
VSI OpenVMS Delta/XDelta
Debugger Manual

Document Number: DO-DDXDDM-01A

Publication Date: March 2024

Operating System and Version: VSI OpenVMS Integrity Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI OpenVMS Delta/XDelta Debugger Manual

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or other
countries.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vista is either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is a registered trademark of The Open Group.

UNIX is a registered trademark of The Open Group.

ii

VSI OpenVMS Delta/XDelta Debugger Manual

Preface ... v
1. About VSI .. v
2. Intended Audience ... v
3. Document Structure ... v
4. VSI Encourages Your Comments .. v
5. OpenVMS Documentation ... v
6. Typographical Conventions ... v

Chapter 1. Invoking, Exiting, and Setting Breakpoints ... 1
1.1. Overview of the DELTA and XDELTA Debuggers .. 1
1.2. Privileges Required for Running DELTA .. 1
1.3. Guidelines for Using XDELTA .. 1
1.4. Restrictions for XDELTA on OpenVMS I64 Systems .. 2
1.5. Invoking DELTA .. 2
1.6. Exiting from DELTA .. 3
1.7. Invoking XDELTA .. 3
1.8. Requesting an Interrupt ... 4

1.8.1. Requesting Interrupts on VAX .. 5
1.8.2. Requesting Interrupts on Alpha ... 6
1.8.3. Requesting Interrupts on I64 ... 7

1.9. Accessing the Initial Breakpoint ... 7
1.10. Proceeding from Initial XDELTA Breakpoints ... 7
1.11. Exiting from XDELTA .. 8

Chapter 2. DELTA and XDELTA Symbols and Expressions .. 9
2.1. Symbols Supplied by DELTA and XDELTA ... 9
2.2. Floating Point Register Support .. 11
2.3. Forming Numeric Expressions .. 12

Chapter 3. Debugging Programs ... 13
3.1. Referencing Addresses ... 13

3.1.1. Referencing Addresses (I64 and Alpha Only) .. 13
3.1.2. Referencing Addresses (VAX Only) ... 16

3.2. Referencing Registers .. 18
3.2.1. Referencing Registers (I64 Only) ... 18
3.2.2. Referencing Registers (Alpha Only) ... 18
3.2.3. Referencing Registers (VAX Only) .. 19

3.3. Interpreting the Error Message ... 20
3.4. Debugging Kernel Mode Code Under Certain Conditions ... 20

3.4.1. Setup Required (I64 and Alpha Only) .. 20
3.4.2. Setup Required (VAX Only) ... 21
3.4.3. Accessing XDELTA ... 21

3.5. Debugging an Installed, Protected, Shareable Image ... 21
3.6. Using XDELTA on Multiprocessor Computers .. 22
3.7. Debugging Code When Single-Stepping Fails (Alpha Only) .. 22
3.8. Debugging Code that Does Not Match the Compiler Listings (I64 and Alpha Only) 23

Chapter 4. DELTA/XDELTA Commands .. 25
[(left angle bracket)—Set Display Mode .. 26
/ (forward slash)—Open Location and Display Contents in Prevailing Width Mode 27
! (exclamation mark)—Open Location and Display Contents in Instruction Mode 30
" (double quote)—Open Location and Display Contents in ASCII ... 32
’ (single quote)—Deposit ASCII String .. 33
= (equal sign)—Display Value of Expression ... 34

iii

VSI OpenVMS Delta/XDelta Debugger Manual

\string\—Immediate mode text display command (I64 and Alpha Only) 34
ESC (Escape key)—Open Location and Display Previous Location 35
EXIT—Exit from DELTA Debugging Session ... 35
LINEFEED (Linefeed key or Ctrl/J)—Close Current Location, Open Next Location 36
RETURN (Return or Enter key)—Close Current Location ... 37
TAB (Tab key)—Open Location and Display Indirect Location ... 38
;B—Breakpoint ... 39
;C—Force System to Bugcheck and Crash (I64 and Alpha Only) .. 42
;D—Dump (I64 and Alpha Only) ... 43
;E—Execute Command String ... 44
;G—Go .. 45
;H—Video Terminal Display Command (I64 and Alpha Only) ... 46
;I—List Current Main Image and Its Shareable Images (I64 and Alpha Only) 46
;L—List Names and Locations of Loaded Executive Images .. 47
;M—Set All Processes Writable ... 50
;P—Proceed from Breakpoint ... 50
;Q—Validate Queue (I64 and Alpha Only) ... 51
;T—Display Interrupt Stack Frame on XDELTA (I64 Only) ... 52
;W—List Name and Location of a Single Loaded Image (I64 and Alpha Only) 55
;X—Load Base Register .. 56
O—Step Instruction over Subroutine ... 59
S—Step Instruction ... 61

Appendix A. Sample DELTA Debug Session on I64 ... 65
A.1. Listing File for C Example Program .. 65

A.1.1. Source Listing for I64 Debugging Example .. 65
A.1.2. Machine Code Listing for I64 Debugging Example ... 67

A.2. Example DELTA Debugging Session on I64 ... 70
Appendix B. Sample DELTA Debug Session on Alpha ... 75

B.1. Listing File for C Example Program ... 75
B.1.1. Source Listing for Alpha Debugging Example .. 75
B.1.2. Machine Code Listing for Alpha Debugging Example .. 77

B.2. Example DELTA Debugging Session on Alpha ... 81
B.2.1. DELTA Debugging Session Example on Alpha - Part 1 81
B.2.2. DELTA Debugging Session Example on Alpha - Part 2 82
B.2.3. DELTA Debugging Session Example on Alpha - Part 3 83

Appendix C. Sample DELTA Debug Session on VAX ... 85
C.1. Listing Files for Example Program ... 85

C.1.1. Source Listing for VAX Debugging Example ... 85
C.1.2. Map File for VAX Debugging Example ... 86

C.2. Example DELTA Debugging Session on VAX .. 87
C.2.1. DELTA Debugging Session Example on VAX - Part 1 .. 87
C.2.2. DELTA Debugging Session Example on VAX - Part 2 .. 88
C.2.3. DELTA Debugging Session Example on VAX - Part 3 .. 89
C.2.4. DELTA Debugging Session Example on VAX - Part 4 .. 90

iv

Preface
This manual describes the OpenVMS DELTA and XDELTA debuggers. OpenVMS DELTA is used to
debug programs that run in privileged processor mode at interrupt priority level 0. OpenVMS XDELTA
is used to debug system software that runs at an elevated interrupt priority level.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is written for programmers who debug system code for device drivers and other images that
execute in privileged processor-access modes or at an elevated interrupt priority level (IPL).

3. Document Structure
This manual is organized as follows:

• Chapter 1 provides an overview and descriptions for the DELTA and XDELTA Debuggers and
breakpoints.

• Chapter 2 describes the DELTA and XDELTA symbols.

• Chapter 2 describes how to debug programs.

• Chapter 3 describes the DELTA and XDELTA commands.

• Appendix A describes an OpenVMS I64 debugging session using DELTA.

• Appendix B describes an OpenVMS Alpha debugging session using DELTA.

• Appendix C describes an OpenVMS VAX debugging session using DELTA.

4. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. Typographical Conventions
The following conventions are used in this manual:

v

https://docs.vmssoftware.com

Preface

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (x) or a pointing
device button.

... A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose
choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
directory specifications and for a substring specification in an assignment
statement.

| In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

{ } In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type Bold type represents the name of an argument, an attribute, or a reason. Bold
type also represents the introduction of a new term.

italic type Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies website addresses, UNIX
commands and pathnames, PC-based commands and folders, and certain
elements of the C programming language.

- A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the following
line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

vi

Chapter 1. Invoking, Exiting, and
Setting Breakpoints
This chapter presents an overview of the DELTA and XDELTA debuggers, and provides the following
information:

• Privileges required for running DELTA

• Guidelines for using XDELTA

• Invoking and terminating DELTA and XDELTA debugging sessions on OpenVMS systems

• Booting XDELTA, requesting interrupts, and accessing initial breakpoints on OpenVMS systems

1.1. Overview of the DELTA and XDELTA
Debuggers
The DELTA and XDELTA debuggers are used to monitor the execution of user programs and the
OpenVMS operating system. They use the same commands and the same expressions, but they differ in
how they operate. DELTA operates as an exception handler in a process context. XDELTA is invoked
directly from the hardware SCB vector in a system context.

Use DELTA to debug process-context programs that execute at interrupt priority level (IPL) 0 in any
processor mode. You cannot use DELTA to debug code that executes at an elevated IPL. To debug with
DELTA, invoke it from within your process by specifying it as the debugger (as opposed to the symbolic
debugger).

Use XDELTA to debug system software executing in any processor mode or at any IPL level. Because
XDELTA is not process specific, it is not invoked from a process. To debug with XDELTA, you must
boot the processor with commands to include XDELTA in memory. XDELTA's existence terminates
when you reboot the processor without XDELTA.

1.2. Privileges Required for Running DELTA
No privileges are required to run DELTA to debug a program that runs in user mode. To debug a
program that runs in other processor-access modes, the process in which you run the program must have
the necessary privileges.

To use the ;M command, your process must have change-mode-to-kernel (CMKRNL) privilege. The ;M
command sets all processes writable.

To use the ;L command (List All Loaded Executive Modules), you must have change-mode-to-
executive (CMEXEC) privilege.

1.3. Guidelines for Using XDELTA
Because XDELTA is not process specific, privileges are not required.

When using XDELTA, you must use the console terminal. You should run XDELTA only on a
standalone system because all breakpoints are handled at IPL 31.

1

Chapter 1. Invoking, Exiting, and Setting Breakpoints

You cannot redirect output from XDELTA. To determine if your system maintains a log file, check your
hardware manual. You can produce a log of console sessions by connecting the console serial port of the
system that will boot with XDELTA to the serial port of a LAT server. Then, from another system, use
the command SET HOST/LAT/LOG to that LAT port.

1.4. Restrictions for XDELTA on OpenVMS I64
Systems
The following Intel® Itanium® hardware registers are not supported by XDELTA on OpenVMS I64
systems:

• CPUID

• Debug Data Break Registers

• Debug Instruction Break Registers

• Region Registers

• Protection Key Registers

• Instruction Translation Registers

• Data Translation Registers

• Device Interrupt Control Register

1.5. Invoking DELTA
To invoke DELTA, perform the following steps after assembling (or compiling) and linking your
program:

1. Define DELTA as the default debugger instead of the symbolic debugger with the following
command:

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA

2. Use the following RUN command to execute your program:

$ RUN/DEBUG MYPROG

When DELTA begins execution, it displays its name and the first executable instruction in the program
with which it is linked. It displays the address of that instruction, a separator—an exclamation point (!)
on I64 and Alpha, and a slash (/) on VAX—and the instruction and its operands.

On I64, the name and starting address are displayed as follows:

hp OpenVMS Industry Standard 64 DELTA Debugger
Brk 0 at address
address! instruction operands

On Alpha, the name and starting address are displayed as follows:

OpenVMS Alpha DELTA Debugger
Brk 0 at address

2

Chapter 1. Invoking, Exiting, and Setting Breakpoints

address! instruction operands

On VAX, the name, current version number, and address are displayed as follows:

DELTA Version 5.5
address/instruction operands

DELTA is then ready for your commands.

You can redirect output from a DELTA debugging session by assigning DBG$DELTA to the I/O device.

Note

The image activator on OpenVMS Alpha systems automatically activates
SYS$SHARE:SYS$SSISHR.EXE when an image is debugged using the RUN/DEBUG command
or is linked using the /DEBUG qualifier. The presence of this image should not alter your program's
correctness, but if your program is sensitive to virtual address layout or if for some reason
SYS$SHARE:SYS$SSISHR.EXE is not installed properly on your system, you may want to bypass its
automatic activation.

To keep the image activator from activating SYS$SHARE:SYS$SSISHR.EXE for you, define the logical
name SSI$AUTO_ACTIVATE to be OFF before running the program to be debugged with DELTA.

1.6. Exiting from DELTA
To exit from DELTA, type EXIT and press the Return key. When you are in user mode, you exit
DELTA and your process remains. When you are in a privileged access mode, your process can be
deleted.

1.7. Invoking XDELTA
To invoke XDELTA, perform the following steps:

1. Boot the system using a console command or a command procedure that includes XDELTA.

2. On VAX, an initial XDELTA breakpoint is taken so that you can set additional breakpoints or
examine and change locations in memory. XDELTA displays the following breakpoint message:

1 BRK at address
address/instruction

Note

Never clear breakpoint 1 from any code being debugged in XDELTA. If you accidentally clear
breakpoint 1 and no other breakpoints are set, you cannot use XDELTA until you reboot again with
XDELTA.

On I64 and Alpha, two initial XDELTA breakpoints are taken so that you can set additional
breakpoints or examine and change locations in memory. XDELTA displays the following message
for the first breakpoint:

BRK 0 at address
address!instruction

3

Chapter 1. Invoking, Exiting, and Setting Breakpoints

3. On all processors, proceed from the initial breakpoint, using the following command:

;P Return

On VAX, the procedure for booting the system with XDELTA differs, depending on the model of your
system. Each procedure uses commands that include XDELTA in memory and cause the execution of a
breakpoint in OpenVMS initialization routines. Execution of the breakpoint instruction transfers program
control to a fault handler located in XDELTA.

Some boot procedures require the use of the /R5 qualifier with the boot command. The /R5 qualifier
enters a value for a flag that controls the way XDELTA is loaded. The flag is a 32-bit hexadecimal
integer loaded into R5 as input to VMB.EXE, the primary boot program. For a description of the valid
values for this flag, see Table 1.1.

Note

When you deposit a boot command qualifier value in R5, make sure that any other values you would
normally deposit are included. For example, if you were depositing the number of the system root
directory from which you were booting and an XDELTA value, R5 would contain both values.

For directions for booting XDELTA on VAX, see the OpenVMS VAX supplement specific to your
computer.

On Alpha, the procedure for booting all Alpha systems with XDELTA is the same. For one example of
how to boot XDELTA, use the boot command as follows:

>>> BOOT -FLAG 0,6

On I64, the procedure for booting with XDELTA is the same. For an example of how to boot XDELTA,
use the boot command as follows:

fs0:\efi\vms\> vms_loader -fl 0,6

On I64 and Alpha, the flag for specifying boot qualifiers is a 64-bit integer that is passed directly as
input to the primary boot program; IPB.EXE on I64 and APB.EXE on Alpha. For a description of the
valid values for this flag, see Table 1.1.

Table 1.1. Boot Command Qualifier Values

Value Description

0 Normal, nonstop boot (default)
1 Stop in SYSBOOT
2 Include XDELTA, but do not take the initial breakpoint
3 Stop in SYSBOOT, include XDELTA, but do not take the initial breakpoint
6 Include XDELTA, and take the initial breakpoint
7 Include XDELTA, stop in SYSBOOT, and take the initial breakpoint at system initialization

1.8. Requesting an Interrupt
If you set the boot control flag to 6, XDELTA will stop at an initial breakpoint during the system boot
process. You can then set other breakpoints or examine locations in memory.

4

Chapter 1. Invoking, Exiting, and Setting Breakpoints

Your program can also call the routine INI$BRK, which in turn executes the first XDELTA breakpoint.
For the breakpoint procedure, see Section 1.9.

Once loaded into memory, XDELTA can also be invoked at any time from the console by requesting a
software interrupt. For example, you might need to use a software interrupt to enter XDELTA if your
program is in an infinite loop or no INI$BRK call had been made.

On VAX, INI$BRK is defined as XDELTA's breakpoint 1.

Note

On VAX, never clear breakpoint 1 from any code being debugged in XDELTA. If you accidentally clear
breakpoint 1 and no other breakpoints are set, you cannot use XDELTA again until you reboot with
XDELTA.

On I64 and Alpha, INI$BRK is defined as XDELTA's breakpoint 0. It is not possible to clear breakpoint
0 from any code being debugged in XDELTA.

1.8.1. Requesting Interrupts on VAX
On VAX 8530, 8550, 8600, 8650, 8810 (8700), 8820, 8820-N (8800), 8830,8840, VAX-11/780, or
VAX-11/785 computers,enter the following commands at the console terminal to request the interrupt:

$ Ctrl/P
>>> HALT
>>> D/I 14 E
>>> C

For a VAX 9000 computer, enter the following commands at the console terminal to request the
interrupt:

$ Ctrl/P
>>> HALT/CPU=ALL
>>> D/I 14 E
>>> C/CPU=ALL

For a VAX 6000 series, 8200, 8250, 8300, 8350, VAX-11/730, or a VAX-11/750 computer, enter the
following commands:

$ BOX
>>> D/I 14 E
>>> C

For a VAX station 3520 or 3540 computer, perform the following steps:

1. Press and release the Halt button on the CPU control panel. When you release the Halt button, make
sure it is popped out or the system will remain halted. You can also press the Break key (if enabled)
on the console terminal.

2. Enter the following commands:

>>>
D/I 14 E
>>>
C/ALL

5

Chapter 1. Invoking, Exiting, and Setting Breakpoints

For a VAXft-3000, VAXft-410, VAXft-610, or VAXft-612 computer, enter the following commands at
the console terminal to request the interrupt:

$ Break or F5
>>> HALT
>>> D/I 14 E
>>> CONT
>>> PIO

For a VAX 7000 or VAX 10000 series computer, enter the following commands at the console terminal
to request the interrupt. If you are operating in secure mode, first set the key switch to ENABLE before
entering these commands.

$ Ctrl/P
>>> D IPR:14 E
>>> CONT

For a VAXstation 2000, MicroVAX 2000, MicroVAX 3300/3400 series, MicroVAX or VAXstation
3500/3600 series, MicroVAX 3800/3900 series, VAX 4000 series, or MicroVAX II computer, perform
the following steps:

1. Press and release the Halt button on the CPU control panel. When you release the Halt button, make
sure it is popped out or the system will remain halted. You can also press the Break key (if enabled)
on the console terminal.

2. Enter the following commands:

>>> D/I 14 E
>>> C

For an alternative method of accessing OpenVMS through a lower priority interrupt, see the
VSI OpenVMS System Manager's Manual, Volume 1: Essentials.

1.8.2. Requesting Interrupts on Alpha
On Alpha systems, perform the following steps to request an interrupt:

1. Halt the processor with the following command:

^P

2. Request an IPL 14 software interrupt with the following command:

>>> DEP SIRR E

This command deposits a 14 10 into the software interrupt request register.

3. Reactivate the processor by issuing the CONTINUE command as follows:

>>> CONT

The process should enter XDELTA as soon as IPL drops to 14.

The following message is displayed:

Brk 0 at address
address!instruction

6

Chapter 1. Invoking, Exiting, and Setting Breakpoints

At this point, the exception frame is on the stack. The saved PC/PS in the exception frame tells you
where you were in the program when you requested the interrupt.

1.8.3. Requesting Interrupts on I64
To request an interrupt on I64, type Ctrl/P on the console terminal. Note that XDELTA must have been
loaded previously.

When you press Ctrl/P, the system is halted at the current PC and at the current IPL. The system must
be executing below IPL 8. When the system reaches this state, execution is suspended at the PC that was
executing at the time of the interrupt.

1.9. Accessing the Initial Breakpoint
When debugging a program, you can set a breakpoint in the code so that XDELTA gains control of
program execution.

To set a breakpoint, place a call to the system routine INI$BRK in the source code.

On systems that are booted with XDELTA, the INI$BRK routine executes a breakpoint instruction. On
systems that are not booted with XDELTA, INI$BRK is effectively a NOP instruction.

You can use the INI$BRK routine as a debugging tool, placing calls to this routine in any part of the
source code you want to debug.

On VAX, the instruction following the breakpoint is RSB. After the break is taken, the return address
(the address in the program to which control returns when you proceed from the breakpoint) is on the
top of the stack.

The following command calls the INI$BRK system routine to reach the breakpoint:

JSB G^INI$BRK

On Alpha, the instruction following the breakpoint is JSR R31,(R26). After the break is taken, the return
address (the address in the program to which control returns when you proceed from the breakpoint) is
in R26.

On I64, simply step until you reach a br.ret instruction.

The following C routine calls the INI$BRK system routine to reach the breakpoint:

extern void ini$brk(void);
main()
{
 ini$brk();
}

1.10. Proceeding from Initial XDELTA
Breakpoints
On VAX, when XDELTA reaches one of its breakpoints, it displays the following message:

1 BRK AT nnnnnnnn
address/instruction operands

7

Chapter 1. Invoking, Exiting, and Setting Breakpoints

On I64 and Alpha, when XDELTA reaches one of its breakpoints, it displays the following message:

BRK 1 AT nnnnnnnn
address!instruction operands

On multiprocessor computers, the XDELTA breakpoint is taken on the processor upon which the
XDELTA software interrupt was requested, which is generally the primary processor.

At this point, XDELTA is waiting for input. If you want to proceed with program execution, enter the
;P command. If you want to do step-by-step program execution, enter the S command. If you know
where you have set breakpoints, examine them using the ;B command. You can also set additional
breakpoints or modify existing ones.

If you entered the ;P command to proceed with program execution and the system halts with a fatal
bugcheck, the system prints the bugcheck information on the console terminal. Bugcheck information
consists of the following:

• Type of bugcheck

• Contents of the registers

• A dump of one or more stacks

• A list of loaded executive images

The contents of the program counter (PC) and the stack indicate where the failure was detected. Then,
if the system parameter BUGREBOOT was set to 0, XDELTA issues a prompt. You can examine the
system's state further by entering XDELTA commands.

1.11. Exiting from XDELTA
XDELTA remains in memory with the operating system until you reboot without it.

8

Chapter 2. DELTA and XDELTA
Symbols and Expressions
This chapter describes how to form the symbolic expressions used as arguments to many DELTA and
XDELTA commands.

2.1. Symbols Supplied by DELTA and XDELTA
DELTA and XDELTA define symbols that are useful in forming expressions and referring to registers.

• Table 2.1 shows the symbols that pertain to OpenVMS I64 systems.

• Table 2.2 shows symbols that pertain to OpenVMS Alpha systems.

• Table 2.3 shows symbols that pertain to OpenVMS VAX systems.

Table 2.1. DELTA/XDELTA Symbols for OpenVMS I64 systems

Symbol Description

. The address of the current location. The value of this symbol is set by the Open
Location and Display Contents (/), Open Location and Display Instruction (!), and the
Open Location and Display Indirect (TAB) commands.

ARn Application register n where n can range from 0 to 127 (decimal). Also see the P(ipr)
symbol description.

BRn Branch register n where n can range from 0 to 7.
CRn Control register n where n can range from 0 to 127 (decimal). See also the P(ipr)

symbol description.
FPn Floating point register n, where n can range from 0 to 127 (decimal).
FPSR The floating point status register.
G ^XFFFFFFFF80000000, the prefix for system space addresses.
H ^X7FFE0000, the prefix for addresses in the control region (P1 space). H2E, for

example, is equivalent to ^X7FFE002E.
P(ipr) The OpenVMS I64 software implementation of an Alpha internal processor register

whose name is ipr. See the Alpha Architecture Reference Manual for the names and
descriptions of these processor registers. Not all Alpha internal processor registers are
implemented on OpenVMS I64.

This syntax is also used to refer to Intel Itanium application and control registers using
meaningful names, where ipr is the name of the Intel Itanium register. For example,
you can refer to Intel Itanium register CR20 using either of the following:

P(IFA)
P(CR.IFA)

See the Intel® IA-64 Architecture Software Developer's Manual, Volume 2: IA-64 System
Architecture manual for the names of the application and control registers.

PC The OpenVMS I64 software implementation of a program counter register, formed by
the union of the IP (instruction bundle pointer) and the slot offset (PSR.ri).

