
VSI OpenVMS

Media Robot Utility
Application Programming Interface
Guide

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher
VSI OpenVMS x86-64 Version 9.2-1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

Media Robot Utility Application Programming Interface Guide

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

Itanium is a trademark of Intel. Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

ii

Media Robot Utility Application Programming Interface Guide

Table of Contents
Preface .. ix

1. About VSI ... ix
2. OpenVMS Documentation .. ix
3. VSI Encourages Your Comments ... ix

Chapter 1. Media Robot Driver Library .. 1
1.1. Description ... 1

1.1.1. Element Address Naming ... 1
1.1.2. Description .. 1

1.2. MRD Routine Summary ... 2
1.2.1. Common Routines .. 2
1.2.2. Operating System Routines ... 4
1.2.3. About Return Values .. 6

1.2.3.1. Common Values .. 6
1.2.3.2. Windows 2000/Windows XP Codes .. 12
1.2.3.3. Tru64 UNIX Codes ... 13
1.2.3.4. OpenVMS Codes .. 15

1.2.4. Related Information .. 16
Chapter 2. mrd_eject ... 19

2.1. Media Robot Driver Library .. 19
2.2. Parameters .. 19
2.3. Description ... 19

2.3.1. Example .. 20
2.3.2. Return Values .. 21

2.3.2.1. Common Codes ... 21
2.3.2.2. Windows 2000/Windows XP Codes .. 22
2.3.2.3. Tru64 UNIX Codes ... 22
2.3.2.4. OpenVMS Codes .. 23

2.3.3. Related Information .. 24
Chapter 3. mrd_find_cartridge ... 25

3.1. Media Robot Driver Library .. 25
3.2. Parameters .. 25
3.3. Description ... 26

3.3.1. Element Info .. 26
3.3.2. Example .. 27
3.3.3. Return Values .. 28

3.3.3.1. Common Values .. 28
3.3.3.2. Windows 2000/Windows XP Codes .. 29
3.3.3.3. Tru64 UNIX Codes ... 30
3.3.3.4. OpenVMS Codes .. 30

3.3.4. Restrictions .. 31
3.3.5. Related Information .. 31

Chapter 4. mrd_home .. 33
4.1. Media Robot Driver Library .. 33
4.2. Parameters .. 33
4.3. Description ... 34

4.3.1. Example .. 34
4.3.2. Return Values .. 36

4.3.2.1. Common Codes ... 36

iii

Media Robot Utility Application Programming Interface Guide

4.3.2.2. Windows 2000/Windows XP Codes .. 36
4.3.2.3. Tru64 UNIX Codes ... 37
4.3.2.4. OpenVMS Codes .. 38

4.3.3. Related Information .. 38
Chapter 5. mrd_initialize ... 41

5.1. Media Robot Driver Library .. 41
5.2. Parameters .. 41
5.3. Description ... 41

5.3.1. Example .. 41
5.3.2. Return Values .. 42

5.3.2.1. Common Codes ... 42
5.3.3. Related Information .. 44

Chapter 6. mrd_initialize_element .. 45
6.1. Media Robot Driver Library .. 45
6.2. Parameters .. 45
6.3. Description ... 45

6.3.1. Example .. 46
6.3.2. Return Values .. 47

6.3.2.1. Common Codes ... 47
6.3.2.2. Windows 2000/Windows XP Codes .. 48
6.3.2.3. Tru64 UNIX Codes ... 48
6.3.2.4. OpenVMS Codes .. 48

6.3.3. Related Information .. 48
Chapter 7. mrd_inject .. 49

7.1. Media Robot Driver Library .. 49
7.2. Parameters .. 49
7.3. Description ... 49

7.3.1. Example .. 50
7.3.2. Return Values .. 51

7.3.2.1. Common Codes ... 51
7.3.2.2. Windows 2000/Windows XP Codes .. 52
7.3.2.3. Tru64 UNIX Codes ... 53
7.3.2.4. OpenVMS Codes .. 53

7.3.3. Related Information .. 54
Chapter 8. mrd_load .. 55

8.1. Media Robot Driver Library .. 55
8.2. Parameters .. 55
8.3. Description ... 55

8.3.1. Example .. 56
8.3.2. Return Values .. 57

8.3.2.1. Common Codes ... 57
8.3.2.2. Windows 2000/Windows XP Codes .. 58
8.3.2.3. Tru64 UNIX Codes ... 58
8.3.2.4. OpenVMS Codes .. 59

8.3.3. Related Information .. 59
Chapter 9. mrd_lock .. 61

9.1. Media Robot Driver Library .. 61
9.2. Parameters .. 61
9.3. Description ... 61

9.3.1. Return Values .. 61

iv

Media Robot Utility Application Programming Interface Guide

9.3.1.1. Common Codes ... 62
9.3.1.2. Windows 2000/Windows XP Codes .. 62
9.3.1.3. Tru64 UNIX Codes ... 63
9.3.1.4. OpenVMS Codes .. 63

9.3.2. Related Information .. 64
Chapter 10. mrd_map_element ... 65

10.1. Media Robot Driver Library .. 65
10.2. Parameters .. 65
10.3. Description ... 65

10.3.1. Example ... 65
10.3.2. Return Values ... 67
10.3.3. Related Information .. 67

Chapter 11. mrd_message ... 69
11.1. Media Robot Driver Library .. 69
11.2. Parameters .. 69
11.3. Description ... 69

11.3.1. Codes Translated .. 70
11.3.2. Example ... 71
11.3.3. Return Values ... 72
11.3.4. Related Information .. 72

Chapter 12. mrd_move .. 73
12.1. Media Robot Driver Library .. 73
12.2. Parameters .. 73
12.3. Description ... 74

12.3.1. Example ... 74
12.3.2. Return Values ... 75

12.3.2.1. Common Codes ... 75
12.3.2.2. Windows 2000/Windows XP Codes .. 76
12.3.2.3. Tru64 UNIX Codes ... 77
12.3.2.4. OpenVMS Codes ... 78

12.4. Related Information ... 78
Chapter 13. mrd_move_medium ... 81

13.1. Media Robot Driver Library .. 81
13.2. Parameters .. 81
13.3. Description ... 81

13.3.1. Absolute Element Addresses .. 82
13.3.2. Example ... 83
13.3.3. Return Values ... 84

13.3.3.1. Common Codes ... 85
13.3.3.2. Windows 2000/Windows XP Codes .. 85
13.3.3.3. Tru64 UNIX Codes ... 86
13.3.3.4. OpenVMS Codes ... 86

13.3.4. Related Information .. 86
Chapter 14. mrd_position .. 87

14.1. Media Robot Driver Library .. 87
14.2. Parameters .. 87
14.3. Description ... 87

14.3.1. Example ... 88
14.3.2. Return Values ... 89

14.3.2.1. Windows 2000/Windows XP Codes .. 91

v

Media Robot Utility Application Programming Interface Guide

14.3.2.2. Tru64 UNIX Codes ... 91
14.3.2.3. OpenVMS Codes ... 92

14.3.3. Related Information .. 93
Chapter 15. mrd_position_to_element .. 95

15.1. Media Robot Driver Library .. 95
15.2. Parameters .. 95
15.3. Description ... 95

15.3.1. Absolute Element Addresses .. 96
15.3.2. Example ... 97
15.3.3. Return Values ... 99

15.3.3.1. Common Codes ... 99
15.3.3.2. Windows 2000/Windows XP Codes .. 100
15.3.3.3. Tru64 UNIX Codes ... 100
15.3.3.4. OpenVMS Codes ... 101

15.3.4. Related Information .. 101
Chapter 16. mrd_prevent_allow .. 103

16.1. Media Robot Driver Library ... 103
16.2. Parameters .. 103
16.3. Description ... 103

16.3.1. Example ... 104
16.3.2. Return Values ... 105

16.3.2.1. Common Codes ... 105
16.3.2.2. Windows 2000/Windows XP Codes .. 106
16.3.2.3. Tru64 UNIX Codes ... 106
16.3.2.4. OpenVMS Codes ... 106

16.3.3. Related Information .. 106
Chapter 17. mrd_ready .. 107

17.1. Media Robot Driver Library ... 107
17.2. Parameters .. 107
17.3. Description ... 107

17.3.1. Example ... 108
17.3.2. Return Values ... 109

17.3.2.1. Common Codes ... 109
17.3.2.2. Windows 2000/Windows XP Codes .. 110
17.3.2.3. Tru64 UNIX Codes ... 110
17.3.2.4. OpenVMS Codes ... 111

17.3.3. Related Information .. 111
Chapter 18. mrd_ready_inport ... 113

18.1. Media Robot Driver Library ... 113
18.2. Parameters .. 113
18.3. Description ... 113

18.3.1. Example ... 113
18.3.2. Return Values ... 114

18.3.2.1. Common Codes ... 114
18.3.2.2. Windows 2000/Windows XP Codes .. 115

18.3.3. Related Information .. 116
Chapter 19. mrd_read_element_status ... 119

19.1. Media Robot Driver Library ... 119
19.2. Parameters .. 119
19.3. Description ... 119

vi

Media Robot Utility Application Programming Interface Guide

19.3.1. Absolute Element Addresses .. 120
19.3.2. Example ... 121
19.3.3. Return Values ... 126

19.3.3.1. Common Codes ... 126
19.3.3.2. Windows 2000/Windows XP Codes .. 127
19.3.3.3. Tru64 UNIX Codes ... 127
19.3.3.4. OpenVMS Codes ... 127

19.3.4. Related Information .. 127
Chapter 20. mrd_request_sense .. 129

20.1. Media Robot Driver Library ... 129
20.2. Parameters .. 129
20.3. Description ... 129

20.3.1. Example ... 130
20.3.2. Return Values ... 131

20.3.2.1. Common Codes ... 132
20.3.2.2. Windows 2000/Windows XP Codes .. 135
20.3.2.3. Tru64 UNIX Codes ... 136
20.3.2.4. OpenVMS Codes ... 137

20.3.3. Related Information .. 138
Chapter 21. mrd_show ... 139

21.1. Media Robot Driver Library ... 139
21.2. Parameters .. 139
21.3. Description ... 140

21.3.1. Element Info .. 140
21.3.2. Example ... 140
21.3.3. Return Values ... 142

21.3.3.1. Common Codes ... 142
21.3.3.2. Windows 2000/Windows XP Codes .. 144
21.3.3.3. Tru64 UNIX Codes ... 144
21.3.3.4. OpenVMS Codes ... 145

21.4. Related Information ... 147
Chapter 22. mrd_startup ... 149

22.1. Media Robot Driver Library ... 149
22.2. Parameters .. 149
22.3. Description ... 149

22.3.1. Example ... 152
22.3.2. Return Values ... 153

22.3.2.1. Common Codes ... 153
22.3.2.2. Windows 2000/Windows XP Codes .. 154
22.3.2.3. Tru64 UNIX Codes ... 155
22.3.2.4. OpenVMS Codes ... 157

22.4. Related Information ... 158
Chapter 23. mrd_test_unit_ready ... 161

23.1. Media Robot Driver Library ... 161
23.2. Parameters .. 161
23.3. Description ... 161

23.3.1. Example ... 162
23.3.2. Return Values ... 164

23.3.2.1. Common Codes ... 164
23.3.2.2. Windows 2000/Windows XP Codes .. 164

vii

Media Robot Utility Application Programming Interface Guide

23.3.2.3. Tru64 UNIX Codes ... 165
23.3.2.4. OpenVMS Codes ... 165

23.3.3. Related Information .. 166
23.3.4. Tru64 UNIX Restriction ... 166

Chapter 24. mrd_unload .. 167
24.1. Media Robot Driver Library ... 167
24.2. Parameters .. 167
24.3. Description ... 167

24.3.1. Tru64 UNIX .. 168
24.4. OpenVMS Example ... 171

24.4.1. Return Values ... 172
24.4.1.1. Common Codes ... 172
24.4.1.2. OpenVMS Codes ... 173

24.4.2. Related Information .. 173
Chapter 25. mrd_utility ... 175

25.1. Media Robot Driver Library ... 175
25.2. Parameters .. 175
25.3. Description ... 175

25.3.1. Example ... 176
25.3.2. Return Values ... 178

25.3.2.1. Common Codes ... 178
25.3.2.2. Windows 2000/Windows XP Codes .. 181
25.3.2.3. Tru64 UNIX Codes ... 182
25.3.2.4. OpenVMS Codes ... 183

25.3.3. Related Information .. 184

viii

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

3. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

ix

https://docs.vmssoftware.com

Preface

x

Chapter 1. Media Robot Driver
Library
Media Robot Driver Library is a programming interface for controlling SCSI-2 medium-changers.

1.1. Description
The Media Robot Driver library is a callable interface for controlling SCSI-2 medium-changers. The
interface consists of two include files and an object library which are installed in an operating system
specific location. The operating system specific locations are shown in the table below.

Table 1.1. Library File Locations

/Windows 2000/Windows XP \ Program Files\ MRU\ mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS SYS$LIBRARY:MRD$RTL.EXE

The distribution also includes examples showing how each callable routine can be used and a manual
page for each routine.

The <mrd_common.h> include file defines data structures used to provide information about the
medium-changer and its elements. The <mrd_common.h> file also defines a large number of symbolic
constants for element type codes, offsets within SCSI structures, masks for SCSI bit fields, and other
useful structures. The <mrd_common.h> file also includes prototype definitions of all the medium-
changer functions provided in the interface.

The <mrd_message.h> include file defines constants for each error code returned by the MRD interface.
Function prototypes are also included for routines that will return a string corresponding to the error
code.

On Tru64 UNIX, these strings are retrieved from an I18N message catalog that is part of the installed
software. Code and routines are also included for words and element exception messages that might be
commonly used by a medium-changer application.

1.1.1. Element Address Naming
The first OpenVMS implementation of MRD supported the TF and TA family DLT media-changers. It
used Mass Storage Control Protocol Display commands to indicate what cartridge should be moved. The
MSCP uses cartridge address names instead of numbers as SCSI does. When SCSI support was added to
the MRD, the convention of using strings for the address was kept and thus it has been since.

1.1.2. Description
In the common interface example programs, the character strings for the addresses are taken directly
from the command line arguments and no special formatting is necessary. But, in practice, a program
will probably keep SCSI addresses in numeric form and will have to convert those to strings. In the
MRU command line interface and graphic user interface we use sprintf(3) for this:

int element_number ;

1

Chapter 1. Media Robot Driver Library

char element[MRD_NAME_SIZE+1] ;

element_number = 5 ;

sprintf(element, "%d", element_number) ;

1.2. MRD Routine Summary
The media robot driver library routines comprise two categories, the common routines and operating
system specific routines.

1.2.1. Common Routines
The following list identifies the common routines.

● mrd_eject(3mrd)

● mrd_find_cartridge(3mrd)

● mrd_home(3mrd)

● mrd_initialize(3mrd)

● mrd_inject(3mrd)

● mrd_load(3mrd)

● mrd_lock(3mrd)

● mrd_map_element(3mrd)

● mrd_move(3mrd)

● mrd_position(3mrd)

● mrd_ready_inport(3mrd)

● mrd_scsi_decode(3mrd)

● mrd_startup(3mrd)

● mrd_show(3mrd)

● mrd_shutdown(3mrd)

● mrd_strelement(3mrd)

● mrd_strexcept(3mrd)

● mrd_unload(3mrd)

The common routines will open a robot to perform their operations. All these routines will close the
robot when successfully completed, except for mrd_ show(3mrd). The mrd_show(3mrd) routine
closes the robot only when it encounters an error.

2

Chapter 1. Media Robot Driver Library

The routine mrd_startup(3mrd) is used to open a medium-changer. It will fill in a robot_info_t data
structure that contains the number of elements of each type, their addresses and the medium-changer
SCSI Inquiry data. Thus, it is unnecessary (and often not desirable) to keep the robot open while it is
being used. The routine mrd_shutdown(3mrd) can be used to close the robot. Aside from closing
the file and setting the channel field to BAD_CHANNEL, it has no effect on the other data in the
robot_info_t data structure.

Use the mrd_show(3mrd) routine to obtain information about the contents and state of the slots, drive,
ports and transports of the medium-changer. The mrd_ show(3mrd) routine will open a robot, but
it will also work if the robot is already open when the routine is called. For each element requested,
an element_info_t data structure will be set if the element exists. The mrd_show(3mrd) function
will accept the address of a robot_info_t data structure. If the robot has already been opened by
mrd_startup(3mrd), this open robot will be used by the routine. If the robot isn't open (indicated
by the channel field set to BAD_CHANNEL), the medium-changer indicated by the robot_name will
be opened. If the routine completes successfully, the medium-changer will remain open. On an error,
the medium-changer will be closed and the channel field reset to BAD_CHANNEL. By keeping the
medium-changer open, multiple calls can be made to mrd_ show(3mrd) without incurring the time to
call mrd_startup(3mrd) each time.

The routine mrd_move(3mrd) is a general interface to the SCSI Move Medium command. It allows the
specification of source and destination elements for the move, whether the medium should be inverted
and an optional volume tag. On medium-changers which have a vision system to read bar-codes, the
volume tag can be used to verify that the medium in the source slot is the one desired.

The routines mrd_load(3mrd), mrd_unload(3mrd), mrd_inject(3mrd) and mrd_eject(3mrd) are
specialized interfaces to the SCSI Move Medium command. Load will move a medium from a slot to a
drive. Unload will move a medium from a drive to a slot. Inject moves a medium from a port to a slot
and Eject from a slot to a port. On the TL82x family of libraries, mrd_eject(3mrd) can also be used to
clear a medium from the Pass-Through Mechanism.

The routine mrd_lock(3mrd) enables sending a SCSI Prevent/Allow Media Removal command.
Whether this command is supported, and its effect, depends on the robot.

The routine mrd_initialize(3mrd) sends a SCSI Initialize Element Status command. The effect of this
command varies among robots, but it typically causes complete reinventory of the medium-changer.

The routine mrd_position(3mrd) sends a SCSI Position to Element command.

The routine mrd_ready_inport(3mrd) sends a vendor unique, Ready Inport command. On the TL82n
family of libraries, this command enables the button which opens the Inport/Outport Device inport door.
Other libraries and loaders may silently ignore this command or treat it as an illegal command.

On medium-changers which keep track of a medium's previous element location, the routine
mrd_home(3mrd) returns a medium to that location.

On medium-changers with vision systems to read bar-code labels, the routine
mrd_find_cartridge(3mrd) will search for a specified volume tag. The routine will search the entire
library, or just a subset of elements according to the arguments used.

The routine mrd_map_element(3mrd) accepts an element's absolute address and returns the element
type and zero relative address.

The routine mrd_strstatus(3mrd) accepts an MRD error status code and returns the corresponding
message text. The routine mrd_strelement(3mrd) accepts an MRD_ELEMENT code for various

3

Chapter 1. Media Robot Driver Library

words which apply to SCSI-2 medium-changer elements and returns the corresponding string. The
routine mrd_strexcept(3mrd) accepts the Additional Sense Code and Additional Sense Code Qualifier
for an element with an exception and returns the corresponding message text.

1.2.2. Operating System Routines
The following list identifies the operating system specific routines.

● mrd_initialize_element(3mrd)

● mrd_move_medium(3mrd)

● mrd_position_to_element(3mrd)

● mrd_prevent_allow(3mrd)

● mrd_read_element_status(3mrd)

● mrd_ready(3mrd)

● mrd_request_sense(3mrd)

● mrd_test_unit_ready(3mrd)

The operating system interface routines can be called directly and share three common traits.

Trait 1
Instead of a medium changer name, they accept a robot_info_t data structure that has been opened
by mrd_startup(3mrd). This allows them to be called without the repeated start-up time of
mrd_startup(3mrd) and allows keeping the medium changer open by a single application.

Trait 2
Instead of zero-relative element addresses, these routines all use absolute element addresses. These
address can be calculated by adding the zero-relative address of a specific element to the element start
address from the robot_info_t structure.

For example:

/*
 * Given an robot_info_t initialized with mrd_startup(3mrd)
 * or mrd_show(3mrd), an element type and a relative element
 * address, convert it to an absolute address.
 */
convert_relative(robot_info_t *robot_info, int type, int element)
{
 switch(type)
 case SLOT:
 return element + robot_info->slot_start ;
 case TRANSPORT:
 return element + robot_info->transport_start ;
 case DRIVE:
 return element + robot_info->device_start ;
 case PORT:
 return element + robot_info->port_start ;
 default:
 return -1 ;

4

Chapter 1. Media Robot Driver Library

 }
}

The routine mrd_move_medium(3mrd) is used by mrd_move(3mrd), mrd_ load(3mrd),
mrd_unload(3mrd), mrd_eject(3mrd) and mrd_inject(3mrd). These routines accepts the absolute
transport, source and destination element addresses for a Move Medium command, as well as a value to
indicate whether the medium should be inverted when moved.

The routine mrd_read_element_status(3mrd) is used by mrd_show(3mrd) and a variety of internal
utility functions. It offers direct access to the SCSI Read Element Status command. However, the data
returned is also uninterpreted Read Element Status data, so the application using it must interpret the
data for itself. Since mrd_show(3mrd) allows keeping the medium changer open as well, it is usually
easier to use, except for simple requests.

The routine mrd_position_to_element(3mrd) is used by mrd_position(3mrd). It offers direct access
to the SCSI Position to Element command, accepting absolute element addresses for the transport and
destination elements. It can also invert the transport where this is supported.

The routine mrd_initialize_element(3mrd) is used by mrd_initialize(3mrd). It offers direct access to
the SCSI Initialize Element Status command.

The routine mrd_ready(3mrd) is used by mrd_ready_inport(3mrd). It offers direct access to the
SCSI Position to Element command, accepting the absolute addresse of the port to be readied.

The routine mrd_prevent_allow(3mrd) is used by mrd_lock(3mrd). It offers direct access to the SCSI
Prevent Allow Media Removal command, accepting a value to indicate which is desired.

The mrd_test_unit_ready(3mrd) routine performs a SCSI Test Unit Ready command, or equivalent
if some other I/O architecture is supported. It is used by the mrd_startup(3mrd) and the OpenVMS
implementation of mrd_ ready(3mrd).

The mrd_request_sense(3mrd) routine performs a SCSI Request Sense command, or equivalent if
some other I/O architecture is supported. It is used by all MRD API routines to determine the cause of a
command failure.

Trait 3
Finally, these routines accept the address of a dev_status_t structure for holding error status, instead of a
the log_info string used by the other routines. This allows custom formatting of errors.

The dev_status_t structure includes the code, os_status, and SCSI error fields. The following describes
how to decode errors with the dev_status_t structure.

SCSI Errors
SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

5

Chapter 1. Media Robot Driver Library

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to 0
and the value of the os_status field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

Compiling a Tru64 UNIX Application with MRD
The files <mrd_common.h> and <mrd_message.h> must be included by any source module wishing to
use the MRD interface. The library was compiled with the - migrate and default optimization options
available with the DEC OSF/1 V1.3 C compiler.

If the calling program is not compiled with the -migrate option, it will be necessary to link with the OTS
library, </usr/lib/libots.a>. If not, the following symbols will be unresolved:

% make mrd_move
cc -O -c mrd_move.c
cc -O mrd_move.o -lmrd -o mrd_move
ld:U
nresolved:
_OtsDivide64Unsigned
_OtsMove
_OtsDivide32
*** Exit 1
Stop.

The subset containing the <libots.a> object library has changed over the versions. In DEC OSF/1 V1.3 it
is part of the OTABASE. subset. By DEC OSF/1 V3.0 it had moved to OSFCMPLRS300, where it has
remained through Tru64 UNIX V4.0.

1.2.3. About Return Values
Upon successful completion, the Media Robot Driver library routines that access a medium-changer
return the value MRD_STATUS_SUCCESS. On a failure, one of the following errors may be returned.
The Media Robot Driver library will attempt to map SCSI failures to one of a small group of error
codes, but not all errors have been anticipated.

Many of the MRD routines accept a log_info argument that is a character array. When a SCSI error
occurs, the the Sense Key, additional Sense Code and Additional Sense Code Qualifier are formatted
into the space provided. If the error is an operating system specific error, then the text corresponding to
the error will be copied into the space provided.

1.2.3.1. Common Values
Common return values.

1. MRD_STATUS_PARAM

This error is returned when a pointer argument passed to an MRD routine is NULL, unless the
routine is documented as one allowing a NULL pointer.

2. MRD_STATUS_CART_INVALID

6

Chapter 1. Media Robot Driver Library

For routines that accept a volume_tag argument to perform volume tag verification, this error
indicates that the volume tag of the media doesn't match that passed to the function.

3. MRD_STATUS_CART_NOT_AVAIL

This error can occur on the TL81n and TL82n family of DLT libraries when the source of a move is
a drive and the cartridge in the drive is still on-line. These robots do not allow moving the cartridge
until the drive is taken offline.

4. MRD_STATUS_CART_SIDE_INVALID

For routines that use the cartridge_side argument, this error indicates that the value is neither one (1)
nor two (2).

5. MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

6. MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

7. MRD_STATUS_TRANSPORT_INVALID

This error is returned when the element address for a transport is less than zero or greater than the
number of transports.

8. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives.

9. MRD_STATUS_INVALID_TYPE

For routines that allow the specification of an element type argument, this error indicates that
specified type was not one of SLOT, DRIVE, PORT or TRANSPORT.

10. MRD_STATUS_DESTINATION_FULL

On routines that perform a SCSI Move Medium command, this error indicates that the destination
element already has a cartridge in it.

11. MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

12. MRD_STATUS_AUTOCLEAN

This error occurs when a SCSI command fails with the ASC set to 0x30 and the ASCQ set to 0x3.
On TL8nn libraries supporting Auto-clean, it indicates that a command was attempted while an auto-
clean was in progress.

13. MRD_STATUS_CART_DAMAGED

7

Chapter 1. Media Robot Driver Library

This error occurs when a SCSI command fails with the ASC set to 0x30, but the ASCQ is NOT a
value of 0x3. The log_info will contain the ASCQ.

14. MRD_STATUS_CART_NOT_FOUND

This error is returned by mrd_ find_cartridge(3mrd) when it can't find the cartridge with the
desired volume tag.

15. MRD_STATUS_ELEMENT_INVALID

This error occurs when a SCSI command fails with the ASC set to 0x21. The log_info will contain
the ASCQ. This indicates that an invalid element address reached the medium-changer. For example,
specifying the 13th slot when only 12 slots are present.

16. MRD_STATUS_INSFMEM

The mrd_show(3mrd) and mrd_find_ cartridge(3mrd) functions allocate virtual memory using
malloc(3) to store temporary element data. If the attempt to allocate the memory fails, these routines
will return this error.

17. MRD_STATUS_NO_ELEMENTS

This error occurs in mrd_ show(3mrd), mrd_find_cartridge(3mrd) and mrd_home(3mrd) when
the medium-changer has no elements within the range and type specified by the arguments.

18. MRD_STATUS_NO_VISION

This error occurs in mrd_find_ cartridge(3mrd) when the medium-changer has no vision system
with which to read bar-code labels.

19. MRD_STATUS_RES_INVALID

This error occurs in mrd_ home(3mrd) when the element data returned from mrd_show(3mrd) is
not valid.

20. MRD_STATUS_ROBOT_ATTENTION

This error occurs when a SCSI command fails with the ASC set to one of 0x29, 0x2A or 0x2F. The
log_info contains the ASCQ. The SCSI translations for these error codes are:

● 0x29 - Power-on, Reset or Bus device reset occurred

● 0x2A - Mode Parameters Changed

● 0x2F - Command cleared by another initiator

This error also occurs when the ASC and ASCQ are zero, but the SCSI sense key is 6h.

21. MRD_STATUS_ROBOT_DOOR_OPENED

This occurs when a SCSI command fails with the ASC set to 0x80 and the ASCQ set to 0x0.
On TL8nn libraries this typically indicates that the cabinet door was opened during a command
operation.

22. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

8

Chapter 1. Media Robot Driver Library

This error occurs for a variety of reasons.

It is used when a sanity check fails in the code that attempts to move a cartridge to the Pass-Through
Mechanism, when the robot type isn't a TL82n.

It is used in the mrd_lock(3mrd) code when the value is not one of ALLOW_REMOVAL or
PREVENT_REMOVAL.

It is used when the medium changer does not support the Prevent/Allow Medium Removal
command or the lock value is not one or zero. The specific cause can be determined by examining
the ASC/ASCQ values in the status data.

It is used when a call to mrd_initialize_element(3mrd) is issued against a medium changer that
does not support the Initialize Element Status command.

It is used when the medium changer does not support the Position To Element command. The
seven and five slot DLT loaders do not support the command, though the TL820 and TL810 family
libraries do. Some models of TLZ6L and TLZ7L do not support the command and may take a long
time to fail.

It is used when the medium changer does not support the Ready Inport command.

The TL820 family of DLT libraries support this command. The TL810 family of DLT libraries
allows this command to succeed, but it doesn't perform any function.

