
VSI OpenVMS

POLYCENTER Software Installation
Utility Manual

Operating System and Version: VSI OpenVMS x86-64 Version 9.2-1 or higher
VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

POLYCENTER Software Installation Utility Manual

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

ii

POLYCENTER Software Installation Utility Manual

Table of Contents
Preface ... vii

1. About VSI .. vii
2. Intended Audience ... vii
3. Document Structure ... vii
4. Related Documents .. vii
5. VSI Encourages Your Comments ... viii
6. OpenVMS Documentation .. viii
7. Typographical Conventions .. viii

Chapter 1. Overview .. 1
1.1. Features for Software Providers ... 1
1.2. Coexistence with VMSINSTAL .. 1
1.3. Creating an Installable Kit ... 2

1.3.1. Step 1: Make A Plan .. 2
1.3.2. Step 2: Gather the Product Material .. 2
1.3.3. Step 3: Create a Product Description File ... 3
1.3.4. Step 4: Create a Product Text File (Optional) ... 6
1.3.5. Step 5: Package the Software Components ... 6
1.3.6. Step 6: Test and Debug the Installable Kit .. 7

Chapter 2. Basic Concepts ... 9
2.1. The Product Database ... 9

2.1.1. Querying the Product Database ... 9
2.2. Software Product Kit Formats .. 10
2.3. Software Product Kit Naming Conventions ... 11

2.3.1. Sequential Format .. 11
2.3.2. Compressed Format .. 12
2.3.3. Reference Format ... 12
2.3.4. Kit Naming Rules and Conventions ... 12
2.3.5. More About the Version Field ... 13
2.3.6. Version Information Visible to the OpenVMS Users ... 14
2.3.7. More About the Kit Type ... 15
2.3.8. Looking at Software Product Name Examples .. 15
2.3.9. Input and Output Versions of the PDF and PTF .. 16

2.4. User-Defined Logical Names ... 16
2.5. Utility-Defined Logical Names ... 16

2.5.1. PCSI$SOURCE, PCSI$DESTINATION, and PCSI$SCRATCH 16
2.5.2. PCSI$$RECOVERY_MODE and PCSI$$SAVE_RECOVERY_DATA 17
2.5.3. PCSI$$COMMAND_LINE ... 17
2.5.4. PCSI$$CONFIRM ... 18

2.6. Managed Objects .. 18
2.6.1. Creating Managed Objects .. 18
2.6.2. Managed Object Conflict .. 19
2.6.3. Preventing Managed Object Conflict .. 19
2.6.4. Managed Object Replacement and Merging .. 20
2.6.5. Managed Object Scope and Lifetime .. 21

2.7. Creating an Integrated Platform (Product Suite) ... 21
Chapter 3. Creating the Product Description File ... 23

3.1. General Guidelines .. 23
3.2. Defining Your Environment ... 23

iii

POLYCENTER Software Installation Utility Manual

3.3. PDF File-Naming Conventions ... 26
3.4. Structure of a PDF .. 26

3.4.1. Overview of PDL Statements .. 27
3.4.2. PDL Statement Syntax .. 29
3.4.3. PDL Function Syntax and Expressions ... 30
3.4.4. PDL Data Types and Values ... 31

3.5. Kit Types and Usage ... 32
3.5.1. The Full Kit Type .. 33
3.5.2. The Operating System Kit Type .. 36
3.5.3. The Platform Kit Type ... 38
3.5.4. The Partial Kit Type .. 40
3.5.5. The Patch Kit Type .. 41
3.5.6. The Mandatory Update Kit Type ... 44
3.5.7. The Transition Kit Type ... 44
3.5.8. The PCSI$REGISTER_PRODUCT.COM Command Procedure 45

Chapter 4. Creating the Product Text File .. 47
4.1. PTF File-Naming Conventions ... 47
4.2. Structure of a PTF .. 48

4.2.1. Specifying the Product Name .. 48
4.2.2. PTF Modules and the Relationship with the PDF .. 48
4.2.3. PTF Modules Not Related with the PDF .. 49
4.2.4. Including Prompt and Help Text .. 50

Chapter 5. Packaging the Kit .. 51
5.1. Creating Reference and Sequential Copies ... 51
5.2. Description of the Product Material .. 52
5.3. Files Required to Package the Kit .. 53
5.4. Creating the Product Kit .. 55
5.5. Listing the Contents of the Product Kit ... 55
5.6. Extracting Files from the Kit ... 56

5.6.1. Extracting Files by Name .. 56
5.6.2. Extracting the PDF, PTF, or Release Notes ... 57
5.6.3. Converting a Sequential Kit into Reference Format ... 58
5.6.4. Converting a Sequential Kit into Compressed Format .. 58

5.7. Displaying Information from the Product Database .. 58
Chapter 6. Advanced Topics .. 61

6.1. Using Command Procedures in PDL Statements .. 61
6.1.1. Noninteractive and Interactive Mode .. 63
6.1.2. Packaging a Command Procedure .. 64
6.1.3. Logical Names for Subprocess Environments .. 65
6.1.4. EXECUTE Statement Summary .. 65
6.1.5. Processing EXECUTE Statements ... 66

6.2. Forcing Operation Termination from A Command Procedure ... 71
6.3. Testing and Debugging Tips ... 72

6.3.1. The /LOG Qualifier .. 72
6.3.2. The /TRACE Qualifier .. 72
6.3.3. The /DEBUG=CONFLICT Qualifier .. 73
6.3.4. Installing Your Product on Older Versions of OpenVMS 74

Chapter 7. Product Description Language Statements ... 75
7.1. PDL Conventions .. 75
7.2. PDL Reference Section ... 75

iv

POLYCENTER Software Installation Utility Manual

Appendix A. Migrating from VMSINSTAL to the POLYCENTER Software
Installation Utility ... 155

A.1. VMSINSTAL Options and Equivalents ... 155
A.2. VMSINSTAL Callbacks and Equivalents .. 156

Appendix B. Product Description Language Evolution ... 163

v

POLYCENTER Software Installation Utility Manual

vi

Preface
This guide describes how to package software products using the POLYCENTER Software Installation
utility. It describes the product description language, product description files, product text files, and
other relevant concepts.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This guide is intended for individuals who are responsible for packaging software products. You do
not need to be a programmer to package kits for software products, but you do need to understand the
POLYCENTER Software Installation utility commands and concepts.

3. Document Structure
This guide is organized as follows:

● Chapter 1, "Overview" provides an overview of the POLYCENTER Software Installation utility.

● Chapter 2, "Basic Concepts" defines some key terms and concepts.

● Chapter 3, "Creating the Product Description File" describes writing the product description file. It
also contains sample product descriptions.

● Chapter 4, "Creating the Product Text File" describes writing the product text file. It also contains
sample product text files.

● Chapter 5, "Packaging the Kit" describes how to package your product and manipulate the kit.

● Chapter 6, "Advanced Topics" presents advanced topics such as use of command procedures and
testing.

● Chapter 7, "Product Description Language Statements" provides detailed reference material on
product description language statements and functions.

● Appendix A, "Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility"
contains information about migrating from the VMSINSTAL utility to the POLYCENTER Software
Installation utility.

● Appendix B, "Product Description Language Evolution" contains a summary of PDL statements from
earlier versions of OpenVMS.

4. Related Documents
The VSI OpenVMS System Manager's Manual describes the tasks that system managers perform using
the POLYCENTER Software Installation utility. It explains operations such as software installation and
removal.

vii

Preface

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions
The following conventions may be used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

... A horizontal ellipsis in examples indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

viii

https://docs.vmssoftware.com

Preface

Convention Meaning

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

UPPERCASE
BOLD
MONOSPACED
TYPE

This typeface indicates a DCL command or a qualifier.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes – binary, octal, or hexadecimal – are explicitly indicated.

ix

Preface

x

Chapter 1. Overview
The POLYCENTER Software Installation utility is a complete software installation and management tool
for OpenVMS systems. It can package, install, remove, and manage software products on x86-64, Alpha,
and Itanium® systems. It can also save information about software products such as system requirements
and installation options.

The POLYCENTER Software Installation utility is intended to be used by people creating (packaging)
kits for software products and by system managers who install and maintain these products. This guide
describes how to package software products using the POLYCENTER Software Installation utility. It
describes the product description language, product description files, product text files, and other relevant
concepts.

System managers should refer to the VSI OpenVMS System Manager's Manual for general use
information.

1.1. Features for Software Providers
The POLYCENTER Software Installation utility improves the task of packaging software for software
providers in the following ways:

● Reduces effort

Installations require less packaging effort than most conventional installation methods – resulting in
performance gains and reduced development time over conventional installations.

● Provides more user information

You can include both brief and detailed installation text to guide users through an installation –
resulting in a higher installation success rate.

● Simplifies installation

Related products can easily be packaged as a product suite – resulting in one operation installation.

● Version tracking

The utility tracks which products and which product versions have been installed and removed. You
can design your installation procedure to check for and manage version dependencies – resulting in
easy version tracking.

1.2. Coexistence with VMSINSTAL
The POLYCENTER Software Installation utility is integrated into OpenVMS and coexists with the
VMSINSTAL utility. Today, you use the POLYCENTER Software Installation utility to install the
OpenVMS operating system and many layered products on x86-64, Alpha, and IA-64 systems. The
POLYCENTER Software Installation utility is the preferred installation mechanism for future layered
product and OpenVMS releases.

The POLYCENTER Software Installation utility offers the following features:

● Typically faster installation and upgrade operations than the VMSINSTAL utility

● Removal (de-installation) of previously-installed software products

1

Chapter 1. Overview

● A query-capable database of information on installed products

● Dependency checking of software products based on the product version number

If you currently use VMSINSTAL to package your software product, see Appendix A, "Migrating from
VMSINSTAL to the POLYCENTER Software Installation Utility" for information about migrating from
VMSINSTAL to the POLYCENTER Software Installation utility.

1.3. Creating an Installable Kit
As a software provider, you can use the POLYCENTER Software Installation utility to create an
installable kit for your software product. This kit may be either a new software product or an update to
an existing product; the POLYCENTER Software Installation utility provides features for each case.

Once you have created an installable kit, your OpenVMS user will be able to use the POLYCENTER
Software Installation utility to install your product with a minimum of documentation and effort.

Generally, the installable kit you create is packaged in one “container” file. This container file has
a file extension of .PCSI and is in the binary format recognized by the POLYCENTER Software
Installation utility. The person installing your product issues the PRODUCT INSTALL command to
install the .PCSI file on their OpenVMS system.

The following sections describe the main steps to create an installable kit.

1.3.1. Step 1: Make A Plan
To create an installable .PCSI file, you must determine the required characteristics of the execution
environment for your product or platform. Questions you need to consider:

● Where will the files be placed?

● Will DCL tables or help libraries need to be updated?

● Will system or process parameters need to be checked?

● Will you need to provide any command procedures to perform product specific tasks?

When you have the answers to these questions, proceed to Section 1.3.2, "Step 2: Gather the Product
Material".

1.3.2. Step 2: Gather the Product Material
Next, you need to gather all the product material.

Locate all product-related files that will be installed on the user's system. Collect any command
procedures you may have written to perform product-specific tasks. These include command procedures
that will remain on the user's system and those that will be executed from a temporary directory and
then deleted. Together, the product files and any associated command procedures are called the product
material.

You can organize the product material for input to the packaging operation in any way that is meaningful
and convenient for you. For example, you can organize the material in one of the following ways:

● Keep the product material in the directory structure used by the software engineering team.

● Organize the product material into one or more staging directories that mirror the directory structure
of the product on the user's disk after installation.

2

Chapter 1. Overview

● Place the product material in a single directory tree.

Each approach has its merits and limitations. However, if you have special requirements, such as the
need to install different files with the same name in different directories, your options for organizing the
files before packaging might be restricted.

1.3.3. Step 3: Create a Product Description File
Create a product description file (PDF) using a text editor. This step is discussed in more detail in
Chapter 3, "Creating the Product Description File". PDF files do the following:

● Identify all of the files and other objects (such as directories, accounts, library modules, and others)
that the product provides

● Specify configuration choices the product offers, including default answers

● Specify product requirements (such as dependencies on other software products, minimum hardware
configurations, and system parameter values)

PDF files use Product Description Language (PDL) statements (described in Chapter 7, "Product
Description Language Statements") to convey all of the information the POLYCENTER Software
Installation utility needs for installing either a software product or a set of software products.

Example 1.1, "PDF for C++ Software Kit" shows a sample PDF. Chapter 7, "Product Description
Language Statements" describes each PDL statement in detail.

Example 1.1. PDF for C++ Software Kit
product VSI X86VMS CXX V10.1-1 full ;
 information RELEASE_NOTES phase after with helptext ;
 if (<software VSI X86VMS VMS version maximum V9.2>) ;
 error VMS_VERSION_TOO_OLD abort ;
 end if ;
 scope global ;
 file [SYSEXE]CLANG.EXE size 153965 ;
 file [SYSEXE]CXX$COMPILER.EXE size 154208 ;
 file [SYSEXE]CXX$DEMANGLE.EXE size 2319 ;
 module [000000]CXX$CLD.CLD type command module CXX ;
 module [SYSHLP]CXX$HELP.HLP type help module CXX ;
 file [SYSHLP]CXX.RELEASE_NOTES release notes size 82 ;
 file [SYSHLP]CXX.CHANGELOG size 50 ;
 file [SYSLIB]LIBCXXABI.OLB generation 2147483647 size 1439 ;
 file [SYSLIB]LIBCXX.OLB generation 2147483647 size 4033 ;
 file [SYSLIB]LIBCXXABI.EXE generation 2147483647 image library size 766 ;
 file [SYSLIB]LIBCXX.EXE generation 2147483647 image library size 2820 ;
 file [SYSHLP.EXAMPLES]CXX.OPT size 1 ;
 file "[VSICXX$LIB.INCLUDE.ARTIFICIAL]sched.h" size 0 ;
 file "[VSICXX$LIB.INCLUDE.ARTIFICIAL]sysexits.h" size 11 ;
 file "[VSICXX$LIB.INCLUDE.ARTIFICIAL]features.h" size 0 ;
 file "[VSICXX$LIB.INCLUDE.ARTIFICIAL]standards.h" size 0 ;
 file "[VSICXX$LIB.INCLUDE.ARTIFICIAL]endian.h" size 0 ;
 file "[VSICXX$LIB.INCLUDE.ARTIFICIAL]pthread.h" size 149 ;
 file "[VSICXX$LIB.INCLUDE.ARTIFICIAL]pthread_exc.h" size 41 ;
 file "[VSICXX$LIB.INCLUDE.ARTIFICIAL]builtins.h" size 114 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]sstream." size 66 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]streambuf." size 30 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]stdexcept." size 16 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__tuple." size 41 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]limits.h" size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]iostream." size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]new." size 29 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]csetjmp." size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]stdint.h" size 6 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__libcpp_version." size 1 ;

3

Chapter 1. Overview

 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]mutex." size 36 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]ctime." size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]forward_list." size 123 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cstddef." size 6 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]climits." size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cstring." size 6 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__bsd_locale_fallbacks.h" size 10 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__functional_base." size 36 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]ctgmath." size 2 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cstdarg." size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]filesystem." size 161 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]unordered_map." size 195 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cwchar." size 13 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]list." size 158 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]errno.h" size 11 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]setjmp.h" size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]wchar.h" size 18 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]fenv.h" size 5 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]clocale." size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__nullptr." size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]stdio.h" size 8 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]istream." size 95 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]vector." size 219 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]unordered_set." size 136 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]typeinfo." size 23 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]atomic." size 167 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]span." size 48 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]utility." size 98 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cinttypes." size 8 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]compare." size 53 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]ciso646." size 2 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]exception." size 19 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]ctype.h" size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]module.modulemap" size 24 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]scoped_allocator." size 51 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]float.h" size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]tuple." size 112 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]typeindex." size 7 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]locale." size 304 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]condition_variable." size 16 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]limits." size 80 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__debug." size 17 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]ccomplex." size 2 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]stdlib.h" size 8 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__undef_macros." size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]string_view." size 69 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]string.h" size 10 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__locale." size 97 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__tree." size 206 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]queue." size 56 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]ostream." size 65 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]memory." size 328 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]array." size 35 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]valarray." size 265 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]type_traits." size 280 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]ios." size 52 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__mutex_base." size 33 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]deque." size 213 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]stack." size 21 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]string." size 318 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__hash_table." size 205 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]map." size 166 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cctype." size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]any." size 38 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]tgmath.h" size 2 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]algorithm." size 399 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]strstream." size 23 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cmath." size 34 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]regex." size 438 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__std_stream." size 22 ;

4

Chapter 1. Overview

 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]random." size 443 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]bitset." size 67 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__functional_base_03." size 14 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]execution." size 2 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]set." size 113 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]fstream." size 107 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]initializer_list." size 7 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]wctype.h" size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]optional." size 84 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]chrono." size 228 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]future." size 143 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cstdlib." size 11 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]thread." size 23 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]complex.h" size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cerrno." size 2 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]bit." size 29 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cwctype." size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]shared_mutex." size 31 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__bsd_locale_defaults.h" size 5 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__functional_03." size 88 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]complex." size 92 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__node_handle." size 13 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cfenv." size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__threading_support." size 36 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cstdio." size 9 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cstdint." size 7 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__string." size 69 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]stddef.h" size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]inttypes.h" size 9 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]iosfwd." size 18 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]csignal." size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]ratio." size 33 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__config_site.in" size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__sso_allocator." size 6 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]version." size 30 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]charconv." size 36 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]functional." size 194 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__errc." size 19 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]iterator." size 141 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cassert." size 2 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__split_buffer." size 45 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]locale.h" size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]iomanip." size 37 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__config." size 103 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]math.h" size 100 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]variant." size 122 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cfloat." size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]__bit_reference." size 105 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]system_error." size 29 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]cstdbool." size 2 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]numeric." size 41 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]codecvt." size 41 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include]stdbool.h" size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]coroutine." size 21 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]propagate_const." size 41 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]forward_list." size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]filesystem." size 19 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]unordered_map." size 5 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]list." size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]vector." size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]unordered_set." size 5 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]utility." size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]memory_resource." size 27 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]simd." size 121 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]type_traits." size 12 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]deque." size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]string." size 5 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]map." size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]algorithm." size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]regex." size 5 ;

5

Chapter 1. Overview

 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]set." size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]__memory." size 6 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]functional." size 36 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]iterator." size 9 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.experimental]__config." size 8 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.ext]hash_set." size 49 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.ext]hash_map." size 77 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.ext]__hash." size 7 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.support.vms]xlocale.h" size 3 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.support.xlocale]__nop_locale_mgmt.h" size 4 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.support.xlocale]__posix_l_fallback.h" size 10 ;
 file "[VSICXX$LIB.INCLUDE.lib_cxx.include.support.xlocale]__strtonum_fallback.h" size 6 ;
 end scope ;
 file [SYS$STARTUP]CXX$STARTUP.COM size 2 ;
 file [SYSHLP.EXAMPLES]CXX$SETUP.COM size 1 ;
 file [SYSEXE]CXX$GENERATE_HEADERS.COM size 3 ;
 execute postinstall "@pcsi$destination:[SYSEXE]CXX$GENERATE_HEADERS" ;
 file [SYS$STARTUP]CXX$UPGRADE.COM size 4 ;
 file [SYS$STARTUP]CXX$UNINSTALL.COM size 1 ;
 execute install "@pcsi$destination:[SYS$STARTUP]CXX$UPGRADE"
 remove "@pcsi$destination:[SYS$STARTUP]CXX$UNINSTALL" ;
 file [SYSTEST]CXX$IVP.COM size 17 ;
 execute test "@pcsi$destination:[SYSTEST]CXX$IVP.COM" ;
end product ;

1.3.4. Step 4: Create a Product Text File (Optional)
Create a product text file (PTF) with a text editor. This optional step is fully described in Chapter
4, "Creating the Product Text File". The PTF provides information about the product in brief and
detailed formats. The information includes product identification, copyright notice, configuration choice
descriptions, and message text used primarily during product installation and configuration operations.

The PTF file format is similar to that of modules used with the Librarian utility (LIBRARY) to create,
modify, or describe a help library. Example 1.2, "PTF for C++ Software Kit" shows a product text file.

Example 1.2. PTF for C++ Software Kit

=PRODUCT VSI X86VMS CXX V10.1-1 Full
1 'LICENSE
=prompt PAKs used: CXX-V
1 'NOTICE
=prompt © Copyright 2024 VMS Software, Inc.
1 'PRODUCER
=prompt This software product is sold by VMS Software, Inc.
1 'PRODUCT
=prompt CXX
1 RELEASE_NOTES
=prompt Text form of the release notes are located in the
 file SYS$HELP:CXX.RELEASE_NOTES
1 VMS_VERSION_TOO_OLD
=prompt OpenVMS version is below the supported minimum
VSI CXX requires VSI OpenVMS V9.2-1 or later

1.3.5. Step 5: Package the Software Components
Package the software components to create a .PCSI file. This step is fully described in Chapter
5, "Packaging the Kit". Use the PRODUCT PACKAGE command and its qualifiers. The
PRODUCT PACKAGE command determines if the PDF and PTF are syntactically correct and verifies
that all listed product material files can be found.

6

Chapter 1. Overview

1.3.6. Step 6: Test and Debug the Installable Kit
When a kit has been successfully produced, use the PRODUCT INSTALL, PRODUCT SHOW, and
PRODUCT REMOVE commands to verify the installation and removal of the product. Check for correct
file placement and protection, test user input, review message text, modify configuration options, verify
that execution environment requirements are satisfied, and so forth.

Test your installable kit to make sure that it properly handles any software version dependencies.

7

Chapter 1. Overview

8

Chapter 2. Basic Concepts
This chapter defines key terms and concepts. Read this chapter before creating your installable kit.

If you are familiar with the POLYCENTER Software Installation utility terms and concepts, you can
start with Chapter 3, "Creating the Product Description File".

2.1. The Product Database
The product database (PDB) refers to a set of interrelated files located in
SYS$SYSDEVICE:[VMS$COMMON.SYSEXE] with a .PCSI$DATABASE file extension. The
POLYCENTER Software Installation utility automatically creates the PDB the first time a product is
installed or registered on the system, such as when the OpenVMS operating system is installed. Once
created, the utility updates the database as operations are performed to install, reconfigure, register, or
remove products.

The PDB is the single source of information about operations performed on products using the
POLYCENTER Software Installation utility. This information includes a history of operations
performed, which products are installed, which files and other managed objects are owned by each
product, software dependencies among products, and so forth.

The PDB consists of three permanent files:

● PCSI$FILE_SYSTEM.PCSI$DATABASE

● PCSI$PROCESSOR.PCSI$DATABASE

● PCSI$ROOT.PCSI$DATABASE

A product-specific database file is created each time a product kit is installed or registered, and deleted
when the product is removed. For example, the layered product GIT V2.44-1A for OpenVMS x86-64
might have a database file named VSI-I64VMS-GIT-V0244-1A.PCSI$DATABASE.

Note

The format and content of the database files are controlled by the POLYCENTER Software Installation
utility. If an OpenVMS system manager uses the POLYCENTER Software Installation utility to install
your product, the utility will expect the database files to exist from that point on.

Caution your product's users not to delete these files or the POLYCENTER Software Installation utility
will not be able to detect and manage your product. The complete set of database files must be intact for
the utility to access the information in the database.

2.1.1. Querying the Product Database
As a software provider, you can use PDL statements to query the product database to dynamically
determine the version of an installed product. The following example illustrates how installation choices
are made based on the installed version of OpenVMS on an x86-64 system:

 if (<software VSI OPENVMS-X86 VMS version minimum V9.0> AND
 <software VSI OPENVMS-X86 VMS version below A9.2>) ;
 file [SYSEXE]MY$SERVER.EXE generation 5
 source [000000]MY$SERVER_V90.EXE ;

9

Chapter 2. Basic Concepts

 file [SYSEXE]MY$UTILITY.EXE generation 1
 source [000000]MY$UTILITY_V90.EXE ;
 file [SYSTEST.MY$PRODUCT]MY$SERVER_IVP.EXE generation 5
 source [000000]MY$SERVER_IVP_V90.EXE ;
 end if;
 if (<software VSI OPENVMS-X86 VMS version minimum V9.2> AND
 <software VSI OPENVMS-X86 VMS version below A9.3>) ;
 file [SYSEXE]MY$SERVER.EXE generation 5
 source [000000]MY$SERVER_V92.EXE ;
 file [SYSEXE]MY$UTILITY.EXE generation 1
 source [000000]MY$UTILITY_V92.EXE ;
 file [SYSTEST.MY$PRODUCT]MY$SERVER_IVP.EXE generation 5
 source [000000]MY$SERVER_IVP_V92.EXE ;
 end if;

OpenVMS users can use the DCL command PRODUCT SHOW either to query the product database to
show what products are installed and the dependencies between them, to list the files and other objects
that make up each product, or to show the history of installation and upgrade activity.

If your installation procedure or the OpenVMS user removes a product, information about the files and
objects associated with the product are removed from the database. However, the history of the product's
activity from installation to removal is retained in the database.

2.2. Software Product Kit Formats
When you create a software product kit, you must also choose a distribution format. You may choose
one of three distribution formats:

● Sequential format. In this format, the PDF, PTF, kit-specific command procedures, and all files
that comprise the product are packaged into a single container file that is identified by a .PCSI file
type. You can ship a sequential kit on either a random-access device, such as a CD–ROM, or on a
sequential access device, such as magnetic tape. Most layered products and patch kits are distributed
in this format. Use the PRODUCT PACKAGE/FORMAT=SEQENTIAL command to generate a kit
in sequential format.

● Compressed format. This format is a variant of sequential format in which a compression technique
is used to reduce the size of the kit. To create a kit in compressed format, first package the product
in sequential format using the PRODUCT PACKAGE /FORMAT=SEQUENTIAL command.
Next, use the PRODUCT COPY /FORMAT=COMPRESSED command to create a compressed kit
from the sequential kit. The resulting container file has a file type of .PCSI$COMPRESSED. The
PRODUCT INSTALL command and all other PRODUCT commands that read software product kits
automatically decompress records from a compressed kit as they are needed.

● Reference format. In this format, the PDF, PTF, kit-specific command procedures,
and all files that comprise the product are placed in a directory tree on a random-
access device. The directory tree mirrors the directory structure of the product on the
user's disk after installation. The top-level directory contains the PDF and PTF. The
PDF has a file type of .PCSI$DESCRIPTION and it is used to identify the kit. Use the
PRODUCT PACKAGE /FORMAT=REFERENCE command to generate a kit in reference format.
You can also use the PRODUCT COPY /FORMAT=REFERENCE command to expand a kit in
either sequential or compressed format to one in reference format where all extracted files are placed
in a directory tree.

The OpenVMS operating system product is packaged in reference format for Alpha and compressed
format for IA-64 and x86-64. While layered products and patch kits can be distributed in reference

10

Chapter 2. Basic Concepts

format, this is rarely done because it is much simpler to ship a kit in the form of a single container file in
either sequential or compressed format. Moreover, reference kits cannot be signed, whereas sequential
kits (whether compressed or not) can be signed.

Figure 2.1, "Package Operation" shows how the package operation uses the PDF, PTF, and product
material to create a product kit in reference or sequential format. Subsequently, the copy operation can
be used to transform a sequential kit into a kit in compressed format.

Figure 2.1. Package Operation

2.3. Software Product Kit Naming Conventions
The POLYCENTER Software Installation utility adheres to the following file-naming conventions when
either creating a software product kit or processing PDF and PTF files.

2.3.1. Sequential Format
A software product kit created in sequential format is a single file whose name is in the following
format: producer-base-product-version-kittype.PCSI.

For example:

VSI-AXPVMS-DWMOTIF-V0102-6-1.PCSI

11

Chapter 2. Basic Concepts

Note that the file name is constructed of components delimited by hyphens (-). The version component
is further divided into subfields and includes an additional hyphen as explained in Section 2.3.5, "More
About the Version Field".

2.3.2. Compressed Format
A software product kit created in compressed format is a single file whose name is in the following
format:

producer-base-product-version-kittype.PCSI$COMPRESSED

For example:

VSI-AXPVMS-DWMOTIF-V0102-6-1.PCSI$COMPRESSED

2.3.3. Reference Format
A software product kit created in reference format consists of a directory tree populated with product
files used during installation. The directory structure mirrors the directory structure of the product on the
user's disk after installation. The top-level directory contains the PDF and PTF. The presence of the PDF
identifies this as a kit in reference format. There is no .PCSI container file for a kit in reference format.
The PDF and PTF are named as follows:

producer-base-product-version-kittype.PCSI$DESCRIPTION
producer-base-product-version-kittype.PCSI$TLB

For example:

VSI-AXPVMS-DWMOTIF-V0102-6-1.PCSI$DESCRIPTION
VSI-AXPVMS-DWMOTIF-V0102-6-1.PCSI$TLB

2.3.4. Kit Naming Rules and Conventions
The fields in a kit name are position-dependent and provide useful information about the kit. There are a
few general naming rules:

● Each field in the file name is separated by a hyphen.

● The length of the file name string (including all required hyphens) cannot exceed 39 characters.

● The producer-base-product portion of the string must uniquely identify the software
product.

The fields are defined as follows:

● producer is the legal owner of the software product. For VSI software products this component
of the file name is VSI, although it may be HP, CPQ, or DEC for products that were originally
developed for older versions of OpenVMS.

● base denotes the hardware and operating system combination that the product requires. The
following table references the strings used as the base field values and their meanings.

String Meaning

X86VMS An OpenVMS x86-64 product
I64VMS An OpenVMS IA-64 product
AXPVMS An OpenVMS Alpha product

12

Chapter 2. Basic Concepts

String Meaning

VMS A product applicable for any VSI supported system

● product is the name of the software product. For example, DWMOTIF.

● version identifies the version of the software product expressed in tmn-ue format. For example,
V0102-6 denotes V1.2-6. See Table 2.1, "Format of tmn-ue Version Identification" for more
information.

● kittype identifies a kit type specified as a value from 1 through 7, as shown in Table 2.2, "PDF
Kit Types and Values".

2.3.5. More About the Version Field
The POLYCENTER Software Installation utility uses the version field to determine which kit is the most
recent and therefore which kit supersedes another kit for the same product. The version field is in the
format tmn-ue. This format is described in Table 2.1, "Format of tmn-ue Version Identification".

Table 2.1. Format of tmn-ue Version Identification

t The type of version (a single uppercase alphabetic character A through V; the letters
W, X, Y, and Z are reserved for use by VSI). Evaluated by ascending ASCII value.
Pre-release versions of a product usually begin with the letters A through U and V is
used to indicate the formal release version.

m The major version number (decimal integer 01 through 99).
n The minor version number (decimal integer 00 through 99).
- The hyphen is required in all cases. When both update level (u) and maintenance edit

level (e) are omitted, the version string will end with a hyphen and the file name will
have a double hyphen (- -) preceding the kit type.

u The update level (decimal integer 1 through 999999999). This is optional. If not
present, the utility evaluates this component as 0.

e The maintenance edit level (up to 16 alphanumeric characters beginning with
an alphabetic character). This is optional. If not present, the utility evaluates this
component as a null string.

When the utility compares the file specifications of two kits for the same product to determine the latest
version of the product, it examines the version strings as follows:

1. Compares the components of the version field in the following order:

a. Major version number (m)

b. Minor version number (n)

c. Update level (u)

d. Maintenance edit level (e)

e. Version type (t)

It is important to note that version type (t) is the last component to be evaluated. Because
it indicates the delivery status (internal, external, beta, and so on) of the product in the
development cycle, it is considered the least important component.

13

Chapter 2. Basic Concepts

2. Stops when it finds two components that are not equal, or determines that all five components are
equal.

3. Evaluates alphabetic characters and numbers in ascending order.

Once you use an update level (u) or a maintenance edit level (e) in the product version field, that
component must be carried throughout the release cycle of the product to ensure proper evaluation by the
utility.

For example, if you release a test version of your product called E7.3-10 (expressed as E0703-10 in tmn-
ue format) and then drop the update number in the final version V7.3, the utility will not recognize V7.3
as the latest version. This is what happens:

● The utility stops the comparison after it finds two components that are not equal. In this case, it stops
at the update level.

● Because the update level is not present in V7.3, it is evaluated as 0. Ten (10), the update level in
E7.3-10, is greater than zero (0).

● Since version type is evaluated last, it is not a factor here.

Once the update level is established, as in E7.3-10, do not omit it (causing it to default to zero (0)) until
you increase the major or minor version. Any of the following examples of version numbers would
supersede E7.3-10:

● D7.3-10A, because A is greater than the null string.

● V7.3-10, because V is greater than E.

● A7.3-11, because 11 is greater than 10.

2.3.6. Version Information Visible to the OpenVMS
Users
The tmn-ue format used in file names is similar to the format used to display versions to OpenVMS
users, or as entered by the OpenVMS user with the /VERSION qualifier.

However, when the POLYCENTER Software Installation utility displays a version to the OpenVMS
user:

● Leading zeros are omitted in m and n.

● If neither u nor e is present, the hyphen (-) is omitted.

The following version information is contained in the VSI OpenVMS System Manager's Manual.
However, it is worth repeating the information here to make sure that you know how the product version
is interpreted.

● If a hyphen is present and the first character after the hyphen is a digit, then the leading digits after
the hyphen are the update level. If nondigit characters are present, the maintenance edit level consists
of the first nondigit character and all following characters. If nondigit characters are not present, the
maintenance edit level is blank.

● If a hyphen is present and the first character after the hyphen is a nondigit character, the update level
is zero (0) and the maintenance edit level consists of all of the characters after the hyphen.

● If no hyphen is present, the update level is zero (0) and the maintenance edit level is blank.

14

Chapter 2. Basic Concepts

2.3.7. More About the Kit Type
The POLYCENTER Software Installation utility supports the seven kit types described in Table 2.2,
"PDF Kit Types and Values".

Table 2.2. PDF Kit Types and Values

Value Type of Kit Description

1 Full Layered product (application) software.
2 Operating system Operating system software.
3 Partial An upgrade to currently installed software that replaces

or provides new files. Installation of this kit changes the
version of the product.

4 Patch A correction to currently installed software that replaces or
provides new files. Installation of this kit does not change
the version of the product.

5 Platform An integrated set of software products (also known as a
software product suite).

6 Transition Product information used to register (in the POLYCENTER
Software Installation database) a product that was installed
by VMSINSTAL or other mechanism. This kit includes only
a PDF and (optionally) a PTF; it does not provide product
material.

7 Mandatory update A required correction to currently installed software that
replaces or provides new files. Installation of this kit does
not change the version of the product. Functionally the same
as a patch kit.

2.3.8. Looking at Software Product Name Examples
The following examples show how the format is used for a sequential format kit and a reference format
kit:

● A sequential format kit for the VSI Softwindows for OpenVMS x86-64 product that requires a
double hyphen has the following format:

VSI-X86-SOFTWIN-V0101-1.PCSI

This format shows that the producer is VSI, the base is X86VMS (OpenVMS x86-64), the
product is SOFTWIN, and the version is V1.1. The type of version is V, the major and minor
version numbers are each 1. There are no update or maintenance edit levels. The kittype is 1
(full).

● A product description file in a reference format kit for OpenVMS Alpha has the following format:

HP-AXPVMS-VMS-V0602-1H2-2.PCSI$DESCRIPTION

This format shows that the producer is HP, the base is AXPVMS (OpenVMS Alpha), the
product is VMS, and the version is V6.2-1H2. The type of version is V, the major version
number is 6, the minor version number is 2, the update level is 1, and the maintenance edit level is
H2. The kittype is 2 (operating system).

15

Chapter 2. Basic Concepts

2.3.9. Input and Output Versions of the PDF and PTF
Although you provide the product description file (PDF) and the product text file (PTF) as input to the
package operation, they also exist in modified (output) form in the kit you create. You need to be aware
that two versions of these files do exist and that they perform specific tasks.

You create the input version as input to the package operation, and the POLYCENTER Software
Installation utility creates the output version for its own use.

The package operation changes the format of the output PTF file. For more information, see Section 4.2,
"Structure of a PTF".

The output PDF is in the same format as the input PDF, but the package operation may modify
statements in the output PDF. For example, the package operation adds the size option to FILE
statements in the output PDF.

2.4. User-Defined Logical Names
When installing your product, system managers must specify a location where the software kit resides
and a location in which to install the software. Two methods are available for identifying these locations:

● Defining logical names

● Specifying /SOURCE and /DESTINATION qualifiers on the command line

The system manager can also define logical names, and then override them by using the /SOURCE and /
DESTINATION qualifiers.

PCSI$SOURCE defines the location of the software kits to install. By default, the user's default device
and directory are used. PCSI$DESTINATION defines the location in which to install the software.

If the system manager does not define PCSI$DESTINATION or use the /DESTINATION qualifier, the
utility installs the software product in SYS$SYSDEVICE:[VMS$COMMON] and directories under it.
If this is not appropriate for your product, make sure that your installation instructions describe how to
specify the /DESTINATION qualifier, or how to define the PCSI$DESTINATION logical name.

Note

When you package your product, the logical names PCSI$SOURCE and PCSI$DESTINATION are
not used. You must use the /SOURCE and /DESTINATION qualifiers on the PRODUCT PACKAGE
command.

2.5. Utility-Defined Logical Names
This section discusses the logical names defined by the POLYCENTER Software Installation utility for
use by kit-supplied command procedures.

2.5.1. PCSI$SOURCE, PCSI$DESTINATION, and
PCSI$SCRATCH
Several Product Description Language (PDL) statements execute command procedures in the
context of a subprocess. The POLYCENTER Software Installation utility defines the logical names

16

Chapter 2. Basic Concepts

PCSI$SOURCE, PCSI$DESTINATION, and PCSI$SCRATCH for use by these command procedures.
Note that these logical names are accessible only within the subprocess and do not interfere with similar
names that the user may have defined. Note also that the user's definition of PCSI$SOURCE is not the
same as that defined by the utility for the command procedure. See Figure 6.1, "EXECUTE Statement
Summary" and the descriptions of various EXECUTE statements in the PDL reference section for
additional information.

2.5.2. PCSI$$RECOVERY_MODE and
PCSI$$SAVE_RECOVERY_DATA
With the introduction of the /RECOVERY_MODE and /SAVE_RECOVERY_DATA qualifiers to the
PRODUCT INSTALL and PRODUCT RECONFIGURE commands for OpenVMS Version 7.3-2, the
utility defines logical names to increase product developers' control over the product installation process.
These new logical names are PCSI$$RECOVERY_MODE and PCSI$$SAVE_RECOVERY_DATA.
The PCSI$$RECOVERY_MODE logical name represents the /RECOVERY_MODE qualifier while the
PCSI$$SAVE_RECOVERY_DATA qualifier represents the /SAVE_RECOVERY_DATA command-
line qualifier. They are defined in the system-wide logical name table whenever the user specifies their
equivalent qualifiers and are deassigned when the PRODUCT command terminates.