9

Chapter 2. DELTA and XDELTA Symbols and Expressions

Symbol Description

pid:Rn General register n in the process specified by process ID pid.
PS The processor status register.
Pn Predicate register n where n can range from 0 to 63 (decimal).
Q The last value displayed. The value of Q is set by every command that causes DELTA or

XDELTA to display the contents of memory or the value of an expression.
Rn General register n where n can range from 0 to 127 (decimal).
Xn Base register n, where n can range from 0 to 15 (decimal). These registers are used for

storing values, most often the base addresses of data structures in memory.

For XDELTA only, X14 and X15 contain the addresses of two command strings that
XDELTA stores in memory. See the Execute Command String (;E) command for more
information.

For XDELTA only, registers X4 and X5 contain specific addresses. X4 contains the
address of the location that contains the PCB address of the current process on the
current processor. The address that X4 contains is that of the per-CPU database for the
current processor. X5 contains SCH$GL_PCBVEC, the symbolic address of the start of
the PCB vector, and the list of PCB slots.

Table 2.2. DELTA/XDELTA Symbols for OpenVMS Alpha systems

Symbol Description

. The address of the current location. The value of this symbol is set by the Open
Location and Display Contents (/), Open Location and Display Instruction (!), and the
Open Location and Display Indirect (TAB) commands.

FPn Floating point register n, where n can range from 0 to 31 (decimal).
FPCR The floating point control register.
G ^XFFFFFFFF80000000, the prefix for system space addresses.
H ^X7FFE0000, the prefix for addresses in the control region (P1 space). H2E, for

example, is equivalent to ^X7FFE002E.
PC The program counter register.
pid:PC The program counter in the process specified by process ID pid.
PS The processor status register.
Q The last value displayed. The value of Q is set by every command that causes DELTA or

XDELTA to display the contents of memory or the value of an expression.
pid:Rn General register n in the process specified by process ID pid.
Rn General register n, where n can range from 0 to 31 (decimal).
Xn Base register n, where n can range from 0 to 15 (decimal). These registers are used for

storing values, most often the base addresses of data structures in memory.

For XDELTA only, X14 and X15 contain the addresses of two command strings that
XDELTA stores in memory. See the Execute Command String (;E) command for more
information.

For XDELTA only, registers X4 and X5 contain specific addresses. X4 contains the
address of the location that contains the PCB address of the current process on the

10

Chapter 2. DELTA and XDELTA Symbols and Expressions

Symbol Description
current processor. The address that X4 contains is that of the per-CPU database for the
current processor. X5 contains SCH$GL_PCBVEC, the symbolic address of the start of
the PCB vector, and the list of PCB slots.

Table 2.3. DELTA/XDELTA Symbols for OpenVMS VAX systems

Symbol Description

. The address of the current location. The value of this symbol is set by the Open
Location and Display Contents (/),Open Location and Display Instruction (!), and the
Open Location and Display Indirect (TAB) commands.

G ^X80000000, the prefix for system space addresses.G2E, for example, is equivalent to
^X8000002E.

H ^X7FFE0000, the prefix for addresses in the control region (P1 space). H2E, for
example, is equivalent to ^X7FFE002E.

Pn The internal processor register at processor address n, where n can range from 0 to 3F
(hexadecimal). See the VAX Architecture Reference Manual for a description of these
processor registers.

Q The last value displayed. The value of Q is set by every command that causes DELTA or
XDELTA to display the contents of memory or the value of an expression.

Rn General register n, where n can range from 0 to F (hexadecimal).RF+4 is the processor
status longword (PSL), RE is the stack pointer, and RF is the program counter (PC).

Xn Base register n, where n can range from0 to F (hexadecimal). These registers are used
for storing values, most often the base addresses of data structures in memory.

For XDELTA only, XE and XF contain the addresses of two command strings that
XDELTA stores in memory. See the Execute Command String (;E) command for more
information.

For XDELTA only, registers X4 and X5 contain specific addresses. X4 contains the
address of the location that contains the PCB address of the current process on the
current processor. The address that X4 contains is that of the per-CPU database for the
current processor. X5 contains SCH$GL_PCBVEC, the symbolic address of the start of
the PCB vector, and the list of PCB slots.

2.2. Floating Point Register Support
On OpenVMS Alpha, floating point registers can be accessed from DELTA and from XDELTA but only
if floating point arithmetic is enabled in the current process. On OpenVMS I64, floating point registers
FP6 through FP11 are always available. The other floating point registers are available if floating point
arithmetic is enabled in the current process.

DELTA runs in the context of a process. On OpenVMS Alpha, access to floating-point registers is
enabled as soon as the first floating point instruction in the code being examined is executed. Access
is disabled as soon as that image completes execution. On OpenVMS I64, floating-point registers are
always available to DELTA.

Table Table 2.4 shows these relationships:

11

Chapter 2. DELTA and XDELTA Symbols and Expressions

Table 2.4. Floating Point Register Support by Platform

Alpha I64

XDELTA No access FP6—FP11
DELTA FPn if FP access is enabled Always available

When the system enters XDELTA, it may not be obvious which process is the current process. If the
current process happens to have floating point enabled (because a floating point instruction has executed
and the image containing the floating point instruction is still executing), then you can access the floating
point registers. Otherwise, you cannot. XDELTA checks the FEN (floating point enable) IPR (internal
processor register) to see whether it needs to provide access to floating point registers.

2.3. Forming Numeric Expressions
Expressions are combinations of numbers, symbols that have numeric values, and arithmetic operators.

 On all platforms, DELTA and XDELTA store and display all numbers in hexadecimal. They also
interpret all numbers as hexadecimal.

Expressions are formed using regular (infix) notation. Both DELTA and XDELTA ignore operators that
trail the expression. The following is a typical expression (in hexadecimal):

G4A32+24

DELTA and XDELTA evaluate expressions from left to right. No operator takes precedence over any
other.

DELTA and XDELTA recognize five binary arithmetic operators, one of which also acts as a unary
operator. They are listed in Table 2.5.

Table 2.5. Arithmetic Operators

Operator Action

+ or SPACE Addition
- Subtraction when used as a binary operator, or negation when used as a unary

operator
* Multiplication
% Division
@ Arithmetic shift

The following example shows the arguments required by the arithmetic-shift operator:

n@j

In this example, n is the number to be shifted, and j is the number of bits to shift it. If j is positive, n
is shifted to the left; if j is negative, n is shifted to the right. Argument j must be less than 2016 and
greater than -2016. Bits shifted beyond the limit of the longword are lost; therefore, the result must fit
into a longword.

Note

Do not enter unnecessary spaces, as DELTA/XDELTA treats the space as an additional operator.

12

Chapter 3. Debugging Programs
When you use DELTA or XDELTA, there are no prompts, few symbols, and one error message. You
move through program code by referring directly to address locations. This chapter provides directions
for the following actions:

• Referencing addresses

• Referencing registers, the PSL or PS, and the stack

• Interpreting the error message

• Debugging kernel mode code under certain conditions

• Debugging an installed, protected, shareable image

• Using XDELTA on multiprocessor computers

• Debugging code when single-stepping fails (Alpha only)

• Debugging code that does not match the compiler listings (I64 and Alpha only)

For examples of DELTA debugging sessions on various OpenVMS platforms, see Appendix A for I64,
Appendix B for Alpha, and Appendix C for VAX.

3.1. Referencing Addresses
When using DELTA or XDELTA to debug programs, you move through the code by referring to
addresses. To help you identify address locations within your program, use a list file and a map file. The
list file (.LIS) lists each instruction and its offset value from the base address of the program section.
The full map file (.MAP) lists the base addresses for each section of your program. To determine the
base address of a device driver program, see the OpenVMS VAX Device Support Manual.

Once you have the base addresses of the program sections, locate the instruction in the list file where
you want to start the debugging work. Add the offset from the list program to the base address from
the map file. Remember that all calculations of address locations are done in hexadecimal. You can use
DELTA/XDELTA to do the calculations for you with the = command.

To make address referencing easier, you can use offsets to a base address. Then you do not have to
calculate all address locations. First, place the base address into a base register. Then move to a location
using the offset to the base address stored in the register.

Whenever DELTA/XDELTA displays an address, it will display a relative address if the offset falls within
the permitted range (see the ;X command in Chapter 4).

3.1.1. Referencing Addresses (I64 and Alpha Only)
On I64 and Alpha, to reference addresses during a DELTA debug session, use the following OpenVMS
Alpha example as a guide. The example uses a simple C program (HELLO.C). You can also use the
same commands in an XDELTA debug session.

13

Chapter 3. Debugging Programs

#include <stdio.h>
main()
{
 printf("Hello world\n");
}

The following procedure generates information to assist you with the address referencing:

1. Use the /LIST and /MACHINE_CODE qualifiers to compile the program and generate the list file
containing the Alpha machine instructions.

To generate the list file for the previous example, use the following command:

$ cc/list/machine_code hello

The compiler will generate the following Alpha code in the machine code portion of the listing file:

 .PSECT $CODE, OCTA, PIC, CON, REL, LCL, SHR,-
 EXE, NORD, NOWRT
0000 main:: ; 000335
0000 LDA SP, -32(SP) ; SP, -32(SP)
0004 LDA R16, 48(R27) ; R16, 48(R27) ; 000337
0008 STQ R27, (SP) ; R27, (SP) ; 000335
000C MOV 1, R25 ; 1, R25 ; 000337
0010 STQ R26, 8(SP) ; R26, 8(SP) ; 000335
0014 STQ FP, 16(SP) ; FP, 16(SP)
0018 LDQ R26, 32(R27) ; R26, 32(R27) ; 000337
001C MOV SP, FP ; SP, FP ; 000335
0020 LDQ R27, 40(R27) ; R27, 40(R27) ; 000337
0024 JSR R26, DECC$GPRINTF ; R26, R26
0028 MOV FP, SP ; FP, SP ; 000338
002C LDQ R28, 8(FP) ; R28, 8(FP)
0030 LDQ FP, 16(FP) ; FP, 16(FP)
0034 MOV 1, R0 ; 1, R0
0038 LDA SP, 32(SP) ; SP, 32(SP)
003C RET R28 ; R28

Notice the statement numbers on the far right of some of the lines. These numbers correspond to the
source line statement numbers from the listing file as shown next:

335 main()
336 {
337 printf("Hello world\n");
338 }

2. Use the /MAP qualifier with the link command to generate the full map file (.MAP file). To produce
a debuggable image, make sure that either /DEBUG or /TRACEBACK (the default) is also specified
with the link command.

To generate the map file for the example program, use the following command:

$ LINK/MAP/FULL HELLO

3. See the Program Section Synopsis of the map file. Locate the code section that you want to debug
and its base address.

For the example program, the map file is HELLO.MAP. A portion of the Program Section Synopsis
is shown below. The $CODE section of the program has a base address of 20000.

14

Chapter 3. Debugging Programs

 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+
Psect Name Module Name Base End Length
---------- ----------- ---- --- ------
$LINKAGE 00010000 0001007F 00000080 (128.)
 HELLO 00010000 0001007F 00000080 (128.)
$CODE 00020000 000200BB 000000BC (188.)
 HELLO 00020000 000200BB 000000BC (188.)

4. See the list file for the location where you want to start debugging. First find the source line
statement number. Next find that statement number in the machine code listing portion of the list file.
This is the specific instruction where you want to start debugging.

For the example program, source statement 337 is the following:

printf("Hello world\n");

Search the machine code listing for statement 337. The first occurrence is the instruction at offset 4
from the start of main:: and the base of the $CODE PSECT.

5. Enable DELTA using the following commands:

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA
$ RUN/DEBUG HELLO

6. If you want to store the base address in a base register, use the ;X command to load the base
register.

For the example program, use the following DELTA/XDELTA command to store the base address of
20000 in base register 0.

20000,0;X

7. Now you can move to specific address locations.

For example, if you want to place a breakpoint at offset 4, you would calculate the address as 20000
(base address) plus 4 (offset), or 20004, and specify the ;B command as follows:

20004;B

Alternatively, if you stored the base address in the base register, you could use the address expression
X0+4 (or X0 4, where the + sign is implied) to set the breakpoint as follows:

X0+4;B

Reverse this technique to find an instruction displayed by DELTA/XDELTA in the .LIS file, as follows:

1. Note the address of the instruction you want to locate in the .LIS file.

For example, DELTA/XDELTA displays the following instruction at address 20020:

20020! LDQ R27,#X0028(R27)

The following steps allow you to find this instruction in the .LIS file.

15

Chapter 3. Debugging Programs

2. See the .MAP file, and identify the psect and module where the address of the instruction is located.
Check the base address value and the end address value of each psect and module. When the
instruction address is between the base and end address values, record the psect and module names.

In the example, the instruction address is located in the HELLO module ($CODE PSECT). The
address, 20020, is between the base address 20000 and the end address 200BB.

3. Subtract the base address from the instruction address. Remember that all calculations are in
hexadecimal and that you can use the DELTA/XDELTA = command to do the calculations. The
result is the offset.

For example, subtract the base address of 20000 from the instruction address 20020. The offset is
20.

4. See the .LIS file. Look up the module and then find the correct psect. Look for the offset value you
calculated in the previous step.

In the example, there are two psects and one module but only one $CODE psect. Look up the
instruction at offset 20, and you will find the following in the .LIS file:

0020 LDQ R27, 40(R27) ; R27, 40(R27) ; 000337

3.1.2. Referencing Addresses (VAX Only)
On VAX, to reference addresses during a DELTA debug session, use the following example as a guide.
The example uses a simple VAX MACRO program (EXAMPLE.MAR). You can also use the same
commands in an XDELTA debugging session.

0000 1 .title example
0000 2
0000 3 .entry start ^M<r3,r4>
0002 4 clrl r3
0004 5 movl #5,r4
0007 6 10$: addl r4,r3
000A 7 sobgtr r4,10$
000D 8 ret
000E 9
000E 10 .end start

The following procedure generates information to assist you with address referencing:

1. Use the /LIST qualifier to assemble the program and generate the list file.

To generate the list file for the previous example, use the following command:

$ MACRO/LIST EXAMPLE

2. Use the /MAP qualifier with the link command to generate the full map file (.MAP file). Make
sure that the default /DEBUG or /TRACEBACK qualifier is active for your link command. If not,
specify /DEBUG or /TRACEBACK along with the /MAP qualifier.

To generate the map file for the example program, use the following command:

$LINK/MAP EXAMPLE

3. See the Program Section Synopsis of the map file, locate the section that you want to debug, and
look up the base address.

16

Chapter 3. Debugging Programs

For the example program, the map file is EXAMPLE.MAP. A portion of the Program Section
Synopsis is shown below. The first section of the program has a base address of 200.

 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+

Psect Name Module Name Base End Length
---------- ----------- ---- --- ------

. BLANK . 00000200 0000020D 0000000E (14.)
 EXAMPLE 00000200 0000020D 0000000E (14.)

4. See the list file for the location of the specific instruction where you want to start debugging.

For the example program, start with the second instruction (MOVL #5,R4) with an offset of 4.

5. Enable DELTA using the following commands:

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA
$ RUN/DEBUG EXAMPLE

6. If you want to store the base address in a base register, use the ;X command to load the base
register.

For the example program, use the following DELTA/XDELTA command to store the base address
200 in base register 0.

200,0;X Return

7. Now you can move to specific address locations.

For example, if you want to place a breakpoint at the second instruction (MOVL #5,R4), you would
calculate the address as 200 (base address) plus4 (offset), or 204, and specify the ;B command as
follows:

204;B Return

Alternatively, if you stored the base address in the base register, you could use the address expression
X0+4 (or X0 4, where the + sign is implied), as follows:

X0+4;B Return

Reverse this technique to find an instruction displayed by DELTA/XDELTA in the .LIS file, as follows:

1. Note the address of the instruction you want to locate in the .LIS file.

For example, DELTA/XDELTA displays the following instruction at address 020A:

20A! sobgtr r4,00000207

The following steps allow you to find the instruction at location 207:

2. See the .MAP file and identify the PSECT and MODULE where the address of the instruction is
located. Check the base address value and the end address value of each PSECT and MODULE.
When the instruction address is between the base and end address values, record the PSECT and
MODULE names.

17

Chapter 3. Debugging Programs

In the example, the instruction address is located in the EXAMPLE module (.BLANK. psect). The
address instruction, 207, is between the base address 200 and the end address 20D.

3. Subtract the base address from the instruction address. Remember that all calculations are in
hexadecimal and that you can use the DELTA/XDELTA = command to do the calculations. The
result is the offset.

For the example, subtract the base address 200 from the instruction address 207. The offset is 7.

4. See the .LIS file. Look up the MODULE and then find the correct PSECT. Look for the offset value
you calculated in the previous step.

In the example, there is only one PSECT and MODULE. Look up the instruction at offset 7. The
program is branching to the following instruction:

10$: addl r4,r3

3.2. Referencing Registers
When using DELTA or XDELTA to debug programs, you can view the contents of registers. The
following sections describe the types of registers that are referenced by each OpenVMS platform.

3.2.1. Referencing Registers (I64 Only)
On I64, you can reference the following kinds of registers: integer, floating, application, branch, control,
special purpose, and software equivalents of special OpenVMS symbolic locations.

Table 3.1 lists the Intel Itanium registers and symbols by which they are identified.

Table 3.1. Intel Itanium Registers and their Associated Symbols

Register Symbol

General R0 through R127
Floating FP0 through FP127
Branch BR0 through BR7
Predicate P0 through P63
Application AR16 (RSC), AR17 (BSP), AR18 (BSPSTORE), AR19 (RNAT), AR25 (CSD),

AR26 (SSD), AR32 (CCV), AR36 (UNAT), AR64 (PFS), AR65 (LC), AR66
(EC)

Control CR0 (DCR), CR1 (ITM), CR2 (IVA), CR8 (PTA), CR16 (IPSR), CR17 (ISR),
CR19 (IIP), CR20 (IFA), CR21 (ITIR), CR22 (IIPA), CR23 (IFS), CR24 (IIM),
CR25 (IHA),CR65 (IVR)

In addition, there is a program counter (PC) register, which is obtained from the hardware IP register and
the ri field of the PSR register.

3.2.2. Referencing Registers (Alpha Only)
On Alpha, to view the contents of the 32 integer registers, the program counter (PC), the stack pointer
(SP), the processor status (PS), the 32 floating point registers, the floating point control register (FPCR),

18

Chapter 3. Debugging Programs

and the internal processor registers (IPRs), use the same DELTA/XDELTA commands that you use
to view the contents of any memory location. These commands include /, LINEFEED, and ESC. The
symbols for identifying these registers follow:

• Integer registers are referenced by the symbol R and a decimal number from 0 to 31. For example,
register 110 is R110 and register 1010 is R1010. (Decimal notation differs from the original
implementation on VAX which uses hexadecimal notation.)

• PC is referenced symbolically by PC.

• PS is referenced symbolically by PS.

• FP is referenced by R29.

• SP is referenced by R30.

• Floating point registers are referenced by FP and a decimal number from 0 to 31. For example,
floating point register 110 is FP110 and floating point register 1010 is FP1010.

• FPCR is treated like any other floating point register except, to explicitly open it, you specify FPCR/.

• Internal processor registers (IPRs) are accessed symbolically, for example, P(ASTEN). For IPR
names, see the Alpha Architecture Reference Manual.

Floating point registers can be accessed from DELTA and from XDELTA but only if floating point
arithmetic is enabled in the current process.

DELTA runs in the context of a process. Access to floating point registers is enabled as soon as the first
floating point instruction in the code being examined is executed. Access is disabled as soon as that
image completes execution.

When the system enters XDELTA, some process is the current process, and that current process may not
be obvious. If that process happens to have floating point enabled at the time (because a floating point
instruction had executed and the image containing the floating point instruction was still executing),
then you can access the floating point registers. Otherwise, you cannot. XDELTA checks the FEN
(floating point enable) IPR (internal processor register) to see if it needs to provide access to floating
point registers.

3.2.3. Referencing Registers (VAX Only)
On VAX, to view the contents of the 16 general registers (including the program counter and the stack
pointer) and the processor status longword (PSL),use the same DELTA/XDELTA commands as you use
to view the contents of any memory location (for example, the /, LINEFEED, and the ESC commands).
The symbols used to identify the locations of the registers and PSL are as follows:

• The general registers are referred to by the symbol R and a hexadecimal number from 016 to F16
representing the number of the register. For example, general register 110 is R116and general register
1010 is RA16. The stack pointer is located in general register 1410, RE16. The program counter is in
general register 1510, RF16.

• Upon entry to DELTA or XDELTA, the PSL is stored in the longword directly following the
longword representing general register F16. Reference it by using the general register F16 symbol plus
along word (RF+4).

19

Chapter 3. Debugging Programs

3.3. Interpreting the Error Message
When you make an error entering a command in DELTA or XDELTA, you get the Eh? error message.
This is the only error message generated by DELTA and XDELTA. It is displayed under the following
circumstances:

• You entered characters that DELTA/XDELTA does not recognize

• You entered a command incorrectly

• You exceeded the limits of the command (for example, trying to set another breakpoint when all
breakpoints are used)

• You attempted to display a particular memory address and one or more of the following is true:

• Location is not a valid memory address

• You have no privilege to read the address

• The process to which the read applies does not exist (DELTA only)

• You attempted to change a particular memory address (including setting a breakpoint) and one or
more of the following is true:

• The location is not a valid memory address

• You have no privilege to write to the address

• The process to which the write applies does not exist (DELTA only)

On I64, the error message is also displayed if you are unable to step over a subroutine call due to no
write access to the address of the next instruction.

On Alpha, the error message is also displayed if you are unable to single-step or proceed due to no write
access to the address of the next instruction.

3.4. Debugging Kernel Mode Code Under
Certain Conditions
Some programs exist which, while running in process space, change mode to kernel and raise IPL.
Typically, this code is debugged with both DELTA and XDELTA. DELTA is used to debug the kernel
mode code at IPL zero. XDELTA is used to debug the code at elevated IPL. (DELTA does not work at
elevated IPL.)

Before you can debug such code with XDELTA, you must complete some setup work.

3.4.1. Setup Required (I64 and Alpha Only)
On I64 and Alpha, some setup work is required before you can debug kernel mode code that runs in
process space at an elevated IPL. Before you access XDELTA, do the following:

1. Ensure that page faults do not occur at elevated IPL by locking into memory (or the working set) the
code that runs at elevated IPL.

20

Chapter 3. Debugging Programs

2. Make the code writable. (By default, code pages are read only.) To do this, modify the code psect
attributes in the link options file or set the affected code pages to writable with $SETPRT.

3. Make code pages copy-on-reference (CRF). You can do this when you make the code writable.
If you modify the link options file, set the code psect attributes to be WRT, NOSHR. If you use
$SETPRT, it automatically makes the pages CRF.

3.4.2. Setup Required (VAX Only)
On VAX, some setup work is required before you can debug kernel mode code that runs in process
space at an elevated IPL. Before you access XDELTA,do the following:

1. Ensure that page faults do not occur at elevated IPL by locking into memory (or the working set) the
code that runs at elevated IPL.

2. Make the code writable if you plan to do anything more than single-step through your code (such as
set breakpoints, step-overs, and so forth). (By default, code pages are read only.) To make the code
writable, modify the code psect attributes in the link options file or set the affected code pages to
writable with $SETPRT.

3.4.3. Accessing XDELTA
After you set up the code for debugging, you are ready to access XDELTA. The most convenient method
is to invoke INI$BRK from the code at elevated IPL. This causes a trap into XDELTA. You can then
step out of the INI$BRK routine into the code to be debugged.

3.5. Debugging an Installed, Protected,
Shareable Image
Some shareable images, such as user-written system services, must be linked and installed in a way that
precludes debugging with DELTA unless you take further steps. Those steps are described in this section.