It is also used for a SCSI command failure, when the ASC is set to one of:

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

● 0x26 - Threshold parameters not supported

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

23. MRD_STATUS_ROBOT_MECH_ERROR

This error occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x15 - Positioning error.

9

Chapter 1. Media Robot Driver Library

● 0x8B - Vendor unique; Pass-through mechanism errors on the TL82n

24. MRD_STATUS_SOURCE_INVALID

This error occurs in mrd_home(3mrd) when the return address in the element data isn't valid.

25. MRD_STATUS_VENDOR_UNIQUE_ERROR

This error occurs when the internal routine used to decode SCSI-2 errors encounters an error that it
has not been written to antipicate.

This error is also returned when the ASC is zero and the ASCQ is not one of zero or six, and when
ASC/ASCQ are both zero and the key is 9h.

26. MRD_STATUS_NO_SENSE

This error is returned by mrd_scsi_ decode(3mrd) when the asc, ascq and key values are all zero
(0). It is also returned when the key value is less than zero or greater than 15.

27. MRD_STATUS_RECOVERED_ERROR

This error occurs when a SCSI device returns only a sense key of 1h. This indicates that although a
command successfully completed, the target device had performed some internal error recovery.

28. MRD_STATUS_MEDIUM_ERROR

This error occurs when ASC and ASCQ are zero, but the sense key is 3h. This occurs when the
target encounters a nonrecoverable error due to a flaw in the medium.

29. MRD_STATUS_ROBOT_HW_ERROR

This error occurs when ASC and ASCQ are zero, but the sense key is 4h. This occurs when the
target encounters a nonrecoverable hardware error.

30. MRD_STATUS_DATA_PROTECT

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is seven (7).

31. MRD_STATUS_BLANK_CHECK

This error is returned by mrd_scsi_ decode(3mrd) when the asc and ascq are zero, but the key
value is eight (8).

32. MRD_STATUS_COPY_ABORTED

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is ten (10).

33. MRD_STATUS_SENSE_EQUAL

This error is returned by mrd_scsi_ decode(3mrd) when the asc and ascq are zero, but the key
value is Ch (12).

34. MRD_STATUS_VOLUME_OVERFLOW

10

Chapter 1. Media Robot Driver Library

This error is returned by mrd_scsi_decode(3mrd) when the asc and ascq are zero, but the key value
is Dh (13).

35. MRD_STATUS_MISCOMPARE

This error is returned by mrd_scsi_ decode(3mrd) when the asc and ascq are zero, but the key
value is Eh (14).

36. MRD_STATUS_SENSE_RESERVED

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is Fh (15).

37. MRD_STATUS_SCSI_CHECK

The SCSI Check Condition error should never occur. It indicates that it is safe to use a Request
Sense command and that you are likely to get a different error.

38. MRD_STATUS_SCSI_CONDMET

The SCSI Condition Met status indicates a SCSI command completed with the status "Condition
Met".

39. MRD_STATUS_SCSI_BUSY

The SCSI Device is Busy status code indicates a SCSI command completed with the status "Busy".
Some TZ87x media changers are known to cause this condition.

40. MRD_STATUS_SCSI_INTER

The SCSI Intermediate Command Completed status code indicates a SCSI command completed with
the status "Intermediate".

41. MRD_STATUS_SCSI_INTER_CONDMET

The SCSI Intermediate-Condition Met status code indicates a SCSI command completed.

42. MRD_STATUS_SCSI_RESCON

The SCSI Reservation Conflict status code indicates a SCSI command completed with the status
"Reservation Conflict".

43. MRD_STATUS_SCSI_TERM

The SCSI Command Terminated status code indicates a SCSI command completed with the status
"Terminated".

44. MRD_STATUS_SCSI_QUEUE

The SCSI Queue Full status code indicates a SCSI command completed with the status "Queue
Full".

45. MRD_STATUS_SCSI_RESERVED

The SCSI Status Code Reserved return indicates a SCSI command completed with a status that
wasn't listed in Chapter 7 of the SCSI-2 specification and is "Reserved".

11

Chapter 1. Media Robot Driver Library

1.2.3.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_NO_SUCH_DEVICE

This error is returned when a regular file or robot was specified without the ‘‘:BnTnLn'' string.

3. MRD_STATUS_ROBOT_CMD_ABORTED

This error is returned by mrd_scsi_decode(3mrd) when the asc is zero and the ascq is six, or when
the asc and ascq are zero and the key is eleven (11).

4. MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

5. MRD_STATUS_EINVAL

This error code is returned when the ":BnTnLn" string points to an invalid or nonexistent SCSI
address.

6. MRD_STATUS_ENOENT

This error is returned when the system cannot find the specified device.

7. MRD_STATUS_ROBOT_NOT_READY

Under Microsoft Windows 2000/Windows XP, this error code is returned when the specified robot
exists but is not responding.

12

Chapter 1. Media Robot Driver Library

1.2.3.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_ROBOT_NOT_READY

Under OpenVMS and Tru64 UNIX, this error occurs as the result of a SCSI command failure, when
the ASC is set to one of:

● 0x80 - When the ASCQ is not zero (0).

● 0x81 - Vendor unique; gripper errors on the TL82X and TL81X

● 0x04 - Logical unit not ready

● 0x3E - Logical unit has not been self configured

● 0x40 - Diagnostic failure; ASCQ indicates component

● 0x42 - Power-on self test failure

● 0x44 - Internal target failure

● 0x46 - Unsuccessful soft reset

● 0x4C - Logical unit failed self-configuration

This status is also returned when the ASC and ASCQ are zero, but the key is two (2).
13

Chapter 1. Media Robot Driver Library

3. MRD_STATUS_ROBOT_CMD_ABORTED

This error is returned by mrd_scsi_decode(3mrd) when the asc is zero and the ascq is six, or when
the asc and ascq are zero and the key is eleven (11).

4. MRD_STATUS_EBADF

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

5. MRD_STATUS_EINVAL

This error is returned by mrd_map_os_ error(3mrd) when the os_status is EINVAL. This typically
occurs during mrd_ startup(3mrd) when the special file is not a SCSI device: for example, /dev/tty.

6. MRD_STATUS_STARTUP_ERROR

This error is returned by mrd_ map_os_error(3mrd) when the os_status is ENODEV. This
typically occurs during mrd_startup(3mrd) when the special file is not a SCSI device; /dev/null.

7. MRD_STATUS_NO_SUCH_DEVICE

This error occurs when a UNIX system call returns ENXIO, to indicate that the device
corresponding to the special device does not exist.

8. MRD_STATUS_EBUSY

This error occurs when a UNIX system call returns EBUSY, to indicate that some other process is
using that medium-changer device.

9. MRD_STATUS_EINTR

This error occurs when a UNIX system call returns EINTR. This error corresponds to an interrupted
system call, but also occurs when the SCSI CAM Layered Components Medium-Changer driver is
not configured into the running system.

10. MRD_STATUS_EIO

This error occurs when a UNIX system call returns EIO to indicate that there was an I/O error. In
most cases an I/O error on a SCSI medium-changer indicates a SCSI error which be translated to
another MRD error.

11. MRD_STATUS_ENOENT

This error occurs when a UNIX system call returns ENOENT to indicate that a special device file
doesn't exist.

12. MRD_STATUS_EACCES

This error occurs when a UNIX system call returns EACCES to indicate that the caller does not have
sufficient permission to open the special device file corresponding to the medium-changer. MRD
expects to have read permission on the special device file.

13. MRD_STATUS_OS_ERROR

This error occurs when a UNIX system call returns an error that is not among those previously
mentioned. The routine strerror(3) will be used to translate the error code into a standard text
message which will be copied to log_info.

14

Chapter 1. Media Robot Driver Library

14. MRD_STATUS_INVALID

This error is a catch-all for MRD failures. All cases where this error is returned are those instances
where MRD should have caught and reported the true cause of the failure.

1.2.3.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEV or SS$_IVDEVNAM. This will typically occur in mrd_ startup(3mrd) when the
caller tries to open a device which doesn't exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

3. MRD_STATUS_ROBOT_NOT_READY Under OpenVMS and Tru64 UNIX, this error occurs as
the result of a SCSI command failure, when the ASC is set to one of:

● 0x80 - When the ASCQ is not zero (0).

● 0x81 - Vendor unique; gripper errors on the TL82X and TL81X

15

Chapter 1. Media Robot Driver Library

● 0x04 - Logical unit not ready

● 0x3E - Logical unit has not been self configured

● 0x40 - Diagnostic failure; ASCQ indicates component

● 0x42 - Power-on self test failure

● 0x44 - Internal target failure

● 0x46 - Unsuccessful soft reset

● 0x4C - Logical unit failed self-configuration

This status is also returned when the ASC and ASCQ are zero, but the key is two (2).

4. MRD_STATUS_ROBOT_CMD_ABORTED This error code is used when an OpenVMS system
service fails with the status SS$_ABORT.

5. MRD_STATUS_NOPRIV This error code is used when an OpenVMS system service fails with the
status SS$_NOPRIV. This will typically occur in mrd_startup(3mrd) when the caller doesn't have
sufficient privilege to assign a channel to the device.

6. MRD_STATUS_IVCHAN This error code is used when an OpenVMS system service fails with the
status SS$_IVCHAN. It is likely when an operating system specific routine is used on a device that
hasn't been opened by mrd_ startup(3mrd).

7. MRD_STATUS_MOUNTED This error code is used when an OpenVMS system service fails with
the status SS$_NOSUCHDEV or SS$_IVDEVNAM. This will typically occur in mrd_startup(3mrd)
when the caller tries to open a device which doesn't exist or uses an invalid device name.

8. MRD_STATUS_PAGE_CODE This error occurs in mrd_startup(3mrd) when a SCSI Mode Sense
command fails to return the expected data. It uses the SCSI Element Address Assignment mode
page to fill in the element count and base address fields of the robot_info_t structure. If the data
returned by the medium changer does not have the expected page code, this error is returned. This
error has been seen when medium changers are connected to HS family array controllers running
V2.7 firmware.

9. MRD_STATUS_EBUSY This error code is used when an OpenVMS system service fails with the
status SS$_DEVALLOC. This generally happens in mrd_startup(3mrd) when another process
already has the device allocated.

10. MRD_STATUS_DEVOFFLINE This error code is used when an OpenVMS system service fails
with the status SS$_DEVOFFLINE and SS$_ MEDOFL.

11. MRD_STATUS_ACCVIO This error indicates an internal application failure.

12. MRD_STATUS_EXQUOTA This error occurs when an operation requested of the application
causes you to exceed a process quota. To correct this problem, increase your process quotas.

13. MRD_STATUS_ILLEFC For more information about this error, refer to the OpenVMS system
documentation.

1.2.4. Related Information
Functions:

16

Chapter 1. Media Robot Driver Library

● mrd_eject(3mrd)

● mrd_find_cartridge(3mrd)

● mrd_home(3mrd)

● mrd_initialize(3mrd)

● mrd_inject(3mrd)

● mrd_map_element(3mrd)

● mrd_move(3mrd)

● mrd_load(3mrd)

● mrd_lock(3mrd)

● mrd_position(3mrd)

● mrd_ready_inport(3mrd)

● mrd_show(3mrd)

● mrd_shutdown(3mrd)

● mrd_startup(3mrd)

● mrd_strelement(3mrd)

● mrd_strexcept(3mrd)

● mrd_unload(3mrd)

● mtio(7) For Tru64 UNIX systems.

17

Chapter 1. Media Robot Driver Library

18

Chapter 2. mrd_eject
mrd_eject - Move a cartridge from a slot to a port

2.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_eject(
 const char *robot_name,
 const char *volume_tag,
 const char *slot,
 const char *port,
 char *log_info) ;

2.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● volume_tag — A NUL terminated character string that is the expected volume tag on the cartridge
to be moved. On robots with vision support this string will be compared with the volume tag of the
cartridge in the source slot and if it doesn't match the call will fail. This feature will not be used if
the volume_tag is NULL or the empty string.

● slot — A NUL terminated character string that is the zero relative address of the slot which is to be
used as the source of the move.

● port — A NUL terminated character string that is the zero relative address of the port which is to be
used as the destination of the move.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

2.3. Description
The mrd_eject(3mrd) function is a specialized interface to the SCSI Move Medium command. For the
robot specified by robot_name, the routine will attempt to move the cartridge in the specified slot to the
specified port. Element addresses are zero based.

The robot will be opened and the arguments to the function will be verified to make sure they are
safe and appropriate. The slot and port address will be verified they are within the valid range of those
elements on the robot.

19

Chapter 2. mrd_eject

The cartridge_name argument can be used to perform cartridge volume tag verification before the
move. If the cartridge volume tag at the slot doesn't match that specified by this argument, then
mrd_eject(3mrd) will fail with the status MRD_STATUS_CART_INVALID. If cartridge_name
argument is a NULL pointer, an empty string or used on a robot without vision support this argument is
silently ignored and the volume tag check will not be made.

If the slot string is an empty string and the library is a TL820 family member, this routine will attempt
to move a cartrige on the PTM to the port specified by the port argument. This is the equivalent of the
Eject Port command of the CLI.

2.3.1. Example
/*
 * Example mrd_eject(3mrd).
 *
 * This example is slightly different from the others since it
 * also demonstrates the Eject Port feature of mrd_eject(3mrd).
 * This feature can be used on the TL820 family to move a tape
 * from the Pass-through mechanism (PTM) to the outport.
 *
 * The command usage is:
 *
 * mrd_eject robot [slot port [volume_tag]]
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_eject.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 int status ; /* Status from mrd_eject(3mrd) */
 char *robot ; /* Name of the robot to use */
 char *volume_tag = NULL ; /* Volume tag to check */
 char *slot ; /* Source slot */
 char *port ; /* Destination port */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* Error text */

 /*
 * Allow the command to only have the robot name specified.
 */
 if(argc < 2) {
 printf("usage: %s robot [slot port [volume_tag]]\n",
 argv[0]) ;

 exit(1) ;
 }
 else
 robot = argv[1] ;
/*
 * If the slot and port aren’t specified assume that
 * the target robot is a TL820 and fill in default
 * values for an Eject Port. Otherwise take the
 * desired values directly from the command line.
 */
if(argc >= 4) {
 slot = argv[2] ;
 port = argv[3] ;

20

Chapter 2. mrd_eject

 /*
 * Collect the volume_tag name if the user wants it.
 */
 if(argc > 4)
 volume_tag = argv[4] ;
}
/*
 * We also observe that this case catches the command:
 *
 * mrd_eject robot_name address
 *
 * It can’t hurt to let the user specify the outport,
 * since an invalid one simply won’t work. In this case
 * the 3rd argument is the port name instead of the slot
 * name.
 *
 * The user could get the same affect by using a quoted
 * empty string for the slot argument on the command line:
 *
 * robot /dev/mc54 "" 1
*/
else {
 if(argc == 3)
 port = argv[2] ;
 else
 port = "1" ;

 slot = "" ;
}

/*
 * Do the operation.
 */
status = mrd_eject(robot, volume_tag, slot, port, log_info) ;

if(status == MRD_STATUS_SUCCESS)
 printf("Ejected the media in slot #%d to port #%d.\n",
 slot, port) ;
else
 printf("Eject failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;

 return 0 ;
}

2.3.2. Return Values
Upon successful completion, the mrd_eject(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_eject(3mrd) fails the returned status value may be set to one of
the following values. Other values that correspond to specific SCSI errors may also be possible, but these
are the most likely.

2.3.2.1. Common Codes
1. 1. MRD_STATUS_PARAM

This error is returned if the robot_name, slot, port, or log_info are NULL pointers.

2. MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

21

Chapter 2. mrd_eject

3. MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the
number of slots.

4. MRD_STATUS_CART_INVALID

For routines that accept a volume_tag argument to perform volume tag verification, this error
indicates that the volume tag of the media doesn't match that passed to the function.

5. MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

6. MRD_STATUS_DESTINATION_FULL

On routines that perform a SCSI Move Medium command, this error indicates that the
destination element already has a cartridge in it.

2.3.2.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR This error occurs as the result of a failure to open the
specified medium-changer. This may occur directly by calling mrd_startup(3mrd) or by a routine
that calls mrd_startup(3mrd) internally. This error also occurs as the result of a SCSI command
failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2.3.2.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

22

Chapter 2. mrd_eject

1. MRD_STATUS_ROBOT_COMM_ERROR This error occurs as the result of a failure to open the
specified medium-changer. This may occur directly by calling mrd_startup(3mrd) or by a routine
that calls mrd_startup(3mrd) internally. This error also occurs as the result of a SCSI command
failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2.3.2.4. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR This error code is used when an OpenVMS system
service, such as $ASSIGN or $QIO, fails with a status of SS$_DRVERR. Generally SS$_DRVERR
indicates a failure in the underlying device and the MRD can get the detailed device failure and
return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted 23

Chapter 2. mrd_eject

● 0x54 - SCSI to host system interface failure

2.3.3. Related Information
Functions:

● mrd_move(3mrd)

● mrd_load(3mrd)

● mrd_unload(3mrd)

● mrd_inject(3mrd)

24

Chapter 3. mrd_find_cartridge
mrd_find_cartridge - Search for a cartridge by volume tag.

3.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_find_cartridge(
 const char *robot_name,
 const char *volume_tag,
 const int element_type,
 const char *element_start,
 const int element_count,
 element_info_t *result,
 char *result_name,
 int *result_type,
 char *log_info);

3.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● volume_tag— A NUL terminated character string that is the volume tag for which to search.

● element_type — The type of robot element on which the operation takes place. If an element type
of zero (0) is used, all elements will be searched starting at element 0 of each type and searching all
the elements of that type on the robot. The order of this search is Slot, Drive, Transport and finally
Ports.

● element_start— A NUL terminated character string that is the zero relative address of the element
where the search should be started. This argument is not used when the element_type is zero (0).

● element_count — A volume tag search in a large library can take a long time. Some applications (a
graphic user interface for example) may want to break up a large search into smaller, quicker sub-
searches. When a specific element_type is specified only a range specified by the element_name and
element_count will be searched. This argument is ignored when the element_ type is zero (0).

● result_param— If an element matching the volume_tag string is found, the element_info_t will
copied into the space pointed to by result.

● result_name— The zero relative element address of the matching element will be copied into the
space pointed to by result_name. This space should be a character array of size MRD_NAME_SIZE.

● result_type— The element type of the matching element will be copied into the space pointed to by
result_type.

25

Chapter 3. mrd_find_cartridge

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

3.3. Description
This routine allows searching for the element location of a piece of media using the volume tag as a
search key. If the element_type value is zero (0), all elements will searched in the order Slot, Drive,
Transport and Port. The element_name and element_count arguments will be ignored in this case.

When a specific element type is specified, the search will be limited to that element type. The
element_name will used as the starting location for a search and element_count as the number of
elements from that address to search. Using these arguments a search of a large number of elements may
be broken up into a number of smaller searches.

When a matching element is found, the element_info_t data for that element will copied into the space
pointed to by result. The zero relative element address and element type will also be copied into the
space provided.

3.3.1. Element Info
The element_info_t data structure is defined in the include file <mrd_ common.h>. The fields of this
data structure are described below:

● name — The name field holds the volume tag of the media if applicable.

● state — The state field can have one of the following values: ELEMENT_FULL,

ELELMENT_EMPTY, or ELEMENT_EXCEPT.

● port_type — If the element_type parameter specifies PORT, the port_type field will have one of the
following values:

IN_OUT_PORT, INPORT, OUTPORT.

● status — The status field can have one of the following values:

MRD_STATUS_SLOT_INVALID, MRD_STATUS_DEVICE_INVALID,
MRD_STATUS_TRANSPORT_INVALID, MRD_STATUS_PORT_INVALID, or

MRD_STATUS_SUCCESS.

● flags — Use the ELEMENT_VALID mask on the flags field to indicate whether or not the full Read
Element Status data is valid. The ELEMENT_ PVOLTAG and ELEMENT_AVOLTAG indicate
whether the primary or alternate volume tags of the Read Element Status data are valid.

● element_addr — This is the address of the element, unadjusted for the starting address. The routine
mrd_map_element(3mrd) can be used to convert an absolute element address to a relative address
and type. This field will be set to -1 when the information is not valid.

● source_addr — On most SCSI-2 medium-changers, this is the address where a cartridge resided
before being moved to its current location. The routine mrd_map_element(3mrd) can be used to

26

Chapter 3. mrd_find_cartridge

convert an absolute element address to a relative address and type. This field will be set to -1 when
the information is not valid. On some SCSI-2 medium-changers (the DLT family loaders) this will
be the element address of the slot itself.

● data — This a copy of the SCSI-2 Read Element Status data when the ELEMENT_VALID bit
is set in the flags field. A byte-order neutral declaration of this data structure is included in the
<mrd_common.h> include file as the mrd_reades_t data structure.

3.3.2. Example
/*
 * Example of mrd_find_cartridge(3mrd). The command usage is:
 *
 * mrd_find robot_name volume_tag
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_find.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 element_info_t element ; /* Element data result */
 int status ; /* status from mrd_find_cartridge(3mrd) */
 char *robot ; /* Medium changer to search */
 char *volume_tag ; /* Volume tag for which to search */
 int type ; /* Element type result */
 char *content ; /* element content */
 char *format ; /* format to print element data */
 char address[MRD_NAME_SIZE+1] ; /* Element name result */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error text */
 char exception[BUFSIZ+1] ; /* exception buffer */

 /*
 * There are two required arguments; robot name and volume tag.
 */
 if(argc < 3) {
 printf("usage: %s robot volume-tag\n", argv[0]) ;
 exit(1) ;
 }

 robot = argv[1] ;
 volume_tag = argv[2] ;

 /*
 * Search all of the elements at the same time. With the
 * type set to zero, the values of element_address ("")
 * and element_count (0), don’t matter.
 */
 status = mrd_find_cartridge(robot, volume_tag, 0, "", 0, &element,
 address, &type, log_info) ;

 if(status != MRD_STATUS_SUCCESS)
 printf("Can’t find volume %s: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;

 /*
 * Need to print out the results of the find. This is
 * similar to that used by mrd_show, but is a bit more

27

Chapter 3. mrd_find_cartridge

 * extensive to show more features.
 */
 format = "%s\t%s\t%s\n" ; /* default format */

 if(element.name[0])
 content = element.name ;
 else if(element.state & ELEMENT_FULL)
 content = "Full" ;
 else if(element.state & ELEMENT_EXCEPT) {
 format = "%s\t%s\t%s\t%s\n" ;
 content = "Exception" ;

 (void)mrd_strexcept(element.data.asc, element.data.ascq,
 exception, BUFSIZ) ;
 }
 else
 content = "Empty" ;

 if(element.state & ELEMENT_EXCEPT)
 printf(format, mrd_strelement(type), address, content,
 exception) ;
 else
 printf(format, mrd_strelement(type), address, content) ;

 return 0 ;
}

3.3.3. Return Values
Upon successful completion, the mrd_find_cartridge(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_find_cartridge(3mrd) fails the returned status value may
be set to one of the following values. This routine may also return any of the errors descibed in the
mrd_show(3mrd) manual page.

Other values that correspond to specific SCSI errors may also be possible, but the ones below are most
likely.

3.3.3.1. Common Values

1. MRD_STATUS_PARAM

This error is returned if the robot_name, volume_tag, log_info, result, result_name, element_start or
result_type arguments are NULL pointers.

2. MRD_STATUS_NO_VISION

This error occurs in mrd_find_ cartridge(3mrd) when the medium-changer has no vision system
with which to read bar-code labels.

3. MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

4. MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

28

Chapter 3. mrd_find_cartridge

5. MRD_STATUS_TRANSPORT_INVALID

This error is returned when the element address for a transport is less than zero or greater than the
number of transports.

6. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives.

7. MRD_STATUS_INVALID_TYPE

For routines that allow the specification of an element type argument, this error indicates that
specified type was not one of SLOT, DRIVE, PORT or TRANSPORT.

8. MRD_STATUS_INSFMEM

The mrd_show(3mrd) and mrd_find_ cartridge(3mrd) functions allocate virtual memory using
malloc(3) to store temporary element data. If the attempt to allocate the memory fails, these routines
will return this error.

9. MRD_STATUS_CART_NOT_FOUND

This error is returned by mrd_ find_cartridge(3mrd) when it can't find the cartridge with the
desired volume tag.

3.3.3.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

29

Chapter 3. mrd_find_cartridge

3.3.3.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

3.3.3.4. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR This error code is used when an OpenVMS system
service, such as $ASSIGN or $QIO, fails with a status of SS$_DRVERR. Generally SS$_DRVERR
indicates a failure in the underlying device and the MRD can get the detailed device failure and
return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received30

Chapter 3. mrd_find_cartridge

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_DEVICE_INVALID This error is returned when the element address for a drive
is less than zero or greater than the number of drives. This error code is used when an OpenVMS
system service fails with the status SS$_NOSUCHDEV or SS$_IVDEVNAM. This will typically
occur in mrd_ startup(3mrd) when the caller tries to open a device which doesn't exist or uses an
invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

3.3.4. Restrictions
The SCSI-2 specification includes two commands which allow a medium-changer to perform most of the
work that this routine does by brute force. Unfortunately, a reliable implementation of these commands
was unavailable at the time MRD V1.2 was written. A future version of the API may be able to make
use of these routines to speed up a search.

Unlike mrd_show(3mrd) this routine will open and close the robot at each iteration.

3.3.5. Related Information
Functions:

● mrd_show(3mrd)

● mrd_map_element(3mrd)

31

Chapter 3. mrd_find_cartridge

32

Chapter 4. mrd_home
mrd_home - Return a cartridge whence it came.

4.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_home(
 const char *robot_name,
 const char *volume_tag,
 const char *source_name,
 const int source_type,
 char *destination_name,
 int *destination_type,
 char *log_info) ;

4.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● volume_tag — A NUL terminated character string that is the expected volume tag on the cartridge
to be moved. On robots with vision support this string will be compared with the volume tag of the
cartridge in the source slot and if it doesn't match the call will fail. This feature will not be used if
the volume_tag is NULL or the empty string.

● source_name — A NUL terminated character string that is the zero relative address of the element
which is to be used as the source of the move.

● source_type — The source_type is an integer value to indicate the type of the source_name address.
The <mrd_common.h> include file defines constants for different element types; SLOT, DRIVE,
PORT and TRANSPORT.

● destination_name — The address of space where the name of the destination address will be written
if the move is successful. An character array of MRD_NAME_SIZE bytes should be used. If the
destination_name address is NULL, the address will not be returned.

● destination_type — The address of space where the type of the destination will be copied if the move
is successful. If the destination_type address is NULL, the type will not be returned.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

33

Chapter 4. mrd_home

4.3. Description
The SCSI-2 specification for medium-changer devices allows an element to remember the source
element of the current piece of media. For example, if a mrd_load(3mrd) is performed from slot 17 to
drive 2, the element information for drive 2 will remember that the media came from slot 17. Where this
feature is implemented, it allows an application to query an element to learn the original source of the
media in it and return it.

The mrd_home(3mrd) function does this. Given a robot name and element address it will see if the
source address is valid and when it is return that media to its original location. If the source address
is invalid or the element unavailable an error will be returned. The routine will also check to see if the
media was inverted when placed in the current element and restore it to its original orientation. When
the move is complete, the resulting address and element type will be copied into destination_name and
destination_type.

If the volume_tag argument is used, the routine will verify that a cartridge with the volume tag is present
in the element before performing the move.

4.3.1. Example
/*
 * Example to do slot to slot moves. The command usage is:
 *
 * mrd_home robot_name type address [volume-tag]
 *
 * Type can be one of:
 *
 * slot, port, drive or transport
 *
 * The optional transport argument can be a transport address
 * number, the word "default" or an empty string.
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_home.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mrd_common.h>
#include <mrd_message.h>

/*
 * Given a string, resembling one of the element types,
 * return the SCSI type code for it.
 */

struct {
 int code ;
 char *string ;
} etypes[] = {
 TRANSPORT, "transport",
 SLOT, "slot",
 DRIVE, "drive",
 PORT, "port",
} ;

convert_type(char *etype)
{
 register i ;

34

Chapter 4. mrd_home

 /*
 * For each entry in the array.
 */

 for(i = 0; i < sizeof(etypes)/sizeof(etypes[0]); i++)
 /*
 * Do a case insensitive comparison, allowing
 * abbreviations. Return as soon as a match is
 * found. Return -1 if one isn’t found.
 */
#ifdef vms
 if(strncmp(etypes[i].string, etype, strlen(etype)) == 0)
#else
 if(strncasecmp(etypes[i].string,etype,strlen(etype)) == 0)
#endif
 return etypes[i].code ;
 return -1 ;
}

main(int argc, char *argv[])
{

 int status ; /* Status from mrd_home(3mrd) */
 char *robot ; /* Robot to use */
 char *element ; /* Element address */
 char *volume_tag = NULL ; /* Optional volume tag */
 int type ; /* Element type */
 char home[MRD_NAME_SIZE+1] ; /* space for return address */
 int home_type ; /* return element type */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error string */

 /*
 * Three required arguments; robot, element type and address.
 */
 if(argc < 4) {
 printf("usage: %s robot type address [volume_tag]\n",
 argv[0]) ;

 exit(1) ;
 }
 robot = argv[1] ;
 type = convert_type(argv[2]) ;
 element = argv[3] ;
 /*
 * Optional volume tag.
 */
 if(argc > 4)
 volume_tag = argv[4] ;
 /*
 * Do the operation.
 */
 status = mrd_home(robot, volume_tag, element, type,
 home, &home_type, log_info) ;

 if(status != MRD_STATUS_SUCCESS)
 printf("Home failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;
 else
 printf("The cartridge in %s %s was returned to %s %s.\n",
 mrd_strelement(type), element,
 mrd_strelement(home_type), home) ;
 return 0 ;
}

35

Chapter 4. mrd_home

4.3.2. Return Values
Upon successful completion, the mrd_home(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_home(3mrd) fails the returned status value may be set to one
of the following values. Other values that correspond to specific SCSI errors may also be possible, but
these are the most likely.

