
VSI OpenVMS System Analysis Tools
Manual

Document Number: DO–DSYATM–01A

Publication Date: March 2024

Operating System and Version: VSI OpenVMS Integrity Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI OpenVMS System Analysis Tools Manual

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

ii

VSI OpenVMS System Analysis Tools Manual

Preface .. xi
1. About VSI ... xi
2. About This Manual ... xi
3. Document Structure .. xi
4. Related Documents ... xi
5. VSI Encourages Your Comments .. xii
6. OpenVMS Documentation ... xii
7. Typographical Conventions ... xii

Chapter 1. Overview of System Analysis Tools .. 1
1.1. System Dump Analyzer (SDA) .. 2
1.2. System Code Debugger (SCD) ... 2
1.3. System Dump Debugger (SDD) ... 3
1.4. Watchpoint Utility (Alpha Only) .. 3
1.5. System Service Logging .. 3
1.6. Delta/XDelta Debugger ... 3
1.7. Dump-Off-System-Disk (DOSD) .. 4
1.8. On-Chip Logic Analyzer (OCLA) .. 4

Part I. OpenVMS System Dump Analyzer (SDA)

Chapter 2. SDA Description .. 7
2.1. Capabilities of SDA .. 7
2.2. System Management and SDA ... 8

2.2.1. Writing System Dumps ... 8
2.2.1.1. Dump File Style .. 9
2.2.1.2. Comparison of Full and Selective Dumps .. 10
2.2.1.3. Controlling the Size of Page Files and Dump Files 11
2.2.1.4. Writing to the System Dump File ... 11
2.2.1.5. Writing to a Dump File off the System Disk .. 12
2.2.1.6. Writing to the System Page File ... 12

2.2.2. Saving System Dumps .. 13
2.2.3. Partial Dump Copies .. 14

2.2.3.1. Example - Use of Partial Dump Copies ... 15
2.2.3.2. Additional notes on Partial Dump Copies .. 16

2.2.4. Invoking SDA When Rebooting the System .. 16
2.3. Analyzing a System Dump .. 18

2.3.1. Requirements ... 18
2.3.2. Invoking SDA .. 18
2.3.3. Mapping the Contents of the Dump File .. 18
2.3.4. Building the SDA Symbol Table .. 19
2.3.5. Executing the SDA Initialization File (SDA$INIT) .. 19

2.4. Analyzing a Running System ... 20
2.5. SDA Context .. 21
2.6. SDA Command Format ... 23

2.6.1. Using Expressions and Operators ... 23
2.6.1.1. Radix Operators .. 23
2.6.1.2. Arithmetic and Logical Operators ... 24
2.6.1.3. Precedence Operators .. 25
2.6.1.4. SDA Symbols .. 25

2.6.2. SDA Display Mode .. 31
2.7. Investigating System Failures .. 31

iii

VSI OpenVMS System Analysis Tools Manual

2.7.1. Procedure for Analyzing System Failures .. 31
2.7.2. Fatal Bugcheck Conditions .. 32

2.7.2.1. Alpha Mechanism Array .. 33
2.7.2.2. Integrity server Mechanism Array ... 34
2.7.2.3. Signal Array .. 37
2.7.2.4. 64-Bit Signal Array ... 38
2.7.2.5. Alpha Exception Stack Frame ... 38
2.7.2.6. Integrity server Exception Stack Frame ... 39
2.7.2.7. SSRVEXCEPT Example .. 42
2.7.2.8. Illegal Page Faults ... 48

2.8. Page Protections and Access Rights .. 48
2.9. Inducing a System Failure .. 49

2.9.1. Meeting Crash Dump Requirements ... 50
2.9.2. Procedure for Causing a System Failure ... 50

Chapter 3. ANALYZE Usage .. 53
3.1. ANALYZE ... 53
3.2. /COLLECTION ... 56
3.3. /CRASH_DUMP ... 56
3.4. /LOG .. 57
3.5. /OVERRIDE ... 58
3.6. /RELEASE .. 59
3.7. /SHADOW_MEMBER .. 60
3.8. /SSLOG .. 62
3.9. /SYMBOL .. 62
3.10. /SYSTEM ... 63

Chapter 4. SDA Commands .. 65
4.1. @(Execute Command) .. 65
4.2. ATTACH .. 65
4.3. COLLECT .. 66
4.4. COPY .. 67
4.5. DEFINE ... 70
4.6. DEFINE/KEY .. 72
4.7. DUMP ... 75
4.8. EVALUATE ... 78
4.9. EXAMINE ... 81
4.10. EXIT ... 86
4.11. FORMAT ... 87
4.12. HELP ... 90
4.13. MAP .. 92
4.14. MODIFY DUMP .. 94
4.15. READ .. 96
4.16. REPEAT ... 103
4.17. SEARCH .. 106
4.18. SET CPU ... 108
4.19. SET ERASE_SCREEN .. 110
4.20. SET FETCH ... 110
4.21. SET LOG ... 112
4.22. SET OUTPUT .. 113
4.23. SET PROCESS ... 114
4.24. SET RMS ... 117
4.25. SET SIGN_EXTEND .. 120

iv

VSI OpenVMS System Analysis Tools Manual

4.26. SET SYMBOLIZE .. 121
4.27. SHOW ACPI (Integrity servers only) .. 121
4.28. SHOW ADDRESS .. 124
4.29. SHOW BUGCHECK ... 125
4.30. SHOW CALL_FRAME ... 126
4.31. SHOW CBB ... 130
4.32. SHOW CEB ... 130
4.33. SHOW CLASS ... 132
4.34. SHOW CLUSTER ... 133
4.35. SHOW CONNECTIONS ... 139
4.36. SHOW CPU ... 141
4.37. SHOW CRASH ... 145
4.38. SHOW DEVICE ... 155
4.39. SHOW DUMP .. 159
4.40. SHOW EFI (Integrity servers Only) .. 164
4.41. SHOW EXCEPTION_FRAME .. 166
4.42. SHOW EXECUTIVE .. 167
4.43. SHOW GALAXY ... 170
4.44. SHOW GCT ... 171
4.45. SHOW GLOBAL_SECTION_TABLE ... 174
4.46. SHOW GLOCK .. 176
4.47. SHOW GMDB ... 180
4.48. SHOW GSD ... 182
4.49. SHOW GST .. 184
4.50. SHOW HEADER .. 184
4.51. SHOW IMAGE ... 185
4.52. SHOW KFE ... 187
4.53. SHOW KNOWN_FILE_ENTRY .. 189
4.54. SHOW LAN ... 189
4.55. SHOW LOCKS ... 202
4.56. SHOW MACHINE_CHECK .. 207
4.57. SHOW MEMORY .. 210
4.58. SHOW PAGE_TABLE .. 211
4.59. SHOW PARAMETER ... 218
4.60. SHOW PFN_DATA ... 221
4.61. SHOW POOL ... 227
4.62. SHOW PORTS ... 234
4.63. SHOW PROCESS ... 238
4.64. SHOW RAD ... 258
4.65. SHOW RESOURCES .. 259
4.66. SHOW RMD .. 266
4.67. SHOW RMS ... 268
4.68. SHOW RSPID .. 269
4.69. SHOW SHM_CPP .. 270
4.70. SHOW SHM_REG ... 272
4.71. SHOW SPINLOCKS ... 275
4.72. SHOW STACK ... 281
4.73. SHOW SUMMARY .. 287
4.74. SHOW SWIS (Integrity servers Only) ... 291
4.75. SHOW SYMBOL .. 293
4.76. SHOW TQE ... 294
4.77. SHOW TQEIDX ... 297

v

VSI OpenVMS System Analysis Tools Manual

4.78. SHOW UNWIND (Integrity servers Only) .. 298
4.79. SHOW VHPT (Integrity servers Only) .. 300
4.80. SHOW WORKING_SET_LIST .. 303
4.81. SHOW WSL ... 304
4.82. SPAWN .. 304
4.83. UNDEFINE .. 306
4.84. VALIDATE PFN_LIST .. 306
4.85. VALIDATE POOL .. 307
4.86. VALIDATE PROCESS .. 308
4.87. VALIDATE QUEUE ... 310
4.88. VALIDATE SHM_CPP ... 312
4.89. VALIDATE TQEIDX .. 314
4.90. WAIT ... 314

Chapter 5. SDA CLUE Extension ... 317
5.1. Overview of SDA CLUE Extension .. 317
5.2. Displaying Data with CLUE ... 318
5.3. Using CLUE with DOSD .. 318
5.4. SDA CLUE Extension Commands .. 318

5.4.1. CLUE CALL_FRAME (Alpha Only) ... 318
5.4.2. CLUE CLEANUP .. 321
5.4.3. CLUE CONFIG ... 322
5.4.4. CLUE CRASH ... 322
5.4.5. CLUE ERRLOG .. 325
5.4.6. CLUE FRU .. 326
5.4.7. CLUE HISTORY ... 326
5.4.8. CLUE MCHK .. 327
5.4.9. CLUE MEMORY ... 328
5.4.10. CLUE PROCESS ... 341
5.4.11. CLUE REGISTER .. 342
5.4.12. CLUE SCSI ... 344
5.4.13. CLUE SG .. 347
5.4.14. CLUE STACK .. 347
5.4.15. CLUE SYSTEM ... 351
5.4.16. CLUE VCC ... 352
5.4.17. CLUE XQP .. 354

Chapter 6. SDA FLT Extension .. 359
6.1. FLT Commands .. 359

6.1.1. FLT ... 359
6.1.2. FLT LOAD .. 359
6.1.3. FLT SHOW TRACE .. 360
6.1.4. FLT START TRACE .. 360
6.1.5. FLT STOP TRACE .. 361
6.1.6. .. 361

Chapter 7. SDA OCLA Extension (Alpha Only) .. 365
7.1. Overview of OCLA ... 365
7.2. SDA OCLA Commands .. 365

7.2.1. OCLA DISABLE ... 366
7.2.2. OCLA DUMP .. 366
7.2.3. OCLA ENABLE .. 367
7.2.4. OCLA HELP ... 367
7.2.5. OCLA LOAD .. 367

vi

VSI OpenVMS System Analysis Tools Manual

7.2.6. OCLA SET REGISTER .. 368
7.2.7. OCLA SHOW REGISTER .. 368
7.2.8. OCLA SHOW STATUS .. 369
7.2.9. OCLA SHOW TRACE ... 370
7.2.10. OCLA START ... 371
7.2.11. OCLA STOP .. 372
7.2.12. OCLA UNLOAD ... 372

Chapter 8. SDA SPL Extension ... 375
8.1. Overview of the SDA Spinlock Tracing Utility .. 375
8.2. How to Use the SDA Spinlock Tracing Utility ... 375
8.3. Example Command Procedure for Collection of Spinlock Statistics 376
8.4. SDA Spinlock Tracing Commands .. 377

8.4.1. SPL ... 377
8.4.2. SPL ANALYZE ... 377
8.4.3. SPL LOAD .. 380
8.4.4. SPL SHOW COLLECT .. 381
8.4.5. SPL SHOW TRACE .. 381
8.4.6. SPL START COLLECT .. 386
8.4.7. SPL START TRACE .. 387
8.4.8. SPL STOP COLLECT .. 389
8.4.9. SPL STOP TRACE .. 390
8.4.10. SPL UNLOAD ... 390

Chapter 9. SDA XFC Extension .. 393
9.1. SDA XFC Commands ... 393

9.1.1. XFC SET TRACE .. 393
9.2. XFC SHOW CONTEXT ... 394
9.3. XFC SHOW EXTENT .. 395
9.4. XFC SHOW FILE .. 396
9.5. XFC SHOW HISTORY ... 400
9.6. XFC SHOW IRP .. 400
9.7. XFC SHOW MEMORY .. 401
9.8. XFC SHOW SUMMARY ... 404
9.9. XFC SHOW TABLES ... 407
9.10. XFC SHOW TRACE .. 409
9.11. XFC SHOW VOLUME ... 410

Chapter 10. SDA Extensions and Callable Routines .. 413
10.1. Introduction .. 413
10.2. Description ... 413

10.2.1. Compiling and Linking an SDA Extension .. 414
10.2.2. Invoking an SDA Extension ... 414
10.2.3. Contents of an SDA Extension .. 414

10.3. Debugging an Extension .. 417
10.4. Callable Routines Overview .. 418
10.5. Routines ... 419

10.5.1. SDA$ADD_SYMBOL .. 419
10.5.2. SDA$ALLOCATE .. 420
10.5.3. SDA$CBB_BOOLEAN_OPER .. 421
10.5.4. SDA$CBB_CLEAR_BIT ... 423
10.5.5. SDA$CBB_COPY .. 423
10.5.6. SDA$CBB_FFC ... 424
10.5.7. SDA$CBB_FFS .. 425

vii

VSI OpenVMS System Analysis Tools Manual

10.5.8. SDA$CBB_INIT .. 426
10.5.9. SDA$CBB_SET_BIT .. 427
10.5.10. SDA$CBB_TEST_BIT .. 428
10.5.11. SDA$DBG_IMAGE_INFO ... 429
10.5.12. SDA$DEALLOCATE ... 430
10.5.13. SDA$DELETE_PREFIX ... 431
10.5.14. SDA$DISPLAY_HELP ... 431
10.5.15. SDA$ENSURE ... 433
10.5.16. SDA$FAO .. 433
10.5.17. SDA$FID_TO_NAME .. 435
10.5.18. SDA$FORMAT .. 436
10.5.19. SDA$FORMAT_HEADING .. 438
10.5.20. SDA$GET_ADDRESS .. 439
10.5.21. SDA$GET_BLOCK_NAME ... 439
10.5.22. SDA$GET_BUGCHECK_MSG ... 441
10.5.23. SDA$GET_CURRENT_CPU .. 442
10.5.24. SDA$GET_CURRENT_PCB .. 443
10.5.25. SDA$GET_DEVICE_NAME .. 443
10.5.26. SDA$GET_FLAGS ... 445
10.5.27. SDA$GET_HEADER ... 446
10.5.28. SDA$GET_HW_NAME ... 448
10.5.29. SDA$GET_IMAGE_OFFSET .. 449
10.5.30. SDA$GET_INPUT ... 451
10.5.31. SDA$GET_LINE_COUNT ... 453
10.5.32. SDA$GETMEM ... 453
10.5.33. SDA$INSTRUCTION_DECODE ... 455
10.5.34. SDA$NEW_PAGE ... 457
10.5.35. SDA$PARSE_COMMAND ... 458
10.5.36. SDA$PRINT .. 459
10.5.37. SDA$READ_SYMFILE .. 460
10.5.38. SDA$REQMEM ... 462
10.5.39. SDA$SET_ADDRESS .. 464
10.5.40. SDA$SET_CPU .. 464
10.5.41. SDA$SET_HEADING_ROUTINE ... 465
10.5.42. SDA$SET_LINE_COUNT .. 466
10.5.43. SDA$SET_PROCESS ... 467
10.5.44. SDA$SKIP_LINES ... 468
10.5.45. SDA$SYMBOL_VALUE .. 469
10.5.46. SDA$SYMBOLIZE .. 470
10.5.47. SDA$TRYMEM ... 471
10.5.48. SDA$TYPE .. 472
10.5.49. SDA$VALIDATE_QUEUE ... 473

Part II. OpenVMS System Code Debugger and System Dump
Debugger

Chapter 11. OpenVMS System Code Debugger .. 477
11.1. User-Interface Options ... 477
11.2. Building a System Image to Be Debugged ... 478
11.3. Setting Up the Target System for Connections ... 479

11.3.1. Making Connections Between the Target Kernel and the System Code
Debugger ... 483

viii

VSI OpenVMS System Analysis Tools Manual

11.3.2. Interactions Between XDELTA and the Target Kernel/System Code Debugger 484
11.3.3. Interactions between the Target Kernel, the System Code Debugger, and other
system components .. 485

11.4. Setting Up the Host System ... 485
11.5. Starting the System Code Debugger .. 486
11.6. Summary of System Code Debugger Commands ... 486
11.7. Using System Dump Analyzer Commands ... 487
11.8. System Code Debugger Network Information .. 487
11.9. Troubleshooting Checklist .. 488
11.10. Troubleshooting Network Failures ... 488
11.11. Access to Symbols in OpenVMS Executive Images .. 489

11.11.1. Overview of How the OpenVMS Debugger Maintains Symbols 489
11.11.2. Overview of OpenVMS Executive Image Symbols ... 490
11.11.3. Possible Problems You May Encounter ... 490

11.12. Sample System Code Debugging Session ... 491
Chapter 12. OpenVMS System Dump Debugger ... 507

12.1. User-Interface Options ... 507
12.2. Preparing a System Dump to Be Analyzed .. 508
12.3. Setting Up the Test System .. 508
12.4. Setting Up the Build System .. 509
12.5. Starting the System Dump Debugger .. 509
12.6. Summary of System Dump Debugger Commands .. 510
12.7. Using System Dump Analyzer Commands ... 510
12.8. Limitations of the System Dump Debugger ... 511
12.9. Access to Symbols in OpenVMS Executive Images .. 511
12.10. Sample System Dump Debugging Session .. 512

Part III. OpenVMS Alpha Watchpoint Utility

Chapter 13. Watchpoint Utility (Alpha Only) .. 519
13.1. Introduction .. 519
13.2. Initializing the Watchpoint Utility ... 520
13.3. Creating and Deleting Watchpoints ... 520

13.3.1. Using the $QIO Interface .. 521
13.3.2. Invoking WPDRIVER Entry Points from System Routines 523

13.4. Data Structures ... 524
13.4.1. Watchpoint Restore Entry (WPRE) .. 524
13.4.2. Watchpoint Control Blocks (WPCB) .. 524
13.4.3. Trace Table Entries (WPTTEs) .. 525

13.5. Analyzing Watchpoint Results .. 526
13.6. Watchpoint Protection Overview ... 527
13.7. Restrictions ... 528

Part IV. OpenVMS System Service Logging Utility

Chapter 14. System Service Logging .. 533
14.1. Overview .. 533
14.2. Enabling Logging .. 534
14.3. Disabling Logging ... 534
14.4. Displaying Logged Information ... 534

ix

VSI OpenVMS System Analysis Tools Manual

x

Preface
1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. About This Manual
The VSI OpenVMS System Analysis Tools Manual is intended primarily for the system programmer or
analyst who must investigate the causes of system failures and debug kernel-mode code, such as a device
driver.

This manual also includes system management information for maintaining the system resources
necessary to capture and store system crash dumps, including the use of dump-off-system-disk (DOSD).
To help determine the cause of a hung process or improve system performance, consult this manual for
instructions on using the appropriate system analysis tool to analyze your system.

3. Document Structure
This VSI OpenVMS System Analysis Tools Manual contains an introductory chapter and four parts.

Chapter 1 presents an overview of the system analysis tools, which are:

• System Dump Analyzer Utility including Crash Log Utility Extractor, several other extensions, and
descriptions of the callable routines available to user-written extensions

• System Code and System Dump debuggers

• Alpha Watchpoint Utility

• System Service Logging Utility

• Delta/XDelta Debugger

• Dump-Off-System-Disk

Part I describes the System Dump Analyzer (SDA), its use and commands, the SDA Crash Log Utility
Extractor (CLUE), several other SDA extensions, and the SDA callable routines.

Part II describes the System Code Debugger (SCD) and the System Dump Debugger (SDD).

Part III describes the Alpha Watchpoint Utility (WP).

Part IV describes the System Service Logging Utility (SSLOG).

4. Related Documents
For additional information, refer to the following documents:

• VSI OpenVMS Version 8.4 Upgrade and Installation Manual

xi

Preface

• VSI OpenVMS Calling Standard

• VSI OpenVMS System Manager's Manual, Volume 1: Essentials

• VSI OpenVMS System Manager's Manual, Volume 2: Tuning, Monitoring, and Complex Systems

• VSI OpenVMS Programming Concepts Manual, Volume II

• Writing OpenVMS Alpha Device Drivers in C

• OpenVMS AXP Internals and Data Structures

• Alpha Architecture Reference Manual

• Intel IA-64 Architecture Software Developer's Manual

• MACRO-64 Assembler for OpenVMS AXP Systems Reference Manual

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

6. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

7. Typographical Conventions
The following conventions may be used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

... A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

xii

https://docs.vmssoftware.com

Preface

Convention Meaning

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

xiii

Preface

xiv

Chapter 1. Overview of System
Analysis Tools
This chapter presents an overview of the following system dump analysis tools and features:

• System Dump Analyzer (SDA)

• System Code Debugger (SCD)

• System Dump Debugger (SDD)

• Alpha Watchpoint Utility (WP)

• Delta Debugger

• XDelta Debugger

• Dump-Off-System-Disk (DOSD)

• System Service Logging Utility (SSLOG)

• On-Chip Logic Analyzer (OCLA)

To do the following: Use this utility: Described in:

Analyze a running system. SDA Chapter 2
Analyze a dump file. SDA Chapter 2
Automate the analysis of crash
dumps and maintain a fatal-
bugcheck history.

CLUE Chapter 5

Debug nonpagable system code
and device drivers running at any
IPL.

SCD Chapter 11

Analyze certain system dumps,
display source code, variables or
registers in use at the time of a
system failure.

SDD Chapter 12

Maintain a history of
modifications made to a specific
location in shared memory on an
Alpha system.

WP Chapter 13

Monitor execution of user
programs and OpenVMS running
at IPL 0.

Delta Debugger Section 1.6

Debug system code that runs
early in booting or when there is
no Ethernet adapter dedicated to
SCD.

Xdelta Debugger Section 1.6

Write the system dump file to a
device other than the system disk.

DOSD Section 1.7

1

Chapter 1. Overview of System Analysis Tools

Characterize spinlock usage
and collect per-CPU spinlock
performance data.

SPL Chapter 8

Display XFC data structures
and statistics to help tune the
extended file cache.

XFC Chapter 9

Extend the functionality of SDA. SDA Extension Callable Routines Chapter 10
Log system services. SSLOG Chapter 14
Determine which instructions
have executed in a specific Alpha
EV7 CPU.

OCLA Chapter 7

1.1. System Dump Analyzer (SDA)
The OpenVMS system dump analyzer (SDA) utility enables you to analyze a running system or a system
dump after a system failure occurs. With a system failure, the operating system copies the contents of
memory to a system dump file or the primary page file. Additionally, it records the hardware context of
each processor. With SDA, you can interpret the contents of the dump file, examine the status of each
processor at the time of the system failure, and investigate possible causes of failure.

See Part I for more complete information about SDA, SDA CLUE (Crash Log Utility Extractor), SPL
(Spinlock Tracing Utility), other SDA extensions, and the SDA Extension routines.

1.2. System Code Debugger (SCD)
The OpenVMS System Code Debugger (SCD) allows you to debug nonpageable system code and device
drivers running at any interrupt priority level (IPL). You can use the SCD to perform the following tasks:

• Control the system software's execution----stop at points of interest, resume execution, intercept fatal
exceptions, and so on

• Trace the execution path of the system software

• Display the source code where the software is executing, and step by source line

• Monitor exception conditions

• Examine and modify the values of variables

• In some cases, test the effect of modifications without having to edit the source code, recompile, and
relink

SCD is a symbolic debugger. You can specify variable names, routine names, and so on, precisely as they
appear in your source code.

SCD recognizes the syntax, data typing, operators, expressions, scoping rules, and other constructs
of a given language. If your code or driver is written in more than one language, you can change the
debugging context from one language to another during a debugging session.

See Part II for complete information about SCD.

2

Chapter 1. Overview of System Analysis Tools

1.3. System Dump Debugger (SDD)
The OpenVMS System Dump Debugger allows you to analyze certain system dumps using the
commands and semantics of SCD. You can use SDD to perform the following tasks:

• Display the source code where the software was executing at the time of the system failure

• Examine the values of variables and registers at the time of the system failure

SDD is a symbolic debugger. You can specify variable names, routine names, and so on, precisely as they
appear in your source code.

SDD recognizes the syntax, data typing, operators, expressions, scoping rules, and other constructs
of a given language. If your code or driver is written in more than one language, you can change the
debugging context from one language to another during a debugging session.

See Part II for complete information about SCD.

1.4. Watchpoint Utility (Alpha Only)
The OpenVMS Watchpoint utility allows you to maintain a history of modifications that are made to
a particular location in shared system space. It sets watchpoints on 32-bit and 64-bit addresses, and
watches any system addresses whether in S0, S1, or S2 space.

See Part III for complete information about the Watchpoint utility.

1.5. System Service Logging
To log system services, use the System Service Logging (SSLOG) Utility. For additional information, see
Chapter 14.

1.6. Delta/XDelta Debugger
The OpenVMS Delta/XDelta debugger allows you to monitor the execution of user programs and
the OpenVMS operating system. The Delta/XDelta debuggers both use the same commands and
expressions, but they are different in how they operate. Delta operates as an exception handler in a
process context; whereas XDelta is invoked directly from the hardware system control block (SCB)
vector in a system context.

You use OpenVMS Delta instead of the OpenVMS symbolic debugger to debug programs that run in
privileged processor mode at interrupt priority level (IPL) 0. Because Delta operates in a process context,
you can use it to debug user-mode programs or programs that execute at interrupt priority level (IPL) 0
in any processor mode---user, supervisor, executive, and kernel. To run Delta in a processor mode other
than user mode, your process must have the privilege that allows Delta to change to that mode: change-
mode-to-executive (CMEXEC), or change-mode-to-kernel (CMKRNL) privilege. You cannot use Delta
to debug code that executes at an elevated IPL. To debug with Delta, you invoke it from within your
process by specifying it as the debugger instead of the symbolic debugger.

You use OpenVMS XDelta instead of the System Code Debugger when debugging system code that runs
early in booting or when there is no Ethernet adapter that can be dedicated to SCD. Because XDelta
is invoked directly from the hardware system control block (SCB), it can be used to debug programs
executing in any processor mode or at any IPL level. To use XDelta, you must have system privileges,

3

Chapter 1. Overview of System Analysis Tools

and you must include XDelta when you boot the system. Since XDelta is not process specific, it is not
invoked from a process. To debug with XDelta, you must boot the system with a command to include
XDelta in memory. XDelta's existence terminates when you reboot the system without XDelta.

On OpenVMS systems, XDelta supports 64-bit addressing. Quadword display mode displays full
quadwords of information. The 64-bit address display mode accepts and displays all addresses as 64-bit
quantities. XDelta has predefined command strings for displaying the contents of the page frame number
(PFN) database.

You can use Delta/XDelta commands to perform the following debugging tasks:

• Open, display, and change the value of a particular location

• Set, clear, and display breakpoints

• Set, display modes in byte, word, longword, or ASCII

• Display instructions

• Execute the program in a single step with the option to step over a subroutine

• Set base registers

• List the names and locations of all loaded modules of the executive

• Map an address to an executive module

See the VSI OpenVMS Delta/XDelta Debugger Manual for complete information about using the Delta/
XDelta debugging utility.

