I II VMS Software

VSI OpenVMS

Media Robot Utility
Application Programming Interface
Guide

Document Number: DO-DVMRUA-01A
Publication Date: March 2024
Operating System and Version: VSI OpenVMS Integrity Version 8.4-1H1 or higher

VS| OpenVMS Alpha Version 8.4-2L1 or higher
VS| OpenVMS x86-64 Version 9.2-1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

Media Robot Utility Application Programming Interface Guide

I II VMS Software

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

Itanium is a trademark of Intel. Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

ii

Media Robot Utility Application Programming Interface Guide

Preface ix
L. ADOUL VST oot e e e et e e e e e e e et e e e raaaaas ix

2. OpenVIMS DOCUMENEALIONuttttitiiiriiiiiiiiitetttttaetteeeeeteeeeaeeeeeeeeeeeeeeseseeeeebeseseneeeseaeseseresenes ix

3. VSI Encourages YOUr COMIMENESuueeeeererrtriiiieeeeeeeeiiiiiieeeeeeetrtriiaaaeeeeeeeeerennnneeeeereeens ix
Chapter 1. Media Robot Driver Library 1
| B B T er 1 ()1 PP 1
1.1.1. Element Address Namingcccooiiiiiiiiiiiiiiiiiii e 1

| B D 1o | o5 o) | APPSO PPUPPPPPPPPPPPPPPRt 1

1.2. MRD ROUHNE SUMMATY ..ccoiiiiiiiiiiiiiiiiiiiiiiiiiiiititititetiteeeeteeeteeteeteeeeeeeeeeeteeeeeeeeeeeeeeeeeresene 2
1.2.1. CommoOn ROULINESccouniiiiniiiiiiieeie et e e e e e e aanes 2

1.2.2. Operating System ROULINESuuuumiiiiiiiiiiiiii 4

1.2.3. About RetUrn VAIUESoivvuniiiiiiieii e 6

1.2.3.1. CommoOn VAIUESoiiuniiiiiiiieiie e e ea 6

1.2.3.2. Windows 2000/Windows XP COdeSc.uovivuueiieniiiiieiiieeieeeeeeee e 12

1.2.3.3. Tru64 UNIX COAES ..covvnniiiiiiieiiiiee et eaaan 13

1.2.3.4. OpenVIMS COAES ...ccevrriuiiiieeiiiiiiiiii ettt ee e 15

1.2.4. Related INfOrmMationcouuniiinniiiiiii e 16

Chapter 2. mrd_eject 19
2.1. Media Robot Driver LIDIary ..o 19

P o ¥:11 1 (S 1<) £ TP 19

2.3, DIESCIIPHON ...vvvveeieeeeeiiiiiiieteee e e e e ettt e e e e ettt ettt eeeseaasb bt aeeeeeeeesasentneeeeeeeeeennannrenes 19
23,1 BXaMPLE oo 20

2.3.2. REMUIT VAIUES ...oniiiniiiiiiii e e e e e et e e e eeanees 21

2.3.2.1. CommON COUEScovvniiieniiiieeie e e e e e 21

2.3.2.2. Windows 2000/Windows XP Codesc.oveiuuviiueiiiiieiiieeieeeieeeeeeennn, 22

2.3.2.3. Tru64 UNIX COAES ..covvnniiiiiiniiiiie ettt eaaan 22

2.3.2.4. OpenVIMS COUES ...cevvriruiiieeeeiiiiiiiiiee ettt ettt eereeebab s 23

2.3.3. Related INfOrmationoouviiuniiiiiii e e 24

Chapter 3. mrd_find_cartridge 25
3.1. Media Robot Driver LIDrary ..o 25

RN o 1 ¢ 11 (= <) ¢ SN 25

T T B T ler 11 (011 E TP PPPPPPP 26
3.3.1. EIement INFO ..oovniiiiiiie e 26

3320 BXAMPIL i 27

3.3.3. REMUIN VAIUES ..ooniiiniiiieiie et e e et e et e e e e aan e 28

3.3.3.1. CommoOn VAIUESouiiinniiiiiiieiie et e 28

3.3.3.2. Windows 2000/Windows XP Codesc.ceveruuiiiiiiiiieiiieeieeieeeeeeenne, 29

3.3.3.3. Tru64 UNIX COAES ..covvnniiiiiiiiiiie ettt eaaas 30

3.3.3.4. OpenVIMS COUES ...cevvririiiieeeeiiiiiiiiiee ettt ettt eeeeeeaeb e 30

O IRC J B 0 5y (el 5 o) 1 PN 31

3.3.5. Related INfOrmationcouuviiuniiiiiiiiii e e 31

Chapter 4. mrd_home 33
4.1. Media Robot Driver LIDrary ... 33

v R o 1 11415 (o) & RO PRSPt 33

i B D Toer v | o5 (o) RSP TR PR PRTRPRRRRRPRN 34
B R =5 < 111 o) [P PP PP PP PPN 34

4.3.2. REtUIN VAIUEScovnniiiiiiiie e eeans 36

4.3.2.1. CoOMMON COUES ...covvniiiniiiieiie e et e e 36

4.3.2.2. Windows 2000/WIndows XP COdESceeevuiiiriiiiiiiiieeiiieeiieeeeieeiinens 36

4.3.2.3. Tru64d UNIX COUAES ...uuveiiiieniiiiieeeieee et e v 37

iii

Media Robot Utility Application Programming Interface Guide

4.3.2.4. OPENVMS COULS ..covvvuieeeeeieiiiiiiiieee e e e e eeetiieeee e e e e ee ettt e e e eeeaeeasana e as
4.3.3. Related INfOrmMAtiONoovuiiiniiiniiiiii et e e

Chapter 5. mrd_initialize

5.1. Media Robot Driver LiDIarycceeeiiiiiiiiiiiiiieeeeeeeiiiiiiiee e e e eeeeeiviiee e e e e eeeeevianeeeeeeeeees
R o 1 111 (< (<) o SN
TR TR B 1T 4115 (o) s R UUPPPURRR
TR B R 2 #1111 o) (PSP
5.3.2. REUIN VAIUEGS ...ouiiiniiiieiiie e e e e e e e
5.3.2.1. CommoOn COAESuuvivuniiiiniiiiieeiee et e e

5.3.3. Related INfOrmationoooiuuiiiiiiiiiiiiiiie e e

Chapter 6. mrd_initialize_element

6.1. Media RoObot Driver LiDIarycceeeiiiiiiiiiiiiiieee et e e e eeeeviiee e e e e e eeeeveieeeeeeeeees
(I o7 1 111 (< (=) o SN
T T B 1T 1 15 () A UUPPPPRURT
T TN R 2 #1111 o) (PSP
6.3.2. REMUIN VAIUESuiivniiiiieiiie e e e e e e e e e
6.3.2.1. CommON COAESuuiiieniiiiieiiee et e e

6.3.2.2. Windows 2000/Windows XP Codescceeeueiiieiiieeiiiieeiieeeiieeeeeeeennn.

6.3.2.3. Tru64 UNIX COAESuueierniiiniiieeeie e e e

6.3.2.4. OPEnVIMS COULS ...covvviuiiiieeeeeiiiiiiiieee e e e ettt e e e e e e eeeeateaeeeeeeeeesnnneees

6.3.3. Related INfOrmationoooivniiiiiiiii e e

Chapter 7. mrd_inject

7.1. Media RODOt DIIVEr LIDIATYcoeeiiiiiiiiiiiiiieeeeeeeiiiieee e e ettt e e e e e e eeeebaee e e e eeeeeeenenns
R o 7 141 1< o ST
7.3, DIESCIIPLION ..eeevivieiieeeeeeeiiiiiieeeeeeeetetiti e e eeeeeeetaataaeeeeeeeseessnnnnaseeeereessnnnnnaaseeeeesssnnnnns
G T TR 25 < 111 o) (< S PP
T.3.2. REtUIN VALUESoovvniiiiiiiie e
7.3.2.1. CommMON COUES ...covvniiiiniiiieiiie et e e

7.3.2.2. Windows 2000/WIndows XP COdescccovueiiireiiiiiiiieiiiieeiiieeeeeeeinnns

7.3.2.3. Tru64 UNIX COAEScovvniiiiniiiieeieeeeee e

7.3.2.4. OPENVMS COULS ..covvvuieeeeeeeiiiiiiiieee e e e e eeeeiieee e e e e e e et e e e e e e eeeasanneeeas

7.3.3. Related INFOrmMationooivuiiiiniiiiiiiiie e

Chapter 8. mrd_load

8.1. Media Robot Driver LIDIaryuuucieeeiiiiiiiiiiiiiie e ee et e e e e e e e
8.2, PATAIMELEISouviiiiniiii ettt e e e e e e e e e e e e e e et e e e e e e e e
LT T B TST o3 w1 o] 1 (01 PR PPPUPRNt
TN T B 22 10 o] (PSP
8.3.2. RetUIN VAIUESouoiiiniiiiiiiie e e e
8.3.2.1. CommON COAESovvniirneiieiiieee e

8.3.2.2. Windows 2000/Windows XP Codesccouuviiireiirneeiiieiiiieeiiieeeeeeeiieeenn,

8.3.2.3. Trub4 UNIX COUES ...covuniiiiniiiieeiiieeee e e e

8.3.2.4. OPENVIMS COAESceviiiiiiiiiieeeeeieeiiiiieee e e e e et eetieee e e e e eeeeaeae e e e e eeeaeeennnes

8.3.3. Related INfOrmationeiiiiniiiiniiiie e eans

Chapter 9. mrd_lock

9.1. Media RODOt DIIVEr LIDIATYccoeviiiiiiiiiiiiiieeeeeieiiiieie e e ee ettt e e e e e e eeeaiise e e e eeeeeeenenns
L R o 71101 1<) o ST
LG T B Ictler v |15 o) 1 S U UUPPPPRUR
9.3.1. REtUIN VALUEScovvniiiiiiiiiiie e
9.3.1.1. ComMON COUES ...covvniiineiiie et e e

9.3.1.2. Windows 2000/WIndows XP COdeSccceuueiiireiiiieiiiieeiiieeiiieeeieeeiinnns

iv

Media Robot Utility Application Programming Interface Guide

9.3.1.3. Tru64 UNIX COAES ..uuivnniiniiniiiiiie ettt eanas
9.3.1.4. OPENVMS COULS ...ovvvuiieeeeeeeiiiiiiiieee e e e e eeeeiteeee e e e e eeeeeaireeeeeeeereasanaeeas
9.3.2. Related INfOrmMAatiONoovuiiiniiiniiiiie et

Chapter 10. mrd_map_element

10.1. Media Robot Driver LIDIaryccoeeiieiriiiiiiiiieeeeeeeiiiiiiee e e e e eeeeeeaaie e
10.2. PATAIMELETS ...vuviivneiiiieiie ettt e e e e et e e e e e e e e e e e ae e e e s et e e aaneeeanans
10.3. DESCTIPLON ...eeereeiiiiiiieeeeeeeeeiiiiieaeeeeeeeeetaataeeeeeeeeaaastnnnnaeseeeaessssnnnnaeseeesessssnnnnaaeseeeenes
)08 2 B 211) (USSP
10.3.2. REtUIN VAIUESuiiiniiiieiiiiee et e e e e e aanns
10.3.3. Related InfOrmationooeivuiiiiiniiiiieiie e eee

Chapter 11. mrd_message

11.1. Media Robot Driver LIDIaryccoeeeeeiiiiiiiiiiieee e eeeeeeieee e e e e e e e
11,2, PATAIMELETS ...vuviivniiiieiie e ettt e e e et e e e e e e e eeeae e e e s et e e aaneeeanans
) B B TS TY) 1 () 1 PSSPt
11.3.1. Codes Translatedccoouneiiuniiiieeiiie e
)R O 2 ¢: 11) (USSP
11.3.3. REtUIN VAIUES ...ouiiiniiiieiiii e e e e
11.3.4. Related INfOrmationoooivuiiiiiniiiieeiie e e eee

Chapter 12. mrd_move

12.1. Media Robot Driver LIDIaryccoeeeeeiiiiiiiiiineee et e e e e e
12.2. PATAIMELETS ...vuviivniiiieei ettt e e e et e e et e e e e e e e e ae e e e s e e e raeeeanens
12.3. DIESCTIPHION ...ueeereeiiiiiiiieeeeeeeeiitiieaeeeeeeeetttat e eeeeeeeetassnnnnaaseeeaessssnnnnaeseeesessssnnnnasaeeeeenes
)02 0 TR 211) (SRR
12.3.2. REtUIN VAIUES ...ouiiiniiiiiii et e e
12.3.2.1. CommoOn COAESouuiiviniiiieiiiee e