4.3.2.1. Common Codes
1. MRD_STATUS_PARAM

This error is returned if the robot_info, source_name, or log_info arguments are NULL pointers.

2. MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

3. MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

4. MRD_STATUS_TRANSPORT_INVALID

This error is returned when the element address for a transport is less than zero or greater than the
number of transports.

5. MRD_STATUS_INVALID_TYPE

For routines that allow the specification of an element type argument, this error indicates that
specified type was not one of SLOT, DRIVE, PORT or TRANSPORT.

6. MRD_STATUS_RES_INVALID

This error occurs in mrd_home(3mrd) when the element data returned from mrd_show(3mrd) is
not valid.

7. MRD_STATUS_SOURCE_INVALID

This error occurs in mrd_ home(3mrd) when the return address in the element data isn't valid.

8. MRD_STATUS_CART_INVALID

For routines that accept a volume_tag argument to perform volume tag verification, this error
indicates that the volume tag of the media doesn't match that passed to the function.

9. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives.

4.3.2.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

36

Chapter 4. mrd_home

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

4.3.2.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

37

Chapter 4. mrd_home

4.3.2.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

1. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEV or SS$_IVDEVNAM. This will typically occur in mrd_ startup(3mrd) when the
caller tries to open a device which doesn't exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

Caution

Strict interpretation of the SCSI-2 specification by devices will require that the device only report the
address of the last SLOT a medium was in.

4.3.3. Related Information
Functions:

● mrd_show(3mrd)

38

Chapter 4. mrd_home

● mrd_find_cartridge(3mrd)

● mrd_map_element(3mrd)

39

Chapter 4. mrd_home

40

Chapter 5. mrd_initialize
mrd_initialize - Send a SCSI Initialize Element Status command.

5.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_initialize(
 const char *robot_name,
 char *log_info) ;

5.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

5.3. Description
The function sends a SCSI Initialize Element Status command to the specified robot. This command is
not qualified by the TA and TF loaders. On robots where this command is qualified, it forces a physical
reinventory of the library or loader. On some library systems this may take a long time.

Most library subsystems will perform an inventory when they are powered on or have detected that the
configuration may have changed (doors opened, panels removed, etc). For this reason, this routine is
rarely needed.

5.3.1. Example
/*
 * Example of mrd_initialize(3mrd). The command usage is:
 *
 * mrd_init robot_name
 *
 * It has been observed on an empty TL820 with all the
 * bin-packs in place that this command takes just under
 * 23 minutes.
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_init.c 1.2 3/5/97" ;
#endif

41

Chapter 5. mrd_initialize

#include <stdio.h>
#include <stdlib.h>

#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 int status ; /* Status from mrd_inject(3mrd) */
 char *robot ; /* The name of the robot */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error string */
 /*
 * Accept one required argument; robot name
 */
 if(argc < 2) {
 printf("usage: %s robot\n", argv[0]) ;
 exit(1) ;
 }

 /*
 * Just use this directly from the command line.
 */
 robot = argv[1] ;

 /*
 * Because this routine can take a long time we’ll
 * provide some positive feed-back that is doing
 * something.
 */
 printf("Reinventory library %s...", robot); fflush(stdout) ;
 /*
 * Call the function. Because this routine can take a
 */
 status = mrd_initialize(robot, log_info) ;
 /*
 * Done.
 */
 putchar(’\n’) ;
 /*
 * Print an error message if there is a failure. The
 * routine mrd_strstatus(3mrd) will accept an MRD
 * error status and return the corresponding string.
 * If the log_info data has something other than a
 * NULL as the first character print it as well. It
 * typically be the SCSI sense data or a operating
 * system specific message for the error.
 */
 if(status != MRD_STATUS_SUCCESS)
 printf("Initialize failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;
 return 0 ;
}

5.3.2. Return Values
Upon successful completion, the mrd_initialize(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_initialize(3mrd) fails the returned status value may be set to
one of the following values. Other values that correspond to specific SCSI errors may also be possible,
but these are the most likely.

5.3.2.1. Common Codes
1. MRD_STATUS_PARAM

42

Chapter 5. mrd_initialize

This error is returned if the robot_name or log_info arguments are NULL pointers.

5.3.2.1.1. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

5.3.2.1.2. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

43

Chapter 5. mrd_initialize

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

5.3.2.1.3. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

5.3.3. Related Information
● MRD(3mrd)

● mrd_initialize_element(3mrd)

44

Chapter 6. mrd_initialize_element
mrd_initialize_element - Force a robot inventory operation

6.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_initialize_element(
 robot_info_t *robot_info,
 dev_status_t *dev_status) ;

6.2. Parameters
● robot_info — This is the address of a robot_info_t structure initialized using mrd_startup(3mrd)

or mrd_show(3mrd). This data structure contains the element starting address and counts for each
type of element, which are needed to map an absolute element to the correct zero relative address
and type.

● dev_status — The dev_status is the address of a dev_status_t structure, which is used to pass back
detailed error information in the event of a command failure.

6.3. Description
This routine performs a SCSI Initialize Element Status command. It is used by mrd_initialize(3mrd).
On qualified medium changers this typically causes the medium changer to perform a physical inventory
of its contents. This routine can take a long time to complete. The longest time ever observed on a
qualified medium changer was approximately 23 minutes on an empty TL820 with all bin-packs in place.
The DLT and RDAT changers may take only a few seconds.

The robot_info argument is the address of a robot_info_t that has been opened by mrd_startup(3mrd).

This routine uses the dev_status_t structure for handing errors. The dev_ status_t structure includes
the code, os_status, and SCSI error fields. The following describes how to decode errors with the
dev_status_t structure.

SCSI Errors
SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

45

Chapter 6. mrd_initialize_element

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to 0
and the value of the os_status field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

6.3.1. Example
/*
 * Example of mrd_initialize_element(3mrd). The command usage is:
 *
 * Usage:
 *
 * mrd_initialize_element robot [robot...]
 * robot_name
 *
 * It has been observed on an empty TL820 with all the bin-packs
 * in place that this command takes just under 23 minutes.
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_initialize_element.c 1.3) 6/20/97";
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 int rc ;
 int status ; /* return status */
 char *robot ; /* Robot to open */
 robot_info_t robot_info ; /* Robot data */
 dev_status_t dev_status ; /* Device status */
 char log_info[MRD_MAX_LOG_STRING+1] ;

 /*
 * Check that there are enough arguments.
 */
 if(argc < 4) {
 printf("usage: %s robot [robot...]\n", argv[0]) ;
 exit(1) ;
 }

 /*
 * Initialize the channel field of the robot_info, so
 * mrd_startup(3mrd) will actually open the robot.
 */
 robot_info.channel = BAD_CHANNEL ;

 for(rc = 1; rc < argc; rc++) {
 /*

46

Chapter 6. mrd_initialize_element

 * Save the current robot name.
 */
 robot = argv[rc] ;

 status = mrd_startup(robot, &robot_info, log_info) ;

 if(status != MRD_STATUS_SUCCESS) {
 printf("Startup failed: %s: %s.\n",
 mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;

 continue ;
 }

 printf("Initialize Element Status on %s...", robot) ;
 fflush(stdout) ;

 status = mrd_initialize_element(&robot_info, &dev_status) ;

 if(status != MRD_STATUS_SUCCESS)
 printf("Failed: %s.\n", mrd_strstatus(status)) ;
 else
 printf("Success.\n") ;

 (void)mrd_shutdown(&robot_info) ;
 }

 return 0 ;
}

6.3.2. Return Values
Upon successful completion mrd_initialize_element(3mrd) will return MRD_ STATUS_SUCCESS.
On a failure, an MRD_STATUS value corresponding to the error will be returned. Common errors are:

6.3.2.1. Common Codes
1. 1. MRD_STATUS_PARAM

This error is returned if the robot_info or dev_ status arguments are NULL pointers. The
dev_status structure is unchanged, even if a valid address is provided.

2. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

This error occurs when the medium changer does not qualify the Initialize Element Status
command.

It is also used for a SCSI command failure, when the ASC is set to one of:

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

● 0x26 - Threshold parameters not supported

47

Chapter 6. mrd_initialize_element

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

6.3.2.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

6.3.2.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_EBADF

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

6.3.2.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_IVCHAN

This error code is used when an OpenVMS system service fails with the status SS$_IVCHAN. It is
likely when an operating system specific routine is used on a device that hasn't been opened by mrd_
startup(3mrd).

6.3.3. Related Information
Functions:

mrd_initialize(3mrd)

48

Chapter 7. mrd_inject
mrd_inject - Move a cartridge from an inport to a slot

7.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

include <mrd_common.h>
include <mrd_message.h>

int mrd_inject(
 const char *robot_name,
 const char *volume_tag,
 const char *port,
 const char *slot,
 char *log_info) ;

7.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● volume_tag — A NUL terminated character string that is the expected volume tag on the cartridge
to be moved. On robots with vision support this string will be compared with the volume tag of the
cartridge in the source slot and if it doesn't match the call will fail. This feature will not be used if
the volume_tag is NULL or the empty string.

● port — A NUL terminated character string that is the zero relative address of the port which is to be
used as the destination of the move.

● slot — A NUL terminated character string that is the zero relative address of the slot which is to be
used as the source of the move.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

7.3. Description
The mrd_inject(3mrd) function is a specialized interface to the SCSI Move Medium command. For the
robot specified by robot_name, the routine will attempt to move the cartridge in the specified port to the
specified slot. Element addresses are zero based.

The robot will be opened and the arguments to the function will be verified to make sure they are safe
and appropriate. The port and slot address will be verified they are within the valid of those elements on
the robot.

49

Chapter 7. mrd_inject

The volume_tag argument can be used to perform cartridge volume tag verification before the
move. If the cartridge volume tag at the port doesn't match that specified by this argument, then
mrd_inject(3mrd) will fail with the status MRD_STATUS_CART_INVALID. If volume_tag argument
is a NULL pointer, an empty string or used on a robot without vision support this argument is silently
ignored and the volume tag check will not be made.

The TL820 family requires special handling within the mrd_inject(3mrd) routine, because of the way
the Input/Output Device (IOD) works. This routine will explicitly check the specified inport to see if
it is full. If empty and the robot is a TL820, the Pass-through mechanism will then be checked. If the
PTM is full the source address will be reset to the PTM. If both are empty, the routine will send a Ready
Inport command to enable the IOD. A one minute polling loop will be performed waiting for the inport
to become full, five seconds between polls. If this first loop fails, the Ready Inport will be sent again and
the loop repeated. This allows the user two minutes to put a tape into the inport.

If volume tag verification is desired on the TL820, the cartridge will be moved to the PTM so the
volume tag can be read. If the check fails, the cartridge will left on the PTM. If the mrd_inject(3mrd)
is repeated with the correct volume tag or without one, the cartridge will be found on the PTM and the
Move Medium command will proceed from there.

7.3.1. Example
/*
* Example of mrd_inject(3mrd). The command usage is:
*
* mrd_inject robot_name port slot [volume_tag]
*/
#ifndef lint
static char SccsId[] = "@(#)mrd_inject.c 1.2 3/5/97" ;
#endif
#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>
main(int argc, char *argv[])
{
 int status ; /* Status from mrd_inject(3mrd) */
 char *robot ; /* The name of the robot */
 char *volume_tag = NULL ; /* Optional volume tag to check */
 char *port ; /* Source port */
 char *slot ; /* Destination slot */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error string */
 /*
 * Accept three required argument; robot, port and slot. The
 * volume tag is optional.
 */
 if(argc < 4) {
 printf("usage: %s robot port slot [volume-tag]\n", argv[0]);
 exit(1) ;
 }

 /*
 * Just use these directly from the command line.
 */
 robot = argv[1] ;
 port = argv[2] ;
 slot = argv[3] ;

 /*
 * If the volume tag is present use it.
 */
 if(argc > 4)

50

Chapter 7. mrd_inject

 volume_tag = argv[4] ;

 /*
 * Call the function.
 */
 status = mrd_inject(robot, volume_tag, port, slot, log_info) ;

 /*
 * Print an error message if there is a failure.
 */
 if(status != MRD_STATUS_SUCCESS)
 printf("Inject failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;
 else
 printf("Injected media from Port #%s to Slot #%s.\n",
 port, slot) ;

 return 0 ;
}

7.3.2. Return Values
Upon successful completion, the mrd_inject(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_inject(3mrd) fails the returned status value may be set to one
of the following values. Other values that correspond to specific SCSI errors may also be possible, but
these are the most likely.

7.3.2.1. Common Codes
1. MRD_STATUS_PARAM

This error is returned if the robot_name, log_ info, slot, or port arguments are NULL pointers.

2. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

It is used when a sanity check fails in the code that attempts to move a cartridge to the Pass-Through
Mechanism, when the robot type isn't a TL82n.

It is also used for a SCSI command failure, when the ASC is set to one of:

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

● 0x26 - Threshold parameters not supported

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

51

Chapter 7. mrd_inject

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

3. MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

4. MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

5. MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

6. MRD_STATUS_DESTINATION_FULL

On routines that perform a SCSI Move Medium command, this error indicates that the destination
element already has a cartridge in it.

7. MRD_STATUS_CART_INVALID

For routines that accept a volume_tag argument to perform volume tag verification, this error
indicates that the volume tag of the media doesn't match that passed to the function.

8. MRD_STATUS_ROBOT_MECH_ERROR

This error occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x15 - Positioning error.

● 0x8B - Vendor unique; Pass-through mechanism errors on the TL82n

9. MRD_STATUS_VENDOR_UNIQUE_ERROR

This error occurs when the internal routine used to decode SCSI-2 errors encounters an error that it
has not been written to antipicate.

This error is also returned when the ASC is zero and the ASCQ is not one of zero or six, and when
ASC/ASCQ are both zero and the key is 9h.

7.3.2.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

52

Chapter 7. mrd_inject

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

7.3.2.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

7.3.2.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

53

Chapter 7. mrd_inject

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

7.3.3. Related Information
Functions:

● mrd_move(3mrd)

● mrd_load(3mrd)

● mrd_unload(3mrd)

● mrd_eject(3mrd)

● mrd_ready_inport(3mrd)

54

Chapter 8. mrd_load
mrd_load - Move a piece of media from slot to drive.

8.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_load(
 const char *robot_name,
 const char *volume_tag,
 const char *slot,
 const short cartridge_side,
 const char *drive,
 char *log_info) ;

8.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● volume_tag — A NUL terminated character string that is the expected volume tag on the cartridge
to be moved. On robots with vision support this string will be compared with the volume tag of the
cartridge in the source slot and if it doesn't match the call will fail. This feature will not be used if
the volume_tag is NULL or the empty string.

● slot — A NUL terminated character string that is the zero relative address of the slot which is to be
used as the source of the move.

● cartridge_side — The cartridge_side indicates whether the media should be inverted as it is being to
moved to the destination element. If the value 1 is used, the media will not be inverted. If the value 2
is used the media will be inverted.

● drive — A NUL terminated character string that is the zero relative address of the drive which is to
be used as the destination of the move.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

8.3. Description
The mrd_load(3mrd) function is a specialized interface to the SCSI Move Medium command (or
DSA equivalent). For the robot specified by robot_name, the routine will attempt to move the cartridge
in the specified slot to the specified drive. Element addresses are zero based. On subsystems that

55

Chapter 8. mrd_load

support inverting a cartridge during a move, the cartridge_side argument can be used to indicate that the
cartridge should be inverted.

The robot will be opened and the arguments to the function will be verified to make sure they are safe
and appropriate. The slot and drive address will be verified they are within the valid of those elements on
the robot.

The volume_tag argument can be used to perform cartridge volume tag verification before the
move. If the cartridge volume tag at the port doesn't match that specified by this argument, then
mrd_load(3mrd) will fail with the status MRD_STATUS_CART_INVALID. If volume_tag argument
is a NULL pointer, an empty string or used on a robot without vision support this argument is silently
ignored and the volume tag check will not be made.

8.3.1. Example
/*
 * Example of mrd_load(3mrd). The command usage is:
 *
 * mrd_load robot_name slot drive [volume_tag]
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_load.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 int status ; /* Status from mrd_load(3mrd) */
 short side = 1 ; /* Only support single sided media */
 char *robot ; /* The name of the robot */
 char *volume_tag = NULL ; /* Optional volume tag to check */
 char *slot ; /* Source slot */
 char *drive ; /* Destination drive */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error string */

 /*
 * Accept three required argument; robot, port and slot. The
 * volume tag is optional.
 */
 if(argc < 4) {
 printf("usage: %s robot slot drive [volume-tag]\n", argv[0]);
 exit(1) ;
 }

 /*
 * Just use these directly from the command line.
 */
 robot = argv[1] ;
 slot = argv[2] ;
 drive = argv[3] ;

 /*
 * If the volume tag is present use it.
 */
 if(argc > 4)
 volume_tag = argv[4] ;

 /*
 * Call the function.

56

Chapter 8. mrd_load

 */
 status = mrd_load(robot, volume_tag, slot, side, drive, log_info);

 /*
 * Print an error message if there is a failure.
 */
 if(status != MRD_STATUS_SUCCESS)
 printf("Load failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;
 else
 printf("Loaded media in Slot #%s to Drive #%s\n",
 slot, drive) ;

 return 0 ;
}

8.3.2. Return Values
Upon successful completion, the mrd_load(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_load(3mrd) fails the returned status value may be set to one of
the following values. Other values that correspond to specific SCSI errors may also be possible, but these
are the most likely.

8.3.2.1. Common Codes
1. MRD_STATUS_PARAM

This error is returned if the robot_name, log_ info, slot, or drive arguments are NULL pointers.

2. MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

3. MRD_STATUS_CART_SIDE_INVALID

For routines that use the cartridge_side argument, this error indicates that the value is neither one (1)
nor two (2).

4. MRD_STATUS_CART_INVALID

For routines that accept a volume_tag argument to perform volume tag verification, this error
indicates that the volume tag of the media doesn't match that passed to the function.

5. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives.

6. MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

7. MRD_STATUS_DESTINATION_FULL

On routines that perform a SCSI Move Medium command, this error indicates that the destination
element already has a cartridge in it.

57

Chapter 8. mrd_load

8.3.2.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

8.3.2.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

58

Chapter 8. mrd_load

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

8.3.2.4. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEV or SS$_IVDEVNAM. This will typically occur in mrd_ startup(3mrd) when the
caller tries to open a device which doesn't exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

8.3.3. Related Information
Functions:

59

Chapter 8. mrd_load

● mrd_move(3mrd)

● mrd_unload(3mrd)

● mrd_inject(3mrd)

● mrd_eject(3mrd)

60

Chapter 9. mrd_lock
mrd_lock - Send a SCSI Prevent-Allow Media Removal command

9.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_lock(
 const char *robot_name,
 const int lock_value,
 char *log_info) ;

9.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● lock_value — This value indicates whether the the routine should prevent or allow media removal
for the robot. The include file <mrd_common.h> defines two constants PREVENT_REMOVAL and
ALLOW_REMOVAL that will set the correct value.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

9.3. Description
This routine sends a SCSI Prevent-Allow Media Removal command. Some robots have been observed
to silently ignore the command, others will fail with an illegal request and others will do something
particular to the robot. This command is not supported on the DSA medium-changers (TA and TF
drives). SCSI defines this a single command where the value of a single bit determines the affect.

On some versions of TL820 firmware, the command PREVENT_REMOVAL will disable Move
Medium commands to the outport. Other versions will also disable Move Medium commands from
the inport. Other models will ignore the command entirely. The TL810 family of libraries use the
command to disable the front panel button which allows opening the port door. Please refer to your
robot's documentation to see what affect this command will have.

9.3.1. Return Values
Upon successful completion, the mrd_lock(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_lock(3mrd) fails the returned status value may be set to one of

61

Chapter 9. mrd_lock

the following values. Other values that correspond to specific SCSI errors may also be possible, but these
are the most likely.

9.3.1.1. Common Codes
1. MRD_STATUS_PARAM

This error is returned if the robot_name or log_info arguments are NULL pointers.

2. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

This is used in the mrd_lock(3mrd) code when the value is not one of ALLOW_REMOVAL or
PREVENT_REMOVAL.

It is also used for a SCSI command failure, when the ASC is set to one of:

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

● 0x26 - Threshold parameters not supported

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

9.3.1.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

62

Chapter 9. mrd_lock

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

9.3.1.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

9.3.1.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

63

Chapter 9. mrd_lock

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

9.3.2. Related Information
Functions:

mrd_prevent_allow(3mrd)

64

Chapter 10. mrd_map_element
mrd_map_element - Map an absolute element address to a zero relative one.

10.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_map_element(
 const robot_info_t *robot_info,
 const int address,
 char *result) ;

10.2. Parameters
● robot_info — This is the address of a robot_info_t structure initialized using mrd_startup(3mrd)

or mrd_show(3mrd). This data structure contains the element starting address and counts for each
type of element, which are needed to map an absolute element to the correct zero relative address
and type.

● address — This is the absolute element address that is to be mapped.

● result — This is the address where the zero relative element address is to be written. Like other
element addresses used by the Media Robot Driver Library, it is a character string. A character array
of MRD_NAME_SIZE bytes should be used.

10.3. Description
Given a robot_info_t structure and absolute element address, this routine figures out the corresponding
element type and zero relative address. The relative address is formatted into the space provided by result
and the element type is returned.

A valid robot_info_t structure can be obtained by using mrd_startup(3mrd) or mrd_show(3mrd) to
open the robot and fill in the robot_info_t structure.

The SCSI-2 specification allows an absolute address of zero (0) to refer to a default transport, when a
medium-changer has more than one. When handed zero as the absolute address, this routine will reflect
this convention even if the particular medium-changer doesn't.

10.3.1. Example
/*
 * For the specified robot, walk through the remainder of
 * argument list and have mrd_map_element(3mrd) convert
 * each address to a relative element address and type.
 *
 * mrd_map_element robot address [address...]
 */

65

Chapter 10. mrd_map_element

#ifndef lint
static char SccsId[] = "@(#)mrd_map_element.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 char *robot ; /* Robot for command */
 int status ; /* status from mrd_startup(3mrd) */
 int address ; /* Input argument */
 int type ; /* element type */
 int i ; /* index counter */
 robot_info_t robot_info ; /* Set by mrd_startup(3mrd) */
 char result[MRD_NAME_SIZE+1] ; /* relative address */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error text */

 /*
 * Two required arguments, many optional ones.
 */
 if(argc < 3) {
 printf("usage: %s robot address [address...]\n", argv[0]) ;
 exit(1) ;
 }
 else
 robot = argv[1] ;

 /*
 * Open the robot. Must set channel to BAD_CHANNEL so
 * it will really open the robot.
 */
 robot_info.channel = BAD_CHANNEL ;

 status = mrd_startup(robot, &robot_info, log_info) ;

 if(status != MRD_STATUS_SUCCESS) {
 printf("Can’t open robot %s: %s: %s.\n", robot,
 mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;

 exit(1) ;
 }

 /*
 * We don’t need to keep the robot for the remainder of
 * the example.
 */
 (void)mrd_shutdown(&robot_info) ;
 /*
 * For each address in the list, call mrd_map_element(3mrd).
 */
 for(i = 2; i < argc; i++) {
 address = atoi(argv[i]) ;

 type = mrd_map_element(&robot_info, address, result) ;

 if(type == 0)
 printf("Can’t map %d on robot %s.\n", address, robot) ;
 else
 printf("Element %d -> %s %s\n", address,
 mrd_strelement(type), result) ;
 }

66

Chapter 10. mrd_map_element

 return 0 ;
}

10.3.2. Return Values
Upon successful completion, the mrd_map_element(3mrd) function returns the element type, which is
one of SLOT, PORT, DRIVE or TRANSPORT. On an error it returns zero (0). The two possible errors
are the robot_info address being NULL and the address not one used by this medium-changer.

10.3.3. Related Information
Functions:

● mrd_show(3mrd)

● mrd_home(3mrd)

● mrd_find_cartridge(3mrd)

67

Chapter 10. mrd_map_element

68

Chapter 11. mrd_message
11.1. Media Robot Driver Library
● mrd_strstatus - Maps MRD error codes to message strings.

● mrd_strelement - Maps MRD_ELEMENT codes to descriptive words.

● mrd_strexcept - I18N MRD messages and strings.

The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

char *mrd_strstatus(int code) ;

char *mrd_strexcept(
 unsigned char asc,
 unsigned char ascq,
 char *buffer,
 size_t length) ;

char *mrd_strelement(int code) ;

11.2. Parameters
● code — For mrd_strstatus(3mrd) this is the status code returned from one of the MRD functions.

For mrd_strelement(3mrd) this is a code number corresponding to a number of common strings
that may occur in an appliation using MRD.

● asc — This is the SCSI Additional Sense Code (ASC) in the element status data (data.asc) obtained
from the mrd_show(3mrd) or mrd_find_ cartridge(3mrd) functions.

● ascq — This is the SCSI Additional Sense Code Qualifer (ASCQ) in the element status data
(data.ascq) obtained from the mrd_show(3mrd) or mrd_find_cartridge(3mrd) functions.

● buffer — This is the address of a user supplied buffer, into which the message corresponding to the
provided ASC/ASCQ code will be copied. This message is formatted to include the ASC/ASCQ
codes in hexadecimal.

● length — This is size of the buffer provided. No more than length characters will be copied from the
internal temporary buffer to the user's buffer. The internal buffer is limited to BUFSIZ characters.

11.3. Description
These routines offer an interface to convert MRD status codes, element exception codes and constants
for other common words into internationalized text. The message catalogs used by these routines are the

69

Chapter 11. mrd_message

same ones used by the Media Robot Utility command line interface. However, if no message catalog is
available, a standard default message will be used for each code.

The routine mrd_strstatus(3mrd) accepts MRD error codes and returns the corresponding message
string from the catalog.

The routine mrd_strelement(3mrd) accepts one of the MRD_ELEMENT codes defined in
<mrd_message.h> and returns the corresponding word. An effort has been made to ensure that the first
four code values correspond to the SCSI element types of SLOT, DRIVE, PORT and TRANSPORT, but
the routine will remap these values to corresponding MRD_ELEMENT codes and return that string.

The routine mrd_strexcept(3mrd) accepts the ASC/ASCQ code set in the element_info_t structure
from an mrd_show(3mrd) or mrd_find_

cartridge(3mrd) when the ELEMENT_EXCEPT bit is set in the data.state field. Using the user
provided buffer and length it will format the corresponding message to include the ASC/ASCQ values
and return a pointer to the space.

Since many of these code are vendor specific, we're unable to provide translations for all them, but we
have made an effort to include the translations for many of the exception codes on supported medium-
changers.

11.3.1. Codes Translated
The following MRD_ELEMENT codes are those currently supported by mrd_ strelement(3mrd), with
their corresponding default strings.

Most of the codes listed below are self-explanatory:

● MRD_ELEMENT_TRANSPORT

● MRD_ELEMENT_SLOT

● MRD_ELEMENT_PORT

● MRD_ELEMENT_DRIVE

● MRD_ELEMENT_EMPTY

● MRD_ELEMENT_FULL

● MRD_ELEMENT_EXCEPT

● MRD_ELEMENT_ACCESS

● MRD_ELEMENT_INPORT

This code is suitable for use when the ELEMENT_IMPENB bit is set in the state and data.state field
of the element_info_t data.

● MRD_ELEMENT_OUTPORT - OUTPORT.

This code is suitable for use when the ELEMENT_EXPENB bit is set in the state and data.state
field of the element_info_t data.

70

Chapter 11. mrd_message

● MRD_ELEMENT_IOPORT

This code suitable for use when the ELEMENT_IMPENB and ELEMENT_EXPENB bits are set in
the state and data.state field of the element_info_t data.