1.7. Dump-Off-System-Disk (DOSD)
The OpenVMS system allows you to write the system dump file to a device other than the system disk.
This is useful in large memory systems and in clusters with common system disks where sufficient disk
space, on one disk, is not always available to support your dump file requirements. To perform this
activity, you must correctly enable the DUMPSTYLE system parameter to allow the bugcheck code to
write the system dump file to an alternative device.

See the VSI OpenVMS System Manager's Manual, Volume 2: Tuning, Monitoring, and Complex Systems
for complete information about how to write the system dump file to a disk other than the system disk.

1.8. On-Chip Logic Analyzer (OCLA)
The Alpha EV7 On-chip Logic Analyzer utility (OCLA) enables a user to determine which instructions
have executed on an Alpha EV7 CPU. One-seventh of the Alpha EV7 cache is set aside as acquisition
memory where the virtual addresses of instructions executed by the Alpha EV7 CPU are stored. The
acquisition memory can later by analyzed with SDA. For more information on OCLA, see Chapter 7.

4

Part I. OpenVMS System
Dump Analyzer (SDA)

Part I describes the capabilities and system management of SDA. It describes how to use SDA to
perform the following tasks:

• Analyzing a system dump and a running system

• Understanding SDA context and commands

• Investigating system failures

• Inducing system failures

• Understanding the ANALYZE command and qualifiers

• Invoking SDA commands, SDA CLUE extension commands, SDA Spinlock Tracing commands, and
SDA extension routines

• Determining which instructions have executed in a specific system CPU, with SDA OCLA
commands (Alpha only)

5

6

Chapter 2. SDA Description
This chapter describes the functions and the system management of SDA. It describes initialization,
operation, and procedures in analyzing a system dump and analyzing a running system. This chapter also
describes the SDA context, the command format, and the way both to investigate system failures and
induce system failures.

2.1. Capabilities of SDA
When a system failure occurs, the operating system copies the contents of memory to a system dump
file or the primary page file, recording the hardware context of each processor in the system as well. The
System Dump Analyzer (SDA) is a utility that allows you to interpret the contents of this file, examine
the status of each processor at the time of the system failure, and investigate the probable causes of the
failure.

You can invoke SDA to analyze a system dump, using the DCL command ANALYZE/CRASH_DUMP.
You can then use SDA commands to perform the following operations:

• Direct (or echo) the output of an SDA session to a file or device (SET OUTPUT or SET LOG).

• Display the condition of the operating system and the hardware context of each processor in the
system at the time of the system failure (SHOW CRASH or CLUE CRASH).

• Select a specific processor in a multiprocessing system as the subject of analysis (SET CPU).

• Select the default size of address data manipulated by the EXAMINE and EVALUATE commands
(SET FETCH).

• Enable or disable the sign extension of 32-bit addresses (SET SIGN_EXTEND).

• Display the contents of a specific process stack (SHOW STACK or CLUE STACK).

• Format a call frame from a stack location (SHOW CALL_FRAME).

• Read a set of global symbols into the SDA symbol table (READ).

• Define symbols to represent values or locations in memory and add them to the SDA symbol table
(DEFINE).

• Delete symbols not required from the SDA symbol table (UNDEFINE).

• Evaluate an expression in hexadecimal and decimal, interpreting its value as a symbol, a condition
value, a page table entry (PTE), a processor status (PS) quadword, or date and time (EVALUATE).

• Examine the contents of memory locations, optionally interpreting them as assembler instructions, a
PTE, a PS, or date and time (EXAMINE).

• Display device status as reflected in system data structures (SHOW DEVICE).

• Display the contents of the stored machine check frame (SHOW MACHINE_CHECK or CLUE
MCHK) for selected HP computers.

• Format system data structures (FORMAT).

• Validate the integrity of the links in a queue (VALIDATE QUEUE).

• Display a summary of all processes on the system (SHOW SUMMARY).

7

Chapter 2. SDA Description

• Show the hardware or software context of a process (SHOW PROCESS or CLUE PROCESS).

• Display the OpenVMS RMS data structures of a process (SHOW PROCESS with the /RMS
qualifier).

• Display memory management data structures (SHOW POOL, SHOW PFN_DATA, SHOW
PAGE_TABLE, or CLUE MEMORY).

• Display lock management data structures (SHOW RESOURCES or SHOW LOCKS).

• Display OpenVMS Cluster management data structures (SHOW CLUSTER, SHOW
CONNECTIONS, SHOW RSPID, or SHOW PORTS).

• Display multiprocessor synchronization information (SHOW SPINLOCKS).

• Display the layout of the executive images (SHOW EXECUTIVE).

• Capture and archive a summary of dump file information in a list file (CLUE HISTORY).

• Copy the system dump file (COPY).

• Define keys to invoke SDA commands (DEFINE/KEY).

• Search memory for a given value (SEARCH).

Although SDA provides a great deal of information, it does not automatically analyze all the control
blocks and data contained in memory. For this reason, in the event of system failure, it is extremely
important that you save not only the output provided by SDA commands, but also a copy of the system
dump file written at the time of the failure.

You can also invoke SDA to analyze a running system, using the DCL command ANALYZE/SYSTEM.
Most SDA commands generate useful output when entered on a running system.

Caution

Although analyzing a running system may be instructive, you should undertake such an operation with
caution. System context, process context, and a processor's hardware context can change during any
given display.

In a multiprocessing environment, it is very possible that, during analysis, a process running SDA could
be rescheduled to a different processor frequently. Therefore, avoid examining the hardware context of
processors in a running system.

2.2. System Management and SDA
The system manager must ensure that the system writes a dump file whenever the system fails. The
manager must also see that the dump file is large enough to contain all the information to be saved, and
that the dump file is saved for analysis. The following sections describe these tasks.

2.2.1. Writing System Dumps
The operating system attempts to write information into the system dump file only if the system
parameter DUMPBUG is set. (The DUMPBUG parameter is set by default. To examine and change its
value, consult the VSI OpenVMS System Manager's Manual, Volume 2: Tuning, Monitoring, and Complex
Systems.) If DUMPBUG is set and the operating system fails, the system manager has the following
choices for writing system dumps:

8

Chapter 2. SDA Description

• Have the system dump file written to either SYSDUMP.DMP (the system dump file) or to
PAGEFILE.SYS (the primary system page file).

• Set the DUMPSTYLE system parameter to an even number (for dumps containing all physical
memory) or to an odd number (for dumps containing only selected virtual addresses). See
Section 2.2.1.1 for more information about the DUMPSTYLE parameter values.

2.2.1.1. Dump File Style
There are two types of dump files---a full memory dump (also known as a physical dump), and a dump
of selected virtual addresses (also known as a selective dump). Both full and selective dumps may be
produced in either compressed or uncompressed form. Compressed dumps save disk space and time
taken to write the dump at the expense of a slight increase in time to access the dump with SDA. The
SDA commands COPY/COMPRESS and COPY/DECOMPRESS can be used to convert an existing
dump.

A dump can be written to the system disk, or to another disk set aside for dumps. When using a disk
other than a system disk, the disk name is set in the console environment variable DUMP_DEV. This
disk is also known as the "dump off system disk" (DOSD) disk.

When writing a system dump, information about the crash is displayed at the system console. This can be
either minimal output (for example, bug check code, process name, and image name), or verbose output
(for example, executive layout, stack and register contents).

In an OpenVMS Galaxy system, shared memory is dumped by default. It is sometimes necessary to
disable the dumping of shared memory. For more information about shared memory, see VSI OpenVMS
Alpha Partitioning and Galaxy Guide.

DUMPSTYLE, which specifies the method of writing system dumps, is a 32-bit mask. Table 2.1 shows
how the bits are defined. Each bit can be set independently. The value of the SYSGEN parameter is the
sum of the values of the bits that have been set. Remaining or undefined values are reserved to VSI.

Table 2.1. Definitions of Bits in DUMPSTYLE

Bit Value Description

0 1 0= Full dump. The entire contents of physical memory will
be written to the dump file. 1= Selective dump. The contents
of memory will be written to the dump file selectively to
maximize the usefulness of the dump file while conserving
disk space. (Only pages that are in use are written).

1 2 0= Minimal console output. This consists of the bugcheck
code; the identity of the CPU, process, and image where the
crash occurred; the system date and time; plus a series of
dots indicating progress writing the dump. 1= Full console
output. This includes the minimal output previously described
plus stack and register contents, system layout, and additional
progress information such as the names of processes as they
are dumped.

2 4 0= Dump to system disk. The dump will be written to
SYS$SYSDEVICE:[SYSn.SYSEXE]SYSDUMP.DMP,
or in its absence, SYS$SYSDEVICE:
[SYSn.SYSEXE]PAGEFILE.SYS. 1= Dump to
alternate disk. The dump will be written to dump_dev:

9

Chapter 2. SDA Description

Bit Value Description
[SYSn.SYSEXE]SYSDUMP.DMP, where dump_dev is the
value of the console environment variable DUMP_DEV.

3 8 0= Uncompressed dump. Pages are written directly to the
dump file. 1= Compressed dump. Each page is compressed
before it is written, providing a saving in space and in the
time taken to write the dump, at the expense of a slight
increase in time taken to access the dump.

4 16 0= Dump shared memory. 1= Do not dump shared memory.
5 32 0= Write all processes and global pages in a selective dump.

1= Write only key processes and global pages in a selective
dump. This bit is ignored when writing a full dump (bit 0
= 0). This bit should be set only if the priority processes
have been correctly set up, as described in VSI OpenVMS
System Manager's Manual, Volume 2: Tuning, Monitoring,
and Complex Systems.

6--31 Reserved to VSI.

The default setting for DUMPSTYLE is 9 (a compressed selective dump, including shared memory,
written to the system disk). Unless a value for DUMPSTYLE is specified in MODPARAMS.DAT,
AUTOGEN.COM will set DUMPSTYLE either to 1 (an uncompressed selective dump, including shared
memory, written to the system disk) if there is less than 128 megabytes of memory on the system, or to 9
(a compressed selective dump, including shared memory, written to the system disk).

2.2.1.2. Comparison of Full and Selective Dumps
A full dump requires that all physical memory be written to the dump file. This ensures the presence of
all the page table pages required for SDA to emulate translation of system virtual addresses. Any even-
numbered value in the DUMPSTYLE system parameter generates a full dump.

In certain system configurations, it may be impossible to preserve the entire contents of memory in a
disk file. For instance, a large memory system or a system with small disk capacity may not be able to
supply enough disk space for a full memory dump. If the system dump file cannot accommodate all of
memory, information essential to determining the cause of the system failure may be lost.

To preserve those portions of memory that contain information most useful in determining the causes
of system failures, a system manager sets the value of the DUMPSTYLE system parameter to specify
a dump of selected virtual address spaces. In a selective dump, related pages of virtual address space
are written to the dump file as units called logical memory blocks (LMBs). For example, one LMB
consists of the page tables for system space; another is the address space of a particular process. Those
LMBs most likely to be useful in crash dump analysis are written first. Any odd-numbered value in the
DUMPSTYLE system parameter generates a selective dump.

Table 2.2 compares full and selective style dumps.

Table 2.2. Comparison of Full and Selective Dumps

Item Full Selective

Available Information Complete contents of physical
memory in use, stored in order of
increasing physical address.

System page table, global page
table, system space memory,
and process and control regions

10

Chapter 2. SDA Description

Item Full Selective
(plus global pages) for all saved
processes.

Unavailable Information Contents of paged-out memory at
the time of the system failure.

Contents of paged-out memory
at the time of the system failure,
process and control regions of
unsaved processes, and memory
not mapped by a page table.

SDA Command Limitations None. The following commands are
not useful for unsaved processes:
SHOW PROCESS/CHANNELS,
SHOW PROCESS/IMAGE,
SHOW PROCESS/RMS,
SHOW STACK, and SHOW
SUMMARY/IMAGE.

2.2.1.3. Controlling the Size of Page Files and Dump Files
You can adjust the size of the system page file and dump file using AUTOGEN (the recommended
method) or by using SYSGEN.

AUTOGEN automatically calculates the appropriate sizes for page and dump files. AUTOGEN invokes
the System Generation utility (SYSGEN) to create or change the files. However, you can control sizes
calculated by AUTOGEN by defining symbols in the MODPARAMS.DAT file. The file sizes specified
in MODPARAMS.DAT are copied into the PARAMS.DAT file during AUTOGEN's GETDATA phase.
AUTOGEN then makes appropriate adjustments in its calculations.

Although VSI recommends using AUTOGEN to create and modify page and dump file sizes, you can
use SYSGEN to directly create and change the sizes of those files.

The sections that follow discuss how you can calculate the size of a dump file.

See the VSI OpenVMS System Manager's Manual for detailed information about using AUTOGEN and
SYSGEN to create and modify page and dump file sizes.

2.2.1.4. Writing to the System Dump File
OpenVMS writes the contents of the error-log buffers, processor registers, and memory into the system
dump file, overwriting its previous contents. If the system dump file is too small, OpenVMS cannot copy
all memory to the file when a system failure occurs.

SYS$SYSTEM:SYSDUMP.DMP (SYS$SPECIFIC:[SYSEXE]SYSDUMP.DMP) is created during
installation. To successfully store a crash dump, SYS$SYSTEM:SYSDUMP.DMP must be enlarged to
hold all of memory (full dump) or all of system space and the key processes (selective dump).

To calculate the correct size for an uncompressed full dump to SYS$SYSTEM:SYSDUMP.DMP, use the
following formula:

size-in-blocks(SYS$SYSTEM:SYSDUMP.DMP)
 = size-in-pages(physical-memory) * blocks-per-page
 + number-of-error-log-buffers * blocks-per-buffer
 + 10

Use the DCL command SHOW MEMORY to determine the total size of physical memory on your
system. There is a variable number of error log buffers in any given system, depending on the setting

11

Chapter 2. SDA Description

of the ERRORLOGBUFF_S2 system parameter. The size of each buffer depends on the setting of the
ERLBUFFERPAG_S2 parameter. (See the VSI OpenVMS System Manager's Manual for additional
information about these parameters.)

2.2.1.5. Writing to a Dump File off the System Disk
OpenVMS allows you to write the system dump file to a device other than the system disk. This is useful
in large memory systems and in clusters with common system disks where sufficient disk space, on one
disk, is not always available to support customer dump file requirements. To perform this activity, the
DUMPSTYLE system parameter must be correctly enabled to allow the bugcheck code to write the
system dump file to an alternative device.

The requirements for writing the system dump file off the system disk are the following:

• The dump device directory structure must resemble the current system disk structure. The
[SYSn.SYSEXE]SYSDUMP.DMP file will reside there, with the same boot time system root.

You can use AUTOGEN to create this file. In the MODPARAMS.DAT file, the following symbol
prompts AUTOGEN to create the file:

DUMPFILE_DEVICE = nnnddcuuuu

• The dump device cannot be part of a volume set or a member of a shadow set.

• You must set up DOSD for SDA CLUE as described in Chapter 5.

• The DUMP_DEV environment variable must exist on your system. You specify the dump device at
the console prompt, using the following format:

For Alpha

>>> SET DUMP_DEV device-name[,...]

For Integrity servers

Shell> VMS_SET DUMP_DEV device-name[,...]

On some CPU types, you can enter a list of devices. The list can include various alternate paths to
the system disk and the dump disk.

By specifying alternate paths in DUMP_DEV, a dump can still be written if the disk fails over to an
alternate path while the system is running. When the system crashes, the bugcheck code can use the
alternate path by referring to the contents of DUMP_DEV.

When you enter a list of devices, however, the system disk must come last.

For information on how to write the system dump file to an alternative device to the system disk, see the
VSI OpenVMS System Manager's Manual, Volume 2: Tuning, Monitoring, and Complex Systems.

2.2.1.6. Writing to the System Page File
If SYS$SYSTEM:SYSDUMP.DMP does not exist, and there is no DOSD device or dump file, the
operating system writes the dump of physical memory into SYS$SYSTEM:PAGEFILE.SYS, the primary
system page file, overwriting the contents of that file.

If the SAVEDUMP system parameter is set, the dump file is retained in PAGEFILE.SYS when the
system is booted after a system failure. If the SAVEDUMP parameter is not set, which is the default,

12

Chapter 2. SDA Description

OpenVMS uses the entire page file for paging and any dump written to the page file is lost. (To examine
or change the value of the SAVEDUMP parameter, consult the VSI OpenVMS System Manager's Manual,
Volume 2: Tuning, Monitoring, and Complex Systems.)

To calculate the minimum size for a full memory dump to SYS$SYSTEM:PAGEFILE.SYS, use the
following formula:

size-in-blocks(SYS$SYSTEM:PAGEFILE.SYS)
 = size-in-pages(physical-memory) * blocks-per-page
 + number-of-error-log-buffers * blocks-per-buffer
 + 10
 + value of the system parameter RSRVPAGCNT * blocks-per-page

Note that this formula calculates the minimum size requirement for saving a physical dump in the
system's page file. VSI recommends that the page file be a bit larger than this minimum to avoid
hanging the system. Also note that you can only write the system dump into the primary page file (SYS
$SYSTEM:PAGEFILE.SYS). Secondary page files cannot be used to save dump file information.

Note also that OpenVMS will not fill the page file completely when writing a system dump, since the
system might hang when rebooting after a system crash. RSRVPAGCNT pages are kept unavailable for
dumps. This applies to both full dumps and selective dumps.

Writing crash dumps to SYS$SYSTEM:PAGEFILE.SYS presumes that you will later free the space
occupied by the dump for use by the pager. Otherwise, your system may hang during the startup
procedure. To free this space, you can do one of the following:

• Include SDA commands that free dump space in the site-specific startup command procedure
(described in Section 2.2.4).

• Use the SDA COPY command to copy the dump from SYS$SYSTEM:PAGEFILE.SYS to another
file. Use the SDA COPY command instead of the DCL COPY command because the SDA COPY
command only copies the blocks used by the dump and causes the pages occupied by the dump to be
freed from the system's page file.

• If you do not need to copy the dump elsewhere, issue an ANALYZE/CRASH_DUMP/RELEASE
command. When you issue this command, SDA immediately releases the pages to be used for system
paging, effectively deleting the dump. Note that this command does not allow you to analyze the
dump before deleting it.

2.2.2. Saving System Dumps
Every time the operating system writes information to the system dump file, it writes over whatever was
previously stored in the file. The system writes information to the dump file whenever the system fails.
For this reason, the system manager must save the contents of the file after a system failure has occurred.

The system manager can use the SDA COPY command or the DCL COPY command. Either command
can be used in a site-specific startup procedure, but the SDA COPY command is preferred because
it marks the dump file as copied. As mentioned earlier, this is particularly important if the dump was
written into the page file, SYS$SYSTEM:PAGEFILE.SYS, because it releases those pages occupied
by the dump to the pager. Another advantage of using the SDA COPY command is that this command
copies only the saved number of blocks and not necessarily the whole allotted dump file. For instance,
if the size of the SYSDUMP.DMP file is 100,000 blocks and the bugcheck wrote only 60,000 blocks
to the dump file, then DCL COPY would create a file of 100,000 blocks. However, SDA COPY would
generate a file of only 60,000 blocks.

13

Chapter 2. SDA Description

Because system dump files are set to NOBACKUP, the Backup utility (BACKUP) does not copy them to
tape unless you use the qualifier /IGNORE=NOBACKUP when invoking BACKUP. When you use the
SDA COPY command to copy the system dump file to another file, OpenVMS does not set the new file
to NOBACKUP.

As created during installation, the file SYS$SYSTEM:SYSDUMP.DMP is protected against world
access. Because a dump file can contain privileged information, VSI recommends that the system
manager does not change this default protection.

When a dump is being analyzed, it is useful to have data available that cannot be written to the dump
file at the time of the system crash. This data includes the full file specification associated with a file
identification, and, on OpenVMS Integrity servers, the unwind data for images activated in processes.

If the dump is being analyzed on the system where it was originally written, this data can be collected
for use in the current SDA session by using the COLLECT command. If the dump is being copied for
analysis elsewhere, the COPY/COLLECT command can be used to collect the data and append it to the
copy being written. If the COPY/COLLECT command is used after a COLLECT command, the data
already collected is appended to the dump copy.

By default, a copy of the original dump, as written at the time of the system crash, will include collection.
You can use the COPY/NOCOLLECT command to override this. Conversely, a copy of a dump
previously copied by SDA without collection (COPY/NOCOLLECT) will not include collection. You can
use COPY/COLLECT to override this.

Copying a dump that already contains an appended collection will always include that collection.

For all file and unwind data to be collected successfully, all disks that were mounted at the time of
the system crash should be remounted and accessible to the process running SDA. If SDA is invoked
early during the startup to save the contents of the dump (for example, using CLUE$SITE_PROC, as
described in Section 2.2.4), but disks are not mounted until a batch job is run, the COPY/NOCOLLECT
command should be used in the CLUE$SITE_PROC command procedure. Once all disks are mounted,
you can use a COPY/COLLECT command to save file and unwind data.

If the COPY and COLLECT operations cannot be done as a single step, a COLLECT/SAVE command
will write the collection to a separate file that can be used later in conjunction with the dump file. A later
COPY will combine the two files.

2.2.3. Partial Dump Copies
Because of the layout of a selective dump, it is often the case that only a small part of the dump is
needed to investigate the cause of the system crash. The system manager must save the complete dump
locally, as described in the previous section, but has to provide only the key sections of the dump to VSI
Services for analysis. This can significantly reduce the time taken to copy the dump over the network.
Such a copy is referred to as a Partial Dump Copy. It can only be used when a selective system dump
(compressed or uncompressed) has been written, and is not available for full system dumps or for process
dumps.

If you require information from a section of the dump that was not copied, it can be extracted from the
saved local copy and submitted separately. The ANALYZE /CRASH_DUMP command accepts multiple
input files from the same crash and treats them as a single dump.

For an explanation of key processes and key global pages, and the organization of a selective system
dump, see the chapter Managing Page, Swap, and Dump Files in the VSI OpenVMS System Manager's
Manual, Volume 2: Tuning, Monitoring, and Complex Systems.

14

Chapter 2. SDA Description

2.2.3.1. Example - Use of Partial Dump Copies
The following steps describe a typical use of Partial Dump Copies:

1. Save the complete dump:

$ ANALYZE/CRASH SYS$SYSTEM:SYSDUMP.DMP

OpenVMS system dump analyzer
...analyzing an I64 compressed selective memory dump...

Dump taken on 22-SEP-2009 18:17:17.99 using version XC4I-J2I
SSRVEXCEPT, Unexpected system service exception

SDA> COPY SSRVEXCEPT.DMP
SDA> EXIT

2. Create a partial copy containing only the key sections of the dump:

$ ANALYZE/CRASH SSRVEXCEPT

OpenVMS system dump analyzer
...analyzing an I64 compressed selective memory dump...

Dump taken on 22-SEP-2009 18:17:17.99 using version XC4I-J2I
SSRVEXCEPT, Unexpected system service exception

SDA> COPY SSRVKEY /PARTIAL=KEY
SDA> EXIT

3. Provide the output of this copy, containing only the key sections, to VSI Services, where it can be
analyzed as follows:

$ ANALYZE/CRASH SSRVKEY

OpenVMS system dump analyzer
...analyzing an I64 compressed selective memory dump...

Dump taken on 22-SEP-2009 18:17:17.99 using version XC4I-J2I
SSRVEXCEPT, Unexpected system service exception

SDA> SHOW CRASH
SDA> !

4. During analysis of the crash, VSI Services determines that the CLUSTER_SERVER process, not
included in the partial dump copy, is required and requests that part of the dump. Extract the process
from the saved complete copy, as follows:

$ ANALYZE/CRASH SSRVEXCEPT

OpenVMS system dump analyzer
...analyzing an I64 compressed selective memory dump...

Dump taken on 22-SEP-2009 18:17:17.99 using version XC4I-J2I
SSRVEXCEPT, Unexpected system service exception

SDA> COPY SSRVCSP /PARTIAL=PROCESS=NAME=CLUSTER_SERVER
SDA> EXIT

15

Chapter 2. SDA Description

5. Provide the output of this copy to VSI Services for analysis, where it can be analyzed as follows:

$ ANALYZE/CRASH SSRVKEY,SSRVCSP

OpenVMS system dump analyzer
...analyzing an I64 compressed selective memory dump...

Dump taken on 22-SEP-2009 18:17:17.99 using version XC4I-J2I
SSRVEXCEPT, Unexpected system service exception

SDA> SHOW PROCESS CLUSTER_SERVER
SDA> ! etc.

2.2.3.2. Additional notes on Partial Dump Copies
This section provides additional notes on Partial Dump Copies.

• In Step 4 of the preceding example, the COPY command cannot be given as shown:

SDA> COPY /PARTIAL=PROCESS=NAME=CLUSTER_SERVER SSRVCSP

This is because SDA must treat the combined string "CLUSTER SERVER SSRVCSP" as the process
name, since spaces are valid in a process name. Alternative formats that can be used are as follows:

SDA> COPY /PARTIAL=PROCESS=NAME=CLUSTER_SERVER SSRVCSP
SDA> COPY /PARTIAL=PROCESS=NAME=(CLUSTER_SERVER) SSRVCSP
SDA> COPY /PARTIAL=(PROCESS=NAME=CLUSTER_SERVER) SSRVCSP

• In Step 5 of the preceding example, the input files cannot be specified as "SSRV*". In that case,
SSRVCSP.DMP can be opened before SSRVKEY.DMP. The file that contains the section PT must
be opened first.

• In a selective system dump, processes are dumped in two sections:

• Process Page Table Space

• Process Memory

If a process is copied as part of a COPY /PARTIAL, the two sections are always copied together.

• In a selective system dump from an Alpha system with Resource Affinity Domains (RADs) enabled,
there is a Replicated System Space section for each RAD other than the base RAD. If replicated
system space is copied as part of a COPY /PARTIAL, all replicated system space sections are always
copied together.

• See the description of the COPY command in Chapter 4 for a complete list of the possible section
names.

2.2.4. Invoking SDA When Rebooting the System
When the system reboots after a system failure, SDA is automatically invoked by default. SDA archives
information from the dump in a history file. In addition, a listing file with more detailed information
about the system failure is created in the directory pointed to by the logical name CLUE$COLLECT.
(Note that the default directory is SYS$ERRORLOG unless you redefine the logical name CLUE
$COLLECT in the procedure SYS$MANAGER:SYLOGICALS.COM.) The file name is in the form
CLUE$node_ddmmyy_hhmm.LIS where the timestamp (hhmm) corresponds to the system failure time
and not the time when the file was created.

16

Chapter 2. SDA Description

Directed by commands in a site-specific file, SDA can take additional steps to record information about
the system failure. They include the following:

• Supplementing the contents of the list file containing the output of specific SDA commands.

