) built-in.
TPU$_TOOMANY ERROR Too many arguments passed to the SET

(KEY_MAP_LIST) built-in.
TPU$_NOCURRENTBUF ERROR You are not positioned in a buffer.
TPU$_INVPARAM ERROR Wrong type of data sent to the SET

(KEY_MAP_LIST) built-in.

Examples
1. The following example binds the key map list called TPU$_KEY_MAP_LIST to the current buffer:

SET (KEY_MAP_LIST, "tpu$_key_map_list")

2. The following example creates a small “scratch pad” window and maps it to a scratch buffer called
junk1.txt. The procedure defines a key map list that consists of a user-defined key map redefining
M1DRAG plus the standard EVE mouse key map. By setting the scratch window’s key map list to
be user_scratch_list, the procedure invokes sample_m1_drag when you drag the mouse in the scratch
window. By not declaring the variables as local variables, they are global variables that exists after
the procedure executes.

PROCEDURE user_scratch_window
scratch_window := CREATE_WINDOW (20, 3, ON);
scratch_buffer := CREATE_BUFFER ("test", "junk.txt");
scratch_map := CREATE_KEY_MAP ("user_scratch_map");
DEFINE_KEY (eve$$kt_return + "sample_M1_DRAG", M1DRAG, "mouse_button_1",
 "user_scratch_map");
scratch_list := CREATE_KEY_MAP_LIST ("user_scratch_list",
 "user_scratch_map",
 eve$x_mouse_keys);
SET (KEY_MAP_LIST, "user_scratch_list", scratch_window);
MAP (scratch_window, scratch_buffer);
ENDPROCEDURE;

SET (KEYSTROKE_RECOVERY)

Syntax

324

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
KEYSTROKE_RECOVERY

A keyword that directs DECTPU to enable or disable keystroke recovery, depending on whether the /
RECOVER or /NORECOVER qualifier was specified on the command line.

ON, 1

A keyword that enables keystroke recovery. (This has the same effect as specifying the /RECOVER
qualifier.)

OFF, 0

A keyword that disables keystroke recovery. (This has the same effect as specifying the /
NORECOVER qualifier.)

Description
The SET (KEYSTROKE_RECOVERY) procedure turns keystroke journal recovery on or off. If you
specify the /RECOVER qualifier when you invoke DECTPU, DECTPU checks whether the application
calls the JOURNAL_OPEN builtin procedure to open a keystroke journal file. If the application does
not call the JOURNAL_OPEN built-in, by default DECTPU signals an error when the application starts
accepting keyboard input.

In some circumstances, you may want your application to accept the /RECOVER qualifier without
error, even though the application does not call the JOURNAL_OPEN built-in. For example, if your
application uses only buffer-change journaling, you can use the /RECOVER qualifier when DECTPU is
invoked, but the JOURNAL_OPEN built-in is not used.

Use SET (KEYSTROKE_RECOVERY, OFF) to disable the error caused by the lack of a call to
JOURNAL-OPEN and concurrently to prevent DECTPU from performing keystroke recovery
(even if the /RECOVER qualifier is specified and you use JOURNAL_OPEN). Conversely,
use SET (KEYSTROKE_RECOVERY, ON) to direct DECTPU to perform keystroke recovery
(even if the /NORECOVER qualifier is specified and you use JOURNAL_OPEN). SET
(KEYSTROKE_RECOVERY) signals an error if the application code or the user calls the built-in after
DECTPU has started accepting keyboard input.

To determine whether a recovery using a keystroke journal file is currently in progress, use GET_INFO
(SYSTEM, "recover"). This GET_INFO call returns FALSE (0) if no keystroke recovery is
currently in progress, and returns TRUE (1) if a keystroke recovery is currently in progress. SET
(KEYSTROKE_RECOVERY) can determine the value returned by GET_INFO (SYSTEM, "recover")
but cannot affect the value returned by GET_INFO (COMMAND_LINE, "recover"). GET_INFO
(COMMAND_LINE, "recover") returns a value that indicates whether you specified the /RECOVER
qualifier when you invoked DECTPU.

Signaled Errors

TPU$_JNLNOTOPEN ERROR No keystroke journal file is open from which to
recover.

TPU$_RECJNLOPEN ERROR A keystroke journal file is already open.
TPU$_TOOFEW ERROR You specified too few parameters.
TPU$_TOOMANY ERROR You specified too many parameters.

325

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_INVPARAM ERROR You specified a parameter with the wrong data
type.

TPU$_BADKEY ERROR You specified an invalid keyword.

Example
The following example directs DECTPU to do keystroke journal recovery even if the /NORECOVER
qualifier was specified on the command line that invoked DECTPU:

SET (KEYSTROKE_RECOVERY, ON)

SET (LEFT_MARGIN)

Syntax

Parameters
LEFT_MARGIN

The left margin of a buffer.

buffer

The buffer in which the left margin is being set.

integer

The column at which the left margin is set.

Description
With the SET (LEFT_MARGIN) procedure, you can change only the left margin of a buffer.

Newly created buffers receive a left margin of 1 (that is, the margin is set in column 1) if a template
buffer is not specified in the call to the CREATE_BUFFER built-in procedure. If a template buffer is
used, that buffer sets the left margin for all newly created buffers.

Use SET (LEFT_MARGIN) to override the default left margin.

The buffer margin settings are independent of the terminal width or window width settings. The FILL
built-in procedure uses these margin settings when it fills the text of a buffer.

When DECTPU creates a new line, the line gets its left margin value from the left margin of the current
buffer setting. However, changing the left margin setting for the buffer does not change the left margin
for any existing lines.

The value of the left margin must be at least 1 and less than the right margin value.

If you want to use the margin settings of an existing buffer in a user-written procedure, GET_INFO
(buffer, "left_margin") and GET_INFO (buffer, "right_margin") return the values of the margin settings
in the specified buffer.

326

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_TOOFEW ERROR The SET (LEFT_MARGIN) built-in requires
three parameters.

TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADMARGINS WARNING The left margin setting must be less than the

right; both must be greater than zero.

Examples
1. The following example causes the left margin of the buffer represented by the variable my_buffer to

be changed. The left margin of the buffer is set to 1. The right margin is unchanged.

SET (LEFT_MARGIN, my_buffer, 1)

2. The following example causes the left margin of the current buffer to be changed to 10; the right
margin is unchanged:

SET (LEFT_MARGIN, CURRENT_BUFFER, 10)

SET (LEFT_MARGIN_ACTION)

Syntax

Parameters
LEFT_MARGIN_ACTION

Refers to the action taken when you press a self-inserting key while the cursor is to the left of a line’s
left margin. A self-inserting key is one that is associated with a printable character.

buffer1

The buffer in which the left margin action routine is being set.

buffer2

A buffer that contains the DECTPU statements to be executed when you press a self-inserting key
while the cursor is to the left of a buffer’s left margin.

learn_sequence

A learn sequence that is to be replayed when you press a self-inserting key while the cursor is to the
left of a buffer’s left margin.

327

Chapter 2. Descriptions of the DECTPU Built-In Procedures

program

A program that is to be executed when you press a self-inserting key while the cursor is to the left of
a buffer’s left margin.

range

A range that contains DECTPU statements that are to be executed when you press a self-inserting
key while the cursor is to the left of a buffer’s left margin.

string

A string that contains DECTPU statements that are to be executed when you press a self-inserting
key while the cursor is to the left of a buffer’s left margin.

Description
With the SET (LEFT_MARGIN_ACTION) procedure, you can specify an action to be taken when you
attempt to insert text to the left of the left margin of a line. If the third parameter is not specified, the left
margin action routine is deleted. If no left margin action routine has been specified, the text is inserted
at the current position before any necessary padding spaces, and the left margin of the line becomes the
current position.

Newly created buffers do not receive a left margin action routine if a template buffer is not specified on
the call to the CREATE_BUFFER built-in procedure. If a template buffer is specified, the left margin
action routine of the template buffer is used.

The left margin action routine affects only text entered from the keyboard or a learn sequence. Using
the COPY_TEXT or MOVE_TEXT built-in procedure to insert text into a buffer to the left of the left
margin does not trigger the left margin action routine.

Signaled Errors

TPU$_TOOFEW ERROR The SET (LEFT_MARGIN_ACTION) built-in
requires at least two parameters.

TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_COMPILEFAIL ERROR Compilation aborted because of syntax errors.

Examples
1. The following example causes the procedure PUSH_TO_LEFT_MARGIN to be executed when

you attempt to type a character to the left of the left margin of the current line. A typical left margin
action routine moves the editing point to the left margin and inserts an appropriate number of spaces
starting at the left margin.

SET (LEFT_MARGIN_ACTION, CURRENT_BUFFER, "push_to_left_margin")

2. The following example deletes any left margin action routine that may be defined for the current
buffer. When there is no user-defined left margin action routine, if you type a character to the left of
the current line’s left margin, the text is inserted with spaces padding the text to the old left margin.
The leftmost character on the line establishes the line’s new left margin.

328

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (LEFT_MARGIN_ACTION, CURRENT_BUFFER)

SET (LINE_NUMBER)

Syntax

Parameters
LINE_NUMBER

Refers to the DECTPU display of the procedure and line number at which an error occurred.

ON, 1

Turns on display of the line number and procedure at which an error occurred.

OFF, 0

Turns off display of the line number and procedure at which an error occurred.

Description
The SET (LINE_NUMBER) procedure is related to the SET (TRACEBACK) procedure. SET
(TRACEBACK, ON) turns on both traceback and line numbers. SET (LINE_NUMBER, OFF) turns
off both traceback and line numbers. You can also set traceback off and line numbers on. Line numbers
are useful for programmers debugging DECTPU programs, but they do not have much meaning to users
who do not have the source code available to them.

After a compilation, the line numbers displayed for procedures are relative to the beginning of the
procedure. For DECTPU statements compiled outside a procedure, the line numbers displayed are
relative to the beginning of the buffer, range, or string being compiled. If there are no procedure
declarations before the executable statements, line numbering starts at the beginning of the buffer or
range that is being compiled. For strings, the line number is always 1.

You can change line numbers when you use the SAVE built-in to write a sectionfile. If you specify the
parameter NO_PROCEDURE_NAMES, the line numbers displayed are relative to the beginning of the
buffer or range that was compiled, not relative to the beginning of a procedure.

The default setting for LINE_NUMBER depends on whether a section file was loaded by DECTPU. If a
section file was loaded, the default is OFF. If a section file was not loaded, the default is ON.

Signaled Errors

TPU$_TOOFEW ERROR The SET (LINE_NUMBER) built-in requires
two parameters.

TPU$_TOOMANY ERROR You specified more than two parameters.

329

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_INVPARAM ERROR One or more of the specified parameters have
the wrong type.

TPU$_BADKEY ERROR Only the keywords ON and OFF are allowed.

Example
The following example displays the line number at which the error occurred:

PROCEDURE line_number_example
 SET (LINE_NUMBER, ON);
 SET (LINE_NUMBER, BELL);
ENDPROCEDURE;

Executing this procedure displays the following in the message buffer:

BELL is an invalid keyword
At line 3

SET (MAPPED_WHEN_MANAGED)

Syntax

Parameters
MAPPED_WHEN_MANAGED

A keyword that indicates that SET is being used to control whether the specified widget should
become visible when it is managed.

widget

The widget whose mapped status you want to set.

ON, 1

A keyword that directs DECTPU to make the specified widget visible when it is managed. This is
the default value.

OFF, 0

A keyword that directs DECTPU not to make the specified widget visible when it is managed.

Description
The SET (MAPPED_WHEN_MANAGED) procedure controls whether a widget is mapped to the
screen when it is managed. SET (MAPPED_WHEN_MANAGED) does not return the previous state of
the modified widget. For more information on managing widgets, see the VMS DECwindows Guide to
Application Programming and the VMS DECwindows Toolkit Routines Reference Manual.

330

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_NORETURNVALUE ERROR Built-in does not return a value.
TPU$_REQUIRESDECW ERROR Requires the DECTPU DECwindows screen

updater.
TPU$_TOOFEW ERROR You specified too few parameters.
TPU$_TOOMANY ERROR You specified too many parameters.

Example
The following example directs DECTPU to make the widget contained in example_widget invisible when
the widget is managed:

SET (MAPPED_WHEN_MANAGED, example_widget, OFF);

SET (MARGINS)

Syntax

Parameters
MARGINS

A keyword that indicates that SET is to determine the left and right margins of a buffer. The default
left margin is 1 and the default right margin is 80.

buffer

The buffer in which the margins are being set.

integer1

The column at which the left margin is set.

integer2

The column at which the right margin is set.

Description
With the SET (MARGINS) procedure, you can change the left and right margins of a buffer. The
default margins for a buffer are set to 1 for the left margin and 80 for the right margin when you use the
CREATE_BUFFER built-in. The FILL built-in procedure uses these margin settings when it fills the text
of a buffer.

This built-in procedure controls the buffer margin settings even if the terminal width or window width is
set to something else.

331

Chapter 2. Descriptions of the DECTPU Built-In Procedures

The value of the left margin must be at least 1 and less than the right margin value. The value of the right
margin must be less than the maximum record size for the buffer. You can use the GET_INFO (buffer,
“record_size”) built-in procedure to find out the maximum record size of a buffer.

If you want to use the margin settings of an existing buffer in a user-written procedure, the statements
GET_INFO (buffer, “left_margin”) and GET_INFO (buffer, “right_margin”) return the values of the
margin settings.

Signaled Errors

TPU$_TOOFEW ERROR The SET (MARGINS) built-in requires four
parameters.

TPU$_TOOMANY ERROR You specified more than four parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADMARGINS WARNING Left margin must be smaller than right; both

must be greater than zero.

Examples
1. The following example causes the margins of the buffer represented by the variable my_buffer to be

changed. The left margin of the buffer is set to 1 and the right margin is set to 132.

SET (MARGINS, my_buffer, 1, 132)

2. The following example causes the margins of the current buffer to be changed to left margin 10 and
right margin 70:

SET (MARGINS, CURRENT_BUFFER, 10, 70)

SET (MAX_LINES)

Syntax

Parameters
MAX_LINES

The maximum number of lines a buffer can contain.

buffer

The buffer for which you are setting the maximum number of lines.

integer

The maximum number of lines for the buffer. The valid values are 0, 2, or an integer greater than
2. The maximum value depends on the memory capacity of your system. The default maximum
number of lines is 0 (in other words, this feature is turned off).

332

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
With the SET (MAX_LINES) procedure, if you exceed the maximum number of lines for a buffer,
DECTPU deletes lines from the beginning of the buffer to make room for any lines that exceed the
maximum.

SET (MAX_LINES) does not consider the end-of-buffer text to be a record. For example, if you set the
maximum number of lines to be 1000, the buffer can contain 1000 records plus the end-of-buffer text.

If you specify a value of 0 for integer, this feature is turned off and DECTPU does not check for the
maximum number of lines.

Signaled Errors
TPU$_MINVALUE WARNING Argument less than minimum allowed.
TPU$_MAXVALUE WARNING Argument greater than maximum allowed.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_TOOMANY ERROR SET (MAX_LINES) accepts only three

parameters.
TPU$_TOOFEW ERROR SET (MAX_LINES) requires three parameters.

Example
The following example causes the maximum number of lines for the message buffer to be 20. Only the
most recent lines of messages are kept.

SET (MAX_LINES, message_buffer, 20)

SET (MENU_POSITION)

Syntax

Parameters
MENU_POSITION

A keyword that indicates that the SET built-in procedure is being used to set the menu position of a
pop-up widget or widgets.

mouse_down_button

A keyword (M1DOWN, M2DOWN, M3DOWN, M4DOWN, or M5DOWN) that indicates the
mouse button associated with the pop-up menus.

array2

An integer-indexed array of pop-up menu widgets to be set for automatic menu positioning.

333

Chapter 2. Descriptions of the DECTPU Built-In Procedures

NONE

A keyword that requests that DECTPU stop automatic positioning of pop-up menu widgets for the
specified mouse button.

widget

The pop-up menu widget to be set for automatic menu positioning.

Return Values
array1

An integer-indexed array of all pop-up menu widgets that were set for automatic positioning for the
specified mouse button before this built-in call.

NONE

A keyword that indicates that no pop-up menu widgets were set for the specified mouse button
before this built-in call.

Description
The SET (MENU_POSITION) procedure sets menu positioning for one or more pop-up widgets.
DECwindows systems do not require pop-up menus to position the last menu item chosen under the
mouse pointer. However, this built-in is required to position the pop-up menu below and to the right of
the pointer. If you do not use this built-in, DECTPU positions the pop-up widget at the upper left corner
of the display.

Signaled Errors

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_REQUIRESDECW ERROR Requires the DECTPU DECwindows screen
updater.

TPU$_TOOFEW ERROR You specified too few parameters.
TPU$_TOOMANY ERROR You specified too many parameters.
TPU$_BADKEY WARNING You specified an invalid keyword.
TPU$_NEEDTOASSIGN ERROR Built-in must return a value.
TPU$_EXTRANEOUSARGS ERROR The array of widgets parameter had a nonwidget

element.
TPU$_REQARGSMISSING ERROR The array of widgets parameter was empty.

SET (MESSAGE_ACTION_LEVEL)

Syntax

334

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
MESSAGE_ACTION_LEVEL

A keyword that indicates that SET is to determine the severity level at which DECTPU sounds the
terminal bell or highlights a message.

integer

A value between 0 and 3 that specifies the severity level at which DECTPU is to take the action you
designate. The default value is 2. The severity levels and corresponding values, in ascending order of
severity, are as follows:

1 Success
3 Informational
0 Warning
2 Error

DECTPU performs the action you specify on all completion messages at the severity level you
designate and on all messages of greater severity.

keyword

The keyword associated with a DECTPU completion message. DECTPU uses the keyword to
determine the severity level of the associated completion message and performs the action you
specify on all completion messages of that severity level or greater.

Description
With the SET (MESSAGE_ACTION_LEVEL) procedure, you can set the action that is taken when
DECTPU returns a completion status of the specified severity.

The action you specify using SET (MESSAGE_ACTION_LEVEL) is taken for all completion messages
of the specified severity or greater severity.

Signaled Errors
TPU$_TOOFEW ERROR SET (MESSAGE_ACTION_LEVEL) requires

two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.
TPU$_ILLSEVERITY WARNING Illegal severity specified; DECTPU used the

severity "error".

Examples
1. The following example directs DECTPU to display informational, warning, and error messages in

reverse video for 1/2 second, then in ordinary video:

SET (MESSAGE_ACTION_TYPE, REVERSE);
SET (MESSAGE_ACTION_LEVEL, 3);

335

Chapter 2. Descriptions of the DECTPU Built-In Procedures

2. The following example directs DECTPU to ring the terminal’s bell whenever a completion status
occurs with a severity equal to or greater than the severity of TPU$_SUCCESS:

SET (MESSAGE_ACTION_TYPE, BELL);
SET (MESSAGE_ACTION_LEVEL, TPU$_SUCCESS);

SET (MESSAGE_ACTION_TYPE)

Syntax

Parameters
MESSAGE_ACTION_TYPE

A keyword that indicates the action to be taken when DECTPU generates a completion status of the
severity you specify.

NONE

A keyword that directs DECTPU to take no action. This is the default.

BELL

A keyword that directs DECTPU to ring the terminal’s bell when a completion status of the specified
severity is returned.

REVERSE

A keyword that directs DECTPU to display the completion status in reverse video for 1/2 second,
then display the status in ordinary video.

Description
With the SET (MESSAGE_ACTION_TYPE) procedure, you can set the severity at which the action
is taken. The action you specify using SET (MESSAGE_ACTION_TYPE) is taken for all completion
messages of the specified severity or greater severity.

Signaled Errors
TPU$_TOOFEW ERROR SET (MESSAGE_ACTION_TYPE) requires

two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.

Example
The following example directs DECTPU to display informational, warning, and error messages in reverse
video for 1/2 second, then in ordinary video:

336

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (MESSAGE_ACTION_TYPE, REVERSE);
SET (MESSAGE_ACTION_LEVEL, 3);

SET (MESSAGE_FLAGS)

Syntax

Parameters
MESSAGE_FLAGS

A keyword that indicates that the SET built-in procedure is being used to specify which parts of
messages are displayed.

integer

A bit-encoded value for the message code.

Description
The SET (MESSAGE_FLAGS) procedure specifies which items of a message DECTPU displays. Table
2.11, "Message Codes" shows the message codes.

Table 2.11. Message Codes

Bit Value Meaning

0 1

0

Include text of message.

Do not include text of message.
1 1

0

Include message identifier.

Do not include message
identifier.

2 1

0

Include severity level indicator.

Do not include severity level
indicator.

3 1

0

Include facility name.

Do not include facility name.

If you do not set a value for the message flags, the default message flags for your process are used.
Setting the message flags to 0 does not turn off the message text; it causes DECTPU to use the default
message flags for your process.

In addition to setting the message flags from within DECTPU, you can set them at the DCL level with
the SET MESSAGE command. The DCL SET MESSAGE command is the only way you can turn off
all message text. See the VSI OpenVMS DCL Dictionary for information on the DCL SET MESSAGE
command.

337

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Table 2.12, "Message Flag Values for SET (MESSAGE_FLAGS)"shows the predefined constants available
for use with SET (MESSAGE_FLAGS).

Table 2.12. Message Flag Values for SET (MESSAGE_FLAGS)

Bit Constant Meaning

0 TPU$K_MESSAGE_TEXT Include text of message.
1 TPU$K_MESSAGE_ID Include message identifier.
2 TPU

$K_MESSAGE_SEVERITY
Include severity level indicator.

3 TPU$K_MESSAGE_FACILITY Include facility name.

Signaled Errors

TPU$_FLAGTRUNC WARNING Message flag values must be less than or equal
to 15.

TPU$_INVPARAM ERROR One or more of the specified parameters have
the wrong type.

TPU$_TOOFEW ERROR SET (MESSAGE_FLAGS) requires at least two
parameters.

TPU$_TOOMANY ERROR SET (MESSAGE_FLAGS) accepts no more
than two parameters.

Examples
1. The following example causes the message identifier to be the only item included in DECTPU

messages. The integer 2 sets bit 1.

SET (MESSAGE_FLAGS, 2)

2. In the following example, the SET (MESSAGE_FLAGS) statement directs DECTPU to include only
the message severity level in messages identified by keywords or integers. Because TPU$_TOOFEW
is an error-level message, the MESSAGE statement above causes DECTPU to display "%E" in the
message buffer. DECTPU does not display the text associated with the TPU$_TOOFEW keyword
because the statement does not contain an integer or constant directing DECTPU to display the text.

SET (MESSAGE_FLAGS, TPU$K_MESSAGE_SEVERITY);
MESSAGE (TPU$_TOOFEW);

For more information on using constants to specify message format, see the description of the
MESSAGE_TEXT built-in procedure.

SET (MODIFIABLE)

Syntax

338

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
MODIFIABLE

The ability to modify a buffer.

buffer

The buffer that will either be unmodifiable or able to be edited.

ON, 1

Makes the buffer modifiable.

OFF, 0

Makes the buffer unmodifiable, allowing only deletion of the buffer and setting of marks and ranges.
Any attempt to change the buffer results in a warning message.

Description
With the SET (MODIFIABLE) procedure, you can set whether the buffer is modifiable or not. When
a buffer is not modifiable, any attempt to insert, delete, or otherwise modify the contents of the buffer
results in a warning message. This affects only the text within the buffer. You can still delete the buffer
and you can still create or delete marks and ranges in the text within the buffer.

Newly created buffers are modifiable by default if a template buffer was not used on the call to the
CREATE_BUFFER procedure. The modifiability status is taken from the template buffer if one was
specified.

You cannot make the messages buffer unmodifiable.

Signaled Errors

TPU$_TOOFEW ERROR The SET (MODIFIABLE) built-in requires
three parameters.

TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_MSGBUFSET ERROR You cannot force the message buffer to be

nonmodifiable.
TPU$_BADKEY ERROR Only the ON and OFF keywords are valid.

Example
The following example makes the current buffer unmodifiable. Any attempt to change the buffer fails
with a warning message.

SET (MODIFIABLE, CURRENT_BUFFER, OFF)

SET (MODIFIED)

339

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
MODIFIED

A keyword that directs DECTPU to turn on or turn off the indicator designating a buffer as
modified.

buffer

The buffer whose indicator you want to control.

ON, 1

A keyword that directs DECTPU to mark a buffer as modified.

OFF, 0

A keyword that directs DECTPU to mark a buffer as unmodified.

Description
The SET (MODIFIED) procedure turns on or turns off the flag that indicates that the specified buffer
has been modified. Use SET (MODIFIED) with caution. When you turn off the flag indicating that
the buffer is modified, you could exit from an application layered on DECTPU without writing out the
contents of a modified buffer. Be sure your extension or layered application handles this possibility.

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword as a
parameter.

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_NORETURNVALUE ERROR SET (MODIFIED) cannot return a value.
TPU$_TOOFEW ERROR Too few arguments passed to the SET

(MODIFIED) built-in.
TPU$_TOOMANY ERROR Too many arguments passed to the SET

(MODIFIED) built-in.

Example
The following example marks the current buffer as modified:

SET (MODIFIED, CURRENT_BUFFER, ON);

SET (MOUSE)

340

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
MOUSE

Indicates that you are using SET to enable or disable DECTPU’s mouse support. The default mouse
setting depends on the terminal you are using. If the DECTPU statement GET_INFO (SCREEN,
"dec_crt2") returns true on your terminal, mouse support is turned on by default; otherwise, mouse
support is turned off by default.

ON, 1

Causes DECTPU to recognize mouse buttons when they are pressed, and lets you bind programs or
procedures to mouse buttons. Enables the LOCATE_MOUSE and POSITION (MOUSE) built-in
procedures.

OFF, 0

Disables DECTPU mouse support. Pressing a mouse button when the mouse is set to OFF has no
effect.

Return Value
Optionally, returns the previous setting.

Description
With the SET (MOUSE) procedure, you can turn mouse support on or off. Because DECTPU mouse
support disables the terminal emulator’s cut and paste feature in non-DECwindows DECTPU, you must
turn off DECTPU mouse support to use the non-DECTPU cut and paste capability while DECTPU is
running.

The optional return value specifies whether DECTPU mouse support was enabled or disabled before the
current SET (MOUSE) statement was executed. Thus, you can enable or disable mouse support and then
reset the support to its previous setting without having to make a separate call.

Signaled Errors

TPU$_BADKEY WARNING The keyword must be either ON or OFF.
TPU$_MOUSEINV WARNING You tried to enable mouse support on an

incompatible terminal.
TPU$_TOOFEW ERROR SET (MOUSE) requires two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.

341

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (MOVE_VERTICAL_CONTEXT)

Syntax

Parameters

MOVE_VERTICAL_CONTEXT

A keyword that indicates that the SET built-in procedure is being used to set the target column
where the cursor should remain during MOVE_VERTICAL operations.

buffer

The buffer where cursor motion in the horizontal dimension will be restricted when the cursor
moves vertically.

integer

An encoded integer that represents the column where the cursor will be restricted. This value is not
a simple column number. It should be specified only with the value returned from the GET_INFO
(buffer_variable, "move_vertical_context") built-in procedure.

Description

The SET (MOVE_VERTICAL_CONTEXT) procedure sets the specified buffer’s target column for
MOVE_VERTICAL operations when the COLUMN_MOVE_VERTICAL setting is on. This attempts
to restrict the cursor to a column (in the horizontal dimension) during MOVE_VERTICAL operations.

When the COLUMN_MOVE_VERTICAL setting is on, DECTPU tries to keep the cursor in a single
column during MOVE_VERTICAL operations. DECTPU saves the current vertical "context", which
is more than just the column number, in order to provide this cursor behavior. The POSITION built-
in procedure, however, can interfere with cursor positioning by resetting the column to the one that
DECTPU tries to position to during subsequent MOVE_VERTICAL operations.

To avoid this problem, applications should save the current vertical context, use the
MOVE_VERTICAL and POSITION built-in procedures, and then restore the vertical context.
Applications save the vertical context by getting the value from the GET_INFO (buffer_variable,
"move_vertical_context") built-in procedure. Applications restore the saved vertical context by using the
SET (MOVE_VERTICAL_CONTEXT) built-in procedure and specifying the saved value for the integer
parameter.

Signaled Errors

TPU$_TOOFEW ERROR SET (MOVE_VERTICAL_CONTEXT)
requires three parameters.

TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.

342

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Example
The following example saves the value of the current buffer’s vertical context before DECTPU positions
the editing point to another buffer. After repositioning to the first buffer, the code sets the buffer’s
context back to its previous value.

saved_context := GET_INFO (CURRENT_BUFFER, "move vertical_context");
saved_location := MARK (FREE_CURSOR);
POSITION (message_buffer);
COPY_TEXT ("Unless you save the context before you use POSITION,");
COPY_TEXT ("you cannot restore the context after POSITION changes it.");
POSITION (saved_location);
SET (MOVE_VERTICAL_CONTEXT, CURRENT_BUFFER, saved_context);

SET (NO_WRITE)

Syntax

Parameters
NO_WRITE

Specifies that DECTPU should not create an output file from the contents of a buffer after executing
a QUIT or EXIT statement even if the buffer contents have been modified. By default, a buffer is
written out if it has been modified.

buffer

The buffer whose contents you do not want written out.

ON, 1

Causes the buffer you name not to be written out.

OFF, 0

Lets you change a buffer from the no-write state to the default state. By default, any modified
buffers are written out after execution of a QUIT or EXIT statement.