12.3.2.2. Windows 2000/Windows XP Codescceeevueeimriiiieiiiieeiiieeiiieeeenneeens

12.3.2.3. Tru64 UNIX COAESuoivvniiiiiiiieeie e eas

12.3.2.4. OpenVIMS COAEScevviriiiiiiieeeeeiiiiiiiieee e e e e eeeetiiee e e e e e e e eeaaieaeeeeeeeeeeenenns

12.4. Related INFOrMAtIONuiiiveiiiiiiii e e e e e e e

Chapter 13. mrd_move_medium

13.1. Media Robot Driver LIDIaryccoeeieeiiiiiiiiiiieee e ee e e e e e e e
13.2. PATAIMELETS ...vuviivniiiieeiie ettt e e e e e e e e e e e e e e e ae e e e s e e raeeeanens
)G T8 B B 1T 1 o () 1 U SUPRRNt
13.3.1. Absolute Element AdIESSESueevvneiiunieieieeiieeeee e e eeaans

J I TR IO 2. ¢ 11 o) [UPPPRRRR
13.3.3. REtUIN VAIUES ...ouiiiniiiieiiiieee et e e
13.3.3.1. CommoOn COAESouuiiirniiiieiiieeieee e

13.3.3.2. Windows 2000/Windows XP Codesceeevueeivreeiiieiiiieeiiieeiieeeeineeens

13.3.3.3. Tru64 UNIX COAESuoivvniiiiiiiieeie e eas

13.3.3.4. OpenVIMS COAEScevvrriiiiiiieeeeeeeiiiiiieee e e e eee et e e e e e e e eeeieaeeeeeeeeeennenns

13.3.4. Related INfOrmationooeivuiiiiiniiiiieiie e eee

Chapter 14. mrd_position

14.1. Media Robot Driver LIDIaryccoeeieeiiiiiiiiiiieee e e et e e e e e
) o ¢ 111 1<) 1 PRSPPIt
) T B 1T 1 () 1 PR SSUPPPNt
) T T 211) (S UPPRRRRR
14.3.2. RetUIN VAIUEScceeiiiiiiiiiieieeie it e e e e e ettt e e e e e e e eetaaee e e e e eeeeeesaaneeeeeeeeessnnns
14.3.2.1. Windows 2000/Windows XP Codesuueeeeerreriiiiiiiiineneeeeeeeiiiiinnn.

14.3.2.2. Tru64 UNIX COdES ...ceevvvrruiieeeeeiiiiiiiiiieeeeeeeeeiiiieeeeeeeeeeeeviineeeeeeeeeeenens

14.3.2.3. OpenVIMS COAEScevveviiiiiiieeeeeiiiiiiiieee e e e eeeeeiiieee e e e e e e eeeeiieaeeeeeeeeeeenenns

Media Robot Utility Application Programming Interface Guide

14.3.3. Related InfOrmationooeivuiiiiiiiiiee e 93

Chapter 15. mrd_position_to_element 95
15.1. Media Robot Driver LIDIaryccoeeeeiiiiiiiiiiineeeeeeeciiiicee e eeeeeeiieee e e e e e e 95

15.2. PATAIMELETS ...vuviivniiiieiie ettt e e e e e e e e e e e e e e ae e e e s e e raeeeanans 95
15.3. DIESCTIPHION ...eeereeiiiiiiiieeeeeeeeiiiiieaeeeeeeeeettttaaeeeeeeeeetassnnnneeseeeaensssnnnnaeseeesessssnnnnasaeeeaenes 95
15.3.1. Absolute Element AdIESSESueivuniiiuneeiiieeiieeeeie e e eaans 96

J BT B 2. ¢ 11 o) (S UPPRRRRR 97

15.3.3. REtUIN VAIUES ...ouiiiniiiieiiii e e e e e 99

15.3.3.1. CommoOn COAESouuiiirniiiieiiiee e e 99

15.3.3.2. Windows 2000/Windows XP Codesccoeeiveiiieiiiiieiiiieeiiieeiieeeennn. 100

15.3.3.3. Tru64 UNIX COAES . .oovvvniiiiieeiiieeeeee e 100

15.3.3.4. OpPenVIMS COAESceeeeieiiiiiiiiieeeeeeeiiiiicee e e e e e e ettt e e e e e e eeeeraeaaeeeeeeaees 101

15.3.4. Related INfOrmationcoeivuiiiiniiiiiiiie e 101

Chapter 16. mrd_prevent_allow 103
16.1. Media Robot Driver LIDraryoouceiieiiiiiiiiiiiiiie e e e 103

O o2 1 11 (< (= o SR 103
16.3. DESCTIPLON ...eeeeereiiiiiieeeeeeteeiiiiieaseeeeeeetttaa s aeeeeeeeessanneaeeeeeeresssnnnnaeeeeeesssssnnnnnaesaeeees 103
16.3.1. EXQAMPIE oevvviieeeeeiiieiiiiiie e e e ettt e e e e e e ettt e e e e e e e e e eebaa e e e e eeeeeebnbnaeeeeaaaenes 104

16.3.2. REtUIN VAIUES ...ouiviniiiinieiieeie et 105

16.3.2.1. CommoOn COAESuviirniiiieiiieeiie et 105

16.3.2.2. Windows 2000/Windows XP Codescoeeiveiiieiiiiieiiiieeiieeiieeeenne. 106

16.3.2.3. Tru64 UNIX COAES ...covvvniiiiieeiiieeeeeeee et 106

16.3.2.4. OPenVIMS COUESceeeeieiiiiiiiiieeeeeeeiiiiiciee e e e e e ettt e e e e e e eeeeraaaeeeeeaeaees 106

16.3.3. Related InfOrmationcooivuniiiiniiiiieiiiie e e 106

Chapter 17. mrd_ready 107
17.1. Media Robot Driver LIDraryuceiieiiiiiiiiiiiiiie e e e e e 107

L o 11 (< (= o SR 107
) T B 1T 1o () U UUSPRRIN 107
17.3.1. EXQAMPIE oevveiiieeeieiieiiiiee et e e e ettt e e e e e e e ettt e e e e e e e eee bbb e e eeeeaeees 108

17.3.2. REUIN VAIUESuiviniiiinieiie e e s 109

17.3.2.1. CommoOn COAESuuvivrniiiieiiieeiiee e e 109

17.3.2.2. Windows 2000/Windows XP Codesccoeeiueiiieiiiiieiiiieeieeiieeeenn. 110

17.3.2.3. Tru64 UNIX COAESouueiveniiiineeiieeiee e 110

17.3.2.4. OpenVIMS COAESceeeviiiiiiiiiiieeeeeeeiiiiicee e e e e e e eeeeiiee e e e e e e eeeeraeaeeeeeeeaaes 111

17.3.3. Related InfOrmationcooovuniiiiniiiieiiiie e e 111

Chapter 18. mrd_ready_inport 113
18.1. Media Robot Driver LIDraryuceiieiiiiiiiiiiiiiieeee et eeeee s 113

IR o 11 (< (= o S 113

)T B B 1T 1 o 5 () AU UUSPRRN 113
18.3.1. EXAMPIE oevvviiieeeiiiiiiiiiiie e e e ettt e e e e e e ettt e e e e e e e e et et e e e e e e eeeeabbneeeeeeeaeees 113

18.3.2. REtUIN VAIUESuiviniiiiniiiie e e 114

18.3.2.1. CommoOn COAEScouniiiniiiieiiieee e 114

18.3.2.2. Windows 2000/Windows XP Codescoevivueiiiieiiiiieiieeeiieeieeennnn. 115

18.3.3. Related INfOrmationcooivuniiiiniiiieiiiie e 116

Chapter 19. mrd_read_element_status 119
19.1. Media Robot Driver LIDraryoucoiieiiiiiiiiiiiiiieeeeeeeeeeiiiciee et e e e e 119

R 2 v 11 (< (=) o SR 119

19.3. DESCTIPLON ...ueeeeeeeiiiiiieeeeeeteeiiiiiaeeeeeeeeetttataaeeeeeeeersannnaaeeeeeressnnnnnaaeeeeesesssnnnnsaeseeeees 119
19.3.1. Absolute Element AddIESSESccevuniivunieiieiiieeiie et eee e e e e 120

19.3.2. EXAMPIE oevvviieeeeeiiiiiiiiiie e e e ettt e e e e e e ettt e e e e e e e eeeabaa e e e e e e e eeesbbneaaeeaeaaees 121

vi

Media Robot Utility Application Programming Interface Guide

19.3.3. REtUIN VAIUES ...ouiiiniiiiniiiie e e e e e 126
19.3.3.1. CommoOn COAESuuviirniiiieiiieeeie e 126

19.3.3.2. Windows 2000/Windows XP Codescoeevveiiieiiiiieiieeeiieeiieeeenne. 127

19.3.3.3. Tru64 UNIX COAEScuniivuniiiineiiieeeee e 127

19.3.3.4. OPenVIMS COUESceeeeieiiiiiiiieeeeeeeiiiiieee e e e e e e eeeeiie e e e e e e eeeeraeaeeeeeeeaees 127

19.3.4. Related INfOrmationcooivuiiiiniiiiieiiiie e 127
Chapter 20. Mrd_request_SENSEccceevseessresssesssncsssisssnssssssssssssssssssesssssssssssssssssessssssssese 129
20.1. Media RObOt DIiver LIDIArYcceeeviiiiiiiiiieeeieiiiiiiiiieee e e e et e e e e e e e e e e eeeeeees 129
20.2. PATAINELEISevuiiiiniiiieiiie e e e e e e e e et e et e e e et e e e e e e e et e e saeeeaaeseaeesaneees 129
20).3. DESCIIPLION .vvuuieeeeeriiiiiiiieeeeeeeeetitii e e eeeeeeettataneeeeeeeeaessnnneeeeeeeresssnnnaaseeeeesessnnnnnens 129
P0G TR B =521 1 115) (PP 130
20.3.2. REtUIN VAIUES ...coviirniiiiiiiieeie et eaan 131
20.3.2.1. CommoOn COAESouuiiieiiiiiiiieee e e s 132

20.3.2.2. Windows 2000/Windows XP Codesccccuueeiruniiiieeiieeiiieeeieeeeineeenn, 135

20.3.2.3. Tru64 UNIX COAEScevvveniiiiiieeeiieeeeee e 136

20.3.2.4. OPENVIMS COAES ...uueiieeieiiiiiiiiieeeeee et e e e e e e eeeiieee e e e e eeeeraainaeeeeaaens 137

20.3.3. Related InfOrmationooeiiiueiiiiiiiiiiie e 138
Chapter 21. mrd_show 139
21.1. Media RObOt DIiver LIDIArYcceeeiiiiiiiiiiieeeieiiieiiiiieee e e et e e e e e e eeeaiieee e e e e eeeeeees 139
21.2. PATAINELEISeuniiiiniiiie it e e e e e e e e e e e e e e e e et e e e e e e et e e eaneeeaaeeeeaeesanees 139
21.3. DESCIIPHON .vvuuieeeeeiiiiiiiiaeeeeeeeettttii e e eeeeeeeatttaeeeeeeeeeasssnnnnaeseeeeresssnnnaaseeeeesessnnnnnens 140
21.3.1. Element INFOoooiiimniiiiii e 140

2 G TR =5 21 1 115) (<SP 140
21.3.3. REtUIN VAIUES ...covniiiniiiiiiiie e 142
21.3.3.1. CommoOn COAEScuuiivuiiiiiiiiee e 142

21.3.3.2. Windows 2000/Windows XP Codesccceuueeiiuniiiieeiieeiiieeeieeeeineeenn, 144

21.3.3.3. Tru64 UNIX COAES ...covnniiiiniieieiieeeeeeeeee e 144

21.3.3.4. OPENVIMS COAES ...uuneiiiiieiiiiiiiiie e ettt e e e e e e ettt e e e e e e e eerarneeeeeeaees 145

21.4. Related INFOrMAtIONcoovuniiiiniiii e e e e e e e ee 147
Chapter 22. mrd_startup 149
22.1. Media RObOt DIiver LIDIArYccceieiiiiiiiiiiieeeeieiiiiiiiieee e e et e e e e e eeeaiine e e e e e eeeeees 149
22.2. PATAINELEISeuuiiiiniiiiee e e e e ee e et e et e e e e e e e e e e et e e eaneeeaaeseaeeranees 149
22.3. DESCIIPHON .vvuuieeeeeriiiiiiiieeeeeeeetttti e eeeeeeeetaataeeeeeeeeeaessnnnnaeseeeeeesssnnnaeseeesessssnnnnnnens 149
2 T B =5 21 1 115) (PP 152
22.3.2. REtUIN VAIUES ...couiivniiiiiiiie e e 153
22.3.2.1. CommON COAEScvuniiiiiiiiiiiee e 153