• Copying the contents of the dump file to another file. This information is otherwise lost at the next
system failure when the system saves information only about that failure.

If the logical name CLUE$SITE_PROC points to a valid and existing command file, it will be executed
as part of the CLUE HISTORY command when you reboot. If used, this file should contain only valid
SDA commands.

Generated by a set sequence of commands, the CLUE list file contains only an overview of the failure
and is unlikely to provide enough information to determine the cause of the failure. VSI, therefore,
recommends that you always copy the dump file.

The following example shows SDA commands that can make up your site-specific command file to
produce a more complete SDA listing after each system failure, and to save a copy of the dump file:

!
! SDA command file, to be executed as part of the system
! bootstrap from within CLUE. Commands in this file can
! be used to save the dump file after a system bugcheck, and
! to execute any additional SDA commands.
!
! Note that the logical name DMP$ must have been defined
! within SYS$MANAGER:SYLOGICALS.COM
!
READ/EXEC ! read in the executive images' symbol tables
SHOW STACK ! display the stack
COPY DMP$:SAVEDUMP.DMP ! copy and save dump file
!

The CLUE HISTORY command is executed first, followed by the SDA commands in this site-specific
command file. See the reference section on CLUE HISTORY for details on the summary information
that is generated and stored in the CLUE list file by the CLUE HISTORY command. Note that the
SDA COPY command must be the last command in the command file. If the dump has been written
to PAGEFILE.SYS, then the space used by the dump will be automatically returned for use for paging
as soon as the COPY is complete and no more analysis is possible. You might need to include the /
NOCOLLECT qualifier on the COPY command. See Section 2.2.2 for details.

To point to your site-specific file, add a line such as the following to the file SYS
$MANAGER:SYLOGICALS.COM:

$ DEFINE/SYSTEM CLUE$SITE_PROC SYS$MANAGER:SAVEDUMP.COM

In this example, the site-specific file is named SAVEDUMP.COM.

The CLUE list file can be printed immediately or saved for later examination.

SDA is invoked and executes the specified commands only when the system boots for the first time after
a system failure. If the system is booting for any other reason (such as a normal system shutdown and
reboot), SDA exits.

17

Chapter 2. SDA Description

If CLUE files occupy more space than the threshold allows (the default is 5000 blocks), the oldest files
will be deleted until the threshold limit is reached. The threshold limit can be customized with the CLUE
$MAX_BLOCK logical name.

To prevent the running of CLUE at system startup, define the logical CLUE$INHIBIT in the
SYLOGICALS.COM file as TRUE in the system logical name table.

2.3. Analyzing a System Dump
SDA performs certain tasks before bringing a dump into memory, presenting its initial displays, and
accepting command input. These tasks include the following:

• Verifying that the process invoking it is suitably privileged to read the dump file

• Using RMS to read in pages from the dump file

• Building the SDA symbol table from the files SDA$READ_DIR:SYS$BASE_IMAGE.EXE and
SDA$READ_DIR:REQSYSDEF.STB

• Executing the commands in the SDA initialization file

For detailed information on investigating system failures, see Section 2.7.

2.3.1. Requirements
To analyze a dump file, your process must have read access both to the file that contains the dump and to
copies of SDA$READ_DIR:SYS$BASE_IMAGE.EXE and SDA$READ_DIR:REQSYSDEF.STB (the
required subset of the symbols in the file SYSDEF.STB). SDA reads these tables by default.

2.3.2. Invoking SDA
If your process can access the files listed in Section 2.3.1, you can issue the DCL command ANALYZE/
CRASH_DUMP to invoke SDA. If you do not specify the name of a dump file in the command, and
SYS$SYSTEM:SYSDUMP.DMP cannot be opened, SDA prompts you:

$ ANALYZE/CRASH_DUMP
_Dump File:

If any part of the file name is specified, the default file specification is as follows:

@@@@SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your last SET DEFAULT
command.

If you are rebooting after a system failure, SDA is automatically invoked. See Section 2.2.4.

2.3.3. Mapping the Contents of the Dump File
SDA first attempts to map the contents of memory as stored in the specified dump file. To do this, it
must first locate the page tables for system space among its contents. The system page tables contain one
entry for each page of system virtual address space.

• If SDA cannot find the system page tables in the dump file, it displays the following message:

%SDA-E-SPTNOTFND, system page table not found in dump file

18

Chapter 2. SDA Description

If that error message is displayed, you cannot analyze the crash dump, but must take steps to ensure
that any subsequent dump can be analyzed. To do this, you must either adjust the DUMPSTYLE
system parameter as discussed in Section 2.2.1.1 or increase the size of the dump file as indicated in
Section 2.2.1.3.

• If SDA finds the system page tables in an incomplete dump, the following message is displayed:

%SDA-W-SHORTDUMP, dump file was n blocks too small when dump written;
 analysis may not be possible

Under certain conditions, some memory locations might not be saved in the system dump file.
Additionally, if a bugcheck occurs during system initialization, the contents of the register display may be
unreliable. The symptom of such a bugcheck is a SHOW SUMMARY display that shows no processes or
only the swapper process.

If you use an SDA command to access a virtual address that has no corresponding physical address, SDA
generates the following error message:

%SDA-E-NOTINPHYS, 'location': virtual data not in physical memory

When analyzing a selective dump file, if you use an SDA command to access a virtual address that has
a corresponding physical address not saved in the dump file, SDA generates one of the following error
messages:

%SDA-E-MEMNOTSVD, memory not saved in the dump file

%SDA-E-NOREAD, unable to access location n

2.3.4. Building the SDA Symbol Table
After locating and reading the system dump file, SDA attempts to read the system symbol table file into
the SDA symbol table. If SDA cannot find SDA$READ_DIR:SYS$BASE_IMAGE.EXE---or is given a
file that is not a system symbol table in the /SYMBOL qualifier to the ANALYZE command---it displays
a fatal error and exits. SDA also reads into its symbol table a subset of SDA$READ_DIR:SYSDEF.STB,
called SDA$READ_DIR:REQSYSDEF.STB. This subset provides SDA with the information needed to
access some of the data structures in the dump.

When SDA finishes building its symbol table, SDA displays a message identifying itself and the
immediate cause of the system failure. In the following example, the cause of the system failure was the
deallocation of a bad page file address.

OpenVMS Alpha System Dump Analyzer

Dump taken on 27-MAR-1993 11:22:33.92
BADPAGFILD, Bad page file address deallocated

2.3.5. Executing the SDA Initialization File (SDA$INIT)
After displaying the system failure summary, SDA executes the commands in the SDA initialization file,
if you have established one. SDA refers to its initialization file by using the logical name SDA$INIT. If
SDA cannot find the file defined as SDA$INIT, it searches for the file SYS$LOGIN:SDA.INIT.

This initialization file can contain SDA commands that read symbols into SDA's symbol table, define
keys, establish a log of SDA commands and output, or perform other tasks. For instance, you may want
to use an SDA initialization file to augment SDA's symbol table with definitions helpful in locating

19

Chapter 2. SDA Description

system code. If you issue the following command, SDA includes those symbols that define many of the
system's data structures, including those in the I/O database:

READ SDA$READ_DIR:filename

You may also find it helpful to define those symbols that identify the modules in the images that make
up the executive by issuing the following command:

READ/EXECUTIVE SDA$READ_DIR:

After SDA has executed the commands in the initialization file, it displays its prompt as follows:

SDA>

This prompt indicates that you can use SDA interactively and enter SDA commands.

An SDA initialization file may invoke a command procedure with the @ command. However, such
command procedures cannot invoke other command procedures.

2.4. Analyzing a Running System
Occasionally, OpenVMS encounters an internal problem that hinders system performance without
causing a system failure. By allowing you to examine the running system, SDA enables you to search
for the solution without disturbing the operating system. For example, you may be able to use SDA to
examine the stack and memory of a process that is stalled in a scheduler state, such as a miscellaneous
wait (MWAIT) or a suspended (SUSP) state.

If your process has change-mode-to-kernel (CMKRNL) privilege, you can invoke SDA to examine the
system. Use the following DCL command:

$ ANALYZE/SYSTEM

SDA attempts to load SDA$READ_DIR:SYS$BASE_IMAGE.EXE and SDA
$READ_DIR:REQSYSDEF.STB. It then executes the contents of any existing SDA initialization
file, as it does when invoked to analyze a crash dump (see Sections Section 2.3.4 and Section 2.3.5,
respectively). SDA subsequently displays its identification message and prompt, as follows:

OpenVMS Alpha System Analyzer

SDA>

This prompt indicates that you can use SDA interactively and enter SDA commands. When analyzing a
running system, SDA sets its process context to that of the process running SDA.

If you are analyzing a running system, consider the following:

• When used in this mode, SDA does not map the entire system, but instead retrieves only the
information it needs to process each individual command. To update any given display, you must
reissue the previous command.

Caution

When using SDA to analyze a running system, carefully interpret its displays. Because system states
change frequently, it is possible that the information SDA displays may be inconsistent with the
current state of the system.

20

Chapter 2. SDA Description

• Certain SDA commands are illegal in this mode, such as SET CPU. Use of these commands results
in the following error message:

%SDA-E-CMDNOTVLD, command not valid on the running system

• The SHOW CRASH command, although valid, does not display the contents of any of the
processor's set of hardware registers.

2.5. SDA Context
When you invoke SDA to analyze either a crash dump or a running system, SDA establishes a default
context for itself from which it interprets certain commands.

When you are analyzing a uniprocessor system, SDA's context is solely process context, which means
SDA can interpret its process-specific commands in the context of either the process current on the
uniprocessor or some other process in another scheduling state. When SDA is initially invoked to analyze
a crash dump, SDA's process context defaults to that of the process that was current at the time of the
system failure. When you invoke SDA to analyze a running system, SDA's process context defaults to
that of the current process, that is, the one executing SDA. To change SDA's process context, issue any
of the following commands:

• SET PROCESS process-name

• SET PROCESS/ADDRESS=pcb-address

• SET PROCESS/INDEX=nn

• SET PROCESS/NEXT

• SET PROCESS/SYSTEM

• SHOW PROCESS process-name

• SHOW PROCESS/ADDRESS=pcb-address

• SHOW PROCESS/INDEX=nn

• SHOW PROCESS/NEXT

• SHOW PROCESS/SYSTEM

• VALIDATE PROCESS/POOL process-name

• VALIDATE PROCESS/POOL/ADDRESS=pcb-address

• VALIDATE PROCESS/POOL/INDEX=nn

• VALIDATE PROCESS/POOL/NEXT

• VALIDATE PROCESS/POOL/SYSTEM

When you invoke SDA to analyze a crash dump from a multiprocessing system with more than one
active CPU, SDA maintains a second dimension of context---its CPU context---that allows it to display
certain processor-specific information. This information includes the reason for the bugcheck exception,
the currently executing process, the current IPL, and the spinlocks owned by the processor. When you
invoke SDA to analyze a multiprocessor's crash dump, its CPU context defaults to that of the processor

21

Chapter 2. SDA Description

that induced the system failure. When you are analyzing a running system, CPU context is not accessible
to SDA. Therefore, the SET CPU command is not permitted.

You can change the SDA CPU context by using any of the following commands:

• SET CPU cpu-id

• SET CPU /FIRST

• SET CPU /NEXT

• SET CPU /PRIMARY

• SHOW CPU cpu-id

• SHOW CPU /FIRST

• SHOW CPU /NEXT

• SHOW CPU /PRIMARY

• SHOW CRASH

• SHOW MACHINE_CHECK cpu-id

Changing CPU context involves an implicit change in process context in either of the following ways:

• If there is a current process on the CPU made current, SDA process context is changed to that of that
CPU's current process.

• If there is no current process on the CPU made current, SDA process context is undefined and no
process-specific information is available until SDA process context is set to that of a specific process.

Changing process context requires a switch of CPU context as well. For instance, when you issue a SET
PROCESS command, SDA automatically changes its CPU context to that of the CPU on which that
process was most recently current. The following commands can have this effect:

• SET PROCESS process-name

• SET PROCESS/ADDRESS=pcb-address

• SET PROCESS/INDEX=nn

• SET PROCESS/NEXT

• SHOW PROCESS process-name

• SHOW PROCESS/ADDRESS=pcb-address

• SHOW PROCESS/INDEX=nn

• SHOW PROCESS/NEXT

• VALIDATE PROCESS/POOL process-name

• VALIDATE PROCESS/POOL/ADDRESS=pcb-address

• VALIDATE PROCESS/POOL/INDEX=nn

• VALIDATE PROCESS/POOL/NEXT

22

Chapter 2. SDA Description

2.6. SDA Command Format
The following sections describe the format of SDA commands and the expressions you can use with
SDA commands.

SDA uses a command format similar to that used by the DCL interpreter. Issue commands in the
following format:

command-name[/qualifier...] [parameter][/qualifier...] [!comment]

The command-name is an SDA command. Each command tells the utility to perform a function.
Commands can consist of one or more words, and can be abbreviated to the number of characters that
make the command unique. For example, SH stands for SHOW.

The parameter is the target of the command. For example, SHOW PROCESS RUSKIN tells SDA
to display the context of the process RUSKIN. The command EXAMINE 80104CD0;40 displays the
contents of 40 bytes of memory, beginning with location 80104CD0.

When you supply part of a file specification as a parameter, SDA assumes default values for the omitted
portions of the specification. The default device is SYS$DISK, the device specified in your most recent
SET DEFAULT command. The default directory is the directory specified in the most recent SET
DEFAULT command. See the VSI OpenVMS DCL Dictionary for a description of the DCL command
SET DEFAULT.

The qualifier modifies the action of an SDA command. A qualifier is always preceded by a slash (/).
Several qualifiers can follow a single parameter or command name, but each must be preceded by
a slash. Qualifiers can be abbreviated to the shortest string of characters that uniquely identifies the
qualifier.

The comment consists of text that describes the command; this comment is not actually part of the
command. Comments are useful for documenting SDA command procedures. When executing a
command, SDA ignores the exclamation point and all characters that follow it on the same line.

2.6.1. Using Expressions and Operators
You can use expressions as parameters for some SDA commands, such as SEARCH and EXAMINE. To
create expressions, use any of the following elements:

• Numerals

• Radix operators

• Arithmetic and logical operators

• Precedence operators

• Symbols

Numerals are one possible component of an expression. The following sections describe the use of the
other components.

2.6.1.1. Radix Operators
Radix operators determine which numeric base SDA uses to evaluate expressions. You can use one of
the three radix operators to specify the radix of the numeric expression that follows the operator:

• ^X (hexadecimal)

23

Chapter 2. SDA Description

• ^O (octal)

• ^D (decimal)

The default radix is hexadecimal. SDA displays hexadecimal numbers with leading zeros and decimal
numbers with leading spaces.

2.6.1.2. Arithmetic and Logical Operators
There are two types of arithmetic and logical operators:

• Unary operators affect the value of the expression that follows them. (See Table 2.3.)

• Binary operators combine the operands that precede and follow them. (See Table 2.4.)

In evaluating expressions containing binary operators, SDA performs logical AND, OR, and XOR
operations, and multiplication, division, and arithmetic shifting before addition and subtraction. Note that
the SDA arithmetic operators perform integer arithmetic on 64-bit operands.

Table 2.3. SDA Unary Operators

Operator Action

Performs a logical NOT of the expression.
+ Makes the value of the expression positive.
-- Makes the value of the expression negative.
@ Evaluates the following expression as an address,

then uses the contents of that address as its value.
^Q Specifies that the size of the field to be used as an

address is a quadword when used with the unary
operator @ 1.

^L Specifies that the size of the field to be used as an
address is a longword when used with the unary
operator @ 1.

^W Specifies that the size of the field to be used as
an address is a word when used with the unary
operator @ 1.

^B Specifies that the size of the field to be used as
an address is a byte when used with the unary
operator @ 1.

^P Specifies a physical address when used with the
unary operator @. The command SET FETCH can
be used to change the default FETCH size and/or
access method. See the SET FETCH command
description in Chapter 4 for more details and
examples.

^V Specifies a virtual address when used with the
unary operator @ 1. The command SET FETCH
can be used to change the default FETCH size and/
or access method. See the SET FETCH command
description in Chapter 4 for more details and
examples.

24

Chapter 2. SDA Description

Operator Action

G Adds FFFFFFFF 80000000 16 to the value of the
expression 2. The unary operator G corresponds
to the first virtual address in S0 system space.
For example, the expression GD40 can be used to
represent the address FFFFFFFF 80000D4016.

H Adds 7FFE0000 16 to the value of the
expression 3. The unary operator H corresponds
to a convenient base address in P1 space
(7FFE000016). You can therefore refer to an
address such as 7FFE2A6416 as H2A64

I Fills the leading digits of the following
hexadecimal number with hex value of F. For
example:

Table 2.4. SDA Binary Operators

Operator Action

+ Addition
-- Subtraction
* Multiplication
& Logical AND
| Logical OR
\ Logical XOR
/ Division. In division, SDA truncates the quotient

to an integer, if necessary, and does not retain a
remainder.

@ Arithmetic shifting
"." Catenates two 32-bit values into a 64-bit value. For

example:

SDA> eval fe.50000

Hex = 000000FE00050000 Decimal =
 1090922020864

2.6.1.3. Precedence Operators
SDA uses parentheses as precedence operators. Expressions enclosed in parentheses are evaluated first.
SDA evaluates nested parenthetical expressions from the innermost to the outermost pairs of parentheses.

2.6.1.4. SDA Symbols
An SDA symbol can represent several value types. It can represent a constant, a data address, a
procedure or function descriptor address, or a routine address. Constants are usually offsets of a
particular field in a data structure; however, they can also represent constant values such as the BUG
$_xxx symbols.

Symbols are composed of up to 31 letters and numbers, and can include the dollar sign ($) and
underscore (_) characters. When you invoke SDA, it reads in the global symbols from the symbols table

25

Chapter 2. SDA Description

section of SYS$BASE_IMAGE.EXE, and from REQSYSDEF.STB, a required subset of the symbols
in the file SYSDEF.STB. You can add other symbols to SDA's symbol table by using the DEFINE and
READ commands.

All address symbols identify memory locations. SDA generally does not distinguish among different
types of address symbols. However, for a symbol identified as the name of a procedure descriptor, SDA
takes an additional step of creating an associated symbol to name the code entry point address of the
procedure. It forms the code entry point symbol name by appending _C to the name of the procedure
descriptor.

Also, SDA substitutes the code entry point symbol name for the procedure descriptor symbol when you
enter the following command:

SDA> EXAMINE/INSTRUCTION procedure-descriptor

For example, enter the following command:

SDA> EXAMINE/INSTRUCTION SCH$QAST

SDA displays the following information:

SCH$QAST_C: SUBQ SP,#X40,SP

Now enter the EXAMINE command but do not specify the /INSTRUCTION qualifier, as follows:

SDA> EXAMINE SCH$QAST

SDA displays the following information:

SCH$QAST: 0000002C.00003009 ".0..,..."

This display shows the contents of the first two longwords of the procedure descriptor.

Note that there are no routine address symbols on Alpha systems, except for those in MACRO-64
assembly language modules. Therefore, SDA creates a routine address symbol for every procedure
descriptor it has in its symbol table. The new symbol name is the same as for the procedure descriptor
except that it has an _C appended to the end of the name.

Sources for SDA Symbols

SDA obtains its information from the following:

• Images (.EXE files)

• Image symbol table files (.STB files)

• Object files

SDA also defines symbols to access registers and to access common data structures.

The only images with symbols are shareable images and executive images. These images contain only
universal symbols, such as constants and addresses.

The image symbol table files are produced by the linker with the /SYMBOLS qualifier. These
files normally contain only universal symbols, as do the executable images. However, if the
SYMBOL_TABLE=GLOBALS linker option is specified, the .STB file also contains all global symbols
defined in the image. See the VSI OpenVMS Linker Utility Manual for more information.

Object files can contain global constant values. An object file used with SDA typically contains
symbol definitions for data structure fields. Such an object file can be generated by compiling a

26

Chapter 2. SDA Description

MACRO-32 source module that invokes specific macros. The macros, which are typically defined in
SYS$LIBRARY:LIB.MLB or STARLET.MLB, define symbols that correspond to data structure field
offsets. The macro $UCBDEF, for example, defines offsets for fields within a unit control block (UCB).
OpenVMS Alpha and Integrity servers provide several such object modules in SDA$READ_DIR, as
listed in the table below. For compatibility with OpenVMS VAX, the modules' file types have been
renamed to .STB.

Table 2.5. Modules Containing SDA Global Symbols and Data Structures

File Contents

DCLDEF.STB Symbols for the DCL interpreter
DECDTMDEF.STB Symbols for transaction processing
GLXDEF.STB Symbols for OpenVMS Galaxy data structures
IMGDEF.STB Symbols for the image activator
IODEF.STB I/O database structure symbols
NETDEF.STB Symbols for DECnet data structures
REQSYSDEF.STB Required symbols for SDA
RMSDEF.STB Symbols that define RMS internal and user data

structures and RMS$_ xxx completion codes
SCSDEF.STB Symbols that define data structures for system

communications services
SYSDEF.STB Symbols that define system data structures,

including the I/O database
TCPIP$NET_GLOBALS.STB 1 Data structure definitions for TCP/IP internet

driver, execlet, and ACP data structures. Available
only if TCP/IP has been installed.

TCPIP$NFS_GLOBALS.STB 1 Data structure definitions for TCP/IP NFS server.
Available only if TCP/IP has been installed.

TCPIP$PROXY_GLOBALS.STB 1 Data structure definitions for TCP/IP proxy execlet
TCPIP$PWIP_GLOBALS.STB 1 Data structure definitions for TCP/IP PWIP driver,

and ACP data structures. Available only if TCP/IP
has been installed.

TCPIP$TN_GLOBALS.STB 1 Data structure definitions for TCP/IP TELNET/
RLOGIN server driver data structures. Available
only if TCP/IP has been installed.

The following table lists symbols that SDA defines automatically on initialization.

Table 2.6. SDA Symbols Defined on Initialization

ASN Address space number
AST Both the asynchronous system trap status and

enable registers: AST<3:0> = AST enable;
AST<7:4> = AST status

BR0 through BR7 Branch registers (Integrity servers only)
CYCLE_COUNTER Process cycle counter
ESP Executive stack pointer

27

Chapter 2. SDA Description

EBSP Executive register stack pointer (Integrity servers
only)

FEN Floating-point enable
FP Frame pointer (R29)
FP0 through FP31 Floating-point registers (Alpha only)
FP0 through FP127 Floating point registers (Integrity servers only)
FPCR Floating-point control register (Alpha only)
FPSR Floating-point status register (Integrity servers

only)
GP Global pointer (R1) (Integrity servers only)
G FFFFFFFF.80000000 16, the base address of

system space
H 00000000.7FFE0000 16, a base address in P1

space
I FFFFFFFF.FFFFFFFF 16, also fills the leading

digits of a hexadecimal number with the value of F
KSP Kernel stack pointer
KBSP Kernel register stack pointer (Integrity servers

only)
PAL_RSVD PAL reserved area in process HWPCB
PC Program counter
PCC Process cycle counter
PS Processor status
PTBR Page table base register
R0 through R31 Integer registers (Alpha only)
R0 through R127 Integer registers (Integrity servers only)
SCC System cycle counter
SP Current stack pointer of a process
SSP Supervisor stack pointer
SBSP Supervisor register stack pointer (Integrity servers

only)
SYSPTBR Page table base register for system space
USP User stack pointer
UBSP User register stack pointer (Integrity servers only)
VIRBND Virtual Address Boundary for RADs (Alpha only)

After a SET CPU command is issued (for analyzing a crash dump only), the symbols defined in the table
below are set for that CPU.

Table 2.7. SDA Symbols Defined by SET CPU Command

CPUDB Address of CPU database
IPL Interrupt priority level register

28

Chapter 2. SDA Description

MCES Machine check error summary register
PCBB Process context block base register
PRBR Processor base register (CPU database address)
RAD Address of RAD database
SCBB System control block base register
SISR Software interrupt status register
VPTB Virtual Page Table Base register

After a SET PROCESS command is issued, the symbols listed in the table below are defined for that
process.

Table 2.8. SDA Symbols Defined by SET PROCESS Command

ARB Address of access rights block
FRED Address of floating-point register and execution

data block
JIB Address of job information block
KTB Address of the kernel thread block
ORB Address of object rights block
PCB Address of process control block
PHD Address of process header
PSB Address of persona security block

Other SDA commands, such as SHOW DEVICE and SHOW CLUSTER, predefine additional symbols.

Symbols can include lowercase letters. Commands that manipulate symbols (such as DEFINE, SHOW
SYMBOL, UNDEFINE) require these symbols to be enclosed within quotation marks ("symbol").

SDA Symbol Initialization

On initialization, SDA reads the universal symbols defined by SYS$BASE_IMAGE.EXE. For every
procedure descriptor address symbol found, a routine address symbol is created (with _C appended to
the symbol name).

SDA then reads the object file REQSYSDEF.STB. This file contains data structure definitions that are
required for SDA to run correctly. It uses these symbols to access some of the data structures in the crash
dump file or on the running system.

Finally, SDA initializes the process registers defined in Table 2.8 and executes a SET CPU command,
defining the symbols as well.

Use of SDA Symbols

There are two major uses of the address type symbols. First, the EXAMINE command employs them
to find the value of a known symbol. For example, EXAMINE CTL$GL_PCB finds the PCB for the
current process. Then, certain SDA commands (such as EXAMINE, SHOW STACK, and FORMAT)
use them to symbolize addresses when generating output.

When the code for one of these commands needs a symbol for an address, it calls the SDA symbolize
routine. The symbolize routine tries to find the symbol in the symbol table whose address is closest to,
but not greater than the requested address. This means, for any given address, the routine may return a

29

Chapter 2. SDA Description

symbol of the form symbol_name+offset. If, however, the offset is greater than 0FFF16, it fails to find a
symbol for the address.

As a last resort, the symbolize routine checks to see if this address falls within a known memory range.
Currently, the only known memory ranges are those used by the OpenVMS executive images and those
used by active images in a process. SDA searches through the executive loaded image list (LDRIMG
data structure) and activated image list (IMCB data structures) to see if the address falls within any of
the image sections. If SDA does find a match, it returns one of the following types of symbols:

@@@@executive_image_name+offset activated_image_name+offset

The offset is the same as the image offset as defined in the map file.