Typically, a user-written system service is linked and installed in such a way that the code is shared in
a read-only global section, the data is copy-on-reference, and the default code psects are read-only and
shareable. Such a shareable image is installed with the Install utility using a command like the following:

INSTALL> myimage.exe /share/protect/open/header

Other qualifiers can also be used.

When installed in this way, the shareable image code is read-only. However, to debug a user-written
system service with DELTA, to single-step and to set breakpoints, the code must either be writable or
DELTA must be able to change the code page protection to make it writable. Neither is possible when
the code resides in a read-only global section.

Therefore, to debug a user-written system service, you must link and install it differently. In linking
the image, the code psects must be set to writable and, preferably, to non-shareable (to force the code
pages to be copy-on-reference). Multiple processes accessing this code through the global section will
each have their own private copy. You can do this in the link options file by adding a line such as the
following for each code psect:

PSECT=$CODE$,NOSHR,WRT

21

Chapter 3. Debugging Programs

Then, the image must be installed writable with the /WRITE qualifier and without the /RESIDENT
qualifier, as follows:

INSTALL> myimage.exe /share/protect/open/header/write

After you have installed the image in this way, you can use DELTA to set breakpoints in the shareable
image code and single-step through it.

3.6. Using XDELTA on Multiprocessor
Computers
On multiprocessor computers, only one processor can use XDELTA at a time. If a second processor
attempts to enter XDELTA when another processor has already entered it, the second processor waits
until the first processor has exited XDELTA. If the processor using XDELTA sets a breakpoint, other
processors are aware of the breakpoint. Therefore, when the code with the XDELTA breakpoint is
executed on another processor, that processor will enter XDELTA and stop at the specified breakpoint.

On Alpha and VAX systems, XDELTA uses its own system control block (SCB) to direct all interrupt
handling to an error handling routine in XDELTA. Therefore, an error encountered by XDELTA does
not affect any other processors that share the standard system SCB. On I64 systems, the implementation
is different, but the outcome is the same: XDELTA avoids causing errors that could lead to unintended
effects to other processors.

On VAX, when a breakpoint is taken by a processor in a multiprocessor environment, the processor's
physical identification number is displayed on the XDELTA breakpoint message line as a 2-digit
hexadecimal number. The following is an example of a breakpoint message in a multiprocessor
environment:

1 BRK AT 00000400 ON CPU 03
00000400/movl #5,r4

On I64 and Alpha, the processor's physical identification number is similarly displayed but the number is
decimal instead of hexadecimal with no leading zeros. For example:

BRK 1 AT 20000 ON CPU 2
20000! LDL R1,(R2)

3.7. Debugging Code When Single-Stepping
Fails (Alpha Only)
On Alpha, the use of the S command to single-step occasionally fails and the error message Eh? is
displayed. This can happen either when you are single-stepping through code or when you have stopped
at a breakpoint. In each case, it fails because XDELTA does not have write access to the next instruction.
Directions on how to continue debugging for both cases follow:

• You are single-stepping through your code and your single-step fails.

You can set other breakpoints and proceed with the ;P command. If this occurs at a JSR or BSR
instruction, you can first use the O command and then either single-step (with the S command) or
proceed (with the ;P command).

• You have stopped at a breakpoint and your attempt to single-step fails.

22

Chapter 3. Debugging Programs

You can delete the breakpoint and then proceed with the ;P command. If this occurs at a JSR or
BSR instruction, it may be possible to first use the O command and then either single-step (with the
S command) or proceed (with the ;P command).

3.8. Debugging Code that Does Not Match the
Compiler Listings (I64 and Alpha Only)
There are two cases when the code in your image does not exactly match your compiler listings. As
long as you understand why these differences exist, they should not interfere with your debugging. The
explanations follow:

• The compilers generate listings with mnemonics that replace some of the Alpha assembly language
instructions. This makes the listings easier to read but can initially cause confusion because the code
does not exactly match the code in your image. In every case, there is a 1-to-1 correlation between
the line of code in your image and the line of code in your listing.

• In certain situations, the linker can modify the instructions in your image so that they do not exactly
match your compiler listings. On Alpha, for example, the linker can replace JSR instructions and the
call setup to use a BSR instruction for better performance. On I64, the linker sometimes generates
code and performs jumps and calls.

23

Chapter 3. Debugging Programs

24

Chapter 4. DELTA/XDELTA Commands
This chapter describes how to use each DELTA and XDELTA command to debug a program. It also
describes which commands are used only with DELTA. Table 4.1 provides a summary of the DELTA/
XDELTA commands that are common to OpenVMS I64 and Alpha, and VAX systems. Table 4.2
provides a summary of the DELTA/XDELTA commands that are available only on OpenVMS I64 and
Alpha. Table 4.3 provides a summary of the DELTA/XDELTA commands that are available only on
OpenVMS I64.

Many commands in this chapter include an example. The program used for all the examples, except
those illustrating commands available only on OpenVMS I64 and Alpha, is listed in Appendix C.

Command Usage Summary
DELTA and XDELTA use the same commands, with the following exceptions:

• Only DELTA uses the EXIT and ;M commands and arguments that specify a process identification.

• XDELTA defines some base registers that DELTA does not (see Chapter 2).

• On I64 and Alpha, only DELTA uses the ;I command.

For all OpenVMS platforms, differences are noted in command descriptions.

Enter the LINEFEED, ESC, TAB, and RETURN commands by pressing the corresponding key.

Table 4.1. DELTA/XDELTA Command Summary (All platforms)

Command Description

[Set Display Mode
/ Open Location and Display Contents in Prevailing Width Mode
! Open Location and Display Contents in Instruction Mode
LINEFEED Close Current Location, Open Next
ESC Open Location and Display Previous Location
TAB Open Location and Display Indirect Location
" Open Location and Display Contents in ASCII Mode
RETURN Close Current Location
;B Breakpoint
;P Proceed from Breakpoint
;G Go
S Step Instruction
O Step Instruction over Subroutine
;D ’string’ Deposit ASCII String
;E Execute Command String
;X Load Base Register
= Display Value of Expression
;M1 Set All Processes Writable (available only on DELTA)

25

Chapter 4. DELTA/XDELTA Commands

Command Description

;M2 Set All Processes Writable; also, set selected registers of other processes writable
(available only on DELTA)

;L Lists Names and Locations of Loaded Executive Images
EXIT Exit from DELTA debugging session

1VAX specific
2I64 and Alpha specific

The commands in Table 4.2 are available only on OpenVMS I64 and Alpha.

Table 4.2. DELTA/XDELTA Command Summary (I64 and Alpha Only)

Command Description

;D Dumps a region of memory
;Q Validate queue
;C Force system to bug check and crash
;W Locate and display the executive image that contains the specified address
;I Locate and display information about the current main image that contains the

specified address; also display information about all shareable images activated by
the current main image (available only on DELTA)

;H Display on video terminal or at hard copy terminal
\string\ Display the ASCII text string enclosed in backslashes

The commands in Table 4.3 are available only on OpenVMS I64.

Table 4.3. DELTA/XDELTA Command Summary (I64 Only)

Command Description

;T Display the address of the interrupt stack frame.

[(left angle bracket)—Set Display Mode
[(left angle bracket) — Sets the width mode of displays produced by DELTA/XDELTA commands.

Synopsis
[mode

Argument
mode

Specifies the display mode as follows:

Mode Meaning

B Byte mode. Subsequent open and display location commands display the contents of one byte
of memory.

26

Chapter 4. DELTA/XDELTA Commands

Mode Meaning

L Longword mode. Subsequent open and display location commands display the contents of a
longword of memory. This is the default mode.

W Word mode. Subsequent open and display location commands display the contents of one
word of memory.

On I64 and Alpha, the following modes are also available.

Mode Meaning

A Address display of 32-bit/64-bit. Subsequent address displays will be 64 bits.
Q Quadword mode. Subsequent open and display location commands display the contents of a

quadword of memory.

Description
The Set Display Mode command changes the prevailing display width to byte, word, longword, or
quadword. The default display width is longword on Alpha and VAX, quadword on I64. The display
mode remains in effect until you enter another Set Display Mode command.

Example
R0/ 00000001
[B
R0/ 01

Contents of general register 0 (R0) are displayed using the / command. The display is the default
mode, longword.
Display mode is changed to byte mode using the [B command.
Contents of R0 are displayed in byte mode. The least significant byte is displayed.

/ (forward slash)—Open Location and Display
Contents in Prevailing Width Mode
/ (forward slash) — Opens a location and displays its contents in the prevailing display mode.

Synopsis
[pid:] [start-addr-exp] [end-addr-exp]/ current-contents [new-exp]

Arguments
[pid]

The internal process identification (PID) of a process you want to access. If you specify zero or do not
specify a PID, the default process is the current process. This argument cannot be used with XDELTA.

If you use the pid argument, every time you use this command during the debugging session the
contents of the same process are displayed, unless you specify a different pid.

27

Chapter 4. DELTA/XDELTA Commands

You can obtain the internal PID of processes by running the System Dump Analyzer utility (SDA). Use
the SDA command SHOW SUMMARY to determine the external PID. Then use the SDA command
SHOWPROCESS/INDEX to determine the internal PID. For more information about using SDA
commands, see your operating system's VMS System Dump Analyzer Utility Manual.

Note

The register examples in the descriptions of start-addr-exp and end-addr-exp apply to both
VAX and Alpha register. (Alpha register numbers are displayed in decimal, and VAX register numbers
are displayed in hexadecimal.)

[start-addr-exp]

The address of the location to be opened, or the start of a range of addresses to be opened. If not
specified, the address displayed is that currently specified by the symbol Q (last quantity displayed). Use
the following syntax to display a single address location:

start-addr-exp/

You can also specify a register for this parameter. For example, if you want to view the contents of
general register 3 (R3), enter the following DELTA/XDELTA command:

R3/

[end-addr-exp]

The address of the last location to be opened. Use the following syntax to display a range of address
locations:

start-addr-exp,end-addr-exp/

You can also specify a range of registers. For example, if you want to view the contents of general
registers 3 through 5, enter the following DELTA/XDELTA command:

R3,R5/

If you specify an address expression for end-addr-exp that is less than start-addr-exp,
DELTA/XDELTA displays the contents of start-addr-exp only.

current-contents

You do not specify this parameter. It is a hexadecimal value, displayed by DELTA/XDELTA, of the
contents of the location (or range of locations) you specified with the pid argument and the address
expression. It is displayed in the prevailing width display mode.

[new-exp]

An expression, the value of which is deposited into the location just displayed. If you specify new-exp
after a range of locations, the new value is placed only in the last location (specified by end-addr-
exp).

When you specify new-exp, terminate the command by pressing the Return key.

If you want to deposit a new value into a location in another process (that is, you specified a PID other
than the current process), you must have already set the target process to be writable using the ;M
command.

28

Chapter 4. DELTA/XDELTA Commands

If the value you deposit is longer than the last location where it will be deposited, the new value
overwrites subsequent locations. For example, the values at address locations 202 and 204 are as follows:

202/ 05D053D4
204/ C05405D0

If you deposited the value FFFFFFFFF at address 202, the overflow value would overwrite the value
stored at address location 204, as follows:

202/ 05D053D4 FFFFFFFFF Return
204/ C054FFFF

Description
The Open Location and Display Contents command opens the location or range of locations at
start-addr-exp and displays current-contents, the contents of that location, in hexadecimal
format. You can place a new value in the location by specifying an expression. A new value overwrites
the last value displayed.

To display a range of locations, give the start-addr-exp argument as the first address in the range,
followed by a comma, followed by the last address in the range (the end-addr-exp argument). For
example, if you want to display all locations from 402 to 4F0, the command is as follows:

402,4F0/

This command changes the current address (. symbol) to the contents of the opened location. A
subsequent Close Location command does not change the current address. However, a subsequent Close
Current Location and Open Next command (ESC or LINEFEED) executes as follows:

• Writes any new-exp specified

• Closes the location opened by the / command

• Adds the number of bytes (defined by the prevailing display width mode) to the address just opened
with the / command

• Changes the current address to the new value

• Opens the new location and displays the contents

The display mode remains hexadecimal until the next Open Location and Display Contents in Instruction
Mode (!) command or Open Location and Display Contents in ASCII Mode (") command.

In DELTA, not XDELTA, processes having the CMKRNL privilege can examine the address space
of any existing process. Use pid to specify the internal PID of the process you want to examine.
For example, use the following command to view address location 402 in the process with a PID of
00010010:

00010010:402/

On I64 and Alpha, DELTA also permits the examination of general purpose registers in another process.
The PID specifies the internal PID of the process you want to examine. For example, use the following
command to examine R5 in the process with a PID of 00010010:

00010010:R5/

29

Chapter 4. DELTA/XDELTA Commands

Example
R0,R9/00000001
R1/00000000
R2/00000226
R3/7FF2AD94
R4/000019B4
R5/00000000
R6/7FF2AA49
R7/8001E4DD
R8/7FFED052
R9/7FFED25A

Contents of all the general registers R0 through R9 are displayed.

! (exclamation mark)—Open Location and
Display Contents in Instruction Mode
! (exclamation mark) — Displays an instruction and its operands.

Synopsis
[pid:] [start-addr-exp] [end-addr-exp]!

Arguments
[pid]

The internal process identification (PID) of a process you want to access. If you specify zero, or do not
specify any PID, the default process is the current process. This argument cannot be used with XDELTA.

Subsequent open location and display contents commands, issued after using the pid argument, display
the contents of the location of the specified process until you specify another PID with this command.

You can obtain the internal PID of processes by running the System Dump Analyzer utility (SDA). Use
the SDA command SHOW SUMMARY to determine the external PID. Then use the SDA command
SHOW PROCESS/INDEX to determine the internal PID. For more information about SDA commands,
see your operating system's VMS System Dump Analyzer Utility Manual.

[start-addr-exp]

The address of the instruction, or the first address of the range of instructions, to display. If you do not
specify this parameter, the address displayed is that currently specified by Q (last quantity displayed).
When you want to view just one location, the syntax is as follows:

start-addr-exp!

[end-addr-exp]

The address of the last instruction in the range to display. When you want to view several instructions,
the syntax is as follows:

start-addr-exp,end-addr-exp!

Each location within the range is displayed with the address, a slash (/), and the machine instruction.

30

Chapter 4. DELTA/XDELTA Commands

Description
The Open Location and Display Contents in Instruction Mode command displays the contents of a
location or range of locations as a machine instruction. DELTA/XDELTA does not make any distinction
between reasonable and unreasonable instructions or instruction streams.

This command does not allow you to modify the contents of the location. The command sets a flag
that causes subsequent Close Current Location and Display Next (LINEFEED) and Open Location and
Display Indirect Location (TAB) commands to display MACRO instructions. You can clear the flag by
using the Open Location and Display Contents (/) command, which displays the contents of the location
as a hexadecimal number, or Open Location and Display Contents in ASCII Mode ("), which displays
the contents of the location in ASCII.

When an address appears as an instruction's operand, DELTA/XDELTA sets the Q symbol to that
address. Then enter ! again to go to the address specified in the instruction operand. DELTA/XDELTA
changes Q only for operands that use program-counter or branch-displacement addressing modes; Q is
not altered for operands that use literal and register addressing modes. This feature is useful for branches
that follow.

Examples
The following examples illustrate the command on each OpenVMS platform.

I64 example:

G0BF5D60! add r33 = 0008, r33 ;;
80BF5D62! nop.i 000000 ;;
80BF5D70! ld4 r2 = [r2] ;;
80BF5D71! nop.m 000000
80BF5D72! sxt4 r2 = r2 ;;
80BF5D80! cmp.eq p14, p0 = r2, r0
80BF5D81! nop.f 000000
80BF5D82! (p14) br.cond.dpnt.few.clr 0000030 ;;
80BF5D90! ld8 r14 = [r2], 008 ;;
80BF5D91! nop.m 000000
80BF5D92! mov b7 = r14 ;;
80BF5DA0! ld8 r1 = [r2]

The instruction at the base address G0BF5D60 is displayed using the ! command. XDELTA
displays an add instruction.
After typing a LINEFEED command, XDELTA displays the next instruction location and the
instruction at that address, and so on.

Alpha example:

30000! LDA SP,#XFFE0(SP)
00030004! BIS R31,R31,R18

The instruction at address 30000 is displayed using the ! command. DELTA/XDELTA displays
a LDA instruction. Note that unlike on a VAX computer, an absolute address never appears in an
instruction operand. So the value of Q has no use after an instruction display.
After typing a LINEFEED command, DELTA/XDELTA displays the next instruction location and
the instruction at that address.

VAX example:

31

Chapter 4. DELTA/XDELTA Commands

69B!
BRB 0000067A
!
CLRQ -(SP)

The instruction at address 69B is displayed using the ! command. DELTA/XDELTA displays a
branch instruction and sets Q (last address location displayed) to the branch address 67A.
The instruction at address 67A is displayed using the ! command. The value of Q is used as the
address location.

" (double quote)—Open Location and Display
Contents in ASCII
" (double quote) — Displays the contents of a location as an ASCII string.

Synopsis
[pid:] start-addr-exp [end-addr-exp]"

Arguments
[pid]

The internal process identification (PID) of a process you want to access. If you specify zero, or do not
specify any PID, the default process is the current process. This argument cannot be used with XDELTA.

Subsequent open location and display contents commands issued after using the pid argument, display
the contents of the location of the specified process until you specify another PID with this command.

You can obtain the internal PID of processes by running the System Dump Analyzer utility (SDA). Use
the SDA command SHOW SUMMARY to determine the external PID. Then use the SDA command
SHOW PROCESS/INDEX to determine the internal PID. For more information about SDA commands,
see your operating system's VMS System Dump Analyzer Utility Manual.

[start-addr-exp]

The address of the location, or the start of a range of locations, to be displayed. If you want to view one
location, the syntax is as follows:

start-add-exp"

[end-addr-exp]

The last address within a range of locations to be viewed. If you want to view a series of locations, the
syntax is as follows:

start-add-exp,end-addr-exp"

Description
The Open Location and Display Contents in ASCII command opens the location or range of locations
at start-addr-exp and displays the contents in ASCII format. This command does not change the
width of the display (byte,word, longword) from the prevailing mode. If the prevailing mode is word
mode, two ASCII characters are displayed; if byte mode, one character is displayed.

32

Chapter 4. DELTA/XDELTA Commands

The display mode remains ASCII until you enter the next Open Location and Display Contents
command (/) or Open Location and Display Contents in Instruction Mode command (!). These
commands change the display mode to hexadecimal or instruction, respectively.

You can modify the contents of the locations, starting at start-addr-exp, with the Deposit ASCII
string (’) command.

Example
235FC2 [W/415A
235FC2" ZA Linefeed
235FC4/PP

The current display mode is word (displays one word in hexadecimal).
The " command changes the prevailing display mode to ASCII but does not affect the width of the
display.
The next Close Current Location, Open Next command (LINEFEED), determines the address
of the location to open by adding the width, in bytes, to the value contained in the symbol . (the
current address). Then it opens the number of bytes equal to the width of the prevailing display
mode, which in this example is two bytes.

The ASCII representation of the contents of the location presents the bytes left to right, while the
hexadecimal representation presents them right to left.

’ (single quote)—Deposit ASCII String
’ (single quote) — Deposits the ASCII string at the current address.

Synopsis
’ string ’

Arguments
string

The string of characters to be deposited.

Description
The Deposit ASCII String command deposits string at the current location (.) in ASCII format. The
second apostrophe is required to terminate the string. All characters typed between the first and second
apostrophes are entered as ASCII character text. Avoid embedding an apostrophe (’) within the string
you want to deposit.

When you want to use key commands (LINEFEED, RETURN, ESC, or TAB), press the key. These
commands are entered as text.

This command stores the characters in 8-bit bytes and increments the current address (.) by one for each
character stored.

This command does not change the prevailing display mode.

33

Chapter 4. DELTA/XDELTA Commands

Example
7FFE1600/’R0/ Linefeed Linefeed’

The ASCII string “R0/ LINEFEED LINEFEED” is stored at address 7FFE1600. This string, if
subsequently executed with the ;E command, examines the contents of general register 0 (the command
R0/), then examines two subsequent registers (using two LINEFEED commands).

= (equal sign)—Display Value of Expression
= (equal sign) — Evaluates an expression and displays its value.

Synopsis
expression =

Argument
expression

The expression to be evaluated.

Description
The Display Value of Expression command evaluates an expression and displays its value in hexadecimal.
The expression can be any valid DELTA/XDELTA expression. See Section 2.1 for a description of
DELTA/XDELTA expressions.

All calculations and displays are in hexadecimal in the prevailing length mode.

Note

Because DELTA and XDELTA treat the space as an addition operator, do not enter an unnecessary
space.

Example
FF+1=00000100
A-1=00000009

FF 16 and 1 16 are added together. DELTA/XDELTA displays the sum in hexadecimal.
1 16 is subtracted from A 16. DELTA/XDELTA displays the result in hexadecimal.

\string\—Immediate mode text display
command (I64 and Alpha Only)
\string\ — Displays the ASCII text string enclosed in backslashes.

Synopsis
\string\

34

Chapter 4. DELTA/XDELTA Commands

Description
This mode is useful when creating your own predefined command strings. Use the backslash to begin
and end an ASCII text string. Follow the ending backslash with a terminator. When DELTA or XDELTA
encounters the ending backslash and terminator, it prints the ASCII text string.

ESC (Escape key)—Open Location and
Display Previous Location
ESC (Escape key)—Open Location and Display Previous Location — Opens the previous location and
displays its contents.

Synopsis
ESC

Description
The Open Location and Display Previous Location command decrements the location counter (.) by the
width (in bytes) of the prevailing display mode, opens that many bytes, and displays the contents on a
new line. The address of the location is displayed on the new line in the prevailing mode, followed by a
slash (/) and the contents of that address.

On VAX, this command is ignored if the prevailing display mode is instruction mode (set by the !
command).

On all platforms, use this command to move backwards through a series of locations. Set the address
where you want to start (for example, with the /command). Then press the ESC key repeatedly to
display each preceding location. ESC is echoed as a dollar sign ($) on the terminal.

On keyboards without a separate ESC key, press Ctrl/3 or the escape key sequence that you defined
on your keyboard. The ESC key on LK201 keyboards (VT220, VT240, VT340, and workstation key
boards) generates different characters and cannot be used for the ESC command. You must use Ctrl/3.

Example
R1/00000000 $ ESC
R0/00000001

The contents of general register 1 are displayed using the / command.
The contents of general register 0, the location prior to general register 1, are displayed by pressing
ESC.

EXIT—Exit from DELTA Debugging Session
EXIT — Terminates the DELTA debugging session. Use with DELTA only.

Synopsis
EXIT

35

Chapter 4. DELTA/XDELTA Commands

Description
Use the EXIT command to terminate a DELTA debugging session. You cannot use EXIT in XDELTA.

You may have to enter EXIT twice, such as when your program terminates execution by the $EXIT
system service or by the Return key (to DCL).

LINEFEED (Linefeed key or Ctrl/J)—Close
Current Location, Open Next Location
LINEFEED (Linefeed key or Ctrl/J) — Closes the currently open location and opens the next
location,displaying its contents.

Synopsis
LINEFEED

Description
The Close Current Location Open Next command closes the currently open location, then opens the
next and displays its contents. This command accepts no arguments, and thus can only be used to open
the next location. It is useful for examining a series of locations one after another. First, set the location
where you want to start (for example, with the / or (!) command).Then, press the LINEFEED key
repeatedly to examine each successive location.

The LINEFEED command displays the contents of the next location in the prevailing display mode and
display width. If the current display mode is hexadecimal (the / command was used) and the display
width is word, the next location displayed is calculated by adding a word to the current location. Its
contents are displayed in hexadecimal. If the current display mode is instruction, the next location
displayed is the next instruction, and the contents are displayed as a MACRO instruction.