22.3.2.2. Windows 2000/Windows XP Codesccceuueeiirniiiieiiiieeiiieeeieeeeineeenn. 154

22.3.2.3. Tru64 UNIX COAES ..u.cevvveneiiiieeeiieeee e 155

22.3.2.4. OPENVIMS COAES ...uuniiiiiiiiiiiiiiiieeeeeeeiiiieee e e e e ee et e e e e e eeeerariaaeeeeaaees 157

22.4. Related INFOrMAtiONccovuniiiiniiiieiiiie e e e e ee 158
Chapter 23. mrd_test_unit_ready 161
23.1. Media RObOt DIiver LIDIArYccceeiviiiiiiiiiieeeeieiiiiiiiiiee e e e e eeeeeieee e e e e e e eeeaiine e e e e eeeeeees 161
PRI o1 1111 (o) ¢ SRRSO 161
PG T0C T B 1o (e3 10101 1 HS OO PPPR 161
P20 TG TR B =521 1 115) (PP 162
23.3.2. REtUIN VAIUES ...couiiiniiiiiiie e e 164
23.3.2.1. CommOn COAESovuniiieiiiiiiiiee e 164

23.3.2.2. Windows 2000/Windows XP Codescccouueviruniiiieiiieeiiieeeieeeeineeenn. 164

23.3.2.3. Tru64 UNIX COAES ..u.cevvvenieiiiiieeeieeeeeeee e 165

23.3.2.4. OPENVIMS COAES ...uuueiiiiiiiiiiiiiiieeeeeeeiiiieee e e e e e e e e e e e e e e eerarsaeeeeaaees 165

vii

Media Robot Utility Application Programming Interface Guide

23.3.3. Related InfOrmationooeiivieiiiiiiiiieiie e e 166
23.3.4. Tru64 UNIX RESIIHCIONuuiivrneiiineiiineeiiiee i eeeeee e ee e e e e e e e eeaeeenneeees 166
Chapter 24. mrd_unload 167
24.1. Media RObOt DIiver LIDTArYccceeeiiiiiiiiiiieeiieiieiiiiieee e e et eeeee e e e e e eeeeeees 167
R o1 ¢ 1111 =) ¢ R RRSRPPRR 167
243, DESCIIPHION .vvuuieeeeeriiiiiiiiaeeeeeeeeetitii e eeeeeeeetaaennaeaeeeeeersssnnnnaaseeseeesssnnnaaseeeeesessnnnnneens 167
24.3.1. TruOd UNIX ..ot eeeeaan 168
24.4. OpenVIMS EXAMPIEccovvviniiieieeeiiiiiiiiieee e e e e ettt e e e e e e eetaties e e e e e eeeeaaaanaseeeeeeeennnnnns 171
24.4.1. REtUIN VAIUES ...ooviiiniiiiiiieeeee et 172
24.4.1.1. CommoOn COAEScuuiieeiiiieiiiee e 172

24.4.1.2. OPENVIMS COAES ...uueiiiiieiiiiiiiiieeeeeeeiiiieee e e e e ee ettt e e e e e eeeeraeinaeeeeaaens 173

24.4.2. Related InfOrmationc..ueiiiueiiiieiiiieeie e e 173
Chapter 25. mrd_utility 175
25.1. Media RObOt DIiver LIDIArYccoeeviiiiiiiiiieeeieeiieiiiiieee e e eeeeiieee e e e e e e e e e e e eeeeeees 175
25.2. PATAINELEIS ...oevuiiiiniiiie it e e et e et e e e e e e e e e e et e e s e e e eaaeeseaeesanees 175
25.3. DESCIIPHON .vvuuieeeeeriiiiiiiieeeeeeeettitieeeeeeeeeeetatnaeeeeeeeeaessannneeeeeseeesssnnnaaaeeeeesessnnnnnnns 175
T T B =5 21 1 115) (PP 176
25.3.2. REtUIN VAIUES ...couviiiniiiiiiieeee e e 178
25.3.2.1. CommOn COAEScovuniiveiiiiiiiiee e 178

25.3.2.2. Windows 2000/Windows XP Codescccouueviruniiiieiiieiiiieeeieeeeineeenn. 181

25.3.2.3. Tru64 UNIX COAES ..u.oevvvenieiiiiieeeieeeeeee e 182

25.3.2.4. OPENVIMS COAES ...uueiiiiiiiiiiiiiiieeeeeeeiiiieee e e e e ee et e e e e e e e eerarn e e e eeaaees 183

25.3.3. Related InfOrmationc..oeiiiueiiiiiiiiieiie e e 184

viii

Preface
1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. OpenVMS Documentation

The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

3. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

ix

https://docs.vmssoftware.com

Preface

Chapter 1. Media Robot Driver Library

Media Robot Driver Library is a programming interface for controlling SCSI-2 medium-changers.

1.1. Description

The Media Robot Driver library is a callable interface for controlling SCSI-2 medium-changers. The
interface consists of two include files and an object library which are installed in an operating system
specific location. The operating system specific locations are shown in the table below.

Table 1.1. Library File Locations

/Windows 2000/Windows XP \ Program Files\ MRU\ mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS SYS$LIBRARY:MRD$RTL.EXE

The distribution also includes examples showing how each callable routine can be used and a manual
page for each routine.

The <mrd_common.h> include file defines data structures used to provide information about the
medium-changer and its elements. The <mrd_common.h> file also defines a large number of symbolic
constants for element type codes, offsets within SCSI structures, masks for SCSI bit fields, and other
useful structures. The <mrd_common.h> file also includes prototype definitions of all the medium-
changer functions provided in the interface.

The <mrd_message.h> include file defines constants for each error code returned by the MRD interface.
Function prototypes are also included for routines that will return a string corresponding to the error
code.

On Tru64 UNIX, these strings are retrieved from an [18N message catalog that is part of the installed
software. Code and routines are also included for words and element exception messages that might be
commonly used by a medium-changer application.

1.1.1. Element Address Naming

The first OpenVMS implementation of MRD supported the TF and TA family DLT media-changers. It
used Mass Storage Control Protocol Display commands to indicate what cartridge should be moved. The
MSCEP uses cartridge address names instead of numbers as SCSI does. When SCSI support was added to
the MRD, the convention of using strings for the address was kept and thus it has been since.

1.1.2. Description

In the common interface example programs, the character strings for the addresses are taken directly
from the command line arguments and no special formatting is necessary. But, in practice, a program
will probably keep SCSI addresses in numeric form and will have to convert those to strings. In the
MRU command line interface and graphic user interface we use sprintf(3) for this:

int element_number ;
char element [MRD_NAME_SIZE+1] ;

element_number = 5 ;

Chapter 1. Media Robot Driver Library

sprintf (element, "%d", element_number) ;

1.2. MRD Routine Summary

The media robot driver library routines comprise two categories, the common routines and operating
system specific routines.

1.2.1. Common Routines

The following list identifies the common routines.
* mrd_eject(3mrd)

* mrd_find_cartridge(3mrd)

e mrd_home(3mrd)

e mrd_initialize(3mrd)

* mrd_inject(3mrd)

¢ mrd_load(3mrd)

e mrd_lock(3mrd)

* mrd_map_element(3mrd)

e mrd_move(3mrd)

* mrd_position(3mrd)

* mrd_ready_inport(3mrd)

e mrd_scsi_decode(3mrd)

* mrd_startup(3mrd)

e mrd_show(3mrd)

e mrd_shutdown(3mrd)

¢ mrd_strelement(3mrd)

* mrd_strexcept(3mrd)

e mrd_unload(3mrd)

The common routines will open a robot to perform their operations. All these routines will close the
robot when successfully completed, except for mrd_ show(3mrd). The mrd_show(3mrd) routine
closes the robot only when it encounters an error.

The routine mrd_startup(3mrd) is used to open a medium-changer. It will fill in a robot_info_t data
structure that contains the number of elements of each type, their addresses and the medium-changer

Chapter 1. Media Robot Driver Library

SCSI Inquiry data. Thus, it is unnecessary (and often not desirable) to keep the robot open while it is
being used. The routine mrd_shutdown(3mrd) can be used to close the robot. Aside from closing
the file and setting the channel field to BAD_CHANNEL, it has no effect on the other data in the
robot_info_t data structure.

Use the mrd_show(3mrd) routine to obtain information about the contents and state of the slots, drive,
ports and transports of the medium-changer. The mrd_ show(3mrd) routine will open a robot, but

it will also work if the robot is already open when the routine is called. For each element requested,

an element_info_t data structure will be set if the element exists. The mrd_show(3mrd) function
will accept the address of a robot_info_t data structure. If the robot has already been opened by
mrd_startup(3mrd), this open robot will be used by the routine. If the robot isn't open (indicated

by the channel field set to BAD_CHANNEL), the medium-changer indicated by the robot_name will
be opened. If the routine completes successfully, the medium-changer will remain open. On an error,
the medium-changer will be closed and the channel field reset to BAD_CHANNEL. By keeping the
medium-changer open, multiple calls can be made to mrd_ show(3mrd) without incurring the time to
call mrd_startup(3mrd) each time.

The routine mrd_move(3mrd) is a general interface to the SCSI Move Medium command. It allows the
specification of source and destination elements for the move, whether the medium should be inverted
and an optional volume tag. On medium-changers which have a vision system to read bar-codes, the
volume tag can be used to verify that the medium in the source slot is the one desired.

The routines mrd_load(3mrd), mrd_unload(3mrd), mrd_inject(3mrd) and mrd_eject(3mrd) are
specialized interfaces to the SCSI Move Medium command. Load will move a medium from a slot to a
drive. Unload will move a medium from a drive to a slot. Inject moves a medium from a port to a slot
and Eject from a slot to a port. On the TL82x family of libraries, mrd_eject(3mrd) can also be used to
clear a medium from the Pass-Through Mechanism.

The routine mrd_lock(3mrd) enables sending a SCSI Prevent/Allow Media Removal command.
Whether this command is supported, and its effect, depends on the robot.

The routine mrd_initialize(3mrd) sends a SCSI Initialize Element Status command. The effect of this
command varies among robots, but it typically causes complete reinventory of the medium-changer.

The routine mrd_position(3mrd) sends a SCSI Position to Element command.

The routine mrd_ready_inport(3mrd) sends a vendor unique, Ready Inport command. On the TL82n
family of libraries, this command enables the button which opens the Inport/Outport Device inport door.
Other libraries and loaders may silently ignore this command or treat it as an illegal command.

On medium-changers which keep track of a medium's previous element location, the routine
mrd_home(3mrd) returns a medium to that location.

On medium-changers with vision systems to read bar-code labels, the routine
mrd_find_cartridge(3mrd) will search for a specified volume tag. The routine will search the entire
library, or just a subset of elements according to the arguments used.

The routine mrd_map_element(3mrd) accepts an element's absolute address and returns the element
type and zero relative address.

The routine mrd_strstatus(3mrd) accepts an MRD error status code and returns the corresponding
message text. The routine mrd_strelement(3mrd) accepts an MRD_ELEMENT code for various
words which apply to SCSI-2 medium-changer elements and returns the corresponding string. The

Chapter 1. Media Robot Driver Library

routine mrd_strexcept(3mrd) accepts the Additional Sense Code and Additional Sense Code Qualifier
for an element with an exception and returns the corresponding message text.

1.2.2. Operating System Routines

The following list identifies the operating system specific routines.
e mrd_initialize_element(3mrd)

¢ mrd_move_medium(3mrd)

e mrd_position_to_element(3mrd)

* mrd_prevent_allow(3mrd)

¢ mrd_read_element_status(3mrd)

¢ mrd_ready(3mrd)

* mrd_request_sense(3mrd)

e mrd_test_unit_ready(3mrd)

The operating system interface routines can be called directly and share three common traits.

Trait 1

Instead of a medium changer name, they accept a robot_info_t data structure that has been opened
by mrd_startup(3mrd). This allows them to be called without the repeated start-up time of
mrd_startup(3mrd) and allows keeping the medium changer open by a single application.

Trait 2

Instead of zero-relative element addresses, these routines all use absolute element addresses. These
address can be calculated by adding the zero-relative address of a specific element to the element start
address from the robot_info_t structure.