Description
With the SET (NO_WRITE) procedure, you can set whether an output file is written or not written.

Signaled Errors

TPU$_TOOFEW ERROR SET (NO_WRITE) requires three parameters.
TPU$_TOOMANY ERROR You specified more than three parameters.

343

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_INVPARAM ERROR One or more of the specified parameters have
the wrong type.

TPU$_BADKEY ERROR You specified an invalid keyword.

Examples
1. The following example causes my_buffer not to be saved in a file after execution of a QUIT or EXIT

statement:

SET (NO_WRITE, my_buffer)

2. The following example turns off the no-write state of my_buffer. The contents of the buffer are
written out after execution of a QUIT or EXIT statement if the buffer has been modified.

SET (NO_WRITE, my_buffer, OFF)

SET (OUTPUT_FILE)

Syntax

Parameters
OUTPUT_FILE

A keyword that indicates that SET is to control creation of an output file for the contents of a buffer
after execution of a QUIT or EXIT statement.

buffer

The buffer whose contents are written to the specified file.

string

The file specification for the file being written out. The default output file is the input file name and
the highest existing version number for that file plus 1.

Description
The SET (OUTPUT_FILE) procedure specifies a file to be written out for the contents of the buffer.
DECTPU does not write out the contents of a buffer after execution of a QUIT or EXIT statement if the
buffer has not been modified.

If a buffer is set to NO_WRITE, a file is not written out after execution of a QUIT or EXIT statement
even though you specified a file specification for the contents of the buffer with SET (OUTPUT_FILE).

Signaled Errors

TPU$_TOOFEW ERROR SET (OUTPUT_FILE) requires three
parameters.

344

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.

Example
The following example causes the output file for paste_buffer to be NEWFILE.TXT:

SET (OUTPUT_FILE, paste_buffer, "NEWFILE.TXT")

SET (OVERSTRIKE)

Syntax

Parameters
OVERSTRIKE

A keyword that specifies that SET is to control the mode of text entry. OVERSTRIKE means that
the characters that you add to the buffer replace the characters in the buffer starting at the editing
point and continuing for the length of the text that you enter. The default mode of text entry is
INSERT.

See also the description of the SET (INSERT) built-in procedure. For information on how to control
overstrike behavior in tabs, see SET (PAD_OVERSTRUCK_TABS).

buffer

The buffer whose mode of text entry you want to set.

Description
The SET (OVERSTRIKE) procedure sets the mode of text entry to OVERSTRIKE.

Signaled Errors

TPU$_TOOFEW ERROR SET (OVERSTRIKE) requires two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.

Example
The following example sets the mode for text entry in my_buffer to overstrike. Characters that you enter
replace characters already in the buffer, starting at the editing point and continuing for the length of the
text that you enter.

345

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (OVERSTRIKE, my_buffer)

SET (PAD)

Syntax

Parameters
PAD

A keyword that indicates that SET is to control whether screen lines are padded with blanks. This
keyword determines whether SET pads out the left and right ends of lines beyond the text on the
line. When video attributes are applied to a padded window, the window has an even or “boxed”
appearance.

window

The window in which lines are padded.

ON, 1

Causes DECTPU to display blanks after the last character of a record so that the screen line extends
to the right side of the window. If there are not enough lines in a buffer to fill an entire window,
DECTPU displays blank lines (according to the video setting of the window) from the end-of-buffer
line to the end of the window.

OFF, 0

Causes the display of lines on the screen to stop at the last character of a record. When video
attributes are applied to the window, the window has a ragged appearance on the sides.

Description
The SET (PAD) procedure pads the number of display lines on the screen. By default, DECTPU ends
a line on the screen at the end of a record, without adding padding blanks. The default behavior of
not padding the screen gives maximum editing performance. You can change the default with SET
(PAD) for special visual effects. The records in the buffer are not padded; only the display lines have the
padding.

Signaled Errors

TPU$_TOOFEW ERROR SET (PAD) requires three parameters.
TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR The keyword must be ON or OFF.
TPU$_UNKKEYWORD ERROR You specified an unknown keyword.

346

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Example
In the following example, the first statement causes second_window to be padded with blanks. The
second statement causes second_window to be displayed in reverse video. The window has an even right
and left margin when displayed.

SET (PAD, second_window, ON);
SET (VIDEO, second_window, REVERSE);

SET (PAD_OVERSTRUCK_TABS)

Syntax

Parameters
PAD_OVERSTRUCK_TABS

Determines what happens when you overstrike a tab and when you overstrike with a tab.

ON, 1

SET PAD_OVERSTRUCK_TABS ON functions differently depending on whether you are
overstriking a tab character with another character or overstriking another character with a tab
character.

OFF, 0

SET PAD_OVERSTRUCK_TABS OFF functions differently depending on whether you are
overstriking a tab character with another character or overstriking another character with a tab
character.

Description
The SET (PAD_OVERSTRUCK_TABS) procedure controls how DECTPU handles tabs in overstrike
mode. When earlier versions of DECTPU overstruck a tab, DECTPU inserted spaces, if necessary, to
preserve the cursor position within the tab, and then replaced the tab with the character that was being
entered. This behavior is preserved when PAD_OVERSTRUCK_TABS is set OFF.

When PAD_OVERSTRUCK_TABS is set ON, DECTPU inserts spaces as necessary to preserve the
cursor position within the tab of the first character of the text, and then inserts the text. The tab is
replaced only when it occupies a single column.

When SET (PAD_OVERSTRUCK_TABS) is set to ON and you overstrike a tab, DECTPU does the
following:

● Inserts as many spaces as necessary to fill the column to where the cursor is

● Inserts with the characters you are overstriking with

347

Chapter 2. Descriptions of the DECTPU Built-In Procedures

● If it fills to the last column, deletes the tab

● Inserts spaces to keep the text after the cursor in the same column

When SET (PAD_OVERSTRUCK_TABS) is set to ON and you overstrike with a tab, DECTPU
replaces multiple characters. The characters to the right of the tab do not move their column position.
They are overstruck.

When SET (PAD_OVERSTRUCK_TABS) is set to OFF and you overstrike a tab, DECTPU does the
following:

● Inserts as many spaces as are necessary to fill the column to where the cursor is.

● Replaces the tab character with the new character. The tab character always is replaced.

● Inserts spaces to keep text after the tab character in the same column.

When SET (PAD_OVERSTRUCK_TABS) is set to OFF and you overstrike with a tab, the characters in
the text get replaced by the tab character. This may move characters to the right on the screen.

Signaled Errors

TPU$_TOOFEW ERROR The SET (PAD_OVERSTRUCK_TABS) built-
in requires two parameters.

TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY WARNING Only ON and OFF are allowed.

Examples
The following example shows what happens when PAD_OVERSTRUCK_TABS is set to OFF. In this
example, a right angle (>) represents the tab, a period (.) represents one column of white space, and an
underscore (_) represents the cursor.

Suppose a buffer contains the following text, with the cursor in the middle of white space created by a
tab:

abc>....def

If you insert the asterisk (*) while PAD_OVERSTRUCK_TABS is set to OFF, the white space to the
left of the * is preserved. The tab character is removed, and the white space to the right of the * is not
preserved. The text to the right of the collapsed white space moves leftward. The result is as follows:

abc..*def

The cursor is on the d. Given the same initial text, if you type the string "xyzzy" while
PAD_OVERSTRUCK_TABS is set to OFF, the tab is removed. The text to the right of the tab moves to
the left. Your new string, xyzzy, is written over the old text. The result is as follows:

abc..xyzzy

When PAD_OVERSTRUCK_TABS is set to ON, the text to the right of the tab does not move to the
left when text is inserted within the tab. Instead of removing the tab, DECTPU places the tab to the right

348

Chapter 2. Descriptions of the DECTPU Built-In Procedures

of the inserted text if the inserted text is shorter than the length of the tab. The newly placed tab creates
only enough white space to preserve the original column position of the text to the right of the tab.

The following example shows what happens when PAD_OVERSTRUCK_TABS is set to ON. In this
example, a right angle (>) represents the tab, a period (.) represents one column of white space, and an
underscore (_) represents the cursor.

Suppose a buffer contains the following text, with the cursor in the middle of white space created by a
tab:

abc>....def

If you insert an asterisk (*) while PAD_OVERSTRUCK_TABS is set to ON, the white space to the left
of the * is preserved. The tab is inserted after the * character. The result is as follows:

abc..*>.def

Given the same initial text, if you insert the string "xyzzy" while PAD_OVERSTRUCK_TABS is set to
ON, to preserve the original position of the text to the right of the tab, DECTPU fills the white space
created by the tab with characters from the new string. When the white space is filled, DECTPU writes
the new characters over the old characters. Thus, the old text does not move left or right, but rather is
overwritten by the new text. The result is as follows:

abc..xyzzyf

SET (PERMANENT)

Syntax

Parameters
PERMANENT

Specifies that a buffer cannot be deleted. By default, buffers can be deleted; they are not permanent.

buffer

The buffer that is not to be deleted.

Description
With the SET (PERMANENT) procedure, you can make a buffer permanent. Once you use SET
(PERMANENT), you cannot reset the buffer so that it can be deleted.

Signaled Errors

TPU$_TOOFEW ERROR SET (PERMANENT) requires two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.

349

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_BADKEY WARNING You specified an invalid keyword.

Example
The following example causes master_buffer to become a permanent buffer:

SET (PERMANENT, master_buffer)

SET (POST_KEY_PROCEDURE)

Syntax

Parameters
POST_KEY_PROCEDURE

The action taken after the code or learn sequence bound to a key is executed.

string1

A quoted string, or a variable name representing a string constant, that specifies the key map list for
which this procedure is called.

buffer

The buffer that contains DECTPU statements specifying the action to be taken after the code
or learn sequence bound to a key is executed. SET (POST_KEY_PROCEDURE) compiles the
statements in the buffer and stores the resulting program in the specified key map list.

learn_sequence

The learn sequence that specifies the action to be taken after the code or learn sequence bound
to a key is executed. The contents of a variable of type learn do not require compilation. SET
(POST_KEY_PROCEDURE) stores the learn sequence in the specified key map list.

program

The program that specifies the action to be taken after the code or learn sequence bound to a
key is executed. The contents of a variable of type program do not require compilation. SET
(POST_KEY_PROCEDURE) stores the program in the specified key map list.

range

The range that contains DECTPU statements specifying the action to be taken after the code or learn
sequence bound to a key is executed. SET (POST_KEY_PROCEDURE) compiles the statements in
the range and stores the resulting program in the specified key map list.

350

Chapter 2. Descriptions of the DECTPU Built-In Procedures

string2

The string that contains DECTPU statements specifying the action to be taken after the code or learn
sequence bound to a key is executed. SET (POST_KEY_PROCEDURE) compiles the statements in
the string and stores the resulting program in the specified key map list.

Description
The SET (POST_KEY_PROCEDURE) procedure enables an editor to perform some specified action
before and after execution of code bound to a key. If you do not specify the third parameter, the postkey
procedure for the specified key map list is deleted.

Prekey and postkey procedures interact with learn sequences in the following order:

1. When you press the key or key sequence to which the learn sequence is bound, DECTPU executes
the prekey procedure of that key if a prekey procedure has been set.

2. For each key in the learn sequence, DECTPU executes procedures or programs in the following
order:

a. DECTPU executes the prekey procedure of that key if a prekey procedure has been set.

b. DECTPU executes the code bound to the key itself.

c. DECTPU executes the postkey procedure of that key if a postkey procedure has been set.

3. When all keys in the learn sequence have been processed, DECTPU executes the postkey procedure,
if one has been set, for the key to which the entire learn sequence was bound.

You can use the following calls to the GET_INFO built-in procedure to find the prekey and postkey
procedures bound to a key map list:

GET_INFO (key_map_list_name, "pre_key_procedure")
GET_INFO (key_map_list_name, "post_key_procedure")

By default, newly created key map lists do not have postkey procedures.

Signaled Errors

TPU$_TOOFEW ERROR The SET (POST_KEY_PROCEDURE) built-in
requires at least two parameters.

TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_COMPILEFAIL ERROR Compilation aborted because of syntax errors.
TPU$_NOKEYMAPLIST WARNING Attempt to access an undefined key map list.

Example
The following example displays a message after the code bound to a key is executed:

SET (POST_KEY_PROCEDURE, "tpu$key_map_list",
’MESSAGE ("Key " + GET_INFO (LAST_KEY, "name") + " Executed")’);

351

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (PRE_KEY_PROCEDURE)

Syntax

Parameters
PRE_KEY_PROCEDURE

The action taken before the code or learn sequence bound to a key is executed.

string1

A quoted string, or a variable name representing a string constant, that specifies the key map list for
which this procedure is called.

buffer

The buffer that contains DECTPU statements specifying the action to be taken before the code
or learn sequence bound to a key is executed. SET (PRE_KEY_PROCEDURE) compiles the
statements in the buffer and stores the resulting program in the specified key map list.

learn_sequence

The learn sequence that specifies the action to be taken before the code or learn sequence bound
to a key is executed. The contents of a variable of type learn do not require compilation. SET
(PRE_KEY_PROCEDURE) stores the learn sequence in the specified key map list.

program

The program that specifies the action to be taken before the code or learn sequence bound to
a key is executed. The contents of a variable of type program do not require compilation. SET
(PRE_KEY_PROCEDURE) stores the program in the specified key map list.

range

The range that contains DECTPU statements specifying the action to be taken before the code
or learn sequence bound to a key is executed. SET (PRE_KEY_PROCEDURE) compiles the
statements in the range and stores the resulting program in the specified key map list.

string2

The string that contains DECTPU statements specifying the action to be taken before the code
or learn sequence bound to a key is executed. SET (PRE_KEY_PROCEDURE) compiles the
statements in the string and stores the resulting program in the specified key map list.

Description
The SET (PRE_KEY_PROCEDURE) procedure enables an editor to perform some specified action
before the execution of code bound to a key. If you do not specify the third parameter, the prekey
procedure for the specified key map list is deleted.

352

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Prekey and postkey procedures interact with learn sequences in the following order:

1. When you press the key or key sequence to which the learn sequence is bound, DECTPU executes
the prekey procedure of that key if a prekey procedure has been set.

2. For each key in the learn sequence, DECTPU executes procedures or programs in the following
order:

a. DECTPU executes the prekey procedure of that key if a prekey procedure has been set.

b. DECTPU executes the code bound to the key itself.

c. DECTPU executes the postkey procedure of that key if a postkey procedure has been set.

3. When all keys in the learn sequence have been processed, DECTPU executes the postkey procedure,
if one has been set, for the key to which the entire learn sequence was bound.

You can use the following calls to the GET_INFO built-in procedure to find the prekey and postkey
procedures bound to a key map list:

GET_INFO (key_map_list_name, "pre_key_procedure")
GET_INFO (key_map_list_name, "post_key_procedure")

By default, newly created key map lists do not have postkey procedures.

Signaled Errors

TPU$_TOOFEW ERROR The SET (PRE_KEY_PROCEDURE) built-in
requires at least two parameters.

TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_COMPILEFAIL ERROR Compilation aborted because of syntax errors.
TPU$_NOKEYMAPLIST WARNING Attempt to access an undefined key map list.

Example
The following example displays a message after the code bound to a key is executed:

SET (PRE_KEY_PROCEDURE, "tpu$key_map_list",
’MESSAGE ("Working...")’);

SET (PROMPT_AREA)

Syntax

353

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
PROMPT_AREA

An area on the screen in which the prompts generated by the built-in procedure READ_LINE are
displayed. By default, there is no prompt area.

integer1

The screen line number at which the prompt area starts.

integer2

The number of screen lines in the prompt area.

NONE

Applies no video attributes to the characters in the prompt area.

BOLD

Causes the characters in the prompt area to be bolded.

BLINK

Causes the characters in the prompt area to blink.

REVERSE

Causes the characters in the prompt area to be displayed in reverse video.

UNDERLINE

Causes the characters in the prompt area to be underlined.

Description
The SET (PROMPT_AREA) procedure sets an area on the screen where prompts generated by the
READ_LINE procedure are displayed. Except in Motif DECwindows, if the prompt area overlaps a line
of a window that is visible on the screen, the line is erased when the READ_LINE is executed. When
the execution of READ_LINE is completed, the line is restored. If the prompt area does not overlap
any windows, the prompt area continues to display the READ_LINE prompt and your input until new
information is sent to the prompt area.

If you have a multiple-line prompt area and your terminal has hardware scrolling capabilities, the first
prompt appears on the last line of the prompt area. As subsequent prompts are issued, the previous
prompts scroll up to make room for new ones. If there are more prompts than there are prompt-area
lines, the extra prompts are scrolled out of the window.

If your terminal does not have hardware scrolling capabilities, prompts are displayed starting at the first
line in the prompt area. When the prompt area is filled, display starts again at the first line in the prompt
area.

Signaled Errors
TPU$_TOOFEW ERROR SET (PROMPT_AREA) requires four

parameters.

354

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_TOOMANY ERROR You specified more than four parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR The keyword must be NONE, BOLD, BLINK,

REVERSE, or UNDERLINE.
TPU$_UNKKEYWORD ERROR You specified an unknown keyword.
TPU$_BADFIRSTLINE WARNING Prompt area must not start off screen or be less

than one line long.
TPU$_BADPROMPTLEN WARNING Prompt area must not extend off screen.

Example
The following example causes the prompt area to be screen line number 24. It is one line and is
displayed in reverse video.

SET (PROMPT_AREA, 24, 1, REVERSE)

SET (RECORD_ATTRIBUTE)

Syntax

Parameters
PROMPT_AREA

An area on the screen in which the prompts generated by the built-in procedure READ_LINE are
displayed. By default, there is no prompt area.

integer1

The screen line number at which the prompt area starts.

integer2

The number of screen lines in the prompt area.

NONE

Applies no video attributes to the characters in the prompt area.

BOLD

Causes the characters in the prompt area to be bolded.

355

Chapter 2. Descriptions of the DECTPU Built-In Procedures

BLINK

Causes the characters in the prompt area to blink.

REVERSE

Causes the characters in the prompt area to be displayed in reverse video.

UNDERLINE

Causes the characters in the prompt area to be underlined.

Description
The SET (RECORD_ATTRIBUTE) procedure sets or alters any of three possible attributes for the
specified record or records. The attributes you can set for a record are its left margin, its modifiability,
and its visibility. With each call to SET (RECORD_ATTRIBUTE), you can set only one attribute. For
example, you cannot change visibility and modifiability by using just one call. To set more than one
record attribute, use multiple calls to SET (RECORD_ATTRIBUTE).

When you set an attribute for multiple records, each record gets the same value. For example, if you
specify a range of records and a value for the left margin attribute, all records in the range receive the
same left margin value.

You cannot change the left margin of an unmodifiable record. You can change the display value of a
record at any time.

Signaled Errors

TPU$_TOOMANY ERROR You specified too many parameters.
TPU$_TOOFEW ERROR You specified too few parameters.
TPU$_INVPARAM ERROR The third parameter must be a keyword.
TPU$_ARGMISMATCH ERROR The second or fourth parameter has an incorrect

type.
TPU$_BADKEY WARNING You specified an invalid keyword.
TPU$_BADDISPVAL WARNING Display values must be between –127 and +127.
TPU$_BADMARGINS WARNING You specified an illegal left margin value.

Examples
1. The following example uses statements that change buffer modifiability and record modifiability

independently. You can turn on the modifiability of a record or range of records even when the
buffer’s modifiability is turned off.

SET (MODIFIABLE, buf1, OFF);
r1:= CREATE_RANGE (BEGINNING_OF(buf1), END_OF(buf1), REVERSE);
SET (RECORD_ATTRIBUTE, r1, MODIFIABLE, OFF);
SET (RECORD_ATTRIBUTE, r1, MODIFIABLE, ON);
SET (MODIFIABLE, buf1, ON);

2. The following example makes the records in the range select_range invisible in the current window:

SET (DISPLAY_VALUE, CURRENT_WINDOW, 0);

356

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (RECORD_ATTRIBUTE, SELECT_RANGE, DISPLAY_VALUE, -1);
Descriptions

SET (RECORD_MODE)

Syntax

Parameters
buffer

The buffer whose output record mode should be changed.

SYSTEM

A keyword that indicates that all new buffers created with no input file have the new record mode.

keyword2

The keyword that specifies the new record mode. It can be any of the following:

Keyword2 Record Syntax Record Attributes

VARIABLE_NONE fab$c_var 0
VARIABLE_FTN fab$c_var fab$m_ftn
VARIABLE_CR fab$c_var fab$m_cr
STREAM fab$c_stm fab$m_cr
STREAM_CR fab$c_stmcr fab$m_cr
SYSTEM_DEFAULT fab$c_var fab$m_cr
SYSTEM_DEFAULT fab$c_s tmlf fab$m_cr
UNSPECIFIED Use the record mode of

the input file if supported;
otherwise use the current system
default. Valid only for buffers.

Use the record mode of
the input file if supported;
otherwise use the current system
default. Valid only for buffers.

Return Value
Optionally returns a keyword for the previous record mode setting or the UNSPECIFIED keyword, if
none.

Description
The SET (RECORD_MODE) procedure sets the record mode for a buffer or for all new buffers created
without an associated input file. Record mode specifies the record format and record attributes for files
written from the buffer.

This built-in does not affect journal files, work files, or section files. A buffer created with no input file
gets the current system default record mode. A buffer created with an input file gets the record mode

357

Chapter 2. Descriptions of the DECTPU Built-In Procedures

from the input file if it is supported. If not supported, the buffer’s record mode is left unspecified, and
the output file takes the input file record mode.

Record modes are specific to file systems. Setting the record mode to a value not supported by your file
system may result in your buffer being written to the disk in an unusable format.

Signaled Errors

TPU$_INVPARAM ERROR The third parameter to the built-in has the
wrong data type.

TPU$_TOOFEW ERROR You specified too few parameters.
TPU$_TOOMANY ERROR You specified too many parameters.
TPU$_BADKEY ERROR You specified an invalid keyword for the second

or third parameter.
TPU$_BADDISPVAL ERROR The second parameter must be a buffer of the

keyword SYSTEM.
TPU$_BADMARGINS ERROR You cannot specify the keyword

UNSPECIFIED for the system default record
mode.

Examples
1. The following example sets the record mode of buffer my_buffer to STREAM_LF. Writing

my_buffer to a file creates a file with STREAM_LF record format and carriage return record
attributes.

SET (RECORD_MODE, my_buffer, STREAM_LF);

2. The following example sets the default record mode for all new buffers created with no input file.
Files written from these buffers will have variable length record format and carriage return record
attributes.

SET (RECORD_MODE, SYSTEM, VARIABLE_CR);

SET (RESIZE_ACTION)

Syntax

Parameters
RESIZE_ACTION

A keyword that directs DECTPU to set an attribute related to a resize action routine.

358

Chapter 2. Descriptions of the DECTPU Built-In Procedures

buffer

The buffer that specifies the actions that DECTPU should take whenever it is notified of a resize
event.

learn_sequence

The learn sequence that specifies the actions that DECTPU should take whenever it is notified of a
resize event.

program

The program that specifies the actions that DECTPU should take whenever it is notified of a resize
event.

range

The range that specifies the actions that DECTPU should take whenever it is notified of a resize
event.

string

The string that specifies the actions that DECTPU should take whenever it is notified of a resize
event.

NONE

A keyword that directs DECTPU to delete the resize action routine. If you specify this keyword or
do not specify the parameter at all, the application is not notified when a resize event occurs.

Description
The SET (RESIZE_ACTION) procedure specifies code to be executed when a resize event has occurred.
Specifying a resize action routine overrides any previous resize action routines that have been defined.

Signaled Errors

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_NORETURNVALUE ERROR SET (RESIZE_ACTION) cannot return a value.
TPU$_REQUIRESDECW ERROR You can use the SET (RESIZE_ACTION)

builtin only if you are using DECwindows
DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(RESIZE_ACTION) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(RESIZE_ACTION) built-in.

Example
The following example specifies the procedure EVE$$RESIZE_ACTION as the resize routine. To
see this statement used in an initializing procedure, see the example in the description of the SET
(SCREEN_LIMITS) built-in procedure.

359

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (RESIZE_ACTION, "eve$$resize_action");

SET (REVERSE)

Syntax

Parameters
REVERSE

The direction of the buffer. REVERSE means to go toward the beginning of the buffer. The default
direction for a buffer is forward.

buffer

The buffer whose direction you want to set.

Description
Interfaces use the SET (REVERSE) procedure to keep track of direction for searching or movement.

Signaled Errors
TPU$_TOOFEW ERROR SET (REVERSE) requires two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.

Example
The following example causes the direction of the buffer to be toward the beginning of the buffer:

SET (REVERSE, my_buffer)

SET (RIGHT_MARGIN)

Syntax

Parameters
RIGHT_MARGIN

The right margin of a buffer.

buffer

The buffer in which the right margin is being set.

360

Chapter 2. Descriptions of the DECTPU Built-In Procedures

integer

The column at which the right margin is set.

Description
With the SET (RIGHT_MARGIN) procedure, you can change only the right margin of a buffer.

Newly created buffers receive a right margin of 80 if a template buffer is not specified on the call to the
CREATE_BUFFER built-in procedure. If a template buffer is specified, the right margin of the template
buffer is used.

Use SET (RIGHT_MARGIN) to override the default right margin.

The buffer margin settings are independent of the terminal width or window width settings. The FILL
built-in procedure uses these margin settings when it fills the text of a buffer.

The SET (RIGHT_MARGIN) built-in procedure controls the buffer margin setting even if the terminal
width or window width is set to something else.

The value of the right margin must be less than the maximum record size for the buffer and greater than
the left margin value. You can use the GET_INFO (buffer, “record_size”) built-in procedure to find out
the maximum record size of a buffer.

If you want to use the margin settings of an existing buffer, in a user-written procedure, the statements
GET_INFO (buffer, “left_margin”) and GET_INFO (buffer, “right_margin”) return the values of the
margin settings in the specified buffer.

Signaled Errors

TPU$_TOOFEW ERROR The SET (RIGHT_MARGIN) built-in requires
three parameters.

TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADMARGINS WARNING Right must be greater than left; both must be

greater than zero.

Examples
1. The following example causes the right margin of the buffer represented by the variable my_buffer to

be changed. The right margin of the buffer is set to 132. The left margin is unchanged.

SET (RIGHT_MARGIN, my_buffer, 132)

2. The following example causes the right margin of the current buffer to be changed to 70. The left
margin is unchanged.

SET (RIGHT_MARGIN, CURRENT_BUFFER, 70)

SET (RIGHT_MARGIN_ACTION)

361

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
RIGHT_MARGIN_ACTION

Refers to the action taken when you press a self-inserting key while the cursor is to the right of a
buffer’s right margin. A self-inserting key is one that is associated with a printable character.

buffer1

The buffer in which the right margin action routine is being set.

buffer2

A buffer that contains the DECTPU statements to be executed when you press a self-inserting key
while the cursor is to the right of a buffer’s right margin.

learn_sequence

A learn sequence that is to be replayed when you press a self-inserting key while the cursor is to the
right of a buffer’s right margin.

program

A program that is to be executed when you press a self-inserting key while the cursor is to the right
of a buffer’s right margin.

range

A range that contains DECTPU statements that are to be executed when you press a self-inserting
key while the cursor is to the right of a buffer’s right margin.

string

A string that contains DECTPU statements that are to be executed when you press a self-inserting
key while the cursor is to the right of a buffer’s right margin.

Description
With the SET (RIGHT_MARGIN_ACTION) procedure, you can specify an action to be taken when
you attempt to insert text to the right of the right margin of a line. If the third parameter is not specified,
the right margin action routine is deleted. If no right margin action routine has been specified, the text is
inserted at the current position after any necessary padding spaces.

Newly created buffers do not receive a right margin action routine if a template buffer is not specified on
the call to the CREATE_BUFFER built-in procedure. If a template buffer is specified, the right margin
action routine of the template buffer is used.

362

Chapter 2. Descriptions of the DECTPU Built-In Procedures

The right margin action routine affects only text entered from the keyboard or a learn sequence. Using
the COPY_TEXT or MOVE_TEXT built-in procedures to insert text into a buffer to the right of the
right margin does not trigger the right margin action routine.

Signaled Errors

TPU$_TOOFEW ERROR The SET (RIGHT_MARGIN_ACTION) built-
in requires at least two parameters.

TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_COMPILEFAIL WARNING Compilation aborted because of syntax errors.

Examples
1. The following example causes the procedure FILL_CURRENT_LINE to be executed when you

attempt to type a character to the right of the right margin of the current line. A typical right margin
action routine invokes the FILL built-in procedure to fill the current line and force text to the right of
the right margin to a new line.

SET (RIGHT_MARGIN_ACTION, CURRENT_BUFFER, "fill_current_line")

2. The following example deletes any right margin action routine that may be defined for the current
buffer. If you attempt to type a character to the right of the right margin of the current line, the text is
inserted with spaces padding the text from the end of the line.

SET (RIGHT_MARGIN_ACTION, CURRENT_BUFFER)

SET (SCREEN_LIMITS)

Syntax

Parameters
SCREEN_LIMITS

A keyword that directs DECTPU to pass hints to the DECwindows window manager about screen
size.

array

An integer-indexed array that specifies hints for the minimum and maximum screen width and
length. The second pair of elements are optional. The array indices and their corresponding elements
are as follows:

● The minimum screen width, in columns. This value must be at least 0 and less than or equal to
the maximum screen width. The default value is 0.

● The minimum screen length, in lines. This value must be at least 0 and less than or equal to the
maximum screen length. The default value is 0.

