
VSI OpenVMS DEC Text Processing
Utility User Guide

Operating System and Version: VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI OpenVMS DEC Text Processing Utility User Guide

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

Intel, Itanium and x86-64 are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

PostScript is a registered trademark of Adobe Inc.

Motif is a registered trademark of The Open Group.

All other product names mentioned herein may be the trademarks or registered trademarks of their respective companies.

The VSI OpenVMS documentation set is available online.

ii

VSI OpenVMS DEC Text Processing Utility User Guide

Table of Contents
Preface .. ix

1. About VSI ... ix
2. About the Guide .. ix
3. Intended Audience .. ix
4. Document Structure .. ix
5. Related Documents ... ix
6. OpenVMS Documentation .. ix
7. VSI Encourages Your Comments .. x
8. Conventions .. x

Chapter 1. Overview of the DEC Text Processing Utility ... 1
1.1. Description of DECTPU ... 1

1.1.1. DECTPU Features .. 1
1.1.2. DECTPU and User Applications ... 2
1.1.3. DECTPU Environments .. 2

1.2. Description of DECwindows DECTPU ... 3
1.2.1. DECwindows DECTPU and DECwindows Features .. 3
1.2.2. DECwindows DECTPU and the DECwindows User Interface Language 4

1.3. Description of EVE .. 4
1.4. DECTPU Language .. 5

1.4.1. Data Types .. 6
1.4.2. Language Declarations .. 6
1.4.3. Language Statements .. 6
1.4.4. Built-In Procedures .. 7
1.4.5. User-Written Procedures ... 7

1.5. Terminals Supported by DECTPU .. 7
1.6. Learning Path for DECTPU .. 8

Chapter 2. Getting Started with DECTPU .. 9
2.1. Invoking DECTPU on OpenVMS Systems .. 9

2.1.1. Default File Specifications .. 9
2.1.2. Startup Files .. 10

2.2. Invoking DECTPU from a DCL Command Procedure ... 11
2.2.1. Setting Up a Special Editing Environment .. 11
2.2.2. Creating a Noninteractive Application .. 12

2.3. Invoking DECTPU from a Batch Job ... 13
2.4. Using Journal Files ... 14

2.4.1. Keystroke Journaling .. 14
2.4.2. Buffer-Change Journaling .. 15
2.4.3. Buffer-Change Journal File-Naming Algorithm ... 15

2.5. Avoiding Errors Related to Virtual Address Space ... 16
2.6. Using OpenVMS EDIT/TPU Command Qualifiers .. 17

2.6.1. /CHARACTER_SET .. 17
2.6.2. /COMMAND ... 18
2.6.3. /CREATE ... 19
2.6.4. /DEBUG .. 19
2.6.5. /DISPLAY .. 20
2.6.6. /INITIALIZATION ... 21
2.6.7. /INTERFACE ... 21
2.6.8. /JOURNAL .. 21
2.6.9. /MODIFY .. 23

iii

VSI OpenVMS DEC Text Processing Utility User Guide

2.6.10. /OUTPUT .. 23
2.6.11. /READ_ONLY ... 24
2.6.12. /RECOVER .. 25
2.6.13. /SECTION .. 26
2.6.14. /START_POSITION ... 27

Chapter 3. DEC Text Processing Utility Data Types ... 29
3.1. Array Data Types ... 29
3.2. Buffer Data Type .. 31
3.3. Integer Data Type ... 32
3.4. Keyword Data Type .. 32
3.5. Learn Data Type ... 35
3.6. Marker Data Type ... 36
3.7. Pattern Data Type ... 38

3.7.1. Using Pattern Built-In Procedures and Keywords .. 40
3.7.2. Using Keywords to Build Patterns ... 40
3.7.3. Using Pattern Operators .. 40

3.7.3.1. + (Pattern Concatenation Operator) ... 41
3.7.3.2. & (Pattern Linking Operator) ... 41
3.7.3.3. | (Pattern Alternation Operator) .. 42
3.7.3.4. @ (Partial Pattern Assignment Operator) ... 42
3.7.3.5. Relational Operators .. 43

3.7.4. Compiling and Executing Patterns ... 43
3.7.5. Searching for a Pattern ... 44
3.7.6. Anchoring a Pattern ... 44

3.8. Process Data Type .. 45
3.9. Program Data Type ... 46
3.10. Range Data Type .. 46
3.11. String Data Type ... 47
3.12. Unspecified Data Type .. 49
3.13. Widget Data Type ... 49
3.14. Window Data Type ... 50

3.14.1. Defining Window Dimensions ... 50
3.14.2. Creating Windows .. 50
3.14.3. Displaying Window Values .. 51
3.14.4. Mapping Windows .. 51
3.14.5. Removing Windows .. 52
3.14.6. Using the Screen Manager .. 52
3.14.7. Getting Information on Windows ... 53
3.14.8. Terminals That Do Not Support Windows .. 53

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language 55
4.1. Overview .. 55
4.2. Case Sensitivity of Characters .. 55
4.3. Character Sets ... 55

4.3.1. DEC Multinational Character Set (DEC_MCS) ... 56
4.3.2. ISO Latin1 Character Set (ISO_LATIN1) ... 57
4.3.3. General Character Sets ... 57
4.3.4. Entering Control Characters .. 57
4.3.5. DECTPU Symbols ... 58

4.4. Identifiers ... 59
4.5. Variables .. 59
4.6. Constants .. 60

iv

VSI OpenVMS DEC Text Processing Utility User Guide

4.7. Operators ... 61
4.8. Expressions ... 62

4.8.1. Arithmetic Expressions ... 64
4.8.2. Relational Expressions .. 64
4.8.3. Pattern Expressions ... 65
4.8.4. Boolean Expressions ... 65

4.9. Reserved Words .. 66
4.9.1. Keywords .. 66
4.9.2. Built-In Procedure Names ... 66
4.9.3. Predefined Constants .. 67
4.9.4. Declarations and Statements .. 67

4.9.4.1. Module Declaration ... 69
4.9.4.2. Procedure Declaration .. 69
4.9.4.3. Procedure Names .. 70
4.9.4.4. Procedure Parameters .. 70
4.9.4.5. Procedures That Return a Result ... 72
4.9.4.6. Recursive Procedures ... 73
4.9.4.7. Local Variables ... 73
4.9.4.8. Constants .. 74
4.9.4.9. ON_ERROR Statements .. 74
4.9.4.10. Assignment Statement .. 74
4.9.4.11. Repetitive Statement ... 75
4.9.4.12. Conditional Statement .. 75
4.9.4.13. Case Statement .. 76
4.9.4.14. Error Handling .. 77
4.9.4.15. Procedural Error Handlers .. 78
4.9.4.16. Case-Style Error Handlers .. 80
4.9.4.17. Ctrl/C Handling ... 83
4.9.4.18. RETURN Statement .. 83
4.9.4.19. ABORT Statement ... 84

4.9.5. Miscellaneous Declarations ... 84
4.9.5.1. EQUIVALENCE ... 85
4.9.5.2. LOCAL .. 85
4.9.5.3. CONSTANT .. 87
4.9.5.4. VARIABLE .. 87

4.10. Lexical Keywords ... 87
4.10.1. Conditional Compilation .. 87
4.10.2. Specifying the Radix of Numeric Constants .. 88

Chapter 5. DEC Text Processing Utility Program Development 91
5.1. Creating DECTPU Programs ... 91

5.1.1. Simple Programs .. 92
5.1.2. Complex Programs ... 92
5.1.3. Program Syntax ... 93

5.2. Programming in DECwindows DECTPU .. 94
5.2.1. Widget Support .. 94
5.2.2. Input Focus Support ... 95
5.2.3. Global Selection Support .. 95

5.2.3.1. Difference Between Global Selection and Clipboard 96
5.2.3.2. Handling of Multiple Global Selections .. 96
5.2.3.3. Relation of Global Selection to Input Focus ... 96
5.2.3.4. Response to Requests for Information About the Global Selection 96

5.2.4. Using Callbacks ... 97

v

VSI OpenVMS DEC Text Processing Utility User Guide

5.2.4.1. Background on DECwindows Callbacks .. 97
5.2.4.2. Internally Defined DECTPU Callback Routines and Application-Level
Callback Action Routines ... 98
5.2.4.3. Internally Defined DECTPU Callback Routines with UIL 98
5.2.4.4. Internally Defined DECTPU Callback Routines with Widgets Not
Defined by UIL ... 98
5.2.4.5. Application-Level Callback Action Routines ... 99
5.2.4.6. Callable Interface-Level Callback Routines ... 99

5.2.5. Using Closures ... 99
5.2.6. Specifying Values for Widget Resources in DECwindows DECTPU 100

5.2.6.1. DECTPU Data Types for Specifying Resource Values 100
5.2.6.2. Specifying a List as a Resource Value .. 101

5.3. Writing Code Compatible with DECwindows EVE .. 102
5.3.1. Select Ranges in DECwindows EVE .. 102

5.3.1.1. Dynamic Selection ... 103
5.3.1.2. Static Selection .. 103
5.3.1.3. Found Range Selection ... 103
5.3.1.4. Relation of EVE Selection to DECwindows Global Selection 104

5.4. Compiling DECTPU Programs ... 104
5.4.1. Compiling on the EVE Command Line .. 104
5.4.2. Compiling in a DECTPU Buffer .. 104

5.5. Executing DECTPU Programs .. 105
5.5.1. Procedure Execution ... 105
5.5.2. Process Suspension ... 106

5.6. Using DECTPU Startup Files ... 106
5.6.1. Section Files .. 106
5.6.2. Command Files .. 107
5.6.3. Initialization Files ... 107
5.6.4. Sequence in Which DECTPU Processes Startup Files .. 107
5.6.5. Using Section Files ... 108

5.6.5.1. Creating and Processing a New Section File ... 108
5.6.5.2. Extending an Existing Section File .. 109
5.6.5.3. Sample Section File ... 110
5.6.5.4. Recommended Conventions for Section Files ... 113

5.6.6. Using Command Files ... 114
5.6.7. Using EVE Initialization Files ... 115

5.6.7.1. Using an EVE Initialization File at Startup ... 116
5.6.7.2. Using an EVE Initialization File During an Editing Session 116
5.6.7.3. How an EVE Initialization File Affects Buffer Settings 117

5.7. Debugging DECTPU Programs .. 117
5.7.1. Using Your Own Debugger ... 118
5.7.2. Using the DECTPU Debugger ... 118

5.7.2.1. Debugging Section Files ... 118
5.7.2.2. Debugging Command Files ... 118
5.7.2.3. Debugging Other DECTPU Source Code ... 119

5.7.3. Getting Started with the DECTPU Debugger .. 119
5.8. Handling Errors .. 120

Appendix A. Sample DECTPU Procedures ... 121
A.1. Line-Mode Editor ... 121
A.2. Translation of Control Characters .. 122
A.3. Restoring Terminal Width Before Exiting from DECTPU .. 125
A.4. Running DECTPU from an OpenVMS Subprocess .. 125

vi

VSI OpenVMS DEC Text Processing Utility User Guide

Appendix B. DECTPU Terminal Support .. 127
B.1. Using Screen-Oriented Editing on Supported Terminals ... 127

B.1.1. Terminal Settings on OpenVMS Systems That Affect DECTPU 127
B.1.2. SET TERMINAL Command .. 129

B.2. Using Line-Mode Editing on Unsupported Terminals ... 129
B.3. Using Terminal Wrap .. 129

Appendix C. DECTPU Debugger Commands .. 131

vii

VSI OpenVMS DEC Text Processing Utility User Guide

viii

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. About the Guide
This manual discusses the DEC Text Processing Utility (DECTPU).

3. Intended Audience
This manual is for experienced programmers who know at least one computer language, as well as for
new users of DECTPU. Some features of DECTPU, for example, the callable interface and the built-
in procedure FILE_PARSE, are for system programmers who understand VSI OpenVMS operating
system concepts. Relevant documents about the VSI OpenVMS operating system are listed under Related
Documents.

4. Document Structure
This guide is organized as follows:

● Chapter 1, "Overview of the DEC Text Processing Utility" contains an overview of DECTPU.

● Chapter 2, "Getting Started with DECTPU" describes how to invoke DECTPU.

● Chapter 3, "DEC Text Processing Utility Data Types" provides detailed information on DECTPU
data types.

● Chapter 4, "Lexical Elements of the DEC Text Processing Utility Language" discusses the lexical
elements of DECTPU. These include the character set, identifiers, variables, constants, and reserved
words, such as DECTPU language statements.

● Chapter 5, "DEC Text Processing Utility Program Development" describes DECTPU program
development.

● Appendix A, "Sample DECTPU Procedures" contains sample procedures written in DECTPU.

● Appendix B, "DECTPU Terminal Support" describes terminals supported by DECTPU.

● Appendix C, "DECTPU Debugger Commands" lists commands for debugging DECTPU.

5. Related Documents
For additional information about VSI OpenVMS products and services, please visit the VMS Software
website at https://vmssoftware.com or contact us at <info@vmssoftware.com>.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

ix

https://vmssoftware.com
https://docs.vmssoftware.com

Preface

7. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

8. Conventions
The following conventions may be used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

... A horizontal ellipsis in examples indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for VSI OpenVMS
directory specifications and for a substring specification in an assignment
statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

x

Preface

Convention Meaning

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

xi

Preface

xii

Chapter 1. Overview of the DEC
Text Processing Utility
This chapter presents information about the DEC Text Processing Utility (DECTPU). The chapter
includes the following:

● A description of DECTPU

● A description of DECwindows DECTPU

● A description of the Extensible Versatile Editor (EVE)

● Information about the DECTPU language

● Information about the hardware that DECTPU supports

● How to learn more about DECTPU

1.1. Description of DECTPU
DECTPU is a high-performance programmable text processing utility that includes the following:

● A high-level procedural language

● A compiler

● An interpreter

● Text manipulation routines

● Integrated display managers for the character-cell terminal and DECwindows environments

● The Extensible Versatile Editor (EVE) interface, which is written in DECTPU

DECTPU is a procedural programming language that enables text processing tasks; it is not an
application.

1.1.1. DECTPU Features
DECTPU aids application and system programmers in developing tools that manipulate text. For
example, programmers can use DECTPU to design an editor for a specific environment.

DECTPU provides the following special features:

● Multiple buffers

● Multiple windows

● Multiple subprocesses

1

Chapter 1. Overview of the DEC Text Processing Utility

● Keystroke and buffer-change journaling

● Text processing in batch mode

● Insert or overstrike text entry

● Free or bound cursor motion

● Learn sequences

● Pattern matching

● Key definition

● Procedural language

● Callable interface

1.1.2. DECTPU and User Applications
DECTPU is a language that you can use as a base on which to layer text processing applications. When
you choose an editor or other application to layer on DECTPU, that becomes the interface between you
and DECTPU. You can also create your own interface to access DECTPU.

Figure 1.1, "DECTPU as a Base for EVE" shows the relationship of DECTPU with EVE as its user
interface.

Figure 1.1. DECTPU as a Base for EVE

1.1.3. DECTPU Environments
You can use DECTPU on the OpenVMS VAX and OpenVMS Alpha operating systems.

You can display text in two environments:

● Character-cell terminals

● Bit-mapped workstations running the DECwindows software

2

Chapter 1. Overview of the DEC Text Processing Utility

1.2. Description of DECwindows DECTPU
DECTPU supports the VSI DECwindows Motif for OpenVMS user interface. The variant of DECTPU
that supports window-oriented user interfaces is known as DECwindows DECTPU. The windows
referred to as DECwindows are not the same as DECTPU windows. For more information about the
difference between DECwindows and DECTPU windows, see Chapter 5, "DEC Text Processing Utility
Program Development".

Because DECTPU is a language, not an application, DECTPU does not have a window-oriented
interface. However, DECTPU does provide built-in procedures to interact with the DECwindows Motif
environment. (For information on invoking DECTPU on systems running DECwindows Motif, see
Chapter 2, "Getting Started with DECTPU".)

1.2.1. DECwindows DECTPU and DECwindows Features
The DECwindows environment has a number of toolkits and libraries that contain routines for creating
and manipulating DECwindows interfaces. DECwindows DECTPU contains a number of built-in
procedures that provide access to the routines in the DECwindows libraries and toolkits.

With these procedures, you can create and manipulate various features of a DECwindows interface from
within a DECTPU program. In most cases, you can use DECTPU DECwindows built-in procedures
without knowing what DECwindows routine a given built-in procedure calls. For a list of the kinds of
widgets you can create and manipulate with DECTPU built-in procedures, see Chapter 5, "DEC Text
Processing Utility Program Development".

You cannot directly call DECwindows routines (such as X Toolkit routines) from within a program
written in the DECTPU language. To use a DECwindows routine in a DECTPU program, use one or
more of the following techniques:

● Use a DECTPU built-in procedure that calls a DECwindows routine. Examples of such DECTPU
built-in procedures include the following:

○ CREATE_WIDGET

○ DELETE (WIDGET)

○ MANAGE_WIDGET

○ REALIZE_WIDGET

○ SEND_CLIENT_MESSAGE

○ SET (CLIENT_MESSAGE)

○ SET (DRM_HIERARCHY)

○ SET (ICON_NAME)

○ SET (ICON_PIXMAP)

○ SET (MAPPED_WHEN_MANAGED)

○ SET (WIDGET)

○ SET (WIDGET_CALL_DATA)

3

Chapter 1. Overview of the DEC Text Processing Utility

○ SET (WIDGET_CALLBACK)

○ UNMANAGE_WIDGET

For more information about how to use the DECwindows built-ins in DECTPU, see the individual
built-in descriptions in the DEC Text Processing Utility Reference Manual.

● Use a compiled language that follows the OpenVMS calling standard to write a function or a
program that calls the desired routine. You can then invoke DECTPU in one of the following ways:

○ Use the built-in procedure CALL_USER in your DECTPU program when the program is
written in a non-DECTPU language. For more information about using the built-in procedure
CALL_USER, see the DEC Text Processing Utility Reference Manual.

○ Use the DECTPU callable interface to invoke DECTPU from the program. For more information
about using the DECTPU callable interface, see the VSI OpenVMS Utility Routines Manual.

The DECwindows version of DECTPU does not provide access to all of the features of DECwindows.
For example, there are no DECTPU built-in procedures to handle floating-point numbers or to
manipulate entities such as lines, curves, and fonts.

With DECwindows DECTPU, you can create a wide variety of widgets, designate callback routines
for those widgets, fetch and set geometry and text-related resources of the widgets, and perform other
functions related to creating a DECwindows application. For example, the DECwindows EVE editor is a
text processing interface created with DECwindows DECTPU.

1.2.2. DECwindows DECTPU and the DECwindows User
Interface Language
You can use DECTPU programs with DECwindows User Interface Language (UIL) files just as you
would use programs in any other language with UIL files. For an example of a DECTPU program and a
UIL file designed to work together, see the description of the CREATE_WIDGET built-in in the DEC
Text Processing Utility Reference Manual. For more information about using UIL files in conjunction
with programs written in other languages, see the VMS DECwindows Guide to Application Programming.

1.3. Description of EVE
The Extensible Versatile Editor (EVE) is the editor provided with DECTPU. EVE is easy to learn and
to use. You can access many of EVE’s editing functions by pressing a single key on the keypad. EVE is
also a powerful and efficient editor, which makes it attractive to experienced users of text editors. You
can access more advanced editing functions by entering commands on the EVE command line. Many of
the special features of DECTPU (such as multiple windows) are available with EVE commands. You can
access other DECTPU features by entering DECTPU statements from within EVE.

EVE has both a character-cell and a DECwindows interface. To use EVE’s DECwindows interface, you
must be using a bit-mapped terminal or workstation.

Although EVE is a fully functional editor, it is designed to make customization easy. You can use either
DECTPU statements or EVE commands to tailor EVE to your editing style.

You can write extensions for EVE or you can write a completely separate interface for DECTPU. Figure
1.2, "DECTPU as a Base for User-Written Interfaces" shows the interface choices for DECTPU.

4

Chapter 1. Overview of the DEC Text Processing Utility

Figure 1.2. DECTPU as a Base for User-Written Interfaces

You can implement extensions to EVE with any of the following:

● A DECTPU command file (DECTPU source code)

● A DECTPU section file (com piled DECTPU code in binary form)

● An initialization file (commands in a format that EVE can process)

Because a DECTPU section file is already compiled, startup time for your editor or application is shorter
when you use a section file than when you use a command file or an initialization file. Section 2.1.2,
"Startup Files" contains more information on startup files.

To implement an editor or application that is entirely user written, use a section file. Chapter 5, "DEC
Text Processing Utility Program Development" contain s more information on DECTPU command
files, section files, and initialization files. The DEC Text Processing Utility Reference Manual contains
information on layering applications on DECTPU.

1.4. DECTPU Language
You can view the DECTPU language as the most basic component of DECTPU. To access the features
of DECTPU, write a program in the DECTPU language and then use the utility to compile and execute
the program. A program written in DECTPU can be as simple as a single statement or as complex as the
section file that implements EVE.

The block-structured DECTPU language is easy to learn and use. DECTPU language features include
a large number of data types, relational operators, error interception, looping and case statements, and
built-in procedures that simplify development or extension of an editor or application. Comments are
indicated with a single comment character (!) so that you can document your procedures easily. There
are also capabilities for debugging procedures with user-written debugging programs.

5

Chapter 1. Overview of the DEC Text Processing Utility

1.4.1. Data Types
The DECTPU language has an extensive set of data types. You use data types to interpret the meaning of
the contents of a variable. Unlike many languages, the DECTPU language has no declarative statement
to enforce which data type must be assigned to a variable. A variable in DECTPU assumes a data type
when it is used in an assignment statement. For example, the following statement assigns a string data
type to the variable this_var:

this_var := ’This can be a string of your choice.’;

The following statement assigns a window data type to the variable x. The window occupies 15 lines on
the screen, starting at line 1, and the status line is off (not displayed).

x := CREATE_WINDOW (1, 15, OFF);

Many of the DECTPU data types (for example, learn and pattern) are different from the data types
usually foun d in programming languages. See the DEC Text Processing Utility Reference Manual for the
keywords used to specify data types. See Chapter 3, "DEC Text Processing Utility Data Types" of this
manual for a discussion of DECTPU data types.

1.4.2. Language Declarations
DECTPU language declarations include the following:

● Module declaration (MODULE/IDENT/ENDMODULE)

● Procedure declaration (PROCEDURE/ENDPROCEDURE)

● Constant declaration (CONSTANT)

● Global variable declaration (VARIABLE)

● Local variable declaration (LOCAL)

See Chapter 4, "Lexical Elements of the DEC Text Processing Utility Language" of this manual for a
discussion of DECTPU language declarations.

1.4.3. Language Statements
DECTPU language statements include the following:

● Assignment statement (:=)

● Repetitive statement (LOOP/EXITIF/ENDLOOP)

● Conditional statement (IF/THEN/ELSE/ENDIF)

● Case statement (CASE/ENDCASE)

● Error statement (ON_ERROR/ENDON_ERROR)

See Chapter 4, "Lexical Elements of the DEC Text Processing Utility Language" of this manual for a
discussion of DECTPU language statements.

6

Chapter 1. Overview of the DEC Text Processing Utility

1.4.4. Built-In Procedures
The DECTPU language has many built-in procedures that perform functions such as screen
management, key definition, text manipulation, and program execution.

You can use built-in procedures to create your own procedures. You can also invoke built-in procedures
from within EVE. The DEC Text Processing Utility Reference Manual contains a description of each of
the DECTPU built-in procedures.

1.4.5. User-Written Procedures
You can write your own procedures that combine DECTPU language statements and calls to DECTPU
built-in procedures. DECTPU procedures can return values and can be recursive. After you write a
procedure and compile it, you use the procedure name to invoke it.

When writing a procedure, use the following guidelines:

● Start each procedure with the word PROCEDURE, followed by the procedure name of your choice.

● End each procedure with the word ENDPROCEDURE.

● Place a semicolon after each statement or built-in call if the statement or call is followed by another
statement or call.

If the statement or call is not followed by another statement or call, the semicolon is not necessary.

Example 1.1, "Sample User-Written Procedure" is a sample procedure that uses the DECTPU
language statements PROCEDURE/ENDPROCEDURE and the built-in procedures POSITION,
BEGINNING_OF, and CURRENT_BUFFER to move the current character position to the beginning
of the current buffer. The procedure uses the MESSAGE built-in to display a message; it uses the
GET_INFO built-in to get the name of the current buffer.

Example 1.1. Sample User-Written Procedure

! This procedure moves the editing
! position to the top of the buffer

PROCEDURE user_top

 POSITION (BEGINNING_OF (CURRENT_BUFFER));
 MESSAGE ("Now in buffer" + GET_INFO (CURRENT_BUFFER, "name"));

ENDPROCEDURE;

Once you have compiled this procedure, you can invoke it with the name user_top. For information
about writing procedures, see Chapter 4, "Lexical Elements of the DEC Text Processing Utility Language"
and Chapter 5, "DEC Text Processing Utility Program Development".

1.5. Terminals Supported by DECTPU
DECTPU runs on all VAX and Alpha computers, and supports screen-oriented editing on the Compaq
VT400-, VT300-, VT200-, and VT100-series terminals, as well as on other video display terminals that
respond to ANSI control functions.

7

Chapter 1. Overview of the DEC Text Processing Utility

Optimum screen-oriented editing performance occurs when you run DECTPU from VT400-series,
VT300-series, VT220-series, and VT100-series terminals. Some video terminal hardware does not have
optimum DECTPU performance. See Appendix B, "DECTPU Terminal Support" for a list of hardware
characteristics that may adversely affect DECTPU’s performance.

Although you cannot use the screen-oriented features of DECTPU on a VT52 terminal, hardcopy
terminal, or foreign terminal that does not respond to ANSI control functions, you can run DECTPU
on these terminals with line-mode editing. For information on how to implement this style of editing,
see the description of the /NODISPLAY qualifier in Chapter 2, "Getting Started with DECTPU" and the
sample line-mode editor in Appendix A, "Sample DECTPU Procedures".

1.6. Learning Path for DECTPU
The suggested path for learning to use DECTPU is to first read the documentation describing EVE if
you are not familiar with that editor. The DECTPU/EVE documentation contains both reference and
tutorial material for new EVE users. It also contains material for more experienced users of text editors
and explains how to use DECTPU to extend the EVE interface.

When you are familiar with EVE, you may want to extend or customize it. Study the source code to
see which procedures, variables, and key definitions the editor uses. Then write DECTPU procedures
to implement your extensions. Make sure that the DECTPU procedures you write do not conflict with
procedures or variables that EVE uses.

To help you learn about the DECTPU language, this manual contain s examples of DECTPU procedures
and programs. Many of the descriptions of the built-in procedures in the DEC Text Processing Utility
Reference Manual also have a short sample procedure that uses the built-in procedure in an appropriate
context.

Appendix A, "Sample DECTPU Procedures" contains longer sample procedures that perform useful
editing tasks. These procedures are merely samples; you can adapt them for your own use. You must
substitute an appropriate value for any item in lowercase in sample procedures and syntax examples.

For more information on designing your own DECTPU-based editor or application rather than using
EVE, see Chapter 5, "DEC Text Processing Utility Program Development".

8

Chapter 2. Getting Started with
DECTPU
This chapter describes the following:

● Invoking DECTPU on OpenVMS systems

● Invoking DECTPU from a DCL command procedure

● Invoking DECTPU from a batch job

● Using journal files

● Avoiding errors related to virtual address space

● Using OpenVMS command line qualifiers

2.1. Invoking DECTPU on OpenVMS Systems
On OpenVMS systems you can invoke DECTPU through the Digital Command Language (DCL).The
basic DCL command for invoking DECTPU with EVE (the default editor) is as follows:

$ EDIT/TPU

To invoke DECTPU from DCL, type the command EDIT/TPU, optionally followed by the name of your
file:

$ EDIT/TPU text_file.lis

This command opens TEXT_FILE.LIS for editing.If you are using the EVE editor, VSI suggests that you
create a symbol like the following one to simplify invoking EVE:

$ EVE == "EDIT/TPU"

When you invoke DECTPU with the preceding command, you are usually placed in EVE, the default
editor. However, you should check that your system manager has not overridden this default.

You can specify multiple input files on the DECTPU command line. The files must be separated by
commas. The maximum number of files you can specify is 10. For the ambiguous file names, EVE
displays a warning message.

2.1.1. Default File Specifications
Table 2.1, "Default File Specifications on OpenVMS Systems" lists the default TPU and EVE file
specifications on OpenVMS systems.

Table 2.1. Default File Specifications on OpenVMS Systems

File OpenVMS File Specification

Section SYS$SHARE:TPU$SECTION.TPU$SECTION
Command TPU$COMMAND.TPU
Init SYS$DISK:EVE$INIT.EVE

9

Chapter 2. Getting Started with DECTPU

File OpenVMS File Specification

Init SYS$LOGIN:EVE$INIT.EVE
Debugger SYS$SHARE:TPU$DEBUG.TPU
Keystroke journal SYS$DISK:.TJL
Buffer-change journal SYS$SCRATCH:.TPU$JOURNAL
Buffer-change journal TPU$ JOURNAL:.TPU$JOURNAL
Work SYS$SCRATCH:.TPU$WORK
Motif Resource SYS$LIBRARY:.UID1

Application defaults DECW$SYSTEM_DEFAULTS:.DAT
Application defaults DECW$USER_DEFAULTS:.DAT2

EVE Motif resource SYS$SHARE:EVE$WIDGETS.UID3

EVE sources SYS$EXAMPLE S:EVE$*.*

1

2

3

OpenVMS system managers should note that the OpenVMS systemwide logical name is defined as TPU
$SECTION to point to EVE$SECTION.TPU$SECTION. You can modify this logical to use a different
default editing interface.

2.1.2. Startup Files
Command files and section files can create or customize a DECTPU editor or application. Initialization
files can customize EVE or other layered applications by using EVE or other application-specific
commands, settings, and key bindings.

A command file is a file that contains DECTPU source code. A command file has the file
type .TPU and is used with the DECTPU /COMMAND= filespec qualifier. DECTPU tries to read a
command file unless you specify /NOCOMMAND. The default command file is the file called TPU
$COMMAND.TPU in your current directory, if such a file exists. You can specify a different file by
defining the logical name TPU$COMMAND.

A section file is the compiled form of DECTPU source code. It is a binary file that has the default file
type .TPU$SECTION. It is used with the qualifier /SECTION= filespec . The default section file is TPU
$SECTION.TPU$SECTION in the area SYS$SHARE. The systemwide logical name TPU$SECTION
is defined as EVE$SECTION. This definition causes the EVE editor to be invoked by default when you
use the DCL command EDIT/TPU. You must specify a different section file (for example, /SECTION=
my_section_file) or /NOSECTION if you do not want to use the EVE interface.

Note

When you invoke DECTPU with the /NOSECTION qualifier, DECTPU does not use any binary file to
provide an interface. Even the Return and Delete keys are not defined. Use /NOSECTION when you

1These directory and file type defaults are added by the Motif Resource Manager if missing from the file specification.
2xxxxxx = suffix from mktemp(3). Note that this file is invisible.
3These X resource files are used only by dmtpu and dxtpu.

10

Chapter 2. Getting Started with DECTPU

are running a standalone command file or when you are creating a new section file and do not want the
procedures, variables, and definitions from an existing section file to be included. See Section 2.6, "Using
OpenVMS EDIT/TPU Command Qualifiers" and Chapter 5, "DEC Text Processing Utility Program
Development" for more information on /NOSECTION.

An initialization file contains commands for a DECTPU-based application. For example, an
initialization file for EVE can contain commands that define keys or set margins. Initialization files are
easy to create, but they cause DECTPU to start up somewhat more slowly than section and command
files do. To invoke an initialization file, use the /INITIALIZATION qualifier. For more information on
using initialization files, see Chapter 5, "DEC Text Processing Utility Program Development".

You can use either a command file or a section file, or both, to customize or extend an existing interface.
Generally, you use a command file for minor customization of an interface. Because startup time is
faster with a section file, you should use a section file when the customization is lengthy or complex, or
when you are creating an interface that is not layered on an existing editor or application. You can use an
initialization file only if your application supports the use of such a file.

The source files for EVE are in SYS$ EXAMPLE S. To see a list of the EVE source files, type the
following at the DCL prompt:

$ DIRECTORY SYS$EXAMPLES:EVE$*.TPU

If you cannot find these files on your system, see your system manager.

Chapter 5, "DEC Text Processing Utility Program Development" describes how to write and process
command files and section files.

2.2. Invoking DECTPU from a DCL Command
Procedure
There are two reasons that you might want to invoke DECTPU from a command procedure:

● To set up a special environment for interactive editing

● To create a noninteractive, DECTPU-based application

The following sections explain how to do this.

2.2.1. Setting Up a Special Editing Environment
You can run DECTPU with a special editing environment by writing a DCL command procedure
that first establishes the environment that you want and then invokes DECTPU. In such a command
procedure, you must define SYS$INPUT to have the same value as SYS$COMMAND because
DECTPU signals an error if SYS$INPUT is not defined as the terminal. To prevent such an error, place
the following statement in the command procedure setting up the environment:

$ DEFINE/USER SYS$INPUT SYS$COMMAND

Example 2.1, "DCL Command Procedure FILENAME.COM" shows a DCL command procedure that
‘‘remembers’’ the last file that you were editing and uses it as the input file for DECTPU. When you edit
a file, the file name you specify is saved in the DCL symbol last_file_edited . If you do not specify a file
name when you invoke the editor the next time, the file name from the previous session is used.

11

Chapter 2. Getting Started with DECTPU

Example 2.1. DCL Command Procedure FILENAME.COM

$ IF P1 .NES. "" THEN last_file_edited == P1
$ WRITE SYS$OUTPUT "*** ’’last_file_edited’ ***"
$ DEFINE/USER SYS$INPUT SYS$COMMAND $
EDIT/TPU/COMMAND=DISK$:[USER]TPU$COMMAND.TPU ’last_file_edited’

Example 2.2, "DCL Command Procedure FORTRAN_TS.COM" establishes an environment that specifies
tab stop settings for FORTRAN programs.

Example 2.2. DCL Command Procedure FORTRAN_TS.COM

$ IF P1 .EQS. "" THEN GOTO REGULAR_INVOKE
$ last_file_edited == P1
$ FTN_TEST = F$FILE_ATTRIBUTES (last_file_edited,"RAT")
$ IF FTN_TEST .NES. "FTN" THEN GOTO REGULAR_INVOKE
$ FTN_INVOKE:
$ DEFINE/USER SYS$INPUT SYS$COMMAND
$ EDIT/TPU/COMMAND=FTNTABS ’last_file_edited’
$ GOTO TPU_DONE
$ REGULAR_INVOKE:
$ DEFINE/USER SYS$INPUT SYS$COMMAND
$ EDIT/TPU/ ’last_file_edited’
$ TPU_DONE:

2.2.2. Creating a Noninteractive Application
In some situations, you may want to put all of your editing commands in a file and have them read from
the file rather than entering the commands interactively. You may also want DECTPU to perform the
edits without displaying them on the screen. You can do this type of editing from a batch job; or, if you
want to see the results of the editing session displayed on your screen, you can do this type of editing
from a DCL command procedure. Even though the edits are not displayed on your screen as they are
being made, your terminal is not free while the command procedure is executing.