For example:

/%
* Given an robot_info_t initialized with mrd_startup (3mrd)
* or mrd_show (3mrd), an element type and a relative element
* address, convert it to an absolute address.

*/

convert_relative (robot_info_t *robot_info, int type, int element)
{

switch(type)

case SLOT:

return element + robot_info->slot_start ;

case TRANSPORT:

return element + robot_info->transport_start ;
case DRIVE:

return element + robot_info->device_start ;
case PORT:

return element + robot_info->port_start ;
default:

return -1 ;

}

Chapter 1. Media Robot Driver Library

}

The routine mrd_move_medium(3mrd) is used by mrd_move(3mrd), mrd_ load(3mrd),
mrd_unload(3mrd), mrd_eject(3mrd) and mrd_inject(3mrd). These routines accepts the absolute
transport, source and destination element addresses for a Move Medium command, as well as a value to
indicate whether the medium should be inverted when moved.

The routine mrd_read_element_status(3mrd) is used by mrd_show(3mrd) and a variety of internal
utility functions. It offers direct access to the SCSI Read Element Status command. However, the data
returned is also uninterpreted Read Element Status data, so the application using it must interpret the
data for itself. Since mrd_show(3mrd) allows keeping the medium changer open as well, it is usually
easier to use, except for simple requests.

The routine mrd_position_to_element(3mrd) is used by mrd_position(3mrd). It offers direct access
to the SCSI Position to Element command, accepting absolute element addresses for the transport and
destination elements. It can also invert the transport where this is supported.

The routine mrd_initialize_element(3mrd) is used by mrd_initialize(3mrd). It offers direct access to
the SCSI Initialize Element Status command.

The routine mrd_ready(3mrd) is used by mrd_ready_inport(3mrd). It offers direct access to the
SCSI Position to Element command, accepting the absolute addresse of the port to be readied.

The routine mrd_prevent_allow(3mrd) is used by mrd_lock(3mrd). It offers direct access to the SCSI
Prevent Allow Media Removal command, accepting a value to indicate which is desired.

The mrd_test_unit_ready(3mrd) routine performs a SCSI Test Unit Ready command, or equivalent
if some other 1/O architecture is supported. It is used by the mrd_startup(3mrd) and the OpenVMS
implementation of mrd_ ready(3mrd).

The mrd_request_sense(3mrd) routine performs a SCSI Request Sense command, or equivalent if
some other I/O architecture is supported. It is used by all MRD API routines to determine the cause of a
command failure.

Trait 3

Finally, these routines accept the address of a dev_status_t structure for holding error status, instead of a
the log_info string used by the other routines. This allows custom formatting of errors.

The dev_status_t structure includes the code, os_status, and SCSI error fields. The following describes
how to decode errors with the dev_status_t structure.

SCSI Errors

SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

Chapter 1. Media Robot Driver Library

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to 0
and the value of the os_starus field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

Compiling a Tru64 UNIX Application with MRD

The files <mrd_common.h> and <mrd_message.h> must be included by any source module wishing to
use the MRD interface. The library was compiled with the - migrate and default optimization options
available with the DEC OSF/1 V1.3 C compiler.

If the calling program is not compiled with the -migrate option, it will be necessary to link with the OTS
library, </usr/lib/libots.a>. If not, the following symbols will be unresolved:

% make mrd_move

cc -0 —-c mrd_move.c

cc -0 mrd_move.o —-lmrd —-o mrd_move
1d:U

nresolved:

_OtsDivide64Unsigned

_OtsMove

_OtsDivide32

*xx Exit 1

Stop.

The subset containing the <libots.a> object library has changed over the versions. In DEC OSF/1 V1.3 it
is part of the OTABASE. subset. By DEC OSF/1 V3.0 it had moved to OSFCMPLRS300, where it has
remained through Tru64 UNIX V4.0.

1.2.3. About Return Values

Upon successful completion, the Media Robot Driver library routines that access a medium-changer
return the value MRD_STATUS_SUCCESS. On a failure, one of the following errors may be returned.
The Media Robot Driver library will attempt to map SCSI failures to one of a small group of error
codes, but not all errors have been anticipated.

Many of the MRD routines accept a log_info argument that is a character array. When a SCSI error
occurs, the the Sense Key, additional Sense Code and Additional Sense Code Qualifier are formatted
into the space provided. If the error is an operating system specific error, then the text corresponding to
the error will be copied into the space provided.

1.2.3.1. Common Values
Common return values.
1. MRD_STATUS_PARAM

This error is returned when a pointer argument passed to an MRD routine is NULL, unless the
routine is documented as one allowing a NULL pointer.

2. MRD_STATUS_CART_INVALID

Chapter 1. Media Robot Driver Library

10.

11.

12.

13.

For routines that accept a volume_tag argument to perform volume tag verification, this error
indicates that the volume tag of the media doesn't match that passed to the function.

MRD_STATUS_CART_NOT_AVAIL

This error can occur on the TL81n and TL82n family of DLT libraries when the source of a move is
a drive and the cartridge in the drive is still on-line. These robots do not allow moving the cartridge
until the drive is taken offline.

MRD_STATUS_CART_SIDE_INVALID

For routines that use the cartridge_side argument, this error indicates that the value is neither one (1)
nor two (2).

MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

MRD_STATUS_TRANSPORT_INVALID

This error is returned when the element address for a transport is less than zero or greater than the
number of transports.

MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives.

MRD_STATUS_INVALID_TYPE

For routines that allow the specification of an element type argument, this error indicates that
specified type was not one of SLOT, DRIVE, PORT or TRANSPORT.

MRD_STATUS_DESTINATION_FULL

On routines that perform a SCSI Move Medium command, this error indicates that the destination
element already has a cartridge in it.

MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

MRD_STATUS_AUTOCLEAN

This error occurs when a SCSI command fails with the ASC set to 0x30 and the ASCQ set to 0x3.
On TL8nn libraries supporting Auto-clean, it indicates that a command was attempted while an auto-
clean was in progress.

MRD_STATUS_CART_DAMAGED

Chapter 1. Media Robot Driver Library

14.

15.

16.

17.

18.

19.

20.

21.

22.

This error occurs when a SCSI command fails with the ASC set to 0x30, but the ASCQ is NOT a
value of 0x3. The log_info will contain the ASCQ.

MRD_STATUS_CART_NOT_FOUND

This error is returned by mrd_ find_cartridge(3mrd) when it can't find the cartridge with the
desired volume tag.

MRD_STATUS_ELEMENT_INVALID

This error occurs when a SCSI command fails with the ASC set to 0x21. The log_info will contain
the ASCQ. This indicates that an invalid element address reached the medium-changer. For example,
specifying the 13th slot when only 12 slots are present.

MRD_STATUS_INSFMEM

The mrd_show(3mrd) and mrd_find_ cartridge(3mrd) functions allocate virtual memory using
malloc(3) to store temporary element data. If the attempt to allocate the memory fails, these routines
will return this error.

MRD_STATUS_NO_ELEMENTS

This error occurs in mrd_ show(3mrd), mrd_find_cartridge(3mrd) and mrd_home(3mrd) when
the medium-changer has no elements within the range and type specified by the arguments.

MRD_STATUS_NO_VISION

This error occurs in mrd_find_ cartridge(3mrd) when the medium-changer has no vision system
with which to read bar-code labels.

MRD_STATUS_RES_INVALID

This error occurs in mrd_ home(3mrd) when the element data returned from mrd_show(3mrd) is
not valid.

MRD_STATUS_ROBOT_ATTENTION

This error occurs when a SCSI command fails with the ASC set to one of 0x29, 0x2A or 0x2F. The
log_info contains the ASCQ. The SCSI translations for these error codes are:

e (0x29 - Power-on, Reset or Bus device reset occurred

* 0x2A - Mode Parameters Changed

* 0x2F - Command cleared by another initiator

This error also occurs when the ASC and ASCQ are zero, but the SCSI sense key is 6h.
MRD_STATUS_ROBOT_DOOR_OPENED

This occurs when a SCSI command fails with the ASC set to 0x80 and the ASCQ set to 0xO.
On TL8nn libraries this typically indicates that the cabinet door was opened during a command
operation.

MRD_STATUS_ROBOT_ILLEGAL_REQUEST

Chapter 1. Media Robot Driver Library

23.

This error occurs for a variety of reasons.

It is used when a sanity check fails in the code that attempts to move a cartridge to the Pass-Through
Mechanism, when the robot type isn't a TL82n.

It is used in the mrd_lock(3mrd) code when the value is not one of ALLOW_REMOVAL or
PREVENT_REMOVAL.

It is used when the medium changer does not support the Prevent/Allow Medium Removal
command or the lock value is not one or zero. The specific cause can be determined by examining
the ASC/ASCQ values in the starus data.

It is used when a call to mrd_initialize_element(3mrd) is issued against a medium changer that
does not support the Initialize Element Status command.

It is used when the medium changer does not support the Position To Element command. The
seven and five slot DLT loaders do not support the command, though the TL820 and TL810 family
libraries do. Some models of TLZ6L and TLZ7L do not support the command and may take a long
time to fail.

It is used when the medium changer does not support the Ready Inport command.

The TL820 family of DLT libraries support this command. The TL810 family of DLT libraries
allows this command to succeed, but it doesn't perform any function.

It is also used for a SCSI command failure, when the ASC is set to one of:

* Ox1A - Parameter list length error

* (0x20 - Invalid command operation code

* 0x22 - Unsupported command

* 0x24 - Illegal field in CDB

* (0x25 - Logical unit not supported

* 0x26 - Threshold parameters not supported

e (0x28 - Import or Export element accessed

* 0x2C - Command sequence error

* 0x39 - Saving parameters not supported

* 0x3D - Invalid bits in Identify message

* 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).
MRD_STATUS_ROBOT_MECH_ERROR

This error occurs as the result of a SCSI command failure, when the ASC is set to one of:

¢ (Ox15 - Positioning error.

Chapter 1. Media Robot Driver Library

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

* (0x8B - Vendor unique; Pass-through mechanism errors on the TL82n
MRD_STATUS_SOURCE_INVALID

This error occurs in mrd_home(3mrd) when the return address in the element data isn't valid.
MRD_STATUS_VENDOR_UNIQUE_ERROR

This error occurs when the internal routine used to decode SCSI-2 errors encounters an error that it
has not been written to antipicate.

This error is also returned when the ASC is zero and the ASCQ is not one of zero or six, and when
ASC/ASCQ are both zero and the key is Sh.

MRD_STATUS_NO_SENSE

This error is returned by mrd_scsi_ decode(3mrd) when the asc, ascq and key values are all zero
(0). It is also returned when the key value is less than zero or greater than 15.

MRD_STATUS_RECOVERED_ERROR

This error occurs when a SCSI device returns only a sense key of 1h. This indicates that although a
command successfully completed, the target device had performed some internal error recovery.

MRD_STATUS_MEDIUM_ERROR

This error occurs when ASC and ASCQ are zero, but the sense key is 3h. This occurs when the
target encounters a nonrecoverable error due to a flaw in the medium.

MRD_STATUS_ROBOT_HW_ERROR

This error occurs when ASC and ASCQ are zero, but the sense key is 4h. This occurs when the
target encounters a nonrecoverable hardware error.

MRD_STATUS_DATA_PROTECT

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is seven (7).

MRD_STATUS_BLANK_CHECK

This error is returned by mrd_scsi_ decode(3mrd) when the asc and ascq are zero, but the key
value is eight (8).

MRD_STATUS_COPY_ABORTED

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is ten (10).

MRD_STATUS_SENSE_EQUAL

This error is returned by mrd_scsi_ decode(3mrd) when the asc and ascq are zero, but the key
value is Ch (12).

MRD_STATUS_VOLUME_OVERFLOW

10

Chapter 1. Media Robot Driver Library

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

This error is returned by mrd_scsi_decode(3mrd) when the asc and ascq are zero, but the key value
is Dh (13).

MRD_STATUS_MISCOMPARE

This error is returned by mrd_scsi_ decode(3mrd) when the asc and ascq are zero, but the key
value is Eh (14).

MRD_STATUS_SENSE_RESERVED

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is Fh (15).

MRD_STATUS_SCSI_CHECK

The SCSI Check Condition error should never occur. It indicates that it is safe to use a Request
Sense command and that you are likely to get a different error.

MRD_STATUS_SCSI_CONDMET

The SCSI Condition Met status indicates a SCSI command completed with the status "Condition
Met".

