
VSI OpenVMS

VSI DECnet-Plus OSAK Programming

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI DECnet-Plus OSAK Programming

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group.

ii

VSI DECnet-Plus OSAK Programming

Table of Contents
Preface ... vii

1. About VSI .. vii
2. Intended Audience ... vii
3. Prerequisites .. vii
4. Document Structure ... vii
5. Related Documents ... viii
6. VSI Encourages Your Comments ... viii
7. OpenVMS Documentation .. viii
8. Typographical Conventions .. ix
9. Abbreviations .. x

Chapter 1. OSI Networking Concepts .. 1
1.1. The OSI Seven-Layer Model ... 1

1.1.1. The Application Layer .. 2
1.1.2. Presentation Layer .. 3

1.1.2.1. Syntax Conversion ... 3
1.1.2.2. Presentation Context .. 4
1.1.2.3. Transfer Syntax ... 4
1.1.2.4. Abstract Syntax Notation ... 5
1.1.2.5. ASN.1 Compiler .. 5

1.1.3. Session Layer ... 6
1.1.3.1. Session Layer Services ... 6

1.2. Connections and Associations .. 7
1.2.1. Services ... 7
1.2.2. Phases of an Association .. 8

1.2.2.1. Setup and Negotiation .. 8
1.2.2.2. Data Exchange .. 9
1.2.2.3. Release or Abort ... 9

1.3. Types of Data .. 9
1.3.1. User Data .. 10
1.3.2. Capability Data .. 10
1.3.3. Expedited Data .. 10
1.3.4. Typed Data .. 10

1.4. OSI Information Exchange ... 11
1.4.1. Activities ... 11

1.4.1.1. Phases of an Activity ... 11
1.4.1.2. Relationship to Associations ... 11

1.4.2. Functional Units ... 12
1.4.2.1. Presentation Functional Units ... 12
1.4.2.2. Session Functional Units .. 12

1.4.3. Synchronization Points and Resynchronization .. 12
1.4.4. Tokens ... 13
1.4.5. Data Segmentation ... 14

1.5. Exception Reports ... 14
Chapter 2. Introduction to the OSAK Interface .. 15

2.1. The Application Programming Interface .. 15
2.2. The ROSE API ... 16
2.3. The Session Programming Interface ... 16
2.4. The OSAK Parameter Block .. 17

2.4.1. Outbound Calls .. 18

iii

VSI DECnet-Plus OSAK Programming

2.4.2. Inbound Events .. 18
2.5. Management of User Buffers ... 18
2.6. Redirecting an Association ... 19
2.7. Outbound Addressing .. 20

2.7.1. Making a Connection to a Specified Application ... 20
2.7.2. Specifying Transport Templates ... 21
2.7.3. Specifying a Multihomed Address .. 21

2.8. Inbound Addressing .. 22
2.9. Segmentation Across the OSAK Interface ... 22

2.9.1. Segmentation at the Session Layer ... 22
2.10. OSAK Status Codes .. 23

2.10.1. The Status of a Call ... 23
2.10.2. Order of Completion of Calls .. 24

2.11. Restrictions ... 24
Chapter 3. Planning Your Application ... 27

3.1. Decision Checklist ... 27
3.2. Managing Memory .. 28

3.2.1. Deciding How Much Memory to Allocate .. 28
3.2.1.1. Deciding on the Parameter Block Workspace Size 28
3.2.1.2. Deciding on the Size and Number of User Buffers 28

3.2.2. Deciding How to Reclaim Memory .. 29
3.2.3. Keeping Track of Buffers Used for Outbound Calls ... 30
3.2.4. Choosing Between Static and Dynamic Allocation of Memory 30

3.3. Considering Your Application's Addressing Needs ... 30
3.4. Choosing Between Single and Multiple Associations .. 31
3.5. Choosing Between Active and Passive Associations (OpenVMS Systems Only) 31
3.6. Making an Application Portable ... 31
3.7. Waiting to Receive Data .. 32

3.7.1. Advantages and Disadvantages of Asynchronous and Synchronous Notification 32
Chapter 4. Using the API .. 35

4.1. Writing an OSAK Application ... 35
4.2. Using Parameter Blocks ... 35

4.2.1. Preparing to Construct a Parameter Block .. 35
4.2.2. Constructing a Parameter Block ... 36
4.2.3. Presentation PCI and ACSE-PCI Syntaxes .. 37

4.3. Building a User Buffer .. 37
4.4. Setting Up an Association .. 38

4.4.1. Getting an Identifier for the Association ... 40
4.4.2. Passing Buffers to the OSAK Interface .. 41
4.4.3. Preparing to Receive and Examining Inbound Events ... 42

4.4.3.1. Polling and Blocking .. 43
4.4.3.2. Asynchronous Event Notification (OpenVMS only) 44
4.4.3.3. Using the Request Mask in the osak_select Routine 44
4.4.3.4. Examining Incoming Data Units ... 44

4.4.4. Requesting an Association and Responding to a Request 47
4.5. Sending Data .. 51
4.6. Releasing an Association .. 51

4.6.1. Issuing the Release Request ... 53
4.6.2. Responding to a Release Request ... 54
4.6.3. Closing the Port ... 55

4.7. Reclaiming Memory .. 56

iv

VSI DECnet-Plus OSAK Programming

4.8. Redirecting an Association ... 57
4.9. Linking on UNIX Systems .. 57
4.10. Linking on ULTRIX Systems ... 58
4.11. Linking on OpenVMS Systems .. 58
4.12. Using Abstract Syntax Notation .. 59

4.12.1. Using an ASN.1 Compiler ... 59
4.12.2. Notes on Using Another Method of Encoding ... 59

Chapter 5. Using the ROSE API ... 61
5.1. Functions Provided by the ROSE Programming Interface ... 61

5.1.1. The ROSE Parameter Block .. 61
5.1.1.1. ROSE Parameter Block Before and After Decoding 62
5.1.1.2. Structure of an APDU Containing ROSE Data ... 63

5.2. Making the Definitions for a ROSE-Based Application ... 64
5.2.1. Mandatory Definitions .. 64
5.2.2. Optional Definitions ... 64

5.3. Writing a ROSE-Based ASE .. 65
5.3.1. Considerations for Both the Client and the Server ... 65
5.3.2. Implementing the Client .. 66
5.3.3. Implementing a ROSE Server .. 66

5.4. Linking on UNIX Systems .. 67
5.5. Linking on ULTRIX Systems .. 67
5.6. Linking on OpenVMS Systems .. 68
5.7. Using Abstract Syntax Notation ... 68

5.7.1. Using an ASN.1 Compiler ... 69
5.7.1.1. Notes on Using Another Method of Encoding .. 69

Chapter 6. Using the SPI ... 71
6.1. Writing an OSAK Application ... 71
6.2. Using Parameter Blocks ... 71

6.2.1. Preparing to Construct a Parameter Block .. 71
6.2.2. Constructing a Parameter Block ... 72

6.3. Building a User Buffer .. 72
6.4. Setting Up a Connection .. 73

6.4.1. Getting an Identifier for the Connection ... 76
6.4.2. Passing Buffers to the OSAK Interface .. 76
6.4.3. Preparing to Receive and Examining Inbound Events ... 78

6.4.3.1. Polling and Blocking .. 79
6.4.3.2. Asynchronous Event Notification (OpenVMS only) 80
6.4.3.3. Using the Request Mask in the spi_select Routine 80
6.4.3.4. Examining Incoming Data Units ... 80

6.4.4. Requesting an Association and Responding to a Request 83
6.5. Sending Data .. 85
6.6. Releasing a Connection .. 85

6.6.1. Issuing the Release Request ... 87
6.6.2. Responding to a Release Request ... 87
6.6.3. Closing the Port ... 88

6.7. Reclaiming Memory .. 90
6.8. Redirecting a Connection ... 90
6.9. Linking on UNIX Systems .. 92
6.10. Linking on OpenVMS Systems .. 92

Chapter 7. Introduction to OSAKtrace .. 93
7.1. The Components of OSAKtrace ... 93

v

VSI DECnet-Plus OSAK Programming

7.2. What OSAKtrace Captures .. 94
7.3. OSAKtrace Output .. 95

7.3.1. Output from the Trace Emitter .. 95
7.3.2. Output from the Trace Analyzer .. 96

Chapter 8. Using OSAKtrace .. 97
8.1. Using the Trace Utility .. 97
8.2. Enabling OSAKtrace ... 97

8.2.1. Enabling Tracing by Defining a Logical Name or an Environment Variable 97
8.2.2. Enabling Tracing Through the Programming Interface ... 98

8.3. Running the OSAKtrace Analyzer .. 99
8.3.1. Default Options .. 99
8.3.2. Examples ... 100
8.3.3. Interpreting the OSAKtrace Analysis File ... 100

Chapter 9. Interpreting OSAKtrace Output .. 101
9.1. Layout of a Trace Text File ... 101
9.2. Rules for the Display of User Data ... 104
9.3. Layout of Headers-Only Transport and Session Trace Data ... 105

Appendix A. Standards Information .. 107
A.1. Protocol Specifications (ISO Standards) ... 107
A.2. Service Definitions (ISO Standards) ... 107
A.3. Abstract Syntax Notation (ISO Standards) .. 107
A.4. ROSE Documents (CCITT Recommendations) ... 107
A.5. NIST Agreements ... 107
A.6. Ordering Documents .. 108

Appendix B. PresentationAddress Data Type Used in Network Management 109

vi

Preface
This book describes how to use the OSAK interface to create OSI applications for any supported
operating system.

The OSAK interface comprises three separate programming interfaces, as follows:

● The application programming interface (API)

● The Remote Operations Service Element (ROSE) API

● The session programming interface (SPI)

This book describes how to use each of the three programming interfaces.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
The audience for this manual is OSI application programmers who require a basic understanding of the
upper-layer standards implemented by OSAK product.

3. Prerequisites
Before using the OSAK interface, you should ensure that:

● You have installed DECnet-Plus and the OSAK software on your system.

The DECnet-Plus for OpenVMS Applications Installation and Advanced Configuration Guide explains
how to install the OSAK software.

● You have a copy of either the VSI DECnet-Plus OSAK Programming Reference Manual for the API
and ROSE API, or the VSI DECnet-Plus OSAK SPI Programming Reference Manual for the SPI. This
book refers to both of these books as the VSI DECnet-Plus OSAK Programming Reference Manual.

● You understand the parts of the OSI standards that apply to the protocols your application uses.
Appendix A, "Standards Information" lists the relevant standards.

This book (and the VSI DECnet-Plus OSAK Programming Reference Manual) assumes that you
understand the terminology and concepts used in the relevant standards.

4. Document Structure
This book is divided into the following chapters:

● Chapter 1, "OSI Networking Concepts"

This chapter contains information about OSI networking concepts such as connections and
associations, data types, and information exchange protocols.

vii

Preface

This chapter also describes the OSI seven-layer model. You may choose not to read this information
if you are already familiar with the seven-layer model.

● Chapter 2, "Introduction to the OSAK Interface"

This chapter describes the three OSAK programming interfaces; the API, the ROSE API, and the
SPI.

● Chapter 3, "Planning Your Application"

This chapter describes the decisions you need to make and the information you need to plan before
you set up your application to work with the OSAK interface.

● Chapter 4, "Using the API"

This chapter describes how to use the API.

● Chapter 5, "Using the ROSE API"

This chapter describes how to use the ROSE API.

● Chapter 6, "Using the SPI"

This chapter describes how to use the SPI.

● The last three chapters describe OSAKtrace:

○ Chapter 7, "Introduction to OSAKtrace"

○ Chapter 8, "Using OSAKtrace"

○ Chapter 9, "Interpreting OSAKtrace Output"

5. Related Documents
Appendix A, "Standards Information" lists relevant international standards. VSI DECnet-Plus OSAK
Programming Reference Manual includes detailed information on the OSAK software that you will need
when writing an application that uses the OSAK interface. You may also need to refer to the DECnet-
Plus introductory and planning documentation for general information on OSI networking and DECnet-
Plus.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

viii

https://docs.vmssoftware.com

Preface

8. Typographical Conventions
VMScluster systems are now referred to as OpenVMS Cluster systems. Unless otherwise specified,
references to OpenVMS Cluster systems or clusters in this document are synonymous with VMScluster
systems.

The contents of the display examples for some utility commands described in this manual may differ
slightly from the actual output provided by these commands on your system. However, when the
behavior of a command differs significantly between OpenVMS Alpha and Integrity servers, that
behavior is described in text and rendered, as appropriate, in separate examples.

In this manual, every use of DECwindows and DECwindows Motif refers to DECwindows Motif for
OpenVMS software.

The following conventions are also used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

… A horizontal ellipsis in examples indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),

ix

Preface

Convention Meaning
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

9. Abbreviations
This book uses the following abbreviations:

ACSE Association Control Service Element
APDU application protocol data unit
API application programming interface
ASE application service element
ASN Abstract Syntax Notation
ASN.1 Abstract Syntax Notation One
BER basic encoding rules
CCITT 1 International Telegraph and Telephone Consultative Committee
CLNS Connectionless-Mode Network Service
CONS Connection-Oriented Network Service
DCS defined context set
FTAM File Transfer, Access, and Management
ISO International Organization for Standardization
NSAP network service access point
OSAK OSI Applications Kernel
OSI Open Systems Interconnection
PCI protocol control information
PDU protocol data unit
PDV presentation data value
PSEL presentation selector
ROSE Remote Operations Service Element
SPI session programming interface
SSEL session selector

x

Preface

TCP/IP Transmission Control Protocol/Internet Protocol
TLV tag, length, and value
TPDU transport protocol data unit
TSDU transport service data unit
TSEL transport selector

1The CCITT is now the ITU–T (International Telephone Union — Telecommunications Standards Sector).Their published documents still have
CCITT identification material, and to avoid confusion this book still uses the term CCITT.

xi

Preface

xii

Chapter 1. OSI Networking
Concepts
Communications software that conforms to the OSI standards follows a model of layers. Each layer
provides a service to the layer immediately above it. The layer that provides the service is called the
provider; the layer that uses the service is called the user. Note this use of the term `user' in this book,
in the OSI standards, and in other books that deal with the OSAK software; a `user' is not a person.

The protocols relating to layers below and including the Transport layer are concerned with the
mechanics of data transmission. The upper-layer protocols are concerned with information exchange.
They consist of command structures to synchronize and manage information exchange between two
applications. The OSAK software implements upper-layer standards. See Chapter 2, "Introduction to the
OSAK Interface" for details.

This chapter explains the OSI networking concepts you need to understand in order to use the OSAK
programming software.

1.1. The OSI Seven-Layer Model
The OSI seven-layer model defines the way in which peer systems can communicate and cooperate to
provide services to users. Each layer of the model uses the services provided by the layer below it and
provides services to the layer above it.

Figure 1.1, "The OSI Seven-Layer Model" shows the OSI seven-layer model.

Figure 1.1. The OSI Seven-Layer Model

The seven layers are as follows:

● Application

Provides for distributed processing and access; contains the application programs and supporting
protocols that use the lower layers.

● Presentation

Coordinates the conversion of data and data formats to meet the needs of the individual application
processes.

1

Chapter 1. OSI Networking Concepts

● Session

Organizes and structures the interactions between pairs of communicating application processes.

● Transport

Provides reliable, transparent transfer of data between end systems, with error recovery and flow
control.

● Network

Moves data across network links and between end systems.

● Data Link

Specifies the technique for moving data along network links between defined points on the network,
and how to detect and correct errors in the physical layer.

● Physical

Connects systems to the physical communications media.

The top three layers of this model (Application layer, Presentation layer, and Session layer) are
collectively called the upper layers. The OSAK interface is an implementation of the upper layers of the
OSI model.

The following sections describe the upper layers of the OSI model in more detail.

1.1.1. The Application Layer
The Application layer is the part of the OSI model where applications operate. It contains application
processes (APs) and each application process provides the resources for one or more application entities
(AEs).

An application process is a component that carries out a particular function on a computer system using
an application entity. An application entity is a set of resources (for example, programs and process
slots) that perform a communication function. An application entity can serve only one application
process. However, an application process can be served by more than one application entity.

An application-entity invocation is the active use of the resources of an application entity. An
application entity is identified by a unique name, called the application-entity title (AE-title). This
consists of an application-process title (AP-title), and an application-entity qualifier (AE-qualifier).

Figure 1.2, "Application Entities, Application Processes, and Computer Systems" shows the relationship
between application entities, application processes, and computer systems.

2

Chapter 1. OSI Networking Concepts

Figure 1.2. Application Entities, Application Processes, and Computer Systems

The application entities at each end of an association are peer entities. These peer entities use OSAK
services to set up an association between them, to transfer data, and to close down the association.

OSI applications are uniquely identified by an application-entity title. One application-entity title
corresponds with only one presentation address, but one presentation address can correspond with more
than one application entity title.

1.1.2. Presentation Layer
The Presentation layer ensures that the information content of data is preserved during transfer of the
data across a connection.

1.1.2.1. Syntax Conversion

Different computer systems use different formats for storing data. These formats are called local
syntaxes. For example, some systems store characters in ASCII format, but others do not. In open
systems communication, the type and value of data passing between systems are preserved by a transfer
syntax.

A transfer syntax is a representation of data from the Application layer that is independent of the
machine being used. Transfer syntax is used to transmit data between peer entities. The Presentation
layer converts local syntax to transfer syntax at the sending end of a connection and converts transfer
syntax to local syntax at the receiving end.

3

Chapter 1. OSI Networking Concepts

1.1.2.2. Presentation Context
A presentation context defines the information transfer requirements of an application. A presentation
context consists of an abstract syntax and a transfer syntax. The Presentation layer uses the abstract
syntax definitions of data types to convert transfer syntax to local syntax.

Abstract syntax is the semantics of data from the Application layer. You need to encode all the data
you pass to the OSAK interface into transfer syntax. Section 4.2.3, "Presentation PCI and ACSE-PCI
Syntaxes" gives the definitions of user data used in presentation protocol control information (PCI)
syntax and Association Control Service Element (ACSE) abstract syntax.

Peer entities must agree on which presentation contexts to use on an association. They can only use
presentation contexts that both of them can support. The group of presentation contexts that both peer
entities agree to support is called the Defined Context Set (DCS) for the association.

A default context is the presentation context used when the DCS is empty. It is set by negotiation
between the peer entities, and it remains the same throughout the life of an association.

Data can be simply encoded or fully encoded. Data is simply encoded if you define only one
presentation context for an association. Note that the OSAK interface allows simple encoding only if,
during the negotiation, either of two things happened:

● The context management functional unit was not accepted

● All proposed presentation contexts except ACSE PCI were rejected

Note that because the OSAK software requires a minimum of two presentation contexts in the DCS,
simple encoding is possible only when an application is aborting or rejecting a connection.

Data is fully encoded if you define more than one presentation context for an association, or if the
default context is in use.

Section 1.1.2.4, "Abstract Syntax Notation" describes more fully the problem of data representation when
peer entities are exchanging data, and Section 1.1.2.5, "ASN.1 Compiler" explains the role of the ASN.1
compiler in solving the problem.

1.1.2.3. Transfer Syntax
A transfer syntax is a set of rules for encoding values from a set of abstract data types into an
implementation-independent representation and for decoding the implementation-independent
representation back into the original set of abstract data types. It provides a mapping between the ASN.1
representation of a set of abstract data types and a sequence of octets encoding their values.

An application needs a concrete way to represent the group of data types it needs to use. This is the form
in which the data types pass between the two peer entities connected by the application. This concrete
representation is called a transfer syntax.

Basic encoding rules (BER) encode any language-specific data type (defined in ASN.1) into transfer
syntax and decode from transfer syntax back into the language-specific data type. BER uses the style of
encoding known as TLV encoding. Each ASN.1 defined type is encoded by BER in three parts:

● A tag specifying the type (T)

● A value specifying the length of the encoding (L)

● The value being encoded (V)

Refer to ISO 8825 for a full specification of BER.

4

Chapter 1. OSI Networking Concepts

1.1.2.4. Abstract Syntax Notation
Abstract Syntax Notation (ASN) is an important part of how the Presentation layer ensures that
information is preserved during its transfer across a connection.

Abstract Syntax Notation (ASN) is the notation in which an abstract syntax is described. The rules of
ASN are independent of the encoding techniques used to represent them.

ASN.1 is a widely used abstract syntax notation that uses standard Backus-Naur form (BNF) notation to
describe application syntaxes. ASN.1 is defined in ISO 8824.

If your application runs on platforms with different internal formats (local syntaxes), you need to define
an abstract syntax for your application. Using ASN.1 makes your syntax platform-independent and hence
makes your application more widely usable.

Figure 1.3, "Relationship Between Data Type, Abstract Syntax, and Transfer Syntax" shows the
relationship between a programming language data type, its representation in abstract syntax, and its
representation in transfer syntax.

Figure 1.3. Relationship Between Data Type, Abstract Syntax, and Transfer Syntax

1.1.2.5. ASN.1 Compiler
Writing routines to encode and decode values defined by ASN.1 requires significant effort. Use of
an ASN.1 compiler can reduce the required effort considerably. Most compilers support a particular
programming language.

An ASN.1 compiler takes as its input a file of ASN.1 definitions of data types. The definitions may
be specific to your application or they may be a standard set of definitions, such as the File Transfer,
Access, and Management (FTAM) definitions.

5

Chapter 1. OSI Networking Concepts

An ASN.1 compiler may produce the following:

● A set of data structures in the target language of the compiler

● A set of functions that operates on the data structures

The compiler you use may generate some encoding and decoding routines particularly for standard
or widely used data types. If the compiler does not generate encode and decode routines, or if your
application uses complex data types, you should write your own routines. Refer to ISO 8824 for a full
specification of ASN.1.

1.1.3. Session Layer
The Session layer sets up, maintains, and releases a logical connection between peer entities.

1.1.3.1. Session Layer Services
The Session layer does the following:

● Sets up and releases connections

● Transfers data

● Structures the exchange of information

● Inserts synchronization points into the dialogue

● Recovers to a given synchronization point

There are two versions of the session protocol:

● Session version 1 (defined in the original session standard)

● Session version 2 (as defined by an addendum to the original standard, allowing for unlimited user
data)

See Appendix A, "Standards Information" for details.

Session version 1 allows you to send up to 512 octets of user data on a service. You can send any user
data at all on the following services:

● P-TOKEN-GIVE request

● P-CONTROL-GIVE request

● P-ACTIVITY-INTERRUPT request

● P-ACTIVITY-INTERRUPT response

● P-ACTIVITY-DISCARD request

● P-ACTIVITY-DISCARD response

Session version 2 operates in accordance with published agreements of the National Institute of
Standards and Technology (NIST). Under this standard, you can send a maximum of 10,240 octets of
user data on a non-data service, and you can send user data on any service.

The applications agree which session version to use in the course of negotiation. The OSAK software
implements both session versions and — when session version 2 is negotiated — imposes no limit on the
amount of data you send on the user data service.

6

Chapter 1. OSI Networking Concepts

1.2. Connections and Associations
A connection is a logical link between two open systems. An association is an information exchange
between two application-entity invocations. Both connections and associations use services. Section
1.2.1, "Services" deals with services, and Section 1.2.2, "Phases of an Association" deals with what
happens during an association.

Note

OSI networks use different terminology to refer to links between systems at different levels. A link
between two systems at the application layer (for example, a link set up by the application programming
interface (API) or the ROSE API) is called an association. A link between two systems at the Session
layer (for example, a link set up by the SPI) is called a connection. Apart from terminology there is little
difference between associations and connections. This chapter uses the term association to refer to both
associations and connections. Except where indicated, the information regarding to associations also
applies to connections.

1.2.1. Services
A service is a task that an application can carry out. You request a service by calling one or more
routines. The end of the connection that calls a service is the requester of that service. The end of the
connection that receives the service is the accepter of the service. The arrival of a data unit carrying a
service to a peer entity is known as an event.

There are two sorts of service:

● Confirmed

● Unconfirmed

In a confirmed service, the requester calls a routine that requests the service. In consequence, the local
service provider generates an event known as an indication. The accepter receives this event and calls
another routine that responds to the request, so the remote service provider generates an event known
as a confirm. A confirmed service is complete when the requester receives the confirm. Figure 1.4,
"Confirmed Service" shows a confirmed service.

Figure 1.4. Confirmed Service

7

Chapter 1. OSI Networking Concepts

In an unconfirmed service, the requester asks for a service and the accepter receives an indication.
However, there is no response and consequently no confirm. An unconfirmed service is complete when
the accepter receives the indication. However, because the requester does not know when the accepter
receives the indication, the requester considers the service to be complete as soon as the service provider
sends the request.

1.2.2. Phases of an Association
An association can have the following phases:

● Setup and negotiation (Section 1.2.2.1, "Setup and Negotiation")

● Data exchange (Section 1.2.2.2, "Data Exchange")

● Release or abort (Section 1.2.2.3, "Release or Abort")

Note that if the peer entity rejects the association, only setup occurs.