Example 2.3, "DCL Command Procedure INVISIBLE_TPU.COM" shows a DCL command procedure
named INVISIBLE_TPU.COM, which contains a single command line that uses the following qualifiers
to invoke DECTPU:

● /NOSECTION—This qualifier prevents DECTPU from using a section file. All procedures and key
definitions must be specified in a command file.

● /COMMAND=gsr.tpu—This qualifier specifies a command file that contains the code to be
executed (GSR.TPU).

● /NODISPLAY—This qualifier suppresses screen display.

Example 2.3. DCL Command Procedure INVISIBLE_TPU.COM

! This command procedure invokes DECTPU without an editor.
! The file GSR.TPU contains the edits to be made.
! Specify the file to which you want the edits made as p1.
!
$ EDIT/TPU/NOSECTION/COMMAND=gsr.tpu/NODISPLAY ’p1’
!

The DECTPU command file GSR.TPU, which is used as the file specification for the /COMMAND
qualifier, performs a search through the current buffer and replaces a string or a pattern with a string.

12

Chapter 2. Getting Started with DECTPU

Example 2.4, "DECTPU Command File GSR.TPU" shows the file GSR.TPU. GSR.TPU does not create
or manipulate any windows.

Example 2.4. DECTPU Command File GSR.TPU

PROCEDURE global_search_replace (str_or_pat, str2)

! This procedure performs a search through the current
! buffer and replaces a string or a pattern with a new string

LOCAL src_range, replacement_count;

! Return to caller if string not found
ON_ERROR
 msg_text := FAO (’Completed !UL replacement!%S’, replacement_count);
 MESSAGE (msg_text);
 RETURN;
ENDON_ERROR;

replacement_count := 0;

LOOP
 src_range := SEARCH (str_or_pat, FORWARD); ! Search returns a range if
 found
 ERASE (src_range); ! Remove first string
 POSITION (END_OF (src_range)); ! Move to right place
 COPY_TEXT (str2); ! Replace with second string
 replacement_count := replacement_count + 1;
ENDLOOP;
ENDPROCEDURE; ! global_search_replace

! Executable statements
input_file := GET_INFO (COMMAND_LINE, "file_name");
main_buffer:= CREATE_BUFFER ("main", input_file);
POSITION (BEGINNING_OF (main_buffer));
global_search_replace ("xyz$_", "user$_");
pat1:= "" & LINE_BEGIN & "t";
POSITION (BEGINNING_OF (main_buffer));
global_search_replace (pat1, "T");
WRITE_FILE (main_buffer, "newfile.dat");
QUIT;

To use the DCL command procedure INVISIBLE_TPU.COM interactively, invoke it with the DCL
command @ (at sign). For example, to use INVISIBLE_ TPU.COM interactively on a file called MY_F
ILE.TXT, type the following at the DCL prompt:

$ @invisible_tpu my_file.txt

You must explicitly write out any modified buffer s before leaving the editor with QUIT or EXIT. If you
use QUIT before writing out such buffer s, DECTPU quits without saving the modifications. If you use
EXIT, DECTPU asks if it should write the file before exiting.

2.3. Invoking DECTPU from a Batch Job
If you want your edits to be made in batch rather than at the terminal, you can use the DCL command
SUBMIT to send your job to a batch queue. For example, if you want to use the file GSR.TPU (shown in

13

Chapter 2. Getting Started with DECTPU

Example 2.4, "DECTPU Command File GSR.TPU") to make edits in batch mode to a file called MY_F
ILE.TXT, enter the following command:

$ SUBMIT invisible_tpu.COM/LOG=invisible_tpu.LOG/parameter=my_file.txt

This job is then entered in the default batch queue for your system. The results are sent to the log file
that the batch job creates.

In batch DECTPU, EXIT is the same as QUIT.

2.4. Using Journal Files
Journal files help you to recover your work when the system fails. This section discusses the journaling
methods you can use with DECTPU. DECTPU offers two journaling methods:

● Keystroke journaling

● Buffer-change journaling

You can use both keystroke and buffer-change journaling at the same time (except on DECwindows,
where you can use only buffer-change journaling). To turn on keystroke journaling, the application uses
the JOURNAL_OPEN built-in.

The application layered on DECTPU, not the DECTPU engine, determines what kind of journaling is
turned on and under what conditions. Table 2.2, "Journaling Behavior Established by EVE" shows the
journaling behavior established by EVE.

Table 2.2. Journaling Behavior Established by EVE

OpenVMS Qualifier Effect on Keystroke Journaling Effect on Buffer-Change
Journaling

None specified Disabled Enabled
/JOURNAL Disabled Enabled
/JOURNAL = filename Enabled Enabled
/NOJOURNAL Disabled Disabled. However, you can use

SET (JOURNALING) to enable
buffer-change journaling.

Caution

Journal files contain a record of all information being edited. Therefore, when editing files that contain
secure or confidential data, be sure to keep the journal files secure as well.

You must use the same major version of DECTPU to recover the journal that you used to create it.

2.4.1. Keystroke Journaling
In keystroke journaling, DECTPU keeps track of each keystroke made during a session, regardless of
which buffer is in use. If a system interruption occurs during a session, you can reconstruct the work
done during the session. To determine the name of the keystroke journal file, use a statement similar to
the following:

14

Chapter 2. Getting Started with DECTPU

filename := GET_INFO (SYSTEM, "journal_file");

For more information on using a keystroke journal file for recovery, see the Extensible Versatile Editor
Reference Manual.

Note

VSI strongly recommends the use of buffer-change journaling rather than keystroke journaling.

To reconstruct your work, use the /JOURNAL and /RECOVER qualifiers. The following example shows
system recovery on a file called JACKI.SDML:

$ EDIT/TPU JACKI.SDML /JOURNAL /RECOVER

2.4.2. Buffer-Change Journaling
Buffer-change journaling creates a separate journal file for each text buffer. The application can use the
enhanced SET (JOURNALING) built-in to direct DECTPU to establish and maintain a separate journal
file for any buffer or buffer s created during the session. The application programmer or user can also
use the SET (JOURNALING) built-in to turn journaling off or on for a given buffer during a session.

In the buffer’s journal file, DECTPU keeps track of the following record attributes (and any changes
made to them):

● Left margin setting

● Modifiability or unmodifiability

● Display value

The journal file also tracks the following:

● Characters inserted in and deleted from a record (including the location where the change took
place)

● Records inserted in and deleted from a buffer (including the location where the change took place)

To determine whether buffer-change journaling is turned on, use the following statement:

status := GET_INFO (buffer_name, "journaling");

For more information on record attributes and display values, see the descriptions of the SET
(RECORD_ATTRIBUTE) and SET (DISPLAY_VALUE) built-in procedures in the DEC Text
Processing Utility Manual.

Buffer-change journaling does not keep a record of all keystrokes performed while editing a given buffer.

2.4.3. Buffer-Change Journal File-Naming Algorithm
By default, DECTPU creates the buffer-change journal file name by using the following algorithm:

1. Converts all characters in the buffer name that are not alphanumeric, a dollar sign, underscore, or
hyphen to underscores

2. Truncates the resulting file name to 39 characters

15

Chapter 2. Getting Started with DECTPU

3. Adds the file type .TPU$ JOURNAL

For example, a buffer named TEST.BAR has a default journal file name of TEST_ BAR.TPU$
JOURNAL.

DECTPU puts all journal files in the directory defined by the logical name TPU$ JOURNAL. By
default, this logical is defined as SYS$SCRATCH. You can reassign this logical name. For example, if
you want journal files written to the current default directory, define TPU$ JOURNAL as [].

2.5. Avoiding Errors Related to Virtual
Address Space
DECTPU manipulates data in a process’s virtual memory space. If the space required by the DECTPU
images, data structures, and files in memory exceeds the virtual address space, DECTPU tries to
write part of the data to the work file, thus freeing up space for other parts of the data that it needs
immediately.

If the work file is full, DECTPU attempts to return either a TPU$_GETMEM or TPU$_NOCACHE
error message. Although you may be able to free up some space by deleting unused buffers, VSI
recommends that you terminate the DECTPU session if you encounter either of these errors. You can
then start a new session with fewer or smaller buffer s. Alternatively, you may want to put the work file
on a disk that contains more free space. Use one of the following methods to do this:

● Redefine TPU$WORK to point to the disk with more free space.

● Invoke DECTPU with the /WORK= filename qualifier.

DECTPU may be unable to signal an error when it frees up memory by writing to the work file. In this
case, DECTPU aborts with a fatal internal error.

You may be able to avoid writing to the work file by increasing the virtual address space available to a
process. The virtual address space is controlled by the following two factors:

● The SYSGEN parameter VIRTUALPAGECNT

● The page file quota of the account you are using

The VIRTUALPAGECNT parameter controls the number of virtual pages that can be mapped for a
process. For more information on VIRTUALPAGECNT, see the description of this parameter in the
OpenVMS documentation on the System Generation Utility (SYSGEN).

The page file quota controls the number of pages in the system paging file that can be allocated to your
process. For more information on the page file quota, see the description of the /PGFLQUOTA qualifier
in the OpenVMS documentation on the Authorize Utility (AUTHORIZE).

You may need to modify both the VIRTUALPAGECNT parameter and the page file quota to enlarge
the virtual address space.

DECTPU keeps strings in a different virtual pool than it does other memory. Once DECTPU starts
writing to the work file, the size of the string memory pool is fixed. DECTPU cannot write strings to
the work file, so if it needs to allocate more space in the string memory pool, it will fail with a fatal
internal error. If you encounter this problem, you can expand the string memory pool during startup by
preallocating several large strings. The following example shows how to do this:

PROCEDURE preallocate_strings

16

Chapter 2. Getting Started with DECTPU

LOCAL
 str_len,
 string1,
 string2;

str_len := 65535;
string1 := ’a’ * str_len;
string2 := string1;
ENDPROCEDURE;

2.6. Using OpenVMS EDIT/TPU Command
Qualifiers
The DCL command EDIT/TPU has qualifiers for setting attributes of DECTPU or an application layered
on DECTPU. The qualifiers fall into the following two categories:

● Qualifiers handled by DECTPU

Qualifiers in this category have their defaults set by DECTPU.

● Qualifiers handled by the application layered on DECTPU

Some qualifiers in this category have their defaults set entirely by DECTPU; some have their defaults
set entirely by the layered application, and some have their defaults set partly by each.

The following sections present the qualifiers in alphabetical order, giving a detailed description of each.
The examples in the following sections show the qualifiers directly after the EDIT/TPU command and
before the input file specification. You can place the qualifiers anywhere on the command line after
EDIT/TPU. These sections show the defaults that are set if you use EVE. They also explain how EVE
handles each qualifier that can be processed by a layered application. Applications not based on EVE
may handle qualifiers differently.

2.6.1. /CHARACTER_SET
/CHARACTER_SET=DEC_MCS (default)

The /CHARACTER_SET qualifier determines the character set you want DECTPU to use to display 8-
bit characters. The choice of character set affects how DECTPU performs the following operations on
characters:

● Converting to lowercase

● Converting to uppercase

● Inverting case

● Removing diacritical marks

● Converting to uppercase and removing diacritical marks

The choice of character set also affects how your text appears when printed. For the text displayed in
DECTPU to look the same when printed, you must choose the same character set for both DECTPU and
the printer. There are two ways to specify the character set you want to use:

● Define the TPU$CHARACTER_SET logical name to specify the character set.

17

Chapter 2. Getting Started with DECTPU

This lets you use that character set for all editing sessions—including when you invoke DECTPU
within MAIL or other utilities. You can put the definition in your LOGIN.COM file. For example,
the following commands define TPU$CHARACTER_SET as ISO_LATIN1 and then use that
character set to invoke DECTPU:

$ DEFINE TPU$CHARACTER_SET ISO_LATIN1
$ EDIT/TPU

● Use /CHARACTER_SET= and specify the character set on the command line.

This overrides any definition of the TPU$CHARACTER_SET logical name. By default, DECTPU
uses the DEC_MCS character set. For example, the following command specifies the GENERAL
character set to invoke DECTPU. DECTPU uses the current character set to display 8-bit characters
and does not use the default DEC Supplemental Graphics character set.

$ EDIT/TPU/CHARACTER_SET=general

If the character set you specify either with /CHARACTER_SET or by defining TPU
$CHARACTER_SET is invalid, the editing session is aborted, returning you to the DCL level.

Table 2.3, "Character Set Values You Can Set with /CHARACTER_SET" shows the values you can
specify with the /CHARACTER_SET qualifier or the TPU$CHARACTER_SET logical name.

Table 2.3. Character Set Values You Can Set with /CHARACTER_SET

Value Description

DEC_MCS This is the default setting that uses the DEC
Supplemental Graphics character set containing
supplemental and multinational characters, such as
letters with accents and umlauts.

ISO_LATIN1 This character set contains supplemental and
multinational characters that contain LATIN1
characters, such as the non- breaking space,
multiplication and division signs, and the
trademark sign.

GENERAL DECTPU does not specify a character set for 8-bit
characters. 8-bit characters are displayed the same
as they were before you started DECTPU.

2.6.2. /COMMAND
/COMMAND[[=filespec]]
/NOCOMMAND
/COMMAND=TPU$COMMAND.TPU (default)

The /COMMAND qualifier determines whether DECTPU com piles and executes a command file (a file
of DECTPU procedures and statements) at startup time. Command files extend or modify a DECTPU-
based application or create a new application. The default file type for DECTPU comman d files is .TPU.
You cannot use wildcards in the file specification.

By default, DECTPU tries to read a command file called TPU$COMMAND.TPU in your default
directory. You can use a full file specification after the /COMMAND qualifier or define the logical name
TPU$COMMAND to point to a command file other than the default.

18

Chapter 2. Getting Started with DECTPU

To determine whether you specified /COMMAND on the DCL command line, use the following call in
the application:

x := GET_INFO (COMMAND_LINE, "command");

The preceding call returns 1 if /COMMAND was specified, 0 otherwise. To fetch the name of the
command file specified on the command line, use the following call:

x := GET_INFO (COMMAND_LINE, "command_file");

For more information on GET_INFO, see the DEC Text Processing Utility Manual.

The following command causes DECTPU to read a command file named SYS$LOGIN:MY_TPU
$COMMAND.TPU and uses LETTER.RNO as the input file for an editing session:

EDIT/TPU/COMMAND=sys$login:my_tpu$command.tpu letter.rno

To prevent DECTPU from processing a command file, use the /NOCOMMAND qualifier. If you usually
invoke DECTPU without a command file, define a symbol similar to the following:

$ EDIT/TPU/COMMAND=sys$login:my_tpu$command.tpu letter.rno

Using /NOCOMMAND when you do not want to use a command file decreases startup time by
eliminating the search for a command file. If you specify a command file that does not exist, DECTPU
terminates the editing session and returns you to the DCL command level. For more information on
writing and using command files, see Chapter 5, "DEC Text Processing Utility Program Development".

2.6.3. /CREATE
/CREATE (default)
/NOCREATE

The /CREATE qualifier controls whether a DECTPU-based application creates a new file when the
specified input file is not foun d. If you do not specify /CREATE or /NOCREATE on the comman d line,
DECTPU sets the default to /CREATE but does not specify a default name for the file to be created.

The application layered on DECTPU is responsible for handling this qualifier. To determine if you
specified /CREATE on the DCL command line, include the following call in the application:

x := GET_INFO (COMMAND_LINE, "create");

The preceding call returns 1 if /CREATE was specified, 0 otherwise. For more information on
GET_INFO, see the DEC Text Processing Utility Manual.

By default, EVE creates a new file if the specified input file does not exist. If you use /NOCREATE
and specify an input file that does not exist, EVE aborts the editing session and returns you to the DCL
command level. For example, if your default device and directory are DISK$:[USER] and you specify a
nonexistent file, NEWFILE.DAT, your command and EVE’s response would be as follows:

$ EDIT/TPU/NOCREATE newfile.dat

Input file does not exist: DISK$:[USER]NEWFILE.DAT;

2.6.4. /DEBUG
/DEBUG[[=deb ug_source_filename]]

19

Chapter 2. Getting Started with DECTPU

/NODEBUG (default)

The /DEBUG qualifier determines whether DECTPU loads, compiles, and executes a file implementing
a DECTPU debugger. If /DEBUG is specified, DECTPU reads, compiles, and executes the contents of
a debugger file before executing the procedure TPU$INIT_PROCEDURE and before executing the
command file. For more information on the DECTPU initialization sequence, see Chapter 5, "DEC Text
Processing Utility Program Development".

By default, DECTPU does not load a debugger. If you specify that a debugger is to be loaded but do
not supply a file specification, DECTPU loads the file SYS$SHARE:TPU$DEBUG.TPU. For more
information on how to use the default DECTPU debugger, see Chapter 5, "DEC Text Processing Utility
Program Development".

To use a debugger file other than the default, use the /DEBUG qualifier and specify the device, directory,
and file name of the debugger to be used. If you specify only the file name, DECTPU searches SYS
$SHARE for the file. You can define the logical name TPU$DEBUG to specify a file that contains a
debugger program. Once you define this logical name, using /DEBUG without specifying a file calls the
file specified by TPU$DEBUG.

2.6.5. /DISPLAY
/NODISPLAY

To choose the DECwindows or the non-DECwindows version of DECTPU, use the /DISPLAY qualifier
on the DCL command line when you invoke DECTPU.

The /DISPLAY qualifier is optional. By default, DECTPU uses /DISPLAY=CHARACTER_CELL,
regardless of whether you are running DECTPU on a workstation or a terminal.

If you specify /DISPLAY=CHARACTER_CELL, DECTPU uses its character-cell screen manager,
which implements the non-DECwindows version of DECTPU by running in a DECterm terminal
emulator or on a physical terminal.

If you specify /DISPLAY=DECWINDOWS, and if the DECwindows environment is available, DECTPU
uses the DECwindows screen manager, which creates a DECwindows window in which to run DECTPU.

If you specify /DISPLAY=DECWINDOWS and the DECwindows environment is not available,
DECTPU uses its character-cell screen manager to implement the non-DECwindows version of
DECTPU.

For more information about the difference between a DECwindows window and a DECTPU window,
see Chapter 5, "DEC Text Processing Utility Program Development".

The /NODISPLAY qualifier causes DECTPU to run without using the screen display and the keyboard
functions of a terminal. Use /NODISPLAY in the following cases:

● When running DECTPU procedures in a batch job

● When using DECTPU on an unsupported terminal

When you use /NODISPLAY, all operations continue as usual, except that no output occurs. The only
exception is that information usually put into the message buffer will appear on SYS$OUTPUT if no
message buffer is available.

The following command causes DECTPU to edit the file MY_BATCH_F ILE.RNO without using
terminal functions such as screen display:

20

Chapter 2. Getting Started with DECTPU

$ EDIT/TPU/NODISPLAY my_batch_file.rno

2.6.6. /INITIALIZATION
/INITIALIZATION[[=filespec]] (default)
/NOINITIALIZATION

The /INITIALIZATION qualifier determines whether the DECTPU-based application being run executes
a file of initialization commands. The application layered on DECTPU is responsible for processing this
qualifier.

To determine whether you specified /INITIALIZATION on the DCL command line, use the following
call in the application:

x := GET_INFO (COMMAND_LINE, "initialization");

The preceding call returns 1 if /INITIALIZATION was specified, 0 otherwise. To fetch the name of the
initialization file specified on the command line, use the following call:

x := GET_INFO (COMMAND_LINE, "initialization_file");

For more information on GET_INFO, see the DEC Text Processing Utility Manual.

If you do not specify any form of /INITIALIZATION on the DCL command line, DECTPU specifies /
INITIALIZATION but does not supply a default file specification. The default file specification for /
INITIALIZATION is set by the application. VSI recommends that a user-written application define the
default file specification of an initialization file by using the following format:

facility$init.facility

For example, the default initialization file for the EVE editor is EVE$INIT.EVE.

In EVE, if you do not specify a device or directory, EVE first checks the current directory. If the
specified (or default) initialization file is not there, EVE checks SYS$LOGIN. If EVE finds the specified
(or default) initialization file, EVE executes the commands in the file.

For more information on using initialization files with EVE, see Chapter 5, "DEC Text Processing Utility
Program Development" and the Extensible Versatile Editor Reference Manual.

2.6.7. /INTERFACE
The /INTERFACE qualifier determines the interface or screen display you want (same as /DISPLAY).
The default is CHARACTER_CELL. For example, to invoke EVE with the DECwindows interface, use
the following command:

$ EDIT/TPU /INTERFACE=DECWINDOWS

Then, if DECwindows is available, DECTPU displays the editing session in a separate window on your
workstation screen and enables DECwindows features; for example, the EVE screen layout includes
a menu bar and scroll bars. If DECwindows is not available, DECTPU works as if on a character-cell
terminal.

2.6.8. /JOURNAL
/JOURNAL[[=in put_file.TJL]] (default for EVE)

21

Chapter 2. Getting Started with DECTPU

/NOJOURNAL (default for DECTPU)

The /JOURNAL qualifier determines whether DECTPU keeps a journal file of an editing session so you
can recover the session if it is unexpectedly interrupted. DECTPU offers two forms of journaling:

● Keystroke—In a single journal file, keeps track of each keystroke you make, regardless of which
buffer is in use when you press the key.

● Buffer-change—In a separate journal file, keeps track of changes made to buffer s for each buffer
created during the session.

The application layered on DECTPU is responsible for processing this qualifier. To determine whether
you specified /JOURNAL on the DCL command line, use the following call in the application:

x := GET_INFO (COMMAND_LINE, "journal");

The preceding call returns 1 if /JOURNAL was specified, 0 otherwise.

To determine whether buffer-change journaling is turned on for a buffer, use a statement similar to the
following:

status := GET_INFO (buffer_name, "journaling");

To determine the name of the keystroke journal file specified on the command line, use the following
call:

x := GET_INFO (COMMAND_LINE, "journal_file");

For more information on GET_INFO, see the DEC Text Processing Utility Manual.

In EVE, if you do not specify any form of /JOURNAL or specify /JOURNAL but not a journal file,
buffer-change journaling is turned on. The buffer-change journal file’s default file type is .TPU$
JOURNAL.

If you specify /JOURNAL= filename, then EVE also turns on keystroke journaling. The keystroke
journal file’s default file type is .TJL.

To prevent EVE from creating either a keystroke or buffer-change journal file for an editing session, use
the /NOJOURNAL qualifier. For example, the following command causes EVE to turn off buffer-change
journaling when you edit the input file MEMO.TXT:

$ EDIT/TPU/NOJOURNAL memo.txt

If you are developing an application layered on DECTPU, you can use the built-in JOURNAL_OPEN to
direct DECTPU to create a keystroke journal file for an editing session. Using JOURNAL_OPEN causes
DECTPU to provide a 500-byte buffer in which to journal keystrokes. By default, DECTPU writes the
contents of the buffer to the journal file when the buffer is full.

You can use the built-in procedure SET (JOURNALING) to turn on buffer-change journaling, even if
you have used /NOJOURNAL to turn it off initially. You can also use SET (JOURNALING) to adjust
the journaling frequency. For more information on JOURNAL_OPEN and SET (JOURNALING), see
the DEC Text Processing Utility Manual. For more information on buffer-change journaling, see Section
2.4, "Using Journal Files".

Once a keystroke journal file is created, use the /RECOVER qualifier to direct DECTPU to process
the commands in the keystroke journal file. For example, the following command causes DECTPU to

22

Chapter 2. Getting Started with DECTPU

recover a previous editing session on an input file named MEMO.TXT. Because the journal file has a
name different from the input file name, both /JOURNAL and /RECOVER are used. The name of the
keystroke journal file is MEMO.TJL:

$ EDIT/TPU/RECOVER/JOURNAL=memo.tjl memo.txt

In buffer-change journaling, to recover the changes made to a specified buffer, use the built-in
RECOVER_BUFFER procedure. For more information on RECOVER_BUFFER, see the DEC Text
Processing Utility Manual. For more information on how to recover from an interrupted EVE editing
session, see the Extensible Versatile Editor Reference Manual.

Note

VSI strongly recommends the use of buffer-change journaling rather than keystroke journaling.

2.6.9. /MODIFY
/MODIFY (default)
/NOMODIFY

The /MODIFY qualifier determines whether the first user buffer in an editing session is modifiable. The
application layered on DECTPU is responsible for processing /MODIFY.

To determine what form of the /MODIFY qualifier was used on the DCL command line, use the
following calls:

x := GET_INFO (COMMAND_LINE, "modify");
x := GET_INFO (COMMAND_LINE, "nomodify");

The first statement returns 1 if /MODIFY was explicitly specified on the command line, 0 otherwise.
The second statement returns 1 if /NOMODIFY was explicitly specified on the command line, 0
otherwise. If both statements return 0, then the application is expected to determine the default behavior.

For more information on GET_INFO, see the DEC Text Processing Utility Manual.

If you invoke EVE and do not specify /MODIFY, /NOMODIFY, /READ_ONLY, or /NOWRITE, EVE
makes the first user buffer of the editing session modifiable. If you specify /NOMODIFY, EVE makes
the first user buffer unmodifiable. Regardless of what qualifiers you use on the DCL command line, EVE
makes all user buffer s after the first buffer modifiable.

If you do not specify either form of the /MODIFY qualifier, EVE checks whether you have used any
form of the /READ_ONLY or /WRITE qualifier. By default, a read-only buffer is unmodifiable and a
write buffer is modifiable. However, if you specify /READ_ONLY and /MODIFY or /NOWRITE and /
MODIFY, the buffer is modifiable. Similarly, if you specify /WRITE and /NOMODIFY or /NOREAD_
ONLY and /NOMODIFY, the buffer is unmodifiable.

2.6.10. /OUTPUT
/OUTPUT[[=in put_file.type]] (default)
/NOOUTPUT

The /OUTPUT qualifier determines whether the output of your DECTPU session is written to a file. The
application layered on DECTPU is responsible for processing this qualifier.

23

Chapter 2. Getting Started with DECTPU

To determine whether you specified /OUTPUT on the DCL command line, use the following call in the
application:

x := GET_INFO (COMMAND_LINE, "output");

The preceding call returns 1 if /OUTPUT was specified, 0 otherwise. To fetch the name of the output
file specified on the command line, use the following call:

x := GET_INFO (COMMAND_LINE, "output_file");

For more information on GET_INFO, see the DEC Text Processing Utility Manual.

If you do not specify any form of /OUTPUT on the DCL command line, DECTPU specifies /OUTPUT
but does not supply a default file specification.

In EVE, when you use /OUTPUT, you can name the file created from the main buffer when you
exit from DECTPU. For example, the following command causes DECTPU to read in a file called
LETTER.RNO and to write the contents of the main buffer to the file NEWLET.RNO upon exiting from
DECTPU:

$ EDIT/TPU/OUTPUT=newlet.rno letter.rno

If you use /OUTPUT= to specify an output file, EVE modifies the buffer even if you do not modify the
actual text. In this case, when you exit from EVE, EVE writes the buffer to the output file you specify.

By default, the output file has the same name as the input file, and the version number is one higher than
the highest existing version of the input file. You can specify a different name for the output file by using
the file specification argument for the /OUTPUT qualifier.

In EVE, specifying /NOOUTPUT causes EVE to suppress creation of an output file for the first buffer of
the editing session. Using /NOOUTPUT does not suppress creation of a journal file.

Using /NOOUTPUT, you can develop an application that lets you control the output of a file. For
example, an application could be coded so that if you specify /NOOUTPUT on the DCL command line,
DECTPU would set the NO_WRITE attribute for the main buffer and suppress creation of an output file
for that buffer.

2.6.11. /READ_ONLY
/READ_ONLY
/NOREAD_ONLY (default)

The /READ_ONLY qualifier determines whether the application layered on DECTPU creates an output
file from the contents of the main buffer if the contents are modified.

The processing of the /READ_ONLY qualifier is interrelated with the processing of the /WRITE
qualifier. /READ_ONLY is equivalent to /NOWRITE; /NOREAD_ ONLY is equivalent to /WRITE.

DECTPU signals an error and returns control to DCL if DECTPU encounters either of the following
combinations of qualifiers on the DCL command line:

● /READ_ONLY and /WRITE

● /NOREAD_ONLY and /NO_WRITE

24

Chapter 2. Getting Started with DECTPU

The application layered on DECTPU is responsible for processing this qualifier. To determine whether
either the /READ_ONLY or /NOWRITE qualifier was used on the DCL command line, use the
following call in an application:

x := GET_INFO (COMMAND_LINE, "read_only");

This statement returns 1 if /READ_ONLY or /NOWRITE was explicitly specified on the command line.

To determine whether either /NOREAD_ONLY or /WRITE was used on the DCL command line, use
the following call in an application:

x := GET_INFO (COMMAND_LINE, "write");

This statement returns 1 if /NOREAD_ONLY or /WRITE was explicitly specified on the command line.

If both GET_INFO calls return false, the application is expected to determine the default behavior. For
more information on GET_INFO, see the DEC Text Processing Utility Manual.

In EVE, using the /READ_ONLY qualifier is equivalent to using the /NOJOURNAL, /NOMODIFY,
and /NOOUTPUT qualifiers. If you specify /READ_ ONLY, DECTPU does not maintain a journal file
for your editing session, and the NO_WRITE and NO_MODIFY attributes are set for the main buffer.
When a buffer is set to NO_WRITE, the contents of the buffer are not written out upon exit, regardless
of whether the session is terminated with the EXIT built-in or the QUIT built-in. For example, if you
want to edit a file called MEETING.MEM but not write out the contents when exiting or quitting, use
the following command:

$ EDIT/TPU/READ_ONLY meeting.mem

In response to the /NOREAD_ONLY qualifier, EVE writes out the buffer specified on the command
line (if the buffer has been modified) when an EXIT command is issued. This is the default behavior.

2.6.12. /RECOVER
/RECOVER
/NORECOVER (default)

The /RECOVER qualifier determines whether DECTPU reads a keystroke journal file at the start of
an editing session to recover edits made during a prior interrupted editing session. For example, the
following command causes DECTPU to recover the edits made in a previous EVE editing session on the
file NOTES.TXT:

$ EDIT/TPU/RECOVER notes.txt

To determine whether you specified /RECOVER on the DCL command line, use the following call:

x := GET_INFO (COMMAND_LINE, "recover");

The preceding call returns 1 if /RECOVER was specified, 0 otherwise. For more information on
GET_INFO, see the DEC Text Processing Utility Manual.

DECTPU uses /RECOVER to recover a keystroke journal file only. In buffer-change journaling, to
recover the changes made to a specified buffer, use the RECOVER_BUFFER built-in procedure. For
more information on RECOVER_BUFFER, see the DEC Text Processing Utility Manual.

If DECTPU encounters and executes the built-in JOURNAL_OPEN procedure while running a layered
application, by default DECTPU opens the journal file for output only. If you specify /RECOVER when

25

Chapter 2. Getting Started with DECTPU

invoking DECTPU with a layered application, then when the built-in procedure JOURNAL_OPEN is
executed, the keystroke journal file is opened for input and output. DECTPU opens the input file to
restore whatever commands it contains. Then DECTPU continues to journal keystrokes for the rest of the
editing session or until a statement that contains the built-in JOURNAL_CLOSE is executed.

When you recover an editing session, every file used during the session must be in the same state as it
was at the start of the session being recovered. Each terminal characteristic must also be in the same
state as it was at the start of the editing session being recovered. If you have changed the width or page
length of the terminal, you must change the attribute back to the value it had at the start of the editing
session you want to recover. Check especially the following values:

● Device type

● Edit mode

● 8-bit

● Page length

● Width

If the journal file has a different name from the input file, you must include both /JOURNAL and /
RECOVER with the EDIT/TPU command. For example, if you want to use the keystroke journal file
SAVE.T JL to recover the edits you made to a file called LETTER.DAT, enter the following command
on the DCL command line:

$ EDIT/TPU/RECOVER/JOURNAL=save.TJL letter.dat

In EVE, you can use /RECOVER to recover either an editing session from a keystroke journal file or
a single buffer from a buffer-change journal file. If you specify /JOURNAL= filename, EVE recovers
from the specified keystroke journal file. Otherwise, EVE recovers from a buffer-change journal file that
corresponds to the input parameter (or the buffer specified on the command line if no input parameter is
specified).

For more information on journaling and recovery in EVE, see the Extensible Versatile Editor Reference
Manual.

2.6.13. /SECTION
/SECTION[[=filespec]]
/NOSECTION
/SECTION=TPU$SECTION (default)

The /SECTION qualifier determines whether DECTPU loads a section file. A section file is a startup file
that contains key definitions and compiled procedures in binary form.

The default section file is TPU$SECTION. When DECTPU tries to locate the section file, DECTPU
supplies a default directory of SYS$SHARE and a default file type of .TPU$SECTION. OpenVMS
systems define the systemwide logical name TPU$SECTION as EVE$SECTION, so the default section
file is the file that implements the EVE editor. To override the OpenVMS default, redefine TPU
$SECTION.

You can specify a different section file. The preferred method is to define the logical name TPU
$SECTION to point to a section file other than the default file. You can also supply a full file
specification for the /SECTION qualifier. For example, if your device is called DISK$USER and your

26

Chapter 2. Getting Started with DECTPU

directory is called [SMITH], the following command causes DECTPU to read a section file called
VT100INI.TPU$SECTION:

$ EDIT/TPU/SECTION=disk$user:[smith]vt100ini

If you omit the device and directory in the file specification, DECTPU assumes the file is in SYS
$SHARE. The section file must be located on the same node on which you are running DECTPU.

To determine whether /SECTION was specified on the DCL command line, use the following call in the
application:

x := GET_INFO (COMMAND_LINE, "section");

The preceding call returns 1 if /SECTION was specified, 0 otherwise. To fetch the name of the section
file specified on the command line, use the following call:

x := GET_INFO (COMMAND_LINE, "section_file");

For more information on GET_INFO, see the DEC Text Processing Utility Manual.

You must compile the file used as the value for the /SECTION qualifier. To do so, run the source code
version of the file through DECTPU and then use the built-in procedure SAVE. This process converts
the file to the proper binary form.

For more information on creating and using section files, see Chapter 5, "DEC Text Processing Utility
Program Development". If you specify the /NOSECTION qualifier, DECTPU does not load a section
file. Unless you use the /COMMAND qualifier with /NOSECTION, DECTPU has no user interface and
no keys are defined. In this state, the only way to exit from DECTPU is to press Ctrl/Y. Typically, you
use /NOSECTION when you create your own layered DECTPU application without EVE as a base.