MRD_STATUS_SCSI_BUSY

The SCSI Device is Busy status code indicates a SCSI command completed with the status "Busy".
Some TZ87x media changers are known to cause this condition.

MRD_STATUS_SCSI_INTER

The SCSI Intermediate Command Completed status code indicates a SCSI command completed with
the status "Intermediate".

MRD_STATUS_SCSI_INTER_CONDMET
The SCSI Intermediate-Condition Met status code indicates a SCSI command completed.
MRD_STATUS_SCSI_RESCON

The SCSI Reservation Conflict status code indicates a SCSI command completed with the status
"Reservation Conflict".

MRD_STATUS_SCSI_TERM

The SCSI Command Terminated status code indicates a SCSI command completed with the status
"Terminated".

MRD_STATUS_SCSI_QUEUE

The SCSI Queue Full status code indicates a SCSI command completed with the status "Queue
Full".

MRD_STATUS_SCSI_RESERVED

The SCSI Status Code Reserved return indicates a SCSI command completed with a status that
wasn't listed in Chapter 7 of the SCSI-2 specification and is "Reserved".

11

Chapter 1. Media Robot Driver Library

1.2.3.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1.

MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* 0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* 0x48 - Initiator detected error message received
* 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0Ox4E - Overlapped commands attempted

¢ 0x54 - SCSI to host system interface failure
MRD_STATUS_NO_SUCH_DEVICE

This error is returned when a regular file or robot was specified without the “:BnTnLn" string.
MRD_STATUS_ROBOT_CMD_ABORTED

This error is returned by mrd_scsi_decode(3mrd) when the asc is zero and the ascg is six, or when
the asc and ascg are zero and the key is eleven (11).

MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

MRD_STATUS_EINVAL

This error code is returned when the ":BnTnLn" string points to an invalid or nonexistent SCSI
address.

MRD_STATUS_ENOENT
This error is returned when the system cannot find the specified device.
MRD_STATUS_ROBOT_NOT_READY

Under Microsoft Windows 2000/Windows XP, this error code is returned when the specified robot
exists but is not responding.

12

Chapter 1. Media Robot Driver Library

1.2.3.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.
1. MRD_STATUS_ROBOT_COMM_ERROR
This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:
* 0x08 - Logical unit communcation errors.
* (0x43 - Message error
* (0x45 - Select or Reselect failure
* 0x47 - SCSI parity error
* (0x48 - Initiator detected error message received
* 0x49 - Invalid message error
* 0x4A - Command phase error

* (0x4B - Data phase error

* 0Ox4E - Overlapped commands attempted

0x54 - SCSI to host system interface failure
2. MRD_STATUS_ROBOT_NOT_READY

Under OpenVMS and Tru64 UNIX, this error occurs as the result of a SCSI command failure, when
the ASC is set to one of:

0x80 - When the ASCQ is not zero (0).

* 0x81 - Vendor unique; gripper errors on the TL82X and TL81X
* 0x04 - Logical unit not ready

* 0x3E - Logical unit has not been self configured

* 0x40 - Diagnostic failure; ASCQ indicates component

* 0x42 - Power-on self test failure

* 0x44 - Internal target failure

* 0x46 - Unsuccessful soft reset

* 0x4C - Logical unit failed self-configuration

13
This status is also returned when the ASC and ASCQ are zero, but the key is two (2).

Chapter 1. Media Robot Driver Library

10.

11.

12.

13.

MRD_STATUS_ROBOT_CMD_ABORTED

This error is returned by mrd_scsi_decode(3mrd) when the asc is zero and the ascq is six, or when
the asc and ascg are zero and the key is eleven (11).

MRD_STATUS_EBADF

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

MRD_STATUS_EINVAL

This error is returned by mrd_map_os_ error(3mrd) when the os_status is EINVAL. This typically
occurs during mrd_ startup(3mrd) when the special file is not a SCSI device: for example, /dev/tty.

MRD_STATUS_STARTUP_ERROR

This error is returned by mrd_ map_os_error(3mrd) when the os_status is ENODEV. This
typically occurs during mrd_startup(3mrd) when the special file is not a SCSI device; /dev/null.

MRD_STATUS_NO_SUCH_DEVICE

This error occurs when a UNIX system call returns ENXIO, to indicate that the device
corresponding to the special device does not exist.

MRD_STATUS_EBUSY

This error occurs when a UNIX system call returns EBUSY, to indicate that some other process is
using that medium-changer device.

MRD_STATUS_EINTR

This error occurs when a UNIX system call returns EINTR. This error corresponds to an interrupted
system call, but also occurs when the SCSI CAM Layered Components Medium-Changer driver is
not configured into the running system.

MRD_STATUS_EIO

This error occurs when a UNIX system call returns EIO to indicate that there was an I/O error. In
most cases an 1/O error on a SCSI medium-changer indicates a SCSI error which be translated to
another MRD error.

MRD_STATUS_ENOENT

This error occurs when a UNIX system call returns ENOENT to indicate that a special device file
doesn't exist.

MRD_STATUS_EACCES

This error occurs when a UNIX system call returns EACCES to indicate that the caller does not have
sufficient permission to open the special device file corresponding to the medium-changer. MRD
expects to have read permission on the special device file.

MRD_STATUS_OS_ERROR

This error occurs when a UNIX system call returns an error that is not among those previously
mentioned. The routine strerror(3) will be used to translate the error code into a standard text
message which will be copied to log_info.

14

Chapter 1. Media Robot Driver Library

14. MRD_STATUS_INVALID

This error is a catch-all for MRD failures. All cases where this error is returned are those instances
where MRD should have caught and reported the true cause of the failure.

1.2.3.4. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1.

MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* 0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* 0x48 - Initiator detected error message received
* 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0Ox4E - Overlapped commands attempted

0x54 - SCSI to host system interface failure
MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEY or SS$_IVDEVNAM. This will typically occur in mrd_ startup(3mrd) when the
caller tries to open a device which doesn't exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

MRD_STATUS_ROBOT_NOT_READY Under OpenVMS and Tru64 UNIX, this error occurs as
the result of a SCSI command failure, when the ASC is set to one of:

e (0x80 - When the ASCQ is not zero (0).

* 0x81 - Vendor unique; gripper errors on the TL82X and TL81X

15

Chapter 1. Media Robot Driver Library

10.

11.

12.

13.

* 0x04 - Logical unit not ready

* 0x3E - Logical unit has not been self configured

* 0x40 - Diagnostic failure; ASCQ indicates component

* 0x42 - Power-on self test failure

e 0x44 - Internal target failure

* 0x46 - Unsuccessful soft reset

* 0x4C - Logical unit failed self-configuration

This status is also returned when the ASC and ASCQ are zero, but the key is two (2).

MRD_STATUS_ROBOT_CMD_ABORTED This error code is used when an OpenVMS system
service fails with the status SS$_ABORT.

MRD_STATUS_NOPRIYV This error code is used when an OpenVMS system service fails with the
status SS$_NOPRIV. This will typically occur in mrd_startup(3mrd) when the caller doesn't have
sufficient privilege to assign a channel to the device.

MRD_STATUS_IVCHAN This error code is used when an OpenVMS system service fails with the
status SS$_IVCHAN. It is likely when an operating system specific routine is used on a device that
hasn't been opened by mrd_ startup(3mrd).

MRD_STATUS_MOUNTED This error code is used when an OpenVMS system service fails with
the status SS$_NOSUCHDEYV or SS$_IVDEVNAM. This will typically occur in mrd_startup(3mrd)
when the caller tries to open a device which doesn't exist or uses an invalid device name.

MRD_STATUS_PAGE_CODE This error occurs in mrd_startup(3mrd) when a SCSI Mode Sense
command fails to return the expected data. It uses the SCSI Element Address Assignment mode
page to fill in the element count and base address fields of the robot_info_t structure. If the data
returned by the medium changer does not have the expected page code, this error is returned. This
error has been seen when medium changers are connected to HS family array controllers running
V2.7 firmware.

MRD_STATUS_EBUSY This error code is used when an OpenVMS system service fails with the
status SS$_DEVALLOC. This generally happens in mrd_startup(3mrd) when another process
already has the device allocated.

MRD_STATUS_DEVOFFLINE This error code is used when an OpenVMS system service fails
with the status SS$_DEVOFFLINE and SS$_ MEDOFL.

MRD_STATUS_ACCVIO This error indicates an internal application failure.

MRD_STATUS_EXQUOTA This error occurs when an operation requested of the application
causes you to exceed a process quota. To correct this problem, increase your process quotas.

MRD_STATUS_ILLEFC For more information about this error, refer to the OpenVMS system
documentation.

1.2.4. Related Information

Functions:

16

Chapter 1. Media Robot Driver Library

mrd_eject(3mrd)
mrd_find_cartridge(3mrd)
mrd_home(3mrd)
mrd_initialize(3mrd)
mrd_inject(3mrd)
mrd_map_element(3mrd)
mrd_move(3mrd)
mrd_load(3mrd)
mrd_lock(3mrd)
mrd_position(3mrd)
mrd_ready_inport(3mrd)
mrd_show(3mrd)
mrd_shutdown(3mrd)
mrd_startup(3mrd)
mrd_strelement(3mrd)
mrd_strexcept(3mrd)

mrd_unload(3mrd)

mtio(7) For Tru64 UNIX systems.

17

Chapter 1. Media Robot Driver Library

18

Chapter 2. mrd_eject

mrd_eject - Move a cartridge from a slot to a port

2.1. Media Robot Driver Library

The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRDS$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_eject (

const char *robot_name,
const char *volume_tag,
const char *slot,
const char *port,
char *log_info) ;

2.2. Parameters

robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading
character of the name is not a slash (/), /dev/ will be prepended to the name.

volume_tag — A NUL terminated character string that is the expected volume tag on the cartridge
to be moved. On robots with vision support this string will be compared with the volume tag of the
cartridge in the source slot and if it doesn't match the call will fail. This feature will not be used if
the volume_tag is NULL or the empty string.

slot — A NUL terminated character string that is the zero relative address of the slot which is to be
used as the source of the move.

port — A NUL terminated character string that is the zero relative address of the port which is to be
used as the destination of the move.

log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

2.3. Description

The mrd_eject(3mrd) function is a specialized interface to the SCSI Move Medium command. For the
robot specified by robot_name, the routine will attempt to move the cartridge in the specified slot to the
specified port. Element addresses are zero based.

The robot will be opened and the arguments to the function will be verified to make sure they are
safe and appropriate. The slor and port address will be verified they are within the valid range of those
elements on the robot.

19

Chapter 2. mrd_eject

The cartridge_name argument can be used to perform cartridge volume tag verification before the
move. If the cartridge volume tag at the slot doesn't match that specified by this argument, then
mrd_eject(3mrd) will fail with the status MRD_STATUS_CART_INVALID. If cartridge_name
argument is a NULL pointer, an empty string or used on a robot without vision support this argument is
silently ignored and the volume tag check will not be made.

If the slot string is an empty string and the library is a TL820 family member, this routine will attempt

to move a cartrige on the PTM to the port specified by the port argument. This is the equivalent of the
Eject Port command of the CLI.

2.3.1. Example

/%
* Example mrd_eject (3mrd) .
*
* This example is slightly different from the others since it
* also demonstrates the Eject Port feature of mrd_eject (3mrd) .
* This feature can be used on the TL820 family to move a tape
* from the Pass-through mechanism (PTM) to the outport.
*
* The command usage is:
*
* mrd_eject robot [slot port [volume_tag]]
*/
#ifndef lint
static char SccsId[] = "Q@(#)mrd_eject.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main (int argc, char *argvl[])

{

int status ; /* Status from mrd_eject (3mrd) */

char *robot ; /* Name of the robot to use */

char *volume_tag = NULL ; /* Volume tag to check */

char *slot ; /* Source slot */

char *port ; /* Destination port */

char log_info[MRD_MAX_LOG_STRING+1] ; /* Error text */

/*

* Allow the command to only have the robot name specified.