1.2.2.1. Setup and Negotiation
During this phase, the processes involved in an exchange of information over an OSI network establish
an association. They negotiate the scope and parameters of the association. The end that requests an
association is called the initiator. The end that receives the request for an association is called the
responder. The initiator can propose values for certain parameters. The responder sends back a response
that is either an acceptance or a rejection of the association request.

When accepting an association, the responder indicates the parameters it agrees with, and the initiator
must operate using those parameters and no others. If the initiator cannot do so, it aborts or releases the
association. Section 1.2.2.3, "Release or Abort" explains the difference between releasing and aborting.
When rejecting an association, a responder must give a reason for doing so.

Examples of parameters used during negotiation are:

● Application context (API and ROSE)

An application context is a statement of which application service elements (ASEs) your
application supports. An ASE is an Application layer element that supplies a service to an application
process. The application context provides a set of rules governing the exchange of information
between cooperating applications. This agreement is not a result of the negotiation, but is agreed
(usually on paper) before any electronic dealings. The rules specified for the application context are
common to both ends of the connection.

For some applications, the application context is defined in a standard. For example, MHS (message-
handling system) application contexts and FTAM (File Transfer, Access, and Management)
application contexts are defined by ISO standards. If no standard exists for the application you are
developing, you should define the application context yourself.

This parameter is mandatory and the OSAK interface does not supply a default. Note that an
application context bears no relation to a presentation context, which is discussed in Section 1.1.2.2,
"Presentation Context".

● Protocol versions

For the API and ROSE API, the peer entities should agree on which version of the various OSI
protocols they can both support. For the SPI, only the session version is relevant for this parameter.

8

Chapter 1. OSI Networking Concepts

● Functional units

Functional units define the groups of services you require for the association. Section 1.4.2,
"Functional Units" lists and describes the functional units that the OSAK interface provides.

● Synchronization points

Synchronization points are markers that you can position in the data that you are sending. These
markers provide known points that help in recovery when data is lost or corrupted. Section 1.4.3,
"Synchronization Points and Resynchronization" describes synchronization points.

● Tokens

Tokens determine which end of an association can initiate certain services. Section 1.4.4, "Tokens"
describes tokens.

1.2.2.2. Data Exchange
During this phase of an association, the peer entities transfer data. This phase can involve the following:

● Activity management (Section 1.4.1, "Activities")

● Synchronization points and resynchronization (Section 1.4.3, "Synchronization Points and
Resynchronization")

● Token management (Section 1.4.4, "Tokens")

An application can transfer data without using activities. However, if you do not use activities, it is
difficult to resynchronize data transfer.

1.2.2.3. Release or Abort
This phase of an association results in the termination of an association. You can release or abort an
association.

A release is an orderly termination, which means that the peer entities negotiate the release of the
association. A release does not result in loss of user data. The accepter may refuse a request for an
orderly release, but only if the negotiated release functional unit has been selected. Section 1.4.2,
"Functional Units" gives further information about functional units. Normal data transfer can start again
after the refusal, following the rules imposed by the existing positions of tokens. Section 1.4.4, "Tokens"
gives further information about tokens.

An abort is a destructive termination. Either of the peer entities may abort an association at any time
during the lifetime of that association. Aborting an association can cause loss of user data. There is no
negotiation about the termination. There are two kinds of abort: user abort and provider abort.

● User abort – Either of the peer entities can initiate a user abort. A peer entity issuing an abort request
should specify the reason for the abort.

● Provider abort – The request for a provider abort comes from the service provider. In this case, the
requester and the accepter both receive a message giving the reason for the abort.

1.3. Types of Data
The OSI standards define four kinds of data, discussed in the following sections:

9

Chapter 1. OSI Networking Concepts

● Section 1.3.1, "User Data"

● Section 1.3.2, "Capability Data"

● Section 1.3.3, "Expedited Data"

● Section 1.3.4, "Typed Data"

Use the user data service and typed data service for sending user information. You can send an unlimited
amount of user information on these services.

1.3.1. User Data
There are two kinds of user data that pass between peer entities:

● User information

● User PCI

User information is the information that the user want to transfer between applications, for example, a
mail message or the contents of a file.

User PCI consists of data the user application needs to process the user information correctly.

For example, if an application is a file transfer system, the user data consists of both the contents of the
file and the file transfer control information that you send.

You can send user data on any request or response service. This includes the association request service,
which you use to set up an association. The user can also send user data on the abort request service.

1.3.2. Capability Data
If you are using activities, you can use the capability data service to transfer data from one peer entity
to the other between activities. For example, you can use this service to send information about the
capabilities of the local system to the remote system. Section 1.4.1, "Activities" explains what activities
are and how to manage them.

You can use the capability data service only when there is no activity in progress over an association.
This service has a maximum size of 64K bytes, covering the entire contents of the data unit (including
PCI).

1.3.3. Expedited Data
You can use the expedited data service to transfer data between peer entities without regard to the
positioning of tokens (Section 1.4.4, "Tokens"). For example, you can use the service to send an urgent
message. You cannot segment data when you use the expedited data service. The maximum length of
user data allowed is 14 octets.

You can use the expedited data service only if the transport expedited service is available.

1.3.4. Typed Data
You can use the typed data service to send data from the peer entity that does not hold the data token.
Typed data is not subject to the control of the data token (Section 1.4.4, "Tokens"). Typed data is relevant
only when you have selected the half-duplex functional unit (see Section 1.4.2, "Functional Units").

10

Chapter 1. OSI Networking Concepts

1.4. OSI Information Exchange
The OSI standards provide several interrelated mechanisms for controlling an exchange of information.
These are:

● Activities (Section 1.4.1, "Activities")

● Functional units (Section 1.4.2, "Functional Units")

● Synchronization points and resynchronization (Section 1.4.3, "Synchronization Points and
Resynchronization")

● Tokens (Section 1.4.4, "Tokens")

1.4.1. Activities
An activity is a logical piece of work done by an application. For example, if your application is a
mailing system and you want to send 10 mail messages, sending this set of messages could be an activity.

One activity should finish before another can start. However, you can interrupt an activity after you
start it. For example, you can interrupt an activity that consists of sending 10 mail messages, before all
the messages have been sent, in order to send some urgent data on the capability data service. You can
resume the interrupted activity after sending the urgent data.

You can stop an activity either by discarding it or by ending it in an orderly fashion. If you discard an
activity, you lose any work that was done during the activity's lifetime. If you end an activity, you save
all the work that was done during the activity's lifetime. Note that using activity management may slow
down your application, but it can simplify procedures for recovery of data when a connection fails.

1.4.1.1. Phases of an Activity
An activity may go through the following phases:

● Start

● Interrupt

● Resume

● Discard or end

1.4.1.2. Relationship to Associations
An activity can span more than one association. Only one activity at a time is allowed on an association,
but there may be several consecutive activities during an association. The following situations are
possible:

● One activity lasting the lifetime of an association

● One activity lasting the lifetimes of several associations

● Several consecutive activities during the lifetime of a single association

If an activity is interrupted, it can later be resumed on the same association or on another association.

11

Chapter 1. OSI Networking Concepts

1.4.2. Functional Units
A functional unit is a logical grouping of services. Your application can use a service only if both peer
entities agree to use the required functional unit. ISO 8327 and ISO 8823 define functional units.

The kernel functional unit is mandatory for all activities, thus the services that the kernel functional
unit supports are always available to both peers. The kernel functional unit supports the basic protocol
elements of procedure required to setup an association, to transfer data, and to release the association.

1.4.2.1. Presentation Functional Units
The OSAK software, and most other OSI service providers, support the context management
functional unit at the Presentation layer. The context management functional unit is optional. It supports
the context addition and deletion services and its use is negotiable.

The ISO standard for the Presentation layer also specifies the context restoration functional unit, which
is optional.

1.4.2.2. Session Functional Units
The Session layer is concerned with dialogue management and data flow.

Some session functional units are associated with a token (see Table 1.1, "Session Functional Units and
Associated Tokens").

Table 1.1. Session Functional Units and Associated Tokens

Functional Unit Associated Token

Negotiated release Release token
Half-duplex Data token
Minor synchronize Synchronize-minor token
Major synchronize Major activity token
Activity management Major activity token

Selecting the functional unit makes the indicated token available, for example, if you select the minor
synchronize functional unit, the synchronize-minor token is available.

A token allows its holder to initiate the services included in the functional unit. If a session functional
unit is associated with a token, the peer entities must agree on which end of the connection holds the
token before they can use the services included in the functional unit.

1.4.3. Synchronization Points and Resynchronization
You can use synchronization points and resynchronization to enable recovery when user information is
lost or corrupted during transfer. You can issue synchronization points at any time during the transfer of
user information. The provider numbers synchronization points sequentially; an application may be able
to specify the first number, depending on the functional units negotiated.

Major and Minor Synchronization
There are two kinds of synchronization point:

12

Chapter 1. OSI Networking Concepts

● Major

Major synchronization points break up the data into a series of dialogue units, within an activity or
within an association. Each dialogue unit is separate from all other dialogue units.

● Minor

Minor synchronization points occur within a dialogue unit.

You decide how frequently major and minor synchronization points occur in your application.

Resynchronization
If a peer entity does not receive all the data being sent, or if the data is corrupted, that peer entity can
request a resynchronization to the most recently confirmed synchronization point.

Either peer entity can start resynchronization. Resynchronization sets the association to the state it was
in at the synchronization point specified in the request to resynchronize. Resynchronization includes
reassignment of tokens and purging of all undelivered data currently being processed in the lower layers.

1.4.4. Tokens
Peer entities of an association use tokens to determine which of them can call certain services. One peer
entity at a time holds a token. A token exists for the lifetime of an association. A token is available if the
associated functional unit has been selected (see Table 1.1, "Session Functional Units and Associated
Tokens").

Table 1.2, "Services Requiring Particular Tokens" shows the services that require tokens and the tokens
they require.

Table 1.2. Services Requiring Particular Tokens

Service Tokens Required

Transfer of a data unit in half-duplex mode Data token
Major synchronization Major activity token, synchronize-minor token if

available, and data token if available
Minor synchronization with minor synchronize
functional unit selected

Synchronize-minor token and, if available, data
token

Minor synchronization with symmetric synchronize
functional unit selected

Synchronize-minor token must not be available

Release request All available tokens
Release refuse Release token must be available but will be

assigned to the user who requested the release
Start activity Major activity token, data token if available,

synchronize-minor token if available
Resume activity Major activity token, data token if available,

synchronize-minor token if available
End activity Major activity token, data token if available,

synchronize-minor token if available
Interrupt activity Major activity token

13

Chapter 1. OSI Networking Concepts

Service Tokens Required

Discard activity Major activity token
Capability data Major activity token, data token if available,

synchronize-minor token if available
Exception request Data token must be available but not assigned to

the user

1.4.5. Data Segmentation
Segmentation is the division of user data into smaller units, known as segments, for transfer across a
connection. The OSAK interface imposes no limit on the amount of data transmitted in a single call to
an Application layer service, and it is more efficient to pass data in a single call if possible. However,
a programming environment (hardware, implementations of lower-layer protocols, implementation
of a particular application) sometimes imposes limits. In this case, segmentation may be necessary or
advisable.

Segmentation allows you to run your application with limited memory capacity. You can segment your
user data as you pass it to the OSAK interface, and the provider may (without the knowledge of the
application) segment the user data across the session interface. You can use the OSAK interface to
request that (subject to negotiation between the service providers) session segmentation should take
place, but you cannot use the OSAK interface to control whether session segmentation does in fact take
place. Session segmentation is under the control of the session service provider.

1.5. Exception Reports
The OSI standards provide for an exception reporting service that you can use to signal problems within
your application that do not cause the service provider to abort the association. You can define the
problems that fall into this category according to the needs of your application. You can also define how
your application responds to an exception report. The application must then clear the error condition by
issuing an interrupt, a discard, an abort, or are synchronization, or by giving the data token to the peer.

To use the exception reporting service, you should select the exceptions functional unit.

You can use the exception reporting service in the following circumstances:

● During the data transfer phase of an association

● After making a request for the release of an association

The exception reporting service is defined in ISO Standard 8327.

14

Chapter 2. Introduction to the
OSAK Interface
This chapter describes the three OSAK programming interfaces: the application programming interface
(API), the ROSE API, and the session programming interface (SPI).

2.1. The Application Programming Interface
The API enables user applications to access services provided by an implementation of the following
layers, or parts of layers, of the OSI seven-layer model:

● The Session layer

● The Presentation layer

● The ACSE (Association Control Service Element) protocol of the Application layer

The ACSE API provides the interface to the associate and release services. The services provided are:

● Associate

● Release

● Abort

● Redirect

The redirect service is not an ACSE service. It allows applications to redirect an incoming association to
another process on the local system.

The Presentation API provides the interface to the Presentation layer services and, by pass through, to
the equivalent Session layer services. The API supports the following services:

● Alter-Context

● Data

● Capability-Data

● Expedited-Data

● Typed-Data

● Token-Please

● Token-Give

● Control-Give

● Sync-Major

● Sync-Minor

● Resynchronize

● Exception-Report

15

Chapter 2. Introduction to the OSAK Interface

● Activity-Start

● Activity-Interrupt

● Activity-Resume

● Activity-Discard

● Activity-End

2.2. The ROSE API
The ROSE (Remote Operations Service Element) API enables user applications to access services
provided by an implementation of the ROSE protocol of the Application layer.

ROSE supports interactive applications in a distributed open systems environment. It is a service for
multivendor distributed processing.

The ROSE functionality provides a mechanism for the encoding and decoding the remote operations
protocol control information for the following services:

● Invoke

● Result

● Error

● Reject

2.3. The Session Programming Interface
The SPI enables user applications to access services provided by an implementation of the OSI Session
layer.

The Session layer supports ISO session version 1 and version 2. Session version 1 allows up to 512 octets
of user data on a service. Session version 2 supports the restrictions imposed by the National Institute of
Standards and Technology, allowing up to 10,240 octets of data on a service.

The SPI provides the interface to the connect and release services as follows:

● Connect

● Release

● Abort

● Redirect

The Redirect service is not a Session service. It allows applications to redirect an incoming connection to
another process on the local system.

The SPI also provides the following services:

● Data

● Capability-Data

● Expedited-Data

16

Chapter 2. Introduction to the OSAK Interface

● Typed-Data

● Token-Please

● Token-Give

● Control-Give

● Sync-Major

● Sync-Minor

● Resynchronize

● Exception-Report

● Activity-Start

● Activity-Interrupt

● Activity-Resume

● Activity-Discard

● Activity-End

2.4. The OSAK Parameter Block
The OSAK interface has a parameter block interface. You can allocate memory for the parameter block
and the data structures it contains statically or dynamically. Figure 2.1, "Structure of the Parameter
Block" shows the structure of the parameter block.

Figure 2.1. Structure of the Parameter Block

All OSAK routines that provide outbound services, as well as osak_get_event (API and ROSE)
or spi_get_event (SPI) have parameter_block as one of their arguments. The parameter block
argument contains all possible parameters for all services. The OSAK interface uses only the relevant

17

Chapter 2. Introduction to the OSAK Interface

parameters in each service call. Most of the parameters specify ACSE, presentation, and session protocol
control information (PCI) for ROSE and API, or session PCI only for SPI.

VSI DECnet-Plus OSAK Programming Reference Manual also describes the structure of the
parameter_block argument in detail and gives information about each parameter.

2.4.1. Outbound Calls
On outbound calls, you pass user data and other parameters that the OSAK interface uses to build the
session, presentation and ACSE PCI (ROSE and API) or session PCI only (SPI), to the OSAK interface.
You should encode certain presentation and ACSE parameters before passing them to the OSAK
interface (ROSE and API). The routine descriptions in VSI DECnet-Plus OSAK Programming Reference
Manual specify the parameters that you should encode. You do not need to encode session parameters.

The ASN.1 compiler has facilities to help you write encoding and decoding routines.

2.4.2. Inbound Events
On inbound events, the OSAK interface passes user data to the receiving application entity.

API and ROSE

The OSAK interface decodes the session, presentation, and ACSEPCI, checks their validity, and
passes them to your application in the other OSAK parameters. However, your application should
check those parameters that relate to presentation contexts.

SPI

The OSAK interface decodes the session PCI, checks it for validity, and passes it to your application
in the other OSAK parameters.

If the initiator does not propose values for certain parameters, the OSAK interface supplies default
values. VSI DECnet-Plus OSAK Programming Reference Manual lists the parameters for which the
OSAK interface supplies defaults.

2.5. Management of User Buffers
Your application exchanges data with the OSAK interface in user buffers. On outbound calls, you pass
user data (including user information if required) in the user_data parameter. Section 4.3, "Building a
User Buffer" (API) or Section 6.3, "Building a User Buffer" (SPI) explains the structure and use of the
buffer list.

When you call an OSAK routine, the ownership of the parameter block as well as all user buffers
attached to the parameter block passes to the OSAK interface. The OSAK interface may be able to
process your call, transfer all data to the transport provider, and return the parameter block and user
buffers to you immediately. In this case, the status of the call is OSAK_S_NORMAL.

If the OSAK interface is unable to process your call immediately, it puts the call on a queue and retains
control of the parameter block and user buffers. In this case, provided there is no API segmentation, the
status of the call is OSAK_S_QUEUED.

Sometimes the status of a routine is OSAK_S_FREE. This means that the routine call completed
normally and that there are parameter blocks and user buffers available to be reclaimed. These
parameter blocks and user buffers are from a previous routine call of which the return value was
OSAK_S_QUEUED.

18

Chapter 2. Introduction to the OSAK Interface

To reuse parameter blocks and user buffers, you should reclaim them from the OSAK interface. Section
3.2.2, "Deciding How to Reclaim Memory" describes the strategies you can use for reclaiming memory.

For receiving inbound events, you should call the routine osak_give_buffers (API and ROSE)
or spi_give_buffers (SPI) to pass a linked list of buffers to the OSAK interface. Section 4.4.2,
"Passing Buffers to the OSAK Interface" (API), and Section 6.4.2, "Passing Buffers to the OSAK
Interface" (SPI) explain how to use these buffers. When you call osak_get_event (API and ROSE)
or spi_get_event (SPI) to receive an event, the OSAK interface does the following:

● Removes a buffer from the list you passed previously when you called osak_give_buffers
(API and ROSE) or spi_give_buffers (SPI)

● Writes an incoming data unit in the buffer

If there is room in the buffer, the OSAK interface writes the incoming data unit in its entirety.

If you do not supply the OSAK interface with enough buffers, the remote peer entity eventually
becomes constrained by lower-layer flow control, with transport service data units (TSDUs) queuing
up on the remote system, waiting to be sent. When this happens, an osak_get_event (API and
ROSE) or spi_get_event (SPI) call will complete with a status of OSAK_S_NOBUFFERS.
You can use osak_give_buffers (API and ROSE) or spi_give_buffers (SPI) to
control transport flow, but do so with caution, to avoid adversely affecting the performance of your
application.

● Adds the buffer or lists of buffers to the list pointed to by the tsdu_ptr parameter

If more than one buffer is needed to receive the data unit, the OSAK interface links sufficient
buffers together. On OpenVMS systems, a single call to osak_get_event (API and ROSE)
or spi_get_event (SPI) retrieves all the linked buffers. On UNIX systems, a separate
osak_get_event (API andROSE) or spi_get_event is needed for each buffer.

The peer_data parameter points to any user data or user information in the user buffer list. Other
parameters in the parameter block point to ACSE, presentation, and session PCI (API or ROSE) or
session PCI only (SPI).

If there is no inbound event, or if too little of the inbound protocol data unit (PDU) has arrived, the
OSAK interface completes the osak_get_event (API and ROSE) or spi_get_event (SPI) call
with a status of OSAK_S_NOEVENT. The parameter block is returned, but the buffers containing the
partial PDU are retained.

2.6. Redirecting an Association
The OSAK interface provides the following services for redirecting an association:

● Open Redirect

● Redirect

The redirect service is specific to the OSAK interface. It is not an ACSE service. You can use it
to redirect an association from one local process to another, either immediately after setting up an
association or during data transfer.

You can use the redirect service to implement an application server. You do this by receiving all
incoming connection requests in the same process, and then using the redirect service to distribute them
among a number of other processes.

19

Chapter 2. Introduction to the OSAK Interface

The major advantages of doing this are as follows:

● You can ensure that none of the processes your application is using is overloaded.

● You can map one remote peer entity's invocation identifier to one or more process. You can then use
the invocation identifier as part of a recovery mechanism (if, for example, a connection is lost).

● You have more control over incoming connection requests.

Section 4.8, "Redirecting an Association" (API), or Section 6.8, "Redirecting a Connection" (SPI) gives
details of which calls to use to redirect a process.

2.7. Outbound Addressing
OSAK uses the following three entities to build an address when setting up a connection:

● Presentation address (p-address)

The p-address is the upper-layer address. It consists of three values, each addressing the access points
between two layers, as follows:

• p-selector (ACSE and Presentation)

• s-selector (Presentation and Session)

• t-selector (Session and Transport)

● Transport Template

A transport template specifies information that is not provided by OSAK over the interface. The
transport template specifies which network service is to be used (CONS, CLNS or RFC 1006), and
other characteristics for the connection. Transport templates are set up by the system manager. For
more information about transport templates, see Section 2.7.2, "Specifying Transport Templates".

● Network service access point (NSAP)

The NSAP is the network address of the machine to which you are trying to connect.

DECnet-Plus allows any one node to have a maximum of three NSAPs. Therefore, when you are
setting up an association, you do not need to specify more than these three NSAPs, plus an IP
address if TCP/IP is available, that is, four NSAPs altogether.

However, the OSAK interface allows you to specify an unlimited number of NSAPs in the
data structure osak_nsap. The more NSAPs you include, the slower the speed of connection
establishment, because OSAK tries every NSAP until it finds one that works.

Refer to VSI DECnet-Plus OSAK Programming Reference Manual for information about the structure of
an application entity title and a presentation address.

2.7.1. Making a Connection to a Specified Application
API and ROSE

If you need to ensure that every connection you request is to a particular application, you should
specify values in the aptitle and ae_qualifier fields of the called_aei parameter, as well as a
presentation address, specified in the paddress field.

20

Chapter 2. Introduction to the OSAK Interface

If you do not need to make a connection to a particular application, or if you are using the SPI, you only
need to specify a value for the presentation address to which you want to connect. You specify this value
in the paddress field of the called_aei parameter.

2.7.2. Specifying Transport Templates
Specify the addresses on which you want to make an outbound connection in the paddress field of the
called_aei parameter in the osak_associate_req (API and ROSE) or spi_connect_req
(SPI) call.

You can use the DECnet-Plus default OSI transport template, default, or a single named template, or a list
of named templates. Table 2.1, "Specifying OSI Transport Templates" shows how to implement each of
these possibilities:

Table 2.1. Specifying OSI Transport Templates

Desired Transport Template Set transport_templateto:

Default Null
One named template Template name
List of templates List of template names

If you supply a list of transport templates in the transport_template parameter, the OSAK interface uses
those templates in the order in which you specify them. The interface tries to establish a connection
with the NSAPs in the called_aei parameter that have the same network type as the network type
specified in the transport template being used. This is called multihoming (see Section 2.7.3, "Specifying
a Multihomed Address" for more information).

To indicate that you want to connect to a named peer entity on any one of several available addresses,
you should specify a list of transport templates in the transport_template parameter and a corresponding
list of NSAPs in the called_aei parameter.

For more information about transport templates, refer to VSI DECnet-Plus for OpenVMS Network
Management Guide and VSI DECnet-Plus for OpenVMS Network Control Language Reference Guide.

2.7.3. Specifying a Multihomed Address
The OSAK interface supports outbound multihoming. Inbound multihoming is not supported. This
means that you can direct an outbound call to a named peer entity on any available NSAP address.

The OSAK software tries the transport templates in the order that the osak_associate_req (API
and ROSE) or spi_connect_req (SPI) request specifies. Note that the connection attempts end
when a transport connection is established, not when the upper-layer association is established. If the
transport providers can establish a connection, but the peer provider refuses the upper-layer connection,
the OSAK software makes no further connection attempts. The application itself must detect and handle
this case.

For OSI transport, if you do not specify a transport template, the OSAK interface uses the default
transport template, default. The OSAK interface tries to connect only with NSAPs in the called_aei
parameter that have the same network type as the default transport template. Note that an outbound
transport template must not have a network type of ANY: the only supported network types for
outbound connections are CLNS, CONS, and RFC 1006. You can mix NSAPs with different network
types in a single presentation address.

21

Chapter 2. Introduction to the OSAK Interface

If the network type in a transport template is unknown, or if none of the NSAPs in the called_aei
parameter has a network type that matches the one in the transport template, the OSAK interface ignores
that template and tries the next. Note that the OSAK interface does not supply a default network type.

Example 4.5, "Code for Calling osak_associate_req" (API) or Example 6.5, "Code for Calling
spi_connect_req" (SPI) are examples of addressing. Note that the addresses used in the examples contain
no ACSE information, and that the local address does not need to specify an NSAP.