2.6.14. /START_POSITION
/START_POSITION=(line,column)
/START_POSITION=(1,1) (default)

The /START_POSITION qualifier determines where the application layered on DECTPU positions the
cursor.

27

Chapter 2. Getting Started with DECTPU

28

Chapter 3. DEC Text Processing
Utility Data Types
A data type is a group of elements that ‘‘belong together’’; the elements are all formed in the same way
and are treated consistently. The data type of a variable determines the operations that can be performed
on it. The DECTPU data types are represented by the following keywords:

● ARRAY

● BUFFER

● INTEGER

● KEYWORD

● LEARN

● MARKER

● PATTERN

● PROCESS

● PROGRAM

● RANGE

● STRING

● UNSPECIFIED

● WIDGET

● WINDOW

You use data types to interpret the contents of a variable. Unlike many programming languages,
DECTPU permits any variable to have any type of data as a value. DECTPU has no declaration
statement to restrict the type of data that you can assign to a variable. DECTPU variables take on a data
type when they are placed on the left-hand side of an assignment statement. The right-hand side of the
assignment statement determines the data type of the variable.

Although you can construct variables freely, DECTPU built-in procedures require that their parameters
be of specific data types. Each built-in procedure can operate only on certain data types. Some built-in
procedures return a value of a certain data type when they are executed. The following sections describe
the DECTPU data types.

3.1. Array Data Types
An array is a structure for storing and manipulating a group of elements. These elements can be of any
data type. You create arrays with the CREATE_ARRAY built-in procedure. For example, the following
statement creates the array new_array:

new_array := CREATE_ARRAY;

29

Chapter 3. DEC Text Processing Utility Data Types

You can delete arrays with the DELETE built-in procedure.

When you create an array, you can optionally direct DECTPU to allocate a specified number of integer-
indexed array elements. DECTPU processes this block of preallocated elements quickly. You can direct
DECTPU to create such a block of elements only at the time you create the array.

The following statement creates the array int_array, directs DECTPU to allocate 10 sequential, integer-
indexed elements to the array, and specifies that the lowest index value should be 1:

int_array := CREATE_ARRAY (10, 1);

Regardless of whether you specify a preallocated block of elements, you can always add array elements
dynamically. Dynamically added elements can be of any data type except learn, pattern, program, or
unspecified. You can mix the data types of indexes in an array.

In the following code fragment, the array mix_array is created and the integer 1 is stored in the array
element indexed by the marker mark1.

mix_array := CREATE_ARRAY;
mark1 := MARK (NONE);
mix_array {mark1} := 1;
mix_array {"Kansas"} := "Toto";

You can index dynamic elements with integers, even if this means that the array ends up with more
integer-indexed elements than you specified when you created the array. DECTPU does not process
dynamically added integer-indexed elements as quickly as it processes preallocated elements.

To refer to an array element, use the name of an existing array variable followed by the array index
enclosed in braces ({ }) or parentheses (()). For example, if you create an array and store it in the
variable my_array , the following are valid element names:

my_array{2}
my_array("fred")

To create an element dynamically for an existing array, use the new element as the target of an
assignment statement. The following statement creates the element "string1" in the array my_array and
assigns the element to the string "Topeka":

my_array{"string1"} := "Topeka";

In the following example, the first statement creates an integer-indexed array, int_array. The array has
10 elements; the first element starts at index 1. The second statement stores a string in the first integer-
indexed element of the array. The third statement stores a buffer in the eighth element of the array. The
fourth statement adds an integer-indexed element dynamically. This new element contains a string.

int_array := CREATE_ARRAY (10, 1);
int_array {1} := "Store a string in the first element";
int_array {8} := CURRENT_BUFFER;
int_array {42} := "This is a dynamically created element.";

If you assign a value to an element that has not yet been created, then that element is dynamically created
and both the index and the value are stored. Subsequent references to that element index return the
stored value.

In most cases, if you reference an element that has not yet been created and you do not assign a value
to the nonexistent element, DECTPU does not create the element. DECTPU simply returns the data
type unspecified. However, if you reference a nonexistent element by passing the nonexistent element

30

Chapter 3. DEC Text Processing Utility Data Types

to a procedure, DECTPU adds a new element to the array, giving the element the index you pass to the
procedure. DECTPU assigns to this new element the data type unspecified.

You can delete an element in the array by assigning the data type unspecified to the element. For
example, the following statement deletes the element my_array {"fred"}:

my_array {"fred"} := TPU$K_UNSPECIFIED;

The following code fragment shows how you can find all the indexes in an array:

the_index := GET_INFO (the_array, "FIRST");

LOOP
 EXITIF the_index = TPU$K_UNSPECIFIED;
 .
 .
 .
 the_index := GET_INFO (the_array, "NEXT");
ENDLOOP;

Note

DECTPU does not guarantee the order in which it will return the array indexes.

3.2. Buffer Data Type
A buffer is a work space for manipulating text. A buffer can be empty or it can contain text records.
You can have multiple buffer s. A value of the buffer data type is returned by the CREATE_BUFFER,
CURRENT_BUFFER, and GET_INFO built-in procedures. CREATE_BUFFER is the only built-in
procedure that creates a new buffer. CURRENT_BUFFER and GET_INFO return pointers to existing
buffers.

The following statement makes the variable my_buf a variable of type buffer:

my_buf := CREATE_BUFFER ("my_buffer");

When you use a buffer as a parameter for DECTPU built-in procedures, you must use as the parameter
the variable to which you assigned the buffer. For example, if you want to erase the contents of the buffer
created in the preceding statement, enter the following:

ERASE (my_buf);

In this statement, my_buf is the identifier for the variable my_buf. The string "my_buffer" is the name
associated with the buffer. The distinction between the name of the buffer variable and the name of
the buffer is useful when you are developing an application layered on DECTPU. For example, the
application can use an internal buffer name such as main_buffer to manipulate a given buffer (such as the
main buffer in EVE). However, the application can associate the name of your input file with the buffer,
making it easier for you to remember which buffer contains the contents of a given file.

If you want to delete the buffer itself, use the built-in DELETE procedure with the buffer variable as the
parameter.

More than one buffer variable can represent the same buffer. The following statement causes both
my_buf and old_buf to point to the same buffer:

old_buf := my_buf;

31

Chapter 3. DEC Text Processing Utility Data Types

A buffer remains in DECTPU’s internal list of buffers even when there are no variables pointing to it.
You can use the GET_INFO built-in procedure to retrieve buffers from DECTPU’s internal list.

Creating a buffer does not cause the information contained in the buffer to become visible on the screen.
The buffer must be associated with a window that is mapped to the screen for the buffer contents to be
visible. Editing can take place in a buffer even if the buffer is not mapped to a window on the screen.

The current buffer contains the active editing point. The editing point can be different from the cursor
position, and often each is in a different location. When the current buffer is associated with a visible
window (one that is mapped to the screen), the editing point and the cursor position are usually the
same.

At present, a line in a buffer can contain up to 32767 characters. If you try to create a line that is longer
than 32767 characters, DECTPU truncates the inserted text and inserts only the amount that fills the line
to 32767 characters. If you try to read a file that contain s lines longer than 32767 characters, DECTPU
truncates all characters after the 32767 characters.

You can associate a single buffer with 0 to 255 windows for editing purposes. You can have a buffer
visible in two windows so that you can look at two separate parts of the same file. For example, you
could display a set of declarations in one window and code that uses the declarations in another window.
Edits made to a buffer show up in all windows to which that buffer is mapped and in which the editing
point is visible.

3.3. Integer Data Type
DECTPU uses the integer data type to represent numeric data. DECTPU perform s only integer
arithmetic. The type integer consists of the whole number values ranging from –2,147,483,648 to
2,147,483,647. In DECTPU, an integer constant is a sequence of decimal digits; no commas or decimal
points are allowed.

The following example assigns a value of the integer data type to the variable x:

x := 12345;

DECTPU also supports binary, octal, and hexadecimal integers. Binary integers are preceded by %b
or %B, octal by %o or %O, and hexadecimal by %x or %X. Thus, all the following statements are
acceptable:

x := %B10000;
x := %o20;
x := %X130;
x := 12345;

3.4. Keyword Data Type
Keywords are reserved words in DECTPU that have special meaning to the compiler. To see a list of all
DECTPU keywords, use the SHOW (KEYWORDS) built-in. You use keywords in the following ways:

● As parameters for DECTPU built-in procedures. For example, the first parameter of the SET built-in
procedure is always a keyword (for instance, PAD, SCROLLING, STATUS_LINE).

● As values returned by DECTPU built-in procedures, such as CURRENT_ DIRECTION,
KEY_NAME, LAST_KEY, READ_KEY, and GET_INFO. For example, the call GET_INFO
(window, "status_video ") has the following keywords as possible return values:

32

Chapter 3. DEC Text Processing Utility Data Types

○ BLINK

○ BOLD

○ NONE

○ REVERSE

○ SPECIAL_GRAPHICS

○ UNDERLINE

● As pattern directives. The following keywords fall into this category:

○ ANCHOR

○ BUFFER_BEGIN

○ BUFFER_END

○ LINE_BEGIN

○ LINE_END

○ PAGE_BREAK

○ REMAIN

○ UNANCHOR

These keywords, which behave like built-in procedures, are described in the DEC Text Processing
Utility Reference Manual.

● To specify the DECTPU data types (BUFFER, MARKER, LEARN, and so on).

● To report warning or error status conditions (TPU$_BADMARGINS, TPU$_ CREATEFAIL, TPU
$_NOEOBSTR, and so on).

● To pass the names of keys to DECTPU procedures.

Table 3.1, "Keywords Used for Key Names" shows the correspondence between keywords used as
DECTPU key names and the keys on the VT400, VT300, VT200, and VT100 series of keyboards. You
do not have to define a key or control sequence just because there is a DECTPU keyword for the key or
sequence.

Table 3.1. Keywords Used for Key Names

DECTPU Key Name VT400, VT300, VT200 Series
Key

VT100 Key

PF1 PF1 PF1
PF2 PF2 PF2
PF3 PF3 PF3
PF4 PF4 PF4
KP0, KP1, . . . , KP9 0, 1, . . . , 9 0, 1, . . . , 9

33

Chapter 3. DEC Text Processing Utility Data Types

DECTPU Key Name VT400, VT300, VT200 Series
Key

VT100 Key

Period . .
Comma , ,
Minus – –
Enter Enter Enter
Up Up arrow Up arrow
DOwn Down arrow Down arrow
Left Left arrow Left arrow
Right Right arrow Right arrow
E1 Find / E1
E2 Insert Here / E2
E3 Remove / E3
E4 Select / E4
E5 Prev Screen / E5
E6 Next Screen E6
Help Help / F15
Do Do / F16
F6, F7, … , F20 F6, F7, … , F20
NULL_KEY Ctrl/space Ctrl/space
TAB_KEY Tab Tab
RET_KEY Return Return
DEL_KEY # Delete
LF_KEY Ctrl/J Line feed
BS_KEY Ctrl/H Backspace
Ctrl_A_KEY Ctrl/A1 Ctrl/A1

Ctrl_B_KEY Ctrl/B Ctrl/B
. . .
. . .
. . .
Ctrl_Z_KEY Ctrl/Z Ctrl/Z

1

The OpenVMS terminal driver handles the following keys as special cases. VSI recommends that you
avoid defining the following control characters and function key:

● Ctrl/C

● Ctrl/O

● Ctrl/Q

1Ctrl/A means pressing the Ctrl key simultaneously with the A key. A and a produce the same results.

34

Chapter 3. DEC Text Processing Utility Data Types

● Ctrl/S

● Ctrl/T

● Ctrl/X

● Ctrl/Y

● F6

3.5. Learn Data Type
A learn sequence is a collection of DECTPU keystrokes for use later. The LEARN_BEGIN built-
in procedure starts collecting keystrokes; the LEARN_END built-in procedure stops the collection of
keystrokes and returns a value of the learn data type as a result. The following example assigns a learn
data type to the variable x:

LEARN_BEGIN (EXACT);
.
.
.
x := LEARN_END;

All keystrokes that you enter between the LEARN_BEGIN and LEARN_END built-in procedures are
stored in the variable x. The EXACT keyword specifies that, when the learn sequence is replayed, the
input (if any) for the built-in procedures READ_CHAR, READ_KEY, and READ_LINE (if used in
the learn sequence) will be the same as the input entered when the learn sequence was created. If you
specify NO_EXACT, a replay of a learn sequence containing keys that invoke the built-in procedures
READ_LINE, READ_KEY, or READ_CHAR looks for new input.

For more information on replaying a learn sequence, see LEARN_BEGIN and LEARN_END in the
DEC Text Processing Utility Reference Manual.

You can use the LEARN_ABORT built-in procedure to interrupt the execution of a learn sequence.
For information on using LEARN_ABORT, see LEARN_ABORT in the DEC Text Processing Utility
Reference Manual.

To enable your user-written DECTPU procedures to work successfully with learn sequences, you must
observe the following coding rules when you write procedures that you or someone else can bind to a
key:

● The procedure should return true or false, as needed, to indicate whether execution of the procedure
completed successfully.

● The procedure should invoke the LEARN_ABORT built-in in case of error.

These practices help prevent a learn sequence from finishing if the learn sequence calls the user-written
procedure and the procedure is not executed successfully.

A procedure that does not explicitly return a value returns 0 by default, thus aborting a learn sequence.

Note

Learn sequences do not include mouse input or characters inserted in a widget.

35

Chapter 3. DEC Text Processing Utility Data Types

If, while recording a learn sequence, a margin action routine is executed (such as EVE’s word wrap), the
routine may not be executed during the replay of the sequence.

3.6. Marker Data Type
A marker is a reference point in a buffer. You can think of a marker as a “place holder”. To create a
marker, use the MARK built-in procedure.

The following example assigns a value of the marker data type to the variable x:

x := MARK (NONE);

After this statement is executed, the variable x contains the character position where the editing point
was located when the statement was executed. The editing point is the point in a buffer at which most
editing operations are carried out.

You can cause a marker to be displayed with varying video attributes (BLINK, BOLD, REVERSE,
UNDERLINE). The NONE keyword in the preceding example specifies that the marker does not have
any video attributes.

When you use the MARK built-in, DECTPU puts the marker on the buffer’s editing point. The editing
point is not necessarily the same as the window’s cursor position.

A marker can be either free or bound. Free markers are useful for establishing place marks in locations
that do not contain characters, such as locations before the beginning of a line, after the end of a line,
in the white space created by a tab, or below the end of a buffer. By placing a free marker in such a
location, you make it possible to establish the editing point at that location without inserting padding
space characters that could complicate later operations such as FILL.

A marker is bound if there is a character in the position marked by the editing point at the time you
create the marker. A bound marker is tied to the character on which it is created. If you move the
character to which a marker is bound, the marker moves with the character. If you delete the character to
which a marker is bound, DECTPU binds the marker to the nearest character or to the end of the line if
that is closer than any character.

To force the creation of a bound marker, use the MARK built-in with any of its parameters except
FREE_CURSOR. This operation creates a bound marker even if the editing point is beyond the end of
a line, before the beginning of a line, in the middle of a tab, or beyond the end of a buffer. To create a
bound marker in a location where there is no character, DECTPU fills the space between the marker and
the nearest character with padding space characters.

A marker is usually free if all of the following conditions are true:

● You used MARK (FREE_CURSOR) to create the marker.

● There was no character in the position marked by the editing point at the time you created the
marker.

● Nothing has happened to cause the marker to become bound.

The following paragraphs explain each of these conditions in more detail.

If you use the MARK (FREE_CURSOR) built-in procedure and there is a character in the position
marked by the editing point, the marker is bound even though you specify otherwise. Once a marker

36

Chapter 3. DEC Text Processing Utility Data Types

becomes bound, it remains bound throughout its existence. To determine whether a marker is bound, use
the following GET_INFO call:

GET_INFO (marker_variable, "bound");

DECTPU keeps track of the location of a free marker by measuring the distance between the marker and
the character nearest to the marker. If you move the character from which DECTPU measures distance
to a free marker, the marker moves too. DECTPU preserves a uniform distance between the character
and the marker. If you collapse white space that contains one or more free markers (for example, if you
delete a tab or use the APPEND_LINE built-in procedure), DECTPU preserves the markers and binds
them to the nearest character.

If you use the POSITION built-in procedure to establish the editing point at a free marker, the marker
remains free and the editing point is also said to be free; that is, the editing point is not bound to a
character. Some operations cause DECTPU to fill the space between a free marker and the nearest
character with padding space characters, thereby converting the free marker to a bound marker. For
example, if you type text into the buffer when the editing point is detached, DECTPU inserts padding
space characters between the nearest character and the editing point. Using any of the following built-in
procedures when the editing point is detached also causes DECTPU to perform padding:

● APPEND_LINE

● COPY_TEXT

● CURRENT_CHARACTER

● CURRENT_LINE

● CURRENT_OFFSET

● ERASE_CHARACTER

6. Marker Data Type

○ ERASE_LINE

○ MOVE_HORIZONTAL

○ MOVE_TEXT

○ MOVE_VERTICAL

○ SELECT

○ SELECT_RANGE

○ SPLIT_LINE

Example 3.1, "Suppressing the Addition of Padding Blanks" shows how to suppress padding while using
these built-ins. The example assumes that the editing point is free. The code in this example assigns the
string representation of the current line to the variable bat without adding padding blanks to the buffer.

Example 3.1. Suppressing the Addition of Padding Blanks

x := MARK (FREE_CURSOR); ! Places a marker at the

37

Chapter 3. DEC Text Processing Utility Data Types

 ! detached editing point

POSITION (SEARCH_QUIETLY ("",FORWARD)); ! Moves the active editing
 ! point to the nearest
 ! text character

bat := CURRENT_LINE; ! Assigns the string
 ! representation of the
 ! current line to bat without
 ! adding padding blanks

POSITION (x); ! Returns the active editing
 ! point to the free marker

To remove a marker, use the DELETE built-in procedure with the marker as a parameter. For example,
the following statement deletes the marker mark1:

DELETE (mark1);

You can also set all variables referring to the marker to refer to something else, for example, tpu
$k_unspecified or 0. The following statement sets the variable mark1 to 0:

mark1 := 0;

If mark1 were the only variable referring to a marker, that marker would be deleted upon execution of
the previous statement.

The marker data type is returned by the MARK, SELECT, BEGINNING_OF, END_OF, and
GET_INFO built-in procedures.

3.7. Pattern Data Type
A pattern is a structure that DECTPU uses when it searches for text in a buffer. You can think of a
pattern as a template that DECTPU com pares to the searched text, looking for a match between the
pattern and the searched text. You can use a variable whose data type is the pattern data type when you
specify the first parameter to the SEARCH and SEARCH_QUIETLY built-in procedures.

To create a pattern, use DECTPU pattern operators (+, &, | , @) to connect any of the following:

● String constants

● String variables

● Pattern variables

● Calls to pattern built-in procedures

● The following keywords:

○ ANCHOR

○ BUFFER_BEGIN

○ BUFFER_END

○ LINE_BEGIN

38

Chapter 3. DEC Text Processing Utility Data Types

○ LINE_END

○ PAGE_BREAK

○ REMAIN

○ UNANCHOR

● Parentheses (to enclose expressions)

Patterns can be simple or complex. A simple pattern can be composed of sets of strings connected by
one of the pattern operators. The following example indicates that pat1 matches either the string "abc" or
the string "def":

pat1 := "abc" | "def";

If you connect two strings with the + operator, the result is a string rather than a pattern. For example,
the following statement gives pat1 the string data type:

pat1 := "abc" + "def";

The SEARCH and SEARCH_QUIETLY built-in procedures accept such a string as a parameter.

A more complex pattern uses pattern built-in procedures and existing patterns to form a new pattern.
The following example indicates that pat2 matches the string "abc" followed by the longest string that
contains any characters from the string "12345 ":

pat2 := "abc" + SPAN ("12345");

Pat2 matches the string "abc123" in the text string "xyzabc123def".

Following are additional examples of statements that create complex patterns:

pat1 := any("abc");
pat2 := line_begin + remain;
pat3 := "abc" | "xes";
pat4 := pat1 + "12";
pat5 := "xes" @ var1;
pat6 := "abc" & "123";

You can assign a pattern to a variable and then use the variable as a parameter for the SEARCH or
SEARCH_QUIETLY built-in procedure. SEARCH or SEARCH_QUIETLY looks for the character
sequences specified by the pattern that you use as a parameter. If SEARCH or SEARCH_QUIETLY
finds a match for the pattern, the built-in returns a range that contains the text that matches the pattern.
You can assign the range to a variable.

The following example uses strings and pattern operators to create a pattern that is stored in the variable
my_pat . The variable is then used with the SEARCH or SEARCH_QUIETLY built-in procedure in
a forwar d direction. If SEARCH or SEARCH_QUIETLY finds a match for my_pat , the range of
matching text is stored in the variable match_range . The POSITION built-in procedure causes the
editing point to move to the beginning of match_range.

my_pat := ("abc" | "def") + "::";
match_range := SEARCH (my_pat, FORWARD);
POSITION (match_range);

39

Chapter 3. DEC Text Processing Utility Data Types

3.7.1. Using Pattern Built-In Procedures and Keywords
The following built-in procedures return values of the pattern data type:

● ANY

● ARB

● MATCH

● NOTANY

● SCAN

● SCANL

● SPAN

● SPANL

See the DEC Text Processing Utility Reference Manual for a complete description of these pattern built-in
procedures.

3.7.2. Using Keywords to Build Patterns
You can use the following keywords as the first argument to the SEARCH or SEARCH_QUIETLY
built-in procedures. You can also use them to form patterns in expressions that use the pattern operators.
See the DEC Text Processing Utility Reference Manual for a complete description of these keywords.

● ANCHOR

● BUFFER_BEGIN

● BUFFER_END

● LINE_BEGIN

● LINE_END

● PAGE_BREAK

● REMAIN

● UNANCHOR

3.7.3. Using Pattern Operators
The following are the DECTPU pattern operators:

● Concatenation operator (+)

● Link operator (&)

● Alternation operator (|)

● Partial pattern assignment operator (@)

40

Chapter 3. DEC Text Processing Utility Data Types

The pattern operators are equal in DECTPU’s precedence of operators. For more information on the
precedence of DECTPU operators, see Chapter 4. Pattern operators associate from left to right. Thus,
the following two DECTPU statements are identical:

pat1 := a + b & c | d @ e;
pat1 := (((a + b) & c) | d) @ e;

In addition to the pattern operators, you can use two relational operators, equal (=) and not equal (<>),
to compare patterns. The following sections discuss the pattern operators.

3.7.3.1. + (Pattern Concatenation Operator)
The concatenation operator (+) tells SEARCH or SEARCH_QUIETLY that text matching the right
pattern element must immediately follow the text matching the left pattern element in order for the
complete pattern to match. In other words, the concatenation operator specifies a search in which the
right pattern element is anchored to the left. For example, the following pattern matches only if there is a
line in the searched text that ends with the string abc.

pat1 := "abc" + line_end;

If SEARCH or SEARCH_QUIETLY finds such a line, the built-in returns a range that contains the text
abc and the end of the line.

VSI recommends that you use the concatenation operator rather than the link operator unless you
specifically require the link operator.

3.7.3.2. & (Pattern Linking Operator)
The link operator (&) is similar to the concatenation operator (+). Unlike the concatenation operator,
the link operator does not necessarily cause an anchored search. If you define a pattern by specifying any
pattern element, an ampersand (&), and a pattern or keyword variable, a search for each subpattern is
not an anchored search.

If you link elements other than pattern variables, the search is an anchored search unless you specify
otherwise. Strings, constants, and the results of built-in procedures are not pattern variables.

For example, suppose you defined two subpattern variables as follows:

 p1 := "a" & ANY("012345678");
p2 := "c" & ARB (1);

You then define the following pattern variable:

pat_var := p1 & p2

Given this sequence of definitions, a search for pat_var succeeds if DECTPU encounters the following
string:

a5xcd

Because two pattern variables are linked, DECTPU searches first for the text that matches p1, then
unanchors the search, and then searches for the text that matches p2.

To specify an anchored search when the right-hand subpattern is a pattern or keyword variable, use
a plus sign (+). You must use a plus sign (+) to anchor the search if the right-hand subpattern is a

41

Chapter 3. DEC Text Processing Utility Data Types

keyword variable. If the right-hand subpattern is a pattern variable, you can use the ANCHOR keyword
as the first element of that subpattern to anchor the right-hand subpattern.

For example, suppose you defined the following patterns:

p1 := LINE_BEGIN + "a";
p2 := "b" + LINE_END;

You anchor the search for p2 by using (+) as follows:

pat_var := p1 + p2;

If you use an ampersand (&), you unanchor the search for p2.

You can also anchor the search for p2 by defining p2 as follows:

p2 := ANCHOR + "b" + LINE_END;

3.7.3.3. | (Pattern Alternation Operator)
The alternation operator (|) tells SEARCH or SEARCH_QUIETLY to match a sequence of characters
if those characters match either of the pattern elements separated by the alternation operator. The
following pattern matches either the string abc or the string xes:

pat1 := "abc" | "xes";

If the text being searched contain s text that matches both alternatives, SEARCH or
SEARCH_QUIETLY matches the earliest occurring match. If two matches start at the same character,
SEARCH or SEARCH_QUIETLY matches the left element. For example, suppose you had the search
text abcd and the following pattern definitions:

pat1 := "abc" | "bcd";
pat2 := "bcd" | "abc";
pat3 := "bc" | "bcd";
pat4 := "bcd" | "bc";

Given these definitions and search text, a search for the patterns pat1 and pat2 would return a range
that contains the text abc. A search for the pattern pat3 would return a range that contains the text bc.
Finally, a search for the pattern pat4 would return a range that contains the text bcd.

3.7.3.4. @ (Partial Pattern Assignment Operator)
The partial pattern assignment operator (@) tells SEARCH or SEARCH_ QUIETLY to create a range
that contains the text matching the pattern element to the left of the partial pattern assignment operator.
When the search is completed, the variable to the right of the partial pattern assignment operator
references the created range. If SEARCH or SEARCH_QUIETLY is given the search text abcdefg and
the following pattern, it returns a range that contains the text abcdefg:

pat1 := "abc" + (arb(2) @ var1) + remain;

SEARCH or SEARCH_QUIETLY also assigns to var1 a range that contains the text de.

If you assign to a variable a partial pattern that matches a position, rather than a character, the partial
pattern variable is a range that contains the character or line-end at the point in the file where the
partial pattern was matched. For example, in any of the following patterns that contain partial pattern

42

Chapter 3. DEC Text Processing Utility Data Types

assignments, the variable partial_pattern_variable contains the character or line-end at the point in the
file where the partial pattern was matched:

● "" @ partial_pattern_variable

● ANCHOR @ partial_pattern_variable

● UNANCHOR @ partial_pattern_variable

● LINE_BEGIN @ partial_pattern_variable

● BUFFER_BEGIN @ partial_pattern_variable

If you use one of the preceding patterns when the cursor is free (that is, in an area that does not contain
text, such as the area after the end of a line), the variable partial_pattern_variable contains the line-end
or character nearest to the cursor.

SEARCH or SEARCH_QUIETLY does partial pattern assignment only if the complete pattern matches.
If the complete pattern matches, it makes assignments only to those variables paired with pattern
elements that are used in the complete match. If a partial pattern assignment variable appears more than
once in a pattern in places where it is legal for a partial pattern assignment to occur, the last occurrence
in the pattern determines what range SEARCH assigns to the variable. For example, with the search text
abcdefg and the following pattern, SEARCH or SEARCH_QUIETLY returns a range that contain s the
text abcde and assigns a range that contains the text d to the variable var1:

pat1 := "a" + ("b" @ var1) + "c" + ("d" @ var1)
 + ("e" | ("x" @ var1));

3.7.3.5. Relational Operators
You can use the two relational operators, equal (=) and not equal (<>), to compare patterns. Two
patterns are equal if they are the same pattern, as pat1 and pat2 are in the following example:

pat1 := notany("abc", 2) + span("123");
pat2 := pat1;

Two patterns are also equal if they have the same internal representation. Patterns have the same
internal representation only if they are built in exactly the same way. The order of the characters in
the arguments to ANY, NOTANY, SCAN, SCANL, SPAN, and SPANL does not matter when you
are comparing patterns returned by any of these built-ins. Other than this, almost any difference in the
building of two patterns makes those patterns unequal. For example, suppose you defined the variable
this_pat as follows:

this_pat := ANY ("abc");

Given this definition, the following patterns match the same text but are not equal:

pat1 := LINE_BEGIN + ANY ("abc");
pat2 := LINE_BEGIN + this_pat;

3.7.4. Compiling and Executing Patterns
When you execute a DECTPU statement that contains a pattern expression, DECTPU builds an internal
representation of the pattern. DECTPU uses the current contents of any buffer s or ranges used as
arguments to pattern built-ins in the pattern expression to build the internal representation. Later changes

43

Chapter 3. DEC Text Processing Utility Data Types

to those buffer s and ranges do not affect the internal representation for the pattern. DECTPU also uses
the current values of any variables used in the pattern expression. Later changes to these variables do
not affect the internal representation of the pattern. For example, suppose you wrote the following code
fragment:

p1 := "abc";
p2 := "123";
pat := p1 & p2;
p1 := "xyz";
SEARCH (pat, FORWARD);

Given this code fragment, the search matches the string "abc123 " because the variable pat is evaluated
as it is built from p1 and p2 during the assignment statement.

3.7.5. Searching for a Pattern
The SEARCH and SEARCH_QUIETLY built-ins use the following algorithm to find a match for a
pattern:

1. Put the internal marker that marks the search position at the starting position for the search. The
starting position is determined as follows:

● If you do not specify where to search, search the current buffer, starting at the editing point.

● If you specify a buffer or range where the search is to take place, start at the beginning or end of
the buffer or range, depending on the direction of the search.

2. Check whether the pattern matches text, starting at the current search position and extending toward
the end of the searched buffer or range. If a range is being searched, the matched text cannot extend
beyond the end of that range. If the pattern matches, return a range that contains the matching text
and stop searching.

3. If the previous step fails, move the search position one character forward or backward, depending
upon the direction of the search. If this is impossible because the search position is at the end or
beginning of the searched buffer or range, stop searching. If this step succeeds, repeat the previous
step.

Note

This algorithm changes if you specify a reverse search for a pattern starting with SCAN, SPAN,
SCANL, or SPANL. For more information, see the descriptions of these built-in procedures in the DEC
Text Processing Utility Reference Manual.

3.7.6. Anchoring a Pattern
Anchoring a pattern forces SEARCH or SEARCH_QUIETLY to match the anchored part of the pattern
to text starting at the current search position. If the anchored part of a pattern fails to match that text,
SEARCH or SEARCH_ QUIETLY stops searching.

Usually, all pattern elements other than the first pattern element of a pattern are anchored. This means
that a pattern can match text starting at any point in the searched text but that once it starts matching,
each pattern element must match the text immediately following the text that matched the previous
pattern element.

44

Chapter 3. DEC Text Processing Utility Data Types

To direct DECTPU to stop searching if the characters starting at the editing point do not match the
pattern, use the ANCHOR keyword as the first pattern element. For example, the following pattern
matches only if the string abc occurs at the editing point:

pat1 := ANCHOR + "abc";

There are two ways to unanchor pattern elements in the midst of a pattern. The easiest is to concatenate
or link the UNANCHOR keyword before the pattern element you want to unanchor. The following
pattern unanchors the pattern element xyz:

pat1 := "abc" + UNANCHOR + "xyz";

This means that the pattern pat1 matches any text beginning with the characters abc and ending with
the characters xyz. It does not matter what or how many characters or line breaks appear between the
two sets of characters. Since SEARCH or SEARCH_QUIETLY matches the first xyz it finds, the text
between the two sets of characters by definition does not contain the string xyz.

The second way to unanchor a pattern element is to use the special properties of the link operator (&).
While the concatenation operator always anchors the right pattern element to the left, the link operator
does so only if the right pattern element is not a pattern variable. If the link operator’s right pattern
element is a pattern variable, the link operator unanchors that pattern element. The pattern pat2 defined
by the following assignments matches any sequence of text that begins with the letter a and ends with a
digit.

pat1 := ANY ("0123456789");
pat2 := "a" & pat1;

Any amount of text can occur between the a and the digit. Pat2 matches the same text as the following
pattern:

pat3 := "a" + UNANCHOR + ANY("0123456789");

The link operator unanchors a pattern variable regardless of what the left pattern element is. In particular,
the following two patterns match the same text:

pat2 := "a" & pat1;
pat3 := "a" & ANCHOR & pat1;

If you are using pattern variables to form patterns and you wish those variables to be anchored, you have
two choices: you can use the concatenation operator, or you can use the ANCHOR keyword as the first
element of any pattern the pattern variables reference.

3.8. Process Data Type
The CREATE_PROCESS built-in procedure returns a value of the process data type. A DECTPU
process runs as a subprocess. DECTPU processes have the same restrictions that OpenVMS
subprocesses have. Following are some of the restrictions:

● You cannot create more DECTPU processes than your account subprocess quota allows.

● You cannot spawn a subprocess in an account that has the CAPTIVE flag set.

● Only OpenVMS utilities that can perform I/O to a mailbox and that do simple reads and writes (for
example, MAIL) can run in a DECTPU process. Programs like FMS, PHONE, or any other program
that takes full control of the screen, do not work properly in a DECTPU process. See the built-in
procedure SPAWN for information on running these types of programs from DECTPU.

45

Chapter 3. DEC Text Processing Utility Data Types

● You do not see any prompts from the utility you are using. For example, in MAIL, you have to be
aware of the sequence of prompts for sending a mail message because you do not see the prompts.

The following example assigns a value of the process data type to the variable x:

x := CREATE_PROCESS (main_buffer, "MAIL");

The first parameter specifies that the output from the process is to be stored in MAIN_BUFFER. The
string "MAIL" is the first command sent to the subprocess.

To pass commands to a subprocess, use the SEND built-in procedure, as follows:

SEND ("MAIL", x);

To pass the READ command to the Mail utility, enter the following DECTPU statement:

SEND ("READ", x);

The output from the READ command is stored in the buffer associated with the process x. If the buffer
associated with a process is deleted, the process is deleted as well.

3.9. Program Data Type
A program is the compiled form of a sequence of DECTPU procedures and executable statements. The
COMPILE and LOOKUP_KEY built-in procedures can optionally return a value of the program data
type as a result. The following example assigns a value of the program data type to the variable x:

x := COMPILE (main_buffer);

MAIN_BUFFER must contain only DECTPU declarations, executable statements, and comments. All
declarations must come before any executable statements that are not included in the declarations. The
declarations and statements are compiled and the resulting program is stored in the variable x.