For the /RECOVERY_MODE qualifier, the PCSI$$RECOVERY_MODE logical name is defined with a
YES value. If the user specifies /NORECOVERY_MODE, the PCSI$$RECOVERY_MODE logical name
is defined with a NO value. If the user does not use the /RECOVERY_MODE qualifier at all, the logical
name is not defined. The same process applies to the PCSI$$SAVE_RECOVERY_DATA logical name.

The /RECOVERY_MODE qualifier forces product installation to be performed in recovery mode,
which allows recovery from a failed product installation or reconfiguration through a rollback of files
and library modules displaced by the failed operation. By default, the installation and reconfiguration
operations are not performed in recovery mode.

The /SAVE_RECOVERY_DATA qualifier applies only to the installation of patch and mandatory update
kits. It is similar to /RECOVERY_MODE in that it forces files displaced during installation to be saved
in a specially designated directory tree. Those saved objects can later be used to uninstall patch products
by executing the PRODUCT UNDO PATCH command. By default, the patch kit installation triggers
patch recovery data to be saved for future use. This is the reason the PCSI$$RECOVERY_MODE and
PCSI$$SAVE_RECOVERY_DATA logical names have been introduced.

Using these logical names, the product developer can control whether the product installation is
performed in recovery mode or whether the patch recovery data is being saved for potential patch kit
removal. Using a command procedure supplied with the PDL statement EXECUTE PRECONFIGURE
in your PDF, you can examine the logical names and determine if the user has specified the
/RECOVERY_MODE or /SAVE_RECOVERY_DATA qualifiers.

If, for example, the user did not use the /SAVE_RECOVERY_DATA qualifier, and you believe that it
is important that your patch kit be installed in a manner allowing its uninstallation in case of a problem,
you can set the PCSI$$SAVE_RECOVERY_DATA logical name in your EXECUTE PRECONFIGURE
command and force the recovery data to be saved for future use.

2.5.3. PCSI$$COMMAND_LINE
Starting with OpenVMS Version 8.2, the utility defines the logical name PCSI$$COMMAND_LINE
to be the DCL command line entered by the user that initiated the PRODUCT command. This logical
name is defined in the system-wide logical name table and is deassigned when the PRODUCT command
terminates.

17

Chapter 2. Basic Concepts

2.5.4. PCSI$$CONFIRM
Starting with OpenVMS Version 8.2, the utility defines the logical name PCSI$$CONFIRM with a NO
value when the user specifies the /OPTIONS=NOCONFIRM qualifier on the command line. This logical
name is defined in the system-wide logical name table and is deassigned when the PRODUCT command
terminates.

2.6. Managed Objects
Managed objects are the files, directories, accounts, network objects, and so forth that support the
proper functioning of your product. The POLYCENTER Software Installation utility must directly create
them.

As an example, if you use a PDF FILE statement to create a file, that file is considered to be a managed
object.

However, if your product creates directories, files, and so forth after the installation is completed, the
POLYCENTER Software Installation utility has no way to know about those files or directories and
cannot manage them. For example, if your product dynamically creates an error log as a result of a
specific error condition, the POLYCENTER Software Installation utility will not be able to manage (for
example, remove) this log file. This means that if the OpenVMS user uses the POLYCENTER Software
Installation utility to remove your software product, the user would have to manually delete the error log.

In addition, if your PDF includes command procedures in EXECUTE statements that create files,
directories, accounts, and so forth, the POLYCENTER Software Installation utility has no way to know
about these objects and cannot manage them.

2.6.1. Creating Managed Objects
To create managed objects using PDL statements, you can specify the names and properties of the
managed objects that are necessary for your product. At installation time, the POLYCENTER Software
Installation utility uses your product description file (PDF) to create the managed objects for your
product and records information about these objects in the product database.

For example, you use the DIRECTORY, FILE, and MODULE statements to specify directory, file, and
library module managed objects, as shown in the following example:

 directory [SYSTEST.FORTRAN] ;
 file [SYSTEST]FORT$IVP.COM ;
 file [SYSHLP]FORTRAN-V86-001.RELEASE_NOTES release notes ;
 file [SYSHLP]HELPLIB.HLB generation 40069227 release merge ;
 module [000000]CPQC.CLD type command module CC ;

When the POLYCENTER Software Installation utility removes a software product, it uses the data in the
product database to delete managed objects from the system.

Use the PRODUCT SHOW OBJECT command to display the names of objects installed on a system.
For example:

 $ PRODUCT SHOW OBJECT *COPY*
 --- ----------------- -----
 OBJECT NAME OBJECT TYPE STATUS
 --- ----------------- -----
 [SYSEXE]COPY.EXE file OK

18

Chapter 2. Basic Concepts

 [SYSHLP.EXAMPLES.DECW.UTILS]COPYRIGHT.H file OK
 COPY module OK

2.6.2. Managed Object Conflict
Occasionally, your product will supply a managed object that conflicts with another managed object. For
example, if you supply a file called FOO.TXT and a file by that name was also provided (in the same
directory) by another product, a conflict occurs. The existing file will be overwritten under the following
circumstances:

● If it was provided by an earlier instance of your product.

● If it was not created by the PRODUCT command. (It is not a managed object in the product
database.)

However, if the file is a managed object identified in the product database, and is owned by some other
product, it might not be appropriate to replace it.

The following two types of managed object conflict can occur:

● An interproduct conflict occurs when two or more products provide an object with the same name
in the same directory. (Files with the same name can coexist in different directories.)

● An intraproduct conflict occurs when two or more patch or partial kits for a product update the
same object.

When the utility detects conflict, it displays an informational message. The following statements detect
managed object conflict and display informational messages:

● ACCOUNT

● DIRECTORY

● FILE

● LINK

● LOADABLE IMAGE

● MODULE

● NETWORK OBJECT

● REGISTER MODULE

● RIGHTS IDENTIFIER

2.6.3. Preventing Managed Object Conflict
In some cases, the POLYCENTER Software Installation utility allows you to anticipate and resolve
conflict before it occurs. The following statements provide some level of conflict resolution:

● FILE

● MODULE

● REGISTER MODULE

19

Chapter 2. Basic Concepts

Managed object conflict is resolved differently, depending on what type of object is involved. The
description of these statements in Chapter 7, "Product Description Language Statements" indicates how
each one resolves managed object conflict.

For example, some statements provide a generation option (using the GENERATION keyword) that
lets you assign a generation number to an object. During installation, if the utility attempts to create an
object that already exists, it compares the generation numbers of the objects, selecting the object with the
highest generation number.

When two or more products provide the same file or module, the one with the highest generation
number must implement a superset of the capabilities found in the objects having lower generation
numbers. This is required so that all products installed that use this object will continue to function
properly.

When one of these products is removed, the POLYCENTER Software Installation utility retains the
object with the highest generation number and reassigns the ownership of the object to the product
remaining on the system.

Thus, when products update one or more objects in common (indirectly modify each other), removal of
one product might result in not restoring the other product to its former state. This is because the objects
with the highest generation numbers are left on the system.

For example, the product description files for products TEST1 and TEST2 are as follows:

 product CPQ AXPVMS TEST1 V1.0 full;
 file [SYSEXE]TEST.EXE generation 100;
 end product; product CPQ AXPVMS TEST2 V1.0 full;
 file [SYSEXE]TEST.EXE generation 200;
 end product;

If you first install product TEST1 and then install TEST2, the TEST.EXE file with generation number
200 will supersede the previously installed file TEST.EXE with generation number 100. However, if
you subsequently remove product TEST2, the utility will retain generation 200 of file TEST.EXE and
list product TEST1 as its owner. It is assumed that the file having the higher generation number is a
functional superset of the file with the lower generation number; therefore, product TEST1 will continue
to work properly. To restore product TEST1 to its original state, you will need to reinstall it. This will
remove all the installed files associated with the product and replace them with files from the kit.

2.6.4. Managed Object Replacement and Merging
As described in Section 2.6.2, "Managed Object Conflict", managed objects occasionally have
characteristics that conflict with each other. The POLYCENTER Software Installation utility handles this
situation differently depending on the kit type:

● When upgrading a product using a full operating system or platform kit, the utility deletes the
existing object and replaces it with the object and characteristics provided by the new version of the
product.

● When upgrading a product using a partial kit or modifying a product using a patch or mandatory
update kit, the utility preserves the characteristics of existing objects. For example, the security
environment you establish for your product is preserved when you install a partial, patch, or
mandatory update kit.

If you want to provide new characteristics for a managed object in a partial, patch, or mandatory update
kit, use the REMOVE statement to delete the existing object and then respecify the object with the
desired characteristics.

20

Chapter 2. Basic Concepts

For more information about kit types, see Table 2.2, "PDF Kit Types and Values".

2.6.5. Managed Object Scope and Lifetime
The scope of a managed object defines the degree of sharing that the managed object permits. For
example, some objects are available only to certain processes, and some can be shared by all processes.
The utility usually ensures that managed objects have the correct scope.

Occasionally, you might need to use the SCOPE statement to give a managed object a scope other than
its default. For more information about specifying the scope of a managed object, see the description of
the SCOPE statement in Chapter 7, "Product Description Language Statements".

2.7. Creating an Integrated Platform (Product
Suite)
In addition to packaging individual products, the POLYCENTER Software Installation utility gives
you the means to assemble integrated platforms. An integrated platform is a combination of several
products, such as a suite of complementary management products that you might bundle together.

Functionally, a platform is the same as a full kit, except that it has the designation "PLATFORM". A
platform is intended to reference other products, but it can also supply files.

Figure 2.2, "Integrated Platform Example" shows an example of an integrated platform.

Figure 2.2. Integrated Platform Example

To package a platform, you create a platform PDF and platform PTF. In addition to other statements,
the platform PDF contains SOFTWARE statements that specify the products that make up the platform.

21

Chapter 2. Basic Concepts

The individual products have their own PDFs and PTFs (independent of the platform PDF and PTF). For
more information about platform PDFs, see Section 3.5.3, "The Platform Kit Type".

22

Chapter 3. Creating the Product
Description File
The product description file (PDF) is a required component of any software product kit that you create
using the POLYCENTER Software Installation utility. The PDF does the following:

● Specifies all files that make up the product

● Identifies configuration options that are presented to the user at installation time

● Specifies any dependencies the product may have on other software products

● Defines various actions that must be performed during installation

3.1. General Guidelines
The POLYCENTER Software Installation utility is intended to simplify the job of system managers,
making products quick and easy to install and manage. Use the following guidelines when writing PDFs:

● Minimize installation activity (such as linking images and building databases). Instead, include all
material required for product execution on the reference.

● Make your products adapt to the target environment at execution time rather than installation time.
This practice keeps products consistent across varying configurations.

● Avoid requiring system parameter settings on the target system that would require rebooting the
system.

● Minimize configuration choices at installation time.

● Ensure that the PDF expresses all the known requirements that your product needs to execute. Use
the checklist in Section 3.2, "Defining Your Environment" to define the requirements for the target
environment.

3.2. Defining Your Environment
To define the environment for your product, use the following checklist.

Does your product depend on other software?

For example, your product may require a specific version of the operating system or optional
software products. To express these software requirements, use the SOFTWARE function or
statement.

Note

Note the distinction between the SOFTWARE statement and the SOFTWARE function. The
statement and function serve different purposes and are not interchangeable. See Table 7.8,

23

Chapter 3. Creating the Product Description File

"Summary of SOFTWARE Statement and SOFTWARE Function Differences" for a summary of
differences.

The SOFTWARE statement specifies a software product that should be installed on the system
to satisfy a software product dependency. It also specifies a software product that is a part of an
integrated platform (product suite) and should be included in the platform product installation.

The SOFTWARE function tests for the presence of a product. You can also specify the version of
the product that must be present. The SOFTWARE function, unlike the SOFTWARE statement,
does not create a permanent software reference to another product and does not force the installation
of the other product.

Also note that software you reference with a SOFTWARE statement must be registered in the
product database to be recognized by the POLYCENTER Software Installation utility. If you
install a product using a mechanism other than the POLYCENTER Software Installation utility, the
product database will not contain information about the product unless you register it using a full
or transition PDF. For more information about creating transition product descriptions, see Section
3.5.7, "The Transition Kit Type".

If you are creating a platform, what software products make up the platform?

If you are creating a platform, you must specify the software products that make up the platform.
To specify the products that make up your platform, use the SOFTWARE statement with the
component option.

Does your product require specific hardware devices?

For example, your product may require that the system has access to certain peripheral devices,
such as a compact disc drive or printer. To display a message to users expressing these hardware
requirements, use the HARDWARE DEVICE statement.

Does your product run only on specific computer models?

Some products run only on certain computer models. If this is the case with your product, use the
HARDWARE PROCESSOR statement to display a message to users.

Does your product require specific images, files, or directories?

All the files, images, and directories that your product requires should be expressed in FILE or
DIRECTORY statements.

Does your product require a special account on the system?

Some products require a dedicated account on the system. Use the ACCOUNT statement to supply
the account.

Does your product require network objects?

Some products require network objects on the system. If your object is designed for DECnet Phase
IV, use the NETWORK OBJECT statement to supply the required network objects. For DECnet-
Plus you might want to use a different mechanism. For example, supply an NCL script with a PDL
file statement.

Do you want to set up rights identifiers?

Use the RIGHTS IDENTIFIER statement.

24

Chapter 3. Creating the Product Description File

Does your product supply an image to the system loadable images table?

Use the LOADABLE IMAGE statement.

Does your product have several options that the user can choose?

Although it is a good practice to limit the number of user options, you may need to present the user
with options during installation. To present options to the user, use the OPTION statement.

Does your product have specific security requirements?

If the files and directories for your product require special protection or access controls, you can
express this in the product description. See the descriptions of the DIRECTORY statement and the
FILE statement. You can also supply a rights identifier using the RIGHTS IDENTIFIER statement.

Does your product require certain values for system parameters?

Many software products require that system parameters have certain values for the product to
function properly. Use the SYSTEM PARAMETER statement to display system parameter
requirements to users.

Does your product require certain values for process parameters?

Use the PROCESS PARAMETER statement to display these requirements to users.

Does your product require certain values for process privileges?

Use the PROCESS PRIVILEGE statement to display these requirements to users.

Do you want to include a functional test with your product?

You can include it in the product material to verify that your product installed correctly. To execute
the functional test for your product, use the EXECUTE TEST statement.

Are there commands that your installation procedure needs to execute that are outside the
domain of the POLYCENTER Software Installation utility?

Use the EXECUTE statement.

Does your product have specific pre- or post-installation tasks?

You can use the POLYCENTER Software Installation utility to automate these tasks; however, there
may be some tasks you want users to perform that are outside the capabilities of the utility. You can
inform users of such tasks using the INFORMATION statement. You can also use several of the
EXECUTE statements to perform these tasks.

Does your product require command, help, macro, object, or text library modules?

You should express the following types of modules in your PDF:

● DIGITAL Command Language (DCL) command definition modules

● DCL help modules

● Macro modules

● Object modules

25

Chapter 3. Creating the Product Description File

● Text modules

You can express these types of modules using the MODULE statement.

What happens to existing product files?

Make sure that your product's files are handled correctly during an installation or upgrade. The
POLYCENTER Software Installation utility deletes all those files that are replaced by newly-
installed products. When upgrading a full, an operating system, or a platform product, non-replaced
files of the older product version are also deleted. When installing partial, patch, or mandatory
update kits, files that are not replaced by new versions are preserved.

To remove obsolete files, enclose FILE statements representing them in the REMOVE group
statement.

Does your product require documentation?

You may want to include online documentation (such as release notes) with your product. To express
the documentation requirements for your product, use the RELEASE NOTES option to the FILE
statement.

3.3. PDF File-Naming Conventions
You supply the PDF as input to the PRODUCT PACKAGE command. The PDF can have any valid
OpenVMS file name and file type. We recommend that you give the input PDF file the extension
.PCSI$DESC. For example:

TEST.PCSI$DESC

When you execute the PRODUCT PACKAGE command, it creates an output PDF. See Section 2.3.9,
"Input and Output Versions of the PDF and PTF" for the distinction between input and output files.

The output PDF file format is the same as the input PDF; that is, a sequential file containing PDL
statements. The contents of the output PDF, however, may differ slightly from that of the input PDF. For
example, the POLYCENTER Software Installation utility adds the size option to every FILE statement
and supplies the actual size of the file in disk blocks.

The name of the output PDF consists of the product's stylized file name and a file type of
.PCSI$DESCRIPTION as follows:

producer-base-product-version-kittype.PCSI$DESCRIPTION

For example, the output PDF for product BLACKJACK V2.1-17 might be named:

ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.PCSI$DESCRIPTION

See Section 2.3, "Software Product Kit Naming Conventions" for a description of the product-naming
syntax.

3.4. Structure of a PDF
A PDF is a text file that contains a sequence of PDL statements. A PDF must begin with a PRODUCT
statement and end with an END PRODUCT statement. The PRODUCT statement uniquely identifies the
product and specifies the type of kit to build (full, partial, patch, and so forth). Each file that is part of

26

Chapter 3. Creating the Product Description File

the product material must be specified with a FILE statement. The following example shows a complete
PDF for a product that places one file named test.exe in SYS$COMMON:[SYSEXE].

product VSI X86VMS test v1.0 full ;
 file [sysexe]test.exe ; end product ;

3.4.1. Overview of PDL Statements
The product description language consists of statements that are defined in Chapter 7, "Product
Description Language Statements" of this manual. As an overview, these statements are listed here in
classes according to their main function:

● Statement groups are defined by a pair of opening and closing statements; by convention, the closing
statement is the keyword END followed by the keyword of the opening statement. Statement groups
operate on statements lexically contained within their begin-end pair. Many statement groups can be
nested within other groups.

The following statement groups are used to conditionally process other statements:

○ IF and END IF (ELSE and ELSE IF statements optionally can be used within the statement
group). Used to evaluate the Boolean value of a statement function or expression as a condition
to process enclosed statements or a group of statements.

○ OPTION and END OPTION.

The following statement groups unconditionally process all statements at their inner level:

○ PART and END PART

○ PRODUCT and END PRODUCT

○ REMOVE and END REMOVE

○ SCOPE and END SCOPE

● Statements that create or modify managed objects include:

○ ACCOUNT

○ DIRECTORY

○ FILE

○ LINK (create an alias directory entry)

○ LOADABLE IMAGE

○ MODULE

○ NETWORK OBJECT

○ REGISTER MODULE

○ RIGHTS IDENTIFIER

● Statements that enforce software dependencies and hardware requirements by testing the execution
environment and taking appropriate action include:

27

Chapter 3. Creating the Product Description File

○ APPLY TO

○ HARDWARE DEVICE

○ HARDWARE PROCESSOR

○ INFER

○ SOFTWARE

○ UPGRADE

● Statements whose main purpose is to display a message to the user and in some cases query the user
for a response are as follows:

○ ERROR

○ INFORMATION

○ PROCESS PARAMETER

○ PROCESS PRIVILEGE

○ SYSTEM PARAMETER

● Statements that cause producer-supplied command procedures to execute or instruct the user to
manually perform a task include:

○ EXECUTE ABORT

○ EXECUTE INSTALL …REMOVE

○ EXECUTE LOGIN

○ EXECUTE POSTINSTALL

○ EXECUTE POST_UNDO

○ EXECUTE PRECONFIGURE

○ EXECUTE PRE_UNDO

○ EXECUTE REBOOT

○ EXECUTE START …STOP

○ EXECUTE TEST

○ EXECUTE UPGRADE

● Statement functions that are used to provide a Boolean value when evaluated in the expression part
of an IF statement:

○ <HARDWARE DEVICE>

○ <HARDWARE PROCESSOR>
28

Chapter 3. Creating the Product Description File

○ <LOGICAL NAME>

○ <OPTION>

○ <SOFTWARE>

○ <UPGRADE>

Many software products require only the use of a small subset of these PDL statements to create their
PDF. Commonly used statements are as follows:

● PRODUCT and END PRODUCT (required in every PDF)

● FILE

● MODULE

● SOFTWARE

● OPTION and END OPTION

● IF and END IF

● EXECUTE INSTALL …REMOVE

● EXECUTE TEST

3.4.2. PDL Statement Syntax
A PDL statement consists of:

● A keyword phrase that identifies the statement (required)

● Zero or more parameter values (which may be expressions in certain contexts)

● Zero or more options each specified as a keyword phrase and value pair

● A semicolon (;) that terminates the statement (required)

Additional Syntax Rules
● Statements can span multiple lines and whitespace can be used freely to improve readability or show

relationship through indentation levels.

● Case is not significant, except within a quoted string.

● A keyword phrase consists of one or more keywords as defined by the PDL statement.

● A comment is a sequence of two consecutive hyphens (- -) followed by characters up to and
including end-of-line.

When a string containing consecutive hyphens is passed as a parameter or option value, enclose the
string in quotes, for example, “a–b.dat”. This prevents the hyphens from being parsed as the start
of a comment.

29

Chapter 3. Creating the Product Description File

● Lexical element separators are used to set off keywords, values, expressions, and so on. They include
end-of-line, comment, and the following characters: space, horizontal tab, form feed, and vertical tab
(except when they appear within a quoted string).

● Delimiters are required syntax in many situations. They consist of the following characters:
semicolon (;), comma (,), left parenthesis ((), right parenthesis ()), left angle bracket (<), and right
angle bracket (>).

When a string contains a delimiter character that is passed as a parameter or option value, enclose the
string in quotes. For example, to pass the numeric UIC string [1,1] as an option value, use the quoted
string form of “[1,1]”, because it contains a comma character.

3.4.3. PDL Function Syntax and Expressions
Certain PDL statements have a function form that tests for a condition in the execution environment and
returns a Boolean value of true or false. A function is syntactically similar to its corresponding statement
except that a function is enclosed in left and right angle brackets (<...>), instead of being terminated by a
semicolon (;).

The following statements have corresponding functions:

● HARDWARE DEVICE

● HARDWARE PROCESSOR

● OPTION

● SOFTWARE

● UPGRADE

The LOGICAL NAME function does not have a corresponding statement form.

Expressions are used in IF statements to produce a Boolean value for the if-condition test. An expression
is delimited by opening and closing parentheses ((...)). It contains one or more functions and, optionally,
one or more of the keywords AND, OR, and NOT, which are used as logical operators.

An expression has one of the following forms, where each term is either another expression or a
function:

● (term)

● (term AND term)

● (term OR term)

● (NOT term)

The following example shows an IF statement using a compound expression:

if ((not
<hardware device MUA0:>) and (
<software ABC I64VMS TEST version below 2.0>)) ;
 .
 .
 .

30

Chapter 3. Creating the Product Description File

end if ;

3.4.4. PDL Data Types and Values
The PDL has several base data types that you must use when passing parameters to the PDL statements
listed in Chapter 7, "Product Description Language Statements". Table 3.1, "Base Data Types and
Values" describes the PDL base data types and their values. PDL statements may restrict the range of
values that can be used as parameters.

Table 3.1. Base Data Types and Values

Data Type Values

Boolean The number 0 (false), the number 1 (true), the keywords false, true, no,
and yes.

String A sequence of 0 to 255 ISO Latin-1 characters. In the context of PDF
language statements:

● abc is an unquoted string.

● “abc” is a quoted string.

● “‘double_quoted_string’” is a quoted string that maintains original
quotation marks.

You must use the quoted string form if the string contains any
PDL delimiters (open/close parentheses, comma, open/close angle
brackets, and semicolons) or lexical element separators (double
hyphen, space, horizontal tab, form feed, or vertical tab). For example,
“/privilege=(tmpmbx, netmbx)”.

Table 3.2, "String Data Type Constraints" lists the additional constraints
on PDL strings.

Signed integer Specifies a positive, negative, or zero integral value in the range of
-2147483648 to 2147483647.

Unsigned integer Specifies a zero or positive integral value in the range of 0 through
4294967295.

Version identifier See the description in Section 2.3, "Software Product Kit Naming
Conventions".

Text module name Specifies a unique name for a text module using the printable ISO
Latin-1 characters, excluding horizontal tab, space, exclamation point, and
comma. The name can be from 1 to 31 characters.

Table 3.2, "String Data Type Constraints" describes additional constraints on the string data type.

Table 3.2. String Data Type Constraints

String Type Values Examples

Unconstrained None; any character may appear in
any position.

Access control entry (ACE) Specifies an ACE for a directory or
file.

“(IDENTIFIER=[KM],
ACCESS=READ)”

31

Chapter 3. Creating the Product Description File

String Type Values Examples

Command Specifies an operating system
command that you want to execute
during a specific operation.

@PCSI$DESTINATION:
[SYSTEST] PROD$IVP.COM

Device name Specifies the name of a hardware
device.

DUB6:

File name Specifies a file name (without a
device or directory specification).

STARTUP.DAT

Identifier name Specifies a rights identifier. DOC
Module name Specifies the name of a module in a

library.
FMSHELP

Processor model name Specifies the model identification of
a particular computer system.

7

Relative directory
specification

Specifies the directory name
and, if necessary, the directory
path, relative to the root directory
specification.

[MY_PRODUCT]

Relative file specification Specifies the directory path and file
name, relative to the root directory
path.

[MY_PRODUCT]DRIVER.DAT

Root directory specification Specifies the directory name and a
trailing period (.). If you specify a
directory name and omit the period,
it is inserted. If necessary, you can
add the device name.

[TEST.]SYS$SYSDEVICE:[VMS
$COMMON.]

3.5. Kit Types and Usage
The POLYCENTER Software Installation utility supports seven kit types that can be grouped into three
broad categories:

● Primary kit – Used to install or upgrade a product. Primary kits can require prerequisite products to
be installed before or concurrently. Kit types in this category include:

○ Full (layered product or application software)

○ Operating system

○ Platform (product suite)

● Secondary kit – Used to modify installed products. Kits types in this category include:

○ Partial (changes the product's version)

○ Patch (maintenance update)

○ Mandatory update

● Transition kit – Used to register a product that has been installed using VMSINSTAL or some
method other than the DCL command PRODUCT INSTALL. The kit type in this category is as
follows:

32

Chapter 3. Creating the Product Description File

○ Transition

Use the PRODUCT PACKAGE command to package (or build) a product kit. The output of the
packaging process is an installable kit (in either sequential copy format or reference format) that
contains:

● Product material (usually present) – The files that make up the product. Usually, the installation of a
product kit copies files to the target disk. However, there are exceptions:

○ A transition kit never provides files.

○ A platform kit references other products; it may or may not provide common files for the
product suite.

○ Since product material is not a requirement for any type of kit, you may create “skeleton” kits for
testing purposes that do not modify the target disk.

● A product description file (required) that drives the installation process – It defines the managed
objects that are provided or created and contains directives for the installation utility. In addition,
it can include options for the installer to select, declare software references to other prerequisite
products, and invoke command procedures you write to augment the installation process.

● A product text file (optional) that provides text modules for use during the installation process.

● Temporary files such as command procedures (optional) that are used during the installation process
but are not left on the user's system.

The full product name (that is, the string producer-base-product) must be unique among all
products installed on a system. This implies, for example, that there could be two FORTRAN compilers
installed from different companies (such as VSI-AXPVMS-FORTRAN and XYZCORP-AXPVMS-
FORTRAN), but there cannot be two patch kits with the same full name that are intended to apply to
different products (such as ABC-AXPVMS-ECO1 for ABC-AXPVMS-COBOL and ABC-AXPVMS-
ECO1 for ABC-AXPVMS-C).

The following sections describe each type of kit and provide examples of their product description files.

3.5.1. The Full Kit Type
A full kit provides layered product application software and is the most common type of kit. The PDF
for a full kit must contain a PRODUCT statement with the keyword full and an END PRODUCT
statement, as shown in the following example:

product CPQ AXPVMS TEST_A V2.0 full ;
.
.
.
end product ;

The full kit has the following characteristics:

● It contains all of the material for the product. Therefore, it can be used to install the product for the
first time or it can upgrade a previously installed version of the product.

● The product can be removed, configured, or reconfigured.

● Its PDF can contain OPTION and SOFTWARE statements.

33

Chapter 3. Creating the Product Description File

Example 3.1, "PDF for a Full Kit That References Another Full Kit" shows a full kit that references
another product.

Example 3.1. PDF for a Full Kit That References Another Full Kit

product AXPVMS FORTRAN V7.1-1 full ;
 if (not <software AXPVMS VMS version minimum V7.1>) ;
 software AXPVMS FORRTL version minimum V7.1 ;
 end if ;
 information STARTUP_TASK phase after ;
 information RELEASE_NOTES phase after ;
 file [SYSHLP]FORTRAN.RELEASE_NOTES release notes ;
 file [SYSHLP]FORTRAN_RELEASE_NOTES.PS ;
 file [SYSHLP]FORTRAN_RELEASE_NOTES.DECW$BOOK ;
 if (<software VSI AXPVMS FORTRAN90>) ;
 error REMFORT90 ;
 end if ;
 option FORTRAN_90 ;
 file [SYSEXE]F90$MAIN.EXE generation 2 ;
 file [SYSMSG]F90$MSG.EXE generation 2 ;
 module [000000]F90CLD.CLD type command generation 2 module F90 ;
 module [000000]F90HELP.HLP type help generation 2 module F90 ;
 end option ;
 option FORTRAN_77 ;
 file [SYSEXE]FORT$MAIN.EXE generation 1 ;
 file [SYSEXE]FORT$FSPLIT.EXE generation 1 ;
 file [SYSMSG]FORT$MSG.EXE generation 1 ;
 file [SYSMSG]FORT$MSG2.EXE generation 1 ;
 module [000000]DEC_FORTCLD.CLD type command generation 1 module
 FORTRAN ;
 module [000000]DEC_FORHELP.HLP type help generation 1 module
 FORTRAN ;
 end option ;
 file [SYSLIB]FORSYSDEF.TLB generation 5 ;
 file [SYS$STARTUP]FORT$STARTUP.COM generation 1 protection private ;
 file [SYSTEST]FORT$IVP.COM generation 1 protection private ;
 execute test "@PCSI$DESTINATION:[SYSTEST]FORT$IVP.COM" ;
end product ;

The PRODUCT statement identifies this as a complete layered product kit for installation of (or
upgrade to) FORTRAN V7.1-1 on an OpenVMS Alpha system.

The IF …END IF group conditionally executes statements within the group based on the
evaluation of the IF function. In this example, the SOFTWARE statement is executed only if the
system is running a version of OpenVMS earlier than V7.1. This SOFTWARE statement creates
a software reference to the product FORRTL. If FORRTL V7.1 or later is already installed, the
software dependency is satisfied; otherwise, FORRTL is automatically installed concurrently with
FORTRAN.

This INFORMATION statement causes a message to be displayed after the product has been
installed. Text is obtained from the module RELEASE_NOTES in the PTF:

1 RELEASE_NOTES
=prompt Type HELP FORTRAN Release_notes for release notes location

This FILE statement copies file FORTRAN.RELEASE_NOTES to
SYS$SYSDEVICE:[VMS$COMMON.][SYSHLP] (the same as SYS$COMMON:[SYSHLP])

34

Chapter 3. Creating the Product Description File

unless the user specifies a different destination. The RELEASE NOTES keyword phrase tags this
file in the kit so that the PRODUCT EXTRACT RELEASE_NOTES command can be used to
extract this file from the kit.

This IF statement determines whether or not the product FORTRAN90 is installed. If it is installed,
text from the module REMFORT90 in the PTF is displayed and the user is asked if he wants to
terminate the operation:

1 REMFORT90
=prompt PRODUCT REMOVE FORTRAN90 before installing VSI Fortran
The obsolete DEC Fortran 90 product must be removed before VSI Fortran
 is installed. To do this, use the command:
 PRODUCT REMOVE FORTRAN90

Note that if the ABORT keyword had been used on the ERROR statement, the operation would
terminate unconditionally. ABORT was not used because the ABORT keyword was introduced in
OpenVMS V7.1 and this kit can be installed on earlier versions of OpenVMS.

This OPTION …END OPTION group conditionally provides files and library modules associated
with the FORTRAN 90 compiler. The user is asked a question from text module FORTRAN_90 in
the PTF:

1 FORTRAN_90
=prompt Compaq Fortran 90 compiler
 This option selects the Compaq Fortran 90 compiler.

By default, the OPTION statement displays only text from the prompt line. However, if the user
specifies the /HELP qualifier on the PRODUCT INSTALL command, then both prompt and
extended help text is displayed (two lines in this case).

The MODULE statement installs the help text module F90 from the file F90HELP.HLP in the
default help library [SYSHLP]HELPLIB.HLB. The file F90HELP.HLP is not left on the system
because a FILE statement is not used.

The PROTECTION PRIVATE keyword phrase on this FILE statement sets the file protection to
(S:RWED, O:RWED, G, W), giving general users no access.

The EXECUTE TEST statement executes the functional test for the product (the installation
verification procedure) after the product has been installed. If the test fails, the user is informed
but the product is not removed. The user can use the PRODUCT REMOVE command to delete the
product.

Example 3.2, "PDF for a Full Kit" shows the full kit referenced by Example 3.1, "PDF for a Full Kit
That References Another Full Kit".

Example 3.2. PDF for a Full Kit

product AXPVMS FORRTL V7.1-427 full ;
 if (<software AXPVMS VMS version minimum V7.0>) ;
 file [SYSLIB]FORDECFORRTL.EXE
 source [SYSLIB]FORDECFORRTL-V70.EXE ;
 file [SYSLIB]FORDECFORRTL.OBJ
 source [SYSLIB]FORDECFORRTL-V70.OBJ ;
 else ;
 file [SYSLIB]FORDECFORRTL.EXE
 source [SYSLIB]FORDECFORRTL-V61.EXE ;

35

Chapter 3. Creating the Product Description File

 file [SYSLIB]FORDECFORRTL.OBJ
 source [SYSLIB]FORDECFORRTL-V61.OBJ ;
 end if ;
 if (<software VSI AXPVMS VMS version below V7.1>) ;
 file [SYSLIB]FOR$NXTAFTR.OBJ ;
 end if ;
 file [SYSUPD]FOR$INSTALL_FORRTL.COM ;
 file [SYSTEST]FOR$RTL_IVP.COM ;
 file [SYSTEST]FOR$RTL_IVP.OBJ ;
 file [SYSHLP]FORRTL.RELEASE_NOTES release notes ;
 information RELEASE_NOTES phase after ;
 information POST_INSTALL phase after ;
 execute install "@PCSI$DESTINATION:[SYSUPD]FOR$INSTALL_FORRTL INSTALL"
 remove "@PCSI$DESTINATION:[SYSUPD]FOR$INSTALL_FORRTL REMOVE";
 execute test "@PCSI$DESTINATION:[SYSTEST]FOR$RTL_IVP" ;
end product ;

The PRODUCT statement identifies this as a complete layered product kit for installation of (or
upgrade to) FORRTL V7.1-427 on an OpenVMS Alpha system.

The IF …ELSE …END IF group conditionally executes statements within the
group based on the evaluation of the IF function. In this example, two files named
[SYSLIB]FORDECFORRTL.EXE and [SYSLIB]FORDECFORRTL.OBJ are always
provided. However, the contents of these files vary depending on the version of the OpenVMS
product that is installed. Notice the use of the SOURCE option on the FILE statements to select
the desired file from the kit to copy to the target disk.

The EXECUTE INSTALL …REMOVE statement executes the command procedure
PCSI$DESTINATION:[SYSUPD]FOR$INSTALL_FORRTL.COM during installation or upgrade
of the product, and also during removal of the product. Instead of providing two command
procedures, one is used and a parameter is passed to it to indicate the operation.

3.5.2. The Operating System Kit Type
The operating system kit provides operating system software, such as OpenVMS. The PDF for an
operating system kit must contain a PRODUCT statement with the OPERATING SYSTEM keyword and
an END PRODUCT statement as shown in the following example:

product VSI AXPVMS VMS V7.2 operating system ;
.
.
.
end product ;

The operating system kit has the following characteristics:

● It contains all of the material for the product. Therefore, it can be used to install the product for the
first time or it can upgrade a previously installed version of the product.

● The product cannot be removed unless the PRODUCT REMOVE command contains the /REMOTE
qualifier to remove the operating system on a disk that is not the running system.

● The product can be configured or reconfigured.

● Its PDF can contain OPTION and SOFTWARE statements.

36

Chapter 3. Creating the Product Description File

● There can be only one product of type operating system installed on a system disk.

● Except for the kit type designation, the structure of an operating system kit is the same as a full kit;
all PDL statements that are allowed in a full kit can be used in an operating system kit.

Example 3.3, "PDF for an Operating System Kit" shows an operating system kit.

Example 3.3. PDF for an Operating System Kit

product AXPVMS VMS V7.1 operating system ;
 upgrade version minimum V6.1 version below A7.2;
.
.
.
 directory [SYSEXE] ;
 directory [SYSFONT] ;
 directory [SYSFONT.DECW] ;
 directory [SYSFONT.DECW.100DPI] ;
.
.
.
 file [SYSEXE]COPY.EXE generation 40069227 ;
 file [SYSEXE]CREATE.EXE generation 40069227 ;
 file [SYSEXE]CREATEFDL.EXE generation 40069227 ;
 file [SYSEXE]DCL.EXE generation 40069227 ;
.
.
.
 file [SYSMGR]SYLOGIN.TEMPLATE generation 40069227 ;
 file [SYSMGR]SYLOGIN.COM generation 40069227
 source [SYSMGR]SYLOGIN.TEMPLATE write ;
.
.
.
 option ACCOUNTING ;
 file [SYSEXE]ACC.EXE generation 40069227 ;
 end option ;
 option UTILITIES ;
 option MAIL ;
 file [SYSEXE]MAIL.COM generation 40069227 ;
 file [SYSEXE]MAIL.EXE generation 40069227 ;
 file [SYSEXE]MAIL_OLD.EXE generation 40069227 ;
 file [SYSEXE]MAILEDIT.COM generation 40069227 ;
 file [SYSEXE]MAIL_SERVER.EXE generation 40069227 ;
 file [SYSHLP]MAILHELP.HLB generation 40069227 ;
 end option ;
.
.
.
 option DUMP ;
 file [SYSEXE]DUMP.EXE generation 40069227 ;
 end option ;
 option HELP_LIBRARY ;
 scope global ;
 file [SYSHLP]HELPLIB.HLB generation 40069227 release merge ;
 end scope ;
 end option ;
 end option ;

37

Chapter 3. Creating the Product Description File

.

.

.
 option REMOVE_OBSOLETE ;
 remove ;
 file [SYSLIB]LIBOTS.OLB ;
 file [SYSLIB]EDTSHR_TV.EXE ;
 end remove ;
 end option ;
end product ;

The PRODUCT statement identifies this as a complete operating system kit for installation of (or
upgrade to) OpenVMS V7.1 on an Alpha system.

The UPGRADE statement specifies that if this kit is being used to upgrade the VMS product
then the previous version must be within the stated range of versions. However, if this is an initial
installation of the operating system, the UPGRADE statement is ignored.