The constants in the SDA symbol table are usually used to display a data structure with the FORMAT
command. For example, the PHD offsets are defined in SYSDEF.STB; you can display all the fields of
the PHD by entering the following commands:

SDA> READ SDA$READ_DIR:SYSDEF.STB

SDA> FORMAT/TYPE=PHD phd_address

Symbols and Address Resolution

In OpenVMS, executive and user images are loaded into dynamically assigned address space. To help
you associate a particular virtual address with the image whose code has been loaded at that address,
SDA provides several features:

• The SHOW EXECUTIVE command

• The symbolization of addresses, described in the previous section

• The READ command

• The SHOW PROCESS command with the /IMAGES qualifier

• The MAP command

The OpenVMS executive consists of two base images, SYS$BASE_IMAGE.EXE and SYS
$PUBLIC_VECTORS.EXE, and a number of other separately loadable images. Some of these images
are loaded on all systems, while others support features unique to particular system configurations.
Executive images are mapped into system space during system initialization.

By default, a typical executive image is not mapped at contiguous virtual addresses. Instead, its
nonpageable image sections are loaded into a reserved set of pages with other executive images'
nonpageable sections. The pageable sections of a typical executive image are mapped contiguously into a
different part of system space. An image mapped in this manner is said to be sliced. A particular system
may have system parameters defined that disable executive image slicing altogether.

Each executive image is described by a data structure called a loadable image data block (LDRIMG).
The LDRIMG specifies whether the image has been sliced. If the image is sliced, the LDRIMG indicates
the beginning of each image section and the size of each section. All the LDRIMGs are linked together
in a list that SDA scans to determine what images have been loaded and into what addresses they have
been mapped. The SHOW EXECUTIVE command displays a list of all images that are included in the
OpenVMS executive.

Each executive image is a shareable image whose universal symbols are defined in the SYS
$BASE_IMAGE.EXE symbol vector. On initialization, SDA reads this symbol vector and adds its
universal symbols to the SDA symbol table.

30

Chapter 2. SDA Description

Executive image .STB files define additional symbols within an executive image that are not defined as
universal symbols and thus are not in the SYS$BASE_IMAGE.EXE symbol vector (see Sources for SDA
Symbols Section 2.6.1.4 [26] in this section). You can enter a READ/EXECUTIVE command to
read symbols defined in all executive image .STB files into the SDA symbol table, or a READ/IMAGE
filespec command to read the .STB for a specified image only.

To obtain a display of all images mapped within a process, execute a SHOW PROCESS/IMAGE
command. See the description of the SHOW PROCESS command for additional information about
displaying the hardware and software context of a process.

You can also identify the image name and offset that correspond to a specified address with the MAP
command. With the information obtained from the MAP command, you can then examine the image
map to locate the source module and program section offset corresponding to an address.

2.6.2. SDA Display Mode
Some SDA commands produce more output than will fit on one screen. In this situation, SDA enters
display mode, and outputs the screen overflow prompt at the bottom of the screen:

Press RETURN for more.
SDA>

If the RETURN key is pressed, SDA will continue the output of the command it was processing. If an
EXIT command is entered, SDA will leave display mode, abort the command it was processing and
output a regular SDA prompt. If any other command is entered, SDA will leave display mode, abort the
command it was processing, and begin processing the new command.

SDA will leave display mode once a continued command completes.

2.7. Investigating System Failures
This section discusses how the operating system handles internal errors, and suggests procedures that can
help you determine the causes of these errors. It illustrates, through detailed analysis of a sample system
failure, how SDA helps you find the causes of operating system problems.

For a complete description of the commands discussed in the sections that follow, refer to Chapter 4
and Chapter 5 of this document, where all the SDA and CLUE commands are presented in alphabetical
order.

2.7.1. Procedure for Analyzing System Failures
When the operating system detects an internal error so severe that normal operation cannot continue, it
signals a condition known as a fatal bugcheck and shuts itself down. A specific bugcheck code describes
each fatal bugcheck.

To resolve the problem, you must find the reason for the bugcheck. Many failures are caused by errors
in user-written device drivers or other privileged code not supplied by VSI. To identify and correct these
errors, you need a listing of the code in question.

Occasionally, a system failure is the result of a hardware failure or an error in code supplied by VSI. A
hardware failure requires the attention of VSI Services. To diagnose an error in code supplied by VSI,
you need listings of that code, which are available from VSI.

Start the search for the error by analyzing the CLUE list file that was created by default when the system
failed. This file contains an overview of the system failure, which can assist you in finding the line of

31

Chapter 2. SDA Description

code that signaled the bugcheck. CLUE CRASH displays the content of the program counter (PC) in the
list file. The content of the PC is the address of the next instruction after the instruction that signaled the
bugcheck.

However, some bugchecks are caused by unexpected exceptions. In such cases, the address of the
instruction that caused the exception is more informative than the address of the instruction that signaled
the bugcheck.

The address of the instruction that caused the exception is located on the stack. You can obtain this
address either by using the SHOW STACK command to display the contents of the stack or by using
the SHOW CRASH or CLUE CRASH command to display the system state at time of exception. See
Section 2.7.2 for information on how to proceed for several types of bugchecks.

Once you have found the address of the instruction that caused the bugcheck or exception, find the
module in which the failing instruction resides. Use the MAP command to determine whether the
instruction is part of a device driver or another executive image. Alternatively, the SHOW EXECUTIVE
command shows the location and size of each of the images that make up the OpenVMS executive.

If the instruction that caused the bugcheck is not part of a driver or executive image, examine the linker's
map of the module or modules you are debugging to determine whether the instruction that caused the
bugcheck is in your program.

To determine the general cause of the system failure, examine the code that signaled the bugcheck or the
instruction that caused the exception.

2.7.2. Fatal Bugcheck Conditions
There are many possible conditions that can cause OpenVMS to issue a bugcheck. Normally, these
occasions are rare. When they do occur, they are often fatal exceptions or illegal page faults occurring
within privileged code. This section describes the symptoms of several common bugchecks. A discussion
of other exceptions and condition handling in general appears in the VSI OpenVMS Programming
Concepts Manual.

An exception is fatal when it occurs while either of the following conditions exists:

• The process is executing above IPL 2 (IPL$_ASTDEL).

• The process is executing in a privileged (kernel or executive) processor access mode and has not
declared a condition handler to deal with the exception.

When the system fails, the operating system reports the approximate cause of the system failure on the
console terminal. SDA displays a similar message when you issue a SHOW CRASH command. For
instance, for a fatal exception, SDA can display one of these messages:

FATALEXCPT, Fatal executive or kernel mode exception

INVEXCEPTN, Exception while above ASTDEL

SSRVEXCEPT, Unexpected system service exception

UNXSIGNAL, Unexpected signal name in ACP

When a FATALEXCPT, INVEXCEPTN, SSRVEXCEPT, or UNXSIGNAL bugcheck occurs, two
argument lists, known as the mechanism and signal arrays, are placed on the stack.

Section 2.7.2.1 to Section 2.7.2.6 describe these arrays and related data structures, and Section 2.7.2.7
shows example output from SDA for an SSRVEXCEPT bugcheck.

32

Chapter 2. SDA Description

A page fault is illegal when it occurs while the interrupt priority level (IPL) is greater than 2 (IPL
$_ASTDEL). When OpenVMS fails because of an illegal page fault, it displays the following message on
the console terminal:

PGFIPLHI, Page fault with IPL too high

Section 2.7.2.8 describes the stack contents when an illegal page fault occurs.

2.7.2.1. Alpha Mechanism Array
The figure below illustrates the Alpha mechanism array, which is made up entirely of quadwords. The
first quadword of this array indicates the number of quadwords in this array; this value is always 2C16.
These quadwords are used by the procedures that search for a condition handler and report exceptions.

Figure 2.1. Alpha Mechanism Array

Symbolic offsets into the mechanism array are defined by using the SDA SHOW STACK command to
identify the elements of the mechanism array on the stack using the symbols in the table below.

Table 2.9. Contents of the Alpha Mechanism Array

Offset Meaning

CHF$IS_MCH_ARGS Number of quadwords that follow. In a mechanism
array, this value is always 2C 16.

33

Chapter 2. SDA Description

Offset Meaning

CHF$IS_MCH_FLAGS Flag bits for related argument mechanism
information.

CHF$PH_MCH_FRAME Address of the FP (frame pointer) of the
establisher's call frame.

CHF$IS_MCH_DEPTH Depth of the OpenVMS search for a condition
handler.

CHF$PH_MCH_DADDR Address of the handler data quadword, if the
exception handler data field is present.

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame (see
Figure 2.5figure2-5).

CHF$PH_MCH_SIG_ADDR Address of the signal array (see Figure 2.3).
CHF$IH_MCH_SAVRnn Contents of the saved integer registers at the time

of the exception. The following registers are saved:
R0, R1, and R16 to R28 inclusive.

CHF$FH_MCH_SAVFnn If the process was using floating point, contents of
the saved floating-point registers at the time of the
exception. The following registers are saved: F0,
F1, and F10 to F30 inclusive.

CHF$PH_MCH_SIG64_ADDR Address of the 64-bit signal array (see Figure 2.4).

2.7.2.2. Integrity server Mechanism Array

The figure below illustrates the Integrity server mechanism array, which is made up entirely of
quadwords. The first quadword of this array indicates the number of quadwords in the array. This value
is either 4916, if floating point registers F32 to F127 have not been saved, or 10916, if the floating
point registers have been saved. These quadwords are used by the procedures that search for a condition
handler and report exceptions.

34

Chapter 2. SDA Description

Figure 2.2. Integrity server Mechanism Array

Symbolic offsets into the mechanism array are defined by using the SDA SHOW STACK command to
identify the elements of the mechanism array on the stack using the symbols in the table below.

Table 2.10. Contents of the Integrity server Argument Mechanism Array

Field Name Contents

CHF$IS_MCH_ARGS Count of quadwords in this array starting from
the next quadword, CHF$PH_MCH_FRAME
(not counting the first quadword that contains
this longword). This value is 73 if CHF
$V_FPREGS2_VALID is clear, and 265 if CHF
$V_FPREGS2_VALID is set.

CHF$IS_MCH_FLAGS Flag bits for related argument-mechanism
information.

CHF$PH_MCH_FRAME Contains the Previous Stack Pointer, PSP, (the
value of the SP at procedure entry) for the
procedure context of the establisher.

35

Chapter 2. SDA Description

Field Name Contents

CHF$IS_MCH_DEPTH Positive count of the number of procedure
activation stack frames between the frame in which
the exception occurred and the frame depth that
established the handler being called.

CHF$PH_MCH_DADDR Address of the handler data quadword (start of
the Language Specific Data area, LSDA), if the
exception handler data field is present in the
unwind information block (as indicated by OSSD
$V_HANDLER_DATA_VALID); otherwise,
contains 0.

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame.
CHF$PH_MCH_SIG_ADDR Address of the 32-bit form of signal array. This

array is a 32-bit wide (longword) array. This is the
same array that is passed to a handler as the signal
argument vector.

CHF$IH_MCH_RETVAL Contains a copy of R8 at the time of the exception.
CHF$IH_MCH_RETVAL2 Contains a copy of R9 at the time of the exception.
CHF$PH_MCH_SIG64_ADDR Address of the 64-bit form of signal array. This

array is a 64-bit wide (quadword) array.
CHF$FH_MCH_SAVF32_SAVF127 Address of the extension to the mechanism array

that contains copies of F32 to F127 at the time of
the exception.

CHF$FH_MCH_RETVAL_FLOAT Contains a copy of F8 at the time of the exception.
CHF$FH_MCH_RETVAL2_FLOAT Contains a copy of F9 at the time of the exception.
CHF$FH_MCH_SAVFnn Contain copies of floating-point registers F2 to F5

and F12 to F31. Registers F6, F7 and F10, F11 are
implicitly saved in the exception frame.

CHF$IH_MCH_SAVBnn Contain copies of branch registers B1 to B5 at the
time of the exception.

CHF$IH_MCH_AR_LC Contains a copy of the Loop Count Register
(AR65) at the time of the exception.

CHF$IH_MCH_AR_EC Contains a copy of the Epilog Count Register
(AR66) at the time of the exception.

CHF$PH_MCH_OSSD Address of the operating-system specific data area.
CHF$PH_MCH_INVO_HANDLE Contains the invocation handle of the procedure

context of the establisher.
CHF$PH_MCH_UWR_START Address of the unwind region.
CHF$IH_MCH_FPSR Contains a copy of the hardware floating-point

status register (AR.FPSR) at the time of the
exception.

CHF$IH_MCH_FPSS Contains a copy of the software floating-
point status register (which supplements CHF
$IH_MCH_FPSR) at the time of the exception.

36

Chapter 2. SDA Description

2.7.2.3. Signal Array

The signal array appears somewhat further down the stack. This array comprises all longwords so that
the structure is VAX compatible. A signal array describes the exception that occurred. It contains an
argument count, the exception code, zero or more exception parameters, the PC, and the PS. Therefore,
the size of a signal array can vary from exception to exception. Although there are several possible
exception conditions, access violations are most common. the figure below shows the signal array for an
access violation.

Figure 2.3. Signal Array

For access violations, the signal array is set up as follows:

Table 2.11.

Value Meaning

Vector list length Number of longwords that follow. For access
violations, this value is always 5.

Condition value Exception code. The value 0C 16 represents an
access violation. You can identify the exception
code by using the SDA command EVALUATE/
CONDITION_VALUE or SHOW CRASH.

Additional arguments These can include a reason mask and a virtual
address.

In the longword mask if bit 0 of the longword
is set, the failing instruction (at the PC saved
below) caused a length violation. If bit 1 is set, it
referred to a location whose page table entry is
in a "no access" page. Bit 2 indicates the type of
access used by the failing instruction: it is set for
write and modify operations and clear for read
operations.

The virtual address represents the low-order 32 bits
of the virtual address that the failing instruction
tried to reference.

PC PC whose execution resulted in the exception.
PS PS at the time of the exception.

37

Chapter 2. SDA Description

2.7.2.4. 64-Bit Signal Array

The 64-bit signal array also appears further down the stack. This array comprises all quadwords and is
not VAX compatible. It contains the same data as the signal array, and Figure 2.4 shows the 64-bit signal
array for an access violation. The SDA SHOW STACK command uses the CHF64$ symbols listed in the
figure to identify the 64-bit signal array on the stack.

Figure 2.4. 64-Bit Signal Array

For access violations, the 64-bit signal array is set up as follows:

Value Meaning

Vector list length Number of quadwords that follow. For access
violations, this value is always 5.

Condition value Exception code. The value 0C 16 represents an
access violation. You can identify the exception
code by using the SDA command EVALUATE/
CONDITION_VALUE or SHOW CRASH.

Additional arguments These can include a reason mask and a virtual
address. In the quadword mask if bit 0 of the
quadword is set, the failing instruction (at the PC
saved below) caused a length violation. If bit 1 is
set, it referred to a location whose page table entry
is in a "no access" page. Bit 2 indicates the type
of access used by the failing instruction: it is set
for write and modify operations and clear for read
operations.

PC PC whose execution resulted in the exception.
PS PS at the time of the exception.

2.7.2.5. Alpha Exception Stack Frame

The figure below illustrates the Alpha exception stack frame, which comprises all quadwords.

38

Chapter 2. SDA Description

Figure 2.5. Alpha Exception Stack Frame

The values contained in the exception stack frame are defined as follows:

Table 2.12. Alpha Exception Stack Frame Values

Value Contents

INTSTK$Q_R2 Contents of R2 at the time of the exception
INTSTK$Q_R3 Contents of R3 at the time of the exception
INTSTK$Q_R4 Contents of R4 at the time of the exception
INTSTK$Q_R5 Contents of R5 at the time of the exception
INTSTK$Q_R6 Contents of R6 at the time of the exception
INTSTK$Q_R7 Contents of R7 at the time of the exception
INTSTK$Q_PC PC whose execution resulted in the exception
INTSTK$Q_PS PS at the time of the exception (except high-order

bits)

The SDA SHOW STACK command identifies the elements of the exception stack frame on the stack
using these symbols.

2.7.2.6. Integrity server Exception Stack Frame

Two figures below illustrate the Integrity servers exception stack frame.

39

Chapter 2. SDA Description

Figure 2.6. Integrity servers Exception Stack Frame

Figure 2.7. Integrity servers Exception Stack Frame (cont.)

40

Chapter 2. SDA Description

The values contained in the exception stack frame are defined in the table below.

Table 2.13. Integrity servers Exception Stack Frame Values

Field Use

INTSTK$B_FLAGS Indicates if certain registers have been saved.
INTSTK$B_PPREVMODE Save interrupted context's PREVMODE.
INTSTK$B_PREVSTACK Indicates which mode of stack (register and

memory) we return to.
INTSTK$B_IPL SWIS IPL state
INTSTK$L_STKALIGN How much allocated on this stack for exception

frame.
INTSTK$W_NATMASK Mask of bits 3-9 of the exception frame address.
INTSTK$B_TYPE Standard VMS structure type.
INTSTK$B_SUBTYPE Standard VMS structure subtype.
INTSTK$L_TRAP_TYPE Trap type.
INTSTK$Q_IIP Interruption Instruction Pointer (CR19).
INTSTK$Q_RSC Register Stack Control register.
INTSTK$Q_BSP Backing store pointer.
INTSTK$Q_BSPSTORE User BSP store pointer for next spill.
INTSTK$Q_RNAT RNAT register.
INTSTK$Q_BSPBASE Base of backing store for the inner mode.
INTSTK$Q_PFS Previous function state.
INTSTK$Q_CONTEXT Bookkeeping data for exception processing.
INTSTK$Q_AST_F12 through INTSTK
$Q_AST_F15

F12 to F15 - temporary FP registers; sometimes
saved by AST.

INTSTK$Q_FPSR Floating point status register.
INTSTK$B_INTERRUPT_DEPTH Interrupt depth.
INTSTK$Q_PREDS Predication registers.
INTSTK$Q_IPSR Interruption Processor Status (CR16).
INTSTK$Q_ISR Interruption Status Register (CR17).
INTSTK$Q_CR18 Reserved control register.
INTSTK$Q_IFA Interruption Fault Address (CR20).
INTSTK$Q_ITIR Interruption TLB Insertion Register (CR21).
INTSTK$Q_IIPA Interruption immediate register (CR22).
INTSTK$Q_IFS Interruption Function State (CR23).
INTSTK$Q_IIM Interruption immediate (CR24).
INTSTK$Q_IHA Interruption Hash Address (CR25).
INTSTK$Q_UNAT User NAT collection register.
INTSTK$Q_CCV CCV register.
INTSTK$Q_DCR Default control register.

41

Chapter 2. SDA Description

Field Use

INTSTK$Q_LC Loop counter.
INTSTK$Q_EC Epilogue counter.
INTSTK$Q_NATS NATs for registers saved in this structure.
INTSTK$Q_REGBASE Used to index into registers.
INTSTK$Q_GP r1 - Used as global pointer.
INTSTK$Q_R2 r2 - temporary register.
INTSTK$Q_R3 r3 - temporary register.
INTSTK$Q_R4 through R7 r4 through r7 - preserved registers (not saved by

interrupt).
INTSTK$Q_R8 r8 - return value.
INTSTK$Q_R9 r9 - argument pointer.
INTSTK$Q_R10 r10 - temporary register.
INTSTK$Q_R11 r11 - temporary register.
INTSTK$Q_SSD For future use.
INTSTK$Q_R13 r13 - Thread Pointer.
INTSTK$Q_R14 through R31 r14 through r31 - temporary registers.
INTSTK$Q_B0 Return pointer on kernel entry.
INTSTK$Q_B1 through B5 b1 through b5 - Preserved branch registers (not

saved by interrupt).
INTSTK$Q_B6 b6 - temporary branch register.
INTSTK$Q_B7 b7 - temporary branch register.
INTSTK$L_IVT_OFFSET Offset in IVT.
INTSTK$Q_F6 through F11 f6 through f11 - temporary FP registers.

2.7.2.7. SSRVEXCEPT Example
If OpenVMS encounters a fatal exception, you can find the code that signaled it by examining the PC
in the signal array. Use the SHOW CRASH or CLUE CRASH command to display the PC and the
instruction stream around the PC to locate the exception.

The following display shows the SDA output in response to the SHOW CRASH and SHOW STACK
commands for an Alpha SSRVEXCEPT bugcheck. It illustrates the mechanism array, signal arrays, and
the exception stack frame previously described.

Example 2.1. SHOW CRASH

OpenVMS (TM) Alpha system dump analyzer
...analyzing a selective memory dump...

Dump taken on 30-AUG-2000 13:13:46.83
SSRVEXCEPT, Unexpected system service exception

SDA> SHOW CRASH
Time of system crash: 30-AUG-1996 13:13:46.83

42

Chapter 2. SDA Description

Version of system: OpenVMS (TM) Alpha Operating System, Version V7.3

System Version Major ID/Minor ID: 3/0

System type: DEC 3000 Model 400

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

CPU bugcheck codes:
 CPU 00 -- SSRVEXCEPT, Unexpected system service exception

System State at Time of Exception

Exception Frame:

 R2 = 00000000.00000003
 R3 = FFFFFFFF.80C63460 EXCEPTION_MON_NPRW+06A60
 R4 = FFFFFFFF.80D12740 PCB
 R5 = 00000000.000000C8
 R6 = 00000000.00030038
 R7 = 00000000.7FFA1FC0
 PC = 00000000.00030078
 PS = 00000000.00000003

 00000000.00030068: STQ R27,(SP)
 00000000.0003006C: BIS R31,SP,FP
 00000000.00030070: STQ R26,#X0010(SP)
 00000000.00030074: LDA R28,(R31)
 PC => 00000000.00030078: LDL R28,(R28)
 00000000.0003007C: BEQ R28,#X000007
 00000000.00030080: LDQ R26,#XFFE8(R27)
 00000000.00030084: BIS R31,R26,R0
 00000000.00030088: BIS R31,FP,SP

 PS =>
 MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
 0 00 00000000000 00 0 0 KERN 0 USER

Signal Array

 Length = 00000005
 Type = 0000000C
 Arg = 00000000.00010000
 Arg = 00000000.00000000
 Arg = 00000000.00030078
 Arg = 00000000.00000003
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual
 address=0000000000000000,
 PC=0000000000030078, PS=00000003

Saved Scratch Registers in Mechanism Array
--

43

Chapter 2. SDA Description

R0 = 00000000.00020000 R1 = 00000000.00000000 R16 =
 00000000.00020004
R17 = 00000000.00010050 R18 = FFFFFFFF.FFFFFFFF R19 =
 00000000.00000000
R20 = 00000000.7FFA1F50 R21 = 00000000.00000000 R22 =
 00000000.00010050
R23 = 00000000.00000000 R24 = 00000000.00010051 R25 =
 00000000.00000000
R26 = FFFFFFFF.8010ACA4 R27 = 00000000.00010050 R28 =
 00000000.00000000

CPU 00 Processor crash information

CPU 00 reason for Bugcheck: SSRVEXCEPT, Unexpected system service exception

Process currently executing on this CPU: SYSTEM

Current image file: 31DKB0:[SYS0.][SYSMGR]X.EXE;1

Current IPL: 0 (decimal)

CPU database address: 80D0E000

CPUs Capabilities: PRIMARY,QUORUM,RUN

General registers:

R0 = 00000000.00000000 R1 = 00000000.7FFA1EB8 R2 =
 FFFFFFFF.80D0E6C0
R3 = FFFFFFFF.80C63460 R4 = FFFFFFFF.80D12740 R5 =
 00000000.000000C8
R6 = 00000000.00030038 R7 = 00000000.7FFA1FC0 R8 =
 00000000.7FFAC208
R9 = 00000000.7FFAC410 R10 = 00000000.7FFAD238 R11 =
 00000000.7FFCE3E0
R12 = 00000000.00000000 R13 = FFFFFFFF.80C6EB60 R14 =
 00000000.00000000
R15 = 00000000.009A79FD R16 = 00000000.000003C4 R17 =
 00000000.7FFA1D40
R18 = FFFFFFFF.80C05C38 R19 = 00000000.00000000 R20 =
 00000000.7FFA1F50
R21 = 00000000.00000000 R22 = 00000000.00000001 R23 =
 00000000.7FFF03C8
R24 = 00000000.7FFF0040 AI = 00000000.00000003 RA =
 FFFFFFFF.82A21080
PV = FFFFFFFF.829CF010 R28 = FFFFFFFF.8004B6DC FP =
 00000000.7FFA1CA0
PC = FFFFFFFF.82A210B4 PS = 18000000.00000000

44

Chapter 2. SDA Description

Processor Internal Registers:

ASN = 00000000.0000002F ASTSR/ASTEN =
 0000000F
IPL = 00000000 PCBB = 00000000.003FE080 PRBR =
 FFFFFFFF.80D0E000
PTBR = 00000000.00001136 SCBB = 00000000.000001DC SISR =
 00000000.00000000
VPTB = FFFFFFFC.00000000 FPCR = 00000000.00000000 MCES =
 00000000.00000000

CPU 00 Processor crash information

 KSP = 00000000.7FFA1C98
 ESP = 00000000.7FFA6000
 SSP = 00000000.7FFAC100
 USP = 00000000.7AFFBAD0

 No spinlocks currently owned by CPU 00

Example 2.2. SHOW STACK

SDA> SHOW STACK
Current Operating Stack (KERNEL):
 00000000.7FFA1C78 18000000.00000000
 00000000.7FFA1C80 00000000.7FFA1CA0
 00000000.7FFA1C88 00000000.00000000
 00000000.7FFA1C90 00000000.7FFA1D40
 SP => 00000000.7FFA1C98 00000000.00000000
 00000000.7FFA1CA0 FFFFFFFF.829CF010 EXE$EXCPTN
 00000000.7FFA1CA8 FFFFFFFF.82A2059C
 EXCEPTION_MON_PRO+0259C
 00000000.7FFA1CB0 00000000.00000000
 00000000.7FFA1CB8 00000000.7FFA1CD0
 00000000.7FFA1CC0 FFFFFFFF.829CEDA8 EXE
$SET_PAGES_READ_ONLY+00948
 00000000.7FFA1CC8 00000000.00000000
 00000000.7FFA1CD0 FFFFFFFF.829CEDA8 EXE
$SET_PAGES_READ_ONLY+00948
 00000000.7FFA1CD8 00000000.00000000
 00000000.7FFA1CE0 FFFFFFFF.82A1E930 EXE
$CONTSIGNAL_C+001D0
 00000000.7FFA1CE8 00000000.7FFA1F40
 00000000.7FFA1CF0 FFFFFFFF.80C63780 EXE$ACVIOLAT
 00000000.7FFA1CF8 00000000.7FFA1EB8
 00000000.7FFA1D00 00000000.7FFA1D40
 00000000.7FFA1D08 00000000.7FFA1F00
 00000000.7FFA1D10 00000000.7FFA1F40
 00000000.7FFA1D18 00000000.00000000
 00000000.7FFA1D20 00000000.00000000
 00000000.7FFA1D28 00000000.00020000 SYS
$K_VERSION_04
 00000000.7FFA1D30 00000005.00000250 BUG
$_NETRCVPKT