3.10. Range Data Type
A range contains all the text between (and including) two markers. You can form a range with the
CREATE_RANGE built-in procedure. A range is associated with characters within a buffer. If the
characters within a range move, the range moves with them. If characters are added or deleted between
two markers that delimit a range, the size of the range changes. If all the characters in a range are
deleted, the range moves to the nearest character.

DECTPU does not support ranges of zero length unless the range begins and ends at the end of a buffer.
All other ranges contain at least one character (which could be a space character) or a line-end (if the
range is created at the end of a line).

If you create a range by specifying a free marker as a parameter to the CREATE_ RANGE built-in,
DECTPU creates a new marker and binds the marker to the text nearest to the free marker position.
DECTPU uses the new bound marker as the range delimiter. This operation does not cause insertion of
padding spaces.

Deleting the markers used to create a range does not affect the range.

To convert the contents of a range to a string, use either the STR or the SUBSTR built-in procedure.

46

Chapter 3. DEC Text Processing Utility Data Types

To remove a range, use the DELETE built-in procedure with the range as a parameter. For example, the
following statement deletes the range range1:

DELETE (range1);

You can also delete a range by removing all variable references to the range. To do this, set all variables
referring to the range to some other value, such as 0. For example, the following statement sets the
variable range1 to 0:

range1 := 0;

Deleting a range does not remove the characters of the range from the buffer; it merely removes the
range data structure. To remove the characters of a range, use the ERASE built-in procedure with the
range as a parameter. For example, ERASE (my_range) removes all the characters in my_range, but it
does not remove the range structure. Using the statement DELETE (range_variable) removes the range
data structure, but does not affect the characters in the range.

The following built-in procedures, as well as the partial pattern assignment operator, all return values of
the range data type:

● CHANGE_CASE

● CREATE_RANGE

● EDIT

● GET_INFO

● READ_CLIPBOARD

● READ_GLOBAL_SELECT

● SEARCH

● SEARCH_QUIETLY

● SELECT_RANGE

● TRANSLATE

The following example assigns a value of the range data type to the variable x:

x := CREATE_RANGE (mark1, mark2, UNDERLINE);

You can specify the video attribute with which DECTPU should display a range. The possible attributes
are BLINK, BOLD, REVERSE, and UNDERLINE. The UNDERLINE keyword in the preceding
example specifies that the characters in the range will be underlined when they appear on the screen.
You cannot give more than one video attribute to a range. However, to apply multiple video attributes to
a given set of characters, you can define more than one range that contains those characters and give one
video attribute to each range.

3.11. String Data Type
DECTPU uses the string data type to represent character data. A value of the string data type can
contain any of the elements of a character set. You can select one of the following character sets to use
with your string data:

47

Chapter 3. DEC Text Processing Utility Data Types

● DEC_MCS—DEC Multinational Character Set

● ISO_LATIN1—ISO Latin1 Character Set

● GENERAL—Other general character sets

DECTPU uses the string data type to represent character data. A value of the string data type can contain
any of the elements of the character sets mentioned previously. To specify a string constant, enclose the
value in quotation marks. In DECTPU, you can use either the quotation mark (") or the apostrophe (’)
as the delimiter for a string. The following statements assign a value of the string data type to the variable
x:

x := ’abcd’;
x := "abcd";

To specify the quote character itself within a string, type the character twice if you are using the
same quote character as the delimiter for the string. The following statements show how to quote an
apostrophe and a quotation mark, respectively:

x := ’’’’; ! The value assigned to x is ’.
x := """"; ! The value assigned to x is ".

If you use the alternate quote character as the delimiter for the string within which you want to specify
a quote character, you do not have to type the character twice. The following statements show how to
quote an apostrophe and a quotation mark, respectively, when you use the alternate quote character to
delimit the string:

x := "’"; ! The value assigned to x is ’.
x := ’"’; ! The value assigned to x is ".

A null string is a string of length zero. You can assign a null string to the variable x in the following way:

x := ’’;

To create a string from the contents of a range, use the STR or the SUBSTR built-in procedure. To create
a string from the contents of a buffer, use the STR built-in.

The maximum length for a string is 65,535 characters. A restriction of the DECTPU compiler is that a
string constant (an open quotation mark, some characters, and a close quotation mark) must have both
its opening and closing quotation marks on the same line. While a string can be up to 65,535 characters
long, a line in a DECTPU buffer can only be 32767 characters long. If you try to create a line that is
longer than 32767 characters, DECTPU truncates the inserted text to the amount that fills the line to
32767 characters.

Many DECTPU built-in procedures return a value of the string data type. The ASCII built-in procedure,
for example, returns a string for the ordinal value that you use as a parameter. The following statement
returns the string "K" in the variable my_char:

my_char := ASCII (75);

To replicate a string, specify the string to be reproduced, then the multiplication operator (*), and then
the number of times you want the string to be replicated. For example, the following DECTPU statement
inserts 10 underscores into the current buffer at the editing point:

COPY_TEXT ("_" * 10)

The string to be replicated must be on the left-hand side of the operator. For example, the following
DECTPU statement produces an error:

48

Chapter 3. DEC Text Processing Utility Data Types

 COPY_TEXT (10 * "_")

To reduce a string, specify the string to be modified, then the subtraction operator (–), and then the
substring to be removed. Table 3.2, "Effects of Two String-Reduction Operations" shows the effect s of
two string-reduction operations.

Table 3.2. Effects of Two String-Reduction Operations

DECTPU Statement Result

COPY_TEXT ("FILENAME.MEM"–"FILE") Inserts the string "NAME.MEM" into the current
buffer at the editing point.

COPY_TEXT ("woolly"–"wool") Inserts the string "ly" into the current buffer at the
editing point.

3.12. Unspecified Data Type
An unspecified value is the initial value of a variable after it has been compiled (added to the DECTPU
symbol table). In the following example, the COMPILE built-in procedure creates the variable x and
initially gives it the data type unspecified unless x has previously been declared as a global variable:

COMPILE ("x := 1");

An assignment statement that creates a variable must be executed before a data type is assigned to the
variable. In the following example, when you use the EXECUTE built-in procedure to run the program
that is stored in the variable prog, the variable x is assigned an integer value:

prog := COMPILE ("x := 1");
EXECUTE (prog);

To give a variable the data type unspecified, assign the predefined constant TPU$K_UNSPECIFIED to
the variable:

prog := TPU$K_UNSPECIFIED;

3.13. Widget Data Type
The DECwindows version of DECTPU provides the widget data type to support DECwindows widgets.
The non-DECwindows version of DECTPU does not support this data type.

A widget is an interaction mechanism by which users give input to an application or receive messages
from an application.

You can use the equal operator (=) or the not-equal operator (<>) on widgets to determine whether
they are equal (that is, whether they are the same widget instance), but you cannot use any other
relational or arithmetic operators on them.

Once you have created a widget instance, DECTPU does not delete the widget instance, even if there are
no variables referencing it. To delete a widget, use the DELETE built-in procedure.

DECwindows DECTPU provides the same support for DECwindows gadgets that it provides for
widgets. A gadget is a structure similar to a widget, but it is not associated with its own unique
DECwindows window. Gadgets do not require as much memory to implement as widgets do. In most
cases, you can use the same DECwindows DECTPU built-ins on gadgets that you use on widgets.

49

Chapter 3. DEC Text Processing Utility Data Types

For more information on widgets or gadgets, see the OpenVMS overview documentation.

3.14. Window Data Type
A window is a portion of the screen that displays as much of the text in a buffer as will fit in the screen
area. In EVE, the screen contains three windows by default: a large window for viewing the text in your
editing buffer and two one-line windows for displaying commands and messages. In EVE or in a user-
written interface, you can subdivide the screen to create more windows.

A variable of the window data type ‘‘contains’’ a window. The CREATE_WINDOW,
CURRENT_WINDOW, and GET_INFO built-in procedures return a value of the window data type.
CREATE_WINDOW is the only built-in procedure that creates a new window. The following example
assigns a value of the window data type to the variable x:

x := CREATE_WINDOW (1, 12, OFF);

The first parameter specifies that the window starts at screen line number 1. The second parameter
specifies that the window is 12 lines in length. The OFF keyword specifies that a status line is not to be
displayed when the window is mapped to the screen.

3.14.1. Defining Window Dimensions
Windows are defined in lines and columns. In EVE, all windows extend the full width of the screen
or terminal emulator. In DECTPU, you can set the window width to be narrower than the width of the
screen or terminal emulator.

The allowable dimensions of a window often depend on whether the window has a status line, a
horizontal scroll bar, or both. A status line occupies the last line of a window. By default, a status line
contains information about the buffer and the file associated with the window. You can turn a status line
on or off with the SET (STATUS_LINE) built-in procedure.

A horizontal scroll bar is a one-line widget at the bottom of a window that you can use to shift the
window to the right or left, controlling what text in the buffer can be seen through the window. You can
turn a horizontal scroll bar on or off with the SET (SCROLL_BAR) built-in procedure.

Lines on the screen are counted from 1 to the number of lines on the screen; lines in a window are
counted from 1 to the number of lines in the window. Columns on the screen are counted from 1 to the
physical width of the screen; columns in a window are counted from 1 to the number of columns in the
window.

The minimum length for a window is one line if you do not include a status line or horizontal scroll bar,
two lines if you include either a status line or a horizontal scroll bar, and three lines if you include both a
status line and scroll bar.

The maximum length of a window is the number of lines on your screen. For example, if your screen is
24 lines long, the maximum size for a single window is 24 lines. On the same size screen, you can have
a maximum of 24 visible windows if you do not use status lines or horizontal scroll bars. If you use a
status line and a horizontal scroll bar for each window, the maximum number of visible windows is 8.

3.14.2. Creating Windows
When you use a device that supports windows (see Chapter 1, "Overview of the DEC Text Processing
Utility" for information on terminals that DECTPU supports), you or the section file that initializes your

50

Chapter 3. DEC Text Processing Utility Data Types

application must create and map windows. In most instances, it is also advisable to map a buffer to the
window. To map a buffer to a window, use the MAP built-in procedure. If you do not associate a buffer
with a window and map the window to the screen, the only items displayed on the screen are messages
that are written to the screen at the cursor position.

The CREATE_WINDOW built-in procedure defines the size and location of a window and specifies
whether a status line is to be displayed. CREATE_ WINDOW also adds the window to DECTPU’s
internal list of windows available for mapping. At creation, a window is marked as being not visible and
not mapped and the following values for the window are calculated and stored:

● Original_top—Screen line number of the top of the window when it was created.

● Original_bottom—Screen line number of the bottom of the window when it was created (not
including the status line).

● Original_length—Number of lines in the window (including the status line).

Later calls to ADJUST_WINDOW may change these values.

3.14.3. Displaying Window Values
When you use the CREATE_WINDOW built-in procedure to create a window, DECTPU saves the
numbers of the screen lines that delimit the window in original_top and original_bottom. When you
map a window to the screen with the MAP built-in procedure, the window becomes visible on the
screen. If it is the only window on the screen, its visible_top and visible_bottom values are the same as its
original_top and original_bottom values. You can use SHOW (WINDOWS) to display the original and
the visible values or the GET_INFO built-in procedure to retrieve them.

However, if there is already a window on the screen and you map another window over part of it, the
values for the previous window’s visible_top, visible_bottom , and visible_length are modified. The value
for visible_length of the previous window is different from its original_length until the new window
is removed from the screen. As long as the new window is on the screen and does not have another
window mapped over it, its original top and bottom are the same as its visible top and bottom.

3.14.4. Mapping Windows
When you want a window and its associated buffer to be visible on the screen, use the MAP built-in
procedure. Mapping a window to the screen has the following effects:

● The mapped window becomes the current window and the cursor is moved to the editing point in
the buffer associated with the window.

● The buffer associated with the window becomes the current buffer.

● The window is marked as visible and mapped.

● The visible_top , visible_bottom, and visible_length of the window are calculated and stored. Initially,
these values are the same as the original values that were calculated when the window was created
(See the last item in the next list).

Mapping a window to the screen may have the following side effect s:

● The newly mapped window may occlude other windows. This happens when the original_top
or original_bottom line of the newly mapped window overlaps the boundaries of existing visible

51

Chapter 3. DEC Text Processing Utility Data Types

windows. Overlapping can cause some windows to be totally occluded or not visible. Occluded
windows are still marked mapped ; when the window that is covering them is unmapped, they may
reappear on the screen without being explicitly remapped.

● If the newly mapped window divides a window into two parts, only the top part of the segmented
window continues to be updated. The lower part of the segmented window is erased at the next
window update.

● The visible_top, visible_bottom, and visible_length values of a window that is occluded change from
their original values.

When a newly mapped window becomes the current window (the MAP, POSITION, and ADJ
UST_WINDOW built-in procedures cause this to happen), the cursor is placed in the current window.
In addition to the active cursor position in the current window, there is a marker that designates a cursor
position in all other windows. The cursor position in a window other than the current window is the
last location of the cursor when it was in the window. By maintaining a cursor position in all windows,
DECTPU lets you edit in multiple locations of a single buffer if that buffer is associated with more than
one window.

For more information on the cursor position in a window and the POSITION built-in procedure, see the
DEC Text Processing Utility Reference Manual.

3.14.5. Removing Windows
To remove a window from the screen, you can use either the UNMAP built-in procedure or the
DELETE built-in procedure. UNMAP removes a window from the screen. However, the window is
still in DECTPU’s internal list of windows. It is available to be remapped to the screen without being
re-created. DELETE removes a window from the screen and also removes it from DECTPU’s list of
windows. It is then no longer available for future mapping to the screen.

Unmapping or deleting a window has the following effects:

● The unmapped window is marked as not visible and not mapped.

● Another window becomes the current window and the cursor is moved to the last cursor position in
that window.

● If other windows were occluded by the window you removed from the screen, text from the
occluded windows reappears on the screen. The visible_top, visible_bottom, and visible_length values
of the previously occluded windows are modified according to the lines that are returned to them
when the occluding window is unmapped. When an occluding window is removed, the window or
windows it occluded become visible again.

3.14.6. Using the Screen Manager
The screen manager is the part of DECTPU that controls the display of data on the screen. You can
manipulate data without having it appear on a terminal screen (see Chapter 5, "DEC Text Processing
Utility Program Development"). However, if you use the DECTPU window capability to make your edits
visible, the screen manager controls the screen.

In the main control loop of DECTPU, the screen manager is not called to perform its duties until all
commands bound to the last key pressed have finished executing and all input in the type-ahead buffer
has been processed. Upon completion of all the commands, the screen manager updates every window
to reflect the current state of the part of the buffer that is visible in the window. If you want to make the

52

Chapter 3. DEC Text Processing Utility Data Types

screen reflect changes to the buffer prior to the end of a procedure, use the UPDATE built-in procedure
to force the updating of the window. Using UPDATE is recommended with built-in procedures such as
CURRENT_COLUMN that query DECTPU for the current cursor position. To ensure that the cursor
position returned is the correct location (up to the point of the most recently issued command), use
UPDATE before using CURRENT_ COLUMN or CURRENT_ROW.

3.14.7. Getting Information on Windows
There are two DECTPU built-in procedures that return information about windows:

GET_INFO and SHOW (WINDOW). GET_INFO returns information that you can store in a variable.
You can get information about the visible and original values of windows, as well as about other
attributes that you have set up for your window environment. See GET_ INFO in the DEC Text
Processing Utility Reference Manual.

SHOW (WINDOW) or SHOW (WINDOWS) puts information about windows in the SHOW_BUFFER.
If you use an editor that has an INFO_WINDOW, you can display the SHOW_BUFFER information in
the INFO_WINDOW.

3.14.8. Terminals That Do Not Support Windows
DECTPU supports windows only for ANSI character-cell terminals. Noncharacter-cell terminals do not
support windows and are considered “unsupported devices”.

If you are using an unsupported device, you must use the /NODISPLAY qualifier when you invoke
DECTPU. /NODISPLAY informs DECTPU that you do not expect the device from which you are
issuing DECTPU commands to support screen-oriented editing. If one of the previous conditions exists
and you do not specify the /NODISPLAY qualifier, DECTPU exits with an error condition.

You are using an unsupported device if logical name SYS$INPUT points to an unsupported device, such
as a character-cell terminal. Appendix B, "DECTPU Terminal Support" contains more information about
DECTPU terminal support. Chapter 2, "Getting Started with DECTPU" contains more information on
the /NODISPLAY qualifier.

53

Chapter 3. DEC Text Processing Utility Data Types

54

Chapter 4. Lexical Elements of
the DEC Text Processing Utility
Language
4.1. Overview
A DECTPU program is composed of lexical elements. A lexical element may be an individual character,
such as an arithmetic operator, or it may be a group of characters, such as an identifier. The basic unit
of a lexical element is a character from either the DEC Multinational Character Set or the ISO_LATIN1
Character Set.

This chapter describes the following DECTPU lexical elements:

● Character set

● Identifiers

● Variables

● Constants

● Operators

● Expressions

● Reserved words

● Lexical keywords

4.2. Case Sensitivity of Characters
The DECTPU compiler does not distinguish between uppercase and lowercase characters except when
they appear as part of a quoted string. For example, the word EDITOR has the same meaning when
written in any of the following ways:

EDITOR
EDitOR
editor

The following, however, are quoted strings, and therefore represent different values:

"XYZ"
"xyz"

4.3. Character Sets
When you invoke DECTPU, you can use one of the following keywords with the /CHARACTER_SET
qualifier to specify the character set that you want DECTPU to use:

55

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

● DEC_MCS (for the DEC Multinational Character Set)

● ISO_LATIN1 (for the ISO Latin1 Character Set)

● GENERAL (for other general character sets)

● TPU$CHARACTER_SET (see the DCL help topic for this logical name)

Each character set is an 8-bit character set with 256 characters. Each character in a set is assigned a
decimal equivalent number ranging from 0 to 255. Each character set uses an extension of the American
Standard Code for Information Interchange (ASCII) character set for the first 128 characters. Table 4.1,
"Categories of ASCII Character Set Characters" shows the categories into which you can group the
ASCII characters.

Table 4.1. Categories of ASCII Character Set Characters

Category Meaning

0–31 Nonprinting characters such as tab, line feed,
carriage return, and bell

32 Space
33–64 Special characters such as the ampersand (&),

question mark (?), equal sign (=), and the
numbers 0 through 9

65–122 The uppercase and lowercase letters A through Z
and a through z

123–126 Special characters such as the left brace ({) and
the tilde (~)

127 Delete

The following sections discuss the types of character sets supported by DECTPU.

4.3.1. DEC Multinational Character Set (DEC_MCS)
The DEC Multinational Character Set characters from 128 to 255 are extended control characters
and supplemental multinational characters. Table 4.2, "Categories of DEC Multinational Character Set
Characters" shows the categories into which you can group the characters.

Table 4.2. Categories of DEC Multinational Character Set Characters

Category Meaning

128–159 Extended control characters
160 Reserved
161–191 Supplemental special graphics characters such as

the copyright sign (©) and the degree sign (°)
192–254 The supplemental multinational uppercase and

lowercase letters such as the Spanish Ñ and ñ
255 Reserved

For a complete list of characters in the DEC Multinational Character Set, see the OpenVMS
documentation.

56

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

4.3.2. ISO Latin1 Character Set (ISO_LATIN1)
The ISO Latin1 Character Set characters from 128 to 255 are extended control characters and Latin1
supplemental multinational characters. Table 4.3, "Categories for ISO Latin1 Characters" shows the
groups into which you can categorize characters.

Table 4.3. Categories for ISO Latin1 Characters

128-159 Extended control characters
160-191 Latin1 supplemental graphics characters such as

the nonbreaking space and the currency sign
192-255 The Latin1 supplemental uppercase and lowercase

letters such as the uppercase and lowercase thorn

For a complete list of the ISO Latin1 Character Set, see the OpenVMS documentation.

4.3.3. General Character Sets
If you specify the GENERAL keyword with the /CHARACTER_SET qualifier or the -C option,
DECTPU is unable to set a character set for 8-bit characters. The character set used and how DECTPU
displays 8-bit characters are the same as before you started DECTPU. For this reason, the characters
from 128 to 255 in the General Character Sets are not specific to any character set.

4.3.4. Entering Control Characters
There are two ways to enter control characters in DECTPU:

● Use the ASCII built-in procedure with the decimal value of the control character that you want to
enter. The following statement causes the escape character to be entered in the current buffer:

COPY_TEXT (ASCII (27));

● Use the special functions provided by EVE to enter control characters:

○ EVE provides a QUOTE command that is bound to Ctrl/V to insert control characters in a
buffer. For example, to use the quote command to insert an escape character in a buffer, do the
following:

1. Press Ctrl/V.

2. Press the ESCAPE key (on VT100-series terminals) or Ctrl/[.For example:

Ctrl/V ESC

● EVE’s EDT-like keypad setting provides a SPECINS key sequence to insert control characters in a
buffer. Use the SPECINS key to enter a control character as follows:

1. Press the GOLD key.

2. Enter the ASCII value of the special character that you want to insert in the buffer; in this case
27 (the escape character). (Use the keys on the keyboard, not the ones on the keypad.)

3. Press the GOLD key again.

57

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

4. Press the SPECINS key on the EDT keypad. For example:

GOLD 27 GOLD Specins

4.3.5. DECTPU Symbols
Certain symbols have special meanings in DECTPU. You can use them as statement delimiters,
operators, or other syntactic elements. Table 4.4, "DECTPU Symbols" lists the DECTPU symbols and
their functions.

Table 4.4. DECTPU Symbols

Name Symbol DECTPU Function

Apostrophe ’ Delimits a string
Assignment operator := Assigns a value to a variable
At sign @ Partial pattern assignment

operator
Left brace { Opens an array element index

expression
Close parenthesis) Ends parameter list, expression,

procedure call,argument list, or
array element index

Comma , Separates parameters
Exclamation point ! Begins comment
Dollar sign $ Indicates a variable, constant,

keyword, or procedure name that
is reserved to Compaq

Right brace } Closes array element index
expression

Equal sign = Relational operator
Greater than sign > Relational operator
Greater than or equal to sign >= Relational operator
Slash / Integer division operator
Asterisk * Integer multiplication operator
Left bracket [Begins case label
Less than sign < Relational operator
Less than or equal to sign <= Relational operator
Minus sign – Subtraction operator
Not equal sign <> Relational operator
Vertical bar | Pattern alternation operator
Open parenthesis (Begins parameter list, expression,

argument list, or array element
index

Ampersand & Pattern linkage operator

58

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

Name Symbol DECTPU Function

Plus sign + String concatenation operator,
pattern concatenation operator,
integer addition operator

Quotation mark " Delimits string
Right bracket] Ends case label
Semicolon ; Separates language statements
Underscore _ Separates words in identifiers

4.4. Identifiers
In DECTPU, identifiers are used to name programs, procedures, keywords, and variables. An identifier
is a combination of alphabetic characters, digits, dollar signs, and underscores, and it must conform to the
following restrictions:

● An identifier cannot contain any spaces or symbols except the dollar sign and the underscore.

● Identifiers cannot be more than 132 characters long.

DECTPU identifiers for built-in procedures, constants, keywords, and global variables are reserved
words.

You can create your own identifiers to name programs, procedures, constants, and variables. Any symbol
that is neither declared nor used as the target of an assignment statement is assumed to be an undefined
procedure.

4.5. Variables
Variables are names given to DECTPU storage locations that hold values. A variable name can be any
valid DECTPU identifier that is not a DECTPU reserved word or the name of a DECTPU procedure.
You assign a value to a variable by using a valid identifier as the left-hand side of an assignment
statement. Following is an example of a variable assignment:

new_buffer := CREATE_BUFFER ("new_buffer_name");

VSI suggests that you establish some convention for naming variables so that you can distinguish your
variables from the variables in the section file that you are using.

DECTPU allows two kinds of variables: global and local. Global variables are in effect throughout a
DECTPU environment. Local variables are evaluated only within the procedure or unbound code in
which they are declared. A variable is implicitly global unless you use the LOCAL declaration. You can
also declare global variables with the VARIABLE declaration.

Example 4.1, "Global and Local Variable Declarations" shows a global variable declaration and a
procedure that contains a local variable declaration.

Example 4.1. Global and Local Variable Declarations

VARIABLE user_tab_char;

! Tab key procedure. Always inserts a tab, even if current mode

59

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

! is overstrike.

PROCEDURE user_tab

LOCAL this_mode; ! Local variable for current mode

this_mode := GET_INFO (CURRENT_BUFFER, "mode"); ! Save current mode
SET (INSERT, CURRENT_BUFFER); ! Set mode to insert
user_tab_char := ASCII (9); ! Define the tab char
COPY_TEXT (user_tab_char); ! Insert tab
SET (this_mode, CURRENT_BUFFER); ! Reset original mode

ENDPROCEDURE;

The global variable user_tab_char is assigned a value when the procedure user_tab is executing. Since
the variable is a global variable, it could have been assigned a value outside the procedure user_tab.

The local variable this_mode has the value established in the procedure user_tab only when this
procedure is executing. You can have a variable also named this_mode in another procedure. The two
variables are not the same and may have different values. You can also have a global variable named
this_mode. However, using this_mode as a global variable when you are also using it as a local variable
is likely to confuse people who read your code. DECTPU will return an informational message during
compilation if a local variable has the same name as a global variable.

4.6. Constants
DECTPU has three types of constants:

● Integers

● Strings

● Keywords

Integer constants can be any integer value that is valid in DECTPU. See the DEC Text Processing Utility
Reference Manual for more information on the integer data type.

String constants can be one character or a combination of characters delimited by apostrophes or
quotation marks. See the DEC Text Processing Utility Reference Manual for a complete description of
how to quote strings in DECTPU.

Keywords are reserved words that have special meaning to the DECTPU compiler. See Chapter 3, "DEC
Text Processing Utility Data Types" for a complete description of keywords.

With the CONSTANT declaration, you can associate a name with a constant expression. User-defined
constants can be locally or globally defined.

A local constant is a constant declared within a procedure declaration. The scope of the constant is
limited to the procedure in which it is defined.

A global constant is a constant declared outside a procedure. Once a global constant has been defined, it
is set for the life of the DECTPU session. You can reassign to a constant the same value it was assigned
previously, but you cannot redefine a constant during a DECTPU session.

See Section 4.9.5.3, "CONSTANT" for a complete description of the CONSTANT declaration.

60

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

Example 4.2, "Global and Local Constant Declarations" shows a global constant declaration and a
procedure that contains a local constant declaration.

Example 4.2. Global and Local Constant Declarations

! Define some global constants.
CONSTANT
 user_bell := BELL,
 user_hello := "Hello",
 user_ten := 10;

! Hello world procedure.
PROCEDURE user_hello_world
CONSTANT
 world := "world";
MESSAGE (user_hello + " " + world); ! Display "Hello world"
 ! in message area
ENDPROCEDURE;

4.7. Operators
DECTPU uses symbols and characters as language operators. There are five types of operators:

● Arithmetic

● String

● Relational

● Pattern

● Logical

Table 4.5, "DECTPU Operators" lists the symbols and language elements that DECTPU uses as
operators.

Table 4.5. DECTPU Operators

Type Symbol Description

Arithmetic +
–
*
/

Addition, unary plus
Subtraction, unary minus
Multiplication
Division

String +
–
*

String concatenation
String reduction
String replication

Relational <>
=
<
<=
>
>=

Not equal to
Equal to
Less than
Less than or equal to
Greater than
Greater than or equal to

Pattern | Pattern alternation

61

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

Type Symbol Description
@
+
&

Partial pattern assignment
Pattern concatenation
Pattern linkage

Logical AND
NOT
OR
XOR

Boolean AND
Boolean NOT
Boolean OR
Boolean exclusive OR

You can use the + operator to concatenate strings. You can also use the relational operators to compare a
string with a string, a marker with a marker, or a range with a range.

The precedence of the operators in an expression determines the order in which the operands are
evaluated. Table 4.6, “Operator Precedence” lists the order of precedence for DECTPU operators.
Operators of equal precedence are listed on the same line.

Table 4.6. Operator Precedence

Operator Precedence

unary +,unary – Highest
NOT
*, /, AND
@, &, +, –, | , OR, XOR
=, <>, <, <=, >, >=
:= Lowest

Expressions enclosed in parentheses are evaluated first. You must use parentheses for correct evaluation
of an expression that combines relational operators.

You can use parentheses in an expression to force a particular order for combining operands. For
example:

Expression Result

8 * 5 / 2 - 4 16
8 * 5 / (2 - 4) -20

4.8. Expressions
An expression can be a constant, a variable, a procedure, or a combination of these separated by
operators. You can use expressions in a DECTPU procedure where an identifier or constant is required.
Expressions are frequently used within DECTPU conditional language statements.

The data types of all elements of a DECTPU expression must be the same. The following are exceptions
to this rule:

● You can mix keywords, strings, and pattern variables in expressions used to create patterns.

● You can mix data types when using the not equal (<>) and equal (=) relational operators.

● You can mix strings and integers when doing string replication.

62

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

Except for these cases, DECTPU does not perform implicit type conversions to allow for the mixing of
data types within an expression. If you mix data types, DECTPU issues an error message.

In the following example, the elements (J > 4) and (my_string = "this is my string") each evaluate to
an integer type (odd integers are true; even integers are false) so that they can be used following the
DECTPU IF statement:

IF (J > 4) AND (my_string = "this is my string")
THEN
 .
 .
 .

With the exception of patterns and the relational operators, the result of an expression is the same data
type as the elements that make up the expression.

The following example shows a pattern expression that uses a string data type on the right-hand side of
the expression. The LINE_BEGIN and REMAIN pattern keywords are used with the string constant
"the" to create a pattern data type that is stored in the variable pat1 :

pat1 := LINE_BEGIN + "the" + REMAIN;

Whenever possible, the DECTPU compiler evaluates constant expressions at compile time. DECTPU
built-in procedures that can return a constant value given constant input are evaluated at compile time.

In the following example, the variable fubar has a single string assigned to it:

fubar := ASCII (27) + "[0m";

Note

Do not assume that the DECTPU compiler automatically evaluates an expression in left-to-right order.

To avoid the need to rewrite code, you should write as if this compiler optimization were already
implemented. If you need the compiler to evaluate an expression in a particular order, you should force
the compiler to evaluate each operand in order before using the expression. To do so, use each operand
in an assignment statement before using it in an expression. For example, suppose you want to use
ROUTINE_1 and ROUTINE_2 in an expression.

Suppose, too, that ROUTINE_1 must be evaluated first because it prompts for user input. To get this
result, you could use the following code:

PARTIAL_1 := ROUTINE_1;
PARTIAL_2 := ROUTINE_2;

You could then use a statement in which the order of evaluation was important, such as the following:

IF PARTIAL_1 OR PARTIAL_2
 .
 .
 .

There are four types of DECTPU expressions:

● Arithmetic

● Relational

63

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

● Pattern

● Boolean

The following sections discuss each of these expression types.

4.8.1. Arithmetic Expressions
You can use any of the arithmetic operators (+, –, *, /) with integer data types to form arithmetic
expressions. DECTPU performs only integer arithmetic. The following are examples of valid DECTPU
expressions:

12 + 4 ! adds two integers

"abc" + "def" ! concatenates two strings

The following is not a valid DECTPU expression because it mixes data types:

"abc" + 12 ! you cannot mix data types

When performing integer division, DECTPU truncates the remainder; it does not round. The following
examples show the results of division operations:

Expression Result

 39 / 10 3
 -39 / 10 -3

4.8.2. Relational Expressions
A relational expression tests the relationship between items of the same data type and returns an integer
result. If the relationship is true, the result is integer 1; if the relationship is false, the result is integer 0.

Use the following relational operators with any of the DECTPU data types:

● Not equal operator (<>)

● Equal operator (=)

For example, the following code fragment tests whether string1 starts with a letter that occurs later in the
alphabet than the starting letter of string2:

string1 := "gastropod";
string2 := "arachnid";
IF string1 > string2
THEN
 MESSAGE ("Out of alphabetical order ");
ENDIF;

Use the following relational operators for comparisons of integers, strings, or markers:

● Greater than operator (>)

● Less than operator (<)

● Greater than or equal to operator (>=)

● Less than or equal to operator (<=)

64

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

When used with markers, these operators test whether one marker is closer to (or farther from) the top
of the buffer than another marker. (If markers are in different buffer s, they will return as false.) For
example, the procedure in Example 4.3, "Procedure That Uses Relational Operators on Markers" uses
relational operators to determine which half of the buffer the cursor is located in.

Example 4.3. Procedure That Uses Relational Operators on Markers

PROCEDURE which_half

LOCAL number_lines,
 saved_mark;

saved_mark := MARK (FREE_CURSOR);
POSITION (BEGINNING_OF (CURRENT_BUFFER));
number_lines := GET_INFO (current_buffer, "record_count");
IF number_lines = 0

THEN
 MESSAGE ("The current buffer is empty");
ELSE
 MOVE_VERTICAL (number_lines/2);
 IF MARK (FREE_CURSOR) = saved_mark
 THEN
 MESSAGE ("You are at the middle of the buffer");
 ELSE
 IF MARK (FREE_CURSOR) < saved_mark
 THEN
 MESSAGE ("You are in the second half of the buffer");
 ELSE
 MESSAGE ("You are in the first half of the buffer");
 ENDIF;
 ENDIF;

ENDIF;

ENDPROCEDURE;

4.8.3. Pattern Expressions
A pattern expression consists of the pattern operators (+, &, | , @) combined with string constants, string
variables, pattern variables, pattern procedures, pattern keywords, or parentheses. The following are valid
pattern expressions:

pat1 := LINE_BEGIN + SPAN ("0123456789") + ANY ("abc");

pat2 := LINE_END + ("end"|"begin");

pat3 := SCAN (’;"!’) + (NOTANY ("’") & LINE_END);

See Chapter 3, "DEC Text Processing Utility Data Types" for more information on pattern expressions.

4.8.4. Boolean Expressions
DECTPU performs bitwise logical operations on Boolean expressions. This means that the logical
operation is performed on the individual bits of the operands to produce the individual bits of the result.
In the following example, the value of user_variable is set to 3.

65

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

user_variable := 3 AND 7;

As another example, if user_var were %X7777 (30583), then you would use the following statement to
set user_var to %x0077 (119):

user_var := user_var AND %XFF

A true value in DECTPU is any odd integer; a false value is any even integer. Use the logical operators
(AND, NOT, OR, XOR) to combine one or more expressions. DECTPU evaluates Boolean expressions
enclosed in parentheses before other

elements. The following example shows the use of parentheses to ensure that the Boolean expression is
evaluated correctly:

IF (X = 12) AND (y <> 40)
THEN
 .
 .
 .
ENDIF;

4.9. Reserved Words
Reserved words are words that are defined by DECTPU and that have a special meaning for the
compiler.

DECTPU reserved words can be divided into the following categories:

● Keywords

● Built-in procedure names

● Predefined constants

● Declarations and statements

The following sections describe the categories of reserved words.