This DIRECTORY statement creates the directory [SYS0.SYSCOMMON.SYSEXE], that is,
SYS$COMMON:[SYSEXE].

These FILE statements copy files to the target system disk. The VMS product places generation
numbers on all objects that it provides to aid in object conflict detection and resolution when other
products (or patch and partial kits to the operating system) that may replace these objects are
installed.

This FILE statement provides [SYSMGR]SYLOGIN.COM from a template file. The WRITE
option indicates that customers are allowed to edit this file. On upgrade, if this file exists it will not
be replaced.

This OPTION…END OPTION group demonstrates how options can be nested. The MAIL option
is presented to the user only if the UTILITIES option is selected.

The FILE statement that provides [SYSHLP]HELPLIB.HLB is enclosed in a SCOPE GLOBAL …
END SCOPE group to allow other products to freely make updates to this library.

The RELEASE MERGE keyword phrase indicates that library modules propagate during an
upgrade. For example, if a layered product adds a module to HELPLIB.HLB, this module is
automatically inserted into the new library file that is provided by the VMS product during an
upgrade of the operating system.

The REMOVE …END REMOVE group within an OPTION …END OPTION group deletes all
objects specified in the remove group if the user selects the option.

3.5.3. The Platform Kit Type
The platform kit installs a product suite, which is an integrated set of software products. It may provide
files that are common to all products in the suite, or it may not provide any files. It does, however,
contain software references to one or more other products. These references can be either required,
optional, or a combination of required and optional. For example, the OPENVMS platform kit always
installs the OpenVMS operating system product and asks whether to optionally install system integrated
products such as VSI DECwindows Motif and VSI TCP/IP Services for OpenVMS.

The PDF for a platform kit must contain a PRODUCT statement with the keyword PLATFORM and an
END PRODUCT statement, as shown in the following example:

38

Chapter 3. Creating the Product Description File

product AXPVMS OPENVMS V7.2 platform ;
.
.
.
end product ;

The platform kit has the following characteristics:

● It contains all of the material that is common to the product suite. Therefore, it can be used to install
the product suite for the first time or it can upgrade a previously installed version of the platform.
As stated, product material is optional for a platform kit. It should, however, contain one or more
SOFTWARE statements to reference other products.

● Products referenced do not have to be present when the platform kit is packaged because referenced
products are not bundled into the platform kit. However, when you copy a platform, products that are
referenced by SOFTWARE statements with the COMPONENT option must be present.

● The platform product can be removed, configured, or reconfigured.

● Its PDF can contain OPTION and SOFTWARE statements.

● Except for the kit type designation, the structure of a platform kit is the same as a full kit; all PDL
statements that are allowed in a full kit can be used in a platform kit.

Example 3.4, "PDF for a Platform Kit" shows a platform kit.

Example 3.4. PDF for a Platform Kit

product AXPVMS OPENVMS F7.1 platform ;
 upgrade version minimum A7.1 version below V7.2;
 software AXPVMS VMS version required F7.1 ;
 option DWMOTIF_KIT ;
 software AXPVMS DWMOTIF version minimum V1.2-4 ;
 end option ;
 option DECNET_OSI_KIT ;
 software AXPVMS DECNET_OSI version minimum K7.1 ;
 end option ;
 option UCX_KIT ;
 software AXPVMS UCX version minimum V4.1-12 ;
 end option ;
end product ;

The PRODUCT statement identifies this as the OPENVMS F7.1 product suite for installation or
upgrade on an OpenVMS Alpha system. The version type F indicates that this is a test version of
the kit. The PLATFORM keyword indicates that the primary purpose of this product is to install
other products.

Note that VMS (the operating system product) is different from OPENVMS (the product suite).

The UPGRADE statement specifies that if this kit is being used to upgrade the OpenVMS product
then the previous version must be within the stated range of versions. However, if the OpenVMS
product is not currently installed, then the UPGRADE statement is ignored.

The SOFTWARE statement specifies that the operating system (OpenVMS F7.1) is a required
component of the product suite that will be implicitly installed. Should the OpenVMS F7.1 product
kit not be accessible, an error message is displayed and the installation terminated before any files
from any products are copied to the system.

39

Chapter 3. Creating the Product Description File

The OPTION …END OPTION group conditionally executes statements within the group based on
the user's response to a question. In this example, the OPTION statement displays text associated
with the label DWMOTIF_KIT from the PTF:

1 DWMOTIF_KIT
=prompt DECwindows Motif for OpenVMS Alpha
 This option installs VSI DECwindows Motif for OpenVMS Alpha, which
 provides the X Window system graphical user interface.

An affirmative response to the question causes the DWMOTIF V1.2-4 product to be installed (or
upgraded if a version is already installed); otherwise, the SOFTWARE statement is ignored. Should
the DWMOTIF V1.2-4 product kit not be accessible when the platform is installed, this option is
marked as unselectable and skipped over.

3.5.4. The Partial Kit Type
Use a partial kit to upgrade a currently installed product, including replacing some of the product's files,
providing new files, or removing files. The PDF for a partial kit must contain a PRODUCT statement
with the PARTIAL keyword, an UPGRADE statement, and an END PRODUCT statement as shown in
the following example:

product AXPVMS TEST_A V2.1 partial ;
 upgrade version required V2.0 ;
.
.
.
end product ;

A partial kit has the following characteristics:

● It does not contain all of the material for the product. Therefore, it can be used only to upgrade a
previously installed version of the product.

● It can upgrade a full, operating system, or platform product. More than one partial kit can be applied
to the same product.

● The full product name (the producer-base-product string) must be the same as the product it
upgrades.

● After installation, the version of the product is changed to the one specified in the partial kit's PDF.

● The product can be removed, in which case the managed objects provided by the product's full and
partial kits are deleted.

● The product can be configured or reconfigured.

● Its PDF can contain OPTION and SOFTWARE statements.

Generally, a new version of a product is provided as a full kit instead of a partial kit because a full kit
can be used for either an initial installation or for an upgrade of the product. A partial kit is limited to an
upgrade path.

A partial kit, however, is usually much smaller in disk block size than its corresponding full kit. For a
very large product, this reduction in size may significantly reduce the time it takes to distribute the kit
over the network.

40

Chapter 3. Creating the Product Description File

Example 3.5, "PDF for a Partial Kit" shows a partial kit.

Example 3.5. PDF for a Partial Kit

product AXPVMS FORTRAN V7.2 partial ;
 upgrade version required V7.1-1 ;
 information RELEASE_NOTES phase after ;
 information STARTUP_TASK phase after ;
 file [SYSHLP]FORTRAN.RELEASE_NOTES release notes ;
 file [SYSHLP]FORTRAN_RELEASE_NOTES.PS ;
 file [SYSHLP]FORTRAN_RELEASE_NOTES.DECW$BOOK ;
 file [SYSEXE]FORT$MAIN.EXE generation 4 ;
 file [SYSMSG]FORT$MSG.EXE generation 4 ;
 file [SYSMSG]FORT$MSG2.EXE generation 4 ;
 module [000000]DEC_FORTCLD.CLD type command
 generation 4 module FORTRAN ;
 execute test "@PCSI$DESTINATION:[SYSTEST]FORT$IVP.COM" ;
end product ;

The PRODUCT statement identifies this as a partial kit for the FORTRAN product that will
upgrade FORTRAN to V7.2 on an OpenVMS Alpha system.

The UPGRADE statement (required for a partial kit) specifies that FORTRAN V7.1-1 must be
installed before installing this upgrade kit.

The GENERATION keyword in this FILE statement is used to supply sequencing information
to aid file conflict detection and resolution should a patch kit for this product or another product
supply the same file name.

The MODULE statement installs the command definition module FORTRAN from the file
DEC_FORTCLD.CLD in the default command library [SYSLIB]DCLTABLES.EXE. The file
DEC_FORTCLD.CLD is not left on the system because a FILE statement is not used to place it
there. (In Example 3.7, "PDF for a Patch Kit That Modifies the Operating System" a CLD file is put
into DCLTABLES and a copy of the file is left on the target disk.)

Note that if this partial kit is installed after the patch kit in Example 3.6, "PDF for a Patch Kit", the
module FORTRAN from this partial kit will supersede the module FORTRAN from the patch kit
because it has the higher generation number.

Conversely, if the patch kit is installed after this partial kit, the module will not be updated.
Conflict detection between patch kits and between patch and partial kits for the same product
is new for OpenVMS Version 7.2. Previously, conflict detection only occurred between full,
platform, and operating system products.

FORT$IVP.COM already exists on the system disk, provided earlier by the full version of
FORTRAN V7.1-1.

3.5.5. The Patch Kit Type
Use a patch kit to apply a correction to a currently installed product. It can replace files, provide new
files, or remove files. The PDF for a patch kit must contain a PRODUCT statement with the keyword
PATCH, an APPLY TO statement, and an END PRODUCT statement as shown in the following
example:

product AXPVMS TEST_A_ECO1 V1.0 patch ;

41

Chapter 3. Creating the Product Description File

 apply to AXPVMS TEST_A version minimum A2.0 version maximum V2.0 ;
.
.
.
end product ;

A patch kit has the following characteristics:

● It usually does not contain all of the material for the product. Therefore, it can be used only to
modify a previously installed version of the product.

● It can modify a full, operating system, or platform product. Also, it can modify a product that has
been upgraded by a partial kit. More than one patch kit can be applied to the same product.

● Its full product name (the producer-base-product string) must be different than the full product name
of the product it updates. Further, its full product name must be unique among all products and
patches installed on the system.

● After installation, the version of the product that it modifies is not changed. Use the
PRODUCT SHOW PRODUCT /FULL command to display all patch kits that have been installed on
the system.

● Because it is not a product, you cannot remove a patch kit individually using a PRODUCT REMOVE
command. Patches to a product are automatically removed when the product is removed or
upgraded. They can also be uninstalled using the PRODUCT UNDO PATCH command, but only if
they were installed with the /SAVE_RECOVERY_DATA qualifier and the recovery data is intact.

● The patch kit cannot be configured or reconfigured, but the product that it modifies can be
configured or reconfigured.

● Its PDF cannot contain OPTION or SOFTWARE statements.

● Patch kits are intended for making small updates to a product. Since the installation of a patch kit
does not change the version number of the product, you should distribute a new version of the
product kit (full, operating system, or platform) or a partial kit to make large updates or functional
enhancements.

Example 3.6, "PDF for a Patch Kit" shows a patch kit.

Example 3.6. PDF for a Patch Kit

product AXPVMS FORTECO_03 V1.0 patch ;
 apply to AXPVMS FORTRAN version required V7.1-1 ;
 module [000000]FORTCLD.CLD type command generation 3 module FORTRAN ;
end product ;

The PRODUCT statement identifies this as V1.0 of a patch kit named FORTECO_03. The name
of this kit must be unique among all products and patches applied to the system.

The APPLY TO statement (required for a patch kit) specifies that this patch can be applied only to
the installed product FORTRAN V7.1-1.

The MODULE statement installs the FORTRAN CLD module in the default command library
[SYSLIB]DCLTABLES.EXE. The file FORTCLD.CLD is not left on the system because a FILE

42

Chapter 3. Creating the Product Description File

statement is not used to place it there. (In Example 3.7, "PDF for a Patch Kit That Modifies the
Operating System" a CLD file is put into DCLTABLES and a copy of the file is left on the target
disk.)

Example 3.7, "PDF for a Patch Kit That Modifies the Operating System" shows a patch kit that modifies
the operating system.

Example 3.7. PDF for a Patch Kit That Modifies the Operating System

product AXPVMS VMS61TO71U2_PCSI B1.0 patch ;
 apply to AXPVMS VMS version minimum V6.1 version below A7.2 ; –
This patch kit provides the entire POLYCENTER Software Installation –
facility built from OpenVMS V7.2 sources that can be installed on OpenVMS –
V6.1 through V7.1-n systems. Installation of this patch extends the –
capabilities of the DCL command PRODUCT, enhances the utility's user –
interface, and corrects problems. In addition, the availability of this –
patch enables product developers to use new product description language –
syntax introduced in OpenVMS V7.1 and V7.2 in their product kits for –
deployment on older OpenVMS systems that have this patch installed. –
Although this kit could have been packaged as a layered product, it was –
more appropriate to package it as a patch to the operating system because –
it replaces a facility that is bundled with OpenVMS. Finally, the use –
of generation numbers on files and library modules provides information –
used during object conflict detection and resolution should other patches –
for this facility be distributed in the future that update these objects.
 file [SYSEXE]PCSI$MAIN.EXE generation 50000000 ;
 file [SYSLIB]PCSI$SHR.EXE generation 50000000 ;
 file [SYSUPD]PCSI.CLD generation 50000000 ;
 module [SYSUPD]PCSI.CLD type command generation 50000000 module PRODUCT ;
 module [SYSUPD]PRODUCT.HLP type help generation 50000000 module PRODUCT ;
 file [SYSUPD]PCSI$CREATE_RIGHTS_IDENTIFIER.COM generation 50000000 ;
 file [SYSUPD]PCSI$DELETE_RIGHTS_IDENTIFIER.COM generation 50000000 ;
 file [SYSUPD]PCSI$CREATE_ACCOUNT.COM generation 50000000 ;
 file [SYSUPD]PCSI$DELETE_ACCOUNT.COM generation 50000000 ;
 file [SYSUPD]PCSI$CREATE_NETWORK_OBJECT.COM generation 50000000 ;
 file [SYSUPD]PCSI$DELETE_NETWORK_OBJECT.COM generation 50000000 ;
 file [SYSUPD]PCSI$REGISTER_PRODUCT.COM generation 50000000 ;
 file [SYSUPD]PCSI$EXTRACT_TLB.COM generation 50000000 ;
 remove ;
 file [SYSLIB]PCSI$MOTIFSHR.EXE ;
– obsolete file as of VMS V7.2
 end remove ;
end product ;

The PRODUCT statement identifies this as B1.0 (a field test version) of a patch kit named
VMS61TO71U2_PCSI. The name of this kit must be unique among all products and patches
applied to the system.

The APPLY TO statement (required for a patch kit) specifies that this patch can be applied only to
versions V6.1 through V7.1-2 of the VMS product.

The double hyphen (–) identifies a comment line.

This FILE statement provides [SYSUPD]PCSI.CLD. The following MODULE statement installs
the command definition module PRODUCT from this file in the default command library
[SYSLIB]DCLTABLES.EXE. A FILE statement is not required to provide the file specified in the
MODULE statement unless you want the file left on the system.

43

Chapter 3. Creating the Product Description File

This REMOVE …END REMOVE group deletes the obsolete file
[SYSLIB]PCSI$MOTIFSHR.EXE.

3.5.6. The Mandatory Update Kit Type
Use a mandatory update kit to apply a correction to a currently installed product. It can replace files,
provide new files, or remove files. The PDF for a mandatory update kit must contain a PRODUCT
statement with the MANDATORY UPDATE keyword, an APPLY TO statement, and an END
PRODUCT statement, as shown in the following example:

product AXPVMS TEST_A_ECO1 V1.0 mandatory update ;
 apply to AXPVMS TEST_A version minimum A2.0 version maximum V2.0 ;
.
.
.
end product ;

A mandatory update kit is functionally identical to a patch kit except for its kit type designation. It is
used for corrections that must be applied to the product.

The characteristics of a mandatory update kit are the same as for a patch kit, as described in Section
3.5.5, "The Patch Kit Type".

3.5.7. The Transition Kit Type
Use a transition kit to register in the product database a product that was not installed by the
POLYCENTER Software Installation utility. For example, use a transition kit to register products
installed by the VMSINSTAL utility. The PDF for a layered product transition kit must contain a
PRODUCT statement with the TRANSITION keyword and an END PRODUCT statement as shown in
the following example:

product AXPVMS FMS V2.4 transition ;
.
.
.
end product ;

To register an operating system product, the keyword OPERATING SYSTEM is added to the keyword
TRANSITION as shown in the following example:

product X86VMS VMS V9.2 transition operating system ;
.
.
.
end product ;

The transition kit has the following characteristics:

● It cannot be installed with a PRODUCT INSTALL command; instead, it is registered with a
PRODUCT REGISTER PRODUCT command.

● Optionally, it can reference managed objects such as files, directories, modules, and so forth.
However, none of these objects is created or modified when the kit is registered, nor does the
installation utility verify that any of these objects actually exist on the system.

● Files specified in FILE statements do not need to be present when a transition kit is packaged
because product material is not included in this type of kit.

44

Chapter 3. Creating the Product Description File

● The registered product can be removed with the PRODUCT REMOVE command. If the transition kit
references any managed objects, these objects will be removed as if the transition kit had been a full
kit.

● The registered product cannot be configured or reconfigured.

● The INFER statement can be used only in a PDF for a transition kit.

There are several benefits of registering a product:

● The product name is displayed with the PRODUCT SHOW PRODUCT and
PRODUCT SHOW HISTORY commands.

● Other software products that require this product as a prerequisite can specify it in a SOFTWARE
statement and have this software dependency satisfied.

● If all of the managed objects for the product are specified in the transition kit, then the product can
be completely removed with a PRODUCT REMOVE command.

Example 3.8, "PDF for a Transition Kit" shows a transition PDF for the FMS product.

Example 3.8. PDF for a Transition Kit

product AXPVMS FMS V2.4 transition ;
 infer version from [SYSLIB]FDVSHR.EXE ;
 file [SYSLIB]FDVSHARE.OPT ;
 module [SYSUPD]FDV.OBJ type object module FDV ;
 module [SYSUPD]FDVMSG.OBJ type object module FDVMSG ;
 module [SYSUPD]FDVDAT.OBJ type object module FDVDAT ;
 module [SYSUPD]FDVERR.OBJ type object module FDVERR ;
 module [SYSUPD]FDVTIO.OBJ type object module FDVTIO ;
 module [SYSUPD]FDVXFR.OBJ type object module FDVXFR ;
 module [SYSUPD]HLL.OBJ type object module HLL ;
 module [SYSUPD]HLLDFN.OBJ type object module HLLDFN ;
end product ;

The following list describes the statements in this example:

The TRANSITION keyword to the PRODUCT statement indicates that this is a transition PDF.

The INFER VERSION statement tests the execution environment to determine whether the file
FDVSHR.EXE is present. If it is, the utility infers the version that is installed.

The FILE statement indicates that the [SYSLIB]FDVSHARE.OPT file is part of the FMS kit.

The MODULE statements describe object modules in the default object library
[SYSLIB]STARLET.OLB that are part of the FMS kit.

3.5.8. The PCSI$REGISTER_PRODUCT.COM Command
Procedure
An alternative way to register a product (without providing a transition kit for the user
to register with a PRODUCT REGISTER PRODUCT command) is to execute the
SYS$UPDATE:PCSI$REGISTER_PRODUCT.COM command procedure. This procedure prompts the
user to enter product name, version, producer, and base system information, as shown in the following
example:

45

Chapter 3. Creating the Product Description File

$ @SYS$UPDATE:PCSI$REGISTER_PRODUCT.COM
Product name: FMS Version: V2.6
Producer [VSI] :
Base System [X86VMS] :
.
.
.
The following product has been registered:
X86VMS FMS V2.6 Transition (registration)

Registering a product using the command procedure allows another software product to reference this
product with a SOFTWARE statement. However, use of this command procedure does not allow objects
(such as files) to be registered along with the product name in the product database.

46

Chapter 4. Creating the Product
Text File
The product text file (PTF) is an optional component of a software product kit. However, most kits
created using the POLYCENTER Software Installation utility include a PTF. You must supply a PTF
to the kitting process if you want to use PDF statements that display text to users during product
installation. The following PDF statements have corresponding text modules in the PTF:

● ERROR

● INFORMATION

● OPTION

● PART

● PRODUCT

For each text module in the PTF, you may provide a brief, one-line prompt and a detailed (longer than
one line) help description. The brief, one-line prompt from the text module is displayed by default (with
the exception of the ERROR statement). (See Chapter 7, "Product Description Language Statements"
to see how help text is displayed for each statement.) To display the detailed help text, the user includes
the /HELP qualifier on the PRODUCT INSTALL command line. If you choose to provide only
a brief, one-line prompt for a given text module and the user asks for detailed help text, the brief
prompt is displayed. By providing detailed help text, you can reduce or eliminate hardcopy installation
documentation.

Note

You might want to force the detailed text to be displayed without the user having to request it. To do this,
use the INFORMATION or OPTION PDF statement, as in the following example:

 option EXAMPLE default YES with helptext;

4.1. PTF File-Naming Conventions
The PTF you provide as input to the PRODUCT PACKAGE command must:

● Reside in the same directory as the PDF

● Have the same file name as the PDF and a file type of .PCSI$TEXT

The following are examples of valid input PDF and PTF names:

 TEST.PDF TEST.PCSI$TEXT
 ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.PCSI$DESC
 ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.PCSI$TEXT

The execution of the PRODUCT PACKAGE command transforms the input PTF into an output
PTF. The input PTF is a text file containing header lines and text module lines. The output PTF is

47

Chapter 4. Creating the Product Text File

an OpenVMS text library file. Its name consists of the product's stylized file name and a file type of
.PCSI$TLB as follows:

producer-base-product-version-kittype.PCSI$TLB

For example:

ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.PCSI$TLB

You can convert the output PTF from an OpenVMS library file back to a text file by executing the
PCSI$EXTRACT_TLB.COM command procedure, which is located in SYS$COMMON:[SYSUPD].
You must supply the PTF library file as a parameter to the procedure.

4.2. Structure of a PTF
A PTF is a text file that contains packaging directives, module header lines, and module text. The PTF
must begin with the =product directive line that uniquely identifies the product and specifies the type of
kit. The rest of the file contains one or more text modules. Each text module entry consists of:

● A module header line that identifies the name of the text module

● An =prompt directive line that includes text for a brief display

● Zero or more lines of text that are combined with the brief text to form the detailed display
associated with the text module

The user chooses whether to receive brief or detailed explanations using the /HELP qualifier on the
PRODUCT INSTALL command.

Brief text format (the default) is restricted to one line of text, that is, the text in the =prompt directive
line. To avoid carrying the single-line text over to the next line, try to keep your brief message to no
more than 60 characters.

Detailed or help text can include any number of lines of text. The formatting of the information is
preserved on output, except that the POLYCENTER Software Installation utility may indent the entire
block of text displaying information about configuration options or software requirements.

Comment lines are not permitted in a PTF.

4.2.1. Specifying the Product Name
You must use the =product directive to specify product information in the PTF. The information that
you specify with the =product directive must match the information you specify with the PRODUCT
statement in the PDF.

The =product directive has the following format:

=product producer base product version kittype

See Section 2.3, "Software Product Kit Naming Conventions" for the naming conventions.

4.2.2. PTF Modules and the Relationship with the PDF
PTF text modules are text blocks that you want to present to the user. The POLYCENTER Software
Installation utility does not process text blocks sequentially, so the order of the text modules in the PTF
does not matter.

48

Chapter 4. Creating the Product Text File

Text modules are identified by a module header line in the following format:

1 module-name

The module header line consists of the number 1, followed by a space or tab and the name of the
module. The module-name must be from 1 to 31 ISO Latin-1 characters, excluding the horizontal tab,
space, exclamation point (!), and comma (,) characters. For example:

1 SAMPLE

The POLYCENTER Software Installation utility uses the name of the module to associate the text
module with a line from the PDF. For example, the SAMPLE module could correspond to an option in
the PDF:

option SAMPLE ;

4.2.3. PTF Modules Not Related with the PDF
The utility also allows you to specify text modules that are not associated with statements in the PDF.
These text modules are preceded by an apostrophe ('). Use the following module names to specify
information about your product:

● The 'LICENSE module specifies licensing information.

● The 'NOTICE module specifies copyright, ownership, and similar legal information.

● The 'PRODUCER module specifies a brief description of the producer of the product.

● The 'PRODUCT module specifies a brief functional description of the product.

For example, a product might contain the following modules:

=product VSI I64VMS TCPIP V6.0-24 full
1 'PRODUCT
=prompt VSI TCP/IP Services for OpenVMS.

1 'NOTICE
=prompt Copyright 2021, 2024 VMS Software, Inc.

Confidential computer software. Valid license from VSI and/or its
subsidiaries required for possession, use, or copying.

Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard
commercial license.

Neither VSI nor any of its subsidiaries shall be liable for technical
or editorial errors or omissions contained herein. The information
in this document is provided "as is" without warranty of any kind
and is subject to change without notice. The warranties for VSI
products are set forth in the express limited warranty statements
accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

1 'LICENSE
=prompt VSI TCP/IP Services is enabled by the OpenVMS operating system PAK.

49

Chapter 4. Creating the Product Text File

TCP/IP Services requires that a valid OpenVMS operating system Product
Authorization Key (PAK) be registered and loaded in order to execute.

1 'PRODUCER
=prompt VMS Software, Inc.
 Boston, Massachusetts

1 DCLEMBED
=prompt Applications
The Application component includes the popular user-oriented protocols for
file transfer, remote processing, remote printing and mail: File Transfer
Protocol (FTP), Telnet Protocol (Telnet), Network File Systen (NFS),
 Serial
Line Interface Protocol (SLIP), Point to Point Protocol (PPP), Berkerley R
commands (rsh,rlogin,rexec and rcp), remote printing, Simple Mail Transfer
Protocol (SMTP), Simple Network Management Protocol (SNMP), Post Office
Protocol (POP3), Domain Name Service (DNS), Network Time Protocol (xNTP),
Dynamic Host Configuration Protocol (DHCP), Secure Shell (SSH), failSAFE IP
and Finger Utility.

4.2.4. Including Prompt and Help Text
You can include prompt text in your PTF using the =prompt directive. Prompt text cannot exceed one
line of text. (The suggested line length is 60 characters.) Help text is similar to prompt text, except that it
can span multiple lines. The help text follows the =prompt line. You can also include blank lines in help
text.

The following example shows prompt text:

 =prompt This option provides files for programming support.

The following example shows a sample product text file. Note the prompt and help text:

=PRODUCT VSI I64VMS APACHEWS V2.4-59 Full
1 'PRODUCER
=prompt VMS Software Inc. & The Apache Software Foundation.

The Apache Web Server for OpenVMS is supplied by VMS Software Inc.,
based on the open source distributed by the Apache Software foundation.

1 NO_MIN_VMS
=prompt Minimum OpenVMS software version not found on this system, abort
 installation
This kit requires a minimum OpenVMS software version of V8.4-1H1.

1 NO_ODS5_DISKS
=prompt ODS-5 disk(s) not found on this system, abort installation
This kit requires an ODS-5 disk to be correctly installed in this system.

1 RELEASE_NOTES
=prompt Release notes are available in SYS
$HELP:APACHEWS_2_4_59.release_notes.

VMS Software Inc. highly recommends that you read these release notes.

50

Chapter 5. Packaging the Kit
Use the PRODUCT PACKAGE command to create a software product kit. This operation uses a product
description file (PDF), an optional product text file (PTF), and product material files as input to produce
a software product kit in either sequential or reference format.

The syntax of the PRODUCT PACKAGE command is documented in the VSI OpenVMS System
Management Utilities Reference Manual.

Sequential copy is an optional form your product takes as a result of a package operation. It consists of
a set of container files that can be placed on a sequential-access device (for example, a magnetic tape
drive). The POLYCENTER Software Installation utility converts the product to reference format during
an installation.

This chapter describes how to create a reference or sequential copy. It also describes how to copy the kit.

Note

If you are creating a reference copy, do not use the same directory as the source for your product
material and the destination for the reference copy.

5.1. Creating Reference and Sequential
Copies
This chapter shows you how to create a product kit in sequential format from product materials that are
spread across several directories. A game application named CHESS is used throughout this chapter to
illustrate the steps required to package the kit. You will also be introduced to the PRODUCT LIST,
PRODUCT EXTRACT, and PRODUCT COPY commands, which are useful for manipulating the
product kit.

Assume that the files needed to package the CHESS product have been organized into a directory tree.
The following is a listing of this directory tree containing the product material, required kitting files, and
other files produced by the engineering team (such as listing and object files).

 $ DIRECTORY /COLUMN=1 /NOTRAILING DKA300:[TEST.*]

 Directory DKA300:[TEST.COM]

 CHECK_SPACE.COM;1
 CHESS_IVP.COM;1

 Directory DKA300:[TEST.KIT]

 CHESS.PCSI$DESC;1
 CHESS.PCSI$TEXT;1
 PACKAGE.COM;1

 Directory DKA300:[TEST.LIS]

 CHESS.LIS;1

 Directory DKA300:[TEST.OBJ]

51

Chapter 5. Packaging the Kit

 CHESS.EXE;1
 CHESS.OBJ;1

 Directory DKA300:[TEST.SRC]

 CHESS.C;1
 CHESS.GAMES;1
 CHESS.OPENINGS;1
 HEADER.H;1

5.2. Description of the Product Material
The product material for the CHESS application consists of the files that will be installed on the user's
system along with any command procedures included in the kit to perform product-specific tasks during
installation.

Assume that the product material is located in the directory tree [TEST...] as follows:

● An executable image named CHESS.EXE is located in [TEST.OBJ]. It will be placed in [SYSEXE]
on the target disk when the product is installed.

● Two data files, CHESS.OPENINGS and CHESS.GAMES, reside in [TEST.SRC]. The first file,
an opening book, will always be copied to [SYSEXE] on the user's system. However, the second
file, a large games collection, is an optional component of the product. Users determine at install
time whether or not to install this file. If they choose not to install it, they can later reconfigure the
product to obtain this optional file.

● Two command procedures, CHESS_IVP.COM and CHECK_SPACE.COM, are placed in
[TEST.COM]. CHESS_IVP.COM will be copied to [SYSTEST] on the destination device and
executed to verify the correct installation of the product. CHECK_SPACE.COM will be executed
early during the installation but it will not be left on the user's system. It checks for adequate space
on the destination device for large work files that will be used when the product is used.

The contents of the two command procedures from [TEST.COM] are shown here as they might appear
early in the packaging process. Later in the development cycle they will be replaced by command
procedures that perform their intended functions.

$ TYPE [TEST.COM]*.*

DKA300:[TEST.COM]CHECK_SPACE.COM;1

$! This command procedure is executed from an EXECUTE PRECONFIGURE
 statement
$! with the INTERACTIVE keyword specified. Therefore, all output lines
$! generated will be displayed.
$!
$ write sys$output "*** Output from execute preconfigure ***"
$ exit 1
DKA300:[TEST.COM]CHESS_IVP.COM;1

$! This command procedure is executed from an EXECUTE TEST statement
 without
$! the INTERACTIVE keyword specified. Therefore, only output lines that
$! look like an OpenVMS message (that is, those starting with %) will be
$! displayed. By default, all other output from this
$! procedure will be suppressed unless the /TRACE qualifier is used on the

52

Chapter 5. Packaging the Kit

$! PRODUCT INSTALL command. For testing purposes you can force a line
$! of text to be displayed by putting a percent sign in column 1.
$!
$ write sys$output "%%% Output from execute test %%%"
$ exit 1

5.3. Files Required to Package the Kit
In this CHESS kit example, the [TEST.KIT] directory contains the following files to package the kit:

● CHESS.PCSI$DESC, the product description file

● CHESS.PCSI$TEXT, the product text file

● PACKAGE.COM, as a convenience

● A specific directory — Only one directory is searched.

● A root directory — A period (.) following the directory name denotes a root directory specification.
For example, TEST$:[ABC.FT2.] limits the search path to subdirectories of [ABC.FT2].

● A wildcard directory — The directory name includes one or more of the wildcard characters;
asterisk (*), percent sign (%), or ellipsis (...). All directories that satisfy the wildcard specification are
searched.

Note that when you use either a wildcard directory or a list of path names, if files in different
directories have the same name, only the first file found in the search path is used.

When either a specific directory or a wildcard directory is used, the relative file specification on the
file statement in the PDF is not used to locate the file. However, when a root directory is used, the
utility appends the relative file specification from the file statement in the PDF to the root directory
in the material search path to locate files.

PACKAGE.COM has been created to simplify the task of entering the PRODUCT PACKAGE
command with the appropriate qualifiers.

The content of the packaging files for the CHESS product might be similar to the following:

$ TYPE [TEST.KIT]*.*
DKA300:[TEST.KIT]CHESS.PCSI$DESC;1
product ABC_CO AXPVMS CHESS V1.0 full ;
 execute preconfigure "@pcsi$source:[000000]check_space.com"
 uses [000000]check_space.com interactive ;
 file [sysexe]chess.exe ;
 file [sysexe]chess.openings ;
 option master_games ;
 file [sysexe]chess.games ;
 end option ;
 file [systest]chess_ivp.com ;
 execute test "@pcsi$destination:[systest]chess_ivp.com" ;
end product ;

DKA300:[TEST.KIT]CHESS.PCSI$TEXT;1
=product abc_co axpvms chess v1.0 full
1 'PRODUCT
=prompt ABC Company's Chess for OpenVMS Alpha

53

Chapter 5. Packaging the Kit

Chess V1.0 provides a chess playing engine with 50 selectable user
 levels (rated playing strength from 1200 to 2450), a graphical
 interface with 2D and 3D boards, an extensive database of openings,
 plus thousands of complete master games, and three modes of operation:
 play, analyze, and tutorial.
1 MASTER_GAMES
=prompt Do you want the database of master games?
Answer YES to install a database containing 16000 complete games
 played by GMs and IMs (25000 blocks). Your choice does not affect the
 quality or size of the opening database which s always installed in its
 entirety.

DKA300:[TEST.KIT]PACKAGE.COM;1
$! This command file packages product CHESS into a sequential format
 kit.
$!
$! Note that by default the package command searches for the input PDF
 and
$! input PTF in the source directory using file name and type of:
$! <producer-base-product-version-edit-type> .pcsi$desc (for PDF) [1]
$! <producer-base-product-version-edit-type> .pcsi$text (for PTF)
$! For example:
$! abc_co-axpvms-chess-v0100–1.pcsi$desc
$! abc_co-axpvms-chess-v0100–1.pcsi$text
$!
$! You can override this default by specifying the file name of the PDF
 and
$! PTF (and optionally the file type of the PDF) in the /source
 qualifier
$! (for example, /source=dev:[dir]chess.pdf). The file type of the PTF,
 however,
$! must be .pcsi$text. The approach used in this command procedure is
$! to specify the file name of the PDF and PTF in the /source qualifier
 and
$! let the file types be defaulted. For example, /source=dev:[dir]chess
$! causes the package command to search for input PDF and input PTF
 named:
$! chess.pcsi$desc
$! chess.pcsi$text
$!
$! [1] For OpenVMS V6.1-V7.1, the default input PDF file type was
$! .pcsi$description (the same as the output PDF), but beginning with
$! OpenVMS V7.1-2, the utility looks for .pcsi$desc; if not found it
$! then searches for .pcsi$description.
$!
$ product package chess -
 /base=axpvms -
 /producer=abc_co -
 /source=dka300:[test.kit]chess - ! where to find PDF and PTF
 /destination=dka300:[test.kit] - ! where to put .PCSI file
 /material=dka300:[test.*] - ! where to find product material
 /format=sequential
$ exit

$ TYPE [TEST.COM]*.*
DKA300:[TEST.COM]CHECK_SPACE.COM;1
$! This command procedure is executed from an EXECUTE PRECONFIGURE
 statement

54

Chapter 5. Packaging the Kit

$! with the INTERACTIVE keyword specified. Therefore, all output lines
$! generated will be displayed.
$!
$ write sys$output "*** Output from execute preconfigure ***"
$ exit 1 DKA300:[TEST.COM]CHESS_IVP.COM;1
$! This command procedure is executed from an EXECUTE TEST statement
 without
$! the INTERACTIVE keyword specified. Therefore, only output lines
 that
$! look like an OpenVMS message (i.e., those starting with %) will be
$! displayed. By default, all other output from this
$! procedure will be suppressed unless the /TRACE qualifier is used on
 the
$! PRODUCT INSTALL command. For testing purposes you can force a line
$! of text to be displayed by putting a percent sign in column 1.
$!
$ write sys$output "%%% Output from execute test %%%"
$ exit 1

5.4. Creating the Product Kit
The sample output below shows the execution of the PRODUCT PACKAGE command (via a command
procedure listed in Section 5.3, "Files Required to Package the Kit") to create the product kit in sequential
format. The full kit name for CHESS V1.0 produced by ABC_CO to run on OpenVMS Alpha is
ABC_CO-AXPVMS-CHESS-V0100–1.PCSI.

$ SET DEFAULT [TEST.KIT]
$ @PACKAGE.COM

The following product has been selected:
 ABC_CO AXPVMS CHESS V1.0 Layered Product
Do you want to continue? [YES]
The following product will be packaged:
 ABC_CO AXPVMS CHESS V1.0
Portion done: 0%...100%
The following product has been packaged:
 ABC_CO AXPVMS CHESS V1.0 Layered Product

$ DIRECTORY /COLUMN=1 /NOTRAILING
Directory DKA300:[TEST.KIT]
ABC_CO-AXPVMS-CHESS-V0100–1.PCSI;1
CHESS.PCSI$DESC;1
CHESS.PCSI$TEXT;1
PACKAGE.COM;1

5.5. Listing the Contents of the Product Kit
A product kit in sequential format is a container file. You can list its contents with the PRODUCT LIST
command. In the following example, note:

● During the packaging operation, the input PTF has been converted to a text library file with a file
type of .PCSI$TLB.

● The input PDF with a file type of .PCSI$DESC has been packaged as an output PDF with a file type
of .PCSI$DESCRIPTION.

55

Chapter 5. Packaging the Kit

● During the packaging operation, the output PDF has the same format as the input PDF, but
comments have been removed and additional information such as file size has been added to the file.

$ PRODUCT LIST CHESS
The following product has been selected:
 ABC_CO AXPVMS CHESS V1.0 Layered Product
Do you want to continue? [YES]
Product kit in sequential format:
 _KRYSYS$DKA300:[TEST.KIT]ABC_CO-AXPVMS-CHESS-V0100–1.PCSI
--
CONTENTS OF KIT USING RELATIVE FILE SPECIFICATION
--
[000000]ABC_CO-AXPVMS-CHESS-V0100–1.PCSI$TLB
[000000]CHECK_SPACE.COM [SYSEXE]CHESS.EXE
[SYSEXE]CHESS.GAMES
[SYSEXE]CHESS.OPENINGS
[SYSTEST]CHESS_IVP.COM
[000000]ABC_CO-AXPVMS-CHESS-V0100–1.PCSI$DESCRIPTION
--

Starting with OpenVMS Version 7.3, you can use the /FULL qualifier with the PRODUCT LIST
command. The expanded output lists the following:

● The size of most files.

Certain files, such as the PDF, PTF, temporary command procedures, and files created at install time
with an ASSEMBLE USES option, will not have a file size listed.

● Additional information on certain files in a comments field.

Note

Prior to OpenVMS Version 7.3, the PRODUCT LIST command did not list files in the kit that were
associated with the USES or ASSEMBLE USES option.