● MRD_ELEMENT_PASS

This code suitable in those cases where the Pass-through mechanism of the TL820 can be identified.
Currently, the only way to do this is to know the absolute address of the PTM depending on whether
the library is in Multi-unit Single-LUN (Transport 1) mode or Single-unit Single-LUN (Port 2)
mode.

● MRD_ELEMENT_MYSTERY

This code is suitable when neither the ELEMENT_IMPENB nor ELEMENT_EXPENB bits are set
in the state and data.state field of the element_info_t data. Most medium-changers identify their
ports, when they have one or the other, or both.

11.3.2. Example
/*
 * Illustrate the different mrd_str*(3mrd) functions. For each
 * case a code from one the mrd_message.h is selected and the
 * resulting string printed. The command doesn’t require
 * any arguments.
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_string.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 /*
 * This happens to be an obscure VMS system service error code.
 */
 int status = MRD_STATUS_UNASEFC ;
 /*
 * The code for the TL820 Pass-through mechanism.
 */
 int word = MRD_ELEMENT_PASS ;
 /*
 * The codes for when a TL820 doesn’t a have a bin-pack
 * installed for a certain range of slots.
 */
 char asc = 0x80 ;
 char ascq = 0x2 ;
 /*
 * Buffer for the message.
 */
 char buffer[BUFSIZ] ;

 printf("Status: %s\n", mrd_strstatus(status)) ;
 printf("Word: %s\n", mrd_strelement(word)) ;
 printf("Exception: %s\n", mrd_strexcept(asc,ascq,buffer,BUFSIZ));

 return 0 ;
}

71

Chapter 11. mrd_message

11.3.3. Return Values
These routines try very hard to return the corresponding error text, even to the point of formatting the
integer value into the provided string, into a static buffer or returning a default string. These routines
should never return NULL, but they rely on catgets(3) to do the underlying work of looking the error
code in the message catalogs.

11.3.4. Related Information
Functions:

● mrd_move(3mrd)

● mrd_load(3mrd)

● mrd_unload(3mrd)

● mrd_inject(3mrd)

● mrd_eject(3mrd)

● mrd_show(3mrd)

● mrd_ready(3mrd)

● mrd_position(3mrd)

● mrd_initialize(3mrd)

● mrd_home(3mrd)

● mrd_find_cartridge(3mrd)

● mrd_lock(3mrd)

● mrd_unlock(3mrd)

File:

These additional files support programming in the Tru64 UNIX environment.

</usr/lib/nls/msg/en_LOCALE/mrd.cat>

</usr/include/mrd_message.h>

72

Chapter 12. mrd_move
mrd_move - Move media from one location to another

12.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_move(
 const char *robot_name,
 const char *volume_tag,
 const char *source,
 const int source_type,
 const char *destination,
 const int destination_type,
 const int cartridge_side,
 char *log_info) ;

12.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● volume_tag — A NUL terminated character string that is the expected volume tag on the cartridge
to be moved. On robots with vision support this string will be compared with the volume tag of the
cartridge in the source slot and if it doesn't match the call will fail. This feature will not be used if
the volume_tag is NULL or the empty string.

● source — The source is a character string which is the zero based element address that is to be used
as the source of the move.

● source_type — The source_type is an integer value to indicate the type of the source_name address.
The <mrd_common.h> include file defines constants for different element types; SLOT, DRIVE,
PORT and TRANSPORT.

● destination — The destination is a character string which is the zero based element address that is to
be used as the destination of the move.

● destination_type — The destination_type is an integer value to indicate the element type of the
destination address. The <mrd_common.h> include file defines constants for different element
types; SLOT, DRIVE, PORT and TRANSPORT.

● cartridge_side — The cartridge_side indicates whether the media should be inverted as it is being to
moved to the destination element. If the value 1 is used, the media will not be inverted. If the value 2
is used the media will be inverted.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense

73

Chapter 12. mrd_move

data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

12.3. Description
The mrd_move(3mrd) function is an interface to the SCSI Move Medium command. For the robot
specified by robot_name, the routine will attempt to move the cartridge in the element specified by the
source address and type to that specified by the destination address and type.

Element addresses are zero based. On subsystems that support inverting a cartridge during a move, the
cartridge_side argument can be used to indicate that the cartridge should be inverted.

The robot will be opened and the arguments to the function verified that they are appropriate. Element
addresses and types will be checked that they are within the valid range of elements on the robot.
The cartridge_side argument will be verified that it is either the value one (1) or two (2). All pointer
arguments, except cartridge_name, are checked to verify they are not NULL pointers.

The cartridge_name argument can be used to perform cartridge volume tag verification before the
move. If the cartridge volume tag at the source doesn't match that specified by this argument, then
mrd_move(3mrd) will fail with the status MRD_STATUS_CART_INVALID. If the cartridge_name
argument is a NULL pointer, an empty string or used on a robot without vision support this argument is
silently ignored and the volume tag check will not be made.

On the TL820 family of libraries, the tape will be moved to the pass-through read station if the source
is a Port. If this move fails the status will be appropriate to that of a failed Move Medium. Likely error
codes are documented in the Return Values section.

After the volume tag check, the destination address is checked in the same way the source was. The
same error codes are returned if the destination address

is out of range. With the range checks completed the Move Medium command is issued. If successful
MRD_STATUS_SUCCESS is returned. If the command

failed, the SCSI error will be mapped to the appropriate MRD_STATUS message.

The DLT libraries (TL820 and TL810 families) require the host issue a SCSI Unload command before
a cartridge may be removed from the drive. The function mrd_move(3mrd), does not offer this feature.
Thus, the calling program must do this itself. On Tru64 UNIX this may done with the MTOFFL opcode
of the MTIOCTOP I/O control.

12.3.1. Example
/*
 * Example to do slot to slot moves, using mrd_move(3mrd). The
 * reason for only doing slot to slot, is that it simplifies
 * having to figure out element types. The mrd_position(3mrd)
 * example shows how part of this may be done.
 *
 * The command usage is:
 *
 * mrd_move source-slot destination-slot [volume-tag]
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_move.c 1.2 3/5/97" ;
#endif

74

Chapter 12. mrd_move

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 int status ; /* Status from mrd_move(3mrd) */
 int side = 1 ; /* Only support side one */
 char *robot ; /* Name of the robot to use */
 char *volume_tag = NULL ; /* Volume tag to check */
 char *source ; /* Source slot */
 char *destination ; /* Destination slot */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error string */

 /*
 * Three required arguments; robot name, source slot and
 * destination slot.
 */
 if(argc < 4) {
 printf("usage: %s robot src dest [volume-tag]\n", argv[0]) ;
 exit(1) ;
 }

 robot = argv[1] ;
 source = argv[2] ;
 destination = argv[3] ;

 /*
 * Volume tag is optional.
 */
 if(argc > 4)
 volume_tag = argv[4] ;

 /*
 * Do the operation.
 */
 status = mrd_move(robot, volume_tag, source, SLOT, destination,
 SLOT, side, log_info) ;

 if(status != MRD_STATUS_SUCCESS)
 printf("Move failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;
 else
 printf("Moved media from Slot #%s to Slot #%s\n",
 source, destination) ;

 return 0 ;
}

12.3.2. Return Values
Upon successful completion, the mrd_move(3mrd) function returns the value
MRD_STATUS_SUCCESS. If mrd_move(3mrd) fails the returned status value may be set to one of
the following values. Other values that correspond to specific SCSI errors may also be possible, but these
are the most likely.

12.3.2.1. Common Codes
1. MRD_STATUS_PARAM

This error is returned if the robot_name, source, destination, or log_info arguments are NULL
pointers.

75

Chapter 12. mrd_move

2. MRD_STATUS_CART_SIDE_INVALID

For routines that use the cartridge_side argument, this error indicates that the value is neither one (1)
nor two (2).

3. MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

4. MRD_STATUS_TRANSPORT_INVALID

This error is returned when the element address for a transport is less than zero or greater than the
number of transports.

5. MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

6. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives.

7. MRD_STATUS_INVALID_TYPE

For routines that allow the specification of an element type argument, this error indicates that
specified type was not one of SLOT, DRIVE, PORT or TRANSPORT.

8. MRD_STATUS_CART_INVALID

For routines that accept a volume_ tag argument to perform volume tag verification, this error
indicates that the volume tag of the media doesn't match that passed to the function.

9. MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

10. MRD_STATUS_DESTINATION_FULL

On routines that perform a SCSI Move Medium command, this error indicates that the destination
element already has a cartridge in it.

11. MRD_STATUS_CART_NOT_AVAIL

This error can occur on the TL81n and TL82n family of DLT libraries when the source of a move is
a drive and the cartridge in the drive is still on-line. These robots do not allow moving the cartridge
until the drive is taken offline.

12.3.2.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

76

Chapter 12. mrd_move

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

12.3.2.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

77

Chapter 12. mrd_move

12.3.2.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEV or SS$_IVDEVNAM. This will typically occur in mrd_startup(3mrd) when the
caller tries to open a device which doesn't exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

3. MRD_STATUS_CART_NOT_AVAIL

This error can occur on the TL81n and TL82n family of DLT libraries when the source of a move is
a drive and the cartridge in the drive is still on-line. These robots do not allow moving the cartridge
until the drive is taken offline.

On OpenVMS this can be done with $DISMOU system service.

12.4. Related Information
Functions:

78

Chapter 12. mrd_move

● mrd_load(3mrd)

● mrd_unload(3mrd)

● mrd_inject(3mrd)

● mrd_eject(3mrd)

● mrd_ready(3mrd)

79

Chapter 12. mrd_move

80

Chapter 13. mrd_move_medium
mrd_move_medium - Move media from one location to another

13.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_move_medium(
 robot_info_t *robot_info,
 int transport,
 int source,
 int destination,
 int invert,
 dev_status_t *dev_status) ;

13.2. Parameters
● robot_info — This is the address of a robot_info_t structure initialized using mrd_startup(3mrd)

or mrd_show(3mrd). This data structure contains the element starting address and counts for each
type of element, which are needed to map an absolute element to the correct zero relative address
and type.

● transport — The transport is the numeric value of the transport which will be moved.

● source — The source is an absolute element address.

● destination— The destination is an absolute element address.

● invert — The invert is a numeric value used to indicate if the medium should be inverted when it is
moved. A value of one (1) is used to indicate that the medium should be inverted.

● dev_status — The dev_status is the address of a dev_status_t structure, which is used to pass back
detailed error information in the event of a command failure.

13.3. Description
This routine performs a SCSI Move Medium command, or equivalent if some other I/O architecture
is supported. It is used by mrd_move(3mrd), mrd_ load(3mrd), mrd_unload(3mrd),
mrd_inject(3mrd) and mrd_eject(3mrd). Since it accepts a robot_info_t structure associated with an
open medium changer it can be used to perform multiple move commands, without having to re-open
the medium changer as the other functions that use it do.

The robot_info argument is the address of a robot_info_t that has been opened by mrd_startup(3mrd).
If the medium changer isn't opened, the Move Medium command will fail with the operating system
error for trying to use an unopened device. On SCSI medium changers, it maps directly to the SCSI
Move Medium command.

81

Chapter 13. mrd_move_medium

The transport address is the absolute address of the transport element to be used for the command.
Many medium changers allow the use of address zero (0) as the default transport, but some may require
a transport address that is valid for the medium changer. For single transport medium changers, the
transport base address in the robot_info_t structure, transport_start is a suitable address.

The source and destination addresses are absolute addresses to be used as the source and destination for
the move. The absolute address can be calculated from a zero relative address by adding it to the base
address for the element type. The routine makes no checks for the validity of the address, relying on the
medium changer to do this.

A invert value of one (1) can be used on medium changers that support inverting the media, when this is
desired; an optical drive with two sided media. Otherwise a value of zero should be used.

This routine uses the dev_status_t structure for handing errors. The dev_ status_t structure includes
the code, os_status, and SCSI error fields. The following describes how to decode errors with the
dev_status_t structure.

SCSI Errors
SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to 0
and the value of the os_status field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

13.3.1. Absolute Element Addresses
The operating system interface routines use absolute SCSI element addresses, instead of zero relative
address as used by the higher level functions. A zero based element address can be converted to an
absolute address by adding the element base address from the robot_info_t structure.

int slot ;
robot_info_t robot_info ;

/*
 * An relative starting address.
 */
slot = 3 ;

/*
 * Becoming an absolute address.
 */

82

Chapter 13. mrd_move_medium

slot += robot_info.slot_start ;

13.3.2. Example
/*
 * This is an example of using mrd_move_medium(3mrd) directly to
 * move a cartridge from one slot to another. To simplify the
 * example, it only supports slot to slot moves, but it shows
 * how the absolute element addresses are calcuated. For each
 * additional destination address given, the previous (successful)
 * destination address is used as the source.
 *
 * Usage:
 *
 * mrd_move_medium robot source dest [dest...]
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_move_medium.c 1.4 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 int i ; /* counter */
 int source ; /* Source address */
 int dest ; /* Destination address */
 int invert = 0 ; /* Assume it can’t invert */
 int transport ; /* Transport address */
 int status ; /* return status */
 char *robot ; /* Robot to open */
 robot_info_t robot_info ; /* Robot data */
 dev_status_t dev_status ; /* Device status */
 char log_info[MRD_MAX_LOG_STRING+1] ;
/*
 * Check that there are enough arguments.
 */
if(argc < 4) {
 printf("usage: %s robot source dest [dest...]\n", argv[0]) ;
 exit(1) ;
}
else {
 robot = argv[1] ;
 source = atoi(argv[2]) ;
}

/*
 * Initialize the channel field of the robot_info, so
 * mrd_startup(3mrd) will actually open the robot.
 */
robot_info.channel = BAD_CHANNEL ;

status = mrd_startup(robot, &robot_info, log_info) ;

if(status != MRD_STATUS_SUCCESS) {
 printf("Startup failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;

 exit(1) ;
}

/*

83

Chapter 13. mrd_move_medium

 * Set the transport address. If there is only one
 * transport use the correct address. If there is
 * more than one assume that the medium changer
 * supports zero as the default.
 */
if(robot_info.transport_count == 1)
 transport = robot_info.transport_start ;
else
 transport = 0 ;

/*
 * Turn the relative slot address into an absolute slot
 * address by adding the slot start address.
 */
source += robot_info.slot_start ;
/*
 * For each destination address on the command line,
 * move the the cartridge in the source to the
 * destination. After each (successful) move, replace
 * the previous source with this destination.
 */
for(i = 3; i < argc; i++) {
 /*
 * Calculate the absolute address.
 */
 dest = atoi(argv[i]) + robot_info.slot_start ;

 /*
 * Print an audit as we go. Since we know these
 * are slots, convert back to relative addresses
 * for the audit.
 */
 printf("Move the medium in slot %d to slot %d\n",
 source - robot_info.slot_start,
 dest - robot_info.slot_start) ;

 status = mrd_move_medium(&robot_info, transport, source,
 dest, invert, &dev_status) ;
 if(status != MRD_STATUS_SUCCESS) {
 printf("Move failed on %s: %s\n", robot,
 mrd_strstatus(status)) ;

 /*
 * Since the cartridge didn’t move, don’t
 * reset the source, by skipping the remainder
 * of the loop.
 */
 continue ;
 }
 /*
 * Make the next source, this destination.
 */
 source = dest ;
 }
 (void)mrd_shutdown(&robot_info) ;

 return 0 ;
}

13.3.3. Return Values
Upon successful completion, mrd_move_medium(3mrd) will return MRD_ STATUS_SUCCESS. On a
failure, an MRD_STATUS value corresponding to the error will be returned. Common errors are:

84

Chapter 13. mrd_move_medium

13.3.3.1. Common Codes

1. MRD_STATUS_PARAM

This error is returned if the robot_info or dev_status arguments are NULL pointers.

2. MRD_STATUS_CART_NOT_AVAIL

This error can occur on the TL81n and TL82n family of DLT libraries when the source of a move is
a drive and the cartridge in the drive is still on-line. These robots do not allow moving the cartridge
until the drive is taken offline.

3. MRD_STATUS_DESTINATION_FULL

On routines that perform a SCSI Move Medium command, this error indicates that the destination
element already has a cartridge in it.

4. MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

5. MRD_STATUS_ELEMENT_INVALID

This error occurs when a SCSI command fails with the ASC set to 0x21. The log_info will contain
the ASCQ. This indicates that an invalid element address reached the medium-changer. For example,
specifying the 13th slot when only 12 slots are present.

13.3.3.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

2. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

85

Chapter 13. mrd_move_medium

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

13.3.3.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_EBADF

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

13.3.3.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_CART_NOT_AVAIL

This error can occur on the TL81n and TL82n family of DLT libraries when the source of a move is
a drive and the cartridge in the drive is still on-line. These robots do not allow moving the cartridge
until the drive is taken offline.

On OpenVMS this can be done with $DISMOU system service.

2. MRD_STATUS_IVCHAN This error code is used when an OpenVMS system service fails with the
status SS$_IVCHAN. It is likely when an operating system specific routine is used on a device that
hasn't been opened by mrd_ startup(3mrd).

13.3.4. Related Information
Functions:

● mrd_move(3mrd)

● mrd_load(3mrd)

● mrd_unload(3mrd)

● mrd_inject(3mrd)

● mrd_eject(3mrd)

86

Chapter 14. mrd_position
mrd_position - Position a transport to an element.

14.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_position(
 const char *robot_name,
 const char *transport,
 const char *element,
 const int element_type,
 const int cartridge_side,
 char *log_info) ;

14.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● transport — The transport is the numeric value of the transport which will be moved.

● element — A NUL terminated character string that is the zero relative address of the element to
which the transport is to be moved.

● element_type — An integer value indicating the type of element to which mrd_position(3mrd)
places the changer. Element types include: PORT, DRIVE, SLOT, TRANSPORT.

● cartridge_side — The cartridge_side indicates whether the media should be inverted as it is being to
moved to the destination element. If the value 1 is used, the media will not be inverted. If the value 2
is used the media will be inverted.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

14.3. Description
The mrd_position(3mrd) routine provides access to the SCSI Position to Element command. For
the robot specified by the robot_name, the routine will attempt to position the specified transport
to the specified element. The transport and element addresses are zero based. On subsystems that
support inverting a cartridge during a move, the cartridge_side argument can be used to indicate that the
transport should be inverted to invert a cartridge.

The robot will be opened and the arguments to the function verified that they are appropriate. The
element address and type will be checked that they are within the valid range of elements on the robot.

87

Chapter 14. mrd_position

The cartridge_side argument will be verified that it is either the value one (1) or two (2). All pointer
arguments, except transport, are checked to verify they are not NULL pointers.

Many robot subsystems support an absolute transport address of zero for the Position to Element
command so that the robot can select the appropriate transport if multiple are available. This routines
allows the default transport address to be specified by using a NULL pointer for the transport string.

14.3.1. Example
/*
 * Example to do slot to slot moves. The command usage is:
 *
 * mrd_position robot_name type address [transport]
 *
 * Type can be one of:
 *
 * slot, port, drive or transport
 *
 * The optional transport argument can be a transport address
 * number, the word "default" or an empty string.
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_position.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <mrd_common.h>
#include <mrd_message.h>

/*
 * Given a string, resembling one of the element types,
 * return the SCSI type code for it.
 */
struct {
 int code ;
 char *string ;
} etypes[] = {
 TRANSPORT, "transport",
 SLOT, "slot",
 DRIVE, "drive",
 PORT, "port",
} ;

convert_type(char *etype)
{
 register i ;
 /*
 * For each entry in the array.
 */
 for(i = 0; i < sizeof(etypes)/sizeof(etypes[0]); i++)
 /*
 * Do a case insensitive comparison, allowing
 * abbreviations. Return as soon as a match is
 * found. Return -1 if one isn’t found.
 */
#ifdef vms
 if(strncmp(etypes[i].string, etype, strlen(etype)) == 0)
#else
 if(strncasecmp(etypes[i].string, etype, strlen(etype)) == 0)
#endif
 return etypes[i].code ;

88

Chapter 14. mrd_position

return -1 ;
}

main(int argc, char *argv[])
{
 int status ;
 int side = 1 ;
 char *robot ;
 char *cart = NULL ;
 char *element ;
 char *transport ;
 int type ;
 char log_info[MRD_MAX_LOG_STRING+1] ;

 if(argc < 4) {
 printf("usage: %s robot type address [transport]\n",
 argv[0]) ;

 exit(1) ;
 }

 robot = argv[1] ;
 type = convert_type(argv[2]) ;
 element = argv[3] ;

 if(argc > 4) {
 transport = argv[4] ;

 /*
 * If "default" or a suitable abbreviation is used
 * use NULL for the transport name, to indicate that
 * the SCSI default transport should be used.
 */
#ifdef vms
 if(strncmp("default", transport, strlen(transport)) == 0)
#else
 if(strncasecmp("default", transport, strlen(transport)) == 0)
#endif
 transport = NULL ;
 }
 else
 transport = "0" ;

 status = mrd_position(robot, transport, element, type,
 side, log_info) ;
 if(status != MRD_STATUS_SUCCESS)
 printf("Position failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;
 else if (transport == NULL)
 printf("Positioned default Transport to %s #%s\n",
 mrd_strelement(type), element) ;
 else
 printf("Positioned Transport #%s to %s #%s\n",
 mrd_strelement(type), element) ;

 return 0 ;
}

14.3.2. Return Values
Upon successful completion, the mrd_position(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_position(3mrd) fails the returned status value may be set to

89

Chapter 14. mrd_position

one of the following values. Other values that correspond to specific SCSI errors may also be possible,
but these are the most likely.

1. MRD_STATUS_PARAM

This error is returned if the robot_name, log_info, or element arguments are NULL pointers.

2. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

It is used when the medium changer does not support the Position To Element command. The
seven and five slot DLT loaders do not support the command, though the TL820 and TL810 family
libraries do. Some models of TLZ6L and TLZ7L do not support the command and may take a long
time to fail.

It is also used for a SCSI command failure, when the ASC is set to one of:

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

● 0x26 - Threshold parameters not supported

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

3. MRD_STATUS_CART_SIDE_INVALID

For routines that use the cartridge_side argument, this error indicates that the value is neither one (1)
nor two (2).

4. MRD_STATUS_INVALID_TYPE

For routines that allow the specification of an element type argument, this error indicates that
specified type was not one of SLOT, DRIVE, PORT or TRANSPORT.

5. MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

6. MRD_STATUS_SLOT_INVALID90

Chapter 14. mrd_position

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

7. MRD_STATUS_TRANSPORT_INVALID

This error is returned when the element address for a transport is less than zero or greater than the
number of transports.

8. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives.

14.3.2.1. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

14.3.2.2. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

91

Chapter 14. mrd_position

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

14.3.2.3. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_DEVICE_INVALID

92

Chapter 14. mrd_position

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEV or SS$_IVDEVNAM. This will typically occur in mrd_ startup(3mrd) when the
caller tries to open a device which doesn't exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

14.3.3. Related Information
Functions:

mrd_position_to_element(3mrd)

93

Chapter 14. mrd_position

94

Chapter 15. mrd_position_to_element
mrd_position_to_element - Move transport to specified location

15.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_position_to_element(
 robot_info_t *robot_info,
 int transport,
 int destination,
 int invert,
 dev_status_t *dev_status) ;

15.2. Parameters
● robot_info — This is the address of a robot_info_t structure initialized using mrd_startup(3mrd)

or mrd_show(3mrd). This data structure contains the element starting address and counts for each
type of element, which are needed to map an absolute element to the correct zero relative address
and type.

● transport — The transport is the numeric value of the transport which will be moved.

● destination— The destination is an absolute element address.

● invert — The invert is a numeric value used to indicate if the medium should be inverted when it is
moved. A value of one (1) is used to indicate that the medium should be inverted.

● dev_status — The dev_status is the address of a dev_status_t structure, which is used to pass back
detailed error information in the event of a command failure.

15.3. Description
This routine performs a SCSI Position to Element command. This command positions the trasport to the
specified destination element. It is used by mrd_ position(3mrd) function.

The robot_info argument is the address of a robot_info_t that has been opened by mrd_startup(3mrd).
This allows multiple position commands (and other commands) to be executed without having to repeat
the startup for each command.

The transport address is the absolute address of the transport element to be used for the command.
Many medium changers allow the use of address zero (0) as the default transport, but some may require
a transport address that is valid for the medium changer. For single transport medium changers, the
transport base address of the robot_info_t structure, transport_start is a suitable address.

95

Chapter 15. mrd_position_to_element

The destination address is the absolute addresses to be used as the destination for the command . The
absolute address can be calculated from a zero relative address by adding it to the base address for
the element type. The routine makes no checks for the validity of the address, relying on the medium
changer to do this.

A invert value of one (1) can be used on medium changers that support inverting the transport, when this
is desired; an optical drive with two sided media.

Otherwise a value of zero should be used.

This routine uses the dev_status_t structure for handing errors. The dev_ status_t structure includes
the code, os_status, and SCSI error fields. The following describes how to decode errors with the
dev_status_t structure.

SCSI Errors
SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to 0
and the value of the os_status field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

15.3.1. Absolute Element Addresses
The operating system interface routines use absolute SCSI element addresses, instead of zero relative
address as used by the higher level functions. A zero based element address can be converted to an
absolute address by adding the element base address from the robot_info_t structure.

int slot ;
robot_info_t robot_info ;

/*
 * An relative starting address.
 */
slot = 3 ;

/*
 * Becoming an absolute address.
 */

96

Chapter 15. mrd_position_to_element

slot += robot_info.slot_start ;

15.3.2. Example
/*
 * This is an example of using mrd_position_to_element(3mrd)
 * to perform multiple Position To Element commands. For
 * each pair of arguments after the robot and transport
 * address, it will position the transport to that location.
 *
 * mrd_position_to_element robot transport type address
 *
 * Type can be one of:
 *
 * slot, port, drive or transport
 *
 * The optional transport argument can be a transport address
 * number, the word "default" or an empty string. To keep the
 * example as simple as possible, it doesn’t try to invert the
 * transport.
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_position_to_element.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <mrd_common.h>
#include <mrd_message.h>

/*
 * Given a string, resembling one of the element types,
 * return the SCSI type code for it.
 */
struct {
 int code ;
 char *string ;
} etypes[] = {
 TRANSPORT, "transport",
 SLOT, "slot",
 DRIVE, "drive",
 PORT, "port",
} ;

convert_type(char *etype)
{
 register i ;
 /*
 * For each entry in the array.
 */
 for(i = 0; i < sizeof(etypes)/sizeof(etypes[0]); i++)
 /*
 * Do a case insensitive comparison, allowing
 * abbreviations. Return as soon as a match is
 * found. Return -1 if one isn’t found.
 */
#ifdef vms
 if(strncmp(etypes[i].string, etype, strlen(etype)) == 0)
#else
 if(strncasecmp(etypes[i].string, etype, strlen(etype)) == 0)
#endif
 return etypes[i].code ;

97

Chapter 15. mrd_position_to_element

 return -1 ;
}

main(int argc, char *argv[])
{
 int el ; /* Counter */
 int status ; /* Status from MRD calls */
 int invert = 0 ; /* Don’t invert */
 char *robot ; /* Robot name */
 int type ; /* Element type */
 int element ; /* Relative element addr */
 int address ; /* Absolute element addr */
 int transport ; /* Transport address */
 char *transport_name ; /* Tranport name */
 robot_info_t robot_info ;
 dev_status_t dev_status ;
 char log_info[MRD_MAX_LOG_STRING+1] ;

 if(argc < 5) {
 printf("usage: %s robot transport type address ...\n", argv[0]);
 exit(1) ;
 }

 /*
 * Get the medium changer name.
 */
 robot = argv[1] ;

 /*
 * Get the transport number. We’ll keep it as a name
 * so we can detect the default transport. Once we
 * know the element addresses, we can add the base
 * base address if appropriate.
 */
 if(strcmp(argv[2], "default") == 0)
 transport_name = NULL ;
 else
 transport_name = argv[2] ;
 /*
 * Make sure there are pairs of arguments left. There
 * should be an odd number.
 */
 if((argc % 2) == 0) {
 printf("Pairs of arguments are required.\n") ;
 exit(1) ;
 }

 /*
 * Open the robot.
 */
 robot_info.channel = BAD_CHANNEL ;

 status = mrd_startup(robot, &robot_info, log_info) ;

 if(status != MRD_STATUS_SUCCESS) {
 fprintf(stderr, "Can’t start %s: %s\n", robot,
 mrd_strstatus(status)) ;

 exit(1) ;
 }

 if(transport_name == NULL)
 transport = 0 ;
 else
 transport = atoi(transport_name) + robot_info.transport_start;

98

Chapter 15. mrd_position_to_element

 /*
 * Look at the element addresses in pairs.
 */
 for(el = 3; el < argc; el += 2) {
 type = convert_type(argv[el]) ;
 element = atoi(argv[el + 1]) ;

 switch(type) {
 case SLOT:
 address = element + robot_info.slot_start ;
 break ;
 case DRIVE:
 address = element + robot_info.device_start ;
 break ;
 case TRANSPORT:
 address = element + robot_info.transport_start ;
 break ;
 case PORT:
 address = element + robot_info.port_start ;
 break ;
 default:
 printf("Unknown element type: %s %s\n", argv[el],
 argv[el + 1]) ;
 continue ;
 }

 /*
 * Audit the command.
 */
 printf("Position transport to %s #%d.\n", mrd_strelement(type),
 element) ;

 /*
 * Do the command.
 */
 status = mrd_position_to_element(&robot_info, transport,
 address, invert, &dev_status) ;
 if(status != MRD_STATUS_SUCCESS)
 printf("Position to Element failed: %s: %s.\n", robot,
 mrd_strstatus(status)) ;
 }

 (void)mrd_shutdown(&robot_info) ;

 return 0 ;
}

15.3.3. Return Values
Upon successful completion, mrd_position_to_element(3mrd) will return MRD_STATUS_SUCCESS.
On a failure, an MRD_STATUS value corresponding to the error will be returned.