4.9.1. Keywords
Keywords are a DECTPU data type. They are reserved words that have special meaning to the compiler.
You can redefine DECTPU keywords only in local declarations (local constants, local variables, and
parameters in a parameter list). If you give a local constant, local variable, or parameter the same name
as that of a keyword, the compiler issues a message notifying you that the local declaration or parameter
temporarily supersedes the keyword. In such a circumstance, the keyword is said to be occluded. See
Chapter 3, "DEC Text Processing Utility Data Types" and the DEC Text Processing Utility Reference
Manual for more information on keywords.

4.9.2. Built-In Procedure Names
The DECTPU language has many built-in procedures that perform functions such as screen
management, key definition, text manipulation, and program execution. You can redefine DECTPU
built-in procedures only in local declarations (local constants, local variables, and parameters in a
parameter list). If you give a local constant, local variable, or parameter the same name as that of a

66

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

built-in procedure, the compiler issues a message notifying you that the local declaration or parameter
temporarily supersedes the built-in. In such a circumstance, the built-in is said to be occluded. See
the DEC Text Processing Utility Reference Manual for a complete description of the DECTPU built-in
procedures.

4.9.3. Predefined Constants
The following is a list of predefined global constants that DECTPU sets up. You cannot redefine these
constants.

● FALSE

● TPU$K_ALT_MODIFIED

● TPU$K_CTRL_MODIFIED

● TPU$K_HELP_MODIFIED

● TPU$K_MESSAGE_FACILITY

● TPU$K_MESSAGE_ID

● TPU$K_MESSAGE_SEVERITY

● TPU$K_MESSAGE_TEXT

● TPU$K_SEARCH_CASE

● TPU$K_SEARCH_DIACRITICAL

● TPU$K_SHIFT_MODIFIED

● TPU$K_UNSPECIFIED

● TRUE

4.9.4. Declarations and Statements
A DECTPU program can consist of a sequence of declarations and statements. These declarations and
statements control the action performed in a procedure or a program. The following reserved words
are the language elements that when combined properly make up the declarations and statements of
DECTPU:

● Module declaration

○ MODULE

○ IDENT

○ ENDMODULE

● Procedure declaration

○ PROCEDURE

67

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

○ ENDPROCEDURE

● Repetitive statement

○ LOOP

○ EXITIF

○ ENDLOOP

● Conditional statement

○ IF

○ THEN

○ ELSE

○ ENDIF

● Case statement

○ CASE

○ FROM

○ TO

○ INRANGE

○ OUTRANGE

○ ENDCASE

● Error statement

○ ON_ERROR

○ ENDON_ERROR

● RETURN statement

● ABORT statement

● Miscellaneous declarations

○ EQUIVALENCE

○ LOCAL

○ CONSTANT

○ VARIABLE

GLOBAL, UNIVERSAL, BEGIN, and END are words reserved for future expansion of the DECTPU
language.

68

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

The DECTPU declarations and statements are reserved words that you cannot define. Any attempt to
redefine these words results in a compilation error.

4.9.4.1. Module Declaration
With the MODULE/ENDMODULE declaration, you can group a series of global CONSTANT
declarations, VARIABLE declarations, PROCEDURE declarations, and executable statements as one
entity. After you compile a module, the compiler will generate two procedures for you. One procedure
returns the identification for the module and the other contains all the executable statements for the
module. The procedure names generated by the compiler are module- name_MODULE_ID ENT and
module-name_MODULE_INIT, respectively.

Syntax

MODULE module-name IDENT string-literal ⟦declarations⟧ ⟦ON_ERROR ...
ENDON_ERROR⟧ statement_1; . . . statement_ n; ENDMODULE

The declarations part of a module can include any number of global VARIABLE, CONSTANT, and
PROCEDURE declarations.

The ON_ERROR/ENDON_ERROR block, if used, must appear after the declarations and before
the DECTPU statements that make up the body of the module. Statements that make up the body of
a module must be separated with semicolons. For more information on error handlers, see Section
4.9.4.14, "Error Handling".

In the following example, the compiler creates two procedures: user_mod_module_ident and
user_mod_module_init. User_mod_module_ident returns the string "v1.0". User_mod_module_init calls
the routine user_hello.

MODULE user_mod IDENT "v1.0"

PROCEDURE user_hello
 MESSAGE ("Hello");
ENDPROCEDURE;

ON_ERROR
 MESSAGE ("Good-bye");
END_ON_ERROR;

user_hello;
ENDMODULE

4.9.4.2. Procedure Declaration
The PROCEDURE/ENDPROCEDURE declaration delimits a series of DECTPU statements so they
can be called as a unit. With the PROCEDURE/ENDPROCEDURE combination, you can declare a
procedure with a name so that you can call it from another procedure or from the command line of a
DECTPU editing interface. Once you have compiled a procedure, you can enter the procedure name as
a statement in another procedure, or enter the procedure name after the TPU Statement: prompt on the
command line of EVE.

Syntax

PROCEDURE procedure-name ⟦ (parameter-list) ⟧ ⟦local-declarations⟧
⟦ON_ERROR ... ENDON_ERROR⟧ statement_1; statement_2; . . . statement_ n;
ENDPROCEDURE;

69

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

The local declarations part of a procedure can include any number of LOCAL and CONSTANT
declarations.

The ON_ERROR/ENDON_ERROR block, if used, must appear after the declarations and before the
DECTPU statements that make up the body of the procedure. For more information on error handlers,
see Section 4.9.4.14, "Error Handling".

After the ON_ERROR/ENDON_ERROR block, you can use any kind of DECTPU language statements
in the body of a procedure except another ON_ERROR/ENDON_ERROR block. Statements that make
up the body of a procedure must be separated with semicolons. For example:

PROCEDURE version

 MESSAGE ("This is Version 1-020");

ENDPROCEDURE;

This procedure writes the text "This is Version 1–020 " in the message area.

4.9.4.3. Procedure Names
A procedure name can be any valid identifier that is not a DECTPU reserved word. VSI suggests that
you use a convention when naming your procedures. For instance, you might prefix procedure names
with your initials. In this way, you can easily distinguish procedures that you write from other procedures
such as the DECTPU built-in procedures. For example, if John Smith writes a procedure that creates two
windows, he might name his procedure js_two_ windows. This helps ensure that his procedure name is a
unique name. Most of the sample procedures in this manual have the prefix user_ with procedure names.

4.9.4.4. Procedure Parameters
Using parameters with procedures is optional. If you use parameters, they can be input parameters,
output parameters, or both. For example:

PROCEDURE user_input_output (a, b)

 a :=a+ 5;
 b := a;
ENDPROCEDURE;

In the preceding procedure, a is an input parameter. It is also an output parameter because it is modified
by the procedure input_output . In the same procedure, b is an output parameter.

The scope of procedure parameters is limited to the procedure in which they are defined. The maximum
number of parameters in a parameter list is 127. A procedure can declare its parameters as required
or optional. Required parameters and optional parameters are separated by a semicolon. Parameters
before the semicolon are required parameters; those after the semicolon are optional. If no semicolon is
specified, then the parameters are required.

Syntax

PROCEDURE proc-name ⟦ (⟦req-p aram ⟦...⟧ ⟧ ⟦;op t-param ⟦...⟧ ⟧) ⟧ . . .
ENDPROCEDURE;

A procedure parameter is a place holder or dummy identifier that is replaced by an actual value in
the program that calls the procedure. The value that replaces a parameter is called an argument .
Arguments can be expressions. There does not have to be any correlation between the names used for

70

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

parameters and the values used for arguments. All arguments are passed by reference. Example 4.4,
"Simple Procedure with Parameters" shows a simple procedure with parameters.

Example 4.4. Simple Procedure with Parameters

!This procedure adds two integers. The parameters, int1 and int2,
!are replaced by the actual values that you supply.
!The result of the addition is written to the message area.

PROCEDURE ADD (int1, int2)

 MESSAGE (STR (int1 + int2));

ENDPROCEDURE;

For example, call the procedure ADD and specify the values 5 and 6 as arguments, as follows:

ADD (5, 6);

The string "11" is written to the message buffer.

Any caller of a procedure must use all required parameters to call it. The caller can also use optional
parameters. If the required parameters are not present or the procedure is called with too many
parameters (more than the sum of the required and optional parameters), then DECTPU issues an error.

If a procedure is called with the required number of parameters, but with less than the maximum
number of parameters, then the remaining parameters up to the maximum automatically become “null
parameters”. A null parameter is a modifiable parameter of data type unspecified. A null parameter can
be assigned a value and will become the value it is assigned, but the parameter’s value is discarded when
the procedure exits.

Null parameters can also be explicitly passed to a procedure. You can do this by omitting a parameter
when calling the procedure.

Example 4.5, "Complex Procedure with Optional Parameters" shows a more complex procedure that uses
optional parameters.

Example 4.5. Complex Procedure with Optional Parameters

CONSTANT
 user_warning := 0, ! Warning severity code
 user_success := 1, ! Success severity code
 user_error := 2, ! Error severity code
 user_informational := 3, ! Informational severity code
 user_fatal := 4; ! Fatal severity code
!
! Output a message with fatal/error/warning flash.
!
PROCEDURE user_message (the_text; the_severity)

LOCAL flash_it;
!
! Only flash warning, error, or fatal messages.
!
CASE the_severity FROM user_warning TO user_fatal
 [user_warning, user_error, user_fatal] : flash_it := TRUE;

71

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

 [user_success, user_informational] : flash_it := FALSE;

 [OUTRANGE] : flash_it := FALSE;

ENDCASE;
!
! Output the message - flash it, if appropriate.
!
MESSAGE (the_text);
IF flash_it
THEN
 SLEEP ("0 00:00:00.3");
 MESSAGE ("");
 SLEEP ("0 00:00:00.3");
 MESSAGE (the_text);
ENDIF;

ENDPROCEDURE;

Caution

Do not assume that the DECTPU compiler automatically evaluates parameters in the order in which you
place them.

To avoid the need to rewrite code, you should write as if this compiler optimization were already
implemented. If you need the compiler to evaluate parameters in a particular order, you should force the
compiler to evaluate each parameter in order before calling the procedure. To do so, use each parameter
in an assignment statement before calling the procedure. For example, suppose you want to call a
procedure whose parameter list includes PARAM_1 and PARAM_2. Suppose, too, that PARAM_1
must be evaluated first. To get this result, you could use the following code:

partial_1 := param_1;
partial_2 := param_2;
my_procedure (partial_1, partial_2);

4.9.4.5. Procedures That Return a Result
Procedures that return a result are called function procedures. Example 4.6, "Procedure That Returns a
Result" shows a procedure that returns a true (1) or false (0) value.

Note

All DECTPU procedures return a result. If they do not do so explicitly, DECTPU returns 0.

Example 4.6. Procedure That Returns a Result

PROCEDURE user_on_end_of_line !test if at eol, return true or false

IF CURRENT_OFFSET = LENGTH (CURRENT_LINE) ! we are on eol
THEN
 user_on_end_of_line := 1 ! return true
ELSE
 user_on_end_of_line := 0 ! return false
ENDIF;

72

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

ENDPROCEDURE;

Another way of assigning a value of 1 or 0 to a procedure is to use the DECTPU RETURN language
statement followed by a value. See Example 4.13, "Procedure That Returns a Status".

You can use a procedure that returns a result as a part of a conditional statement to test for certain
conditions. Example 4.7, "Procedure Within Another Procedure" shows the procedure in Example 4.6,
"Procedure That Returns a Result" within another procedure.

Example 4.7. Procedure Within Another Procedure

PROCEDURE user_nested_procedure
 .
 .
 .
IF user_on_end_of_line = 1 ! at the eol mark
THEN
 MESSAGE ("Cursor is at the end of the line")
ELSE
 MESSAGE ("Cursor is not at the end of the line")
ENDIF;
 .
 .
 .
ENDPROCEDURE;

4.9.4.6. Recursive Procedures
Procedures that call themselves are called recursive procedures. Example 4.8, "Recursive Procedure"
shows a procedure named user_reverse that displays a list of responses to the READ_LINE built-in
procedure in reverse order. Note the call to the procedure user_reverse within the procedure body.

Example 4.8. Recursive Procedure

PROCEDURE user_reverse
LOCAL temp_string;

temp_string := READ_LINE("input>");

 ! Read a response

IF temp_string <> " " ! Quit if nothing entered
 ! but the RETURN key.
THEN
 user_reverse ! Call user_reverse recursively
ELSE
 RETURN ! All done, go to display lines
ENDIF;
MESSAGE (temp_string); ! Display lines typed in reverse order
 ! in the message window
ENDPROCEDURE;

4.9.4.7. Local Variables
The use of local variables in procedures is optional. If you use local variables, they hold the values
that you assign them only in the procedure in which you declare them. The maximum number of local
variables that you can use is 255. Local variables are initialized to 0.

73

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

Syntax

LOCAL variable-name ⟦,...⟧;

If you declare a local variable in a procedure and, in the same procedure, use the EXECUTE built-in to
assign a value to a variable with the same name as the local variable, the result of the EXECUTE built-in
has no effect on the local variable. Consider the following code fragment:

PROCEDURE test
 LOCAL X;
 EXECUTE ("X := 3");
 MOVE_VERTICAL (X);
ENDPROCEDURE;

In this fragment, when the compiler evaluates the string "X := 3", the compiler assumes X is a global
variable. The compiler creates a global variable X (if none exists) and assigns the value 3 to the variable.
When the MOVE_VERTICAL built-in procedure uses the local variable X, the local variable has the
value 0 and the MOVE_VERTICAL built-in has no effect.

Local variables may also be declared in unbound code. See Section 4.9.5.2, "LOCAL".

4.9.4.8. Constants
The use of constants in procedures is optional. The scope of a constant declared within a procedure is
limited to the procedure in which it is defined. See Section 4.9.5.3, "CONSTANT" for more information
on the CONSTANT declaration.

Syntax

CONSTANT constant-name := compile-time-constant-expression ⟦,...⟧;

4.9.4.9. ON_ERROR Statements
The use of ON_ERROR statements in procedures is optional. If you use an ON_ ERROR statement,
you must place it at the top of the procedure just after any LOCAL and CONSTANT declarations. The
ON_ERROR statement specifies the action or actions to be taken if an ERROR or WARNING status
is returned. See Section Section 4.9.4.14, "Error Handling" for more information on ON_ERROR
statements.

4.9.4.10. Assignment Statement
The assignment statement assigns a value to a variable. In so doing, it associates the variable with the
appropriate data type.

Syntax

identifier := expression;

The assignment operator is a combination of two characters: a colon and an equal sign (:=). Do not
confuse this operator with the equal sign (=), which is a relational operator that checks for equality.

DECTPU does not do any type checking on the data type being stored. Any data type may be stored in
any variable. For example:

X := "abc";

This assignment statement stores the string "abc" in variable X.

74

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

4.9.4.11. Repetitive Statement
The LOOP/ENDLOOP statements specify the repetitive execution of a statement or statements until the
condition specified by EXITIF is met.

Syntax
LOOP statement_1; statement_2; . . . EXITIF expression; statement_ n;
ENDLOOP;

The EXITIF statement is the mechanism for exiting from a loop. You can place the EXITIF statement
anywhere inside a LOOP/ENDLOOP combination. You can also use the EXITIF statement as many
times as you like. When the EXITIF statement is true, it causes a branch to the statement following the
ENDLOOP statement.

Syntax
EXITIF expression;

The expression is optional; without it, EXITIF always exits from the loop.

Any DECTPU language statement except an ON_ERROR statement can appear inside a LOOP/
ENDLOOP combination. For example:

LOOP
 EXITIF CURRENT_OFFSET = 0;
 temp_string := CURRENT_CHARACTER;
 EXITIF (temp_string <> " ") AND
 (temp_string <> ASCII(9));
 MOVE_HORIZONTAL (-1);
 temp_length := temp_length + 1;
ENDLOOP;

This procedure uses the EXITIF statement twice. Each expression following an EXITIF statement
defines a condition that causes an exit from the loop. The statements in the loop are repeated until one of
the EXITIF conditions is met.

4.9.4.12. Conditional Statement
The IF/THEN statement causes the execution of a statement or group of statements, depending on the
value of a Boolean expression. If the expression is true, the statement is executed; otherwise, program
control passes to the statement following the IF/THEN statement.

The optional ELSE clause provides an alternative group of statements for execution. The ELSE clause is
executed if the test condition specified by IF/THEN is false.

The ENDIF statement specifies the end of a conditional statement.

Syntax
IF expression THEN statement_1; . . . statement_ n ⟦ELSE alternate-
statement_ 1;
. . . alternate-statement_ n;⟧ ENDIF;

You can use any DECTPU language statements except ON_ERROR statements in a THEN or ELSE
clause. For example:

PROCEDURE set_direct

75

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

MESSAGE ("Press PF3 or PF4 to indicate direction");
temp_char := READ_KEY;
IF temp_char = KP5
THEN
 SET (REVERSE, CURRENT_BUFFER);
ELSE
 IF temp_char = KP4
 THEN
 SET (FORWARD, CURRENT_BUFFER);
 ENDIF;
ENDIF;

ENDPROCEDURE;

In this example, nested IF/THEN/ELSE statements test whether a buffer direction should be forward or
reverse.

Caution

Do not assume that the DECTPU compiler automatically evaluates all parts of an IF statement.

To avoid the need to rewrite code, you should write as if this compiler optimization were already
implemented. If you need the compiler to evaluate all clauses of a conditional statement, you should
force the compiler to evaluate each clause before using the conditional statement. To do so, use each
clause in an assignment statement before using it in a conditional statement. For example, suppose you
want the compiler to evaluate both CLAUSE_1 and CLAUSE_2 in a conditional statement. To get this
result, you could use the following code:

relation_1 := clause_1;
relation_2 := clause_2;
IF relation_1 AND relation_2
THEN
 .
 .
 .
ENDIF;

4.9.4.13. Case Statement
The CASE statement is a selection control structure that lets you list several alternate actions and choose
one of them to be executed at run time. In a CASE statement, case labels are associated with the possible
executable statements or actions to be performed. The CASE statement then executes the statement or
statements labeled with a value that matches the value of the case selector.

Syntax

CASE case-selector ⟦FROM
lower-constant-expr, TO upper-constant-expr⟧
 [constant-expr_1 ⟦,...⟧] : statement ⟦,...⟧;
 [constant-expr_2 ⟦,...⟧] : statement ⟦,...⟧;
 .
 .
 .

 [constant-expr_n ⟦,...⟧] : statement ⟦,...⟧;

76

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

 ⟦[INRANGE] : statement ⟦,...⟧ ;⟧

 ⟦[OUTRANGE] : statement ⟦,...⟧ ;⟧
ENDCASE;

The single brackets are not optional for case constants. Example 4.9, "Procedure That Uses the CASE
Statement" shows how to use the CASE statement in a procedure.

CASE constant expressions must evaluate at compile time to either a keyword, a string constant, or an
integer constant. All constant expressions in the CASE statement must be of the same data type. There
are two special case constants in DECTPU: INRANGE and OUTRANGE. INRANGE matches anything
that falls within the case range that does not have a case label associated with it. OUTRANGE matches
anything that falls outside the case range. These special case constants are optional.

FROM and TO clauses of a CASE statement are not required. If FROM and TO clauses are not
specified, INRANGE and OUTRANGE labels refer to data between the minimum and maximum
specified labels.

Example 4.9, "Procedure That Uses the CASE Statement" shows a sample procedure that uses the CASE
statement.

Example 4.9. Procedure That Uses the CASE Statement

PROCEDURE grades

answers := READ_LINE ("Enter number of correct answers:",5);
answers := INT (answers);

CASE answers FROM 0 TO 10
 [10] : score := "A+";
 [9] : score := "A";
 [8] : score := "B";
 [7] : score := "C";
 [6] : score := "D";
 [0,1,2,3,4,5] : score := "F";
 [OUTRANGE] : score := "Invalid entry.";
ENDCASE;

MESSAGE (score);

ENDPROCEDURE;

This CASE statement compares the value of the constant selector answers to the case labels (the
numbers 0 through 10). If the value of answers is any of the numbers from 0 through 10, the statement
to the right of that number is executed. If the value of answers is outside the range of 0 through 10, the
statement to the right of [OUTRANGE] is executed. The value of score is written in the message area
after the execution of the CASE statement.

4.9.4.14. Error Handling
A block of code starting with ON_ERROR and ending with ENDON_ERROR defines the actions that
are to be taken when a procedure fails to execute successfully. Such a block of code is called an error
handler . An error handler is an optional part of a DECTPU procedure or program. An error handler
traps WARNING and ERROR status values. See SET (INFORMATIONAL) and SET (SUCCESS) in
the DEC Text Processing Utility Reference Manual for information on handling informational and success
status values.

77

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

It is good programming practice to put an error handler in all but the simplest procedures. However, if
you omit the error handler, DECTPU’s default error handling behavior is as follows:

● If you press Ctrl/C, DECTPU places an error message in the message buffer, exits from all currently
active procedures (in their reverse calling order), and returns to the “wait for next key” loop.

● If an error or warning is generated during a CALL_USER routine, ERROR is set to the keyword
that represents the failure status of the routine, ERROR_ LINE is set to the line number of the error,
and ERROR_TEXT is set to the message associated with the error or warning. DECTPU places
the message in the message buffer, then resumes execution at the statement after the statement that
generated the error or warning.

● For other errors and warnings, ERROR is set to the keyword that represents the error or warning,
ERROR_LINE is set to the line number of the error, and ERROR_TEXT is set to the message
associated with the error or warning. DECTPU places the message in the message buffer, then
resumes execution at the statement after the statement that generated the error or warning.

In a procedure, the error handler must be placed at the beginning of a procedure—after the procedure
parameter list, the LOCAL or CONSTANT declarations, if present, and before the body of the
procedure. In a program, the ON_ERROR language statements must be placed after all the global
declarations (PROCEDURE, CONSTANT, and VARIABLE) and before any executable statements.
Error statements can contain any DECTPU language statements except other ON_ERROR statements.

There are three DECTPU lexical elements that are useful in an error handler: ERROR, ERROR_LINE,
and ERROR_TEXT.

ERROR returns a keyword for the error or warning. The DEC Text Processing Utility Reference Manual
includes information on the possible error and warning keywords that each built-in procedure can return.

ERROR_LINE returns the line number at which the error or warning occur s. If a procedure was com
piled from a buffer or range, ERROR_LINE returns the line number within the buffer. (This may be
different from the line number within the procedure.) If the procedure was compiled from a string,
ERROR_LINE returns 1.

ERROR_TEXT returns the text of the error or warning, exactly as DECTPU would display it in the
message buffer, with all parameters filled in.

After the execution of an error statement, you can choose where to resume execution of a program. The
options are the following:

● ABORT—This language statement causes an exit back to the DECTPU “wait for next key” loop.

● RETURN—This language statement stops the execution of the procedure in which the error
occurred but continues execution of the rest of the program.

If you do not specify ABORT or RETURN, the default is to continue executing the program from the
point at which the error occurred.

DECTPU provides two forms of error handler: procedural and case style.

4.9.4.15. Procedural Error Handlers
If a WARNING status is trapped by an ON_ERROR statement, the warning message is suppressed.
However, if an ERROR status is trapped, the message is displayed. With the ON_ERROR trap, you can
do additional error handling after the DECTPU message is displayed.

78

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

Syntax

ON_ERROR statement_1; statement_2; . . . statement_n; ENDON_ERROR;

Example 4.10, "Procedure That Uses the ON_ERROR Statement" shows error statements at the beginning
of a procedure. These statements return control to the caller if the input on the command line of an
interface is not correct. Any warning or error status returned by a statement in the body of the procedure
causes the error statements to be executed.

Example 4.10. Procedure That Uses the ON_ERROR Statement

!
! Gold 7 emulation (command line processing)
!
PROCEDURE command_line

LOCAL
 line_read, X;

ON_ERROR
 MESSAGE ("Unrecognized command: " + line_read);
 RETURN;
ENDON_ERROR;
!
! Get the command(s) to execute
!
line_read := READ_LINE ("DECTPU Statement: "); ! get line from user
!
! compile them

!
IF line_read <> ""
THEN
 X := COMPILE (line_read);
ELSE
 RETURN
ENDIF;
!
! execute
!
IF X <>0
THEN
 EXECUTE (X);
ENDIF;

ENDPROCEDURE;

The effects of a procedural error handler are as follows:

● If you press Ctrl/C, DECTPU places an error message in the message buffer, exits from all currently
active procedures (in their reverse calling order), and returns to the “wait for next key” loop.

● If an error or warning is generated during a CALL_USER routine, ERROR is set to a keyword that
represents the failure status of the routine, ERROR_LINE is set to the line number of the error, and
ERROR_TEXT is set to a warning or error message that is placed in the message buffer. Finally,
DECTPU runs the error handler code.

79

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

● For other warnings and errors, ERROR is set to a keyword that represents the error or warning,
ERROR_LINE is set to the line number of the error, and ERROR_TEXT is set to the error or
warning message associated with the keyword. DECTPU places error messages in the message buffer
but suppresses the display of warning messages. Finally, DECTPU runs the error handler code.

If an error or warning is generated during execution of a procedural error handler, DECTPU behaves as
follows:

● If you press Ctrl/C during the error handler, DECTPU puts an error message in the message buffer,
exits from all currently active procedures (in their reverse calling order), and returns to the “wait for
next key” loop.

● For other errors and warnings, the appropriate error or warning message is written to the message
buffer. DECTPU resumes execution at the next statement after the statement that generated the error.

4.9.4.16. Case-Style Error Handlers
Case-style error handlers provide a number of advantages over procedural error handlers. With case-style
error handlers, you can do the following:

● Suppress the automatic display of both warning and error status messages

● Trap the TPU$_CONTROLC status

● Write clearer code

 ON_ERROR [con dition_1]: statement_1;... [con dition_2]:
 statement_2;... . . .
[condition_n]: statement_ n; ENDON_ERROR;

You can use the [OTHERWISE] selector alone in an error handler as a shortcut. For example, the
following two error handlers have the same effect:

! This error handler uses [OTHERWISE] alone as a shortcut.
ON_ERROR [OTHERWISE] : ;
ENDON_ERROR

! This error handler has the same effect as using
! [OTHERWISE] alone.

ON_ERROR
[OTHERWISE] :
 LEARN_ABORT;
 RETURN (FALSE);
ENDON_ERROR;

Example 4.11, "Procedure with a Case-Style Error Handler" from the EVE editor shows a procedure
with a case-style error handler.

Example 4.11. Procedure with a Case-Style Error Handler

PROCEDURE eve$learn_abort

ON_ERROR
 [TPU$_CONTROLC]:
 MESSAGE (ERROR_TEXT);
 RETURN (LEARN_ABORT);

80

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

ENDON_ERROR;

IF LEARN_ABORT
THEN
 eve$message (EVE$_LEARNABORT);
 RETURN (TRUE);
ELSE
 RETURN (FALSE);
ENDIF;

ENDPROCEDURE;

If a program or procedure has a case-style error handler, DECTPU handles errors and warnings as
follows:

● If you press Ctrl/C, DECTPU determines whether the error handler contain s a selector labeled
TPU$_CONTROLC. If so, DECTPU sets ERROR to TPU$_ CONTROLC, ERROR_LINE to the
line that DECTPU was executing when Ctrl/C was pressed, and ERROR_TEXT to the message
associated with TPU$_ CONTROLC. DECTPU then executes the statements associated with the
selector. If there is no TPU$_CONTROLC selector, DECTPU exits from the error handler and
looks for a TPU$_CONTROLC selector in the procedures or program (if any) in which the current
procedure is nested. If no TPU$_ CONTROLC selector is found in the containing procedures or
program, DECTPU places the message associated with TPU$_CONTROLC in the message buffer.

● If an error or warning is generated during a CALL_USER routine, ERROR is set to a keyword that
represents the failure status of the routine, ERROR_LINE is set to the line number of the error, and
ERROR_TEXT is set to the warning or error message associated with the keyword. DECTPU then
processes the error handler that trapped the CALL_USER error in the same way that DECTPU
processes normal case-style error handlers.

● For other warnings and errors, ERROR is set to a keyword that represents the error or warning,
ERROR_LINE is set to the line number of the error, and ERROR_TEXT is set to the error or
warning message associated with the keyword.

The way a case-style error handler processes an error or warning depends on how the error handler
traps the error. There are three possible ways, as follows:

○ The error handler can trap the error by using a selector that matches the error exactly (that is,
using a selector other than OTHERWISE).

○ The error handler can trap the error by using the OTHERWISE selector.

○ The error handler can completely fail to trap the error.

The following discussion explains how a case-style error handler processes an error or warning in
each of these circumstances.

If the error or warning is trapped by a selector other than OTHERWISE, DECTPU does not
place the error or warning message in the message buffer unless the error handler code instructs
it to do so. In this case, after setting ERROR, ERROR_LINE, and ERROR_TEXT, DECTPU
executes the code associated with the selector. If the code does not return to the calling procedure
or program, DECTPU checks whether one of the selectors associated with the code just executed
is TPU$_CONTROLC or OTHERWISE. If so, DECTPU performs the equivalent of the following
sequence:

special_error_symbol := 0;

81

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

LEARN_ABORT;
RETURN (FALSE);

If not, the error handler terminates and DECTPU resumes execution at the next statement after the
statement that generated the error or warning.

For more information on the special error symbol in DECTPU, see the description of the SET
(SPECIAL_ERROR_SYMBOL) built-in procedure in the DEC Text Processing Utility Reference
Manual.

If the error or warning is trapped by the OTHERWISE selector, DECTPU writes the associated error
or warning message in the message buffer. Next, DECTPU executes the code associated with the
OTHERWISE selector. If the code does not return to the calling procedure or program, DECTPU
performs the equivalent of the following sequence:

special_error_symbol := 0;
LEARN_ABORT;
RETURN (FALSE);

If the error or warning is not trapped by any selector, DECTPU writes the associated error or
warning message in the message buffer. Next, DECTPU performs the equivalent of the following
sequence:

special_error_symbol := 0;
LEARN_ABORT;
RETURN (FALSE);

If an error or warning is generated during execution of a case-style error handler, DECTPU behaves as
follows:

● If you press Ctrl/C during the error handler, DECTPU sets ERROR to TPU$_CONTROLC,
ERROR_LINE to the line being executed when Ctrl/C was pressed, and ERROR_TEXT to the
message associated with TPU$_ CONTROLC.

If one of the case selectors in the error handler is TPU$_CONTROLC, DECTPU executes the
code associated with the selector. If the code does not return to the calling procedure or program,
DECTPU performs the equivalent of the following sequence:

special_error_symbol := 0;
LEARN_ABORT;
RETURN (FALSE);

If none of the selectors is TPU$_CONTROLC, then DECTPU exits from the error handler and
looks for a TPU$_CONTROLC selector in the procedures or program (if any) in which the current
procedure is nested. If DECTPU does not find a TPU$_CONTROLC selector in the containing
procedures or program, DECTPU places the message associated with TPU$_CONTROLC in the
message buffer.

● If the error is not due to you pressing Ctrl/C, the error message is written to the message buffer and
DECTPU performs the equivalent of the following sequence:

special_error_symbol := 0;
LEARN_ABORT;
RETURN (FALSE);

In a procedure with a case-style error handler, an ABORT statement produces the same effect as the
sequence Ctrl/C, with one exception: an ABORT statement in the TPU$_CONTROLC clause of a

82

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

case-style error handler does not reinvoke the TPU$_CONTROLC clause, as is the case when Ctrl/C is
pressed while TPU$_CONTROLC is executing. Instead, an ABORT statement causes DECTPU to exit
from the error handler and look for a TPU$_CONTROLC selector in the procedures or program (if any)
in which the current procedure is nested. If DECTPU does not find a TPU$_CONTROLC selector in the
containing procedures or program, DECTPU places the message associated with TPU$_CONTROLC in
the message buffer.

4.9.4.17. Ctrl/C Handling
The ability to trap a Ctrl/C in your DECTPU program is both powerful and dangerous. When you press
Ctrl/C, you usually want the application that is running to prompt for a new command. The ability to
trap the Ctrl/C is intended to allow a procedure to clean up and exit gracefully.

4.9.4.18. RETURN Statement
The RETURN statement causes a return to the procedure that called the current procedure or program.
The return is to the statement that follows the statement that called the current procedure or program.
You can specify an expression after the RETURN statement and the value of this expression is passed to
the calling procedure.

Syntax

RETURN expression;

The expression is optional; if it is missing, DECTPU supplies a 0. Also, the RETURN statement itself is
optional. That is, if DECTPU reaches the endprocedure of a procedure before encountering a RETURN
statement, it will return 0. Example 4.12, "Procedure That Returns a Value" shows a sample procedure in
which a value is returned to the calling procedure.

Example 4.12. Procedure That Returns a Value

PROCEDURE user_get_shift_key

LOCAL key_to_shift; ! Keyword for key pressed after shift key

SET (SHIFT_KEY, LAST_KEY);
key_to_shift := KEY_NAME (READ_KEY, SHIFT_KEY);
RETURN key_to_shift;

ENDPROCEDURE;

In addition to using RETURN to pass a value, you can use a 1 (true) or a 0 (false) with the RETURN
statement to indicate the status of a procedure. Example 4.13, "Procedure That Returns a Status" shows
this usage of the RETURN statement.

Example 4.13. Procedure That Returns a Status

PROCEDURE user_at_end_of_line

! This procedure returns a 1 (true) if user is at the end of a
! line, or a 0 (false) if the current character is not at the
! end of a line

ON_ERROR
! Suppress warning message
 RETURN (1);

83

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

ENDON_ERROR;

IF CURRENT_OFFSET = LENGTH (CURRENT_LINE)
THEN
 RETURN (1);
ELSE
 RETURN (0);
ENDIF;

ENDPROCEDURE;

You can use the RETURN statement in the ON_ERROR section of a procedure to specify a return to
the calling procedure if an error occurs in the current procedure. Example 4.14, "Using RETURN in an
ON_ERROR Section" uses the RETURN statement in an ON_ERROR section.

Example 4.14. Using RETURN in an ON_ERROR Section

! Attach to the parent process. Used when EVE is spawned
! from DCL and run in a subprocess ("kept DECTPU"). The
! ATTACH command can be used for more flexible process control.

PROCEDURE eve_attach
ON_ERROR
 IF ERROR = TPU$_NOPARENT
 THEN
 MESSAGE ("Not running DECTPU in a subprocess");
 RETURN;
 ENDIF;
ENDON_ERROR;

ATTACH;

ENDPROCEDURE;

4.9.4.19. ABORT Statement
The ABORT statement stops any executing procedures and causes DECTPU to wait for the next
keystroke. ABORT is commonly used in error handlers. For additional information on using ABORT in
error handlers, see Section 4.9.4.14, "Error Handling".

Syntax

ABORT

Example 4.15, "Simple Error Handler" shows a simple error handler that contains an ABORT statement.