5.6. Extracting Files from the Kit
You can extract one or more files from a product kit using the PRODUCT EXTRACT and
PRODUCT COPY commands. The PRODUCT EXTRACT command is often used with the
PRODUCT LIST command to identify a file or a set of files to extract.

5.6.1. Extracting Files by Name
With the PRODUCT EXTRACT FILE command, you can obtain a single file by name or a set of files
with a wildcard file specification from a product kit. For example:

$ PRODUCT EXTRACT FILE CHESS /SELECT=*.EXE /LOG
The following product has been selected:
 ABC_CO AXPVMS CHESS V1.0 Layered Product
Do you want to continue? [YES]
Portion done: 0%
%PCSI-I-CREFIL, created DISK$WORK7:[TEST.KIT.][000000]CHESS.EXE;1
Portion done: 100%
%PCSIUI-I-SUCEXTRFIL, EXTRACT FILE operation completed successfully

56

Chapter 5. Packaging the Kit

5.6.2. Extracting the PDF, PTF, or Release Notes
You can extract the PDF, PTF, or release notes file by name. If you do not know their names, use the
following EXTRACT commands:

● PRODUCT EXTRACT PDF

● PRODUCT EXTRACT PTF

● PRODUCT EXTRACT RELEASE_NOTES

Every product kit contains a PDF. A PTF and a file designated as the release notes are optionally present
in a kit.

The following example illustrates how to obtain the PDF from a sequential kit:

$ SET DEFAULT [TEST.KIT]
$ PRODUCT EXTRACT PDF CHESS /DESTINATION=[TEMP] /LOG
The following product has been selected:
 ABC_CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]
Portion done: 0%
%PCSI-I-CREFIL, created
DISK$WORK7:[TEMP.][000000]ABC_CO-AXPVMS-CHESS-V0100–1.PCSI$DESCRIPTION;1
Portion done: 100%
Product Description File has been extracted from the following product:
 ABC_CO AXPVMS CHESS V1.0 Layered Product
%PCSIUI-I-SUCEXTRPDF, EXTRACT PDF operation completed successfully

When you extract the PTF, the following two files are produced:

● The output form of the PTF as a text library file

● A recreation of the input form of the PTF as a sequential text file

$ PRODUCT EXTRACT PTF CHESS /LOG
The following product has been selected:
 ABC_CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]
Portion done: 0%
%PCSI-I-CREFIL, created
DISK$WORK7:[TEST.KIT.][000000]ABC_CO-AXPVMS-CHESS-V0100–1.PCSI$TLB;1
%PCSI-I-CREFIL, created
DISK$WORK7:[TEST.KIT.][000000]ABC_CO-AXPVMS-CHESS-V0100–1.PCSI$TEXT;1
Portion done: 100%
Product Text File has been extracted from the following product:
 ABC_CO AXPVMS CHESS V1.0 Layered Product
%PCSIUI-I-SUCEXTRPTF, EXTRACT PTF operation completed successfully

Use the PRODUCT EXTRACT RELEASE_NOTES command to examine any release notes file that
may be present in the kit. This command always places the release notes in the user's default directory.
By default, the name of the release notes file is preserved.

$ SET DEFAULT [TEMP]
$ PRODUCT EXTRACT RELEASE_NOTES CHESS /SOURCE=[TEST.KIT]

57

Chapter 5. Packaging the Kit

The following product has been selected:
 ABC_CO AXPVMS CHESS V1.0 Layered Product
Do you want to continue? [YES]
Portion done: 0%...100%

5.6.3. Converting a Sequential Kit into Reference
Format
You can use the PRODUCT COPY command to extract files from a kit in sequential format and place
them in reference format. This differs in a number of ways from extracting all files from a sequential kit
into a specific directory using the PRODUCT EXTRACT FILE command. When copying a kit into
reference format, the files are placed in a directory tree as they would appear after installation on the
user's system. Unlike the installation of a sequential kit, however, temporary files from the kit are placed
in the directory tree and files pertaining to all options are extracted.

You can also use the PRODUCT COPY command to convert a reference kit into sequential format, and
for copying a kit while preserving its format.

5.6.4. Converting a Sequential Kit into Compressed
Format
You can use the PRODUCT COPY command to convert a sequential kit into compressed format. The
following example illustrates this technique:

$ PRODUCT COPY CHESS /SOURCE=[TEST.KIT] -
 /DESTINATION=[TEST.KIT] /FORMAT=COMPRESSED

The /SOURCE qualifier points to the location of the sequential kit you want to convert to the
compressed format. The /DESTINATION= qualifier points to the location where the newly-created
compressed kit will reside.

5.7. Displaying Information from the Product
Database
After the product kit is installed, you can use the PRODUCT SHOW PRODUCT command to
list the products installed on the system. Use the /FULL qualifier for additional information
about software references and patches that may have been applied to the products. Additional
commands (not shown here) that are useful for obtaining more information about installed products
are the PRODUCT SHOW HISTORY /FULL, PRODUCT SHOW OBJECT /FULL, and
PRODUCT SHOW RECOVERY_DATA commands.

$ PRODUCT INSTALL CHESS ! /LOG and /TRACE are useful for debugging
.
.
.
$ PRODUCT SHOW PRODUCT
----------------------------------- ----------- ------------
PRODUCT KIT TYPE STATE
----------------------------------- ----------- ------------
ABC_CO AXPVMS CHESS V1.0 Full LP Installed
VSI AXPVMS DECNET_PHASE_IV V7.1 Full LP Installed

58

Chapter 5. Packaging the Kit

VSI AXPVMS DWMOTIF V1.2-4 Full LP Installed
VSI AXPVMS VMS V7.1 Transition Installed
----------------------------------- ----------- ------------
4 items found

59

Chapter 5. Packaging the Kit

60

Chapter 6. Advanced Topics
This chapter contains information about the following advanced POLYCENTER Software Installation
utility concepts:

● Using command procedures

● Testing and debugging

In addition, it presents flow diagrams depicting the execution of several PRODUCT commands.

6.1. Using Command Procedures in PDL
Statements
The Product Description Language (PDL) provides statements that perform common kit installation
tasks such as creating directories, copying files to the target disk, updating libraries, displaying
informational messages, and so on. There are times, however, when you might need to perform tasks that
are unique to your product. For example, a new version of a product might need to detect the existence
of a data file from a previous version and convert it to a new format. Or, you might want to probe the
operating environment or ask the user specific questions before an installation may proceed.

To support this type of customization, the PDL provides several EXECUTE statements. These
statements let you include command procedures (or individual DCL commands) that run during certain
phases of a product install, upgrade, reconfigure, undo patch, or remove operation. These statements are:

● EXECUTE ABORT

Runs error recovery commands just before the utility exits when an error condition causes the
operation to terminate. For example, the following will activate the EXECUTE ABORT statement:

• An error or fatal error condition that results from running commands from an EXECUTE
statement (except EXECUTE TEST and EXECUTE REBOOT).

• The user terminates the operation by pressing Ctrl/Y or Ctrl/C.

• After an error is reported during material placement on the target disk, the user answers YES to
the question "Do you want to terminate?".

● EXECUTE INSTALL …REMOVE

Runs commands during the execution phase when changes are made to the target disk (such as
creating directories and moving files).

• The INSTALL portion is performed during an installation, upgrade, or reconfiguration of the
product after product material has been moved from the kit to the target disk.

• The REMOVE portion is performed during removal of the product before any files are deleted
from the target disk.

● EXECUTE LOGIN

Does not run any commands. It only displays a predefined message telling users to update their
LOGIN.COM file with the specified commands.

61

Chapter 6. Advanced Topics

● EXECUTE POSTINSTALL

Runs commands that perform additional tasks at the end of the execution phase of an installation,
upgrade, or reconfiguration of the product.

● EXECUTE POST_UNDO

Runs commands that perform additional tasks at the end of a patch kit removal in the UNDO
PATCH operation.

● EXECUTE PRECONFIGURE

Runs commands after the user has selected the product for installation, upgrade, or reconfiguration,
but before the utility begins the configuration phase where the user is asked to select options for the
product. If you need to run a command procedure in preparation for installing your product, consider
using an EXECUTE PRECONFIGURE statement. This lets you embed preconfiguration work in the
kit and relieves users of performing this task themselves.

● EXECUTE PRE_UNDO

Runs commands that perform additional tasks at the beginning of a patch kit removal in the
UNDO PATCH operation.

● EXECUTE REBOOT

Runs commands that initiate a system reboot at the conclusion of a PRODUCT INSTALL or
PRODUCT RECONFIGURE operation.

● EXECUTE START …STOP

Runs commands during the execution phase.

• The START commands are executed during an installation or upgrade. In addition, a predefined
message is displayed telling the user to add these commands to their SYSTARTUP_VMS.COM
file.

• The STOP commands are executed when the product is removed or upgraded. In
addition, a predefined message is displayed telling the user to add these commands to their
SYSHUTDWN.COM file whenever the product is installed, upgraded, or reconfigured.

● EXECUTE TEST

Runs an installation verification procedure (or functional test of the product) after the installation
has completed. Prior to running the test, the product database is updated and closed. The user can
prevent the running of the installation verification procedure by specifying the /NOTEST qualifier
with the PRODUCT INSTALL command.

● EXECUTE UPGRADE

Runs commands when the product is upgraded by another version of the product. Commands are
run before product material from the previously installed version of the product is deleted.

● ASSEMBLE EXECUTE option of a FILE statement

Runs commands that create the specified file in a scratch directory at execution time, then copies
the file to the target disk. This replaces the usual process of extracting a packaged copy of the file

62

Chapter 6. Advanced Topics

from the kit. A typical use of the ASSEMBLE EXECUTE option is to dynamically link an image at
installation time.

Table 6.1, "Command Procedure Execution by Operation" lists the PDL statements you can use to run
command procedures (or individual DCL commands) that you provide. The statements are listed in
the order of their execution during an installation, reconfiguration, or remove operation. Note that the
table distinguishes between a new installation and an upgrade installation. The term upgrade denotes
replacement of an installed version of a product by a higher, lower, or the same version of the product.

Table 6.1. Command Procedure Execution by Operation

PDL Statements Listed in the
Order of Execution

PRODUCT
INSTALL
1st Time

PRODUCT
INSTALL
Upgrade

PRODUCT
RECON
FIGURE

PRODUCT
REMOVE

PRODUCT
UNDO
PATCH

EXECUTE PRECONFIGURE yes yes yes no no
EXECUTE …STOP no yes1 no yes no
EXECUTE …REMOVE no no no yes no
EXECUTE UPGRADE no yes1 no no no
FILE statement using
ASSEMBLE EXECUTE

yes yes yes2 no no

EXECUTE INSTALL … yes yes yes no no
EXECUTE START … yes yes no no no
EXECUTE POSTINSTALL yes yes yes no no
EXECUTE TEST yes yes yes no no
EXECUTE LOGIN no3 no3 no3 no no
EXECUTE START…STOP no3 no3 no3 no no
EXECUTE ABORT yes4 yes4 yes4 no no
EXECUTE REBOOT yes5 yes5 yes5 no no
EXECUTE PRE_UNDO no no no no yes
EXECUTE POST_UNDO no no no no yes

1Only commands from the EXECUTE statement of the product being removed are run.
2The file is created only if the statement is part of a configuration option that the reconfiguration operation selects for the first time.
3The only action performed at this time is to display a message to the user.
4Commands from the EXECUTE ABORT statement are run only when an error condition causes the operation to terminate.
5Commands from the EXECUTE REBOOT statement are run if the user allows it during the operation.

6.1.1. Noninteractive and Interactive Mode
The mode (noninteractive or interactive) in which an EXECUTE statement runs determines the
following:

● The type of subprocess used to run your command procedures (or individual DCL commands)

● How a command procedure interacts with the user

By default, an EXECUTE statement runs in noninteractive mode. You can specify interactive mode with
the INTERACTIVE option. For example, the following command sets up a command procedure to run
in interactive mode when the product is installed:

execute postinstall "@PCSI$DESTINATION:[SYSUPD]CONFIGURE.COM" interactive ;

63

Chapter 6. Advanced Topics

In both noninteractive and interactive modes, the utility checks the final exit status of a command
procedure (or individual DCL command) to determine whether or not the EXECUTE statement
completed successfully or failed. Although error messages generated by a command procedure are
displayed to the user, this does not determine its success or failure. The utility bases this decision solely
on the final exit status. It is the kit developer's responsibility to ensure that proper status is conveyed to
the utility upon termination of any command procedure incorporated into the kit.

The following table compares noninteractive and interactive mode.

Table 6.2. Comparison of Noninteractive with Interactive Mode

Noninteractive Mode (default) Interactive Mode

Used when you do not specify the INTERACTIVE
option

Used when you specify the INTERACTIVE option

At the start of processing a PRODUCT command,
the utility creates a detached subprocess using the
SYS$CREPRC system service. This subprocess
is reused to run the commands from all of
the EXECUTE statements specified to run in
noninteractive mode. 1

The utility creates a new subprocess using the
LIB$SPAWN run-time library routine for each
EXECUTE statement whose commands are to run
interactively. All the commands specified for the
same EXECUTE statement are performed, then
the subprocess is terminated.

Interaction with the user is not possible. The
utility communicates with the subprocess through
mailboxes. It filters all output from the subprocess,
only displaying lines of output to the user that
resemble error messages (that is, lines beginning
with a percent sign). All other lines of output are
discarded.

Communication with the subprocess is performed
through the user's terminal connection. The utility
does not monitor input to or output from the
subprocess. This enables a command procedure
to enter into a dialog with the user (that is, display
text and solicit responses from the user).

The utility obtains exit status from the value of
the $STATUS symbol received in response to a
SHOW SYMBOL $STATUS command it sends to
the subprocess. Status is queried in this manner for
each DCL command you specify in the EXECUTE
statement (for example, "@a.com", "show symbol
$status", "@b.com", "show symbol $status", …).
If the command refers to a command procedure
(for example, "@c.com"), status is checked only
when the command procedure exits.

Exit status is obtained from the final status value
returned from the LIB$SPAWN routine (the
value of the $STATUS symbol from the last DCL
command executed). Since a new subprocess
is created for the execution of each command
procedure (or individual DCL commands) you
specify, the same level of status checking is
performed for interactive mode as is done for
noninteractive mode, although the technique is
different.

1The utility may also perform other actions in the same subprocess, such as the updating of libraries using the LIBRARIAN command.

6.1.2. Packaging a Command Procedure
You can package command procedure files that run from EXECUTE statements in two ways:

● With a separate FILE statement

For most EXECUTE statements, you can specify a command procedure in a FILE statement. For
example:

file [SYSUPD]EXEC_PREC.COM;
execute install "@PCSI$DESTINATION:[SYSUPD]EXEC_PREC.COM";

This causes the utility to copy the command procedure to the target disk and execute it from there.
The command procedure remains on the target disk.

64

Chapter 6. Advanced Topics

The technique of using a FILE statement cannot be used for the EXECUTE PRECONFIGURE
statement because EXECUTE PRECONFIGURE is processed before files are copied to the target
disk.

● With the USES option

For most EXECUTE statements, you can specify a command procedure with the USES option
(instead of using a FILE statement). For example:

 execute install "@PCSI$SOURCE:[000000]EXEC_PREC.COM"
 uses [000000]EXEC_PREC.COM;

In this case, the utility extracts the command procedure from the kit and places it in a temporary
directory (pointed to by the logical name PCSI$SOURCE) where it is executed. Afterwards, the
command procedure is automatically deleted.

The USES option also lets you list additional files needed by the command procedure. For example,
if you link an image during the installation, you can use the USES option to package required object
files for the link operation. They are also placed in the temporary directory and deleted after the
statement is processed.

Keep the following rules in mind:

● Do not use a FILE statement and the USES option to specify the same file. Specifying both results in
the file being packaged twice in the kit.

● The USES option is not available for EXECUTE statements that are run when the product is
removed (because the product kit is not referenced).

● Do not use the USES option when the customer may run the command procedure at a later time (for
example, a startup command procedure).

The only exception to these rules are the EXECUTE PRE_UNDO and EXECUTE POST_UNDO
statements, which require the USES option even though the commands are not run during the product
installation.

6.1.3. Logical Names for Subprocess Environments
In preparation for running command procedures (or individual commands) specified in EXECUTE
statements, the utility defines up to three logical names:

● PCSI$SOURCE

● PCSI$DESTINATION

● PCSI$SCRATCH

Command procedures use these logical names in the context of the subprocess in which they are
run. The logical name environment differs depending on the EXECUTE statement being used. For
more information, see the descriptions for individual EXECUTE statements in Chapter 7, "Product
Description Language Statements".

6.1.4. EXECUTE Statement Summary
Figure 6.1, "EXECUTE Statement Summary" lists the EXECUTE statements and summarizes
information about them.

65

Chapter 6. Advanced Topics

Figure 6.1. EXECUTE Statement Summary

6.1.5. Processing EXECUTE Statements
This section provides flow diagrams for the PRODUCT INSTALL, PRODUCT RECONFIGURE, and
PRODUCT REMOVE commands. There is a separate diagram for a first time installation of a product
and for an upgrade of a product.

These diagrams illustrate the processing of EXECUTE statements in relation to events that occur during
the major phases of an operation. Shaded boxes show typical output from these commands to help
establish the timeline of events.

The installation and reconfiguration operations are performed in three phases:

● Configuration

● Execution

● Postprocessing

66

Chapter 6. Advanced Topics

In contrast, the remove operation has only an execution phase. Following are brief descriptions of the
major phases of an operation.

Configuration Phase

During the configuration phase, the user selects any options the product might provide and answers any
questions that might be asked to complete the configuration process. Informational messages from the kit
may be displayed at this time.

Execution Phase

During the execution phase, in a new installation, upgrade, or reconfiguration operation, the utility
analyzes managed objects supplied by the product for conflicts. The utility uses generation information
to resolve these conflicts. Any conflicts that cannot be resolved cause the utility to terminate the
operation. In a remove operation, the utility does not perform any conflict detection or conflict
resolution.

For all operations, the next step in the execution phase is to place the objects from all participating
products in execution order. The utility merges the requirements of all affected products to produce a
sequenced list of actions to perform. Note that the order in which the utility performs installation tasks
might not correspond to the order in which PDL statements appear in the PDF, even when only one
product is participating in an operation.

Finally, the utility modifies the target disk according to the execution order of the objects. Directories
are created as required. The utility moves files to their destination directories as new or replacement
files and merges library modules into existing libraries. When all actions have been successfully
completed, the utility updates the SYS$SYSTEM:*.PCSI$DATABASE files that make up the product
database. During the execution phase, in a new installation, upgrade, or reconfiguration operation,
the utility analyzes managed objects supplied by the product for conflicts. The utility uses generation
information to resolve these conflicts. Any conflicts that cannot be resolved cause the utility to terminate
the operation. In a remove operation, the utility does not perform any conflict detection or conflict
resolution.

For all operations, the next step in the execution phase is to place the objects from all participating
products in execution order. The utility merges the requirements of all affected products to produce a
sequenced list of actions to perform. Note that the order in which the utility performs installation tasks
might not correspond to the order in which PDL statements appear in the PDF, even when only one
product is participating in an operation.

Finally, the utility modifies the target disk according to the execution order of the objects. Directories
are created as required. The utility moves files to their destination directories as new or replacement files
and merges library modules into existing libraries. When all actions have been successfully completed,
the utility updates the SYS$SYSTEM:*.PCSI$DATABASE files that make up the product database.

Postprocessing Phase

During the postprocessing phase, actions such as running a functional test of the product or displaying
informational messages to the user are performed. Since the postprocessing phase occurs after the
installation or reconfiguration operation has completed and the product database has been updated on
disk, any errors that might occur during this phase (such as failure of the functional test) do not affect
the state of the product. Also, any error that occurs during the postprocessing phase will not trigger an
EXECUTE ABORT statement.

67

Chapter 6. Advanced Topics

Figure 6.2. INSTALL Operation - Product Is Installed for the First Time

68

Chapter 6. Advanced Topics

Figure 6.3. INSTALL Operation - Product Is Upgraded

69

Chapter 6. Advanced Topics

Figure 6.4. RECONFIGURE Operation - Product Is Reconfigured

70

Chapter 6. Advanced Topics

Figure 6.5. REMOVE Operation - Product Is Removed

6.2. Forcing Operation Termination from A
Command Procedure
There may be times when the command procedure you have included in your PDF determines during
execution that the product processing environment is inadequate and cannot successfully complete the
operation. In this case, you may want to abort the execution. You may do this by exiting your command
procedure with the status code %X053D9301.

This status code is intercepted by the installation utility and gracefully and cleanly aborts the operation.
It is recommended that you include an appropriate message explaining why the operation is being
terminated in your command procedure.

This status code is recommended for procedures run with the EXECUTE PRECONFIGURE and
EXECUTE PRE_UNDO statements. It may also be successfully used with the EXECUTE INSTALL,
EXECUTE POSTINSTALL, EXECUTE START, and EXECUTE UPGRADE statements, but it is
important the operation is run with the /RECOVERY_MODE qualifier. The abort code is ignored by the
installation utility when used in the command procedure run with the EXECUTE TEST statement.

71

Chapter 6. Advanced Topics

6.3. Testing and Debugging Tips
The POLYCENTER Software Installation utility includes features you can use to monitor an operation to
ensure it functions as expected. This section provides information on the following topics:

● /LOG qualifier

● /TRACE qualifier

● /DEBUG=CONFLICT qualifier

6.3.1. The /LOG Qualifier
The /LOG qualifier for the PRODUCT INSTALL, PRODUCT RECONFIGURE, PRODUCT REMOVE,
and PRODUCT UNDO PATCH commands causes an informational message to be displayed whenever
a file is created, modified, or deleted on the destination disk. Using this qualifier, you can verify that
product material from your kit has been placed in the proper directories, and that files have been
correctly deleted, modified, or renamed. The information logged includes:

● Creation and deletion of directories

● Creation, deletion, and renaming of files

● Insertion and removal of modules from libraries

● File conflict detection and resolution when two or more products provide the same file (or two or
more patches for a product provide the same file)

● Module conflict detection and resolution when two or more products provide the same module (or
two or more patches for a product provide the same module)

Use the /LOG qualifier with the PRODUCT PACKAGE, PRODUCT COPY, and PRODUCT EXTRACT
commands to list the files being processed.

6.3.2. The /TRACE Qualifier
The /TRACE qualifier for the PRODUCT INSTALL, PRODUCT RECONFIGURE,
PRODUCT REMOVE, and PRODUCT UNDO PATCH commands is used to display information
about the execution of DCL commands run in the context of a subprocess during the processing of the
PRODUCT command.

Most EXECUTE statements in the PDF result in the execution of one or more DCL commands or entire
command procedures. Depending on whether the INTERACTIVE option is used on the EXECUTE
statement, these commands are run in one of the following ways:

● In an interactive subprocess created by LIB$SPAWN where input and output is directed to the user's
terminal.

● In a noninteractive subprocess created by SYS$CREPRC where input and output is performed
through mailboxes under the control and monitoring of the POLYCENTER Software Installation
utility.

In addition, the utility performs certain actions (such as library updates) by sending commands to a
noninteractive subprocess. See Section 6.1, "Using Command Procedures in PDL Statements" for more
information about interactive and noninteractive modes of execution.

72

Chapter 6. Advanced Topics

For interactive mode, the /TRACE qualifier logs the creation and deletion of the subprocess used to
run the command, identifies the command line being executed, and displays the final exit status of the
subprocess. Any output that DCL produces is displayed with or without the use of /TRACE.

For noninteractive mode, the /TRACE qualifier logs the creation and deletion of the subprocess used
to run commands, identifies commands the utility sends to the subprocess to set up the environment,
identifies commands sent from the EXECUTE statement, and displays the completion code of each
command processed. It also directs the utility to send all mailbox output to the user's terminal.

Normally in noninteractive mode, the utility monitors all output from the subprocess and suppresses
any output that does not appear to be an error message. However, use of the /TRACE qualifier
directs the utility to display all output from the subprocess. This allows you to use SET VERIFY in
command procedures that are run in noninteractive mode to have their commands echoed as they are
executed. Also, you can insert WRITE SYS$OUTPUT commands to provide additional information
for debugging. Specifically, the /TRACE qualifier does the following to log input and output for
noninteractive mode:

● Identifies input to the subprocess by prefacing lines with the message: "%PCSI-I-PRCINPUT,
input to subprocess follows …"

● Lists each command sent to the subprocess, including the definition of logical names for the
subprocess environment such as PCSI$SCRATCH.

● Lists each command you specify in EXECUTE statements as it is sent to the subprocess.

● Identifies output from the subprocess by prefacing lines with the message: "%PCSI-I-
PRCOUTPUT, output from subprocess follows …"

● Displays all output from DCL commands as they are executed, including status messages that are
normally suppressed in noninteractive mode.

● Displays the output from the SHOW SYMBOL $STATUS command that is sent to the subprocess to
obtain final exit status from a command procedure; this value determines the success or failure of the
execute statement.

6.3.3. The /DEBUG=CONFLICT Qualifier
If your product replaces files or library modules that are provided by another product (or if you have
created patch kits that update the same objects), you can use the /DEBUG=CONFLICT qualifier with
the /LOG qualifier to obtain detailed information on file and module conflict resolution. You can use
the /DEBUG=CONFLICT qualifier with the PRODUCT INSTALL and PRODUCT RECONFIGURE
commands. With this qualifier you can see:

● The generation numbers used in the comparison

● Whether the object is retained or replaced and the name of the product that supplies the object

The majority of products do not replace files from another product. However, if your product does this,
it is your responsibility to work with the kit developer of the other product to decide how you will use
generation numbers to determine which object takes precedence when there is a conflict.

Note

If neither product uses a generation number attribute and an interproduct conflict occurs, the utility will
not be able to resolve the conflict and the installation will terminate.

73

Chapter 6. Advanced Topics

For intraproduct conflict, you need only coordinate the use of generation numbers by your full, partial,
and patch kits so that your customers can apply updates to the product in any order. For example, if you
do not use generation numbers in your patch kits for objects, then the objects from the current patch kit
will supersede the others. To avoid having the order of patch kit installation affect the final results, we
recommend that you always assign generation numbers to files and modules provided by patch kits.

6.3.4. Installing Your Product on Older Versions of
OpenVMS
The POLYCENTER Software Installation utility has evolved since it was first released with OpenVMS
V6.1. New PDL statements and options have been added in subsequent releases and are summarized
in Appendix B, "Product Description Language Evolution". While backward compatibility is a strong
goal, occasionally software corrections and improvements in internal algorithms have resulted in slight
differences in behavior when a product kit is installed on different version of OpenVMS (specifically
different versions of the POLYCENTER Software Installation utility).

For example, a change was made in the utility that ships with OpenVMS Version 7.3 that affects the
file chosen in conflict detection when there is a tie in generation numbers. Previously, the file already
installed on the target disk was retained; now the file from the kit replaces the file on the target disk.
In both cases, the file is considered to be the same (because the nonzero generation numbers declare
the files to be identical), but use of the /LOG qualifier would show procedural differences in how the
conflict is handled.

Therefore, if your product is supposed to install on a range of versions of OpenVMS, we strongly
recommend that you verify the installation and removal of your kit on each version that you support. In
particular, perform these operations with the /LOG and /TRACE qualifiers to ascertain that your files
are processed as you intended.

74

Chapter 7. Product Description
Language Statements
This chapter describes the individual Product Description Language (PDL) statements and functions.

7.1. PDL Conventions
The PDL conventions used are described in the Preface. However, the syntax descriptions in this chapter
make significant use of several conventions, and they are worth repeating here:

● Brackets ([]) indicate optional elements. You can choose one, none, or all of the options.

● Braces ({ }) indicate a required choice of options; you must choose one of the options listed.

● The vertical bar (|) separates optional elements. It functions as a logical OR between two options, as
in A | B, or A | B | C.

● Horizontal ellipsis points (...) in examples indicate that the preceding item or items can be
repeated one or more times, or that additional parameters, values, or other information can be
entered.

● The semicolon (;) in syntax diagrams is required syntax.

● Angle brackets (<>) in syntax diagrams are required syntax.

● A double hyphen (--) indicates that the rest of the line is a comment.

● Unless otherwise indicated, extra space and tab characters may be used freely between syntax
elements for the purposes of formatting and readability.

● A statement may span more than one line.

Note

The space is required between the [NO] qualifier and its option, for example
[NO] ACCESS CONTROL. This differs from standard DCL syntax.

7.2. PDL Reference Section
The rest of this chapter describes each PDL statement in detail and provides examples of its use. The
PDL statements are presented in alphabetical order. Certain statements can be used as functions in
the evaluation of an IF statement. The functional form of a statement is documented along with the
definition of the statement.

ACCOUNT
ACCOUNT — The ACCOUNT statement uses a command procedure to create a system account.

Syntax
ACCOUNT name WITH (parameters,...) ;

75

Chapter 7. Product Description Language Statements

Parameters
name

Indicates the user name of the account as a 1- to 12-character string. The user name is passed to the
command procedure as P1.

WITH (parameters,...)

Indicates the list of parameters that are passed to the command procedure that creates the account. Each
parameter must be a single unquoted or quoted string that specifies P2 through P8, in order. If there are
no qualifiers to pass, specify a null string (“ ”). Refer to the Description section for the meaning of the
parameters.

Description
The ACCOUNT statement uses a command procedure
(SYS$UPDATE:PCSI$CREATE_ACCOUNT.COM) to create an account. The parameters that you pass
to the command procedure that creates the accounts are:

● P1 specifies the user name of the account (using the name parameter).

● P2 specifies general AUTHORIZE qualifiers. If there are no qualifiers to pass, specify a null string (“
”).

● P3 specifies a comma-separated list of rights identifiers to grant to the user name. These identifiers
must already exist, or be created with a separate RIGHTS IDENTIFIER statement.

● P4 through P8 specify other general AUTHORIZE qualifiers.

Certain AUTHORIZE qualifiers must be used with care. For example, /DIRECTORY= dir-name
assigns a default directory name to be used by the account. However, the POLYCENTER Software
Installation utility does not create this directory for you; you must make sure that it exists.

When you remove a product that created accounts, the utility uses a command procedure
(SYS$UPDATE:PCSI$DELETE_ACCOUNT.COM) to delete accounts associated with your product.
This happens regardless of whether the SYSUAF.DAT file is shared by another system disk.

Note

In a future version, the utility may create and delete these managed objects directly without the use of
command procedures. If this is the case, these statements will continue to function, but the command
procedures may not be maintained or shipped with future versions of the utility.

The ACCOUNT statement specifies an account managed object that has the following characteristics:

● Its name is the value of the name parameter. The name must be unique among all account names.

● It has operating lifetime.

● Managed object conflict is not recoverable.

See Also
RIGHTS IDENTIFIER

76

Chapter 7. Product Description Language Statements

Example
account TEST with ("/priv=(tmpmbx, netmbx)",
 "PCSI_TEST",
 "/account=PCSI",
 "/astlm=500/biolm=200/bytlm=96000",
 "/wsdefault=4000",
 "/flags=(nodisuser,genpwd)",
 "/pwdminimum=8");

In this example, the ACCOUNT statement creates the TEST account.

Parameter P2 specifies the TMPMBX and NETMBX privileges to be assigned to the TEST
account.

Parameter P3 is a rights identifier. This name must exist on the system prior to executing the
ACCOUNT statement. It can be created with a RIGHTS IDENTIFIER statement.

Parameters P4 to P8 assign certain values to the TEST account.

APPLY TO
APPLY TO — The APPLY TO statement specifies a product or product version that you want to
update with a patch or mandatory update kit. You must include an APPLY TO statement in a patch or
mandatory update PDF to identify the product that is being updated. This statement is not valid in other
types of PDFs.

Syntax
APPLY TO producer base name [{ VERSION ABOVE version | VERSION BELOW
version | VERSION MAXIMUM version | VERSION MINIMUM version | VERSION
REQUIRED version | VERSION ABOVE version | VERSION BELOW version | VERSION
ABOVE version | VERSION MAXIMUM version | VERSION MINIMUM version |
VERSION BELOW version | VERSION MINIMUM version | VERSION MAXIMUM
version }]

Parameters
producer

Indicates the legal owner of the software product. This parameter must be a single quoted or an unquoted
string.

base

Indicates the base hardware/software system on which the product is intended to be installed. This
parameter must be a single quoted or an unquoted string.

String Meaning

X86VMS An OpenVMS x86-64 product
I64VMS An OpenVMS IA-64 product
AXPVMS An OpenVMS Alpha product

77

Chapter 7. Product Description Language Statements

String Meaning

VMS A product applicable for any VSI supported system

name

Indicates the name of the product. This parameter must be a single quoted or an unquoted string. The
combination of producer, base, and name parameters must be unique among products installed on the
system.

Options
VERSION ABOVE version

Establishes a lower version limit. The version identifier must be a single quoted or an unquoted string.
Use this option to specify that the product version must be greater than (but not equal to) the specified
version. You cannot use this option with either the VERSION MINIMUM or VERSION REQUIRED
option. By default, there is no lower version limit.

VERSION BELOW version

Establishes an upper version limit. The version identifier must be a single quoted or an unquoted string.
Use this option to specify that the product version must be less than (but not equal to) the specified
version. You cannot use this option with either the VERSION MAXIMUM or VERSION REQUIRED
option. By default, there is no upper version limit.

VERSION MAXIMUM version

Establishes an upper version limit. The version identifier must be a single quoted or an unquoted string.
Use this option to specify that the product version must be less than or equal to the specified version.
You cannot use this option with either the VERSION BELOW or VERSION REQUIRED option. By
default, there is no upper version limit.

VERSION MINIMUM version

Establishes a lower version limit. The version identifier must be a single quoted or an unquoted string.
Use this option to specify that the product version must be greater than or equal to the specified version.
You cannot use this option with either the VERSION ABOVE or VERSION REQUIRED option. By
default, there is no lower version limit.

VERSION REQUIRED version

Establishes a required version. The version identifier must be a single quoted or an unquoted string. Use
this option to specify that the product version must be equal to the specified version. You cannot use this
option with either the VERSION ABOVE, VERSION BELOW, VERSION MAXIMUM, or VERSION
MINIMUM option. By default, there is no required version constraint.

Description
The APPLY TO statement specifies the name of an installed product that a patch or mandatory update
kit modifies. You can use options on this statement to limit the application of the patch or mandatory
update either to a specific version of the product or to a range of versions. If you do not use version
constraints, then you can modify any version of the product by installing a patch or mandatory update
kit.

The APPLY TO statement is a utility directive and does not specify a managed object.

78

Chapter 7. Product Description Language Statements

See Also
PRODUCT

SOFTWARE

UPGRADE

Example
product AXPVMS CSCPAT57 V1.0 patch ;
 apply to AXPVMS FORTRAN version required V2.0 ;
 file [SYSEXE]FORTRAN.EXE ;
end product ;

This example shows part of the product description for a patch to VSI Fortran. As shown in the APPLY
TO statement, you must have VSI Fortran Version 2.0 installed to apply this patch.

DIRECTORY
DIRECTORY — The DIRECTORY statement creates the specified directory if it does not already exist.

Syntax
DIRECTORY name [[NO]ACCESS CONTROL (access-control-entry...)] [OWNER
name] [PROTECTION { EXECUTE | PRIVATE | PUBLIC }] [[NO]VERSION LIMIT maximum] ;

Parameter
name

Indicates the directory name.

Options
[NO] ACCESS CONTROL (access-control-entry...)

Indicates the minimum access control entries (ACEs) that the directory will have. You must specify
the ACEs as a quoted string. By default, directories have no added ACEs.

OWNER name

Indicates the account name that owns the directory. By default, the directory is owned by the
SYSTEM account. If you specify a numeric value for name, you must enclose the string in
quotation marks, for example "[11,7]".

PROTECTION EXECUTE

Sets the directory protection to (S:RWE, O:RWE, G:E, W:E) so that users have execute access.

PROTECTION PRIVATE

Sets the directory protection to (S:RWE, O:RWE, G, W) so that users have no access.

79

Chapter 7. Product Description Language Statements

PROTECTION PUBLIC

Sets the directory protection to (S:RWE, O:RWE, G:RE, W:RE) so that users have read and execute
access. This is the default.

[NO] VERSION LIMIT maximum

Indicates the maximum number of file versions in the directory as an unsigned integer from 1
through 32767. The default is no version limit.

Description
The DIRECTORY statement creates the specified directory if it does not already exist. You use the
DIRECTORY statement to create a directory, and to specify characteristics about the directory such as
ownership and protection. However, use of the DIRECTORY statement is optional because the FILE
statement will implicitly create a directory, if it does not already exist, to contain the file it provides.

The DIRECTORY statement specifies the name of a directory managed object. Check the other
statements in your PDF to make sure the name you specify is unique among all directory, file, and link
managed objects in all scopes.

The scope and lifetime of the directory managed object depend on whether it is lexically contained in a
SCOPE, END SCOPE pair, as shown in Table 7.1, "Directory Managed Object Scope and Lifetime". (See
the SCOPE statement for additional information.)

Table 7.1. Directory Managed Object Scope and Lifetime

Type of Scope Group Lifetime Scope

Product Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor

If you use the access control option, the DIRECTORY statement specifies one access control entry
(ACE) managed object that references the directory managed object for each entry specified with the
ACCESS CONTROL option. The ACE managed object has the following characteristics:

● It is unnamed.

● It has operating lifetime.

● It has the same scope as the directory.

See Also
FILE

SCOPE

Examples
1. directory [SYSHLP.EXAMPLES.FMS.MESSAGE] protection private

80

Chapter 7. Product Description Language Statements

 access control ("(IDENTIFIER=[FMS], ACCESS=READ)");

This example specifies the directory [SYSHLP.EXAMPLES.FMS.MESSAGE]. The PROTECTION
PRIVATE option specifies that no users have access to this directory. The ACCESS CONTROL
option grants the user FMS read access to the directory.

2. directory [AL] owner PCSI$TEST version limit 3;

In this example the directory [AL] is owned by the account PCSI$TEST and holds the maximum of
three file versions.

3. directory [JIM] owner "[11,7]";

This example specifies the directory [JIM] owned by the account whose UIC is [11,7].

END
END — The END statement terminates a statement group.

Syntax
END { IF | OPTION | PART | PRODUCT | REMOVE | SCOPE } ;

Parameters
None

Options
None

Description
The END statement terminates a statement group. See the statement referenced by the END statement
for information about the statement group.

See Also
IF

OPTION

PART

PRODUCT

REMOVE

SCOPE

Example
product AXPVMS TEST V1.0 full ;

81

Chapter 7. Product Description Language Statements

.

.

.
end product ;

The END PRODUCT statement identifies the end of the product group.

ERROR
ERROR — The ERROR statement displays an error message during an installation or reconfiguration
operation. The text is from a PTF text module. The ERROR statement must be contained within an IF
group.

Syntax
ERROR name [ABORT] ;

Parameter
name

Indicates, as a quoted or unquoted string, the name of the associated PTF text module. The name you
specify can be from 1 to 31 characters in length and must be unique among all names in the same
product description.