To make an outbound connection over OSI transport, you should:

● Specify an OSI NSAP or a list of OSI NSAPs

● Specify an OSI transport template or a list of templates

2.8. Inbound Addressing
For receiving connection requests, an application on OpenVMS needs to specify a presentation address
(p-address). OpenVMS ignores the transport template for responder processes. On UNIX, an application
needs to specify a p-address and a transport template. The p-address must be unique to the system, and
the transport template must be unique to that process.

On UNIX systems, you need to open two OSAK ports if you want your application to listen on both
RFC 1006 and OSI. You must use RFC 1006 to listen, rather than ANY.

2.9. Segmentation Across the OSAK Interface
Segmentation across the OSAK interface (application segmentation) allows an initiator and a responder
to use different buffer sizes when exchanging data.

You cannot segment ACSE, presentation, and session PCI. When you send data, you should send all the
necessary ACSE, presentation, and session PCI on the sending service. You can send all the user data on
that service as well. With one exception, there is no limit to the amount of user data you can send on one
service call. The exception is the osak_associate_req (API and ROSE) or spi_connect_req
(SPI), which has a limit of 10K. Alternatively, you can segment the userdata, sending some of it on the
original service call, and the rest on one or more calls to the routine osak_send_more (API and
ROSE) or spi_send_more (SPI).

An application can receive data in a single buffer or in several smaller buffers. The receiving application
decides on the size of buffers it makes available for incoming data. Whether the data is sent in one block
or in segments does not affect the way in which the receiving application chooses to receive data.

2.9.1. Segmentation at the Session Layer
Session segmentation is optional for sending data in ISO 8327. Therefore, you cannot guarantee that an
application to which you are sending data implements session segmentation, because either the initiating
or the responding service provider may choose not to. The OSAK software, for example, supports
session segmentation on ULTRIX systems, but not on DIGITAL UNIX or OpenVMS systems; your
application may request session segmentation, but there is no guarantee that the OSAK software will
comply with the request.

22

Chapter 2. Introduction to the OSAK Interface

Note

The OSAK software does not use session segmentation if it is using session version 1, except when
sending normal data or typed data. See VSI DECnet-Plus OSAK Programming Reference Manual for
details of how the OSAK software implements the Session layer standards.

The OSAK software can use session segmentation if it is using session version 2.

Depending on whether the negotiation has settled on session segmentation, the OSAK software responds
to incoming data differently.

Example of Session Segmentation

If session segmentation is negotiated, the OSAK software does not send more data than will fit in one
session segment. For example, if the negotiated session segment size is 2048 octets and the OSAK
software receives a data buffer of 4000 octets, the software proceeds as follows:

1. The OSAK software immediately generates a single TSDU, 2048 octets long, but retains the
remaining 1952 octets.

2. If the next buffer has fewer than 96 octets, the OSAK software can send another segment, made up
of the remainder from the first data buffer's contents together with the contents of the new shorter
buffer.

If session segmentation is not negotiated, the OSAK software emits data buffers as they are received,
regardless of their size.

2.10. OSAK Status Codes
2.10.1. The Status of a Call
When you call an OSAK routine, ownership of the parameter block and any user buffers passes to the
OSAK interface. Until a call is complete, you cannot reuse the parameter block and user buffers passed
in that call. Any of the following situations may occur when you call an OSAK routine:

● The call fails.

The OSAK interface immediately returns ownership of the parameter block and of any user buffers
to your application. The failure of a call is indicated by its status code; VSI DECnet-Plus OSAK
Programming Reference Manual gives details of all of them.

● The call succeeds, and the OSAK interface is able to complete the requested service immediately.

The status of the call is OSAK_S_NORMAL, and the OSAK interface immediately returns
ownership of the parameter block and user buffers to your application. This can happen only if you
are sending unsegmented user data, because a segmented call will not return OSAK_S_NORMAL.

● The call succeeds, but the OSAK interface is not able to complete the requested service
immediately. The interface places the service on the queue for the transport provider. The status is
OSAK_S_QUEUED or OSAK_S_FREE. Section 2.5, "Management of User Buffers" explained the
difference in meaning between these two codes.

23

Chapter 2. Introduction to the OSAK Interface

OpenVMS

If you are using completion routines, the completion routine on a service starts to run when
the service is completed. This indicates that the parameter block and any user buffers that you
passed on the service are available for you to use again.

When your call specifies a completion routine, the only non-error status code that the OSAK
software returns is OSAK_S_QUEUED.

When you call the osak_collect_pb (API and ROSE) or spi_collect_pb (SPI) routine, the
OSAK software uses the port_id field to associate a parameter block with a specific port. It is essential to
specify the port, so that the OSAK software knows which parameter block to collect.

2.10.2. Order of Completion of Calls
In general, requests that return OSAK_S_QUEUED complete in the order they were issued. Note that
the OSAK interface imposes no preset maximum number of requests that return OSAK_S_QUEUED,
but this depends on the resources available locally.

There are two exceptions to this general rule:

● If your application uses completion routines on some but not all calls, the order of return of the
parameter blocks may not be the same as the order in which they were issued.

See Section 3.7.1, "Advantages and Disadvantages of Asynchronous and Synchronous Notification"
for a comparison of methods of collecting inbound events with and without completion routines.

● Any service that is sent on the expedited channel may overtake a service on the normal channel.

Although a service on the expedited channel may complete ahead of another service, for any one
service, the OSAK interface always returns parameter blocks in the same order as they were passed
down.

2.11. Restrictions
This section lists restrictions in the use of the OSAK software through the OSAK API, ROSE API, or
SPI.

● The OSAK software does not support the session disconnect timer.

● The OSAK interface includes data type definitions for all supported programming languages but only
provides language bindings for the C programming language.

● If the OSAK interface passes to the application an NSAP preceded by a zero, the zero can be
ignored. This additional digit is added during the translation process if a NSAP has an odd number
of characters.

● The OSAK API interface does not always correctly decode the mode selector 'SET' in a CP-PPDU
(A-ASSOCIATE indication) or a CPA-PPDU (A-ASSOCIATE-ACCEPT confirm). If '[0] IMPLICIT
Mode-selector' comes after '[2] IMPLICIT SEQUENCE', the OSAK interface does not decode the
mode selector but passes it to your application as user data.

● You should not use the same transport selector (TSEL) on more than one process. Any TSEL that
your application uses should be unique. Re-use of a TSEL results in one of two secondary status

24

Chapter 2. Introduction to the OSAK Interface

codes in the status_block parameter. The primary status in each case is OSAK_S_INVAEI. The two
possible secondary codes are:

• OSAK_S_TSELINUSE, T-selector is already in use.

Indicates that a TSEL in the local_aei or calling_aei parameter is already being used on another
port or by another application.

• OSAK_S_MULTADDR, multiple upper layer addresses for one T-selector.

Indicates that you have opened more than one OSAK responder port within the same process
using the same TSEL, but a different SSEL or PSEL. This is not allowed. If you want to specify
a different SSEL or PSEL, you should also specify a different TSEL.

● For OpenVMS only: if you need to use an ASCII string in an NSAP, you should define the string as
a logical name in the table OSIT$NAMES and then pass the logical name as an input parameter in
the call to the routines osak_associate_req or spi_connect_req. NSAPspassed to the OSAK interface
directly in the call to the routines osak_associate_req or spi_connect_req must be in hexadecimal
format.

● For OpenVMS only: if you call the API routine osak_accept_rsp or the SPI routine spi_accept_rsp
with a responding session selector greater than 16 octets, user-mode asynchronous system traps
(ASTs) remain disabled when the routine exits. To ensure that user-mode ASTs are re-enabled when
the routine exits, do not specify a responding session selector of more than 16 octets.

● The OSAK software does not support session segmentation on OpenVMS or UNIX systems. This
does not hinder segmentation by the user, as explained in Section 2.9, "Segmentation Across the
OSAK Interface".

25

Chapter 2. Introduction to the OSAK Interface

26

Chapter 3. Planning Your
Application
This chapter contains information you should consider before using the OSAK interface to write an
application.

Note

This chapter uses the word association to refer either to an association or a connection. This is because
the API and ROSE interfaces use associations but the SPI uses connections. Conceptually, associations
and connections are the same.

3.1. Decision Checklist
This section lists the decisions you should make when designing your application. The remaining
sections in this chapter contain information that will help you to make these decisions.

1. What is your strategy for managing memory? You need to consider the following aspects of memory
management:

a. Allocating memory

● Size of workspace

● Size of user buffers

● Number of user buffers

b. Choosing between static and dynamic memory allocation

c. Reclaiming memory

See Section 3.2, "Managing Memory" for more information.

2. What addresses do you want to reach? See Section 3.3, "Considering Your Application's Addressing
Needs" for more information.

3. Do you want a simple application that deals with only one peer, or a more complex one? See Section
3.4, "Choosing Between Single and Multiple Associations" for more information.

4. Do you want your application to be an active or a passive process? (OpenVMS systems only) See
Section 3.5, "Choosing Between Active and Passive Associations (OpenVMS Systems Only)" for more
information.

5. Do you want your application to be portable? See Section 3.6, "Making an Application Portable" for
more information.

6. What do you want the application to do while waiting to receive data? See Section 3.7, "Waiting to
Receive Data" for more information.

27

Chapter 3. Planning Your Application

3.2. Managing Memory
This section describes how to allocate and reclaim memory. See Section 4.3, "Building a User Buffer"
(API) or Section 6.3, "Building a User Buffer" (SPI) for information on the use of buffers for an outgoing
call and Section 4.4.2, "Passing Buffers to the OSAK Interface" (API) or Section 6.4.2, "Passing Buffers to
the OSAK Interface" (SPI) for information on the use of buffers for receiving incoming events.

3.2.1. Deciding How Much Memory to Allocate
You need to make two decisions:

● The size of the workspace in each parameter block that you build. Section 3.2.1.1, "Deciding on the
Parameter Block Workspace Size" gives further information.

● The number and size of user buffers to pass to the OSAK interface. Section 3.2.1.2, "Deciding on the
Size and Number of User Buffers" gives further information.

3.2.1.1. Deciding on the Parameter Block Workspace Size

The parameter block workspace is where the OSAK interface does the following:

● Decodes incoming data units (the workspace stores the data structures describing the incoming data)

● Stores data values for reference parameters with write access on outbound service calls

The amount of workspace needed by a parameter block in a given call is roughly proportional to the
number of parameters you are passing in that call. However, you cannot always determine in advance the
size of a parameter arriving on an inbound service. If the workspace you provide is not large enough, the
OSAK interface returns the status code OSAK_S_INSFWS.

Some of the data structures that OSAK uses to handle inbound events (such as the
osak_mem_descriptor in a P-ACTIVITY-START (API and ROSE) or S-ACTIVITY-START
(SPI) indication) are contained in the workspace. There is a pointer to osak_mem_descriptor in
the parameter block passed with the call, and after completion of the call, you can reclaim all memory
used by the OSAK software by reclaiming the OSAK parameter block. For further information about
building an OSAK parameter block, see Section 4.2, "Using Parameter Blocks" (API) or Section 6.2,
"Using Parameter Blocks" (SPI).

In the case of outbound calls (for example, osak_act_start_req (API and ROSE) or
spi_act_start_req (SPI), you must reclaim individual buffers used for data structures such as
osak_mem_descriptor. Then reclaim the parameter block.

The minimum permitted size for the workspace is 512 octets. This default is sufficient for most
applications. However, if a routine returns with the status OSAK_S_INSFWS, you should call the routine
again with a workspace at least double the size you originally specified.

3.2.1.2. Deciding on the Size and Number of User Buffers

You need two sets of user buffers: one for sending data and one for receiving data. The number and size
of user buffers that you pass to the OSAK interface depend on the following factors:

● The amount of data that your application is transferring

28

Chapter 3. Planning Your Application

● The frequency with which your application transfers data

You should also consider the flow of data in your application. For example, if you are using the duplex
functional unit, but you are alternating the transfer of data between the peer entities, you need to pass
only one user buffer at a time.

You can base the size and number of user buffers on the maximum number of events for which your
application can wait before it should begin processing them.

You should aim to use the minimum amount of resources and avoid delays in processing. You can do
this by preparing for standard cases. For example, if your application is a file transfer application and you
know the standard size of file to be received and the maximum segment size, pass sufficient buffers to
accommodate the standard file size. If you try to receive an exceptionally large file, the OSAK interface
returns status OSAK_S_NOBUFFERS. You can increase the buffer capacity for this exceptional case.

Consider which of the following is the limiting factor for your application:

● Data transfer time

If data transfer time is the limiting factor, pass several buffers to the OSAK interface to ensure that
lack of buffers on the local side of an association does not prevent the remote peer entity from
sending data.

● Data processing time

If data processing time is the limiting factor, you may find it more efficient to pass a minimum
number of user buffers, so that memory is not wasted.

You can reuse a buffer that you have passed to the OSAK interface. Section 3.2.2, "Deciding How to
Reclaim Memory" describes how to reclaim a buffer so that you can reuse it.

3.2.2. Deciding How to Reclaim Memory
If your application runs on demand, you can reclaim memory when you close down an association, by
calling osak_close_port (API and ROSE) or spi_close_port (SPI). The routine returns all
the parameter blocks and user buffers passed in routine calls during the association.

If your application runs continuously, you should plan an efficient strategy for reclaiming memory.

If you are sending unsegmented data on a service, the OSAK interface may return the parameter block
and user buffers to your application on completion of the service call. This is indicated by a return value
of OSAK_S_NORMAL. You can reuse the parameter block and user buffers immediately.

However, if you are sending segmented data on a service, or if you are writing your application with
asynchronous notification (OpenVMS systems only), you need to plan how to reclaim the memory
allocated to parameter blocks and user buffers.

If you limit the amount of memory your application uses, you should consider one of the following:

● Regular calls to osak_collect_pb (API and ROSE) or spi_collect_pb (SPI).

● Static allocation of memory (see Section 3.2.4, "Choosing Between Static and Dynamic Allocation of
Memory")

29

Chapter 3. Planning Your Application

3.2.3. Keeping Track of Buffers Used for Outbound
Calls
If you do not use a completion routine, there are various ways you can determine when a particular
routine call has completed. You can do any of the following:

● Maintain a table linking parameter block addresses to requests.

● Use the user-context field of the parameter block to point to a data structure of your own.

● Create a data structure that includes the parameter block. Then, when the event is returned, you can
use the known offset of the parameter block to find the start of your data structure.

● Use the func parameter in the parameter block to determine which type of service request has
completed.

OpenVMS

On OpenVMS systems, you can use the completion_rtn parameter. A completion routine can let
you keep track of which routines have completed.

3.2.4. Choosing Between Static and Dynamic Allocation
of Memory
Your application may be such that you can send only a certain number of transmissions before you
require a reply. If your application is like this, you may be able to determine in advance the maximum
memory that the application needs at any one time. You can then allocate memory statically for the
parameter blocks and user buffers.

Table 3.1, "Comparison of Static and Dynamic Allocation of Memory" lists the advantages and
disadvantages of using static and dynamic memory allocation.

Table 3.1. Comparison of Static and Dynamic Allocation of Memory

Method Advantages Disadvantages

Static Memory requirements predictable

Fast

Inflexible

Dynamic Flexible Memory requirements not
predictable

Slow

Harder to manage than static
memory

3.3. Considering Your Application's
Addressing Needs
Before writing an application, decide on the address or addresses (or, for a general-purpose application,
the sorts of address) with which the application will communicate. You must also decide whether to use

30

Chapter 3. Planning Your Application

more than one address simultaneously for either inbound or outbound connections. For information on
addressing, see Section 2.7, "Outbound Addressing".

3.4. Choosing Between Single and Multiple
Associations
If your application handles one association at a time, its structure is simple but inflexible. The time it
takes to process a request to completion is less than the time taken by an application that interleaves
multiple associations. However, the initial response time of an application that handles one association at
a time is longer, because the application puts each association request on a queue pending the completion
of any previous association requests.

If your application handles multiple associations simultaneously, you should consider the buffer
requirements for the whole application as well as for the individual association. You should consider:

● How important is the individual association?

● How often do you set up an association?

3.5. Choosing Between Active and Passive
Associations (OpenVMS Systems Only)
If your application is rarely used, and you do not need an immediate response, you may find it
advantageous to make it a passive application. A passive application creates a process to handle
incoming connections only when they arrive. This uses few system resources, but the initial response to
association requests is generally slow.

If your application is used often, or requires rapid responses to multiple association attempts, you may
find it better to create one or more active processes. These consume system resources but the initial
response to an association request is generally fast.

Table 3.2, "Advantages and Disadvantages of Active and Passive Applications" summarizes the
advantages and disadvantages.

Table 3.2. Advantages and Disadvantages of Active and Passive Applications

Point of Comparison Active Passive

System resources required Considerable Negligible
Response time For practical purposes, immediate Relatively slow

3.6. Making an Application Portable
If you want your application to be portable between operating systems, you should note the following:

● Do not use completion routines, because they work only on operating systems that support
asynchronous event notification, such as an OpenVMS system.

● Do not rely on proprietary, system-dependant, functionality, for example, OSAK server.

● Use ASN.1 to encode your data. For details about ASN.1, see Section 1.1.2.4, "Abstract Syntax
Notation".

31

Chapter 3. Planning Your Application

● Use active rather than passive processes.

● Allocate a workspace of 1K byte.

3.7. Waiting to Receive Data
While your application is waiting to receive data, it can poll for incoming event and data. Polling does
not interrupt the processing of the application. To poll in this way, you must call osak_get_event
(API and ROSE) or spi_get_event (SPI). If an event is waiting, the call completes with the return
status OSAK_S_NORMAL; if there is no event, the return status is OSAK_S_NOEVENT.

Polling gives you the flexibility to decide when your application processes incoming data and enables the
application to do other useful work if no data has arrived. However, if you use polling, you may have to
make several calls to osak_get_event (API and ROSE) or spi_get_event (SPI) that all return
OSAK_S_NOEVENT.

If, at any time, your application can do no useful work until it receives some data, you can choose to
block the process until new incoming data arrives. To do this, call osak_select (API and ROSE)
or spi_select (SPI). You can choose to wait indefinitely, or set a time limit, after which the call
completes even if no data has arrived.

OpenVMS

You can also use asynchronous event notification on platforms that support it, for example,
asynchronous system traps (ASTs). Specify a completion routine in the osak_get_event (API
and ROSE) or spi_get_event (SPI) call. If you do this, the return is OSAK_S_ QUEUED and
your completion routine will be called whenever data arrives.

However, note that using completion routines affects the portability of your application because not
all operating systems support asynchronous event notification. Portability between OpenVMS VAX
and OpenVMS Alpha, though, is not affected.

See also Section 4.4.3.1, "Polling and Blocking" (API) or Section 6.4.3.1, "Polling and Blocking" (SPI),
for more information about receiving events.

3.7.1. Advantages and Disadvantages of Asynchronous
and Synchronous Notification
Note that you only have a choice if you are using the OpenVMS operating system, because the UNIX
operating system does not support asynchronous event notification.

OpenVMS

If you use osak_select (API and ROSE) or spi_select (SPI) calls to provide your
application with a blocking interface, you can specify multiple associations in the call, and easily
maintain flow control in your application. However, a disadvantage to this is that processing is
halted until an event arrives or until the time limit you set in the call is reached. Before calling
osak_select (API and ROSE) or spi_select (SPI), ensure that you have done all possible
processing.

If you use asynchronous event notification, processing is not delayed by the call to
osak_get_event (API and ROSE) or spi_get_event (SPI) and no time is wasted.
However, the disadvantage is that you cannot determine in advance the order in which you need to

32

Chapter 3. Planning Your Application

call the OSAK routines. You should write your application so that routines are called when they are
needed in response to the arrival of an event. Section 4.4.3, "Preparing to Receive and Examining
Inbound Events" or Section 6.4.3, "Preparing to Receive and Examining Inbound Events" shows how
to use blocking and asynchronous interfaces.

33

Chapter 3. Planning Your Application

34

Chapter 4. Using the API
4.1. Writing an OSAK Application
The tasks for writing a program that uses the OSAK routines are:

● Prepare a parameter block (Section 4.2, "Using Parameter Blocks")

● Build user buffers (Section 4.3, "Building a User Buffer")

● Set up the association (Section 4.4, "Setting Up an Association")

● Transfer data (Section 4.5, "Sending Data")

● Release the association (Section 4.6, "Releasing an Association")

● Reclaim memory (Section 4.7, "Reclaiming Memory")

Code examples in this chapter are extracts from the example program:

UNIX:

usr/examples/osak/osak_example_init.c
usr/examples/osak/osak_example_resp.c

OpenVMS:

SYS$EXAMPLES:OSAK_EXAMPLE_INIT.C
SYS$EXAMPLES:OSAK_EXAMPLE_RESP.C

4.2. Using Parameter Blocks
Construct a parameter block and allocate values to all the parameters you require for the routine you
want to call. Alternatively, you can re-use a parameter block that was previously used on a call to another
routine, if there is such a parameter block available.

4.2.1. Preparing to Construct a Parameter Block
Decide what ACSE, presentation, and session protocol control information (PCI) you need to
specify and pass it all on the first service request, because you can send only user data on subsequent
spi_send_more calls. Refer to the routine descriptions in VSI DECnet-Plus OSAK Programming
Reference Manual for details of which parameters in the parameter block are mandatory and which ones
are optional. Note that the OSAK interface defines the classifications mandatory, optional, and ignored
as shown in Table 4.1, "Classifications of Parameters".

Table 4.1. Classifications of Parameters

Classification Meaning

mandatory You must supply an explicit value.

35

Chapter 4. Using the API

Classification Meaning

optional You must either supply an explicit value or set the parameter to zero. You
must set a parameter to zero or null to apply default setting.

ignored The OSAK interface ignores the parameter, as permitted by the relevant
ISO standard. The parameter must not have any value (not even zero or
null).

You should pass the parameters that require encoding in one of the following syntaxes:

● Presentation PCI syntax

● ACSE abstract syntax

Section 4.2.2, "Constructing a Parameter Block" lists the tasks needed to construct a parameter block ,
and Section 4.2.3, "Presentation PCI and ACSE-PCI Syntaxes" describes the syntaxes needed for the
parameters in it.

4.2.2. Constructing a Parameter Block
When you construct a parameter block, do the following:

● Specify a value for every parameter that is mandatory on the service you are calling.

● Specify a value for any optional parameter you want to use.

● Set to zero or null any optional parameter for which you want the OSAK interface to use the default
value.

● Ensure that the workspace you allocate is at least the minimum size allowed, which is 512 octets.
You should initialize the workspace to zero when you allocate it. If you re-use a workspace for an
outbound call, you must reinitialize the workspace.

● Ensure that the workspace length and parameter block length parameters are correctly set up.

Example 4.1, "Constructing a Parameter Block" is an example of the sort of code needed to construct a
parameter block.

Example 4.1. Constructing a Parameter Block

/* initialize parameter block */
memset ((void *)pb, ’\0’,
 sizeof(struct osak_parameter_block) + OSAK_EXAMPLE_WS_SIZE) ;
pb->pb_length = sizeof (struct osak_parameter_block) ;
pb->ws_length = OSAK_EXAMPLE_WS_SIZE ;
pb->api_version = OSAK_C_API_VERSION_3 ;
pb->protocol_versions = NULL ; /* Use default value */
pb->local_aei = &local_address ;
pb->transport_template = NULL ; /* Use default value */
pb->alloc_rtn = (osak_rtn) alloc_memory ;
pb->dealloc_rtn = (osak_rtn) free_memory ;
pb->alloc_param = 0 ;
pb->completion_rtn = NULL ;
pb->completion_param = 0 ;

36

Chapter 4. Using the API

4.2.3. Presentation PCI and ACSE-PCI Syntaxes
Presentation PCI syntax defines user data as:

User-data ::= CHOICE { [APPLICATION 0] IMPLICIT Simply-encoded-data
 [APPLICATION 1] IMPLICIT Fully-encoded data }

The user data passed to and from your application on presentation services is the encoding of:

[APPLICATION 0] IMPLICIT Simply-encoded-data

or:

[APPLICATION 1] IMPLICIT Fully-encoded-data

ACSE abstract syntax defines user information as follows:

user-information [30] IMPLICIT Association-information OPTIONAL

Association-information ::= SEQUENCE OF EXTERNAL

The user data passed to and from your application on ACSE services is the encoding of:

user-information

4.3. Building a User Buffer
Figure 4.1, "User Buffers on an Outbound Call" shows the structure of user buffers on an outbound call.

Set the buffer_ptr field to point to the start of the buffer. Set the buffer_length field to value of the length
of the buffer. You must set both these parameters.

Set the data_ptr field to point to the start of the user data within the buffer. Set the data_length field to
the value of the length of the user data. You must set both these parameters.