45

Chapter 2. SDA Description

 00000000.7FFA1D38 829CE050.000008F8 BUG
$_SEQ_NUM_OVF
CHF$IS_MCH_ARGS 00000000.7FFA1D40 00000000.0000002C
CHF$PH_MCH_FRAME 00000000.7FFA1D48 00000000.7AFFBAD0
CHF$IS_MCH_DEPTH 00000000.7FFA1D50 FFFFFFFF.FFFFFFFD
CHF$PH_MCH_DADDR 00000000.7FFA1D58 00000000.00000000
CHF$PH_MCH_ESF_ADDR 00000000.7FFA1D60 00000000.7FFA1F00
CHF$PH_MCH_SIG_ADDR 00000000.7FFA1D68 00000000.7FFA1EB8
CHF$IH_MCH_SAVR0 00000000.7FFA1D70 00000000.00020000 SYS
$K_VERSION_04
CHF$IH_MCH_SAVR1 00000000.7FFA1D78 00000000.00000000
CHF$IH_MCH_SAVR16 00000000.7FFA1D80 00000000.00020004 UCB
$M_LCL_VALID+00004
CHF$IH_MCH_SAVR17 00000000.7FFA1D88 00000000.00010050 SYS
$K_VERSION_16+00010
CHF$IH_MCH_SAVR18 00000000.7FFA1D90 FFFFFFFF.FFFFFFFF
CHF$IH_MCH_SAVR19 00000000.7FFA1D98 00000000.00000000
CHF$IH_MCH_SAVR20 00000000.7FFA1DA0 00000000.7FFA1F50
CHF$IH_MCH_SAVR21 00000000.7FFA1DA8 00000000.00000000
CHF$IH_MCH_SAVR22 00000000.7FFA1DB0 00000000.00010050 SYS
$K_VERSION_16+00010
CHF$IH_MCH_SAVR23 00000000.7FFA1DB8 00000000.00000000
CHF$IH_MCH_SAVR24 00000000.7FFA1DC0 00000000.00010051 SYS
$K_VERSION_16+00011
CHF$IH_MCH_SAVR25 00000000.7FFA1DC8 00000000.00000000
CHF$IH_MCH_SAVR26 00000000.7FFA1DD0 FFFFFFFF.8010ACA4 AMAC
$EMUL_CALL_NATIVE_C+000A4
CHF$IH_MCH_SAVR27 00000000.7FFA1DD8 00000000.00010050 SYS
$K_VERSION_16+00010
CHF$IH_MCH_SAVR28 00000000.7FFA1DE0 00000000.00000000
 00000000.7FFA1DE8 00000000.00000000
 00000000.7FFA1DF0 00000000.00000000
 00000000.7FFA1DF8 00000000.00000000
 00000000.7FFA1E00 00000000.00000000
 00000000.7FFA1E08 00000000.00000000
 00000000.7FFA1E10 00000000.00000000
 00000000.7FFA1E18 00000000.00000000
 00000000.7FFA1E20 00000000.00000000
 00000000.7FFA1E28 00000000.00000000
 00000000.7FFA1E30 00000000.00000000
 00000000.7FFA1E38 00000000.00000000
 00000000.7FFA1E40 00000000.00000000
 00000000.7FFA1E48 00000000.00000000
 00000000.7FFA1E50 00000000.00000000
 00000000.7FFA1E58 00000000.00000000
 00000000.7FFA1E60 00000000.00000000
 00000000.7FFA1E68 00000000.00000000
 00000000.7FFA1E70 00000000.00000000
 00000000.7FFA1E78 00000000.00000000
 00000000.7FFA1E80 00000000.00000000
 00000000.7FFA1E88 00000000.00000000
 00000000.7FFA1E90 00000000.00000000
 00000000.7FFA1E98 00000000.00000000
CHF$PH_MCH_SIG64_ADDR 00000000.7FFA1EA0 00000000.7FFA1ED0
 00000000.7FFA1EA8 00000000.00000000
 00000000.7FFA1EB0 00000000.7FFA1F50
 00000000.7FFA1EB8 0000000C.00000005

46

Chapter 2. SDA Description

 00000000.7FFA1EC0 00000000.00010000 SYS
$K_VERSION_07
 00000000.7FFA1EC8 00000003.00030078 SYS
$K_VERSION_01+00078
CHF$L_SIG_ARGS 00000000.7FFA1ED0 00002604.00000005 UCB
$M_TEMPLATE+00604
CHF$L_SIG_ARG1 00000000.7FFA1ED8 00000000.0000000C
 00000000.7FFA1EE0 00000000.00010000 SYS
$K_VERSION_07
 00000000.7FFA1EE8 00000000.00000000
 00000000.7FFA1EF0 00000000.00030078 SYS
$K_VERSION_01+00078
 00000000.7FFA1EF8 00000000.00000003
INTSTK$Q_R2 00000000.7FFA1F00 00000000.00000003
INTSTK$Q_R3 00000000.7FFA1F08 FFFFFFFF.80C63460
 EXCEPTION_MON_NPRW+06A60
INTSTK$Q_R4 00000000.7FFA1F10 FFFFFFFF.80D12740 PCB
INTSTK$Q_R5 00000000.7FFA1F18 00000000.000000C8
INTSTK$Q_R6 00000000.7FFA1F20 00000000.00030038 SYS
$K_VERSION_01+00038
INTSTK$Q_R7 00000000.7FFA1F28 00000000.7FFA1FC0
INTSTK$Q_PC 00000000.7FFA1F30 00000000.00030078 SYS
$K_VERSION_01+00078
INTSTK$Q_PS 00000000.7FFA1F38 00000000.00000003
Prev SP (7FFA1F40) ==> 00000000.7FFA1F40 00000000.00010050 SYS
$K_VERSION_16+00010
 00000000.7FFA1F48 00000000.00010000 SYS
$K_VERSION_07
 00000000.7FFA1F50 FFFFFFFF.8010ACA4 AMAC
$EMUL_CALL_NATIVE_C+000A4
 00000000.7FFA1F58 00000000.7FFA1F70
 00000000.7FFA1F60 00000000.00000001
 00000000.7FFA1F68 FFFFFFFF.800EE81C RM_STD
$DIRCACHE_BLKAST_C+005AC
 00000000.7FFA1F70 FFFFFFFF.80C6EBA0 SCH$CHSEP
+001E0
 00000000.7FFA1F78 00000000.829CEDE8 EXE$SIGTORET
 00000000.7FFA1F80 00010050.00000002 SYS
$K_VERSION_16+00010
 00000000.7FFA1F88 00000000.00020000 SYS
$K_VERSION_04
 00000000.7FFA1F90 00000000.00030000 SYS
$K_VERSION_01
 00000000.7FFA1F98 FFFFFFFF.800A4D64
 EXCEPTION_MON_NPRO+00D64
 00000000.7FFA1FA0 00000000.00000003
 00000000.7FFA1FA8 FFFFFFFF.80D12740 PCB
 00000000.7FFA1FB0 00000000.00010000 SYS
$K_VERSION_07
 00000000.7FFA1FB8 00000000.7AFFBAD0
 00000000.7FFA1FC0 00000000.7FFCF880 MMG
$IMGHDRBUF+00080
 00000000.7FFA1FC8 00000000.7B0E9851
 00000000.7FFA1FD0 00000000.7FFCF818 MMG
$IMGHDRBUF+00018
 00000000.7FFA1FD8 00000000.7FFCF938 MMG
$IMGHDRBUF+00138
 00000000.7FFA1FE0 00000000.7FFAC9F0

47

Chapter 2. SDA Description

 00000000.7FFA1FE8 00000000.7FFAC9F0
 00000000.7FFA1FF0 FFFFFFFF.80000140 SYS
$PUBLIC_VECTORS_NPRO+00140
 00000000.7FFA1FF8 00000000.0000001B

.

.

.

2.7.2.8. Illegal Page Faults
When an illegal page fault occurs, the stack appears as pictured in the figure below.

Figure 2.8. Stack Following an Illegal Page-Fault Error

The stack contents are as follows:

MMG$PAGEFAULT Stack Frame Stack frame built at entry to MMG$PAGEFAULT,
the page fault exception service routine. On Alpha,
the frame includes the contents of the following
registers at the time of the page fault: R3, R8, R11
to R15, R29 (frame pointer)

SCH$PAGEFAULT Saved Scratch Registers
(Alpha only)

Contents of the following registers at the time of
the page fault: R0, R1, R16 to R28

Exception Stack Frame Exception stack frame ---see Figure 2.5, Figure 2.6
and Figure 2.7.

Previous Stack Content Contents of the stack prior to the illegal page-fault
error

When you analyze a dump caused by a PGFIPLHI bugcheck, the SHOW STACK command identifies
the exception stack frame using the symbols shown in Table 2.12 or Table 2.13. The SHOW CRASH or
CLUE CRASH command displays the instruction that caused the page fault and the instructions around
it.

2.8. Page Protections and Access Rights
Page protections and access rights are different on Alpha and Integrity server systems. They are visible in
output from the following commands:

• SHOW PAGE

• SHOW PROCESS/PAGE

48

Chapter 2. SDA Description

• EXAMINE/PTE

• EVALUATE/PTE

Due to system differences, there is a need to distinguish "Write+Read+Execute" from "Write+Read" and
to distinguish "Read+Execute" from "Read".

On an Alpha system, W=W+R+E and R=R+E but on an IA64 system, additional w and r indicators are
introduced for non-execute cases.

On Alpha, page protection is described by 8 bits--- one Read bit for each mode, and one Write Bit.
Therefore in the "Read" column, there might be KESU (read access in all modes) or K--- (read access in
Kernel mode only) or NONE (no read access). Similarly in the "Writ" column. Not all combinations of
the 8 bits are possible (for example, Write access for a mode implies Read access at that mode and both
Read and Write access for all inner modes).

On Integrity servers, page protection is described by 5 bits, a combination of the Access Rights and
Privilege Level fields. SDA interprets these with a single character to describe access in each mode, as
shown in the table below.

Table 2.14. Integrity server Access Codes for Page Protections

Code Meaning

r Read
w Read, Write
R Read, Execute
W Read, Write, Execute
X Execute
K Promote to Kernel
E Promote to Executive
S Promote to Supervisor
- No access

For example WRRR means Kernel mode has Read+Write+Execute access; all other modes have Read
+Execute access.

2.9. Inducing a System Failure
If the operating system is not performing well and you want to create a dump you can examine, you must
induce a system failure. Occasionally, a device driver or other user-written, kernel-mode code can cause
the system to execute a loop of code at a high priority, interfering with normal system operation. This
loop can occur even though you have set a breakpoint in the code if the loop is encountered before the
breakpoint. To gain control of the system in such circumstances, you must cause the system to fail and
then reboot it.

If the system has suspended all noticeable activity and is hung, see the examples of causing system
failures in Section 2.9.2.

If you are generating a system failure in response to a system hang, be sure to record the PC and PS as
well as the contents of the integer registers at the time of the system halt.

49

Chapter 2. SDA Description

2.9.1. Meeting Crash Dump Requirements
The following requirements must be met before the operating system can write a complete crash dump:

• You must not halt the system until the console dump messages have been printed in their entirety and
the memory contents have been written to the crash dump file. Be sure to allow sufficient time for
these events to take place or make sure that all disk activity has stopped before using the console to
halt the system.

• There must be a crash dump file in SYS$SPECIFIC:[SYSEXE]: named either SYSDUMP.DMP or
PAGEFILE.SYS.

This dump file must be either large enough to hold the entire contents of memory (as discussed in
Section 2.2.1.1) or, if the DUMPSTYLE system parameter is set, large enough to accommodate a
subset or compressed dump (also discussed in Section 2.2.1.1).

If SYSDUMP.DMP is not present, the operating system attempts to write crash dumps to
PAGEFILE.SYS. In this case, the SAVEDUMP system parameter must be 1 (the default is 0).

• Alternatively, the system must be set up for DOSD. See Section 2.2.1.5, and the VSI OpenVMS
System Manager's Manual, Volume 2: Tuning, Monitoring, and Complex Systems for details.

• The DUMPBUG system parameter must be 1 (the default is 1).

2.9.2. Procedure for Causing a System Failure
This section tells you how to enter the XDelta utility (XDELTA) to force a system failure.

Before you can use XDelta, it must be loaded at system startup. To load XDelta during system bootstrap,
you must set bit 1 in the boot flags. See the VSI OpenVMS Version 8.4 Upgrade and Installation Manual
for information about booting with the XDelta utility.

On Alpha, put the system in console mode by pressing Ctrl/P or the Halt push button. Enter the
following commands at the console prompt to enter XDelta:

>>> DEPOSIT SIRR E
>>> CONTINUE

On Integrity servers, enter XDELTA by pressing Ctrl/P at the console.

Once you have entered XDelta, use any valid XDelta commands to examine register or memory
locations, step through code, or force a system failure (by entering ;C under XDelta). See the VSI
OpenVMS Delta/XDelta Debugger Manual for more information about using XDelta.

On Alpha, if you did not load XDelta, you can force a system crash by entering console commands
that make the system incur an exception at high IPL. At the console prompt, enter commands to set
the program counter (PC) to an invalid address and the PS to kernel mode at IPL 31 before continuing.
This results in a forced INVEXCEPTN-type bugcheck. Some VSI Alpha computers employ the console
command CRASH (which will force a system failure) while other systems require that you manually
enter the commands.

Enter the following commands at the console prompt to force a system failure:

>>> DEPOSIT PC FFFFFFFFFFFFFF00
>>> DEPOSIT PS 1F00

50

Chapter 2. SDA Description

>>> CONTINUE

For more information, refer to the hardware manuals that accompanied your Alpha computer.

On Integrity servers, pressing Ctrl/P when XDelta is not loaded causes the OpenVMS system to output
the following:

Crash (y/n):

A response of Y forces a system crash; entering any other character lets the system continue processing.

51

Chapter 2. SDA Description

52

Chapter 3. ANALYZE Usage
This chapter describes the format, usage, and qualifiers of the System Dump Analyzer (SDA) utility.

The System Dump Analyzer (SDA) utility helps determine the causes of system failures. This utility is
also useful for examining the running system.

3.1. ANALYZE

ANALYZE
ANALYZE

Format

Parameters

collection-file-name

Name of the file that contains the file ID translation data or unwind data to be used by SDA.

device-name

The device containing the system dump.

filespec

Name of the file(s) that contain the dump you want to analyze.

If filespec is not specified in an ANALYZE/CRASH_DUMP command, the default is the highest
version of SYS$SYSTEM:SYSDUMP.DMP. If this file does not exist or cannot be opened, SDA
prompts you for a file name. If any field of filespec is provided, the remaining fields default to the
highest version of SYSDUMP.DMP in your default directory.

filespec can be a comma-separated list of files, including wildcards, where all the files contain Partial
Dump Copies from the same original dump. See Section 2.2.3 for a description of Partial Dump Copies.
The following restrictions apply when multiple files are specified:

• Files are opened in the order they are specified.

53

Chapter 3. ANALYZE Usage

• The file that contains System Page Tables (section PT) must be the first file opened. This is the
Primary dump file.

• If using a wildcard to specify file names, the primary dump file must be the first file to match the
wildcard.

• The files specified must be part of the same original crash dump.

• If any section of the dump is found in multiple input files, SDA issues a warning, but continues.

• If the file or unwind data collection is in a separate file, it must have the same name and location
as the primary dump file, with file type .COLLECT, or must be specified using the /COLLECTION
qualifier.

• The files specified must either be all compressed or all uncompressed. They cannot be mixed.

You cannot specify filespec for ANALYZE/SYSTEM.

system-symbol-table

The system symbol table used by SDA.

Qualifiers

The /CRASH_DUMP and /SYSTEM qualifiers (described in this chapter) specify whether the object of
an SDA session is a crash dump or a running system. Additional qualifiers used with these help to create
the environment of an SDA session. The /SSLOG qualifier specifies that data be collected by the System
Service Logging utility, which is documented in Chapter 14.

• /COLLECTION

• /LOG

• /CRASH_DUMP

• /OVERRIDE

• /RELEASE

• /SHADOW_MEMBER

• /SSLOG

• /SYMBOL

• /SYSTEM

The only additional qualifiers that can be used when invoking ANALYZE/SYSTEM are /LOG
and /SYMBOL. See Chapter 14 for details of additional qualifiers that can be used when invoking
ANALYZE/SSLOG. The following table shows which combinations of additional qualifiers can be used
together when invoking ANALYZE/CRASH_DUMP:

 /OVERRIDE /RELEASE /SHADOW /SYMBOL

54

Chapter 3. ANALYZE Usage

/COLLECTION No No Yes yes
/OVERRIDE -- No Yes See note
/RELEASE -- -- No See note
/SHADOW -- -- -- Yes

Note

/LOG can be used with any valid combination of qualifiers. /SYMBOL is ignored if it is specified with /
OVERRIDE or /RELEASE.

The qualifiers are described on the following pages.

Description

By default, the System Dump Analyzer is automatically invoked when you reboot the system after a
system failure.

To analyze a system dump interactively, invoke SDA by issuing the following command:

$ ANALYZE/CRASH_DUMP filespec

If you do not specify filespec, and SYS$SYSTEM:SYSDUMP.DMP does not exist or cannot be opened,
SDA prompts you for a file name.

To analyze a crash dump, your process must have the privileges necessary for reading the dump file.
This usually requires system privilege (SYSPRV), but your system manager can, if necessary, allow less
privileged processes to read the dump files. Your process needs change-mode-to-kernel (CMKRNL)
privilege to release page file dump blocks, whether you use the /RELEASE qualifier or the SDA COPY
command.

Invoke SDA to analyze a running system by issuing the following command:

$ANALYZE/SYSTEM

To examine a running system, your process must have change-mode-to-kernel (CMKRNL) privilege.
Your process must also have the map-by-PFN privilege (PFNMAP) to access memory by physical
address on a running system. You cannot specify filespec when using the /SYSTEM qualifier.

To send all output from SDA to a file, use the SDA command SET OUTPUT, specifying the name of
the output file. The file produced is 132 columns wide and is formatted for output to a printer. To later
redirect the output to your terminal, use the following command:

SDA> SET OUTPUT SYS$OUTPUT

To send a copy of all the commands you type and a copy of all the output those commands produce to
a file, use the SDA command SET LOG, specifying the name of the log file. The file produced is 132
columns wide and is formatted for output to a printer.

To exit from SDA, use the EXIT command. Note that the EXIT command also causes SDA to exit from
display mode. Thus, if SDA is in display mode, you must use the EXIT command twice: once to exit
from display mode, and a second time to exit from SDA. See Section 2.6.2 for a description of display
mode.

55

Chapter 3. ANALYZE Usage

3.2. /COLLECTION

/COLLECTION
/COLLECTION — Valid for Alpha and Integrity server systems only. Indicates to SDA that the file ID
translation data or unwind data is to be found in a separate file.

Format
/COLLECTION = collection-file-name

At least one field of the collection file name must be specified. Other fields default to the highest
generation of the same filename and location as the dump file, with a file type of .COLLECT.

Description
SDA can provide additional information when analyzing a dump if a collection has been made of file
identification translation data (on both Alpha and Integrity servers) and of unwind data (on Integrity
servers only). This data is usually saved when the dump file is copied using the SDA COPY/COLLECT
command, but it can be saved to a separate file using the COLLECT/SAVE command.

By default, COLLECT/SAVE creates a .COLLECT file with the same name and in the same directory
as the dump file. A subsequent ANALYZE/CRASH_DUMP command automatically uses this file. If
the collection file is in a different location or if the collection previously appended to the dump file is
incomplete (for example, if a disk was not mounted at the time of the SDA COPY), you can use the /
COLLECTION qualifier to specify an alternate collection file.

Example
$ ANALYZE/CRASH_DUMP SYS$SYSTEM:SYSDUMP.DMP
...
SDA> COLLECT/SAVE=SYS$LOGIN:NEWCOLL.COLLECT
SDA> EXIT
$ ANALYZE/CRASH_DUMP SYS$SYSTEM:SYSDUMP.DMP /COLLECTION=SYS$LOGIN:NEWCOLL
...

3.3. /CRASH_DUMP

/CRASH_DUMP
/CRASH_DUMP — Invokes SDA to analyze the specified dump file.

Format
/CRASH_DUMP [filespec]

Parameter
filespec

Name of the file that contains the dump you want to analyze. If no filespec is given on
an ANALYZE/CRASH_DUMP command, the default is the highest version of SYS

56

Chapter 3. ANALYZE Usage

$SYSTEM:SYSDUMP.DMP. If this file does not exist, SDA prompts you for a file name. If any
field of filespec is given, the remaining fields default to the highest version of SYSDUMP.DMP in
your default directory.

Description
See Section 2.3 for additional information on crash dump analysis. You cannot specify the /SYSTEM
qualifier when you include the /CRASH_DUMP qualifier in the ANALYZE command.

Examples
$ ANALYZE/CRASH_DUMP SYS$SYSTEM:SYSDUMP.DMP
$ ANALYZE/CRASH SYS$SYSTEM

These commands invoke SDA to analyze the crash dump stored in SYS$SYSTEM:SYSDUMP.DMP.

$ ANALYZE/CRASH SYS$SYSTEM:PAGEFILE.SYS

This command invokes SDA to analyze a crash dump stored in the system page file.

3.4. /LOG

/LOG
/LOG — Causes SDA to display the names of the files opened because SDA initializes itself.

Format
/LOG

Parameters
None.

Description
SDA displays the names of the files opened because SDA initializes itself. Note that this does not affect
the behavior of commands within SDA such as READ, but only files opened when SDA is initialized.

/LOG can be used on ANALYZE /CRASH_DUMP and ANALYZE /SYSTEM.

Examples
$ ANALYZE/CRASH_DUMP /LOG T*
%SDA-I-OPENED, opened USER$:[SYSMGR]T1.DMP;1 as dump file #1
%SDA-I-OPENED, opened SYS$COMMON:[SYS$LDR]SYS$BASE_IMAGE.EXE;1 as symbol
 file
%SDA-I-OPENED, opened USER$:[SYSMGR]T2.DMP;1 as dump file #2

OpenVMS system dump analyzer
...analyzing an I64 compressed selective memory dump...

%SDA-I-OPENED, opened SYS$COMMON:[SYS$LDR]REQSYSDEF.STB;1 as symbol file
Dump taken on 14-DEC-2009 17:16:31.35 using version XC6G-J2I

57

Chapter 3. ANALYZE Usage

SSRVEXCEPT, Unexpected system service exception

$ SDA>

This example shows the use of the /LOG qualifier to identify the set of files being used by SDA.

3.5. /OVERRIDE

/OVERRIDE
/OVERRIDE — When used with the /CRASH_DUMP qualifier, invokes SDA to analyze only the
structure of the specified dump file when a corruption or other problem prevents normal invocation of
SDA with the ANALYZE/CRASH_DUMP command.

Format
/CRASH_DUMP/OVERRIDE [filespec]

Parameter
filespec

Name of the crash dump file to be analyzed. The default file specification is:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your last SET DEFAULT
command. If you do not specify filespec, and SYS$SYSTEM:SYSDUMP.DMP does not exist or
cannot be opened, SDA prompts you for it.

Description
See Section 2.3 for additional information on crash dump analysis. Note that when SDA is invoked
with /OVERRIDE, not all the commands in Section 2.3 can be used. Commands that can be used are as
follows:

• Output control commands such as SET OUTPUT and SET LOG

• Dump file related commands such as SHOW DUMP and CLUE ERRLOG

Commands that cannot be used are as follows:

• Commands that access memory addresses within the dump file such as EXAMINE and SHOW
SUMMARY

Also, the /RELEASE qualifier cannot be used when you include the /OVERRIDE qualifier in the
ANALYZE/CRASH_DUMP command.

When /OVERRIDE is used, the SDA command prompt is SDA>>.

Example
$ ANALYZE/CRASH_DUMP/OVERRIDE SYS$SYSTEM:SYSDUMP.DMP

58

Chapter 3. ANALYZE Usage

$ ANALYZE/CRASH/OVERRIDE SYS$SYSTEM

These commands invoke SDA to analyze the crash dump stored in SYS$SYSTEM:SYSDUMP.DMP.

3.6. /RELEASE

/RELEASE
/RELEASE — Invokes SDA to release those blocks in the specified system page file occupied by a crash
dump. Requires CMKRNL (change-mode-to-kernel) privilege.

Format
/CRASH_DUMP/RELEASE filespec

Parameter
filespec

Name of the system page file (SYS$SYSTEM:PAGEFILE.SYS). Because the default file
specification is SYS$DISK:[default-dir]SYSDUMP.DMP, you must identify the page file explicitly.
SYS$DISK and [default-dir] represent the disk and directory specified in your last DCL command
SET DEFAULT.

If you do not specify filespec, and SYS$SYSTEM:SYSDUMP.DMP does not exist or
cannot be opened, SDA prompts you for it. Note that if you do not specify filespec, and SYS
$SYSTEM:SYSDUMP.DMP exists and can be opened, SDA will report an error because this is not
the primary page file.

Description
Use the /RELEASE qualifier to release from the system page file those blocks occupied by a crash dump.
When invoked with the /RELEASE qualifier, SDA immediately deletes the dump from the page file and
allows no opportunity to analyze its contents.

When you specify the /RELEASE qualifier in the ANALYZE command, do the following:

1. Use the /CRASH_DUMP qualifier.

2. Include the name of the system page file (SYS$SYSTEM:PAGEFILE.SYS) as the filespec.

If you do not specify the system page file or the specified page file does not contain a dump, SDA
generates the following messages:

%SDA-E-BLKSNRLSD, no dump blocks in page file to release, or not page file
%SDA-E-NOTPAGFIL, specified file is not the page file

You cannot specify the /OVERRIDE or /SHADOW_MEMBER qualifier when you include the /
RELEASE qualifier in the ANALYZE/CRASH_DUMP command.

Example
$ ANALYZE/CRASH_DUMP/RELEASE SYS$SYSTEM:PAGEFILE.SYS

59

Chapter 3. ANALYZE Usage

$ ANALYZE/CRASH/RELEASE PAGEFILE.SYS

These commands invoke SDA to release to the page file those blocks in SYS$SYSTEM:PAGEFILE.SYS
occupied by a crash dump.

3.7. /SHADOW_MEMBER

/SHADOW_MEMBER
/SHADOW_MEMBER — Valid for Alpha and Integrity server systems only. Specifies which member
of a shadow set contains the system dump to be analyzed, or allows the user to determine what system
dumps have been written to the members of the shadow set.

Format
/CRASH_DUMP/SHADOW_MEMBER [filespec]

Description
If the system disk is a shadow set, a system dump is written to only one member of the shadow set
(usually the master member at the time the dump is written). By default, if the filespec translates to a
file on a shadow set, SDA reads the dump only from the master member. If at analysis time, the master
member is different from where the dump was written, the /SHADOW_MEMBER qualifier allows the
user to choose the member from which the dump is to be read.