Option
[ABORT]

Forces an unconditional termination of the operation when the ERROR statement is executed.

Description
The ERROR statement specifies a text module you want to display during an installation or
reconfiguration operation. The ERROR statement must be contained within an IF group.

The utility processes ERROR statements in lexical order. The utility displays both prompt and help text
during the validation phase. The validation phase occurs before and after the configuration of a product.

During execution of an ERROR statement that does not contain an ABORT option, the utility prompts
the user to continue or terminate the operation. If the ABORT option is present, or the operation is
executed in batch mode, the ERROR statement causes the operation to terminate unconditionally.

The ERROR STATEMENT is a utility directive and does not specify a managed object.

You must supply text in the associated product text module. The module must contain an =prompt
directive line.

See Also
HARDWARE DEVICE

HARDWARE PROCESSOR

82

Chapter 7. Product Description Language Statements

IF

LOGICAL NAME

SOFTWARE

UPGRADE

Examples
1. Suppose the PDF for a product contains the following lines:

if (<hardware processor model 7>) ;
 error UNSPROC abort ;
end if ;

The corresponding module in the PTF contains the following lines:

 1 UNSPROC
=prompt This product is not supported on a MicroVAX I processor.
Please read the installation guide that accompanies the software
to determine minimum system requirements for running this product.

If the user attempts to install the product on processor model 7, the following message is displayed
and the installation is terminated:

 This product is not supported on a MicroVAX I processor.

Please read the installation guide that accompanies the software
to determine minimum system requirements for running this product.

%PCSI-E-S_OPFAIL, operation failed
%PCSIUI-E-ABORT, operation terminated due to an unrecoverable error
 condition

2. The following PDF fragment illustrates how to check for prerequisite software and issue an error
message if the requirement is not met:

if (not <software AXPVMS TCPIP >) and
 (not <software AXPVMS UCX version minimum V4.0>)) ;
 error TCPIP_NOT_INSTALLED ;
end if;

The corresponding module in the PTF contains the following lines:

1 TCPIP_NOT_INSTALLED
=prompt TCPIP software is not installed on your system.
This product requires TCPIP networking software. Please terminate
this operation, install any version of TCPIP (or UCX version V4.0
or higher), then install this product.

On installation of the product containing the previous PDL statements, if neither the TCP/IP nor the
UCX product is already installed (or will not be installed at the completion of the current operation),
the following messages are displayed:

TCPIP software has not been installed on your system.

This product requires TCPIP networking software. Please terminate

83

Chapter 7. Product Description Language Statements

this operation, install any version of TCPIP (or UCX version V4.0
or higher), then install this product.

Terminating is strongly recommended. Do you want to terminate? [YES]
%PCSI-E-S_OPCAN, operation cancelled by request
%PCSIUI-E-ABORT, operation terminated due to an unrecoverable error
 condition

Because the ABORT option is not used on the ERROR statement, the user was given the opportunity
to continue installation of the product. Use of the ABORT option would have caused unconditional
termination of the installation as shown in the first example.

EXECUTE ABORT
EXECUTE ABORT — The EXECUTE ABORT statement specifies commands to execute when an
error condition causes an installation or reconfiguration operation to terminate.

Syntax
EXECUTE ABORT (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter
(command,...)

Indicates the commands that the utility passes to the command interpreter whenever the operation fails.

Options
INTERACTIVE

Allows communication between the user and the specified command or commands executing in a
subprocess.

USES (file,...)

Indicates the files required to execute the commands you specified in the command parameter.
Use a separate FILE statement to specify required files that are permanently placed in the user's
destination directory tree. Use the USES option to specify required files that are placed in a
temporary directory and deleted after use. By default, this statement does not require files.

Description
The EXECUTE ABORT statement specifies commands to execute when an error condition causes an
installation or reconfiguration operation to terminate. For example, the following conditions activate the
EXECUTE ABORT statement:

● An error or fatal error condition returned as the final status from the subprocess in which commands
are run from an EXECUTE statement, excluding the EXECUTE TEST statement.

● The user terminates the operation by pressing Ctrl/Y or Ctrl/C.

● The user answers YES to the question "Do you want to terminate?" Typically, this question is asked
after an error is reported during material placement on the target disk.

84

Chapter 7. Product Description Language Statements

You specify recovery actions to perform by including one or more DCL command lines in the
EXECUTE ABORT statement. These commands are passed for execution to the DCL interpreter
running in a subprocess. Enclose each action, whether specified as a single DCL command or a
command procedure, in double quotes (" "). If more than one action is given, use parentheses to enclose
the list.

Enclosing the EXECUTE ABORT statement in a scope group (consisting of SCOPE and END SCOPE
statements) has no effect on the way EXECUTE ABORT commands are processed.

If you want your commands to prompt the user and accept the user's input, specify the EXECUTE
ABORT statement with the INTERACTIVE option. The INTERACTIVE option causes all output
from DCL to be displayed, unless you prevent it. In contrast, when the INTERACTIVE option is not
specified, output generated by DCL commands is displayed only for lines that are interpreted as DCL
messages; that is, those beginning with a percent sign (%) in column one.

If you need files for the EXECUTE ABORT statement, specify them in the USES option. Each file you
specify with the USES option must be present in the product material.

Note that the USES option will not cause the listed files to be placed permanently in your file system. As
soon as the installation operation completes, the files listed with the USES option are deleted. For this
reason, you must use the FILE statement for this execute operation, and any other operation, in which
you want your EXECUTE command procedures placed permanently in your file system.

The EXECUTE ABORT statement causes the utility to define logical names for use by the subprocess
that executes the specified commands. The commands should use these logical names to reference files,
as follows:

● PCSI$SOURCE is a subdirectory in the root format under the user's login directory that points to the
location of the files specified by the USES option. This logical name is defined for the subprocess in
which product-supplied commands execute. It is not the same PCSI$SOURCE logical name that can
be defined by a user, in the user's process, pointing to the location of a product kit.

● PCSI$DESTINATION is a root directory specification that points to the root directory where
product material will be placed. The PCSI$DESTINATION logical is available except when the
EXECUTE ABORT statement is called when the EXECUTE PRECONFIGURE statement fails. The
PCSI$DESTINATION logical is not available until the configuration phase.

● PCSI$SCRATCH is a subdirectory under the user's login directory that can be used by commands
for temporary working space. This directory and any files placed in it are automatically deleted at the
end of the operation.

The EXECUTE ABORT statement is a utility directive and does not specify a managed object.

See Also
Section 6.1, "Using Command Procedures in PDL Statements"

EXECUTE INSTALL…REMOVE

EXECUTE POSTINSTALL

EXECUTE PRECONFIGURE

EXECUTE START…STOP

85

Chapter 7. Product Description Language Statements

EXECUTE UPGRADE

FILE

Example
execute install "@PCSI$SOURCE:[SYSUPD]EXEC_INSTALL.COM"
 remove "" uses [SYSUPD]EXEC_INSTALL.COM ;
 execute abort "@PCSI$SOURCE:[SYSUPD]EXEC_ABORT.COM"
 uses [SYSUPD]EXEC_ABORT.COM ;

In this example, the EXECUTE ABORT statement sets up a command procedure to run whenever the
operation fails after the EXECUTE INSTALL command has been executed. It is intended to clean the
user environment in case the commands supplied by EXECUTE INSTALL have left the user's system
modified. The USES option specifies the file name of the command procedure that is deleted after use.

EXECUTE INSTALL…REMOVE
EXECUTE INSTALL…REMOVE — The EXECUTE INSTALL …REMOVE statement is a
compound statement that performs two distinct actions: the install portion specifies commands to
execute when the product is installed or reconfigured; the remove portion specifies commands to
execute when the product is removed, but not when the product is upgraded. The REMOVE part of the
statement is required syntax even if there are no commands you want to execute when the product is
removed. To indicate no command, use remove "".

Syntax
EXECUTE INSTALL (command,...) REMOVE (command,...) [INTERACTIVE] [USES
(file,...)] ;

Parameter
(command,...)

Indicates the commands that the utility passes to the command interpreter in the execution environment.

Options
INTERACTIVE

Allows communication between the user and the specified command or commands executing in a
subprocess.

USES (file,...)

Indicates the files required to execute the commands you specified in the command parameter.
Use a separate FILE statement to specify required files that are permanently placed in the user's
destination directory tree; use the USES option to specify required files that are placed in a
temporary directory and deleted after use. By default, this statement does not require files.

Description
The EXECUTE INSTALL…REMOVE statement is a compound statement consisting of an install
portion and a remove portion.

86

Chapter 7. Product Description Language Statements

The install portion specifies commands to execute when the product is installed or reconfigured.
These commands are run after all product material has been placed on the target disk (that is, after all
DIRECTORY, FILE, and MODULE statements have been processed).

The remove portion specifies commands to execute when the product is removed. These commands are
run before any product material is deleted from the target disk. The EXECUTE …REMOVE statement
has no effect when the product is upgraded. To execute commands when the product is upgraded by
another version of the product, use the EXECUTE UPGRADE statement.

Note

Previous versions of this manual incorrectly stated that EXECUTE INSTALL …REMOVE commands
are also run when the product is upgraded.

You specify the install and remove actions to perform by including one or more DCL command lines
in the EXECUTE INSTALL …REMOVE statement. These commands are passed for execution to
the DCL interpreter running in a subprocess. Enclose each action, whether specified as a single DCL
command or a command procedure, in double quotes (" "). If more than one action is given, use
parentheses to enclose the list.

If you want your commands to prompt the user and accept the user's input, specify the EXECUTE
INSTALL …REMOVE statement with the INTERACTIVE option. The INTERACTIVE option causes
all output from DCL to be displayed, unless you prevent it. In contrast, when the INTERACTIVE option
is not specified, output generated by DCL commands is displayed only for lines that are interpreted as
DCL messages, that is, those beginning with a percent sign (%) in column one.

If you need files for the EXECUTE INSTALL statement, specify them in the USES option or in separate
FILE statements. However, if you need files for the EXECUTE REMOVE statement, you must provide
them with FILE statements so that they are available on the user's system for use when the product is
removed. Each file you specify with the USES option must be present in the product material.

Note that the USES option will not cause the listed files to be placed permanently in your file system. As
soon as the installation operation completes, the files listed with the USES option are deleted. For this
reason, you must use the FILE statement for this execute operation, and any other operation, in which
you want your execute command procedures placed permanently in your file system.

The EXECUTE INSTALL …REMOVE statement causes the utility to define logical names for use by
the subprocess that executes the specified commands. The commands should use these logical names to
reference files, as follows:

● PCSI$SOURCE is a subdirectory in the root format under the user's login directory that points to the
location of the files specified by the USES option. This logical name is defined for the subprocess in
which product-supplied commands execute. It is not the same PCSI$SOURCE logical name that can
be defined by a user, in the user's process, pointing to the location of a product kit.

Note

The PCSI$SOURCE logical name is available only for the EXECUTE INSTALL operation. You
cannot use it for an EXECUTE REMOVE operation.

● PCSI$SCRATCH is a subdirectory under the user's login directory that can be used by commands
for temporary working space. This directory and any files placed in it are automatically deleted at the
end of the operation.

87

Chapter 7. Product Description Language Statements

The EXECUTE INSTALL …REMOVE statement is a utility directive and does not specify a managed
object.

See Also
Section 6.1, "Using Command Procedures in PDL Statements"

EXECUTE ABORT

FILE

Example
file [SYSUPD]UNLOAD_LOADABLE_IMAGE.COM ;
execute
 install "@PCSI$SOURCE:[SYSUPD]LOAD_LOADABLE_IMAGE.COM"
 remove "@PCSI$DESTINATION:[SYSUPD]UNLOAD_LOADABLE_IMAGE.COM"
 uses ([SYSUPD]LOAD_LOADABLE_IMAGE.COM) ;

In this example, the EXECUTE INSTALL …REMOVE statement sets up command procedures to run
when the product is installed and removed. The USES option specifies the file name of the command
procedure for use on installation of the product. The file is deleted after use. The FILE statement
specifies the file name of the command procedure for use on removal of the product. This file is placed
in the user's destination directory tree during installation and executed during removal.

EXECUTE LOGIN
EXECUTE LOGIN — The EXECUTE LOGIN statement displays a message when the product is
installed or reconfigured, informing the installer that the specified commands need to be added to the
login command procedure of every user of this product.

Syntax
EXECUTE LOGIN (command,...) ;

Parameter
(command,...)

Indicates the commands that the utility displays in a message to the user.

Description
The EXECUTE LOGIN statement displays a message when the product is installed or reconfigured,
advising the installer that the specified commands need to be added to the login command procedure of
every user of this product. The specified commands are not run during the installation or reconfiguration
operation. The message is displayed after the operation has completed successfully.

The EXECUTE LOGIN statement is a utility directive and does not specify a managed object.

See Also
Section 6.1, "Using Command Procedures in PDL Statements"

88

Chapter 7. Product Description Language Statements

Example
1. execute login "$ @USER_START" ;

In this example, the EXECUTE LOGIN statement displays the following message to users:

2. Users of this product require the following lines in their login
 procedure:
 $ @USER_START

EXECUTE POSTINSTALL
EXECUTE POSTINSTALL — The EXECUTE POSTINSTALL statement specifies commands to
execute when the product is installed or reconfigured. These commands are run after any commands
from EXECUTE INSTALL … and EXECUTE START … statements are run.

Syntax
EXECUTE POSTINSTALL (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter
(command,...)

Indicates the command that the utility passes to the command interpreter in the execution environment.

Options
INTERACTIVE

Allows communication between the user and the specified command or command procedure
executing in a subprocess.

USES (file,...)

Indicates the files required to execute the commands you specified in the command parameter.
Use a separate FILE statement to specify required files that are permanently placed in the user's
destination directory tree; use the USES option to specify required files that are placed in a
temporary directory and deleted after use. By default, this statement does not require files.

Description
The EXECUTE POSTINSTALL statement specifies commands to execute when the product is installed
or reconfigured. These commands are run after any commands from EXECUTE INSTALL … and
EXECUTE START … statements are run.

You specify actions to perform by including one or more DCL command lines in the EXECUTE
POSTINSTALL statement. These commands are passed for execution to the DCL interpreter running
in a subprocess. Enclose each action, whether specified as a single DCL command or a command
procedure, in double quotes (" "). If more than one action is given, use parentheses to enclose the list.

If you want your commands to prompt the user and accept the user's input, specify the EXECUTE
POSTINSTALL statement with the INTERACTIVE option. The INTERACTIVE option causes all

89

Chapter 7. Product Description Language Statements

output from DCL to be displayed, unless you prevent it. In contrast, when the INTERACTIVE option
is not specified, output generated by DCL commands is displayed only for lines that are interpreted as
DCL messages, that is, those beginning with a percent sign (%) in column one.

If you need files for the EXECUTE POSTINSTALL statement, specify them in the USES option or in
separate FILE statements. Each file you specify with the USES option must be present in the product
material.

Note that the USES option will not cause the listed files to be placed permanently in your file system. As
soon as the installation operation completes, the files listed with the USES option are deleted. For this
reason, you must use the FILE statement for this execute operation, and any other operation, in which
you want your execute command procedures placed permanently in your file system.

The EXECUTE POSTINSTALL statement causes the POLYCENTER Software Installation utility to
define logical names for use by the subprocess that executes the specified commands. The commands
should use these logical names to reference files, as follows:

● PCSI$SOURCE is a subdirectory in the root format under the user's login directory that points to the
location of the files specified by the USES option. This logical name is defined for the subprocess in
which product-supplied commands execute. It is not the same PCSI$SOURCE logical name that can
be defined by a user, in the user's process, pointing to the location of a product kit.

● PCSI$DESTINATION is a root directory specification that points to the root directory for the
current scope where product material will be placed.

● PCSI$SCRATCH is a subdirectory under the user's login directory that can be used by commands
for temporary working space. This directory and any files placed in it are automatically deleted at the
end of the operation.

The EXECUTE POSTINSTALL statement is a utility directive and does not specify a managed object.

See Also
Section 6.1, "Using Command Procedures in PDL Statements"

EXECUTE ABORT

FILE

Example
execute
 postinstall "@pcsi$source:[sysupd]product_cleanup.com"
 uses [sysupd]product_cleanup.com ;

In this example, the EXECUTE POSTINSTALL statement sets up a command procedure to run after the
product is installed. The USES option specifies the file name of the command procedure that is deleted
after use.

EXECUTE POST_UNDO
EXECUTE POST_UNDO — The EXECUTE POST_UNDO statement specifies commands to execute
when one or more patch kits are uninstalled by executing the PRODUCT UNDO PATCH command.
These commands are run after all directories, files, and modules are processed.

90

Chapter 7. Product Description Language Statements

Syntax

EXECUTE POST_UNDO (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter

(command,...)

Indicates the commands that the utility passes to the command interpreter after uninstalling patch kits
indicated in the recovery data set being processed.

Options

INTERACTIVE

Allows communication between the user and the specified command or commands executing in a
subprocess.

USES (file,...)

Indicates the files required to execute the commands you specified in the command parameter.
The files listed with the USES option are saved in the recovery data set. When the UNDO PATCH
operation is executed, these files are moved to a temporary directory for processing and deleted after
use.

Description

The EXECUTE POST_UNDO statement specifies commands to execute when one or more patch kits
are uninstalled by executing the PRODUCT UNDO PATCH command. These commands are run near
the end of operation, after all directories, files, and modules are processed. This statement is useful for
automatically running a command procedure to perform cleanup or restore the system environment after
one or more patch or mandatory product updates have been removed.

You specify actions to perform by including one or more DCL command lines in the EXECUTE
POST_UNDO statement. These commands are passed for execution to the DCL interpreter running in a
subprocess. Enclose each action, whether specified as a single DCL command or a command procedure,
in double quotes. If more than one action is given, use parentheses to enclose the list.

Enclosing the EXECUTE POST_UNDO statement in a scope group (consisting of SCOPE and END
SCOPE statements) has no effect on the way EXECUTE POST_UNDO commands are processed.

If you want your commands to prompt the user and accept the user's input, specify the EXECUTE
POST_UNDO statement with the INTERACTIVE option. The INTERACTIVE option causes all output
from DCL to be displayed, unless you prevent it. In contrast, when the INTERACTIVE option is not
specified, output generated by DCL commands is displayed only for lines that are interpreted as DCL
messages; that is, those beginning with a percent sign (%) in column one.

If you need files for the EXECUTE POST_UNDO statement, you must specify each one of
them with the USES option. Files listed with the USES option are placed in the recovery data set
(the [PCSI$UNDO_001] directory tree) when the patch kit is installed and retrieved during the
PRODUCT UNDO PATCH operation.

There are certain restrictions on the use of the EXECUTE POST_UNDO statements:

91

Chapter 7. Product Description Language Statements

● They can be packaged in a product kit only if the product is of a patch or mandatory update type.

● Only one EXECUTE POST_UNDO statement is allowed per product.

The DCL commands supplied with the EXECUTE POST_UNDO statement are not executed during the
product installation; they are merely registered in the patch recovery data set description file for use in
the PRODUCT UNDO PATCH operation.

The EXECUTE POST_UNDO statement causes the POLYCENTER Software Installation utility to
define logical names for use by the subprocess that executes the specified commands. The commands
should use these logical names to reference files, as follows:

● PCSI$SOURCE is a subdirectory in the root format under the user's login directory that points to the
location of the files specified by the USES option. This logical name is defined for the subprocess in
which product-supplied commands execute.

● PCSI$DESTINATION is a root directory specification that points to the root directory where the
patch or mandatory update product material was placed in the installation operation.

● PCSI$SCRATCH is a subdirectory under the user's login directory that commands can use for
temporary working space. The utility automatically deletes this directory and any files placed in it at
the end of the operation.

The EXECUTE POST_UNDO statement is a utility directive and does not specify a managed object.

See Also
Section 6.1, "Using Command Procedures in PDL Statements"

FILE

Example
execute post_undo "@PCSI$SOURCE:[SYSUPD]EXEC_POST_UNDO.COM"
 uses [SYSUPD]EXEC_POST_UNDO.COM ;

In this example, the EXECUTE POST_UNDO statement sets up a command procedure to run after
the patch kit files are removed from the system as a result of the PRODUCT UNDO PATCH command
execution. The USES option specifies the file name of the command procedure that is deleted after use.

EXECUTE PRECONFIGURE
EXECUTE PRECONFIGURE — The EXECUTE PRECONFIGURE statement specifies commands to
execute after the user has selected the product for installation or reconfiguration, but before the user is
asked to select options for the product.

Syntax
EXECUTE PRECONFIGURE (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter
(command,...)

92

Chapter 7. Product Description Language Statements

Indicates the commands that the utility passes to the command interpreter in the preconfiguration
environment.

Options
INTERACTIVE

Allows communication between the user and the specified command or commands executing in a
subprocess.

USES (file,...)

Indicates the files required to execute the commands you specified in the command parameter. Files
for the EXECUTE PRECONFIGURE statement cannot be supplied by a separate FILE statement
because EXECUTE PRECONFIGURE is processed before files are copied to the target disk.

Description
The EXECUTE PRECONFIGURE statement specifies commands to execute after the user has selected
the product for installation or reconfiguration, but before the user is asked to select options for the
product. This statement is useful for automatically running a command procedure in preparation for
installing your product. This command procedure is packaged in the kit and is run before the standard
configuration dialog with the user begins. The EXECUTE PRECONFIGURE statement gives you the
ability to do such things as probe the system environment, ask the user questions, and define logical
names for use later in the processing of LOGICAL NAME functions. The ability to conditionally
provide product material, or to perform other actions based on decisions made at the very start of the
operation, is a powerful and flexible mechanism.

Note

If you want to use LOGICAL NAME functions, the logical names must be either defined by the action
of EXECUTE PRECONFIGURE statements, or by the user before the installation or reconfiguration
operation is initiated. The processing of an EXECUTE PRECONFIGURE statement cannot be
conditionalized by including it within an IF group that is controlled by a LOGICAL NAME function. In
such a case, the EXECUTE PRECONFIGURE statement is always executed.

You specify actions to perform by including one or more DCL command lines in the EXECUTE
PRECONFIGURE statement. These commands are passed for execution to the DCL interpreter running
in a subprocess. Enclose each action, whether specified as a single DCL command or a command
procedure, in double quotes. If more than one action is given, use parentheses to enclose the list.

Enclosing the EXECUTE PRECONFIGURE statement in a scope group (consisting of SCOPE and
END SCOPE statements) has no effect on the way EXECUTE PRECONFIGURE commands are
processed.

If you want your commands to prompt the user and accept the user's input, specify the EXECUTE
PRECONFIGURE statement with the INTERACTIVE option. The INTERACTIVE option causes all
output from DCL to be displayed, unless you prevent it. In contrast, when the INTERACTIVE option
is not specified, output generated by DCL commands is displayed only for lines that are interpreted as
DCL messages, that is, those beginning with a percent sign (%) in column one.

If you need files for the EXECUTE PRECONFIGURE statement, specify them in the USES option.
Each file you specify with the USES option must be present in the product material.

93

Chapter 7. Product Description Language Statements

Note that the USES option does not cause the listed files to be placed permanently in your file system.
As soon as the installation operation completes, the files listed with the USES option are deleted.

The EXECUTE PRECONFIGURE statement causes the POLYCENTER Software Installation utility to
define logical names for use by the subprocess that executes the specified commands. The commands
should use these logical names to reference files, as follows:

● PCSI$SOURCE is a subdirectory in the root format under the user's login directory that points to the
location of the files specified by the USES option. This logical name is defined for the subprocess in
which product-supplied commands execute. It is not the same PCSI$SOURCE logical name that can
be defined by a user, in the user's process, pointing to the location of a product kit.

● PCSI$DESTINATION is a root directory specification that points to the root directory for the
current scope where product material will be placed.

● PCSI$SCRATCH is a subdirectory under the user's login directory that commands can use for
temporary working space. The utility automatically deletes this directory and any files placed in it at
the end of the operation.

The EXECUTE PRECONFIGURE statement is a utility directive and does not specify a managed
object.

See Also
Section 6.1, "Using Command Procedures in PDL Statements"

EXECUTE ABORT

FILE

Example
execute preconfigure "@PCSI$SOURCE:[SYSUPD]EXEC_PREC.COM"
 uses [SYSUPD]EXEC_PREC.COM ;

In this example, the EXECUTE PRECONFIGURE statement sets up a command procedure to run
before the product configuration begins. The USES option specifies the file name of the command
procedure that is deleted after use.

EXECUTE PRE_UNDO
EXECUTE PRE_UNDO — The EXECUTE PRE_UNDO statement specifies commands to execute
when one or more patch kits are uninstalled by executing the PRODUCT UNDO PATCH command.
These commands are run before any directories, files, and modules are processed.

Syntax
EXECUTE PRE_UNDO (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter
(command,...)

Indicates the commands that the utility passes to the command interpreter prior to uninstalling patch kits
indicated in the recovery data set being processed.

94

Chapter 7. Product Description Language Statements

Options
INTERACTIVE

Allows communication between the user and the specified command or commands executing in a
subprocess.

USES (file,...)

Indicates the files required to execute the commands you specified in the command parameter.
The files listed with the USES option are saved in the recovery data set. When the UNDO PATCH
operation is executed, these files are moved to a temporary directory for processing and deleted after
use.

Description
The EXECUTE PRE_UNDO statement specifies commands to execute when one or more patch kits
are uninstalled by executing the PRODUCT UNDO PATCH command. These commands are run before
any directories, files, and modules are processed. This statement is useful for automatically running a
command procedure in preparation for uninstalling one or more patch or mandatory product updates.
The EXECUTE PRE_UNDO statement gives you the ability to do such things as ask the user questions,
probe, or set the system environment before a patch kit is uninstalled.

You specify actions to perform by including one or more DCL command lines in the EXECUTE
PRE_UNDO statement. These commands are passed for execution to the DCL interpreter running in a
subprocess. Enclose each action, whether specified as a single DCL command or a command procedure,
in double quotes (" "). If more than one action is given, use parentheses to enclose the list.

Enclosing the EXECUTE PRE_UNDO statement in a scope group (consisting of SCOPE and END
SCOPE statements) has no effect on the way EXECUTE PRE_UNDO commands are processed.

If you want your commands to prompt the user and accept the user's input, specify the EXECUTE
PRE_UNDO statement with the INTERACTIVE option. The INTERACTIVE option causes all output
from DCL to be displayed, unless you prevent it. In contrast, when the INTERACTIVE option is not
specified, output generated by DCL commands is displayed only for lines that are interpreted as DCL
messages; that is, those beginning with a percent sign (%) in column one.

If you need files for the EXECUTE PRE_UNDO statement, you must specify each one of them
with the USES option. Files listed with the USES option are placed in the recovery data set
(the [PCSI$UNDO_001] directory tree) when the patch kit is installed and retrieved during the
PRODUCT UNDO PATCH operation.

There are certain restrictions on the use of the EXECUTE PRE_UNDO statements:

● They can be packaged in a product kit only if the product is a patch or mandatory update type.

● Only one EXECUTE PRE_UNDO statement is allowed per product.

The DCL commands supplied with the EXECUTE PRE_UNDO statement are not executed during the
product installation; they are merely registered in the patch recovery data set description file for use in
the PRODUCT UNDO PATCH operation.

The EXECUTE PRE_UNDO statement causes the POLYCENTER Software Installation utility to define
logical names for use by the subprocess that executes the specified commands. The commands should
use these logical names to reference files, as follows:

95

Chapter 7. Product Description Language Statements

● PCSI$SOURCE is a subdirectory in the root format under the user's login directory that points to the
location of the files specified by the USES option. This logical name is defined for the subprocess in
which product-supplied commands execute.

● PCSI$DESTINATION is a root directory specification that points to the root directory where the
patch or mandatory update product material was placed in the installation operation.

● PCSI$SCRATCH is a subdirectory under the user's login directory that commands can use for
temporary working space. The utility automatically deletes this directory and any files placed in it at
the end of the operation.

The EXECUTE PRE_UNDO statement is a utility directive and does not specify a managed object.

See Also
Section 6.1, "Using Command Procedures in PDL Statements"

FILE

Example
execute pre_undo "@PCSI$SOURCE:[SYSUPD]EXEC_PRE_UNDO.COM"
 uses [SYSUPD]EXEC_PRE_UNDO.COM
 interactive ;

In this example, the EXECUTE PRE_UNDO statement sets up a command procedure to run before
patch kit files are removed from the system as a result of the PRODUCT UNDO PATCH command
execution. The USES option specifies the file name of the command procedure that is deleted after use.
The INTERACTIVE option allows dialog between the user and the command procedure.

EXECUTE REBOOT
EXECUTE REBOOT — The EXECUTE REBOOT statement specifies commands that initiate a system
reboot procedure at the conclusion of the PRODUCT INSTALL or PRODUCT RECONFIGURE
operations.

Syntax
EXECUTE REBOOT (command,...) [INTERACTIVE] [MANDATORY] ;

Parameter
(command,...)

Indicates the commands that the utility passes to the command interpreter after completing product
installation or reconfiguration, but just before exiting the operation with final status.

Options
INTERACTIVE

Allows communication between the user and the specified command or command procedure
executing in a subprocess.

96

Chapter 7. Product Description Language Statements

MANDATORY

Indicates that the system must be rebooted after the product installation or reconfiguration. If the
MANDATORY option is not present, the system reboot is not required.

Regardless of whether this option is specified, the user is prompted in the configuration phase as to
whether a reboot will be allowed at the end of the operation. If the MANDATORY option is set and
the user does not want to perform a system reboot, the operation terminates before any product files
are handled. If the MANDATORY option is not specified, and the user does not want to perform a
system reboot, the operation is not terminated and continues until successful conclusion. No system
reboot is performed.

Description
The EXECUTE REBOOT statement specifies commands to execute at the conclusion of the
PRODUCT INSTALL or PRODUCT RECONFIGURE commands. These commands can perform any
action the product developer desires, but the last one should invoke the system shutdown procedure.

You specify actions to perform by including one or more DCL command lines in the EXECUTE
REBOOT statement. These commands are passed for execution to the DCL interpreter running in a
subprocess. Enclose each action, whether specified as a single DCL command or a command procedure,
in double quotation marks (" "). If more than one action is desired, use parentheses to enclose the list.

Enclosing the EXECUTE REBOOT statement in a scope group (consisting of SCOPE and END SCOPE
statements has no effect on the way EXECUTE REBOOT commands are processed.

If you want your commands to prompt the user and accept the user's input, specify the EXECUTE
REBOOT statement with the INTERACTIVE option. The INTERACTIVE option causes all output
from DCL to be displayed, unless you prevent it. In contrast, when the INTERACTIVE option is not
specified, output generated by DCL commands is displayed only for lines that are interpreted as DCL
messages, that is, those beginning with a percent sign (%) in column one.

If you want to force a system reboot at the end of your product installation, you must use the
MANDATORY option. Whether this option is present or not, the user is warned that the system
shutdown may take place at the end of the operation and is prompted to accept it. If the MANDATORY
option is set, the following message is issued:

* Product VSI AXPVMS EXRT V1.0 requires a system reboot.

If the MANDATORY option is not used, the following message is issued:

* Product VSI AXPVMS EXRT V1.0 recommends a system reboot.

In either case, the message is followed by this prompt:

* Can the system be REBOOTED after the installation completes? [YES]

If the MANDATORY option is set and your response to the prompt is No, the operation terminates. If
the MANDATORY option is not set and your response to the prompt is No, the operation continues, but
the EXECUTE REBOOT statement will not be processed.

The EXECUTE REBOOT statement causes the POLYCENTER Software Installation utility to define
logical names for use by the subprocess that executes the specified commands. The commands should
use these logical names to reference files, as follows:

● PCSI$DESTINATION is a root directory specification that points to the root directory where the
product material was placed in the installation operation.

97

Chapter 7. Product Description Language Statements

The EXECUTE REBOOT statement is a utility directive and does not specify a managed object.

See Also

Section 6.1, "Using Command Procedures in PDL Statements"

FILE

Example
execute reboot "@SYS$COMMON:[SYSEXE]SHUTDOWN.COM"
 interactive ;

In this example, the EXECUTE REBOOT statement sets up the system shutdown command procedure
to run after successful product installation, but before the utility exits the operation with the final status
code.

EXECUTE RELEASE
EXECUTE RELEASE — The EXECUTE RELEASE statement specifies commands to execute when
the product is installed or reconfigured. These commands are run after any commands from EXECUTE
INSTALL … statements are run. Starting with OpenVMS V7.3, the EXECUTE RELEASE statement
is obsolete. To support existing product kits that may have used this statement, the POLYCENTER
Software Installation utility continues to process this statement in a backward compatible manner.
However, VSI recommends that you do not use the EXECUTE RELEASE statement in new or revised
product kits. Instead, use the EXECUTE UPGRADE, EXECUTE INSTALL…REMOVE, or the
EXECUTE POSTINSTALL statements, as appropriate. Documentation of the EXECUTE RELEASE
statement may be discontinued in a future release of this manual.

Syntax

EXECUTE RELEASE (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter

(command,...)

Indicates the commands that the utility passes to the command interpreter in the execution environment.

Options

INTERACTIVE

Allows communication between the user and the specified command or command procedure
executing in a subprocess.

USES (file,...)

Indicates the files required to execute the commands you specified in the command parameter.
Use a separate FILE statement to specify required files that are permanently placed in the user's
destination directory tree; use the USES option to specify required files that are placed in a
temporary directory and deleted after use. By default, this statement does not require files.

98

Chapter 7. Product Description Language Statements

Description
The EXECUTE RELEASE statement specifies commands to execute when the product is installed or
reconfigured. These commands are run after any commands from EXECUTE INSTALL … statements
are run. The name of this statement could imply that it only runs when a product is upgraded or
removed; however, this is not the case. The EXECUTE RELEASE statement is run under the same
situations that the EXECUTE INSTALL… statement is run. Because of its misleading name and
duplicate functionality, EXECUTE RELEASE is now obsolete.

Use the EXECUTE UPGRADE statement or the REMOVE portion of the EXECUTE INSTALL…
REMOVE statement to perform actions when your product is upgraded or removed. To perform actions
when your product is installed or reconfigured, use either the EXECUTE INSTALL… or EXECUTE
POSTINSTALL statement.

You specify actions to perform by including one or more DCL command lines in the EXECUTE
RELEASE statement. These commands are passed for execution to the DCL interpreter running in a
subprocess. Enclose each action, whether specified as a single DCL command or a command procedure,
in double quotes (" "). If more than one action is given, use parentheses to enclose the list.

If you want your commands to prompt the user and accept the user's input, specify the EXECUTE
RELEASE statement with the INTERACTIVE option. The INTERACTIVE option causes all output
from DCL to be displayed, unless you prevent it. In contrast, when the INTERACTIVE option is not
specified, output generated by DCL commands is displayed only for lines that are interpreted as DCL
messages, that is, those beginning with a percent sign (%) in column one.

If you need files for the EXECUTE RELEASE statement, specify them in the USES option or in
separate FILE statements. Each file you specify with the USES option must be present in the product
material.

The USES option will not cause the listed files to be placed permanently in your file system. As soon as
the installation operation completes, the files listed with the USES option are deleted. For this reason,
you must use the FILE statement for this execute operation and any other operation in which you want
your execute command procedures placed permanently in your file system.

The EXECUTE RELEASE statement causes the POLYCENTER Software Installation utility to define
logical names for use by the subprocess that executes the specified commands. The commands should
use these logical names to reference files, as follows:

● PCSI$SOURCE is a subdirectory in the root format under the user's login directory that points to the
location of the files specified by the USES option. This logical name is defined for the subprocess in
which product-supplied commands execute. It is not the same PCSI$SOURCE logical name that can
be defined by a user, in the user's process, pointing to the location of a product kit.

● PCSI$DESTINATION is a root directory specification that points to the root directory for the
current scope where product material will be placed.

● PCSI$SCRATCH is a subdirectory under the user's login directory that can be used by commands
for temporary working space. This directory and any files placed in it are automatically deleted at the
end of the operation.

The EXECUTE RELEASE statement is a utility directive and does not specify a managed object.

See Also
Section 6.1, "Using Command Procedures in PDL Statements"

99

Chapter 7. Product Description Language Statements

EXECUTE INSTALL…REMOVE

EXECUTE POSTINSTALL

EXECUTE UPGRADE

FILE

Example
execute release "@pcsi$source:[sysupd]config.com" uses [sysupd]config.com ;

In this example, the EXECUTE RELEASE statement sets up a command procedure to run when the
product is installed or reconfigured. The USES option specifies the file name of the command procedure
that is deleted after use.

EXECUTE START…STOP
EXECUTE START…STOP — The EXECUTE START…STOP statement is a compound statement
that performs two distinct actions: the "start" portion either specifies commands to execute when the
product is installed for the first time or upgrades a previously installed version of the product; the
"stop" portion specifies commands to execute when the product is either removed or upgraded by
another version of the product. The EXECUTE START…STOP statement also displays a message
at the successful conclusion of the operation, advising the user to add the specified commands to the
appropriate systemwide startup or shutdown command procedure. The STOP part of the statement is
required syntax even if there are no commands you want to execute when the product is removed. To
indicate no command, use stop "".

Syntax
EXECUTE START (command,...) STOP (command,...) [INTERACTIVE] ;

Parameter
(command,...)

Indicates the commands that the utility displays in a message to the user and also passes to the command
interpreter in the execution environment.

Option
INTERACTIVE

Allows communication between the user and the specified command or commands executing in a
subprocess.

Description
The EXECUTE START…STOP statement is a compound statement consisting of a "start" portion and a
"stop" portion.

The "start" portion either specifies commands to execute when the product is installed for the first time
or upgrades a previously installed version of the product. These commands are run after any EXECUTE
INSTALL… statements have been processed, but before any EXECUTE POSTINSTALL statements. In

100

Chapter 7. Product Description Language Statements

addition, a message is displayed at the end of the operation telling users to add these commands to their
SYSTARTUP_VMS.COM file.

The "stop" portion specifies commands to execute when the product is either removed or upgraded by
another version of the product. These commands are run before any product material is deleted from the
target disk and before any EXECUTE…REMOVE statements are processed. In addition, a message is
displayed at the end of the operation telling users to add these commands to their SYSHUTDWN.COM
file.

If you need files for the EXECUTE START…STOP statement, you must provide them with FILE
statements so that they are available on the user's system for use after the installation completes.

If you want your commands to prompt the user and accept the user's input, specify the EXECUTE
START statement with the INTERACTIVE option. The INTERACTIVE option causes all output
from DCL to be displayed, unless you prevent it. In contrast, when the INTERACTIVE option is not
specified, output generated by DCL commands is displayed only for lines that are interpreted as DCL
messages, that is, those beginning with a percent sign (%) in column one.

The EXECUTE UPGRADE statement causes the POLYCENTER Software Installation utility to
define a logical name for use by the subprocess that executes the specified commands. It defines
PCSI$DESTINATION as a root directory specification that points to the root directory for the current
scope where product material will be placed.