Figure 4.1. User Buffers on an Outbound Call

When you pass a list of user buffers to the OSAK interface, Digital recommends that you leave space for
PCI at the beginning of the first buffer and the end of the last buffer. Leaving this space improves the

37

Chapter 4. Using the API

performance of the OSAK software, which does not need to allocate memory apart from the memory
you have already allocated. However, you do not need to leave any space at the beginning of the first
user buffer, or at the end of the last user buffer.

The amount of space that Digital recommends you to leave depends on the OSAK service you are using.
About 50 octets at the beginning of the first buffer is sufficient for most services. You can leave less
space at the end of the last buffer.

You do not have to initialize the PCI portions of your user buffers. The OSAK interface does not alter
the user data portions of your buffers, but it may alter the contents of the PCI portions of the buffers.

If your application leaves space at the head of the first buffer, the OSAK interface may use this part of
the buffer for encoded session, presentation, and ACSE PCI. In the user data part of the buffer, include
the following:

● For association establishment and release, and for user aborts: [30], then the length, followed by an
EXTERNAL (see Section 4.2.3, "Presentation PCI and ACSE-PCI Syntaxes") if you need to send data
on the service.

● For all other services: a PDV header, including a tag indicating whether the data is simply encoded or
fully encoded.

[APPLICATION 0]indicates simply encoded data
[APPLICATION 1]indicates fully encoded data

This header is required only once, at the head of the user data. You do not need to use it on calls to
osak_send_more.

● The data you want to send encoded in the transfer syntax you are using.

If you do not leave enough space for the OSAK interface to encode the PCI, the interface allocates a
buffer for this purpose and deallocates it when the transfer of data is complete. By leaving space at each
end of your buffer, you reduce the number of dynamic memory allocations that the OSAK interface
makes. This improves the performance of your application.

4.4. Setting Up an Association
This section explains the sequence of calls you should make to set up an association. The initiating and
responding processes make different sequences of calls; Table 4.2, "Sequence of Routine Calls Used by
Responder During Setup" shows the calls that the responder uses and Table 4.3, "Sequence of Routine
Calls Used by Initiator During Setup" shows the calls that the initiator uses. Note that these are the
recommended sequences for OpenVMS systems; others may be required for other circumstances.

Table 4.2. Sequence of Routine Calls Used by Responder During Setup

Routine Call See Section

osak_open_responder Section 4.4.1, "Getting an Identifier for the
Association"

osak_give_buffers Section 4.4.2, "Passing Buffers to the OSAK
Interface"

osak_select followed by spi_get_event Section 4.4.3, "Preparing to Receive and
Examining Inbound Events"

38

Chapter 4. Using the API

Routine Call See Section

osak_connect_rsp Section 4.4.4, "Requesting an Association and
Responding to a Request"

Table 4.3. Sequence of Routine Calls Used by Initiator During Setup

Routine Call See Section

osak_open_initiator Section 4.4.1, "Getting an Identifier for the
Association"

osak_give_buffers Section 4.4.2, "Passing Buffers to the OSAK
Interface"

osak_connect_req Section 4.4.4, "Requesting an Association and
Responding to a Request"

osak_select followed by
osak_collect_pb or osak_get_event

Section 4.4.3, "Preparing to Receive and
Examining Inbound Events"

Figure 4.2, "Setting up an Association" shows a sequence of routines you can use to set up an association
on any operating system. This figure does not give detailed information. For example, the responder may
need to make additional calls to osak_give_buffers (inside the loop within braces) if it receives
the return OSAK_S_NOBUFFERS. For detailed information on particular points raised by this diagram,
see the rest of this section.

Figure 4.2. Setting up an Association

39

Chapter 4. Using the API

OpenVMS:

Figure 6.3, "Setting up a Connection Using Asynchronous Event Notification (OpenVMS only)" shows
a sequence of routines you can use to set up an association if you are using asynchronous event
notification. The sequence uses osak_get_event with asynchronous event notification.

Note that osak_get_event is not the only routine call that can use completion routines. See VSI
DECnet-Plus OSAK Programming Reference Manual for details.

Figure 4.3, "Setting up an Association Using Asynchronous Event Notification (OpenVMS only)" does not
give detailed information. For detailed information on particular points raised by this diagram, see the
rest of this section.

Figure 4.3. Setting up an Association Using Asynchronous Event Notification (OpenVMS
only)

It is essential that the responder issue an osak_open_responder call before the initiator issues
an osak_connect_req call (so that a responding process is ready to deal with an incoming A-
ASSOCIATE-request). Sections Section 4.4.1, "Getting an Identifier for the Association" to Section 4.4.4,
"Requesting an Association and Responding to a Request" follow the sequence of steps taken.

4.4.1. Getting an Identifier for the Association
The first call should be one of the following:

● osak_open_responder

● osak_open_initiator

40

Chapter 4. Using the API

Both of these routine calls allocate a port identifier, which the OSAK interface writes into the port
parameter. The port identifier is the local identifier of the association. If an initiator process uses the
osak_connect_req call to request an association to an address that does not have an associated
responder process listening for incoming associations (osak_open_responder call), the initiator’s
call fails with the status OSAK_S_INVAEI.

If your application handles several concurrent associations on the same address, you must make another
call to osak_open_responder as soon as an A-ASSOCIATE indication arrives. This minimizes the
possibility of losing a connection due to transport timeouts.

4.4.2. Passing Buffers to the OSAK Interface
Before requesting any services, use the routine osak_give_buffers to pass a user buffer or a list
of user buffers to the OSAK interface for receiving incoming events. You need to do this for an initiator
and for a responder. You cannot receive any inbound events until you pass one or more buffers to the
interface.

VSI recommends that your application has at least one buffer available at all times to receive inbound
events. If an ABORT indication arrives during an association, your application needs a buffer to receive
it in. Example 4.2, "Code for Calling spi_give_buffers" shows code for calling spi_give_buffers.
Note that code examples in this chapter sometimes rely on global declarations made in the complete
example programs (osak_example_init.c and osak_example_resp.c).

Example 4.2. Code for Calling spi_give_buffers

/***/
/* FUNCTION: give_buffer */
/* */
/* This routine is called to pass a buffer to OSAK for OSAK to use to */
/* receive inbound events. */
/* */
/* A list of unused buffers is maintained. One buffer from this list is */
/* passed to OSAK using osak_give_buffers. If the list is empty a new */
/* buffer is allocated. */
/**/
void give_buffer (osak_port port)
{
 unsigned long int status ;
 struct osak_buffer *give_buf ;

 /* Give a buffer to OSAK */
 if (free_buffers == NULL)
 {

 give_buf = (struct osak_buffer *)malloc (sizeof(struct osak_buffer)) ;
 if (give_buf == NULL)
 {
 printf ("Failed to allocate an osak_buffer.\n");
 exit (0) ;
 }
 give_buf -> next = NULL ;
 give_buf -> buffer_length = OSAK_EXAMPLE_BUFFER_SIZE ;
 give_buf -> buffer_ptr =
 (unsigned char *) malloc (OSAK_EXAMPLE_BUFFER_SIZE) ;
 if (give_buf -> buffer_ptr == NULL)
 {
 printf ("Failed to allocate buffer.\n") ;
 exit (0) ;

41

Chapter 4. Using the API

 }
 }

 else
 {
 give_buf = free_buffers ;
 free_buffers = free_buffers -> next ;
 give_buf -> next = NULL ;
 }

 status = osak_give_buffers (port, give_buf) ;
 if (status != OSAK_S_NORMAL)
 {
 printf ("osak_give_buffers failed\n");
 exit (0) ;
 }
}

Example 4.3, "Code for Reusing Buffers" shows code for reusing buffers placed by the OSAK software
on the list of unused buffers.

Example 4.3. Code for Reusing Buffers

/**/
/* FUNCTION: reuse_buffers */
/* */
/* This routine is called to place buffers returned by OSAK onto the list */
/* of unused buffers. */
/**/
void reuse_buffers (struct osak_buffer **buf_ptr)
{
 struct osak_buffer *buf, *last_buf ;

 buf = *buf_ptr ;
 if (buf == NULL)
 return ;

 last_buf = buf ;
 while (last_buf->next != NULL)
 last_buf = last_buf -> next ;

 if (free_buffers == NULL)
 {
 free_buffers = buf ;
 }
 else
 {
 free_buffers_end->next = buf ;
 }
 free_buffers_end = last_buf ;
 *buf_ptr = NULL ;
}

4.4.3. Preparing to Receive and Examining Inbound
Events
There are two ways to receive notification of inbound events:

● Polling and blocking

42

Chapter 4. Using the API

Use the osak_get_event routine (preceded, if you choose, by an osak_select routine). See
Section 4.4.3.1, "Polling and Blocking" for further information.

● Asynchronous event notification (OpenVMS systems only)

Use the osak_get_event routine with a completion routine. See Section 4.4.3.2, "Asynchronous
Event Notification (OpenVMS only)" for further information.

VSI recommends that an application use only one of these methods of receiving events throughout.

Section Section 4.4.3.3, "Using the Request Mask in the osak_select Routine" shows you how to
distinguish between events that indicate something happening on the network (for example, some data
arriving) and events that indicate something happening in the local processor (for example, a routine call
completing).

4.4.3.1. Polling and Blocking
Call the routine osak_get_event to check for the arrival of an inbound event. If the routine returns
a status code of OSAK_S_NOEVENT, there is no event waiting to be collected.

In a blocking interface, an application that makes a call cannot make another call until the first one
completes. If your application can do no useful work until an event arrives, you may prefer to block until
the OSAK software receives the event.

To do this, call the routine osak_select and wait for an inbound event to arrive. If you specify a
time limit, control returns to your application either when an event arrives or when the time specified
runs out, whichever comes first. If you do not specify a time limit, control remains with the OSAK
interface until an event arrives.

The osak_select call may return a status code of OSAK_S_NORMAL (indicating that an event is
waiting) but the osak_get_event call may still return a status code of OSAK_S_NOEVENT. There
are two common causes:

● The arrival of a transport event instead of an upper-layer event. One upper-layer event may map to
several transport events.

● The arrival of incomplete PCI in a data unit. In this case, the OSAK interface does not have enough
information to decode the incoming data unit.

To allow for these possibilities in your application, you should repeatedly call osak_select followed
by spi_get_event until the return value of osak_get_event is OSAK_S_NORMAL.

You can do this using code similar to the following:

do
{
 status = osak_select(port_count, port_list, time_out);
 if (status != OSAK_S_NORMAL
 {
 /* error-handling routine ... */
 }
 status = osak_get_event(port,parameter_block);
 switch(status)
 {
 case OSAK_S_NORMAL:
 /* event arrived - leave loop */
 break;

43

Chapter 4. Using the API

 case OSAK_S_NOBUFFERS:
 /* Give more buffers to the OSAK software*/
 /* by calling osak_give_buffers()...*/
 .
 .
 .
 break;
 case OSAK_S_NOEVENT:
 /* no event arrived - go round loop again*/
 break;
 default:
 /* Some error returned - call error-handling routine ...*/
 }
} while (status != OSAK_S_NORMAL);

See also Section 3.7, "Waiting to Receive Data" for more information about receiving events.

4.4.3.2. Asynchronous Event Notification (OpenVMS only)
Call osak_get_event with a completion routine. The completion routine starts automatically when
osak_get_event receives an event. The OSAK interface returns a value in the status_block
parameter indicating whether or not an event is present. VSI recommends that you always leave a call to
osak_get_event outstanding when you are using asynchronous event notification. If you leave more
than one call to osak_get_event outstanding, these calls are completed as events arrive, in the order
in which you issue them.

4.4.3.3. Using the Request Mask in the osak_select Routine
An initiator may wait for an A-ASSOCIATE-confirm rather than use osak_select or
osak_get_event on the assumption that the OSAK software sent the A-ASSOCIATE-request
successfully. But an initiator uses the osak_select and osak_get_event routines after receiving
the A-ASSOCIATE-confirm (to receive data), and should ideally make a buffer available for the
provider’s notification in case the osak_associate_req fails.

When you use the routine call osak_select, set the WRITE bit as well as the READ bit. Set the
WRITE bit to require the OSAK software to inform your application about its own processing of the
application’s routine calls. Set the READ bit to require the OSAK software to inform your application
when incoming data arrives on the network. If the return from the osak_select routine indicates
activity on the local processor and not on the network, issue an osak_collect_pb call to find out
the return status.

4.4.3.4. Examining Incoming Data Units
When an event arrives, the OSAK interface writes the values contained in the incoming data units into
the parameter block that the application supplied when it called osak_get_event and user buffers
that the application supplied when it called osak_give_buffers. You should examine the values
that the data unit contains, and take appropriate action in your application.

Figure 4.4, "User Buffers After the Arrival of an Event (OpenVMS only)" shows a list of user buffers after
the arrival of an event on an OpenVMS system. On UNIX systems, user data is separated into multiple
user buffers but the OSAK interface does not return a list of buffers. Instead, the user data is included
in a single user buffer that also contains the PCI if possible. If the data does not fit into a single user
buffer, the more_flag parameter is set to true. The application then needs to call osak_get_event
repeatedly, in order to receive the next user buffer. When the more_flag parameter is set to false, all the
data has been transmitted.

44

Chapter 4. Using the API

Figure 4.4. User Buffers After the Arrival of an Event (OpenVMS only)

If a user buffer contains only PCI, its data_ptr field is a null pointer. If a buffer contains user data, or a
mixture of PCI and user data, its data_ptr field points to the beginning of the user data.

The OSAK interface passes by reference those optional parameters and parameters that can have a
default value. The OSAK interface sets these parameters to null if there is no value for that parameter in
the incoming data unit.

Note that a setting of true in the more_flag parameter on an event indicates that the incoming data is
segmented and that there is more data to receive. To make sure you receive all incoming user data,
continue making calls to osak_get_event until the more_flag parameter is set to false. For an
explanation of segmentation, see Section 1.4.5, "Data Segmentation".

Example 4.4, "Code for Calling osak_select" shows code for calling osak_select.

Example 4.4. Code for Calling osak_select

/**/
/* FUNCTION: wait_for_event */
/* */
/* This routine waits for an inbound event to occur. If there is also a */
/* queued parameter block from a previous call to OSAK then it also waits */
/* for that parameter block to be returned by OSAK. osak_select is used to */
/* wait for the inbound event and outbound completion. osak_get_event is */
/* used to receive the inbound event and osak_collect_pb is used to get the */
/* parameter block returned by OSAK when the outbound event has completed. */
/* */
/* The example osak_example_resp.c does this differently. It has two */
/* routines to do the same job as this one routine: */
/* wait_for_outbound_completion and wait_for_inbound. This routine shows */

45

Chapter 4. Using the API

/* how osak_select can be used to combine those two routines. */
/**/
void wait_for_event (osak_port port, struct osak_parameter_block *pb,
 int queued)
{
 struct osak_parameter_block *ret_pb ;
 osak_handle_count handlecount ;
 osak_handle handle ;
 unsigned long int status ;
 int readevent = TRUE ;
 int writeevent = queued ;
 osak_time select_time = OSAK_EXAMPLE_TIMEOUT ;

 /* Give a buffer to OSAK to get inbound event */
 give_buffer (port) ;

 /* Loop until not waiting for any more events */
 do
 {
 /* Set up parameters to call osak_select() */
 handlecount = 1 ;
 handle.id = (unsigned long int) port ;
 handle.request_mask = 0;
 if (readevent)
 handle.request_mask |= OSAK_C_READEVENT ;
 if (writeevent)
 handle.request_mask |= OSAK_C_WRITEEVENT ;
 handle.returned_mask = 0 ;

 status = osak_select (handlecount, &handle, &select_time) ;
 if (status != OSAK_S_NORMAL)
 {
 printf ("Call to osak_select failed\n") ;
 exit (0) ;
 }

 /* See if the queued parameter block has been returned */
 if (writeevent && (handle.returned_mask & OSAK_C_WRITEEVENT))
 {
 ret_pb = NULL ;
 status = osak_collect_pb (port, &ret_pb) ;
 if ((status != OSAK_S_NORMAL) && (status != OSAK_S_NOEVENT))
 {
 printf ("Call to osak_collect_pb failed\n") ;
 exit (0) ;
 }

 if (status == OSAK_S_NORMAL && ret_pb != NULL)
 {
 writeevent = FALSE ;
 /* Look at the status block in the PB returned to see if an */
 /* error occurred */
 if (ret_pb->status_block.osak_status_1 != OSAK_S_NORMAL)
 {
 printf ("error in status block of PB returned from collect pb\n");
 exit (0) ;
 }
 }
 }

 /* See if there is an inbound event. If so call osak_get_event() */
 if (readevent && (handle.returned_mask & OSAK_C_READEVENT))

46

Chapter 4. Using the API

 {
 do
 {
 /* Initialize parameter block ...*/
 .
 .
 .

 status = osak_get_event (port, pb) ;

 /* If OSAK needs more buffer to decode the event then give */
 /* more buffers. */
 if (status == OSAK_S_NOBUFFERS)
 {
 give_buffer (port) ;
 }
 } while (status == OSAK_S_NOBUFFERS) ;

 if ((status != OSAK_S_NORMAL) && (status != OSAK_S_NOEVENT))
 {
 printf ("osak_get_event failed\n") ;
 exit (0) ;
 }

 if (status == OSAK_S_NORMAL)
 {
 readevent = FALSE ;
 }
 }
 } while (readevent || writeevent) ;
}

4.4.4. Requesting an Association and Responding to a
Request
Request an association by calling osak_associate_req. You can send the ACSE, presentation,
and session PCI as well as all the user information on the service. Alternatively, you can segment the
user data before you pass it to the OSAK interface and send the ACSE, presentation, and session PCI
and none or some of the user information. In either case, you must include all the PCI when you call the
osak_associate_req routine.

If you use segmentation, you should set the more_flag parameter to true and use osak_send_more
as many times as necessary to send the remaining user information, setting the last segment’s more_flag
parameter to false.

When sending an A-ASSOCIATE-request, the initiator should specify the presentation contexts that
it supports in the pcontext_list parameter. When sending the A-ASSOCIATE-accept response, the
responder should specify the presentation contexts that it supports in the parameter pcontext_res_list.
The PCI for each individual routine call shows which presentation context applies at the time for the
current association.

Presentation contexts and other PCI should be passed to the OSAK interface in ASN.1 encoded form.
You can use the ASN.1 compiler to help you do this at run time. Alternatively, you can set up the
encodings before you compile your application. For example, to specify the ACSE abstract syntax, you
can do either of the following:

● Write a routine to encode object identifiers, giving it the object identifier for the ACSE abstract
syntax as its input. The routine returns the encoded form of the object identifier.

47

Chapter 4. Using the API

● Encode the object identifier for ACSE abstract syntax by hand, and insert the encoded form into a
buffer.

Example 4.5, "Code for Calling osak_associate_req" shows code for requesting an association, and
Example 4.6, "Code for Calling osak_accept_rsp" shows code for responding to a request for an
association.

Example 4.5. Code for Calling osak_associate_req

/**/
/* FUNCTION: assoc_req */
/* */
/* This routine sets up the parameters for a call to osak_associate_req and */
/* makes the call. */
/* */
/**/
unsigned long int
assoc_req (osak_port port, struct osak_parameter_block *pb)
{
 unsigned long int status ;

 /* Set up application context name */
 application_context.size = 7 ;
 application_context.pointer = a_context_buf ;

 /* Set up presentation context proposal list */

 /* Transfer syntax list */
 transfer1.next = NULL ;
 transfer1.ts_name.size = 4 ;
 transfer1.ts_name.pointer = ber ;

 context1.pcontext_id.size = 3 ;
 context1.pcontext_id.pointer = pcid_1 ;
 context1.ts_list = &transfer1 ;
 context1.as_name.size = 6 ;
 context1.as_name.pointer = abstract_1 ;
 context1.next = &context2 ;

 context2.pcontext_id.size = 3 ;
 context2.pcontext_id.pointer = pcid_3 ;
 context2.ts_list = &transfer1 ;
 context2.as_name.size = 8 ;
 context2.as_name.pointer = abstract_2 ;
 context2.next = NULL ;

 /* Set up local address */
 local_address.aetitle.aptitle.size = 0 ;
 local_address.aetitle.aptitle.pointer = NULL ;
 local_address.aetitle.ae_qualifier.size = 0 ;
 local_address.aetitle.ae_qualifier.pointer = NULL ;
 local_address.aeiid.apiid.size = 0 ;
 local_address.aeiid.apiid.pointer = NULL ;
 local_address.aeiid.aeiid.size = 0 ;
 local_address.aeiid.aeiid.pointer = NULL ;
 local_address.paddress.psel.size = 9 ;
 local_address.paddress.psel.pointer = (unsigned char *)"INIT-PSEL" ;
 local_address.paddress.ssel.size = 9 ;
 local_address.paddress.ssel.pointer = (unsigned char *)"INIT-SSEL" ;
 local_address.paddress.tsel.size = 9 ;

48

Chapter 4. Using the API

 local_address.paddress.tsel.pointer = (unsigned char *)"INIT-TSEL" ;
 local_address.paddress.nsap.next = NULL ;
 local_address.paddress.nsap.id.size = 0 ;
 local_address.paddress.nsap.id.pointer = 0 ;
 local_address.paddress.nsap.type = OSAK_C_CLNS ;

 /* Set up peer address (the responder’s address) */
 remote_address.aetitle.aptitle.size = 0 ;
 remote_address.aetitle.aptitle.pointer = NULL ;
 remote_address.aetitle.ae_qualifier.size = 0 ;
 remote_address.aetitle.ae_qualifier.pointer = NULL ;
 remote_address.aeiid.apiid.size = 0 ;
 remote_address.aeiid.apiid.pointer = NULL ;
 remote_address.aeiid.aeiid.size = 0 ;
 remote_address.aeiid.aeiid.pointer = NULL ;
 remote_address.paddress.psel.size = 9 ;
 remote_address.paddress.psel.pointer = (unsigned char *)"RESP-PSEL" ;
 remote_address.paddress.ssel.size = 9 ;
 remote_address.paddress.ssel.pointer = (unsigned char *)"RESP-SSEL" ;
 remote_address.paddress.tsel.size = 9 ;
 remote_address.paddress.tsel.pointer = (unsigned char *)"RESP-TSEL" ;
 remote_address.paddress.nsap.next = NULL ;
 remote_address.paddress.nsap.id.size = sizeof(remote_nsap) ;
 remote_address.paddress.nsap.id.pointer = remote_nsap ;
 remote_address.paddress.nsap.type = OSAK_C_CLNS ;

 /* Set up transport template */
 transport_template.next = NULL ;
 transport_template.name.size = 7 ;
 transport_template.name.pointer = (unsigned char *)"Default" ;

 /* Set up protocol versions */
 /* Select session version 2 */
 protocol_versions.acse_version.version1 = 1 ;
 protocol_versions.pversion.version1 = 1 ;
 protocol_versions.sversion.version1 = 0 ;
 protocol_versions.sversion.version2 = 1 ;

 /* Set up functional units */
 /* Zero out all functional units before setting those required */
 memset ((void *)&fus, ’\0’, sizeof(struct osak_fus)) ;

 /* Request either duplex or half duplex. In this example we are */
 /* actually expecting the responder to accept with duplex. */
 fus.duplex = 1 ;
 fus.half_duplex = 1 ;

 /* Set up the buffer containing the data to send */
 send_buffer.next = NULL ;
 send_buffer.buffer_ptr = &user_information[0] ;
 send_buffer.buffer_length = sizeof(user_information) ;
 send_buffer.data_ptr = &user_information[0] ;
 send_buffer.data_length = sizeof(user_information) ;

 /* initialize parameter block ...*/
 .
 .
 .

 status = osak_associate_req (port, pb) ;
 return status ;
}

49

Chapter 4. Using the API

Example 4.6. Code for Calling osak_accept_rsp

/**/
/* FUNCTION: accept_rsp */
/* */
/* This routine sets up the parameters for a call to osak_accept_rsp and */
/* makes the call. */
/* */
/* It does not do any of the parameter negotiation that a real application */
/* would need to do. For example, it does not check the functional units */
/* or the presentation contexts proposed in the A-ASSOCIATE-indication. */
/* */
/**/
unsigned long int
accept_rsp (osak_port port, struct osak_parameter_block *pb)
{
 unsigned long int status ;

 /* Set up the presentation context result list */

 /* A real application would need to go through the contexts received in */
 /* the A-ASSOCIATE-indication and decide whether to accept or reject */
 /* each context. Because this is a simple example it assumes that only */
 /* two contexts were proposed, and it will accept both of the contexts. */

 context_res1.result = OSAK_C_ACCEPT ;
 context_res1.ts_name.size = 4 ;
 context_res1.ts_name.pointer = ber ;
 context_res1.next = &context_res2 ;
 context_res2.result = OSAK_C_ACCEPT ;
 context_res2.ts_name.size = 4 ;
 context_res2.ts_name.pointer = ber ;
 context_res2.next = NULL ;

 /* Set up functional units. */

 /* A real application would need to check which functional units were */
 /* proposed by the initiator and negotiate a common set of functional */
 /* units. This simple example assumes that the duplex functional unit */
 /* was proposed. It is only going to accept the duplex functional unit.*/

 fus.duplex = 1 ;
 fus.half_duplex = 0 ;
 fus.expedited = 0 ;
 fus.syncminor = 0 ;
 fus.syncmajor = 0 ;
 fus.resynchronize = 0 ;
 fus.activities = 0 ;
 fus.negotiated_release = 0 ;
 fus.capability_data = 0 ;
 fus.exceptions = 0 ;
 fus.typed_data = 0 ;
 fus.data_separation = 0 ;
 fus.context_management = 0 ;

 /* initialize parameter block ...*/
 .
 .
 .

 status = osak_accept_rsp (port, pb) ;

50

Chapter 4. Using the API

 return status ;
}

4.5. Sending Data
After the association is established, you can send and receive data using the OSAK services. Chapter 1
gives details of the services defined by the OSI standards.