363

Chapter 2. Descriptions of the DECTPU Built-In Procedures

● The maximum screen width, in columns. This value must be greater than or equal to the
minimum screen width and less than or equal to 255. The default value is 255. This element is
optional, but if present, must be accompanied by the fourth element.

● The maximum screen length, in lines. This value must be greater than or equal to the minimum
screen length and less than or equal to 255. The default value is 255. This element is optional.

Description
The SET (SCREEN_LIMITS) procedure specifies the minimum and maximum allowable sizes for the
DECTPU screen during resize operations. DECTPU passes these limits to the DECwindows window
manager, which is free to use or ignore the limits.

Signaled Errors

TPU$_BADVALUE WARNING An integer parameter was specified with a value
outside the valid range.

TPU$_MAXVALUE WARNING You specified a value higher than the maximum
allowable value.

TPU$_MINVALUE WARNING You specified a value lower than the minimum
allowable value.

TPU$_EXTRANEOUSARGS ERROR One or more extraneous arguments have been
specified for a DECwindows built-in.

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_NORETURNVALUE ERROR SET (SCREEN_LIMITS)

cannot return a value.
TPU$_REQUIRESDECW ERROR You can use the SET (SCREEN_LIMITS)

builtin only if you are using DECwindows
DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(SCREEN_LIMITS) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(SCREEN_LIMITS) built-in.

TPU$_REQARGSMISSING ERROR One or more required arguments are missing.

Example
The following procedure sets up screen size limits. It is part of the EVE$
$DECWINDOWS_MODULE_INIT procedure. The original version is in SYS$EXAMPLES:EVE
$DECWINDOWS.TPU.

! Module Initialization
LOCAL temp_array;
eve$x_decwindows_active := GET_INFO (SCREEN, "decwindows");
! .
! .
! .
IF NOT eve$x_decwindows_active
THEN

364

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 RETURN (FALSE)
ENDIF;
! The following statements set up to handle resize actions.
temp_array := CREATE_ARRAY (4);
temp_array {1} := 20; ! Minimum width.
temp_array {2} := 6; ! Minimum height.
! Don’t set max for Motif DECwindows so the maximize button will
! make the window fill the screen.
SET (SCREEN_LIMITS, temp_array);
SET (RESIZE_ACTION, "eve$$resize_action");
SET (ENABLE_RESIZE, ON);
! .
! .
! .
ENDMODULE;

SET (SCREEN_UPDATE)

Syntax

Parameters
SCREEN_UPDATE

A keyword that directs DECTPU to set an attribute of screen updating.

ON, 1

A keyword that indicates that screen updating is enabled.

OFF, 0

A keyword that indicates that screen updating is disabled.

window_variable

The window for which you want screen updating turned on or off. Windows are set to update by
default.

If you set a window to “no update,” the screen updater ignores the window. Applications that modify
part of the screen through some external means may map a “no-update” window to that portion or
portions of the screen to prevent DECTPU from overwriting the screen. EVE does not support the
use of "no-update" windows.

Return Value
A variable that contains the keyword value ON or OFF. The keyword specifies whether DECTPU screen
updating support was enabled or disabled before the current SET (SCREEN_UPDATE) statement was
executed. Using the returned variable, you can enable or disable screen updating and then reset the
support to its previous setting without having to make a separate call to fetch the previous setting.

365

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The SET (SCREEN_UPDATE) procedure turns on or turns off support for screen updating. When you
set SCREEN_UPDATE on, the screen manager is immediately called to update the screen. The extent
of the update depends on the built-ins that have been used since the last screen update. The update may
range from a complete screen refresh to an updating of the existing text on the screen.

For more information on screen updating, see the Guide to the DEC Text Processing Utility

Signaled Errors

TPU$_BADKEY WARNING The keyword must be ON or OFF.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_TOOFEW ERROR SET (SCREEN_UPDATE) requires two

parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_UNKKEYWORD ERROR You have specified an unknown keyword.

Example
The following example causes screen updating to be turned off. When you design an editing interface,
you can use this statement to prevent some intermediate processing steps from appearing on the screen.

SET (SCREEN_UPDATE, OFF)

SET (SCROLL_BAR)

Syntax

Parameters
SCROLL_BAR

A keyword that directs DECTPU to enable or disable a scroll bar in a DECTPU window.

window

The window in which the scroll bar does or does not appear.

HORIZONTAL

A keyword that directs DECTPU to enable or disable a horizontal scroll bar.

VERTICAL

A keyword that directs DECTPU to enable or disable a vertical scroll bar.

366

Chapter 2. Descriptions of the DECTPU Built-In Procedures

ON, 1

A keyword that indicates that the scroll bar is to be visible in the specified window.

OFF, 0

A keyword that indicates that the scroll bar is not to be visible in the specified window.

Return Values
integer

The value 0 if an error prevents DECTPU from associating a widget with the window.

widget

The widget that implements the vertical or horizontal scroll bar associated with a window.

Description
The SET (SCROLL_BAR) procedure enables a horizontal or vertical scroll bar for the specified window.
Scroll bars represent the location of the editing point in the buffer. By dragging the scroll bar's slider,
you can reposition the editing point in the buffer mapped to the window.

Scroll bars are unique among DECTPU widgets in the following respects:

● Each scroll bar widget is associated with a specific DECTPU window.

● Instead of handling scroll widgets at the application level, you can direct DECTPU to handle resizing
and repositioning of the scroll bar slider. DECTPU always handles sizing and positioning of the
scroll bar itself.

Windows having fewer than four lines of text cannot display a vertical scroll bar. Similarly, a window
less than four columns wide cannot display a horizontal scroll bar. When the size of a DECTPU window
changes, DECTPU automatically adjusts the scroll bar to fit the new window size. If a window becomes
too small to support a scroll bar, DECTPU turns off the scroll bar. However, if the window subsequently
becomes larger, DECTPU automatically turns the scroll bar back on.

SET (SCROLL_BAR) returns the scroll bar widget, or 0 if an error prevents DECTPU from associating
a widget with the window.

By default, DECTPU creates its windows without any scroll bars; using SET (SCROLL_BAR) with the
ON keyword overrides the default. To make a scroll bar invisible after it has been placed in a window
(for example, to allow the user of a layered application to turn off scroll bars), use SET (SCROLL_BAR)
with the OFF keyword.

The height of a vertical scroll bar represents the total number of lines in the buffer mapped to the
window.

The width of a horizontal scroll bar represents the greater of the following:

● The width of the widest line in the set of lines visible in the window. “Width” means the distance
from the first character on the line to the last character, regardless of whether all characters on the
line are visible.

367

Chapter 2. Descriptions of the DECTPU Built-In Procedures

● The width of the widest line from the first character on the line to the rightmost window column,
when none of the lines in the set of lines visible in the window has text extending all the way to the
rightmost window column.

The horizontal scroll bar represents only the lines that are visible in the window, not all the lines in the
buffer mapped to the window.

Signaled Errors
TPU$_BADKEY WARNING You specified an invalid keyword as a

parameter.
TPU$_INVPARAM ERROR One of the parameters was specified with data

of the wrong type.
TPU$_REQUIRESDECW ERROR You can use the SET (SCROLL_BAR) built-in

only if you are using DECwindows DECTPU.
TPU$_TOOFEW ERROR Too few arguments passed to the SET

(SCROLL_BAR) built-in.
TPU$_TOOMANY ERROR Too many arguments passed to the SET

(SCROLL_BAR) built-in.

Example
The following example turns on a vertical scroll bar in the current window:

vertical_bar := SET (SCROLL_BAR, CURRENT_WINDOW, VERTICAL, ON);

SET (SCROLL_BAR_AUTO_THUMB)

Syntax

Parameters
SCROLL_BAR_AUTO_THUMB

A keyword that directs DECTPU to enable or disable automatic adjustment of the scroll bar slider in
a DECTPU window.

window

The window whose scroll bar slider you want DECTPU to adjust.

HORIZONTAL

A keyword that directs DECTPU to set the slider on a horizontal scroll bar.

VERTICAL

A keyword that directs DECTPU to set the slider on a vertical scroll bar.

368

Chapter 2. Descriptions of the DECTPU Built-In Procedures

ON, 1

A keyword that directs DECTPU to enable automatic adjustment of the scroll bar slider.

OFF, 0

A keyword that directs DECTPU to disable automatic adjustment of the scroll bar slider.

Description
The SET (SCROLL_BAR_AUTO_THUMB) procedure enables or disables automatic adjustment of
the scroll bar slider. By default, SET (SCROLL_BAR_AUTO_THUMB) is set to ON and DECTPU
automatically manages a window’s scroll bar slider in the following ways:

● Adjusts the size of the slider as you add, delete, or move text, so that the slider size represents the
amount of visible text in relation to the total amount of text

● Adjusts the size of the slider whenever the size of the window and the size of the scroll bar change,
so that the slider size remains proportional to the scroll bar size

● Adjusts the position of the slider as you add, delete, or move text, so that the slider shows whether
the current buffer or line contains text not visible on the screen and, if so, where the invisible text is
in relation to the visible text

When the scroll bar slider is adjusted automatically, the width of the slider in a horizontal scroll bar
represents the width of the window. For example, the size of the slider changes when the window width
is changed from 80 to 132 columns or the reverse. The position of the slider changes when the window
is shifted left or right. The height of the slider in a vertical scroll bar represents the height of the window.

If you do not want DECTPU to adjust the scroll bar slider automatically or if you want to change the
size or position of the slider, specify the OFF keyword. For more information about calculating the size
and position of the slider, see the description of the SET (SCROLL_BAR) built-in procedure.

You cannot disable DECTPU’s automatic adjustment of the scroll bar itself. DECTPU always adjusts the
scroll bar to the size of the window.

Signaled Errors
TPU$_BADKEY WARNING You specified an invalid keyword as a

parameter.
TPU$_INVPARAM ERROR One of the parameters was specified with data

of the wrong type.
TPU$_NORETURNVALUE ERROR SET (SCROLL_BAR_AUTO_

THUMB) cannot return a

value.
TPU$_REQUIRESDECW ERROR You can use the SET

(SCROLL_BAR_AUTO_THUMB) built-in
only if you are using DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(SCROLL_BAR_AUTO_THUMB) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(SCROLL_BAR_AUTO_THUMB) built-in.

369

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Example
The following example turns on automatic adjustment of the vertical scroll bar’s slider in the current
window:

vertical_bar := SET (SCROLL_BAR_AUTO_THUMB, CURRENT_WINDOW, VERTICAL, ON);

SET (SCROLLING)

Syntax

Parameters
SCROLLING

A keyword that refers to the upward or downward movement of existing lines in a window to make
room for new lines at the bottom or top of the window. When a window is scrolled, the cursor
position remains in the same column, but the screen line that the cursor is on may change.

window

The window in which the scrolling limits are being set.

ON, 1

Causes scrolling of the text in a window to be turned on. This is the default value for the third
parameter if the terminal supports scrolling.

OFF, 0

Causes scrolling of the text in a window to be turned off. The screen is completely repainted each
time a scroll would otherwise take place. This is the default value for the third parameter if the
terminal does not support scrolling.

integer1

The offset from the top screen line of a window. The offset identifies the top limit of an area in
which the cursor can move as it tracks the editing point. If the cursor is forced to move above this
screen line to track the editing point, lines in the window move downward so that the cursor stays
within the limits of the scroll margins. If you reach the beginning of the buffer, the text is no longer
scrolled.

The value you specify for this parameter must be greater than or equal to zero and less than or equal
to the number of lines in the window.

integer2

The offset from the bottom screen line of a window. The offset identifies the bottom limit of an
area in which the cursor can move as it tracks the editing point. If the cursor is forced to move

370

Chapter 2. Descriptions of the DECTPU Built-In Procedures

below this screen line to track the editing point, lines in the window move upward so that the cursor
stays within the limits of the scroll margins. If you reach the end of the buffer, the text is no longer
scrolled.

The value you specify for this parameter must be greater than or equal to zero and less than or equal
to the number of lines in the window.

integer3

The number that indicates how many lines from the top or the bottom scroll margin the cursor
should be positioned after a window is scrolled. For example, if the bottom scroll margin is screen
line 14 an integer3 has a value of 0, the cursor is positioned on screen line 14 after text is scrolled
upward. However, if integer3 has a value of 3, the cursor is positioned on screen line 11.

The value you specify for this parameter must be greater than or equal to zero and less than or equal
to the number of lines in the window.

You cannot specify a value that would position the cursor outside the window. That is, integer1
+ integer3 or integer2 + integer3 must be less than the height of the window. For example, if the
window is 10 lines long and integer1 is set at 3, you cannot specify a value of 7 or more for integer3.
Such a specification would place the cursor outside the window.

If you use the SET (SCROLLING) built-in procedure from within EVE by way of the TPU
command, EVE may override the value you specify for this parameter.

JUMP

Directs DECTPU to repaint new text instead of scrolling new text into your window. When scrolling
is set to jump mode, DECTPU first scrolls the text that will remain in your window, leaving part
of the window empty. DECTPU then displays the new text in the empty region in a single repaint
operation. Scrolling is faster in jump mode then in smooth mode because only part of your window
is scrolled. To determine if the scrolling mode is set to the jump setting, use the GET-INFO
(SCREEN, "jump_scroll") built-in procedure. A return value of 1 indicates that the jump setting is in
effect.

SMOOTH

Directs DECTPU to repaint each new line of text as it is brought into the window. When scrolling
is set to smooth mode, the text appears to slide smoothly in and out of the window. This setting
is the default. To determine if the scrolling mode is set to the smooth setting, use the GET-INFO
(SCREEN, "jump_scroll") built-in procedure. A return value of 0 indicates that the smooth setting is
in effect.

Description
The SET (SCROLLING) procedure modifies the scrolling action of a window.

If the terminal on which you are running DECTPU supports scrolling, you can use the SET
(SCROLLING) built-in procedure to turn scrolling on or off. If the terminal does not support scrolling,
scrolling will always be off. If scrolling is off, the window is repainted every time a scroll would
otherwise occur.

The SET (SCROLLING) built-in procedure also defines scroll margins by using integer1 and integer2.
If you use CURSOR_VERTICAL, MOVE_HORIZONTAL, MOVE_VERTICAL, POSITION, or a text

371

Chapter 2. Descriptions of the DECTPU Built-In Procedures

manipulation built-in to move the cursor above the top scroll margin or below the bottom scroll margin,
then SET (SCROLLING) moves the cursor by the number of lines specified in integer3.

You must provide values for integer1 and integer2 that leave at least one line in the window unaffected
by either scroll margin. That is, integer1 + integer2 must be less than the height of the window. For
example, if you have a window that is ten lines tall, you cannot specify a value of 5 for the top scroll
margin and a value of 5 for the bottom scroll margin. Such a specification leaves no area of the window
that is not within a scroll margin.

You can move the cursor above or below a scroll margin under certain circumstances. If
CROSS_WINDOW_BOUNDS is set to off, CURSOR_VERTICAL does not cause scrolling when the
cursor reaches a scroll margin. If you are moving backward through the file and the top line of the buffer
is already visible on the screen, the top scroll margin is ignored. If you are moving forward through the
file and the bottom line of the buffer is already visible on the screen, the bottom scroll margin is ignored.

If using the ADJUST_WINDOW built-in procedure makes the window so much smaller that the
scroll margins overlap, DECTPU automatically reduces the scroll margins proportionally to fit the new
window. If you use ADJUST_WINDOW to make a window larger, DECTPU does not adjust the scroll
margins.

Signaled Errors

TPU$_TOOFEW ERROR SET (SCROLLING) requires at least six
parameters.

TPU$_TOOMANY ERROR You specified more than six parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters has the

wrong type.
TPU$_UNKKEYWORD ERROR You specified an unknown keyword.
TPU$_BADKEY ERROR Keyword must be either ON or OFF.
TPU$_BADMARGINS ERROR You specified values for the top margin, bottom

margin, and cursor movement that exceed the
dimensions of the window.

TPU$_BADVALUE ERROR Integer values must be from 0 to 255.

Examples
1. The following example turns on scrolling in the window new_window. The statement sets the top

and bottom scroll margins to 0. This means that you can move the cursor all the way to the top or
bottom of the window before new text is scrolled into the window. Finally, the statement causes
DECTPU to place the cursor two lines down from the top or up from the bottom of the window
when scrolling is completed.

SET (SCROLLING, new_window, ON, 0, 0, 2)

2. The following example causes DECTPU to repaint new text in your window in one operation instead
of scrolling each line of text:

SET (SCROLLING, JUMP);

SET (SELF_INSERT)

372

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
SELF_INSERT

A keyword that specifies whether a character is inserted into the buffer when you press a key with
the following characteristics:

● Associated with a printable character

● Not bound to a procedure or program

string

A string that specifies the key map list in which the behavior of undefined keys associated with
printing characters is to be set.

ON, 1

Causes the printable characters to be inserted when no procedures are bound to them while the
specified key map list is active. This is the default.

OFF, 0

Causes the UNDEFINED_KEY procedure to be called when you enter these undefined characters.
If an undefined key procedure has not been specified, DECTPU displays a warning message when
you press an undefined, printable key. You can specify an undefined key procedure by using the SET
(UNDEFINED_KEY) built-in procedure.

Description
With the SET (SELF_INSERT) procedure, you can control what happens when you press an undefined
key associated with a printable character. If SELF_INSERT is set ON and you press an undefined key
associated with a printable character, the character is inserted into the current buffer at the current cursor
position. If SELF_INSERT is turned off, printable characters whose keys are not defined in any key
maps in the key map list bound to the current buffer are considered undefined. These undefined keys
cause either the message “key has no definition” to be displayed or some user-defined action to occur.

The default result for pressing an undefined key associated with a printable character procedure is that
the character is inserted. The default condition for SET (SELF_INSERT) is ON. The default behavior, if
SET (SELF_INSERT) is OFF, is to call the UNDEFINED_KEY procedure.

For more information on how to define what happens when SET (SELF_INSERT) is turned off, see the
description of the SET (UNDEFINED_KEY) built-in procedure.

Signaled Errors

TPU$_NOKEYMAPLIST WARNING You attempted to access an

373

Chapter 2. Descriptions of the DECTPU Built-In Procedures

undefined key map list.
TPU$_TOOFEW ERROR SET (SELF_INSERT) requires three

parameters.
TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.

Example
The following example toggles the ON and OFF setting of SELF_INSERT for the key map list bound to
the current buffer:

PROCEDURE toggle_self_insert
 LOCAL current_key_map_list;
 current_key_map_list := GET_INFO (CURRENT_BUFFER, "key_map_list");
 IF GET_INFO (current_key_map_list, "self_insert")
 THEN
 SET (SELF_INSERT, current_key_map_list, OFF)
 ELSE
 SET (SELF_INSERT, current_key_map_list, ON)
 ENDIF;
ENDPROCEDURE;

SET (SHIFT_KEY)

Syntax

Parameters
SHIFT_KEY

A keyword that refers to DECTPU’s shift key (by default PF1), not the key marked Shift on the
keyboard.

keyword

A DECTPU key name for a key.

string

A string that is a key map list name. This optional argument specifies the key map list in which the
shift key is used. If the key map list is not specified, the key map list associated with the current
buffer is used.

Description
With the SET (SHIFT_KEY) procedure, you can assign two commands to one key: one is used when
the key is pressed by itself, and the other is used when the key is pressed after the defined shift key. The
DECTPU shift key is similar to the GOLD key in EDT editor.

374

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Only one DECTPU shift key can be active at a time. The DECTPU shift key can be any key other than
the following keys:

● Shift

● Escape

● SCROLL on the VT100 keyboard

● F1, F2, F3, F4, and F5 on the LK201 or LK401 keyboards

● Compose Character on the LK201 or LK401 keyboards

By default, PF1 is the DECTPU shift key.

You cannot make DECTPU execute a procedure or learn sequence bound to the shift key. However,
designating a defined key as the shift key does not undefine the key; it merely disables the definition
when the key is designated as the shift key. If you define another key as the shift key, DECTPU
reenables the first key’s definition.

If you want to use PF1 for another purpose, use SET (SHIFT_KEY) to define a key other than PF1 as
DECTPU’s shift key.

If you use SET (SHIFT_KEY) to define a GOLD key in EVE, EVE does not undefine the GOLD key
correctly. When you use the EVE SET NOGOLD command, EVE returns the error message “There
is no user GOLD key currently set.” Although this message appears to say that the GOLD key has
successfully been undefined, what it really means is that EVE does not recognize that a GOLD key was
ever defined.

To redefine a GOLD key in these circumstances, you can do either of the following:

● Use the EVE SET GOLD KEY command.

● Undefine the GOLD key by using the DECTPU statement SET (SHIFT_KEY, KEY_NAME (PF1,
SHIFT_KEY)). Then set the GOLD key by using the SET GOLD KEY command.

Signaled Errors

TPU$_TOOFEW ERROR SET (SHIFT_KEY) requires at least two
parameters.

TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.
TPU$_NOKEYMAPLIST WARNING You specified an undefined key map list.

Examples
1. The following example causes the keypad key PF4 to be defined as the shift key for the editor. The

definition is stored in the default key map list, TPU$KEY_MAP_LIST. PF4 operates as the shift key
only in buffers to which TPU$KEY_MAP_LIST is bound.

SET (SHIFT_KEY, PF4, "tpu$key_map_list")

375

Chapter 2. Descriptions of the DECTPU Built-In Procedures

2. The following example disables the shift key by making the shift key itself a shifted key:

SET (SHIFT_KEY, KEY_NAME (PF1, SHIFT_KEY))

You can substitute the key name of whatever key is the shift key. This technique works regardless of
what key is defined as the shift key. You might want to use such a statement if you are creating an editor
that does not support user-defined shift key sequences.

SET (SPECIAL_ERROR_SYMBOL)

Syntax

Parameters
SPECIAL_ERROR_SYMBOL

A keyword that specifies that you want to use SET to designate a global variable to be set to 0 when
a case-style error handler does not return from a Ctrl/C or other error.

string

The name of the global variable that you want DECTPU to set to 0.

Description
The SET (SPECIAL_ERROR_SYMBOL) procedure designates a global variable to be set to 0 when a
case-style error handler does not return from a Ctrl/C or other error. Once you designate the variable that
is to be the special error symbol, DECTPU sets the variable to 0 if any of the following events occurs:

● DECTPU executes the TPU$_CONTROLC selector in a case-style error handler and does not
encounter a RETURN statement.

● DECTPU executes the OTHERWISE clause in a case-style error handler and does not encounter a
RETURN statement.

● DECTPU generates an error that is not handled by any clause in a case-style error handler.

You can use SET (SPECIAL_ERROR_SYMBOL) only once in a program. You usually use this built-
in during initialization. You must declare or create the variable before you use it in the SET statement.
DECTPU does not clear the variable in response to noncase-style error handlers.

You can use the variable specified by SET (SPECIAL_ERROR_SYMBOL) to determine whether
DECTPU has exited from current procedures and returned to the main loop to wait for a new keystroke.

Signaled Errors
TPU$_ERRSYMACTIVE ERROR A special error symbol has already been

declared.
TPU$_TOOFEW ERROR SET (SPECIAL_ERROR_SYMBOL) requires

two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.

376

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_INVPARAM ERROR One or more of the specified parameters have
the wrong type.

Example
The following example designates the global variable back_to_main as the variable to be cleared if a
procedure or program with a case-style error handler fails to handle a Ctrl/C error or other error:

SET (SPECIAL_ERROR_SYMBOL "back_to_main")

SET (STATUS_LINE)

Syntax

Parameters
STATUS_LINE

The last line in a window. You can use the status line to display regular text or you can use it to
display status information about the window.

window

The window whose status line you want to modify.

BLINK

Causes the characters on the status line to blink.

BOLD

Causes the characters on the status line to be bolded.

REVERSE

Causes the characters on the status line to be displayed in reverse video.

SPECIAL_GRAPHICS

Causes the characters on the status line to display graphic characters, such as a solid line. These
characters are from the DEC Special Graphics Set (also known as the VT100 Line Drawing
Character Set). For more information on the special graphics that are available, see the appropriate
programming manual for your terminal.

UNDERLINE

Causes the characters on the status line to be underlined.

377

Chapter 2. Descriptions of the DECTPU Built-In Procedures

NONE

Applies no video attributes to the characters on the status line.

string

A string that is the text to be displayed on the status line. To remove a status line, use a null string
("") for this parameter.

Description
With the SET (STATUS_LINE) procedure, you can set the last line in a window. To have a status
line, a window must be at least two lines high. You can establish a status line for a window when you
create a window. CREATE_WINDOW requires you to specify whether the status line is ON (used for
status information) or OFF (used as a regular text line). When you specify ON, the default status line is
displayed in reverse video.

The algorithm for determining whether a window is tall enough to be given a status line depends on
whether the window is visible or invisible.

If the window to which you want to add a status line is visible, DECTPU checks the length of the
visible portion of the window. A visible window can have an invisible portion if the window is partially
occluded by another window. The visible portion of the visible window must have at least one text line;
that is, at least one line not occupied by a scroll bar.

If the window is invisible, DECTPU checks the full length of the window. The window must have at
least one text line.

If the window that you use as a parameter for SET (STATUS_LINE) already has a status line, either
because you specified ON for the status line parameter in the CREATE_WINDOW built-in procedure,
or because you used a previous SET (STATUS_LINE) for the window, the video attribute that you
specify is added to the video attribute of the existing status line unless you specify NONE. NONE
overrides the other video keywords and specifies that there are to be no video attributes for the status
line. The string you specify as the last parameter replaces the text of an existing status line. Adding a
status line to a window that already has a status line does not cause an error.

If there is no status line for a window, the SET (STATUS_LINE) built-in procedure establishes a status
line on the last visible screen line of the window. The status line has the video attribute and the text you
specify. Adding a status line reduces the number of screen lines available for text by one line.

To remove a status line, use a null string ("") as the last parameter. The status line is removed even if the
window is not two lines high at that time.

The default setting for the status line (ON or OFF) is determined by the CREATE_WINDOW built-in
procedure.

If a window has a status line, by default the status line contains the name of the buffer associated with
the window and the name of the file associated with the buffer, if there is one.

Signaled Errors
TPU$_TOOFEW ERROR SET (STATUS_LINE) requires four parameters.
TPU$_TOOMANY ERROR You specified more than four parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.

378

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_BADKEY ERROR The keyword must be NONE, BOLD,
BLINK, REVERSE, UNDERLINE, or
SPECIAL_GRAPHICS.

TPU$_UNKKEYWORD ERROR You specified an unknown keyword.
TPU$_STATOOLONG INFO The status line is truncated to the screen width.
TPU$_BADWINDLEN ERROR The window must be at least two lines long.

Examples
1. The following example displays the status line in my_window in reverse video with the buffer

specified as MAIN BUFFER and the file specified as NEWFILE.TXT:

SET (STATUS_LINE, my_window, REVERSE, "MAIN BUFFER, newfile.txt");

2. The following example creates a window with a status line displayed in special graphics rendition.
Because the glyph (member of the DEC Multinational Character Set occupying one column width)
having the same value as the character q is a full-width line, the status line appears as a solid line
across the screen.

line_text :=
 "qqq" +
"qqqqqqqqqqqqqqqqqqqqq";
line_window := CREATE_WINDOW (1, 20, OFF);
MAP (line_window, current_buffer);
SET (STATUS_LINE, line_window, SPECIAL_GRAPHICS, line_text);

SET (SUCCESS)

Syntax

Parameters
SUCCESS

Controls whether DECTPU writes success messages to the message buffer.

ON, 1

Causes the success messages to be written.

OFF, 0

Suppresses the display of success messages.

Description
With the SET (SUCCESS) procedure, you can suppress the display of success messages. By default,
DECTPU writes success messages to the message buffer.

379

Chapter 2. Descriptions of the DECTPU Built-In Procedures

See Appendix B, "DECTPU Messages" for a table of the DECTPU messages and their severity levels.

Signaled Errors
TPU$_TOOFEW ERROR SET (SUCCESS) requires two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.

Example
The following example turns off the display of success messages:

SET (SUCCESS, OFF)

SET (SYSTEM)

Syntax

Parameters
SYSTEM

The status of a buffer. SYSTEM means that it is a system buffer rather than a user buffer.

By default, newly created buffers are user buffers.

buffer

The buffer that is being set as a system buffer.

Description
With the SET (SYSTEM) procedure, programmers who are building an editing interface can distinguish
their system buffers from user-created buffers. Once you make a buffer a system buffer, you cannot reset
the buffer to be a user buffer. DECTPU does not handle system buffers differently from user buffers.
Any distinction between the two kinds of buffers must be implemented by the application programmer.

Signaled Errors
TPU$_TOOFEW ERROR SET (SYSTEM)) requires two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.

Example
The following example makes the message buffer a system buffer:

380

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (SYSTEM, message_buffer)

SET (TAB_STOPS)

Syntax

Parameters
TAB_STOPS

A keyword that indicates that SET is to control placement of tab stops in a buffer.

buffer

The buffer in which the tab stops are being set.

integer

An integer that specifies the interval between tab stops, measured in column widths. The minimum
value for the integer is 1. The maximum value is 65535.

string

A string of numbers that specifies the tab stops. The string represents column numbers at which
the tab stops are placed. The minimum value for a tab stop is 1. The maximum value is 65535. The
maximum number of tab stops that you can include in the string is 100. The quoted string must list
tab stops in ascending order, separating values with a single space (for example, "3 6 9 12").