The EXECUTE START…STOP statement is a utility directive and does not specify a managed object.

See Also
Section 6.1, "Using Command Procedures in PDL Statements"

EXECUTE ABORT

FILE

Examples
1. file [SYS$STARTUP]PRODUCT_STARTUP.COM ;

file [SYS$STARTUP]PRODUCT_SHUTDOWN.COM ;
execute
 start "@sys$startup:product_startup.com"
 stop "@sys$startup:product_shutdown.com" ;

In this example, the EXECUTE START …STOP statement displays a message to users about
command procedures they should run to start and stop the product:

Insert the following lines in SYS$MANAGER:SYSTARTUP_VMS.COM:
 @SYS$STARTUP:PRODUCT_STARTUP.COM
Insert the following lines in SYS$MANAGER:SHUTDOWN.COM:
 @SYS$STARTUP:PRODUCT_SHUTDOWN.COM

The PRODUCT_STARTUP.COM command procedure is executed during the installation. The
PRODUCT_SHUTDOWN.COM command procedure is executed during the REMOVE operation
or during a product upgrade.

2. file [SYS$STARTUP]ABS_STARTUP.COM ;
execute
 start "@sys$startup:abs_startup.com"

101

Chapter 7. Product Description Language Statements

 stop "" ;

In this example, the EXECUTE START …STOP statement displays a message to users about
command procedures they should run to start the product. Note that there are no commands
executed when the product is stopped. The command procedure ABS_STARTUP.COM executes
during the INSTALL operation, then the following message is issued:

Insert the following lines in SYS$MANAGER:SYSTARTUP_VMS.COM:
 @SYS$STARTUP:ABS_STARTUP.COM

EXECUTE TEST
EXECUTE TEST — The EXECUTE TEST statement specifies an installation verification procedure
(IVP) to run after the product has been successfully installed or reconfigured to perform a functional test
of the product.

Syntax
EXECUTE TEST (command,...) [INTERACTIVE] ;

Parameter
(command,...)

Indicates the commands that the utility passes to the command interpreter in the execution environment.

Option
INTERACTIVE

Allows communication between the user and the specified command or command procedure
executing in a subprocess.

Description
The EXECUTE TEST statement specifies an IVP to run after the product has been successfully installed
or reconfigured to perform a functional test of the product. Prior to running this test, the product
database is updated and closed. The product remains installed or reconfigured even if the functional test
fails.

The user can prevent the running of the IVP by specifying the /NOTEST qualifier on the
PRODUCT INSTALL or PRODUCT RECONFIGURE command.

You specify test actions to perform by including one or more DCL command lines in the EXECUTE
TEST statement. These commands are passed for execution to the DCL interpreter running in a
subprocess. Enclose each action, whether specified as a single DCL command or a command procedure,
in double quotes (" "). If more than one action is given, use parentheses to enclose the list.

If you need files for the EXECUTE TEST statement, you must provide them with FILE statements.

If you want your commands to prompt the user and accept the user's input, specify the EXECUTE TEST
statement with the INTERACTIVE option. The INTERACTIVE option causes all output from DCL to
be displayed, unless you prevent it. In contrast, when the INTERACTIVE option is not specified, output
generated by DCL commands is displayed only for lines that are interpreted as DCL messages, that is,
those beginning with a percent sign (%) in column one.

102

Chapter 7. Product Description Language Statements

The EXECUTE TEST statement causes the POLYCENTER Software Installation utility to
define a logical name for use by the subprocess that executes the specified commands. It defines
PCSI$DESTINATION as a root directory specification that points to the root directory for the current
scope where product material will be placed.

The EXECUTE TEST statement is a utility directive and does not specify a managed object.

See Also
Section 6.1, "Using Command Procedures in PDL Statements"

FILE

Example
file [SYSTEST]PROD$IVP.COM ;
execute
 test "@sys$test:prod$ivp.com" ;

In this example, the EXECUTE TEST statement runs a command procedure to perform an installation
verification test of the product.

EXECUTE UPGRADE
EXECUTE UPGRADE — The EXECUTE UPGRADE statement specifies the commands to execute
when the product is upgraded by another version of the product.

Syntax
EXECUTE UPGRADE (command,...) [INTERACTIVE] ;

Parameter
(command,...)

Indicates the commands that the utility passes to the command interpreter in the execution environment.

Option
INTERACTIVE

Allows communication between the user and the specified command or command procedure
executing in a subprocess.

Description
The EXECUTE UPGRADE statement specifies the commands to execute when the product is upgraded
by another version of the product. These commands are run for the version of the product that is being
replaced, not for the new version of the product. To run commands when the product is removed (but
not upgraded by another version), use the remove portion of the EXECUTE INSTALL…REMOVE
statement to specify the commands.

If you need files for the EXECUTE UPGRADE statement, you must provide them with FILE statements
so that they are available on the user's system when the product is upgraded.

103

Chapter 7. Product Description Language Statements

The EXECUTE UPGRADE statement causes the POLYCENTER Software Installation utility to
define a logical name for use by the subprocess that executes the specified commands. It defines
PCSI$DESTINATION as a root directory specification that points to the root directory for the current
scope where product material will be placed.

The EXECUTE UPGRADE statement is a utility directive and does not specify a managed object.

See Also
Section 6.1, "Using Command Procedures in PDL Statements"

EXECUTE ABORT

FILE

SOFTWARE

Example
file [sysupd]UPG_TASKS.COM ;
execute upgrade "@PCSI$DESTINATION:[SYSUPD]UPG_TASKS.COM" interactive ;

In this example, the FILE statement places the command procedure UPG_TASKS.COM on the
destination disk during the product installation. The EXECUTE UPGRADE statement specifies that
this command procedure is run only when this product is upgraded by the installation of the same
or different version of the product. In the future, if an upgrade of the product is performed, this
command procedure is run before any product material is deleted from the destination disk. Use of the
INTERACTIVE option on the EXECUTE UPGRADE statement allows the command procedure to
interact with the user via the SYS$INPUT and SYS$OUTPUT I/O channels.

FILE
FILE — The FILE statement creates a file on the target disk. If a file of the same name already exists,
the POLYCENTER Software Installation utility may replace the file, depending on the options specified.

Syntax
FILE name [[NO]ACCESS CONTROL (access-control-entry...)]
[[NO]ARCHIVE] [ASSEMBLE EXECUTE (command,...) [ASSEMBLE USES
(file,...)]] [[NO]GENERATION generation] [IMAGE LIBRARY] [OWNER owner]
[PROTECTION{ EXECUTE | PRIVATE | PUBLIC }] [RELEASE MERGE] [RELEASE NOTES]
[SIZE size] [SOURCE source] [[NO]WRITE] ;

Parameter
name

Specifies the name of the file object to install on the user's system. The name consists of a relative file
directory specification, file name, and file type. The file version is ignored because the utility determines
the file version to use at installation time.

If the file name contains two subsequent hyphens (--), mixed case, or lowercase, it must be enclosed in
double quotes.

104

Chapter 7. Product Description Language Statements

Options
[NO] ACCESS CONTROL (access-control-entry...)

Indicates the minimum access control entries (ACEs) that the file will have. By default, files have no
added ACEs (no access control).

[NO] ARCHIVE

Allows you to preserve existing files during an upgrade. The POLYCENTER Software Installation
utility appends _OLD to the end of the file type. For example, if you archived an existing file named
STARTUP_TEMPLATE.SYS, the utility would rename it STARTUP_TEMPLATE.SYS_OLD. Note
that the utility does not keep track of archived files as managed objects, or delete them when the
product is upgraded or removed.

If there are several versions of the existing file, the utility renames the latest file type before deleting
all of the remaining file versions. By default, the POLYCENTER Software Installation utility does
not preserve existing file versions (no archive). You cannot use this option with the RELEASE
MERGE or WRITE option.

ASSEMBLE EXECUTE (command,...)

Establishes the contents of the file by executing the specified commands. Specify the command lines
as quoted or unquoted strings.

ASSEMBLE USES (file,...)

Indicates a list of additional files required by the ASSEMBLE EXECUTE option. You must include
the relative file specification. Files specified with this option are placed in a temporary directory for
use by the ASSEMBLE EXECUTE option and are automatically deleted after use. By default, the
ASSEMBLE EXECUTE option does not require additional files.

[NO] GENERATION generation

Indicates that the file has an explicit generation number. Specify the number as an unsigned integer
in the range 0 through 4294967295. See the Description section for the meaning of this value. By
default, the file does not have an explicit generation number (no generation), which is equivalent to
0.

IMAGE LIBRARY

Indicates that the file's symbols are inserted into the system shareable image symbol table library.
The file must be a shareable image.

OWNER owner

Indicates the account name that owns the file. By default, the file is owned by the SYSTEM account.
If you specify a numeric value for name, you must enclose the string in quotation marks, for
example "[11,7]".

PROTECTION EXECUTE

Sets the file protection to (S:RWED, O:RWED, G:E, W:E) giving general users execute access.

PROTECTION PRIVATE

Sets the file protection to (S:RWED, O:RWED, G, W), giving general users no access.

105

Chapter 7. Product Description Language Statements

PROTECTION PUBLIC

Sets the file protection to (S:RWED, O:RWED, G:RE, W:RE), giving general users read and
execute access. This is the default.

RELEASE MERGE

Indicates that library modules propagate during a version upgrade. If modules are present in the
existing library but not in the new library, they are propagated to the new library. The file you
specify with the name parameter must be a library. You cannot use this option with the ARCHIVE,
RELEASE REPLACE, or WRITE option.

RELEASE NOTES

Indicates that the file is a release notes file. Users can extract the release notes to a file using the
DCL command PRODUCT EXTRACT RELEASE_NOTES. The release notes are created in the
file DEFAULT.PCSI$RELEASE_NOTES in the current directory, or in the file specified by the user
with the /FILE qualifier.

SIZE size

Do not specify this option in your PDF. When you package your product, the utility calculates the
size (in blocks) of the files you specify and provides this option in the output PDF. If you specify
this option in the input PDF to a PRODUCT PACKAGE command, the option is ignored.

SOURCE source

Specifies the name of the file to package that supplies the contents for the file specified in the name
parameter of the file statement.

The source file name consists of a relative directory specification, file name, and file type of a file in
the materials directory path. File version number is not used because the file with the highest version
is packaged. Use this option when the input file for the package operation has a different relative
file specification than the output file your kit installs on the user's system. By default, the name
of the input file for the package operation is the same as the output file created in the execution
environment when the kit is installed.

[NO] WRITE

Indicates that you expect users to modify the file during system operation. If you specify this option
during a version upgrade, if the file already exists, it remains the active version. For example, the
OpenVMS operating system PDF uses this option for [SYSMGR]SYSLOGIN.COM. The default is
no write. You cannot use this option with the ARCHIVE or RELEASE MERGE options.

Description

The FILE statement creates a file object on the target disk. You specify a file managed object with either
the name parameter or the SOURCE option. The file must be supplied as product material, unless the
ASSEMBLE EXECUTE option is used to dynamically create the file. The LINK and LOADABLE
IMAGE statements can also specify references to a file-managed object.

File Conflict

Two types of file conflict can occur:

106

Chapter 7. Product Description Language Statements

● An interproduct file conflict occurs when two or more products provide a file with the same name
in the same directory. (Files with the same name can co-exist in different directories.)

● An intraproduct file conflict occurs when two or more patch or partial kits for a product update the
same file.

For example, OpenVMS provides the file DUDRIVER.EXE. If you install two different remedial
kits for a particular version of OpenVMS that both update this file, an intraproduct file conflict
results.

Intraproduct file conflict detection and resolution was introduced in the version of the utility that
shipped with OpenVMS Alpha Version 7.1-2 and OpenVMS VAX Version 7.2. This enhancement
allows patch and partial kits to be installed "out-of-order" while providing the most up-to-date files.
Prior to this change, files from patch or partial kits always superseded the previously installed files.

The utility resolves a file conflict by comparing the generation numbers of the files involved.

Do not confuse generation numbers with file versions. A generation number is an optional attribute you
supply on a file statement using the GENERATION option. A generation number can be any integer in
the range of 0 to 4294967295. For example:

file [SYSEXE]ABC.EXE generation 100;

If you do not specify a generation number, its default value is 0. Table 7.2, "Resolving File Conflict with
Generation Numbers" shows how the utility resolves a file conflict.

Table 7.2. Resolving File Conflict with Generation Numbers

If the generation numbers... Then

… are different The file with the largest non-zero number is selected.
… are the same and are not zero The file from the kit replaces the previously installed file.
… are zero Unresolvable file conflict, an error is reported to the user.

Generation information is not used for intraproduct conflict detection when a product is upgraded. In
this case, all files from the old version are deleted, and new files from the kit are placed on the target
disk. However, generation information is used during an upgrade for interproduct conflict detection
when any files from the product conflict with files from another product.

Logical Names

The ASSEMBLE EXECUTE option causes the utility to define logical names for use by the subprocess
that executes the specified commands. The commands should use these logical names to reference files,
as follows:

● PCSI$SOURCE is a root directory specification under the user's login directory. It is used for
temporary placement of the files specified by the ASSEMBLE USES option. This logical name
is defined for the subprocess in which product-supplied commands execute. It is not the same
PCSI$SOURCE logical name that can be defined by a user, in the user's process, pointing to the
location of a product kit.

● PCSI$DESTINATION is a root directory specification under the user's login directory used as
a staging area. The commands specified in the ASSEMBLE EXECUTE option are responsible
for creating a file in this directory tree whose name matches the one specified in the file name
parameter. After the commands are executed, the utility moves the file to the product's destination

107

Chapter 7. Product Description Language Statements

directory for the current scope. This logical name is defined for the subprocess in which product-
supplied commands execute. It is not the same PCSI$DESTINATION logical name pointing to the
target disk that can be defined by a user in the user's process.

● PCSI$SCRATCH is a subdirectory under the user's login directory that can be used by commands
for temporary working space. This directory and any files placed in it are automatically deleted at the
end of the operation.

Scope and Lifetime

The scope and lifetime of the file managed object depend on whether it is contained within a SCOPE,
END SCOPE pair as shown in Table 7.3, "File Managed Object Scope and Lifetime".

Table 7.3. File Managed Object Scope and Lifetime

Type of Scope Group Lifetime Scope

Product 1 Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor

1If the file option is ASSEMBLE EXECUTE, the file managed object has assembly lifetime and product scope.

Access Control Managed Object

You can include an ACCESS CONTROL option in a FILE statement to control access to a file managed
object. Each access control entry (ACE) you specify creates an ACE managed object with the following
characteristics:

● It is unnamed.

● It has operating lifetime. It has the same scope as the file managed object.

● The system resolves managed object conflict by managed object collection.

Image Library Managed Object

For a FILE statement that provides a shareable image, you can specify the IMAGE LIBRARY option
to direct the utility to insert the file's symbols into the system shareable image symbol table library. This
action creates an image library module object with the following characteristics:

● It must be unique within the global scope.

● It has assembly lifetime and global scope.

● Managed object conflict is not recoverable.

See Also
DIRECTORY

EXECUTE ABORT

EXECUTE INSTALL…REMOVE

EXECUTE POSTINSTALL

108

Chapter 7. Product Description Language Statements

EXECUTE START…STOP

EXECUTE TEST

EXECUTE UPGRADE

LINK

LOADABLE IMAGE

MODULE

SCOPE

Examples
1. file [SYSMGR]PROD01.DAT

 access control ("(IDENTIFIER=[TEST],ACCESS=READ)",
 "(IDENTIFIER=[PROD_USER],ACCESS=READ+WRITE)",
 "(IDENTIFIER=*,ACCESS=NONE)") write;

The FILE statement in this example specifies that the file PROD01.DAT cannot be accessed by any
user account other than TEST, which is allowed to read it, and PROD_USER, which is allowed to
read and write the file.

2. file [SYSLIB]FDVSHR.EXE image library ;

The FILE statement in this example specifies that the symbols for the shareable image
[SYSLIB]FDVSHR.EXE are inserted into the system shareable image symbol table library.

3. file [SYSMGR]DECW$STARTUP.COM protection public ;

The FILE statement in this example creates the file [SYSMGR]DECW$STARTUP.COM, giving
users read and execute access.

4. file [SYSMGR]DECW$SYLOGIN.COM protection public
 source [SYSMGR]DECW$SYLOGIN.TEMPLATE ;

The FILE statement in this example creates the file [SYSMGR]DECW$SYLOGIN.COM in the
execution environment using the contents of the file [SYSMGR]DECW$SYLOGIN.TEMPLATE
from product material packaged in the kit. You do not have to specify the source file with a separate
FILE statement. The PACKAGE command always requires a /MATERIAL qualifier.

5. file [SYSMGR]DECW$SYSTARTUP.COM generation 56 archive ;

The FILE statement in this example creates the file [SYSMGR]DECW$SYSTARTUP.COM.
If a version of the file already exists in the directory, the existing file is renamed
[SYSMGR]DECW$SYSTARTUP.COM_OLD instead of being deleted. It also assigns a generation
number to the file for conflict resolution. For example, if a version of the file already exists with a
generation number of 60, the utility will preserve the copy with generation number 60 and will not
create a new one.

6. file [SYSEXE]CALIBRATE.EXE
 assemble execute "@PCSI$SOURCE:[TEMP]CALIBRATE_LINK.COM"
 assemble uses ("[TEMP]CALIBRATE.OBJ",
 "[TEMP]CALIBRATE_LINK.COM") ;

109

Chapter 7. Product Description Language Statements

The FILE statement in this example creates the file [SYSEXE]CALIBRATE.EXE in
the execution environment by executing a command procedure to link the image. The
link command procedure and object file are obtained from product material packaged
in the kit. The link command in CALIBRATE_LINK.COM uses the link qualifier
/EXECUTABLE=PCSI$DESTINATION:[SYSEXE]CALIBRATE.EXE to create the image file.

7. file "[EXAMPLES.C_CODE]ERROR–42-49.C" ;

The relative file specification in the FILE statement above is enclosed in quotes because the file
name contains consecutive hyphen characters. A double hyphen usually indicates a comment
delimiter in the PDF, unless it is part of a quoted string.

8. if (<software AXPVMS VMS version minimum V7.1 version below A7.2>) ;
 file [syslib]debugshr.exe source [syslib]debugshr_v71.exe ;
 else if (<software AXPVMS VMS version minimum A7.2>) ;
 file [syslib]debugshr.exe source [syslib]debugshr_v72.exe ;

The PDL statements above conditionally provide a file named DEBUGSHR.EXE based on the
version of the OpenVMS operating system that is installed. Separate shareable images linked to
run on OpenVMS Version 7.1 and OpenVMS Version 7.2 (or later) are packaged in the kit. If
the version of OpenVMS is at least Version 7.1, the appropriate image is selected and installed as
DEBUGSHR.EXE.

HARDWARE DEVICE
HARDWARE DEVICE — The HARDWARE DEVICE statement identifies a required hardware device
that must be present in the execution environment. If the device is not present, the utility prompts the
user either to continue or to terminate the operation. The HARDWARE DEVICE function tests whether
a specified device is present. The value is true if the device is present; otherwise, the value is false.

Statement Syntax
HARDWARE DEVICE name ;

Function Syntax
HARDWARE DEVICE name

Parameter
name

Indicates the device name of the hardware device. You must include the colon (:) at the end of the device
name.

Description
Statement

The HARDWARE DEVICE statement specifies a required hardware device. If the device is not present,
the utility prompts the user to continue or to terminate the operation.

If the operation executes in batch mode and requires user interaction, the operation terminates.

110

Chapter 7. Product Description Language Statements

Function

The HARDWARE DEVICE function tests whether the specified device is present. The value is true if
the device is present; otherwise, the value is false.

See Also
IF

Examples
1. hardware device LPA0: ;

The HARDWARE DEVICE statement in this example specifies that if the device named LPA0:
is not present in the execution environment, then the utility displays a message prompting the user
either to continue or to terminate the operation.

2. if (<hardware device GAA0:>) ;
 file [SYSEXE]SMFDRIVER.EXE ;
end if ;

The HARDWARE DEVICE function in this example provides the file
[SYSEXE]SMFDRIVER.EXE if the device GAA0: is present.

HARDWARE PROCESSOR
HARDWARE PROCESSOR — The HARDWARE PROCESSOR statement identifies a system
processor model that must be present in the execution environment. If the model is not present,
the utility prompts the user either to continue or to terminate the operation. The HARDWARE
PROCESSOR function tests whether the specified system processor model is present. The value is true if
the model is present; otherwise, the value is false.

Statement Syntax
HARDWARE PROCESSOR MODEL (model,...) ;

Function Syntax
HARDWARE PROCESSOR MODEL (model,...)

Parameter
MODEL (model,...)

Indicates processor model identifiers as integer values. You can obtain the processor model number by
using the DCL lexical function F$GETSYI("CPU").

Description
Statement

The HARDWARE PROCESSOR statement specifies a system processor model. If the model is not
present, the utility prompts the user to either continue or terminate the operation.

111

Chapter 7. Product Description Language Statements

If the operation executes in batch mode and requires user interaction, the operation terminates.

Function

The HARDWARE PROCESSOR function tests whether the specified system processor model is
present. The value is true if the model is present; otherwise, the value is false.

See Also
IF

Example
Suppose the PDF contains the following lines:

1. if (<hardware processor model 7>) ;
 error UNSPROC ;
end if ;

You would have an UNSPROC module in the PTF similar to the following:

2. 1 UNSPROC
=prompt Not supported on MicroVAX I.
This product is not supported on the MicroVAX I processor.

If the processor model is 7, the system displays a message supplied by the text module UNSPROC
indicating that the product is not supported on the MicroVAX I computer. The user is then prompted
to continue or terminate the operation.

IGNORE DESTINATION_PATH
IGNORE DESTINATION_PATH — The IGNORE DESTINATION_PATH statement always installs the
software product to the default path.

Statement Syntax
IGNORE DESTINATION_PATH ;

Description
The IGNORE DESTINATION_PATH statement installs the software product to the default path, that
is, SYS$SYSDEVICE:[VMS$COMMON] and the directories below it. If the system manager specifies
PCSI$DESTINATION or uses the /DESTINATION qualifier when entering the installation command,
the user will be shown a message that the product should be installed to the default destination, and if the
user does not agree to this, the installation will be aborted.

See Also
Section 2.4, "User-Defined Logical Names"

Example
IGNORE DESTINATION_PATH ;

112

Chapter 7. Product Description Language Statements

In this example, IGNORE DESTINATION_PATH will ignore the installation destination path if one is
specified.

IF
IF — The IF statement conditionally processes a group of statements based on the evaluation of an
expression. The IF, ELSE, ELSE IF, and END IF statements are used together to form an IF group.

Syntax
IF expression; PDL-statements [[ELSE IF expression; PDL-statements] ...]
[ELSE; PDL-statements] END IF ;

Parameter
expression

Indicates the condition you want to test. An expression is used to produce a Boolean value based on the
evaluation of the condition. It is delimited by opening and closing parentheses (...). It contains one or
more of the following PDL functions:

● <HARDWARE DEVICE>

● <HARDWARE PROCESSOR>

● <LOGICAL NAME>

● <OPTION>

● <SOFTWARE>

● <UPGRADE>

Optionally, the expression also contains one or more of the keywords AND, OR, and NOT, which are
used as logical operators. An expression has one of the following forms, where each term is either
another expression or a function:

● (term)

● (term AND term)

● (term OR term)

● (NOT term)

Option
PDL-statements

Any product description language statement or a group of statements described in this reference section,
except the PRODUCT and END PRODUCT statements.

Required Terminator
END IF ;

113

Chapter 7. Product Description Language Statements

Description
The IF group conditionally processes a group of statements based on the evaluation of an expression.
The utility executes the statements contained in the IF group up to the first occurrence of an ELSE IF
statement (if present), an ELSE statement (if present), or END IF statement if the expression evaluates to
true. The utility skips these statements if the expression evaluates to false.

ELSE IF

The ELSE IF statement is valid only if it is immediately contained in an IF group and is not lexically
preceded by an ELSE statement.

The utility executes the statements lexically contained in the IF group between the ELSE IF statement
and the next occurrence of an ELSE, ELSE IF, or END IF statement if all of the following conditions
exist:

● The result of evaluating the expression in the IF statement is false.

● The result of evaluating the expression in all lexically preceding ELSE IF statements in the same IF
group (if present) is false.

● The result of evaluating the ELSE IF expression is true.

If any of these conditions are not satisfied, the utility also does not execute statements lexically
contained in the IF group between the ELSE IF statement and the next occurrence of an ELSE, ELSE
IF, or END IF statement.

ELSE

The ELSE statement is valid only if it is immediately contained in an IF group and is the only ELSE
statement in the IF group. The utility executes the statements following the ELSE statement (in the same
IF group) if both of the following conditions exist:

● The result of evaluating the expression in the IF statement is false.

● The result of evaluating the expression in all lexically preceding ELSE IF statements in the same IF
group (if present) is false.

If either of these conditions is not satisfied, the utility does not execute statements lexically contained in
the IF group between the ELSE statement and the END IF statement.

See Also
HARDWARE DEVICE

HARDWARE PROCESSOR

LOGICAL NAME

OPTION

SOFTWARE

UPGRADE

Examples
1. if (<software AXPVMS DECWINDOWS>) ;

114

Chapter 7. Product Description Language Statements

 file [SYSEXE]PRO$DW_SUPPORT.EXE ;
else if (<software VSI AXPVMS MOTIF>) ;
 file [SYSEXE]PRO$MOTIF_SUPPORT.EXE ;
else ;
 file [SYSEXE]PRO$CC_SUPPORT.EXE ;
end if ;

This example uses the IF statement in conjunction with the SOFTWARE function to determine
which file to provide, as follows:

● If DECwindows is present, the utility provides the file [SYSEXE]PRO$DW_SUPPORT.EXE.

● If DECwindows is not present and DECwindows Motif is present, the utility provides the file
[SYSEXE]PRO$MOTIF_SUPPORT.EXE.

● If neither DECwindows nor DECwindows Motif is present, the utility provides the file
[SYSEXE]PRO$CC_SUPPORT.EXE.

2. if ((NOT <hardware device MUA0:>) AND
 (<software ABC AXPVMS TEST version below 2.0>));
.
.
.
end if;

In this example, the group of statements enclosed within the IF …END IF statements is executed if
no MUA0: device is available on the target system and the product TEST with a version below V2.0
is present. The expression evaluates to false either if there is an MUA0: device, the product TEST is
V2.0 or above, or no such product is installed.

INFER
INFER — The INFER statement tests the target system to determine if a product or product version is
available. The INFER statement is valid only in a transition PDF.

Syntax

INFER { AVAILABLE FROM { INSTALL file | LOGICAL NAME logical_name } |
VERSION FROM file } ;

Parameters

file

Indicates the relative file specification of the file you want to test.

logical_name

Indicates the logical name you want to test.

Description

The INFER statement tests the target system to determine if a product or product version is available.
This statement is valid only in a transition PDF.

115

Chapter 7. Product Description Language Statements

There are several types of INFER statements:

● The INFER AVAILABLE statement tests the target system to determine if the product named in the
product directive of the transition PDF is available.

• The INFER AVAILABLE FROM INSTALL statement tests whether the product is available
only if the specified file is installed as a known image. The SCOPE statement controls execution
of this statement; the test executes in the specified scope.

• The INFER AVAILABLE FROM LOGICAL NAME statement tests whether the product is
available only if the logical name you specify has a translation.

● The INFER VERSION statement tests the target system to determine the presence and active version
of the product named in the product directive of the transition PDF. The product is inferred to be
present if the specified file is present on the system and absent otherwise. If the product is present,
the active version is inferred to be the internal version number of the specified file. The SCOPE
statement controls execution of this statement; the test executes in the specified scope.

See Also
SCOPE

Examples
1. infer available from logical name DOC$ROOT ;

The INFER AVAILABLE statement in this example determines if the product is available by
checking to see if there is a translation for the logical name DOC$ROOT. The name of the product
that the statement is testing for is contained in the product directive in the transition PDF.

2. infer version from [SYSEXE]FORTRAN.EXE

The INFER VERSION statement in this example determines the active version of the product by
checking to see if the file [SYSEXE]FORTRAN.EXE is present.

INFORMATION
INFORMATION — The INFORMATION statement displays a message from the specified text module
in the PTF either before or after the execution of an installation, configuration, or reconfiguration
operation.

Syntax
INFORMATION name [[NO] CONFIRM] [{ PHASE AFTER | PHASE BEFORE }] [WITH
HELPTEXT] ;

Parameter
name

Indicates, as a quoted or unquoted string, the name of the associated PTF text module. The name you
specify can be from 1 to 31 characters in length and must be unique among all names in the same
product description.

116

Chapter 7. Product Description Language Statements

Options
[NO] CONFIRM

Displays the contents of the text module and prompts the user for a response. The user can continue
or terminate the operation. The CONFIRM option does not have any effect in batch mode. The
default is NO CONFIRM.

PHASE AFTER

Displays the contents of the text module after the execution phase of the operation finishes. This
option cannot be used with the PHASE BEFORE option.

PHASE BEFORE

Displays the contents of the text module during the configuration phase. This option is the default
and cannot be used with the PHASE AFTER option.

WITH HELPTEXT

Forces the display of the full help text module during the installation or configuration of the product.

Description
The INFORMATION statement displays a message from the specified text module in the PTF either
before or after the execution of an installation, configuration, or reconfiguration operation as directed
by the phase option. The PHASE BEFORE option causes the message to be displayed during the
configuration phase of the operation; the PHASE AFTER option causes the message to be displayed
after the execution phase of the operation.

By default, the prompt text string is displayed without help text. However, help text is displayed after the
prompt text when the user specifies the /HELP qualifier on the command line, or the INFORMATION
statement contains the WITH HELPTEXT option.

You must supply prompt text for the INFORMATION statement in the PTF using the =prompt
directive. Help text is optional. If provided, it must immediately follow the prompt text line.

If you have INFORMATION statements that specify the PHASE BEFORE option and they are lexically
contained in a group with configuration choices, they are processed in lexical order and may be nested.

Information statements that specify the PHASE AFTER option do not display text if they are lexically
contained in an option group that is not selected.

The CONFIRM option to the INFORMATION statement causes the utility to prompt the user to
continue or terminate the operation.

The INFORMATION statement declares a name; it is not a variable.

See Also
PART

PROCESS PARAMETER

SYSTEM PARAMETER

117

Chapter 7. Product Description Language Statements

Example
Suppose the product text file for VSI Rdb for OpenVMS software contains the following lines:

1. 1 RELEASE_NOTES
=prompt Release notes for Rdb/VMS available.
The release notes for Rdb/VMS are available in the file
SYS$HELP:RDBVMSV4.RELEASE_NOTES.
1 STOP_RDB_VMS_MONITOR
=prompt The Rdb for OpenVMS monitor must be stopped before installation

The Rdb for OpenVMS monitor must be stopped before you install Rdb for
 OpenVMS.
Perform the following operation:
$ @SYS$MANAGER:RMONSTOP

The product description file could contain the following information statements:

2. information RELEASE_NOTES phase after ;
information STOP_RDB_VMS_MONITOR phase before with helptext confirm;

If the user requests help, the first INFORMATION statement displays the following text after the
operation finishes:

3. Release notes for Rdb for OpenVMS available.

The release notes for Rdb for OpenVMS are available in the file
SYS$HELP:RDBVMSV4.RELEASE_NOTES.

If the user does not request help, the first INFORMATION statement displays only the prompt text
after the operation finishes:

4. Release notes for Rdb for OpenVMS available.

Regardless of whether the user requests help or not, the second INFORMATION statement displays
the following text for the user during the configuration phase:

5. The Rdb for OpenVMS monitor must be stopped before installation

The Rdb for OpenVMS monitor must be stopped before Rdb for OpenVMS may
 be installed.
Perform the following operation:
$ @SYS$MANAGER:RMONSTOP

Do you want to continue [YES]?

Regardless of whether the HELP DISPLAY option is set, the confirm option in the second statement
forces the user to respond to the prompt before continuing.

LINK
LINK — The LINK statement specifies a second directory entry for a file or directory.

Syntax
LINK name FROM source ;

118

Chapter 7. Product Description Language Statements

Parameters
name

Indicates the file specification of the second directory entry.

FROM source

Indicates the file specification of an existing directory entry for the file or directory. The parameter
string must be a single quoted or unquoted string. The referenced file or directory must be defined by a
DIRECTORY or FILE statement in the same product description.

Description
The LINK statement specifies a second directory entry for a file or directory. The managed object type
of the file with the second directory entry is “link”.

The scope and lifetime of the link managed object depend on whether it is contained in a scope group, as
shown in Table 7.4, "Link Managed Object Scope and Lifetime".

Table 7.4. Link Managed Object Scope and Lifetime

Type of Scope Group Lifetime Scope

Product Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor

If the LINK statement is not contained in a SCOPE, END SCOPE pair or it is contained in a scope
product group, the link managed object has product lifetime and product scope.

Managed object conflict is unrecoverable.

See Also
DIRECTORY

FILE

SCOPE

Examples
1. file [SYS$EXE]FMS.EXE;

link [SYSEXE]FMS.EXE from [SYS$EXE]FMS.EXE ;

The statement in this example specifies that the file [SYSEXE]FMS.EXE is linked to the file
[SYS$EXE]FMS.EXE. Both files, [SYS$EXE]FMS.EXE and [SYSEXE]FMS.EXE, have the same
file ID.

2. directory [ABC] ;
directory [DEF] ;

119

Chapter 7. Product Description Language Statements

link [DEF]ABC.DIR from [000000]ABC.DIR;

This example illustrates how to create a second directory entry [DEF.ABC] for a directory [ABC].

LOADABLE IMAGE
LOADABLE IMAGE — The LOADABLE IMAGE statement places an image into the system
loadable images table, SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA, and also into
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX for compatibility with the System Management utility
(SYSMAN).

Syntax
LOADABLE IMAGE image PRODUCT product [STEP { INIT | SYSINIT }] [MESSAGE text]
[SEVERITY { FATAL | SUCCESS | WARNING }] ;

Parameters
image

Indicates the file name of the system loadable image. The name you specify must be defined in the same
product description and must have bootstrap scope and product or assembly lifetime.

PRODUCT product

Indicates the product mnemonic (as a single quoted or unquoted string of 1 to 8 characters) that uniquely
identifies the loadable image. For user-written images, this should typically contain the string _LOCAL_.

Options
STEP INIT

Indicates that the system load the image during the INIT step of the booting process.

STEP SYSINIT

Indicates that the system load the image during the SYSINIT step of the booting process. This is the
default.

MESSAGE text

Indicates the message you want displayed using the severity option. The message must be a single
quoted or unquoted string. Case is significant. By default, the severity option displays the message
“system image load failed.”

SEVERITY FATAL

Indicates that if an error occurs while the image is being loaded, the system displays the message and
bugchecks; if no error occurs, processing continues.

SEVERITY SUCCESS

Indicates that the system continue processing and not display a message regardless of whether an
error occurs while the image is being loaded.

120

Chapter 7. Product Description Language Statements

SEVERITY WARNING

Indicates that if an error occurs while the image is being loaded, the system displays the message
and continues; if no error occurs, the system continues and does not display the message. This is the
default.

Description
The LOADABLE IMAGE statement places an image into the system loadable images
table, SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA, and also into
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX for compatibility with the System Management utility
(SYSMAN).

The LOADABLE IMAGE statement specifies a loadable image module managed object that has the
following characteristics:

● It must be unique within the global scope.

● It has assembly lifetime and global scope.

● It does not recover from managed object conflict.

The LOADABLE IMAGE statement also refers to a file managed object specified using the image
parameter.

See Also
FILE

Example
loadable image DDIF$RMS_EXTENSION product _LOCAL_
 message "DDIF Extension not loaded"
 severity warning ;

The statement in this example places the user-written image DDIF$RMS_EXTENSION in the system
loadable images table. If an error occurs while loading this image, the system displays the error message
“DDIF Extension not loaded” and continues.

LOGICAL NAME
LOGICAL NAME — The LOGICAL NAME function tests whether the specified logical name is
defined in the designated logical name table and optionally has an equivalence string with a particular
value. There is no corresponding LOGICAL NAME statement.

Function Syntax
< LOGICAL NAME name [EQUALS value] [TABLE table_name] >

Parameter
NAME name

Indicates the logical name string.

121

Chapter 7. Product Description Language Statements

Options
EQUALS value

Specifies the value of the equivalence name string that must match the translation of the logical name to
cause the function to evaluate as TRUE. If you do not use the EQUALS option to specify an equivalence
name, the presence of the logical name in the specified or default logical name table is sufficient to make
the function evaluate as TRUE.

TABLE table_name

Specifies the name of the logical name table to search. If you do not use the TABLE option to designate
a logical name table, LNM$SYSTEM_TABLE becomes the default table to search.

Description
The LOGICAL NAME function tests whether the specified logical name is defined in the designated
logical name table and optionally has an equivalence string with a particular value.

The function evaluates as TRUE if the logical name is defined in the designated logical name table (or
the system logical name table by default) and, if a value for the logical name is specified, the translation
of the logical name provides an equivalence string that matches that value. Otherwise, the function
evaluates as FALSE. Note that only one logical name table is searched.

The LOGICAL NAME function is evaluated immediately after processing all EXECUTE
PRECONFIGURE statements that may be present in the PDF. This has the following implications:

● For the logical name function to evaluate as TRUE, it must be defined in one of the following ways:

1. By the user before the PRODUCT command is invoked

2. BY the action of a command procedure run by the processing of an EXECUTE
PRECONFIGURE statement.

A logical name defined during the processing of any other type of EXECUTE statement will not be
used in the evaluation of a logical name function.

● A logical name function cannot be used to conditionalize the execution of an EXECUTE
PRECONFIGURE statement. If an EXECUTE PRECONFIGURE statement is enclosed in an IF
group that tests for a logical name, the EXECUTE PRECONFIGURE statement will always be
executed.

The primary purpose of the logical name function is to provide a mechanism for the product developer
to conditionalize the execution of PDL statements based on the definition of a logical name that can be
established dynamically after the user selects a product kit, but before the configuration phase begins. By
using an EXECUTE PRECONFIGURE command procedure, you can probe the system environment or
interact with the user to gather information to define a logical name as appropriate. This allows you to
affect the processing of PDL statements within an IF group during the execution phase of an installation,
configuration, or reconfiguration operation.

See Also
EXECUTE PRECONFIGURE

IF

122

Chapter 7. Product Description Language Statements

Example
execute preconfigure "@PCSI$SOURCE:[SYSUPD]EXEC_PREC.COM"
 uses [SYSUPD]EXEC_PREC.COM interactive ;
if (< logical name YOUR_ANSWER equals MENU_ITEM_1 >) ;
 file [SYSEXE]FILE1.EXE ;
else if (< logical name YOUR_ANSWER equals MENU_ITEM_2 >) ;
 file [SYSEXE]FILE2.EXE ;
else if (< logical name YOUR_ANSWER equals MENU_ITEM_3 >) ;
 file [SYSEXE]FILE3.EXE ; end if ;

The utility limits your configuration options to accept only true or false values. This example illustrates
how to program multiple choice questions.