*/

if(argc < 2) A

printf ("usage: %s robot [slot port [volume_tag]]\n",

argv[0]) ;

exit (1) ;
3
else
robot = argv[1l] ;

If the slot and port aren’t specified assume that
* the target robot is a TL820 and fill in default
* values for an Eject Port. Otherwise take the
* desired values directly from the command line.
*/
if(argc >= 4) {
slot = argv[2] ;
port = argv[3] ;

20

Chapter 2. mrd_eject

/*
* Collect the volume_tag name if the user wants it.
*/
if(argc > 4)
volume_tag = argv[4] ;

}
/*
* We also observe that this case catches the command:
*
* mrd_eject robot_name address
*
* It can’t hurt to let the user specify the outport,
* since an invalid one simply won’t work. In this case
* the 3rd argument is the port name instead of the slot
* name.
*
* The user could get the same affect by using a quoted
* empty string for the slot argument on the command line:
*
* robot /dev/mc54 "" 1
*/
else {
if (argc ==)
port = argv([2] ;
else
port = "1"
slot = ""
}
/*
* Do the operation.
*/

status = mrd_eject (robot, volume_tag, slot, port, log_info) ;
if (status == MRD_STATUS_SUCCESS)
printf ("Ejected the media in slot #%d to port #%d.\n",
slot, port) ;
else
printf ("Eject failed: %s: %s.\n", mrd_strstatus(status),
log_info[0] ? log_info : "none") ;

return 0 ;

2.3.2. Return Values

Upon successful completion, the mrd_eject(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_eject(3mrd) fails the returned status value may be set to one of
the following values. Other values that correspond to specific SCSI errors may also be possible, but these
are the most likely.

2.3.2.1. Common Codes
1. 1. MRD_STATUS_PARAM
This error is returned if the robot_name, slot, port, or log_info are NULL pointers.
2. MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

21

Chapter 2. mrd_eject

3. MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the
number of slots.

4. MRD_STATUS_CART_INVALID

For routines that accept a volume_tag argument to perform volume tag verification, this error
indicates that the volume tag of the media doesn't match that passed to the function.

5. MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

6. MRD_STATUS_DESTINATION_FULL

On routines that perform a SCSI Move Medium command, this error indicates that the
destination element already has a cartridge in it.

2.3.2.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR This error occurs as the result of a failure to open the
specified medium-changer. This may occur directly by calling mrd_startup(3mrd) or by a routine
that calls mrd_startup(3mrd) internally. This error also occurs as the result of a SCSI command
failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* 0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* 0x48 - Initiator detected error message received
* 0x49 - Invalid message error

* 0x4A - Command phase error

* (0x4B - Data phase error

* 0x4E - Overlapped commands attempted

0x54 - SCSI to host system interface failure

2.3.2.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

22

Chapter 2. mrd_eject

MRD_STATUS_ROBOT_COMM_ERROR This error occurs as the result of a failure to open the

specified medium-changer. This may occur directly by calling mrd_startup(3mrd) or by a routine
that calls mrd_startup(3mrd) internally. This error also occurs as the result of a SCSI command

failure, when the ASC is set to one of:

0x08 - Logical unit communcation errors.

0x43 - Message error

0x45 - Select or Reselect failure

0x47 - SCSI parity error

0x48 - Initiator detected error message received
0x49 - Invalid message error

0x4A - Command phase error

0x4B - Data phase error

0x4E - Overlapped commands attempted

0x54 - SCSI to host system interface failure

2.3.2.4. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1.

MRD_STATUS_ROBOT_COMM_ERROR This error code is used when an OpenVMS system

service, such as $ASSIGN or $QIO, fails with a status of SS$_DRVERR. Generally SS$_DRVERR

indicates a failure in the underlying device and the MRD can get the detailed device failure and

return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI

command failure, when the ASC is set to one of:

0x08 - Logical unit communcation errors.

0x43 - Message error

0x45 - Select or Reselect failure

0x47 - SCSI parity error

0x48 - Initiator detected error message received
0x49 - Invalid message error

0x4A - Command phase error

0x4B - Data phase error

0x4E - Overlapped commands attempted

23

Chapter 2. mrd_eject

* (0x54 - SCSI to host system interface failure

2.3.3. Related Information

Functions:

¢ mrd_move(3mrd)

e mrd_load(3mrd)

* mrd_unload(3mrd)

e mrd_inject(3mrd)

24

Chapter 3. mrd_find_cartridge

mrd_find_cartridge - Search for a cartridge by volume tag.

3.1. Media Robot Driver Library

The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRDS$SRTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_find_cartridge (

const char *robot_name,
const char *volume_tag,
const int element_type,
const char *element_start,
const int element_count,
element_info_t *result,

char *result_name,
int *result_type,
char *log_info);

3.2. Parameters

* robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading
character of the name is not a slash (/), /dev/ will be prepended to the name.

* volume_tag— A NUL terminated character string that is the volume tag for which to search.

* element_type — The type of robot element on which the operation takes place. If an element type
of zero (0) is used, all elements will be searched starting at element O of each type and searching all
the elements of that type on the robot. The order of this search is Slot, Drive, Transport and finally
Ports.

* element_start— A NUL terminated character string that is the zero relative address of the element
where the search should be started. This argument is not used when the element_type is zero (0).

* element_count — A volume tag search in a large library can take a long time. Some applications (a
graphic user interface for example) may want to break up a large search into smaller, quicker sub-
searches. When a specific element_type is specified only a range specified by the element_name and
element_count will be searched. This argument is ignored when the element_ type is zero (0).

* result_param— If an element matching the volume_tag string is found, the element_info_t will
copied into the space pointed to by result.

* result_name— The zero relative element address of the matching element will be copied into the
space pointed to by result_name. This space should be a character array of size MRD_NAME_SIZE.

* result_type— The element type of the matching element will be copied into the space pointed to by
result_type.

25

Chapter 3. mrd_find_cartridge

* log_info — This is a character array that should be at least MRD_MAX_L.OG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

3.3. Description

This routine allows searching for the element location of a piece of media using the volume tag as a
search key. If the element_type value is zero (0), all elements will searched in the order Slot, Drive,
Transport and Port. The element_name and element_count arguments will be ignored in this case.

When a specific element type is specified, the search will be limited to that element type. The
element_name will used as the starting location for a search and element_count as the number of
elements from that address to search. Using these arguments a search of a large number of elements may
be broken up into a number of smaller searches.

When a matching element is found, the element_info_t data for that element will copied into the space
pointed to by result. The zero relative element address and element type will also be copied into the
space provided.

3.3.1. Element Info

The element_info_t data structure is defined in the include file <mrd_ common.h>. The fields of this
data structure are described below:

* name — The name field holds the volume tag of the media if applicable.
* state — The state field can have one of the following values: ELEMENT_FULL,
ELELMENT_EMPTY, or ELEMENT_EXCEPT.

* port_type — If the element_type parameter specifies PORT, the port_type field will have one of the
following values:

IN_OUT_PORT, INPORT, OUTPORT.
» status — The status field can have one of the following values:

MRD_STATUS_SLOT_INVALID, MRD_STATUS_DEVICE_INVALID,
MRD_STATUS_TRANSPORT_INVALID, MRD_STATUS_PORT_INVALID, or

MRD_STATUS_SUCCESS.

* flags — Use the ELEMENT_VALID mask on the flags field to indicate whether or not the full Read
Element Status data is valid. The ELEMENT_ PVOLTAG and ELEMENT_AVOLTAG indicate
whether the primary or alternate volume tags of the Read Element Status data are valid.

* element_addr — This is the address of the element, unadjusted for the starting address. The routine
mrd_map_element(3mrd) can be used to convert an absolute element address to a relative address
and type. This field will be set to -1 when the information is not valid.

* source_addr — On most SCSI-2 medium-changers, this is the address where a cartridge resided
before being moved to its current location. The routine mrd_map_element(3mrd) can be used to

26

Chapter 3. mrd_find_cartridge

convert an absolute element address to a relative address and type. This field will be set to -1 when
the information is not valid. On some SCSI-2 medium-changers (the DLT family loaders) this will
be the element address of the slot itself.

data — This a copy of the SCSI-2 Read Element Status data when the ELEMENT_VALID bit
is set in the flags field. A byte-order neutral declaration of this data structure is included in the
<mrd_common.h> include file as the mrd_reades_t data structure.

3.3.2. Example

/*
*

*

*

Example of mrd_find_cartridge (3mrd). The command usage is:

mrd_find robot_name volume_tag

*/
#ifndef lint

static char SccsId[] = "@(#)mrd_find.c 1.2 3/5/97"
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mrd_common.h>
#include <mrd_message.h>

main (int argc, char *argv[])

{

element_info_t element ; /* Element data result */

int status ; /* status from mrd_find_cartridge (3mrd) */
char *robot ; /* Medium changer to search */

char *volume_tag ; /* Volume tag for which to search */
int type ; /* Element type result */

char *content ; /* element content */

char *format ; /* format to print element data */

char address [MRD_NAME_SIZE+1] ; /* Element name result */
char log_info[MRD_MAX_LOG_STRING+1] ; /* error text */
char exception[BUFSIZ+1] ; /* exception buffer */

/*

* There are two required arguments; robot name and volume tag.
*/
if(argc < 3) {

printf ("usage: %s robot volume-tag\n", argv([0]) ;

exit (1) ;

robot = argv[1l] ;
volume_tag = argv([2] ;

/*

* Search all of the elements at the same time. With the
* type set to zero, the values of element_address ("")
* and element_count (0), don’t matter.

*/
status = mrd_find_cartridge (robot, volume_tag, 0, "", 0, &element,
address, &type, log_info) ;
if(status != MRD_STATUS_SUCCESS)
printf ("Can’t find volume %s: %$s: %$s.\n", mrd_strstatus(status),
log_info[0] ? log_info : "none")
/*

* Need to print out the results of the find. This is
* similar to that used by mrd_show, but is a bit more

27

Chapter 3. mrd_find_cartridge

* extensive to show more features.
*/
format = "%s\t%s\t%s\n" ; /* default format */

if(element.name[0])

content = element.name ;

else if(element.state & ELEMENT_FULL)
content = "Full" ;

else if(element.state & ELEMENT_EXCEPT) |
format = "%s\t%s\t%s\t%s\n" ;
content = "Exception" ;

(void)mrd_strexcept (element.data.asc, element.data.ascq,
exception, BUFSIZ) ;
}
else
content = "Empty" ;
if(element.state & ELEMENT_EXCEPT)
printf (format, mrd_strelement (type), address, content,
exception) ;
else
printf (format, mrd_strelement (type), address, content) ;

return 0 ;

3.3.3. Return Values

Upon successful completion, the mrd_find_cartridge(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_find_cartridge(3mrd) fails the returned status value may
be set to one of the following values. This routine may also return any of the errors descibed in the
mrd_show(3mrd) manual page.

Other values that correspond to specific SCSI errors may also be possible, but the ones below are most
likely.

3.3.3.1. Common Values

1. MRD_STATUS_PARAM

This error is returned if the robot_name, volume_tag, log_info, result, result_name, element_start or
result_type arguments are NULL pointers.

2. MRD_STATUS_NO_VISION

This error occurs in mrd_find_ cartridge(3mrd) when the medium-changer has no vision system
with which to read bar-code labels.

3. MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

4. MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

28

Chapter 3. mrd_find_cartridge

MRD_STATUS_TRANSPORT_INVALID

This error is returned when the element address for a transport is less than zero or greater than the
number of transports.

MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives.

MRD_STATUS_INVALID_TYPE

For routines that allow the specification of an element type argument, this error indicates that
specified type was not one of SLOT, DRIVE, PORT or TRANSPORT.

MRD_STATUS_INSFMEM

The mrd_show(3mrd) and mrd_find_ cartridge(3mrd) functions allocate virtual memory using
malloc(3) to store temporary element data. If the attempt to allocate the memory fails, these routines
will return this error.

MRD_STATUS_CART_NOT_FOUND

This error is returned by mrd_ find_cartridge(3mrd) when it can't find the cartridge with the
desired volume tag.

3.3.3.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1.

MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* (0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* (0x48 - Initiator detected error message received

* 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0Ox4E - Overlapped commands attempted

* 0x54 - SCSI to host system interface failure

29

Chapter 3. mrd_find_cartridge

3.3.3.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.
1. MRD_STATUS_ROBOT_COMM_ERROR
This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:
* 0x08 - Logical unit communcation errors.
* (0x43 - Message error
e 0x45 - Select or Reselect failure
* 0x47 - SCSI parity error
* (0x48 - Initiator detected error message received
* 0x49 - Invalid message error
* 0x4A - Command phase error

* (0x4B - Data phase error

* 0Ox4E - Overlapped commands attempted

0x54 - SCSI to host system interface failure

3.3.3.4. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR This error code is used when an OpenVMS system
service, such as $ASSIGN or $QIO, fails with a status of SS$_DRVERR. Generally SS$_DRVERR
indicates a failure in the underlying device and the MRD can get the detailed device failure and
return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

0x08 - Logical unit communcation errors.