Description
With the SET (TAB_STOPS) procedure, you can set the tab stops at positions you specify or to establish
equal intervals other than the default eight. When a buffer is created, the tabs are set at every eight
columns, unless, when the buffer is created, a template buffer with different tab settings is specified.

Tab stops are not saved when you write a file. When you create a buffer, the tabs are set to the default
unless, when you create the buffer, you specify a template buffer with different tab settings. For
information on creating buffers, see the CREATE_BUFFER procedure.

SET (TAB_STOPS) does not affect the hardware tab settings of your terminal. On any terminals
or printers that have tab settings different from those you specify with this built-in, the file does not
appear the same as it does when viewed using DECTPU. In addition, if you invoke DECTPU with
the /NODISPLAY qualifier, any values you enter for SET (TAB_STOPS) are ignored, and a SHOW
(BUFFER) command will show no tab stops for the buffer.

Signaled Errors

TPU$_TOOFEW ERROR SET (TAB_STOPS) requires at least three
parameters.

381

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_UNKKEYWORD ERROR You specified an unknown keyword.
TPU$_ARGMISMATCH ERROR The third parameter must be a string or an

integer.
TPU$_INVTABSPEC WARNING You specified a bad third argument.

Examples
1. The following example causes the tab stops in the current buffer to be set at intervals of four

columns:

SET (TAB_STOPS, CURRENT_BUFFER, 4);

2. The following example causes the tab stops in the current buffer to be set at 4, 8, 12, and 16
columns:

SET (TAB_STOPS, CURRENT_BUFFER, "4 8 12 16");

SET (TEXT)

Syntax

Parameters
TEXT

A keyword that indicates that SET is to control the way text is displayed in a window or to determine
the text that is to appear in a widget.

widget

The widget whose text you want to set. SET (TEXT, widget, string) is equivalent to the Toolkit
routine S TEXT SET STRING.

You can use widget as the second parameter only if you are using DECwindows DECTPU.

string

The text you want to assign to the simple text widget.

window

The window in which the mode of display is being set.

382

Chapter 2. Descriptions of the DECTPU Built-In Procedures

BLANK_TABS

Displays tabs as blank spaces. This is the default keyword.

GRAPHIC_TABS

Displays tabs as special graphic characters so that the width of each tab is visible.

NO_TRANSLATE

Sends every keystroke from the keyboard to the terminal without any translation. In this mode, the
terminal settings, not DECTPU, determine the effect of characters typed from the keyboard.

VSI recommends that you use this mode for sending directives to the terminal but not for editing.
DECTPU does not manage margins or window shifts while NO_TRANSLATE mode is enabled.
Furthermore, DECTPU does not necessarily update lines of text in the order in which they appear
while NO_TRANSLATE mode is enabled.

To send escape sequences from within a DECTPU procedure, you can use SET (TEXT) with the
NO_TRANSLATE keyword followed by statements that use the MESSAGE and UPDATE built-in
procedures.

For more information on the effect of using various characters and sequences in NO_TRANSLATE
mode, see your terminal manual.

Description
With the SET (TEXT) procedure, you control the way text is displayed in a window or determine the
text that is to appear in a widget.

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword as a
parameter.

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_NORETURNVALUE ERROR SET (TEXT) cannot return a value.
TPU$_REQUIRESDECW ERROR You have specified widget as the second

parameter to SET (TEXT) while using non-
DECwindows DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the SET (TEXT)
built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET (TEXT)
built-in.

TPU$_WIDMISMATCH ERROR The specified widget is not of class SText.
TPU$_UNKKEYWORD ERROR You specified an unknown keyword.

Examples
1. In the following example, assuming that the variable user_text_widget has been assigned a text

widget, this statement causes the widget to display the text No default string available:

383

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (TEXT, user_text_widget, "No default string available.");

2. The following example shows one possible way that a layered application can use the SET (TEXT)
widget. The variable eve$x_targetstores the string (if one exists) that you specified as the wildcard
search string the last time you invoked the wildcard find dialog box. The SET (TEXT) statement
directs EVE’s wildcard find dialog box widget to display the string assigned to eve$x_target.

wildcard_dialog_box := GET_INFO (WIDGET, "widget_id",
eve$x_wildcard_find_dialog,
"WILDCARD_FIND_DIALOG.WILDCARD_FIND_TEXT");
status := SET (TEXT, wildcard_dialog_box, eve$x_target);

SET (TIMER)

Syntax

Parameters
TIMER

Controls the displaying of timed messages in the prompt area.

ON, 1

Causes the message that you specify to be written to the prompt area and displayed at 1-second
intervals. By default, the display of the timed message is turned off.

OFF, 0

Turns off the display of timed messages in the prompt area.

string

A string that is displayed in the prompt area. The maximum length of the message is 15 characters.
If you specify a string longer than 15 characters, DECTPU truncates the string but does not signal
an error. The message is displayed in the last 15 character positions of the prompt area. If ON is
specified and a string was never specified for the last argument, the timer puts out the message
“working.” If ON is specified and a string was specified previously, the saved string is used as the
default.

Description
When the SET (TIMER) procedure is set to ON, the timer puts out messages at 1-second intervals while
you are executing procedures or editing actions that are bound to a key. The message is written out to
the prompt area and then erased to clear the prompt area for the next message. The first display of the
timed message does not occur until 3 seconds after you press the key. This eliminates unnecessary timed
messages during short editing transactions.

384

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors
TPU$_TOOFEW ERROR SET (TIMER) requires at least two parameters.
TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR The keyword must be ON or OFF.
TPU$_UNKKEYWORD ERROR You specified an unknown keyword.

Example
The following example causes the message “Executing” to be written to the prompt area at 1-second
intervals while you are executing a DECTPU procedure:

SET (TIMER, ON, "Executing")

SET (TRACEBACK)

Syntax

Parameters
TRACEBACK

Determines whether DECTPU displays the sequence of procedures called after an error occurs.

ON, 1

Causes DECTPU to display the procedure calling sequence after an error occurs.

OFF, 0

Prevents DECTPU from displaying the procedure calling sequence after an error occurs.

Description
With the SET (TRACEBACK) procedure, you can determine whether DECTPU provides information
on the context in which an error occurs. Turning on the traceback setting can be helpful to a programmer
debugging a DECTPU program. The traceback setting is usually turned off during normal editing
because end users of editors do not often use the traceback information.

The default setting for TRACEBACK depends on whether a section file was loaded by DECTPU. If a
section file was loaded, the default is OFF. If a section file was not loaded, the default is ON.

SET (TRACEBACK) is related to SET (LINE_NUMBER). SET (TRACEBACK, ON) turns on both
traceback and line numbers because both are needed for debugging. SET (LINE_NUMBER, OFF) turns
off both traceback and line numbers because one feature is not useful without the other.

385

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Allowable settings are as follows:

● Both off

● Both on

● Traceback off

● Line number on

Signaled Errors

TPU$_TOOFEW ERROR The SET (TRACEBACK) built-in requires two
parameters.

TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY WARNING Only ON and OFF are allowed.

Examples
1. The following example prevents DECTPU from displaying the procedure calling sequence after an

error occurs:

SET (TRACEBACK, OFF)

2. The following example results in a traceback display when the procedure is executed and traceback is
enabled:

PROCEDURE traceback_example
SET (TRACEBACK, ON);
SET (TRACEBACK, BELL);
RETURN 5;
ENDPROCEDURE;
PROCEDURE call_example
traceback_example;
ENDPROCEDURE;

Invoking the procedure CALL_EXAMPLE results in the following traceback:

BELL is an invalid keyword
Occurred in builtin SET
At line 2
Called from builtin EXECUTE
Called from line 22 of procedure EVE_TPU
Called from line 1
Called from builtin EXECUTE
Called from line 96 of procedure EVE$PROCESS_COMMAND
Called from line 3 of procedure EVE$PARSER_DISPATCH
Called from line 97 of procedure EVE$$EXIT_COMMAND_WINDOW
Called from line 2

SET (UID)

386

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameter
filespec

A string that specifies the UID file to be used. DECTPU does not apply a default file specification to
the UID file specification. You must specify at least one file name.

Return Value
An integer that is the identification number for the DECwindows resource manager hierarchy.

Description
The SET (UID) procedure sets the User Interface Definition (UID) file or files to be used with
DECTPU. This built-in is preferred over the SET (DRM_HIERARCHY) built-in procedure. Using UID
files to specify hierarchies makes it easy to translate the product into other languages and to modify an
application’s interface without recompiling all the code that implements the application.

SET (UID) is similar to SET (DRM_HIERARCHY). However, SET (UID) is the

preferred form.

DECTPU uses the Motif Version 1.1-3 compatibility libraries and requires that UID files are produced
using the 1.1-3 UIL compiler and not the version 1.2 UIL compiler provided with new releases of
DECwindows. Procedures for using the 1.1-3 UIL compiler are described in the DECwindows release
notes.

For more information about UID files, see the VMS DECwindows Guide to Application Programming.

Signaled Errors

TPU$_ARGMISMATCH ERROR The data type of the indicated parameter is not
supported by the SET (UID) built-in.

TPU$_TOOFEW ERROR Too few arguments passed to the SET (UID)
built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET (UID)
built-in.

TPU$_FAILURE_STATUS ERROR The Resource Manager returned an error status.
TPU$_INVPARAM ERROR You specified an invalid parameter.
TPU$_REQUIRESDECW ERROR Requires the DECTPU DECwindows screen

updater.

Example
The following example designates the User Interface Definition (UID) file MYNODE$DUA0:
[SMITH]EXAMPLE.UID as a file to be used with DECTPU to create widgets needed by the layered
application:

387

Chapter 2. Descriptions of the DECTPU Built-In Procedures

example_hierarchy := SET (UID, "mynode$dua0:[smith]example.uid");

SET (UNDEFINED_KEY)

Syntax

Parameters

UNDEFINED_KEY

A keyword that specifies that SET is to determine the action taken when an undefined key is
pressed.

string1

A string that specifies the key map list for which this procedure is called.

buffer

The buffer that contains DECTPU statements that specify the action to be taken if you press an
undefined key. SET (UNDEFINED_KEY) compiles the statements in the buffer and stores the
resulting program in the specified key map list.

learn_sequence

The learn sequence that specifies the action to be taken if you press an undefined key. The contents
of a variable of type learn do not require compilation. SET (UNDEFINED_KEY) stores the learn
sequence in the specified key map list.

program

The program that specifies the action to be taken if you press an undefined key. The contents of a
variable of type program do not require compilation. SET (UNDEFINED_KEY) stores the program
in the specified key map list.

range

The range that contains DECTPU statements that specify the action to be taken if you press an
undefined key. SET (UNDEFINED_KEY) compiles the statements in the range and stores the
resulting program in the specified key map list.

string2

The string that contains DECTPU statements that specify the action to be taken if you press an
undefined key. SET (UNDEFINED_KEY) compiles the statements in the string and stores the
resulting program in the specified key map list.

388

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The SET (UNDEFINED_KEY) procedure determines the action taken when an undefined key is
pressed.

If the third parameter is not specified, DECTPU displays the message "key has no definition" when you
press an undefined key.

Signaled Errors
TPU$_NOKEYMAPLIST WARNING You attempted to access an undefined key map

list.
TPU$_TOOFEW ERROR SET (UNDEFINED_KEY) requires at least two

parameters.
TPU$_TOOMANY ERROR SET (UNDEFINED_KEY) accepts no more

than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_ARGMISMATCH ERROR The second parameter must be a string.

Example
The following example causes the default undefined key message to be displayed when an undefined key
is entered:

IF GET_INFO ("tpu$key_map_list", "undefined_key") <> 0
THEN
SET (UNDEFINED_KEY, "tpu$key_map_list");
ENDIF;

SET (VIDEO)

Syntax

Parameters
VIDEO

The video attributes of a window.

window

The window in which a video attribute is being set.

BLINK

Causes the characters in the window to blink.

389

Chapter 2. Descriptions of the DECTPU Built-In Procedures

BOLD

Causes the characters in the window to be bolded.

REVERSE

Causes the characters in the window to be displayed in reverse video.

UNDERLINE

Causes the characters in the window to be underlined.

NONE

Applies no video attributes to the characters in the window. This is the default.

Description
The SET (VIDEO) procedure sets the video attributes, which are cumulative, for a window. The window
assumes the video attribute of each video keyword that you use with SET (VIDEO) during an editing
session. If you want to change the video attribute of a window, and you do not want the cumulative
effect of previous attributes, use SET (VIDEO, window, NONE) before specifying the new attribute.
SET (VIDEO, window, NONE) turns off all video attributes for a window.

The video attribute is applied during the next screen update. The screen manager repaints the window
to apply the video attributes, even if the cumulative effect of your changes has been to leave the video
attributes the same.

SET (VIDEO) does not affect the status line of a window. You can specify a video attribute for a status
line either with CREATE_WINDOW or with the SET (STATUS_LINE) built-in procedure. When the
window and the status line have different video attributes, you can use the status line to separate multiple
windows on the screen or to highlight status information.

Signaled Errors

TPU$_TOOFEW ERROR SET (VIDEO) requires three parameters.
TPU$_TOOMANY ERROR SET (VIDEO) accepts no more than three

parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADKEY ERROR You specified an invalid keyword.
TPU$_UNKKEYWORD ERROR You specified an unknown keyword.

Example
The following example causes the current window to be displayed in reverse video and with underlining:

SET (VIDEO, CURRENT_WINDOW, REVERSE);
SET (VIDEO, CURRENT_WINDOW, UNDERLINE);

SET (WIDGET)

390

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
WIDGET

A keyword that directs DECTPU to set an attribute of a widget.

widget

The widget whose values you want to set.

widget_args

One or more pairs of resource names and resource values.

You can specify a pair as an array or as a pair of separate parameters. If you use an array, you index
the array with a string that is the name of the resource you want to set. Resource names are case
sensitive. The corresponding array element contains the value you want to assign to that resource.
The array can contain any number of elements. If you use a pair of separate parameters, use the
following format:

resource_name_string, resource_value

Arrays and string/value pairs may be interspersed. Each array index and its corresponding element
value, or each string and its corresponding value, must be valid widget arguments for the class of
widget whose resources you are setting.

Description
With the SET (WIDGET) procedure, you can assign values to various resources of a widget. SET
(WIDGET) is functionally equivalent to the X Toolkit routine XtSetValues.

If you specify the name of a resource that the widget does not support, DECTPU signals the error TPU
$_NONAMES.

For more information about specifying resources, see the Guide to the DEC Text Processing Utility.

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword as a
parameter.

TPU$_ARGMISMATCH ERROR You specified a value whose data type is not
supported.

TPU$_NONAMES WARNING You specified an invalid widget resource name.
TPU$_NORETURNVALUE ERROR SET (WIDGET) cannot return a value.
TPU$_REQUIRESDECW ERROR You can use the SET (WIDGET) built-in only if

you are using DECwindows DECTPU.

391

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(WIDGET) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(WIDGET) builtin.

Example
The following example sets the "value" resource of the current window’s scroll bar widget to 100. This
causes the scroll bar slider to be displayed as far toward the bottom of the scroll bar widget as possible.

scroll_bar_widget := SET (SCROLL_BAR, CURRENT_WINDOW, VERTICAL, ON);
SET (WIDGET, scroll_bar_widget, "value", 100);

SET (WIDGET_CALLBACK)

Syntax

Parameters
WIDGET_CALLBACK

A keyword that directs DECTPU to set the application-level widget callback.

widget

The widget whose callback you want to set.

buffer

The buffer that contains the application-level callback routine. This code is executed when the
widget performs a callback to DECTPU.

learn_sequence

The learn sequence that specifies the application-level callback routine. This code is executed when
the widget performs a callback to DECTPU.

program

The program that specifies the application-level callback routine. This code is executed when the
widget performs a callback to DECTPU.

range

The range that contains the application-level callback routine. This code is executed when the widget
performs a callback to DECTPU.

392

Chapter 2. Descriptions of the DECTPU Built-In Procedures

string

The string that contains the application-level callback routine. This code is executed when the widget
performs a callback to DECTPU.

closure

A string or integer. DECTPU passes the value to the application when the widget performs a
callback to DECTPU. DECwindows documentation refers to closures as tags. For more information
about using closures, see the Guide to the DEC Text Processing Utility.

Description
The SET (WIDGET_CALLBACK) procedure specifies the DECTPU program or learn sequence to be
called by DECTPU when a widget callback occurs for the widget.

Signaled Errors

TPU$_ARGMISMATCH ERROR The data type of the indicated parameter is not
supported by the SET (WIDGET_CALLBACK)
built-in.

TPU$_BADDELETE ERROR You are attempting to modify an integer, a
keyword, or a string constant.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(WIDGET_CALLBACK) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(WIDGET_CALLBACK) built-in.

TPU$_COMPILEFAIL WARNING Program compilation has been terminated
because of a syntax error.

TPU$_REQUIRESDECW ERROR You can use SET (WIDGET_CALLBACK)
only if you are using DECwindows DECTPU.

Example
The following example designates the EVE procedure EVE$SCROLL_DISPATCH as the callback
routine for the widget scroll_bar_widget and assigns to the callback the closure value 'h':

SET (WIDGET_CALLBACK, scroll_bar_widget, "eve$scroll_dispatch", ’h’);

SET (WIDGET_CALL_DATA)

Syntax

Parameters
WIDGET_CALL_DATA

A keyword that indicates that the SET built-in procedure is being used to control how DECTPU
interprets information in a widget’s callback data structure.

393

Chapter 2. Descriptions of the DECTPU Built-In Procedures

widget

The specific widget for which you want to determine how the callback data are interpreted.

reason_code

The identifier for the reason code with which the callback data structure is associated. For example,
if you are using SET (WIDGET_CALL_DATA) to set the format of the callback structure
associated with the Help reason code of the File Selection widget, and if your program defines
the VAX reason code bindings as constants, you could refer to the Help reason code by using the
constant XmCR_HELP for DECwindows.

request_string

One of the six valid strings that describes the data type of a given field in a callback data structure.
The valid strings are as follows:

"char" "compound_string"
"int" "short"
"void" "widget"

keyword

One of the four valid keywords that indicates the DECTPU data type to which DECTPU should
convert the data in a given field of a callback data structure. The valid keywords are as follows:

INTEGER STRING
UNSPECIFIED WIDGET

Use the request_string parameter with the keyword parameter to inform DECTPU, for each field of
the structure, what data type the field had originally and what DECTPU data type corresponds to the
original data type. The valid keywords corresponding to each request string are as follows:

Request String Associated Keyword(s)

"widget" WIDGET or UNSPECIFIED
"short" INTEGER or UNSPECIFIED
"int" INTEGER or UNSPECIFIED
"compound_string" STRING or UNSPECIFIED
"char"" STRING or UNSPECIFIED
"void"" UNSPECIFIED

Description
With the SET (WIDGET_CALL_DATA) procedure, you can create a template that tells DECTPU
how to interpret the information in the fields of a widget’s callback data structure. You use SET
(WIDGET_CALL_DATA) to tell DECTPU what data type to assign to each field in a callback data
structure. You must specify the widget and the callback reason whose data structure you want DECTPU
to process. During a callback generated by the specified widget for the specified reason, DECTPU
interprets the data in the callback structure according to the description you create.

394

Chapter 2. Descriptions of the DECTPU Built-In Procedures

In an application layered on DECTPU, you can get the interpreted callback data by using the GET_INFO
(WIDGET, "callback_parameters") built-in procedure.

You can create a different template for each of the reason codes associated with a given widget. To do
so, make a separate call to the SET (WIDGET_CALL_DATA) built-in procedure for each reason code.
If you specify the same widget and reason code in more than one call, DECTPU uses the most recently
specified format.

In all callback data structures defined by the DECwindows Toolkit, the first field is the reason code
field and the second field is the event field. For more information on the fields in each widget’s callback
structures, see the VMS DECwindows Toolkit Routines Reference Manual. If your application creates or
uses a new kind of widget, the widget’s callback structure must follow this convention.

Do not specify any request string or keyword for the reason field. In almost all cases, you specify the
event field with the request string "void" and the UNSPECIFIED keyword. Specify all subsequent fields,
if the callback structure has such fields, up to and including the last field you want to specify. The VAX
longword data type corresponds to the "int" request string and the INTEGER data type in DECTPU.

Although you can skip trailing fields, you cannot skip intermediate fields even if they are unimportant
to your application. To direct DECTPU to ignore the information in a given field, use the request string
"void" and the UNSPECIFIED keyword when specifying that field.

If you specify an invalid request string, DECTPU signals TPU$_ILLREQUEST. If you specify an invalid
keyword, DECTPU signals TPU$_BADKEY. If you use valid parameters but assign the wrong data type
to a field and if DECTPU detects the error, DECTPU assigns the data type UNSPECIFIED to that field
while processing a callback.

An application should use this built-in only if it needs access to callback information other than the
reason code. For more information on how SET (WIDGET_CALL_DATA) affects GET_INFO
(WIDGET, "callback_parameters"), see the online Help topic GET_INFO(WIDGET).

Signaled Errors

TPU$_BADKEY WARNING You specified an invalid keyword as a
parameter.

TPU$_REQUIRESDECW ERROR You can use this built-in only if you are using
DECwindows DECTPU.

TPU$_INVPARAM ERROR One or more of the specified parameters have
the wrong type.

TPU$_TOOFEW ERROR Too few arguments passed to the SET
(WIDGET-CALL_DATA) built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the SET
(WIDGET-CALL_DATA) built-in.

Example
The following example begins by defining the constant APP$C_CRSINGLE to be the integer value 23,
which is the integer associated with the reason “user selected a single item”:

CONSTANT APP$C_CRSINGLE := 23;
SET (WIDGET_CALL_DATA, initial_list_box, APP$C_CRSINGLE,
"void", UNSPECIFIED, ! event
"compound_string", STRING, ! item

395

Chapter 2. Descriptions of the DECTPU Built-In Procedures

"int", INTEGER, ! item length
"int", INTEGER); ! item number

The file DECW$INCLUDE:XM.H contains constants defined for callback reason codes. If you layer an
application, the values you assign to the reason code constants must match the values in this file.

The next statement tells DECTPU how to interpret the fields of the callback data structure associated
with a List Box widget assigned to the variable "initial_list_ box". The statement directs DECTPU to
ignore the data in the Event field and to treat the data in the Item field as type STRING (in the Item
Length field as type INTEGER) and the Item Number field as type INTEGER.

SET (WIDGET_CONTEXT_HELP)

Syntax

Parameters
WIDGET_CONTEXT_HELP

A keyword that directs DECTPU to enter the DECwindows context-sensitive help mode in which
the mouse pointer changes to a question mark until you click MB1 on a widget. The mouse pointer
then reverts to the default pointer shape, and a help callback is called on the selected widget (or its
parent if the selected widget has no help callback).

widget

Specifies the widget within which modal help interaction will be limited.

Applications usually specify the top-level widget returned from the GET_INFO (SCREEN,
"widget") built-in procedure. A help callback occurs only when the mouse is clicked on the specified
widget or any of its children widgets.

ON, 1

Confines the question mark pointer to the specified widget. If any children widgets have been moved
outside the specified widget’s boundaries, then the question mark pointer cannot be moved to those
children unless this parameter is OFF or 0.

OFF, 0

The SET (WIDGET_CONTEXT_HELP) procedure specifies the widget within which context-
sensitive help interaction will occur until you click MB1 on a widget.

Example
The following example enters context-sensitive help mode; it does not restrict the question mark mouse
pointer to the boundaries of the top-level DECTPU widget. This lets the pointer be moved to the
application dialog boxes that have been moved outside the DECTPU boundaries.

396

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SET (WIDGET_CONTEXT_HELP, GET_INFO (SCREEN, "widget"), OFF);

SET (WIDGET_RESOURCE_TYPES)

Syntax

Parameters
WIDGET_RESOURCE_TYPES

A keyword that directs DECTPU to add new DECwindows widget resource types to the list of
supported resource types. If you redefine a resource type to be of another data type, DECTPU
signals the warning TPU$_TYPEREDEFINED. You cannot save resources in section files.
DECTPU does not verify that your third parameter specifies the name of a valid widget resource
or resource type. If you misspell the third parameter, you will get an error when you try to use
that resource with a widget. For the current list of supported resource types, see the GET_INFO
(WIDGET, "widget_resource_types") built-in procedure.

widget_data_type

A string that is the data type of the widget resource types given by the third parameter. It tells
DECTPU how to process the resource types. DECTPU supports the following data types: "boolean",
"callback", "char", "compound_string", "compound_string_table", "int", "short", "unsigned_short",
and "unsigned_char".

widget_resource_type

A series of names of widget resources or resource types that are of the data type specified by the
second parameter. You can specify an array of strings or a comma-separated list of strings. If you
use an array, you index the array with any valid DECTPU array indexes. The array elements contain
the names of either widget resources (for example, "dialogStyle"), or of widget resource types (for
example, "Int"). If you use a comma-separated list of strings, the strings arethe names of the widget
resources or resource types.

Description
The SET (WIDGET_RESOURCE_TYPES) procedure specifies additional DECwindows widget
resource types or resources that DECTPU should support. This built-in is valid only with DECwindows
DECTPU.

Example
The following example enables your application to use the "dialogStyle" resource of the DECwindows
XmBulletinBoard widget, which is an unsigned_char data type. "dialogStyle" is the name of the
resource.

SET (WIDGET_RESOURCE_TYPES, "unsigned_char", "dialogStyle")

SET (WIDTH)

397

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
WIDTH

A keyword that indicates that the horizontal dimension is being set.

window

The window for which you want to set or change the width.

ALL

A keyword that indicates that DECTPU should set the screen and all windows, visible and invisible,
to the specified width.

SCREEN

A keyword that indicates that DECTPU should set the screen to the specified width without altering
the size of any DECTPU windows. By default, EVE resizes the windows to match the width of the
screen. You cannot set the screen to be narrower than the widest DECTPU window.

integer

The width of the window in columns. You can specify any integer between 1 and 255. In non-
DECwindows DECTPU, a value of 80 causes DECTPU to repaint the screen and depict the text in
normal-width font, if the text is not already so depicted. A value of 132 causes DECTPU to repaint
the screen and depict the text in narrow font, if the text is not already so depicted. Other values
do not affect the font. By default, the width of a window is the same as the physical width of the
terminal when the window is created.

Description
The SET (WIDTH) procedure sets the width of a window or the DECTPU screen. When you call SET
(WIDTH), DECTPU determines the width of the widest visible window. If this width has changed, the
effect of SET (WIDTH) depends on your terminal.

If you are using DECTPU with a DECwindows terminal emulator, the terminal emulator is resized to
match the width of the widest visible window. You can specify any width between 1 column and 255
columns.

If you are using DECTPU on a VT400-series, VT300-series, VT200-series, or VT100-series terminal,
setting the width of a window causes a change only if thewidest visible window is 80 or 132 columns
wide. When the new width is one of these numbers, DECTPU causes the terminal to switch from 80-
column mode to 132-column mode, or the reverse.

If you are using DECwindows DECTPU (that is, not in a DECterm window), changing the width of
the screen does not affect the font of the characters displayed. (There are no 80-column or 132-column
modes.)

398

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If the width of the widest visible window has changed, DECTPU redisplays all windows.

By default, the width of a window is the same as the number of columns on the screen of the terminal on
which you are running DECTPU. If you exceed the value set for the width of the window when entering
text, DECTPU displays a diamond symbol in the rightmost column of the screen to indicate that there
is text beyond the diamond symbol that is not visible on the screen. You cannot force DECTPU to use
multiple lines to display a line that is longer than the width of a window.

Signaled Errors

TPU$_TOOFEW ERROR SET (WIDTH) requires three parameters.
TPU$_TOOMANY ERROR You specified more than three parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
TPU$_BADVALUE ERROR Arguments are out of minimum or maximum

bounds.

Examples
1. The following example sets the width of the main window to 132 columns and changes the font from

standard to narrow:

SET (WIDTH, main_window, 132);

2. The following example sets the width of the screen and all windows, visible and invisible, to 40
columns. The statement does not affect the font.

SET (WIDTH, ALL, 40);

SHIFT

Syntax

Parameters
window

The window that is shifted.

integer1

The signed integer that specifies how many columns to shift the window. A positive integer causes
the window to shift to the right so that you can see text that was previously beyond the right edge of
the window.

A negative integer causes the window to shift to the left so that you can see text that was previously
beyond the left edge of the window. If the first character in the line of text is already in column 1,
then using a negative integer has no effect.

399

Chapter 2. Descriptions of the DECTPU Built-In Procedures

If you specify 0 as the value, no shift takes place. Furthermore, 0 as the value does not cause the
window to be repainted.

By default, windows are not shifted.

Return Value

An integer representing the amount by which the window has been shifted to the right.

Description

The SHIFT procedure, for a buffer whose lines are too long to be displayed all at once, moves the
window so the unseen parts of the lines can be viewed. SHIFT can move the window right to display
text past the right edge of the window, or left (for a previously shifted window). SHIFT optionally
returns an integer that specifies the number of columns in the buffer lying to the left of the left edge of
the shifted window.

Because SHIFT commands are cumulative during an editing session, this built-in procedure optionally
returns a value in integer2. This positive integer represents the absolute shift value.

The shift applies to any buffer associated with the window that you specify. For example, if you shift a
window and then map another buffer to that window, you see the text of the newly mapped buffer in the
shifted position. You must specify another shift to return the window to its unshifted position.

If you specify an integer value of 0, the window is not shifted left. Furthermore, when you attempt to
shift left, the window is not repainted; otherwise, SHIFT causes the entire window to be repainted. If
you execute the SHIFT built-in procedure within a procedure, the screen is not updated to reflect the
shift until the procedure has finished executing and control has returned to the screen manager. If you
want the screen to reflect changes before the entire program is executed, you can force the immediate
update of a window by adding an UPDATE statement to the procedure.