The EXECUTE PRECONFIGURE statement runs commands from the EXEC_PREC.COM file in an
interactive mode. The user is prompted to select one of three menu items. The answer is stored by the
command procedure as an equivalence name to a logical name YOUR_ANSWER. The logical name
is evaluated immediately after the EXECUTE PRECONFIGURE statement and the result is stored
internally. During the execution phase, the LOGICAL NAME function is evaluated and, based on the
result, the IF group installs the appropriate file.

MODULE
MODULE — The MODULE statement adds or replaces one or more modules in a command, help,
macro, object, or text library file.

Syntax
MODULE file TYPE type MODULE (module_name[,...]) [[NO] GENERATION
generation] [[NO] GLOBALS] [LIBRARY library] [[NO] SELECTIVE SEARCH] ;

Parameters
file

Indicates the relative file specification of the file that contains the modules.

TYPE type

The library type. Table 7.5, "Library Types for Module Statement" lists the keywords you can specify
with this parameter.

Table 7.5. Library Types for Module Statement

Keyword Library Type Default Library File

Command Command definition library [SYSLIB]DCLTABLES.EXE
Help Help library [SYSHLP]HELPLIB.HLB
Macro Macro library [SYSLIB]STARLET.MLB
Object Object library [SYSLIB]STARLET.OLB
Text Text library [SYSLIB]STARLETSD.TLB

MODULE module_name

123

Chapter 7. Product Description Language Statements

The list of module names you are specifying.

Options
[NO] GENERATION generation

Indicates that the file has an explicit generation number. Specify the number as an unsigned integer
in the range of 0 through 4294967295. See the Description section for the meaning of this value. By
default, the file does not have an explicit generation number (no generation), which is equivalent to
0.

[NO] GLOBALS

Indicates whether the global symbol names of the modules you are inserting into an object library
are included in the global symbol table. You can use this option with object libraries only. By default,
the global symbols of the module are inserted into the global symbol table.

LIBRARY library

Indicates the relative file specification of the library. The file you specify must be a library of the
type you specified with the TYPE parameter.

[NO] SELECTIVE SEARCH

Indicates whether the input modules being inserted into the library are available for selective
searches by the linker (by default, they are not). You cannot use this option with the command and
help libraries. For more information about selective searches, see the VSI OpenVMS Linker Utility
Manual.

Description
The MODULE statement adds or replaces one or more modules in a command library file, or a single
module in a help, macro, object, or text library file. The MODULE statement adds the module name
to the product database. You do not need to use a REGISTER MODULE statement in addition to a
MODULE statement to register the module name.

Use the MODULE parameter to specify the name of the module object. For a help, macro, object, or text
library, the name specified with the MODULE parameter should be the same as the name of the module
itself.

The module object has assembly lifetime, and its scope is the same as the library.

A module inserted into a command, help, object, text, or macro library can conflict with another module
having the same name that is already resident in the library. Two types of module conflict can occur:

● An interproduct module conflict occurs when two or more products provide a module with the
same name.

● An intraproduct module conflict occurs when two or more patch or partial kits for a product update
the same module.

The utility resolves a module conflict by comparing the generation numbers of the modules involved.

A generation number is an optional attribute you supply on either the MODULE or REGISTER
MODULE statement using the GENERATION option. A generation number can be any integer in the
range of 0 to 4294967295. If you do not specify a generation number, its default value is 0.

124

Chapter 7. Product Description Language Statements

Table 7.6. Resolving Module Conflict with Generation Numbers

If the generation numbers Then

Are different The module with the largest non-zero number is selected.
Are the same and are not zero The module from the kit replaces the previously installed

module.
Are zero Unresolvable file conflict, an error is reported to the user. Note

that for V6.1-V6.2 a module with an explicit generation number
of 0 might be selected over a module with a default value of 0.

Generation information is not used for intraproduct conflict detection when a product is upgraded. In
this case, all modules from the old version are deleted, and new modules from the kit are placed on
the target disk. However, generation information is used during an upgrade for interproduct conflict
detection when any modules from the product conflict with modules from another product.

See Also
FILE

REGISTER MODULE

Examples
1. module [SYSUPD]CDD.CLD type COMMAND module CDD ;

The statement in this example creates the command module CDD in the default command library
[SYSLIB]DCLTABLES.EXE using the file [SYSUPD]CDD.CLD.

2. module [SYSUPD]HELP.HLP type HELP module HELP ;

The statement in this example creates the help module in the default help library
[SYSHLP]HELPLIB.HLB using the file [SYSUPD]HELP.HLP.

3. module [SYSUPD]SPI$CONNECT.MAR type MACRO
 library [SYSLIB]LIB.MLB module SPI$CONNECT ;

The statement in this example creates the macro module SPI$CONNECT in the macro library
[SYSLIB]LIB.MLB using the file [SYSUPD]SPI$CONNECT.MAR.

4. module [SYSUPD]COBRTL.OBJ type OBJECT module COBRTL;

The statement in this example creates the object module COBRTL in the default object library
[SYSLIB]STARLET.OLB using the file [SYSUPD]COBRTL.OBJ.

5. module [SYSUPD]PROTOTYPE_BOOK.TXT type TEXT
 library [SYSLIB]LPS$FONT_METRICS.TLB module PROTOTYPE_BOOK;

The statement in this example creates the text module PROTOTYPE_BOOK in the text library
[SYSLIB]LPS$FONT_METRICS.TLB using the file [SYSUPD]PROTOTYPE_BOOK.TXT.

NETWORK OBJECT
NETWORK OBJECT — The NETWORK OBJECT statement uses a command procedure to create a
DECnet network object.

125

Chapter 7. Product Description Language Statements

Syntax
NETWORK OBJECT name WITH (parameters,...) ;

Parameters
name

Indicates the name of the network object. The network object name is passed to the command procedure
as P1.

WITH (parameters,...)

Indicates the list of parameters that are passed to the command procedure that creates the network
object. Each parameter must be a single quoted string that specifies P2 through P5, in order. See the
Description section for the meaning of the parameters.

Description
The NETWORK OBJECT statement uses a command procedure
(SYS$UPDATE:PCSI$CREATE_NETWORK_OBJECT.COM) to create network objects. The
command procedure determines whether DECnet Phase IV or DECnet–Plus is running on the system.
If Phase IV is being used, the command procedure runs the Network Control Program (NCP) utility to
create the network object. Otherwise, it runs the Network Control Language (NCL) utility.

In the case of DECnet–Plus, the network object created during the product installation will exist only in
memory. It is recommended that DECnet–Plus objects be supplied in the form of an NCL script with a
FILE statement and activated with a product startup procedure.

The utility passes the following parameters to the command procedure:

● P1 specifies the name of the network object (using the name parameter).

● P2 specifies the object number (for DECnet Phase IV systems only).

● P3 specifies the user name associated with the object. If you specify a user name, it must already
exist.

Note

The password of the specified user account is changed when the network object is created by
PCSI$CREATE_NETWORK_OBJECT.COM. The new password is system generated, and can be
viewed with the NCP command SHOW OBJECT.

● P4 specifies optional parameters to use with the NCP command DEFINE OBJECT for DECnet
Phase IV objects.

● P5 specifies optional parameters to use with the NCL command
CREATE SESSION CONTROL APPLICATION for DECnet–Plus objects.

When you remove a product that created network objects, the POLYCENTER Software Installation
utility uses a command procedure (SYS$UPDATE:PCSI$DELETE_NETWORK_OBJECT.COM) to
delete network objects associated with your product.

126

Chapter 7. Product Description Language Statements

Note

In a future version, the utility may create and delete these managed objects directly without the use of
command procedures. If this is the case, these statements will continue to function, but the command
procedures may not be maintained or shipped with future versions of the utility.

The NETWORK OBJECT statement specifies a network object managed object that has the following
characteristics:

● Its name is the value of the name parameter. The name must be unique with respect to all network
object names in the processor scope.

● It has operating lifetime and processor scope.

● Managed object conflict is not recoverable.

See Also
FILE

EXECUTE START…STOP

Examples
1. network object k$test with ("number 107", "user KRYPTON") ;

In this example, the NETWORK OBJECT statement creates a network DECnet Phase IV object
named k$test. Its object number is 107 and it will execute as user KRYPTON.

2. file [SYSMGR]NETOBJ_TEST.NCL;
file [SYS$STARTUP]PRODUCT_STARTUP.COM ;

execute
 start "@sys$startup:product_startup.com"
 stop "";

In this example, the first FILE statement supplies the DECnet–Plus NCL script file. This script can
contain NCL directives that create a DECnet–Plus network object, that is, session control application.
For example, the script file might contain the following NCL commands:

.

.

.
delete session control application k_test
create session control application k_test
set session control application k_test
.
.
.

The network object name is k_test.

The second FILE statement supplies a command procedure, which is executed as a result of
processing the EXECUTE START statement during the product installation. The startup command
procedure may contain the following DCL command that forces the NCL script file to be executed:

.

127

Chapter 7. Product Description Language Statements

.

.
$ MCR NCL DO NETOBJ_TEST.NCL
.
.
.

The startup command procedure can be placed later into the system startup procedure to execute
each time the user's system is rebooted.

OPTION
OPTION — The OPTION statement conditionally processes a group of statements based on the user's
response to a question. The OPTION and END OPTION statements form an OPTION group.

Statement Syntax
OPTION name [DEFAULT value] [WITH HELPTEXT] ; [PDL-statements] END OPTION ;

Function Syntax
< OPTION name [DEFAULT value] [WITH HELPTEXT] >

Parameter
name

Indicates, as a quoted or unquoted string, the name of the associated PTF text module. This text module
contains the text of a question that will be displayed to the user. The name you specify can be from 1 to
31 characters and must be unique among all text modules in the PDF; that is, two PDL statements cannot
refer to the same text module.

Options
DEFAULT value

Indicates the default value for the option. The value must be either 1 (true), 0 (false), yes, no, true, or
false; the default is 1 (true).

If you specify an OPTION statement with the default value 0, and the OPTION group contains other
OPTION statements, any defaults for the enclosed OPTION statements apply only when the top-
level OPTION statement is selected.

WITH HELPTEXT

Forces the display of the full help text module during the installation or configuration of the product.

PDL-statements

Any product description language statement or a group of statements described in this reference
section can be used, except the PRODUCT and END PRODUCT statements.

Required Terminator
END OPTION ;

128

Chapter 7. Product Description Language Statements

Description
Statement

The OPTION statement conditionally processes a group of statements based on the user's response to a
question. The user is prompted to choose options during the configuration phase of an operation. If the
user accepts an option, the utility executes the statements contained in the OPTION group. If the user
declines the option, the utility skips these statements.

You can nest OPTION groups. The user must process and select an OPTION group containing other
OPTION statements before any inner OPTION statements are processed. That is, if the user declines an
option, any OPTION groups contained within it are also treated as being declined.

When an option is processed, the utility displays the prompt text line from the specified module in the
PTF and waits for a response. The response can be Yes, No, or Return to accept the default answer.

Default answers come from one of three places:

● A product configuration file (PCF), if one is supplied with the
/CONFIGURATION=INPUT=pcf-name qualifier on the command line of a
PRODUCT INSTALL, PRODUCT CONFIGURE, or PRODUCT RECONFIGURE command.

● The product database (PDB) for an upgrade of a previously installed product where the PDB
contains the answers from the previous installation.

● The product description file (PDF) from the product kit.

If an input PCF is used and it contains an answer for an option, that answer is the default. Depending on
the entry in the PCF, the user may or may not be allowed to change the default value.

If no input PCF is supplied, or if the input PCF does not contain an answer for an option, the default
answer is obtained from either the PDB or the PDF. If the PDB does not contain information about the
product (for example, this is a new installation), or a product specific PDB entry exists but does not
contain the option (a new option), then the default comes from the PDF. Default answers that come from
either the PDB or PDF may be changed by the user.

In addition to the prompt text line, the utility displays help text (if present in the PTF), when the user
specifies the /HELP qualifier on the command line, or the OPTION statement contains the WITH
HELPTEXT option.

You must supply prompt text for the OPTION statement in the PTF using the =prompt directive. Help
text is optional. If provided, it must immediately follow the prompt text line.

You cannot use the OPTION statement in a patch, mandatory update, partial, or transition PDF. It is
valid only in a full, platform, or operating system PDF.

Function

The user is prompted to choose options during the configuration phase of the operation. If the user
selects an option, the OPTION function returns true. If the user declines the option, the OPTION
function returns false.

See Also
IF

129

Chapter 7. Product Description Language Statements

PART

Examples
1. option NET ;

 file [SYSEXE]NETSERVER.COM ;
 file [SYSEXE]NETSERVER.EXE ;
 file [SYSHLP]NCPHELP.HLB ;
 option NET_A default 0 ;
 file [SYSEXE]FAL.COM ;
 file [SYSEXE]FAL.EXE ;
 end option ;
 option NET_B ;
 file [SYSEXE]REMACP.EXE ;
 file [SYSMGR]RTTLOAD.COM ;
 file [SYS$LDR]CTDRIVER.EXE ;
 file [SYS$LDR]RTTDRIVER.EXE ;
 end option ;
end option ;

If the product description file contains the previous lines, the product text file contains the
corresponding text:

1 NET
=prompt network support
This option allows you to participate in a DECnet network.
1 NET_A
=prompt incoming remote file access
This option allows file access from other nodes in a DECnet network.
1 NET_B
=prompt incoming remote terminal access
This option allows users on other nodes in a DECnet network to log in.

The user must select option NET before NET_A or NET_B are available for selection. Therefore,
NET is processed before NET_A or NET_B.

2. if (<option A>) ;
 file [SYSEXE]A.EXE ;
else ;
 file [SYSEXE]B.EXE ;
end if ;

The product text file contains the corresponding text:

1 A
=prompt the X capability
This feature provides the A capability, but you will not get the B
 capability.

In this example, if the user selected the A option, the utility provides the file [SYSEXE]A.EXE.
Otherwise, the utility provides the file [SYSEXE]B.EXE.

PART
PART — The PART statement displays a message from the specified text module in the PTF about a
group of statements during the configuration phase of an installation, configuration, or reconfiguration
operation. The PART and END PART statements form a PART group.

130

Chapter 7. Product Description Language Statements

Syntax
PART name ; [PDL-statements] END PART ;

Parameter
name

Indicates, as a quoted or unquoted string, the name of the associated PTF text module. The name you
specify can be from 1 to 31 characters in length and must be unique among all names in the same
product description.

Option
PDL-statements

Any product description language statement or a group of statements described in this reference section,
except the PRODUCT and END PRODUCT statements.

Required Terminator
END PART ;

Description
The PART statement displays a message from the specified text module in the PTF about a group of
statements during the configuration phase of an installation, configuration, or reconfiguration operation.
You can nest PART groups, which are processed in lexical order.

Although the syntax of the part group and the option group is similar, their purpose is quite different.
The part group simply displays a message and does not affect the processing of PDL statements
contained within the group. In contrast, the option group prompts the user to accept or decline the
option, causing the PDL statements that make up the option to be processed or ignored.

By default, the prompt text string is displayed without help text. However, help text is displayed after the
prompt text when the user specifies the /HELP qualifier on the command line.

You must supply prompt text for the PART statement in the PTF using the =prompt directive. Help text
is optional. If provided, it must immediately follow the prompt text line.

See Also
INFORMATION

OPTION

Example
Suppose the product description file contains the following lines:

1. part CSWS ;
 software AXPVMS CSWS
 version required V1.0 component ;
 software AXPVMS MOD_JSERV

131

Chapter 7. Product Description Language Statements

 version required V1.0 component ;
 software AXPVMS MOD_PERL
 version required V1.0 component ;
end part;

The product text file contains the corresponding text:

2. 1 CSWS
=prompt Secure Web Server
This platform provides the following products:
* Compaq Secure Web Server software (Based on Apache)
* HP Secure Web Server software (Based on Apache)
* MOD_JSERV software
* MOD_PERL software

This example shows how to use the PART statement to display a message about the required
software products that this platform provides.

PATCH TEXT
PATCH TEXT — The PATCH TEXT statement updates a text file using SUMSLP commands. As of
OpenVMS Version 7.3, the PATCH TEXT statement is obsolete. To support existing product kits that
may have used this statement, the POLYCENTER Software Installation utility continues to process this
statement in a backward-compatible manner. However, VSI recommends that you do not use the PATCH
TEXT statement in new or revised product kits. If possible, provide a replacement file with a FILE
statement. If this is not practical, and you must edit an existing file, consider using a FILE statement with
the ASSEMBLE EXECUTE and ASSEMBLE USES options to run a command procedure that places
a copy of the previously installed file in the PCSI$DESTINATION scratch directory and performs the
editing function there. Documentation of the PATCH TEXT statement may be discontinued in a future
release of this manual.

Syntax
PATCH TEXT name WITH source ;

Parameters
name

Indicates the relative file specification of the text file you want to update.

WITH source

Indicates the file specification of the file containing the update commands (as a single quoted or
unquoted string). The file must contain SUMSLP commands for use by the EDIT/SUM editor.

Description
The PATCH TEXT statement updates a text file using SUMSLP commands. Use this statement when it
is inconvenient to provide a new file.

You must supply the file containing the update commands as part of the product material. You must
also supply the file that you want to update, but this file is not propagated to the product kit. The
POLYCENTER Software Installation utility uses it to calculate the input and output checksum values.

132

Chapter 7. Product Description Language Statements

The PATCH TEXT statement creates a temporary directory, identified by the logical name
PCSI$SCRATCH, to compute a checksum value. The PCSI$SCRATCH directory is created as a
subdirectory of SYS$SCRATCH.

The PATCH TEXT statement specifies a managed object that has the following characteristics:

● Its name is the same as the name parameter of the product group in which the statement is lexically
contained; it is a multicomponent name qualified by the relative file specification of the file that is
being updated. It must be unique with respect to all managed objects in all scopes.

● It has assembly lifetime, and its scope is the same as that of the file being updated.

● Managed object conflict is unrecoverable.

Example
patch text [SYSUPD]VMSINSTAL.COM with [SYSUPD]VMSINSTAL.SLP ;

This statement provides a file, [SYSUPD]VMSINSTAL.SLP, to patch the text file
[SYSUPD]VMSINSTAL.COM.

PROCESS PARAMETER
PROCESS PARAMETER — The PROCESS PARAMETER statement displays a message to users
about process parameter requirements. The utility does not adjust process parameters.

Syntax
PROCESS PARAMETER name {{ CONSUME | REQUIRE } value | MAXIMUM value |
MINIMUM value | MINIMUM value MAXIMUM value } ;

Parameter
name

Indicates the process parameter name. The name you specify must be valid on the system where the
product executes.

Options
CONSUME value

Indicates that the process parameter must be increased by the specified value. Use this option when
the product consumes a resource that is controlled by the process parameter. The value must be a
single unquoted string that specifies an unsigned integer value. You cannot use this option with either
the MAXIMUM, MINIMUM, or REQUIRE option.

MAXIMUM value

Indicates that the process parameter must have a value less than or equal to the specified value. The
value must be a single unquoted string that specifies an integer value.

MINIMUM value

Indicates that the process parameter must have a value greater than or equal to the specified value.
The value must be a single unquoted string that specifies an integer value.

133

Chapter 7. Product Description Language Statements

REQUIRE value

Indicates that the process parameter must have the specified value. The value must be a single string
that specifies a value of the parameter's type. This option is valid for any parameter data type. You
cannot use this option with either the MAXIMUM, MINIMUM, or CONSUME option.

Description
The PROCESS PARAMETER statement displays a message to users after the installation about process
parameter requirements. Note that the utility does not adjust process parameters.

See Also
INFORMATION

SYSTEM PARAMETER

Example
process parameter ASTLM minimum 6;
process parameter BYTLM require 32768;
process parameter PRCLM consume 2;
process parameter FILLM maximum 40;

These statements display a message to users that a process that executes the product must have the
following process parameters:

ASTLM greater than or equal to 6
BYTLM set to 32768
PRCLM increased by 2
FILLM less than or equal to 40

PROCESS PRIVILEGE
PROCESS PRIVILEGE — The PROCESS PRIVILEGE statement displays a message to users about
process privilege requirements. The utility does not adjust process privileges.

Syntax
PROCESS PRIVILEGE (name[,...]) ;

Parameter
name

Indicates the process privilege names as a list. The privileges you specify must be valid on the system
where the product executes.

Description
The PROCESS PRIVILEGE statement displays a message to users after the installation about process
privilege requirements. The utility does not adjust process privileges.

Example
process privilege (group, oper, tmpmbx, sysnam) ;

134

Chapter 7. Product Description Language Statements

The statement in this example displays a message to the user that processes using the product must have
the GROUP, OPER, TMPMBX, and SYSNAM privileges.

PRODUCT
PRODUCT — The PRODUCT statement specifies product identification and other descriptive
information about the product. The PRODUCT and END PRODUCT statements form a PRODUCT
group.

Syntax
PRODUCT producer base name version kittype ; [PDL-statements] END
PRODUCT ;

Parameters
producer

Indicates the legal owner of the software product. This parameter must be a single quoted or unquoted
string.

base

Indicates the base hardware and operating system combination on which the product is intended to be
installed. This parameter must be a single quoted or unquoted string.

String Meaning

X86VMS An OpenVMS x86-64 product
I64VMS An OpenVMS IA-64 product
AXPVMS An OpenVMS Alpha product
VMS A product applicable for any VSI supported system

Although any base system name can be used when you package a product, VSI recommends that you use
the names X86VMS, AXPVMS, I64VMS, and VMS when developing products for use on OpenVMS.

name

Indicates the name of the product. This parameter must be a single quoted or unquoted string. The
combination of the producer, base, and name parameters must be unique among products installed
on the system.

version

Indicates the version of the product. This parameter must be a single quoted or unquoted string.

kittype

Indicates the kit type of the product through use of one of the following keywords or keyword phrases:

● FULL–a complete description of a layered product (application software) that can be used to install
or upgrade the product.

● OPERATING SYSTEM–a complete description of an operating system that can be used to install or
upgrade the product. Only one product or operating system type can be installed on the system.

135

Chapter 7. Product Description Language Statements

● PARTIAL–a partial (incomplete) description of a product that can be used only to upgrade an
existing version of the same product. Installation of a partial kit changes the version number of the
product and can upgrade a product of type full, operating system, or platform. A partial kit must
contain an UPGRADE statement and have the same producer-base-name identification string as the
product it upgrades.

● PATCH–a partial (incomplete) description of a product that can be used only to update an existing
version of a product. Installation of a patch kit does not change the version number of the product
and can update a product type: full, operating system, or platform. A patch kit must contain an
APPLY TO statement and have a different producer-base-name identification string than the product
it updates.

● PLATFORM–a complete description of a suite of products that can be used to install or upgrade the
entire set of products.

● TRANSITION–a complete or incomplete description of a product that was installed on the system
by another installation method, such as VMSINSTAL. A transition kit is used only to register
a previously installed product; it does not contain any product material. Registration using a
transition kit defines the name of a product and its managed objects in the POLYCENTER Software
Installation product database. After a product is registered, the utility can use this information to
satisfy software dependency requirements that other products may have on the availability of this
product.

The keyword TRANSITION used alone denotes a layered product; the keyword phrase
TRANSITION OPERATING SYSTEM denotes an operating system.

● MANDATORY UPDATE–functionally identical to a patch kit. Its type implies that the patch must
be applied to the product it updates.

See Section 3.5, "Kit Types and Usage" for a more detailed description of kit types and example PDFs.

Option
PDL-statements

Any product description language statement or a group of statements described in this reference
section, except the PRODUCT and END PRODUCT statements.

Required Terminator
END PRODUCT ;

Description
The PRODUCT statement specifies product identification and other descriptive information about
the product. The PRODUCT and END PRODUCT statements form the product group. A product
description file consists of a product group and any other PDL statements that this group might enclose.

The PRODUCT statement is a utility directive and does not specify a managed object.

See Also
APPLY TO

SOFTWARE

136

Chapter 7. Product Description Language Statements

UPGRADE

Examples
1. product AXPVMS FMS V2.6 full ;

 file [sysmsg]fdvshr.exe image library ;
 file [sysmsg]fmsmsg.exe ;
 file [sysexe]fmsfed.exe ;
 file [sysexe]fmsfaa.exe ;
 file [sysexe]fmsfte.exe ;
 directory [systest.fms] ;
 file [systest.fms]ivp.exe ;
 file [systest.fms]samp.flb ;
end product ;

The PRODUCT statement in this example identifies the product as FMS version 2.6 that is intended
to be installed on an OpenVMS Alpha system.

2. product AXPVMS INTERNET_PRODUCTS V1.1 platform ;
.
.
.
end product ;

The PRODUCT statement in this example identifies INTERNET_PRODUCTS Version 1.1 as a suite
of products (that is, a platform) for installation on an OpenVMS Alpha system.

REGISTER MODULE
REGISTER MODULE — The REGISTER MODULE statement registers in the product database one or
more existing modules in a command, help, macro, object, or text library file.

Syntax
REGISTER MODULE TYPE type MODULE (module_name,...) [[NO] GENERATION
generation] [LIBRARY library] ;

Parameters
TYPE type

Indicates the library type. Table 7.7, "Library Types for Register Module Statement" lists the keywords
you can use with this parameter.

Table 7.7. Library Types for Register Module Statement

Keyword Library Type Default Library File

Command Command definition library [SYSLIB]DCLTABLES.EXE
Help Help library [SYSHLP]HELPLIB.HLB
Macro Macro library [SYSLIB]STARLET.MLB
Object Object library [SYSLIB]STARLET.OLB
Text Text library [SYSLIB]STARLETSD.TLB

137

Chapter 7. Product Description Language Statements

MODULE module_name

Indicates the names of the modules contained within the library.

Options
[NO] GENERATION generation

Indicates that the module has an explicit generation number. Enter the number as an unsigned integer
in the range of 0 through 4294967295. See the Description section of the MODULE statement for
the meaning of this value. By default, the module does not have an explicit generation number (no
generation), which is equivalent to 0.

LIBRARY library

The file specification of the library. The file you use must be a library of the type you specified with
the type parameter.

Description
The REGISTER MODULE statement registers in the product database one or more existing modules
in a command, help, macro, object, or text library file. Typically, REGISTER MODULE statements
are used when a product provides a library file with a FILE statement that is already populated with
modules. Registering these modules in the product database allows the utility to detect conflicts with
other modules.

Do not use REGISTER MODULE statements to register information about modules specified in a
MODULE statement. When a MODULE statement is processed, module information is automatically
placed in the product database. Therefore, use of REGISTER MODULE statements in this context would
be redundant.

See Also
MODULE

Examples
1. register module type HELP

 module
 (":=","=","@",ACCOUNTING,ALLOCATE,ANALYZE,APPEND,...) ;

In this example, the REGISTER MODULE statement registers several help modules in
[SYSHLP]HELPLIB.HLB.

2. register module type OBJECT generation 1
 module (BAS$$CB,BAS$$COPY_FD,BAS$$DISPATCH_T,...) ;

In this example, the REGISTER MODULE statement registers several object modules. The
generation option allows the utility to perform conflict resolution with these object modules.

REMOVE
REMOVE — The REMOVE statement deletes objects from the user's system. The REMOVE and END
REMOVE statements form a remove group. You cannot use the REMOVE statement in a transition
PDF.

138

Chapter 7. Product Description Language Statements

Syntax
REMOVE ; [PDL-statements] END REMOVE ;

Option
PDL-statements

Any product description language statement or a group of statements described in this reference
section, except the PRODUCT and END PRODUCT statements.

Required Terminator
END REMOVE ;

Description
The REMOVE group is used to delete objects from the user's system. Statements that normally provide
managed objects (such as FILE and DIRECTORY statements) cause these objects to be deleted when
the statements are enclosed in a REMOVE group.

By using the REMOVE group in a partial, patch, or mandatory update kit, you can eliminate obsolete
files from a previous version of your product. By using the remove group in a full kit, you can eliminate
objects provided by a previous installation mechanism (for example, VMSINSTAL). You can also use a
remove group to delete objects that were created by a previous version of your product, but which were
not recorded in the product database as managed objects. These include archived files (those saved as
*.*_OLD) and files created by command procedures invoked through execute statements. REMOVE
group in a full kit, you can eliminate objects provided by a previous installation mechanism (for example,
VMSINSTAL). You can also use a REMOVE group to delete objects that were created by a previous
version of your product, but which were not recorded in the product database as managed objects. These
include archived files (those saved as *.*_OLD) and files created by command procedures invoked
through EXECUTE statements.

Statements that do not provide managed objects function normally within a REMOVE group.

You can nest REMOVE, END REMOVE within SCOPE, END SCOPE, if necessary.

Examples
1. remove ;

 directory [SYSHLP.EXAMPLES.FOO] ;
 file [SYSHLP.EXAMPLES.FOO]SMLUS.COM ;
 file [SYSHLP.EXAMPLES.FOO]SMLUT.COM ;
 file [SYSHLP.EXAMPLES.FOO]SMLUU.COM ;
end remove ;

The statements in this example remove some files and a directory (if they exist) from the product
database and the running system.

2. scope bootstrap ;
 remove ;
 file [SYSEXE]PROD_PROC.EXE ;
 end remove ;
 file [SYSEXE]PROD_PROC_V2.EXE ;
end scope ;

139

Chapter 7. Product Description Language Statements

The statements in this example remove a file in the bootstrap scope and then provide a new file.

RIGHTS IDENTIFIER
RIGHTS IDENTIFIER — The RIGHTS IDENTIFIER statement uses a command procedure to create a
rights identifier.

Syntax
RIGHTS IDENTIFIER name WITH (parameters,...) ;

Parameters
name

Indicates the name of the rights identifier. The rights identifier name is passed to the command
procedure as P1.

WITH (parameters,...)

Indicates the list of parameters that are passed to the command procedure that creates the rights
identifier. Each parameter must be a single unquoted or quoted string that specifies P2 and P3, in order.
If there are no qualifiers to pass, specify a null string (" "). See the Description section for the meaning
of the parameters.

Description
The RIGHTS IDENTIFIER statement invokes a command procedure
(SYS$UPDATE:PCSI$CREATE_RIGHTS_IDENTIFIER.COM) to create rights identifiers. This
command procedure runs the AUTHORIZE utility to perform the function. The utility passes the
following parameters to the command procedure:

● P1 specifies the name of the rights identifier (using the name parameter).

● P2 specifies the optional qualifiers to use with the AUTHORIZE command ADD/IDENTIFIER. If
there are no qualifiers to pass, specify a null string (“ ”).

● P3 specifies the /VALUE qualifier to use with the AUTHORIZE command ADD/IDENTIFIER.
You can specify this parameter only if the identifier does not already exist on the system.

When you remove a product that created rights identifiers, the POLYCENTER Software Installation
utility uses a command procedure (SYS$UPDATE:PCSI$DELETE_RIGHTS_IDENTIFIER.COM)
to delete rights identifiers associated with your product. This happens regardless of whether the
SYSUAF.DAT is shared by another system disk.

Note

In a future version, the utility may create and delete these managed objects directly without the use of
command procedures. If this is the case, these statements will continue to function, but the command
procedures may not be maintained or shipped with future versions of the utility.

The RIGHTS IDENTIFIER statement specifies a rights identifier managed object that has the following
characteristics:

140

Chapter 7. Product Description Language Statements

● Its name is the value of the name parameter. The name must be unique with respect to all rights
identifier names in the operating scope.

● It has operating lifetime.

● It does not recover from managed object conflict.

See Also
ACCOUNT

Example
rights identifier PCSI_TEST
 with ("/attributes=DYNAMIC",
 "/value=IDENTIFIER:14600926") ;

In this example, the RIGHTS IDENTIFIER statement creates a rights identifier named PCSI_TEST with
a value of 14600926.

SCOPE
SCOPE — The SCOPE statement establishes the scope of one or more managed objects. The SCOPE
and END SCOPE statements form a scope group.

Syntax
SCOPE { BOOTSTRAP | GLOBAL | PROCESSOR | PRODUCT } ; [PDL-statements] END
SCOPE ;

Option
PDL-statements

Any product description language statement or a group of statements described in this reference
section, except the PRODUCT and END PRODUCT statements.

Required Terminator
END SCOPE ;

Description
The SCOPE statement establishes the scope of one or more managed objects. The scope of a managed
object defines the degree of sharing that the managed object permits. For example, some objects are
available only to certain processes; whereas others are shared by all processes.

The SCOPE and END SCOPE statements form a SCOPE group. The type of scope indicated in the
SCOPE statement pertains to all objects within the SCOPE group. You can nest SCOPE groups.

Note

In almost all cases, the POLYCENTER Software Installation utility defaults establish the correct scope
for each type of managed object. Because using SCOPE statements unnecessarily or incorrectly can

141

Chapter 7. Product Description Language Statements

cause problems, we recommend that you use explicit SCOPE statements only when you are sure product
scope is not sufficient, as explained here or stated in the description of certain PDL statements.

The different types of scope that a managed object can have are as follows:

● Global scope is the largest scope in which a single POLYCENTER Software Installation utility
operation can have an effect. A single file that must be shared by every process in the computing
facility must exist in global scope. Modules in system object libraries are examples of managed
objects that must be in global scope. Writable databases might be in global scope.

When placing file or modules in global scope, see Section 2.6, "Managed Objects" and the
descriptions of the FILE and MODULE statements regarding conflict resolution and the
GENERATION option.

● Bootstrap scope managed objects function during system bootstrap when operating system facilities
are unable to locate and use larger scopes. Drivers and loadable images that must be present before
startup executes are examples of files that should be in the bootstrap scope.

Use bootstrap scope for products that use device drivers, especially those drivers that must be read
by the primitive file system. Because files in bootstrap scope are read by the primitive file system,
they are read when not synchronized with the file system on other cluster members that might access
the same disk. Therefore, those files must retain stable positions as long as the disk is in use by any
system and must not be manipulated by online disk defragmentation operations, including those that
use the MOVEFILE primitive.

● Product scope managed objects are product specific. Most managed objects for a product reside in
product scope. Product scope is the default scope for most objects; therefore, it is not necessary to
specify product scope. Product scope managed objects for different products can be stored together
or separately.

● Processor scope managed objects exist in all processes executing on a single computer. For example,
a logical name might exist in processor scope.

When you update your product with a partial, patch, or mandatory update kit, you can either explicitly
state the scope of the file managed objects you are updating or let the utility determine the scope of the
file managed objects:

● You can use the SCOPE statement to ensure that the utility looks in a specific scope for the file
managed object you want to update.

● If you do not use the SCOPE statement, the utility searches the execution environment for a file
managed object with the same name. If the utility finds the object, it replaces the object; if the utility
does not find the file managed object, it provides a new file in product scope.

If you use the PATCH statement, the object you are updating must have been provided by your product.
If you use the MODULE statement, the object you are updating either must have been provided by your
product or must be in global or bootstrap scope.

See Also
DIRECTORY

FILE

INFER

142

Chapter 7. Product Description Language Statements

LINK

Example
scope bootstrap ;
 file [SYSEXE]SYSBOOT.EXE ;
 file [SYSEXE]VMB.EXE ;
end scope;

The statements in this example specify that the files VMB.EXE and SYSBOOT.EXE must be placed on
every bootstrap disk.

SOFTWARE
SOFTWARE — The SOFTWARE statement signals a software dependency on the specified product:
the specified product must be installed prior to, or concurrently with, the installation of the product that
contains the SOFTWARE statement. Upon successful installation, the SOFTWARE statement causes
a permanent software reference to be recorded in the product database. The SOFTWARE function
tests for the presence of the specified product, including any version constraints that you may impose.
In contrast to the SOFTWARE statement, the SOFTWARE function does not create a permanent
software reference to the specified product in the product database. The SOFTWARE function also
does not cause the referenced product to be implicitly installed. Take note of the distinction between
the SOFTWARE statement and the SOFTWARE function. The statement and function serve different
purposes and are not interchangeable. See the Description section for a full discussion of the differences.

Statement Syntax

SOFTWARE producer base name [[NO]COMPONENT] [{ VERSION ABOVE version
| VERSION BELOW version | VERSION MAXIMUM version | VERSION MINIMUM
version | VERSION REQUIRED version | VERSION ABOVE version | VERSION BELOW
version | VERSION ABOVE version | VERSION MAXIMUM version | VERSION
MINIMUM version | VERSION BELOW version | VERSION MINIMUM version |
VERSION MAXIMUM version }] ;

Function Syntax

< SOFTWARE producer base name [[NO]COMPONENT] [{ VERSION ABOVE version
| VERSION BELOW version | VERSION MAXIMUM version | VERSION MINIMUM
version | VERSION REQUIRED version | VERSION ABOVE version | VERSION BELOW
version | VERSION ABOVE version | VERSION MAXIMUM version | VERSION
MINIMUM version | VERSION BELOW version | VERSION MINIMUM version |
VERSION MAXIMUM version }] ; [{ INSTALLED BEFORE | INSTALLED AFTER | KIT
ACCESSIBLE }] >

Parameters

producer

Indicates the legal owner of the software product. This parameter must be a single quoted or unquoted
string.

base

143

Chapter 7. Product Description Language Statements

Indicates the base hardware/software system on which the product is intended to be installed. This
parameter must be a single quoted or unquoted string.

String Meaning

X86VMS An OpenVMS x86-64 product
I64VMS An OpenVMS IA-64 product
AXPVMS An OpenVMS Alpha product
VMS A product applicable for any VSI supported system

name

Indicates the name of the product. This parameter must be a single quoted or unquoted string. The
combination of producer, base, and name parameters must be unique among products installed on
the system.

Options
[NO] COMPONENT

Indicates that if the product is copied (using the PRODUCT COPY command), the component
products will be copied along with the product. The default is NO COMPONENT (the product does
not need to be present during a copy operation).

INSTALLED AFTER

Directs the utility to test whether the specified software product will be installed on the system at the
conclusion of the current operation. This option is available only for the SOFTWARE function. You
cannot use this option with either the INSTALLED BEFORE or KIT ACCESSIBLE option. This
option is the default when neither the INSTALLED BEFORE nor the KIT ACCESSIBLE option is
used.

INSTALLED BEFORE

Directs the utility to test whether the specified software product was installed on the system before
the current operation began. This option is available only for the SOFTWARE function. You cannot
use this option with either the INSTALLED AFTER or KIT ACCESSIBLE option.

Take special note of the fact that INSTALLED BEFORE is not the default. When neither the
INSTALLED BEFORE nor the INSTALLED AFTER option is used, the default is INSTALLED
AFTER. Therefore, if you want to determine if a product is already installed, you must use the
INSTALLED BEFORE option.

KIT ACCESSIBLE

Directs the utility to test whether the specified software product kit, either in sequential or reference
format, is present in the source directory. This option is available only for the SOFTWARE function.
You cannot use this option with either the INSTALLED AFTER or INSTALLED BEFORE option.
By default, availability of the kit is not tested.