If the correct member is not known, the /SHADOW_MEMBER qualifier may be specified without a
device name. SDA will display a one-line summary of the most recent dump written to each member and
then prompt the user to determine which member to use. The prompt is:

Shadow set action?

The possible responses are:

Command Effect

EXIT Aborts the SDA session without analyzing a dump.
HELP Displays simple help text. See Example 3 below.
USE <device_name> Initiates analysis of the system dump located on the

specified shadow set member.

The one-line summary for each member consists of the following fields:

• Member device name

• Bugcheck name

• Date and time of system crash

• Node name

• VMS Version

• Flags—none, one or more of: Bad_Checksum, ErrorLog_Dump, Not_Saved, Old_Dump

60

Chapter 3. ANALYZE Usage

If there is no usable dump on a member, SDA output will an explanatory warning message followed by a
line giving the member device name and the message "No system or error log dump found."

Note that SDA cannot distinguish a dump on a shadowed system disk from a dump copied to a shadowed
data disk. SDA will therefore always read the dump from a single member of a host-based shadow set.
(In an OpenVMS Cluster system with multiple shadowed system disks, one system’s system disk will be
a data disk on other systems.) This does not affect dumps being read directly from a DOSD disk, since
DOSD disks cannot be members of a host-based shadow set.

Note

The /SHADOW_MEMBER qualifier is not useful if the system dump has been written to the primary
page file on a shadowed system disk. You cannot specify /RELEASE with /SHADOW_MEMBER.

Examples
1. $ ANALYZE/CRASH_DUMP DSA777:[SYS0.SYSEXE]SYSDUMP.DMP

%SDA-I-USEMASTER, accessing dump file via _31DKB200:, master member of
 shadow set _DSA777:
OpenVMS (TM) Alpha system dump analyzer
...analyzing a compressed selective memory dump...
Dump taken on 12-DEC-2001 08:23:07.80
SSRVEXCEPT, Unexpected system service exception
SDA>

This command initiates dump analysis using the master member of the shadow set DSA777 (the
default action).

2. $ ANALYZE/CRASH_DUMP/SHADOW_MEMBER=DKB0 DSA777:[SYS0.SYSEXE]SYSDUMP.DMP
OpenVMS (TM) Alpha system dump analyzer
...analyzing a compressed selective memory dump...

Dump taken on 12-DEC-2001 08:23:07.80
SSRVEXCEPT, Unexpected system service exception

SDA>

This command initiates dump analysis using member device 31DKB0 of the shadow set DSA777.

3. $ ANALYZE/CRASH_DUMP/SHADOW_MEMBER DSA8888:[SYS1.SYSEXE]SYSDUMP.DMP
_70DKA303: INVEXCEPTN 16-NOV-2001 00:00:25.74 MRVP2
 X96S-FT1
_70DKA202: INCONSTATE 18-NOV-2001 02:08:45.05 MRVP2
 X96S-FT1

Shadow set action? HELP

Shadow set actions:

 EXIT exit SDA
 HELP this display
 USE <shadow_set_member> proceed using specified shadow set
 member

Shadow set action? USE _70DKA303:

61

Chapter 3. ANALYZE Usage

OpenVMS (TM) Alpha system dump analyzer
...analyzing a compressed selective memory dump...

%SDA-W-NOTSAVED, global pages not saved in the dump file
Dump taken on 16-NOV-2001 00:00:25.74
INVEXCEPTN, Exception while above ASTDEL

SDA> EXIT

This command displays the dumps to be found on the members of shadow set DSA8888:
[SYS1.SYSEXE]SYSDUMP.DMP and then begins analysis of the dump written to device _
70DKA303.

3.8. /SSLOG

/SSLOG
/SSLOG — Displays data collected by the System Service Logging Utility (SSLOG). For more
information about this and associated commands, see Chapter 14, System Service Logging.

Format
/SSLOG

3.9. /SYMBOL

/SYMBOL
/SYMBOL — Specifies an alternate system symbol table for SDA to use.

Format
/SYMBOL = system-symbol-table

File specification of the OpenVMS Alpha SDA system symbol table required by SDA to analyze a
system dump or running system. The specified system-symbol-table must contain those symbols
required by SDA to find certain locations in the executive image.

If you do not specify the /SYMBOL qualifier, SDA uses SDA$READ_ DIR:SYS$BASE_IMAGE.EXE
to load system symbols into the SDA symbol table. When you specify the /SYMBOL qualifier, SDA
assumes the default disk and directory to be SYS$DISK:[], that is, the disk and directory specified in
your last DCL command SET DEFAULT. If you specify a file for this parameter that is not a system
symbol table, SDA exits with a fatal error.

Description
The /SYMBOL qualifier allows you to specify a system symbol table to load into the SDA symbol table.
You can use the /SYMBOL qualifier whether you are analyzing a system dump or a running system. It
is not normally necessary to use the /SYMBOL qualifier when analyzing the running system, since the
default SYS$BASE_IMAGE.EXE is the one in use in the system. However if SDA$READ_DIR has
been redefined during crash dump analysis, then the /SYMBOL qualifier can be used to ensure that the
correct base image is found when analyzing the running system.

62

Chapter 3. ANALYZE Usage

The /SYMBOL qualifier can be used with the /CRASH_DUMP and /SYSTEM qualifiers. It is ignored
when /OVERRIDE or /RELEASE is specified.

Example
$ ANALYZE/CRASH_DUMP/SYMBOL=SDA$READ_DIR:SYS$BASE_IMAGE.EXE SYS$SYSTEM

This command invokes SDA to analyze the crash dump stored in SYS$SYSTEM:SYSDUMP.DMP,
using the base image in SDA$READ_DIR.

3.10. /SYSTEM

/SYSTEM
/SYSTEM — Invokes SDA to analyze a running system. Requires CMKRNL (change-mode-to-kernel)
privilege. Also requires PFNMAP (map-by-PFN) privilege to access memory by physical address.

Format
/SYSTEM

Parameters
None.

Description
See Section 2.4 for information on how to use SDA to analyze a running system. See Chapter 4 for
information on SDA commands.

The only other qualifiers you can specify with /SYSTEM are /LOG and /SYMBOL.

Example
$ ANALYZE/SYSTEM

OpenVMS (TM) system analyzer

SDA>

This command invokes SDA to analyze the running system.

63

Chapter 3. ANALYZE Usage

64

Chapter 4. SDA Commands
This chapter describes the SDA commands that you can use to analyze a system dump or a running
system. SDA extension commands, such as CLUE and FLT are described in separate chapters.

4.1. @(Execute Command)
Causes SDA to execute SDA commands contained in a file. Use this command to execute a set of
frequently used SDA commands.

Format
@filespec

Parameter
filespec

Name of a file that contains the SDA commands to be executed. The default file type is .COM.

Example
SDA> @USUAL

The execute (@) command executes the following commands, as contained in a file named
USUAL.COM:

SET OUTPUT LASTCRASH.LIS
SHOW CRASH
SHOW PROCESS
SHOW STACK
SHOW SUMMARY

This command procedure first makes the file LASTCRASH.LIS the destination for output generated
by subsequent SDA commands. Next, the command procedure sends information to the file about the
system failure and its context, including a description of the process executing at the time of the failure,
the contents of the stack on which the failure occurred, and a list of the processes active on the system.

An EXIT command within a command procedure terminates the procedure at that point, as would an
end-of-file.

Command procedures cannot be nested.

4.2. ATTACH
Switches control of your terminal from your current process to another process in your job (for example,
one created with the SDA SPAWN command).

Format
ATTACH [/PARENT] process-name

65

Chapter 4. SDA Commands

Parameter
process-name

Name of the process to which you want to transfer control.

Qualifier
/PARENT

Transfers control of the terminal to the parent process of the current process. When you specify this
qualifier, you cannot specify the process-name parameter.

Examples
SDA> ATTACH/PARENT

This ATTACH command attaches the terminal to the parent process of the current process.

SDA> ATTACH DUMPER

This ATTACH command attaches the terminal to a process named DUMPER in the same job as the
current process.

4.3. COLLECT
Collect file identification to file name translation data on both OpenVMS Alpha and OpenVMS for
Integrity servers, and process unwind data only on OpenVMS for Integrity servers.

Format
COLLECT [qualifiers]

Parameters
None.

Qualifiers
/LOG

Displays information on the progress of the COLLECT command, for example, the name of the
process being scanned, or (on Integrity servers) the name of an image whose unwind data is being
collected.

/SAVE [= file name]

Writes collection data to a separate file. By default, a file of type .COLLECT with the same name as
the dump file will be created in the same directory as the dump file.

/UNDO

Removes all the file or unwind data from an earlier COLLECT command from SDA's memory.
COLLECT/UNDO does not affect the file or unwind data already appended to the dump file being
analyzed, or already written to a separate collection file.

66

Chapter 4. SDA Commands

Description
When a dump is being analyzed, it is useful to have data available that cannot be written to the dump
file at the time of the system crash. This data includes the full file specification associated with a file
identification. On OpenVMS for Integrity servers, it also includes the unwind data for images activated
in processes.

If the dump is being analyzed on the system where it was originally written, this data can be collected for
use in the current SDA session using the COLLECT command. If the dump is being copied for analysis
elsewhere, the COPY/COLLECT command may be used to collect the data and append it to the copy
being written. If the COPY/COLLECT command is used after a COLLECT command, the data already
collected is appended to the dump copy.

For all file or unwind data to be collected successfully, all disks that were mounted at the time of the
system crash should be remounted and accessible to the process running SDA.

If the COPY and the COLLECT cannot be done as a single step, a COLLECT/SAVE command writes
the collection to a separate file that can be used later with the dump file. A later COPY will combine the
two files.

Example
SDA> COLLECT
%SDA-W-DISKNOACC, no access to _30DKB100: for file and/or unwind data
%SDA-W-FILENOACC, no access to _30DKB0:(7709,1,0) for unwind data
-SYSTEM-W-NOSUCHFILE, no such file

In this example, the disk 30DKB100, which was mounted at the time the system crashed, is not
available when file and/or unwind data is being collected. In addition, unwind data cannot be collected
for the image with file identification (7709,1,0) on _30DKB0: since it no longer exists.

4.4. COPY
Copies the contents of the dump file to another file.

Format
COPY [/qualifier...] output-filespec

Parameter
output-filespec

Name of the device, directory, and file to which SDA copies the dump file. The default file
specification is:

SYS$DISK:[default-dir]filename.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your last DCL command
SET DEFAULT. You must specify a file name.

Qualifiers
/COLLECT

67

Chapter 4. SDA Commands

/NOCOLLECT

Causes SDA to collect (or not collect) file identification or unwind data from the current system and
append it to the copy being created. For more details, see the Description section.

/COMPRESS

Causes SDA to compress dump data as it is writing a copy. If the dump being analyzed is already
compressed, then SDA does a direct COPY, and issues an informational message indicating that it is
ignoring the /COMPRESS qualifier.

/CONFIRM

Causes SDA to prompt for which processes to copy when performing a Partial Dump Copy. This
qualifier can only be used when /PARTIAL=PROCESS=option is specified. For each possible
process in the set, SDA prompts as follows, where the default response is No and only a single
character response is needed otherwise:

Copy process "process-name"? (Y/[N]/A/Q):

Where the response:

YES Includes the process in the copy.
NO Excludes the process from the copy.
ALL Includes the process and all remaining processes in the copy.
QUIT Excludes the process and all remaining processes from the copy.

/DECOMPRESS

Causes SDA to decompress dump data as it is writing a copy. If the dump being analyzed is already
decompressed, then SDA does a direct COPY, and issues an informational message indicating that it
is ignoring the /DECOMPRESS qualifier.

/LOG

Displays information about the progress of the COPY command, for example, the name of the
process being copied in a selective dump, or, in the case of COPY/COLLECT on Integrity servers,
the name of an image whose unwind data is being appended to the dump copy.

/PARTIAL=(section,...)

Causes SDA to copy only the specified sections of the dump. The /PARTIAL qualifier can only
be used with a selective system dump (compressed or uncompressed). It is not available for full
system dumps or for process dumps. Also, the /PARTIAL qualifier cannot be combined with /
COMPRESS, /DECOMPRESS, or /[NO]COLLECT. Such a copy must be performed as two separate
COPY commands, and requires exiting from SDA and then re-invoking SDA on the intermediate
copy.

See Section 2.2.3 for a description of Partial Dump Copies. For an explanation of key processes and
key global pages, and the organization of a selective system dump, see the VSI OpenVMS System
Manager's Manual, Volume 2: Tuning, Monitoring, and Complex Systems.

Multiple sections must be separated by commas. If only one section is given, the parentheses may be
omitted. Possible sections are as follows:

PT System Page Table Space
S0S1 32-bit System Space

68

Chapter 4. SDA Commands

S2 64-bit System Space
REPLICATED_SYS Replicated System Space (only applies to Alpha systems with RADs

enabled)
Process Space for one or more processes. Options are:
ALL All processes. This is the default.
KEY All key processes.
OTHER All other (not key) processes.

PROCESS=option

NAME=(list) Specific named processes (see
note below)

Global Pages. Options are:
ALL All global pages mapped by

processes. This is the default.
KEY All global pages mapped by key

processes.

GLOBAL=option

OTHER All other (not key) global pages
mapped by processes.

KEY Equivalent to: PT, S0S1, S2, REPLICATED_SYS, PROCESS =
KEY, GLOBAL = KEY

OTHER Equivalent to: PROCESS = OTHER, GLOBAL = OTHER
SYSTEM Equivalent to: PT, S0S1, S2, REPLICATED_SYS

Note

If /PARTIAL=PROCESS=NAME=(list) is specified:

• Multiple process names must be separated by commas. If only one process name is given, the
parentheses may be omitted.

• Process names can include "%" and "*" wildcards.

• The comparison of the given name to actual process names in the dump is performed case-blind, and
trailing spaces and tabs are ignored.

• Process names can include characters, such as "," and "/". You can enclose the process name in
quotes to include some of these special characters in the name you specify, or you can use the "%"
wildcard instead of characters.

Description
Each time the system fails, the contents of memory and the hardware context of the current process (as
directed by the DUMPSTYLE parameter) are copied into the file SYS$SYSTEM:SYSDUMP.DMP
(or the page file), overwriting its contents. If you do not save this crash dump elsewhere, it will be
overwritten the next time that the system fails.

The COPY command allows you to preserve a crash dump by copying its contents to another file. It is
generally useful to invoke SDA during system initialization to execute the COPY command. This ensures
that a copy of the dump file is made only after the system has failed. The preferred method for doing
this, using the logical name CLUE$SITE_PROC, is described in Section 2.2.4.

69

Chapter 4. SDA Commands

The COPY command does not affect the contents of the file containing the dump being analyzed.

If you are using the page file (SYS$SYSTEM:PAGEFILE.SYS) as the dump file instead of
SYSDUMP.DMP, successful completion of the COPY command will automatically cause the blocks
of the page file containing the dump to be released, thus making them available for paging. Even if
the copy operation succeeds, the release operation requires that your process have change-mode-to-
kernel (CMKRNL) privilege. When the dump pages have been released from the page file, the dump
information in these pages will be lost and SDA will immediately exit. You must perform subsequent
analysis upon the copy of the dump created by the COPY command.

If you press Ctrl/T while using the COPY command, the system displays how much of the file has been
copied.

When a dump is being analyzed, it is useful to have data available that cannot be written to the dump
file at the time of the system crash. This data includes the full file specification associated with a file
identification, and, on OpenVMS Integrity servers, the unwind data for images activated in processes.

If the dump is being analyzed on the system where it was originally written, this data can be collected for
use in the current SDA session using the COLLECT command. If the dump is being copied for analysis
elsewhere, the COPY/COLLECT command can be used to collect the data and append it to the copy
being written. If the COPY/COLLECT command is used after a COLLECT command, the data already
collected is appended to the dump copy.

By default, a copy of the original dump, as written at the time of the system crash, includes collection.
You can use COPY/NOCOLLECT to override this default. Conversely, a copy of a dump previously
copied by SDA without collection (COPY/NOCOLLECT) does not include collection. You can use
COPY/COLLECT to override this setting.

When you copy a dump that already contains an appended collection, the copy will always include that
collection.

For all file and unwind data to be collected successfully, all disks that were mounted at the time of the
system crash should be remounted and be accessible to the process running SDA. If SDA is invoked
early in the startup procedure to save the contents of the dump (for example, using CLUE$SITE_PROC
as described in Section 2.2.4), but disks are not mounted until a batch job is run, you should use the
COPY/NOCOLLECT command in the CLUE$SITE_PROC command procedure. Once all disks are
mounted, you can use a COPY/COLLECT command to save file or unwind data.

If the COPY and the COLLECT procedures cannot be done as a single step, you can execute a
COLLECT/SAVE command to write the collection to a separate file that can be used later in conjunction
with the dump file. A later COPY operation can combine the two files.

Example
SDA> COPY SYS$CRASH:SAVEDUMP

The COPY command copies the dump file into the file SYS$CRASH:SAVEDUMP.DMP.

4.5. DEFINE
Assigns a value to a symbol.

Format
DEFINE [/qualifier...] symbol-name [=] expression

70

Chapter 4. SDA Commands

Parameters
symbol-name

Name, containing from 1 to 31 alphanumeric characters, that identifies the symbol. Symbols that
include lowercase letters must be enclosed in quotation marks ("symbol"). See Section 2.6.1.4 for a
description of SDA symbol syntax and a list of default symbols.

expression

Definition of the symbol's value. See Section 2.6.1 for a discussion of the components of SDA
expressions.

Qualifier
/FD

/PD

Defines a symbol as a function descriptor (FD) or procedure descriptor (PD). It also defines the
routine address symbol corresponding to the defined symbol (the routine address symbol has the
same name as the defined symbol, only with _C appended to the symbol name). See Section 2.6.1.4
for more information about symbols. /FD and /PD are completely interchangeable. SDA interprets
them based on the architecture of the system or dump being analyzed.

Description
The DEFINE command causes SDA to evaluate an expression and then assign its value to a symbol.
Both the DEFINE and EVALUATE commands perform computations to evaluate expressions. DEFINE
adds symbols to the SDA symbol table but does not display the results of the computation. EVALUATE
displays the result of the computation but does not add symbols to the SDA symbol table.

Examples
SDA> DEFINE BEGIN = 80058E00
SDA> DEFINE END = 80058E60
SDA> EXAMINE BEGIN:END

In this example, DEFINE defines two addresses, called BEGIN and END. These symbols serve as
reference points in memory, defining a range of memory locations for the EXAMINE command to
inspect.

SDA> DEFINE NEXT = @PC
SDA> EXAMINE/INSTRUCTION NEXT
NEXT: HALT

The symbol NEXT defines the address contained in the program counter, so that the symbol can be used
in an EXAMINE/INSTRUCTION command.

SDA> DEFINE VEC SCH$GL_PCBVEC
SDA> EXAMINE VEC
SCH$GL_PCBVEC: 00000000.8060F2CC "Ìò`....."
SDA>

71

Chapter 4. SDA Commands

After the value of global symbol SCH$GL_PCBVEC has been assigned to the symbol VEC, the symbol
VEC is used to examine the memory location or value represented by the global symbol.

SDA> DEFINE/PD VEC SCH$QAST
SDA> EXAMINE VEC
SCH$QAST: 0000002C.00003008 ".0..,..."
SDA> EXAMINE VEC_C
SCH$QAST_C: B75E0008.43C8153E ">.ÈC..^·"
SDA>

In this example, the DEFINE/PD command defines not only the symbol VEC, but also the
corresponding routine address symbol (VEC_C).

4.6. DEFINE/KEY
Associates an SDA command with a terminal key. Once you have associated a command with a key, you
can just press the defined key, followed by the Return key to issue the command. If you specify the /
TERMINATE qualifier when you define the key, you do not have to press the Return key to issue the
command.

Format
DEFINE/KEY [/qualifier...] key-name command

Parameters
key-name

Name of the key to be defined. You can define the following keys under SDA:

Key Name Key Designation

PF1 LK201, VT100
PF2 LK201, VT100
PF3 LK201, VT100
PF4 LK201, VT100
KP0...KP9 Keypad 0--9
PERIOD Keypad period
COMMA Keypad comma
MINUS Keypad minus
ENTER Keypad ENTER
UP Up arrow
DOWN Down arrow
LEFT Left arrow
RIGHT Right arrow
E1 LK201 Find
E2 LK201 Insert Here
E3 LK201 Remove

72

Chapter 4. SDA Commands

Key Name Key Designation

E4 LK201 Select
E5 LK201 Prev Screen
E6 LK201 Next Screen
HELP LK201 Help
DO LK201 Do
F7...F20 LK201 Function keys

command

SDA command to define a key. You must enclose the command in quotation marks (" ").

Qualifiers
/IF_STATE=state_list

/NOIF_STATE

Specifies a list of one or more states, one of which must be in effect for the key definition to work.
The /NOIF_STATE qualifier has the same meaning as /IF_STATE=current_state. The state name is
an alphanumeric string. States are established with the /SET_STATE qualifier. If you specify only
one state name, you can omit the parentheses. By including several state names, you can define a key
to have the same function in all the specified states.

/LOCK_STATE

/NOLOCK_STATE

Specifies that the state set by the /SET_STATE qualifier remains in effect until explicitly changed.
By default, the /SET_STATE qualifier is in effect only for the next definable key you press or
the next read-terminating character that you type. You can specify this qualifier only with the /
SET_STATE qualifier.

The default is /NOLOCK_STATE.

/SET_STATE=state-name

/NOSET_STATE

Causes the key being defined to create a key state change instead of or in addition to issuing an SDA
command. When you use the /SET_STATE qualifier, you supply the name of a key state to be used
with the /IF_STATE qualifier in other key definitions.

For example, you can define the PF1 key as the GOLD key and use the /IF_STATE=GOLD qualifier
to allow two definitions for the other keys, one in the GOLD state and one in the non-GOLD state.
For more information on using the /IF_STATE qualifier, see the DEFINE/KEY command in the VSI
OpenVMS DCL Dictionary or online help.

The default is /NOSET_STATE.

/TERMINATE

73

Chapter 4. SDA Commands

/NOTERMINATE

Causes the key definition to include termination of the command, which causes SDA to execute the
command when the defined key is pressed. Therefore, you do not have to press the Return key after
you press the defined key if you specify the /TERMINATE qualifier.

Description
The DEFINE/KEY command causes an SDA command to be associated with the specified key, in
accordance with any of the specified qualifiers described previously.

If the symbol or key is already defined, SDA replaces the old definition with the new one. Symbols and
keys remain defined until you exit from SDA.

Examples
SDA> DEFINE/KEY PF1 "SHOW STACK"
SDA> [PF1] SHOW STACK [RETURN]
Process stacks (on CPU 00)

Current operating stack (KERNEL):
 .
 .
 .

The DEFINE/KEY command defines PF1 as the SHOW STACK command. When you press the PF1
key, SDA displays the command and waits for you to press the Return key.

SDA> DEFINE/KEY/TERMINATE PF1 "SHOW STACK"
SDA> [PF1] SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):
 00000000.7FF95D00 00000000.0000000B
 00000000.7FF95D08 FFFFFFFF.804395C8 MMG$TBI_DATA_64+000B8
 00000000.7FF95D10 00000000.00000000
 00000000.7FF95D18 0000FE00.00007E04
SP => 00000000.7FF95D20 00000000.00000800 IRP$M_EXTEND
 00000000.7FF95D28 00000001.000002F7 UCB$B_PI_FKB+0000B
 00000000.7FF95D30 FFFFFFFF.804395C8 MMG$TBI_DATA_64+000B8
 00000000.7FF95D38 00000002.00000000
 .
 .
 .

The DEFINE/KEY command defines PF1 as the SDA SHOW STACK command. The /TERMINATE
qualifier causes SDA to execute the SHOW STACK command without waiting for you to press the
Return key.

SDA> DEFINE/KEY/SET_STATE="GREEN" PF1 ""
SDA> DEFINE/KEY/TERMINATE/IF_STATE=GREEN PF3 "SHOW STACK"
SDA> [PF1] [PF3] SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):
 .
 .

74

Chapter 4. SDA Commands

 .

The first DEFINE/KEY command defines PF1 as a key that sets a command state GREEN. The trailing
pair of quotation marks is required syntax, indicating that no command is to be executed when this key is
pressed.

The second DEFINE command defines PF3 as the SHOW STACK command, but using the /IF_STATE
qualifier makes the definition valid only when the command state is GREEN. Thus, you must press PF1
before pressing PF3 to issue the SHOW STACK command. The /TERMINATE qualifier causes the
command to execute as soon as you press the PF3 key.

4.7. DUMP
Displays the contents of a range of memory formatted as a comma-separated variable (CSV) list, suitable
for inclusion in a spreadsheet.

Format
DUMP range

[/BYTE | /WORD | /LONGWORD (default) | /QUADWORD]

[/DECIMAL | /HEXADECIMAL (default)]

[/FORWARD (default) | /REVERSE]

[/RECORD_SIZE=size] (default = 512)

[/INDEX_ARRAY [= {LONGWORD (default) | QUADWORD}]]

[/INITIAL_POSITION = {ADDRESS=address | RECORD=number }]

[/COUNT = {ALL | records }] (default = all records)

[/PHYSICAL]

[/BYTE | /WORD |/NOSUPPRESS]

Parameter
range

The range of locations to be displayed. The range is specified in one of the following formats:

m:n Range from address m to address n inclusive
m;n Range from address m for n bytes

The length of the range must be an exact multiple of the data item size --- or of the index array size
if /INDEX_ARRAY is specified.

Qualifiers
/BYTE

Outputs each data item as a byte.

75

Chapter 4. SDA Commands

/COUNT = [{ALL | records}]

Gives the number of records to be displayed. The default is to display all records.

/DECIMAL

Outputs data as decimal values.

/FORWARD

Causes SDA to display the records in the history buffer in ascending address order. This is the
default.

/HEXADECIMAL

Outputs data as hexadecimal values. This is the default.

/INDEX_ARRAY [= {LONGWORD (default) | QUADWORD}]

Indicates to SDA that the range of addresses given is a vector of pointers to the records to be
displayed. The vector can be a list of longwords (default) or quadwords. The size of the range must
be an exact number of longwords or quadwords as appropriate.

/INITIAL_POSITION = {ADDRESS=address | RECORD=number}

Indicates to SDA which record is to be displayed first. The default is the lowest addressed record if /
FORWARD is used, and the highest addressed record if /REVERSE is used. The initial position may
be given as a record number within the range, or the address at which the record is located.

/LONGWORD

Outputs each data item as a longword. This is the default.

/NOSUPPRESS

Indicates that SDA should not suppress leading zeroes when displaying data in hexadecimal format.

/PHYSICAL

Indicates to SDA that all addresses (range and/or start position) are physical addresses. By default,
virtual addresses are assumed.