Signaled Errors

TPU$_TOOFEW ERROR SHIFT requires two parameters.
TPU$_TOOMANY ERROR You specified more than two parameters.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.

Examples

1. The following example shifts the window user_window five columns to the right:

SHIFT (user_window, +5)

2. The following example shifts the current window five columns to the left. (If the window was not
previously shifted, this statement has no effect.)

SHIFT (CURRENT_WINDOW, -5)

SHOW

400

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Syntax

Parameters
BUFFER⟦S⟧

Displays information about all buffers available to the editor. BUFFER is a synonym for BUFFERS.

KEY_MAP_LIST⟦S⟧

Displays the names of all defined key map lists, their key maps, and the number of keys defined in
each key map. KEY_MAP_LIST is a synonym for KEY_MAP_LISTS.

KEY_MAP⟦S⟧

Displays the names of all defined key maps. KEY_MAP is a synonym for KEY_MAPS.

KEYWORDS

Displays the contents of the internal keyword table.

PROCEDURES

Displays the names of all defined procedures.

SCREEN

Displays information about the terminal.

SUMMARY

Displays statistics about DECTPU, including the current version number.

VARIABLES

Displays the names of all defined variables.

WINDOW⟦S⟧

Displays information about all windows available to the editor. WINDOW is a synonym for
WINDOWS.

401

Chapter 2. Descriptions of the DECTPU Built-In Procedures

buffer

Shows information about the buffer variable you specify.

string

Shows information about the string variable you specify.

window

Shows information about the window variable you specify.

Description
The SHOW procedure displays information about DECTPU data types and the current settings of
attributes that you can apply to certain data types. See also the description of the GET_INFO built-in
procedure.

DECTPU looks for the variable show_buffer and checks to see if it refers to a buffer. DECTPU also
looks for the variable info_window and checks to see if it refers to a window. If these two items exist
when you call the SHOW builtin procedure, DECTPU writes information to show_buffer and displays
the information on the screen in the window called info_window.

You, or the interface you are using, must create the buffer variable show_buffer when you initialize the
interface to ensure that the SHOW built-in procedure works as expected.

If you create a window called info_window, DECTPU associates show_buffer with info_window and
maps this window to the screen when there is information to be displayed. You can optionally create
a different window in which to display the information from show_buffer. In this case, you must
associate show_buffer with the window that you create and map the window to the screen when there is
information to be displayed.

Because this built-in procedure maps info_window to the screen, any interfaces layered on DECTPU
should provide a mechanism for unmapping info_window and returning you to the editing position that
was current before SHOW was invoked.

DECTPU always deletes the current text in the show buffer before inserting the new information.

Signaled Errors
TPU$_NOSHOWBUF WARNING The requested information cannot be stored

because the buffer variable show_buffer does not
exist.

TPU$_TOOMANY ERROR SHOW accepts only one parameter.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.

Examples
1. The following example displays on the screen a list of all the DECTPU built-in procedures and the

user-written procedures that are available to your editing interface:

SHOW (PROCEDURES)

2. The following example displays the names of all defined key map lists, their key maps, and the
number of keys defined in each key map:

402

Chapter 2. Descriptions of the DECTPU Built-In Procedures

SHOW (KEY_MAP_LISTS)

When you use the default interface, EVE, the DECTPU SHOW (KEY_MAP_LISTS) command
displays information similar to the following:

Defined key map lists:
TPU$KEY_MAP_LIST contains the following key maps:
 EVE$USER_KEYS (0 keys defined)
 EVE$VT200_KEYS (14 keys defined)
 EVE$STANDARD_KEYS (29 keys defined)
Total of 1 key map list defined

SLEEP

Syntax

Parameters
integer

The number of seconds to sleep.

string

An absolute or a delta time string indicating how long to sleep. The format of an absolute time string
is "dd-mmm-yyyy hh:mm:ss.cc".

In the string above, values have the following meanings:

dd is the day of the month (1-31)

mmmm is the month (JAN, FEB, ..., DEC)

yyyy is the year (000-9999)

hh is the hour (0-23)

mm is the minute (0-59)

s is the second (0-59)

cc is the hundreth of a second (0-99)

For the format of a delta time, see the SET (GLOBAL_SELECT_TIME) built-in procedure.

Description
The SLEEP procedure causes DECTPU to pause for the amount of time you specify or until input is
available. This built-in is useful if you want to display something for only a short period of time. In
the character-cell interface, SLEEP ends immediately if input comes from the terminal before the time
interval expires. In the DECwindows interface, SLEEP is not interrupted by terminal input.

403

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_TOOFEW ERROR SLEEP requires one argument.
TPU$_TOOMANY ERROR SLEEP accepts only one argument.
TPU$_ARGMISMATCH ERROR The argument to SLEEP must be an integer or

string.
TPU$_INVTIME ERROR The argument to SLEEP was an invalid sleep

time.

Examples
1. The following example suspends DECTPU for 2 seconds:

SLEEP (2);

2. The following example puts a string into the message buffer. The procedure displays the string in
reverse video for a third of a second. After a third of a second, reverse video is canceled and the
string is displayed as usual.

PROCEDURE user_emphasize_message (user_message)
LOCAL here,
start_mark,
the_range;
here := MARK (NONE);
POSITION (END_OF (message_buffer));
COPY_TEXT (user_message);
MOVE_HORIZONTAL (-CURRENT_OFFSET);
start_mark := MARK (NONE);
MOVE_VERTICAL (1);
MOVE_HORIZONTAL (-1);
the_range := CREATE_RANGE (start_mark, MARK (NONE), REVERSE);
UPDATE (message_window);
SLEEP ("0 00:00:00.33");
the_range := 0;
UPDATE (message_window);
POSITION (here);
ENDPROCEDURE;

SPAN

Syntax

Parameters
buffer

An expression that evaluates to a buffer. SPAN matches only those characters that appear in the
buffer.

404

Chapter 2. Descriptions of the DECTPU Built-In Procedures

range

An expression that evaluates to a range. SPAN matches only those characters that appear in the
range.

string

An expression that evaluates to a string. SPAN matches only those characters that appear in the
string.

FORWARD

A keyword that directs DECTPU to match characters in the forward direction. This is the default.

REVERSE

A keyword that directs DECTPU to match characters as follows: first, match characters in the
forward direction until DECTPU finds a character that is not a member of the set of characters in
the specified buffer, range, or string.

Next, return to the first character matched and start matching characters in the reverse direction until
DECTPU finds a character that is not in the specified buffer, range, or string.

You can specify REVERSE only if you are using SPAN in the first element of a pattern being used
in a reverse search. In all other contexts, specifying REVERSE has no effect.

The behavior enabled by REVERSE allows an alternate form of reverse search.

By default, a reverse search stops as soon as a successful match occurs, even if there might have
been a longer successful match in the reverse direction. By specifying REVERSE, you direct
DECTPU not to stop matching in either direction until it has matched as many characters as
possible.

Return Value
A pattern that matches a sequence of characters, each of which appears in the buffer, range, or string
used in the parameter to SPAN.

Description
The SPAN procedure returns a pattern that matches a string of characters, each of which appears in the
buffer, range, or string used as its parameter. SPAN matches as many characters as possible, stopping
only if it finds a character not present in its parameter or if it reaches the end of a line. If SPAN is part
of a larger pattern, SPAN does not match a character if doing so prevents the rest of the pattern from
matching.

SPAN does not cross line boundaries. To match a string of characters that may cross one or more line
boundaries, use SPANL.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR SPAN must appear on the right-hand side of an
assignment statement.

405

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_TOOFEW ERROR SPAN requires at least one argument.
TPU$_TOOMANY ERROR SPAN accepts no more than one argument.
TPU$_ARGMISMATCH ERROR Argument passed to SPAN is of the wrong type.
TPU$_CONTROLC ERROR You pressed Ctrl/C during the execution of

SPAN.

Examples
1. The following example creates a pattern that matches any word of two or more letters ending in the

letter s. Given the word dogs, the SPAN part of the pattern matches dog. It does not also match the s
because this would prevent the rest of the pattern from matching.

pat1 := span ("abcdefghijklmnopqrstuvwxyz") + "s";

2. The following example removes all lines that contain only the letters x, y, and z:

PROCEDURE user_remove_xyz
LOCAL pat1,
xyz_line;
pat1 := LINE_BEGIN + SPAN ("xyz") + LINE_END;
LOOP
xyz_line := SEARCH_QUIETLY (pat1, FORWARD);
EXITIF xyz_line = 0;
POSITION (xyz_line);
ERASE_LINE;
ENDLOOP;
ENDPROCEDURE;

SPANL

Syntax

Parameters
buffer

An expression that evaluates to a buffer. SPANL matches only those characters that appear in the
buffer.

range

An expression that evaluates to a range. SPANL matches only those characters that appear in the
range.

string

An expression that evaluates to a string. SPANL matches only those characters that appear in the
string.

406

Chapter 2. Descriptions of the DECTPU Built-In Procedures

FORWARD

A keyword that directs DECTPU to match characters in the forward direction. This is the default.

REVERSE

A keyword that directs DECTPU to match characters as follows: first, match characters in the
forward direction until DECTPU finds a character that is not a member of the set of characters in
the specified buffer, range, or string. Next, return to the first character matched and start matching
characters in the reverse direction until DECTPU finds a character that is not in the specified buffer,
range, or string.

You can specify REVERSE only if you are using SPANL in the first element of a pattern being used
in a reverse search. In all other contexts, specifying REVERSE has no effect.

The behavior enabled by REVERSE allows an alternate form of reverse search. By default, a reverse
search stops as soon as a successful match occurs, even if there might be a longer successful match
in the reverse direction. By specifying REVERSE, you direct DECTPU not to stop matching in
either direction until it has matched as many characters as possible.

Return Value
A pattern that matches a sequence of characters and line breaks.

Description
The SPANL procedure returns a pattern that matches a string of characters and line breaks, each
of which appears in the buffer, range, or string used as its parameter. The pattern matches as many
characters and line breaks as possible. SPANL is similar to SPAN; however, unlike SPAN, SPANL
does not stop matching when it reaches the end of a line. It successfully matches the end of the line and
continues trying to match characters on the next line. If SPANL is part of a larger pattern, it does not
match a character or line boundary if doing so prevents the rest of the pattern from matching.

Usually, SPANL must match at least one character. However, if the argument to SPANL contains no
characters, then SPANL matches one or more line breaks.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR SPANL must appear on the right-hand side of
an assignment statement.

TPU$_TOOFEW ERROR SPANL requires at least one argument.
TPU$_TOOMANY ERROR SPANL accepts no more than one argument.
TPU$_ARGMISMATCH ERROR Argument passed to SPANL is of the wrong

type.
TPU$_CONTROLC ERROR You pressed Ctrl/C during the execution of

SPANL.

Examples
1. The following example stores a pattern in pat1 that matches the longest sequence of blank characters,

starting at the editing point and continuing until the search encounters a nonmatching character or
the end of the buffer, range, or string:

407

Chapter 2. Descriptions of the DECTPU Built-In Procedures

pat1 := SPANL (" ")

2. The following example removes all parts of a document that contain only numbers:

PROCEDURE user_remove_numbers
 LOCAL pat1,
 number_region;
 pat1 := SPANL ("0123456789");
 POSITION (BEGINNING_OF (CURRENT_BUFFER));
 LOOP
 number_region := SEARCH_QUIETLY (pat1, FORWARD);
 EXITIF number_region = 0;
 ERASE (number_region);
 POSITION (number_region);
 ENDLOOP; POSITION (BEGINNING_OF (CURRENT_BUFFER));
ENDPROCEDURE;

3. The following example positions you to the next occurrence of the text Mark Twain, where Mark and
Twain may be separated by any number of spaces, tabs, or line breaks:

PROCEDURE user_find_mark_twain
 LOCAL pat1,
 mark_twain;
 pat1 := "Mark" + (SPANL (" " + ASCII(9)) | SPANL (""))
 + "Twain";
 mark_twain := SEARCH_QUIETLY (pat1, FORWARD, NOEXACT);
 IF mark_twain = 0
 THEN
 MESSAGE ("String not found");
 ELSE
 POSITION (mark_twain);
 ENDIF;
ENDPROCEDURE;

SPAWN

Syntax

Parameters
string

The command string that you want to be executed in the context of the subprocess that is created
with SPAWN.

ON, 1

A keyword that indicates that control is to be returned to DECTPU after the command has been
executed. This is the default unless the value specified for the first parameter is the null string.

408

Chapter 2. Descriptions of the DECTPU Built-In Procedures

OFF, 0

A keyword that indicates that you are to be prompted for additional operating system commands
after the specified command has been executed. If the value specified for the first parameter is the
null string, the default value for the second parameter is OFF.

Description
The SPAWN procedure creates a subprocess that runs the command line interpreter. SPAWN suspends
your DECTPU process and starts a subprocess. This built-in procedure is especially useful for running
programs and utilities that take control of the screen (these programs cannot be run in a subprocess
created with the CREATE_PROCESS) built-in procedure. See the Guide to the DEC Text Processing
Utility for a list of restrictions for subprocesses.

If you are using DCL, you can return to your DECTPU session after finishing in a subprocess by using
either the DCL ATTACH command or the DCL LOGOUT command. If you use the DCL ATTACH
command, the subprocess is available for future use. If you use the DCL LOGOUT command, the
subprocess is deleted. When you return to the DECTPU session, the screen is repainted.

If you specify a DCL command as the parameter for SPAWN, the command is executed after the
subprocess is created. When the command completes, the subprocess terminates and control is returned
to the DECTPU process. If you want to remain at the system prompt, add the OFF keyword as the
second parameter.

Subprocesses created with SPAWN give you direct access to the command line interpreter. These
subprocesses are different from the subprocesses created with the CREATE_PROCESS built-in
procedure. CREATE_PROCESS creates a subprocess within a DECTPU session, and all of the output
from the subprocess goes into a buffer.

SPAWN is not a valid built-in in DECwindows DECTPU. However, if you are running non-
DECwindows DECTPU in a DECwindows terminal emulator, SPAWN works as described in this
section.

SPAWN fails if you are running in an OpenVMS account with the CAPTIVE flag set in the
authorization file.

See the description of the ATTACH built-in procedure for information on moving control from
one subprocess to another. See the VSI OpenVMS DCL Dictionary for more information on the
characteristics of an OpenVMS spawned subprocess.

If the current buffer is mapped to a visible window, the SPAWN built-in procedure causes the screen
manager to synchronize the editing point (which is a buffer location) with the cursor position (which is a
window location). This may result in the insertion of padding spaces or lines into the buffer if the cursor
position is before the beginning of a line, in the middle of a tab, beyond the end of a line, or after the last
line in the buffer.

Signaled Errors

TPU$_TOOMANY ERROR Too many arguments passed to the SPAWN
built-in.

TPU$_INVPARAM ERROR Wrong type of data sent to the SPAWN built-in.
TPU$_REQUIRESTERM ERROR SPAWN is not a valid built-in in DECwindows

DECTPU.

409

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_UNKKEYWORD ERROR An unknown keyword was used as an argument.
Only ON or OFF is allowed.

TPU$_BADKEY ERROR An unknown keyword was used as an argument.
Only ON or OFF is allowed.

TPU$_CAPTIVE WARNING Unable to create a subprocess in a captive
account.

TPU$_CREATEFAIL WARNING Unable to activate the subprocess.

Example
The following example spawns a subprocess and puts your DECTPU process on hold. The DCL
command is executed in the subprocess to show the translation of the logical name SYS$LOGIN,
and you are left at the DCL prompt. After completing work in the subprocess, you can return to your
DECTPU session by using the DCL ATTACH command or the DCL LOGOUT command.

SPAWN ("SHOW LOGICAL SYS$LOGIN", OFF)

SPLIT_LINE

Syntax

Parameters
None.

Description
The SPLIT_LINE procedure breaks the current line before the editing point and creates two lines. The
relative screen position of the line you are splitting may change as a result of this procedure. The first
line contains any characters to the left of the editing point. The second line contains the rest of the
characters. The new line that is created is inserted directly after the former current line.

When you use SPLIT_LINE, the editing point remains on the same character, but that character is now
the first character on the newly created line.

If the editing point is not the first character in the line being split, the left margin of the old line is not
changed. The new line, which contains the editing point and the characters to the right of the editing
point, takes the buffer’s left margin as its own left margin.

If the editing point is the first character of a line, SPLIT_LINE creates a blank line where the original
line was. The left margin of this blank line is the buffer’s left margin. SPLIT_LINE moves the original
line, including the editing point, to the line below the blank line. If the original line had a left margin
different from the buffer’s current left margin, SPLIT_LINE preserves the original line’s left margin
when it moves the line down.

If the editing point is on a blank line, SPLIT_LINE creates a new blank line below the existing line. The
editing point moves to the new blank line. The new blank line receives the buffer’s left margin value. If
the original blank line had a left margin different from the buffer’s current left margin, the original blank
line retains its margin.

410

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Using SPLIT_LINE may cause DECTPU to insert padding spaces or blank lines in the buffer.
SPLIT_LINE causes the screen manager to place the editing point at the cursor position if the current
buffer is mapped to a visible window. For more information on the distinction between the cursor
position and the editing point, see Appendix C, "DECTPU Cursor Behavior".

If the cursor is not located on a character (that is, if the cursor is before the beginning of a line, beyond
the end of a line, in the middle of a tab, or below the end of the buffer), DECTPU inserts padding spaces
or blank lines into the buffer to fill the space between the cursor position and the nearest text.

Signaled Errors

TPU$_NOCURRENTBUF WARNING You are not positioned in a buffer.
TPU$_NOCACHE ERROR There is not enough memory to allocate a new

cache.
TPU$_NOTMODIFIABLE WARNING You cannot modify an unmodifiable buffer.
TPU$_TOOMANY ERROR SPLIT_LINE takes no arguments.

Example
The following example splits a line at the editing point. If the editing point is row 1, column 1, the
procedure causes the screen to scroll.

PROCEDURE user_split_line
 LOCAL old_position,
 new_position;
 SPLIT_LINE;
 IF (CURRENT_ROW = 1) AND (CURRENT_COLUMN = 1)
 THEN
 old_position := MARK (NONE);
 SCROLL (CURRENT_WINDOW, -1);
 new_position := MARK (NONE);
 !Make sure we scrolled before doing CURSOR_VERTICAL
 IF new_position <> old_position
 THEN
 CURSOR_VERTICAL (1);
 ENDIF;
 ENDIF;
ENDPROCEDURE;

STR

Syntax

411

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters

integer1

The integer you want converted to a string.

integer2

The radix (base) you want DECTPU to use when converting the first integer parameter to a string.
The default radix is 10. The other allowable values are 8 and 16.

keyword

The keyword whose string representation you want.

string1

Any string. STR now accepts a parameter of type string, so you need not check the type of the
parameter you supply to the built-in.

buffer

The buffer whose contents you want returned as a string.

range

The range whose contents you want returned as a string.

string2

A string that specifies how you want line ends represented. The default is the null string. You can
use string2 only if you specify a range or buffer as the first parameter. If you want to specify the ON
or OFF keyword but do not want to specify string2, you must use a comma before the keyword as a
placeholder, as follows:

new_string := STR (old_buffer, , ON);

ON, 1

A keyword that directs DECTPU to insert spaces, thus preserving the white space created by the left
margin of each record in the specified buffer or range. If you specify a buffer or range with a left
margin greater than 1, the ON keyword directs DECTPU to insert a corresponding number of spaces
after the line ends in the resulting string. For example, if the left margin of the specified lines is 10
and you use the ON keyword, DECTPU inserts 9 spaces after each line end in the resulting string.
DECTPU does not insert any spaces after line beginnings that do not contain characters. If the first
line of a buffer or range starts at the left margin, DECTPU inserts spaces before the text in the first
line.

You can use this keyword only if you specify a buffer or range as a parameter.

OFF, 0

A keyword that directs DECTPU to ignore the left margin setting of the records in the specified
buffer or range. This is the default. For example, if the left margin of the specified lines is 10 and

412

Chapter 2. Descriptions of the DECTPU Built-In Procedures

you use the OFF keyword, DECTPU does not insert any spaces after the line ends in the resulting
string.

You can use this keyword only if you specify a buffer or range as a parameter.

Return Value

A string that is the equivalent of the parameter you specify.

Description

The STR procedure returns a string equivalent for an integer, a keyword, a string, or the contents of
a range or buffer. If you use the first format, STR returns a string representation of an integer or a
keyword. You can then use the variable that contains the returned string in operations that require string
data types. For another method of generating a string representation of an integer, see the description of
the FAO built-in procedure.

If you use the second format, STR returns a string equivalent for any string or for the contents of a range
or buffer.

Signaled Errors

TPU$_TRUNCATE WARNING You specified a buffer or range so large that
converting it would exceed the maximum length
for a string. DECTPU has truncated characters
from the returned string.

TPU$_NEEDTOASSIGN ERROR STR must appear on the right-hand side of an
assignment statement.

TPU$_TOOFEW ERROR STR requires at least one argument.
TPU$_TOOMANY ERROR STR accepts only two arguments.
TPU$_INVPARAM ERROR The argument to STR must be an integer, buffer,

string, or range.
TPU$_BADVALUE ERROR You specified a value other than 8, 10, or 16 for

the radix parameter.

Examples

1. The following example creates a string that uses the text in the select range. Line breaks are marked
with the string CRLF. The white space created by the margin is preserved by inserting spaces after
the line breaks.

return_string := STR (SELECT_RANGE, "<CRLF>", ON);

2. The following example uses the STR built-in procedure to convert the integer variables v1 and v2 to
strings so that your row and column position can be displayed in the message area:

PROCEDURE user_display_position
 v1 := GET_INFO (second_window, "current_column");
 MESSAGE ("Column: " + STR (v1));
 v2 := GET_INFO (second_window, "current_row");
 MESSAGE ("Row: " + STR (v2));

413

Chapter 2. Descriptions of the DECTPU Built-In Procedures

ENDPROCEDURE;

3. The following example forms a string that uses the text in the range "this_range":

this_string := STR (this_range, "EOL")

In the string, each end-of-line is represented by the letters EOL. For example, suppose the text in
"this_range" is as follows:

Sufficient unto the day
are the cares thereof

Given the text in "this_range", "this_string" contains the following:

Sufficient unto the dayEOLare the cares thereof

If "this_range" extends to the character after the "f" in "thereof", "this_string" contains the
following:

Sufficient unto the dayEOLare the cares thereofEOL

SUBSTR

Syntax

Parameters
buffer

The buffer that contains the substring.

range

The range that contains the substring.

string

The string that contains the substring.

integer1

The character position at which the substring starts. The first character position is 1.

integer2

The number of characters to include in the substring. If you do not specify this parameter, DECTPU
sets the returned string’s end point to the end of the first parameter.

Return Value
A string that represents a substring of a string or range.

414

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The SUBSTR procedure returns a string that represents a substring of a buffer, range, or string. If you
specify a larger number of characters for integer2 than are present in the substring, only the characters
present are returned in string2. No error is signaled.

Signaled Errors

TPU$_NEEDTOASSIGN ERROR SUBSTR must appear on the right-hand side of
an assignment statement.

TPU$_TOOFEW ERROR SUBSTR requires three arguments.
TPU$_TOOMANY ERROR SUBSTR accepts only three arguments.
TPU$_INVPARAM ERROR One of the arguments to SUBSTR is of the

wrong type.
TPU$_ARGMISMATCH ERROR One of the arguments to SUBSTR is of the

wrong type.
TPU$_TRUNCATE WARNING You specified a buffer or range so large that

returning the requested substring would exceed
the maximum length for a string. DECTPU has
truncated characters from the returned string.

Examples
1. The following example returns the string "com" in the variable file_type. The substring starts at the

seventh character position (c) and contains three characters (com). If you use a larger number for
integer2, for example, 7, the variable file_type still contains "com" and no error is signaled.

file_type := SUBSTR ("login.com", 7, 3)

2. The following example capitalizes the first character in a string. It does not affect any other
characters in the string. It makes use of the fact that SUBSTR returns a null string if the second
parameter points past the end of the string.

! Capitalize the first letter in a string.
!
PROCEDURE user_initial_cap (my_string)
LOCAL
first_part_of_string,
rest_of_string,
first_letter,
cur_loc;
cur_loc := 1;
first_part_of_string := "";
rest_of_string := "";
LOOP
first_letter := SUBSTR (my_string, cur_loc, 1);
EXITIF first_letter = "";
EXITIF (first_letter >= "a") AND (first_letter <= "z");
EXITIF (first_letter >= "A") AND (first_letter <= "Z");
cur_loc := cur_loc + 1;
ENDLOOP;
CHANGE_CASE (first_letter, UPPER);
first_part_of_string := SUBSTR (my_string, 1, cur_loc - 1);

415

Chapter 2. Descriptions of the DECTPU Built-In Procedures

rest_of_string := SUBSTR (my_string, cur_loc + 1,
LENGTH (my_string) - cur_loc);
my_string := first_part_of_string + first_letter
+ rest_of_string;
ENDPROCEDURE;

TRANSLATE

Syntax

Parameters
buffer2

A buffer in which one or more characters are to be replaced. You cannot use the NOT_IN_PLACE
keyword if you specify a buffer for the first parameter.

range2

A range in which one or more characters are to be replaced. You cannot use the NOT_IN_PLACE
keyword if you specify a range for the first parameter.

string2

A string in which one or more characters are to be replaced. If a return value is specified, the
substitution is performed in the returned string. If you specify IN_PLACE for the third parameter,
TRANSLATE makes the specified change to the string specified in the first parameter. If string2 is a
constant, IN_PLACE has no effect.

string3

The string of replacement characters.

string4

The literal characters within the text specified by parameter 1 that are to be replaced.

IN_PLACE

A keyword that directs DECTPU to make the indicated change in the buffer, range, or string
specified. This is the default.

NOT_IN_PLACE

A keyword that directs DECTPU to leave the specified string unchanged and return a string that
is the result of the specified translation. You cannot use NOT_IN_PLACE if the first parameter
is specified as a range or buffer. To use NOT_IN_PLACE, you must specify a return value for
TRANSLATE.

416

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Return Values
buffer1

A variable of type buffer that points to the buffer that contains the modified text, if you specify a
buffer for the first parameter. The variable returned_buffer points to the same buffer pointed to by
the buffer variable specified as the first parameter.

range1

A range that contains the modified text, if you specify a range for the first parameter. The returned
range spans the same text as the range specified as a parameter, but they are two separate ranges. If
you subsequently change or delete one of the ranges, this has no effect on the other range.

string1

A string that contains the modified text, when you specify a string for the first parameter.
TRANSLATE can return a string even if you specify IN_PLACE.

Description
The TRANSLATE procedure substitutes one set of specified characters for another set. TRANSLATE
returns a value for the translated range or buffer or for the string representation of the translated text.
TRANSLATE is based on the Run-Time Library (RTL) routine STR$TRANSLATE. For complete
information on STR$TRANSLATE, see the OpenVMS RTL String Manipulation (STR$) Manual.

TRANSLATE searches the text specified by the first parameter for the characters contained in the
third parameter. When DECTPU finds the sequence specified by string3, DECTPU substitutes the first
character in string2 for the first character in string3, and so forth.

If the translate string, string2, is shorter than the match string, string3, and the number of matched
character positions is greater than the number of character positions in the translate string, the translation
character is a space.

The IN_PLACE and NOT_IN_PLACE keywords specify whether the source is to be changed.
IN_PLACE means that the source is modified; NOT_IN_PLACE indicates that the source is not
changed.

Signaled Errors

TPU$_TOOFEW ERROR TRANSLATE requires three arguments.
TPU$_TOOMANY ERROR TRANSLATE accepts no more than three

arguments.
TPU$_ARGMISMATCH ERROR One of your arguments to TRANSLATE is of

the wrong data type.
TPU$_INVPARAM ERROR One of your arguments to TRANSLATE is of

the wrong data type.
TPU$_NOTMODIFIABLE WARNING You cannot translate text in an unmodifiable

buffer.
TPU$_CONTROLC ERROR You pressed Ctrl/C during the execution of

TRANSLATE.

417

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Examples
1. The following example replaces any lowercase "I" in second_buffer with an uppercase "I":

TRANSLATE (second_buffer, "I","i")

2. The following example strips the eighth bit from all characters in the current buffer. You can use
this kind of procedure for reading files from systems like TOPS–20 (on which the eighth bit is set)
without using the DEC Multinational Character Set.

PROCEDURE user_strip_eighth
 LOCAL i, ! Loop counter
 seven, ! ASCII (0) through ASCII (127)
 eight; ! ASCII (128) through ASCII (255)
! Build translate strings
 seven := "";
 eight := "";
 i := 0;
 LOOP
 seven := seven + ASCII (i);
 eight := eight + ASCII (i + 128);
 i := i + 1;
 EXITIF i = 128;
 ENDLOOP;
 TRANSLATE (CURRENT_BUFFER, seven, eight);
ENDPROCEDURE;

UNANCHOR

Syntax

Parameters
None.

Description
The UNANCHOR procedure specifies that the next pattern element may match anywhere after
the previous pattern element. Usually, when a pattern contains several concatenated or linked
pattern elements, the pattern matches only when the text that matches one particular pattern element
immediately follows the text that matches the previous pattern element. If UNANCHOR appears
between two pattern elements, the text that matches the second pattern element may appear anywhere
after the text that matches the first pattern element.