VERSION ABOVE version

Establishes a lower version limit. The version identifier must be a single quoted or unquoted string.
Use this option to specify that the product version must be greater than (but not equal to) the

144

Chapter 7. Product Description Language Statements

specified version. You cannot use this option with either the VERSION MINIMUM or VERSION
REQUIRED option. By default, there is no lower version limit.

VERSION BELOW version

Establishes an upper version limit. The version identifier must be a single quoted or unquoted
string. Use this option to specify that the product version must be less than (but not equal to) the
specified version. You cannot use this option with either the VERSION MAXIMUM or VERSION
REQUIRED option. By default, there is no upper version limit.

VERSION MAXIMUM version

Establishes an upper version limit. The version identifier must be a single quoted or unquoted string.
Use this option to specify that the product version must be less than or equal to the specified version.
You cannot use this option with either the VERSION BELOW or VERSION REQUIRED option.
By default, there is no upper version limit.

VERSION MINIMUM version

Establishes a lower version limit. The version identifier must be a single quoted or unquoted string.
Use this option to specify that the product version must be greater than or equal to the specified
version. You cannot use this option with either the VERSION ABOVE or VERSION REQUIRED
option. By default, there is no lower version limit.

VERSION REQUIRED version

Establishes a required version. The version identifier must be a single quoted or unquoted string. Use
this option to specify that the product version must be equal to the specified version. You cannot use
this option with either the VERSION ABOVE, VERSION BELOW, VERSION MAXIMUM, or
VERSION MINIMUM option. By default, there is no required version constraint.

Description
SOFTWARE Statement

The SOFTWARE statement signals a software dependency on the specified product: the specified
product must be installed prior to (or concurrently with) the installation of the product that contains the
SOFTWARE statement. Upon successful installation, the SOFTWARE statement causes a permanent
software reference to be recorded in the product database.

One of three situations may occur when a product with a SOFTWARE statement is installed:

● If the referenced product is already installed, the software dependency is satisfied, so no action is
performed on the referenced product.

● If the referenced product is not installed, but a product kit for it is available in the source directory,
the referenced product is implicitly installed to satisfy the software dependency.

● If the referenced product is not installed and the source directory does not contain a product kit for
it, then an error message is displayed advising the user to terminate the installation process.

If a referenced product is not available, VSI recommends that users accept the default prompt and
terminate the operation.

If you intend only to check whether a certain software product is installed on the system and alert the
user if it is not, use the SOFTWARE function.

145

Chapter 7. Product Description Language Statements

You use the SOFTWARE statement for the following purposes:

● To specify a software product that should be installed on the system to satisfy a software product
dependency. For example, if Product A has a dependency on Product B, install Product B
before installing Product A.

● To specify that a software product that is a part of a platform (product suite) is to be included in the
platform product installation.

● To satisfy a special use of the MODULE statement when the following conditions are met:

• The product updates (with a MODULE statement) a library that is supplied by the referenced
product

• Both products could be installed concurrently

Because it provides a library that another product updates, the referenced product must be installed
first. The SOFTWARE statement forces the referenced product to be installed first when the
products are installed together in one operation. (If the products were to be installed separately, you
could use the SOFTWARE function to make sure that the referenced product was already installed.)

For example, installing the OpenVMS platform product results in the installation of the OpenVMS
operating system and, optionally, selected layered products such as DECwindows Motif.
DECwindows Motif updates HELPLIB.HLB, which is originally provided by OpenVMS. Therefore,
DECwindows Motif must use a statement such as software AXPVMS VMS ; in its product
description file to explicitly reference the OpenVMS operating system and guarantee that OpenVMS
is installed before DECwindows Motif.

If two products reference each other (creating a circular reference list), the utility issues an error message.

If you use the component option, the utility creates a copy of the referenced product when you use the
PRODUCT COPY command.

If the operation executes in batch mode and a referenced product is not available, the operation
terminates.

Software Function

The SOFTWARE function tests for the presence of a product. You can also specify the version of the
product that must be present.

You can use different options to determine whether the specified product:

● Is currently installed

● Will be installed on successful completion of the operation

● Has a product kit in the source directory

The SOFTWARE function, unlike the SOFTWARE statement, does not create a permanent software
reference to another product and does not force the installation of the other product.

By default, the SOFTWARE function tests the state the product will be in when the operation finishes,
not when the operation begins. The same effect is obtained when you include the INSTALLED AFTER
option. To test the state of the referenced product when the operation begins, you must specify the

146

Chapter 7. Product Description Language Statements

INSTALLED BEFORE option. If you specify the KIT ACCESSIBLE option, the function tests whether
the referenced product kit is present in the source directory.

Note

The default option INSTALLED AFTER, is reliably tested only after the user configuration phase
concludes and the utility is about to begin the execution phase. Use caution when including this option
with the SOFTWARE function.

The function value is true if the following conditions exist; otherwise, the value is false:

● The product specified by the producer, base, and name parameters is available according to one of
the following options: INSTALLED BEFORE, INSTALLED AFTER, or KIT ACCESSIBLE.

● The VERSION option is omitted, or the available version satisfies the specified constraints.

The SOFTWARE function is more appropriate than the SOFTWARE statement if you need only verify
the existence of a certain product.

You use the SOFTWARE function with the IF statement, as shown in the following example:

 if (not < software AXPVMS PROD_A version minimum V4.0 >) ;
 information NO_PROD_A confirm ;
 file [SYSEXE]PROD_A_SUBSTITUTE.EXE ;
 end if ;

Using the SOFTWARE function with the IF statement gives you much more flexibility in forming
expressions with other functions, and allows you to perform multiple actions in the form of groups of
statements.

If the SOFTWARE function reference is not satisfied, you can display an error message with an ERROR
statement. This message allows a message of any size and contents. (Note that an error message induced
by an unsatisfied SOFTWARE statement is rigid, short, and potentially less informative.)

You can use the ABORT option on an ERROR statement to unconditionally terminate the SOFTWARE
function operation, while the failed SOFTWARE statement leaves the user with an option to continue
the product installation.

if (< software AXPVMS PROD_B version below V7.0 >) ;
 error NO_PROD_B abort ;
end if ;

Summary of Differences Between the Statement and Function

Table 7.8, "Summary of SOFTWARE Statement and SOFTWARE Function Differences" summarizes the
differences between the SOFTWARE statement and the SOFTWARE function.

Table 7.8. Summary of SOFTWARE Statement and SOFTWARE Function Differences

Statement Function

If the referenced product is not installed and its kit
is available to the utility during the installation of
the referencing product, it will be installed by the
utility just prior to the referencing product.

If the referenced product is not installed, the
function will evaluate to the boolean value FALSE
(0). The referenced product will not be installed
even though the kit may be available to the utility.

147

Chapter 7. Product Description Language Statements

Statement Function

Causes the utility to create a permanent software
reference in the database.

Does not create any reference from the referencing
to the referenced product.

Creates a risk of software reference conflicts. Because no permanent software reference is
created, there is no risk of conflict.

Causes the utility to create a software reference
and user interface related data structures in
memory for the duration of the operation, thereby
consuming additional system memory.

Does not cause the utility to create software
reference or user interface related data structures in
memory.

Requires additional processing to check for
software reference conflicts and for processing
error messages.

Requires no additional processing other than
searching for the presence of the referenced
products.

If software reference cannot be satisfied, a one-
sentence message is displayed to the user.

Allows any processing based on the value of the
SOFTWARE function; error messages can be
tailored in any desired way and size.

With the failure of a software reference,
continuation of the operation is still possible.

With the failure of a software reference, processing
may be unconditionally aborted with an "error
<message> abort" statement.

Use only if you are willing to install the referenced
product.

Use whenever you want only to check for the
referenced product availability, but do not intend to
install the referenced product.

Avoiding Common Mistakes

A common mistake is for a layered product's PDF to include a SOFTWARE statement reference to a
VMS (OpenVMS operating system) product, or to an OPENVMS platform (product suite that includes
the OpenVMS operating system).

It is acceptable to reference the OpenVMS operating system from a SOFTWARE statement if your
product relies on the presence of the library files supplied by the operating system. However, do not
reference the OpenVMS platform from a SOFTWARE statement.

If you need to verify the OpenVMS operating system version before the installation of the layered
product can proceed and complete successfully, use the SOFTWARE function instead:

 if (< software VSI OPENVMS-X86 VMS version below V9.0 >) ;
 error UNSUPP_VMS_VER abort ;
 else ;
 – include your PDL statements here end if ;

If you do use the SOFTWARE statement, you should expect the following results:

● If the installed version of OpenVMS is different than the one specified by the SOFTWARE
statement, and the OpenVMS product kit is not available, an error message prompting the user
to terminate the session is issued. This might be the result you are trying to achieve, but the
SOFTWARE function is still the better choice.

● If the installed version of OpenVMS is different than the one specified by the SOFTWARE
statement, and an OpenVMS product kit satisfying the software reference criteria is available, the
utility may attempt an upgrade of the operating system.

● If the installed version of OpenVMS is within constraints specified by the SOFTWARE statement,
the installation of the layered product may complete successfully, but a permanent software reference

148

Chapter 7. Product Description Language Statements

is made in the database from the layered product to the OpenVMS operating system. This can lead to
software reference conflicts if the OpenVMS operating system is upgraded in the future.

Another drawback is that a significantly greater amount of memory is consumed and additional
processing is done to check for software reference conflicts when processing the SOFTWARE
statements, which leads to diminished performance.

See Also

APPLY TO

IF

PRODUCT

UPGRADE

Examples

1. software I64VMS FORTRAN
 version minimum V3.0 version maximum V5.0 ;

The SOFTWARE statement in this example specifies that this product requires VSI Fortran software.
The version must be between 3.0 and 5.0.

2. software I64VMS FORTRAN version below V5.0 ;

The SOFTWARE statement in this example specifies that this product requires VSI Fortran software.
The version must be less than (but not equal to) 5.0.

3. if (< software AXPVMS COOL_PRODUCT
 version minimum V3.0 kit accessible >) ;
 software AXPVMS COOL_PRODUCT version minimum V3.0 ;
else if (< option NO_COOL_REFERENCE default YES with helptext >) ;
 file [SYSEXE]COOL_SUBSTITUTE.EXE ;
else ;
 error MISSING_COOL ;
end if ;

In this example, the SOFTWARE function is used to search the source directory for the
COOL_PRODUCT kit. If the POLYCENTER Software Installation utility finds the software
package with Version 3.0 or higher on the system, the reference to it is created with a separate
SOFTWARE statement.

If the COOL_PRODUCT V3.0 or higher is not found, an option to install its substitute (file
[SYSEXE]COOL_SUBSTITUTE.EXE]) is offered to the user. If the user declines to accept
the substitute image, an error is issued and the user is prompted to either terminate or continue the
current session.

SYSTEM PARAMETER
SYSTEM PARAMETER — The SYSTEM PARAMETER statement allows you to display a message to
users that expresses system parameter requirements for your product. The utility does not change system
parameters.

149

Chapter 7. Product Description Language Statements

Syntax
SYSTEM PARAMETER name {{ CONSUME | REQUIRE } | value | MAXIMUM value |
MINIMUM value | MINIMUM value MAXIMUM value } ;

Parameter
name

Indicates the name of the system parameter. The parameter you specify must be valid on the system
where the product executes.

Options
CONSUME value

Indicates that the system parameter must be increased by the specified value. Use this option when
the product consumes a resource that is controlled by the system parameter. The value must be a
single unquoted string that specifies an unsigned integer value. You cannot use this option with either
the MAXIMUM, MINIMUM, or REQUIRE options.

MAXIMUM value

Indicates that the system parameter must have a value less than or equal to the specified value. The
value must be a single unquoted string that specifies an integer value.

MINIMUM value

Indicates that the system parameter must have a value greater than or equal to the specified value.
The value must be a single unquoted string that specifies an integer value.

REQUIRE value

Indicates that the system parameter must have the specified value. The value must be a single string
that specifies a value of the parameter's type. This option is valid for any parameter data type. You
cannot use this option with either the MAXIMUM, MINIMUM, or CONSUME options.

Description
The SYSTEM PARAMETER statement displays a message to users about system parameter
requirements for your product after the installation. Note that the utility does not adjust system
parameters.

See Also
INFORMATION

PROCESS PARAMETER

Example
1. system parameter vaxcluster require 1 ;

system parameter tty_classname require "TT" ;
system parameter pagedyn consume 200 ;

150

Chapter 7. Product Description Language Statements

The statements in this example display the following messages:

2. This product requires the following system parameters
 VAXCLUSTER value 1
This product requires the following system parameters
 TTY_CLASSNAME value TT
This product requires the following system parameters
 PAGEDYN add 200

UPGRADE
UPGRADE — The UPGRADE statement specifies the versions of the product that can be upgraded
by the product kit being installed. If the product is currently installed but its version does not meet the
version selection criteria in the UPGRADE statement, the installation is terminated. The UPGRADE
statement has no effect when the product is being installed for the first time. The UPGRADE function
tests whether a version of the product in the specified range is being upgraded by the current operation.
If a version of the product in the specified range is currently installed, the function returns true;
otherwise it evaluates to false. If no version criteria are given, the function tests whether any version of
the product is currently installed.

Statement Syntax
UPGRADE { VERSION ABOVE version | VERSION BELOW version | VERSION
MAXIMUM version | VERSION MINIMUM version | VERSION REQUIRED version
| VERSION ABOVE version VERSION BELOW version | VERSION ABOVE version
VERSION MAXIMUM version | VERSION MINIMUM version VERSION BELOW version
| VERSION MINIMUM version VERSION MAXIMUM version } ;

Function Syntax
< UPGRADE { VERSION ABOVE version | VERSION BELOW version | VERSION
MAXIMUM version | VERSION MINIMUM version | VERSION REQUIRED version
| VERSION ABOVE version VERSION BELOW version | VERSION ABOVE version
VERSION MAXIMUM version | VERSION MINIMUM version VERSION BELOW version
| VERSION MINIMUM version VERSION MAXIMUM version } >

Options
VERSION ABOVE version

Establishes a lower version limit. The version identifier must be a single quoted or unquoted string.
Use this option to specify that the product version must be greater than (but not equal to) the specified
version. You cannot use this option with either the VERSION MINIMUM or VERSION REQUIRED
option. By default, there is no lower version limit.

VERSION BELOW version

Establishes an upper version limit. The version identifier must be a single quoted or unquoted string. Use
this option to specify that the product version must be less than (but not equal to) the specified version.
You cannot use this option with either the VERSION MAXIMUM or VERSION REQUIRED option.
By default, there is no upper version limit.

VERSION MAXIMUM version

151

Chapter 7. Product Description Language Statements

Establishes an upper version limit. The version identifier must be a single quoted or unquoted string. Use
this option to specify that the product version must be less than or equal to the specified version. You
cannot use this option with either the VERSION BELOW or VERSION REQUIRED option. By default,
there is no upper version limit.

VERSION MINIMUM version

Establishes a lower version limit. The version identifier must be a single quoted or unquoted string. Use
this option to specify that the product version must be greater than or equal to the specified version. You
cannot use this option with either the VERSION ABOVE or VERSION REQUIRED option. By default,
there is no lower version limit.

VERSION REQUIRED version

Establishes a required version. The version identifier must be a single quoted or unquoted string. Use
this option to specify that the product version must be equal to the specified version. You cannot use this
option with either the VERSION ABOVE, VERSION BELOW, VERSION MAXIMUM, or VERSION
MINIMUM option. By default, there is no required version constraint.

Description
Statement

In a full, platform, or operating system PDF, the UPGRADE statement is optional. When present, the
UPGRADE statement specifies the versions of the product that can be successfully upgraded by the
product kit. If a version of the product is currently installed but does not meet the version selection
criteria in the UPGRADE statement, the installation is terminated. The UPGRADE statement has no
effect when the product is being installed for the first time. If an UPGRADE statement is not present in
the PDF, the kit being installed is allowed to upgrade (or replace) any version of the product that might
be installed. This includes a lower version, a higher version, or the same version of the product.

In a partial PDF, the UPGRADE statement is required. The statement specifies which versions of the
product must be installed for the partial kit to be applied successfully.

You cannot use the UPGRADE statement for a patch, mandatory update, or transition PDF.

Function

The UPGRADE function tests whether a version of the product in the specified range is being upgraded
by the current operation. If a version of the product in the specified range is currently installed, the
function returns true; otherwise it evaluates to false. If no range is given, the function tests whether any
version of the product is currently installed.

The UPGRADE function is not meaningful for a patch, mandatory update, or transition PDF. If included
in these PDFs, the UPGRADE function always evaluates to false.

See Also
APPLY TO

IF

PRODUCT

SOFTWARE

152

Chapter 7. Product Description Language Statements

Examples
1. product AXPVMS ABC V4.0 full ;

 upgrade version minimum V2.0 ;
.
.
.
end product ;

The UPGRADE statement in this example does not allow product ABC V4.0 to upgrade versions of
the product prior to V2.0. Product ABC, however, can upgrade to V2.0 or later of the product. Or, if
a previous version of the product is not currently installed, it can perform a new installation.

2. product AXPVMS DEF V4.2 partial ;
 upgrade version required V4.1 ;
.
.
.
end product ;

The UPGRADE statement in this PDF is required because this is a partial kit. It specifies that
product DEF V4.1 must already be installed in order to apply this partial kit to upgrade the product
to V4.2.

3. product I64VMS JKL V2.5 full ;
 if (<upgrade>) ;
 information UPG_MSG ;
 end if ;
.
.
.
end product ;

In this example, if any version of product JKL is currently installed, an informational message will be
displayed to the user.

4. product I64VMS JKL V2.5 full ;
 if (<upgrade version minimum A1.0 version below A2.0>) ;
 file [sysupd]jkl_convert.com ; end if ;
.
.
.
end product ;

If version 1 of the product (from beta test through final release) is being upgraded, the UPGRADE
function in this PDF is used to conditionally provide a file.

153

Chapter 7. Product Description Language Statements

154

Appendix A. Migrating from
VMSINSTAL to the POLYCENTER
Software Installation Utility
VMSINSTAL is an installation mechanism supplied by VSI. This appendix contains information about
VMSINSTAL options and callbacks and their POLYCENTER Software Installation utility equivalents.

A.1. VMSINSTAL Options and Equivalents
Table A.1, "VMSINSTAL Options and Equivalents" lists some tasks that you may need to perform, the
corresponding VMSINSTAL option, and the POLYCENTER Software Installation utility equivalent.
Note that some VMSINSTAL options do not have an equivalent. In many cases, this is because the
design of the POLYCENTER Software Installation utility eliminates the need for an equivalent.

Table A.1. VMSINSTAL Options and Equivalents

Task VMSINSTAL Option POLYCENTER Software
Installation Utility Equivalent

Creating a file that specifies answers
to installation questions

OPTIONS A Create a product configuration file
(PCF). This is similar to an auto-
answer file in VMSINSTAL.

Specifying a temporary work
directory

OPTIONS AWD Specify the /WORK qualifier to the
PRODUCT command.

Starting the system OPTIONS B 1 No equivalent.
Tracing callbacks during installation OPTIONS C 2 Use the /LOG and /TRACE

qualifiers on the PRODUCT
INSTALL command.

Manipulating product kits OPTIONS G Use the PRODUCT COPY /
FORMAT=keyword command to
convert a kit into a different format
(see Chapter 5, "Packaging the Kit").

Suppressing VMSINSTAL prompts OPTIONS I 2 Use the /OPTIONS=NOCONFIRM
qualifier.

Debugging a kit OPTIONS K 2 Use the /LOG and /TRACE
qualifiers to assist in debugging a
PDF.

Providing a log of installation
operations

OPTIONS L Use the /LOG and /TRACE
qualifiers. This provides more
information than OPTIONS L with
VMSINSTAL.

Displaying or printing release notes OPTIONS N Use the RELEASE NOTES
option to the FILE statement
and the PRODUCT EXTRACT
RELEASE_NOTES command.
The release notes are created in the

155

Appendix A. Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

Task VMSINSTAL Option POLYCENTER Software
Installation Utility Equivalent
current directory, using the file's
original specification as the default
name.

Performing an installation in test
mode

OPTIONS Q 2 No equivalent.

Installing a product in an alternate
root

OPTIONS R Use the /DESTINATION
qualifier or a logical name,
PCSI$DESTINATION, defined
before product installation.

Pausing the installation at various
points

OPTIONS RSP 2 No equivalent.

Compiling information about the
installation

OPTIONS S 2 Use the /LOG and /TRACE
qualifiers to the PRODUCT
command.

1OpenVMS startup use only
2Developer's use only

A.2. VMSINSTAL Callbacks and Equivalents
To install a product using VMSINSTAL, you create a command procedure named KITINSTAL.COM
that makes callbacks to VMSINSTAL. If you are migrating from VMSINSTAL to the POLYCENTER
Software Installation utility, see Table A.2, "VMSINSTAL Callbacks and Equivalents", which lists the
VMSINSTAL callbacks and their equivalents.

Table A.2. VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option POLYCENTER Software
Installation Utility
Equivalent

Adding an identifier to the
rights database

ADD_IDENTIFIER Use the RIGHTS
IDENTIFIER statement.

Prompting the installer for
information

ASK To confirm the completion
of preinstallation tasks, use
the CONFIRM option to the
INFORMATION statement.
The product text file (PTF)
contains the prompt and
help text.

Not recording responses to
installation questions

 A No equivalent.

Forcing a Boolean answer B No equivalent.
Preceding a prompt with
blank line

 D No equivalent.

Disabling terminal echo E No equivalent.
Displaying help text before
the prompt

 H The INFORMATION
statement.

156

Appendix A. Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

Task VMSINSTAL Callback Option POLYCENTER Software
Installation Utility
Equivalent

Requiring an integer as the
answer

 I No equivalent.

Returning input in lowercase L No equivalent.
Returning input in the same
case

 M No equivalent.

Indicating a null response is
acceptable

 N No equivalent.

Ringing the terminal bell
before the prompt

 R No equivalent.

Indicating the response can
be a string

 S No equivalent.

Returning input in uppercase U No equivalent.
Indicating the response can
be Ctrl/Z

 A No equivalent.

Determining whether a
license for the product is
installed on the system

CHECK_LICENSE No equivalent. License
management is outside the
domain of the utility.

Determining whether the
network is running

CHECK_NETWORK No equivalent. If you use a
statement that references the
DECnet network, the utility
ensures that the network is
available.

Determining whether there
is sufficient disk space on
the target device

CHECK_NET
_UTILIZATION

 No equivalent. The utility
ensures that sufficient disk
space is available.

Determining whether
a minimum version of
software is present in the
execution environment

CHECK_PRODUCT
_VERSION

 Use the VERSION
MINIMUM option to the
SOFTWARE function.

Limiting an installation to
specified versions of the
OpenVMS operating system

CHECK_VMS
_VERSION

 Use the VERSION
MINIMUM and VERSION
MAXIMUM options to
the SOFTWARE function,
specifying VSI as the
producer name, X86VMS,
I64, or AXPVMS as the
base, and VMS as the
product name.

Determining which is the
most recent version of an
image

COMPARE_IMAGE You can manage file
versions using the generation
option to the FILE
statement.

157

Appendix A. Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

Task VMSINSTAL Callback Option POLYCENTER Software
Installation Utility
Equivalent

Determining whether the
user has loaded the license
for the product being
installed on the system

CONFIRM_LICENSE No equivalent. License
management is outside the
domain of the utility.

Providing for orderly exit
from an installation

CONTROL_Y No equivalent necessary;
the utility provides this
automatically.

Creating an account on the
system

CREATE_ACCOUNT Use the ACCOUNT
statement.

Deleting obsolete files from
a previous installation

DELETE_FILE In full and operating system
kits, the utility deletes files
that are replaced during
an upgrade. However, in a
partial kit, you can remove
obsolete files using the
REMOVE statement.

Locating files FIND_FILE If you want to determine
whether an optional
software product is available,
use the SOFTWARE
function. You do not need
to determine whether a file
is present before performing
an operation that references
it; the utility does this
automatically.

Generating structure
definition language (SDL)
definition files

GENERATE_SDL No equivalent.

Extracting the image file
identification string for a file

GET_IMAGE_ID If you want to determine
the available version of a
software product, use the
SOFTWARE function.

Obtaining a password for an
account

GET_PASSWORD No equivalent necessary; the
utility provides this function.

Placing requirements on
system parameters

GET_SYSTEM
_PARAMETER

 Use the SYSTEM
PARAMETER statement.

Displaying messages to the
user

MESSAGE Use the INFORMATION
statement to display
information about pre-
and post-installation tasks.
You do not need to provide
error messages and progress
information; the utility does
this automatically.

158

Appendix A. Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

Task VMSINSTAL Callback Option POLYCENTER Software
Installation Utility
Equivalent

Patching an image as part of
the installation

PATCH_IMAGE No equivalent. Use the FILE
statement to provide the
modified file.

Moving a shareable image's
symbol table to the system
shareable image library
when the patch is complete

 I No equivalent necessary.
The IMAGE LIBRARY
option to the FILE statement
controls its replacement in
the image library.

Creating a journal file of
patches

 J No equivalent.

Saving old versions of the
image file

 K No equivalent necessary.
The utility deletes existing
versions.

Moving the file to the SYS
$SPECIFIC directory

 O No equivalent necessary.
The placement of the FILE
statement that originally
described the image within
a scope group determines its
placement.

Reinstalling the image when
the patch is complete

 R No equivalent necessary;
the utility does this
automatically.

Queuing a print job to SYS
$PRINT

PRINT_FILE No equivalent.

Invoking a command
procedure of product-
specific callbacks

PRODUCT No equivalent.

Adding a command to the
system DCL table

PROVIDE_DCL
_COMMAND

 Use the MODULE
statement with the TYPE
COMMAND parameter.
You do not need to reinstall
the system command table
as a known image; the utility
does this automatically.

Adding help to the DCL
help library

PROVIDE_DCL_HELP Use the MODULE
statement with the TYPE
HELP parameter.

Adding a new file to the
system

PROVIDE_FILE Use the FILE statement.

Adding a new image to the
system

PROVIDE_IMAGE Use the FILE statement.
The utility can distinguish
whether a file is a valid
executable image.

Placing the file in more than
one location

 C No equivalent necessary.

159

Appendix A. Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

Task VMSINSTAL Callback Option POLYCENTER Software
Installation Utility
Equivalent

Dynamically patching ECOs
into the new image file

 E No equivalent necessary.
You should package the
file with the correct ECO
numbers already set.

Moving a shareable image's
symbol table to the system
shareable image library

 I Use the IMAGE LIBRARY
option to the FILE
statement.

Preserving old versions K No equivalent necessary.
The utility deletes existing
versions.

Moving the file to the SYS
$SPECIFIC directory

 O Enclose the FILE statement
in a SCOPE PROCESSOR
group.

Specifying an input file that
contains a list of logical
names for the source image
files and their respective
destinations

 T No equivalent necessary.
Use one FILE statement for
each file.

Changing the file name and
file type of all versions of a
file

RENAME_FILE Use the archive option
of the FILE statement to
preserve an existing version
of a file during an upgrade.

Restoring save sets of a
product that is divided
among several save sets

RESTORE_SAVESET No equivalent necessary.

Running an image during
installation

RUN_IMAGE Use the EXECUTE
statement or the
ASSEMBLE EXECUTE
option to the FILE
statement.

Specifying a UIC or
protection code for product
files

SECURE_FILE Use the OWNER and
PROTECTION options to
the DIRECTORY and FILE
statements.

Modifying the access control
list (ACL) of a device,
directory, or file

SET ACL Use the ACCESS
CONTROL option of the
FILE and DIRECTORY
statements.

Determining the default case
(upper or lower) in which
text from the installer is
returned to the installation
procedure

SET ASK_CASE No equivalent.

Running an installation
verification procedure (IVP)

SET IVP No equivalent necessary.
You can specify the

160

Appendix A. Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

Task VMSINSTAL Callback Option POLYCENTER Software
Installation Utility
Equivalent
EXECUTE TEST statement
and invoke the functional
test for a product with
the /TEST qualifier to the
PRODUCT INSTALL
command.

Calling a product's
installation procedure after
files have been moved to
their target directories

SET POSTINSTALL Depending on your
application, you can use the
EXECUTE POSTINSTALL
statement.

Purging files replaced by an
installation

SET PURGE No equivalent necessary.
The utility deletes existing
versions.

Rebooting the system after
the installation

SET REBOOT Use the EXECUTE
REBOOT statement.

Ensuring a high level of
installation success

SET SAFETY No equivalent necessary.
The utility provides the
necessary disk management
and reliability features.

Rebooting the system after
the installation

SET SHUTDOWN Use the EXECUTE
REBOOT statement.

Specifying a product-
specific startup command
procedure

SET STARTUP Use the EXECUTE START
statement.

Editing text files SUMSLP_TEXT No equivalent. Use the FILE
statement to provide the
modified file.

Identifying installation
peculiarities

TELL_QA No equivalent necessary.

Exiting the installation
procedure

UNWIND No equivalent necessary.
The utility controls the flow
of the installation.

Updating an existing user
account

UPDATE_ACCOUNT Use the ACCOUNT
statement to modify existing
user accounts.

Making a file available for
updating by copying it to a
working directory

UPDATE_FILE No equivalent necessary.

Modifying an identifier in
the rights database

UPDATE_IDENTIFIER Use the RIGHTS
IDENTIFIER statement to
modify an existing rights
identifier.

Updating a library UPDATE_LIBRARY Use the MODULE
statement with the
appropriate parameter

161

Appendix A. Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

Task VMSINSTAL Callback Option POLYCENTER Software
Installation Utility
Equivalent
for the type of library
you are updating. To
update the shareable image
library, use the IMAGE
LIBRARY option to
the FILE statement. No
equivalent exists to update
RSX libraries.

162

Appendix B. Product Description
Language Evolution
The POLYCENTER Software Installation utility is an integrated component of OpenVMS Version
6.1 and later. After its introduction, subsequent releases of the OpenVMS operating system have
incorporated various enhancements to PDL statements and functions. It is likely that we will make
further enhancements over time.

Earlier versions of the OpenVMS operating system do not support the new utility features provided in
later versions of the operating system. This creates a challenge for the developer who must devise a kit
that will install as expected in a variety of customer environments.

You can write a product description file based on the earliest version of OpenVMS at your customer
sites. If you choose this approach, you must have or acquire knowledge about customer environments. It
means you can use only the statements and functions (and their parameters and options) available for the
earliest customer installed version of OpenVMS.

Another option you have is to require your customers to apply a software patch kit, available from VSI,
that back ports utility functionality to earlier versions of OpenVMS. With this strategy, you can use the
latest utility enhancements in your product installation.

Table B.1, "Features by OpenVMS Version: Statements" and Table B.2, "Features by OpenVMS Version:
Functions" let you quickly see when new utility features were made available. Note that bug fixes are not
shown unless they impact the behavior of the utility. For more information on a specific feature, see the
appropriate section in this manual.

Table B.1. Features by OpenVMS Version: Statements

PDL Statements V7.1 V7.1-2 (Alpha)

V7.2 (VAX)

V7.3 V9.2-3

IGNORE
DESTINATION_PATH

 New
statement

APPLY TO New option: VERSION
ABOVE

BOOTSTRAP BLOCK Obsolete: not
available for
layered products

ERROR New option:
ABORT

New behavior: performs
action before the
configuration dialog, when
possible

EXECUTE ABORT New statement
EXECUTE INSTALL …
REMOVE

New option:
INTERACTIVE

EXECUTE
POSTINSTALL

New option:
INTERACTIVE

New behavior:
runs also on
reconfigure
operation

163

Appendix B. Product Description Language Evolution

PDL Statements V7.1 V7.1-2 (Alpha)

V7.2 (VAX)

V7.3 V9.2-3

EXECUTE
PRECONFIGURE

New statement

EXECUTE REBOOT New statement
EXECUTE RELEASE New option:

INTERACTIVE
Obsolete: new
kits should use
EXECUTE
UPGRADE or
other EXECUTE
statements

EXECUTE START…
STOP

EXECUTE TEST New option:
INTERACTIVE

New logical name:
PCSI$DESTINATION

EXECUTE UPGRADE New statement
FILE New behavior: supports

intra-product conflict
detection

New behavior:
file from kit
selected to
resolve conflict
on non-zero
generation
number tie

INFORMATION New option:
WITH
HELPTEXT

MODULE New behavior: supports
intraproduct conflict
detection

New behavior:
module from
kit selected to
resolve conflict
on non-zero
generation
number tie

OPTION New option:
WITH
HELPTEXT

PATCH IMAGE Obsolete: new
kits should use
FILE statement
to replace file

PATCH TEXT Obsolete: new
kits should use
FILE statement
to replace file

164

Appendix B. Product Description Language Evolution

PDL Statements V7.1 V7.1-2 (Alpha)

V7.2 (VAX)

V7.3 V9.2-3

SOFTWARE New option: VERSION
ABOVE

UPGRADE New option: VERSION
ABOVE

Table B.2. Features by OpenVMS Version: Functions

Function V7.1 V7.1-2 (Alpha)

V7.2 (VAX)

V7.3

LOGICAL NAME New function
SOFTWARE New behavior: detects

whether or not a patch
or mandatory update kit
has been installed

New options:

INSTALLED BEFORE
INSTALLED AFTER
KIT ACCESSIBLE
VERSION ABOVE

UPGRADE New option: VERSION
ABOVE

New behavior: version
range checking fully
supported

165

Appendix B. Product Description Language Evolution

166

	POLYCENTER Software Installation Utility Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Overview
	1.1. Features for Software Providers
	1.2. Coexistence with VMSINSTAL
	1.3. Creating an Installable Kit
	1.3.1. Step 1: Make A Plan
	1.3.2. Step 2: Gather the Product Material
	1.3.3. Step 3: Create a Product Description File
	1.3.4. Step 4: Create a Product Text File (Optional)
	1.3.5. Step 5: Package the Software Components
	1.3.6. Step 6: Test and Debug the Installable Kit

	Chapter 2. Basic Concepts
	2.1. The Product Database
	2.1.1. Querying the Product Database

	2.2. Software Product Kit Formats
	2.3. Software Product Kit Naming Conventions
	2.3.1. Sequential Format
	2.3.2. Compressed Format
	2.3.3. Reference Format
	2.3.4. Kit Naming Rules and Conventions
	2.3.5. More About the Version Field
	2.3.6. Version Information Visible to the OpenVMS Users
	2.3.7. More About the Kit Type
	2.3.8. Looking at Software Product Name Examples
	2.3.9. Input and Output Versions of the PDF and PTF

	2.4. User-Defined Logical Names
	2.5. Utility-Defined Logical Names
	2.5.1. PCSI$SOURCE, PCSI$DESTINATION, and PCSI$SCRATCH
	2.5.2. PCSI$$RECOVERY_MODE and PCSI$$SAVE_RECOVERY_DATA
	2.5.3. PCSI$$COMMAND_LINE
	2.5.4. PCSI$$CONFIRM

	2.6. Managed Objects
	2.6.1. Creating Managed Objects
	2.6.2. Managed Object Conflict
	2.6.3. Preventing Managed Object Conflict
	2.6.4. Managed Object Replacement and Merging
	2.6.5. Managed Object Scope and Lifetime

	2.7. Creating an Integrated Platform (Product Suite)

	Chapter 3. Creating the Product Description File
	3.1. General Guidelines
	3.2. Defining Your Environment
	3.3. PDF File-Naming Conventions
	3.4. Structure of a PDF
	3.4.1. Overview of PDL Statements
	3.4.2. PDL Statement Syntax
	3.4.3. PDL Function Syntax and Expressions
	3.4.4. PDL Data Types and Values

	3.5. Kit Types and Usage
	3.5.1. The Full Kit Type
	3.5.2. The Operating System Kit Type
	3.5.3. The Platform Kit Type
	3.5.4. The Partial Kit Type
	3.5.5. The Patch Kit Type
	3.5.6. The Mandatory Update Kit Type
	3.5.7. The Transition Kit Type
	3.5.8. The PCSI$REGISTER_PRODUCT.COM Command Procedure

	Chapter 4. Creating the Product Text File
	4.1. PTF File-Naming Conventions
	4.2. Structure of a PTF
	4.2.1. Specifying the Product Name
	4.2.2. PTF Modules and the Relationship with the PDF
	4.2.3. PTF Modules Not Related with the PDF
	4.2.4. Including Prompt and Help Text

	Chapter 5. Packaging the Kit
	5.1. Creating Reference and Sequential Copies
	5.2. Description of the Product Material
	5.3. Files Required to Package the Kit
	5.4. Creating the Product Kit
	5.5. Listing the Contents of the Product Kit
	5.6. Extracting Files from the Kit
	5.6.1. Extracting Files by Name
	5.6.2. Extracting the PDF, PTF, or Release Notes
	5.6.3. Converting a Sequential Kit into Reference Format
	5.6.4. Converting a Sequential Kit into Compressed Format

	5.7. Displaying Information from the Product Database

	Chapter 6. Advanced Topics
	6.1. Using Command Procedures in PDL Statements
	6.1.1. Noninteractive and Interactive Mode
	6.1.2. Packaging a Command Procedure
	6.1.3. Logical Names for Subprocess Environments
	6.1.4. EXECUTE Statement Summary
	6.1.5. Processing EXECUTE Statements

	6.2. Forcing Operation Termination from A Command Procedure
	6.3. Testing and Debugging Tips
	6.3.1. The /LOG Qualifier
	6.3.2. The /TRACE Qualifier
	6.3.3. The /DEBUG=CONFLICT Qualifier
	6.3.4. Installing Your Product on Older Versions of OpenVMS

	Chapter 7. Product Description Language Statements
	7.1. PDL Conventions
	7.2. PDL Reference Section
	ACCOUNT
	APPLY TO
	DIRECTORY
	END
	ERROR
	EXECUTE ABORT
	EXECUTE INSTALL…REMOVE
	EXECUTE LOGIN
	EXECUTE POSTINSTALL
	EXECUTE POST_UNDO
	EXECUTE PRECONFIGURE
	EXECUTE PRE_UNDO
	EXECUTE REBOOT
	EXECUTE RELEASE
	EXECUTE START…STOP
	EXECUTE TEST
	EXECUTE UPGRADE
	FILE
	HARDWARE DEVICE
	HARDWARE PROCESSOR
	IGNORE DESTINATION_PATH
	IF
	INFER
	INFORMATION
	LINK
	LOADABLE IMAGE
	LOGICAL NAME
	MODULE
	NETWORK OBJECT
	OPTION
	PART
	PATCH TEXT
	PROCESS PARAMETER
	PROCESS PRIVILEGE
	PRODUCT
	REGISTER MODULE
	REMOVE
	RIGHTS IDENTIFIER
	SCOPE
	SOFTWARE
	SYSTEM PARAMETER
	UPGRADE

	Appendix A. Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
	A.1. VMSINSTAL Options and Equivalents
	A.2. VMSINSTAL Callbacks and Equivalents

	Appendix B. Product Description Language Evolution