15.3.3.1. Common Codes

Common errors are:

1. MRD_STATUS_PARAM

This error is returned if the robot_info or dev_status arguments are NULL pointers.

2. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

99

Chapter 15. mrd_position_to_element

This error occurs when the medium changer does not support the Position To Element command.
The seven and five slot DLT loaders do not support the command, though the TL820 and TL810
family libraries do. Some models of TLZ6L and TLZ7L do not support the command and may take
a long time to fail.

It is also used for a SCSI command failure, when the ASC is set to one of:

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

● 0x26 - Threshold parameters not supported

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

3. MRD_STATUS_ELEMENT_INVALID

This error occurs when a SCSI command fails with the ASC set to 0x21. The log_info will contain
the ASCQ. This indicates that an invalid element address reached the medium-changer. For example,
specifying the 13th slot when only 12 slots are present.

15.3.3.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

15.3.3.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_EBADF
100

Chapter 15. mrd_position_to_element

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

15.3.3.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_IVCHAN

This error code is used when an OpenVMS system service fails with the status SS$_IVCHAN. It
is likely when an operating system specific routine is used on a device that hasn't been opened by
mrd_startup(3mrd).

15.3.4. Related Information
Functions:

mrd_position(3mrd)

101

Chapter 15. mrd_position_to_element

102

Chapter 16. mrd_prevent_allow
mrd_prevent_allow - Send a Prevent/Allow Media Removal command

16.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_prevent_allow(
 robot_info_t *robot_info,
 int lock,
 dev_status_t *dev_status) ;

16.2. Parameters
● robot_info — This is the address of a robot_info_t structure initialized using mrd_startup(3mrd)

or mrd_show(3mrd). This data structure contains the element starting address and counts for each
type of element, which are needed to map an absolute element to the correct zero relative address
and type.

● lock — The lock argument indicates whether media removal should be prevented or allowed.

● dev_status — The dev_status is the address of a dev_status_t structure, which is used to pass back
detailed error information in the event of a command failure.

16.3. Description
This routine performs a SCSI Prevent/Allow Media Removal. It is used by mrd_lock(3mrd). The
robot_info argument is the address of a robot_info_t that has been opened by mrd_startup(3mrd).

When a lock value of one (1) is specified media removal is prevented. When the value zero (0) is
used, media removal is allowed. If other values for lock are used, the routine will create a status which
corresponds to an illegal request.

This routine uses the dev_status_t structure for handing errors. The dev_ status_t structure includes
the code, os_status, and SCSI error fields. The following describes how to decode errors with the
dev_status_t structure.

SCSI Errors
SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

103

Chapter 16. mrd_prevent_allow

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to 0
and the value of the os_status field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

16.3.1. Example
/*
 * This is an example of using mrd_prevent_allow(3mrd) to
 * prevent or allow media removal, where allowed. For
 * robot name on the command line, the desired version
 * of the command will be used according lock value.
 * name.
 *
 * Usage:
 *
 * mrd_prevent_allow lock-value robot [robot...]
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_prevent_allow.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 int rc ; /* Counter */
 int lock ; /* Lock value */
 int status ; /* return status */
 char *robot ; /* Robot to open */
 robot_info_t robot_info ; /* Robot data */
 dev_status_t dev_status ; /* Device status */
 char log_info[MRD_MAX_LOG_STRING+1] ;
 /*
 * Check that there are enough arguments.
 */
 if(argc < 3) {
 printf("usage: %s lock-value robot [robot...]\n", argv[0]) ;
 exit(1) ;
 }
 else
 lock = atoi(argv[1]) ;

 /*
 * Initialize the channel field of the robot_info, so

104

Chapter 16. mrd_prevent_allow

 * mrd_startup(3mrd) will actually open the robot.
 */
 robot_info.channel = BAD_CHANNEL ;

 for(rc = 2; rc < argc; rc++) {
 /*
 * The robot for this command.
 */
 robot = argv[rc] ;

 status = mrd_startup(robot, &robot_info, log_info) ;

 if(status != MRD_STATUS_SUCCESS) {
 printf("Startup failed on %s: %s.\n", robot,
 mrd_strstatus(status)) ;

 continue ;
 }

 printf("Lock value %d on %s.\n", lock, robot) ;

 status = mrd_prevent_allow(&robot_info, lock, &dev_status) ;

 if(status != MRD_STATUS_SUCCESS)
 printf("Prevent/Allow failed on %s: %s.\n", robot,
 mrd_strstatus(status)) ;

 (void)mrd_shutdown(&robot_info) ;
 }

 return 0 ;
}

16.3.2. Return Values
Upon successful completion, mrd_prevent_allow(3mrd) will return MRD_STATUS_SUCCESS. On a
failure, one of the following status values will be returned.

16.3.2.1. Common Codes
1. MRD_STATUS_PARAM

This error is returned if the robot_info or dev_status arguments are NULL pointers.

2. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

This error occurs when the medium changer does not support the Prevent/Allow Medium Removal
command or the lock value is not one or zero. The specific cause can be determined by examining
the ASC/ASCQ values in the status data.

It is also used for a SCSI command failure, when the ASC is set to one of:

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

105

Chapter 16. mrd_prevent_allow

● 0x26 - Threshold parameters not supported

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

16.3.2.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

16.3.2.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_EBADF

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

16.3.2.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_IVCHAN

This error code is used when an OpenVMS system service fails with the status SS$_IVCHAN. It
is likely when an operating system specific routine is used on a device that hasn't been opened by
mrd_startup(3mrd).

16.3.3. Related Information
Functions:

mrd_lock(3mrd)

106

Chapter 17. mrd_ready
mrd_ready - Send a Ready Inport command

17.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_ready(
 robot_info_t *robot_info,
 int port,
 dev_status_t *dev_status) ;

17.2. Parameters
● robot_info — This is the address of a robot_info_t structure initialized using mrd_startup(3mrd)

or mrd_show(3mrd). This data structure contains the element starting address and counts for each
type of element, which are needed to map an absolute element to the correct zero relative address
and type.

● port — The absolute integer element address of the port which is to be used as the destination of the
move.

● dev_status — The dev_status is the address of a dev_status_t structure, which is used to pass back
detailed error information in the event of a command failure.

17.3. Description
It is used by mrd_ready_inport(3mrd). This command is used by the TL820 family of DLT libraries
to enable the button on the I/O device (IOD) which opens the Inport door.

The robot_info argument is the address of a robot_info_t that has been opened by mrd_startup(3mrd).

The port argument is the absolute address of the port to be readied. On supported TL820 configurations
which use a left mounted IOD this will always be 64.

This routine uses the dev_status_t structure for handing errors. The dev_ status_t structure includes
the code, os_status, and SCSI error fields. The following describes how to decode errors with the
dev_status_t structure.

SCSI Errors
SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

107

Chapter 17. mrd_ready

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to 0
and the value of the os_status field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

17.3.1. Example
/*
 * This is an example of using mrd_move_medium directly to move
 * a cartridge from one slot to another. To simplify the
 * example, it only supports slot to slot moves, but it shows
 * how the absolute element addresses are calcuated. For each
 * additional destination address given, the previous (successful)
 * destination address is used as the source.
 *
 * Usage:
 *
 * mrd_ready robot port [port...]
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_ready.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 int pc ; /* counter */
 int port ; /* Port number */
 int address ; /* Port address */
 int status ; /* return status */
 char *robot ; /* Robot to open */
 robot_info_t robot_info ; /* Robot data */
 dev_status_t dev_status ; /* Device status */
 char log_info[MRD_MAX_LOG_STRING+1] ;

 /*
 * Check that there are enough arguments.
 */
 if(argc < 3) {
 printf("usage: %s robot port [port...]\n", argv[0]) ;
 exit(1) ;
 }
 else

108

Chapter 17. mrd_ready

 robot = argv[1] ;

 /*
 * Initialize the channel field of the robot_info, so
 * mrd_startup(3mrd) will actually open the robot.
 */
 robot_info.channel = BAD_CHANNEL ;

 status = mrd_startup(robot, &robot_info, log_info) ;

 if(status != MRD_STATUS_SUCCESS) {
 printf("Startup failed on %s: %s.\n", robot,
 mrd_strstatus(status)) ;

 exit(1) ;
 }

 /*
 * For each destination address on the command line,
 * move the the cartridge in the source to the
 * destination. After each (successful) move, replace
 * the previous source with this destination.
 */
 for(pc = 2; pc < argc; pc++) {
 /*
 * Get the port number.
 */
 port = atoi(argv[pc]) ;

 /*
 * Now the absolute address.
 */
 address = port + robot_info.port_start ;
 /*
 * Print an audit as we go. Since we know these
 * are slots, convert back to relative addresses
 * for the audit.
 */
 printf("Ready Inport #%d of %s\n", port, robot) ;

 status = mrd_ready(&robot_info, address, &dev_status) ;

 if(status != MRD_STATUS_SUCCESS) {
 printf("Ready Inport failed on %s: %s.\n", robot,
 mrd_strstatus(status)) ;
 /*
 * Since the cartridge didn’t move, don’t
 * reset the source, by skipping the remainder
 * of the loop.
 */
 continue ;
 }
 }
 (void)mrd_shutdown(&robot_info) ;

 return 0 ;
}

17.3.2. Return Values
17.3.2.1. Common Codes
Upon successful completion, mrd_ready(3mrd) will return MRD_STATUS_SUCCESS. On a failure,
one of the following status values will be returned.

109

Chapter 17. mrd_ready

1. MRD_STATUS_PARAM

This error is returned if the robot_info or dev_status arguments are NULL pointers.

2. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

This error occurs when the medium changer does not support the Ready Inport command. The
TL820 family of DLT libraries support this command. The TL810 family of DLT libraries allows
this command to succeed, but it doesn't perform any function.

It is also used for a SCSI command failure, when the ASC is set to one of:

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

● 0x26 - Threshold parameters not supported

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

17.3.2.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

17.3.2.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_EBADF

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

110

Chapter 17. mrd_ready

17.3.2.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_IVCHAN

This error code is used when an OpenVMS system service fails with the status SS$_IVCHAN. It is
likely when an operating system specific routine is used on a device that hasn't been opened by mrd_
startup(3mrd).

17.3.3. Related Information
Functions:

mrd_ready_inport(3mrd)

111

Chapter 17. mrd_ready

112

Chapter 18. mrd_ready_inport
mrd_ready_inport - Enable access to the Inport of a TL820

18.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_ready_inport(
 const char *robot_name,
 const char *inport,
 char *log_info) ;

18.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● inport — This is the address of the character string containing a zero based address of the port to be
readied.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

18.3. Description
The TL820 family of libraries uses an Input/Output Device (IOD) to allow putting tapes into the library
and taking them out. The inport part of the IOD holds a single cartridge and has a door on top which
must be opened before a cartridge can be placed in it. A button on the front of the IOD opens the door,
but only after it has been enabled by a Ready IOD command. This is a vendor unique command specific
to the TL820 family.

The mrd_ready_inport(3mrd) routine allows sending a Ready IOD command to the robot and port
specified by the robot_name and inport arguments. For all currently shipping TL820 family libraries
there is only one Inport, so the inport argument can always be "0". On a TL820, when the source for a
move in the

Inport, this routine should be called first and time allowed for the operator to place a tape in the inport.
The routine mrd_move(3mrd) expects the element to be full when it starts.

18.3.1. Example
/*

113

Chapter 18. mrd_ready_inport

 * Send a Ready Inport command to the robot. This is specific
 * the TL82X family and causes the Inport door to be enabled
 * for one minute (the period the light is on). A future
 * version of firmware may allow enableing the button to be
 * on all the time, making this command obsolete. The command
 * usage is:
 *
 * mrd_ready_inport robot
 */

#ifndef lint
static char SccsId[] = "@(#)mrd_ready_inport.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 int status ; /* status from mrd_ready_inport(3mrd) */
 char *robot ; /* Robot for command */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error text */

 /*
 * Only one argument; the robot name.
 */
 if(argc == 1) {
 printf("usage: %s robot\n", argv[0]) ;
 exit(1) ;
 }
 else
 robot = argv[1] ;

 /*
 * While the interface of Ready Inport allows the specification
 * of any port address, the Inport of the TL820 is always "0",
 * and this command is very robot specific.
 */
 status = mrd_ready_inport(robot, "0", log_info) ;

 if(status != MRD_STATUS_SUCCESS)
 printf("Ready Inport failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;

 return 0 ;
}

18.3.2. Return Values
Upon successful completion, the mrd_ready_inport(3mrd) function returns the value
MRD_STATUS_SUCCESS. If mrd_ready_inport(3mrd) fails the returned status value may be set to
one of the following values. Other values that correspond to specific SCSI errors may also be possible,
but these are the most likely.

18.3.2.1. Common Codes
1. MRD_STATUS_PARAM

This error is returned if the any of the arguments are NULL pointers.

2. MRD_STATUS_PORT_INVALID

114

Chapter 18. mrd_ready_inport

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

18.3.2.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

18.3.2.2.1. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

115

Chapter 18. mrd_ready_inport

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

18.3.2.2.2. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

18.3.3. Related Information
Functions:

● mrd_move(3mrd)

● mrd_load(3mrd)

● mrd_unload(3mrd)

● mrd_inject(3mrd)

116

Chapter 18. mrd_ready_inport

● mrd_eject(3mrd)

117

Chapter 18. mrd_ready_inport

118

Chapter 19. mrd_read_element_status
mrd_read_element_status - Obtain information about elements.

19.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_read_element_status(
 robot_info_t *robot_info,
 int type,
 int start,
 int count,
 unsigned char *data,
 int length,
 dev_status_t *dev_status) ;

19.2. Parameters
● robot_info — This is the address of a robot_info_t structure initialized using mrd_startup(3mrd)

or mrd_show(3mrd). This data structure contains the element starting address and counts for each
type of element, which are needed to map an absolute element to the correct zero relative address
and type.

● type — This is the element type code about which information is desired. The mrd_common.h
include file defines the constants SLOT, PORT, DRIVE and TRANSPORT which may be used.

● start — The absolute element address of the first element for which information is desired.

● count — The number of elements for which the information is desired.

● data — This is the address of an array of unsigned characters where the element status data will be
written. Interpretation of the data is left to the caller.

● length — This is the amount of element_status data, in bytes, available for the Read Element Status
request. If the requested number of elements requires more space only data for as many elements as
will fit will be copied.

● dev_status — The dev_status is the address of a dev_status_t structure, which is used to pass back
detailed error information in the event of a command failure.

19.3. Description
This routine performs a SCSI Read Element Status command, or equivalent if some other I/O
architecture is supported. It is used by mrd_show(3mrd) and the routines doing volume tag checks.
However, since it provides uninterpreted Read Element Status data, mrd_show(3mrd) will nearly
always be easier to use.

119

Chapter 19. mrd_read_element_status

It requires that the medium changer be opened by mrd_startup(3mrd) and uses absolute element
addresses. On SCSI medium changers, it maps directly to the SCSI Read Element Status command.
Since it uses a robot_info_t structure for an open robot, it is suitable in applications where it is desirable
to hold the robot open and not incur the robot startup time on each command.

The type argument specifies the type of element about which information is to be obtained. It should be
one of SLOT, TRANSPORT, PORT or DRIVE as defined in mrd_common.h. The start argument is the
absolute address of the first element and count the number of elements for which data is to be obtained.

The data argument is an array of unsigned characters where the resulting data will be copied. The length
is the amount of space available. If more data is required than there is space available, the device will
only data for as many element as will fit into length bytes.

Medium Changers which are SCSI-2 compliant support Read Element Status commands which request
only eight bytes of data. In this case the returned data will indicate how many bytes of data are needed
for the entire request. This feature allows an application to find how much space is needed for a specific
request, allocate that much and then request all of it.

This routine uses the dev_status_t structure for handing errors. The dev_ status_t structure includes
the code, os_status, and SCSI error fields. The following describes how to decode errors with the
dev_status_t structure.

SCSI Errors
SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to 0
and the value of the os_status field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

19.3.1. Absolute Element Addresses
The operating system interface routines use absolute SCSI element addresses, instead of zero relative
address as used by the higher level functions. A zero based element address can be converted to an
absolute address by adding the element base address from the robot_info_t structure.

int slot ;
robot_info_t robot_info ;

/*
 * An relative starting address.
 */

120

Chapter 19. mrd_read_element_status

slot = 3 ;

/*
 * Becoming an absolute address.
 */
slot += robot_info.slot_start ;

19.3.2. Example
/*
 * This is an example of using mrd_read_element_status(3mrd).
 *
 * Due to the complexity of the SCSI Read Element Status data
 * all this example will do is format the headers found in the
 * data. It won’t try to format the element data. It also
 * calls mrd_read_element_status(3mrd) twice, once to determine
 * the needed data size for the remaining data and again to get
 * the actual data.
 *
 * Usage:
 *
 * mrd_read_element_status robot type start count
 *
 * If an unrecognized element type is used, the routine will use
 * a type of zero, which is allowed by the SCSI-2 specification.
 */

#ifndef lint
static char SccsId[] = "@(#)mrd_read_element_status.c 1.3
 (mrd-example) 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

#include <mrd_common.h>
#include <mrd_message.h>

/*
 * The SCSI specification says that a request size of 8
 * bytes will have the underlying device only return a
 * header indicating the number of bytes needed for the
 * command.
 */
#define SCSI_RES_MIN (8)

/*
 * Given a string, resembling one of the element types,
 * return the SCSI type code for it.
 */
struct {
 int code ;
 char *string ;
} etypes[] = {
TRANSPORT, "transport",
 SLOT, "slot",
 DRIVE, "drive",
 PORT, "port",
} ;

convert_type(char *etype)
{
 register i ;

121

Chapter 19. mrd_read_element_status

 /*
 * For each entry in the array.
 */
 for(i = 0; i < sizeof(etypes)/sizeof(etypes[0]); i++)
 /*
 * Do a case insensitive comparison, allowing
 * abbreviations. Return as soon as a match is
 * found. Return -1 if one isn’t found.
 */
#ifdef vms
 if(strncmp(etypes[i].string, etype, strlen(etype)) == 0)
#else
 if(strncasecmp(etypes[i].string, etype, strlen(etype)) == 0)
#endif
 return etypes[i].code ;
 return 0 ;
}

/*
 * When an 8 byte Read Element Status command is handed
 * to a compliant medium changer, it is supposed to fill
 * enough of the header section to say how much data is
 * needed for the full command. We that here, if we get
 * a reasonable value, allocate sufficient space for the
 * real command and return the pointer to it. If there
 * is an error or command returns a zero byte report
 * return NULL.
 */
unsigned char *
res_size(robot_info_t *robot_info, int type, int start, int count, size_t *bytes)
{
 unsigned char data[SCSI_RES_MIN] ; /* minimum data */
 int status ; /* command status */
 dev_status_t dev_status ; /* In case of error */
 unsigned char *report ; /* Data space */

 /*
 * Read Element Status commands rarely fail, they just
 * succeed, but return no data. Clear all the fields
 * so we’ll have an easier time seeing if any data was
 * returned.
 */
 memset((void *)data, 0, SCSI_RES_MIN) ;

 status = mrd_read_element_status(robot_info, type, start, count,
 data, SCSI_RES_MIN, &dev_status) ;
 /*
 * But sometimes they do fail.
 */
 if(status != MRD_STATUS_SUCCESS) {
 printf("Size Read Element Status failed on %s: %s.\n",
 robot_info->robot_name, mrd_strstatus(status)) ;

 return NULL ;
 }

 /*
 * Calculate the report size.
 */
 *bytes = (data[RES_REPORT_MSB] << 16) | (data[RES_REPORT_ISB] << 8) |
 data[RES_REPORT_LSB] ;
 /*
 * The report size doesn’t include the 8 bytes needed for
 * the first headers.
 */

122

Chapter 19. mrd_read_element_status

 *bytes += RES_DATA_HEADER ;

 if(*bytes == 0) {
 printf("The report size is zero on %s.\n",
 robot_info->robot_name) ;

 return NULL ;
 }

 if((report = (unsigned char *)malloc(*bytes)) == NULL)
 printf("Can’t allocate %ld bytes for %s: %s.\n", *bytes,
 robot_info->robot_name, strerror(errno)) ;

 return report ;
}
/*
 * Print out the Read Element Status data headers. There
 * is an 8 byte data header, that describes the remaining
 * data, which is zero or more Status Pages, one for each
 * element type.
 *
 * Each Element Status Page consists of an 8 byte header
 * for the element type described by that page and then
 * element descriptors.
 */
print_res_data(robot_info_t *robot_info, unsigned char *dp)
{
 int first ; /* First element reported */
 int elements ; /* Number of elements reported */
 int report ; /* Bytes in the total report */
 int descriptor ; /* Each element descriptor size */
 int bytes ; /* The per-element report size */

 /*
 * The first two bytes of the overall header is the
 * first element reported.
 */
 first = (dp[RES_FIRST_MSB] << 8) | dp[RES_FIRST_LSB] ;

 /*
 * The next two bytes are the number of elements in
 * the report.
 */
elements = (dp[RES_COUNT_MSB] << 8) | dp[RES_COUNT_LSB] ;
/*
 * Three of the remaining bytes are the total report size.
 */
report = (dp[RES_REPORT_MSB] << 16) | (dp[RES_REPORT_ISB] << 8) |
 dp[RES_REPORT_LSB] ;

printf("RES Data Header:\n") ;
printf(" First Element Address: %d\n", first) ;
printf(" Number of Elements: %d\n", elements) ;
printf(" Byte Count of Report: %d\n", report) ;

/*
 * As long as bytes of report remaining, print each
 * element type header.
 *
* Here we play a curious pointer game. The RES_
* constants defined in mrd_common.h for the element
* header assume a single element type with offsets
* from the beginning of the data. But real Read
* Element Status Data can have multiple element
* types in it. For successive element type we’ll
* add the per-element report size to the address

123

Chapter 19. mrd_read_element_status

* of the base data. This should put the per-element
* header at the right relative place.
*/
report -= RES_DATA_HEADER ;

while(report > 0) {
 /*
 * Calculate the descriptor size.
 */
 descriptor = (dp[RES_DESC_MSB] << 8) | dp[RES_DESC_LSB] ;

 /*
 * And the per element report.
 */
 bytes = (dp[RES_BYTES_MSB] << 16) | (dp[RES_BYTES_ISB] << 8) |
 dp[RES_BYTES_LSB] ;

 printf(" Descriptor Header:\n") ;
 printf(" Element Type: %s\n",
 mrd_strelement(dp[RES_TYPE])) ;

 printf(" Primary Volume Tag: %x\n",
 dp[RES_TAGS] & ELEMENT_PVOLTAG) ;

 printf(" Alternate Volume Tag: %x\n",
 dp[RES_TAGS] & ELEMENT_AVOLTAG) ;

 printf(" Descriptor Length: %d\n", descriptor) ;
 printf(" Descriptor Report: %d", bytes) ;

 /*
 * Include the number of elements of this type.
 */
 if(descriptor)
 printf(" (%d)\n", bytes / descriptor) ;
 else
 putchar(’\n’) ;

 /*
 * Protection against the odd insane loader.
 */
 if(bytes == 0)
 break ;
 /*
 * Go to the next header. Formatting the element
 * data is left as an exercise to the reader.
 */
 dp += (bytes + RES_DATA_PAGE) ;

 /*
 * Lose some bytes...
 */
 report -= (bytes + RES_DATA_PAGE) ;
 }

}

main(int argc, char *argv[])
{
 int status ; /* return status */
 int type ; /* Element type */
 int start ; /* First element */
 int count ; /* Number of elements */
 size_t bytes ; /* Bytes of data */
 char *robot ; /* Robot to open */
 unsigned char *data ; /* Element Status data */

124

Chapter 19. mrd_read_element_status

 robot_info_t robot_info ; /* Robot data */
 dev_status_t dev_status ; /* Device status */
 char log_info[MRD_MAX_LOG_STRING+1] ;

 /*
 * Check that there are enough arguments.
 */
 if(argc < 5) {
 printf("usage: %s robot type start count\n", argv[0]) ;
 exit(1) ;
 }
 else {
 robot = argv[1] ;
 type = convert_type(argv[2]) ;
 start = atoi(argv[3]) ;
 count = atoi(argv[4]) ;
 }

 /*
 * Initialize the channel field of the robot_info, so
 * mrd_startup(3mrd) will actually open the robot.
 */
 robot_info.channel = BAD_CHANNEL ;

 status = mrd_startup(robot, &robot_info, log_info) ;

 if(status != MRD_STATUS_SUCCESS) {
 printf("Startup failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;

 exit(1) ;
 }

 if(type == 0)
 printf("Data size needed for all elements %d - %d...",
 start, start + count) ;
 else
 printf("Data size needed for %s %d - %d...",
 mrd_strelement(type),
 start, start + count) ;

 fflush(stdout) ;
 switch(type) {
 case SLOT:
 start += robot_info.slot_start ;
 break ;
 case PORT:
 start += robot_info.port_start ;
 break ;
 case TRANSPORT:
 start += robot_info.transport_start ;
 break ;
 case DRIVE:
 start += robot_info.device_start ;
 break ;
 }

 /*
 * Allocate sufficient space for the command. This
 * function prints its own error messages, so we can
 * just exit.
 */
 data = res_size(&robot_info, type, start, count, &bytes) ;

 if(data == NULL)
 exit(1) ;

125

Chapter 19. mrd_read_element_status

 printf("%d bytes.\n", bytes) ;

 /*
 * Now do the full Read Element Status command.
 */
 status = mrd_read_element_status(&robot_info, type, start, count,
 data, bytes, &dev_status) ;

 if(status != MRD_STATUS_SUCCESS) {
 printf("Read Element Status failed on %s: %s.\n", robot,
 mrd_strstatus(status)) ;

 free(data) ;

 exit(1) ;
 }

 /*
 * We appear to have valid Read Element Status data. Print
 * out the results.
 */
 print_res_data(&robot_info, data) ;

 (void)mrd_shutdown(&robot_info) ;

 return 0 ;
}

19.3.3. Return Values
Upon successful completion, mrd_read_element_status(3mrd) will return MRD_STATUS_SUCCESS.
On a failure, one of the following status values will be returned.

Experience has shown that Read Element Status rarely fails on the supported SCSI-2 medium changers.
When the command is unable to obtain the requested data it simply arranges for the element and byte
counts of the report to contain no data.

19.3.3.1. Common Codes

1. MRD_STATUS_PARAM

This error is returned if the robot_info, data or dev_status arguments are are NULL pointers. The
status structure is unchanged, even if a valid address is provided.

2. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

This error occurs when robot_info structure indicates that the medium changer supports volume tags,
when it doesn't. When mrd_startup(3mrd) opens the robot, it determines whether volume tags
are support and sets up the structure appropriately. So, this error is only likely to occur when the
structure has been changed.

It is also used for a SCSI command failure, when the ASC is set to one of:

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

126

Chapter 19. mrd_read_element_status

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

● 0x26 - Threshold parameters not supported

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

19.3.3.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

19.3.3.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_EBADF

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

19.3.3.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_IVCHAN

This error code is used when an OpenVMS system service fails with the status SS$_IVCHAN. It
is likely when an operating system specific routine is used on a device that hasn't been opened by
mrd_startup(3mrd).

19.3.4. Related Information
Functions:

mrd_show(3mrd)

127

Chapter 19. mrd_read_element_status

128

Chapter 20. mrd_request_sense
mrd_request_sense - Get the status of a medium changer.

20.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_request_sense(
 robot_info_t *robot_info,
 dev_status_t *dev_status,
 int os_status);

20.2. Parameters
● robot_info — This is the address of a robot_info_t structure initialized using mrd_startup(3mrd)

or mrd_show(3mrd). This data structure contains the element starting address and counts for each
type of element, which are needed to map an absolute element to the correct zero relative address
and type.

● dev_status — The dev_status is the address of a dev_status_t structure, which is used to pass back
detailed error information in the event of a command failure.

● os_status — When mrd_request_sense(3mrd) is used directly by an application, this argument
should be MRD_CHECK_SENSE, or the operating system specific error code that indicates a device
failure. On Tru64 UNIX this is EIO.