Example 4.15. Simple Error Handler

ON_ERROR
 MESSAGE ("Aborting procedure because of error.");
 ABORT;
ENDON_ERROR;

4.9.5. Miscellaneous Declarations
This section describes the following DECTPU language declarations:

84

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

● EQUIVALENCE

● LOCAL

● CONSTANT

● VARIABLE

4.9.5.1. EQUIVALENCE
With the EQUIVALENCE declaration, you can create synonyms. Equivalences work only when both
real_name and synonym_name are defined at the same time. You cannot save a section file that contains
real_name and then later use that section file to extend code that uses an EQUIVALENCE of the saved
name. To avoid problems, include all EQUIVALENCE declarations in the same compilation unit where
real_name is defined.

The equivalences can reside in different compilation units, but you must use all of the compilation units
when building the section file from scratch. If you use a base section file that you extend interactively,
you cannot make equivalences to procedures or variables defined in the base section file.

Syntax

EQUIVALENCE synonym_name1 = real_name1, synonym_name2 = real_name2, ...;

Elements of the EQUIVALENCE Statement

real_name

A user-defined global variable or procedure name. If real_name is undefined, DECTPU defines it as
an ambiguous name. This ambiguous name can become a variable or procedure later.

synonym_name

A name to be defined as a synonym for the real_name.

4.9.5.2. LOCAL
With the LOCAL declaration, you can identify certain variables as local variables rather than global
variables. All variables are considered to be global variables unless you explicitly use the LOCAL
declaration to identify them as local variables. The LOCAL declaration in a procedure is optional. It
must be specified after the PROCEDURE statement and before any ON_ERROR statement. LOCAL
declarations and CONSTANT declarations can be intermixed.

The maximum number of local variables you can declare in a procedure is 255. Local variables are
initialized to 0.

Syntax

LOCAL variable-name ⟦,...⟧;

Local variables may also be declared in unbound code. Such variables are accessible only within that
unbound code.

Unbound code can occur in the following places:

● Module initialization code

85

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

This occurs after all procedure declarations within a module but before the ENDMODULE
statement.

● Executable code

This occurs after all module and procedure declarations in a file but before the end of file.

The following example shows a complete compilation unit. This unit contains a module named mmm
that, in turn, contains a procedure bat and some initialization code mmm_module_init , a procedure bar
defined outside the module, and some unbound code at the end of the file. In each of these sections of
code, a local variable X is defined. The variable is displayed using the MESSAGE built-in procedure.

MODULE mmm IDENT "mmm"

PROCEDURE bat; ! Declare procedure "bat" in module "mmm"
LOCAL
 X; ! "X" is local to procedure "bat"

 X := "Within procedure bat, within module mmm";
MESSAGE (X);

ENDPROCEDURE; ! End procedure "bat"

LOCAL
 X; ! "X" is local to
 ! procedure "mmm_module_init"

X := "Starting or ending the module init code";
MESSAGE (X);
bat;
MESSAGE (X);

ENDMODULE; ! End module "mmm"

PROCEDURE bar ! Declare procedure "bar"

LOCAL
 X; ! "X" is local to procedure "bar"

X := "In procedure bar, which is outside all modules";
MESSAGE (X);

ENDPROCEDURE; ! End procedure "bar"

LOCAL
 X; ! "X" is local to the unbound code...

X := "Starting or ending the unbound, non-init code";
MESSAGE (X);
mmm_module_init;
bat;
bar;
MESSAGE (X);
EXIT;

If this code is included in TEMP.TPU, the following command demonstrates the scope of the various
local variables:

86

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

$
EDIT/TPU/NOSECTION/NOINITIALIZE/NODISPLAY/COMMAND=temp.tpu
Starting or ending the unbound, non-init code
Starting or ending the module init code
Within procedure bat, within module mmm
Starting or ending the module init code
Within procedure bat, within module mmm
In procedure bar, which is outside all modules
Starting or ending the unbound, non-init code

4.9.5.3. CONSTANT
With the CONSTANT declaration, you can associate a name with certain constant expressions. The
constant expression must evaluate at compile time to a keyword, a string, an integer, or an unspecified
constant value. The maximum length of a string constant allowed in a constant declaration is about 4000
characters in length. DECTPU sets up some predefined global constants. See Section 4.9.3, "Predefined
Constants" for a list of predefined constants.

Constants can be either globally or locally defined. Global constants are constants declared outside
procedure declarations. Once a global constant has been defined, it is set for the life of the DECTPU
session. An attempt to redefine a constant will succeed only if the constant value is the same.

Local constants are constants declared within a procedure. You must specify a local CONSTANT
declaration after the PROCEDURE statement and before any ON_ERROR statement. You can intermix
LOCAL statements and CONSTANT statements.

Syntax

CONSTANT constant-name := compile-time-constant-expression ⟦,...⟧

4.9.5.4. VARIABLE
With the VARIABLE declaration, you can identify certain variables as global variables. Any symbols
that are neither declared nor used as the target of an assignment statement before being referenced by
DECTPU are assumed to be undefined procedures. You must use the VARIABLE declaration outside a
procedure declaration. Initialize global variables to the data type unspecified.

Syntax

VARIABLE variable-name ⟦,...⟧;

4.10. Lexical Keywords
The next two sections explain the DECTPU lexical keywords and how to use them for the following:

● Conditional compiling

● Specifying the radix of numeric constants

4.10.1. Conditional Compilation
The following lexical keywords control what code is compiled under different conditions:

● %IF

87

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

● %IFDEF

● %THEN

● %ELSE

● %ENDIF

You use conditional compilation lexical keywords in a manner similar to ordinary IF/THEN/ELSE/
ENDIF statements. The syntax is as follows:

%IFDEF variable_or_proc_name %THEN ... [%ELSE ...] %ENDIF

or

%IF boolean_expression %THEN ... [%ELSE ...] %ENDIF

If you use the %IFDEF structure, specify variable_or_proc_name as the name of a DECTPU procedure
or variable. IFDEF is a statement that says ‘‘if a variable or procedure with this name is defined.’’ If the
name is defined, the compiler compiles the code marked by %THEN. If the name is not defined, the
compiler compiles the code marked by %ELSE.

If you use the %IF structure, specify boolean_expression as either a numeric constant or a defined global
variable whose value is an integer. Any odd value is true and any even value is false. If the variable or
constant contains a value that is odd, the compiler compiles the code marked by %THEN. If the variable
or constant contains a value that is even, the compiler compiles the code marked by %ELSE.

You do not have to put conditional compilation lexical keywords at the beginning of a line. You can nest
conditional statements to a depth of 2**32-1. For example:

ON_ERROR
 [TPU$_CREATEFAIL]:
%IF eve$x_option_decwindows
%THEN
 IF eve$x_decwindows_active
 THEN
 eve$popup_message (MESSAGE_TEXT (EVE$_CANTCREADCL, 1));
 ELSE
 eve$message (EVE$_CANTCREADCL);
 ENDIF;
%ELSE
 eve$message (EVE$_CANTCREADCL);
%ENDIF
 eve$learn_abort;
 RETURN (FALSE);
 [OTHERWISE]:
ENDON_ERROR;

This ON_ERROR procedure determines whether a pop-up message widget or a simple message is used,
depending on whether the code is being compiled by a DECwindows version of DECTPU.

4.10.2. Specifying the Radix of Numeric Constants
You can specify constants with binary, octal, hexadecimal, and decimal radices.

To specify a numeric constant in binary, precede the number with %B. The number can consist only of
the digits 0 and 1.

88

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

To specify a numeric constant in octal, precede the number with %O. The number can consist only of
the digits 0 through 7.

To specify a numeric constant in hexadecimal, precede the number with %X. The number can consist of
digits 0–9 and A–F.

There is no radix specifier for decimal. Any numeric constant without an explicit radix specifier is
assumed to be decimal. The radix specifier may be in uppercase or lowercase.

The following are examples of correct numeric constants:

!
! Many different ways of saying the same thing.
!
CONSTANT binary_constant := %b11111;
CONSTANT octal_constant := %o37;
CONSTANT decimal_constant := 31;
CONSTANT hex_constant := %x1f;
!
! Compile time expressions work, too.
!
CONSTANT negative_value := -%x1f;
CONSTANT strange_zero := hex_constant - %x1f;

Invalid constructs for numeric constants return the error level message TPU$_ UNKLEXICAL,
"Unknown lexical element" during compilation. The following examples are not valid:

constant bad_binary := %b123; ! only 0’s and 1’s are legal.
constant bad_hex := %x10abg; ! ’g’ is illegal digit.
constant not_a_radix := %z0123; ! No such radix.

89

Chapter 4. Lexical Elements of the DEC Text Processing Utility Language

90

Chapter 5. DEC Text Processing
Utility Program Development
Previous chapters have described the lexical elements of the DECTPU language, such as data types,
language statements, expressions, built-in procedures, and so on. This chapter describes how to combine
these elements in DECTPU programs. You can use DECTPU programs to perform editing tasks, to
customize or extend an existing application, or to implement your own application layered on DECTPU.

Before you start writing programs to customize or extend an existing application, you should be familiar
with the DECTPU source code that creates the editor or application that you want to change. For
example, if you use the Extensible Versatile Editor (EVE) and you want to change the size of the main
window, you must know and use the procedure name that EVE uses for that window. (If you want to
change the main window, you use the procedure name eve$ main_window . Many of the EVE variables
and procedure names begin with eve$.)

The sample procedures and syntax examples in this book use uppercase letters for items that you can
enter exactly as shown. DECTPU reserved words, such as built-in procedures, keywords, and language
statements are shown in uppercase. Lowercase items in a syntax example or sample procedure indicate
that you must provide an appropriate substitute for that item.

This chapter discusses the following topics:

● Creating DECTPU programs

● Programming in DECwindows DECTPU

● Writing code compatible with DECwindows EVE

● Compiling DECTPU programs

● Executing DECTPU programs

● Using DECTPU startup files

● Debugging DECTPU programs

● Handling Errors

5.1. Creating DECTPU Programs
When you write a DECTPU program, keep the following pointers in mind:

● You can use EVE or some other editor to enter or change the source code of a program in the
DECTPU language.

● A program can be a single executable statement or a collection of executable statements.

● You can use executable statements either within procedures or outside procedures. You must place
all procedure declarations before any executable statements that are not in procedures.

● You can enter DECTPU statements from within EVE by using the EVE command TPU. For more
information on using this command, see the Extensible Versatile Editor Reference Manual.

91

Chapter 5. DEC Text Processing Utility Program Development

5.1.1. Simple Programs
The following statement is an example of a simple program:

 SHOW (SUMMARY);

The preceding statement, entered after the appropriate prompt from your editor, causes DECTPU
to execute the program associated with the SHOW (SUMMARY) statement. If you use EVE with a
user-written command file, your screen may display text similar to Example 5.1, "SHOW (SUMMARY)
Display".

Example 5.1. SHOW (SUMMARY) Display

DECTPU V3.1 1993-08-17 08:37

Journal file:

Section file name: EVE$SECTION Ident: V3.1 Date: 17-AUG-1993 08:49
 Activated from: TPU$SECTION
 Created by: DECTPU V3.1 1993-08-17 08:37

Extension: SCREEN_UPDATER Ident: DECTPU V3.1 1993-08-17 08:37

Timer Message: working

 24 System buffers and 1 User buffer

5.1.2. Complex Programs
When writing complex DECTPU programs, avoid the following practices:

● Creating large procedures

● Creating large number of procedures

● Including a large number of executable statements that are not within procedures

These practices, if carried to extremes, can cause the parser stack to overflow.

The DECTPU parser currently allows a maximum stack depth of 1000 syntax tree nodes. When the
parser first encounters a DECTPU statement, the parser assigns each token in the statement to a syntax
tree node. For example, the statement “a := 1” contains three tokens, each of which occupies a syntax
tree node. After the parser parses this statement, only the assignment statement remains on the stack of
nodes. The a and the 1 are subtrees to the assignment syntax tree node.

The most common cause of stack overflow, which is signaled by the status TPU$_ STACKOVER, is
creating one or more large procedures whose statements occu py too many syntax tree nodes. To make
your program manageable by the parser, break the large procedures into smaller ones.

Other possible reasons for a TPU$_STACKOVER con dition are that you have too many statements
that are not in procedures, or that you have too many small procedures. If you have too many small
procedures, you must either consolidate them or break them into separate files.

To see an example of a complex DECTPU program, examine the source files that implement EVE. The
EVE source code files are located at SYS$ EXAMPLE S:EVE$*.*. These files contain many procedure
declarations and executable statements that specify EVE’s screen layout and display. These files also
contain key definitions that specify which editing operations are performed when you press certain keys

92

Chapter 5. DEC Text Processing Utility Program Development

on the keyboard. You can examine these files to learn the programming techniques that were used to
create EVE.

See Section 5.6, "Using DECTPU Startup Files" for information on using a command file or section file
to create or customize an application layered on DECTPU. See theDEC Text Processing Utility Reference
Manual for information on using the EVE$BUILD module to layer applications on top of EVE.

5.1.3. Program Syntax
The rules for writing DECTPU programs are simple. You must use a semicolon to separate each
executable statement from other statements. In a program, you must place all procedure declarations
before any executable statements that are not part of a procedure declaration. For information on
DECTPU data types, see Chapter 3. For information on DECTPU language elements, see Chapter 4,
"Lexical Elements of the DEC Text Processing Utility Language". Example 5.2, "Syntax of a DECTPU
Program" shows the correct syntax for a DECTPU program.

Example 5.2. Syntax of a DECTPU Program

PROCEDURE
 .
 .
 .
ENDPROCEDURE

PROCEDURE;
 .
 .
 .
ENDPROCEDURE;
 .
 .
 .
PROCEDURE
 .
 .
 .
ENDPROCEDURE;

statement 1;
statement 2;
 .
 .
 .
statement n;

A variety of syntactically correct DECTPU programs is shown in Example 5.3, "Sample DECTPU
Programs".

Example 5.3. Sample DECTPU Programs

! Program 1
! This program consists of a single DECTPU built-in procedure.
 SHOW (KEYWORDS);

! Program 2
! This program consists of an assignment statement that
! gives a value to the variable video_attribute

93

Chapter 5. DEC Text Processing Utility Program Development

 video_attribute := UNDERLINE;

! Program 3
! This program consists of the DECTPU LOOP statement (with
! a condition for exiting) and the DECTPU built-in procedure ERASE_LINE.
 x := 0; LOOP x :=x+1; EXITIF x > 100; ERASE_LINE; ENDLOOP;

! Program 4
! This program consists of a single procedure that makes
! DECTPU quit the editing session.

 PROCEDURE user_quit
 QUIT; ! do DECTPU quit operation
 ENDPROCEDURE;

! Program 5
! This program is a collection of procedures that
! makes DECTPU accept "e", "ex", or "exi" as
! the command for a DECTPU exit operation.

 PROCEDURE e
 EXIT; ! do DECTPU exit operation
 ENDPROCEDURE;

 PROCEDURE ex
 EXIT; ENDPROCEDURE;

 PROCEDURE exi
 EXIT;
 ENDPROCEDURE;

5.2. Programming in DECwindows DECTPU
This section provides information about programming with DECTPU in the DECwindows environment.

5.2.1. Widget Support
With DECwindows DECTPU, you can create widgets from within DECTPU programs by using the
CREATE_WIDGET built-in procedure. For more information on widgets, see the OpenVMS overview
documentation.

With the CREATE_WIDGET built-in, you can create the following widgets in DECTPU:

● Caution_box

● Dialog_box

● File_selection

● Label

● List_box

● Main_window

● Menu_bar

94

Chapter 5. DEC Text Processing Utility Program Development

● Popup_attached_db

● Popup_dialog_box

● Popup_menu

● Pulldown_entry

● Pulldown_menu

● Push_button

● Scroll_bar (vertical and horizontal)

● Separator

● Simple_text

● Toggle_button

5.2.2. Input Focus Support
In DECwindows, at most one of the applications on the screen can have the input focus; that is, only one
application can accept user input from the keyboard. For more information about the input focus, see the
Motif documentation.

DECwindows DECTPU automatically grabs the input focus whenever you cause an unmodified
M1DOWN event (that is, an event not modified by Shift, Ctrl, or other modifying key) while the pointer
cursor is in either of the following locations:

● DECTPU’s main window widget

● DECTPU’s title bar

DECwindows assigns input focus to DECTPU only if and when it is possible to do so. To make sure
that DECwindows can assign input focus, your application should use the GET_INFO (SCREEN,
“input_focus”) built-in procedure. If assignment of input focus to DECTPU is enabled, DECTPU can
receive input focus in the following circumstances:

● DECwindows DECTPU grabs input focus.

● The DECwindows session manager assigns input focus to DECTPU.

● An application layered on DECTPU requests input focus.

In the Motif environment, DECTPU supports both implicit and explicit focus policies.

VSI recommends that you use only a DECwindows section file with DECwindows DECTPU. (All
versions of EVE shipped with VSI OpenVMS Version 5.1 or higher are compatible with DECwindows
and are suitable for building DECwindows section files, as well as DECTPU Version 3.0 or higher.)
However, if you do not follow this recommendation, DECTPU’s automatic grabbing of the input focus
enables your layered application to interact with other DECwindows applications.

5.2.3. Global Selection Support
Global selection in DECwindows is a means of preserving information selected by you so your
selection, or data about your selection, can pass between DECwindows applications. Each DECwindows
application can own one or more global selections.

95

Chapter 5. DEC Text Processing Utility Program Development

5.2.3.1. Difference Between Global Selection and Clipboard
A global selection differs from the clipboard in that the global selection changes dynamically as you
change the select range, while the contents of the clipboard remain unchanged until you use a command
(such as EVE’s STORE TEXT command) that sends new information to the clipboard. By default EVE
does not use the clipboard.

5.2.3.2. Handling of Multiple Global Selections
At any particular time, a global selection is owned by at most one DECwindows application; a global
selection can also be unowned. A DECwindows application can own more than one global selection
at the same time. For example, an application layered on DECTPU can own both the primary and
secondary global selections. The DECwindows server determines which application currently owns
which global selection.

Information about a global selection property may be stored in different format s, but the format of
a particular property must be the same for all DECwindows applications. DECTPU directly accepts
information that is stored in integer or string format. DECTPU handles information in other format s
by describing the information in an array. For more information about this array, see the descriptions of
the GET_GLOBAL_SELECT and WRITE_GLOBAL_SELECT built-in procedures in the DEC Text
Processing Utility Reference Manual.

Global selections are identified in DECTPU either as strings or keywords. While DECwindows provides
for many global selections, applications conforming to the Motif Style Guide are concerned with only two
selections—the primary and secondary selections. DECTPU provides a pair of keywords (PRIMARY
and SECONDARY) to refer to these selections. DECTPU also provides built- in procedures that enable
layered applications to manipulate global selection information.

You can refer to other global selections by specifying a string instead of the keywords PRIMARY and
SECONDARY. For example, if your application has a global selection whose name is auxiliary, use the
string "auxiliary" to specify the selection. Selection names are case sensitive; the string "auxiliary" does
not refer to the same global selection as the string "AUXILIARY".

5.2.3.3. Relation of Global Selection to Input Focus
An application that conforms to the Motif Style Guide requests ownership of the primary global selection
in its input focus grab procedure. Regardless of whether the application conforms, when DECTPU gets
the input focus, it automatically grabs the primary global selection if it is not already the owner.

An application cannot prevent DECTPU from attempting to assert ownership of the primary global
selection when DECTPU receives the input focus. If DECTPU gets the primary selection by grabbing
ownership itself, DECTPU automatically executes the application’s global selection grab routine if one
is present. If you are writing an application that conform s to the Motif Style Guide and you find that
DECTPU has had to grab ownership of the primary selection itself and execute the global select grab
routine, your application may have a design problem.

5.2.3.4. Response to Requests for Information About the Global
Selection
DECTPU provides a three-level hierarchy for responding to requests from another application for
information about the current selection. Applications layered on DECTPU may specify a routine that
responds to requests for information about global selections either for the entire application or for one or
more buffer s in the application.

96

Chapter 5. DEC Text Processing Utility Program Development

When DECTPU receives a request for information, it checks whether there is a routine for the current
buffer that responds to information about global selections. If no buffer-specific routine is available,
DECTPU checks for an application-wide routine. If no application-wide routine is available, DECTPU
can provide information only about the primary selection, the file name, font, line number, and text.

DECTPU responds to all other requests with a message that no information is available. DECTPU
does not send requests for information about the global selection to other DECwindows applications.
DECTPU applications may use the various built-in procedures to do so.

DECTPU’s responses to requests for information about the primary selection are as follows:

"FILE_NAME" DECTPU responds with the string returned by the
GET_INFO (CURRENT_BUFFER, "file_name ")
built-in procedure.

"FONT" DECTPU responds with the string returned by the
GET_INFO (SYSTEM, "default_font ") built-in
procedure.

"LINE_NUMBER" DECTPU responds with the value of type span
containing the record number where the select
range starts and the record number where the
select range ends.

"TEXT" or "STRING" DECTPU responds with the text of the select range
as a string, with each line break represented by a
line feed.

VSI recommends that you use only a DECwindows section file with DECwindows DECTPU. However,
if you do not follow this recommendation, DECTPU’s automatic grabbing of the primary global
selection enables your layered application to interact with other DECwindows applications.

If an application requests information about the primary global selection while DECTPU owns the
selection, DECTPU attempts to respond to the request if the application cannot do so. If DECTPU
responds to the request by sending the text of a buffer or range, DECTPU converts the buffer or range to
a string, converts line breaks to line feeds, and inserts padding blanks before text to fill any unoccupied
space between the margins. If neither the application nor DECTPU can respond to the request, DECTPU
inform s DECwindows that the requested information is not available.

DECTPU does not automatically grab the secondary selection. Layered applications are responsible for
handling this selection.

5.2.4. Using Callbacks
This section presents background information on the DECwindows concept of callbacks and explains
how DECwindows DECTPU implements this concept.

5.2.4.1. Background on DECwindows Callbacks
A callback is a mechanism used by a DECwindows widget to notify an application that the widget has
been modified in some way. DECwindows applications have one or more callback routines that define
what the application does in response to the callback.

For more information about the use of callbacks and callback routines in DECwindows programs, see
the OpenVMS documentation overview.

97

Chapter 5. DEC Text Processing Utility Program Development

5.2.4.2. Internally Defined DECTPU Callback Routines and
Application-Level Callback Action Routines

DECTPU implements the DECwindows concept of callback routines by providing internally defined
routines that deliver the information obtained from a widget’s callback to a layered application. These
routines are referred to as “internally defined DECTPU callback routines.”

When a widget calls back to DECTPU, DECTPU packages the callback information, adds the
information to its input queue, and returns to the widget. DECTPU may not process the callback packet
on its input queue until later. As a result, the information about the widget that DECTPU gets from the
callback may not match the information returned by the GET_INFO (widget_variable, "widget_info")
built-in procedure.

When DECTPU processes the callback packet, it uses the CREATE_WIDGET built-in or the SET
(WIDGET_CALLBACK) built-in to execute the program or learn sequence that was associated with the
widget. This program or learn sequence controls what the application does in response to the callback
information passed by the DECTPU callback routines. An application’s callback routines are referred to
as “application-level callback action routines.”

The following sections present information on internally defined DECTPU callback routines and on
application-level callback action routines.

5.2.4.3. Internally Defined DECTPU Callback Routines with UIL

DECTPU declares two internally defined callback routines to the X Resource Manager to handle
incoming callbacks and dispatch them to the layered application:

● TPU$WIDGET_INTEGER_CALLBACK—Use this routine as the callback routine for all callbacks
that have an integer closure.

● TPU$WIDGET_STRING_CALLBACK—Use this routine as the callback routine for all callbacks
that have a string closure.

Although DECwindows lets you specify a different callback routine for each reason that a widget can call
back, DECwindows DECTPU does not support this capability. Instead, it provides only the two callback
routines mentioned.

Use these callback routines only if you are specifying a widget’s callback resources in a User Interface
Language (UIL) file. When a widget is part of an X Resource Manager hierarchy, do not include
callback resource names or values in the array you pass to SET (WIDGET). Instead, specify one of the
two internally defined callback routines in the UIL file.

5.2.4.4. Internally Defined DECTPU Callback Routines with Widgets
Not Defined by UIL

Although the SET (WIDGET) built-in procedure lets you specify values for various resources of a
widget, there are restrictions on specifying values for callback resources of widgets. When a widget
is not part of an X Resource Manager hierarchy, specify the names of the callback resources in the
array you pass to SET (WIDGET), and specify 0 as the value of each such callback resource. DECTPU
automatically substitutes its common callback entry point for the 0 value. A widget calls back only
for those reasons specified in the widget’s argument list. If a reason is omitted from the list, the
corresponding event does not cause a callback.

98

Chapter 5. DEC Text Processing Utility Program Development

5.2.4.5. Application-Level Callback Action Routines
When DECTPU receives a widget callback, it identifies and executes the layered application
procedure or learn sequence that has been designated as the callback action routine. You can
designate a procedure or learn sequence as a callback action routine either when the widget is
created, by using the CREATE_WIDGET built-in procedure, or at some later time, by using the SET
(WIDGET_CALLBACK) built-in procedure. When you specify an application-level callback program or
learn sequence with CREATE_WIDGET or SET (WIDGET_ CALLBACK), all widgets in the same X
Resource Manager hierarchy have the same callback program or learn sequence. Therefore, the callback
program or learn sequence must have a mechanism for handling all possible callback reasons.

5.2.4.6. Callable Interface-Level Callback Routines
If you are layering an application on DECTPU or on EVE, you can specify callable interface-level
callback routines only if you are specifying a widget’s callback resources in a User Interface Language
(UIL) file.

Callbacks can pass values known as closures. Closures are strings or integers whose function depends
on the application you are writing. (DECwindows documentation refers to closures as tags.) For more
information about what closures are and how to use them, see Section 5.2.5, "Using Closures".

You use the DECTPU callable interface routine TPU$WIDGET_INTEGER_ CALLBACK as the
callback routine for all callbacks that have an integer closure. You use the DECTPU routine TPU
$WIDGET_STRING_CALLBACK for all callbacks that have a string closure.

When a widget is part of an X Resource Manager hierarchy, do not include callback resource names
or values in the array you pass to SET (WIDGET). Instead, specify the callback routine in the UIL
file. When a widget is not part of an X Resource Manager hierarchy, specify the names of the callback
resources in the array you pass to SET (WIDGET), and specify 0 as the value of each such callback
resource. DECTPU automatically substitutes its common callback entry point for the 0 value. A widget
calls back only for those reasons specified in the widget’s argument list. If a reason is omitted from the
list, the corresponding event does not cause a callback.

5.2.5. Using Closures
With DECwindows, you can specify a closure value for a widget. (DECwindows documentation refers
to closures as tags.) DECwindows does not define what a closure value is; a closure is simply a value
that DECwindows understands how to recognize and manipulate so that a DECwindows application
programmer can use the value if needed in the application. For general information about using closures
in DECwindows, see the OpenVMS documentation overview.

When a widget calls back to the DECwindows application, the callback parameters include the closure
value assigned to the widget. DECwindows allows the application to define the significance and possible
values of the closure.

DECTPU supports closure values of type string and integer. Closure values are optional for widgets used
by applications layered on DECTPU. If you do not specify a closure value, the GET_INFO (WIDGET,
"callback_parameters", array) built-in procedure returns unspecified in the "closure" array element.
If you create a widget without using a UIL file, the GET_INFO (WIDGET, "callback_ parameters ",
array) built-in procedure returns the closure you specified as a parameter to CREATE_WIDGET. If you
create a widget by using a UIL file, the GET_INFO (WIDGET, "callback_parameters ", array) built-in
procedure returns the closure value (if any) defined in the X Resource Manager. If none is defined, the
built-in returns unspecified.

99

Chapter 5. DEC Text Processing Utility Program Development

DECTPU leaves it to the layered application to use the closure in any way the application programmer
wishes. DECTPU passes through to the application any closure value received as part of a callback.

DECwindows EVE provides an example of how an application can use closure values. DECwindows
EVE assigns a unique closure value to every widget instance that can be created during an EVE editing
session. Each closure value corresponds to something that EVE must do in response to the activation of
that particular widget. When an event causes DECTPU to execute EVE’s main callback program, the
GET_INFO (WIDGET, "callback_parameters", array) built-in procedure returns the widget activated,
the reason code (the reason the widget is calling back), and the closure associated with the particular
widget instance.

EVE’s main callback program contains an array that is indexed with values identical to the widget
closure values. Each array element contains a pointer to the EVE code to be executed in response to the
corresponding widget’s callback. EVE’s callback program uses the closure value to locate the appropriate
array index so the correct EVE routine can be executed in response to the callback.

If your layered application does not use EVE’s callback program, then its callback program or learn
sequence must have a mechanism for determining which widget is calling back and which application
code should be executed as a result.

5.2.6. Specifying Values for Widget Resources in
DECwindows DECTPU
This section discusses techniques for specifying values for widget resources.

5.2.6.1. DECTPU Data Types for Specifying Resource Values

DECTPU supports the following data types with which to specify values for widget resources:

● String

● Array of strings

● Integer

DECTPU converts the value you specify into the data type appropriate for the widget resource you are
setting. Table 5.1, "Relationship Between DECTPU Data Types and DECwindows Argument Data Types"
shows the relationship between DECTPU data types for widget resources and DECwindows data types
for widget resources.

Table 5.1. Relationship Between DECTPU Data Types and DECwindows Argument Data
Types

DECwindows Argument Data Type DECTPU Data Type

Array of strings Array of strings
Boolean Integer
Callback Integer (0)
Compound string String
Compound string table Array of strings
Dimension Integer

100

Chapter 5. DEC Text Processing Utility Program Development

DECwindows Argument Data Type DECTPU Data Type

Integer Integer
Position Integer
Short Integer
String String
Unsigned character Integer

DECTPU does not support setting values for resources (such as pixmap, color map, font, icon, widget,
and so on) whose data types are not listed in this table.

When you pass an array that specifies values for a widget’s resources by using CREATE_WIDGET or
SET (WIDGET), DECTPU verifies that each array index is a string that corresponds to a valid resource
name for the specified widget. DECTPU also verifies that the data type of the value you specify is valid
for the specified resource.

5.2.6.2. Specifying a List as a Resource Value

List box and file selection widgets manipulate lists. For example, the file selection widget manipulates a
list of files. The widget resource that stores such a list is specified to DECTPU by using an array.

To handle an array that passes a list to a widget, DECwindows must know how many elements the array
contains. For example, if you set the value of the "items" resource of a list box widget to point to a given
array, DECwindows does not handle the array successfully unless the list box widget’s "itemsCount"
resource contains the number of elements in the array.

However, you do not necessarily know how many elements the array has at a given moment. To help you
pass arrays, DECTPU has a convention for referring to widget resources. If you follow the convention,
DECTPU will handle the resource that stores the number of array elements.

The following paragraphs discuss the naming convention in more detail.

Setting Resources

When you use the SET (WIDGET) built-in procedure to pass a list to a widget, you must specify both
the list name and the list count resource in the same array index, separated by a line feed (ASCII (10)).
The array element should be the array that is to be passed. For example, to specify the "items" resource
to the list box widget, use code similar to the following:

line_feed := ASCII (10);
resource_array {"items" + line_feed + "itemsCount"}:=list_array;

The line-feed character, ASCII (10), is a delimiter that separates two resource names.

DECTPU automatically generates two resource entries. The first is the array of strings that specifies
the data to the list box for the "items" resource. The second is the count of elements in the array for the
"itemsCount" resource.

Getting Resources

To get resource values from a widget, use the following statement:

GET_INFO (widget, "WIDGET_INFO", array)

101

Chapter 5. DEC Text Processing Utility Program Development

The indices of the array parameter are strings or string constants that name the resources whose values
you want. (The initial values in the array are unimportant.) The GET_INFO statement directs DECTPU
to fetch the specified resource values of the specified widget and put the values in the array.

For list box widgets or file selection widgets, one element of the array receives another array that
contains the list manipulated by the widget. The indices of this array are of type integer. The lowest
index has the value 0, and each subsequent index is incremented by 1. The contents of the array elements
are of type string.

When you create the index of the element that receives the widget’s list, you must observe the same
naming convention as for setting resources so that DECTPU can handle both the list itself and the
resource value that specifies the length of the list. Give the index the following format:

items<line-feed>items_count

For example, if you used GET_INFO (widget, "WIDGET_INFO", array) to get resource values from a
list box widget, you could specify the index for the element storing the widget’s list as follows:

"items" + ASCII(10) + "itemsCount"

The element for the widget’s list does not actually contain an array until after execution of the
GET_INFO statement. When DECTPU encounters the GET_ INFO statement, it parses the indices of
the specified array. When DECTPU parses the index of the element for the widget’s list, it fetches both
the list itself and the length of the list. Using the resource specifying the length, DECTPU creates an
array of the correct size to hold the widget’s list.

See the DEC Text Processing Utility Reference Manual for sample uses of DECwindows DECTPU built-
ins.

5.3. Writing Code Compatible with
DECwindows EVE
This section provides information useful for programmers who extend DECwindows EVE or layer
applications on DECwindows EVE.

5.3.1. Select Ranges in DECwindows EVE
This section is intended for programmers who are extending EVE or layering an application on EVE.

There are four possible types of selection:

● Dynamic selection

● Static selection

● Found range selection

● DECwindows primary or secondary global selection

EVE can use only one type of selection at a time. The ways in which these selections differ are explained
in the following sections.

EVE has a routine called EVE$SELECTION that returns the current selection, regardless of whether the
selection is dynamic, static, formed from a found range, or the primary global selection. You can use the

102

Chapter 5. DEC Text Processing Utility Program Development

SELECT_RANGE built-in procedure to get the current selection if the selection is a dynamic selection.
However, VSI recommends that you use EVE$SELECTION to get the current selection because this
routine returns the current selection regardless of how it was created. To see how the EVE$SELECTION
routine works and what parameters it takes, see the code for this routine in SYS$ EXAMPLE S:EVE
$CORE.TPU.

5.3.1.1. Dynamic Selection
When you press the Select key or invoke the SELECT command, EVE creates a dynamic selection. A
dynamic selection expands and contracts as you move the text cursor. Moving the text cursor away from
the text already selected does not cancel the selection. If you use the mouse to start a selection while a
dynamic selection is active, the dynamic selection is canceled.

If EVE’s current selection is a dynamic selection, the routine EVE$SELECTION returns the selected
range and terminates the selection. If, for some reason, you want to use a statement that returns the
current dynamic selection but does not terminate it, you can use a statement whose format is similar to
the following:

r1 := EVE$SELECTION (TRUE, TRUE, TRUE, TRUE, FALSE)

The last parameter directs EVE$SELECTION not to terminate the selection. For more information
on how to use these parameters, see the EVE$SELECTION routine in SYS$ EXAMPLE S:EVE
$CORE.TPU.