/QUADWORD

Outputs each data item as a quadword.

/RECORD_SIZE=size

Indicates the size of each record within the history buffer, the default being 512 bytes. This size
must exactly divide into the total size of the address range to be displayed, unless you specify /
INDEX_ARRAY. If no record size is given, and the length of the range is not more than 512
bytes, a single record is output containing the range specified, with no record number field. The
length of the range must be an exact multiple of the data item size --- or of the index array size if /
INDEX_ARRAY is specified.

/REVERSE

Causes SDA to display the records in the history buffer in descending address order.

76

Chapter 4. SDA Commands

/WORD

Outputs each data item as a word.

Description
The DUMP command displays the contents of a range of memory formatted as a comma-separated
variable (CSV) list, suitable for inclusion in a spreadsheet. It is intended for use with a history buffer
containing records of information of which the most recently written entry is in the middle of the
memory range.

Note

See SET OUTPUT/NOHEADER for related information.

Examples
1. SDA> DUMP dump g;200/initial_position=record=5/record_size=20/reverse

05,A77B0010,A79B0008,6B9C4001,47FF041F,A03E0000,47DF041C,201F0016,083
04,A03E0000,47DF041C,201F0058,083,A77B0010,A79B0008,6B9C4001,47FF041F
03,A03E0000,47DF041C,201F0075,083,A03E0000,47DF041C,201F001B,083
02,A77B0010,A79B0008,6B9C4001,47FF041F,A03E0000,47DF041C,201F0074,083
01,43E05120,083,6BFA8001,47FF041F,A77B0010,A79B0008,6B9C4001,47FF041F
0,201F0104,6BFA8001,47FF041F,47FF041F,201F0001,6BFA8001,47FF041F,47FF041F
0F,A03E0000,47DF041C,201F0065,083,A03E0000,47DF041C,201F0006,083
0E,A03E0000,47DF041C,201F001C,083,A03E0000,47DF041C,201F001A,083
0D,A03E0000,47DF041C,201F0077,083,A03E0000,47DF041C,201F0057,083
0C,A03E0000,47DF041C,201F002B,083,A03E0000,47DF041C,201F003A,083
0B,A03E0000,47DF041C,201F007D,083,A77B0010,A79B0008,6B9C4001,47FF041F
0A,A03E0000,47DF041C,201F005A,083,A03E0000,47DF041C,201F0078,083
09,A03E0000,47DF041C,201F0002,082,A03E0000,47DF041C,201F0037,083
08,A03E0000,47DF041C,201F0035,083,A03E0000,47DF041C,201F007A,083
07,A03E0000,47DF041C,201F0019,083,A03E0000,47DF041C,201F0034,083
06,A77B0010,A79B0008,6B9C4001,47FF041F,A03E0000,47DF041C,201F0018,083

This example shows the dump of an area of memory treated as 16 records of 32 bytes each,
beginning at record 5, and dumped in reverse order. Note the record number in the first field, and
that the dump wraps to the end of the memory area after the first record has been output.

2. SDA> EXAMINE SMP$GL_CPU_DATA;80
00000000 00000000 8FE26000 8FE14000 00000000 00000000 8FE02000 811FE000
 ...
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 ...
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 ...
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
 ...
SDA> DUMP SMP$GL_CPU_DATA;80/index_array/record_size=20/count=5
0,810C17C0,8EC7C180,026A09C0,02,0,FFFFFFFF,0,0
01,810C17C0,8EC7C400,026A09C0,02,0,FFFFFFFF,0,01
04,810C17C0,8EC7CB80,026A09C0,02,0,FFFFFFFF,0,04

This example shows the contents of the CPU database vector, then dumps the first 32 bytes of each
CPU database entry. Only the first five entries in the array are requested, and those containing zero
are ignored.

77

Chapter 4. SDA Commands

4.8. EVALUATE
Computes and displays the value of the specified expression in both hexadecimal and decimal.
Alternative evaluations of the expression are available with the use of the qualifiers defined for this
command.

Format
EVALUATE [{/CONDITION_VALUE | /FPSR | /IFS

| /ISR | /PFS | /PS | /PSR

| /PTE

| /[NO]SYMBOLS [=filter] | /TIME}] expression

Parameter
expression

SDA expression to be evaluated. Section 2.6.1 describes the components of SDA expressions.

Qualifiers
/CONDITION_VALUE

Displays the message that the $GETMSG system service obtains for the value of the expression.

/FPSR

(Integrity servers only) Evaluates the specified expression in the format of a floating-point status
register.

/IFS

(Integrity servers only) Evaluates the specified expression in the format of an interruption function
state.

/ISR

(Integrity servers only) Evaluates the specified expression in the format of an interruption status
register.

/PFS

(Integrity servers only) Evaluates the specified expression in the format of a previous function state.

/PS

Evaluates the specified expression in the format of a processor status

/PSR

(Integrity servers only) Evaluates the specified expression in the format of a processor status register.

78

Chapter 4. SDA Commands

/PTE

Interprets and displays the expression as a page table entry (PTE). The individual fields of the PTE
are separated and an overall description of the PTE's type is provided.

/SYMBOLS[=filter]

/NOSYMBOLS

The default behavior of the EVALUATE command is to display up to five symbols that are known to
be equal to the evaluated expression. If /SYMBOLS is specified with no filter, all symbols are listed
in alphabetical order. If /NOSYMBOLS is specified, only the hexadecimal and decimal values are
displayed. If /SYMBOLS is specified with a filter, only symbols that match the filter are displayed.
The filter is a string containing wildcards, such as PCB$*.

/TIME

Interprets and displays the expression as a 64-bit time value. Positive values are interpreted as
absolute time; negative values are interpreted as delta time.

Description
If you do not specify a qualifier, the EVALUATE command interprets and displays the expression as
hexadecimal and decimal values. In addition, if the expression is equal to the value of a symbol in the
SDA symbol table, that symbol is displayed. If no symbol with this value is known, the next lower valued
symbol is displayed with an appropriate offset unless the offset is extremely large. (See Section 2.6.1.4
for a description of how SDA displays symbols and offsets.) The DEFINE command adds symbols to the
SDA symbol table but does not display the results of the computation. EVALUATE displays the result of
the computation but does not add symbols to the SDA symbol table.

Examples
1. SDA> EVALUATE -1

Hex = FFFFFFFF.FFFFFFFF Decimal = -1 I

The EVALUATE command evaluates a numeric expression, displays the value of that expression in
hexadecimal and decimal notation, and displays a symbol that has been defined to have an equivalent
value.

2. SDA> EVALUATE 1
Hex = 00000000.00000001 Decimal = 1 CHF$M_CALEXT_CANCEL
 CHF$M_FPREGS_VALID
 CHF$V_CALEXT_LAST
 IRP$M_BUFIO
 IRP$M_CLN_READY
 |
 (remaining symbols suppressed by default)

The EVALUATE command evaluates a numeric expression and displays the value of that expression
in hexadecimal and decimal notation. This example also shows the symbols that have the displayed
value. A maximum of five symbols are displayed by default.

3. SDA> DEFINE TEN = A
SDA> EVALUATE TEN
Hex = 00000000.0000000A Decimal = 10 IRP$B_TYPE

79

Chapter 4. SDA Commands

 IRP$S_FMOD
 IRP$V_MBXIO
 TEN
 UCB$B_TYPE
 |
 (remaining symbols suppressed by default)

This example shows the definition of a symbol named TEN. The EVALUATE command then shows
the value of the symbol.

Note that A, the value assigned to the symbol by the DEFINE command, could be a symbol. When
SDA evaluates a string that can be either a symbol or a hexadecimal numeral, it first searches its
symbol table for a definition of the symbol. If SDA finds no definition for the string, it evaluates the
string as a hexadecimal number.

4. SDA> EVALUATE (((TEN * 6) + (-1/4)) + 6)
Hex = 00000000.00000042 Decimal = 66

This example shows how SDA evaluates an expression of several terms, including symbols and
rational fractions. SDA evaluates the symbol, substitutes its value in the expression, and then
evaluates the expression. The fraction -1/4 is truncated to 0.

5. SDA> EVALUATE/CONDITION 80000018
%SYSTEM-W-EXQUOTA, exceeded quota

This example shows the output of an EVALUATE/CONDITION command.

6. SDA> EVALUATE/PFS 00000000.000013AF
 PPL PEC RRB.PR RRB.FR RRB.GR SOR SOL
 SOF
 0 0. 0. 0. 0. 0. 39. (32-70)
 47. (32-78)

This example shows the output of an EVALUATE/PFS command on an Integrity server system.

7. SDA> EVALUATE/PS 0B03
 MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
 0 00 00000000000 0B 0 0 KERN 0 USER

In this EVALUATE/PS command on an Alpha system, SDA interprets the entered value 0B03 as
though it were a processor status (PS) and displays the resulting field values.

8. SDA> EVALUATE/PSR 00001410.0A026010
 RT TB LP DB SI DI PP SP DFH DFL DT PK I IC MFH MFL
 AC BE
 1 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1
 0 0
 IA BN ED RI SS DD DA ID IT MC IS CPL
 0 1 0 2 0 0 0 0 1 0 0 0

This example shows the output of an EVALUATE/PSR command on an Integrity server system.

9. SDA> EVALUATE/PTE 0BCDFFEE
 3 3 2 2 2 1 1 1 1
 1 0 9 7 0 9 8 6 5 7 6 4 3 0
+-+-+---+-------------+-+-+---+-+---------------+-+---+-+-----+-+
|0|0| 0 | 005E |0|1| 2 |1| FF |1| 3 |0| 7 |0|
+-+-+---+-------------+-+-+---+-+---------------+-+---+-+-----+-+

80

Chapter 4. SDA Commands

| 00000000 |
+---+
Global PTE: Owner = S, Read Prot = KESU, Write Prot = KESU, CPY = 0
 GPT Index = 00000000

The EVALUATE/PTE command displays the expression 0BCDFFEE as a page table entry (PTE)
and labels the fields. It also describes the status of the page. For more information on interpreting
information in this output, see Section 2.8.

10. SDA> EVALUATE/TIME 009A9A4C.843DBA9F
10-OCT-1996 15:59:44.02

This example shows the use of the EVALUATE/TIME command.

11. SDA> EVALUATE 2F0/SYMBOL=PCB*
Hex = 00000000.000002F0 Decimal = 752 PCB$L_INITIAL_KTB
 PCB$L_PCB

This example shows the use of the symbol filter. Only those symbols whose value is 2F0 and whose
names begin with PCB are displayed.

4.9. EXAMINE
Displays either the contents of a location or of a range of locations in physical memory, or the contents
of a register. Use location parameters to display specific locations or use qualifiers to display the entire
process and system regions of memory.

Format
EXAMINE [location [/PHYSICAL] | /ALL | /P0 | /P1 | /SYSTEM]

[/CONDITION_VALUE | /FPSR | /IFS | /ISR | /PFS

| /PS | /PSL | /PSR | /PTE | /TIME | /[NO]FD | /[NO]PD]

[/NOSUPPRESS]

[/INSTRUCTION]

Parameter
location

Location in memory to be examined. A location can be represented by any valid SDA expression.
(See Section 2.6.1 for additional information about expressions.) To examine a range of locations,
use the following syntax:

m:n Range of locations to be examined, from m to n
m;n Range of locations to be examined, starting at m

and continuing for n bytes

The default location that SDA uses is initially 0 in the program region (P0) of the process that was
executing at the time the system failed (if you are examining a crash dump) or your process (if you
are examining the running system). Subsequent uses of the EXAMINE command with no parameter
specified increase the last address examined by eight. Use of the /INSTRUCTION qualifier increases

81

Chapter 4. SDA Commands

the default address by four (for Alpha) or 16 (for Integrity server). To examine memory locations of
other processes, you must use the SET PROCESS command.

Qualifiers
/ALL

Examines all the locations in the program, and control regions and system space, displaying the
contents of memory in hexadecimal longwords and ASCII characters. Do not specify parameters
when you use this qualifier.

/CONDITION_VALUE

Examines the specified longword, displaying the message that the $GETMSG system service obtains
for the value in the longword.

/FD

/NOFD

See the description of /PD.

/FPSR

(Integrity servers only) Examines the specified expression in the format of a floating-point status
register.

/IFS

(Integrity servers only) Examines the specified expression in the format of an interruption function
state.

/INSTRUCTION

Translates the specified range of memory locations into assembly instruction format. Each symbol in
the EXAMINE expression that is defined as a procedure descriptor is replaced with the code entry
point address of that procedure, unless you also specify the /NOPD qualifier. For Integrity servers
only, SDA always displays entire bundles of instructions, not individual slots.

/ISR

(Integrity servers only) Examines the specified expression in the format of an interruption status
register.

/NOSUPPRESS

Inhibits the suppression of zeros when displaying memory with one of the following qualifiers: /
ALL, /P0, /P1, /SYSTEM, or when a range is specified.

/P0

Displays the entire program region for the default process. Do not specify parameters when you use
this qualifier.

/P1

Displays the entire control region for the default process. Do not specify parameters when you use
this qualifier.

82

Chapter 4. SDA Commands

/PD

/NOPD

Functionally equivalent to /FD and /NOFD.

Causes the EXAMINE command to treat the location specified in the EXAMINE command as a
function descriptor (FD) or procedure descriptor (PD), depending on the architecture of the system
or dump being analyzed. /PD can also be used to qualify symbols.

You can use the /PD and /NOPD qualifiers with the /INSTRUCTION qualifier to override treating
symbols as function or procedure descriptors. Placing the qualifier right after a symbol overrides
how the symbol is treated. /PD forces it to be a procedure descriptor, and /NOPD forces it to not be
a procedure descriptor.

If you place the /PD qualifier right after the /INSTRUCTION qualifier, SDA treats the calculated
value as a function or procedure descriptor. /NOPD has the opposite effect.

In the following examples, TEST_ROUTINE is a PD symbol. Its value is 500 and the code address
in this procedure descriptor is 1000. The first example displays instructions starting at 520.

EXAMINE/INSTRUCTION TEST_ROUTINE/NOPD+20

The next example fetches code address from TEST_ROUTINE PD, adds 20 and displays
instructions at that address. In other words, it displays code starting at location 1020.

EXAMINE/INSTRUCTION TEST_ROUTINE+20

The final example treats the address TEST_ROUTINE+20 as a procedure descriptor, so it fetches
the code address out of a procedure descriptor at address 520. It then uses that address to display
instructions.

EXAMINE/INSTRUCTION/PD TEST_ROUTINE/NOPD+20

/PFS

(Integrity servers only) Examines the specified expression in the format of a previous function state.

/PHYSICAL

Examines physical addresses. You cannot use the /PHYSICAL qualifier in combination with the /
P0, /P1, or /SYSTEM qualifiers.

/PS

/PSL

Examines the specified quadword, displaying its contents in the format of a processor status. This
qualifier must precede any parameters used in the command line.

/PSR

(Integrity servers only) Examines the specified expression in the format of a processor status register.

/PTE

Interprets and displays the specified quadword as a page table entry (PTE). The display separates
individual fields of the PTE and provides an overall description of the PTE's type.

83

Chapter 4. SDA Commands

/SYSTEM

Displays portions of the writable system region. Do not specify parameters when you use this
qualifier.

/TIME

Examines the specified quadword, displaying its contents in the format of a system-date-and-time
quadword.

Description
The following sections describe how to use the EXAMINE command.

Examining Locations

When you use the EXAMINE command to look at a location, SDA displays the location in symbolic
notation (symbolic name plus offset), if possible, and its contents in hexadecimal and ASCII formats:

SDA> EXAMINE G6605C0
806605C0: 64646464.64646464 "dddddddd"

If the ASCII character that corresponds to the value contained in a byte is not printable, SDA displays a
period (.). If the specified location does not exist in memory, SDA displays this message:

%SDA-E-NOTINPHYS, address : virtual data not in physical memory

To examine a range of locations, you can designate starting and ending locations separated by a colon.
For example:

SDA> EXAMINE G40:G200

Alternatively, you can specify a location and a length, in bytes, separated by a semicolon. For example:

SDA> EXAMINE G400;16

When used to display the contents of a range of locations, the EXAMINE command displays six or
ten columns of information. Ten columns are used if the terminal width is 132 or greater, or if a SET
OUTPUT has been entered; six columns are used otherwise. An explanation of the columns is as
follows:

• Each of the first four or eight columns represents a longword of memory, the contents of which are
displayed in hexadecimal format.

• The fifth or ninth column lists the ASCII value of each byte in each longword displayed in the
previous four or eight columns.

• The sixth or tenth column contains the address of the first, or rightmost, longword in each line.
This address is also the address of the first, or leftmost, character in the ASCII representation of the
longwords. Thus, you read the hexadecimal dump display from right to left, and the ASCII display
from left to right.

If a series of virtual addresses does not exist in physical memory, SDA displays a message specifying the
range of addresses that were not translated.

If a range of virtual locations contains only zeros, SDA displays this message:

Zeros suppressed from 'loc1' to 'loc2'

84

Chapter 4. SDA Commands

Decoding Locations

You can translate the contents of memory locations into instruction format by using the /
INSTRUCTION qualifier. This qualifier causes SDA to display the location in symbolic notation (if
possible) and its contents in instruction format. The operands of decoded instructions are also displayed
in symbolic notation. The location must be longword aligned (for Alpha) or octaword aligned (for
Integrity servers).

Examining Memory Regions

You can display an entire region of virtual memory by using one or more of the qualifiers /ALL, /
SYSTEM, /P0, and /P1 with the EXAMINE command.

Other Uses

Other uses of the EXAMINE command appear in the following examples.

Note

When examining individual locations, addresses are usually symbolized, as described previously. If the
SET SYMBOLIZE OFF command is issued, addresses are not symbolized. See the SET SYMBOLIZE
command for further details.

Examples
1. SDA> EXAMINE/PFS 7FF43C10

 PPL PEC RRB.PR RRB.FR RRB.GR SOR SOL
 SOF
 0 0. 0. 0. 0. 0. 23. (32-54)
 31. (32-62)

This example shows the display produced by the EXAMINE/PFS command. Headings refer to
previous privilege level (PPL), previous epilog count (PEC), Register Rename Base (RRB) for
Predicate (PR), Floating (FR), and General (GR) Registers, Size of Rotating (SOR) or Local (SOL)
portion of the stack frame or Size of the Stack Frame (SOF). For more information, see the Intel
IA-64 Architecture Software Developer's Manual.

2. SDA> EXAMINE/PS 7FF95E78
 MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
 0 00 00000000000 08 0 0 KERN 0 EXEC

This example shows the display produced by the EXAMINE/PS command.

3. SDA> EXAMINE/PSR 7FF43C78
 RT TB LP DB SI DI PP SP DFH DFL DT PK I IC MFH MFL
 AC BE
 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1
 0 0
 IA BN ED RI SS DD DA ID IT MC IS CPL
 0 1 0 1 0 0 0 0 1 0 0 0

This example shows the display produced by the EXAMINE/PSR command

4. SDA> EXAMINE/PTE @^QMMG$GQ_L1_BASE
 3 3 2 2 2 1 1 1 1
 1 0 9 7 0 9 8 6 5 7 6 4 3 0
+-+-+---+-------------+-+-+---+-+---------------+-+---+-+-----+-+

85

Chapter 4. SDA Commands

|0|1| 0 | 0000 |0|0| 0 |0| 11 |0| 0 |0| 4 |1|
+-+-+---+-------------+-+-+---+-+---------------+-+---+-+-----+-+
| 00007090 |
+---+
Valid PTE: Owner = K, Read Prot = K---, Write Prot = K---
 Fault on = -E--, ASM = 00, Granularity Hint = 00 (8KB)
 CPY = 00, PFN = 00007090

The EXAMINE/PTE command displays and formats the level 1 page table entry at
FFFFFEFD.BF6FC000. For more information on interpreting this display, see Section 2.8.

5. SDA> EXAMINE/CONDITION_VALUE R0
%SYSTEM-F-NOPRIV, insufficient privilege or object protection violation

This example shows the text associated with the condition code in R0.

6. SDA> EXAMINE/TIME EXE$GQ_SYSTIME
12-DEC-2001 08:23:07.80

This example displays the current system as an ASCII absolute time.

4.10. EXIT
Exits from an SDA display or exits from the SDA utility.

Format
EXIT

Parameters
None.

Qualifiers
None.

Description
If SDA is displaying information on a video display terminal---and if that information extends beyond
one screen---SDA enters display mode and displays a screen overflow prompt at the bottom of the
screen:

Press RETURN for more.
SDA>

If you want to discontinue the current display at this point, enter the EXIT command. If you want SDA
to execute another command, enter that command. SDA discontinues the display as if you entered EXIT,
and then executes the command you entered.

When the SDA> prompt is not immediately preceded by the screen overflow prompt, entering EXIT
causes your process to cease executing the SDA utility. When issued within a command procedure
(either the SDA initialization file or a command procedure invoked with the execute (@) command),
EXIT causes SDA to terminate execution of the procedure and return to the SDA prompt.

See Section 2.6.2 for a description of SDA display mode.

86

Chapter 4. SDA Commands

4.11. FORMAT
Displays a formatted list of the contents of a block of memory.

Format
FORMAT [/TYPE=block-type] location [/NOSYMBOLIZE][/PAGE][/PHYSICAL] [/POSITIVE]

Parameters
location

Location of the beginning of the data block. The location can be given as any valid SDA expression.

Qualifiers
/NOSYMBOLIZE

If /NOSYMBOLIZE is specified, no attempt is made to symbolize the contents of any field
in a structure. This is useful if the loaded execlet or activated image lists are corrupted, since
symbolization relies on these lists.

/PAGE

If the output of the formatted structure does not fit on one screen, SDA enters display mode. (For
information on this topic, see Section 2.6.2.) By default, SDA displays the formatted structure
without screen overflow prompts.

/PHYSICAL

Specifies that the location given is a physical address.

/POSITIVE

Symbols that describe negative offsets from the start of the structure are ignored. By default, all
symbols for the block type are processed

/TYPE=block-type

Forces SDA to characterize and format a data block at location as the specified type of data
structure. The /TYPE qualifier thus overrides the default behavior of the FORMAT command in
determining the type and/or subtype of a data block, as described in the Description section. The
block-type can be the symbolic prefix of any data structure defined by the operating system.

Description
The FORMAT command performs the following actions:

• Characterizes a range of locations as a system data

• Assigns, if possible, a symbol to each item of data within the block

• Displays all the data within the block, up to a quadword per line

• Whenever successive quadword fields with no symbolic name containing the same value occur, only
the first occurrence is output. Ellipses replace all subsequent occurrences.

87

Chapter 4. SDA Commands

Most OpenVMS control blocks include two bytes that indicate the block type and/or subtype at offsets
0A16 and 0B16, respectively. The type and/or subtype associate the block with a set of symbols that
have a common prefix. Each symbol's name describes a field within the block, and the value of the
symbol represents the offset of the field within the block.

If the type and/or subtype bytes contain a valid block type/subtype combination, SDA retrieves the
symbols associated with that type of block (see $DYNDEF) and uses their values to format the block.

For a given block type, all associated symbols have the following form:

<block_type>$<field>_<name>

where field is one of the following:

B Byte
W Word
L Longword
Q Quadword
O Octaword
A Address
C Constant
G Global Longword
P Pointer
R Structure (variable size)
T Counted ASCII string (up to 31 characters)

If SDA cannot find the symbols associated with the block type specified in the block-type byte or by
the /TYPE qualifier, it issues the following message:

%SDA-E-NOSYMBOLS, no <block type> symbols found to format this block

If you receive this message, you may want to read additional symbols into the SDA symbol table and
retry the FORMAT command. Many symbols that define OpenVMS data structures are contained within
SDA$READ_DIR:SYSDEF.STB. Thus, you would issue the following command:

SDA> READ SDA$READ_DIR:SYSDEF.STB

If SDA issues the same message again, try reading additional symbols. Section 2.5 lists additional
modules provided by the OpenVMS operating system. Alternatively, you can create your own object
modules with the MACRO-32 Compiler for OpenVMS. See the READ command description for
instructions on creating such an object module.

Certain OpenVMS data structures do not contain a block type and/or subtype. If bytes contain
information other than a block type/subtype---or do not contain a valid block type/subtype--- SDA either
formats the block in a totally inappropriate way, based on the contents of offsets 0A16 and 0B16, or
displays the following message:

%SDA-E-INVBLKTYP, invalid block type in specified block

To format such a block, you must reissue the FORMAT command, using the /TYPE qualifier to
designate a block-type.

The FORMAT command produces a three-column display containing the following information:

• The first column shows the virtual address of each item within the block.

• The second column lists each symbolic name associated with a location within the block.

• The third column shows the contents of each item in hexadecimal format, including symbolization if
a suitable symbol exists.

88

Chapter 4. SDA Commands

Examples
1. SDA> READ SYSDEF

SDA> format 81475D00
FFFFFFFF.81475D00 UCB$L_FQFL 8104EA58 EXE
$GL_FKWAITFL+00078
 UCB$L_MB_MSGQFL
 UCB$L_RQFL
 UCB$W_MB_SEED
 UCB$W_UNIT_SEED
FFFFFFFF.81475D04 UCB$L_FQBL 81412038
 UCB$L_MB_MSGQBL
 UCB$L_RQBL
FFFFFFFF.81475D08 UCB$W_SIZE 0380
FFFFFFFF.81475D0A UCB$B_TYPE 10
FFFFFFFF.81475D0B UCB$B_FLCK 3A
FFFFFFFF.81475D0C UCB$L_ASTQFL 81223888 SYS$DKDRIVER
+19A88
 UCB$L_FPC
 UCB$L_MB_W_AST
 UCB$T_PARTNER
 .
 .
 .

In this example on an OpenVMS Alpha system, the READ command loads the symbols from SDA
$READ_DIR:SYSDEF.STB into SDA's symbol table. The FORMAT command displays the data
structure that begins at 81475D0016, a unit control block (UCB). If a field has more than one
symbolic name, all such names are displayed. Thus, the field that starts at 81475D0C16 has four
designations: UCBL_ASTQFL, UCBL_FPC, UCB$L_MB_W_AST, and UCB$T_PARTNER.