20.3. Description
This routine performs a SCSI Request Sense command, or equivalent if some other I/O architecture is
supported. It is used by all MRD API routines to determine the cause of a command failure.

The robot_info is the address of a robot_info_t structure that has been opened by mrd_startup(3mrd).
If the medium changer isn't opened, the Request Sense command will fail with the operating system
error for trying to use an unopened device.

The dev_status_t structure includes the code, os_status, and SCSI error fields. The following describes
how to decode errors with the dev_status_t structure.

SCSI Errors
SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

129

Chapter 20. mrd_request_sense

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to 0
and the value of the os_status field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

In typical usage by MRD, the os_status argument will be an operating system specific code. However,
The SCSI-2 specification allows Request Sense to be used at any time to obtain status information about
a device. To support this feature, the MRD implementation of mrd_reqeust_sense(3mrd) can be called
with the code MRD_CHECK_SENSE to force a Request Sense command.

20.3.1. Example
/*
 * This is an example of using mrd_request_sense(3mrd)
 * to see what state a medium changer is in. The MRD
 * implementation of Request Sense only collects the
 * Sense Key, Additional Sense Code and Additional Sense
 * Code Qualifier.
 *
 * Usage:
 *
 * mrd_request_sense robot [more-robots...]
 */

#ifndef lint
static char SccsId[] = "@(#)mrd_request_sense.c 1.1 4/16/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <mrd_common.h>
#include <mrd_message.h>

char *device_sense = "Sense data for %s: %s (%d,0x%x,0x%x).\n" ;
char *sense_failed = "Request Sense failed on %s: %s.\n" ;

main(int argc, char *argv[])
{
 int rc ; /* counter */
 int status ; /* return status */
 char *robot ; /* Robot to open */
 robot_info_t robot_info ; /* Robot data */
 dev_status_t dev_status ; /* Device status */
 char log_info[MRD_MAX_LOG_STRING+1] ;

130

Chapter 20. mrd_request_sense

 /*
 * Check that there are enough arguments.
 */
 if(argc < 2) {
 printf("usage: %s robot [robot...]\n", argv[0]) ;
 exit(1) ;
 }

 /*
 * Initialize the channel field of the robot_info, so
 * mrd_startup(3mrd) will actually open the robot.
 */
 robot_info.channel = BAD_CHANNEL ;

 for(rc = 1; rc < argc; rc++) {
 /*
 * The robot for this command.
 */
 robot = argv[rc] ;

 status = mrd_startup(robot, &robot_info, log_info) ;

 if(status != MRD_STATUS_SUCCESS) {
 printf("Startup failed on %s: %s.\n", robot,
 mrd_strstatus(status)) ;
 continue ;
 }

 memset((void *)&dev_status, 0, sizeof(dev_status)) ;

 /*
 * mrd_request_sense(3mrd) will never return
 * MRD_STATUS_SUCCESS. If no Request Sense data
 * is available, it will return MRD_STATUS_NO_SENSE.
 */
 status = mrd_request_sense(&robot_info, &dev_status,
 MRD_CHECK_SENSE) ;

 /*
 * Print the Key/ASC/ASCQ data for device errors.
 */
 if(dev_status.valid)
 printf(device_sense, robot, mrd_strstatus(status),
 dev_status.key, dev_status.asc,
 dev_status.ascq) ;
 /*
 * Just print the MRD error.
 */
 else
 printf(sense_failed, robot, mrd_strstatus(status)) ;

 (void)mrd_shutdown(&robot_info) ;
 }

 return 0 ;
}

20.3.2. Return Values
The routine mrd_request_sense(3mrd) never returns MRD_STATUS_SUCCESS. If the os_status isn't
the operating system specific code that forces a Reqeust Sense command or MRD_CHECK_SENSE,
mrd_map_os_error(3mrd), is used to map the os_status to an MRD status code. Otherwise, a
Request Sense (or equivalent) is performed and the result mapped to an MRD status code with
mrd_scsi_decode(3mrd).

131

Chapter 20. mrd_request_sense

20.3.2.1. Common Codes

1. MRD_STATUS_PARAM

This error is returned when a pointer argument passed to an MRD routine is NULL, unless the
routine is documented as one allowing a NULL pointer.

2. MRD_STATUS_NO_SENSE

This error is returned by mrd_scsi_ decode(3mrd) when the asc, ascq and key values are all zero
(0). It is also returned when the key value is less than zero or greater than 15.

3. MRD_STATUS_RECOVERED_ERROR

This error occurs when a SCSI device returns only a sense key of 1h. This indicates that although a
command successfully completed, the target device had performed some internal error recovery.

4. MRD_STATUS_MEDIUM_ERROR

This error occurs when ASC and ASCQ are zero, but the sense key is 3h. This occurs when the
target encounters a nonrecoverable error due to a flaw in the medium.

5. MRD_STATUS_ROBOT_HW_ERROR

This error occurs when ASC and ASCQ are zero, but the sense key is 4h. This occurs when the
target encounters a nonrecoverable hardware error.

6. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

This error occurs for a variety of reasons.

It is used when a sanity check fails in the code that attempts to move a cartridge to the Pass-Through
Mechanism, when the robot type isn't a TL82n.

It is used in the mrd_lock(3mrd) code when the value is not one of ALLOW_REMOVAL or
PREVENT_REMOVAL.

It is used when the medium changer does not support the Prevent/Allow Medium Removal
command or the lock value is not one or zero. The specific cause can be determined by examining
the ASC/ASCQ values in the status data.

It is used when a call to mrd_initialize_element(3mrd) is issued against a medium changer that
does not support the Initialize Element Status command.

It is used when the medium changer does not support the Position To Element command. The
seven and five slot DLT loaders do not support the command, though the TL820 and TL810 family
libraries do. Some models of TLZ6L and TLZ7L do not support the command and may take a long
time to fail.

It is used when the medium changer does not support the Ready Inport command.

The TL820 family of DLT libraries support this command. The TL810 family of DLT libraries
allows this command to succeed, but it doesn't perform any function.

It is also used for a SCSI command failure, when the ASC is set to one of:
132

Chapter 20. mrd_request_sense

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

● 0x26 - Threshold parameters not supported

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

7. MRD_STATUS_ROBOT_ATTENTION

This error occurs when a SCSI command fails with the ASC set to one of 0x29, 0x2A or 0x2F. The
log_info contains the ASCQ. The SCSI translations for these error codes are:

● 0x29 - Power-on, Reset or Bus device reset occurred

● 0x2A - Mode Parameters Changed

● 0x2F - Command cleared by another initiator

This error also occurs when the ASC and ASCQ are zero, but the SCSI sense key is 6h.

8. MRD_STATUS_DATA_PROTECT

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is seven (7).

9. MRD_STATUS_BLANK_CHECK

This error is returned by mrd_scsi_ decode(3mrd) when the asc and ascq are zero, but the key
value is eight (8).

10. MRD_STATUS_VENDOR_UNIQUE_ERROR

This error occurs when the internal routine used to decode SCSI-2 errors encounters an error that it
has not been written to antipicate.

This error is also returned when the ASC is zero and the ASCQ is not one of zero or six, and when
ASC/ASCQ are both zero and the key is 9h.

11. MRD_STATUS_COPY_ABORTED

133

Chapter 20. mrd_request_sense

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is ten (10).

12. MRD_STATUS_SENSE_EQUAL

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is Ch (12).

13. MRD_STATUS_VOLUME_OVERFLOW

This error is returned by mrd_scsi_decode(3mrd) when the asc and ascq are zero, but the key value
is Dh (13).

14. MRD_STATUS_MISCOMPARE

This error is returned by mrd_scsi_ decode(3mrd) when the asc and ascq are zero, but the key
value is Eh (14).

15. MRD_STATUS_SENSE_RESERVED

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is Fh (15).

16. MRD_STATUS_ROBOT_COMM_ERROR

This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

17. MRD_STATUS_ROBOT_MECH_ERROR

This error occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x15 - Positioning error.

● 0x8B - Vendor unique; Pass-through mechanism errors on the TL82n

18. MRD_STATUS_AUTOCLEAN

134

Chapter 20. mrd_request_sense

This error occurs when a SCSI command fails with the ASC set to 0x30 and the ASCQ set to 0x3.
On TL8nn libraries supporting Auto-clean, it indicates that a command was attempted while an auto-
clean was in progress.

19. MRD_STATUS_CART_DAMAGED

This error occurs when a SCSI command fails with the ASC set to 0x30, but the ASCQ is NOT a
value of 0x3. The log_info will contain the ASCQ.

20. MRD_STATUS_ELEMENT_INVALID

This error occurs when a SCSI command fails with the ASC set to 0x21. The log_info will contain
the ASCQ. This indicates that an invalid element address reached the medium-changer. For example,
specifying the 13th slot when only 12 slots are present.

21. MRD_STATUS_CART_NOT_AVAIL

This error can occur on the TL81n and TL82n family of DLT libraries when the source of a move is
a drive and the cartridge in the drive is still on-line. These robots do not allow moving the cartridge
until the drive is taken offline.

22. MRD_STATUS_DESTINATION_FULL

On routines that perform a SCSI Move Medium command, this error indicates that the destination
element already has a cartridge in it.

23. MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

24. MRD_STATUS_ROBOT_DOOR_OPENED

This occurs when a SCSI command fails with the ASC set to 0x80 and the ASCQ set to 0x0.
On TL8nn libraries this typically indicates that the cabinet door was opened during a command
operation.

20.3.2.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

2. MRD_STATUS_ROBOT_NOT_READY

Under Microsoft Windows 2000/Windows XP, this error code is returned when the specified robot
exists but is not responding.

3. MRD_STATUS_ROBOT_CMD_ABORTED

This error is returned by mrd_scsi_decode(3mrd) when the asc is zero and the ascq is six, or when
the asc and ascq are zero and the key is eleven (11).

135

Chapter 20. mrd_request_sense

20.3.2.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_EBADF

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

2. MRD_STATUS_EINVAL

This error is returned by mrd_map_os_ error(3mrd) when the os_status is EINVAL. This typically
occurs during mrd_ startup(3mrd) when the special file is not a SCSI device: for example, /dev/tty.

3. MRD_STATUS_STARTUP_ERROR

This error is returned by mrd_ map_os_error(3mrd) when the os_status is ENODEV. This
typically occurs during mrd_startup(3mrd) when the special file is not a SCSI device; /dev/null.

4. MRD_STATUS_NO_SUCH_DEVICE

This error occurs when a UNIX system call returns ENXIO, to indicate that the device
corresponding to the special device does not exist.

5. MRD_STATUS_EBUSY

This error occurs when a UNIX system call returns EBUSY, to indicate that some other process is
using that medium-changer device.

6. MRD_STATUS_EINTR

This error occurs when a UNIX system call returns EINTR. This error corresponds to an interrupted
system call, but also occurs when the SCSI CAM Layered Components Medium-Changer driver is
not configured into the running system.

7. MRD_STATUS_EIO

This error occurs when a UNIX system call returns EIO to indicate that there was an I/O error. In
most cases an I/O error on a SCSI medium-changer indicates a SCSI error which be translated to
another MRD error.

8. MRD_STATUS_ENOENT

This error occurs when a UNIX system call returns ENOENT to indicate that a special device file
doesn't exist.

9. MRD_STATUS_EACCES

This error occurs when a UNIX system call returns EACCES to indicate that the caller does not have
sufficient permission to open the special device file corresponding to the medium-changer. MRD
expects to have read permission on the special device file.

10. MRD_STATUS_OS_ERROR

136

Chapter 20. mrd_request_sense

This error occurs when a UNIX system call returns an error that is not among those previously
mentioned. The routine strerror(3) will be used to translate the error code into a standard text
message which will be copied to log_info.

11. MRD_STATUS_ROBOT_NOT_READY

Under OpenVMS and Tru64 UNIX, this error occurs as the result of a SCSI command failure, when
the ASC is set to one of:

● 0x80 - When the ASCQ is not zero (0).

● 0x81 - Vendor unique; gripper errors on the TL82X and TL81X

● 0x04 - Logical unit not ready

● 0x3E - Logical unit has not been self configured

● 0x40 - Diagnostic failure; ASCQ indicates component

● 0x42 - Power-on self test failure

● 0x44 - Internal target failure

● 0x46 - Unsuccessful soft reset

● 0x4C - Logical unit failed self-configuration

This status is also returned when the ASC and ASCQ are zero, but the key is two (2).

12. MRD_STATUS_ROBOT_CMD_ABORTED

This error is returned by mrd_scsi_decode(3mrd) when the asc is zero and the ascq is six, or when
the asc and ascq are zero and the key is eleven (11).

20.3.2.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEV or SS$_IVDEVNAM. This will typically occur in mrd_ startup(3mrd) when the
caller tries to open a device which doesn't exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

2. MRD_STATUS_ROBOT_NOT_READY

Under OpenVMS and Tru64 UNIX, this error occurs as the result of a SCSI command failure, when
the ASC is set to one of:

● 0x80 - When the ASCQ is not zero (0).

137

Chapter 20. mrd_request_sense

● 0x81 - Vendor unique; gripper errors on the TL82X and TL81X

● 0x04 - Logical unit not ready

● 0x3E - Logical unit has not been self configured

● 0x40 - Diagnostic failure; ASCQ indicates component

● 0x42 - Power-on self test failure

● 0x44 - Internal target failure

● 0x46 - Unsuccessful soft reset

● 0x4C - Logical unit failed self-configuration

This status is also returned when the ASC and ASCQ are zero, but the key is two (2).

3. MRD_STATUS_ROBOT_CMD_ABORTED

This error code is used when an OpenVMS system service fails with the status SS$_ABORT.

20.3.3. Related Information
Functions:

● mrd_move(3mrd)

● mrd_load(3mrd)

● mrd_unload(3mrd)

● mrd_inject(3mrd)

● mrd_eject(3mrd)

● mrd_show(3mrd)

● mrd_ready_inport(3mrd)

● mrd_position(3mrd)

● mrd_initialize(3mrd)

● mrd_home(3mrd)

● mrd_find_cartridge(3mrd)

● mrd_startup(3mrd)

● mrd_shutdown(3mrd)

● mrd_lock(3mrd)

138

Chapter 21. mrd_show
mrd_show - Obtain information from a media robot

21.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_show(
 const char *robot_name,
 robot_info_t *robot_info,
 int element_type,
 const char *element_name,
 int element_count,
 element_info_t *element_info,
 char *log_info) ;

21.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● robot_info — This is the address of a robot_info_t structure initialized using mrd_startup(3mrd)
or mrd_show(3mrd). This data structure contains the element starting address and counts for each
type of element, which are needed to map an absolute element to the correct zero relative address
and type.

● element_type — The type of robot element for which mrd_show(3mrd) returns information.
Element types include: PORT, DRIVE, SLOT, TRANSPORT, or ROBOT.

● element_name — A string used to specify the name of the first element about which to obtain
information. While SCSI devices use integer numbers for element addresses, DSA robots use
character strings. This allows the same interface to be used for both types where supported.

● element_count — The number of elements about which to obtain information.

● element_info — The array of element_info_t structures that is filled in with information on the
type and number of elements requested with element_type and element_count. The information
includes volume tag (if available), state, port type (if PORT information is requested), status, and
when available a copy of the Read Element Status data for the element.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

139

Chapter 21. mrd_show

21.3. Description
The mrd_show(3mrd) function can be used to obtain information about specific element types of
a supported Medium-Changer. Medium-Changer element types that mrd_show(3mrd) can retrieve
information about include PORT, DRIVE, SLOT and TRANSPORT. If a element_type of ROBOT is
specified, the mrd_ show(3mrd) is equivalent to calling mrd_startup(3mrd) - that is, robot_info is
filled in.

The robot_info_t data structure is described in mrd_startup(3mrd).

The element_name parameter specifies the first element of the type element_type about which to obtain
information. The element_count parameter specifies the number of elements of type element_type about
which information is to be obtained.

21.3.1. Element Info
The element_info_t data structure is defined in the include file <mrd_ common.h>. The fields of this
data structure are described below:

● name — The name field holds the volume tag of the media if applicable.

● state — The state field can have one of the following values: ELEMENT_FULL,
ELELMENT_EMPTY, or ELEMENT_EXCEPT.

● port_type — If the element_type parameter specifies PORT, the port_type field will have one of the
following values: IN_OUT_PORT, INPORT, OUTPORT.

● status — The status field can have one of the following values: MRD_STATUS_SLOT_INVALID,
MRD_STATUS_DEVICE_INVALID, MRD_STATUS_TRANSPORT_INVALID,
MRD_STATUS_PORT_INVALID, or MRD_STATUS_SUCCESS.

● flags — Use the ELEMENT_VALID mask on the flags field to indicate whether or not the full Read
Element Status data is valid. The ELEMENT_ PVOLTAG and ELEMENT_AVOLTAG indicate
whether the primary or alternate volume tags of the Read Element Status data are valid.

● element_addr — This is the address of the element, unadjusted for the starting address. The routine
mrd_map_element(3mrd) can be used to convert an absolute element address to a relative address
and type. This field will be set to -1 when the information is not valid.

● source_addr — On most SCSI-2 medium-changers, this is the address where a cartridge resided
before being moved to its current location. The routine mrd_map_element(3mrd) can be used to
convert an absolute element address to a relative address and type. This field will be set to -1 when
the information is not valid. On some SCSI-2 medium-changers (the DLT family loaders) this will
be the element address of the slot itself.

● data — This a copy of the SCSI-2 Read Element Status data when the ELEMENT_VALID bit
is set in the flags field. A byte-order neutral declaration of this data structure is included in the
<mrd_common.h> include file as the mrd_reades_t data structure.

21.3.2. Example
/*
 * Example to do mrd_show(3mrd) on the first element of each type.
 * The usage of this command is:
 *
 * mrd_show robot
 *

140

Chapter 21. mrd_show

 * This examples show keeping the robot open across multiple
 * calls to mrd_show(3mrd). In one happens to close it, the
 * channel will be reset the BAD_CHANNEL and the next one will
 * open it again. On some robot subsystems, opening the robot
 * is fairly time consuming and if multiple "shows" are needed
 * the time savings can be signficiant.
 *
 * The subsystems where this is most noticable are HSJ and HSD
 * connected robots, which aren’t supported on Tru64 UNIX.
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_show.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{

 robot_info_t robot_info ; /* keep the robot open */
 element_info_t element ; /* place to put element data */
 int el ; /* type index */
 int status ; /* status from mrd_show(3mrd) */
 char *robot ; /* Robot to use */
 char *content ; /* pointer to a content string */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error text */

 /*
 * Only one argument is used; the robot name.
 */
 if(argc == 1) {
 printf("usage: %s robot\n", argv[0]) ;
 exit(1) ;
 }
 else
 robot = argv[1] ;

/*
 * The channel number must be set to BAD_CHANNEL before
 * mrd_startup or mrd_show is called, otherwise it will
 * assume the robot is already open and not try to open
 * it again.
 */
robot_info.channel = BAD_CHANNEL ;

/*
 * In this case we want to open the robot once, and then
 * call mrd_show(3mrd) in turn for each type of element.
 * If there is an error and it happens to close the robot,
 * the channel will be reset and the robot opened again on
 * the next call.
 */
status = mrd_startup(robot, &robot_info, log_info) ;

if(status != MRD_STATUS_SUCCESS) {
 printf("Startup failed: %s (%s).\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;

 exit(1) ;
}

/*
 * We rely on the fact that the element numbers are

141

Chapter 21. mrd_show

 * are 1 through 4.
 */
for(el = 1; el <= 4; el++) {
 log_info[0] = ’\0’ ;

 status = mrd_show(robot, &robot_info, el, "0", 1,
 &element, log_info) ;

 if(status != MRD_STATUS_SUCCESS) {
 printf("Can’t show %s 0: %s (%s)\n",
 mrd_strelement(el), mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;

 continue ;
 }

 if(element.status != MRD_STATUS_SUCCESS) {
 printf("Can’t show %s 0: %s\n", mrd_strelement(el),
 mrd_strstatus(element.status)) ;

 continue ;
 }

 if(element.name[0])
 content = element.name ;
 else if(element.state & ELEMENT_FULL)
 content = "Full" ;
 else if(element.state & ELEMENT_EXCEPT)
 content = "Exception" ;
 else
 content = "Empty" ;

 printf("%-9s 0: %s\n", mrd_strelement(el), content) ;
 }

 /*
 * Close it when done.
 */
 (void)mrd_shutdown(&robot_info) ;

 return 0 ;
}

21.3.3. Return Values
Upon successful completion, the mrd_show(3mrd) function returns the value
MRD_STATUS_SUCCESS. If mrd_show(3mrd) fails, the returned status value will be set to one of the
following values. Other values that correspond to specific SCSI errors may also be possible, but these are
the most likely.

21.3.3.1. Common Codes
1. MRD_STATUS_PARAM

This error is returned if the robot_name, log_ info, element_name, element_info, or robot_info
arguments are NULL pointers.

2. MRD_STATUS_RES_FAILED

The SCSI command Read Element Status failed.

3. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

142

Chapter 21. mrd_show

This is error is returned when the element_type is not one of SLOT, PORT, DRIVE or
TRANSPORT. This last case should return MRD_STATUS_INVALID_TYPE instead. It is also
used for a SCSI command failure, when the ASC is set to one of:

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

● 0x26 - Threshold parameters not supported

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

4. MRD_STATUS_SLOT_INVALID

This error is returned when the element address for a slot is less than zero or greater than the number
of slots.

5. MRD_STATUS_TRANSPORT_INVALID

This error is returned when the element address for a transport is less than zero or greater than the
number of transports.

6. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives.

7. MRD_STATUS_PORT_INVALID

This error is returned when the element address for a port is less than zero or greater than the
number of ports.

8. MRD_STATUS_NO_ELEMENTS

This error occurs in mrd_ show(3mrd), mrd_find_cartridge(3mrd) and mrd_home(3mrd) when
the medium-changer has no elements within the range and type specified by the arguments.

143

Chapter 21. mrd_show

21.3.3.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_ROBOT_NOT_READY

Under Microsoft Windows 2000/Windows XP, this error code is returned when the specified robot
exists but is not responding.

3. MRD_STATUS_INSFMEM

The mrd_show(3mrd) and mrd_find_cartridge(3mrd) functions allocate virtual memory using
malloc(3) to store temporary element data. If the attempt to allocate the memory fails, these routines
will return this error.

21.3.3.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.
144

Chapter 21. mrd_show

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_ROBOT_NOT_READY

Under OpenVMS and Tru64 UNIX, this error occurs as the result of a SCSI command failure, when
the ASC is set to one of:

● 0x80 - When the ASCQ is not zero (0).

● 0x81 - Vendor unique; gripper errors on the TL82X and TL81X

● 0x04 - Logical unit not ready

● 0x3E - Logical unit has not been self configured

● 0x40 - Diagnostic failure; ASCQ indicates component

● 0x42 - Power-on self test failure

● 0x44 - Internal target failure

● 0x46 - Unsuccessful soft reset

● 0x4C - Logical unit failed self-configuration

This status is also returned when the ASC and ASCQ are zero, but the key is two (2).

3. MRD_STATUS_INSFMEM

The mrd_show(3mrd) and mrd_find_cartridge(3mrd) functions allocate virtual memory using
malloc(3) to store temporary element data. If the attempt to allocate the memory fails, these routines
will return this error.

21.3.3.4. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR 145

Chapter 21. mrd_show

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_ROBOT_NOT_READY

Under OpenVMS and Tru64 UNIX, this error occurs as the result of a SCSI command failure, when
the ASC is set to one of:

● 0x80 - When the ASCQ is not zero (0).

● 0x81 - Vendor unique; gripper errors on the TL82X and TL81X

● 0x04 - Logical unit not ready

● 0x3E - Logical unit has not been self configured

● 0x40 - Diagnostic failure; ASCQ indicates component

● 0x42 - Power-on self test failure

● 0x44 - Internal target failure

● 0x46 - Unsuccessful soft reset

● 0x4C - Logical unit failed self-configuration

This status is also returned when the ASC and ASCQ are zero, but the key is two (2).

3. MRD_STATUS_DEVICE_INVALID

146

Chapter 21. mrd_show

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEV or SS$_IVDEVNAM. This will typically occur in mrd_ startup(3mrd) when the
caller tries to open a device which doesn't exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

4. MRD_STATUS_INSFMEM

The mrd_show(3mrd) and mrd_find_cartridge(3mrd) functions allocate virtual memory using
malloc(3) to store temporary element data. If the attempt to allocate the memory fails, these routines
will return this error.

21.4. Related Information
Functions:

● mrd_shutdown(3mrd)

● mrd_startup(3mrd)

● mrd_map_element(3mrd)

147

Chapter 21. mrd_show

148

Chapter 22. mrd_startup
mrd_startup - Open a medium-changer robot

mrd_shutdown - Close a medium-changer robot

22.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_startup(
 const char *robot_name,
 robot_info_t *robot_info,
 char *log_info) ;

void mrd_shutdown(
 robot_info_t *robot_info) ;

22.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● robot_info — This is the address of a robot_info_t structure initialized by mrd_startup(3mrd). This
data structure contains the element starting address and counts for each type of element, which are
needed to map an absolute element to the correct zero relative address and type. This is the address
of the robot_info_t structure when mrd_startup(3mrd) is called.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

22.3. Description
The mrd_startup(3mrd) function can be used to obtain information about a supported Medium-
Changer. Because the startup time on some robots (HSJ connected SCSI robots) can be relatively long,
this routine can also be used to hold open the robot while mrd_show(3mrd) routines are used to collect
information about the different robot elements.

The mrd_shutdown(3mrd) routine should be used to close a robot before other MRD routines are
called. With the exception of mrd_show(3mrd) the MRD common routines call mrd_startup(3mrd)
themselves and can't make use of robot_info_t filled in by mrd_startup(3mrd).

149

Chapter 22. mrd_startup

Robot Information
The robot_info_t data structure is defined in the include file <mrd_common.h> The fields of this data
structure are described below:

● channel — This is the file descriptor, channel number or other operating system specific handle
assigned to the process for the robot, when mrd_ startup(3mrd) is successful. It should not be
used directly and should only be closed through mrd_shutdown(3mrd). When mrd_show(3mrd)
is provided a robot_info_t where the channel is not BAD_CHANNEL, it will assume the robot is
open and try to use that handle.

● robot_name — This is set to the address of the robot_name argument provided to
mrd_startup(3mrd).

● robot_type — MRD attempts to identify a robot using the SCSI inquiry data obtained during the
startup. This is a value to indicate the family or type of medium-changer. Recognized types are:

DLT_ROBOT TZ857, TZ867, TZ875, TZ877, TZ885, TZ887
RDAT_ROBOT TLZ6L, TLZ7L, TLZ9L
TL820_ROBOT TL820, TL822, TL826, TL893, TL896
TL810_ROBOT TL810, TL812, TL894, TL895
TL800_ROBOT TL891, TL892
OVERLAND_ROBOT TKZ6x
RW5XX_ROBOT RW500
UNKNOWN_ROBOT A type not recognized

● arch_type — This indicates the I/O architecture used to communicate with the medium-changer.
OpenVMS supports SCSI (ARCH_SCSI) and DSA (ARCH_DSA) connected medium-changers.
HSJ and HSD connected robots are considered SCSI robots. Tru64 UNIX and Windows 2000 /
Windows XP only support SCSI connected robots.

● vision_present — This flag indicates that the robot supports a vision system that can be used to
read volume tags. It is set in the start-up and should not be changed. Most SCSI robots will reject
commands asking for volume tags when the medium-changer doesn't support them.

● robot_device_type — This field is only used by the OpenVMS implementation of MRD to indicate
the method the host uses to communicate with the medium-changer. This value is used internally by
the OpenVMS MRD code to select the appropriate communcation path.

● ptm_addr and ptm_type — The TL820 family supports a pass-through mechanism (PTM) for
moving cartridges from the inport to the bar-code reader station or from there to the outport. In
multi-tower configurations the pass-through moves cartridges from one tower to another. The MRD
uses the PTM to perform bar-code verification. Early versions of the TL820 family firmware present
the PTM as a Import/Export element, while later versions may present it as a Transport. These fields
are used to indicate the address and type.

● maxecnt — The OpenVMS drivers used to communicate with medium- changers support a limited I/
O size that restricts the amount of data that can be transferred by a Read Element Status command.
This field is used by the OpenVMS implementation of MRD to know where large transfers must be
broken up by the software.

150

Chapter 22. mrd_startup

● element_desc — In addition to knowing the maximum number of elements that may be read in a
single Read Element Status command, the element descriptor size is also needed to correctly break-
up command. This field stores the element descriptor size on all implementations of the MRD.

The following fields are filled in from Element Address Assignment Page obtained via the SCSI Mode
Sense command. When the robot is not a SCSI connect device, a suitable lie is filled by the operating
system specific code supporting that type of robot.