On keyboards without a separate Linefeed key, press Ctrl/J. The Linefeed key on LK201 keyboards
(VT220, VT240, VT340, and workstation key boards) generates different characters and cannot be used
for the LINEFEED command. You must use Ctrl/J.

This command is useful for displaying a series of machine instructions, a series of register values, or a
series of values on the stack or in memory.

The values in the symbol Q and the symbol . are changed automatically.

Examples
The following examples illustrate the command on each OpenVMS platform.

I64 example:

G0BF5D60! add r33 = 0008, r33 ;;
80BF5D62! nop.i 000000 ;;
80BF5D71! nop.m 000000
80BF5D72! sxt4 r2 = r2 ;;
80BF5D80! cmp.eq p14, p0 = r2, r0
80BF5D81! nop.f 000000
80BF5D82! (p14) br.cond.dpnt.few.clr 0000030 ;;

36

Chapter 4. DELTA/XDELTA Commands

80BF5D90! ld8 r14 = [r2], 008 ;;
80BF5D91! nop.m 000000
80BF5D92! mov b7 = r14 ;;
80BF5DA0! ld8 r1 = [r2]

The instruction at the base address G0BF5D60 is displayed using the ! command. XDELTA
displays an add instruction.
Ten successive instructions are displayed by pressing the Linefeed key twelve times. The
LINEFEED command is not echoed on the terminal.

Alpha example:

30000! LDA SP,#XFFE0(SP)
00030004! BIS R31,R31,R18
00030008! STQ R27,(SP)
0003000C! BIS R31,R31,R19
00030010! STQ R26,#X0008(SP)
00030014! BIS R31,#X04,R25

Instruction at address 30000 is displayed using the ! command.
Five successive instructions are displayed by pressing the Linefeed key five times. The LINEFEED
command is not echoed on the terminal.

VAX example:

6B9!
CLRQ -(SP) Linefeed
000006BB/CLRQ -(SP) Linefeed
000006BD/PUSHL X1+002E Linefeed
000006C1/PUSHAL X1+003A Linefeed
000006C5/CLRQ -(SP) Linefeed
000006C7/PUSHL #00

Instruction at address 6B9 is displayed using the ! command.
Five successive instructions are displayed by pressing the Linefeed key five times. The LINEFEED
command is not echoed on the terminal.

RETURN (Return or Enter key)—Close Current
Location
RETURN (Return or Enter key) — Closes a location that has been opened by one of the open location
and display contents commands.

Synopsis
RETURN

Description
If you have opened a location with one of the open location and display contents commands (/,
LINEFEED, ESC, TAB, !, or "), press the Return key to close the location. Use this command to make
sure that a specific location has not been left open with the possibility of being overwritten.

You also press the Return key to terminate the following DELTA/XDELTA commands:

37

Chapter 4. DELTA/XDELTA Commands

• ;X

• ;E

• ;G

• ;P

• ;B

• ;M

• 'string'

• ;L

• EXIT (DELTA only)

On I64 and Alpha, the same is true for the commands that are specific to this implementation, as follow:

• ;Q

• ;C

• ;D

• ;H

• ;I

• ;T (I64 only)

• ;W

• \string\

On all platforms, you can also use the Return key as an ASCII character in a quoted string. See the
Deposit ASCII String command ’ (single quote)—Deposit ASCII String (’).

TAB (Tab key)—Open Location and Display
Indirect Location
TAB (Tab key) — Opens the location addressed by the contents of the current location and displays its
contents.

Synopsis
TAB

Description
The Open Location and Display Indirect Location command opens the location addressed by the
contents of the current location and displays the contents of the addressed location on a new line. The
display is in the prevailing display mode. This command is useful for examining data structures that have
been placed in a queue, or the operands of instructions.

38

Chapter 4. DELTA/XDELTA Commands

To execute this command, press the Tab key.

This command changes the current address (.) to the location displayed.

This command does not affect the display mode.

Examples
The following examples illustrate the command on each OpenVMS platform.

I64 and Alpha, and VAX example:

10000/00083089
00010004/00000000
00010008/00030000
00030000/23DEFFE0

The contents of location 10000 are displayed using the / command.
The subsequent two locations are displayed using the LINEFEED command.
After displaying the contents of location 10008 (30000), the TAB command is used to display the
contents of location 30000.

VAX example:

69B!
BRB 0000067A Tab
0000067A/CLRQ -(SP)

The instruction at 69B is displayed using the ! command. DELTA/XDELTA displays a branch
instruction.
The instruction at the address referred to by the branch instruction is displayed by pressing the Tab
key. DELTA/XDELTA displays the instruction at address 67A.

;B—Breakpoint
;B — Shows, sets, and clears breakpoints.

Synopsis
[addr-exp] [n] [display-addr-exp] [cmd-string-addr];B

Arguments
[addr-exp]

The address where you want the breakpoint.

[n]

The number to assign to the breakpoint. If you omit a number, DELTA/XDELTA assigns the first unused
number to the breakpoint; if all numbers are in use, DELTA/XDELTA displays the error message, Eh?.

On VAX, for XDELTA, the range is from 2 to 8. For XDELTA, breakpoint 1 is reserved for INI$BRK.
For DELTA, the range is from 1 to 8.

39

Chapter 4. DELTA/XDELTA Commands

On I64 and Alpha, for XDELTA, the range is from 1 to 8. For DELTA, the range is from 1 to 8.

[display-addr-exp]

The address of a location, the contents of which are to be displayed in hexadecimal in the prevailing
width mode when the breakpoint is encountered. Omit this argument by specifying zero or two
consecutive commas. If omitted, DELTA/XDELTA displays only the instruction that begins at the
specified address.

[cmd-string-addr]

The address of the string of DELTA/XDELTA commands to execute when this breakpoint is
encountered. ;E—Execute Command String DELTA/XDELTA displays the information requested
before executing the string of commands associated with complex breakpoints. You must have previously
deposited the string of commands using the ' command or have coded the string into an identifiable
location in your program. If omitted, DELTA/XDELTA executes no commands automatically and waits
for you to enter commands interactively.

Description
The breakpoint command shows, sets, and clears breakpoints. The action of this command depends on
the arguments used with it. Each action is described below.

Displaying Breakpoints
To show all the breakpoints currently set, enter ;B. For each breakpoint, DELTA/XDELTA displays the
following information:

• Number of the breakpoint

• Address of the breakpoint

• Address of a location the contents of which will be displayed when the breakpoint is encountered

• Address of the command string associated with this breakpoint (for complex breakpoints, the section
called “Setting Complex Breakpoints”)

Setting Simple Breakpoints
To set a breakpoint, enter an address expression followed by ;B. Then press the Return key, as follows:

addr-exp;B Return

DELTA/XDELTA sets a breakpoint at the specified location and assigns it the first available breakpoint
number.

When DELTA/XDELTA reaches the breakpoint, it completes the following actions:

• Suspends instruction execution.

• Sets a flag to change the display mode to instruction mode. Any subsequent Close Current Location,
Open Next (LINEFEED) commands, and Open and Display Indirect Location (TAB) commands will
display locations as machine instructions.

40

Chapter 4. DELTA/XDELTA Commands

• On VAX, the following message is displayed, listing the number of the breakpoint, the address of the
breakpoint, and the instruction stored at the breakpoint location:

n BRK at address
address/decoded-instruction

On I64 and Alpha, the format of the display differs slightly, as shown in the following example:

Brk n at address [on CPUn] [new mode =]
[new IPL =]
address!decoded-instruction

• On I64 and Alpha systems, if the interrupt priority level (IPL) has changed, the new IPL is printed
(XDELTA only). Also on I64 and Alpha systems, if the processor mode has changed, the new mode
is printed (both XDELTA and DELTA).

If you are using XDELTA in a multiprocessor environment, the CPUID of the processor where the break
was taken is also displayed.

On VAX, the CPU ID is displayed as a 2-digit hexadecimal number.

On I64 and Alpha, the CPU ID is displayed as a decimal number with no leading zeros.

On all platforms, after the breakpoint message is displayed, you can enter other DELTA/XDELTA
commands. You can reset the flag that controls the mode in which instructions are displayed by entering
the Open Location and Display Contents (/) command.

Setting a Breakpoint and Assigning a Number to It
To set a breakpoint and assign it a number, enter the address where you want the breakpoint, a comma, a
single digit for the breakpoint number, a semicolon (;), the letter B, and then press the Return key.

For example, if you wanted to set breakpoint 4 at address 408, the command is as follows:

408,4;B Return

DELTA/XDELTA sets a breakpoint at the specified location and assigns it the specified breakpoint
number.

Clearing Breakpoints
To clear a breakpoint, enter zero (0), followed by a comma, the number of the breakpoint to remove,
a semicolon (;), the letter B, and then press the Return key. DELTA/XDELTA clears the specified
breakpoint. For example, if you wanted to clear breakpoint 4, the command is as follows:

0,4;B Return

On VAX, when using XDELTA, do not clear breakpoint 1. If you do, any calls to INI$BRK in your
program will not result in entry into XDELTA.

Setting Complex Breakpoints
On all platforms, a complex breakpoint completes one or more of the following actions:

• Always displays the next instruction to be executed

41

Chapter 4. DELTA/XDELTA Commands

• Optionally displays the contents of another, specified location

• Optionally executes a string of DELTA/XDELTA commands stored in memory

To use the complex breakpoint, you must first create the string of DELTA commands you want
executed. Then deposit those commands at a memory location with the Deposit ASCII String command
(’).

To set a complex breakpoint, use the following syntax:

addr-exp,n,display-addr-exp,cmd-string-addr;B

Example
;B
1 00000690
2 00000699
0,2;B
;B
1 00000690
;P

Two breakpoints have already been set and are displayed. Using ;B, DELTA/XDELTA displays
each breakpoint number and the address location of each breakpoint.
Breakpoint 2 is cleared.
Current breakpoints are displayed. Because breakpoint 2 has been cleared, DELTA/XDELTA
displays just breakpoint 1.
Program execution is continued using the ;P command.

Displaying Breakpoints in a Multithreaded Application
To support the debugging of multithreaded applications, DELTA has the capability of displaying a thread
ID at a breakpoint. When DELTA reaches a breakpoint in a multithreaded application, DELTA displays
the thread ID and stops the execution of all other threads. (When DELTA reaches a breakpoint in a
single-threaded application, the display and behavior is the same as in the past; DELTA displays the
address and stops program execution.)

In the following example, a breakpoint is set in a multithreaded application with 30000;B and is followed
by the ;P (Proceed from Breakpoint) command. The breakpoint is taken. Because it is a multithreaded
application, the thread ID is included in the display.

30000;B ;P
Brk 1 at 30000 on Thread 12
00030000! LDA SP,#XFF80(SP)

;C—Force System to Bugcheck and Crash (I64
and Alpha Only)
;C — Force the system to bugcheck and crash.

Synopsis
;C

42

Chapter 4. DELTA/XDELTA Commands

Description
The ;C command forces the system to bugcheck and crash. You can do this from wherever you are
in your debugging session. Although this command is for use primarily with XDELTA, you can also
use it with DELTA, but only in kernel mode. When you issue this command, the following message is
generated:

BUG$_DEBUGCRASH, Debugger forced system crash

;D—Dump (I64 and Alpha Only)
;D — Dumps a region of memory.

Synopsis
addr_exp length ;D

Arguments
addr-exp

The starting address of the dump.

length

The length of bytes to dump.

Description
On I64 and Alpha systems, the ;D command dumps a region of memory. The display is in a format
similar to the DCL DUMP command.

Example
G,200;D
Dump of 80000000 for 00000200 bytes
00840008 80000200 0000241F 00E8401D .@...$.......... : 80000000
00840008 80000200 00002400 0004401D .@...$.......... : 80000010
00840008 80000200 00000001 0000001D : 80000020
00000000 00000000 00000000 00000000 : 80000030
00040000 00203008 00202400 0260100B ..`..$..0 : 80000040
90000A00 40038004 10700001 00000001 p....@.... : 80000050
00800070 00000200 00001418 04200810 p... : 80000060
00000000 00000000 00000000 00000000 : 80000070
00000000 00000000 00000000 00000000 : 80000080
00000000 00000000 00000000 00000000 : 80000090
00000000 00000000 00000000 00000000 : 800000A0
00000000 00000000 00000000 00000000 : 800000B0
00000000 00000000 00000000 00000000 : 800000C0
00000000 00000000 00000000 00000000 : 800000D0
00000000 00000000 00000000 00000000 : 800000E0
00000000 00000000 00000000 00000000 : 800000F0

43

Chapter 4. DELTA/XDELTA Commands

00040000 00040000 00300580 02090001 0......... : 80000100
00840008 80000200 00000001 0000001D : 80000110
00840008 80000200 00000001 0000001D : 80000120
00840008 80000200 00002400 0004401D .@...$.......... : 80000130
00840008 80000200 0000241C 0128401D .@()..$......... : 80000140
84000804 40006200 02000580 060D0800 b.@.... : 80000150
20000000 00000200 00002400 0000C81D $......... : 80000160
50000178 00000200 00000001 0000001D x..P : 80000170
07000A00 00005501 08002100 44000802 ...D.!...U...... : 80000180
00840008 80000200 00000001 0000001D : 80000190
00840008 80000200 00002400 0004401D .@...$.......... : 800001A0
00840008 80000200 00002400 0004401D .@...$.......... : 800001B0
00840008 80000200 00002400 0004401D .@...$.......... : 800001C0
00840008 80000200 00002400 0004401D .@...$.......... : 800001D0
00840008 80000200 00002400 0004401D .@...$.......... : 800001E0
00840008 80000200 00002400 0004401D .@...$.......... : 800001F0
FFFFFFFF 8

The DUMP command is issued.
The dump output summarizes the operation.
The memory dump is displayed. The output is in the same format as the DCL DUMP command.
The starting location of the dump is printed.

;E—Execute Command String
;E — Executes a string of DELTA/XDELTA commands stored in memory.

Synopsis
address-expression ;E

Arguments
address-expression

The address of the string of DELTA/XDELTA commands to execute.

Description
The Execute Command String command executes a string of DELTA/XDELTA commands. Load the
ASCII text command string to a specific location in memory using the Deposit ASCII String command
(') or code the string in your program into an identifiable location.

If you want DELTA/XDELTA to proceed with program execution after it executes the string of
commands, end the command string with the ;P command. If you want DELTA/XDELTA to wait for
you to enter a command after it executes the string of commands, end the command string with a null
byte (a byte containing 0).

XDELTA, but not DELTA, provides two command strings in memory.

On Alpha, the addresses of these command strings are stored in base registers X14 and X15. The string
addressed by X14 displays the physical page number (PFN) database for the PFN in X0. The string
addressed by X15 copies the PFN in R0 to base register X0. It then displays the PFN database for that
PFN.

44

Chapter 4. DELTA/XDELTA Commands

On VAX, the addresses of these command strings are stored in base registers XE and XF. The string
addressed by XE displays the physical page number (PFN) database for the PFN in X0. The string
addressed by XF copies the PFN in R0 to base register X0. It then displays the PFN database for that
PFN.

You can use the command strings provided with XDELTA to obtain the following information:

• Specified PFN

• PFN state and type

• PFN reference count

• PFN backward link or working-set-list index

• PFN forward link or share count

• Page table entry (PTE) address that points to the PFN

• PFN backing-store address

• On VAX, the virtual block number in the process swap image, the block to which the page's entry in
the SWPVBN array points

• On Alpha, the virtual page number in process swap image, the collection of blocks containing the
page as pointed to by the PFN database

Example
7FFE1600,0;X
7FFE1600
X0;E
R0/00000001
R1/00000000
R2/00000000

The address (7FFE1600) where an ASCII string is stored is placed into base register 0 using ;X.
DELTA/XDELTA displays the value in X0.
The command string stored at address 7FFE1600, which is to examine the contents of R0, R1, and
R2 (R0/ Linefeed Linefeed), is executed with ;E.
DELTA/XDELTA executes the commands and displays the contents of R0, R1, and R2.

;G—Go
;G — Continues program execution.

Synopsis
address-expression ;G

Arguments
address-expression

The address at which to continue program execution.

45

Chapter 4. DELTA/XDELTA Commands

Description
The Go command places the address you specified in address-expression into the PC and
continues execution of the program at that address. It is useful when you want to ignore specific lines of
code or return to a previous program location to repeat execution.

Example
6A2;G

Program execution is started at address 6A2.

;H—Video Terminal Display Command (I64
and Alpha Only)
;H — Specifies the display mode, either hard copy terminal mode or DEC-CRT.

Synopsis
;H

Description
The ;H command enables you to choose the display mode of DELTA/XDELTA output. You can display
output either in hard copy terminal mode or DEC-CRT mode. The default display is DEC-CRT mode.
You can toggle back and forth from one display mode to the other by repeating the ;H command.

;I—List Current Main Image and Its Shareable
Images (I64 and Alpha Only)
;I — Lists information about the current main image and all shareable images that were activated,
including those that were installed /RESIDENT.

Synopsis
;I

Description
The ;I command peruses the image control block (IMCB) list and displays information about the
current main image and all shareable images that were activated, including those that were installed /
RESIDENT. The ;I command differs from the ;L command which displays information about the
loadable image database.

The display of the ;I command is similar to the ;L command display. It shows the image name, the
starting and ending addresses, the symbol vector address, and some flags. The command is useful
for debugging shareable images. For example, the display enables you to determine where LIBRTL is
mapped.

46

Chapter 4. DELTA/XDELTA Commands

The field flags are M, S, and P. The flag M indicates the main image; S or P indicates images that are
installed as shareable or protected, respectively.

Unlike the ;L command, which only works from kernel mode or when you have CMEXEC or
CMKRNL privileges, the ;I command works from any mode. However, to modify the IMCB database,
you must be in executive or kernel mode.

For resident main and shareable images, the ;I command also includes an entry for each resident code
section and each compressed data section, which shows the base and end address for each section.

The ;I command is implemented only for DELTA.

Example
$ define lib$debug delta
$ run/debug hello
OpenVMS Alpha DELTA Version 1.5
Brk 0 at 00020040
00020040! LDA SP,#XFFD0(SP) ;i
Image Name Base End Symbol-Vector Flags
HELLO 00010000 000301FF M
DECC$SHR 00032000 001233FF 00106B90 S
DPML$SHR 0012C000 001AC5FF 0019DED0 S
LIBRTL 001AE000 0025E7FF 00240790 S

Resident Code Sections:
 8015A000 801BBA00
LIBOTS 00124000 0012A1FF 00128000 S

Resident Code Sections:
 801BC000 801C2C00
Compressed Data Sections:
 00124000 00124A00
 00126000 00126800
 00128000 00128600
 0012A000 0012A200
SYS$PUBLIC_VECTORS 80401C98 80403028 80401C98
DELTA 00260000 002943FF 00260000
SYS$BASE_IMAGE 8040C5B0 804163E0 8040C5B0

;L—List Names and Locations of Loaded
Executive Images
;L — Lists the names and virtual addresses of all loaded executive images.

Synopsis
[sequence number];L

Argument
[sequence number]

47

Chapter 4. DELTA/XDELTA Commands

On I64 and Alpha, specifies a single executive image.

Description
Use the ;L command when you are debugging code that resides in system space. Although you use
this command mostly with XDELTA, you can use it with DELTA if your process has change-mode-to-
executive (CMEXEC) privilege and you are running a program in executive mode.

This command lists the names and locations of the loaded modules of the executive. A loading
mechanism maps a number of images of the executive into system space. The ;L command lists the
currently loaded images with their starting and ending virtual addresses. If you enter ;L before all the
executive images are loaded (for example, at an XDELTA initial breakpoint), only those images that have
been loaded will be displayed.

On Alpha, this command displays additional information and provides a second use, based on the
additional information. For each loaded executive image that is sliced into discontiguous image sections,
the display shows the sequence number for the executive image and the base and ending addresses of
each image section. A second use of this command is to display the base and ending addresses of a single
image if you specify its sequence number.

Examples
The following examples illustrate the command on each platform.

The following I64 example shows the names, the starting and ending virtual addresses, and the sequence
number for the specified loaded executive image. Images are split into image sections, showing the name
and the base, link, and ending address of each respective section. In these examples, sequence number
24 selects the PROCESS_MANAGEMENT; sequence number selects SYS$PUBLIC_VECTORS; and
sequence number 32 selects RMS.

24;L
Seq# LDRISD Image Name Base End Link End
0024 83881B80 PROCESS_MANAGEMENT
 0 83881C70 Read Write 83203800 83203808 00010000 00010008
 1 83881CB8 Read Execute 805AF300 806E4D70 00014000 00149A70
 2 83881D00 Read 83203A00 83230C78 0014C000 00179278
 3 83881D48 Read Write 83230E00 8323C120 0017C000 00187320
 4 83881D90 Read Write 8323C200 8323C214 00188000 00188014
 7 83881E68 Read Write 8323C400 8323C414 00194000 00194014
 8 83881EB0 Read Write 8323C600 8323C604 00198000 00198004
 9 83881EF8 Read Write 8323C800 83240660 0019C000 0019FE60
0;L
Seq# LDRISD Image Name Base End Link End
0000 83868580 SYS$PUBLIC_VECTORS
 0 83868670 Read Execute 80000000 80000070 00010000 00010070
 1 838686B8 Read 83000000 830000B0 00014000 000140B0
 2 83868700 Read Write 83000200 83000218 00018000 00018018
 3 83868748 Read 83000400 83008788 0001C000 00024388
 Symbol Vector 83000400
32;L
Seq# LDRISD Image Name Base End Link End
0032 83885500 RMS
 0 838855E0 Read Write 832B5800 832B5F40 00010000 00010740
 1 83885628 Read Execute 8014E900 8014FAE0 00014000 000151E0
 2 83885670 Read Execute 8098D100 80B9C8A0 00018000 002277A0

48

Chapter 4. DELTA/XDELTA Commands

 3 838856B8 Read 832B6000 832EC400 00228000 0025E400
 4 83885700 Read Write 832EC400 832EFAE8 00260000 002636E8
 5 83885748 Read Write 832EFC00 832EFC14 00264000 00264014
 6 83885790 Read Write 832EFE00 832EFE50 00268000 00268050
 9 83885868 Read Write 832F0000 832F0014 00274000 00274014
 A 838858B0 Read Write 832F0200 832F0204 00278000 00278004
 B 838858F8 Read Write 832F0400 832F3DC0 0027C000 0027F9C0

The following Alpha example shows the names, the starting and ending virtual addresses, and the
sequence numbers for all the loaded executive images. Only one image, EXEC_INIT.EXE, was not
split into image sections. For every image that was split into image sections, it also shows the name and
the base and ending address of each section.

;L
Seq# Image Name Base End
0012 EXEC_INIT.EXE 8080C000 80828000
0010 SYS$CPU_ROUTINES_0101.EXE
 Nonpaged read only 80038000 8003A200
 Nonpaged read/write 80420200 80420A00
 Initialization 80808000 80808400
000E ERRORLOG.EXE
 Nonpaged read only 8002E000 80036600
 Nonpaged read/write 8041BE00 80420200
 Initialization 80804000 80804800
000C SYSTEM_SYNCHRONIZATION.EXE
 Nonpaged read only 80024000 8002C800
 Nonpaged read/write 8041A000 8041BE00
 Initialization 80800000 80800800

0002 SYS$BASE_IMAGE
 Nonpaged read only 80002000 80009400
 Nonpaged read/write 80403000 80414C00
 Fixup 80620000 80620600
 Symbol Vector 8040B010 80414560
0000 SYS$PUBLIC_VECTORS.EXE
 Nonpaged read only 80000000 80001C00
 Nonpaged read/write 80400000 80403000
 Fixup 8061E000 8061E200
 Symbol Vector 80401BF0 80402ED0

The following Alpha example illustrates the use of the sequence number with the ;L command
to display information about one image. In this example, the sequence number C for the
SYSTEM_SYNCHRONIZATION.EXE module is specified with the ;L command. (It is not
necessary to specify the leading zeros in the command.) The resulting display shows only the
SYSTEM_SYNCHRONIZATION.EXE module (whose sequence number is 000C). The display includes
the names of the image sections within the module and their base and ending addresses.