* (0x43 - Message error

0x45 - Select or Reselect failure

0x47 - SCSI parity error

30 * 0x48 - Initiator detected error message received

Chapter 3. mrd_find_cartridge

* 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0Ox4E - Overlapped commands attempted

* 0x54 - SCSI to host system interface failure

MRD_STATUS_DEVICE_INVALID This error is returned when the element address for a drive
is less than zero or greater than the number of drives. This error code is used when an OpenVMS
system service fails with the status SS$§_NOSUCHDEYV or SS$_IVDEVNAM. This will typically
occur in mrd_ startup(3mrd) when the caller tries to open a device which doesn't exist or uses an
invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

3.3.4. Restrictions

The SCSI-2 specification includes two commands which allow a medium-changer to perform most of the

work that this routine does by brute force. Unfortunately, a reliable implementation of these commands

was unavailable at the time MRD V1.2 was written. A future version of the API may be able to make
use of these routines to speed up a search.

Unlike mrd_show(3mrd) this routine will open and close the robot at each iteration.

3.3.5. Related Information

Functions:

mrd_show(3mrd)

mrd_map_element(3mrd)

31

Chapter 3. mrd_find_cartridge

32

Chapter 4. mrd_home

mrd_home - Return a cartridge whence it came.

4.1. Media Robot Driver Library

The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX fusr/lib/libmrd.a
OpenVMS MRDS$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_home (

const char *robot_name,
const char *volume_tag,
const char *source_name,
const int source_type,
char *destination_name,
int *destination_type,
char *log_info) ;

4.2. Parameters

* robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading
character of the name is not a slash (/), /dev/ will be prepended to the name.

* volume_tag — A NUL terminated character string that is the expected volume tag on the cartridge
to be moved. On robots with vision support this string will be compared with the volume tag of the
cartridge in the source slot and if it doesn't match the call will fail. This feature will not be used if
the volume_tag is NULL or the empty string.

* source_name — A NUL terminated character string that is the zero relative address of the element
which is to be used as the source of the move.

* source_type — The source_type is an integer value to indicate the type of the source_name address.
The <mrd_common.h> include file defines constants for different element types; SLOT, DRIVE,
PORT and TRANSPORT.

* destination_name — The address of space where the name of the destination address will be written
if the move is successful. An character array of MRD_NAME_SIZE bytes should be used. If the
destination_name address is NULL, the address will not be returned.

* destination_type — The address of space where the type of the destination will be copied if the move
is successful. If the destination_type address is NULL, the type will not be returned.

* log_info — This is a character array that should be at least MRD_MAX_L.OG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

33

Chapter 4. mrd_home

4.3. Description

The SCSI-2 specification for medium-changer devices allows an element to remember the source
element of the current piece of media. For example, if a mrd_load(3mrd) is performed from slot 17 to
drive 2, the element information for drive 2 will remember that the media came from slot 17. Where this
feature is implemented, it allows an application to query an element to learn the original source of the
media in it and return it.

The mrd_home(3mrd) function does this. Given a robot name and element address it will see if the
source address is valid and when it is return that media to its original location. If the source address

is invalid or the element unavailable an error will be returned. The routine will also check to see if the
media was inverted when placed in the current element and restore it to its original orientation. When
the move is complete, the resulting address and element type will be copied into destination_name and
destination_type.

If the volume_tag argument is used, the routine will verify that a cartridge with the volume tag is present
in the element before performing the move.

4.3.1. Example

/*
* Example to do slot to slot moves. The command usage is:
*
* mrd_home robot_name type address [volume-tag]
*
* Type can be one of:
*
* slot, port, drive or transport
*
* The optional transport argument can be a transport address
* number, the word "default" or an empty string.
*/
#ifndef lint
static char SccsId[] = "Q(#)mrd_home.c 1.2 3/5/97"
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mrd_common.h>
#include <mrd_message.h>

/*
* Given a string, resembling one of the element types,
* return the SCSI type code for it.

*/
struct {
int code ;
char *string ;
} etypes[] = {
TRANSPORT, "transport",
SLOT, "slot",
DRIVE, "drive",

PORT, "port",

convert_type (char *etype)
{

register 1 ;

34

Chapter 4. mrd_home

/*
* For each entry in the array.
*/
for(i = 0; 1 < sizeof (etypes)/sizeof (etypes[0]); i++)
/*
* Do a case insensitive comparison, allowing
* abbreviations. Return as soon as a match is
* found. Return -1 if one isn’t found.
*/
#ifdef vms
if (strncmp (etypes[i].string, etype, strlen(etype)) == 0)
#else
if (strncasecmp (etypes[i].string,etype,strlen(etype)) == 0)
#endif

return etypes[i].code ;
return -1 ;

main (int argc, char *argvl([])

{

int status ; /* Status from mrd_home (3mrd) */
char *robot ; /* Robot to use */
char *element ; /* Element address */

char *volume_tag = NULL ; /* Optional volume tag */

int type ; /* Element type */

char home [MRD_NAME_SIZE+1] ; /* space for return address */
int home_type ; /* return element type */

char log_info[MRD_MAX_LOG_STRING+1] ; /* error string */

/*
* Three required arguments; robot, element type and address.
*/
if(argc < 4) {
printf ("usage: %s robot type address [volume_tag]\n",
argv[0]) ;
exit (1) ;
}
robot = argv([1l] ;
type = convert_type (argv[2]) ;
element = argv([3] ;
/*
* Optional volume tag.
*/

if(argc > 4)
volume_tag = argv[4] ;
/*
* Do the operation.
*/
status = mrd_home (robot, volume_tag, element, type,
home, &home_type, log_info) ;

if (status != MRD_STATUS_SUCCESS)
printf ("Home failed: %$s: %s.\n", mrd_strstatus(status),
log_info[0] ? log_info : "none")
else

printf ("The cartridge in %s %s was returned to %s %s.\n",
mrd_strelement (type), element,
mrd_strelement (home_type), home) ;
return 0 ;

Chapter 4. mrd_home

4.3.2. Return Values

Upon successful completion, the mrd_home(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_home(3mrd) fails the returned status value may be set to one
of the following values. Other values that correspond to specific SCSI errors may also be possible, but
these are the most likely.

4.3.2.1. Common Codes

1.

MRD_STATUS_PARAM
This error is returned if the robot_info, source_name, or log_info arguments are NULL pointers.
MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

MRD_STATUS_TRANSPORT_INVALID

This error is returned when the element address for a transport is less than zero or greater than the
number of transports.

MRD_STATUS_INVALID_TYPE

For routines that allow the specification of an element type argument, this error indicates that
specified type was not one of SLOT, DRIVE, PORT or TRANSPORT.

MRD_STATUS_RES_INVALID

This error occurs in mrd_home(3mrd) when the element data returned from mrd_show(3mrd) is
not valid.

MRD_STATUS_SOURCE_INVALID
This error occurs in mrd_ home(3mrd) when the return address in the element data isn't valid.
MRD_STATUS_CART_INVALID

For routines that accept a volume_tag argument to perform volume tag verification, this error
indicates that the volume tag of the media doesn't match that passed to the function.

MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives.

4.3.2.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

36

Chapter 4. mrd_home

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* 0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* (0x48 - Initiator detected error message received
* 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0Ox4E - Overlapped commands attempted

* 0x54 - SCSI to host system interface failure

4.3.2.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* 0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* (0x48 - Initiator detected error message received
* 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0x4E - Overlapped commands attempted

¢ 0x54 - SCSI to host system interface failure

37

Chapter 4. mrd_home

4.3.2.4. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* 0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* (0x48 - Initiator detected error message received
* 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0x4E - Overlapped commands attempted

e 0x54 - SCSI to host system interface failure
1. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEYV or SS$_IVDEVNAM. This will typically occur in mrd_ startup(3mrd) when the
caller tries to open a device which doesn't exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

Caution

Strict interpretation of the SCSI-2 specification by devices will require that the device only report the
address of the last SLOT a medium was in.

4.3.3. Related Information

Functions:

¢ mrd_show(3mrd)

38

Chapter 4. mrd_home

mrd_find_cartridge(3mrd)

mrd_map_element(3mrd)

39

Chapter 4. mrd_home

40

Chapter 5. mrd_initialize

mrd_initialize - Send a SCSI Initialize Element Status command.

5.1. Media Robot Driver Library

The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_initialize(
const char *robot_name,
char *log_info) ;

5.2. Parameters

* robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading
character of the name is not a slash (/), /dev/ will be prepended to the name.

* log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

5.3. Description

The function sends a SCSI Initialize Element Status command to the specified robot. This command is
not qualified by the TA and TF loaders. On robots where this command is qualified, it forces a physical
reinventory of the library or loader. On some library systems this may take a long time.

Most library subsystems will perform an inventory when they are powered on or have detected that the
configuration may have changed (doors opened, panels removed, etc). For this reason, this routine is
rarely needed.

5.3.1. Example

/~k
* Example of mrd_initialize (3mrd). The command usage is:
*
* mrd_init robot_name
*
* It has been observed on an empty TL820 with all the
* bin-packs in place that this command takes just under
* 23 minutes.
x/
#ifndef lint
static char SccsId[] = "Q@ (#)mrd_init.c 1.2 3/5/97" ;
#endif

41

Chapter 5. mrd_initialize

#include <stdio.h>
#include <stdlib.h>

#include <mrd_common.h>
#include <mrd_message.h>

main (int argc, char *argvl[])

{

int status ; /* Status from mrd_inject (3mrd) */
char *robot ; /* The name of the robot */
char log_info[MRD_MAX_LOG_STRING+1] ; /* error string */
/*

* Accept one required argument; robot name

*/
if(argec < 2)

printf ("usage: %s robot\n", argv[0]) ;

exit (1) ;

/*

* Just use this directly from the command line.
*/

robot = argv[1l] ;

/*

* Because this routine can take a long time we’ll
* provide some positive feed-back that is doing

* something.
*/
printf ("Reinventory library %s...", robot); fflush(stdout) ;
/*
* Call the function. Because this routine can take a
*/
status = mrd_initialize (robot, log_info) ;
/*
* Done.
*/
putchar ('\n’) ;
/*
* Print an error message if there is a failure. The

* routine mrd_strstatus (3mrd) will accept an MRD

* error status and return the corresponding string.
* If the log_info data has something other than a

* NULL as the first character print it as well. It
* typically be the SCSI sense data or a operating
* system specific message for the error.

*

f

if (status != MRD_STATUS_SUCCESS)
printf ("Initialize failed: %s: %s.\n", mrd_strstatus(status),
log_info[0] ? log_info : "none") ;

return 0 ;

5.3.2. Return Values

Upon successful completion, the mrd_initialize(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_initialize(3mrd) fails the returned status value may be set to
one of the following values. Other values that correspond to specific SCSI errors may also be possible,
but these are the most likely.

5.3.2.1. Common Codes

1. MRD_STATUS_PARAM

42

Chapter 5. mrd_initialize

This error is returned if the robot_name or log_info arguments are NULL pointers.
5.3.2.1.1. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* (0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* (0x48 - Initiator detected error message received
e 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0x4E - Overlapped commands attempted

* 0x54 - SCSI to host system interface failure

5.3.2.1.2. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* 0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* 0x48 - Initiator detected error message received

¢ 0x49 - Invalid message error

43

Chapter 5. mrd_initialize

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0x4E - Overlapped commands attempted

* 0x54 - SCSI to host system interface failure

5.3.2.1.3. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* 0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* (0x48 - Initiator detected error message received
* 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0Ox4E - Overlapped commands attempted

* (0x54 - SCSI to host system interface failure

5.3.3. Related Information

« MRDG3mrd)

e mrd_initialize_element(3mrd)

44

Chapter 6. mrd _initialize element

mrd_initialize_element - Force a robot inventory operation

6.1. Media Robot Driver Library

The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRDS$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_initialize_element (
robot_info_t *robot_info,
dev_status_t *dev_status) ;

6.2. Parameters

* robot_info — This is the address of a robot_info_t structure initialized using mrd_startup(3mrd)
or mrd_show(3mrd). This data structure contains the element starting address and counts for each
type of element, which are needed to map an absolute element to the correct zero relative address
and type.

* dev_status — The dev_status is the address of a dev_status_t structure, which is used to pass back
detailed error information in the event of a command failure.

6.3. Description

This routine performs a SCSI Initialize Element Status command. It is used by mrd_initialize(3mrd).
On qualified medium changers this typically causes the medium changer to perform a physical inventory
of its contents. This routine can take a long time to complete. The longest time ever observed on a
qualified medium changer was approximately 23 minutes on an empty TL820 with all bin-packs in place.
The DLT and RDAT changers may take only a few seconds.