● slot_count — This is the number of storage elements (slots) in the medium- changer. Some robots
(TLZ7L) will change the number of slots presented depending on the type of magazine used. To
detect changes in the size of the carrier, mrd_startup(3mrd) must be called and field checked for a
change of value. When no magazine is in the drive, it may report 0 slots.

● slot_start — This is the element address of the first storage element. It is used by MRD to convert
zero-relative element addresses to the actual element address used by the medium-changer.

● device_count — This is the number of data transfer elements (drives) in the medium-changer. Like
storage elements it may be subject to change after a robot has been started.

● device_start — This is the element address of the first data transfer element. It is used by MRD to
convert zero-relative element addresses to the actual element address used by the medium-changer.

● port_count — This is the number of import/export elements (ports) in the medium-changer. Like
storage elements it may be subject to change after a robot has been started.

● port_start — This is the element address of the first import/export element. It is used by MRD to
convert zero-relative element addresses to the actual element address used by the medium-changer.

● transport_count — This is the number of medium transport elements (transports) in the medium-
changer. Like storage elements it may be subject to change after a robot has been started.

● transport_start — This is the element address of the first medium transport element. it is used by
MRD to convert zero-relative element addresses to the actual element address used by the medium-
changer.

● inport_count and outport_count — MRD V1.2 and earlier attempts to identify ports according to
whether they are used for import-only, export-only or both. This is an artifact from the time that the
TL820 was the only supported medium- changer with ports. Even though the TL810 has four ports
these fields will report it having four inports and four outports.

● inport_start and outport_start — MRD V1.2 and earlier assumes that the arrangement of ports in
the address space of the medium-changer has all the inports together and all the outports together.
However, the two groups may be separated. No guarantee is made whether the addressees of the
inports come before or after the outports. When the starting address of both types of ports the same
value, it can be safely assumed that all the ports within the particular port count are both inport and
outport elements.

The following fields are obtained as the result of a SCSI Inquiry Command. When the robot isn't a SCSI
connected device, a suitable lie is filled in by the operating system specific code supporting that type of
robot.

● scsi_info — These are the first eight (8) bytes of the SCSI Inquiry data for the robot. MRD doesn't
make use of this information, but it is available if the calling application wants to use it. These bytes
will be zero on non-SCSI devices.

151

Chapter 22. mrd_startup

● inquiry — This is the VendorID, ProductID and ProductRevisionLevel fields of the SCSI Inquiry
data. They are collected as a single NUL terminated string. The data is edited to replace any non-
printable character with a space.

These fields are not currently used:

● bus

● target

● lun

● devcap

● transport_geometry

22.3.1. Example
/*
 * Example of using mrd_startup(3mrd) and mrd_shutdown(3mrd). This
 * just opens the robot and prints the element counts and Inquiry
 * string. The command usage is:
 *
 * mrd_startup robot
 */

#ifndef lint
static char SccsId[] = "@(#)mrd_startup.c 1.2 3/5/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 robot_info_t robot_info ; /* Place to put robot data */
 int status ; /* status from mrd_startup(3mrd) */
 char *robot ; /* robot name */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error text */
 /*
 * Only one required argument; the robot name
 */
 if(argc == 1) {
 printf("usage: %s robot\n", argv[0]) ;
 exit(1) ;
 }
 else
 robot = argv[1] ;

 /*
 * The channel number must be set to BAD_CHANNEL before
 * mrd_startup is called, otherwise it will assume the
 * robot is already open and not try to open it again.
 */
 robot_info.channel = BAD_CHANNEL ;

 status = mrd_startup(robot, &robot_info, log_info) ;

 if(status != MRD_STATUS_SUCCESS)
 printf("Startup failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;
 else {

152

Chapter 22. mrd_startup

 printf("Inquiry: %s\n", robot_info.inquiry) ;
 printf(" Transports: %d\n", robot_info.transport_count) ;
 printf(" Slots: %d\n", robot_info.slot_count) ;
 printf(" Ports: %d\n", robot_info.port_count) ;
 printf(" Drives: %d\n", robot_info.device_count) ;
 }

 (void)mrd_shutdown(&robot_info) ;

 return 0 ;
}

22.3.2. Return Values
Upon successful completion, the mrd_startup(3mrd) and mrd_shutdown(3mrd) functions return the
value MRD_STATUS_SUCCESS. If the mrd_startup(3mrd) fails the returned status value will be set
to one of the following values. Other values that correspond to specific SCSI errors may also be possible,
but these are the most likely.

22.3.2.1. Common Codes
1. MRD_STATUS_PARAM

This error is returned if the robot_name, log_info, or robot_info arguments are NULL pointers.

2. MRD_STATUS_SCSI_CHECK

The SCSI Check Condition error should never occur. It indicates that it is safe to use a Request
Sense command and that you are likely to get a different error.

3. MRD_STATUS_SCSI_CONDMET

The SCSI Condition Met status indicates a SCSI command completed with the status "Condition
Met".

4. MRD_STATUS_SCSI_BUSY

The SCSI Device is Busy status code indicates a SCSI command completed with the status "Busy".
Some TZ87x media changers are known to cause this condition.

5. MRD_STATUS_SCSI_INTER

The SCSI Intermediate Command Completed status code indicates a SCSI command completed with
the status "Intermediate".

6. MRD_STATUS_SCSI_INTER_CONDMET

The SCSI Intermediate-Condition Met status code indicates a SCSI command completed.

7. MRD_STATUS_SCSI_RESCON

The SCSI Reservation Conflict status code indicates a SCSI command completed with the status
"Reservation Conflict".

8. MRD_STATUS_SCSI_TERM

The SCSI Command Terminated status code indicates a SCSI command completed with the status
"Terminated".

153

Chapter 22. mrd_startup

9. MRD_STATUS_SCSI_QUEUE

The SCSI Queue Full status code indicates a SCSI command completed with the status "Queue
Full".

10. MRD_STATUS_SCSI_RESERVED

The SCSI Status Code Reserved return indicates a SCSI command completed with a status that
wasn't listed in Chapter 7 of the SCSI-2 specification and is "Reserved".

11. MRD_STATUS_INIT_REQUIRED

LUN not ready, Initializing command required.

This is for the ASC/ASCQ code of 4/2. It occurs when commands are sent to a TL810 family library
that has auto-inventory on power-up turned off.

12. MRD_STATUS_DIAG_FAILED Diagnostic failure, component in ASCQ.

This is the entire class of error codes with the ASC value set to 0x40.

13. 22.3.2.1.13 MRD_STATUS_IDE

Initiator detected error message received. This error code occurs when the ASC/ASCQ code is
0x48/0.

14. MRD_STATUS_OPERATOR

Operator request. This error code occurs when the ASC code is 0x5A and the ASCQ code is 0 or 1.

15. MRD_STATUS_LOG_ERROR

Device log error. This error code occurs when the ASC code is 0x5B and the ASCQ code is 0, 1, 2
or 3.

16. MRD_STATUS_ELOG_OVERFLOW

Error log overflow. This error code occurs when the ASC code is 0xA and the ASCQ code is 0.

17. MRD_STATUS_SYNC_XFER_ERROR

Synchronous data transfer error. This error code occurs when the ASC code is 0x1B and the ASCQ
code is 0.

22.3.2.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

154

Chapter 22. mrd_startup

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_ROBOT_NOT_READY

Under Microsoft Windows 2000/Windows XP, this error code is returned when the specified robot
exists but is not responding.

3. MRD_STATUS_NO_SUCH_DEVICE

This error is returned when a regular file or robot was specified without the ‘‘:BnTnLn'' string.

22.3.2.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

155

Chapter 22. mrd_startup

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_NO_SUCH_DEVICE

This error occurs when a UNIX system call returns ENXIO, to indicate that the device
corresponding to the special device does not exist.

3. MRD_STATUS_ROBOT_NOT_READY

Under OpenVMS and Tru64 UNIX, this error occurs as the result of a SCSI command failure, when
the ASC is set to one of:

● 0x80 - When the ASCQ is not zero (0).

● 0x81 - Vendor unique; gripper errors on the TL82X and TL81X

● 0x04 - Logical unit not ready

● 0x3E - Logical unit has not been self configured

● 0x40 - Diagnostic failure; ASCQ indicates component

● 0x42 - Power-on self test failure

● 0x44 - Internal target failure

● 0x46 - Unsuccessful soft reset

● 0x4C - Logical unit failed self-configuration

This status is also returned when the ASC and ASCQ are zero, but the key is two (2).

4. MRD_STATUS_EBUSY

This error occurs when a UNIX system call returns EBUSY, to indicate that some other process is
using that medium-changer device.

5. MRD_STATUS_EINTR

This error occurs when a UNIX system call returns EINTR. This error corresponds to an interrupted
system call, but also occurs when the SCSI CAM Layered Components Medium-Changer driver is
not configured into the running system.

6. MRD_STATUS_EIO

This error occurs when a UNIX system call returns EIO to indicate that there was an I/O error. In
most cases an I/O error on a SCSI medium-changer indicates a SCSI error which be translated to
another MRD error.

7. MRD_STATUS_ENOENT

This error occurs when a UNIX system call returns ENOENT to indicate that a special device file
doesn't exist.

8. MRD_STATUS_EACCES

156

Chapter 22. mrd_startup

This error occurs when a UNIX system call returns EACCES to indicate that the caller does not have
sufficient permission to open the special device file corresponding to the medium-changer. MRD
expects to have read permission on the special device file.

9. MRD_STATUS_OS_ERROR

This error occurs when a UNIX system call returns an error that is not among those previously
mentioned. The routine strerror(3) will be used to translate the error code into a standard text
message which will be copied to log_info.

22.3.2.4. OpenVMS Codes

The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_ROBOT_NOT_READY

Under OpenVMS and Tru64 UNIX, this error occurs as the result of a SCSI command failure, when
the ASC is set to one of:

● 0x80 - When the ASCQ is not zero (0).

● 0x81 - Vendor unique; gripper errors on the TL82X and TL81X

● 0x04 - Logical unit not ready

157

Chapter 22. mrd_startup

● 0x3E - Logical unit has not been self configured

● 0x40 - Diagnostic failure; ASCQ indicates component

● 0x42 - Power-on self test failure

● 0x44 - Internal target failure

● 0x46 - Unsuccessful soft reset

● 0x4C - Logical unit failed self-configuration

This status is also returned when the ASC and ASCQ are zero, but the key is two (2).

3. MRD_STATUS_NO_SUCH_DEVICE

This error is returned when a robot device name was specified for a robot that does not exist.

4. MRD_STATUS_PAGE_CODE

This error occurs in mrd_startup(3mrd) when a SCSI Mode Sense command fails to return the
expected data. It uses the SCSI Element Address Assignment mode page to fill in the element count
and base address fields of the robot_info_t structure. If the data returned by the medium changer
does not have the expected page code, this error is returned.

This error has been seen when medium changers are connected to HS family array controllers
running V2.7 firmware.

22.4. Related Information
Functions:

● mrd_move(3mrd)

● mrd_load(3mrd)

● mrd_unload(3mrd)

● mrd_inject(3mrd)

● mrd_eject(3mrd)

● mrd_show(3mrd)

● mrd_ready(3mrd)

● mrd_position(3mrd)

● mrd_initialize(3mrd)

● mrd_home(3mrd)

● mrd_find_cartridge(3mrd)

● mrd_error_decode(3mrd)

158

Chapter 22. mrd_startup

● mrd_strstatus(3mrd)

● mrd_map_element(3mrd)

● mrd_lock(3mrd)

● mrd_unlock(3mrd)

159

Chapter 22. mrd_startup

160

Chapter 23. mrd_test_unit_ready
mrd_test_unit_ready - Verify a medium changer is ready to accept commands

23.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_test_unit_ready(
 robot_info_t *robot_info,
 dev_status_t *dev_status);

23.2. Parameters
● robot_info — This is the address of a robot_info_t structure initialized using mrd_startup(3mrd)

or mrd_show(3mrd). This data structure contains the element starting address and counts for each
type of element, which are needed to map an absolute element to the correct zero relative address
and type.

● dev_status — The dev_status is the address of a dev_status_t structure, which is used to pass back
detailed error information in the event of a command failure.

23.3. Description
This routine performs a SCSI Test Unit Ready command, or equivalent if some other I/O architecture
is supported. It is used by the mrd_startup(3mrd) and the OpenVMS implementation of
mrd_ready(3mrd). Since it accepts a robot_ info_t structure associated with an open medium changer
it can used to perform Test Unit Ready command without having to re-open the medium changer each
time.

The robot_info_t is the address of a robot_info_t that has been opened by mrd_ startup(3mrd). If the
medium changer isn't opened, the Test Unit Ready Command will fail with the operating system error for
trying to use an unopened device.

The dev_status_t structure includes the code, os_status, and SCSI error fields. The following describes
how to decode errors with the dev_status_t structure.

SCSI Errors
SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

161

Chapter 23. mrd_test_unit_ready

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to 0
and the value of the os_status field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

23.3.1. Example
/*
 * This is an example of using mrd_test_unit_ready(3mrd)
 * to see if a media changer will accept commands. On
 * Tru64 UNIX this particular example will always
 * succeed whether the robot is ready or not. See the
 * Restrictions section of the manual page for more
 * information.
 *
 * Usage:
 *
 * mrd_test_unit_ready robot [more-robots...]
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_test_unit_ready.c 1.1 4/16/97" ;
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <mrd_common.h>
#include <mrd_message.h>

/*
 * Message string.
 */
char *tur_failed_dev =
 "Test unit ready failed on %s: %s (%d,0x%x,0x%x).\n ";
char *tur_failed_os = "Test unit ready failed on %s: %s (%d).\n" ;
char *tur_failed = "Test unit ready failed on %s: %s.\n" ;

/*
 * The MRD can report three types of errors:
 *
 * o Device errors - When the "valid" field is set, at least one
 * of the key, asc and ascq field should have values set from
 * a SCSI Request Sense data or equivalent.
 *
 * o Operating System errors - When the valid field is zero, but
 * the os_status field is set. Where possible an MRD error
 * will be set if one corresponds to the error. If not, the
 * MRD status will be MRD_STATUS_OS_ERROR. The os_status
 * is the error specific to the operating system. On Tru64
 * UNIX it is an errno value. On OpenVMS it is a system
 * service return value.
 *

162

Chapter 23. mrd_test_unit_ready

 * o MRD Errors - The MRD error code is set explicitly.
 */
print_error(char *robot, int mrd_status, dev_status_t *dp)
{
 /*
 * Print the Key/ASC/ASCQ data for device errors.
 */
 if(dp->valid)
 printf(tur_failed_dev, robot, mrd_strstatus(mrd_status),
 dp->key, dp->asc, dp->ascq) ;
 /*
 * Try to decode the os_status according to the operating
 * system type.
 */
 else if(dp->os_status == MRD_STATUS_OS_ERROR)
 printf(tur_failed_os, robot, mrd_strstatus(mrd_status),
#ifdef unix
 strerror(dp->os_status)) ;
#endif
#ifdef vms
 strerror(EVMSERR, dp->os_status)) ;
#endif
 /*
 * Just print the message on others.
 */
 else
 printf(tur_failed, robot, mrd_strstatus(mrd_status)) ;
}

main(int argc, char *argv[])
{
 int rc ; /* counter */
 int status ; /* return status */
 char *robot ; /* Robot to open */
 robot_info_t robot_info ; /* Robot data */
 dev_status_t dev_status ; /* Device status */
 char log_info[MRD_MAX_LOG_STRING+1] ;

 /*
 * Check that there are enough arguments.
 */
 if(argc < 2) {
 printf("usage: %s robot [robot...]\n", argv[0]) ;
 exit(1) ;
 }

 /*
 * Initialize the channel field of the robot_info, so
 * mrd_startup(3mrd) will actually open the robot.
 */
 robot_info.channel = BAD_CHANNEL ;

 for(rc = 1; rc < argc; rc++) {
 /*
 * The robot for this command.
 */
 robot = argv[rc] ;

 status = mrd_startup(robot, &robot_info, log_info) ;

 if(status != MRD_STATUS_SUCCESS) {
 printf("Startup failed on %s: %s.\n", robot,
 mrd_strstatus(status)) ;

 continue ;
 }

163

Chapter 23. mrd_test_unit_ready

 memset((void *)&dev_status, 0, sizeof(dev_status)) ;

 status = mrd_test_unit_ready(&robot_info, &dev_status) ;

 /*
 * Do some fancy error printing.
 */
 if(status != MRD_STATUS_SUCCESS)
 print_error(robot, status, &dev_status) ;
 else
 printf("%s is ready.\n", robot) ;
 (void)mrd_shutdown(&robot_info) ;
 }

 return 0 ;
}

23.3.2. Return Values
Upon successful completion, the mrd_test_unit_ready(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_test_unit_ready(3mrd)fails the returned status value may
be set to one of the following values. Other values that correspond to specific SCSI errors may also be
possible, but these are the most likely.

23.3.2.1. Common Codes

1. MRD_STATUS_PARAM

This error is returned if the robot_info, or dev_status are NULL pointers.

23.3.2.2. Windows 2000/Windows XP Codes

The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

164

Chapter 23. mrd_test_unit_ready

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

23.3.2.3. Tru64 UNIX Codes
The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_EBADF

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

23.3.2.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_ROBOT_COMM_ERROR

This error code is used when an OpenVMS system service, such as $ASSIGN or $QIO, fails with a
status of SS$_DRVERR. Generally SS$_DRVERR indicates a failure in the underlying device and
the MRD can get the detailed device failure and return the correct MRD status code instead.

165

Chapter 23. mrd_test_unit_ready

This error is also returned when a SCSI Test Unit Ready command fails. The cause of the error can
be determined by called mrd_request_sense(3mrd). This error also occurs as the result of a SCSI
command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

2. MRD_STATUS_IVCHAN

This error code is used when an OpenVMS system service fails with the status SS$_IVCHAN. It
is likely when an operating system specific routine is used on a device that hasn't been opened by
mrd_startup(3mrd).

3. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEV or SS$_IVDEVNAM. This will typically occur in mrd_ startup(3mrd) when the
caller tries to open a device which doesn't exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

23.3.3. Related Information
Functions:

mrd_startup(3mrd)

23.3.4. Tru64 UNIX Restriction
On Tru64 UNIX the SCSI CAM Layered Components Medium Changer driver doesn't offer easy access
to the Test Unit Ready command. As a result this routine always returns true when a valid robot_info_t
structure is passed to it. However, the open(2) implementation of the Medium Changer driver always
waits for a Test Unit Ready to succeed before the open(2) succeeds.

166

Chapter 24. mrd_unload
mrd_unload - Move a cartridge from drive to slot

24.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_unload(
 const char *robot_name,
 const char *volume_tag,
 const char *drive,
 const char *slot,
 char *log_info)) ;

24.2. Parameters
● robot_name — The name of the robot device to be opened. On Tru64 UNIX, if the leading

character of the name is not a slash (/), /dev/ will be prepended to the name.

● volume_tag — A NUL terminated character string that is the expected volume tag on the cartridge
to be moved. On robots with vision support this string will be compared with the volume tag of the
cartridge in the source slot and if it doesn't match the call will fail. This feature will not be used if
the volume_tag is NULL or the empty string.

● drive — A NUL terminated character string that is the zero relative address of the drive which is to
be used as the destination of the move.

● slot — A NUL terminated character string that is the zero relative address of the slot which is to be
used as the source of the move.

● log_info — This is a character array that should be at least MRD_MAX_LOG_ STRING in length.
If this function fails as the result of a SCSI error, this will be filled with the formatted request sense
data. If this function fails as the result of an operating system error, the operating system message
particular to the error will be copied into the array.

24.3. Description
The mrd_unload(3mrd) function is a specialized interface to the SCSI Move Medium command (or
DSA equivalent). For the robot specified by robot_name, the routine will attempt to move the cartridge
in the specified drive to the specified slot. Element addresses are zero based.

The robot will be opened and the arguments to the function will be verified to make sure they are safe
and appropriate. The drive and slot address will be verified they are within the valid range of those
elements on the robot.

167

Chapter 24. mrd_unload

The volume_tag argument can be used to perform cartridge volume tag verification before the
move. If the cartridge volume tag at the port doesn't match that specified by this argument, then
mrd_unload(3mrd) will fail with the status MRD_STATUS_CART_INVALID. If volume_tag
argument is a NULL pointer, an empty string or used on a robot without vision support this argument is
silently ignored and the volume tag check will not be made.

The DLT libraries (TL82X and TL81X families) require the host issue a SCSI Unload command before
a cartridge may be removed from the drive. The function mrd_unload(3mrd), does not offer this
feature. Thus, the calling program must do this itself. The example below shows how this can be done on
Tru64 UNIX.

24.3.1. Tru64 UNIX
This example applies to the Tru64 UNIX.

/*
 * Example of mrd_unload(3mrd). The command usage is:
 *
 * mrd_unload robot_name drive slot [volume_tag tape]
 *
 * On libraries (TL81X and TL82X) that require the tape
 * drive be explicitly taken offline before the tape can
 * be unloaded, this command allows a tape drive name to
 * be specified as an optional argument.
 *
 * Note: While the examples are largely system independent,
 * this one makes use of operating system features that are
 * very system dependent.
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_unload.c 1.2 3/5/97" ;
#endif

#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mtio.h>
#include <sys/file.h>

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>

#include <mrd_common.h>
#include <mrd_message.h>

/*
 * This happens not be declared anywhere on the system where
 * these examples were developed.
 */
int ioctl(int, unsigned long, void *) ;

/*
 * Take the specified tape offline. This goes roughly:
 *
 * o Open the drive.
 * o Build the mtop structure for an offline.
 * o Use I/O control to send it.
 * o Close the tape.
 */
offline(char *tape)
{

168

Chapter 24. mrd_unload

 struct mtop op ;
 int fd ;

 printf("Take %s offline..."); fflush(stdout) ;

 /*
 * We have two choices when opening the tape.
 *
 * 1. Wait until the tape is ready, or the tape driver
 * gives up and decides it never complete the open.
 * Some drivers may never give up and this will
 * block until interruped.
 *
 * 2. Open with the O_NDELAY flag, which will work
 * tape is ready or not. But the follow-on MTOFFL
 * will fail if the tape isn’t ready.
 */
 if((fd = open(tape, O_RDONLY)) == -1) {
 printf("\nCan’t open %s: %s.\n", tape, strerror(errno)) ;
 return ;
 }

 /*
 * Build the necessary mtop structure.
 */
 op.mt_op = MTOFFL ;
 op.mt_count = 1 ;

 /*
 * Let the driver handle the details.
 */
 if(ioctl(fd, MTIOCTOP, &op) == -1)
 printf("\nCan’t take %s offline: %s.\n", tape,
 strerror(errno)) ;

 putchar(’\n’) ;

 /*
 * Close the file when done.
 */
 if(close(fd) == -1)
 printf("Can’t close %s: %s.\n", tape, strerror(errno)) ;
}

main(int argc, char *argv[])
{
 int status ; /* Status from mrd_load(3mrd) */
 char *robot ; /* The name of the robot */
 char *tape = NULL ; /* Tape drive name */
 char *cart = NULL ; /* Optional volume tag to check */
 char *slot ; /* Source slot */
 char *drive ; /* Destination drive */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error string */
 /*
 * Accept three required argument; robot, port and slot. The
 * volume tag and tape drive name are optional.
 */
 if(argc < 4) {
 printf("usage: %s robot slot drive [tape volume-tag]\n",
 argv[0]) ;
 exit(1) ;
 }

 /*
 * Just use these directly from the command line.
 */

169

Chapter 24. mrd_unload

 robot = argv[1] ;
 slot = argv[2] ;
 drive = argv[3] ;

 /*
 * Of the optional arguments are present, try to figure
 * them out. Two optional arguments are supported and
 * we can’t use position as a clue. We could use getopt(3),
 * that is a little too much work for a simple example.
 *
 * The optional arguments are a tape drive if the drive
 * has to explicitly be taken offline before it can be
 * unloaded and a volume tag to verify this is the expected
 * cartridge. The tape drive name can be expected to have
 * the prefix of "/dev/", so we’ll use that as the clue.
 */
 if(argc > 4) {
 /*
 * Check the first one. If the first five characters
 * are /dev/, assume this is the tape name.
 */
 if(strncmp(argv[4], "/dev/", 5) == 0)
 tape = argv[4] ;
 else
 cart = argv[4] ;

 /*
 * If there is another argument beyond that, repeat.
 */
 if(argc > 5) {
 if(strncmp(argv[5], "/dev/", 5) == 0)
 tape = argv[5] ;
 else
 cart = argv[5] ;
 }
 }

 /*
 * Having initialize the tape name to NULL when declared,
 * if it has changed we can assume that we need to take
 * this drive offline first. If it fails, just run through
 * and try the unload anyway.
 */
 if(tape)
 offline(tape) ;

 /*
 * Call the function.
 */
 status = mrd_unload(robot, cart, slot, drive, log_info) ;
 /*
 * Print an error message if there is a failure. The
 * routine mrd_strstatus(3mrd) will accept an MRD
 * error status and return the corresponding string.
 * If the log_info data has something other than a
 * NULL as the first character print it as well. It
 * typically be the SCSI sense data or a operating
 * system specific message for the error.
 */
 if(status != MRD_STATUS_SUCCESS)
 printf("Load failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;
 else
 printf("Unloaded media from Drive #%s to Slot #%s.\n",
 drive, slot) ;

170

Chapter 24. mrd_unload

 return 0 ;
}

24.4. OpenVMS Example
This example applies to the OpenVMS operating system.

/*
 * Example of mrd_unload(3mrd). The command usage is:
 *
 * mrd_unload robot_name drive slot [volume_tag]
 *
 * This version is VMS specific since it excludes the example
 * for taking a tape drive offline. That is moderately complicated
 * but something that should be in the VMS documentation.
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_unload.c 1.2A (mrd-example) 3/5/97" ;
#endif

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>

#include <mrd_common.h>
#include <mrd_message.h>

main(int argc, char *argv[])
{
 int status ; /* Status from mrd_load(3mrd) */
 char *robot ; /* The name of the robot */
 char *cart = NULL ; /* Optional volume tag to check */
 char *slot ; /* Source slot */
 char *drive ; /* Destination drive */
 char log_info[MRD_MAX_LOG_STRING+1] ; /* error string */

 /*
 * Accept three required argument; robot, port and slot. The
 * volume tag and tape drive name are optional.
 */
 if(argc < 4) {
 printf("usage: %s robot slot drive [volume-tag]\n",
 argv[0]) ;
 exit(1) ;
 }
 /*
 * Just use these directly from the command line.
 */
 robot = argv[1] ;
 slot = argv[2] ;
 drive = argv[3] ;

 /*
 * If there is an extra argument present, assume it is
 * a cartridge name. The habit of the DECC runtime
 * start-up mapping all characters to lower case,
 * might require special handling of the cartridge
 * name.
 */
 if(argc > 4)
 cart = argv[4] ;

 /*

171

Chapter 24. mrd_unload

 * Call the function.
 */
 status = mrd_unload(robot, cart, slot, drive, log_info) ;

 /*
 * Print an error message if there is a failure. The
 * routine mrd_strstatus(3mrd) will accept an MRD
 * error status and return the corresponding string.
 * If the log_info data has something other than a
 * NUL as the first character print it as well. It
 * typically be the SCSI sense data or a operating
 * system specific message for the error.
 */
 if(status != MRD_STATUS_SUCCESS)
 printf("Load failed: %s: %s.\n", mrd_strstatus(status),
 log_info[0] ? log_info : "none") ;
 else
 printf("Unloaded media from Drive #%s to Slot #%s.\n",
 drive, slot) ;

 return 0 ;
}

24.4.1. Return Values
Upon successful completion, the mrd_unload(3mrd) function returns the value
MRD_STATUS_SUCCESS. If the mrd_unload(3mrd) fails the returned status value may be set to one
of the following values. Other values that correspond to specific SCSI errors may also be possible, but
these are the most likely.

24.4.1.1. Common Codes
1. MRD_STATUS_PARAM

This error is returned if the robot_name, drive, slot, or log_info arguments are NULL pointers.

2. MRD_STATUS_ROBOT_COMM_ERROR

This error occurs as the result of a failure to open the specified medium-changer. This may occur
directly by calling mrd_startup(3mrd) or by a routine that calls mrd_startup(3mrd) internally.
This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

172

Chapter 24. mrd_unload

● 0x54 - SCSI to host system interface failure

3. MRD_STATUS_SLOT_INVALID

This error is returned when theelement address for a slot is less than zero or greater than the number
of slots.

4. MRD_STATUS_CART_INVALID

For routines that accept a volume_tag argument to perform volume tag verification, this error
indicates that the volume tag of the media doesn’t match that passed to the function.

5. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number ofdrives.

6. MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

7. MRD_STATUS_DESTINATION_FULL

On routines that perform aSCSI Move Medium command, this error indicates that the destination
elementalready has a cartridge in it.