4.6. Releasing an Association
The calls you need to use to release an association are often similar to the calls needed to set up the
association. This section, therefore, does not contain detailed information on osak_give_buffers,
osak_select, and osak_get_event, which are discussed in Section 4.4.2, "Passing Buffers to the
OSAK Interface" and Section 4.4.3, "Preparing to Receive and Examining Inbound Events".

The initiator of a release and the responder to the release (not necessarily the initiator and responder
respectively of the association), use different calls. Table 4.4, "Sequence of Routine Calls Used in
Releasing an Association" lists the calls used by the initiator of the release and Table 4.5, "Sequence of
Routine Calls Used in Responding to a Request for Release" lists the calls used by the responder to the A-
RELEASE-request.

Table 4.4. Sequence of Routine Calls Used in Releasing an Association

Routine Call Section

osak_release_req Section 4.6.1, "Issuing the Release Request"
osak_select followed by osak_get_event Section 4.4.2, "Passing Buffers to the OSAK

Interface" and Section 4.4.3, "Preparing to Receive
and Examining Inbound Events"

osak_close_port Section 4.6.3, "Closing the Port"

Table 4.5. Sequence of Routine Calls Used in Responding to a Request for Release

Routine Call Section

osak_select followed by osak_get_event Section 4.4.2, "Passing Buffers to the OSAK
Interface" and Section 4.4.3, "Preparing to Receive
and Examining Inbound Events"

osak_release_rsp (followed by
osak_get_event on UNIX only)

Section 4.6.2, "Responding to a Release Request"

osak_close_port Section 4.6.3, "Closing the Port"

Figure 4.5, "Releasing an Association" shows a sequence of routines you can use to release an
association on the OpenVMS operating system.

Figure 4.6, "Releasing an Association Using Asynchronous Event Notification" shows a sequence of
routines you can use to release an association if you are using asynchronous event notification. The
example uses osak_get_event with asynchronous event notification.

Note that Figure 4.5, "Releasing an Association" and Figure 4.6, "Releasing an Association Using
Asynchronous Event Notification" do not give detailed information. For detailed information on particular
points raised by these diagram, see the rest of this section.

51

Chapter 4. Using the API

Figure 4.5. Releasing an Association

52

Chapter 4. Using the API

Figure 4.6. Releasing an Association Using Asynchronous Event Notification

4.6.1. Issuing the Release Request
Set the release_reason in the call to osak_release_request to whatever is appropriate; VSI
DECnet-Plus OSAK Programming Reference Manual lists the options.

The initiator must call osak_select and osak_get_event to receive the A-RELEASE-confirm
from the responder. The initiator may also check whether the OSAK software sent the A-RELEASE-
request by calling osak_select and osak_collect_pb.

Note

You may send user data on the A-RELEASE-request service. Make sure, however, that you set the
user_data field in the OSAK parameter block to null in case a release does not use the user_data
parameter.

Example 4.7, "Code for Calling osak_release_req" shows code for releasing an association.

Example 4.7. Code for Calling osak_release_req

/**/
/* FUNCTION: release_req */
/* */
/* This routine sets up the parameters for a call to osak_release_req and */
/* makes the call. */

53

Chapter 4. Using the API

/* */
/**/
unsigned long int
release_req (osak_port port, struct osak_parameter_block *pb)
{
 unsigned long int status ;

 /* initialize parameter block */
 memset ((void *)pb, ’\0’,
 sizeof(struct osak_parameter_block) + OSAK_EXAMPLE_WS_SIZE) ;
 pb->pb_length = sizeof (struct osak_parameter_block) ;
 pb->ws_length = OSAK_EXAMPLE_WS_SIZE ;
 pb->release_reason = OSAK_C_RLRQ_NORMAL ;

 status = osak_release_req (port, pb) ;
 return status ;
}

Example 4.8. Code for Calling osak_release_rsp

/**/
/* FUNCTION: release_rsp */
/* */
/* This routine sets up the parameters for a call to osak_release_rsp and */
/* makes the call. */
/* */
/**/
unsigned long int
release_rsp (osak_port port, struct osak_parameter_block *pb)
{
 unsigned long int status ;
 /* Initialize parameter block... */
 .
 .
 .
 status = osak_release_rsp (port, pb) ;
 return status ;
}

4.6.2. Responding to a Release Request
The responder must check whether an inbound event is an A-RELEASE-indication. Call
osak_get_event (preceded, if you choose, by osak_select), and if an A-RELEASE-indication
arrives, call osak_release_rsp, with the appropriate release_resp_reason parameter set.

UNIX: The responder must collect a transport disconnect indication as well as the A-RELEASE-
indication, using osak_give_buffers, osak_select, and osak_get_event calls.

Example 4.8, "Code for Calling osak_release_rsp" shows code for responding to a request for a release
and Example 4.9, "Code for Calling osak_get_event After Releasing an Association" shows code for
waiting for a transport disconnect.

Example 4.9. Code for Calling osak_get_event After Releasing an Association

/**/
/* FUNCTION: wait_for_TDISind */
/* */

54

Chapter 4. Using the API

/* This routine uses osak_select to wait for a transport disconnect */
/* indication after the release-response has been sent. */
/* */
/* It does not check the event since OSAK_S_NOEVENT may be returned. This */
/* would be the case when the peer did not send a disconnect. osak_select */
/* would return either when it has timed out, or (on OpenVMS only) when the */
/* session disconnect timer fired. */
/**/
void wait_for_TDISind (osak_port port, struct osak_parameter_block *pb)
{
 osak_handle_count handlecount ;
 osak_handle handle ;
 unsigned long int status ;
 osak_time select_time ;

 /* Give a buffer to OSAK to get inbound event */
 give_buffer (port) ;

 /* Set up parameter to call osak_select() */
 handlecount = 1 ;
 handle.id = (unsigned long int) port ;
 handle.request_mask = OSAK_C_READEVENT ;
 handle.returned_mask = 0 ;
 select_time = OSAK_EXAMPLE_TIMEOUT ;

 status = osak_select (handlecount, &handle, &select_time) ;
 if (status != OSAK_S_NORMAL)
 {
 printf ("call to osak_select failed\n") ;
 exit (0) ;
 }

 /* See if there is an inbound event. If so call osak_get_event() */
 if (handle.returned_mask & OSAK_C_READEVENT)
 {
 /* Initialize parameter block ...*/
 .
 .
 .

 status = osak_get_event (port, pb) ;

 if ((status != OSAK_S_NORMAL) && (status != OSAK_S_NOEVENT))
 {
 printf ("call to osak_get_event failed\n");
 exit (0) ;
 }
 }
}

4.6.3. Closing the Port
Both the initiator and the responder must call osak_close_port to signal to the OSAK software
that they have finished with the association. This makes the OSAK software release any memory
allocated to the association and return any parameter blocks and user buffers that have not already been
returned to the application.

In normal operation, an application calls osak_close_port with the
OSAK_C_NON_DESTRUCTIVE flag set. This indicates to the OSAK software that the port has no
connection at any level with any remote system.

55

Chapter 4. Using the API

An application can call osak_close_port when its association with its peer is still in progress, by
setting the OSAK_C_DESTRUCTIVE flag. This causes the OSAK software to:

● Discontinue the connection immediately

● Return all parameter blocks and buffers

● Return to the application any memory allocated to the port

This can cause loss of data, and the OSAK software informs the remote application that the association
was terminated abnormally.

To avoid disrupting an association, we recommend that you use the nondestructive form except in the
following circumstances:

● Your application runs out of virtual memory and cannot free enough memory to send an upper-layer
abort.

● Your application becomes constrained by lower-layer flow control, and is unable to continue. For
more information about flow control, refer to the OSI standards.

● A remote system does not disconnect on receipt of the A-RELEASE-request.

If you want to close a port from within an asynchronous system trap (AST), for example, a completion
routine, use the async_close_port routine. Do not use the osak_close_port routine. For
more information on the async_close_port routine, refer to VSI DECnet-Plus OSAK Programming
Reference Manual.

4.7. Reclaiming Memory
This section describes how to reclaim memory allocated to outbound parameter blocks and user
buffers. Note that it is always safer to delete incoming data in buffers you are reclaiming by using the
tsdu_ptr parameter rather than the data pointers, because the first buffer may contain nothing but
PCI. In that case, the peer_data (or, in the case of a REDIRECT indication, rcv_data_list)
parameter would not point to the first buffer in the linked list of buffers.

You can reclaim memory in the following ways:

● Wait until your association closes down.

The routine osak_close_port, which you should call after you release an association, returns
ownership of all parameter blocks and user buffers, and any unused inbound buffers, to the
application.

● Supply a completion routine with all outbound services (OpenVMS systems only).

When the completion routine starts, it indicates that the parameter block and any associated user
buffers are available for reuse.

● If you are using a blocking osak_select routine, specify both WRITE and READ events in the
request mask. If a WRITE event is indicated, call osak_collect_pb to reclaim the available
parameter blocks and buffers

● Call osak_collect_pb whenever your application is running short of memory.

56

Chapter 4. Using the API

4.8. Redirecting an Association
You can use the osak_redirect parameter to redirect an association from one local process to
another, either immediately after setting up an association, or during data transfer. Figure 4.7, "Using the
OSAK Redirection Service" shows how to use the OSAK redirection service immediately after setting up
an association. You can use osak_redirect to implement a server that receives association requests
and immediately hands them on to other applications.

Call these routines in the application that starts the redirection (the server, in the case of a process that
simply receives inbound associate requests and passes them on to processes that can handle them):

● osak_give_buffers

● osak_select followed by osak_get_event

● osak_redirect

● osak_close_port

Note that process 1 in Figure 4.7, "Using the OSAK Redirection Service" must close its port. Until the
port is closed, the OSAK software wastes resources associated with that port. The association then
belongs to process 2, which uses the port returned in the call to osak_open_redirect.

Call the following routines in the application that responds to the redirection call:

● osak_open_redirect

● osak_give_buffers

● osak_select followed by osak_get_event

● osak_accept_rsp

In Figure 4.7, "Using the OSAK Redirection Service", the process that redirects the association is not the
initiator of the association. However, in some cases (an outbound connection-handler for example), an
application may use osak_redirect after initiating an association.

4.9. Linking on UNIX Systems
Link your application against the following libraries:

/usr/lib/libosak.so
/usr/lib/libxtiosi.a
/usr/lib/libxti.a

Example

To link your application, you should use a command similar to the following:

/bin/cc -o osak_example_init osak_example_init.o -losak -lxtiosi -lxti

In the above example, osak_example_init is the executable version of your application, and
osak_example_init.o is the object file.

57

Chapter 4. Using the API

It is important that you specify the libraries in the order shown.

Figure 4.7. Using the OSAK Redirection Service

4.10. Linking on ULTRIX Systems
Link your application against the following libraries:

/usr/lib/libosak.a
/usr/lib/libxti.a

Example

To link your application, you should use a command similar to the following:

/bin/cc -o osak_example_init osak_example_init.o -losak -lxti

In the above example, osak_example_init is the executable version of your application, and
osak_example_init.o is the object file.

It is important that you specify the libraries in the order shown.

4.11. Linking on OpenVMS Systems
Link your application against the following shareable image:

SYS$SHARE:OSAK$OSAKSHR.EXE

58

Chapter 4. Using the API

To link your application, you can either specify SYS$INPUT in place of an options file, and specify
the OSAK$OSAKSHR library, or specify the OSAK$OSAKSHR library in an options file. The default
filename for the options file is OPTIONS_FILE.OPT.

Examples

If you have no options file, use a command similar to the following:

LINK OSAK_EXAMPLE_INIT, SYS$INPUT/OPTIONS
SYS$SHARE:OSAK$OSAKSHR/SHAREABLE
Ctrl/Z

If you have an options file called OPTIONS_FILE.OPT, containing the line SYS$SHARE:OSAK
$OSAKSHR/SHAREABLE, use a command similar to the following:

LINK OSAK_EXAMPLE_INIT, OPTIONS_FILE/OPTIONS

4.12. Using Abstract Syntax Notation
Applications communicating in an OSI network need to agree on the data types they are going to use.
An abstract syntax is the formal definition of this agreement. Section 1.1.2.4, "Abstract Syntax Notation"
gives further information on abstract syntax.

Abstract Syntax Notation One (ASN.1) is the ISO’s standardized abstract syntax. Using ASN.1 is
essential for portability. For input to your application, you need files containing the data structures and
the functions that an ASN.1 compiler generates.

In addition to your compiler, you will also need the following:

● A routine to encode ASN.1-defined values

● A routine to decode ASN.1-defined values

You use a compiler to produce these encoding and decoding routines, and you use the routines to
process information exchanged over an OSI network. You are not required to use any particular ASN.1
compiler.

4.12.1. Using an ASN.1 Compiler
In order to use an ASN.1 compiler, do the following:

● Design a syntax for your application, using ASN.1. You can register this syntax with a registration
authority — either the ISO, CCITT, or your national registration authority (often, but not always,
your national standards authority). ISO 8824 explains how to do this.

● Create an input file of ASN.1-defined data types.

● Examine the encoding and decoding routines that the compiler produces, and note the data structures
that they use.

Link the files generated by the compiler, including the encode and decode routines, and the compiler’s
run-time library (RTL) routines, into your application.

4.12.2. Notes on Using Another Method of Encoding
If you need your application to work only with other applications that use an agreed syntax, there is no
need to register the syntax.

59

Chapter 4. Using the API

● Write encode and decode routines if the compiler you are using does not do this for you.

● Link the files generated by the compiler, the encode and decode routines, and the compiler’s run-
time library (RTL) routines, into your application.

60

Chapter 5. Using the ROSE API
The Remote Operations Service Element (ROSE) provides a protocol for use between application
service elements (ASEs) whose dialogue consists only of requests and responses. This chapter describes
how to write a program that uses the ROSE routines. The tasks are:

● Define the ROSE operations to be used in your application (Section 5.2, "Making the Definitions for
a ROSE-Based Application")

● Write an application service entity (ASE) based on the ROSE protocol (Section 5.3, "Writing a
ROSE-Based ASE")

5.1. Functions Provided by the ROSE
Programming Interface
The ROSE programming interface encodes and decodes ROSE protocol control information (PCI).
The interface includes five functions. Table 5.1, "ROSE Functions" lists the functions, giving the
corresponding ROSE interface routine, and explains briefly what each function does.

Table 5.1. ROSE Functions

Function ROSE Routine Description

Invoke osak_ro_invoke Requests the server to perform a certain operation.
Result osak_ro_result Tells the client that an operation has been a success,

and gives the result of the operation.
Error osak_ro_error Tells the client that an operation has failed, and gives

the reason why it failed.
Reject osak_ro_reject_u Rejects an application protocol data unit (APDU)

carrying a ROSE operation request, because the
APDU is in some way incorrect.

Decode osak_ro_decode Decodes incoming ROSE PCI.

Note that osak_ro_invoke, osak_ro_result, osak_ro_error, and osak_ro_reject_u are all encoding
routines. They encode only ROSE PCI. You need to encode ROSE user data by some other means
(for example, using an ASN.1 compiler – Section 5.3, "Writing a ROSE-Based ASE" explains the
choices you make between using the osak_ro_... routines and using an ASN.1 compiler). Similarly, the
osak_ro_decode routine decodes only ROSE PCI.

5.1.1. The ROSE Parameter Block
Figure 5.1, "ROSE Parameter Block" shows the parameters in a ROSE parameter block.

61

Chapter 5. Using the ROSE API

Figure 5.1. ROSE Parameter Block

Section 5.1.1.1, "ROSE Parameter Block Before and After Decoding" and Section 5.1.1.2, "Structure of
an APDU Containing ROSE Data" give further information about the contents of the ROSE parameter
block.

5.1.1.1. ROSE Parameter Block Before and After Decoding

Figure 5.2, "ROSE Parameter Block Before an Encoding Routine" shows ROSE PCI and user data being
passed to a ROSE encoding routine. In this example, the buffer already contains one ROSE PDU with its
PCI, and another application PDU with its PCI.

Figure 5.2. ROSE Parameter Block Before an Encoding Routine

62

Chapter 5. Using the ROSE API

Figure 5.3, "ROSE Parameter Block After an Encoding Routine" shows the situation after the encode call.
In this example, the application buffer is not large enough to accommodate the encoded ROSE PCI. The
ROSE interface allocates an extra buffer, using the application's memory allocation routine.

Figure 5.3. ROSE Parameter Block After an Encoding Routine

5.1.1.2. Structure of an APDU Containing ROSE Data
An APDU containing ROSE data consists of the following:

● A header specifying the transfer syntax and presentation context used in the PDU

● ROSE PCI

● Zero or more ROSE PDUs (a ROSE PDU contains ROSE user data)

These make up a presentation data value (PDV).

Example 5.1, "Structure of an APDU" shows the ASN.1 definition for the Invoke function APDU.

See ISO Standard 9072 for ASN.1 definitions of other function APDUs.

Example 5.1. Structure of an APDU

 ROIVapdu ::= SEQUENCE
 {
 invokeID Integer Integer
 linkedID [0] IMPLICIT integer OPTIONAL,
 operation-value CHOICE
 {

63

Chapter 5. Using the ROSE API

 local_value integer,
 global_value object identifier,
 }
 argument ANY OPTIONAL
 – DEFINED BY operation-value,
 – ANY is filled by a single ASN.1 data type following the
 – keyword ARGUMENT in the type definition of a particular
 – operation
 }

5.2. Making the Definitions for a ROSE-Based
Application
Some definitions that you use in a ROSE-based application are mandatory (see Section 5.2.1,
"Mandatory Definitions"), and some are optional (see Section 5.2.2, "Optional Definitions"). The
following descriptions use client to refer to the application that sends requests, and server to refer to the
application that responds.

5.2.1. Mandatory Definitions
This section describes the definitions you must make before writing a ROSE application.

1. Define all the operations a client can ask a server to perform.

2. For each operation, define an operation code. The client and the server must both use the same
definitions of operation codes.

An operation code can be either locally defined or globally defined. A locally defined operation
code is unique within a given abstract syntax, and is represented by an ASN.1 encoded integer (a tag,
length, and value, or TLV). A globally-defined operation code is unique within a group of abstract
syntaxes, and is represented by an ASN.1 encoded object identifier.

3. For each operation, define the following:

● Each argument that can be input

● Each result that can be output

● Each error that can occur

Note that not all operations need to have arguments, results, or errors.

4. For each error that can occur, define an error code for each of its output parameters. The ROSE
interface includes a number of constants indicating errors and problems. You should use these
constants, and define meanings for them appropriate to your application.

5.2.2. Optional Definitions
You can make the following definitions before writing a ROSE application:

● An operation class, which specifies the following:

• Whether operations are to be completed synchronously or asynchronously.

64

Chapter 5. Using the ROSE API

• What response the client expects from the server. The client may expect a response when an
operation fails or succeeds, if an operation fails, or it may not expect a response at all.

● The relative priority for the Reject function, if your ROSE application uses a two-way alternative
communication mechanism. If you need to define priority in your application, you should do so
before you call any encoding routine.

You can include these items of information indirectly in the formal definition of the application service
entity (ASE) you are using. Note that the OSAK software does not enforce the ROSE protocol. The
ROSE-based ASE must ensure that characteristics of a defined operation class are observed. For
example, if an agreed operation class requires synchronous completion of calls, the OSAK interface does
not automatically select synchronous completion.

5.3. Writing a ROSE-Based ASE
When using the ROSE interface, you also need to use some OSAK services, to set up and release
associations and to send application protocol data units (APDUs) containing ROSE data.

Before your application sets up an association, make sure that the ASE you use is included in the
application context you have agreed. (See Section 1.2.2.1, "Setup and Negotiation" for more about
application contexts.) This agreement is on paper; the service providers do not negotiate application
contexts as part of the electronic information exchange.

The application context you use when setting up the association must include your ASE. Although the
inclusion is implicit (not part of the electronic information exchange), you should avoid using application
contexts defined in the OSI standards.

5.3.1. Considerations for Both the Client and the Server
Passing Data

You must prepare for the ROSE protocol exchange by passing unencoded ROSEPCI and user data (if
any) to the ROSE routines in a ROSE parameter block. The user data can be any information required
by the client or the server in your application.

You can send any number of ROSE PDUs in an APDU. You can send other application PCI and PDUs
in the same APDU. You pass the ROSE PCI and user data (encoded either by the osak_ro_invoke
routine or by an ASN.1 compiler) to the OSAK interface in the user_data parameter of an OSAK
parameter block. The OSAK interface then sends the APDU to the client or server.

ROSE and Memory

ROSE PCI is usually about 19 octets long. If the buffer that you pass in the buffer parameter is too small
to accommodate the encoded ROSE PCI, the ROSE interface uses your OSAK memory allocation
routine to allocate a buffer for the ROSE PCI. The ROSE interface then chains this buffer in front of the
buffer that you pass in the buffer parameter.

The ROSE interface can use your memory allocation routine, because you pass the port identifier of an
association on all calls to ROSE routines. It is mandatory to supply a memory allocation routine when
you set up an association using the OSAK interface. The application is responsible for deallocating the
memory when it is no longer required.

65

Chapter 5. Using the ROSE API

Encoding with the ROSE Routines
If your application uses a protocol with an order of requests and responses that changes rarely or never,
you may choose to use the osak_ro_... routines in cases where, for example, you are simply
maintaining a ROSE-based application, most of which is encoded already.

With the osak_ro_... calls, you can produce very efficient routines for encoding and decoding, but
at the cost of significant development effort.

Decoding Data
Your application should examine each incoming APDU, and decode its presentation data value (PDV).
This tells you the transfer syntax and presentation context used in the APDU. The ROSE interface does
not decode the PDV for you.

Use either the osak_ro_decode routine or call the routine produced by your compiler to decode the
ROSE PCI received in an incoming APDU. The OSAK interface passes the decoded ROSE PCI and user
data back to your application, in the buffer parameter of the ROSE parameter block.

5.3.2. Implementing the Client
A typical sequence of ROSE and OSAK calls with which you can implement a client is as follows:

1. Construct an OSAK parameter block.

2. Set up an association by calling osak_open_initiator and osak_associate_request.

3. Call osak_give_buffers.

4. Construct a ROSE parameter block.

5. Call osak_ro_invoke, passing the following arguments:

● Port identifier returned by the call to osak_open_initiator

● ROSE PCI and user data in ROSE parameter block

The Invoke identifier is a unique identifier issued by the initiator of each ROSE dialogue. Your
application should be sure to check for the uniqueness of all Invoke identifiers, so that it is always
clear which exchange of ROSE-based protocol a call belongs to.

The ROSE interface returns the encoded ROSE PCI in the buffer parameter of the ROSE parameter
block.

6. Add information about the transfer syntax and presentation context used to the encoded ROSE PCI.

7. Define the buffer containing the APDU as user data in the OSAK parameter block.

8. Call osak_data_req to send the APDU to the server.

9. Call osak_get_event to receive any response expected from the server.

5.3.3. Implementing a ROSE Server
A typical sequence of ROSE and OSAK calls with which you can implement a ROSE server is as
follows:

66

Chapter 5. Using the ROSE API

1. Construct an OSAK parameter block.

2. Establish a responder.

3. Call osak_give_buffers, osak_select, and osak_get_event.

4. Decode the presentation data value (PDV) from the APDU. Examine the PDV information from the
APDU, to find out which transfer syntax and which presentation context is in use.

5. Call osak_ro_decode to decode the ROSE PCI. The ROSE interface returns the decoded ROSE
PCI and user data in the buffer parameter of the ROSE parameter block.

6. Examine the incoming Invoke indication. Call osak_ro_reject_u to reject the incoming APDU
if it is in any way incorrect.

7. Check the Invoke identifier. If it is a duplicate, call osak_ro_reject_u to reject the incoming
ROSE request.

8. Decode the user data, using the same abstract syntax that was used to encode it.

9. Attempt the operation requested by the client.

10. Encode any user data that you want to send back to the client.

11. Call osak_ro_result or osak_ro_error to encode the ROSEPCI if you need to inform the
client of the result of the attempted operation. Call osak_ro_result to inform the client of a
successful operation; call osak_ro_error to inform the client of a failed operation.