5.3.1.2. Static Selection
EVE creates a static selection if you do any of the following:

● Click the MB1 mouse button two or more times to select a word, line, paragraph, or buffer

● Use the EVE command SELECT ALL

● Press the MB1 mouse button, drag the mouse across text, and then release the mouse button

● Use the MB1 mouse button with the Shift key to extend a selection

EVE implements a static selection by creating a range upon which you can perform EVE commands
such as STORE TEXT or REMOVE. However, EVE does not use the DECTPU SELECT built-in
procedure to start this range. Thus, if you use the SELECT_RANGE built-in while a static selection is
active, DECTPU returns the message “No select active”.

If you move the text cursor off the text in the static selection, the selection is canceled.

5.3.1.3. Found Range Selection
When EVE positions to the beginning of a range as the result of the FIND command, the WILDCARD
FIND command, or pressing the Find key, EVE creates a found range that contains the text EVE found
as a match for your search string. If no other selection is active, EVE treats the found range as the
current selection.

EVE implements a found range selection by creating a range upon which you can perform EVE
commands such as STORE TEXT or REMOVE. However, EVE does not use the DECTPU SELECT
built-in procedure to start this range. Thus, if you use the SELECT_RANGE built-in while a found range
selection is active, DECTPU returns the message “No select active.”

103

Chapter 5. DEC Text Processing Utility Program Development

If you move the text cursor off the text in the found range selection, the selection is canceled.

5.3.1.4. Relation of EVE Selection to DECwindows Global Selection
If EVE has a dynamic selection or a static selection active, that selection is automatically designated as
the primary global selection. A found range selection is not designated as the primary global selection.

You can use the EVE$SELECTION to get the text of the primary global selection when an application
other than DECTPU owns the selection. To do so, the call to EVE$SELECTION must be in code bound
to a mouse button other than MB1. The value returned is a string that contains the text of the primary
global selection.

5.4. Compiling DECTPU Programs
Before compiling programs in DECTPU, you should enable the display of informational messages to help
you locate errors. EVE automatically enables the display of informational messages for you when you
use the EXTEND EVE command. For more information on displaying messages, see the description of
the SET (INFORMATIONAL) built-in procedure in the DEC Text Processing Utility Reference Manual.

The DECTPU compiler numbers the lines of code it compiles. The line numbers begin with 1. For a
string, all DECTPU statements are considered to be on line 1. For a range, line 1 is the first line of the
range, regardless of where in the buffer the range begins. Buffer s are numbered starting at the first
line. When a compilation error occurs, DECTPU tells you the approximate line number where the
error occurred. To move to the line at which the error occurred, use the POSITION (integer) built-in
procedure.

In EVE, you can use the LINE command. For example, the command LINE 42 moves the editing point
and the cursor to line 42.

To see DECTPU messages while in EVE, use the BUFFER MESSAGES command. To return to the
original buffer or another buffer of your choice, use the BUFFER name_of_buffer command.

There are two ways to compile a program in DECTPU: on the command line of EVE or in a DECTPU
buffer.

5.4.1. Compiling on the EVE Command Line
You can compile a simple DECTPU program by entering it on the EVE command line. For example, if
you use the TPU command and then enter the SHOW (SUMMARY) statement, DECTPU compiles and
executes the program associated with the SHOW (SUMMARY) statement.

5.4.2. Compiling in a DECTPU Buffer
DECTPU programs are usually compiled by entering DECTPU procedures and statements in a buffer
and then compiling the buffer. If you are using EVE, you can enter the SHOW (VARIABLE S)
command in a buffer and compile the buffer by using the TPU command and entering the following
statement after the prompt:

TPU Statement: COMPILE (CURRENT_BUFFER);

The program associated with SHOW (VARIABLE S) is not executed until you enter the following
statement:

TPU Statement: EXECUTE (CURRENT_BUFFER);

104

Chapter 5. DEC Text Processing Utility Program Development

If you use a buffer, a range, or a string as the parameter for the EXECUTE built-in procedure, DECTPU
first compiles and then executes the buffer, range, or string. See the description of EXECUTE in the
DEC Text Processing Utility Reference Manual.

The COMPILE built-in procedure optionally returns a program data type. If you want to use the program
that you are compiling later in your session, you can assign the program that is returned to a variable.
The following example shows how to make this assignment:

new_program := COMPILE (CURRENT_BUFFER);

If no error messages are issued while you compile the current buffer, you can then execute the program
new_program with the following statement:

EXECUTE (new_program);

You can use the COMPILE built-in procedure to compile certain parts of a buffer rather than a whole
buffer. To do so, create a range that includes the statements within the buffer that you want compiled,
and then specify the range as the parameter for COMPILE.

5.5. Executing DECTPU Programs
You can use programs that are already compiled as parameters for the EXECUTE built-in procedure.
In addition, you can use buffer s, ranges, or strings that contain executable DECTPU statements as
parameters for the EXECUTE built-in procedure. DECTPU compiles the contents of the buffer, range,
or string if necessary; then DECTPU executes the compiled buffer, range, or string.

After using the TPU command, suppose you used the following statement to create a program called
new_program:

TPU Statement: new_program := COMPILE (CURRENT_BUFFER);

You could then execute new_program by using the following statement after using the TPU command:

TPU Statement: EXECUTE (new_program);

You could also compile and execute the statements in the current buffer by using the following TPU
statement after using the TPU command:

TPU Statement: EXECUTE (CURRENT_BUFFER);

You can enter, com pile, and execute small DECTPU programs on the EVE command line. The
following example shows a small program that you can enter after the TPU Statement: prompt.

TPU Statement: SET (TIMER, ON, "Executing");

The preceding command executes the program associated with the SET (TIMER) built-in procedure and
causes the string "Executing" to be displayed at 1-second intervals when a long procedure is executing.
The string is displayed in the last 15 spaces of the prompt area at 1-second intervals.

5.5.1. Procedure Execution
If you include procedure declarations as part of a program, the procedure is compiled and the procedure
name is added to the DECTPU list of procedures when you execute the program. You invoke the
procedure in one of the following ways:

● Enter the name of the compiled procedure after the TPU Statement: prompt from EVE.

105

Chapter 5. DEC Text Processing Utility Program Development

● Call the procedure from within a program or another procedure.

5.5.2. Process Suspension
To suspend a process, you can use Ctrl/C. Pressing Ctrl/C causes DECTPU to stop the execution of a
user-written program. You can also stop the execution of the following DECTPU built-in procedures
with Ctrl/C:

● LEARN_BEGIN . . . LEARN_END (execution of a learn sequence)

● READ_FILE

● SEARCH

● WRITE_FILE

Caution

Because DECTPU does not journal Ctrl/C, using Ctrl/C may affect the accuracy of your keystroke
journal file. In addition, Ctrl/C prevents com pletion of some built-in procedures, such as
ERASE_RANGE, MOVE_ TEXT, and FILL. DECTPU behavior after such an interruption is
unpredictable. VSI recommends that you exit from the editor after pressing Ctrl/C to ensure that you do
not lose any work because of an inaccurate keystroke journal file.

Buffer-change journaling works properly with Ctrl/C. Therefore, if you are not using keystroke
journaling, exiting from the editor is not necessary.

For more information on the effects of pressing Ctrl/C, see Section 4.9.4.14, "Error Handling" and
Section 4.9.4.16, "Case-Style Error Handlers".

5.6. Using DECTPU Startup Files
DECTPU startup files are files that DECTPU reads, compiles, and executes during its initialization
sequence.

There are three types of DECTPU startup files:

● Section files

● Command files

● Initialization files

5.6.1. Section Files
A section file is the compiled binary form of a file that contains DECTPU source code. To direct
DECTPU to execute a section file, use the appropriate command syntax for your section.

To execute a section file, use the /SECTION qualifier with the EDIT/TPU command or let DECTPU
execute the default section file.

The default section file is TPU$SECTION. When DECTPU tries to locate the section file, DECTPU
supplies a default directory of SYS$SHARE and a default file type of .TPU$SECTION. OpenVMS
systems define the system-wide logical name TPU$SECTION as EVE$SECTION, so the default

106

Chapter 5. DEC Text Processing Utility Program Development

section file is the file that implements the EVE editor. To override the OpenVMS default, redefine TPU
$SECTION.

For more information on the /SECTION qualifier, see Section 2.6.13, "/SECTION".

5.6.2. Command Files
A command file contains a series of DECTPU procedures followed by a sequence of TPU statements.
To direct DECTPU to compile and execute a command file, use the appropriate command syntax, as
explained in this section.

To specify a DECTPU command file, use either the /COMMAND qualifier with the EDIT/TPU
command or let DECTPU compile and execute the default command file.

The default command file is TPU$COMMAND. When DECTPU tries to locate the command file, it
supplies a default file type of .TPU. To direct DECTPU to compile and execute a particular command
file, define the logical name TPU$COMMAND to be the file you want DECTPU to use. For more
information on the /COMMAND qualifier, see Section 2.6.2, "/COMMAND".

5.6.3. Initialization Files
An initialization file contains commands to be executed by an application layered on DECTPU. To
specify an initialization file to be executed, use the appropriate command syntax, as explained in this
section.

DECTPU does not determine the default handling of an initialization file; nor does DECTPU directly
load or execute the commands in an initialization file. The application layered on DECTPU must
determine the defaults and must handle the loading and execution of an initialization file. For example,
EVE reads an initialization file (if one is present) and interprets the initialization commands when
it processes the appropriate initialization file. Any key definitions in an initialization file override
corresponding key definitions saved in a section file and key definitions in a command file.

Typically, you use EVE initialization files to set values that are not usually saved in a section file, such as
margins, tab stops, and bound or free cursor. For a list of the EVE default values that you might want to
modify by using an EVE initialization file, see the Extensible Versatile Editor Reference Manual.

To use an initialization file, use the /INITIALIZATION qualifier with the EDIT/TPU command. For
more information on the /INITIALIZATION qualifier, see Section 2.6.6, "/INITIALIZATION".

5.6.4. Sequence in Which DECTPU Processes Startup
Files
When you invoke DECTPU, by default DECTPU reads, compiles, and executes several files. The
sequence in which DECTPU perform s these tasks is as follows:

1. DECTPU loads into memory the specified or default section file unless you specify the /
NOSECTION qualifier on the command line.

2. DECTPU reads the specified or default command file, if found, into a buffer named $LOCAL$INI$
unless you specify the /NOCOMMAND qualifier on the command line.

3. If you specify the /DEBUG qualifier on the command line, DECTPU reads the specified or default
debugger file into a buffer named $DEBUG$INI$. A debugger file contains DECTPU procedures

107

Chapter 5. DEC Text Processing Utility Program Development

and statements to help debug DECTPU code. For more information on the default DECTPU
debugger, see Section 5.7, "Debugging DECTPU Programs".

4. If the buffer named $DEBUG$INI$ (which contain s debugger code) is present, DECTPU compiles
the buffer and executes the resulting program.

5. DECTPU calls and executes the procedure named TPU$INIT_PROCEDURE if the procedure is
present in the section file or is defined in the debug file.

6. If the command file is read into the buffer named $LOCAL$INI$, DECTPU compiles that buffer
and executes the resulting program.

7. DECTPU calls and executes the procedure named TPU$INIT_POSTPROCEDURE if the layered
application has defined this procedure in the section file, debug file, or command file.

If a layered application makes use of an initialization file, it is the responsibility of the application
to define when the initialization file is processed. EVE processes initialization files during the TPU
$INIT_POSTPROCEDURE phase.

5.6.5. Using Section Files
A section file is the binary form of a program that implements a DECTPU-based editor or application.
It is a collection of compiled DECTPU procedure definitions, variable definitions, and key bindings.
The advantage of using a binary file is that the source code does not have to be compiled each time you
invoke the editor or application, so startup performance is improved.

5.6.5.1. Creating and Processing a New Section File
To create a section file, begin by writing a program in the DECTPU language. The program must adhere
to all the programming conventions discussed throughout this manual. For examples of programs used
to create a section file, see the files in the directory SYS$ EXAMPLE S. This directory contains the
sources used to create the EVE section file. To see a list of the EVE source files, type the following:

$ DIR SYS$EXAMPLES:EVE$*.TPU

If you cannot find these files on your system, see your system manager.

When writing the DECTPU program that implements your application, place your initializing statements
in a procedure named TPU$INIT_PROCEDURE. Such statements might create buffer s, create
windows, associate windows with buffer s, set up screen attributes, initialize variables, define how the
journal facility works, and so on. You can put the procedure TPU$INIT_PROCEDURE anywhere in
the procedure declaration portion of your program. DECTPU executes TPU$INIT_PROCEDURE
before executing the command file (if there is one). For more information on DECTPU’s initialization
sequence, see Section 5.6.4, "Sequence in Which DECTPU Processes Startup Files".

Place any statements that implement or handle initialization files in a procedure named
TPU$INIT_POSTPROCEDURE. DECTPU executes this procedure after both the TPU
$INIT_PROCEDURE and the command file have been executed. This enables commands or definitions
in the initialization file to modify commands or definitions in the command file. EVE defines both TPU
$INIT_PROCEDURE and TPU$INIT_POSTPROCEDURE procedures. For more information on how
EVE implements initialization files, see Section 5.6.7, "Using EVE Initialization Files".

After you put the desired DECTPU procedures and statements into the program that implements your
application, end your program with the following statements:

108

Chapter 5. DEC Text Processing Utility Program Development

● A statement that contains the SAVE built-in procedure. SAVE is the mechanism by which you store
all currently defined procedures, variables, and bound keys in binary form.

● The QUIT built-in procedure. QUIT ends the DECTPU session.

For more information on SAVE and QUIT, see the descriptions of these built-ins in the DEC Text
Processing Utility Reference Manual. For examples of files that use these statements, see Example 5.4,
"Sample Program for a Section File" and Example 5.5, "Source Code for Minimal Interface to DECTPU".

To compile your program into a section file, invoke DECTPU but do not supply as a parameter the name
of a file to be edited. Use the /NOSECTION qualifier to indicate that no existing section file should be
loaded. Use the /COMMAND qualifier to specify the file that contains your program. For example, to
create a section file from a program in a file called my_application.tpu, enter the following at the DCL
prompt:

$ EDIT/TPU/NOSECTION/COMMAND=my_application.tpu

This command causes DECTPU to write the binary form of the file MY_ APPLICATION.TPU to the
file you specified as the parameter to the SAVE statement in your program. To use the section file,
invoke DECTPU, specifying your section file. For more information on invoking DECTPU, see Chapter
2, "Getting Started with DECTPU".

5.6.5.2. Extending an Existing Section File
To extend an existing section file, begin by writing a program in the DECTPU language.

If you are extending the EVE section file, put your initializing statements in an initialization procedure
called TPU$LOCAL_INIT. TPU$LOCAL_INIT is an empty procedure in the EVE section file. When
you add your DECTPU statements and procedures to the EVE section file, your procedure named TPU
$LOCAL_INIT supersedes EVE’s original empty value of TPU$LOCAL_INIT. TPU$LOCAL_INIT
is called at the end of the procedure TPU$INIT_ PROCEDURE during the initialization sequence.
For more information on the initialization sequence, see Section 5.6.4, "Sequence in Which DECTPU
Processes Startup Files".

If you are extending a non-EVE section file, you must determine whether that section file has
implemented the convention of including a TPU$LOCAL_INIT procedure.

After adding DECTPU procedures and statements that implement your application, end your program
with the following statements:

● A statement that contains the SAVE built-in procedure. SAVE is the mechanism by which you store
all currently defined procedures, variables, and bound keys in binary form.

● The QUIT built-in procedure. QUIT ends the DECTPU session.

For more information on SAVE and QUIT, see the descriptions of these built-ins in the DEC Text
Processing Utility Reference Manual.

Example 5.4, "Sample Program for a Section File" shows the syntax of a program that could be used to
create a section file.

Example 5.4. Sample Program for a Section File

PROCEDURE tpu$local_init
 .

109

Chapter 5. DEC Text Processing Utility Program Development

 .
 . ENDPROCEDURE;

PROCEDURE vt100_keys
 .
 .
 .
ENDPROCEDURE;

vt100_keys; !Call the procedure that defines the keys

SAVE ("vt100ini.tpusection");

QUIT;

To add your program to an existing section file, invoke DECTPU but do not supply as a parameter the
name of a file to be edited. Use the /SECTION qualifier to specify the section file to which you want to
add your program. Use the /COMMAND qualifier to specify the file that contains your program.

For example, to add a program called MY_CUSTOMIZATIONS.TPU to the EVE section file, you
would enter the following:

$ EDIT/TPU/SECTION=EVE$SECTION/COMMAND=my_customizations.tpu

This command causes DECTPU to load the EVE section file and then read, compile, and execute the
command file you specify. A new section file is created. The new file includes both the EVE section
file and the binary form of your program. The section file is written to the file you specified as the
parameter to the SAVE statement in your program. To use the section file, invoke DECTPU, specifying
your section file.

For more information on invoking DECTPU, see Chapter 2, "Getting Started with DECTPU".

For more information on extending the EVE section file, see the Extensible Versatile Editor Reference
Manual.

5.6.5.3. Sample Section File
If you choose to design an application layered on DECTPU and not layered on EVE, you must provide
certain basic structures and key definitions to be able to use the DECTPU compiler and interpreter.
Example 5.5, "Source Code for Minimal Interface to DECTPU" is a sample of the source code that
creates a minimal interface. It provides the following basic structures:

● A buffer and a window for DECTPU messages

● A buffer and a window for information from the SHOW built-in procedure

● A buffer and a window in which to enter DECTPU programs or text

● A prompt area in which to enter DECTPU commands

Because DECTPU does not have any keys defined when invoked without a section file, the sample
program also contains the following key definitions:

● Return key

● Delete key

110

Chapter 5. DEC Text Processing Utility Program Development

● Key for exiting from DECTPU

● Key for entering DECTPU statements (Example 5.5, "Source Code for Minimal Interface to
DECTPU" uses the Tab key)

By default, DECTPU looks for TPU$INIT_PROCEDURE, so the statements that create the structures
for a minimal interface are contained in TPU$INIT_ PROCEDURE. Individual statements that define
keys come after any procedures in the file.

If you entered the text from Example 5.5, "Source Code for Minimal Interface to DECTPU" into a file
named MINI.TPU and you want to compile that file into a section file, enter the following command:

$ EDIT/TPU/NOSECTION/COMMAND=MINI.TPU

In the previous example, the /NOSECTION qualifier specifies that DECTPU does not read a section
file. This ensures that none of the procedures or variables from an existing section file are loaded
into the internal DECTPU tables. The /COMMAND qualifier specifies that DECTPU com piles the
command file MINI.TPU. The SAVE built-in procedure at the end of the command file specifies that
all of the procedures, variables, and key definitions in the file are to be saved in binary form in SYS
$LOGIN:MINI.TPU$SECTION. The QUIT built-in procedure then causes you to leave DECTPU.

Example 5.5, "Source Code for Minimal Interface to DECTPU" contains the source code for a command
file that you can use for a minimal interface to DECTPU.

Example 5.5. Source Code for Minimal Interface to DECTPU

! MINI.TPU - minimal DECTPU interface

PROCEDURE tpu$init_procedure

! Create a buffer and window for messages

 message_buffer := CREATE_BUFFER ("Message Buffer");
 SET (NO_WRITE, message_buffer);
 SET (SYSTEM, message_buffer);
 SET (EOB_TEXT, message_buffer, "");
 message_window := CREATE_WINDOW (21, 4, OFF);
 MAP (message_window, message_buffer);

! Create a buffer and window for SHOW

 show_buffer := CREATE_BUFFER("Show Buffer");
 SET (NO_WRITE, show_buffer);
 SET (SYSTEM, show_buffer);
 info_window := CREATE_WINDOW (1, 20, ON);

! Create a buffer and window for editing

 main_buffer := CREATE_BUFFER ("Main Buffer");
 main_window := CREATE_WINDOW (1, 20, ON);
 MAP (main_window, main_buffer);

! Create an area on the screen for prompts

 SET (PROMPT_AREA, 21, 1, NONE);

!Put the editing point in the main buffer

111

Chapter 5. DEC Text Processing Utility Program Development

 POSITION (main_buffer);
 tpu$local_init;

ENDPROCEDURE;

PROCEDURE tpu$local_init !Procedure to allow end users
 !to add private extensions
ENDPROCEDURE;

! Define the minimal editing keys:
 DEFINE_KEY ("SPLIT_LINE", RET_KEY);
 DEFINE_KEY ("ERASE_CHARACTER(-1)", DEL_KEY);
 DEFINE_KEY ("EXECUTE(READ_LINE(’DECTPU Statement: ’))", TAB_KEY);
 DEFINE_KEY ("EXIT", Ctrl_Z_KEY);

! Create a section file and then quit

IF (get_info/system,("operating_system")=ULTRIX)
THEN
 save(’/usr/user/jacki/mini.tpu_section’);
ELSE
 save(’sys$login.mini);
ENDIF

QUIT;

! End of MINI.TPU

If you created the section file SYS$LOGIN:MINI.TPU$SECTION, you could use the procedures and
definitions in that file as an interface to DECTPU. To invoke DECTPU with SYS$LOGIN:MINI.TPU
$SECTION as the MINI section file, use the following command:

$ EDIT/TPU/SECTION=SYS$LOGIN:MINI your_text.fil

You can define the logical name TPU$SECTION to point to your section file. By default, DECTPU
looks for a file that TPU$SECTION points to and reads that file as the default section file.

Whenever you want to add new procedures, variables, learn sequences, or key definitions to a section
file, edit the command file to include the new items, and then recompile the command file to produce a
section file with the new items. For example, if you want to add key definitions for the arrow keys, you
could edit the file MINI.TPU and add the following statements after any procedures in the file:

DEFINE_KEY ("MOVE_VERTICAL (-1)", UP);
DEFINE_KEY ("MOVE_VERTICAL (1)", DOWN);
DEFINE_KEY ("MOVE_HORIZONTAL (1)", RIGHT);
DEFINE_KEY ("MOVE_HORIZONTAL (-1)", LEFT);

Recompile the command file with the following command:

$ EDIT/TPU/NOSECTION/COMMAND=MINI.TPU

After you have completed the previous steps, you can use the section file you created to invoke DECTPU
with the new key definitions included.

An alternate way of adding these key definitions to your section file is to enter the definitions as text
in the current buffer. You could then press the Tab key (the command prompt key for the minimal
interface) and enter the following command after the prompt:

112

Chapter 5. DEC Text Processing Utility Program Development

TPU Statement: EXECUTE (CURRENT_BUFFER);

This causes the new key definitions to be added to your current editing context. To add the definitions
to the section file so you can use them in future sessions, enter the following statement at the Command
prompt:

Command: SAVE ("sys$login:mini");

If you want to save the DECTPU source code for the key definitions, write out the current buffer or use
the EXIT built-in procedure to leave the DECTPU session so that the contents of the buffer are written
to a file.

5.6.5.4. Recommended Conventions for Section Files
A section file that implements a layered application should include the following procedures:

● TPU$INIT_PROCEDURE

● TPU$LOCAL_INIT

If your application is to support initialization files, the section file that implements the application should
also include a procedure called TPU$INIT_ POSTPROCEDURE. This procedure should contain the
DECTPU statements that implement or handle the initialization files.

For information on EVE’s implementation of initialization files, see Section 5.6.7, "Using EVE
Initialization Files".

The TPU$INIT_PROCEDURE procedure should perform the following operations:

● Initialize all global variables to their startup values

● Create all required work spaces for the editor (see the list of special purpose buffers and windows in
Table 5.2, "Special DECTPU Variables That Require a Value from a Layered Application")

You can add other functions to TPU$INIT_PROCEDURE, but it should perform at least these two
operations.

If your application allows the end user to customize the application by using a command file, you may
want to make available to the user a procedure called TPU$LOCAL_INIT. (Although this name is not
required, it is commonly used by DECTPU programmers.)

In EVE, the code that implements the initialization sequence calls TPU$LOCAL_INIT before executing
your command or initialization files. EVE defines this procedure but leaves it empty. The user can use
this procedure in a command file to contain DECTPU statements that implement private initializations.

You can see the code that implements TPU$LOCAL_INIT in EVE in SYS$ EXAMPLE S:EVE
$CORE.TPU.

A section file that implements a layered application should assign values to the following special
variables in the procedure TPU$INIT_PROCEDURE:

● TPU$X_ME SSAGE_BUFFER or MESSAGE_BUFFER

● TPU$X_S HOW_BUFFER or SHOW_BUFFER

● TPU$X_S HOW_WINDOW or INFO_WINDOW

113

Chapter 5. DEC Text Processing Utility Program Development

If you write a section file that extends the EVE section file, EVE provides six variables (three pairs of
synonyms) to be used by layered applications. Although DECTPU automatically declares the variables,
the application must assign a value to one of the synonyms in each pair. If you choose to write your own
application, your application must contain these structures and procedures.

Table 5.2, "Special DECTPU Variables That Require a Value from a Layered Application" shows the
names and uses of these variables.

Table 5.2. Special DECTPU Variables That Require a Value from a Layered Application

Recommended Name Synonym Provided
for Backward
Compatibility

Data Type Structure How DECTPU Uses
the Variable

TPU$X_MESSAGE_
BUFFER

MESSAGE_BUFFER Buffer DECTPU writes
messages in this
buffer. If the
MESSAGE_BUFFER
is associated with a
window that is mapped
to the screen, DECTPU
updates the window.
If the application does
not assign a buffer to
this variable, DECTPU
writes messages to the
screen.

TPU$X_SHOW_
BUFFER

SHOW_BUFFER Buffer DECTPU writes
information stored by
the SHOW built-in in
this buffer.

TPU$X_SHOW_
WINDOW

INFO_WINDOW Window DECTPU displays
information stored by
the SHOW built-in in
this window.

If you want to use the SHOW built-in procedure in your application, you must create these special
variables that DECTPU uses for SHOW.

5.6.6. Using Command Files
A command file is a DECTPU source file that can contain procedures, key definitions, and other
DECTPU executable statements. You can have any number of command files in your directory. You
might want to write one command file that customizes your editor for programming in Pascal, another
command file that customizes your editor for text editing, and so on. If you have several command files,
give them names that remind you of their contents. If you have one command file that you use most of
the time, name it TPU$COMMAND.TPU.

The command to invoke DECTPU with a command file is:

$ EDIT/TPU/COMMAND #= filespec#

If you name your command file TPU$COMMAND.TPU and it is in your default directory, DECTPU
reads the file by default, without your having to use the /COMMAND qualifier. If you name your file

114

Chapter 5. DEC Text Processing Utility Program Development

something other than TPU$COMMAND.TPU, or if you put it in a directory other than your default
directory, you must use the /COMMAND qualifier explicitly and provide a full file specification after the
qualifier.

DECTPU reads a command file, compiles it, and executes any commands that do not contain syntax
errors. If there are errors, DECTPU writes an error message to the message area. The command file can
customize or extend the application implemented by the section file with which you invoked DECTPU.

Example 5.6, "Command File for GOTO_TEXT_MARKER" is a sample DECTPU command file that
defines a procedure that moves the editing point to the beginning of a segment of text delimited by the
characters %(/ * at the beginning and * /)% at the end.

Example 5.6. Command File for GOTO_TEXT_MARKER

PROCEDURE goto_text_marker

 LOCAL text_marker_pattern,
 text_marker_range;

 text_marker_pattern := ’%(/*’ + MATCH (’*/)%’);
 text_marker_range := SEARCH_QUIETLY (text_marker_pattern,
 GET_INFO (CURRENT_BUFFER, "direction"));
 IF text_marker_range <> 0
 THEN
 POSITION (text_marker_range);
 ELSE
 MESSAGE ("Text_marker not found");
 ENDIF;

 RETURN text_marker_range;

ENDPROCEDURE;

If you name the file that contain s this procedure TEXT_MARKERS.TPU, you can invoke DECTPU
with EVE and your command file with the following command:

$ EDIT/TPU/COMMAND=device:[directory]text_markers.tpu

If you add procedures or statements to the command file TEXT_MARKERS.TPU, place all procedures
before any individual statements that are not listed within a procedure (for example, key definitions to
move to the next text marker).

Remember to name your variables and procedures so they do not conflict with DECTPU reserved words
and predefined identifiers. VSI recommends that you prefix your variable and procedure names with
three letters (your initials, for example) followed by an underscore (_).

5.6.7. Using EVE Initialization Files
An initialization file is a file that contains commands to be executed by an application. Any application
layered on DECTPU can support initialization files.

With EVE initialization files, you can do the following:

● Use EVE commands in a startup file to customize editing sessions

● Set formats for individual buffers

115

Chapter 5. DEC Text Processing Utility Program Development

EVE initialization files contain EVE commands that are executed either when you invoke the editor or
when you issue the EVE @ (at sign) command.

To create an EVE initialization file, put in the file the EVE commands you want to use to customize the
editor. Use one command on each line and one line for each command. Do not separate the commands
with semicolons. If a command in an EVE initialization file is incomplete, EVE prompts you for more
information, the same as if you were typing the command during an editing session. Comments in EVE
initialization files must be on lines separate from commands and must begin with an exclamation point
(!). You cannot nest EVE initialization files. Do not use the DO command in an EVE initialization file.

The following sample initialization file sets left and right margins, establishes overstrike mode, binds the
QUIT command to the GOLD/Q key sequence, and enables an EDT-like keypad:

SET LEFT MARGIN 5
SET RIGHT MARGIN 60
OVERSTRIKE MODE
DEFINE KEY=gold/q QUIT
SET KEYPAD EDT

5.6.7.1. Using an EVE Initialization File at Startup
You can cause an initialization file to be executed in any of the following ways when you invoke EVE:

● Name the file EVE$INIT.EVE. This is the default file name for EVE initialization files.

● Specify the name of the initialization file as a qualifier to the EDIT/TPU command.

● Define a logical name, EVE$INIT, to point to your initialization file.

The first and third methods are appropriate if you intend to use one initialization file most of the time to
customize your editing sessions. If you name the file EVE$INIT.EVE and do not specify another EVE
initialization file on the command line, EVE automatically executes that file when you invoke DECTPU.

Use the second method to control which initialization file EVE executes to customize the editing session.
For example, if you have an EVE$INIT file but want to use another initialization file, specify the other
file by using the /INITIALIZATION qualifier to EDIT/TPU. To specify an initialization file called
MY_INIT.EVE, enter the following command string on the command line:

$ EDIT/TPU/INITIALIZATION=MY_INIT.EVE

EVE always executes the initialization file specified on the command line, if such a file is present. If no
file is specified on the command line, EVE searches for EVE$INIT.EVE first in the current directory
and then in your login area. If EVE finds EVE$INIT.EVE, it executes that file. If the file is not found,
the editor checks whether the logical name EVE$INIT has been defined.

If you plan to create several initialization files and to use them equally, you may not want to name one of
the files EVE$INIT. For example, if you want one initialization file to set narrow margins and another to
set wide margins, create both files and specify the file you want when you invoke EVE.

5.6.7.2. Using an EVE Initialization File During an Editing Session
To execute an EVE initialization file during an editing session, use the @ (at sign) command and specify
the file. For example, the following command executes an initialization file called MYEVE.EVE in your
current (default) directory.

Command: @MYEVE

116

Chapter 5. DEC Text Processing Utility Program Development

Commands for buffer settings apply to the current buffer. This is effectively the same as typing the
commands that the file contains. You may want to create initialization files to execute two or more
related commands, such as resetting both margins.

5.6.7.3. How an EVE Initialization File Affects Buffer Settings
Commands in an EVE initialization file that set buffer characteristics (such as margins and tab stops)
affect a system buffer named $DEFAULTS$. Buffer s created during the editing session have the same
settings as $DEFAULTS$. For example, if your initialization file contains the command SET RIGHT
MARGIN 65, the value 65 is used as the right margin setting for the main buffer and for any buffer s
you create during the session with GET FILE or BUFFER commands.

To see the settings for the $DEFAULTS$ buffer, use the EVE command SHOW DEFAULTS BUFFER.
For example, if you want to know what the tab settings are for the $DEFAULTS$ buffer, type the
following command:

Command: SHOW DEFAULTS BUFFER

This command causes EVE to show buffer information in a format similar to the format in Example 5.7,
"SHOW DEFAULTS BUFFER Display" (using values that apply to your editing session).

Example 5.7. SHOW DEFAULTS BUFFER Display

EVE V3.1 1993-08-17 08:47
Information about buffer $DEFAULTS$

 Not modified Left margin set to: 1
 Mode: Insert Right margin set to: 79
 Paragraph indent: none WPS word wrap indent: none
 Read-only Unmodifiable
 Direction: Forward
 Max lines: no limit
Tab stops set every 8 columns.
Word wrap: on

To change the characteristics of the $DEFAULTS$ buffer during an editing session, use the command
BUFFER $DEFAULTS$ to put the defaults buffer in a window. This buffer is empty and you cannot add
text to it. However, when you change the settings of the $DEFAULTS$ buffer, the changes are saved and
used to set the characteristics of any user buffers you create.

Use commands such as SET RIGHT MARGIN, SET LEFT MARGIN, SET TABS, FORWARD,
REVERSE, INSERT, or OVERSTRIKE to change the characteristics of the $DEFAULTS$ buffer. The
new characteristics are applied to new buffer s but not to existing ones. To leave the $DEFAULTS$
buffer and put a different buffer in the window, use the BUFFER command.

5.7. Debugging DECTPU Programs
This section discusses the options you have for debugging DECTPU programs.

To debug DECTPU programs, you can do one of the following:

● Write your own debugger in the DECTPU language. This is discussed in Section 5.7.1, "Using Your
Own Debugger".

● Use the DECTPU debugger provided in TPU$DEBUG.TPU. This is discussed in Section 5.7.2,
"Using the DECTPU Debugger".

117

Chapter 5. DEC Text Processing Utility Program Development

Regardless of which debugger you use, you may find it helpful to enable the display of error line numbers
by using SET (LINE_NUMBER, ON) and to enable the display of procedures called when an error
occurs by using SET (TRACEBACK, ON).

5.7.1. Using Your Own Debugger
If you write your own debugger, you can invoke it (and bypass the default bugger) by using the /DEBUG
qualifier with the EDIT/TPU command. For example, to use a debugger called MY_DEBUGGER.TPU
on a file called MIGHT_BE_ BUGGY.TPU, type the following:

$ EDIT/TPU/DEBUG=MY_DEBUGGER.TPU MIGHT_BE_BUGGY.TPU

5.7.2. Using the DECTPU Debugger
You can invoke the DECTPU debugger to debug one of the following kinds of files:

● Section files

● Command files

● Files that contain DECTPU programs that are not startup programs

The following sections contain more information on debugging each kind of file.