C;L
Seq# Image Name Base End
000C SYSTEM_SYNCHRONIZATION.EXE
 Nonpaged read only 80024000 8002C800
 Nonpaged read/write 8041A000 8041BE00
 Initialization 80800000 80800800

VAX example, showing the names and the starting and ending virtual addresses of the three executive
images that are loaded in memory.

49

Chapter 4. DELTA/XDELTA Commands

;L
PRIMITIVE_IO.EXE 800EAA00 800EBC00
SYSTEM_SYNCHRONIZATION.EXE 800EBC00 800ED400
SYSTEM_PRIMITIVES.EXE 800ED400 800F1000

;M—Set All Processes Writable
;M — Sets the address spaces of all processes to be writable or read-only by your DELTA process. This
command can be used only with DELTA. Use of this command requires CMKRNL privilege. On Alpha,
this command also sets writable the general purpose registers of other processes, if, after issuing the ;M
command, you specify another process with any command that takes the PID argument, such as the /
command.

Synopsis
n ;M

Argument
n

Specifies your process privileges for reading and writing at other processes. If 0, your DELTA process
can only read locations in other processes; if 1, your process can read or write any location in any
process. If not specified, DELTA returns the current value of the M (modify) flag (0 or 1).

Description
The Set All Processes Writable command is useful for changing values in the running system.

Note

Use this activity very carefully during time sharing. It affects all processes on the system. For this reason,
your process must have change-mode-to-kernel (CMKRNL) privilege to use this command. It is safest to
use this command only on a standalone system.

;P—Proceed from Breakpoint
;P — Continues program execution following a breakpoint.

Synopsis
;P

Description
The Proceed from Breakpoint command continues program execution at the address contained in the PC
of the program. Program execution continues until the next breakpoint or until program completion.

50

Chapter 4. DELTA/XDELTA Commands

Note

If DELTA/XDELTA does not have write access to the target of a JSR instruction, you cannot use the S
or ;P command at the JSR instruction. First, you must use the O command; then you can use the S or
;P command.

Example
The following examples illustrate the command on each OpenVMS platform.

I64 example:

G0BF5D60,0;X
G0BF5D60
X0+60;B
 1 00000060
;P
Brk 1 at X0+00000060 on CPU 0
X0+00000060! alloc r53 = ar.pfs, 18, 08, 00 (New IPL = 0) -
 (New mode = USER)

Set the base register.
Set a breakpoint at address X0+00000060 using ;B.
Program execution is continued using the ;P command.
Program execution halts at breakpoint 1. DELTA/XDELTA displays the breakpoint message (the
breakpoint number and the address) and the instruction.

Alpha example:

;B
 1 00030010
;P
Brk 1 at 00030010
00030010! STQ R26,#X0008(SP)

Current breakpoints are displayed using ;B (breakpoint 1 at address 30010).
Program execution is continued using the ;P command.
Program execution halts at breakpoint 1. DELTA/XDELTA displays the breakpoint message (the
breakpoint number and the address) and the instruction.

VAX example:

;B
2 00000699
;P
2 BRK AT 00000699
00000699/BSBB 000006A2

Current breakpoints are displayed using ;B (breakpoint 2 at address699).
Program execution is continued using the ;P command.
Program execution halts at breakpoint 2. DELTA/XDELTA displays the breakpoint message (the
breakpoint number and the address) and the instruction.

;Q—Validate Queue (I64 and Alpha Only)
;Q — Analyzes absolute and self-relative longword queues and displays the results of the analysis.

51

Chapter 4. DELTA/XDELTA Commands

Synopsis
queue_header_address [queue_type];Q

Argument
queue_header_address

The queue header must be at least longword aligned.

[queue_type]

A queue type of zero (the default) represents an absolute queue. A queue type of 1 indicates a self-
relative queue.

Description
The validate queue function is similar to the one in the OpenVMS System Dump Analyzer Utility. It
can analyze both absolute and self-relative longword queues and display the results of the analysis. This
function identifies various problems in the queue headers and invalid backward links for queue entries
and evaluates the readability of both. For valid queues, it tells you the total number of entries. For invalid
queues, it tells you the queue entry number and the address that is invalid and why.

Example
FFFFFFFF8000F00D;Q !Absolute at GF00D
GF00D,0;Q !Absolute at GF00D
GF00,1;Q !Self-relative at GF00

;T—Display Interrupt Stack Frame on XDELTA
(I64 Only)
;T — XDELTA only; displays contents of an interrupt stack frame.

Synopsis
addr_exp ;T

Arguments
addr-exp

The address of the stack frame. This is an optional argument. If not specified, the ;T command without
any argument displays the interrupt stack frame with which XDELTA was invoked.

Description
On I64 systems, the XDELTA ;T command displays the contents of an interrupt stack frame.

52

Chapter 4. DELTA/XDELTA Commands

Example
In the following example, the ;T command displays the machine state at the time of the exception.

;T
* Exception Frame Display: *
Exception taken at IP FFFFFFFF.8063D830, slot 01
from Kernel mode Exception Frame at FFFFFFFF.89DA1CE0
Trap Type 00000080 (External Interrupt)
IVT Offset 00003000 (External Interrupt)
External Interrupt Vector 00000000
* = Value read directly from the register rather than the frame
Control Registers:
CR0 Default Control Register (DCR) 00000000.00007F00
CR1 Interval Timer Match Register (ITM) * 0000C6F7.31F82D5B
CR2 Interruption Vector Address (IVA) * FFFFFFFF.801D0000
CR8 Page Table Address (PTA) * FFFFFFFF.7FFF013D
CR16 Processor Status Register (IPSR) 00001210.0A026010
CR17 Interrupt Status Register (ISR) 00000200.00000000
CR19 Instruction Pointer (IIP) FFFFFFFF.8063D830
CR20 Faulting Address (IFA) FFFFFFFF.88580078
CR21 TLB Insertion Register (ITIR) 00000000.00000334
CR22 Instruction Previous Address (IIPA) FFFFFFFF.8063D830
CR23 Function State (IFS) 80000000.00000FA7
CR24 Instruction immediate (IIM) FFFFFFFF.88580078
CR25 VHPT Hash Address (IHA) FFFFFFFF.7FFF5860
CR64 Local Interrupt ID (LID) * 00000000.00000000
CR66 Task Priority Register (TPR) * 00000000.00010000
CR68 External Interrupt Req Reg 0 (IRR0) * 00000000.00000000
CR69 External Interrupt Req Reg 1 (IRR1) * 00000000.00000000
CR70 External Interrupt Req Reg 2 (IRR2) * 00000000.00000000
CR71 External Interrupt Req Reg 3 (IRR3) * 00020000.00000000
CR72 Interval Time Vector (ITV) * 00000000.000000F1
CR73 Performance Monitoring Vector (PMV) * 00000000.000000FB
CR74 Corrected Machinecheck Vector (CMCV) * 00000000.00010000
CR80 Local Redirection Register 0 (LRR0) * 00000000.00010000
CR81 Local Redirection Register 1 (LRR1) * 00000000.00010000
Application Registers:
AR0 Kernel Register (KR0) * 00000000.20570000
AR1 Kernel Register (KR1) * 00000000.60000000
AR2 Kernel Register (KR2) * 00000000.00000000
AR3 Kernel Register (KR3) * 00000000.00000000
AR4 Kernel Register (KR4) * 00000000.00000000
AR5 Kernel Register (KR5) * 0000C6F7.31F82D5B
AR6 Kernel Register (KR6) * FFFFFFFF.84C3E000
AR7 Kernel Register (KR7) * FFFFFFFF.89D4B000
AR16 Register Stack Config Reg (RSC) 00000000.00000000
AR17 Backing Store Pointer (BSP) FFFFF802.A3EAC300
AR18 Backing Store for Mem Store (BSPSTORE) FFFFF802.A3EAC300
AR19 RSE NaT Collection Register (RNAT) 00000000.00000000
AR32 Compare/Exchange Comp Value Reg (CCV) FFFFFFFF.84132680
AR36 User NaT Collection Register (UNAT) 00000000.00000000
AR40 Floating-point Status Reg (FPSR) 0009804C.0270033F
AR44 Interval Time Counter (ITC) * 0000C6FB.A91997B5
AR64 Previous Function State (PFS) 00000000.00000FA7
AR65 Loop Count Register (LC) 00000000.00000000
AR66 Epilog Count Register (EC) 00000000.00000000

53

Chapter 4. DELTA/XDELTA Commands

Processor Status Register (IPSR):
AC = 0 MFL= 1 MFH= 0 IC = 1 I = 1 DT = 1
DFL= 0 DFH= 0 RT = 1 CPL= 0 IT = 1 MC = 0 RI = 1
Interrupt Status Register (ISR):
Code 00000000 X = 0 W = 0 R = 0 NA = 0 SP = 0
RS = 0 IR = 0 NI = 0 SO = 0 EI = 1 ED = 0
Branch Registers: Region Registers:
B0 FFFFFFFF.8063C570 RR0 * 00000000.00000035
B1 00000000.00000000 RR1 * 00000000.00000030
B2 00000000.00000000 RR2 * 00000000.00000030
B3 00000000.00000000 RR3 * 00000000.00000030
B4 00000000.00000000 RR4 * 00000000.00000030
B5 00000000.00000000 RR5 * 00000000.00000030
B6 FFFFFFFF.80001580 RR6 * 00000000.00000030
B7 FFFFFFFF.806F4D30 RR7 * 00000000.00000335
Floating Point Registers: FPSR 0009804C.0270033F
F6 00000000.0001003E.00000000.0000FCBE
F7 00000000.0001003E.00000000.00000040
F8 00000000.0001003E.00000000.003F2F80
F9 00000000.00010003.80000000.00000000
F10 00000000.0000FFFB.80000000.00000000
F11 00000000.0000FFFB.80000000.00000000
Miscellaneous Registers:
Processor Identifier (CPUID 0,1) GenuineIntel
 (CPUID 3) 00000000.1F010504
Interrupt Priority Level (IPL) 00000003
Stack Align 000002D0
NaT Mask 001C
PPrev Mode 00
Previous Stack 00
Interrupt Depth 00
Preds 00000000.FF65CCA3
Nats 00000000.00000000
Context 00000000.FF61CEA3
General Registers:
R0 00000000.00000000 GP FFFFFFFF.8442E200 R2 FFFFFFFF.84132688
R3 FFFFFFFF.8442E200 R4 FFFFFFFF.8442E200 R5 00000000.00000001
R6 FFFFFFFF.84C3E000 R7 00000000.00000000 R8 00000000.00000003
R9 00000000.00000009 R10 00000000.00000008 R11 00000000.00000000
SP FFFFFFFF.89DA0D18 TP 00000000.00000000 R14 00000000.00000001
R15 FFFFFFFF.8401BD90 R16 FFFFFFFF.84017508 R17 FFFFFFFF.84009E98
R18 FFFFFFFF.84C3F274 R19 00000000.00000000 R20 FFFFFFFF.84009E00
R21 FFFFFFFF.84132627 R22 FFFFFFFF.84C3E01C R23 00000000.0000000F
R24 00000000.00011F90 R25 00000000.00000003 R26 00000000.00000000
R27 FFFFFFFF.84132668 R28 FFFFFFFF.8416D7C8 R29 FFFFFFFF.89DA1FB0
R30 00000000.7FF2E318 R31 00000000.00000000
Interrupted Frame RSE Backing Store , Size = 39 registers
FFFFF802.A3EAC300: FFFFFFFF.84C3E080 (R32)
FFFFF802.A3EAC308: E0000000.00000000 (R33)
FFFFF802.A3EAC310: FFFFFFFF.84132628 (R34)
FFFFF802.A3EAC318: FFFFFFFF.88598080 (R35)
FFFFF802.A3EAC320: 00000000.00000001 (R36)
FFFFF802.A3EAC328: FFFFFFFF.806029A0 (R37)
FFFFF802.A3EAC330: 00000000.FF65C563 (R38)
FFFFF802.A3EAC338: 00000000.00000000 (R39)
FFFFF802.A3EAC340: FFFFFFFF.8442E200 (R40)
FFFFF802.A3EAC348: FFFFFFFF.806029C0 (R41)
FFFFF802.A3EAC350: FFFFFFFF.8442E200 (R42)

54

Chapter 4. DELTA/XDELTA Commands

FFFFF802.A3EAC358: FFFFFFFF.88598080 (R43)
FFFFF802.A3EAC360: FFFFFFFF.84191000 (R44)
FFFFF802.A3EAC368: 00000000.00000009 (R45)
FFFFF802.A3EAC370: FFFFFFFF.8416D7C8 (R46)
FFFFF802.A3EAC378: FFFFFFFF.8442E200 (R47)
FFFFF802.A3EAC380: 00000000.00000000 (R48)
FFFFF802.A3EAC388: FFFFFFFF.84132668 (R49)
FFFFF802.A3EAC390: 00000000.00000008 (R50)
FFFFF802.A3EAC398: 00000000.00000000 (R51)
FFFFF802.A3EAC3A0: 00000000.7FF2E318 (R52)
FFFFF802.A3EAC3A8: 00000000.00000000 (R53)
FFFFF802.A3EAC3B0: 00000000.00000FB2 (R54)
FFFFF802.A3EAC3B8: FFFFFFFF.84132627 (R55)
FFFFF802.A3EAC3C0: 00000000.00000003 (R56)
FFFFF802.A3EAC3C8: FFFFFFFF.89DA1FB0 (R57)
FFFFF802.A3EAC3D0: FFFFFFFF.801D9BD0 (R58)
FFFFF802.A3EAC3D8: FFFFFFFF.806029C0 (R59)
FFFFF802.A3EAC3E0: 00000000.00000001 (R60)
FFFFF802.A3EAC3E8: FFFFFFFF.89DA1FB0 (R61)
FFFFF802.A3EAC3F0: FFFFFFFF.8442E200 (R62)
FFFFF802.A3EAC400: 00000000.00000003 (R63)
FFFFF802.A3EAC408: FFFFFFFF.8063C570 (R64)
FFFFF802.A3EAC410: 00000000.00000008 (R65)
FFFFF802.A3EAC418: 00000000.00000008 (R66)
FFFFF802.A3EAC420: FFFFFFFF.84132668 (R67)
FFFFF802.A3EAC428: FFFFFFFF.8416D7C8 (R68)
FFFFF802.A3EAC430: 00000000.00000008 (R69)
FFFFF802.A3EAC438: FFFFFFFF.8416DAA0 (R70)

;W—List Name and Location of a Single
Loaded Image (I64 and Alpha Only)
;W — Lists information about an image that contains the address you supplied.

Synopsis
address-expression ;W

sequence number offset ;W

Arguments
address-expression

An address contained within an executive image or a user image.

sequence number

The identifier assigned to an executive image.

offset

The distance from the base address of the image.

55

Chapter 4. DELTA/XDELTA Commands

Description
The ;W command is used for debugging code that resides in system or user space. You can use this
command with XDELTA for debugging an executive image. You can also use this command with
DELTA.

To examine the executive image list, you must be running in executive mode or your process must have
change-mode-to-executive (CMEXEC) privilege.

This command can be used in two ways. In the first way, if you supply an address that you are trying
to locate, the command lists the name of the executive or user image that contains the address, its base
and ending addresses, and the offset of the address from the base of the image. For any executive image
that has been sliced, it also displays its sequence number. The offset can be used with the link map of the
image to locate the actual code or data. This offset is saved in the value Q.

In the second way, if you supply the sequence number of a sliced executive image and an offset, the
command computes and displays the address in memory. The address is saved in the value Q.

Examples
The first form of the command takes a system space address as a parameter and attempts to locate that
address within the loaded executive images. This command works for both sliced and unsliced loadable
executive images. The output is very similar to ;L, except the offset is displayed for you, as shown in the
following example:

80026530;W
Seq# Image Name Base End Image Offset
000C SYSTEM_SYNCHRONIZATION.EXE
 Nonpaged read only 80024000 8002C800 00002530

The second form of the command takes a loadable executive image sequence number and an image
offset from the map file as parameters. The output, again, is very similar to ;L, except that the system
space address that corresponds to the image offset is displayed, as shown in the following example:

C,2530;W
Seq# Image Name Base End Address
000C SYSTEM_SYNCHRONIZATION.EXE
 Nonpaged read only 80024000 8002C800 80026530

;X—Load Base Register
;X — Places an address in a base register.

Synopsis
address-expression n [y];X

Arguments
address-expression

The address to place in the base register.

56

Chapter 4. DELTA/XDELTA Commands

n

The number of the base register.

[y]

On I64 and Alpha, a parameter for modifying the default offset of 1000016. The valid range is 1 to
FFFFFFFF.

Description
On I64 and Alpha, to place an address in a base register, enter:

• An expression followed by a comma (,), or

• A number from 0 to 1510, or optionally, a number from 1 to FFFFFFFF, a semicolon (;)

• The letter X.

On VAX, to place an address in a base register, enter an expression followed by a comma (,), a number
from 0 to F16,a semicolon (;), and the letter X.

On all platforms, DELTA/XDELTA places the address in the base register. DELTA/XDELTA confirms
that the base register is set by displaying the value deposited in the base register.

For example, the following command places the address 402 in base register 0. DELTA/XDELTA then
displays the value in the base register to verify it.

402,0;X Return
00000402

Whenever DELTA/XDELTA displays an address, it will display a relative address if the address falls
within the computer's valid range for an offset from a base register. The relative address consists of the
base register identifier (Xn), followed by an offset. The offset gives the address location in relation to the
address stored in the base register.

For example, if base register 2 contains 800D046A, the address that would be displayed is X2+C4, the
base register identifier followed by the offset.

Relative addresses are computed for both opened and displayed locations and for addresses that are
instruction operands.

If you have defined several base registers, the offset will be relative to the closest base register. If an
address falls outside the valid range, it is displayed as a hexadecimal value.

On I64, the default offset is 10000016, which can be modified.

On Alpha, the default offset is 1000016, which can be modified.

On VAX, the default offset is 200016 bytes. It cannot be modified.

Examples
The following examples illustrate the command on each platform.

57

Chapter 4. DELTA/XDELTA Commands

I64 example:

G0BF5D60,0,200;X 1
;X
0 80BF5D60 00000200
4 8392A900
5 83009DE0
13 FFFFF802 06C00000
14 830937F015 83093700
G0BF5D60,0,200;X
;X
 0 80BF5D60 00000200
 4 8392A900
 5 83009DE0
 13 FFFFF802 06C00000
 14 830937F0
 15 83093700

Set the base register, with an offset.
The ;X command with no arguments displays the existing base register values. Offset values are
also displayed, if their value is other than the default offset.

Alpha example:

30000,0;X
00030000
30070,1,200;X
00030070
;X
 0 00030000
 1 00030070 00000200
S
X0+00000004! BIS R31,R31,R18
x1+10! STQ FP,#X0020(SP)

The base address of the program (determined from the map file) is virtual address 30000. The
base address is stored in base register 0 with ;X, using the default offset. DELTA/XDELTA
displays the value in base register 0 just loaded, 30000.
The address of a subroutine, 30070, is stored in base register 1, specifying a new offset of 200 (to
override the default value of 100000). Note that this command could also have been expressed as
"x0+70,1,200;X". DELTA/XDELTA displays the value in base register 1 just loaded, 30070.
The ;X command is used to display the current base registers. Note that for those not using the
default offset, the offset is also displayed.
The S command is used to execute the first instruction in the main routine. DELTA/XDELTA
displays the address of the next instruction, 30004, as x0+00000004 and then displays the
instruction at that address.
The instruction at offset 10 from base register 1 is displayed in instruction mode using the !
command.

VAX example:

00000664/CLRQ -(SP)
200,1;X
00000200

X1 490!
CMPL R0,#000009A8

58

Chapter 4. DELTA/XDELTA Commands

X1 499!
BSBB X1+04A2

The base address of the program (determined from the map file) is virtual address 200. The base
address is stored in base register 1with ;X.
DELTA/XDELTA displays the value in base register 1 just loaded, 200.
The instruction at offset 490 is displayed in instruction mode using the ! command. The address
reference is X1+490 (the + sign is implied when not specified). DELTA/XDELTA displays the
instruction at address X1+490.
The instruction at offset 499 is displayed. This instruction is a branch instruction. DELTA/
XDELTA displays the address of the branch in offset notation.

O—Step Instruction over Subroutine
O — Executes one instruction, steps over a subroutine by executing it, and displays the instruction to
which the subroutine returns control.

Synopsis
O

Description
The Step Instruction over Subroutine command executes one instruction and displays the address of the
next instruction. If the instruction executed is a call to a subroutine, the subroutine is executed and the
next instruction displayed is the instruction to which the subroutine returns control. Use this command to
do single-step instruction execution excluding single-stepping of instructions within subroutines. If you
want to do single-step execution of all instructions, including those in subroutines, use the S command.

This command sets a flag to change the display mode to instruction mode. Any subsequent Close
Current Location, Open Next (LINEFEED) commands and Open and Display Indirect Location (TAB)
commands will display locations as machine instructions. The Open Location and Display Contents (/)
command clears the flag, causing the display mode to revert to longword, hexadecimal mode.

On I64, the subroutine call instruction is br.call.

On Alpha, the subroutine call instructions are JSR and BSR.

On VAX, the subroutine call instructions are BSBB, BSBW, JSB, CALLG, and CALLS.

On all platforms, if you set a breakpoint in the subroutine and enter the O command, program execution
breaks at the subroutine breakpoint. When you enter a Proceed command (;P), and program execution
returns to the instruction to which the subroutine returns control, a message is displayed, as follows:

On I64 and Alpha systems:

Step-over at nnnnnnnn
instruction

On VAX systems:

STEPOVER BRK AT nnnnnnnn
instruction

The message informs you that program execution has returned from a subroutine.

59

Chapter 4. DELTA/XDELTA Commands

If you are using XDELTA in a multiprocessor environment, the CPU ID of the processor where the
break was taken is also displayed.

On I64 and Alpha, the CPU ID is displayed as a decimal number with no leading zeros.

On VAX, the CPU ID is displayed as a 2-digit hexadecimal number.

Examples
The following examples illustrate the command on each OpenVMS platform.

I64 example:

X0+00000380! mov r7 = r23S
X0+00000381! nop.f 000000S
X0+00000382! br.call.sptk.many b0 = 0000E30 O
X0+00000390! mov r29 = r41S
X0+00000391! mov r1 = r40S

Program execution is currently at Base Register X0, plus offset 00000380. The instruction at
X0+380 is a Move Application Register instruction. Step execution is then continued using the S
command.
Program execution is stopped at Base Register X0, plus offset 00000381. The instruction at offset
00000381 is a No Operation instruction. Step execution is then continued using the S command.
Program execution is stopped at offset 00000382. The instruction at 00000382 is a "br.call"
instruction. Execution is continued using the O command, thus skipping the routine(s) being called.