Although UNANCHOR behaves much like a built-in, it is actually a keyword.

For more information on patterns or pattern searching, see the Guide to the DEC Text Processing Utility.

Signaled Errors
UNANCHOR is a keyword and has no completion codes.

418

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Examples

1. The following example creates a pattern that matches any text beginning with the letter a and ending
with the digits 123. Any amount of text may appear between the a and the 123.

pat1 := "a" + UNANCHOR + "123"

2. The following example removes all parenthesized text from a buffer. The text may span several lines.
It does not handle multiple levels of parentheses.

PROCEDURE user_remove_paren_text (paren_buffer)
 LOCAL pat1,
 paren_text,
 searched_text;
pat1 := "(" + UNANCHOR + ")";
searched_text := paren_buffer;
LOOP
 paren_text := SEARCH_QUIETLY (pat1, FORWARD, EXACT,
 searched_text);
 EXITIF paren_text = 0;
 ERASE (paren_text);
 searched_text := CREATE_RANGE (END_OF (paren_text),
 END_OF (paren_buffer), NONE);
 ENDLOOP;
ENDPROCEDURE;

UNDEFINE_KEY

Syntax

Parameters

keyword

The name of a key or key combination that you can define. See the Guide to the DEC Text
Processing Utility for a list of the valid DECTPU key names.

key-map-list-name

Specifies a key map list in which the key is defined. The first definition of the key in the key maps
that make up the key map list is deleted. If neither a key map nor a key map list is specified, the key
map list bound to the current buffer is used.

key-map-name

Specifies a key map in which the key is defined. The first definition of the key in the key map is
deleted. If neither a key map nor a key map list is specified, the key map list bound to the current
buffer is used.

419

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description

The UNDEFINE_KEY procedure removes the current binding from the key that you specify. After you
use UNDEFINE_KEY, the key you specify is no longer defined. DECTPU does not save any previous
definitions that you may have associated with the key. However, any definitions of the specified key in
key maps or key map lists other than the ones you specified are not removed.

DECTPU writes a message to the message buffer telling you that the key is undefined if you try to use it
after you have undefined it.

Signaled Errors

TPU$_NODEFINITION WARNING There is no definition for this key.
TPU$_NOTDEFINABLE WARNING First argument is not a valid reference to a key.
TPU$_NOKEYMAP WARNING Second argument is not a defined key map.
TPU$_NOKEYMAPLIST WARNING Second argument is not a defined key map list.
TPU$_KEYMAPNTFND ERROR The key map listed in the second argument is

not found.
TPU$_EMPTYKMLIST WARNING The key map list specified in the second

argument contains no key maps.
TPU$_TOOFEW ERROR Too few arguments passed to the

UNDEFINE_KEY built-in.
TPU$_TOOMANY ERROR Too many arguments passed to the

UNDEFINE_KEY built-in.
TPU$_INVPARAM ERROR Wrong type of data sent to the

UNDEFINE_KEY built-in.

Examples

1. The following example undefines a key. You can use this kind of procedure for keypad initialization
procedures.

! Parameters:
!
! Name Function Input or Output?
! ---- -------- ––––-------------
! which_key Keyword for key to clear input
PROCEDURE user_clear_key (which_key)
 IF (LOOKUP_KEY (which_key, PROGRAM) <> 0)
 THEN
 UNDEFINE_KEY (which_key);
 ELSE
 MESSAGE ("Key not defined");
 ENDIF;
ENDPROCEDURE;

2. The following example deletes all of the key definitions in the key map TPU$KEY_MAP:

PROCEDURE delete_all_definitions
 LOCAL key;
 LOOP

420

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 key := GET_INFO (DEFINED_KEY, "first", "tpu$key_map");
 EXITIF key = 0;
 UNDEFINE_KEY (key, "tpu$key_map");
 ENDLOOP;
ENDPROCEDURE;

UNMANAGE_WIDGET

Syntax

Parameter
widget

The widget to be unmanaged.

Description
The UNMANAGE_WIDGET procedure makes the specified widget and all of its children invisible.
If you want to unmanage several widgets that are children of the same parent, but you do not want to
unmanage the parent, include all the children in a single call to UNMANAGE_WIDGET. Unmanaging
several widgets at once is more efficient than unmanaging one widget at a time.

Signaled Errors

TPU$_INVPARAM ERROR You specified a parameter of the wrong type.
TPU$_TOOFEW ERROR Too few arguments passed to the

UNMANAGE_WIDGET built-in.
TPU$_NORETURNVALUE ERROR UNMANAGE_WIDGET cannot return a value.
TPU$_REQUIRESDECW ERROR You can use the UNMANAGE_WIDGET built-

in only if you are using DECwindows DECTPU.
TPU$_WIDMISMATCH ERROR You have specified a widget whose class is not

supported.

Example
The following example removes EVE’s FIND dialog box from the screen:

UNMANAGE_WIDGET (eve$x_find_dialog);

UNMAP

Syntax

421

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Parameters
widget

The widget you want to make invisible.

window

The window you want to remove from the screen.

Description
The UNMAP procedure disassociates a window from its buffer and removes the window or widget
from the screen. If you unmap the current window, DECTPU tries to move the cursor position to the
window that was most recently the current window. The window in which DECTPU positions the cursor
becomes the current window, and the buffer that is associated with this window becomes the current
buffer.

The screen area of the window you unmap is either erased or returned to any windows that were
occluded by the window you unmapped. DECTPU returns lines to adjacent windows if the size of
the windows requires the lines that were used for the window you unmap. The size of a window is
determined by the values you specified for the CREATE_WINDOW built-in procedure when you
created the window, or by the values you specified for the ADJUST_WINDOW built-in procedure if
you changed the size of the window. If adjacent windows do not require the lines that were used by the
window you unmap, the lines that the window occupied on the screen remain blank.

The window that you unmap is not deleted from the list of available windows. You can cause the
window to appear on the screen again with MAP. UNMAP does not have any effect on the buffer that
was associated with the window being unmapped. Unmapping a widget does not delete the widget.
Future MAP operations will make the widget visible again.

Signaled Errors

TPU$_TOOFEW ERROR UNMAP requires one parameter.
TPU$_TOOMANY ERROR UNMAP accepts only one parameter.
TPU$_INVPARAM ERROR One or more of the specified parameters have

the wrong type.
PU$_WINDNOTMAPPED WARNING Window is not mapped to a buffer.

Examples
1. The following example removes the main window from the screen and disassociates from the main

window the buffer that was mapped to it:

UNMAP (main_window)

2. The following example unmaps the current window and puts two new windows in its place. (If the
window that you are replacing has a status line, this line is not included in the screen area used by the
two new windows. This is because GET_INFO (window, "visible_bottom") does not take the status
line into account.)

PROCEDURE user_one_window_to_two
 LOCAL wind_length,

422

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 wind_half,
 first_line,
 last_line;
 cur_wind := CURRENT_WINDOW;
! If it exists
 IF (cur_wind <> 0)
 THEN
 first_line := GET_INFO (cur_wind, "visible_top");
 last_line := GET_INFO (cur_wind, "visible_bottom");
 wind_buf := GET_INFO (cur_wind, "buffer");
 UNMAP (cur_wind);
 ELSE
! If there is no current window then create an empty buffer
 first_line := 1;
 last_line := GET_INFO (SCREEN, "visible_length");
 wind_buf := CREATE_BUFFER ("Empty Buffer");
 ENDIF;
 wind_length := (last_line - first_line) + 1;
 wind_half := wind_length/2;
 new_window_1 := CREATE_WINDOW (first_line, wind_half, OFF);
 SET (VIDEO, new_window_1, UNDERLINE);
 new_window_2 := CREATE_WINDOW (wind_half+1,
 last_line-wind_half, OFF);
! Associate the same buffer with both windows
! and map the windows to the screen
 MAP (new_window_1, wind_buf);
 MAP (new_window_2, wind_buf);
ENDPROCEDURE;

UPDATE

Syntax

Parameters
ALL

A keyword that directs DECTPU to make all visible windows reflect the current state of the buffers
mapped to them.

window

The window that you want updated. The window must be mapped to the screen for the update to
occur.

Description
The UPDATE procedure causes the screen manager to make a window reflect the current internal
state of the buffer that is associated with the window. One important task that UPDATE performs is to
move the cursor to the editing point if the cursor and the editing point are not synchronized when the
UPDATE built-in procedure is executed.

423

Chapter 2. Descriptions of the DECTPU Built-In Procedures

The screen manager updates windows after each keystroke. However, if a key has a procedure bound
to it, DECTPU may execute many statements when that key is pressed. By default, UPDATE does
not reflect the result of any statement in a procedure bound to a key until all the statements in the
procedure have been executed. As a result, the screen may not reflect the current state of the buffer
during execution of a procedure bound to a key. If you want the screen to reflect changes before the
entire procedure is executed, you can force an immediate update by adding an UPDATE statement to the
procedure.

UPDATE (window) affects a single window that is visible on the screen. If the buffer associated with the
window you use as a parameter is associated with other windows that are mapped to the screen, all of
these windows may be updated.

UPDATE (ALL) updates all visible windows. The difference between the UPDATE (ALL) built-in
procedure and the REFRESH built-in procedure is that UPDATE (ALL) makes whatever changes are
necessary on a window-bywindow basis. REFRESH clears the screen and repaints everything from
scratch, as well as reinitializing scrolling regions and other terminal-dependent settings.

For more information on how the DECTPU screen manager uses the UPDATE built-in in various
circumstances, see Appendix C, "DECTPU Cursor Behavior". For more information on the results of the
REFRESH built-in, see the description of REFRESH in this chapter.

Signaled Errors

TPU$_TOOFEW ERROR UPDATE requires one parameter.
TPU$_TOOMANY ERROR You specified more than one parameter.
TPU$_INVPCARAM ERROR The specified parameter has the wrong type.
TPU$_BADKEY ERROR The keyword must be ALL.
TPU$_UNKKEYWORD ERROR You specified an unknown keyword.
TPU$_WINDNOTMAPPED WARNING You cannot update a window that is not on the

screen.

Examples
1. The following example causes the screen manager to make new_window reflect the current internal

state of the buffer associated with new_window:

UPDATE (new_window)

2. The following example updates the screen to display the new line of text that you are inserting before
the top line of the window. (When you insert text in front of the top of a window, the included text
is not visible on the screen unless you use a procedure such as this one to ensure that the text is
displayed.)

PROCEDURE user_show_first_line
 LOCAL old_position, ! Marker of position before scroll
 new_position; ! Marker of position after scroll
 UPDATE (CURRENT_WINDOW);
 IF (GET_INFO (CURRENT_WINDOW, "current_row") =
 GET_INFO (CURRENT_WINDOW, "visible_top"))
 AND
 (CURRENT_COLUMN = 1)
 THEN
 old_position := MARK (NONE);

424

Chapter 2. Descriptions of the DECTPU Built-In Procedures

 SCROLL (CURRENT_WINDOW, -1);
 new_position := MARK (NONE);
! Make sure we scrolled before doing the CURSOR_VERTICAL
 IF new_position <> old_position
 THEN
 CURSOR_VERTICAL (1);
 ENDIF;
 ENDIF;
ENDPROCEDURE;

WRITE_CLIPBOARD

Syntax

Parameters
clipboard_label

The label for multiple entries in the clipboard. Because the clipboard does not currently support
multiple labels, use any string, including the null string, to specify this parameter.

buffer

The buffer that contains text to be written to the clipboard. DECTPU represents line breaks by a
line-feed character (ASCII (10)). If you specify a buffer, DECTPU converts the buffer to a string,
replacing line breaks with line feeds and replacing the white space before the left margin with
padding blanks.

The buffer must contain at least one character or line break. If it does not, DECTPU signals TPU
$_CLIPBOARDZERO.

range

The range that contains text to be written to the clipboard. DECTPU represents line breaks by a
line-feed character (ASCII (10)). If you specify a range, DECTPU converts the range to a string,
replacing line breaks with line feeds and replacing the white space before the left margin with
padding blanks.

The range must contain at least one character or line break. If it does not, DECTPU signals TPU
$_CLIPBOARDZERO.

string

The string that contains text to be written to the clipboard. The string must contain at least one
character. If it does not, DECTPU signals TPU$_CLIPBOARDZERO.

Description
The WRITE_CLIPBOARD procedure writes string format data to the clipboard. The clipboard_label
parameter provides support for multiple entries on the clipboard; at present, however, the clipboard does
not support multiple entries.

425

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Signaled Errors

TPU$_CLIPBOARDLOCKED WARNING The clipboard is locked by another process.
TPU$_CLIPBOARDZERO WARNING The data to be written to the clipboard have

zero length.
TPU$_TRUNCATE WARNING DECTPU has truncated characters from the data

written because you specified a buffer or range
that contains more than 65535 characters.

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_NORETURNVALUE ERROR WRITE_CLIPBOARD cannot return a value.
TPU$_REQUIRESDECW ERROR You can use the WRITE_CLIPBOARD built-in

only if you are using DECwindows DECTPU.
TPU$_TOOFEW ERROR Too few arguments passed to the

WRITE_CLIPBOARD built-in.
TPU$_TOOMANY ERROR Too many arguments passed to the

WRITE_CLIPBOARD built-in.

Example
The following example writes the contents of the range this_range to the clipboard:

WRITE_CLIPBOARD ("", this_range);

WRITE_FILE

Syntax

Parameters
buffer

The buffer whose contents you want to write to a file.

range

The range whose contents you want to write to a file.

If you use WRITE_FILE on a range that does not start at the left margin of a line, DECTPU does
the following:

● Determines the left margin of the line in which the range starts

● Writes the range to the output file starting at the same left margin as the margin of the line
where the range starts

426

Chapter 2. Descriptions of the DECTPU Built-In Procedures

For example, if you write a range that starts in column 30 of a line whose left margin is 10,
WRITE_FILE writes the range in the output file starting at column 10.

string1

A string that specifies the file to which the contents of the buffer are to be written. If you do not
specify a full file specification, DECTPU determines the output file specification by using the
current device and directory as defaults. The string is case insensitive.

This parameter is optional. If you omit it, DECTPU uses the associated output file name for the
buffer. If there is no associated file name, DECTPU prompts you for one. If you do not give a file
name at the prompt, DECTPU does not write to a file. In that case, the optional string2 that is
returned is a null string.

ON

A keyword specifying that output is padded with spaces to keep the first character of each record at
the same column as the text in the buffer. This is the default.

OFF

A keyword specifying that no padding spaces are inserted when writing to the file.

Return Value
A string that represents the file specification of the file created.

Description
The WRITE_FILE procedure writes data to the file that you specify. WRITE_FILE optionally returns
a string that is the file specification of the file created. If you specify a result, WRITE_FILE returns a
string that is the file specification of the file to which the data was written.

DECTPU uses a flag to mark a buffer as modified or not modified. When you write data from a buffer
to an external file, DECTPU clears the modified flag for that buffer. If you do not make any further
modifications to that buffer, DECTPU does not consider the buffer as being modified and does not write
out the file by default when you exit. If an error occurs while DECTPU is writing a file, DECTPU does
not clear the modified flag.

When the contents of a buffer are written to a file, the associated journal file (if any) is closed and
deleted and a new journal file is created. The new file contains the name of the file to which the buffer
was written.

Deleting the file that has been written out invalidates the buffer-change journal.

Signaled Errors
TPU$_CONTROLC ERROR The execution of the write operation terminated

because you pressed Ctrl/C.
TPU$_TOOFEW ERROR WRITE_FILE requires at least one parameter.
TPU$_TOOMANY ERROR WRITE_FILE accepts no more than two

parameters.
TPU$_ARGMISMATCH ERROR One of the parameters to WRITE_FILE is of

the wrong type.

427

Chapter 2. Descriptions of the DECTPU Built-In Procedures

TPU$_INVPARAM ERROR One of the parameters to WRITE_FILE is of
the wrong type.

DECTPU’s file I/O routine can signal the following completion codes. You can provide your own file
I/O routine by using the DECTPU callable interface. If you do so, WRITE_FILE’s completion status
depends upon what status you signaled in your file I/O routine.

TPU$_OPENOUT ERROR WRITE_FILE could not create the output file.
TPU$_NOFILEACCESS ERROR WRITE_FILE could not connect to the newly

created output file.
TPU$_WRITEERR ERROR WRITE_FILE could not write the text to the

file because it encountered a file system error
during the operation.

TPU$_CLOSEOUT ERROR WRITE_FILE encountered a file system error
when closing the file.

Examples
1. The following example writes the contents of the paste buffer to the file named MYFILE.TXT:

WRITE_FILE (paste_buffer, "myfile.txt")

2. The following example writes the contents of a buffer called extra_buf to a file. (Because you do not
specify a file name, the associated file for the buffer is used.) The procedure then removes the extra
window and buffer from your editing context.

PROCEDURE user_write_file
 WRITE_FILE (extra_buf);
 DELETE (extra_window);
 DELETE (extra_buf);
! Return the lines from extra_window to the main window
 ADJUST_WINDOW (main_window, -11, 0);
ENDPROCEDURE;

WRITE_GLOBAL_SELECT

Syntax

Parameters
array

An array that passes information about a global selection whose contents describe information that
is not of a data type supported by DECTPU. For example, the array could pass information about a
pixmap, an icon, or a span.

428

Chapter 2. Descriptions of the DECTPU Built-In Procedures

DECTPU does not use or alter the information in the array; the application layered on DECTPU
is responsible for determining how the information is used, if at all. Because the array is used to
pass information to and from other DECwindows applications, all applications that send or receive
information whose data type is not supported by DECTPU must agree on how the information is to
be sent and used.

The application sending the information is responsible for creating the array and giving it the proper
structure. The array’s structure is as follows:

● The element array {0} contains a string naming the data type of the information being passed.
For example, if the information being passed is a span, the element contains the string "SPAN".

● The element array {1} contains either the integer 8, indicating that the information is passed
as a series of bytes, or the integer 32, indicating that the information is passed as a series of
longwords.

● If array {1} contains the value 8, the element array {2} contains a string, and there are no array
elements after array {2}. The string does not name anything; rather it is a series of bytes. The
meaning and use of the information is agreed upon by convention among the DECwindows
applications.

● If array {1} contains the value 32, the remaining elements of the array contain integer data.
In this case, the array can have any number of elements after array {2}. These elements
must be numbered sequentially, starting at array {3}. All the elements contain integers. Each
integer represents a longword of data. To determine how many longwords are being passed, an
application can determine the length of the array and subtract 2 to allow for elements array {0}
and array {1}.

buffer

The buffer that contains the information to be sent to the requesting application as the response to
the global selection information request. If you specify a buffer, DECTPU converts the buffer to a
string, converts line breaks to line feeds, and inserts padding blanks before text to fill any unoccupied
space before the left margin.

integer

An integer whose value is to be sent to the requesting application as the response to the global
selection information request. DECTPU sends the information in integer format.

range

The range that contains the information to be sent to the requesting application as the response to
the global selection information request. If you specify a range, DECTPU converts the buffer to a
string, converts line breaks to line feeds, and inserts padding blanks before and after text to fill any
unoccupied space before the left margin.

string

The string that contains the information to be sent to the requesting application as the response to
the global selection information request. DECTPU sends the information in string format.

NONE

A keyword indicating that no information about the global selection is available.

429

Chapter 2. Descriptions of the DECTPU Built-In Procedures

Description
The WRITE_GLOBAL_SELECT procedure sends requested information about a global selection
from the DECTPU layered application to the application that issued the information request.
WRITE_GLOBAL_SELECT is valid only inside a routine that responds to requests for information
about a global selection.

The parameter specifies the data to supply to the requesting application. If you specify NONE, DECTPU
informs the requesting application that no information is available. However, for any case in which a
routine omits a WRITE_GLOBAL_SELECT statement, by default DECTPU informs the requesting
application that no information is available.

Call WRITE_GLOBAL_SELECT no more than once during the execution of a global selection read
routine. DECTPU signals TPU$_INVBUILTININV if you attempt to call this routine more than once.

Signaled Errors

TPU$_BUILTININV WARNING WRITE_GLOBAL_SELECT was used more
than once in the same routine or the builtin is
being called outside of a global section read
routine.

TPU$_TRUNCATE WARNING DECTPU truncated characters from the data
written because you specified a buffer or range
that contained more than 65535 characters.

TPU$_INVPARAM ERROR One of the parameters was specified with data
of the wrong type.

TPU$_NORETURNVALUE ERROR WRITE_GLOBAL_SELECT cannot return a
value.

TPU$_REQUIRESDECW ERROR You can use the WRITE_GLOBAL_SELECT
built-in only if you are using DECwindows
DECTPU.

TPU$_TOOFEW ERROR Too few arguments passed to the
WRITE_GLOBAL_SELECT built-in.

TPU$_TOOMANY ERROR Too many arguments passed to the
WRITE_GLOBAL_SELECT built-in.

Example
The following example sends the contents of the range this_range to the requesting application:

WRITE_GLOBAL_SELECT (this_range);

For an example of a procedure that uses the WRITE_GLOBAL_SELECT built-in procedure, see Example
A.6, "EVE Procedure That Implements COPY SELECTION".

430

Appendix A. Sample DECwindows
DECTPU Procedures
This appendix presents a number of procedures that use DECwindows built-ins.

The following examples demonstrate some of the ways in which you can use DECTPU procedures:

● Creating a mouse pad

● Implementing an EDT-style APPEND command

● Testing and returning a select range

● Handling callbacks from a scroll bar widget

● Reactivating a select range

● Implementing the DECwindows COPY SELECTION operation from EVE to another application

Most of the procedures are drawn from the code implementing the Extensible Versatile Editor (EVE).
Some have been modified to make them easier to understand.

You can see all the code used to implement EVE by looking at the files in SYS$EXAMPLES:EVE$*.*.

A.1. Creating a Mouse Pad
Example A.1, "Procedure That Creates a Mouse Pad" shows how to use the variant of
CREATE_WIDGET that calls the Toolkit low-level creation routine. The module in Example A.1,
"Procedure That Creates a Mouse Pad" creates a screen that represents a keypad. Instead of pressing a
keypad key, you can click on the widget that represents the key.

Example A.1. Procedure That Creates a Mouse Pad
! SAMPLE.TPU
!++
! Table of Contents
!
! SAMPLE.TPU
!
! Procedure name Description
! -------------- ––––––––––––––
!
! sample_sample_module_ident Ident.
! sample_sample_module_init Initializes the module.
! eve_mouse_pad Implements the user command DISPLAY MOUSE
 PAD.
! sample_key_def Creates a mouse pad "key" push button.
! sample_key_dispatch Handles push button widget callbacks.
! sample_row_to_pix Converts a row number to pixels.
! sample_col_to_pix Converts a column number to pixels.
! sample_key_height Converts y dimension from rows to pixels.

! sample_key_width Converts x dimension from columns to pixels.

!--
! This module layers a "mouse pad" on top of DECTPU. The mouse pad
! is implemented by creating a dialog box widget that is the parent of a group
! of push button widgets depicting keypad keys. The resulting
! "mouse pad" is a screen representation of a keypad. The user can
! click on a push button to execute the same function that would be

431

Appendix A. Sample DECwindows DECTPU Procedures

! executed by pressing the corresponding keypad key. The module uses
! the key map list mapped to the current buffer to determine what
! code to execute when the user clicks on a given push button. To
! use a different key map, substitute a string naming the desired
! key map for the null string assigned to "sample_k_keymap".
! This module can be used with the EVE section file
! or with a non-EVE section file.
!
! This module uses the variant of CREATE_WIDGET that calls
! X Toolkit widget creation routines to create instances
! of widgets of specific classes.

! Widget class records for the DECwindows widgets for DEFINE_WIDGET built-in.
CONSTANT
sample_k_labelwidgetclass := "xmLabelWidgetClassRec",
sample_k_dialogwidgetclass := "xmBulletinBoardClassRec",
sample_k_pushbuttonwidgetclass := "xmPushButtonClassRec";
! Motif Toolkit resource name strings, callback reasons, resource values, or
! arguments to the CREATE_WIDGET built-in.
CONSTANT
 sample_k_cstyle := "dialogStyle",
 sample_k_modeless := 0, ! = XmDIALOG_MODELESS
 sample_k_nunits := "unitType",
 sample_k_pixelunits := 0, ! = XmPIXELS
 sample_k_ntitle := "dialogTitle",
 sample_k_nx := "x",
 sample_k_ny := "y",
 sample_k_nautounmanage := "autoUnmanage",
 sample_k_nheight := "height",
 sample_k_nwidth := "width",
 sample_k_nlabel := "labelString",
 sample_k_nactivate_callback := "activateCallback",
 sample_k_nborderwidth := "borderWidth",
 sample_kt_nrecomputeSize := "recomputeSize",
 sample_k_cractivate := 10;

! These constants are intended for use only in this sample module
! because their values are specific to the mouse pad application.
CONSTANT
 sample_k_x_pos := 500, ! Screen position for mouse pad.
 sample_k_y_pos := 500,
 sample_k_keypad_border := 5, ! Width of border between keys and edge.
 sample_k_key_height := 30, ! Key dimensions.
 sample_k_key_width := 60,
 sample_k_button_border_frac := 3, ! Determines spacing between keys.
 sample_k_overall_height := (sample_k_key_height * 5)
 + ((sample_k_key_height
 / sample_k_button_border_frac) * 5)
 + sample_k_keypad_border,
sample_k_overall_width := (sample_k_key_width * 4)
 + ((sample_k_key_width
 / sample_k_button_border_frac) * 4)
 + sample_k_keypad_border,
sample_k_keymap := '', ! If this constant has a null string
 ! as its value, the program uses the
 ! current key map list to determine what
 ! code to execute when the user
 ! clicks on a given push button.
sample_k_pad_title := "Sample mouse pad", ! Title of the mouse pad.
sample_k_closure := ''; ! Not currently used.
PROCEDURE sample_sample_module_ident ! This procedure returns
RETURN "V01-001"; ! the Ident.
ENDPROCEDURE;
PROCEDURE sample_sample_module_init ! Module initialization.
ENDPROCEDURE;
PROCEDURE eve_mouse_pad ! Implements a user-created command MOUSE
 PAD
! that the user can invoke from within EVE.
ON_ERROR
 [TPU$_CONTROLC]:

432

Appendix A. Sample DECwindows DECTPU Procedures

 eve$learn_abort;
 ABORT;
ENDON_ERROR

! Checks whether the dialog box widget class has already been defined.
! If not, defines the dialog box widget class and creates a widget
! instance to be used as the "container" for the mouse pad.
IF GET_INFO (sample_x_dialog_class, 'type') <> INTEGER
THEN
sample_x_dialog_class
! : = DEFINE_WIDGET_CLASS (sample_k_dialogwidgetclass,

"XmCreateBulletinBoardDialog");
! Tell TPU about new resource types
set (WIDGET_RESOURCE_TYPES, "unsigned_char", "dialogStyle", "unitType");
ENDIF;
! Create the dialog box
"sample_x_keypad := CREATE_WIDGET (sample_x_dialog_class, "Keypad", SCREEN,

 "MESSAGE('CALLBACK activated')",
 "sample_k_closure",
 sample_k_cstyle, sample_k_modeless,
 sample_k_nunits, sample_k_pixelunits,
 sample_k_ntitle, sample_k_pad_title,
 sample_k_nautounmanage, FALSE,
 sample_k_nheight, sample_k_overall_height,
 sample_k_nwidth, sample_k_overall_width,
 sample_k_nx, sample_k_x_pos,
 sample_k_ny, sample_k_y_pos);
! Checks whether the push button widget class has already been defined
! and, if not, defines the class.
IF GET_INFO (sample_x_pushbutton_class, 'type') <> INTEGER
THEN
 sample_x_pushbutton_class
 := DEFINE_WIDGET_CLASS (sample_k_pushbuttonwidgetclass,
 "XmCreatePushButton");
ENDIF;
! Initializes the array that the program passes repeatedly
! to the procedure "sample_key_def".

sample_x_attributes := CREATE_ARRAY;
sample_x_attributes {sample_k_nactivate_callback} := 0; ! must be 0 (non-UIL)
sample_x_attributes {sample_k_nborderwidth} := 2;
sample_x_pad_program := COMPILE ("sample_key_dispatch");

! Creates and manages all the "keys" in the mouse pad. The procedure
! "sample_key_def" returns a variable of type widget, so you can use the
! returned value as an argument to the built-in MANAGE_WIDGET.
#MANAGE_WIDGET (sample_key_def ("PF1", 0, 0, 1, 1, sample_x_pad_program),

sample_key_def ("PF2", 1, 0, 1, 1, sample_x_pad_program),
sample_key_def ("PF3", 2, 0, 1, 1, sample_x_pad_program),
sample_key_def ("PF4", 3, 0, 1, 1, sample_x_pad_program),
sample_key_def ("KP7", 0, 1, 1, 1, sample_x_pad_program),
sample_key_def ("KP8", 1, 1, 1, 1, sample_x_pad_program),
sample_key_def ("KP9", 2, 1, 1, 1, sample_x_pad_program),
sample_key_def ("-", 3, 1, 1, 1, sample_x_pad_program, "minus"),
sample_key_def ("KP4", 0, 2, 1, 1, sample_x_pad_program),
sample_key_def ("KP5", 1, 2, 1, 1, sample_x_pad_program),
sample_key_def ("KP6", 2, 2, 1, 1, sample_x_pad_program),
sample_key_def (",", 3, 2, 1, 1, sample_x_pad_program, "comma"),
sample_key_def ("KP1", 0, 3, 1, 1, sample_x_pad_program),
sample_key_def ("KP2", 1, 3, 1, 1, sample_x_pad_program),
sample_key_def ("KP3", 2, 3, 1, 1, sample_x_pad_program),
sample_key_def ("Enter", 3, 3, 2, 1, sample_x_pad_program, "enter"),
sample_key_def ("KP0", 0, 4, 1, 2, sample_x_pad_program),
sample_key_def (".", 2, 4, 1, 1, sample_x_pad_program, "period"));
sample_shift_was_last := FALSE; ! The program starts out assuming that
 ! no GOLD key has been pressed.