5.7.2.1. Debugging Section Files
To invoke the debugger for a section file, specify the following command on your command line:

$ EDIT/TPU/DEBUG

Use of your system’s debug command causes the DECTPU initialization routine to execute the debugger
file before the system runs its initialization procedure.

The debugger initially creates a window that fills most of the screen. The window consists of the
following three areas:

● Source area—Displays your code when it has been placed in the debugger source buffer.

● Output area—Displays one-line messages or one-line results of an EXAMINE command.

● Debug command line—Displays the Debug: prompt.

When DECTPU displays the debug window, you can set breakpoints in the section file by using the SET
BREAKPOINT command. For example, if you want to debug a procedure called user_fum, type the
following on the debugger command line:

Debug: SET BREAKPOINT user_fum

After setting breakpoints, use the GO command to switch control of execution from the debugger to
DECTPU. After you have used this command, the screen displays the code you specified.

5.7.2.2. Debugging Command Files
To invoke the debugger on a command file, use the /DEBUG, /COMMAND, and /NOSECTION
qualifiers. To debug a command file called MY_COMMANDS.TPU, type the following at the DCL
prompt:

118

Chapter 5. DEC Text Processing Utility Program Development

$ EDIT/TPU/NOSECTION/COMMAND=MY_COMMANDS.TPU/DEBUG

DECTPU compiles and executes the debugger and places the debug window on the screen before
compiling the command file. As a result, you must set breakpoints in the command file before it has
been compiled. When you set breakpoints, DECTPU notifies you that you have specified breakpoints at
nonexistent procedures.

To continue with the debugging session, use the GO command. GO causes DECTPU to compile the
contents of the command file. Recompiling a procedure does not remove any breakpoints set in that
procedure.

You cannot use the DECTPU debugger on a file that does not contain DECTPU procedures. If your
command file does not contain any procedures, you must find a different method of debugging it.

5.7.2.3. Debugging Other DECTPU Source Code
To debug a DECTPU program that is not a section file or a command file, use the /DEBUG
qualifier when you invoke DECTPU. For example, to debug procedures in a file called
USER_APPLICATION.TPU, invoke the debugger on the command line as follows:

$ EDIT/TPU/DEBUG USER_APPLICATION.TPU

The debugger creates a window that fills the screen as described in Section 5.7.2.1, "Debugging Section
Files".

5.7.3. Getting Started with the DECTPU Debugger
This section describes using the default DECTPU debugger with EVE.

If you know which parts of the code you want to debug, use the SET BREAKPOINT command to set
breakpoints. If you need to look at the code before setting breakpoints, use the GO command as soon
as the debugger window appears. This places on the screen the code in the file you specified on the
command line. At this point, EVE commands are available so you can manipulate the text. To return to
the debugger so you can set breakpoints, enter the command DEBUG at the EVE command line. You
can also gain access to the debugger with the DECTPU procedure called DEBUGON. To invoke this
procedure from within EVE, type the following at the EVE Command prompt:

Command: TPU DEBUGON

When you use either DEBUG or DEBUGON, the screen displays the debugger window and command
line. After setting breakpoints, use the GO command to return control of execution to DECTPU.

To compile all code in the buffer, use the EXTEND ALL command or use the COMPILE
(CURRENT_BUFFER) statement. To execute a procedure after compilation, use the TPU command.
For example, if you want to execute the compiled procedure user_fum, type the following at the EVE
Command prompt:

Command: TPU user_fum

When DECTPU encounters a breakpoint (or when you use the STEP command described later),
DECTPU invokes the debugger program. As the debugger assumes control, it receives from DECTPU
the name of the procedure whose execution has been suspended. The debugger searches its source buffer
for that procedure.

When DECTPU encounters the first breakpoint in the session, the code you are debugging has not yet
been placed in the debugger’s source buffer. The debugger prompts for the name of the file that contains

119

Chapter 5. DEC Text Processing Utility Program Development

your code. Using your response, the debugger places your code in its source buffer. The debugger uses
your previous response to supply missing fields, if any, in subsequent file names that you specify. All
files read into the source buffer remain there, so that the time DECTPU takes to find a procedure may
increase as more files are read into the source buffer.

You cannot use the TPU command followed by the MESSAGE built-in procedure to examine the
contents of a local variable while debugging. To use the MESSAGE built-in to examine a local variable,
you must write the MESSAGE built-in into the procedure you are debugging. After the statement that
contains MESSAGE is executed, you can examine the message buffer to see the results. Alternatively,
you can use the debugger EXAMINE command to examine local variables and the formal parameters of
the suspended procedure.

5.8. Handling Errors
Each DECTPU built-in procedure returns one or more status codes telling you what happened when the
built-in was executed. A DECTPU status code can have one of the following severity levels:

● SUCCESS

● INFORMATIONAL

● WARNING

● ERROR

● FATAL

You can enable or disable the display of informational or success messages with the SET
(INFORMATIONAL) and SET (SUCCESS) built-in procedures.

See Chapter 4, "Lexical Elements of the DEC Text Processing Utility Language" for a description of how
to use the ON_ERROR language statement to trap error and warning messages.

In addition to messages that are generated by DECTPU, a built-in procedure may return system
messages.

120

Appendix A. Sample DECTPU
Procedures
The following DECTPU procedures are samples of how to use DECTPU to perform certain tasks. These
procedures show one way of using DECTPU; there may be other, more efficient ways to perform the
same task. Make changes to these procedures to accommodate your style of editing.

For these procedures to compile and execute correctly, you must make sure that there are no conflicts
between these sample procedures and your interface. This appendix contains the following types of
procedures:

1. Line-mode editor.

2. Translation of control characters.

3. Restoring terminal width before exiting from DECTPU.

4. DCL command procedure to run DECTPU from a subprocess.

A.1. Line-Mode Editor
Example A.1, "Line-Mode Editing" shows a portion of an editing interface that uses line mode rather
than screen displays for editing tasks. You can use this mode of editing for batch jobs or for running
DECTPU on terminals that do not support screen-oriented editing.

Example A.1. Line-Mode Editing

! Portion of a line mode editor for DECTPU
!
input_file := GET_INFO (COMMAND_LINE, "file_name"); ! Set up main
main_buffer := CREATE_BUFFER ("MAIN", input_file); ! buffer from input
POSITION (BEGINNING_OF (main_buffer)); ! file
!
LOOP ! Continuously loop until QUIT
 cmd := READ_LINE ("*");
 IF cmd = ""
 THEN
 cmd_char := "N";
 ELSE
 cmd_char := SUBSTR (cmd, 1, 1); CHANGE_CASE (cmd_char, UPPER);
 ENDIF;

 CASE cmd_char FROM "I" TO "T" ! Only accepting I,L,N,Q,T
!Top of buffer command
 ["T"]:
 POSITION (BEGINNING_OF (CURRENT_BUFFER));
 MESSAGE (CURRENT_LINE);
!Next line command
 ["N"]:
 MOVE_HORIZONTAL (-CURRENT_OFFSET);
 MOVE_VERTICAL (1);
 MESSAGE (CURRENT_LINE);
!Insert text command
 ["I"]:

121

Appendix A. Sample DECTPU Procedures

 SPLIT_LINE;
 COPY_TEXT (SUBSTR (cmd, 2, 999));
 MESSAGE (CURRENT_LINE);
!List from here to end of file command
 ["L"]:
 m1 := MARK (NONE);
 LOOP
 MESSAGE (CURRENT_LINE);
 MOVE_VERTICAL (1);
 EXITIF MARK (NONE) = END_OF (CURRENT_BUFFER);
 ENDLOOP;
 POSITION (m1);
!QUIT
 ["Q"]:
 QUIT;
 [INRANGE,OUTRANGE]:
 MESSAGE ("Unrecognized command - enter I,L,N,Q or T");
 ENDCASE;
ENDLOOP;

A.2. Translation of Control Characters
Example A.2, "Procedure to Display Control Characters" shows how to display control characters in a
meaningful way. This is accomplished by translating the buffer to a different visual format and mapping
this new form to a window. On the VT400, VT300, and VT200 series of terminals, control characters
are shown as reverse question marks; on the VT100 series of terminals, they are shown as rectangles.

Example A.2. Procedure to Display Control Characters

! This procedure performs the substitution of meaningful characters
! for the escape or control characters.
!
PROCEDURE translate_controls (char_range)

 LOCAL
 replace_text;
!
! If the translation array is not yet set up, then do it now. The elements
! that we do not initialize will contain the value TPUK_UNSPECIFIED. They
 are
! characters that TPU will display meaningfully.
!
 IF translate_array = TPU$K_UNSPECIFIED
 THEN
 translate_array := CREATE_ARRAY (32, 0);
 translate_array {1} := ’<SOH>’;
 translate_array {2} := ’<STX>’;
 translate_array {3} := ’<ETX>’;
 translate_array {4} := ’<EOT>’;
 translate_array {5} := ’<ENQ>’;
 translate_array {6} := ’<ACK>’;
 translate_array {7} := ’<BEL>’;
 translate_array {8} := ’<BS>’;
 translate_array {14} := ’<SO>’;
 translate_array {15} := ’<SI>’;
 translate_array {16} := ’<DLE>’;
 translate_array {17} := ’<DC1>’;

122

Appendix A. Sample DECTPU Procedures

 translate_array {18} := ’<DC2>’;
 translate_array {19} := ’<DC3>’;
 translate_array {20} := ’<DC4>’;
 translate_array {21} := ’<NAK>’;
 translate_array {22} := ’<SYN>’;
 translate_array {23} := ’<ETB>’;
 translate_array {24} := ’<CAN>’;
 translate_array {25} := ’’;
 translate_array {26} := ’<SUB>’;
 translate_array {27} := ’<ESC>’;
 translate_array {28} := ’<FS>’;
 translate_array {29} := ’<GS>’;
 translate_array {30} := ’<RS>’;
 translate_array {31} := ’<US>’;

 ENDIF;

!
! The range *must* be a single character long
!
 IF LENGTH (char_range) <> 1
 THEN
 RETURN 0;
 ENDIF;
!
! Find the character
!
 replace_text := translate_array {ASCII (STR (char_range))};
!
! If we got back a value of TPU$K_UNSPECIFIED, TPU will display the
 character
! meaningfully
!
 IF replace_text = TPU$K_UNSPECIFIED
 THEN
 RETURN 0;
 ENDIF;
!
! Erase the range and insert the new text
!
 ERASE (char_range);
 COPY_TEXT (replace_text);

 RETURN 1;

ENDPROCEDURE;

!
! This procedure controls the outer loop search for the special
! control characters that we want to view.
!
PROCEDURE view_controls (source_buffer)

 CONSTANT
 Ctrl_char_str :=
 ASCII (0) + ASCII (1) + ASCII (2) + ASCII (3) +
 ASCII (4) + ASCII (5) + ASCII (6) + ASCII (7) +
 ASCII (8) + ASCII (9) + ASCII (10) + ASCII (11) +

123

Appendix A. Sample DECTPU Procedures

 ASCII (12) + ASCII (13) + ASCII (14) + ASCII (15) +
 ASCII (16) + ASCII (17) + ASCII (18) + ASCII (19) +
 ASCII (20) + ASCII (21) + ASCII (22) + ASCII (23) +
 ASCII (24) + ASCII (25) + ASCII (26) + ASCII (27) +
 ASCII (28) + ASCII (29) + ASCII (30) + ASCII (31);
 LOCAL
 Ctrl_char_pattern,
 Ctrl_char_range;

! Create the translation buffer and window, if necessary
!
 IF translate_buffer = TPU$K_UNSPECIFIED
 THEN
 translate_buffer := CREATE_BUFFER ("translation");
 SET (NO_WRITE, translate_buffer);
 ENDIF;

 IF translate_window = TPU$K_UNSPECIFIED
 THEN
 translate_window := CREATE_WINDOW (1, 10, ON);
 ENDIF;
!
! Make a copy of the buffer we are translating
!
 ERASE (translate_buffer);
 POSITION (translate_buffer);
 COPY_TEXT (source_buffer);

!
! Search for any control characters and translate them. If a control
 character
! is not found, SEARCH_QUIETLY will return a 0.
!
 Ctrl_char_pattern := ANY (Ctrl_char_str);
 POSITION (BEGINNING_OF (translate_buffer));

 LOOP
 Ctrl_char_range := SEARCH_QUIETLY (Ctrl_char_pattern, FORWARD);
 EXITIF Ctrl_char_range = 0;
 POSITION (Ctrl_char_range);
 !
 ! If we did not translate the character, move past it
 ! IF NOT translate_controls (Ctrl_char_range)
 THEN
 MOVE_HORIZONTAL (1);
 ENDIF;
 ENDLOOP;
!
! Now display what we have done
!
 POSITION (BEGINNING_OF (translate_buffer));
 MAP (translate_window, translate_buffer);

ENDPROCEDURE;

124

Appendix A. Sample DECTPU Procedures

A.3. Restoring Terminal Width Before Exiting
from DECTPU
Example A.3, "Procedure to Restore Screen to Original Width" compares the current width of the screen
with the original width. If the current width differ s from the original width, the procedure restores
each window to its original width. The screen is refreshed so that information is visible on the screen
after you exit from DECTPU. When all of the window widths are the same, the physical screen width is
changed.

Example A.3. Procedure to Restore Screen to Original Width

PROCEDURE user_restore_screen

LOCAL
 original_screen_width,
 temp_w;

original_screen_width := GET_INFO (SCREEN, "original_width");

IF original_screen_width <> GET_INFO (SCREEN, "width")
THEN
 temp_w := get_info(windows,"first");

 LOOP
 EXITIF temp_w = 0;

 SET (WIDTH, temp_w, original_screen_width);

 temp_w := GET_INFO (WINDOWS, "next");
 ENDLOOP;

 REFRESH;
ENDIF;

ENDPROCEDURE;

! Define the key combination Ctrl/E to do an exit which
! restores the screen to its original width, repaints
! the screen, and then exits.

DEFINE_KEY ("user_restore_screen;EXIT", Ctrl_E_KEY);

A.4. Running DECTPU from an OpenVMS
Subprocess
Example A.4, "Procedure to Run DECTPU from a Subprocess" shows one way of running DECTPU from
a subprocess. It also shows how to move to or from the subprocess.

Example A.4. Procedure to Run DECTPU from a Subprocess

!
!DCL command procedure to run DECTPU from subprocess
!

125

Appendix A. Sample DECTPU Procedures

!Put $ e = "@keptedit"
!in your login.com. This spawns the editor the first time
!and attaches to it after that. I have defined a key to be
!"attach" so it always goes back to the parent.

$ tt = f$getdvi("sys$command","devnam") - "_" - "_" - ":"
$ edit_name = "Edit_" + tt
$ priv_list = f$setprv("NOWORLD, NOGROUP")
$ pid=0
10:
$ proc = f$getjpi(f$pid(pid), "PRCNAM")
$ if proc .eqs. edit_name then goto attach
$ if pid .ne. 0 then goto 10$
$spawn:
$ priv_list = f$setprv(priv_list)
$ write sys$error "[Spawning a new Kept Editor]"
$ define/nolog sys$input sys$command:
$ t1 = f$edit(p1 + " " + p2 + " " + p3 + " " + p4 + " "
 + p5 + " " + p6 + " " + p7 + " " + p8,"COLLAPSE")
$ spawn/process="’’edit_name’" /nolog edit/tpu ’t1’

$ write sys$error "[Attached to DCL in directory ’’f$env("DEFAULT")’]"
$ exit
$attach:
$ priv_list = f$setprv(priv_list)
$ write sys$error "[Attaching to Kept Editor]"
$ define/nolog sys$input sys$command:
$ attach "’’edit_name’"
$ write sys$error "[Attached to DCL in directory ’’f$env("DEFAULT")’]"
$ exit

126

Appendix B. DECTPU Terminal
Support
This appendix lists the terminals that support screen-oriented editing and describes how differences
among these terminals affect the way DECTPU performs. This appendix also describes how you can run
DECTPU on terminals that do not support screen-oriented editing. Finally, this appendix tells you how
DECTPU manages wrapping and how you can modify that.

B.1. Using Screen-Oriented Editing on
Supported Terminals
DECTPU supports screen-oriented editing only on terminals that respond to ANSI control functions and
that operate in ANSI mode.

DECTPU screen-oriented editing is designed to optimize the features available with the Compaq VT400,
VT300, and VT200 families of terminals and the Compaq VT100 family of terminals. DECTPU
does not support screen-oriented editing on Compaq VT52-compatible terminals. Optimum DECTPU
performance is achieved on the VT300-series, VT200-series, and VT100-series terminals. Some of the
high-performance characteristics of DECTPU may not be apparent on the terminals listed in Table B.1,
"Terminal Behavior That Affects DECTPU’s Performance" for the reasons stated.

Table B.1. Terminal Behavior That Affects DECTPU’s Performance

Terminal Characteristic

VT102 Slow autorepeat rate
VT240 Slow autorepeat rate

Slower scrolling region setup time than the VT220
GIGI One form of scrolling region (DECTPU repaints

screen, rather than use this scrolling mechanism)

Variable autorepeat rate (cursor keys pick up speed
when used repeatedly)

By default, your DECTPU session runs with the screen management file TPU$CCTSHR.EXE. To check
your terminal setting, enter the following command at the command prompt:

$ SHOW TERMINAL

B.1.1. Terminal Settings on OpenVMS Systems That
Affect DECTPU
The following settings may affect the behavior of DECTPU, depending on the terminal that you use.

132-Column Mode
Only terminals that set the DEC_CRT mode bit and the advanced video mode bit can alter their physical
width from 80 columns to 132 and back. All other terminals keep the physical width that is set when you
enter the editor.

127

Appendix B. DECTPU Terminal Support

For the DECTPU screen manager to behave predictably on GIGI terminals, you should report
the terminal width as 84 to OpenVMS systems. Use the DCL command SET TERMINAL/
DEVICE=VT100 to set the proper terminal width.

Autorepeat ON/OFF and Auxiliary Keypad Enabling
To take advantage of the SET (AUTO_REPEAT) built-in procedure or to enable the auxiliary keypad for
applications mode, the terminal must be set to DEC_CRT3, DEC_CRT2, DEC_CRT, or VT100. Use the
DCL command SET TERMINAL/DEVICE=characteristic to set the terminal.

Control Sequence Introducer
DECTPU can use one 8-bit control sequence introducer (CSI) to introduce a terminal control sequence.
(Usually you use the 2-character combination of the ESCAPE key and the left bracket ([).) To take
advantage of this feature, set your terminal to DEC_CRT2 mode. The Compaq VT300-series and
VT220 and VT240 terminals currently support this feature.

Cursor Positioning
If your terminal sets the DEC_CRT mode bit, DECTPU assumes that when control sequences that
position the cursor to row 1 or column 1 are sent to the terminal, the 1 can be omitted. If your terminal
does not behave correctly when it receives these control sequences, you must turn off the DEC_CRT
mode bit. Some foreign terminals may not be fully compatible with DECTPU and may exhibit this
behavior.

Edit Mode
Terminals that are operating in edit mode allow the editor to take advantage of special edit-mode
control sequences during deletion and insertion of text for optimization purposes. Some current Compaq
terminals that support edit mode include the VT102, the VT220, the VT240, the VT241, and VT300-
series terminals.

8-Bit Characters
ANSI terminals operating in 8-bit mode have the ability to use the supplemental characters and control
sequences in the DEC Multinational Character Set. The Compaq VT300-series and the VT220 and
VT240 terminals currently support 8-bit character mode. If you have the 8-bit mode bit set, DECTPU
designates the DEC Multinational Character Set into G2 and invokes it into GR. For more information
on how your terminal interacts with the DEC Multinational Character Set, refer to the programming
manual for your specific terminal.

Scrolling
DECTPU uses scrolling regions only for terminals that have the DEC_CRT mode bit set. On other
terminals, DECTPU repaints the window when a scroll would have been used (for example, when a line
is deleted or inserted).

Video Attributes
When you set the video attributes of windows, markers, or ranges, only those attributes supported by
your terminal type give predictable results. Most ANSI CRTs support reverse video. However, only
terminals that support DEC_CRT mode with the advanced video option (AVO) have the full range of
video attributes (reverse, bold, blink, underline) that DECTPU supports.

128

Appendix B. DECTPU Terminal Support

B.1.2. SET TERMINAL Command
When you use the SET TERMINAL command to specify characteristics for your terminal, make sure
to set only those characteristics that are supported by your terminal. If you set characteristics that the
terminal does not support, the screen-oriented functions of DECTPU may behave unpredictably. For
example, if you run DECTPU on a VT100 terminal and you set the DEC_CRT2 characteristic that
VT100s do not support, DECTPU tries to use 8-bit CSI controls. This could cause ‘‘;7m’’ to appear on
the screen where the reverse video attribute should be set.

Most users do not knowingly set characteristics that are not supported by their terminals. However, if
you temporarily move to a different type of terminal, your LOGIN.COM file may have characteristics
set for your usual terminal that do not apply to the current terminal. This problem may also occur if,
before running DECTPU, you run a program that modifies your terminal characteristics without your
knowledge.

If you see unexpected video attributes or extraneous characters on the screen, exit from DECTPU and
check your terminal characteristics with the DCL command SHOW TERMINAL.

To recover your files, use the same terminal characteristics you used to create your file; otherwise, a
journal file inconsistency may occur, depending on how your interface is written.

B.2. Using Line-Mode Editing on Unsupported
Terminals
If you want to run DECTPU from an unsupported terminal, you must inform DECTPU that you do not
want to use screen capabilities. To invoke DECTPU on an unsupported terminal, use the /NODISPLAY
qualifier after the EDIT/TPU command. See Chapter 2 for more information on this qualifier. While in
no- display mode, DECTPU uses the RTL generic LIB$PUT_OUTPUT routine to display prompts and
messages at the current location in SYS$OUTPUT. By using a combination of the READ_LINE and
MESSAGE built-in procedures, you can devise your own line-mode editing functions or perform editing
tasks from a batch job. See the sample line-mode editor in Appendix A, "Sample DECTPU Procedures".

B.3. Using Terminal Wrap
Terminal wrap characteristics perform differently on each operating system.

If you have enabled an automatic wrap setting on your terminal, DECTPU disables this setting in order
to manage the screen more efficiently. When you exit from DECTPU, DECTPU restores all terminal
characteristics. If the SET TERM/NOWRAP command is active, DECTPU leaves the hardware wrap
off. However, if the SET TERM/WRAP command is active, DECTPU assumes that you want hardware
wrap on, so it turns it on when you exit from DECTPU.

You can prevent DECTPU from turning on hardware wrap by specifying SET TERM/NOWRAP
before invoking DECTPU. You can enter the command interactively, or you can write a DCL command
procedure that makes this setting part of your DECTPU environment. Example B.1, "DCL Command
Procedure for SET TERM/NOWRAP" shows a DCL command procedure that is used to control this
terminal setting before and after a DECTPU session.

Example B.1. DCL Command Procedure for SET TERM/NOWRAP

$ SET TERM/NOWRAP
$ ASSIGN/USER SYS$COMMAND SYS$INPUT

129

Appendix B. DECTPU Terminal Support

$ EDIT/TPU/SECTION = EDTSECINI
$ SET TERM/WRAP

130

Appendix C. DECTPU Debugger
Commands
You can use the following commands for debugging once you have set breakpoints, compiled code, and
started execution.

ATTACH process

Suspends the current editing session and transfers control to another active process or subprocess.

DCL process names are case sensitive.

CANCEL BREAKPOINT procedure-name

Cancels a breakpoint set with the SET BREAKPOINT command.

DEPOSIT variable := expression

Lets you set the values of global variables, local variables, and formal parameters.

DISPLAY SOURCE

Clears text from the screen after use of the HELP or SHOW BREAKPOINTS command. Causes the
source display area to display your code.

EXAMINE variable

Displays the current contents of global and local variables, global constants, formal parameters of the
procedure that has been interrupted, and variables local to that procedure. Local constants cannot be
examined.

GO

Causes the debugger to relinquish control of execution until it is invoked again by a breakpoint, by
the DEBUG command, or by the DEBUGON procedure.

HELP

Lists available debugger commands and keypad bindings.

QUIT

Stops execution of the current procedure. Uses the ABORT statement to return to the main loop of
DECTPU. This command is useful when you have located a problem in a procedure and are ready to
get out of the procedure.

SCROLL [-] number-of-lines

Scrolls text in the source display area by the specified number of lines. To scroll backward through
the code in the display area, specify a negative number of lines.

To scroll forward by one line less than the number of lines in the display window, press the Next
Screen key or the sequence GOLD/Down Arrow. To scroll backward in the same way, press the
Prev Screen key or the sequence GOLD/Up Arrow.

131

Appendix C. DECTPU Debugger Commands

SET BREAKPOINT procedure-name

Invokes the debugger when the specified procedure is entered.

SET WINDOW top, length

Places the top of the debugger window at the line number specified by the top parameter. Extends
the window down by the number of lines specified by the length parameter. The default length is 7
lines. The minimum valid length is 3 lines. The SET WINDOW command changes only the size of
the source display area. The output area and command line always occupy exactly one line.

SHIFT [-] number-of-columns

Moves the source display window left or right across the source code to display text wider than the
screen.

To move left, you press the key sequence GOLD/Left Arrow, then enter the number of columns to
move. To move right, you press the key sequence GOLD/Right Arrow, then enter the number of
columns to move.

SHOW BREAKPOINTS

List the current breakpoints in the debugger source window. To redisplay code in the source window,
use the DISPLAY SOURCE command.

SPAWN subprocess

Suspends the current editing session and creates a new process.

STEP

Executes one line of DECTPU code, then returns control to the debugger. If you have several
DECTPU statements on one line, all statements are executed before control returns to the debugger.

TPU statement

Executes the DECTPU statement you specify. You can enter more than one statement by using the
TPU command just once.

132

	VSI OpenVMS DEC Text Processing Utility User Guide
	Table of Contents
	Preface
	1. About VSI
	2. About the Guide
	3. Intended Audience
	4. Document Structure
	5. Related Documents
	6. OpenVMS Documentation
	7. VSI Encourages Your Comments
	8. Conventions

	Chapter 1. Overview of the DEC Text Processing Utility
	1.1. Description of DECTPU
	1.1.1. DECTPU Features
	1.1.2. DECTPU and User Applications
	1.1.3. DECTPU Environments

	1.2. Description of DECwindows DECTPU
	1.2.1. DECwindows DECTPU and DECwindows Features
	1.2.2. DECwindows DECTPU and the DECwindows User Interface Language

	1.3. Description of EVE
	1.4. DECTPU Language
	1.4.1. Data Types
	1.4.2. Language Declarations
	1.4.3. Language Statements
	1.4.4. Built-In Procedures
	1.4.5. User-Written Procedures

	1.5. Terminals Supported by DECTPU
	1.6. Learning Path for DECTPU

	Chapter 2. Getting Started with DECTPU
	2.1. Invoking DECTPU on OpenVMS Systems
	2.1.1. Default File Specifications
	2.1.2. Startup Files

	2.2. Invoking DECTPU from a DCL Command Procedure
	2.2.1. Setting Up a Special Editing Environment
	2.2.2. Creating a Noninteractive Application

	2.3. Invoking DECTPU from a Batch Job
	2.4. Using Journal Files
	2.4.1. Keystroke Journaling
	2.4.2. Buffer-Change Journaling
	2.4.3. Buffer-Change Journal File-Naming Algorithm

	2.5. Avoiding Errors Related to Virtual Address Space
	2.6. Using OpenVMS EDIT/TPU Command Qualifiers
	2.6.1. /CHARACTER_SET
	2.6.2. /COMMAND
	2.6.3. /CREATE
	2.6.4. /DEBUG
	2.6.5. /DISPLAY
	2.6.6. /INITIALIZATION
	2.6.7. /INTERFACE
	2.6.8. /JOURNAL
	2.6.9. /MODIFY
	2.6.10. /OUTPUT
	2.6.11. /READ_ONLY
	2.6.12. /RECOVER
	2.6.13. /SECTION
	2.6.14. /START_POSITION

	Chapter 3. DEC Text Processing Utility Data Types
	3.1. Array Data Types
	3.2. Buffer Data Type
	3.3. Integer Data Type
	3.4. Keyword Data Type
	3.5. Learn Data Type
	3.6. Marker Data Type
	3.7. Pattern Data Type
	3.7.1. Using Pattern Built-In Procedures and Keywords
	3.7.2. Using Keywords to Build Patterns
	3.7.3. Using Pattern Operators
	3.7.3.1. + (Pattern Concatenation Operator)
	3.7.3.2. & (Pattern Linking Operator)
	3.7.3.3. | (Pattern Alternation Operator)
	3.7.3.4. @ (Partial Pattern Assignment Operator)
	3.7.3.5. Relational Operators

	3.7.4. Compiling and Executing Patterns
	3.7.5. Searching for a Pattern
	3.7.6. Anchoring a Pattern

	3.8. Process Data Type
	3.9. Program Data Type
	3.10. Range Data Type
	3.11. String Data Type
	3.12. Unspecified Data Type
	3.13. Widget Data Type
	3.14. Window Data Type
	3.14.1. Defining Window Dimensions
	3.14.2. Creating Windows
	3.14.3. Displaying Window Values
	3.14.4. Mapping Windows
	3.14.5. Removing Windows
	3.14.6. Using the Screen Manager
	3.14.7. Getting Information on Windows
	3.14.8. Terminals That Do Not Support Windows

	Chapter 4. Lexical Elements of the DEC Text Processing Utility Language
	4.1. Overview
	4.2. Case Sensitivity of Characters
	4.3. Character Sets
	4.3.1. DEC Multinational Character Set (DEC_MCS)
	4.3.2. ISO Latin1 Character Set (ISO_LATIN1)
	4.3.3. General Character Sets
	4.3.4. Entering Control Characters
	4.3.5. DECTPU Symbols

	4.4. Identifiers
	4.5. Variables
	4.6. Constants
	4.7. Operators
	4.8. Expressions
	4.8.1. Arithmetic Expressions
	4.8.2. Relational Expressions
	4.8.3. Pattern Expressions
	4.8.4. Boolean Expressions

	4.9. Reserved Words
	4.9.1. Keywords
	4.9.2. Built-In Procedure Names
	4.9.3. Predefined Constants
	4.9.4. Declarations and Statements
	4.9.4.1. Module Declaration
	4.9.4.2. Procedure Declaration
	4.9.4.3. Procedure Names
	4.9.4.4. Procedure Parameters
	4.9.4.5. Procedures That Return a Result
	4.9.4.6. Recursive Procedures
	4.9.4.7. Local Variables
	4.9.4.8. Constants
	4.9.4.9. ON_ERROR Statements
	4.9.4.10. Assignment Statement
	4.9.4.11. Repetitive Statement
	4.9.4.12. Conditional Statement
	4.9.4.13. Case Statement
	4.9.4.14. Error Handling
	4.9.4.15. Procedural Error Handlers
	4.9.4.16. Case-Style Error Handlers
	4.9.4.17. Ctrl/C Handling
	4.9.4.18. RETURN Statement
	4.9.4.19. ABORT Statement

	4.9.5. Miscellaneous Declarations
	4.9.5.1. EQUIVALENCE
	4.9.5.2. LOCAL
	4.9.5.3. CONSTANT
	4.9.5.4. VARIABLE

	4.10. Lexical Keywords
	4.10.1. Conditional Compilation
	4.10.2. Specifying the Radix of Numeric Constants

	Chapter 5. DEC Text Processing Utility Program Development
	5.1. Creating DECTPU Programs
	5.1.1. Simple Programs
	5.1.2. Complex Programs
	5.1.3. Program Syntax

	5.2. Programming in DECwindows DECTPU
	5.2.1. Widget Support
	5.2.2. Input Focus Support
	5.2.3. Global Selection Support
	5.2.3.1. Difference Between Global Selection and Clipboard
	5.2.3.2. Handling of Multiple Global Selections
	5.2.3.3. Relation of Global Selection to Input Focus
	5.2.3.4. Response to Requests for Information About the Global Selection

	5.2.4. Using Callbacks
	5.2.4.1. Background on DECwindows Callbacks
	5.2.4.2. Internally Defined DECTPU Callback Routines and Application-Level Callback Action Routines
	5.2.4.3. Internally Defined DECTPU Callback Routines with UIL
	5.2.4.4. Internally Defined DECTPU Callback Routines with Widgets Not Defined by UIL
	5.2.4.5. Application-Level Callback Action Routines
	5.2.4.6. Callable Interface-Level Callback Routines

	5.2.5. Using Closures
	5.2.6. Specifying Values for Widget Resources in DECwindows DECTPU
	5.2.6.1. DECTPU Data Types for Specifying Resource Values
	5.2.6.2. Specifying a List as a Resource Value

	5.3. Writing Code Compatible with DECwindows EVE
	5.3.1. Select Ranges in DECwindows EVE
	5.3.1.1. Dynamic Selection
	5.3.1.2. Static Selection
	5.3.1.3. Found Range Selection
	5.3.1.4. Relation of EVE Selection to DECwindows Global Selection

	5.4. Compiling DECTPU Programs
	5.4.1. Compiling on the EVE Command Line
	5.4.2. Compiling in a DECTPU Buffer

	5.5. Executing DECTPU Programs
	5.5.1. Procedure Execution
	5.5.2. Process Suspension

	5.6. Using DECTPU Startup Files
	5.6.1. Section Files
	5.6.2. Command Files
	5.6.3. Initialization Files
	5.6.4. Sequence in Which DECTPU Processes Startup Files
	5.6.5. Using Section Files
	5.6.5.1. Creating and Processing a New Section File
	5.6.5.2. Extending an Existing Section File
	5.6.5.3. Sample Section File
	5.6.5.4. Recommended Conventions for Section Files

	5.6.6. Using Command Files
	5.6.7. Using EVE Initialization Files
	5.6.7.1. Using an EVE Initialization File at Startup
	5.6.7.2. Using an EVE Initialization File During an Editing Session
	5.6.7.3. How an EVE Initialization File Affects Buffer Settings

	5.7. Debugging DECTPU Programs
	5.7.1. Using Your Own Debugger
	5.7.2. Using the DECTPU Debugger
	5.7.2.1. Debugging Section Files
	5.7.2.2. Debugging Command Files
	5.7.2.3. Debugging Other DECTPU Source Code

	5.7.3. Getting Started with the DECTPU Debugger

	5.8. Handling Errors

	Appendix A. Sample DECTPU Procedures
	A.1. Line-Mode Editor
	A.2. Translation of Control Characters
	A.3. Restoring Terminal Width Before Exiting from DECTPU
	A.4. Running DECTPU from an OpenVMS Subprocess

	Appendix B. DECTPU Terminal Support
	B.1. Using Screen-Oriented Editing on Supported Terminals
	B.1.1. Terminal Settings on OpenVMS Systems That Affect DECTPU
	B.1.2. SET TERMINAL Command

	B.2. Using Line-Mode Editing on Unsupported Terminals
	B.3. Using Terminal Wrap

	Appendix C. DECTPU Debugger Commands