12. Add to the encoded ROSE PCI information about the transfer syntax and presentation context used.

13. Send encoded user data and ROSE PCI back to the client in a call to osak_data_req.

5.4. Linking on UNIX Systems
Link your application against the following libraries:

/usr/lib/librose.a/usr/lib/libxtiosi.a/usr/lib/libxti.a

Example
To link your application, you should use a command similar to the following:

/bin/cc -o rose_example_init rose_example_init.o -losak -lxtiosi -lxti -
lrose

In the above example, rose_example_init is the executable version of your application, and
rose_example_init.o is the object file.

It is important that you specify the libraries in the order shown.

5.5. Linking on ULTRIX Systems
Link your application against the following libraries:

/usr/lib/librose.a/usr/lib/libxti.a

67

Chapter 5. Using the ROSE API

Example
To link your application, you should use a command similar to the following:

/bin/cc -o rose_example_init rose_example_init.o -losak -lxti -lrose

In the above example, rose_example_init is the executable version of your application, and
rose_example_init.o is the object file.

It is important that you name the libraries in the order shown.

5.6. Linking on OpenVMS Systems
Link your application against the following shareable image:

SYS$SHARE:OSAKSHR_ROSE.EXE

To link your application, you can either specify SYS$INPUT in place of an options file, and specify
the OSAK$OSAKSHR library, or specify the OSAK$OSAKSHR library in an options file. The default
filename for the options file is OPTIONS_FILE.OPT.

Examples
If you have no options file, use a command similar to the following:

LINK OSAK_EXAMPLE_INIT, SYS$INPUT/OPTIONS
SYS$SHARE:OSAK$OSAKSHR/SHAREABLE
Ctrl/Z

If you have an options file called OPTIONS_FILE.OPT, containing the line
SYS$SHARE:OSAK$OSAKSHR/SHAREABLE, use a command similar to the following:

LINK OSAK_EXAMPLE_INIT, OPTIONS_FILE/OPTIONS

5.7. Using Abstract Syntax Notation
Applications communicating in an OSI network need to agree on the data types they are going to use.
An abstract syntax is the formal definition of this agreement. Section 1.1.2.4, "Abstract Syntax Notation"
gives further information on abstract syntax.

Abstract Syntax Notation One (ASN.1) is the ISO's standardized abstract syntax. Using ASN.1 is
essential for portability. For input to your application, you need files containing the data structures and
the functions that an ASN.1 compiler generates.

In addition to your compiler, you will also need the following:

● A routine to encode ASN.1-defined values

● A routine to decode ASN.1-defined values

You use a compiler to produce these encoding and decoding routines, and you use the routines to
process information exchanged over an OSI network. You are not required to use any particular ASN.1
compiler.

68

Chapter 5. Using the ROSE API

5.7.1. Using an ASN.1 Compiler
In order to use an ASN.1 compiler, do the following:

● Design a syntax for your application, using ASN.1. You can register this syntax with a registration
authority — either the ISO, CCITT, or your national registration authority (often, but not always,
your national standards authority). ISO 8824 explains how to do this.

● Create an input file of ASN.1-defined data types.

● Examine the encoding and decoding routines that the compiler produces, and note the data structures
that they use.

Link the files generated by the compiler, including the encode and decode routines, and the compiler's
run-time library (RTL) routines, into your application.

5.7.1.1. Notes on Using Another Method of Encoding
If you need your application to work only with other applications that use an agreed syntax, there is no
need to register the syntax.

● Write encode and decode routines if the compiler you are using does not do this for you.

● Link the files generated by the compiler, the encode and decode routines, and the compiler's run-
time library (RTL) routines, into your application.

69

Chapter 5. Using the ROSE API

70

Chapter 6. Using the SPI
6.1. Writing an OSAK Application
The tasks for writing a program that uses the OSAK routines are:

● Prepare a parameter block (Section 6.2, "Using Parameter Blocks")

● Build user buffers (Section 6.3, "Building a User Buffer")

● Set up the connection (Section 6.4, "Setting Up a Connection")

● Transfer data (Section 6.5, "Sending Data")

● Release the connection (Section 6.6, "Releasing a Connection")

● Reclaim memory (Section 6.7, "Reclaiming Memory")

Code examples in this chapter are extracts from the example program:

UNIX

usr/examples/osak/osak_example_init.c
usr/examples/osak/osak_example_resp.c

OpenVMS

SYS$EXAMPLES:OSAK_EXAMPLE_INIT.C

SYS$EXAMPLES:OSAK_EXAMPLE_RESP.C

6.2. Using Parameter Blocks
Construct a parameter block and allocate values to all the parameters you require for the routine you
want to call. Alternatively, you can re-use a parameter block that was previously used on a call to another
routine, if there is such a parameter block available.

6.2.1. Preparing to Construct a Parameter Block
Decide what session protocol control information (PCI) you need to specify and pass it all on the first
service request, because you can send only user data on subsequent spi_send_more calls. Refer
to the routine descriptions in VSI DECnet-Plus OSAK Programming Reference Manual for details of
which parameters in the parameter block are mandatory and which ones are optional. Note that the
OSAK interface defines the classifications mandatory, optional, and ignored as shown in Table 6.1,
"Classifications of Parameters".

Table 6.1. Classifications of Parameters

Classification Meaning

mandatory You must supply an explicit value.

71

Chapter 6. Using the SPI

Classification Meaning

optional You must either supply an explicit value or set the parameter to zero.
You must set a parameter to zero or null to apply a default setting.

ignored The OSAK interface ignores the parameter, as permitted by the
relevant ISO standard. The parameter must not have any value (not
even zero or null).

Section 6.2.2, "Constructing a Parameter Block" lists the tasks needed to construct a parameter block.

6.2.2. Constructing a Parameter Block
When you construct a parameter block, do the following:s

● Specify a value for every parameter that is mandatory on the service you are calling.

● Specify a value for any optional parameter you want to use.

● Set to zero or null any optional parameter for which you want the OSAK interface to use the default
value.

● Ensure that the workspace you allocate is at least the minimum size allowed, which is 512 octets.
You should initialize the workspace to zero when you allocate it. If you re-use a workspace for an
outbound call, you must reinitialize the workspace.

● Ensure that the workspace length and parameter block length parameters are correctly set up.

Example 6.1, "Constructing a Parameter Block" is an example of the sort of code needed to construct a
parameter block.

Example 6.1. Constructing a Parameter Block

/* initialize parameter block */
memset ((void *)pb, ’\0’,
 sizeof(struct osak_parameter_block) + OSAK_EXAMPLE_WS_SIZE) ;
pb->pb_length = sizeof (struct osak_parameter_block) ;
pb->ws_length = OSAK_EXAMPLE_WS_SIZE ;
pb->api_version = OSAK_C_API_VERSION_3 ;
pb->protocol_versions = NULL ; /* Use default value */
pb->local_aei = &local_address ;
pb->transport_template = NULL ; /* Use default value */
pb->alloc_rtn = (osak_rtn) alloc_memory ;
pb->dealloc_rtn = (osak_rtn) free_memory ;
pb->alloc_param = 0 ;
pb->completion_rtn = NULL ;
pb->completion_param = 0 ;

6.3. Building a User Buffer
Figure 6.1, "User Buffers on an Outbound Call" shows the structure of user buffers on an outbound call.

Set the buffer_ptr field to point to the start of the buffer. Set the buffer_length field to value of the length
of the buffer. You must set both these parameters.

72

Chapter 6. Using the SPI

Set the data_ptr field to point to the start of the user data within the buffer. Set the data_length field to
the value of the length of the user data. You must set both these parameters.

Figure 6.1. User Buffers on an Outbound Call

When you pass a list of user buffers to the OSAK interface, we recommend that you leave space for
PCI at the beginning of the first buffer and the end of the last buffer. Leaving this space improves the
performance of the OSAK software, which does not need to allocate memory apart from the memory
you have already allocated. However, you do not need to leave any space at the beginning of the first
user buffer, or at the end of the last user buffer.

The amount of space that we recommend you to leave depends on the OSAK service you are using.
About 50 octets at the beginning of the first buffer is sufficient for most services. You can leave less
space at the end of the last buffer.

You do not have to initialize the PCI portions of your user buffers. The OSAK interface does not alter
the user data portions of your buffers, but it may alter the contents of the PCI portions of the buffers.

If your application leaves space at the head of the first buffer, the OSAK interface may use this part of
the buffer for encoded session PCI.

If you do not leave enough space for the OSAK interface to encode the PCI, the interface allocates a
buffer for this purpose and deallocates it when the transfer of data is complete. By leaving space at each
end of your buffer, you reduce the number of dynamic memory allocations that the OSAK interface
makes. This improves the performance of your application.

6.4. Setting Up a Connection
This section explains the sequence of calls you should make to set up a connection. The initiating and
responding processes make different sequences of calls; Table 6.2, "Sequence of Routine Calls Used by
Responder During Setup" shows the calls that the responder uses and Table 6.3, "Sequence of Routine
Calls Used by Initiator During Setup" shows the calls that the initiator uses. Note that these are the
recommended sequences for OpenVMS systems; others may be required for other circumstances.

Table 6.2. Sequence of Routine Calls Used by Responder During Setup

Routine Call See Section

spi_open_responder Section 6.4.1, "Getting an Identifier for the
Connection"

73

Chapter 6. Using the SPI

Routine Call See Section

spi_give_buffers Section 6.4.2, "Passing Buffers to the OSAK
Interface"

spi_select followed by spi_get_event Section 6.4.3, "Preparing to Receive and
Examining Inbound Events"

spi_connect_rsp Section 6.4.4, "Requesting an Association and
Responding to a Request"

Table 6.3. Sequence of Routine Calls Used by Initiator During Setup

Routine Call See Section

spi_open_initiator Section 6.4.1, "Getting an Identifier for the
Connection"

spi_give_buffers Section 6.4.2, "Passing Buffers to the OSAK
Interface"

spi_connect_req Section 6.4.4, "Requesting an Association and
Responding to a Request"

spi_select followed by osak_collect_pb
or osak_get_event

Section 6.4.3, "Preparing to Receive and
Examining Inbound Events"

Figure 6.2, "Setting up a Connection" shows a sequence of routines you can use to set up a connection
on any operating system. This figure does not give detailed information. For example, the responder may
need to make additional calls to spi_give_buffers (inside the loop within braces) if it receives the
return OSAK_S_NOBUFFERS. For detailed information on particular points raised by this diagram, see
the rest of this section.

74

Chapter 6. Using the SPI

Figure 6.2. Setting up a Connection

OpenVMS: Figure 6.3, "Setting up a Connection Using Asynchronous Event Notification (OpenVMS
only)" shows a sequence of routines you can use to set up a connection if you are using asynchronous
event notification. The sequence uses spi_get_event with asynchronous event notification.

Note that spi_get_event is not the only routine call that can use completion routines. See VSI
DECnet-Plus OSAK Programming Reference Manual for details.

Figure 6.3, "Setting up a Connection Using Asynchronous Event Notification (OpenVMS only)" does not
give detailed information. For detailed information on particular points raised by this diagram, see the
rest of this section.

75

Chapter 6. Using the SPI

Figure 6.3. Setting up a Connection Using Asynchronous Event Notification (OpenVMS
only)

It is essential that the responder issue an spi_open_responder call before the initiator issues
an spi_connect_req call (so that a responding process is ready to deal with an incoming S-
CONNECT-request). Section 6.4.1, "Getting an Identifier for the Connection" to Section 6.4.4,
"Requesting an Association and Responding to a Request" follow the sequence of steps taken.

6.4.1. Getting an Identifier for the Connection
The first call should be one of the following:

● spi_open_responder

● spi_open_initiator

Both of these routine calls allocate a port identifier, which the OSAK interface writes into the port
parameter. The port identifier is the local identifier of the connection. If an initiator process uses the
spi_connect_req call to request a connection to an address that does not have an associated
responder process listening for incoming connections (spi_open_responder call), the initiator's
call fails with the status OSAK_S_INVAEI.

If your application handles several concurrent connections on the same address, you must make another
call to spi_open_responder as soon as an S-CONNECT indication arrives. This minimizes the
possibility of losing a connection due to transport timeouts.

6.4.2. Passing Buffers to the OSAK Interface
Before requesting any services, use the routine spi_give_buffers to pass a user buffer or a list of
user buffers to the OSAK interface for receiving incoming events. You need to do this for an initiator

76

Chapter 6. Using the SPI

and for a responder. You cannot receive any inbound events until you pass one or more buffers to the
interface.

VSI recommends that your application has at least one buffer available at all times to receive inbound
events. If an ABORT indication arrives during a connection, your application needs a buffer to receive
it in. Example 6.2, "Code for Calling spi_give_buffers" shows code for calling spi_give_buffers.
Note that code examples in this chapter sometimes rely on global declarations made in the complete
example programs (osak_example_init.c and osak_example_resp.c).

Example 6.2. Code for Calling spi_give_buffers

/**/
/* FUNCTION: give_buffer */
/* */
/* This routine is called to pass a buffer to OSAK for OSAK to use to */
/* receive inbound events. */
/* */
/* A list of unused buffers is maintained. One buffer from this list is */
/* passed to OSAK using spi_give_buffers. If the list is empty a new */
/* buffer is allocated. */
/**/
void give_buffer (osak_port port)
{
 unsigned long int status ;
 struct osak_buffer *give_buf ;

 /* Give a buffer to OSAK */
 if (free_buffers == NULL)
 {
 give_buf = (struct osak_buffer *)malloc (sizeof(struct osak_buffer)) ;
 if (give_buf == NULL)
 {
 printf ("Failed to allocate an osak_buffer.\n");
 exit (0) ;
 }
 give_buf -> next = NULL ;
 give_buf -> buffer_length = OSAK_EXAMPLE_BUFFER_SIZE ;
 give_buf -> buffer_ptr =
 (unsigned char *) malloc (OSAK_EXAMPLE_BUFFER_SIZE) ;
 if (give_buf -> buffer_ptr == NULL)
 {
 printf ("Failed to allocate buffer.\n") ;
 exit (0) ;
 }
 }
 else
 {
 give_buf = free_buffers ;
 free_buffers = free_buffers -> next ;
 give_buf -> next = NULL ;
 }

 status = spi_give_buffers (port, give_buf) ;
 if (status != OSAK_S_NORMAL)
 {
 printf ("spi_give_buffers failed\n");
 exit (0) ;
 }
}

77

Chapter 6. Using the SPI

Example 6.3, "Code for Reusing Buffers" shows code for reusing buffers placed by the OSAK software
on the list of unused buffers.

Example 6.3. Code for Reusing Buffers

/**/
/* FUNCTION: reuse_buffers */
/* */
/* This routine is called to place buffers returned by OSAK onto the list */
/* of unused buffers. */
/**/
void reuse_buffers (struct osak_buffer **buf_ptr)
{
 struct osak_buffer *buf, *last_buf ;

 buf = *buf_ptr ;
 if (buf == NULL)
 return ;

 last_buf = buf ;
 while (last_buf->next != NULL)
 last_buf = last_buf -> next ;

 if (free_buffers == NULL)
 {
 free_buffers = buf ;
 }
 else
 {
 free_buffers_end->next = buf ;
 }
 free_buffers_end = last_buf ;
 *buf_ptr = NULL ;
}

6.4.3. Preparing to Receive and Examining Inbound
Events
There are two ways to receive notification of inbound events:

● Polling and blocking

Use the spi_get_event routine (preceded, if you choose, by an spi_select routine). See
Section 6.4.3.1, "Polling and Blocking" for further information.

● Asynchronous event notification (OpenVMS systems only)

Use the spi_get_event routine with a completion routine. See Section 6.4.3.2, "Asynchronous
Event Notification (OpenVMS only)" for further information.

VSI recommends that an application use only one of these methods of receiving events throughout.

Section 6.4.3.3, "Using the Request Mask in the spi_select Routine" shows you how to distinguish
between events that indicate something happening on the network (for example, some data arriving) and
events that indicate something happening in the local processor (for example, a routine call completing).

78

Chapter 6. Using the SPI

6.4.3.1. Polling and Blocking
Call the routine spi_get_event to check for the arrival of an inbound event. If the routine returns a
status code of OSAK_S_NOEVENT, there is no event waiting to be collected.

In a blocking interface, an application that makes a call cannot make another call until the first one
completes. If your application can do no useful work until an event arrives, you may prefer to block until
the OSAK software receives the event.

To do this, call the routine spi_select and wait for an inbound event to arrive. If you specify a time
limit, control returns to your application either when an event arrives or when the time specified runs
out, whichever comes first. If you do not specify a time limit, control remains with the OSAK interface
until an event arrives.

The spi_select call may return a status code of OSAK_S_NORMAL (indicating that an event is
waiting) but the spi_get_event call may still return a status code of OSAK_S_NOEVENT. There
are two common causes:

● The arrival of a transport event instead of an upper-layer event. One upper-layer event may map to
several transport events.

● The arrival of incomplete PCI in a data unit. In this case, the OSAK interface does not have enough
information to decode the incoming data unit.

To allow for these possibilities in your application, you should repeatedly call spi_select followed
by spi_get_event until the return value of spi_get_event is OSAK_S_NORMAL.

You can do this using code similar to the following:

do
{
 status = osak_select(port_count, port_list, time_out);
 if (status != OSAK_S_NORMAL
 {
 /* error-handling routine ... */
 }
 status = osak_get_event(port,parameter_block);
 switch(status)
 {
 case OSAK_S_NORMAL:
 /* event arrived - leave loop */
 break;
 case OSAK_S_NOBUFFERS:
 /* Give more buffers to the OSAK software*/
 /* by calling osak_give_buffers()...*/
 .
 .
 .
 break;
 case OSAK_S_NOEVENT:
 /* no event arrived - go round loop again*/
 break;
 default:
 /* Some error returned - call error-handling routine ...*/
 }
} while (status != OSAK_S_NORMAL);

79

Chapter 6. Using the SPI

See also Section 3.7, "Waiting to Receive Data" for more information about receiving events.

6.4.3.2. Asynchronous Event Notification (OpenVMS only)

Call spi_get_event with a completion routine. The completion routine starts automatically
when spi_get_event receives an event. The OSAK interface returns a value in the status_block
parameter indicating whether or not an event is present. VSI recommends that you always leave a call to
spi_get_event outstanding when you are using asynchronous event notification. If you leave more
than one call to spi_get_event outstanding, these calls are completed as events arrive, in the order
in which you issue them.

6.4.3.3. Using the Request Mask in the spi_select Routine

An initiator may wait for an S-CONNECT-confirm rather than use spi_select or
spi_get_event on the assumption that the OSAK software sent the S-CONNECT-request
successfully. But an initiator uses the spi_select and spi_get_event routines after receiving
the S-CONNECT-confirm (to receive data), and should ideally make a buffer available for the provider's
notification in case the spi_connect_req fails.

When you use the routine call spi_select, set the WRITE bit as well as the READ bit. Set the
WRITE bit to require the OSAK software to inform your application about its own processing of the
application's routine calls. Set the READ bit to require the OSAK software to inform your application
when incoming data arrives on the network. If the return from the spi_select routine indicates
activity on the local processor and not on the network, issue an spi_collect_pb call to find out the
return status.

6.4.3.4. Examining Incoming Data Units

When an event arrives, the OSAK interface writes the values contained in the incoming data units into
the parameter block that the application supplied when it called spi_get_event and user buffers that
the application supplied when it called spi_give_buffers. You should examine the values that the
data unit contains, and take appropriate action in your application.

Figure 6.4, "User Buffers After the Arrival of an Event (OpenVMS only)" shows a list of user buffers after
the arrival of an event on an OpenVMS system. On UNIX systems, user data is separated into multiple
user buffers but the OSAK interface does not return a list of buffers. Instead, the user data is included in
a single user buffer that also contains the PCI if possible. If the data does not fit into a single user buffer,
the more_flag parameter is set to true. The application then needs to call spi_get_event repeatedly,
in order to receive the next user buffer. When the more_flag parameter is set to false, all the data has
been transmitted.

80

Chapter 6. Using the SPI

Figure 6.4. User Buffers After the Arrival of an Event (OpenVMS only)

If a user buffer contains only PCI, its data_ptrfield is a null pointer. If a buffer contains user data, or a
mixture of PCI and user data, its data_ptr field points to the beginning of the user data.

The OSAK interface passes by reference those optional parameters and parameters that can have a
default value. The OSAK interface sets these parameters to null if there is no value for that parameter in
the incoming data unit.

Note that a setting of true in the more_flagparameter on an event indicates that the incoming data is
segmented and that there is more data to receive. To make sure you receive all incoming user data,
continue making calls to spi_get_event until the more_flag parameter is set to false. For an
explanation of segmentation, see Section 1.4.5, "Data Segmentation".

Example 6.4, "Code for Calling spi_select" shows code for calling spi_select.

Example 6.4. Code for Calling spi_select

/**/
/* FUNCTION: wait_for_event */
/* */
/* This routine waits for an inbound event to occur. If there is also a */
/* queued parameter block from a previous call to OSAK then it also waits */
/* for that parameter block to be returned by OSAK. spi_select is used to */
/* wait for the inbound event and outbound completion. spi_get_event is */
/* used to receive the inbound event and spi_collect_pb is used to get the */
/* parameter block returned by OSAK when the outbound event has completed. */
/* */
/* The example osak_example_resp.c does this differently. It has two */
/* routines to do the same job as this one routine: */
/* wait_for_outbound_completion and wait_for_inbound. This routine shows */
/* how spi_select can be used to combine those two routines. */
/**/
void wait_for_event (osak_port port, struct osak_parameter_block *pb,

81

Chapter 6. Using the SPI

 int queued)
{
 struct osak_parameter_block *ret_pb ;
 osak_handle_count handlecount ;
 osak_handle handle ;
 unsigned long int status ;
 int readevent = TRUE ;
 int writeevent = queued ;
 osak_time select_time = OSAK_EXAMPLE_TIMEOUT ;

 /* Give a buffer to OSAK to get inbound event */
 give_buffer (port) ;

 /* Loop until not waiting for any more events */
 do
 {
 /* Set up parameters to call spi_select() */
 handlecount = 1 ;
 handle.id = (unsigned long int) port ;
 handle.request_mask = 0;
 if (readevent)
 handle.request_mask |= OSAK_C_READEVENT ;
 if (writeevent)
 handle.request_mask |= OSAK_C_WRITEEVENT ;
 handle.returned_mask = 0 ;

 status = spi_select (handlecount, &handle, &select_time) ;
 if (status != OSAK_S_NORMAL)
 {
 printf ("Call to spi_select failed\n") ;
 exit (0) ;
 }

 /* See if the queued parameter block has been returned */
 if (writeevent && (handle.returned_mask & OSAK_C_WRITEEVENT))
 {
 ret_pb = NULL ;
 status = spi_collect_pb (port, &ret_pb) ;
 if ((status != OSAK_S_NORMAL) && (status != OSAK_S_NOEVENT))
 {
 printf ("Call to spi_collect_pb failed\n") ;
 exit (0) ;
 }
 if (status == OSAK_S_NORMAL && ret_pb != NULL)
 {
 writeevent = FALSE ;

 /* Look at the status block in the PB returned to see if an */
 /* error occurred */
 if (ret_pb->status_block.osak_status_1 != OSAK_S_NORMAL)
 {
 printf ("error in status block of PB returned from collect pb\n");
 exit (0) ;
 }
 }
 }

 /* See if there is an inbound event. If so call spi_get_event() */
 if (readevent && (handle.returned_mask & OSAK_C_READEVENT))
 {
 do
 {
 /* Initialize parameter block ...*/
 .
 .
 .

82

Chapter 6. Using the SPI

 status = spi_get_event (port, pb) ;
 /* If OSAK needs more buffer to decode the event then give */
 /* more buffers. */
 if (status == OSAK_S_NOBUFFERS)
 {
 give_buffer (port) ;
 }
 } while (status == OSAK_S_NOBUFFERS) ;

 if ((status != OSAK_S_NORMAL) && (status != OSAK_S_NOEVENT))
 {
 printf ("spi_get_event failed\n") ;
 exit (0) ;
 }

 if (status == OSAK_S_NORMAL)
 {
 readevent = FALSE ;
 }
 }
 } while (readevent || writeevent) ;
}

6.4.4. Requesting an Association and Responding to a
Request
Request a connection by calling spi_connect_req. You can send the session PCI and all the user
information on the service. Alternatively, you can segment the user data before you pass it to the OSAK
interface and send the session PCI and none or some of the user information. In either case, you must
include all the PCI when you call the spi_connect_req routine.

If you use segmentation, you should set the more_flag parameter to true and use spi_send_more
as many times as necessary to send the remaining user information, setting the last segment's more_flag
parameter to false.

Example 6.5, "Code for Calling spi_connect_req" shows code for requesting a connection, and Example
6.6, "Code for Calling spi_accept_rsp" shows code for responding to a request for a connection.