Alpha example:

30040;B
30070;B
;B
 1 00030040
 2 00030070
;P
Brk 1 at 00030040
00030040! LDA R27,#XFFC8(R2) O
00030044! BSR R26,#X00000A O
Brk 2 at 00030070
00030070! LDA SP,#XFFD0(SP) ;P
Step-over at 30048
00030048! LDQ R26,#X0048(R2) S
0003004C! BIS R31,R31,R17

A simple breakpoint is set in the main routine at address 30040, just prior to the subroutine call.
A simple breakpoint is set in the subroutine at address 30070. The breakpoints are displayed using
the ;B command.
Program execution continues using ;P.
Program execution stops at breakpoint 1. DELTA/XDELTA displays the breakpoint message and
the instruction at the breakpoint address. The O command is used to single-step (DELTA/XDELTA
recognizes that this is not a call instruction and turns it into a single-step instead).
The next instruction is a subroutine call (BSR). The subroutine is stepped over using the O
command.
Ordinarily, the step-over would continue execution at the instruction following the subroutine call.
However, in this case, program execution stops at breakpoint 2 inside the subroutine at address
30070. Program execution continues with the ;P command.

60

Chapter 4. DELTA/XDELTA Commands

The subroutine completes execution. DELTA/XDELTA displays a step-over break message that
indicates that the O command has been completed, returning control at address 30048.

VAX example:

6D5;B
;P
1 BRK AT 000006D5
000006D5/CALLS #0C,@#7FFEDE00
;P
 PID= 0006 LOGINTIME= 12:50:29.45
2 BRK AT 00000699
00000699/BSBB 000006A2
;P
1 BRK AT 000006D5
000006D5/CALLS #0C,@#7FFEDE00
;P
 PID= 0007 LOGINTIME= 12:50:37.08
2 BRK AT 00000699
00000699/BSBB 000006A2
O
1 BRK AT 000006D5
000006D5/CALLS #0C,@#7FFEDE00
;P
 PID= 0008 LOGINTIME= 12:50:45.64
STEPOVER BRK AT 0000069B
0000069B/BRB X1+047A

One breakpoint has been set at address 699 in the main routine. A simple breakpoint is set at 6D5
using ;B. This breakpoint is in a subroutine.
Program execution continues using ;P.
Program execution stops at breakpoint 1, which is in the subroutine. DELTA/XDELTA displays
the breakpoint message and the instruction at the new breakpoint. Program execution continues
using ;P.
The subroutine completes and displays some output. Program execution continues until breakpoint
2. DELTA/XDELTA displays the breakpoint message and the breakpoint 2 instruction. Program
execution continues with the ;P command.
Program execution stops at breakpoint 1. Program execution continues with the ;P command. The
subroutine completes execution and displays the output.
Program execution stops at breakpoint 2. The subroutine is stepped over to the next instruction
using the O command.
Program execution stops at breakpoint 1 in the subroutine. Program execution continues using the
;P command.
The subroutine completes execution and displays output. DELTA/XDELTA displays a STEPOVER
break message that states the O command has been completed, returning control at address 69B.

S—Step Instruction
S — Executes one instruction and displays the next. If the executed instruction is a call to a subroutine, it
steps into the subroutine and displays the next instruction to be executed in the subroutine.

Synopsis
S

61

Chapter 4. DELTA/XDELTA Commands

Description
The Step Instruction command executes one instruction and displays the next instruction (in instruction
mode) and its address. Use this command to single-step instructions, including single-stepping all
instructions in subroutines. If you want to exclude single-stepping instructions in subroutines, use the O
command.

The instruction displayed has not yet been executed. This command sets a flag to change the display
mode to instruction mode. Any subsequent Close Current Location, Open Next (LINEFEED) commands
and Open and Display Indirect Location (TAB) commands will display locations as machine instructions.
The Open Location and Display Contents (/) command clears the flag, causing the display mode to
revert to longword, hexadecimal mode.

On I64, if the instruction is a br.call instruction, Step moves to the subroutine called by these instructions
and displays the first instruction within the subroutine.

On Alpha, if the instruction being executed is a JSR or BSR instruction, Step moves to the subroutine
called by these instructions and displays the first instruction within the subroutine.

Note

If DELTA/XDELTA does not have write access to the target of a JSR instruction,you cannot use the S or
;P command at the JSR instruction. First, you must use the O command; then you can use the S or ;P
command.

On VAX, if the instruction being executed is a BSBB, BSBW, JSB, CALLG, or CALLS instruction,
Step moves to the subroutine called by these instructions and displays the first instruction within the
subroutine.

On Alpha and VAX, in general, you move to the instruction where you want to start single-step
execution by placing a breakpoint at that instruction and typing ;P. Then press S to execute the first
instruction and display the next one.

Examples
I64 example:

X0+00000061! mov r52 = b0 S
X0+00000062! mov r40 = r1 S
X0+00000070! st8 [r12] = r0 ;;

Program execution has been stopped at base register X0 plus offset 0000061. The instruction at
this address is a Move Branch Register. Step execution is continued using the S command.
Program execution is now stopped at base register X0 plus offset 0000062. The instruction at this
address is a Move Application Register. Step execution is then continued using the S command.
The instruction at offset 0000070 is displayed.

Alpha example:

0003003C! BLBC R0,#X000006 S
00030040! LDQ R16,#X0050(R2) S
00030044! BIS R31,R31,R17 S
00030048! LDQ R26,#X0040(R2)

62

Chapter 4. DELTA/XDELTA Commands

Step program execution is started at address 3003C. The instruction at 3003C is a conditional
branch instruction. Step execution is continued using the S command.
Because the condition (BLBC) was not met, program execution continued at the next instruction at
address 30040. Had the branch been taken, execution would have continued at address 30058. The
second S command causes the LDQ instruction to be executed.
The instruction at address 30044 is displayed. The S command is executed.

OpenVMS VAX example:

00000690/CMPL R0,#000009A8 S
00000697/BEQL 0000069D S
00000699/BSBB 000006A2 S
000006A2/PUSHL R2

Step program execution is started at address 690. The instruction at 690 is executed and the next
instruction is displayed. Step execution is continued using S.
At address 697, there is a branch instruction to the instruction at address 69D. However, because
the condition (BEQL) is not met, program execution continues at the next instruction. The next S
command is executed.
At address 699, there is a branch instruction to the instruction at address 6A2, a subroutine. The
next S command is executed.
Program execution moves to the subroutine.

63

Chapter 4. DELTA/XDELTA Commands

64

Appendix A. Sample DELTA Debug
Session on I64
This appendix gives an example of how you would use DELTA to debug a program executing on
OpenVMS I64. The example C program named LOG uses the system service SYS$GETJPIW to obtain
the PID, process name, and login time of each process. To run the example program without error, you
need WORLD privilege.

Note

Although this example debugging session demonstrates using the DELTA debugger, you could use most
of the commands in the example in an XDELTA debugging session as well.

This appendix consists of two sections:

• Section A.1 shows the source and machine listing files for the example C program.

• Section A.2 shows the example DELTA debugging session and explains the various commands used
and information provided.

A.1. Listing File for C Example Program
This section shows the listing file for the C program, LOG, in two parts:

• Section A.1.1—C source code

• Section A.1.2—Machine code

See Section A.2 for the corresponding sample debugging session using this program.

A.1.1. Source Listing for I64 Debugging Example
Example A.1 shows the C source code for the example file, LOG.

Example A.1. Listing File for LOG: C Source Code

 1 #include <descrip.h>
 973 #include <jpidef.h>
 1378 #include <ssdef.h>
 5641 #include <starlet.h>
 9024 #include <stdio.h>
 0606 #include <stdlib.h>
 2406
22407 void print_line(unsigned long int pid,
22408 char *process_name,
22409 unsigned long int *time_buffer);
22410
22411 typedef struct {
22412 unsigned short int il3_buffer_len;
22413 unsigned short int il3_item_code;
22414 void *il3_buffer_ptr;
22415 unsigned short int *il3_return_len_ptr;
22416 } item_list_3;
22417

65

Appendix A. Sample DELTA Debug Session on I64

22418 #define NUL '\0'
22419
22420 main(void)
22421{
22422 static char name_buf[16];
22423 static unsigned long int pid, time_buf[2];
22424 static unsigned short int name_len;
22425
22426 unsigned short int pidadr[2] = {-1, -1};
22427 unsigned long int ss_sts;
22428 item_list_3 jpi_itmlst[] = {
22429 /* Get login time */
22430 { sizeof(time_buf),
22431 JPI$_LOGINTIM,
22432 (void *) time_buf,
22433 NULL
22434 },
22435
22436 /* Get process name */
22437 { sizeof(name_buf) - 1,
22438 JPI$_PRCNAM,
22439 (void *) name_buf,
22440 &name_len
22441 },
22442
22443 /* Get process ID (PID) */
22444 { sizeof(pid),
22445 JPI$_PID,
22446 (void *) &pid,
22447 NULL
22448 },
22449
22450 /* End of list */
22451 { 0,
22452 0,
22453 NULL,
22454 NULL
22455 }
22456 };
22457
22458 /*
22459 * While there's more GETJPI information to process and a
22460 * catastrophic error has not occurred then
22461 * If GETJPI was successful then
22462 * NUL terminate the process name string and
22463 * print the information returned by GETJPI
22464 */
22465
22466 while((ss_sts = sys$getjpiw(0, &pidadr, 0, &jpi_itmlst, 0, 0,
 0)) != SS$_NOMOREPROC &&
22467 ss_sts != SS$_BADPARAM &&
22468 ss_sts != SS$_ACCVIO) {
22469
22470 if (ss_sts == SS$_NORMAL) {
22471 *(name_buf + name_len) = NUL;
22472 print_line(pid, name_buf, time_buf);
22473 }
22474 }

66

Appendix A. Sample DELTA Debug Session on I64

22475 exit(EXIT_SUCCESS);
22476 }
22477
22478 void print_line(unsigned long int pid,
22479 char *process_name
22480 unsigned long int *time_buffer)
22481 {
22482 static char ascii_time[12];
22483
22484 struct dsc$descriptor_s time_dsc = {
22485 sizeof(ascii_time) - 1,
22486 DSC$K_DTYPE_T,
22487 DSC$K_CLASS_S,
22488 ascii_time
22489 1
22490 unsigned short int time_len;
22491
22492 /*
22493 Convert the logged in time to ASCII and NUL terminate it
22494 */
22495 sys$asctim(&time_len, &time_dsc, time_buffer, 1);
22496 *(ascii_time + time_len) = NUL;
22497
22498 /*
22499 Output the PID, process name and logged in time
22500 */
22501 printf("\n\tPID= %08.8X\t\tPRCNAM= %s\tLOGINTIM= %s",
22502 pid,
22503 process_name,
22504 ascii_time);
22505
22506 return;
22507 }

A.1.2. Machine Code Listing for I64 Debugging Example
Example A.2 through Example A.4 show machine code listings for the procedures in the example
program, LOG.

Example A.2. Listing File for LOG: Machine Code _MAIN Procedure

 .psect $CODE$, CON, LCL, SHR, EXE, NOWRT, NOVEC, NOSHORT
 .proc __MAIN
 .align 32
 .global __MAIN
 .personality DECC$$SHELL_HANDLER
 .handlerdata
 __MAIN: // 02242
 { .mii 002C00F2EB40 0000 alloc r45 = rspfs, 6, 9, 8, 0
010800C00080 0001 mov r2 = sp // r2 = r12
0120000A0380 0002 mov r14 = 80 ;;
 }
 { .mmi 010028E183C0 0010 sub r15 = sp, r14 ;; // r15 =
 r12, r14
0080C0F00380 0011 ld8 r14 = [r15]
010800F00300 0012 mov sp = r15 ;; // r12 = r15
 }
 { .mii 000008000000 0020 nop.m 0

67

Appendix A. Sample DELTA Debug Session on I64

000188000B00 0021 mov r44 = rp // r44 = br0
010800100B80 0022 mov r46 = gp ;; // r46 = r1
 }
⋮
 { .mii 010802E00040 0100 mov gp = r46 // r1 = r46
00015405A000 0101 mov.i rspfs = r45
000E00158000 0102 mov rp = r44 ;; // br0 = r44
 }
 { .mbb 010800CA0300 0110 adds sp = 80, sp // r12 = 80, r12
000108001100 0111 br.ret.sptk.many rp // br0
004000000000 0112 nop.b 0 ;;
 }
 .endp __MAINRoutine Size: 288 bytes, Routine Base: $CODE$ + 0000

Example A.3. Listing File for LOG: Machine Code MAIN Procedure

 .proc MAIN
 .align 32
 .global MAIN
 MAIN: // 022420
 { .mii
002C00A22A00 0120 alloc r40 = rspfs, 0, 10, 7, 0
010800C00080 0121 mov r2 = sp // r2 = = r12
012000080380 0122 mov r14 = 64 ;;
 }
 { .mmi
010028E183C0 0130 sub r15 = sp, r14 ;; // r5 = r12, r14
0080C0F00380 0131 ld8 r14 = [r15]
010800F00300 0132 mov sp = r15 ;; // r12 = r15
 }
 { .mii
000008000000 0140 nop.m 0
0001880009C0 0141 mov r39 = rp // r39 = br0
010800100A40 0142 mov r41 = gp ;; // r41 = r1
 }
 .
 .
 .
 { .mbb
01C4321401C0 0280 cmp4.eq pr7, pr6 = ss_sts, r33 // pr7, pr6 =
 r32, r33
008600018007 0281 (pr7) br.cond.dpnt.many L$12
004000000000 0282 nop.b 0 ;;
 }
 .
 .
 .
 { .mib
0080C2B00AC0 0320 ld8.mov out1 = [r43], name_buf
012000100B00 0321 add out2 = @gprel(time_buf), gp // r44 =
 @gprel(time_buf), r1
00A000001000 0322 br.call.sptk.many rp = PRINT_LINE ;; // br0 =
 PRINT_LINE
 }
 { .bbb
0091FFFDD000 0330 br.sptk.many L$10 // 022473
004000000000 0331 nop.b 0004000000000 0332 nop.b 0 ;;
 }

68

Appendix A. Sample DELTA Debug Session on I64

 .
 .
 .
 { .mii
000008000000 0370 nop.m 0
000E0014E000 0371 mov rp = r39 // br0 = r39
010800C80300 0372 adds sp = 64, sp ;; // r12 = 64, r12
 }
 { .bbb
000108001100 0380 br.ret.sptk.many rp // br0
004000000000 0381 nop.b 0
004000000000 0382 nop.b 0 ;;
 }
 .endp MAIN
Routine Size: 624 bytes, Routine Base: $CODE$ + 0120

Example A.4. Listing File for LOG: Machine Code PRINT_LINE Procedure

 .proc PRINT_LINE
 .align 32
 .global PRINT_LINE
 PRINT_LINE: // 022478
 { .mii
002C0091A9C0 0390 alloc r39 = rspfs, 3, 6, 4, 0
010800C00080 0391 mov r2 = sp // r2 = r12
012000020380 0392 mov r14 = 16 ;;
 }
 { .mmi
010028E183C0 03A0 sub r15 = sp, r14 ;; // r15 = r12, r14
0080C0F00380 03A1 ld8 r14 = [r15]
010800F00300 03A2 mov sp = r15 ;; // r12 = r15
 }
 .
 .
 .
 { .mmi
012000100B00 0490 add out3 = @ltoffx(ascii_time), gp ;; //r44
 = @ltoffx(ascii_time), r1
0080C2C00B00 0491 ld8.mov out3 = [r44], ascii_time
012000008640 0492 mov ai = 4 ;; // r25 = 4
 }
 { .bbb
00A000001000 04A0 br.call.sptk.many rp = DECC$TXPRINTF // br0 =
 DECC$TXPRINTF
004000000000 04A1 nop.b 0
004000000000 04A2 nop.b 0 ;;
 }
 { .mii
010802800040 04B0 mov gp = r40 // r1 = r40
00015404E000 04B1 mov.i rspfs = r39 // 022506
000E0014C000 04B2 mov rp = r38 ;; // br0 = r38
 }
 { .mbb
010800C20300 04C0 adds sp = 16, sp // r12 = 16, r12
000108001100 04C1 br.ret.sptk.many rp // br0
004000000000 04C2 nop.b 0 ;;
 }
 .endp PRINT_LINE

69

Appendix A. Sample DELTA Debug Session on I64

Routine Size: 320 bytes, Routine Base: $CODE$ + 0390

The .MAP file for the sample program is shown in Example A.5.Only the Program Section Synopsis
with the psect, module, base address, end address, and length are listed.

Example A.5. .MAP File for the Sample Program

 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+
Psect Name Module/Image Base End Length
---------- ------------ ---- --- ------
BSS 00010000 0001001F 00000020 (32.)
 LOG 00010000 0001001F 00000020 (32.)
$CODE$ 00020000 0002061F 00000620 (1568.)
 LOG 00020000 000204CF 000004D0 (1232.)
 <Linker> 000204D0 0002061F 00000150 (336.)
$LITERAL$ 00030000 00030058 00000059 (89.)
 LOG 00030000 00030058 00000059 (89.)
$READONLY$ 00030060 00030087 00000028 (40.)
 LOG 00030060 00030087 00000028 (40.)
$LINK$ 00040000 00040000 00000000 (0.)
 LOG 00040000 00040000 00000000 (0.)
$LINKER UNWIND$ 00040000 00040047 00000048 (72.)
 LOG 00040000 00040047 00000048 (72.)
$LINKER UNWINFO$ 00040048 000400B7 00000070 (112.)
 LOG 00040048 000400B7 00000070 (112.)
.sbss 00050000 00050013 00000014 (20.)
 LOG 00050000 00050013 00000014 (20.)
$LINKER SDATA$ 00060000 000600CF 000000D0 (208.)
 <Linker> 00060000 000600CF 000000D0 (208.)

A.2. Example DELTA Debugging Session on
I64
The DELTA debugging session on OpenVMS I64 for the sample program is shown in the three example
segments that follow.

DELTA Debugging Session Example on I64 - Part 1
In the first part of the example session, DELTA is enabled and the LOG program is invoked. The
example shows version information displayed by DELTA and the use of several key DELTA commands,
including !, ;B, and ;P.

The callout list following the example provides details for this example segment.

Example A.6. DELTA Debugging Session on I64 - Part 1

$ DEFINE LIB$DEBUG SYS$SHARE:DELTA
$ RUN/DEBUG LOG
hp OpenVMS Industry Standard 64 DELTA Debugger
 Brk 0 at 00020000
00020000! alloc r45 = ar.pfs, 0F, 08, 00 20000,1;X
00020000
X1 280! cmp4.eq p7, p6 = r32, r33 .;B

70

Appendix A. Sample DELTA Debug Session on I64

X1 322! br.call.sptk.many b0 = 0000070 ;; .;B
;P
Brk 1 at X1+00000280
X1+00000280! cmp4.eq p7, p6 = r32, r33 R32/00000000 00000001 ;P
Brk 2 at X1+00000322
X1+00000322! br.call.sptk.many b0 = 0000070 ;; O
 PID= 37E00401 PRCNAM= SWAPPER LOGINTIM= 00:00:00.00

DELTA is enabled as the debugger.
The example program LOG is invoked with DELTA.
DELTA displays a banner and the first executable instruction. The base address of the program
(determined from the .MAP file) is virtual address 20000. The base address is placed in base
register 1 with the ;X command. Now, references to an address can use the address offset notation.
For example, a reference to the first instruction in routine main is X1+0120. Also, DELTA
displays some address locations as offsets to the base address.
The instruction at address 20280 is displayed in instruction mode using the ! command. Its address
location is expressed as the base address plus an offset. In the listing file, the offset is 280. (This
is the point where the return status from SYS$GETJPIW is checked.) The base address in base
address register X1 is 20000. The address reference, then, is X1+280. Note that the + sign is
implied when not specified.

A simple breakpoint is set at that address using the ;B command. The address reference for ;B is
the dot (.) symbol, representing the current address. (X1+280;B would have produced the same
thing.)
The same commands (that is, the ! command to view the instructions and the ;B command to
set a breakpoint) are repeated for the instruction at offset 322. (This is the point at which the
print_line function is called.)
Program execution halts at the first breakpoint. DELTA displays the breakpoint message (Brk 1
at X1+00000280) with the breakpoint number 1 and the address at which the break occurred.
The virtual address is 20280, which is the base address (20000) plus the offset 280. DELTA then
displays the instruction in instruction mode (cmp4.eq p7, p6 = r32, r33). The contents of general
register 32 are displayed with the forward slash (/) command (register 32 contains the value of the
ss_sts variable). DELTA displays the contents of R32, which is 1. Program execution continues
using the ;P command.
The function print_line is executed and the output (PID, process name, and login time) is
displayed.

DELTA Debugging Session Example on I64 - Part 2
In the second part of the example session, program execution continues and DELTA stop sat the next
breakpoint and displays information. User interaction allows DELTA to continue subsequent breakpoints.
Use of the O command is demonstrated to halt program execution and step over a routine call.

The callout list following the example provides details for this example segment.

Example A.7. DELTA Debugging Session on I64 - Part 2

X1+00000330! br.many 1FFFEE0 ;P
Brk 1 at X1+00000280
X1+00000280! cmp4.eq p7, p6 = r32, r33 ;P
Brk 2 at X1+00000322
X1+00000322! br.call.sptk.many b0 = 0000070 ;; O
 PID= 37E00407 PRCNAM= CLUSTER_SERVER LOGINTIM= 13:48:49.48
X1+00000330! br.many 1FFFEE0 ;P
Brk 1 at X1+00000280

71

Appendix A. Sample DELTA Debug Session on I64

X1+00000280! cmp4.eq p7, p6 = r32, r33
 ;B
 1 X1+00000280
 2 X1+00000322
0,1;B
;B 2 X1+00000322
;P
Brk 2 at X1+00000322
X1+00000322! br.call.sptk.many b0 = 0000070 ;; O
 PID= 37E00408 PRCNAM= CONFIGURE LOGINTIM= 13:48:52.06
X1+00000330! br.many 1FFFEE0 ;P
Brk 2 at X1+00000322
X1+00000322! br.call.sptk.many b0 = 0000070 ;; O
 PID= 37E00409 PRCNAM= USB$UCM_SERVER LOGINTIM= 13:48:54.80
X1+00000330! br.many 1FFFEE0 ;P
Brk 2 at X1+00000322
X1+00000322! br.call.sptk.many b0 = 0000070 ;; X1 491! ld8 r44 = [r44]
Linefeed
X1+00000492! mov r25 = 000004 ;; Linefeed
X1+000004A0! br.call.sptk.many b0 = 0000150 .;B
;B
 1 X1+000004A0
 2 X1+00000322
;P
Brk 1 at X1+000004A0
X1+000004A0! br.call.sptk.many b0 = 0000150 O
 PID= 37E0040A PRCNAM= LANACP LOGINTIM= 13:48:54.84
X1+000004B0! mov r1 = r40 ;P
Brk 2 at X1+00000322
X1+00000322! br.call.sptk.many b0 = 0000070 ;; ;P
Brk 1 at X1+000004A0
X1+000004A0! br.call.sptk.many b0 = 0000150 O
 PID= 37E0040C PRCNAM= FASTPATH_SERVER LOGINTIM= 13:48:55.01
X1+000004B0! mov r1 = r40 ;P
Brk 2 at X1+00000322
X1+00000322! br.call.sptk.many b0 = 0000070 ;;
 ;B
 1 X1+000004A0
 2 X1+00000322
0,2;B
0,1;B
;B
;P
 PID= 37E0040D PRCNAM= IPCACP LOGINTIM= 13:48:55.05
 PID= 37E0040E PRCNAM= ERRFMT LOGINTIM= 13:48:55.14
 PID= 37E0040F PRCNAM= CACHE_SERVER LOGINTIM= 13:48:55.19
 PID= 37E00410 PRCNAM= OPCOM LOGINTIM= 13:48:55.24
 PID= 37E00411 PRCNAM= AUDIT_SERVER LOGINTIM= 13:48:55.31
 PID= 37E00412 PRCNAM= JOB_CONTROL LOGINTIM= 13:48:55.39
 PID= 37E00414 PRCNAM= SECURITY_SERVER LOGINTIM= 13:48:55.84
 PID= 37E00415 PRCNAM= ACME_SERVER LOGINTIM= 13:48:55.88
 PID= 37E00416 PRCNAM= SMISERVER LOGINTIM= 13:49:02.26
 PID= 37E0041E PRCNAM= NETACP LOGINTIM= 13:49:04.54
 PID= 37E0041F PRCNAM= EVL LOGINTIM= 13:49:05.68
 PID= 37E00420 PRCNAM= REMACP LOGINTIM= 13:49:13.39
 PID= 37E00424 PRCNAM= TCPIP$INETACP LOGINTIM= 13:50:05.71
 PID= 37E00425 PRCNAM= TCPIP$PORTM_1 LOGINTIM= 13:50:08.40
 PID= 37E00426 PRCNAM= TCPIP$FTP_1 LOGINTIM= 13:50:08.77

72

Appendix A. Sample DELTA Debug Session on I64

 PID= 37E0042A PRCNAM= LATACP LOGINTIM= 13:50:12.00
 PID= 37E008E5 PRCNAM= SYSTEM LOGINTIM= 13:32:01.42
PID= 37E008E7 PRCNAM= JNELSON LOGINTIM= 13:41:17.48$

Program execution continues with the ;P command. DELTA stops at the next breakpoint.
The O command halts program execution at the instruction where the function returns control
(br.many 1FFFEE0). (This is the point at which control passes to checking the conditions of the
while loop.) Program execution continues with ;P.
Breakpoint 2 is encountered. DELTA displays the breakpoint message and the instruction.
The function is executed with the O command and the function output is displayed. The next
instruction where the function returns control is displayed. Program execution continues with the
;P command.
Breakpoint 2 is encountered again. DELTA displays the breakpoint message and the instruction.
The function is executed with the O command and the function output is displayed. The next
instruction where the function returns control is displayed. Program execution continues with the
;P command.
Breakpoint 2 is encountered again. The instruction at offset 491 (located in print_line) is
displayed using the ! command. This instruction is part of the setup for the call to the printf
function.
Successive address locations are displayed by pressing the Linefeed key (Ctrl/J) twice. These
instructions are the remainder of the setup and the call to printf.
A breakpoint at X1+4A0 (the current address) is set using the ;B command. This breakpoint
is in the function print_line. The dot (.) symbol represents the current address. Note that
breakpoint 1 was cleared earlier and is now reused by DELTA for the new breakpoint.
Program execution continues with the ;P command.
Program execution stops at the new breakpoint 1, which is in the print_line function. DELTA
displays the breakpoint message and the instruction at the new breakpoint. The O command halts
program execution at the instruction where the function returns control, stepping over the routine
call. Program execution is continued with the ;P command.
Program execution stops at breakpoint 1 in the print_line function. Program execution is
continued using a combination of the O and ;P commands.