The robot_info argument is the address of a robot_info_t that has been opened by mrd_startup(3mrd).

This routine uses the dev_status_t structure for handing errors. The dev_ status_t structure includes
the code, os_status, and SCSI error fields. The following describes how to decode errors with the
dev_status_t structure.

SCSI Errors

SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

45

Chapter 6. mrd_initialize_element

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to O
and the value of the os_status field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

6.3.1. Example

/*
* Example of mrd_initialize_element (3mrd). The command usage is:
*

* Usage:

*

* mrd_initialize_element robot [robot...]

* robot_name

*

* It has been observed on an empty TL820 with all the bin-packs
* in place that this command takes just under 23 minutes.

*/

#ifndef lint

static char SccsId[] = "Q(#)mrd_initialize_element.c 1.3) 6/20/97";

#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main (int argc, char *argvl([])

{

int rc ;

int status ; /* return status */

char *robot ; /* Robot to open */
robot_info_t robot_info ; /* Robot data */
dev_status_t dev_status ; /* Device status */
char log_info[MRD_MAX_LOG_STRING+1] ;

/*

* Check that there are enough arguments.

*/

if(argc < 4) |

printf ("usage: %s robot [robot...]\n", argv[0]) ;

exit (1) ;

/*
* Initialize the channel field of the robot_info, so
* mrd_startup (3mrd) will actually open the robot.

*/
robot_info.channel = BAD_CHANNEL ;

for(rc = 1; rc < argc; rct++) |

/*

46

Chapter 6. mrd_initialize_element

* Save the current robot name.
*/
robot = argv[rc] ;

status = mrd_startup (robot, &robot_info, log_info) ;

if (status != MRD_STATUS_SUCCESS) {
printf ("Startup failed: %s: %s.\n",
mrd_strstatus (status),
log_info[0] ? log_info : "none") ;

continue ;

}

printf("Initialize Element Status on %s...", robot) ;
fflush (stdout) ;

status = mrd_initialize_element (&robot_info, &dev_status) ;

if(status != MRD_STATUS_SUCCESS)

printf ("Failed: %s.\n", mrd_strstatus(status)) ;
else

printf ("Success.\n") ;

(void)mrd_shutdown (&robot_info) ;

}

return 0 ;

}

6.3.2. Return Values

Upon successful completion mrd_initialize_element(3mrd) will return MRD_ STATUS_SUCCESS.
On a failure, an MRD_STATUS value corresponding to the error will be returned. Common errors are:

6.3.2.1. Common Codes
1. 1. MRD_STATUS_PARAM

This error is returned if the robot_info or dev_ status arguments are NULL pointers. The
dev_status structure is unchanged, even if a valid address is provided.

2. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

This error occurs when the medium changer does not qualify the Initialize Element Status
command.

It is also used for a SCSI command failure, when the ASC is set to one of:
¢ Ox1A - Parameter list length error

* 0x20 - Invalid command operation code

e 0x22 - Unsupported command

* 0x24 - Illegal field in CDB

* 0x25 - Logical unit not supported

* 0x26 - Threshold parameters not supported

47

Chapter 6. mrd_initialize_element

* 0x28 - Import or Export element accessed
e 0x2C - Command sequence error

* 0x39 - Saving parameters not supported

* 0x3D - Invalid bits in Identify message

* 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

6.3.2.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

6.3.2.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_EBADF

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

6.3.2.4. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_IVCHAN
This error code is used when an OpenVMS system service fails with the status SS$_TVCHAN. It is

likely when an operating system specific routine is used on a device that hasn't been opened by mrd_
startup(3mrd).

6.3.3. Related Information

Functions:

mrd_initialize(3mrd)

48

Chapter 7. mrd_inject

mrd_inject - Move a cartridge from an inport to a slot

7.1. Media Robot Driver Library

The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRDS$RTL.EXE

include <mrd_common.h>
include <mrd_message.h>

int mrd_inject (

const char *robot_name,
const char *volume_tag,
const char *port,
const char *slot,
char *log_info) ;

7.2. Parameters

robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading
character of the name is not a slash (/), /dev/ will be prepended to the name.

volume_tag — A NUL terminated character string that is the expected volume tag on the cartridge
to be moved. On robots with vision support this string will be compared with the volume tag of the
cartridge in the source slot and if it doesn't match the call will fail. This feature will not be used if
the volume_tag is NULL or the empty string.

port — A NUL terminated character string that is the zero relative address of the port which is to be
used as the destination of the move.

slot — A NUL terminated character string that is the zero relative address of the slot which is to be
used as the source of the move.

log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

7.3. Description

The mrd_inject(3mrd) function is a specialized interface to the SCSI Move Medium command. For the
robot specified by robot_name, the routine will attempt to move the cartridge in the specified port to the
specified slot. Element addresses are zero based.

The robot will be opened and the arguments to the function will be verified to make sure they are safe
and appropriate. The port and slot address will be verified they are within the valid of those elements on
the robot.

49

Chapter 7. mrd_inject

The volume_tag argument can be used to perform cartridge volume tag verification before the

move. If the cartridge volume tag at the port doesn't match that specified by this argument, then
mrd_inject(3mrd) will fail with the status MRD_STATUS_CART_INVALID. If volume_tag argument
is a NULL pointer, an empty string or used on a robot without vision support this argument is silently
ignored and the volume tag check will not be made.

The TL820 family requires special handling within the mrd_inject(3mrd) routine, because of the way
the Input/Output Device (IOD) works. This routine will explicitly check the specified inport to see if

it is full. If empty and the robot is a TL820, the Pass-through mechanism will then be checked. If the
PTM is full the source address will be reset to the PTM. If both are empty, the routine will send a Ready
Inport command to enable the IOD. A one minute polling loop will be performed waiting for the inport
to become full, five seconds between polls. If this first loop fails, the Ready Inport will be sent again and
the loop repeated. This allows the user two minutes to put a tape into the inport.

If volume tag verification is desired on the TL820, the cartridge will be moved to the PTM so the
volume tag can be read. If the check fails, the cartridge will left on the PTM. If the mrd_inject(3mrd)
is repeated with the correct volume tag or without one, the cartridge will be found on the PTM and the
Move Medium command will proceed from there.

7.3.1. Example

/*
* Example of mrd_inject (3mrd). The command usage is:

*

* mrd_inject robot_name port slot [volume_tag]

*/

#ifndef lint

static char SccsId[] = "Q@(#)mrd_inject.c 1.2 3/5/97" ;
#endif

#include <stdio.h>

#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>
main (int argc, char *argv[])

{

int status ; /* Status from mrd_inject (3mrd) */

char *robot ; /* The name of the robot */

char *volume_tag = NULL ; /* Optional volume tag to check */
char *port ; /* Source port */

char *slot ; /* Destination slot */

char log_info[MRD_MAX_LOG_STRING+1] ; /* error string */
/*

* Accept three required argument; robot, port and slot. The
* volume tag is optional.
*/
if(argc < 4) {
printf ("usage: %s robot port slot [volume-tag]\n", argv[0]);
exit (1) ;
}

/*
* Just use these directly from the command line.
x/

robot = argv[1l] ;

port = argv[2] ;

slot = argv[3] ;

/*
* If the volume tag is present use it.
*/

if(argc > 4)

50

Chapter 7. mrd_inject

}

volume_tag = argv[4] ;

/*
* Call the function.
*/
status = mrd_inject (robot, volume_tag, port, slot, log_info)
/*
* Print an error message if there is a failure.
*/
if(status != MRD_STATUS_SUCCESS)
printf ("Inject failed: %s: %s.\n", mrd_strstatus(status),
log_info[0] ? log_info : "none") ;
else
printf ("Injected media from Port #%s to Slot #%s.\n",
port, slot) ;
return 0 ;

7.3.2. Return Values

Upon successful completion, the mrd_inject(3mrd) function returns the value

’

MRD_STATUS_SUCCESS. If the mrd_inject(3mrd) fails the returned status value may be set to one
of the following values. Other values that correspond to specific SCSI errors may also be possible, but
these are the most likely.

7.3.2.1. Common Codes

1.

MRD_STATUS_PARAM

This error is returned if the robot_name, log_ info, slot, or port arguments are NULL pointers.

MRD_STATUS_ROBOT_ILLEGAL_REQUEST

It is used when a sanity check fails in the code that attempts to move a cartridge to the Pass-Through

Mechanism, when the robot type isn't a TL82n.
It is also used for a SCSI command failure, when the ASC is set to one of:
¢ Ox1A - Parameter list length error

* 0x20 - Invalid command operation code

¢ (0x22 - Unsupported command

* 0x24 - Illegal field in CDB

* 0x25 - Logical unit not supported

* 0x26 - Threshold parameters not supported
* 0x28 - Import or Export element accessed

e 0x2C - Command sequence error

* 0x39 - Saving parameters not supported

e 0x3D - Invalid bits in Identify message

51

Chapter 7. mrd_inject

e (0x53 - Medium removal prevented
This status is also returned when the ASC and ASCQ are zero, but the key is five (5).
MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

MRD_STATUS_DESTINATION_FULL

On routines that perform a SCSI Move Medium command, this error indicates that the destination
element already has a cartridge in it.

MRD_STATUS_CART_INVALID

For routines that accept a volume_tag argument to perform volume tag verification, this error
indicates that the volume tag of the media doesn't match that passed to the function.

MRD_STATUS_ROBOT_MECH_ERROR

This error occurs as the result of a SCSI command failure, when the ASC is set to one of:
* 0x15 - Positioning error.

* 0x8B - Vendor unique; Pass-through mechanism errors on the TL82n
MRD_STATUS_VENDOR_UNIQUE_ERROR

This error occurs when the internal routine used to decode SCSI-2 errors encounters an error that it
has not been written to antipicate.

This error is also returned when the ASC is zero and the ASCQ is not one of zero or six, and when
ASC/ASCQ are both zero and the key is Sh.

7.3.2.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1.

MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

52

Chapter 7. mrd_inject

* 0x08 - Logical unit communcation errors.

* 0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* (0x48 - Initiator detected error message received
* 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

¢ 0Ox4E - Overlapped commands attempted

* 0x54 - SCSI to host system interface failure

7.3.2.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* 0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* (0x48 - Initiator detected error message received
e 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0Ox4E - Overlapped commands attempted

* 0x54 - SCSI to host system interface failure

7.3.2.4. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

53

Chapter 7. mrd_inject

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

* 0x08 - Logical unit communcation errors.

* 0x43 - Message error

* 0x45 - Select or Reselect failure

* 0x47 - SCSI parity error

* (0x48 - Initiator detected error message received
* 0x49 - Invalid message error

* 0x4A - Command phase error

* 0x4B - Data phase error

* 0Ox4E - Overlapped commands attempted

* (0x54 - SCSI to host system interface failure

7.3.3. Related Information

Functions:

¢ mrd_move(3mrd)

e mrd_load(3mrd)

* mrd_unload(3mrd)
* mrd_eject(3mrd)

* mrd_ready_inport(3mrd)

54

Chapter 8. mrd_load

mrd_load - Move a piece of media from slot to drive.

8.1. Media Robot Driver Library

The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX fusr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_load(

const char *robot_name,
const char *volume_tag,
const char *slot,

const short cartridge_side,
const char *drive,

char *log_info) ;

8.2. Parameters

robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading
character of the name is not a slash (/), /dev/ will be prepended to the name.

volume_tag — A NUL terminated character string that is the expected volume tag on the cartridge
to be moved. On robots with vision support this string will be compared with the volume tag of the
cartridge in the source slot and if it doesn't match the call will fail. This feature will not be used if
the volume_tag is NULL or the empty string.

slot — A NUL terminated character string that is the zero relative address of the slot which is to be
used as the source of the move.

cartridge_side — The cartridge_side indicates whether the media should be inverted as it is being to
moved to the destination element. If the value 1 is used, the media will not be inverted. If the value 2
is used the media will be inverted.

drive — A NUL terminated character string that is the zero relative address of the drive which is to
be used as the destination of the move.

log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

8.3. Description

The mrd_load(3mrd) function is a specialized interface to the SCSI Move Medium command (or
DSA equivalent). For the robot specified by robot_name, the routine will attempt to move the cartridge
in the specified slot to the specified drive. Element addresses are zero based. On subsystems that

55

Chapter 8. mrd_load

support inverting a cartridge during a move, the cartridge_side argument can be used to indicate that the
cartridge should be inverted.

The robot will be opened and the arguments to the function will be verified to make sure they are safe

and appropriate. The slot and drive addr