8. MRD_STATUS_CART_NOT_AVAIL

This error can occur on theTL81n and TL82n family of DLT libraries when the source of a move is
a driveand the cartridge in the drive is still on-line. These robots do not allow movingthe cartridge
until the drive is taken offline.

24.4.1.2. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEV or SS$_IVDEVNAM. This will typically occur in mrd_startup(3mrd) when the
caller tries to open a device which doesn’t exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

24.4.2. Related Information
Functions:

● mrd_move(3mrd)

● mrd_load(3mrd)

173

Chapter 24. mrd_unload

● mrd_inject(3mrd)

● mrd_eject(3mrd)

174

Chapter 25. mrd_utility
mrd_scsi_decode, mrd_map_os_error - Various MRD utility functions

25.1. Media Robot Driver Library
The following table shows the names of the MRD library modules for each operating system.

/Windows 2000/Windows XP mrd.dll
UNIX /usr/lib/libmrd.a
OpenVMS MRD$RTL.EXE

#include <mrd_common.h>
#include <mrd_message.h>

int mrd_scsi_decode(dev_status_t *dev_status);

int mrd_map_os_error(int os_status, char *log_info);

25.2. Parameters
● dev_status — The dev_status is the address of a dev_status_t structure. The fields in this structure

are examined to map a SCSI error to an MRD_ STATUS code.

● os_status — The os_status is an operating system specific failure code that is used to find the
matching MRD_STATUS code.

● log_info — The log_info is a character array that should be at least MRD_ MAX_LOG_STRING in
length. On returning, it contains the operating system status.

25.3. Description
The routine mrd_scsi_decode(3mrd) is used by the low level MRD routines to map SCSI device errors
to MRD_STATUS codes. It uses the Additional Sense Code (asc) and Additional Sense Code Qualifier
(ascq) of the status structure to find an appropriate MRD_STATUS code. If both the asc and ascq are
zero (0), the Sense Key (key) will be used to determine the code. The resulting MRD_STATUS code will
be copied to the code field and returned.

The routine mrd_map_os_error(3mrd) is used to map operating system specific
failures to MRD_STATUS codes. If the os_status isn't recognized, the routine will return
MRD_STATUS_OS_ERROR. If the log_info argument is a valid pointer, a copy of the operating system
text for the message will also copied to the space provided.

This routine uses the dev_status_t structure for handing errors. The dev_ status_t structure includes
the code, os_status, and SCSI error fields. The following describes how to decode errors with the
dev_status_t structure.

SCSI Errors
SCSI errors are indicated when the value of the valid field of the SCSI error is not equal to 0. The key,
asc, and ascq fields provide additional information to help determine the cause of the error.

175

Chapter 25. mrd_utility

The code usually maps the Additional Sense Code and Additional Sense Code Qualifier (ASC/ASCQ)
values to an MRD error. The asc and ascq values are copied from the request sense data returned by the
target.

The Additional Sense Code (asc) indicates further information related to the error or exception
condition reported in the sense key field. The Additional Sense Code Qualifier (ascq) indicates detailed
information related to the additional sense code. For more information, consult the SCSI-2 Specification.

Operating System Errors

Operating system errors are indicated when the value of the valid field of the SCSI error is equal to 0
and the value of the os_status field is not equal to 0. This result is most likely caused by an operating
system error, and probably has a mapped error in MRD.

MRD Errors

MRD errors are indicated when the value of the os_status field is 0, and the value of the valid field of
the SCSI error is 0. This result is most likely caused when MRD encounters its own failure.

25.3.1. Example
/*
 * This shows how the utility routines are used. For
 * mrd_scsi_decode(3mrd), a selected SCSI-2 error will
 * be filled into the key, asc and ascq fields of a
 * dev_status_t structure and the resulting MRD status
 * message printed. For mrd_map_os_error(3mrd) the
 * will be done for a selected operating system error.
 *
 * Usage:
 *
 * mrd_utility
 */
#ifndef lint
static char SccsId[] = "@(#)mrd_utility.c 1.2 3/5/97" ;
#endif

#include <stdlib.h>
#include <errno.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

#include <mrd_common.h>
#include <mrd_message.h>

#ifdef vms
#include <ssdef.h>
#endif

main(int argc, char *argv[])
{
 dev_status_t dev_status ; /* Device status */
 int status ;
 char log_info[MRD_MAX_LOG_STRING+1] ;

 /*
 * Clear this for later.
 */
 log_info[0] = ’\0’ ;

 /*
 * First, try mrd_scsi_decode(3mrd). SCSI-2 happens to

176

Chapter 25. mrd_utility

 * have ASC/ASCQ codes for a cleaning cartridge being
 * installed somewhere, presumably a drive. We’ll
 * see what MRD does with it.
 */
 dev_status.valid = SCSI_REQ_SENSE_VALID ;
 dev_status.key = 1 ; /* Recovered Error */
 dev_status.asc = 0x30 ;
 dev_status.ascq = 3 ;

 status = mrd_scsi_decode(&dev_status) ;

 /*
 * Now print the result. As it happens we map this
 * code to MRD_STATUS_AUTOCLEAN, which is nearly
 * right.
 */
 printf("Cleaning Cartridge Installed: (%d,%x,%x): %s\n",
 dev_status.key, dev_status.asc,
 dev_status.ascq, mrd_strstatus(status)) ;
 /*
 * Now do one of completely random values. Seed the
 * random number generator just so most get a different
 * answer. Most of these are likely to end up as
 * Vendor Unique errors.
 */
 srand(time(NULL)) ;

 dev_status.key = rand() % 16 ; /* 0 - 15 */
 dev_status.asc = rand() % 256 ; /* 0 - 255 */
 dev_status.ascq = rand() % 256 ; /* 0 - 255 */

 status = mrd_scsi_decode(&dev_status) ;

 /*
 * Now print the result.
 */
 printf("Random SCSI Decode: (%d,%x,%x): %s\n",
 dev_status.key, dev_status.asc,
 dev_status.ascq, mrd_strstatus(status)) ;
 /*
 * Now an OS error. If #ifdef is handle the two example
 * operating systems.
 */
 dev_status.valid = 0 ;

#if defined(VMS)
 dev_status.os_status = SS$_UNASEFC ;
#elif defined(unix)
 dev_status.os_status = EINTR ;
#else
 dev_status.os_status = rand() % 100 ;
#endif

 status = mrd_map_os_error(dev_status.os_status, log_info) ;
 if(log_info[0])
 printf("Map OS Error: %d: %s: %s\n", dev_status.os_status,
 mrd_strstatus(status), log_info) ;
 else
 printf("Map OS Error: %d: %s\n", dev_status.os_status,
 mrd_strstatus(status)) ;

 return 0 ;
}

177

Chapter 25. mrd_utility

25.3.2. Return Values
The status returned is always a valid MRD_STATUS code corresponding to the error given by the status
or os_status. The errors and their mappings are:

25.3.2.1. Common Codes
1. MRD_STATUS_PARAM

This error is returned if the dev_status argument is a NULL pointer.

2. MRD_STATUS_NO_SENSE

This error is returned by mrd_scsi_ decode(3mrd) when the asc, ascq and key values are all zero
(0). It is also returned when the key value is less than zero or greater than 15.

3. MRD_STATUS_RECOVERED_ERROR

This error occurs when a SCSI device returns only a sense key of 1h. This indicates that although a
command successfully completed, the target device had performed some internal error recovery.

4. MRD_STATUS_MEDIUM_ERROR

This error occurs when ASC and ASCQ are zero, but the sense key is 3h. This occurs when the
target encounters a nonrecoverable error due to a flaw in the medium.

5. MRD_STATUS_ROBOT_HW_ERROR

This error occurs when ASC and ASCQ are zero, but the sense key is 4h. This occurs when the
target encounters a nonrecoverable hardware error.

6. MRD_STATUS_ROBOT_ILLEGAL_REQUEST

This error occurs for a variety of reasons. It is used when a sanity check fails in the code that
attempts to move a cartridge to the Pass-Through Mechanism, when the robot type isn't a TL82n.

It is used in the mrd_lock(3mrd) code when the value is not one of ALLOW_REMOVAL or
PREVENT_REMOVAL.

It is used when the medium changer does not support the Prevent/Allow Medium Removal
command or the lock value is not one or zero. The specific cause can be determined by examining
the ASC/ASCQ values in the status data.

It is used when a call to mrd_initialize_element(3mrd) is issued against a medium changer that
does not support the Initialize Element Status command.

It is used when the medium changer does not support the Position To Element command. The
seven and five slot DLT loaders do not support the command, though the TL820 and TL810 family
libraries do. Some models of TLZ6L and TLZ7L do not support the command and may take a long
time to fail.

It is used when the medium changer does not support the Ready Inport command.

The TL820 family of DLT libraries support this command. The TL810 family of DLT libraries
allows this command to succeed, but it doesn't perform any function.

178

Chapter 25. mrd_utility

It is also used for a SCSI command failure, when the ASC is set to one of:

● 0x1A - Parameter list length error

● 0x20 - Invalid command operation code

● 0x22 - Unsupported command

● 0x24 - Illegal field in CDB

● 0x25 - Logical unit not supported

● 0x26 - Threshold parameters not supported

● 0x28 - Import or Export element accessed

● 0x2C - Command sequence error

● 0x39 - Saving parameters not supported

● 0x3D - Invalid bits in Identify message

● 0x53 - Medium removal prevented

This status is also returned when the ASC and ASCQ are zero, but the key is five (5).

7. MRD_STATUS_ROBOT_ATTENTION

This error occurs when a SCSI command fails with the ASC set to one of 0x29, 0x2A or 0x2F. The
log_info contains the ASCQ. The SCSI translations for these error codes are:

● 0x29 - Power-on, Reset or Bus device reset occurred

● 0x2A - Mode Parameters Changed

● 0x2F - Command cleared by another initiator

This error also occurs when the ASC and ASCQ are zero, but the SCSI sense key is 6h.

8. MRD_STATUS_DATA_PROTECT

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is seven (7).

9. MRD_STATUS_BLANK_CHECK

This error is returned by mrd_scsi_ decode(3mrd) when the asc and ascq are zero, but the key
value is eight (8).

10. MRD_STATUS_VENDOR_UNIQUE_ERROR

This error occurs when the internal routine used to decode SCSI-2 errors encounters an error that it
has not been written to antipicate.

This error is also returned when the ASC is zero and the ASCQ is not one of zero or six, and when
ASC/ASCQ are both zero and the key is 9h.

179

Chapter 25. mrd_utility

11. MRD_STATUS_COPY_ABORTED

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is ten (10).

12. MRD_STATUS_SENSE_EQUAL

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is Ch (12).

13. MRD_STATUS_VOLUME_OVERFLOW

This error is returned by mrd_scsi_decode(3mrd) when the asc and ascq are zero, but the key value
is Dh (13).

14. MRD_STATUS_MISCOMPARE

This error is returned by mrd_scsi_ decode(3mrd) when the asc and ascq are zero, but the key
value is Eh (14).

15. MRD_STATUS_SENSE_RESERVED

This error is returned by mrd_ scsi_decode(3mrd) when the asc and ascq are zero, but the key
value is Fh (15).

16. MRD_STATUS_ROBOT_COMM_ERROR

This error also occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x08 - Logical unit communcation errors.

● 0x43 - Message error

● 0x45 - Select or Reselect failure

● 0x47 - SCSI parity error

● 0x48 - Initiator detected error message received

● 0x49 - Invalid message error

● 0x4A - Command phase error

● 0x4B - Data phase error

● 0x4E - Overlapped commands attempted

● 0x54 - SCSI to host system interface failure

17. MRD_STATUS_ROBOT_MECH_ERROR

This error occurs as the result of a SCSI command failure, when the ASC is set to one of:

● 0x15 - Positioning error.

● 0x8B - Vendor unique; Pass-through mechanism errors on the TL82n

18. MRD_STATUS_AUTOCLEAN

180

Chapter 25. mrd_utility

This error occurs when a SCSI command fails with the ASC set to 0x30 and the ASCQ set to 0x3.
On TL8nn libraries supporting Auto-clean, it indicates that a command was attempted while an auto-
clean was in progress.

19. MRD_STATUS_CART_DAMAGED

This error occurs when a SCSI command fails with the ASC set to 0x30, but the ASCQ is NOT a
value of 0x3. The log_info will contain the ASCQ.

20. MRD_STATUS_ELEMENT_INVALID

This error occurs when a SCSI command fails with the ASC set to 0x21. The log_info will contain
the ASCQ. This indicates that an invalid element address reached the medium-changer. For example,
specifying the 13th slot when only 12 slots are present.

21. MRD_STATUS_CART_NOT_AVAIL

This error can occur on the TL81n and TL82n family of DLT libraries when the source of a move is
a drive and the cartridge in the drive is still on-line. These robots do not allow moving the cartridge
until the drive is taken offline.

22. MRD_STATUS_DESTINATION_FULL

On routines that perform a SCSI Move Medium command, this error indicates that the destination
element already has a cartridge in it.

23. MRD_STATUS_SOURCE_EMPTY

On routines that perform a SCSI Move Medium command, this error indicates that the source
element is empty.

24. MRD_STATUS_ROBOT_DOOR_OPENED

This occurs when a SCSI command fails with the ASC set to 0x80 and the ASCQ set to 0x0.
On TL8nn libraries this typically indicates that the cabinet door was opened during a command
operation.

25.3.2.2. Windows 2000/Windows XP Codes
The codes in this section apply only to the Windows 2000/Windows XP operating system variant of the
Media Robot Driver.

1. MRD_STATUS_IVCHAN

This error code is returned when the handle in NT parlance has been closed or is otherwise an
invalid handle.

2. MRD_STATUS_ROBOT_NOT_READY

Under Microsoft Windows 2000/Windows XP, this error code is returned when the specified robot
exists but is not responding.

3. MRD_STATUS_ROBOT_CMD_ABORTED

This error is returned by mrd_scsi_decode(3mrd) when the asc is zero and the ascq is six, or when
the asc and ascq are zero and the key is eleven (11).

181

Chapter 25. mrd_utility

25.3.2.3. Tru64 UNIX Codes

The following error codes can occur when a open(2) or ioctl(2) system call fails. Open(2) is used by
mrd_startup(3mrd) to open the medium-changer. The ioctl(2) system call is used to perform all other
SCSI medium-changer commands.

1. MRD_STATUS_EBADF

This error occurs when the medium changer has not been opened by mrd_startup(3mrd) or has
been closed by mrd_ shutdown(3mrd).

2. MRD_STATUS_EINVAL

This error is returned by mrd_map_os_ error(3mrd) when the os_status is EINVAL. This typically
occurs during mrd_ startup(3mrd) when the special file is not a SCSI device: for example, /dev/tty.

3. MRD_STATUS_STARTUP_ERROR

This error is returned by mrd_ map_os_error(3mrd) when the os_status is ENODEV. This
typically occurs during mrd_startup(3mrd) when the special file is not a SCSI device; /dev/null.

4. MRD_STATUS_NO_SUCH_DEVICE

This error occurs when a UNIX system call returns ENXIO, to indicate that the device
corresponding to the special device does not exist.

5. MRD_STATUS_EBUSY

This error occurs when a UNIX system call returns EBUSY, to indicate that some other process is
using that medium-changer device.

6. MRD_STATUS_EINTR

This error occurs when a UNIX system call returns EINTR. This error corresponds to an interrupted
system call, but also occurs when the SCSI CAM Layered Components Medium-Changer driver is
not configured into the running system.

7. MRD_STATUS_EIO

This error occurs when a UNIX system call returns EIO to indicate that there was an I/O error. In
most cases an I/O error on a SCSI medium-changer indicates a SCSI error which be translated to
another MRD error.

8. MRD_STATUS_ENOENT

This error occurs when a UNIX system call returns ENOENT to indicate that a special device file
doesn't exist.

9. MRD_STATUS_EACCES

This error occurs when a UNIX system call returns EACCES to indicate that the caller does not have
sufficient permission to open the special device file corresponding to the medium-changer. MRD
expects to have read permission on the special device file.

10. MRD_STATUS_OS_ERROR

182

Chapter 25. mrd_utility

This error occurs when a UNIX system call returns an error that is not among those previously
mentioned. The routine strerror(3) will be used to translate the error code into a standard text
message which will be copied to log_info.

11. MRD_STATUS_ROBOT_NOT_READY

Under OpenVMS and Tru64 UNIX, this error occurs as the result of a SCSI command failure, when
the ASC is set to one of:

● 0x80 - When the ASCQ is not zero (0).

● 0x81 - Vendor unique; gripper errors on the TL82X and TL81X

● 0x04 - Logical unit not ready

● 0x3E - Logical unit has not been self configured

● 0x40 - Diagnostic failure; ASCQ indicates component

● 0x42 - Power-on self test failure

● 0x44 - Internal target failure

● 0x46 - Unsuccessful soft reset

● 0x4C - Logical unit failed self-configuration

This status is also returned when the ASC and ASCQ are zero, but the key is two (2).

12. MRD_STATUS_ROBOT_CMD_ABORTED

This error is returned by mrd_scsi_decode(3mrd) when the asc is zero and the ascq is six, or when
the asc and ascq are zero and the key is eleven (11).

25.3.2.4. OpenVMS Codes
The codes in this section apply only to the OpenVMS operating system variant of the Media Robot
Driver.

1. MRD_STATUS_DEVICE_INVALID

This error is returned when the element address for a drive is less than zero or greater than the
number of drives. This error code is used when an OpenVMS system service fails with the status SS
$_NOSUCHDEV or SS$_IVDEVNAM. This will typically occur in mrd_ startup(3mrd) when the
caller tries to open a device which doesn't exist or uses an invalid device name.

This error also occurs when the routine is called on behalf of a device controlled by the JU driver.
The Media Robot Utility no longer uses the JU driver.

2. MRD_STATUS_ROBOT_NOT_READY

Under OpenVMS and Tru64 UNIX, this error occurs as the result of a SCSI command failure, when
the ASC is set to one of:

● 0x80 - When the ASCQ is not zero (0).

183

Chapter 25. mrd_utility

● 0x81 - Vendor unique; gripper errors on the TL82X and TL81X

● 0x04 - Logical unit not ready

● 0x3E - Logical unit has not been self configured

● 0x40 - Diagnostic failure; ASCQ indicates component

● 0x42 - Power-on self test failure

● 0x44 - Internal target failure

● 0x46 - Unsuccessful soft reset

● 0x4C - Logical unit failed self-configuration

This status is also returned when the ASC and ASCQ are zero, but the key is two (2).

3. MRD_STATUS_ROBOT_CMD_ABORTED

This error code is used when an OpenVMS system service fails with the status SS$_ABORT.

25.3.3. Related Information
Functions:

● mrd_move_medium(3mrd)

● mrd_read_element_status(3mrd)

● mrd_startup(3mrd)

● mrd_position_to_element(3mrd)

● mrd_initialize_element(3mrd)

● mrd_ready(3mrd)

● mrd_prevent_allow(3mrd)

184

	Media Robot Utility Application Programming Interface Guide
	Table of Contents
	Preface
	1. About VSI
	2. OpenVMS Documentation
	3. VSI Encourages Your Comments

	Chapter 1. Media Robot Driver Library
	1.1. Description
	1.1.1. Element Address Naming
	1.1.2. Description

	1.2. MRD Routine Summary
	1.2.1. Common Routines
	1.2.2. Operating System Routines
	1.2.3. About Return Values
	1.2.3.1. Common Values
	1.2.3.2. Windows 2000/Windows XP Codes
	1.2.3.3. Tru64 UNIX Codes
	1.2.3.4. OpenVMS Codes

	1.2.4. Related Information

	Chapter 2. mrd_eject
	2.1. Media Robot Driver Library
	2.2. Parameters
	2.3. Description
	2.3.1. Example
	2.3.2. Return Values
	2.3.2.1. Common Codes
	2.3.2.2. Windows 2000/Windows XP Codes
	2.3.2.3. Tru64 UNIX Codes
	2.3.2.4. OpenVMS Codes

	2.3.3. Related Information

	Chapter 3. mrd_find_cartridge
	3.1. Media Robot Driver Library
	3.2. Parameters
	3.3. Description
	3.3.1. Element Info
	3.3.2. Example
	3.3.3. Return Values
	3.3.3.1. Common Values
	3.3.3.2. Windows 2000/Windows XP Codes
	3.3.3.3. Tru64 UNIX Codes
	3.3.3.4. OpenVMS Codes

	3.3.4. Restrictions
	3.3.5. Related Information

	Chapter 4. mrd_home
	4.1. Media Robot Driver Library
	4.2. Parameters
	4.3. Description
	4.3.1. Example
	4.3.2. Return Values
	4.3.2.1. Common Codes
	4.3.2.2. Windows 2000/Windows XP Codes
	4.3.2.3. Tru64 UNIX Codes
	4.3.2.4. OpenVMS Codes

	4.3.3. Related Information

	Chapter 5. mrd_initialize
	5.1. Media Robot Driver Library
	5.2. Parameters
	5.3. Description
	5.3.1. Example
	5.3.2. Return Values
	5.3.2.1. Common Codes
	5.3.2.1.1. Windows 2000/Windows XP Codes
	5.3.2.1.2. Tru64 UNIX Codes
	5.3.2.1.3. OpenVMS Codes

	5.3.3. Related Information

	Chapter 6. mrd_initialize_element
	6.1. Media Robot Driver Library
	6.2. Parameters
	6.3. Description
	6.3.1. Example
	6.3.2. Return Values
	6.3.2.1. Common Codes
	6.3.2.2. Windows 2000/Windows XP Codes
	6.3.2.3. Tru64 UNIX Codes
	6.3.2.4. OpenVMS Codes

	6.3.3. Related Information

	Chapter 7. mrd_inject
	7.1. Media Robot Driver Library
	7.2. Parameters
	7.3. Description
	7.3.1. Example
	7.3.2. Return Values
	7.3.2.1. Common Codes
	7.3.2.2. Windows 2000/Windows XP Codes
	7.3.2.3. Tru64 UNIX Codes
	7.3.2.4. OpenVMS Codes

	7.3.3. Related Information

	Chapter 8. mrd_load
	8.1. Media Robot Driver Library
	8.2. Parameters
	8.3. Description
	8.3.1. Example
	8.3.2. Return Values
	8.3.2.1. Common Codes
	8.3.2.2. Windows 2000/Windows XP Codes
	8.3.2.3. Tru64 UNIX Codes
	8.3.2.4. OpenVMS Codes

	8.3.3. Related Information

	Chapter 9. mrd_lock
	9.1. Media Robot Driver Library
	9.2. Parameters
	9.3. Description
	9.3.1. Return Values
	9.3.1.1. Common Codes
	9.3.1.2. Windows 2000/Windows XP Codes
	9.3.1.3. Tru64 UNIX Codes
	9.3.1.4. OpenVMS Codes

	9.3.2. Related Information

	Chapter 10. mrd_map_element
	10.1. Media Robot Driver Library
	10.2. Parameters
	10.3. Description
	10.3.1. Example
	10.3.2. Return Values
	10.3.3. Related Information

	Chapter 11. mrd_message
	11.1. Media Robot Driver Library
	11.2. Parameters
	11.3. Description
	11.3.1. Codes Translated
	11.3.2. Example
	11.3.3. Return Values
	11.3.4. Related Information

	Chapter 12. mrd_move
	12.1. Media Robot Driver Library
	12.2. Parameters
	12.3. Description
	12.3.1. Example
	12.3.2. Return Values
	12.3.2.1. Common Codes
	12.3.2.2. Windows 2000/Windows XP Codes
	12.3.2.3. Tru64 UNIX Codes
	12.3.2.4. OpenVMS Codes

	12.4. Related Information

	Chapter 13. mrd_move_medium
	13.1. Media Robot Driver Library
	13.2. Parameters
	13.3. Description
	13.3.1. Absolute Element Addresses
	13.3.2. Example
	13.3.3. Return Values
	13.3.3.1. Common Codes
	13.3.3.2. Windows 2000/Windows XP Codes
	13.3.3.3. Tru64 UNIX Codes
	13.3.3.4. OpenVMS Codes

	13.3.4. Related Information

	Chapter 14. mrd_position
	14.1. Media Robot Driver Library
	14.2. Parameters
	14.3. Description
	14.3.1. Example
	14.3.2. Return Values
	14.3.2.1. Windows 2000/Windows XP Codes
	14.3.2.2. Tru64 UNIX Codes
	14.3.2.3. OpenVMS Codes

	14.3.3. Related Information

	Chapter 15. mrd_position_to_element
	15.1. Media Robot Driver Library
	15.2. Parameters
	15.3. Description
	15.3.1. Absolute Element Addresses
	15.3.2. Example
	15.3.3. Return Values
	15.3.3.1. Common Codes
	15.3.3.2. Windows 2000/Windows XP Codes
	15.3.3.3. Tru64 UNIX Codes
	15.3.3.4. OpenVMS Codes

	15.3.4. Related Information

	Chapter 16. mrd_prevent_allow
	16.1. Media Robot Driver Library
	16.2. Parameters
	16.3. Description
	16.3.1. Example
	16.3.2. Return Values
	16.3.2.1. Common Codes
	16.3.2.2. Windows 2000/Windows XP Codes
	16.3.2.3. Tru64 UNIX Codes
	16.3.2.4. OpenVMS Codes

	16.3.3. Related Information

	Chapter 17. mrd_ready
	17.1. Media Robot Driver Library
	17.2. Parameters
	17.3. Description
	17.3.1. Example
	17.3.2. Return Values
	17.3.2.1. Common Codes
	17.3.2.2. Windows 2000/Windows XP Codes
	17.3.2.3. Tru64 UNIX Codes
	17.3.2.4. OpenVMS Codes

	17.3.3. Related Information

	Chapter 18. mrd_ready_inport
	18.1. Media Robot Driver Library
	18.2. Parameters
	18.3. Description
	18.3.1. Example
	18.3.2. Return Values
	18.3.2.1. Common Codes
	18.3.2.2. Windows 2000/Windows XP Codes
	18.3.2.2.1. Tru64 UNIX Codes
	18.3.2.2.2. OpenVMS Codes

	18.3.3. Related Information

	Chapter 19. mrd_read_element_status
	19.1. Media Robot Driver Library
	19.2. Parameters
	19.3. Description
	19.3.1. Absolute Element Addresses
	19.3.2. Example
	19.3.3. Return Values
	19.3.3.1. Common Codes
	19.3.3.2. Windows 2000/Windows XP Codes
	19.3.3.3. Tru64 UNIX Codes
	19.3.3.4. OpenVMS Codes

	19.3.4. Related Information

	Chapter 20. mrd_request_sense
	20.1. Media Robot Driver Library
	20.2. Parameters
	20.3. Description
	20.3.1. Example
	20.3.2. Return Values
	20.3.2.1. Common Codes
	20.3.2.2. Windows 2000/Windows XP Codes
	20.3.2.3. Tru64 UNIX Codes
	20.3.2.4. OpenVMS Codes

	20.3.3. Related Information

	Chapter 21. mrd_show
	21.1. Media Robot Driver Library
	21.2. Parameters
	21.3. Description
	21.3.1. Element Info
	21.3.2. Example
	21.3.3. Return Values
	21.3.3.1. Common Codes
	21.3.3.2. Windows 2000/Windows XP Codes
	21.3.3.3. Tru64 UNIX Codes
	21.3.3.4. OpenVMS Codes

	21.4. Related Information

	Chapter 22. mrd_startup
	22.1. Media Robot Driver Library
	22.2. Parameters
	22.3. Description
	22.3.1. Example
	22.3.2. Return Values
	22.3.2.1. Common Codes
	22.3.2.2. Windows 2000/Windows XP Codes
	22.3.2.3. Tru64 UNIX Codes
	22.3.2.4. OpenVMS Codes

	22.4. Related Information

	Chapter 23. mrd_test_unit_ready
	23.1. Media Robot Driver Library
	23.2. Parameters
	23.3. Description
	23.3.1. Example
	23.3.2. Return Values
	23.3.2.1. Common Codes
	23.3.2.2. Windows 2000/Windows XP Codes
	23.3.2.3. Tru64 UNIX Codes
	23.3.2.4. OpenVMS Codes

	23.3.3. Related Information
	23.3.4. Tru64 UNIX Restriction

	Chapter 24. mrd_unload
	24.1. Media Robot Driver Library
	24.2. Parameters
	24.3. Description
	24.3.1. Tru64 UNIX

	24.4. OpenVMS Example
	24.4.1. Return Values
	24.4.1.1. Common Codes
	24.4.1.2. OpenVMS Codes

	24.4.2. Related Information

	Chapter 25. mrd_utility
	25.1. Media Robot Driver Library
	25.2. Parameters
	25.3. Description
	25.3.1. Example
	25.3.2. Return Values
	25.3.2.1. Common Codes
	25.3.2.2. Windows 2000/Windows XP Codes
	25.3.2.3. Tru64 UNIX Codes
	25.3.2.4. OpenVMS Codes

	25.3.3. Related Information