73

Appendix A. Sample DELTA Debug Session on I64

74

Appendix B. Sample DELTA Debug
Session on Alpha
This appendix gives an example of how you would use DELTA to debug a program executing on
OpenVMS Alpha. The example C program named LOG uses the system service SYS$GETJPIW to
obtain the PID, process name, and login time of each process. To run the example program without error,
you need WORLD privilege.

Note

Although this example debugging session demonstrates using the DELTA debugger, you could use most
of the commands in the example in an XDELTA debugging session as well.

This appendix consists of two sections:

• Section B.1 shows the source and machine listing files for the example C program

• Section B.2 shows the example DELTA debugging session and explains the various commands used
and information provided.

B.1. Listing File for C Example Program
This section shows the listing file for the C program, LOG, in two parts:

• Section B.1.1—C source code

• Section B.1.2—Machine code

See Section B.2 for the corresponding sample debugging session using this program.

B.1.1. Source Listing for Alpha Debugging Example
Example B.1 shows the C source code for the example file, LOG.

Example B.1. Listing File for LOG: C Source Code

1 #include <descrip.h>
434 #include <jpidef.h>
581 #include <ssdef.h>
1233 #include <starlet.h>
3784 #include <stdio.h>
4117 #include <stdlib.h>
4345
4346 void print_line(unsigned long int pid, char *process_name,
4347 unsigned long int *time_buffer);
4348
4349 typedef struct {
4350 unsigned short int il3_buffer_len;
4351 unsigned short int il3_item_code;
4352 void *il3_buffer_ptr;
4353 unsigned short int *il3_return_len_ptr;
4354 } item_list_3;
4355
4356 #define NUL '\0'

75

Appendix B. Sample DELTA Debug Session on Alpha

4357
4358 main()
4359 {
4360 static char name_buf[16];
4361 static unsigned long int pid, time_buf[2];
4362 static unsigned short int name_len;
4363
4364 unsigned short int pidadr[2] = {-1, -1};
4365 unsigned long int ss_sts;
4366 item_list_3 jpi_itmlst[] = {
4367 /* Get's login time */
4368 {sizeof(time_buf),
4369 JPI$_LOGINTIM,
4370 (void *) time_buf,
4371 NULL},
4372
4373 /* Get's process name */
4374 {sizeof(name_buf) - 1,
4375 JPI$_PRCNAM,
4376 (void *) name_buf,
4377 &name_len},
4378
4379 /* Get's process ID (PID) */
4380 {sizeof(pid),
4381 JPI$_PID,
4382 (void *) &pid,
4383 NULL},
4384
4385 /* End of list */
4386 {0,
4387 0,
4388 NULL,
4389 NULL}
4390 };
4391
4392 /*
4393 While there's more GETJPI information to process and a catastrophic
4394 error has not occurred then
4395 If GETJPI was successful then
4396 NUL terminate the process name string and
4397 print the information returned by GETJPI
4398 */
4399
4400 while(
4401 (ss_sts = sys$getjpiw(0, &pidadr, 0, &jpi_itmlst, 0, 0,
 0)) != SS$_NOMOREPROC &&
4402 ss_sts != SS$_BADPARAM &&
4403 ss_sts != SS$_ACCVIO)
4404 {
4405 if (ss_sts == SS$_NORMAL)
4406 {
4407 *(name_buf + name_len) = NUL;
4408 print_line(pid, name_buf, time_buf);
4409 }
4410 }
4411 exit(EXIT_SUCCESS);
4412 }
4413

76

Appendix B. Sample DELTA Debug Session on Alpha

4414 void print_line(unsigned long int pid, char *process_name,
4415 unsigned long int *time_buffer)
4416 {
4417 static char ascii_time[12];
4418
4419 struct dsc$descriptor_s time_dsc = {
4420 sizeof(ascii_time) - 1,
4421 DSC$K_DTYPE_T,
4422 DSC$K_CLASS_S,
4423 ascii_time
4424 };
4425 unsigned short int time_len;
4426
4427 /*
4428 Convert the logged in time to ASCII and NUL terminate it
4429 */
4430 sys$asctim(&time_len, &time_dsc, time_buffer, 1);
4431 *(ascii_time + time_len) = NUL;
4432
4433 /*
4434 Output the PID, process name and logged in time
4435 */
4436 printf("\n\tPID= %08.8X\t\tPRCNAM= %s\tLOGINTIM= %s", pid,
4437 process_name, ascii_time);
4438
4439 return;
4440)
4441 __main(void *p1, void *p2, void *p3, void *p4, void *p5, void *p6)
4442 {
4443 void decc$exit(int);
4444 void decc$main(void *, void *, void *, void *, void *, void *, int
 *, void **, void **);
4445 int status;
4446 int argc;
4447 void *argv;
4448 void *envp;
4449
4450 decc$main(p1, p2, p3, p4, p5, p6, &argc, &argv, &envp);
4451
4452 status = main4453 (
4454
4455
4456
4457);
4458
4459 decc$exit(status);
4460 }

B.1.2. Machine Code Listing for Alpha Debugging
Example
Example B.2 shows the machine code listing for the example program.

77

Appendix B. Sample DELTA Debug Session on Alpha

Example B.2. Listing File for LOG: Machine Code

 .PSECT $CODE, OCTA, PIC, CON, REL, LCL, SHR,-
 EXE, NORD, NOWRT
0000 print_line:: ; 004414
0000 LDA SP, -80(SP) ; SP, -80(SP)
0004 MOV 1, R19 ; 1, R19 ; 004430
0008 STQ R27, (SP) ; R27, (SP) ; 004414
000C MOV 4, R25 ; 4, R25 ; 004430
0010 STQ R26, 32(SP) ; R26, 32(SP) ; 004414
0014 STQ R2, 40(SP) ; R2, 40(SP)
0018 STQ R3, 48(SP) ; R3, 48(SP)
001C STQ R4, 56(SP) ; R4, 56(SP)
0020 STQ FP, 64(SP) ; FP, 64(SP)
0024 MOV SP, FP ; SP, FP
0028 MOV R27, R2 ; R27, R2
002C STL R17, process_name ; R17, 16(FP)
0030 LDQ R0, 40(R2) ; R0, 40(R2) ; 004419
0034 MOV R16, pid ; R16, R3 ; 004414
0038 LDQ R26, 48(R2) ; R26, 48(R2) ; 004430
003C LDA R16, time_len ; R16, 8(FP)
0040 LDQ R4, 32(R2) ; R4, 32(R2) ; 004423
0044 LDA R17, time_dsc ; R17, 24(FP) ; 004430
0048 STQ R0, time_dsc ; R0, 24(FP) ; 004419
004C LDQ R27, 56(R2) ; R27, 56(R2) ; 004430
0050 STL R4, 28(FP) ; R4, 28(FP) ; 004419
0054 JSR R26, SYS$ASCTIM ; R26, R26 ; 004430
0058 LDL R0, time_len ; R0, 8(FP) ; 004431
005C MOV pid, R17 ; R3, R17 ; 004436
0060 LDQ R27, 88(R2) ; R27, 88(R2)
0064 MOV R4, R19 ; R4, R19
0068 LDQ R26, 80(R2) ; R26, 80(R2)
006C MOV 4, R25 ; 4, R25
0070 ZEXTW R0, R0 ; R0, R0 ; 004431
0074 ADDQ R4, R0, R0 ; R4, R0, R0
0078 LDQ_U R16, (R0) ; R16, (R0)
007C MSKBL R16, R0, R16 ; R16, R0, R16
0080 STQ_U R16, (R0) ; R16, (R0)
0084 LDQ R16, 64(R2) ; R16, 64(R2) ; 004436
0088 LDL R18, process_name ; R18, 16(FP)
008C JSR R26, DECC$GPRINTF ; R26, R26
0090 MOV FP, SP ; FP, SP ; 004439
0094 LDQ R28, 32(FP) ; R28, 32(FP)
0098 LDQ R2, 40(FP) ; R2, 40(FP)
009C LDQ R3, 48(FP) ; R3, 48(FP)
00A0 LDQ R4, 56(FP) ; R4, 56(FP)
00A4 LDQ FP, 64(FP) ; FP, 64(FP)
00A8 LDA SP, 80(SP) ; SP, 80(SP)
00AC RET R28 ; R28
Routine Size: 176 bytes, Routine Base: $CODE + 0000
00B0 main:: ; 004358
00B0 LDA SP, -144(SP) ; SP, -144(SP)
00B4 MOV 48, R17 ; 48, R17 ; 004366
00B8 STQ R27, (SP) ; R27, (SP) ; 004358
00BC STQ R26, 64(SP) ; R26, 64(SP)
00C0 STQ R2, 72(SP) ; R2, 72(SP)
00C4 STQ R3, 80(SP) ; R3, 80(SP)
00C8 STQ R4, 88(SP) ; R4, 88(SP)

78

Appendix B. Sample DELTA Debug Session on Alpha

00CC STQ R5, 96(SP) ; R5, 96(SP)
00D0 STQ R6, 104(SP) ; R6, 104(SP)
00D4 STQ R7, 112(SP) ; R7, 112(SP)
00D8 STQ R8, 120(SP) ; R8, 120(SP)
00DC STQ FP, 128(SP) ; FP, 128(SP)
00E0 MOV SP, FP ; SP, FP
00E4 MOV R27, R2 ; R27, R2
00E8 LDA SP, -16(SP) ; SP, -16(SP)
00EC LDQ R26, 40(R2) ; R26, 40(R2) ; 004366
00F0 LDQ R18, 64(R2) ; R18, 64(R2)
00F4 LDA R16, jpi_itmlst ; R16, 16(FP)
00F8 JSR R26, OTS$MOVE ; R26, R26
00FC LDA R6, jpi_itmlst ; R6, 16(FP) ; 004401
0100 LDQ R3, -64(R2) ; R3, -64(R2) ; 004370
0104 LDA R7, pidadr ; R7, 8(FP) ; 004401
0108 LDQ R0, 32(R2) ; R0, 32(R2) ; 004364
010C MOV 2472, R8 ; 2472, R8 ; 004401
0110 STL R0, pidadr ; R0, 8(FP) ; 004364
0114 LDA R3, time_buf ; R3, 16(R3) ; 004370
0118 MOV R3, R5 ; R3, R5
011C STL R5, 20(FP) ; R5, 20(FP) ; 004366
0120 LDA R4, 8(R3) ; R4, 8(R3) ; 004376
0124 STL R4, 32(FP) ; R4, 32(FP) ; 004366
0128 LDA R17, 24(R3) ; R17, 24(R3)
012C STL R17, 36(FP) ; R17, 36(FP)
0130 LDA R19, 28(R3) ; R19, 28(R3)
0134 STL R19, 44(FP) ; R19, 44(FP)
0138 L$6: ; 004400
0138 LDQ R26, 48(R2) ; R26, 48(R2) ; 004401
013C CLR R16 ; R16
0140 LDQ R27, 56(R2) ; R27, 56(R2)
0144 MOV R7, R17 ; R7, R17
0148 STQ R31, (SP) ; R31, (SP)
014C CLR R18 ; R18
0150 MOV R6, R19 ; R6, R19
0154 CLR R20 ; R20
0158 CLR R21 ; R21
015C MOV 7, R25 ; 7, R25
0160 JSR R26, SYS$GETJPIW ; R26, R26
0164 CMPEQ ss_sts, 20, R16 ; R0, 20, R16 ; 004402
0168 CMPEQ ss_sts, R8, R17 ; R0, R8, R17 ; 004401
016C CMPEQ ss_sts, 12, R18 ; R0, 12, R18 ; 004403
0170 BIS R17, R16, R17 ; R17, R16, R17 ; 004401
0174 BIS R17, R18, R18 ; R17, R18, R18
0178 BNE R18, L$10 ; R18, L$10 ; 004400
017C CMPEQ ss_sts, 1, R0 ; R0, 1, R0 ; 004405
0180 BEQ R0, L$6 ; R0, L$6
0184 MOV R4, R17 ; R4, R17 ; 004408
0188 LDQ_U R19, 24(R3) ; R19, 24(R3) ; 004407
018C MOV R5, R18 ; R5, R18 ; 004408
0190 LDA R27, -96(R2) ; R27, -96(R2)
0194 EXTWL R19, R3, R19 ; R19, R3, R19 ; 004407
0198 ADDQ R4, R19, R19 ; R4, R19, R19
019C LDQ_U R22, (R19) ; R22, (R19)
01A0 MSKBL R22, R19, R22 ; R22, R19, R22
01A4 STQ_U R22, (R19) ; R22, (R19)
01A8 LDL R16, 28(R3) ; R16, 28(R3) ; 004408
01AC BSR R26, print_line ; R26, print_line

79

Appendix B. Sample DELTA Debug Session on Alpha

01B0 BR L$6 ; L$6 ; 004405
01B4 NOP ;
01B8 L$10: ; 004400
01B8 LDQ R26, 80(R2) ; R26, 80(R2) ; 004411
01BC CLR R16 ; R16
01C0 LDQ R27, 88(R2) ; R27, 88(R2)
01C4 MOV 1, R25 ; 1, R25
01C8 JSR R26, DECC$EXIT ; R26, R26
01CC MOV FP, SP ; FP, SP ; 004412
01D0 LDQ R28, 64(FP) ; R28, 64(FP)
01D4 MOV 1, R0 ; 1, R0
01D8 LDQ R2, 72(FP) ; R2, 72(FP)
01DC LDQ R3, 80(FP) ; R3, 80(FP)
01E0 LDQ R4, 88(FP) ; R4, 88(FP)
01E4 LDQ R5, 96(FP) ; R5, 96(FP)
01E8 LDQ R6, 104(FP) ; R6, 104(FP)
01EC LDQ R7, 112(FP) ; R7, 112(FP)
01F0 LDQ R8, 120(FP) ; R8, 120(FP)
01F4 LDQ FP, 128(FP) ; FP, 128(FP)
01F8 LDA SP, 144(SP) ; SP, 144(SP)
01FC RET R28 ; R28
Routine Size: 336 bytes, Routine Base: $CODE + 00B0
0200 __main:: ; 004441
0200 LDA SP, -48(SP) ; SP, -48(SP)
0204 MOV 9, R25 ; 9, R25 ; 004450
0208 STQ R27, (SP) ; R27, (SP) ; 004441
020C STQ R26, 24(SP) ; R26, 24(SP)
0210 STQ R2, 32(SP) ; R2, 32(SP)
0214 STQ FP, 40(SP) ; FP, 40(SP)
0218 MOV SP, FP ; SP, FP
021C LDA SP, -32(SP) ; SP, -32(SP)
0220 MOV R27, R2 ; R27, R2
0224 LDA R0, argc ; R0, 16(FP) ; 004450
0228 LDQ R26, 48(R2) ; R26, 48(R2)
022C LDA R1, argv ; R1, 12(FP)
0230 STQ R0, (SP) ; R0, (SP)
0234 LDA R0, envp ; R0, 8(FP)
0238 STQ R1, 8(SP) ; R1, 8(SP)
023C LDQ R27, 56(R2) ; R27, 56(R2)
0240 STQ R0, 16(SP) ; R0, 16(SP)
0244 JSR R26, DECC$MAIN ; R26, R26
0248 LDA R27, -96(R2) ; R27, -96(R2) ; 004452
024C BSR R26, main ; R26, main
0250 LDQ R27, 40(R2) ; R27, 40(R2) ; 004459
0254 MOV status, R16 ; R0, R16
0258 MOV 1, R25 ; 1, R25
025C LDQ R26, 32(R2) ; R26, 32(R2)
0260 JSR R26, DECC$EXIT ; R26, R26
0264 MOV FP, SP ; FP, SP ; 004460
0268 LDQ R28, 24(FP) ; R28, 24(FP)
026C LDQ R2, 32(FP) ; R2, 32(FP)
0270 LDQ FP, 40(FP) ; FP, 40(FP)
0274 LDA SP, 48(SP) ; SP, 48(SP)
0278 RET R28 ; R28
Routine Size: 124 bytes, Routine Base: $CODE + 0200

The .MAP file for the sample program is shown in Example B.3. Only the Program Section Synopsis
with the psect, module, base address, end address, and length are listed.

80

Appendix B. Sample DELTA Debug Session on Alpha

Example B.3. .MAP File for the Sample Program
 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+
Psect Name Module Name Base End Length
---------- ----------- ---- --- ------
$LINKAGE 00010000 000100FF 00000100 (256.) LOG 00010000 000100FF 00000100 (256.)
$LITERAL 00010100 00010158 00000059 (89.) LOG 00010100 00010158 00000059 (89.)
$READONLY 00010160 00010160 00000000 (0.) LOG 00010160 00010160 00000000 (0.)
$INIT 00020000 00020000 00000000 (0.) LOG 00020000 00020000 00000000 (0.)
$UNINIT 00020000 0002002F 00000030 (48.) LOG 00020000 0002002F 00000030 (48.)
$CODE 00030000 0003027B 0000027C (636.) LOG 00030000 0003027B 0000027C (636.)

B.2. Example DELTA Debugging Session on
Alpha
The DELTA debugging session on OpenVMS Alpha for the sample program is shown in the three
example segments that follow.

B.2.1. DELTA Debugging Session Example on Alpha -
Part 1
In the first part of the example session, DELTA is enabled and the LOG program is invoked. The
example shows version information displayed by DELTA and the use of the ;B and ;P commands.

The callout list following the example provides details for this example segment.

Example B.4. DELTA Debugging Session on Alpha- Part 1

$ DEFINE LIB$DEBUG SYS$LIBRARY:DELTA
$ RUN/DEBUG LOG
Alpha/VMS DELTA Version 1.5
Brk 0 at 00030200
00030200! LDA SP,#XFFD0(SP) 30000,1;X
X1 164! CMPEQ R0,#X14,R16 .;B

X1 1AC! BSR R26,#XFFFF94 .;B

DELTA is enabled as the debugger.
The example program LOG is invoked with DELTA.
DELTA displays a version number and the first executable instruction. The base address of the
program (determined from the map file) is virtual address 30000. The base address is placed in
base register 1 with ;X. Now references to an address can use the address offset notation. For
example, a reference to the first instruction is X1+200 (or the base address 30000 + offset 200).
Also, DELTA displays some address locations as offsets to the base address.
The instruction at address 30164 is displayed in instruction mode using !. Its address location
is expressed as the base address plus an offset. In the listing file, the offset is 164. (This is the
point where the return status from SYS$GETJPIW is checked.) The base address in base address
register X1 is 30000. The address reference, then, is X1+164. Note the + sign is implied when not
specified.

A simple breakpoint is set at that address using the ;B command. The address reference for ;B is
the . symbol, representing the current address. X1+164;B would have done the same thing.
The ! command to view the instruction and ;B to set a breakpoint are repeated for the instruction
at offset 1AC. (This is the point at which the print_line function is called.)

81

Appendix B. Sample DELTA Debug Session on Alpha

B.2.2. DELTA Debugging Session Example on Alpha -
Part 2
In the second part of the example session, program execution continues with ;P, then halts at the first
breakpoint and displays information. User interaction allows DELTA to continue subsequent breakpoints.

The callout list following the example provides details for this example segment.

Example B.5. DELTA Debugging Session on Alpha - Part 2

;P
Brk 1 at 00030164
X1+00000164! CMPEQ R0,#X14,R16 R0/ 00000001 ;P
Brk 2 at 000301AC
X1+000001AC! BSR R26,#XFFFF94 O
 PID= 00000021 PRCNAM= SWAPPER LOGINTIM= 00:00:00.00
X1+000001B0! BR R31,#XFFFFE1 ;P
Brk 1 at 00030164
X1+00000164! CMPEQ R0,#X14,R16 R0/ 00000001 ;P
Brk 2 at 000301AC
X1+000001AC! BSR R26,#XFFFF94 O
 PID= 00000024 PRCNAM= ERRFMT LOGINTIM= 16:24:01.03
X1+000001B0! BR R31,#XFFFFE1 ;P
Brk 1 at 00030164
X1+00000164! CMPEQ R0,#X14,R16
;B
 1 00030164
 2 000301AC
0,1;B
;B
 2 000301AC
;P
Brk 2 at 000301AC
X1+000001AC! BSR R26,#XFFFF94 O
 PID= 00000025 PRCNAM= OPCOM LOGINTIM= 16:24:02.56
X1+000001B0! BR R31,#XFFFFE1 ;P
Brk 2 at 000301AC
X1+000001AC! BSR R26,#XFFFF94 O
 PID= 00000026 PRCNAM= AUDIT_SERVER LOGINTIM=16:24:03.66
X1+000001B0! BR R31,#XFFFFE1 ;P
Brk 2 at 000301AC
X1+000001AC! BSR R26,#XFFFF94 X1 84! LDQ R16,#X0040(R2)

The ;P command lets you proceed from the breakpoint.
Program execution halts at the first breakpoint. DELTA displays the breakpoint message (Brk 1
at 00030164) with the breakpoint number 1 and the virtual address. The virtual address is 30164,
which is the base address (30000) plus the offset 164. DELTA then displays the instruction in
instruction mode (CMPEQ R0,#X14,R16). The contents of the general register 0 are displayed
with the / command. DELTA displays the contents of R0, which is 1. Program execution continues
using the ;P command.
The function print_line is executed, and the output (PID, process name, and login time) is
displayed.
The O command halts program execution at the instruction where the function returns control (BR
R31,#XFFFFE1). (This is the point at which control passes to checking the conditions of the while
loop.) Program execution continues with ;P.