$MANAGE_WIDGET (sample_x_keypad); ! This statement displays the
 ! resulting mouse pad.

433

Appendix A. Sample DECwindows DECTPU Procedures

RETURN (TRUE);
ENDPROCEDURE ! End of procedure eve_mouse_pad.
PROCEDURE sample_key_def ! Creates a mouse pad "key" push button
 ! widget.
(the_legend, ! What characters to show on the push button label.
the_row, the_col, ! Location of the key in relation to the parent
 ! widget's upper left corner.
the_width, the_height, ! Dimensions of the key.
the_pgm; ! Program to use as the callback routine; used
 ! as a parameter to the CREATE_WIDGET built-in.
the_string); ! The string representation of the name
 ! of a key if the key name is not going
 ! to be the same as the legend (as in
 ! the case of the comma). Specify the null
 ! string if the key name and the legend are
 ! the same.
IF GET_INFO (the_string, 'type') = UNSPECIFIED
THEN
 the_string := the_legend; ! Determines whether the optional parameter
 ! the_string is provided.
ENDIF;

RETURN CREATE_WIDGET (sample_x_pushbutton_class,
 "Key", ! name
 sample_x_keypad, ! parent
 the_pgm, ! program
 (sample_k_keymap + ' ' + the_string), ! closure
 sample_x_attributes, ! attributes...
 sample_kt_nrecomputesize, 1,
 sample_k_nlabel, the_legend,
 sample_k_nheight, sample_key_height (the_width),
 sample_k_nwidth, sample_key_width (the_height),
 sample_k_nx, sample_col_to_pix (the_row),
 sample_k_ny, sample_row_to_pix (the_col));
ENDPROCEDURE ! End of the procedure "sample_key_def".

PROCEDURE sample_key_dispatch ! Handles push button widget callbacks.
LOCAL status, ! Variable to contain the return value from
 ! GET_INFO (WIDGET, "callback_parameters",).
blank_index, ! Position of the blank space in the tag string.
temp_array, ! Holds callback parameters.
a_shift_key, ! The SHIFT key in the current key map list.
the_key, ! A string naming a key.
gold_key; ! Name of the GOLD key.
ON_ERROR
 [TPU$_CONTROLC]:
 eve$learn_abort;
 ABORT;
ENDON_ERROR

%status := GET_INFO (widget, "callback_parameters", temp_array);
$widget := temp_array {'widget'};
$widget_tag := temp_array {'closure'};
$widget_reason := temp_array {'reason_code'};

&the_key := EXECUTE ("RETURN(KEY_NAME (" + $widget_tag + "))");
gold_key := GET_INFO (eve$current_key_map_list, "shift_key");
IF the_key = gold_key
THEN
 sample_shift_was_last := TRUE; ! User pressed Gold Key
ELSE
 IF sample_shift_was_last
 THEN
 the_key := KEY_NAME (the_key, SHIFT_KEY);
 ENDIF;
 CASE $widget_reason
 [sample_k_cractivate]:
 EXECUTE (the_key);
 [OTHERWISE]:
 eve_show_key (the_key)

434

Appendix A. Sample DECwindows DECTPU Procedures

 ENDCASE;
 sample_shift_was_last := FALSE;
ENDIF;
RETURN;
ENDPROCEDURE ! End of the procedure "sample_key_dispatch".

! These procedures implement position and
! size calculations for the push button widgets.

PROCEDURE sample_row_to_pix (row) ! Converts a row number to the
 ! pixel-based measuring system.
RETURN sample_k_keypad_border +
(row * (sample_k_key_height + (sample_k_key_height
 / sample_k_button_border_frac)));
ENDPROCEDURE ! End of the procedure "sample_row_to_pix".

PROCEDURE sample_col_to_pix (col) ! Converts a column number to the
 ! pixel-based measuring system.
RETURN sample_k_keypad_border +
col * (sample_k_key_width + (2* sample_k_button_border_frac));
ENDPROCEDURE ! End of the procedure "sample_col_to_pix".

PROCEDURE sample_key_height (given_height) ! Converts the y dimension
 ! from rows to pixels.
IF given_height = 1
THEN
 RETURN sample_k_key_height;
ELSE
 RETURN ((sample_k_key_height * given_height)
 + (sample_k_key_height / sample_k_button_border_frac)
 * (given_height - 1));
ENDIF;
ENDPROCEDURE ! End of the procedure "sample_key_height".

PROCEDURE sample_key_width (given_width) ! Converts the x dimension
 ! from rows to pixels.
IF given_width = 1
THEN
 RETURN sample_k_key_width;
ELSE
 RETURN ((sample_k_key_width * given_width)
 + (sample_k_key_width / sample_k_button_border_frac)
 * (given_width - 1));
ENDIF;
ENDPROCEDURE ! End of the procedure "sample_key_width".

● When you create widgets directly in DECTPU (that is, without using the Resource Manager to
manipulate widgets defined in a UID file), you must define each class of widget. For example,
a widget can belong to a push button, dialog box, menu, or another similar class of widget.
The DEFINE_ WIDGET_CLASS built-in procedure tells DECTPU the widget class name and
creation entry point for the class of widget. DEFINE_WIDGET_CLASS also returns an ID for
that widget class. Define a widget class for each widget only once in a DECTPU session.

● With CREATE_WIDGET, you can create an instance of a widget for which you have a widget
class ID. An instance is one occurrence of a widget of a given class. For example, EVE has
many menu widgets, each of which is an instance of a menu widget.

This example creates a dialog box widget to contain the mouse pad.

● Each of the keys of the mouse pad is managed. However, they do not become visible until their
parent, the dialog box widget in variable SAMPLE_X_ KEYPAD, is managed.

This example creates a dialog box widget to contain the mouse pad.

435

Appendix A. Sample DECwindows DECTPU Procedures

● Managing a widget whose parent is visible causes that widget and all its managed children to
become visible.

● GET_INFO (WIDGET, "callback_parameters", array) returns the callback information in the
array parameter. For more information about using this built-in, see the built-in's description in
GET_INFO.

● When each key widget of the mouse pad is created, the closure value for the widget is set to the
string that corresponds to the name of the key that the widget represents. This statement uses
the EXECUTE built-in to translate the string into a key name.

A.2. Implementing an EDT-Style APPEND
Command
Example A.2, "EVE Procedure That Implements a Variant of the EDT APPEND Command" shows one of
the ways an application can use the GET_ CLIPBOARD built-in. This procedure is based on the EVE
procedure EVE$EDT_ APPEND. The original version is in SYS$EXAMPLES:EVE$EDT.TPU.

The procedure EVE$EDT_APPEND appends the currently selected text to the contents of the clipboard
if you have activated the clipboard; otherwise, the procedure appends the current selection to the
contents of the Insert Here buffer.

This example uses the following global variables and procedures from EVE:

● EVE$MESSAGE—A procedure that translates the specified message code into text and displays the
text in the message buffer.

● EVE$$RESTORE_POSITION—A procedure that repositions the editing point to the location
indicated by the specified window and marker.

● EVE$LEARN_ABORT—A procedure that aborts a learn sequence.

● EVE$SELECTION—A procedure that returns a range containing the current selection. This can be
the select range, the found range, or the text of the global selection.

● EVE$$TEST_IF_MODIFIABLE—A procedure that checks whether a buffer can be modified.

● EVE$X_DECWINDOWS_ACTIVE—A Boolean global variable that is true if DECTPU is using
the DECwindows screen updater. If DECTPU is not using DECwindows, the DECwindows features
are not available.

● EVE$$X_STATE_ARRAY—A global variable of type array describing various EVE flags and data.
This variable is private to EVE and should not be used by user routines.

● EVE$$EDT_APPEND_PASTE—Procedure that appends text to the INSERT HERE buffer.

Example A.2. EVE Procedure That Implements a Variant of the EDT APPEND
Command

PROCEDURE eve$edt_append ! Implements EVE's version of
 ! the EDT APPEND command.

LOCAL saved_mark, ! Marks the editing point at the
 ! beginning of the procedure.

436

Appendix A. Sample DECwindows DECTPU Procedures

 remove_range, ! Stores the currently selected text.

 old_string, ! Stores the text that was in the clipboard.

 new_string, ! Stores the old contents of the clipboard
 ! plus the currently selected text.
remove_status; ! Indicates whether the selected text
 ! should be removed.
ON_ERROR
 [TPU$_CLIPBOARDNODATA]:
 eve$message (EVE$_NOINSUSESEL);
 eve$$restore_position (saved_mark);
 eve$learn_abort;
 RETURN (FALSE);
 [TPU$_CLIPBOARDLOCKED]:
 eve$message (EVE$_CLIPBDREADLOCK);
 eve$$restore_position (saved_mark);
 eve$learn_abort;
 RETURN (FALSE);
 [TPU$_CONTROLC]:
 eve$$restore_position (saved_mark);
 eve$learn_abort;
 ABORT;
 [OTHERWISE]: eve$$restore_position (saved_mark);
 eve$learn_abort;
ENDON_ERROR;

remove_range := eve$selection (TRUE,,, eve$x_select_remove_flag);
IF remove_range <> 0
THEN
 saved_mark := MARK (NONE);
 remove_status := eve$test_if_modifiable (GET_INFO (saved_mark, "buffer"));
 IF eve$x_decwindows_active
 THEN
 IF eve$$x_state_array {eve$$k_clipboard}
 THEN
 ! old_string := GET_CLIPBOARD;

 new_string := old_string + str (remove_range);
 WRITE_CLIPBOARD ("", new_string);

 IF remove_status
 THEN
 ERASE (remove_range);
 eve$message (EVE$_REMCLIPBOARD);
 ENDIF;
 ELSE
 eve$$edt_append_paste (remove_range, remove_status);
 ENDIF;
 ELSE
 eve$$edt_append_paste (remove_range, remove_status);
ENDIF;

 POSITION (saved_mark);
 remove_range := 0;
 RETURN (TRUE);
 ENDIF;
 eve$learn_abort;
 RETURN (FALSE);
 ENDPROCEDURE;

● The GET_CLIPBOARD built-in procedure returns a copy of the text stored in the clipboard.
Only data of type string can be retrieved from the clipboard. Any other data type causes
DECTPU to signal an error.

● The WRITE_CLIPBOARD built-in procedure stores data in the clipboard. The first parameter
lets you specify the label for this data. However, the clipboard currently supports only one entry
at a time, so you can use any string for the first parameter.

437

Appendix A. Sample DECwindows DECTPU Procedures

A.3. Testing and Returning a Select Range
The code fragment in Example A.3, "EVE Procedure That Returns a Select Range" shows how a layered
application can use GET_GLOBAL_SELECT. This code fragment is based on the EVE procedure EVE
$SELECTION. The original version is in SYS$EXAMPLES:EVE$CORE.TPU.

The procedure EVE$SELECTION returns a select range, found range, or global selection for use with
EVE commands that operate on the select range.

This example uses the following global variables and procedures from EVE:

● EVE$MESSAGE—A procedure that translates the specified message code into text and displays the
text in the message buffer.

● EVE$LEARN_ABORT—A procedure that aborts a learn sequence.

● EVE$X_DECWINDOWS_ACTIVE—A Boolean global variable that is true if DECTPU is using
DECwindows. If DECTPU is not using DECwindows, the DECwindows features are not available.

Example A.3. EVE Procedure That Returns a Select Range

PROCEDURE eve$selection (
 do_messages; ! Display error messages?
 found_range_arg, ! Use found range? (D=TRUE).
 global_arg, ! Use global select? (D=FALSE).
 null_range_arg, ! Extend null ranges? (D=TRUE).
 cancel_arg) ! Cancel selection? (D=TRUE).
! Return Values: range The selected range.
! 0 There was no select range.
! NONE There was a null range and
! null_range_arg is FALSE.
! string Text of the global selection
! if "global_arg" is TRUE.

LOCAL possible_selection,
 use_found_range,
 use_global,
 extend_null_range,
 cancel_range;
ON_ERROR
 [TPU$_SELRANGEZERO]:
 [TPU$_GBLSELOWNER]:
 eve$message (EVE$_NOSELECT);
 eve$learn_abort;
 RETURN (FALSE);
 [OTHERWISE]:
ENDON_ERROR;
 ! The procedure first tests whether it
 ! has received a parameter directing
 ! it to return a found range or global
 ! selection if no select range has been
 ! created by the user.
IF GET_INFO (found_range_arg, "type") = INTEGER
THEN
 use_found_range := found_range_arg;
ELSE
 use_found_range := TRUE;
ENDIF;
 IF GET_INFO (global_arg, "type") = INTEGER
THEN
 use_global := global_arg;
ELSE

438

Appendix A. Sample DECwindows DECTPU Procedures

 use_global := FALSE;
ENDIF;
! .
! .
! .
 !In the code omitted from this example,
 ! eve$selection returns the appropriate
 ! range if the calling procedure has
 ! requested the user's select range
 ! or a found range.
! .
! .
! .
 ! If there is no found range or select
 ! range, the procedure returns
 ! the primary global selection
 ! if it exists.
IF use_global and eve$x_decwindows_active
THEN
 ! possible_selection := GET_GLOBAL_SELECT (PRIMARY,

 "STRING");
 IF GET_INFO (possible_selection, "type") = STRING
 THEN
 RETURN (possible_selection);
 ENDIF;
 ENDIF;
.
.
.
 RETURN (0); ! Indicates failure.
 ENDPROCEDURE;

● With DECwindows, you can designate more than one global selection. The two most common
global selections are the primary and secondary selections. A global selection can be owned by
only one DECwindows application at a time.

The GET_GLOBAL_SELECT built-in returns the data for the requested selection in the
requested format. If the requested selection is not currently owned by any application, or if the
owner cannot return it in the requested format, then GET_GLOBAL_SELECT returns TPU
$K_UNSPECIFIED.

If the selected information contains multiple records, the records are separated by the line-feed
character (ASCII (10)).

A.4. Handling Callbacks from a Scroll Bar
Widget
Example A.4, "EVE Procedure That Handles Callbacks from a Scroll Bar Widget" shows one of the ways
an application can get values for widget resources. The procedure is based on the EVE procedure eve
$scroll_dispatch. The original version is in SYS$EXAMPLES:EVE$DECWINDOWS.TPU.

The procedure eve$scroll_dispatch is the callback routine that handles callbacks from scroll bar widgets.
The portion of the procedure shown here determines where to position the editing point based on how
you have changed the scroll bar slider. The procedure fetches the position of the slider with the built-
in GET_INFO (widget_variable, "widget_info") and positions the editing point to the line in the buffer
equivalent to the slider's position in the scroll bar. For more information about the resource names used
with the scroll bar widget, see the VMS DECwindows Toolkit Routines Reference Manual.

EVE uses the following constants in this procedure:

439

Appendix A. Sample DECwindows DECTPU Procedures

● "increment"—The resource name for the amount that the scroll bar slider position is to be
incremented or decremented when a scroll bar button is pressed.

● "pageIncrement"—The resource name for the amount that the scroll bar slider position is to be
incremented or decremented when a click occurs within the scroll bar above or below the slider.

● "maximum"—The resource name for the maximum value of the scroll bar slider position.

● "minimum"—The resource name for the minimum value of the scroll bar slider position.

● "value"—The resource name for the top of the scroll bar slider position.

● "sliderSize"—The resource name for the size of the slider.

● 2—A constant for the callback reason code XmCR_VALUE_CHANGED. This reason code
indicates that you changed the value of the scroll bar slider.

● "closure"—An index for the array returned by GET_INFO (WIDGET, "callback_parameters",
array).

● "reason_code"—An index for the array returned by GET_INFO (WIDGET, "callback_parameters",
array).

● "widget"—An index for the array returned by GET_INFO (WIDGET, "callback_parameters",
array).

Example A.4. EVE Procedure That Handles Callbacks from a Scroll Bar Widget

PROCEDURE eve$scroll_dispatch
LOCAL status,
 widget_called,
 widget_tag,
 widget_reason,
 scroll_bar_values,
 linenum,
 temp_array,
 .
 .
 .;
ON_ERROR
 [TPU$_CONTROLC]:
 eve$learn_abort;
 ABORT;
ENDON_ERROR

!status := GET_INFO (WIDGET, "callback_parameters", temp_array);
widget_called := temp_array {"widget;
widget_tag := temp_array {"closure"};
widget_reason := temp_array {"reason_code"};
POSITION (eve$$scroll_bar_window {widget_called});
 .
 .
 .
scroll_bar_values := CREATE_ARRAY;
scroll_bar_values {"increment"} := 0;
scroll_bar_values {"pageIncrement"} := 0;
scroll_bar_values {"maximum"} := 0;
scroll_bar_values {"minimum"} := 0;
scroll_bar_values {"value"} := 0;
scroll_bar_values {"sliderSize"} := 0;
"status := GET_INFO (widget_called, "widget_info", scroll_bar_values);

! The deleted statements scroll the window as dictated

440

Appendix A. Sample DECwindows DECTPU Procedures

! by the callback reason.
 .
 .
 .
CASE widget_reason
 .
 .
 .
 [2]:
 IF (scroll_bar_values {"value"} =
 scroll_bar_values {"minimum"})
 THEN
 POSITION (beginning_of (current_buffer));
 ELSE
 POSITION (scroll_bar_values {"value"});

 ENDIF;
 .
 .
 .
ENDCASE;
! .
! .
! .
ENDPROCEDURE;

● GET_INFO (WIDGET, "callback_parameters", array) returns an array that contains the values
for the current callback. The array elements are indexed by the strings "widget", "closure", and
"reason_code" that reference the widget that is calling back, the widget's closure value, and the
reason code for the callback.

● With GET_INFO (WIDGET, "widget_info", array), you can fetch information from a widget.
The array parameter is indexed by the resource names associated with the specified widget.
Resource names are case sensitive and the set of supported resources varies from one widget
type to another. When you use GET_INFO (widget, "widget_info", array), DECTPU queries
the widget for the requested information and puts the returned information in the array
elements. Any previous values in the array are lost.

● With POSITION (integer), you can move the editing point to the record specified by the
parameter integer. DECTPU interprets this parameter as a record number.

A.5. Reactivating a Select Range
Example A.5, "EVE Procedure That Reactivates a Select Range" shows one of the ways an application
can use the SET (GLOBAL_SELECT) built-in. The procedure is based on the EVE procedure
EVE$RESTORE_PRIMARY_SELECTION. The original version is in SYS$EXAMPLES:EVE
$MOUSE.TPU.

The procedure eve$restore_primary_selection reactivates EVE's select range when you press the
Ctrl/Shift/E4 key. The select range was deactivated when EVE lost the primary selection to another
DECwindows application.

Example A.5. EVE Procedure That Reactivates a Select Range

PROCEDURE eve$restore_primary_selection
LOCAL saved_position;
ON_ERROR
 [TPU$_CONTROLC]:
 eve$$restore_position (saved_position);
 eve$learn_abort;
 ABORT;

441

Appendix A. Sample DECwindows DECTPU Procedures

 [OTHERWISE]:
 eve$$restore_position (saved_position);
 ENDON_ERROR;
IF NOT eve$x_decwindows_active
THEN
 RETURN (FALSE);
ENDIF;
saved_position := MARK (FREE_CURSOR);
IF GET_INFO (eve$$x_save_select_array, "type") = ARRAY
THEN
 CASE eve$$x_save_select_array {"type"}
 [RANGE]:
 eve$select_a_range (eve$$x_save_select_array {"start"},
 eve$$x_save_select_array {"end"});
 eve$$x_state_array {eve$$k_select_all_active} :=
 eve$$x_save_select_array
 {"select_all"};
 POSITION (eve$$x_save_select_array {"current"});
 eve$start_pending_delete;
 [MARKER]:
 POSITION (eve$$x_save_select_array {"start"});
 eve$x_select_position := select (eve$x_highlighting);
 POSITION (eve$$x_save_select_array {"end"});
 eve$start_pending_delete;
 [OTHERWISE]:
 RETURN (FALSE);
ENDCASE;

eve$$restore_position (saved_position);
eve$$found_post_filter; ! This is necessary if the
 ! cursor is outside the selection.

eve$$x_save_select_array {"type"} := 0;
UPDATE (current_window);
SET (GLOBAL_SELECT, SCREEN, PRIMARY); ! This statement
 ! requests ownership of
 ! the primary global selection.
 RETURN (TRUE);
ENDIF;
RETURN (FALSE);
ENDPROCEDURE;

A.6. Copying Selected Material from EVE to
Another DECwindows Application
Example A.6, "EVE Procedure That Implements COPY SELECTION" shows one of the ways a layered
application can use the WRITE_GLOBAL_SELECT built-in. The procedure is based on the EVE
procedure EVE$WRITE_GLOBAL_SELECT. The original version is in SYS$EXAMPLES:EVE
$MOUSE.TPU.

The procedure implements the operation of copying selected material from DECwindows EVE to
another DECwindows application.

The procedure determines what property of the primary global selection is being requested, gets the
value of the appropriate property by using a GET_INFO statement or an EVE procedure, and sends the
information to the requesting application.

Example A.6. EVE Procedure That Implements COPY SELECTION

PROCEDURE eve$write_global_select ! EVE uses this procedure
 ! to respond to requests
 ! for information about
 ! selections.

442

Appendix A. Sample DECwindows DECTPU Procedures

LOCAL saved_position,
 the_data,
 temp_array,
 total_lines,
 the_line,
 status,
 eob_flag,
 percent;
ON_ERROR
 [OTHERWISE]:
 eve$$restore_position (saved_position);
ENDON_ERROR;

saved_position := MARK (FREE_CURSOR);
IF NOT eve$x_decwindows_active
THEN
 RETURN (FALSE);
ENDIF;

the_data := NONE;
temp_array := GET_INFO (SCREEN, "event", GLOBAL_SELECT);
 ! Finds out which global selection and which property
 ! of the global selection are the subject of the
 ! information request.
CASE temp_array {2} ! Determines the property requested by the other application.
 ["STRING", "TEXT"]: ! If one of these strings is requested, the
 ! procedure sends the text in the global
 ! selection to the requesting application.
 CASE temp_array {1} ! Checks which global selection was specified.
 [PRIMARY]:
 IF eve$x_select_position <> 0
 THEN
 POSITION (GET_INFO (eve$x_select_position, "buffer"));
 IF GET_INFO (eve$x_select_position, "type") = RANGE
 THEN
 the_data := STR (eve$x_select_position);
 ELSE
 IF GET_INFO (eve$x_select_position, "type") = MARKER
 THEN
 the_data := STR (eve$select_a_range (eve$x_select_position,
 MARK (FREE_CURSOR)));
 ELSE
 the_data := NONE;
 ENDIF;
 ENDIF;
 eve$$restore_position (saved_position);
 ENDIF;
 [OTHERWISE]:
 the_data := NONE;
 ENDCASE;
 [OTHERWISE]:
 the_data := NONE; ! The procedure does not send data if
 ! the requesting application has asked
 ! for something other than the text,
 ! the file name, or the line number.
ENDCASE;

WRITE_GLOBAL_SELECT (the_data); ! This statement sends the
 ! requested information to
 ! the requesting application.
ENDPROCEDURE;

443

Appendix A. Sample DECwindows DECTPU Procedures

444

Appendix B. DECTPU Messages
This appendix presents the messages produced by DECTPU. The table below lists the messages
alphabetically by their abbreviations. The text of the message and its severity level appears with each
abbreviation.

Abbreviation Message Severity Level

ACCVIO access violation, reason mask='xx', virtual
address='xxxxxxxx',PC='xxxxxxxx',
PSL='xxxxxxxx'

FATAL

ADJSCROLLREG scrolling parameters altered to top: 'top',
bottom: 'bottom', amount: 'amount'

INFORMATIONAL

AMBIGSYMUSED ambiguous symbol 'name' used as procedure
parameter

INFORMATIONAL

ARGMISMATCH parameter 'number's' data type, 'type',
unsupported

ERROR

ASYNCACTIVE journal file prohibited with asynchronous
handlers declared

ATLINE at line 'integer' INFORMATIONAL
ATPROCLINE at line 'integer' of procedure 'name' INFORMATIONAL
BACKUPERR error making backup copy of 'file-spec' ERROR
BADASSIGN target of the assignment cannot be a

function/keyword
ERROR

BADBUFWRITE error occurred writing buffer 'buffer name' WARNING
BADCASELIMIT CASE constant outside CASE limits ERROR
BADCASERANGE invalid CASE range ERROR
BADCHAR unrecognized character in input ERROR
BADDELETE cannot modify constant integer, keyword, or

string
ERROR

BADDISPVAL display value = 'integer', must be between
'integer' and 'integer'

WARNING

BADEXITIF EXITIF occurs outside a LOOP ERROR
BADFIRSTLINE first line = 'integer', must be between

'integer' and 'integer'
WARNING

BADHIERARCHY invalid hierarchy identifier specified ERROR
BADJOUCHAR expected character in journal file WARNING
BADJOUCOM journaled command file was 'string',

recovering with 'string'
ERROR

BADJOUCPOS journaled starting character was 'integer',
recovering with 'integer'

ERROR

BADJOUEDIT journaled edit mode was 'string', recovering
with 'string'

ERROR

BADJOUEIGHT journaled eightbit was 'string', recovering
with 'string'

ERROR

445

Appendix B. DECTPU Messages

BADJOUFILE operation terminated due to error in journal
file access

ERROR

BADJOUINIT journaled init file was 'string', recovering
with 'string'

ERROR

BADJOUINPUT journaled input file was 'string', recovering
with 'string'

ERROR

BADJOUKEY expected key in journal file WARNING
BADJOULINE journaled line editing was 'string',

recovering with 'string'
ERROR

BADJOULPOS journaled starting line was 'integer',
recovering with 'integer'

ERROR

BADJOUPAGE journaled page length was 'integer',
recovering with 'integer'

ERROR

BADJOUSEC journaled section file was 'string', recovering
with 'string'

ERROR

BADJOUSTR expected string in journal file WARNING
BADJOUTERM journaled terminal type was 'string',

recovering with 'string'
ERROR

BADJOUWIDTH journaled width was 'integer', recovering
with 'integer'

ERROR

BADKEY 'keyword' is an invalid keyword WARNING
BADLENGTHCHANGE terminal will not support change of length WARNING
BADLOGIC internal logic error detected FATAL
BADMARGINS margins specified incorrectly WARNING
BADPROCNAME variable used as a procedure ERROR
BADPROMPTLEN prompt area length = 'integer', must be

between 'integer' and 'integer'
WARNING

BADREFCNT ref count: 'ccc', zap count: 'zzz', address:
'xxxxxxxx'

FATAL

BADREQUEST request "'name'" of 'name' is not understood WARNING
BADSCREENWIDTH terminal must be wider than widest window,

'integer' columns
WARNING

BADSECTION bad section file ERROR
BADSTATUS return status 'xxxxxxxx' different from last

signal 'xxxxxxxx'
FATAL

BADSTRCNT invalid string count found in journal file WARNING
BADSYMTAB bad symbol table ERROR
BADUSERDESC descriptor from user routine invalid or

memory inaccessible
ERROR

BADVALUE integer value 'integer' is outside specified
limits

ERROR

BADWIDTHCHANGE terminal will not support change of width WARNING

446

Appendix B. DECTPU Messages

BADWINDADJUST attempt to make window less than 1 line
long, no adjustment

WARNING

BADWINDLEN window length = 'integer', must be between
'integer' and 'integer'

WARNING

BEGOFBUF attempt to move past the beginning of buffer
'buffer name'

WARNING

BINARYOPER operand combination 'type' 'oper' 'type'
unsupported

WARNING

BITMAPREADERR could not read bitmap file 'name' ERROR
BOTLINETRUNC calculated new last line 'integer', changed to

'integer'
INFORMATIONAL

BUILTININV built-in is invalid at this time ERROR
BUILTOBSOLETE built-in no longer supported INFORMATIONAL
CALLUSERFAIL CALL_USER routine failed with status

%X'status'
WARNING

CANCELQUIT QUIT canceled by request WARNING
CANNOTUNSEL cannot unselect item from unselect action

routine
ERROR

CAPTIVE unable to create a subprocess in a captive
account

WARNING

CLIPBOARDFAIL unexpected clipboard failure WARNING
CLIPBOARDLOCKED clipboard is locked by another process WARNING
CLIPBOARDNODATA clipboard does not contain the requested

data
WARNING

CLIPBOARDZERO clipboard data has 0 length WARNING
CLOSEDIC error closing the dictionary file ERROR
CLOSEIN error closing input file 'file-spec' ERROR
CLOSEOUT error closing output file 'file-spec' ERROR
CNVERR error occurred in the conversion routine ERROR
COMPILED compilation completed without errors SUCCESS
COMPILEFAIL compilation aborted WARNING
CONSTRTOOLARGE constant string too large ERROR
CONTRADEF contradictory definition for variable or

constant 'name'
ERROR

CONTROLC operation aborted by Ctrl/C ERROR
CREATED file 'file-spec' created SUCCESS
CREATEFAIL unable to activate subprocess WARNING
DEBUG breakpoint at line 'integer' SUCCESS
DELETEFAIL unable to terminate subprocess WARNING
DICADD 'word' has been added to a dictionary as