Example 6.5. Code for Calling spi_connect_req

/**/
/* FUNCTION: connect_req */
/* */
/* This routine sets up the parameters for a call to spi_connect_req and */
/* makes the call. */
/* */
/**/
unsigned long int
connect_req (osak_port port, struct osak_parameter_block *pb)
{
 unsigned long int status ;

 /* Set up local address */
 local_address.paddress.ssel.size = 9 ;
 local_address.paddress.ssel.pointer = (unsigned char *)"INIT-SSEL" ;
 local_address.paddress.tsel.size = 9 ;
 local_address.paddress.tsel.pointer = (unsigned char *)"INIT-TSEL" ;
 local_address.paddress.nsap.next = NULL ;
 local_address.paddress.nsap.id.size = 0 ;
 local_address.paddress.nsap.id.pointer = 0 ;

83

Chapter 6. Using the SPI

 local_address.paddress.nsap.type = OSAK_C_CLNS ;

 /* Set up peer address (the responder’s address) */
 remote_address.paddress.ssel.size = 9 ;
 remote_address.paddress.ssel.pointer = (unsigned char *)"RESP-SSEL" ;
 remote_address.paddress.tsel.size = 9 ;
 remote_address.paddress.tsel.pointer = (unsigned char *)"RESP-TSEL" ;
 remote_address.paddress.nsap.next = NULL ;
 remote_address.paddress.nsap.id.size = sizeof(remote_nsap) ;
 remote_address.paddress.nsap.id.pointer = remote_nsap ;
 remote_address.paddress.nsap.type = OSAK_C_CLNS ;

 /* Set up transport template */
 transport_template.next = NULL ;
 transport_template.name.size = 7 ;
 transport_template.name.pointer = (unsigned char *)"Default" ;

 /* Set up protocol versions */
 /* Select session version 2 */
 protocol_versions.sversion.version1 = 0 ;
 protocol_versions.sversion.version2 = 1 ;

 /* Set up functional units */
 /* Zero out all functional units before setting those required */
 memset ((void *)&fus, ’\0’, sizeof(struct osak_fus)) ;

 /* Request either duplex or half duplex. In this example we are */
 /* actually expecting the responder to accept with duplex. */
 fus.duplex = 1 ;
 fus.half_duplex = 1 ;

 /* Set up the buffer containing the data to send */
 send_buffer.next = NULL ;
 send_buffer.buffer_ptr = &user_information[0] ;
 send_buffer.buffer_length = sizeof(user_information) ;
 send_buffer.data_ptr = &user_information[0] ;
 send_buffer.data_length = sizeof(user_information) ;

 /* initialize parameter block ...*/
 .
 .
 .

 status = spi_connect_req (port, pb) ;
 return status ;
}

Example 6.6. Code for Calling spi_accept_rsp

/**/
/* FUNCTION: accept_rsp */
/* */
/* This routine sets up the parameters for a call to osak_accept_rsp and */
/* makes the call. */
/* */
/* It does not do any of the parameter negotiation that a real application */
/* would need to do. For example, it does not check the functional units */
/* or the presentation contexts proposed in the A-ASSOCIATE-indication. */
/* */
/**/
unsigned long int

84

Chapter 6. Using the SPI

accept_rsp (osak_port port, struct osak_parameter_block *pb)
{
 unsigned long int status ;

 /* Set up functional units. */

 /* A real application would need to check which functional units were */
 /* proposed by the initiator and negotiate a common set of functional */
 /* units. This simple example assumes that the duplex functional unit */
 /* was proposed. It is only going to accept the duplex functional unit.*/

 fus.duplex = 1 ;
 fus.half_duplex = 0 ;
 fus.expedited = 0 ;
 fus.syncminor = 0 ;
 fus.syncmajor = 0 ;
 fus.resynchronize = 0 ;
 fus.activities = 0 ;
 fus.negotiated_release = 0 ;
 fus.capability_data = 0 ;
 fus.exceptions = 0 ;
 fus.typed_data = 0 ;
 fus.data_separation = 0 ;
 /* initialize parameter block ...*/
 .
 .
 .
 status = spi_accept_rsp (port, pb) ;
 return status ;
}

6.5. Sending Data
After the connection is established, you can send and receive data using the OSAK services. Chapter
1, "OSI Networking Concepts" gives details of the services defined by the OSI standards.

6.6. Releasing a Connection
The calls you need to use to release a connection are often similar to the calls needed to set up the
connection. This section, therefore, does not contain detailed information on spi_give_buffers,
spi_select, and spi_get_event, which are discussed in Section 6.4.2, "Passing Buffers to the
OSAK Interface" and Section 6.4.3, "Preparing to Receive and Examining Inbound Events".

The initiator of a release and the responder to the release (not necessarily the initiator and responder
respectively of the connection), use different calls. Table 6.4, "Sequence of Routine Calls Used in
Releasing a Connection" lists the calls used by the initiator of the release and Table 6.5, "Sequence of
Routine Calls Used in Responding to a Request for Release" lists the calls used by the responder to the
request.

Table 6.4. Sequence of Routine Calls Used in Releasing a Connection

Routine Call See Section

spi_release_req Section 6.6.1, "Issuing the Release Request"
spi_select followed by spi_get_event Section 6.4.2, "Passing Buffers to the OSAK

Interface" and Section 6.4.3, "Preparing to Receive
and Examining Inbound Events"

85

Chapter 6. Using the SPI

Routine Call See Section

spi_close_port Section 6.6.3, "Closing the Port"

Table 6.5. Sequence of Routine Calls Used in Responding to a Request for Release

Routine Call See Section

spi_select followed by spi_get_event Section 4.4.2, "Passing Buffers to the OSAK
Interface" and Section 6.4.3, "Preparing to Receive
and Examining Inbound Events"

spi_release_rsp (followed by
osak_get_event on UNIX only)

Section 6.6.2, "Responding to a Release Request"

spi_close_port Section 6.6.3, "Closing the Port"

Figure 6.5, "Releasing a Connection" shows a sequence of routines you can use to release a connection
on the OpenVMS operating system.

Figure 6.6, "Releasing a Connection Using Asynchronous Event Notification" shows a sequence of
routines you can use to release a connection if you are using asynchronous event notification. The
example uses spi_get_event with asynchronous event notification.

Note that Figure 6.5, "Releasing a Connection" and Figure 6.6, "Releasing a Connection Using
Asynchronous Event Notification" do not give detailed information. For detailed information on particular
points raised by these diagram, see the rest of this section.

Figure 6.5. Releasing a Connection

86

Chapter 6. Using the SPI

6.6.1. Issuing the Release Request
Set the release_reason in the call to spi_release_request to whatever is appropriate; VSI
DECnet-Plus OSAK Programming Reference Manual lists the options.

The initiator must call spi_select and spi_get_event to receive the S-RELEASE confirm from
the responder. The initiator may also check whether the OSAK software sent the S-RELEASE-request
by calling spi_select and spi_collect_pb.

Figure 6.6. Releasing a Connection Using Asynchronous Event Notification

Note

You may send user data on the service. Make sure, however, that you set the user_data field in the
OSAK parameter block to null in case a release does not use the user_data parameter.

Example 6.7, "Code for Calling spi_release_req" shows code for releasing a connection.

6.6.2. Responding to a Release Request
The responder must check whether an inbound event is an S-RELEASE indication. Call
spi_get_event (preceded, if you choose, by spi_select), and if an S-RELEASE-indication
arrives, call spi_release_rsp.

UNIX: The responder must collect a transport disconnect indication as well as the S-RELEASE-
indication, using spi_give_buffers, spi_select, and spi_get_event calls.

87

Chapter 6. Using the SPI

Example 6.7. Code for Calling spi_release_req

/**/
/* FUNCTION: release_req */
/* */
/* This routine sets up the parameters for a call to spi_release_req and */
/* makes the call. */
/* */
/**/
unsigned long int
release_req (osak_port port, struct osak_parameter_block *pb)
{
 unsigned long int status ;

 /* initialize parameter block */
 memset ((void *)pb, ’\0’,
 sizeof(struct osak_parameter_block) + OSAK_EXAMPLE_WS_SIZE) ;
 pb->pb_length = sizeof (struct osak_parameter_block) ;
 pb->ws_length = OSAK_EXAMPLE_WS_SIZE ;
 pb->release_reason = OSAK_C_RLRQ_NORMAL ;

 status = spi_release_req (port, pb) ;
 return status ;
}

Example 6.8. Code for Calling spi_release_rsp

/**/
/* FUNCTION: release_rsp */
/* */
/* This routine sets up the parameters for a call to spi_release_rsp and */
/* makes the call. */
/* */
/**/
unsigned long int
release_rsp (osak_port port, struct osak_parameter_block *pb)
{
 unsigned long int status ;
 /* Initialize parameter block... */
 .
 .
 .
 status = spi_release_rsp (port, pb) ;
 return status ;
}

Example 6.8, "Code for Calling spi_release_rsp" shows code for responding to a request for a release and
Example 6.9, "Code for Calling spi_get_event After Releasing a Connection" shows code for waiting for a
transport disconnect.

6.6.3. Closing the Port
Both the initiator and the responder must call spi_close_port to signal to the OSAK software that
they have finished with the connection. This makes the OSAK software release any memory allocated to
the connection and return any parameter blocks and user buffers that have not already been returned to
the application.

88

Chapter 6. Using the SPI

In normal operation, an application calls spi_close_port with the
OSAK_C_NON_DESTRUCTIVE flag set. This indicates to the OSAK software that the port has no
connection at any level with any remote system.

Example 6.9. Code for Calling spi_get_event After Releasing a Connection

/**/
/* FUNCTION: wait_for_TDISind */
/* */
/* This routine uses spi_select to wait for a transport disconnect */
/* indication after the release-response has been sent. */
/* */
/* It does not check the event since OSAK_S_NOEVENT may be returned. This */
/* would be the case when the peer did not send a disconnect. spi_select */
/* would return either when it has timed out, or (on OpenVMS only) when the */
/* session disconnect timer fired. */
/**/
void wait_for_TDISind (osak_port port, struct osak_parameter_block *pb)
{
 osak_handle_count handlecount ;
 osak_handle handle ;
 unsigned long int status ;
 osak_time select_time ;

 /* Give a buffer to OSAK to get inbound event */
 give_buffer (port) ;

 /* Set up parameter to call spi_select() */
 handlecount = 1 ;
 handle.id = (unsigned long int) port ;
 handle.request_mask = OSAK_C_READEVENT ;
 handle.returned_mask = 0 ;
 select_time = OSAK_EXAMPLE_TIMEOUT ;

 status = spi_select (handlecount, &handle, &select_time) ;
 if (status != OSAK_S_NORMAL)
 {
 printf ("call to spi_select failed\n") ;
 exit (0) ;
 }

 /* See if there is an inbound event. If so call spi_get_event() */
 if (handle.returned_mask & OSAK_C_READEVENT)
 {
 /* Initialize parameter block ...*/
 .
 .
 .

 status = spi_get_event (port, pb) ;

 if ((status != OSAK_S_NORMAL) && (status != OSAK_S_NOEVENT))
 {
 printf ("call to spi_get_event failed\n");
 exit (0) ;
 }
 }
}

89

Chapter 6. Using the SPI

An application can call spi_close_port when its connection with its peer is still in progress, by
setting the OSAK_C_DESTRUCTIVE flag. This causes the OSAK software to:

● Discontinue the connection immediately

● Return all parameter blocks and buffers

● Return to the application any memory allocated to the port

This can cause loss of data, and the OSAK software informs the remote application that the connection
was terminated abnormally.

To avoid disrupting a connection, we recommend that you use the nondestructive form except in the
following circumstances:

● Your application runs out of virtual memory and cannot free enough memory to send an upper-layer
abort.

● Your application becomes constrained by lower-layer flow control, and is unable to continue. For
more information about flow control, refer to the OSI standards.

● A remote system does not disconnect on receipt of the S-RELEASE-request.

6.7. Reclaiming Memory
This section describes how to reclaim memory allocated to outbound parameter blocks and user
buffers. Note that it is always safer to delete incoming data in buffers you are reclaiming by using the
tsdu_ptr parameter rather than the data pointers, because the first buffer may contain nothing but
PCI. In that case, the peer_data (or, in the case of a REDIRECT indication, rcv_data_list)
parameter would not point to the first buffer in the linked list of buffers.

You can reclaim memory in the following ways:

● Wait until your connection closes down.

The routine spi_close_port, which you should call after you release a connection, returns
ownership of all parameter blocks and user buffers, and any unused inbound buffers, to the
application.

● Supply a completion routine with all outbound services (OpenVMS systems only).

When the completion routine starts, it indicates that the parameter block and any associated user
buffers are available for reuse.

● If you are using a blocking spi_select routine, specify both WRITE and READ events in the
request mask. If a WRITE event is indicated, call spi_collect_pb to reclaim the available
parameter blocks and buffers.

● Call spi_collect_pb whenever your application is running short of memory.

6.8. Redirecting a Connection
You can use the spi_redirect parameter to redirect a connection from one local process to another,
either immediately after setting up a connection, or during data transfer. Figure 6.7, "Using the OSAK

90

Chapter 6. Using the SPI

Redirection Service" shows how to use the OSAK redirection service immediately after setting up a
connection. You can use spi_redirect to implement a server that receives connection requests and
immediately hands them on to other applications.

Call these routines in the application that starts the redirection (the server, in the case of a process that
simply receives inbound connect requests and passes them on to processes that can handle them):

● spi_give_buffers

● spi_select followed by spi_get_event

● spi_redirect

● spi_close_port

Note that process 1 in Figure 6.7, "Using the OSAK Redirection Service" must close its port. Until the
port is closed, the OSAK software wastes resources associated with that port. The connection then
belongs to process 2, which uses the port returned in the call to spi_open_redirect.

Figure 6.7. Using the OSAK Redirection Service

Call the following routines in the application that responds to the redirection call:

● spi_open_redirect

● spi_give_buffers

● spi_select followed by spi_get_event

91

Chapter 6. Using the SPI

● spi_accept_rsp

In Figure 6.7, "Using the OSAK Redirection Service", the process that redirects the connection is not the
initiator of the connection. However, in some cases (an outbound connection-handler for example), an
application may use spi_redirect after initiating a connection.

6.9. Linking on UNIX Systems
Link your application against the following libraries:

/usr/lib/libspi.a

/usr/lib/libxtiosi.a
/usr/lib/libxti.a

Example

To link your application, you should use a command similar to the following:

/bin/cc -o osak_example_init osak_example_init.o -lspi -lxtiosi -lxti

In the above example, osak_example_init is the executable version of your application, and
osak_example_init.o is the object file.

It is important that you specify the libraries in the order shown.

6.10. Linking on OpenVMS Systems
Link your application against the following shareable image:

SYS$SHARE:OSAK$OSAKSHR.EXE

To link your application, you can either specify SYS$INPUT in place of an options file, and specify
the OSAK$OSAKSHR library, or specify the OSAK$OSAKSHR library in an options file. The default
filename for the options file is OPTIONS_FILE.OPT.

Examples

If you have no options file, use a command similar to the following:

LINK OSAK_EXAMPLE_INIT, SYS$INPUT/OPTIONS
SYS$SHARE:OSAK$OSAKSHR/SHAREABLE
Ctrl/Z

If you have an options file called OPTIONS_FILE.OPT, containing the line
SYS$SHARE:OSAK$OSAKSHR/SHAREABLE, use a command similar to the following:

LINK OSAK_EXAMPLE_INIT, OPTIONS_FILE/OPTIONS

92

Chapter 7. Introduction to
OSAKtrace
The OSAK trace utility (OSAKtrace) captures a record of what happens during an OSI information
exchange. OSAKtrace is not an implementation of any OSI standard; there is no ISO standard for OSI
tracing. You can use OSAKtrace to show that application programs using the OSAK routines conform
with the standards, and to identify any problems that may arise when one OSI application works with
another over a network.

This chapter describes the components of OSAKtrace, and explains the data units that OSAKtrace
captures. There are three sections in this chapter:

● Section 7.1, "The Components of OSAKtrace"

● Section 7.2, "What OSAKtrace Captures"

● Section 7.3, "OSAKtrace Output"

7.1. The Components of OSAKtrace
OSAKtrace has two components:

● A trace emitter, built into the OSAK software

The trace emitter generates trace binary files. You can enable the trace emitter by defining a logical
name (on OpenVMS systems) or environment variable (on UNIX or ULTRIX systems). Section
8.2.1, "Enabling Tracing by Defining a Logical Name or an Environment Variable" describes this.
The OSAK interface includes routines that you can use as another method of enabling the trace
emitter.

● A trace analyzer

The trace analyzer runs independently of the trace emitter. It analyzes trace binary files and produces
trace text files from them. To find out which data units are being exchanged during an association,
and in what order, you need to interpret the output of the trace analyzer (see Chapter 9, "Interpreting
OSAKtrace Output").

Figure 7.1, "Components of OSAKtrace" shows the components of OSAKtrace.

93

Chapter 7. Introduction to OSAKtrace

Figure 7.1. Components of OSAKtrace

7.2. What OSAKtrace Captures
OSAKtrace traces all transport service data units (TSDUs) sent or received on a connection. It can
also trace defined context set (DCS) information and error reports, but does not do so by default. It is
important to note the difference between two kinds of data unit:

● Service data units (SDUs) SDUs are exchanged by adjacent layers on a single computer system.

● Protocol data units (PDUs) PDUs are exchanged between peer entities on separate computer systems,
and stay within a single layer.

A layer in the upper layers creates a PDU by adding its own protocol control information (PCI) to an
SDU (or, in the case of an APDU, by adding its own PCI to user data).

A TSDU contains one or more session PDUs. Figure 7.2, "The Contents of a TSDU" shows the contents
of a TSDU that contains two SPDUs.

94

Chapter 7. Introduction to OSAKtrace

Figure 7.2. The Contents of a TSDU

7.3. OSAKtrace Output
The output from OSAKtrace is collected in two files:

● Section 7.3.1, "Output from the Trace Emitter", explained in Section 7.3.1, "Output from the Trace
Emitter"

● Section 7.3.2, "Output from the Trace Analyzer", explained in Section 7.3.2, "Output from the Trace
Analyzer"

7.3.1. Output from the Trace Emitter
When an application running over the OSAK software opens a port, and tracing has been enabled,
OSAKtrace opens a binary trace file:

● init_****_****.bin if the port is for an initiator

● resp_****_****.bin if the port is for a responder

● redir_****_****.bin if the port is for a redirected process

The asterisks (_****_****) represent a timestamp and some digits derived from the process
identifier, inserted by the operating system to make the file name unique.

The trace binary file is written in the directory where the application starts up.

95

Chapter 7. Introduction to OSAKtrace

7.3.2. Output from the Trace Analyzer
This section describes the output you can expect at each level of the OSI stack. Note that a PDU
becomes an SDU to the next layer down the OSI stack, and that an SDU becomes a PDU to the next
layer up the OSI stack. The SDU is whatever is passed across the interface between the layers.

Transport Level
OSAKtrace traces events in the Transport layer, for example T-CONNECT, T-DISCONNECT, and T-
WAIT-FOR-CONNECT events.

Session Level
The output consists of decoded inbound and outbound SPDUs. The session trace includes some
information about the T-CONNECT and T-DISCONNECT services that the OSAK software uses to
support the session connection.

Presentation Level
The output consists of decoded inbound and outbound presentation SDUs, which contain optional
presentation PCI and presentation data. Presentation data consists of either or both of the following:

● ACSE PDUs

● User data PDUs

OSAKtrace outputs a formatted display of presentation PCI (if presentation PCI is present). Presentation
PCI tracing consists of the session SDU octets and an analysis of the presentation PCI. The display is
embedded in the trace of the session PCI.

ACSE Level
The output consists of a formatted display of the ACSE PCI contained within the ACSE PDUs
(if present). The display is embedded in the trace of the presentation PCI, if you choose to trace
presentation PCI.

User Level
OSAKtrace attempts to generically decode user data contained within presentation data, or within other
user data. By default, the user data is embedded in the presentation PCI or ACSE PCI. The trace utility
can do the decoding only if the userdata is encoded according to the basic encoding rules (BER) for
ASN.1. If the trace utility cannot decode the user data, the output is in hexadecimal format.

96

Chapter 8. Using OSAKtrace
8.1. Using the Trace Utility
If you receive error messages when you try to use an OSAK function, and you have eliminated the
possibility of underlying network problems and application-specific errors (see the documentation for the
individual application), complete the following steps:

1. Enable trace by following the instructions in Section 8.2, "Enabling OSAKtrace".

2. Run the application again, to create a trace output file.

3. Run the trace analyzer using the osaktrace command with the appropriate options, as detailed in
Section 8.3, "Running the OSAKtrace Analyzer".

Trace output is sent to standard output unless you explicitly send it elsewhere. When you have produced
a trace file and run the trace analyzer, you must read and interpret the analysis. Chapter 9, "Interpreting
OSAKtrace Output" describes output from the trace analyzer.

8.2. Enabling OSAKtrace
You can enable tracing in either of the following ways:

● By defining a logical name (OpenVMS) or environment variable (UNIX). See Section 8.2.1,
"Enabling Tracing by Defining a Logical Name or an Environment Variable" for further information.

● Through the OSAK interface. See Section 8.2.2, "Enabling Tracing Through the Programming
Interface" for further information.

Table 8.1, "A Comparison of the Two Methods of Tracing" shows the advantages and disadvantages of
each method.

Table 8.1. A Comparison of the Two Methods of Tracing

Advantages Disadvantages

Logical name or environment variable 1

No need to modify application. Cannot choose which connections to trace.
Can be used with all applications. Traces all connections in their entirety.
Interface routines
Can selectively start and stop tracing. Cannot be used for an application that has not been

modified or originally written to include trace calls.
Can trace specific connections or parts of
connections.

1This is processwide rather than systemwide.

8.2.1. Enabling Tracing by Defining a Logical Name or
an Environment Variable
Define a logical name (OpenVMS) or environment variable (UNIX), osak_trace, as follows:

97

Chapter 8. Using OSAKtrace

● Stop the application.

● Enter the following command:

OpenVMS: $ DEFINE OSAK_TRACE ON

UNIX: either % setenv OSAK_TRACE on or % setenv OSAK_TRACE ON

● Start the application.

8.2.2. Enabling Tracing Through the Programming
Interface
The OSAK interface includes routines that allow you to control the trace emitter from within your OSI
application. You can selectively start and stop tracing at any point in the protocol activity on a specified
connection.

Use the following trace emitter calls:

● osak_trace_open

Opens a trace output file.

● osak_trace_start

Enables tracing.

● osak_trace_stop

Disables tracing.

● osak_trace_dcs_verify

Verifies the DCS and the default context on the given connection.

● osak_trace_close

Closes the trace output file.

If you enable tracing before protocol activity begins on a connection, OSAKtrace builds a table of the
presentation contexts in use on the connection. This table includes the DCS and the default context.

If you enable tracing at any other point in the protocol activity on a connection, OSAKtrace cannot build
a table of presentation contexts. In this case, when you call (osak_trace_start), you must pass to
the trace utility the identifiers of the defined context set and the default context for the connection you
want to trace.

If you try to call osak_trace_start or osak_trace_open when you have already defined
a logical name (OpenVMS) or environment variable (UNIX) as described in Section 8.2.1, "Enabling
Tracing by Defining a Logical Name or an Environment Variable", you get an error message,
OSAK_S_INVFUNC.

To override the definition, do the following:

1. Stop tracing by calling osak_trace_stop.

98

Chapter 8. Using OSAKtrace

2. Close the existing trace files by calling osak_trace_close.

3. Delete the existing trace files.

4. Deassign the logical name (OpenVMS) or environment variable (UNIX).

5. Start tracing again, by calling osak_trace_open and osak_trace_start.

VSI DECnet-Plus OSAK Programming Reference Manual describes all the OSAKtrace routine calls in
detail.

8.3. Running the OSAKtrace Analyzer
Use the osaktrace command to run the trace analyzer and analyze a trace binary file.

UNIX: osaktrace [options] input_file

OpenVMS: osaktrace input_file [qualifiers]

Ensure that you specify the input_file argument. Note that while there is a default value for the
trace output file, there is no default value for the analysis file.

Table 8.2, "Meanings of Configuration Options" shows the meanings of the available options.

Table 8.2. Meanings of Configuration Options

Switch (UNIX and
ULTRIX systems)

Qualifier (OpenVMS systems) Description

t /TRANSPORT_EVENTS Trace transport events
h /HEADERS_ONLY Trace transport events without analyzing

contents of TSDU
s /SESSION_PCI Trace session PCI
p /Presentation_PCI Trace presentation PCI
a /ACSE_PCI Trace ACSE_PCI
u /USER_DATA Trace user data
e 1 /ERRORS Trace errors
d /DCS Trace DCS setup and verification

information
f /FILTER Replace time and date strings

with XXX. For example, replace
15:24:59.94 on 14-AUG-1993
with XX:XX:XX.XX on XX-XXX-
XXXX.

o2 /OUTPUT= filename Send output to the named file
1If you select the errors option, OSAKtrace attempts to detect protocol errors. This option is most likely to be useful when you are tracing
presentation PCI and ACSE PCI.
2The name of the output file, if you supply one, must immediately follow the -o option. You can supply the other options in any order.