82

Appendix B. Sample DELTA Debug Session on Alpha

Breakpoint 2 is encountered. DELTA displays the breakpoint message, and the instruction.
The function is executed with the O command and the function output is displayed. The next
instruction where the function returns control is displayed. Program execution continues with the
;P command.
Breakpoint 2 is encountered again. DELTA displays the breakpoint message, and the instruction.
The function is executed with the O command and the function output is displayed. The next
instruction where the function returns control is displayed. Program execution continues with the
;P command.
Breakpoint 2 is encountered again. The instruction at offset 84 (in print_line) is displayed using !.
This instruction is part of the setup for the call to the printf function.

B.2.3. DELTA Debugging Session Example on Alpha -
Part 3
In the third part of the example session, successive address locations are specified when the user presses
Linefeed. Another breakpoint is set, and program execution continues. DELTA stops at the break point,
and the ;O command is used to halt execution and step over a routine call. Program execution continues
through more breakpoints to a final exit.

The callout list following the example provides details for this example segment.

Example B.6. DELTA Debugging Session Example on Alpha - Part 3

Linefeed

X1+00000088! LDL R18,#X0010(FP)Linefeed

X1+0000008C! JSR R26,(R26) .;B
;B
 1 0003008C
 2 000301AC
;P
Brk 1 at 0003008C
X1+0000008C! JSR R26,(R26) O
 PID= 00000027 PRCNAM= JOB_CONTROL LOGINTIM= 16:24:06.83
X1+00000090! BIS R31,FP,SP ;P
Brk 2 at 000301AC
X1+000001AC! BSR R26,#XFFFF94 ;P
Brk 1 at 0003008C
X1+0000008C! JSR R26,(R26) O
 PID= 00000028 PRCNAM= NETACP LOGINTIM= 16:24:22.86
X1+00000090! BIS R31,FP,SP ;P
Brk 2 at 000301AC
X1+000001AC! BSR R26,#XFFFF94
;B
 1 0003008C
 2 000301AC
0,2;B
0,1;B
;B
;P

 PID= 00000029 PRCNAM= EVL LOGINTIM= 16:24:26.67
 PID= 0000002A PRCNAM= REMACP LOGINTIM= 16:24:38.21
 PID= 0000002B PRCNAM= LATACP LOGINTIM= 16:24:43.18

83

Appendix B. Sample DELTA Debug Session on Alpha

 PID= 0000004C PRCNAM= GODDARD LOGINTIM= 07:40:49.34
 PID= 0000002D PRCNAM= SYMBIONT_0001 LOGINTIM= 16:25:47.54
 PID= 0000002F PRCNAM= MCCORMICK LOGINTIM= 16:27:45.27
 Exit 00000001
 8002228C! ADDL R15,SP,SP EXIT

Successive address locations are displayed by pressing the Linefeed key two times. These
instructions are the remainder of the setup and the call to printf.
A breakpoint at X1+8C (the current address) is set using the ;B command. This breakpoint is in
the function print_line. The . symbol represents the current address. Note that breakpoint 1 was
cleared earlier and is now reused by DELTA for the new breakpoint.
Program execution continues with the ;P command.
Program execution stops at the new breakpoint 1, which is in the print_line function. DELTA
displays the breakpoint message and the instruction at the new breakpoint. The O command halts
program execution at the instruction where the function returns control, stepping over the routine
call. Note the O command must be used in this case, as opposed to the ;P command, because the
printf function resides in read-only protected memory. Program execution is continued with the ;P
command.
Program execution stops at breakpoint 1 in the print_line function. Program execution is continued
using a combination of the O and ;P commands.
All current process login times are displayed.
Final exit status is displayed.
The DELTA EXIT command is entered to terminate the debugging session and leave DELTA.

84

Appendix C. Sample DELTA Debug
Session on VAX
This appendix provides an example of how you would use DELTA to debug a program executing on
OpenVMS VAX. The example program, named LOGINTIM, uses the system service SYS$GETJPI
to obtain the login times of each process. To run the example program without error, you need WORLD
privilege.

Note

Although this example debugging session demonstrates using the DELTA debugger, you could use most
of the commands in the example in an XDELTA debugging session as well.

This appendix consists of two sections:

• Section C.1 shows the source and machine listing files for the example program

• Section C.2 shows the example DELTA debugging session and explains the various commands used
and information provided.

C.1. Listing Files for Example Program
This section shows the listing files for the example program, LOGINTIM, in two parts:

• Section C.1.1—Listing file for example source code

• Section C.1.2—Map file program section synopsis

See Section C.2 for the corresponding sample debugging session using this program.

C.1.1. Source Listing for VAX Debugging Example
The .LIS file for the DELTA debugging example on OpenVMS VAX is shown in Example C.1. Only the
offsets and source code are shown.

Example C.1. Program for Getting LOGINTIMs

0000 1 ;++
0000 2 ; This sample program uses the wildcard feature of GETJPI to get
0000 3 ; LOGINTIM for each active process. It outputs the PID and LOGINTIM
0000 4 ; for each and exits when there are NOMOREPROCs.
0000 5 ;--
0000 6 ;
0000 7 ;
0000 8 ; Data areas.
0000 9 ;
0000 10 DEVNAM: .ASCID /SYS$OUTPUT/ ;Output device specifier
000E
0012 11
0012 12 CHAN: .LONG 0 ;Assigned output channel
0016 13
0016 14 ITMLST: ;Item list for GETJPI call

85

Appendix C. Sample DELTA Debug Session on VAX

0016 15 .WORD 8 ; Byte length of output buffer
0018 16 .WORD JPI$_LOGINTIM ; Specify LOGINTIM item code
001A 17 .ADDRESS TIME ; Address of output buffer
001E 18 .LONG 0 ; Not interested in return length
0022 19 .LONG 0 ;Item list terminator
0026 20
0026 21 TIME: .QUAD 0 ;Buffer to hold LOGINTIM
002E 22
002E 23 OUTLEN: .LONG 0 ;FAO buffer length
0032 24 OUTBUF: .LONG 1024 ;FAO buffer descriptor
0036 25 .ADDRESS BUF
003A 26 BUF: .BLKB 1024 ;FAO buffer
043A 27
043A 28 CTRSTR: .ASCID *!/!_PID= !XW!_LOGINTIME= !%T* ;FAO control string
0448
0454
045E 29
045E 30 PIDADR: .LONG -1 ;Wildcard PID control longword
0462 31
0462 32 ;++
0462 33 ; Start of program.
0462 34 ;--
0462 35 S: .WORD 0 ;Entry mask
0464 36 $ASSIGN_S DEVNAM,CHAN ;Assign output channel
0475 37 MOVAB TIME,R2 ;Load pointer to LOGINTIM
047A 38 ;output buffer
047A 39 LOOP: $GETJPI_S ITMLST=ITMLST,-;Get LOGINTIM for a process
047A 40 PIDADR=PIDADR
0490 41 CMPL R0,#SS$_NOMOREPROC ;Are we done?
0497 42 BEQL 5$;If EQL yes
0499 43 BSBB GOT_IT ;Process data for this process
049B 44 BRB LOOP ;Look for another process
049D 45
049D 46 5$: MOVZBL #SS$_NORMAL,R0 ;Set successful completion code
04A1 47 RET ;Return, no more processes
04A2 48
04A2 49 GOT_IT: $FAO_S CTRSTR,- ;Format the output data
04A2 50 OUTLEN,-
04A2 51 OUTBUF,-
04A2 52 PIDADR,R2
04B9 53 $QIOW_S CHAN=CHAN,- ;Output to SYS$OUTPUT
04B9 54 FUNC=#IO$_WRITEVBLK,-
04B9 55 P1=BUF,-
04B9 56 P2=OUTLEN
04DC 57 RSB ;Done with this process data
04DD 58
04DD 59 .END S

C.1.2. Map File for VAX Debugging Example
The .MAP file is shown in Example C.2. Only the Program Section Synopsis with the PSECT,
MODULE, base address, end address, and length are listed.

86

Appendix C. Sample DELTA Debug Session on VAX

Example C.2. LOGINTIM Program .Map File

 +--------------------------+
 ! Program Section Synopsis !
 +--------------------------+
Psect Name Module Name Base End Length
---------- ----------- ---- --- ------
. BLANK . 00000200 000006E2 000004E3 (1251.)
 .MAIN. 00000200 000006E2 000004E3 (1251.)

C.2. Example DELTA Debugging Session on
VAX
The DELTA debugging session on OpenVMS VAX for the sample program is shown in the four
example segments that follow.

C.2.1. DELTA Debugging Session Example on VAX -
Part 1
In the first part of the example session, DELTA is enabled and the LOGINTM program is invoked. The
example shows version information displayed by DELTA and the use of the ;B and ;P commands.

The callout list following the example provides details for this example segment.

Example C.3. DELTA Debugging Session Example on VAX - Part 1

$ DEFINE LIB$debugging SYS$LIBRARY:DELTA
$ RUN/debugging LOGINTIM
DELTA Version 6.0
00000664/CLRQ -(SP) 200,1;X
00000200
X1 490!CMPL R0,#000009A8 .;B
X1 499!BSBB X1+04A2 .;B

DELTA is enabled as the debugger.
The example program LOGINTIM is invoked with DELTA.
DELTA displays a version number and the first executable instruction. The base address of the
program (determined from the map file) is virtual address 200. The base address is placed in base
register 1 with ;X. Now references to an address can use the address offset notation. For example,
a reference to the first instruction is X1+464 (or base address 200 + offset 464). Also, DELTA
displays some address locations as offsets to the base address.
DELTA displays the value in base register 1, just loaded 200.
The instruction at address 690 is displayed in instruction mode using !. Its address location is
expressed as the base address plus an offset. In the listing file, the offset is 490. The base address
in base register X1 is 200. The address reference, then, is X1+490. (Note that the + sign is implied
when not specified.)

A simple breakpoint is set at that address using the ;B command. The address reference for ;B is
the . symbol, representing the current address. X1+490;B would have done the same thing.
The same commands (! command to view the instruction and ;B to set a breakpoint) are repeated
for the instruction at offset 499. When DELTA displays the instruction (BSBB GOT_IT), it
displays the destination of the branch (GOT_IT) as the address location. DELTA displays the value
as an offset to base register 1.

87

Appendix C. Sample DELTA Debug Session on VAX

C.2.2. DELTA Debugging Session Example on VAX -
Part 2
In the second part of the example session, program execution begins. DELTA halts at the first breakpoint
and displays information. User interaction allows DELTA to continue to the next breakpoint.

The callout list following the example provides details for this example segment.

Example C.4. DELTA Debugging Session Example on VAX - Part 2

;P
X1+0490/CMPL R0,#000009A8 R0/00000001 ;P
2 BRK AT 00000699
X1+499/BSBB X1+04A2 O
 PID= 0000 LOGINTIME= 00:00:00.00
X1+049B/BRB X1+047A ;P
1 BRK AT 00000690
X1+0490/CMPL R0,#000009A8 R0/00000001 ;P
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 O
 PID= 0001 LOGINTIME= 00:00:00.00
X1+049B/BRB X1+047A ;P
1 BRK AT 00000690
X1+0490/CMPL R0,#000009A8
;B
1 00000690
2 00000699

Program execution begins with the ;P command.
Program execution halts at the first breakpoint. DELTA displays the breakpoint message (1
BRK AT 00000690) with the breakpoint number 1 and the virtual address. The virtual address
is 00000690, which is the base address (200) plus the offset 490. DELTA then displays the
instruction in instruction mode (CMPL R0,#000009A8). The contents of general register 0 are
displayed with the / command. DELTA displays the contents of R0, which is 1. Program execution
continues using the ;P command.
Program execution halts at breakpoint 2. DELTA displays the breakpoint message, then the
instruction. Step-instruction execution, excluding instructions in subroutines, is initiated with O.
The subroutine GOT_IT is executed, and the output (PID and login time) is displayed.
The O command halts program execution at the instruction where the subroutine returns control
(BRB LOOP). DELTA displays the instruction in instruction mode (BRB X1+047A), where
X1+047A is the address of the first instruction in LOOP. Program execution continues with ;P.
Breakpoint 1 is encountered again; DELTA displays the breakpoint message and the instruction.
The contents of R0 are examined (/ command) and program execution continues (;P).
Breakpoint 2 is encountered again; DELTA displays the breakpoint message and the instruction.
The subroutine is stepped over again with the O command. The subroutine is executed, and the
output is displayed. The instruction where the subroutine returns control is displayed. Program
execution continues (;P command).
Breakpoint 1 is encountered; DELTA displays the breakpoint message and the instruction.
All breakpoints in the program are listed with the ;B command.
DELTA displays the breakpoints (by breakpoint number) and the address locations.

88

Appendix C. Sample DELTA Debug Session on VAX

C.2.3. DELTA Debugging Session Example on VAX -
Part 3
In the third part of the example session, the first breakpoint is cleared, then all breakpoints are listed.
The program continues until the next breakpoint is encountered, and the user sets a new breakpoint.

The callout list following the example provides details for this example segment.

Example C.5. DELTA Debugging Session Example on VAX - Part 3

0,1;B
;B
2 00000699
;P
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 O
 PID= 0004 LOGINTIME= 12:50:20.40
X1+049B/BRB X1+047A ;P
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 ;P
 PID= 0005 LOGINTIME= 12:50:25.61
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 X1 4B9! CLRQ -(SP)
Linefeed
X1+04BB/CLRQ -(SP) Linefeed
X1+04BD/PUSHL X1+002E Linefeed
X1+04C1/PUSHAL X1+003A Linefeed
X1+04C5/CLRQ -(SP) Linefeed
X1+04C7/PUSHL #00 Linefeed
X1+04C9/MOVZWL #0030;-(SP) Linefeed
X1+04CE/MOVZWL X1+0012,-(SP) Linefeed
X1+04D3/PUSHL #00 Linefeed
X1+04D5/CALLS #0C,@#7FFEDE00 .;B
;B
1 000006D5
2 00000699

Breakpoint 1 is cleared using 0,[breakpoint #];B. (Never clear breakpoint 1 in XDELTA.)
All breakpoints are listed again with ;B command.
DELTA displays breakpoint 2 (breakpoint 1 cleared).
Program execution continues using the ;P command.
Breakpoint 2 is encountered; DELTA displays the breakpoint message and the instruction. The
subroutine is executed with the O command and the subroutine output is displayed. The next
instruction where the subroutine returns control is displayed. Program execution continues with the
;P command.
Breakpoint 2 is encountered; DELTA displays the breakpoint message and the instruction. Program
execution continues to the next breakpoint with the ;P command. The subroutine is executed, and
the subroutine output is displayed.
Breakpoint 2 is encountered again; the instruction at offset 4B9 (in the subroutine) is displayed
using !. This instruction is part of the setup for the call to the system service $QIOW.
Successive address locations are displayed by pressing the Linefeed key nine times. These
instructions are the remainder of the setup and the call to the system service $QIOW.
A breakpoint at X1+04D5 (the current address) is set using the ;B command. This breakpoint is in
the subroutine. The . symbol represents the current address.
The current breakpoints in the program are listed. The new breakpoint is assigned breakpoint 1.

89

Appendix C. Sample DELTA Debug Session on VAX

C.2.4. DELTA Debugging Session Example on VAX -
Part 4
In the final part of the example session, program execution continues and stops at the new breakpoint set
in the previous example segment. DELTA executes the subroutine where the breakpoint was encountered
and displays the output. The next breakpoint is reached and the use enters the ;O command to step
over the subroutine. When there are no more breakpoints, the program completes and final exit status is
displayed.

The callout list following the example provides details for this example segment.

Example C.6. DELTA Debugging Session Example on VAX - Part 4

;P
1 BRK AT 000006D5
X1+04D5/CALLS #0C,@#7FFEDE00 ;P
 PID= 0006 LOGINTIME= 12:50:29.45
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 ;P
1 BRK AT 000006D5
X1+04D5/CALLS #0C,@#7FFEDE00 ;P
 PID= 0007 LOGINTIME= 12:50:37.08
2 BRK AT 00000699
X1+0499/BSBB X1+04A2 O
1 BRK AT 000006D5
X1+04D5/CALLS #0C,@#7FFEDE00 ;P
 PID= 0008 LOGINTIME= 12:50:45.64
STEPOVER BRK AT 0000069B
X1+049B/BRB X1+047A ;B
1 000006D5
2 00000699
0,2;B
0,1;B
;B
;P
 PID= 0009 LOGINTIME= 12:51:22.51
 PID= 000A LOGINTIME= 12:51:30.26
 PID= 000B LOGINTIME= 12:51:36.21
 PID= 000C LOGINTIME= 12:51:58.86
EXIT 00000001
80187E7E/POPR #03 EXIT

Program execution continues with the ;P command.
Program execution stops at the new breakpoint 1, which is in the subroutine GOT_IT. DELTA
displays the breakpoint message and the instruction at the new breakpoint. Program execution
continues with the ;P command.
The subroutine completes and displays the output, and program execution continues until
breakpoint 2. DELTA displays the breakpoint message and the breakpoint 2 instruction. Program
execution continues with the ;P command.
Program execution stops at breakpoint 1 in the subroutine. Program execution continues with the
;P command. The subroutine is executed, and the output is displayed.
Program execution stops at breakpoint 2. The O command is entered to execute and step over the
subroutine.
Program execution stops at breakpoint 1 in the subroutine. Program execution continues with the
;P command.

90

Appendix C. Sample DELTA Debug Session on VAX

The subroutine completes execution and displays output. DELTA displays a STEPOVER break
message to state that the O command has been completed, returning control at address 69B (an
instruction in the main routine).
The instruction where the subroutine returns is displayed, and program execution is halted. The ;B
command is entered to display all current breakpoints.
The two current breakpoints are listed.
The command 0,2;B clears breakpoint 2.
The command 0,1;B clears breakpoint 1.
The ;B command is entered to display all current breakpoints. Because all breakpoints have been
cleared, DELTA does not display any.
Program execution continues with the ;P command. Because there are no longer any breakpoints,
the program executes to the end.
All current process login times are displayed.
Final exit status is displayed.
The DELTA EXIT command is entered to terminate the debugging session and leave DELTA.

91

Appendix C. Sample DELTA Debug Session on VAX

92

	VSI OpenVMS Delta/XDelta Debugger Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. VSI Encourages Your Comments
	5. OpenVMS Documentation
	6. Typographical Conventions

	Chapter 1. Invoking, Exiting, and Setting Breakpoints
	1.1. Overview of the DELTA and XDELTA Debuggers
	1.2. Privileges Required for Running DELTA
	1.3. Guidelines for Using XDELTA
	1.4. Restrictions for XDELTA on OpenVMS I64 Systems
	1.5. Invoking DELTA
	1.6. Exiting from DELTA
	1.7. Invoking XDELTA
	1.8. Requesting an Interrupt
	1.8.1. Requesting Interrupts on VAX
	1.8.2. Requesting Interrupts on Alpha
	1.8.3. Requesting Interrupts on I64

	1.9. Accessing the Initial Breakpoint
	1.10. Proceeding from Initial XDELTA Breakpoints
	1.11. Exiting from XDELTA

	Chapter 2. DELTA and XDELTA Symbols and Expressions
	2.1. Symbols Supplied by DELTA and XDELTA
	2.2. Floating Point Register Support
	2.3. Forming Numeric Expressions

	Chapter 3. Debugging Programs
	3.1. Referencing Addresses
	3.1.1. Referencing Addresses (I64 and Alpha Only)
	3.1.2. Referencing Addresses (VAX Only)

	3.2. Referencing Registers
	3.2.1. Referencing Registers (I64 Only)
	3.2.2. Referencing Registers (Alpha Only)
	3.2.3. Referencing Registers (VAX Only)

	3.3. Interpreting the Error Message
	3.4. Debugging Kernel Mode Code Under Certain Conditions
	3.4.1. Setup Required (I64 and Alpha Only)
	3.4.2. Setup Required (VAX Only)
	3.4.3. Accessing XDELTA

	3.5. Debugging an Installed, Protected, Shareable Image
	3.6. Using XDELTA on Multiprocessor Computers
	3.7. Debugging Code When Single-Stepping Fails (Alpha Only)
	3.8. Debugging Code that Does Not Match the Compiler Listings (I64 and Alpha Only)

	Chapter 4. DELTA/XDELTA Commands
	[(left angle bracket)—Set Display Mode
	/ (forward slash)—Open Location and Display Contents in Prevailing Width Mode
	! (exclamation mark)—Open Location and Display Contents in Instruction Mode
	" (double quote)—Open Location and Display Contents in ASCII
	’ (single quote)—Deposit ASCII String
	= (equal sign)—Display Value of Expression
	\string\—Immediate mode text display command (I64 and Alpha Only)
	ESC (Escape key)—Open Location and Display Previous Location
	EXIT—Exit from DELTA Debugging Session
	LINEFEED (Linefeed key or Ctrl/J)—Close Current Location, Open Next Location
	RETURN (Return or Enter key)—Close Current Location
	TAB (Tab key)—Open Location and Display Indirect Location
	;B—Breakpoint
	;C—Force System to Bugcheck and Crash (I64 and Alpha Only)
	;D—Dump (I64 and Alpha Only)
	;E—Execute Command String
	;G—Go
	;H—Video Terminal Display Command (I64 and Alpha Only)
	;I—List Current Main Image and Its Shareable Images (I64 and Alpha Only)
	;L—List Names and Locations of Loaded Executive Images
	;M—Set All Processes Writable
	;P—Proceed from Breakpoint
	;Q—Validate Queue (I64 and Alpha Only)
	;T—Display Interrupt Stack Frame on XDELTA (I64 Only)
	;W—List Name and Location of a Single Loaded Image (I64 and Alpha Only)
	;X—Load Base Register
	O—Step Instruction over Subroutine
	S—Step Instruction

	Appendix A. Sample DELTA Debug Session on I64
	A.1. Listing File for C Example Program
	A.1.1. Source Listing for I64 Debugging Example
	A.1.2. Machine Code Listing for I64 Debugging Example

	A.2. Example DELTA Debugging Session on I64

	Appendix B. Sample DELTA Debug Session on Alpha
	B.1. Listing File for C Example Program
	B.1.1. Source Listing for Alpha Debugging Example
	B.1.2. Machine Code Listing for Alpha Debugging Example

	B.2. Example DELTA Debugging Session on Alpha
	B.2.1. DELTA Debugging Session Example on Alpha - Part 1
	B.2.2. DELTA Debugging Session Example on Alpha - Part 2
	B.2.3. DELTA Debugging Session Example on Alpha - Part 3

	Appendix C. Sample DELTA Debug Session on VAX
	C.1. Listing Files for Example Program
	C.1.1. Source Listing for VAX Debugging Example
	C.1.2. Map File for VAX Debugging Example

	C.2. Example DELTA Debugging Session on VAX
	C.2.1. DELTA Debugging Session Example on VAX - Part 1
	C.2.2. DELTA Debugging Session Example on VAX - Part 2
	C.2.3. DELTA Debugging Session Example on VAX - Part 3
	C.2.4. DELTA Debugging Session Example on VAX - Part 4