'word'
SUCCESS

447

Appendix B. DECTPU Messages

DICDEL 'word' has been removed from 'word' of a
dictionary

SUCCESS

DICUPDERR error updating dictionary file ERROR
DIVBYZERO divide by zero ERROR
DUPBUFNAME buffer 'name' already exists WARNING
DUPKEYMAPLIST attempt to define a duplicate key-map list

'key-map-list-name'
WARNING

DUPKEYMAP attempt to define a duplicate key map 'key-
map-name'

WARNING

EMPTYKMLIST key-map list 'key-map-list-name' does not
contain any key maps

WARNING

ENDOFBUF attempt to move past the end of buffer
'buffer name'

WARNING

ERRSYMACTIVE special error symbol already active WARNING
EXECUTEFAIL execution aborted WARNING
EXITFAIL attempt to EXIT was unsuccessful WARNING
EXITING editor exiting SUCCESS
EXPCOMPLEX expression too complex ERROR
EXPECTED one of the following symbols was expected: INFORMATIONAL
EXTNOTFOUND extension 'name' not found ERROR
EXTRANEOUSARGS one or more extraneous arguments specified ERROR
FACTOOLONG facility name, 'name', exceeds maximum

length 'integer'
WARNING

FAILURE internal DECTPU failure detected at PC
'number'

FATAL

FAILURE_STATUS facility 'name' returned failure status of
'xxxxxxxx'

ERROR

FENCEPOST no visible record found in specified range WARNING
FILECONVERTED file format is being converted to a supported

type
ERROR

FILEIN 'count' line(s) read from file 'filename' SUCCESS
FILEOUT 'count' line(s) written to file 'filename' SUCCESS
FLAGTRUNC value of message flags exceeds maximum

value 15, truncated
WARNING

FREEMEM memory deallocation failure FATAL
FROMBUILTIN called from built-in 'name' INFORMATIONAL
FROMLINE called from line 'integer' INFORMATIONAL
FROMPROCLINE called from line 'integer' of procedure 'name' INFORMATIONAL
GBLSELOWNER you are the global selection owner WARNING
GETMEM memory allocation failure (Insufficient

virtual memory)
ERROR

HIDDEN global variable 'name' by declaration INFORMATIONAL

448

Appendix B. DECTPU Messages

ICONNAMERDERR could not read the application icon name ERROR
IDMISMATCH section NOT restored, section file must be

rebuilt
FATAL

ILLCONDIT illegal compilation conditional ERROR
ILLEGALTYPE illegal data type ERROR
ILLPATAS pattern assignment target only valid in

procedure 'name'
ERROR

ILLREQUEST request "'name'" is invalid WARNING
ILLSEVERITY illegal severity of 'value' specified, error

severity used
WARNING

ILLSYSRECMODE invalid default system record mode ERROR
INBUILTIN occurred in built-in 'name' INFORMATIONAL
INCKWDCOM inconsistent keyword combination WARNING
INDEXTYPE array index data type, 'type', unsupported WARNING
INPUT_CANCELED input request canceled WARNING
INSVIRMEM insufficient virtual memory FATAL
INVACCESS invalid file access specified FATAL
INVBUFDELETE cannot delete a permanent buffer WARNING
INVCHARSET unrecognized character set; using default

character set DEC_MCS
WARNING

INVDEVTYPE invalid device type FATAL
INVFAOPARAM FAO parameter 'integer' must be string or

integer
WARNING

INVGBLSELDATA the selected data cannot be processed WARNING
INVINTERFACE unrecognized interface ERROR
INVIOCODE invalid Operation Code passed to an I/O

operation
ERROR

INVITEMCODE invalid item code specified in list FATAL
INVNUMSTR invalid numeric string WARNING
INVPARAM parameter 'number''s data type, 'type',

illegal; expected 'type'
ERROR

INVRANGE invalid range enclosure specified WARNING
INVTABSPEC tabs specification incorrect, not changed WARNING
INVTIME invalid time interval WARNING
INVWIDGETCLASS the widget class cannot be defined ERROR
JNLACTIVE asynchronous actions prohibited when

journal file open
WARNING

JNLNOTOPEN journal file not open, recovery aborted ERROR
JNLOPEN journal file already open ERROR
JOURNALBEG journal of edit session started INFORMATIONAL

449

Appendix B. DECTPU Messages

JOURNALCLOSE journal file successfully closed, journaling
stopped

SUCCESS

JOURNALEOF end of journal file found unexpectedly WARNING
JRNLBUFBEG journaling started for buffer 'buffer name' INFORMATIONAL
JRNLNOTSAFE buffer 'buffer name' is not safe for

journaling
WARNING

JRNLOPENERR error opening or locking journal file
'journal-file-spec'

ERROR

JRNLOPEN journal file already open for buffer 'buffer
name'

WARNING

KEYMAPNOTFND key map 'key-map-name' not found in key-
map list 'key-map-listname'

WARNING

KEYSUPERSEDED definition of key 'name' superseded INFORMATIONAL
KEYWORDPARAM keyword 'name' used as procedure/variable/

constant
ERROR

LINENOTMOD attempt to change unmodifiable line(s) WARNING
LINETOOLONG line is maximum length, cannot add text to

it
WARNING

MAXMAPPEDBUF a single buffer can be mapped to at most
'count' window(s)

WARNING

MAXVALUE maximum value is 'integer' WARNING
MINVALUE minimum value is 'integer' WARNING
MISSINGQUOTE missing quote ERROR
MISSYMTAB missing symbol table ERROR
MIXEDTYPES operator with mixed or unsupported data

types
ERROR

MODRANGEMARKS MODIFY_RANGE requires either two
marks or none

ERROR

MOUSEINV mouse location information is invalid WARNING
MOVETOCOPYTEXT moving unmodifiable line(s) from buffer

'string' changed to copy
WARNING

MOVETOCOPY move from unmodifiable buffer 'string'
changed to copy

WARNING

MSGBUFSET attempt to change modifiable setting of
message buffer

WARNING

MSGNOTFND message was not found; the default message
has been returned

WARNING

MULTIDEF parameter/local/constant 'name' multiply
defined

ERROR

MULTIPLENAMES there is more than one name matching, all
are returned

WARNING

MULTISELECT multiple identical CASE selectors ERROR
MUSTBECONST expression must be a compile-time constant ERROR

450

Appendix B. DECTPU Messages

MUSTBEONE string must be 1 character long WARNING
NEEDFILENAME type file name for buffer 'name' (press

RETURN to not write it):
SUCCESS

NEEDTOASSIGN built-in must return a value ERROR
NOASSIGNMENT expression without assignment ERROR
NOBREAKPOINT no breakpoint is active WARNING
NOCACHE insufficient virtual memory to allocate a

new cache
ERROR

NOCALLUSER could not find a routine for CALL_USER to
invoke

ERROR

NOCHARREAD no character was read by the READ_CHAR
built-in

WARNING

NOCLA no conversion source has been specified yet WARNING
NOCOPYBUF cannot COPY a buffer to itself WARNING
NOCURRENTBUF no buffer has been selected as default WARNING
NODEFINITION key 'keyname' currently has no definition WARNING
NODICENT no entry found in a dictionary WARNING
NODICUPD the dictionary is restricting updating WARNING
NODIC no dictionary available in this editing session WARNING
NOENDOFLINE returning a range of text with no end of line SUCCESS
NOEOBSTR cannot return a string at end of buffer WARNING
NOFILEACCESS unable to access file 'name' ERROR
NOFILEROUTINE no routine specified to perform file I/O FATAL
NOFOCUSOWNER no input focus owner WARNING
NOGBLSELDATA no global selection data WARNING
NOGBLSELOWNER there is no global selection owner WARNING
NOJOURNAL editing session is not being journaled WARNING
NOKEYMAPLIST attempt to access an undefined key-map list

'key-map-list-name'
WARNING

NOKEYMAP attempt to access an undefined key map
'key-map-name'

WARNING

NOLICENSE DECTPU license validation failed FATAL
NONAMES there are no names matching the one

requested
WARNING

NONANSICRT SYS$INPUT must be supported CRT
NOPARENT there is no parent process to attach to WARNING
NOPROCESS no subprocess to interact with WARNING
NOREDEFINE built-in procedure 'name' cannot be

redefined

NORETURNVALUE built-in does not return a value
NOSELECT no select active WARNING

451

Appendix B. DECTPU Messages

NOSHOWBUF variable SHOW_BUFFER does not exist or
is not a buffer

WARNING

NOTARRAY indexed variable is not an array WARNING
NOTDEFINABLE that key is not definable WARNING
NOTERRORKEYWORD error handler selector is not an error

keyword
ERROR

NOTIMPLEMENTED built-in compiled by 'name' is not
implemented by 'name'

ERROR

NOTJOURNAL file 'file' is not a journal file ERROR
NOTLEARNING you have not begun a learn sequence WARNING
NOTMODIFIABLE attempt to change unmodifiable buffer

'string'
WARNING

NOTSAMEBUF the markers are not in the same buffer WARNING
NOTSUBCLASS object is not a subclass of WindowObjClass WARNING
NOTYET not yet implemented WARNING
NOWINDOW attempt to position the cursor outside all of

the mapped windows
WARNING

NO NO INFORMATIONAL
NULLSTRING null string used WARNING
OCCLUDED built-in/keyword 'name' occluded by

declaration
INFORMATIONAL

ONDELRECLIST attempt to access a record on the deleted list FATAL
ONELEARN cannot start a learn sequence while one is

active
WARNING

ONESELECT select already active, maximum 1 per buffer WARNING
ONOROFF parameter 'number' must be ON, OFF, true,

or false
ERROR

OPENDIC error opening the dictionary file ERROR
OPENIN error opening 'input-file' as input ERROR
OPENOUT error opening 'output-file' as output ERROR
OVERLAPRANGE overlapping ranges, operation terminated WARNING
PARSEFAIL error parsing 'file-spec' WARNING
PARSEOVER parser stack overflow ERROR
PREMATUREEOF premature end-of-file detected ERROR
PRESSRET press RETURN to continue... SUCCESS
PROCESSBEG subprocess activated SUCCESS
PROCESSEND subprocess terminated SUCCESS
PROCSUPERSEDED definition of procedure 'name' superseded INFORMATIONAL
QUITTING editor quitting SUCCESS
READABORTED READ_CHAR, READ_KEY, or

READ_LINE built-in was aborted
WARNING

452

Appendix B. DECTPU Messages

READERR error reading 'input-file-spec' ERROR
READLINEHELP DECTPU is executing the READ_LINE

built-in function, enter text or cancel
INFORMATIONAL

REALLYQUIT buffer modifications will not be saved,
continue quitting (Y or N)?

SUCCESS

REALLYRECOVER continue recovering (Y or N)? SUCCESS
RECJNLOPEN journal file open, recovery status unchanged ERROR
RECOVERABORT recovery aborted by journal file

inconsistency, journal file closed
WARNING

RECOVERBEG recovery started SUCCESS
RECOVERBUFBEG recovery started for buffer 'buffer name' SUCCESS
RECOVERBUFEND recovery complete for buffer 'buffer name' SUCCESS
RECOVERBUFFILE1 can not recover from file 'file name' SUCCESS
RECOVERBUFFILE2 type new specification for original input file: SUCCESS
RECOVERBUFFILE3 type new specification for inserted file: SUCCESS
RECOVERBUFFILE4 can not find inserted file 'file name' SUCCESS
RECOVEREND recovery complete SUCCESS
RECOVERFAIL recovery terminated abnormally, journal file

inconsistency
ERROR

RECOVERQUIT no file name specified, nothing recovered WARNING
RECURLEARN learn sequence replay halted due to

recursion
WARNING

REFRESH_NEEDED screen refresh needed WARNING
REGWIDDUP registration string already associated with a

different widget
WARNING

REPLAYFAIL an inconsistency has been discovered,
halting execution

WARNING

REPLAYWARNING an inconsistency has been discovered,
continuing execution

WARNING

REQARGSMISSING one or more required arguments missing ERROR
REQUIRESDECW feature requires the DECTPU DECwindows

screen updater
ERROR

REQUIRESMOTIF feature requires the DECTPU Motif screen
updater

ERROR

REQUIRESTERM feature requires a terminal ERROR
REQUIRESULTRIX feature not available on this operating

system
ERROR

REQUIRESVMS feature not available on this operating
system

ERROR

RESTOREFAIL error during RESTORE operation ERROR
REVERSECASE CASE limits were reversed INFORMATIONAL
ROUND FORWARD was rounded to the top INFORMATIONAL

453

Appendix B. DECTPU Messages

SAVEAMBIGSYM saving ambiguous symbol 'name' INFORMATIONAL
SAVEERROR error during SAVE operation ERROR
SAVEUNDEFPROC saving undefined procedure 'name' INFORMATIONAL
SCANADVANCE *** Scanner advanced to "'name'" *** ERROR
SEARCHFAIL error searching for 'file-spec'
SECTRESTORED 'count' procedure(s), 'count' variable(s),

'count' key(s) restored
INFORMATIONAL

SECTSAVED 'count' procedure(s), 'count' variable(s),
'count' key(s) saved

SUCCESS

SECTUNDEFPROC saved 'count' undefined procedure(s), 'count'
ambiguous symbol(s)

WARNING

SELRANGEZERO select range has 0 length WARNING
SENDFAIL unable to send to subprocess WARNING
SOURCELINE at source line 'integer' INFORMATIONAL
STACKOVER stack overflow during compilation ERROR
STATOOLONG truncating status line to 'count' characters INFORMATIONAL
STRNOTFOUND string not found WARNING
STRTOOLARGE string greater than 65535 characters ERROR
STRTOOLNG string is too long for a conversion source ERROR
SUCCESS successful completion SUCCESS
SYMDELETE *** Error symbol deleted *** ERROR
SYMINSERT *** "'name'" inserted before error symbol

ERROR

SYMREPLACE *** Error symbol replaced by "'name'" *** ERROR
SYMTBLFUL all symbol tables are full ERROR
SYNTAXERROR syntax error ERROR
SYSERROR system service error ERROR
TEXT 'message' INFORMATIONAL
TIMEOUT built-in timed out WARNING
TOOFEW too few arguments ERROR
TOOMANYPARAM too many formal parameters/local variables ERROR
TOOMANYRECS too many records ERROR
TOOMANY too many arguments ERROR
TOPLINETRUNC calculated new first line 'integer', changed to

1
INFORMATIONAL

TRUNCATE line truncated to 'count' characters WARNING
TYPEREDEFINE widget resource type 'name' has been

redefined to data type 'name'
WARNING

UIDICONERR could not read icon 'name' from UID file ERROR
UIDOPENERR could not open the specified UID file(s) ERROR

454

Appendix B. DECTPU Messages

UIDWIDGETERR could not read widget 'name' from UID file ERROR
UKNFACILITY unknown facility code specified WARNING
UNARYOPER operand combination 'oper' 'type'

unsupported
WARNING

UNDEFINEDPROC undefined procedure call 'name' ERROR
UNDWIDCLA undefined widget class specified WARNING
UNKCSCOMP ignoring unknown compound string

component
WARNING

UNKESCAPE unknown escape sequence read WARNING
UNKKEYWORD an unknown keyword has been used as an

argument
ERROR

UNKLEXICAL unknown lexical element ERROR
UNKOPCODE unknown opcode 'value' ERROR
UNKTYPE unknown data type 'value' ERROR
UNKWNDESC unknown descriptor type ERROR
UNLINKWORKERR error unlinking work file ERROR
UNREACHABLE unreachable code INFORMATIONAL
WIDMISMATCH parameter 'number's class, 'class',

unsupported
ERROR

WINDNOTMAPPED the window is not mapped to a buffer WARNING
WINDNOTVIS built-in cannot operate on an invisible

window
WARNING

WORKFILEFAIL error opening the work file ERROR
WRITEERR error writing 'output-file-spec' ERROR
YES YES INFORMATIONAL

455

Appendix B. DECTPU Messages

456

Appendix C. DECTPU Cursor
Behavior
This appendix describes cursor behavior in DECTPU applications.

C.1. Cursor Position Compared to Editing
Point
The cursor position is the location of the cursor in a window. Each window has an independent cursor
position—the location of the cursor when that window becomes the current window.

The cursor position must be within the bounds of the visible window. To move the cursor position, use
the CURSOR_HORIZONTAL or CURSOR_VERTICAL built-in. The cursor position is not necessarily
bound to text.

DECTPU keeps the cursor position as close as possible to the editing point, which is the point in the
buffer where text operations occur. However, the cursor position is not always exactly the same as the
editing point. The editing point may be at a location in a buffer that is not visible in the current window,
or the current buffer may not be mapped to a window at all. In either of these situations, text operations
take place at a point different from the cursor position.

In this situation, the editing point is said to be detached. Being detached is not the same as being
free. The editing point is free when it is in a location not occupied by a character. The editing point
is detached when its location is not visible on the screen. Whenever possible, keep the cursor position
synchronized with the editing point so that text operations are visible.

To move the editing point, use the MOVE_HORIZONTAL, MOVE_VERTICAL, or POSITION built-in.

The editing point is free if it is located before the beginning of a line, after the end of a line, in the
middle of a tab, or beyond the end of a buffer.

Each buffer has its own editing point, which becomes active when that buffer becomes the current
buffer.

Whenever the screen is updated, the cursor position in a window moves to the editing point of the buffer
mapped to that window.

To move the editing point of a buffer to the cursor position of a window, use the POSITION built-in with
a window variable as the parameter. The MAP and ADJUST_WINDOW built-ins position to the window
implicitly and thus also move the editing point to the cursor position.

You can move the editing point without moving the cursor position and the reverse. However, to
avoid confusion, the cursor position and the editing point should be synchronized when an operation
manipulates the contents of a buffer. That is, both the cursor position and the editing point should point
to the same place, or as close as possible. For example, using POSITION (buffer_variable) or POSITION
(marker_variable) may reposition to another buffer without changing the current window. In this state,
if you add self-inserting characters to a buffer, the cursor may not be visible in a window mapped to
the buffer where the characters are inserted. Moreover, if the current buffer is not mapped to a visible
window, there is no visual feedback of the input at all.

457

Appendix C. DECTPU Cursor Behavior

There are various ways to avoid this discrepancy between the cursor position and the editing point,
depending on where a given text operation is to be carried out. If you use POSITION (buffer_variable
) or POSITION (marker_variable) to implement user operations in a given buffer, either map the buffer
to a visible window or position to a window to which the buffer is already mapped and then update the
window. Remember, the screen manager may update the window automatically if you simply exit from
your procedure.

If you position to a buffer or marker to perform some housekeeping operation and then want to restore
the cursor position to its previous location, you should position to the current window (the window in
which the visible cursor is located). This maps the current buffer to the current window and moves the
editing point to the cursor position. Updating the screen at this point has no effect, because the positions
are already synchronized.

C.2. Built-In Padding
The cursor position is not necessarily bound to text. You can move the cursor position to locations where
there is no underlying text, such as left of the left margin, right of the end-of-line, in the middle of a tab,
or on or below the end-of-buffer text.

However, some built-ins require an accurate offset into the current line. If you use such a built-in when
the cursor position points to an area where there is no text, the screen manager inserts padding records
and spaces to bind the current cursor position to a text offset.

The following built-ins cause this padding effect:

APPEND_LINE MOVE_HORIZONTAL
ATTACH MOVE_TEXT
COPY_TEXT MOVE_VERTICAL
CURRENT_CHARACTER READ_FILE
CURRENT_LINE SELECT
CURRENT_OFFSET SELECT_RANGE
ERASE_CHARACTER SPAWN
ERASE_LINE SPLIT_LINE
MARK

The insertion of self-inserting characters also causes padding if the cursor is free.

To determine whether padding will occur if you use one of the built-ins previously listed, use the
following call:

GET_INFO (window_variable, "bound");

If the cursor is to the left of the left margin, the margin is moved to the cursor position and spaces are
inserted to fill the line from the cursor to where the text begins. If the cursor is to the left of the left
margin on a blank line, the margin is moved to the cursor position and no spaces are inserted.

To find out if the cursor position is before the beginning of a line in a particular window, use the
following call:

GET_INFO (window_variable,"before_bol");

458

Appendix C. DECTPU Cursor Behavior

If the cursor is to the right of the end of the line, spaces are inserted from the end of the line to the
cursor position. To find out if the cursor is to the right of the end of a line in a particular window, use the
following call:

GET_INFO (window_variable,"beyond_eol");

If the cursor is in the middle of a tab, spaces are inserted from the tab character to the current cursor
position. The tab character is not deleted; it is simply moved to the left. To find out if the cursor is in the
middle of a tab in a particular window, use the following call:

GET_INFO (window_variable, "middle_of_tab");

If the cursor is below the bottom of the buffer, blank lines are added from the end-of-buffer text to the
line the cursor is on. To insert these blank lines, DECTPU uses the left margin set for the buffer. If
necessary, the line the cursor is on is then padded, depending on whether the cursor is to the left or right
of the left margin. To find out if the cursor is below the bottom of the buffer, use the following call:

GET_INFO (window_variable, "beyond_eol");

459

Appendix C. DECTPU Cursor Behavior

460

	DEC Text Processing Utility Reference Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. VSI Encourages Your Comments
	5. OpenVMS Documentation
	6. Conventions

	Chapter 1. DECTPU Built-In Procedures Grouped According to Function
	Chapter 2. Descriptions of the DECTPU Built-In Procedures
	2.1. DECTPU Built-In Procedures
	ABORT
	ADD_KEY_MAP
	ADJUST_WINDOW
	ANCHOR
	ANY
	APPEND_LINE
	ARB
	ASCII
	ATTACH
	BEGINNING_OF
	BREAK
	CALL_USER
	CHANGE_CASE
	COMPILE
	CONVERT
	COPY_TEXT
	CREATE_ARRAY
	CREATE_BUFFER
	CREATE_KEY_MAP
	CREATE_KEY_MAP_LIST
	CREATE_PROCESS
	CREATE_RANGE
	CREATE_WIDGET
	CREATE_WINDOW
	CURRENT_BUFFER
	CURRENT_CHARACTER
	CURRENT_COLUMN
	CURRENT_DIRECTION
	CURRENT_LINE
	CURRENT_OFFSET
	CURRENT_ROW
	CURRENT_WINDOW
	CURSOR_HORIZONTAL
	CURSOR_VERTICAL
	DEBUG_LINE
	DEFINE_KEY
	DEFINE_WIDGET_CLASS
	DELETE
	EDIT
	END_OF
	ERASE
	ERASE_CHARACTER
	ERASE_LINE
	ERROR
	ERROR_LINE
	ERROR_TEXT
	EXECUTE
	EXIT
	EXPAND_NAME
	FAO
	FILE_PARSE
	FILE_SEARCH
	FILL
	GET_CLIPBOARD
	GET_DEFAULT
	GET_GLOBAL_SELECT
	GET_INFO
	GET_INFO (any_keyname)
	GET_INFO (any_keyword)
	GET_INFO (any_variable)
	GET_INFO (ARRAY)
	GET_INFO (array_variable)
	GET_INFO (BUFFER)
	GET_INFO (buffer_variable)
	GET_INFO (COMMAND_LINE)
	GET_INFO (DEBUG)
	GET_INFO (DEFINED_KEY)
	GET_INFO (integer_variable)
	GET_INFO (KEY_MAP)
	GET_INFO (KEY_MAP_LIST)
	GET_INFO (marker_variable)
	GET_INFO (mouse_event_keyword)
	GET_INFO (PROCEDURES)
	GET_INFO (PROCESS)
	GET_INFO (process_variable)
	GET_INFO (range_variable)
	GET_INFO (SCREEN)
	GET_INFO (string_variable)
	GET_INFO (SYSTEM)
	GET_INFO (WIDGET)
	GET_INFO (widget_variable)
	GET_INFO (WINDOW)
	GET_INFO (window_variable)
	HELP_TEXT
	INDEX
	INT
	JOURNAL_CLOSE
	JOURNAL_OPEN
	KEY_NAME
	LAST_KEY
	LEARN_ABORT
	LEARN_BEGIN and LEARN_END
	LENGTH
	LINE_BEGIN
	LINE_END
	LOCATE_MOUSE
	LOOKUP_KEY
	LOWER_WIDGET
	MANAGE_WIDGET
	MAP
	MARK
	MATCH
	MESSAGE
	MESSAGE_TEXT
	MODIFY_RANGE
	MOVE_HORIZONTAL
	MOVE_TEXT
	MOVE_VERTICAL
	NOTANY
	PAGE_BREAK
	POSITION
	QUIT
	RAISE_WIDGET
	READ_CHAR
	READ_CLIPBOARD
	READ_FILE
	READ_GLOBAL_SELECT
	READ_KEY
	READ_LINE
	REALIZE_WIDGET
	RECOVER_BUFFER
	REFRESH
	REMAIN
	REMOVE_KEY_MAP
	RETURN
	SAVE
	SCAN
	SCANL
	SCROLL
	SEARCH
	SEARCH_QUIETLY
	SELECT
	SELECT_RANGE
	SEND
	SEND_CLIENT_MESSAGE
	SEND_EOF
	SET
	SET (ACTIVE_AREA)
	SET (AUTO_REPEAT)
	SET (BELL)
	SET (CLIENT_MESSAGE)
	SET (COLUMN_MOVE_VERTICAL)
	SET (CROSS_WINDOW_BOUNDS)
	SET (DEBUG)
	SET (DEFAULT_DIRECTORY)
	SET (DEFAULT_FILE)
	SET (DETACHED_ACTION)
	SET (DISPLAY_VALUE)
	SET (DRM_HIERARCHY)
	SET (ENABLE_RESIZE)
	SET (EOB_TEXT)
	SET (ERASE_UNMODIFIABLE)
	SET (FACILITY_NAME)
	SET (FIRST_INPUT_ACTION)
	SET (FORWARD)
	SET (GLOBAL_SELECT)
	SET (GLOBAL_SELECT_GRAB)
	SET (GLOBAL_SELECT_READ)
	SET (GLOBAL_SELECT_TIME)
	SET (GLOBAL_SELECT_UNGRAB)
	SET (HEIGHT)
	SET (ICON_NAME)
	SET (ICON_PIXMAP)
	SET (INFORMATIONAL)
	SET (INPUT_FOCUS)
	SET (INPUT_FOCUS_GRAB)
	SET (INPUT_FOCUS_UNGRAB)
	SET (INSERT)
	SET (JOURNALING)
	SET (KEY_MAP_LIST)
	SET (KEYSTROKE_RECOVERY)
	SET (LEFT_MARGIN)
	SET (LEFT_MARGIN_ACTION)
	SET (LINE_NUMBER)
	SET (MAPPED_WHEN_MANAGED)
	SET (MARGINS)
	SET (MAX_LINES)
	SET (MENU_POSITION)
	SET (MESSAGE_ACTION_LEVEL)
	SET (MESSAGE_ACTION_TYPE)
	SET (MESSAGE_FLAGS)
	SET (MODIFIABLE)
	SET (MODIFIED)
	SET (MOUSE)
	SET (MOVE_VERTICAL_CONTEXT)
	SET (NO_WRITE)
	SET (OUTPUT_FILE)
	SET (OVERSTRIKE)
	SET (PAD)
	SET (PAD_OVERSTRUCK_TABS)
	SET (PERMANENT)
	SET (POST_KEY_PROCEDURE)
	SET (PRE_KEY_PROCEDURE)
	SET (PROMPT_AREA)
	SET (RECORD_ATTRIBUTE)
	SET (RECORD_MODE)
	SET (RESIZE_ACTION)
	SET (REVERSE)
	SET (RIGHT_MARGIN)
	SET (RIGHT_MARGIN_ACTION)
	SET (SCREEN_LIMITS)
	SET (SCREEN_UPDATE)
	SET (SCROLL_BAR)
	SET (SCROLL_BAR_AUTO_THUMB)
	SET (SCROLLING)
	SET (SELF_INSERT)
	SET (SHIFT_KEY)
	SET (SPECIAL_ERROR_SYMBOL)
	SET (STATUS_LINE)
	SET (SUCCESS)
	SET (SYSTEM)
	SET (TAB_STOPS)
	SET (TEXT)
	SET (TIMER)
	SET (TRACEBACK)
	SET (UID)
	SET (UNDEFINED_KEY)
	SET (VIDEO)
	SET (WIDGET)
	SET (WIDGET_CALLBACK)
	SET (WIDGET_CALL_DATA)
	SET (WIDGET_CONTEXT_HELP)
	SET (WIDGET_RESOURCE_TYPES)
	SET (WIDTH)
	SHIFT
	SHOW
	SLEEP
	SPAN
	SPANL
	SPAWN
	SPLIT_LINE
	STR
	SUBSTR
	TRANSLATE
	UNANCHOR
	UNDEFINE_KEY
	UNMANAGE_WIDGET
	UNMAP
	UPDATE
	WRITE_CLIPBOARD
	WRITE_FILE
	WRITE_GLOBAL_SELECT

	Appendix A. Sample DECwindows DECTPU Procedures
	A.1. Creating a Mouse Pad
	A.2. Implementing an EDT-Style APPEND Command
	A.3. Testing and Returning a Select Range
	A.4. Handling Callbacks from a Scroll Bar Widget
	A.5. Reactivating a Select Range
	A.6. Copying Selected Material from EVE to Another DECwindows Application

	Appendix B. DECTPU Messages
	Appendix C. DECTPU Cursor Behavior
	C.1. Cursor Position Compared to Editing Point
	C.2. Built-In Padding