8.3.1. Default Options
If you do not specify any options, OSAKtrace uses a default set of options:

99

Chapter 8. Using OSAKtrace

UNIX: -t -s -p -a

The default set of options applies automatically if you choose any of the -f, -d and -e options.

OpenVMS:

/TRANSPORT_EVENTS/SESSION_PCI/PRESENTATION_PCI/ACSE_PCI

The default set of options applies automatically if you choose any of the /FILTER, /DCS and /ERRORS
qualifiers.

These options affect only what appears in the trace analysis file (readable text), not the original
trace output (binary). The binary trace output file contains all the OSAKtrace information about the
association traced.

8.3.2. Examples
UNIX:

% osaktrace -s -p -a -u -e intrace > outtrace

This example analyzes session PCI, presentation PCI, ACSE PCI, user data and errors. The trace binary
file is called intrace. The output from the trace analyzer is redirected to a file called outtrace.

% osaktrace -s -p -a -e -o outtrace intrace

This example analyzes session PCI, presentation PCI, ACSE PCI, and errors. The trace binary file is
called intrace. The output from the trace analyzer is directed to a file called outtrace.

OpenVMS:

$ osaktrace intrace /SESSION/PRES/ACSE/USER/ERRORS

This example analyzes session PCI, presentation PCI, ACSE PCI, user data and errors. The trace binary
file is called intrace.

$ osaktrace intrace /SESSION/PRES/ACSE/ERRORS/OUT=outtrace

This example analyzes session PCI, presentation PCI, ACSE PCI, and errors. The trace binary file is
called intrace. The output from the trace analyzer is directed to a file called outtrace.

8.3.3. Interpreting the OSAKtrace Analysis File
Having enabled OSAKtrace, run your application, and then run the trace analyzer to isolate the sort
of information in which you are interested. You must then interpret the OSAKtrace analysis file, as
described in Chapter 9, "Interpreting OSAKtrace Output".

To understand what the trace output tells you about problems in your OSI applications, you may need to
consult the appropriate ISO standards for detailed information on OSI communications. Consult the state
tables in the protocol specifications for the services in which you are interested.

Check, for example, that a particular PDU arrived in the correct presentation context, that it is encoded
correctly, and that its parameter values are allowed. You can then check that the parameter values are
correct.

100

Chapter 9. Interpreting OSAKtrace
Output
This chapter explains the layout of the trace information produced by the trace analyzer, and gives other
information to help you interpret the contents of a trace output file.

The amount of information in the trace file depends on the options you specify when you use the
osaktrace command. If the syntax is ASN.1-defined and has been encoded according to the ASN.1
basic encoding rules (BER), the trace output can include an analysis of the user data.

9.1. Layout of a Trace Text File
The following information is always present in a trace text file:

● The trace binary file name

● The trace text file name (if any output file is specified)

● A list of the trace options selected

● The time the trace utility started tracing (or XX-XX-XX-XX on XX-XXX-XXXX if you filtered
the output)

Example 9.1, "Introductory Lines" is an example of the introductory lines of a trace text file.

Example 9.1. Introductory Lines

Input Trace File Name : init_2222_2699.bin
Trace Options Selected : SPCI PPCI ACSEPCI UserData Errors DCS

09:22:30.94 on 5-JUN-1993 : Trace started

If, in the osaktrace command, you specify the tracing of defined context set (DCS) information
(with the /DCS qualifier on OpenVMS systems or the -d option on ULTRIX or UNIX systems), the
next item of trace information is a table showing the DCS for the connection at the time tracing started.
This table contains meaningful information only if the connection is already established when tracing
starts.

Each table entry consists of a presentation context identifier, and the related abstract syntax and transfer
syntax names or object identifiers.

Example 9.2, "DCS Table" is an example of a DCS table.

Example 9.2. DCS Table

09:22:30.94 on 5-JUN-1991 : DCS Initialized/Modified

 OSAKtrace DCS contents:

 +---+
 | PC ID | AS NAME | TS NAME |
 +---+
1	ACSE-PCI	BER
3	{1 0 8571 2 1}	BER
5	{1 0 8571 2 2}	BER

101

Chapter 9. Interpreting OSAKtrace Output

 | 7 | {1 0 8571 2 3} | BER |
 | Default | ACSE-PCI | BER |
 +---+

Example 9.3, "Analysis of a TSDU" illustrates the layout of trace information.

Example 9.3. Analysis of a TSDU

09:22:40.86 on 5-JUN-1991 : Issued T-CONNECT request

 Calling Transport Selector = "TRANI"
 Called Transport Selector = "TRANR"
 Network SAP = '49002AAA00040052A821'H
 Transport
 Options = {default = yes, tpdu max length = 128,
 reassignment time = -1, principal class = class4, alternative
 class = class4, extended format = yes, flow control = yes,
 checksum = no}

09:23:08.54 on 5-JUN-1991 : Received T-CONNECT confirmation
 Calling Transport Selector = "TRANI"
 Called Transport Selector = "TRANI"
 Network SAP = '4900CA08002B08F5C121'H
 Transport Options = {default = yes, tpdu max length = 128,
 reassignment time = -1, principal class = class4, alternative
 class = class4, extended format = yes, flow control = yes,
 checksum = no}

09:23:08.67 on 5-JUN-1991 : Issued T-DATA request

 0D FF 02 04 05 09 13 01 00 16 01 02 17 01 31 14 02 06 A5 33 05 53
 45 53 53 49 34 05 53 45 53 53 52 C1 FF 01 E3 31 82 01 DF A0 03 80
 01 01 A2 82 01 D6 80 02 07 80 81 05 50 52 45 53 49 82 05 50 52 45
 53 52 A4 5F 30 0F 02 01 01 06 04 52 01 00 01 30 04 06 02 51 01 30
 (Remainder of hexadecimal dump not shown)
.
.
.

CN-SPDU = 0D FF 02
{

 Connect/Accept Item = 05 09
 {
 Protocol Options = { } 13 01 00
 Version Number = {version-2} 16 01 02
 Init Serial Number = 1 17 01 31
 }

 Session User Requirements = {half-duplex, 14 02 06
 expedited-data, resynchronize,
 negotiated-release, exceptions, typed-data}
 Calling Session Selector = "SESSI" 33 05 53
 Called Session Selector = "SESSR" 34 05 53

102

Chapter 9. Interpreting OSAKtrace Output

 User Data = 31 82 01 DF A0 03 80 01 01 (More) C1 FF 01

 CP-type SET = 31 82
 {
 [0] IMPLICIT Mode-selector SET = A0 03

 .
 .
 .
 (Analysis of PPCI)
 .
 .
 .

 PDV-list SEQUENCE = 30 82
 {
 – Abstract Syntax Name = ACSE-PCI
 – Presentation Context Identifier = 1
 – Transfer Syntax Name = BER
 AARQ-apdu [APPLICATION 0] IMPLICIT SEQUENCE = 60 82
 {
 protocol-version [0] IMPLICIT BITSTRING = 80 02 07
 {version-1}
 .
 .
 .
 (Analysis of ACSE-PCI)
 .
 .
 .

 {
 [22] [0] IMPLICIT '02'H B6 82 00
 EXTERNAL = 28 80
 {
 direct-reference OBJECT IDENTIFIER = {2 1 1} 06 02 51
 indirect-reference INTEGER = 7 02 01 07
 single-ASN1-type [0] ANY = A0 80
 {
 – Abstract Syntax = {1 0 8571 2 3}
 – Presentation Context Identifier = 7
 – Transfer Syntax Name = BER
 [5] SEQUENCE = A5 80 30
 {
 [0] IMPLICIT '00'H 80 01 00
 [1] INTEGER = 21 A1 03 02
 [2] IMPLICIT ... = A2 0D
 {
 [0] IMPLICIT '01'H 80 01 01
 [1] IMPLICIT '283001'H 81 03 28
 [2] [APPLICATION 5] IMPLICIT '0C'H A2 03 45
 }
 [3] IMPLICIT '00'H 83 01 00
 }
 }
 }
 }
 }
 }
Similar layout for other TSDUs

Date and time at which transport connection was requested.

103

Chapter 9. Interpreting OSAKtrace Output

Transport information.

Date and time at which transport connection confirmation was received.

Hexadecimal dump of the TSDU.

Trace information on the connection session PDU begins.

Note the correspondence between this information and the hexadecimal dump.

Analysis of session PCI begins.

Analysis of session SDU begins (this is session user data).

Analysis of presentation PCI begins.

Analysis of ACSE PCI begins.

Analysis of user data begins.

Only the first three octets of the TLV (tag, length, and value) structure in the TSDU are displayed.
However, OSAKtrace records the full TLV structure.

In a presentation PDU, presentation PCI encloses the user data. For this reason, the trace output always
includes an analysis of the closing part of the presentation PCI. However, because user data is often the
last data embedded in presentation PCI, the analysis of the closing part of the presentation PCI is usually
made up of a sequence of closing braces (}).

In ASN.1, data for presentation contexts is encoded as user data. In the trace output, a user-data
termination indicates the start of each presentation context.

In the trace output, each abstract syntax analysis begins with the following items:

● Abstract syntax name

● Presentation context identifier

● Transfer syntax name

Because the enclosing PDV-list encoding is part of the presentation PCI, each abstract syntax analysis in
the trace output for fully encoded data is separated by the following expression:

PDV-list SEQUENCE =
{
Presentation-context-identifier

9.2. Rules for the Display of User Data
If you choose to trace user data, the trace analysis is displayed according to the following rules:

● If you choose to trace data from a presentation context (an abstract syntax and a transfer syntax) that
is not included in the DCS, the user data is displayed as a hexadecimal dump.

● If the presentation context that you choose to trace is included in the DCS, the user data is displayed
in generic ASN.1 if the transfer syntax is BER. If the transfer syntax is not BER, the user data is
displayed in hexadecimal format.

104

Chapter 9. Interpreting OSAKtrace Output

9.3. Layout of Headers-Only Transport and
Session Trace Data
If you use the headers-only option, OSAKtrace traces transport events, but does not analyze them.

Example 9.4, "Headers-Only Transport and Session Trace Data" is an example of the output you can
expect if you select -h or /HEADERS_ONLY.

Example 9.4. Headers-Only Transport and Session Trace Data

Input trace file name : resp_0759_388.bin
Trace options selected : EventHeaders

18:07:59.69 on 4-SEP-1991 : Trace started

18:07:59.69 on 4-SEP-1991 : Waiting for T-CONNECT indication

18:08:16.12 on 4-SEP-1991 : Received T-CONNECT indication

18:08:16.15 on 4-SEP-1991 : Issued T-CONNECT response

18:08:23.33 on 4-SEP-1991 : Received T-DATA indication

18:08:27.70 on 4-SEP-1991 : Issued T-DATA request

18:08:43.25 on 4-SEP-1991 : Received T-DATA indication

18:08:49.11 on 4-SEP-1991 : Received T-DATA indication

18:08:55.10 on 4-SEP-1991 : Issued T-DATA request

18:09:05.41 on 4-SEP-1991 : Received T-DISCONNECT indication

18:09:07.66 on 4-SEP-1991 : Trace stopped

105

Chapter 9. Interpreting OSAKtrace Output

106

Appendix A. Standards
Information
This appendix lists the internationally recognized standards and agreements that OSAK implements.

A.1. Protocol Specifications (ISO Standards)
● ISO 8327 Information Processing Systems — Open Systems Interconnection — Basic Connection

Oriented Session Protocol Specification

● ISO 8823 Information Processing Systems — Open Systems Interconnection — Connection Oriented
Presentation Protocol Specification

● ISO 8650 Information Processing Systems — Open Systems Interconnection — Protocol Specification
for the Association Control Service Element

A.2. Service Definitions (ISO Standards)
● ISO 8326 Information Processing Systems — Open Systems Interconnection — Basic Connection

Oriented Session Service Definition

● ISO 8822 Information Processing Systems — Open Systems Interconnection — Connection Oriented
Presentation Service Definition

● ISO 8649 Information Processing Systems — Open Systems Interconnection — Service Definition for
the Association Control Service Element

A.3. Abstract Syntax Notation (ISO Standards)
● ISO 8824 Information Processing Systems — Open Systems Interconnection — Specification of

Abstract Syntax Notation One (ASN.1)

● ISO 8825 Information Processing Systems — Open Systems Interconnection — Specification of Basic
Encoding Rules for Abstract Syntax Notation One (ASN.1)

A.4. ROSE Documents (CCITT
Recommendations)
● CCITT Recommendation X.219 ROSE Service Definition (ISO 9072–1)

● CCITT Recommendation X.229 ROSE Protocol Definition (ISO 9072–2)

A.5. NIST Agreements
NIST Special Publication 500-177, Stable Implementation Agreements for Open Systems Interconnection
Protocols Version 3 Edition 1 December 1989

107

Appendix A. Standards Information

A.6. Ordering Documents
You can obtain these documents from the national standards body in your own country. To find the
name and address of your national standards body, write to the following address:

U.N. Bookstall
United Nations Assembly Building
New York
NY 11017
USA

108

Appendix B. PresentationAddress
Data Type Used in Network
Management
The PresentationAddress data type defines the format that should be used for all presentation
addresses in OSI applications. It is also the format in which presentation addresses are displayed by OSI
network management.

This data type is a Latin1 string. Its values must conform to the following syntax (shown in Backus-
Naur form (BNF)). This syntax is an extension of the Internet standard for representing OSI presentation
addresses. Note that the numbers in the right-hand margin refer to restrictions and comments listed after
the syntax definitions.

<presentation-address> ::=

[[[<psel> "/"]<ssel> "/"]<tsel> "/"] <network-address-list>

<psel> ::= <selector>

<ssel> ::= <selector>

<tsel> ::= <selector>

<selector> ::= ’"’ <otherstring> ’"
 | "#" <digitstring>
 | "’" <hexstring> "’H"
 | ""

<network-address-list> ::= <network-addr> ["|" <network-addr>]
 | <network-addr>

<network-addr> ::= <network-address> ["," <network-type>]

<network-type> ::= "CLNS" | "CONS" | "RFC1006"

<network-address> ::= "NS" "+" <dothexstring>
 | <afi> "+" <idi> ["+" <dsp>]
 | <idp> "+" <hexstring>
 | RFC1006 "+" <ip> ["+" <port>]

<idp> ::= <digitstring>

<dsp> ::= "d" <digitstring>
 | "x" <dothexstring>
 | "l" <otherstring>
 | "RFC1006" "+" <prefix> "+" <ip> ["+" <port> ["+" <tsel>]]
 | "X.25(80)" "+" <prefix> "+" <dte>
 ["+" <cudf-or-pid> "+" <hexstring>]
 | "ECMA-117-Binary" "+" <hexstring>
 "+" <hexstring> "+" <hexstring>
 | "ECMA-117-Decimal" "+" <digitstring>
 "+" <digitstring> "+" <digitstring>

109

Appendix B. PresentationAddress Data Type Used in Network Management

<idi> ::= <digitstring>

<afi> ::= "X121" | "DCC" | "TELEX" | "PSTN"
 | "ISDN" | "ICD" | "LOCAL"

<prefix> ::= <digit> <digit>

<ip> ::= <domainstring>

<port> ::= <digitstring>

<tset> ::= "TCP" | "IP" | <digitstring>

<dte> ::= <digitstring>

<cudf-or-pid> ::= "CUDF" | "PID"

<decimaloctet> ::= <digit> | <digit> <digit> | <digit> <digit> <digit>

<digit> ::= [0-9]

<digitstring> ::= <digit> <digitstring> | <digit>

<domainchar> ::= [0-9 | a-z | A-Z | - | .]

<domainstring> ::= <domainchar> <otherstring> | <domainchar>

<dotstring> ::= <decimaloctet> "." <dotstring>
 | <decimaloctet> "." <decimaloctet>

<dothexstring> ::= <dotstring> | <hexstring>

<hexdigit> ::= [0-9 | a-f | A-F]

<hexoctet> ::= <hexdigit> <hexdigit>

<hexstring> ::= <hexoctet> <hexstring> | <hexoctet>

<other> ::= [0-9 | a-z | A-Z | + | - | .]

<otherstring> ::= <other> <otherstring> | <other>

Notes
Value restricted to printed characters

US GOSIP requirement

Network type identifier (the default is Connectionless-Mode Network Services (CLNS))

Concrete binary representation of network service access point (NSAP) address value

ISO 8348 compatibility

RFC 1006 preferred format

110

Appendix B. PresentationAddress Data Type Used in Network Management

Abstract decimal format for domain specific part (DSP)

Abstract binary for DSP

Printable character format for DSP (for local use only)

Dotted decimal notation (for example, 10.0.0.6) or domain name (for example, twg.com)

TCP port number (the default is 102)

Internet transport protocol identifier

1 = TCP and 2 = UDP

Keywords can be specified in either uppercase or lowercase. However, <selector> values are case-
sensitive. Spaces are significant.

You can find more information about network (NSAP) addresses in the DECnet-Plus introductory and
planning documentation.

111

Appendix B. PresentationAddress Data Type Used in Network Management

112

	VSI DECnet-Plus OSAK Programming
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Prerequisites
	4. Document Structure
	5. Related Documents
	6. VSI Encourages Your Comments
	7. OpenVMS Documentation
	8. Typographical Conventions
	9. Abbreviations

	Chapter 1. OSI Networking Concepts
	1.1. The OSI Seven-Layer Model
	1.1.1. The Application Layer
	1.1.2. Presentation Layer
	1.1.2.1. Syntax Conversion
	1.1.2.2. Presentation Context
	1.1.2.3. Transfer Syntax
	1.1.2.4. Abstract Syntax Notation
	1.1.2.5. ASN.1 Compiler

	1.1.3. Session Layer
	1.1.3.1. Session Layer Services

	1.2. Connections and Associations
	1.2.1. Services
	1.2.2. Phases of an Association
	1.2.2.1. Setup and Negotiation
	1.2.2.2. Data Exchange
	1.2.2.3. Release or Abort

	1.3. Types of Data
	1.3.1. User Data
	1.3.2. Capability Data
	1.3.3. Expedited Data
	1.3.4. Typed Data

	1.4. OSI Information Exchange
	1.4.1. Activities
	1.4.1.1. Phases of an Activity
	1.4.1.2. Relationship to Associations

	1.4.2. Functional Units
	1.4.2.1. Presentation Functional Units
	1.4.2.2. Session Functional Units

	1.4.3. Synchronization Points and Resynchronization
	1.4.4. Tokens
	1.4.5. Data Segmentation

	1.5. Exception Reports

	Chapter 2. Introduction to the OSAK Interface
	2.1. The Application Programming Interface
	2.2. The ROSE API
	2.3. The Session Programming Interface
	2.4. The OSAK Parameter Block
	2.4.1. Outbound Calls
	2.4.2. Inbound Events

	2.5. Management of User Buffers
	2.6. Redirecting an Association
	2.7. Outbound Addressing
	2.7.1. Making a Connection to a Specified Application
	2.7.2. Specifying Transport Templates
	2.7.3. Specifying a Multihomed Address

	2.8. Inbound Addressing
	2.9. Segmentation Across the OSAK Interface
	2.9.1. Segmentation at the Session Layer

	2.10. OSAK Status Codes
	2.10.1. The Status of a Call
	2.10.2. Order of Completion of Calls

	2.11. Restrictions

	Chapter 3. Planning Your Application
	3.1. Decision Checklist
	3.2. Managing Memory
	3.2.1. Deciding How Much Memory to Allocate
	3.2.1.1. Deciding on the Parameter Block Workspace Size
	3.2.1.2. Deciding on the Size and Number of User Buffers

	3.2.2. Deciding How to Reclaim Memory
	3.2.3. Keeping Track of Buffers Used for Outbound Calls
	3.2.4. Choosing Between Static and Dynamic Allocation of Memory

	3.3. Considering Your Application's Addressing Needs
	3.4. Choosing Between Single and Multiple Associations
	3.5. Choosing Between Active and Passive Associations (OpenVMS Systems Only)
	3.6. Making an Application Portable
	3.7. Waiting to Receive Data
	3.7.1. Advantages and Disadvantages of Asynchronous and Synchronous Notification

	Chapter 4. Using the API
	4.1. Writing an OSAK Application
	4.2. Using Parameter Blocks
	4.2.1. Preparing to Construct a Parameter Block
	4.2.2. Constructing a Parameter Block
	4.2.3. Presentation PCI and ACSE-PCI Syntaxes

	4.3. Building a User Buffer
	4.4. Setting Up an Association
	4.4.1. Getting an Identifier for the Association
	4.4.2. Passing Buffers to the OSAK Interface
	4.4.3. Preparing to Receive and Examining Inbound Events
	4.4.3.1. Polling and Blocking
	4.4.3.2. Asynchronous Event Notification (OpenVMS only)
	4.4.3.3. Using the Request Mask in the osak_select Routine
	4.4.3.4. Examining Incoming Data Units

	4.4.4. Requesting an Association and Responding to a Request

	4.5. Sending Data
	4.6. Releasing an Association
	4.6.1. Issuing the Release Request
	4.6.2. Responding to a Release Request
	4.6.3. Closing the Port

	4.7. Reclaiming Memory
	4.8. Redirecting an Association
	4.9. Linking on UNIX Systems
	4.10. Linking on ULTRIX Systems
	4.11. Linking on OpenVMS Systems
	4.12. Using Abstract Syntax Notation
	4.12.1. Using an ASN.1 Compiler
	4.12.2. Notes on Using Another Method of Encoding

	Chapter 5. Using the ROSE API
	5.1. Functions Provided by the ROSE Programming Interface
	5.1.1. The ROSE Parameter Block
	5.1.1.1. ROSE Parameter Block Before and After Decoding
	5.1.1.2. Structure of an APDU Containing ROSE Data

	5.2. Making the Definitions for a ROSE-Based Application
	5.2.1. Mandatory Definitions
	5.2.2. Optional Definitions

	5.3. Writing a ROSE-Based ASE
	5.3.1. Considerations for Both the Client and the Server
	5.3.2. Implementing the Client
	5.3.3. Implementing a ROSE Server

	5.4. Linking on UNIX Systems
	5.5. Linking on ULTRIX Systems
	5.6. Linking on OpenVMS Systems
	5.7. Using Abstract Syntax Notation
	5.7.1. Using an ASN.1 Compiler
	5.7.1.1. Notes on Using Another Method of Encoding

	Chapter 6. Using the SPI
	6.1. Writing an OSAK Application
	6.2. Using Parameter Blocks
	6.2.1. Preparing to Construct a Parameter Block
	6.2.2. Constructing a Parameter Block

	6.3. Building a User Buffer
	6.4. Setting Up a Connection
	6.4.1. Getting an Identifier for the Connection
	6.4.2. Passing Buffers to the OSAK Interface
	6.4.3. Preparing to Receive and Examining Inbound Events
	6.4.3.1. Polling and Blocking
	6.4.3.2. Asynchronous Event Notification (OpenVMS only)
	6.4.3.3. Using the Request Mask in the spi_select Routine
	6.4.3.4. Examining Incoming Data Units

	6.4.4. Requesting an Association and Responding to a Request

	6.5. Sending Data
	6.6. Releasing a Connection
	6.6.1. Issuing the Release Request
	6.6.2. Responding to a Release Request
	6.6.3. Closing the Port

	6.7. Reclaiming Memory
	6.8. Redirecting a Connection
	6.9. Linking on UNIX Systems
	6.10. Linking on OpenVMS Systems

	Chapter 7. Introduction to OSAKtrace
	7.1. The Components of OSAKtrace
	7.2. What OSAKtrace Captures
	7.3. OSAKtrace Output
	7.3.1. Output from the Trace Emitter
	7.3.2. Output from the Trace Analyzer

	Chapter 8. Using OSAKtrace
	8.1. Using the Trace Utility
	8.2. Enabling OSAKtrace
	8.2.1. Enabling Tracing by Defining a Logical Name or an Environment Variable
	8.2.2. Enabling Tracing Through the Programming Interface

	8.3. Running the OSAKtrace Analyzer
	8.3.1. Default Options
	8.3.2. Examples
	8.3.3. Interpreting the OSAKtrace Analysis File

	Chapter 9. Interpreting OSAKtrace Output
	9.1. Layout of a Trace Text File
	9.2. Rules for the Display of User Data
	9.3. Layout of Headers-Only Transport and Session Trace Data

	Appendix A. Standards Information
	A.1. Protocol Specifications (ISO Standards)
	A.2. Service Definitions (ISO Standards)
	A.3. Abstract Syntax Notation (ISO Standards)
	A.4. ROSE Documents (CCITT Recommendations)
	A.5. NIST Agreements
	A.6. Ordering Documents

	Appendix B. PresentationAddress Data Type Used in Network Management