The contents of each field appear to the right of the symbolic name of the field. Thus, the contents of
UCB$L_FQBL are 8104EA5816

2. SDA> read sysdef
SDA> read/exec
SDA> format 84191D00
FFFFFFFF.84191D00 SPL$L_OWN_CPU 00000000
FFFFFFFF.84191D04 SPL$L_OWN_CNT FFFFFFFF
FFFFFFFF.84191D08 SPL$W_SIZE 0100
FFFFFFFF.84191D0A SPL$B_TYPE 4F
FFFFFFFF.84191D0B SPL$B_SUBTYPE 01
FFFFFFFF.84191D0C SPL$L_SPINLOCK 00000000
FFFFFFFF.84191D10 SPL$L_RANK 00000000
FFFFFFFF.84191D14 SPL$B_IPL 1F
 SPL$L_IPL
FFFFFFFF.84191D15 000000
FFFFFFFF.84191D18 SPL$L_RLS_PC 00000000
FFFFFFFF.84191D1C SPL$L_BUSY_WAITS 00000000
FFFFFFFF.84191D20 SPL$L_WAIT_CPUS 00000000
FFFFFFFF.84191D24 SPL$L_WAIT_PC 00000000
FFFFFFFF.84191D28 SPL$Q_SPINS 00000000.00000000
FFFFFFFF.84191D30 SPL$Q_ACQ_COUNT 00000000.00008E08
FFFFFFFF.84191D38 SPL$L_TIMO_INT 000186A0 UCB
$M_FLOPPY_MEDIA+006A0
FFFFFFFF.84191D3C SPL$PS_SHARE_ARRAY 00000000
FFFFFFFF.84191D40 SPL$PS_SHARE_LINK 00000000

89

Chapter 4. SDA Commands

FFFFFFFF.84191D44 SPL$T_NAME ""
FFFFFFFF.84191D45 000000
FFFFFFFF.84191D48 00000000.00000000
FFFFFFFF.84191D50 SPL$Q_RELEASE_COUNT 00000000.00008E08
FFFFFFFF.84191D58 SPL$Q_HISTORY_BITMASK 00000000.00000000
FFFFFFFF.84191D60 SPL$Q_ABUSE_THRESHOLD 00000000.00000000
FFFFFFFF.84191D68 SPL$Q_FLAGS 00000000.00000000
FFFFFFFF.84191D70 00000000.00000000

FFFFFFFF.84191D80 SPL$Q_ABUSE_BITMASK 00000000.00000000
FFFFFFFF.84191D88 00000000.00000000

FFFFFFFF.84191DB8 00000000
FFFFFFFF.84191DBC SPL$L_VEC_INX 00000010
FFFFFFFF.84191DC0 SPL$L_OWN_PC_VEC 8016B7A0 ERL
$WAKE_C+00370
FFFFFFFF.84191DC4 8016BF50 ERL
$WAKE_C+00B20
FFFFFFFF.84191DC8 8016BF50.8016B7A0

FFFFFFFF.84191DD8 8016B8C0.8016B7A0
FFFFFFFF.84191DE0 000231E0.00022C20
FFFFFFFF.84191DE8 00023BF0.000238D0
FFFFFFFF.84191DF0 000231E0.00022C20

FFFFFFFF.84191DF8 00023BF0.000238D0
 SPL$C_LENGTH
 .
 .
 .

In this example on an OpenVMS Integrity server system, the READ command loads the symbols
from SYSDEF and the loaded executive images into SDA's symbol table. The FORMAT command
displays the data structure that begins at 84191D0016, a spinlock control block (SPL). If a field
has more than one symbolic name, all such names are displayed. Thus, the field that starts at
84191D1416 has two designations: SPL$B_IPL and SPL$L_IPL.

The contents of each field appear to the right of the symbolic name of the field. Thus, the contents of
SPL$B_IPL is 1F16.

4.12. HELP
Displays information about the SDA utility, its operation, and the format of its commands.

Format
HELP [topic-name]

Parameters
topic-name

Topic for which you need information. A topic can be an SDA command name such as ATTACH
or COPY, the name of an SDA extension such as CLUE or FLT, or a keyword such as Extensions or
Process_Context.

90

Chapter 4. SDA Commands

If you enter HELP with no topic name, a list of all topics is displayed.

Qualifiers
None.

Description
The HELP command displays brief descriptions of SDA commands and concepts on the terminal screen
(or sends these descriptions to the file designated in a SET OUTPUT command). You can request
additional information by specifying the name of a topic in response to the Topic? prompt.

If you do not specify a parameter in the HELP command, it lists the features of SDA and those
commands and topics for which you can request help, as follows:

Examples
1. SDA> HELP

HELP

 The System Dump Analyzer (SDA) allows you to inspect the contents
 of memory as saved in the dump taken at crash time or as exists
 in a running system. You can use SDA interactively or in batch
 mode. You can send the output from SDA to a listing file. You can
 use SDA to perform the following operations:

 Assign a value to a symbol
 Examine memory of any process
 Format instructions and blocks of data
 Display device data structures
 Display memory management data structures
 Display a summary of all processes on the system
 Display the SDA symbol table
 Copy the system dump file
 Read global symbols from any object module
 Search memory for a given value
 Send output to a file or device

 For help on performing these functions, use the HELP command and
 specify a topic.

 Format

 HELP [topic-name]

 Additional information available:

 .
 .
 .

Topic?

91

Chapter 4. SDA Commands

4.13. MAP
Transforms an address into an offset in a particular image.

Format
MAP address

Parameters
address

Address to be identified.

Qualifiers
None.

Description
The MAP command identifies the image name and offset corresponding to an address. With this
information, you can examine the image map to locate the source module and program section offset
corresponding to an address.

If the address is in system space, MAP searches for the specified address in executive images first. It
then checks activated images in process space to search those images installed using the /RESIDENT
qualifier of the Install utility. Finally, it checks all image-resident sections in system space. If the address
is in process space, MAP searches the activated images for the process.

If the address cannot be found, MAP displays the following message:

%SDA-E-NOTINIMAGE, Address not within a system/installed image

On Integrity servers, the MAP command can also provide additional data for addresses in system space.
If the address is determined to be in a code section of an executive loaded image or a resident shareable
image, and if the image file is accessible and was linked using /TRACEBACK, the traceback data is used
to obtain and display the module name and routine name information.

Examples
1. SDA> MAP G90308

Image Base End Image Offset
SYS$VM
Nonpaged read only 80090000 800ABA00 00000308

Examining the image map identified by this MAP command (SYS$VM.MAP) shows that image
offset 308 falls within psect EXEC$HI_USE_PAGEABLE_CODE because the psect goes from
offset 0 to offset 45D3:

 .
 .
 .

92

Chapter 4. SDA Commands

EXEC$HI_USE_PAGEABLE_CODE 00000000 000045D3 000045D4 (17876.) 2
 ** 5...
 SYSCREDEL 00000000 0000149B 0000149C (5276.) 2
 ** 5
 SYSCRMPSC 000014A0 000045D3 00003134 (12596.) 2
 ** 5

EXEC$NONPAGED_CODE 000045E0 0001B8B3 000172D4 (94932.) 2
 ** 5...
 EXECUTE_FAULT 000045E0 0000483B 0000025C (604.) 2
 ** 5
 IOLOCK 00004840 000052E7 00000AA8 (2728.) 2
 ** 5
 LOCK_SYSTEM_PAGES
 .
 .
 .

Specifically, image offset 308 is located within source module SYSCREDEL. Therefore, to
locate the corresponding code, you would look in SYSCREDEL for offset 308 in psect EXEC
$HI_USE_PAGEABLE_CODE.

2. SDA> MAP G550000
Image Base End Image Offset
SYS$DKDRIVER 80548000 80558000 00008000

In this example, the MAP command identifies the address as an offset into an executive image that is
not sliced. The base and end addresses are the boundaries of the image.

3. SDA> MAP G550034
Image Base End Image Offset
SYS$DUDRIVER
 Nonpaged read/write 80550000 80551400 00008034

In this example, the MAP command identifies the address as an offset into an executive image that is
sliced. The base and end addresses are the boundaries of the image section that contains the address
of interest.

4. SDA> MAP GF0040
Image Resident Section Base End Image Offset
MAILSHR 800F0000 80119000 00000040

The MAP command identifies the address as an offset into an image-resident section residing in
system space.

5. SDA> MAP 12000
Activated Image Base End Image Offset
MAIL 00010000 000809FF 00002000

The MAP command identifies the address as an offset into an activated image residing in process-
private space.

6. SDA> MAP B2340
Compressed Data Section Base End Image Offset
LIBRTL 000B2000 000B6400 00080340

The MAP command identifies the address as being within a compressed data section. When an
image is installed with the Install utility using the /RESIDENT qualifier, the code sections are

93

Chapter 4. SDA Commands

mapped in system space. The data sections are compressed into process-private space to reduce null
pages or holes in the address space left by the absence of the code section. The SHOW PROCESS/
IMAGE=ALL display shows how the data has been compressed; the MAP command searches this
information to map an address in a compressed data section to an offset in an image.

7. SDA> MAP 7FC06000
Shareable Address Data Section Base End Image Offset
LIBRTL 7FC06000 7FC16800 00090000

The MAP command identifies the address as an offset into a shareable address data section residing
in P1 space.

8. SDA> MAP 7FC26000
Read-Write Data Section Base End Image Offset
LIBRTL 7FC26000 7FC27000 000B0000

The MAP command identifies the address as an offset into a read-write data section residing in P1
space.

9. SDA> MAP 7FC36000
Shareable Read-Only Data Section Base End Image Offset
LIBRTL 7FC36000 7FC3F600 000C0000

The MAP command identifies the address as an offset into a shareable read-only data section
residing in P1 space.

10. SDA> MAP 7FC56000
Demand Zero Data Section Base End Image Offset
LIBRTL 7FC56000 7FC57000 000E0000

The MAP command identifies the address as an offset into a demand zero data section residing in
P1 space.

11. SDA> MAP FFFFFFFF.8042FE00
Image Base End
 Image Offset
EXCEPTION_MON
 Code FFFFFFFF.8041FE00 FFFFFFFF.804E3DFF
 00000000.00028000

 Module: IPF_DECODE + 00005380
 Routine: process_i_unit + 00000840

This example shows the additional module and routine offset information that is displayed for system
space code sections.

4.14. MODIFY DUMP
Allows a given byte, word, longword, or quadword in the dump file to be modified.

Format
MODIFY DUMP value {/BLOCK=n/OFFSET=n | /NEXT}

{/BYTE | /WORD | /LONGWORD (d) | /QUADWORD}

94

Chapter 4. SDA Commands

[/CONFIRM=n]

Parameters
value

New value deposited in the specified location in the dump file.

Qualifiers
/BLOCK=n

Indicates block number to be modified. Required unless the /NEXT qualifier is given.

/OFFSET=n

Indicates byte offset within block to be modified. Required unless the /NEXT qualifier is given.

/NEXT

Indicates that the byte or bytes immediately following the location altered by the previous MODIFY
DUMP command are to be modified. Used instead of the /BLOCK=n and /OFFSET=n qualifiers.

/BYTE

Indicates that only a single byte is to be replaced

/WORD

Indicates that a word is to be replaced.

/LONGWORD

Indicates that a longword is to be replaced. This is the default.

/QUADWORD

Indicates that a quadword is to be replaced.

/CONFIRM=n

Checks existing contents of location to be modified.

Description
The MODIFY DUMP command is used on a dump file that cannot be analyzed without specifying
the /OVERRIDE qualifier on the ANALYZE/CRASH_DUMP command. You can use the MODIFY
DUMP command to correct the problem that prevents normal analysis of a dump file. You can only use
the MODIFY DUMP command when you have invoked SDA with the ANALYZE/CRASH_DUMP/
OVERRIDE command.

Important

This command is not intended for general use. It is provided for the benefit of VSI support personnel
when investigating crash dumps that cannot be analyzed in other ways.

95

Chapter 4. SDA Commands

If the block being modified is part of either the dump header, the error log buffers, or the compression
map, the changes made are not seen when you issue the appropriate SHOW DUMP command, unless
you first exit from SDA and then reissue the ANALYZE/CRASH_DUMP command.

The MODIFY DUMP command sets a bit in the dump header to indicate that the dump has been
modified. Subsequent ANALYZE/CRASH_DUMP commands issued to that file produce the following
warning message:

%SDA-W-DUMPMOD, dump has been modified

Examples
1. SDA>> MODIFY DUMP/BLOCK=10/OFFSET=100/WORD FF

This example shows the dump file modified with the word at offset 100 in block 00000010 replaced
by 00FF.

2. SDA>> MODIFY DUMP/BLOCK=10/OFFSET=100/WORD 0/CONFIRM=EE
%SDA-E-NOMATCH, expected value does not match value in dump; dump not
 updated

This example shows what happens when the actual word value of 00FF at offset 100 in block
00000010 does not match the given value of 00EE.

3. SDA>> MODIFY DUMP/BLOCK=10/OFFSET=100/WORD 0/CONFIRM=FF

This example shows the dump file modified with a word value of 00FF at offset 100 in block
00000010 replaced by 0000

4.15. READ
Loads the global symbols contained in the specified file into the SDA symbol table.

Format
READ {/EXECUTIVE [directory spec]

| /FORCE filespec [/RELOCATE =expression | /SYMVA=expression]

| /IMAGE filespec

| filespec}

[/[NO]LOG]

Parameters
directory-spec

Name of the directory containing the loadable images of the executive. This parameter defaults to
SDA$READ_DIR, which is a search list of SYS$LOADABLE_IMAGES, SYS$LIBRARY, and
SYS$SYSTEM.

96

Chapter 4. SDA Commands

filespec

Name of the device, directory, and file from which you want to read global symbols. The filespec
defaults to SYS$DISK:[default-dir]filename.type, where SYS$DISK and [default-dir] represent the
disk and directory specified in your last DCL command SET DEFAULT. If no type has been given
in filespec, SDA first tries .STB and then .EXE.

If no device or directory is given in the file specification, and the file specification is not found in
SYS$DISK:[default_dir], then SDA attempts to open the file SDA$READ_DIR:filename.type. If no
type has been given in filespec, SDA first tries .STB and then .EXE.

If the file name is the same as that of an execlet or image, but the symbols in the file are not those
of the execlet or image, then you must use the /FORCE qualifier, and optionally /RELOCATE and /
SYMVA qualifiers, to tell SDA how to interpret the symbols in the file.

The READ command accepts quoted filenames for access to images on ODS-5 disks with lowercase
or compound characters in their names.

Qualifiers
/EXECUTIVE directory-spec

Reads into the SDA symbol table all global symbols and global entry points defined within all
loadable images that make up the executive. For all the execlets in the system, SDA reads the .STB
or .EXE files in the requested directory.

/FORCE filespec

Forces SDA to read the symbols file, regardless of what other information or qualifiers are specified.
If you do not specify the /FORCE qualifier, SDA may not read the symbols file if the specified
filespec matches the image name in either the executive loaded images or the current processes
activated image list, and one of the following conditions is true:

• The image has a symbols vector (is a shareable image), and a symbols vector was not specified
with the /SYMVA or /IMAGE qualifier.

• The image is sliced, and slicing information was not provided with the /IMAGE qualifier.

• The shareable or executive image is not loaded at the same address it was linked at, and the
relocation information was not provided with either the /IMAGE or /RELOCATE qualifier.

The use of /FORCE [/SYMVA=addr][/RELOCATE=addr] filespec is a variant of the /IMAGE
qualifier and avoids fixing up the symbols to match an image of the same name.

/IMAGE filespec

Searches the executive loaded image list and the current process activated image list for the image
specified by filespec. If the image is found, the symbols are read in using the image symbol vector (if
there is one) and either slicing or relocation information.

This is the preferred way to read in the .STB files produced by the linker. These .STB files contain
all universal symbols, unless SYMBOL_TABLE=GLOBAL is in the linker options file, in which
case the .STB file contains all universal and global symbols.

/LOG

97

Chapter 4. SDA Commands

/NOLOG (D)

The /LOG qualifier causes SDA to output the %SDA-I-READSYM message for each symbol table
file it reads. By default, these messages are suppressed. You can specify /LOG and /NOLOG with
any other combination of parameters and qualifiers.

/RELOCATE=expression

Changes the relative addresses of the symbols to absolute addresses by adding the value of
expression to the value of each symbol in the symbol table file to be read. This qualifier changes
those addresses to absolute addresses in the address space into which the dump is mapped.

The relocation only applies to symbols with the relocate flag set. All universal symbols must be
found in the symbol vector for the image. All constants are read in without any relocation.

If the image is sliced (image sections are placed in memory at different relative offsets than how the
image is linked), then the /RELOCATE qualifier does not work. SDA compares the file name used
as a parameter to the READ command against all the image names in the executive loaded image
list and the current processes activated image list. If a match is found, and that image contains a
symbol vector, an error results. At this point you can either use the /FORCE qualifier or the /IMAGE
qualifier to override the error.

/SYMVA=expression

Informs SDA whether the absolute symbol vector address is for a shareable image (SYS
$PUBLIC_VECTORS.EXE) or base system image (SYS$BASE_IMAGE.EXE). All symbols found
in the file with the universal flag are found by referencing the symbol vector (that is, the symbol
value is a symbol vector offset).

Description
The READ command symbolically identifies locations in memory and the definitions used
by SDA for which the default files (SDA$READ_DIR:SYS$BASE_IMAGE.EXE and SDA
$READ_DIR:REQSYSDEF.STB) provide no definition. In other words, the required global symbols
are located in modules and symbol tables that have been compiled and/or linked separately from the
executive. SDA extracts no local symbols from the files.

The file specified in the READ command can be the output of a compiler or assembler (for example,
an .OBJ file).

Note

The READ command can read both OpenVMS Alpha and OpenVMS Integrity servers format files. Do
not use READ to read files that contain symbols specific to another architecture, as this might change
the behavior of other SDA commands for the current architecture.

Most often the file is provided in SYS$LOADABLE_IMAGES. Many SDA applications, for instance,
need to load the definitions of system data structures by issuing a READ command specifying
SYSDEF.STB. Others require the definitions of specific global entry points within the executive image.

The files in SYS$LOADABLE_IMAGES define global locations within executive images, including
those listed in the table below. The actual list of executive images used varies, depending on platform
type, devices, and the settings of several system parameters.

98

Chapter 4. SDA Commands

Table 4.1. Modules Defining Global Locations Within Executive Images

File Contents

ACME.EXE $ACM system service
CNX$DEBUG.EXE Connection Manager trace routines
DDIF$RMS_EXTENSION.EXE Support for Digital Document Interchange Format

(DDIF) file operations
ERRORLOG.STB Error-logging routines and system services
EXCEPTION.STB Bugcheck and exception-handling routines and

those system services that declare condition and
exit handlers. Variations of these files also exist,
for example, where the file name ends in "_MON."
System parameters such as SYSTEM_CHECK
determine which image is loaded.

EXEC_INIT.STB Initialization code
F11BXQP.STB File system support
FC$GLOGALS.STB Fibrechannel symbols
IMAGE_MANAGEMENT.STB Image activator and the related system services
IO_ROUTINES.STB $QIO system service, related system services

(for example, $CANCEL and $ASSIGN), and
supporting routines. Variations of these files
also exist, for example, where the file name
ends in "_MON." System parameters such as
SYSTEM_CHECK determine which image is
loaded.

LAT$RATING.EXE CPU load-balancing routines for LAT
LCK$DEBUG.EXE Lock manager trace routines
LMF$GROUP_TABLE.EXE Data structures for licensed product groups. Alpha

only.
LOCKING.STB Lock management routines and system services
LOGICAL_NAMES.STB Logical name routines and system services
MESSAGE_ROUTINES.STB System message routines and system services

(including $SNDJBC and $GETTIM)
MSCP.EXE Disk MSCP server
MULTIPATH.STB Fibrechannel multipath support routinesю

Variations of these files also exist, for example,
where the file name ends in "_MON." System
parameters such as SYSTEM_CHECK determine
which image is loaded.

NET$CSMACD.EXE CSMA/CD LAN management module
NET$FDDI.EXE FDDI LAN management module
NT_EXTENSION.EXE NT extensions for persona system services
PROCESS_MANAGEMENT.STB Scheduler, report system event, and supporting

routines and system services. Variations of these
files also exist, for example, where the file name

99

Chapter 4. SDA Commands

File Contents
ends in "_MON." System parameters such as
SYSTEM_CHECK determine which image is
loaded.

RECOVERY_UNIT_SERVICES.STB Recovery unit system services
RMS.EXE Global symbols and entry points for RMS
SECURITY.STB Security management routines and system services.

Variations of these files also exist, for example,
where the file name ends in "_MON." System
parameters such as SYSTEM_CHECK determine
which image is loaded.

SHELL xxK.STB Process shell
SPL$DEBUG.EXE Spinlock trace routines
SSPI.EXE Security Support Provider Interface
SYS$ xxDRIVER.EXE Run-time device drivers
SYS$ACPI.EXE Advanced Configuration and Power Interface

routines. Integrity servers only.
SYS$ATMWORKS351.EXE PCI-ATM driver
SYS$CLUSTER.EXE OpenVMS Cluster support routines
SYS$CPU_ROUTINES_ xxxx.EXE Processor-specific data and initialization routines.

Alpha only.
SYS$EW1000A.EXE Gigabit Ethernet driver
SYS$EW5700.EXE Gigabit Ethernet driver. Integrity servers only.
SYS$GALAXY.STB OpenVMS Galaxy support routines
SYS$HWP nnnn.EXE PCI support routines. Integrity servers only.
SYS$IPC_SERVICES.EXE Interprocess communication for DECdtm and

Batch/Print
SYS$IPI nnnn.EXE PCI support routines. Integrity servers only.
SYS$LAN.EXE Common LAN routines
SYS$LAN_ATM.EXE LAN routines for ATM
SYS$LAN_ATM4.EXE LAN routines for ATM (ForeThought)
SYS$LAN_CSMACD.EXE LAN routines for CSMA/CD
SYS$LAN_FDDI.EXE LAN routines for FDDI
SYS$LAN_TR.EXE LAN routines for Token Ring
SYS$MME_SERVICES.STB Media Management Extensions
SYS$NETWORK_SERVICES.EXE DECnet support
SYS$NTA.STB NT affinity routines and services
SYS$ xxxx_SUPPORT.EXE Processor-specific data and initialization routines.

Integrity servers only.
SYS$PUBLIC_VECTORS.EXE System service vector base image. This file is

located in SYS$LIBRARY.
SYS$SCS.EXE System Communication Services

100

Chapter 4. SDA Commands

File Contents

SYS$TRANSACTION_SERVICES.EXE DECdtm services
SYS$UTC_SERVICES.EXE Universal Coordinated Time services
SYS$VCC.STB Virtual I/O cache. Variations of these files

also exist, for example, where the file name
ends in "_MON." System parameters such as
SYSTEM_CHECK determine which image is
loaded. Alpha only.

SYS$VM.STB System pager and swapper, along with their
supporting routines, and management system
services

SYS$XFCACHE.STB Extented File Cache. Variations of these files
also exist, for example, where the file name
ends in "_MON." System parameters such as
SYSTEM_CHECK determine which image is
loaded.

SYSDEVICE.STB Mailbox driver and null driver
SYSGETSYI.STB Get System Information system service

($GETSYI)
SYSLDR_DYN.STB Dynamic executive image loader
SYSLICENSE.STB Licensing system service ($LICENSE)
SYSTEM_DEBUG.EXE XDelta and SCD routines
SYSTEM_PRIMITIVES.STB Miscellaneous basic system routines, including

those that allocate system memory, maintain
system time, create fork processes, and control
mutex acquisition. Variations of these files
also exist, for example, where the file name
ends in "_MON." System parameters such as
SYSTEM_CHECK determine which image is
loaded.

SYSTEM_SYNCHRONIZATION.STB Routines that enforce synchronization. Variations
of these files also exist, for example, where the file
name ends in "_MON." System parameters such
as SYSTEM_CHECK determine which image is
loaded.

TCPIP$BGDRIVER.STB TCP/IP internet driver. Available only if TCP/IP
has been installed.

TCPIP$INETACP.STB TCP/IP internet ACP Available only if TCP/IP has
been installed.

TCPIP$INETDRIVER.STB TCP/IP internet driver. Available only if TCP/IP
has been installed.

TCPIP$INTERNET_SERVICES.STB TCP/IP internet execlet
TCPIP$NFS_SERVICES.STB Symbols for the TCP/IP NFS server. Available only

if TCP/IP has been installed.
TCPIP$PROXY_SERVICES.STB Symbols for the TCP/IP proxy execlet. Available

only if TCP/IP has been installed.

101

Chapter 4. SDA Commands

File Contents

TCPIP$PWIPACP.STB TCP/IP PWIP ACP. Available only if TCP/IP has
been installed.

TCPIP$PWIPDRIVER.STB TCP/IP PWIP driver. Available only if TCP/IP has
been installed.

TCPIP$TNDRIVER.STB TCP/IP TELNET/RLOGIN server driver.
Available only if TCP/IP has been installed.

TMSCP.EXE Tape MSCP server
VMS_EXTENSION.EXE VMS extensions for persona system services

SDA can also read symbols from an image .EXE or .STB produced by the linker. The STB and EXE
files only contain universal symbols. The STB file, however, can be forced to have global symbols for the
image if you use the SYMBOL_TABLE=GLOBAL option in the linker options file.

A number of ready-built symbol table files ship with OpenVMS. They can be found in the directory
SYS$LOADABLE_IMAGES, and all have names of the form xyzDEF.STB. Of these files, SDA
automatically reads REQSYSDEF.STB on activation. You can add the symbols in the other files to
SDA's symbol table using the READ command. Table 2.5 lists the files that OpenVMS provides in SYS
$LOADABLE_IMAGES that define data structure offsets.

The following MACRO program, GLOBALS.MAR, shows how to obtain symbols in addition to those in
SYS$BASE_IMAGE.EXE, other executive images listed in Table 4.1, and the symbol table files that are
listed in Table 2.5:

.TITLE GLOBALS
; n.b. on following lines GLOBAL must be capitalized
$PHDDEF GLOBAL ; Process header definitions
$DDBDEF GLOBAL ; Device data block
$UCBDEF GLOBAL ; Unit control block
$VCBDEF GLOBAL ; Volume control block
$ACBDEF GLOBAL ; AST control block
$IRPDEF GLOBAL ; I/O request packet
; more can be inserted here
.END

Use the following command to generate an object module file containing the globals defined in the
program:

$MACRO GLOBALS+SYS$LIBRARY:LIB/LIBRARY /OBJECT=GLOBALS.STB

Examples
1. SDA> READ SDA$READ_DIR:SYSDEF.STB/LOG

%SDA-I-READSYM, 10010 symbols read from SYS$COMMON:[SYSEXE]SYSDEF.STB;1

The READ command causes SDA to add all the global symbols in SDA$READ_DIR:SYSDEF.STB
to the SDA symbol table. Such symbols are useful when you are formatting an I/O data structure,
such as a unit control block or an I/O request packet.

2. SDA> SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

102

Chapter 4. SDA Commands

 00000000.7FF95CD0 FFFFFFFF.80430CE0 SCH$STATE_TO_COM+00040
 00000000.7FF95CD8 00000000.00000000
 00000000.7FF95CE0 FFFFFFFF.81E9CB04 LNM$SEARCH_ONE_C+000E4
 00000000.7FF95CE8 FFFFFFFF.8007A988 PROCESS_MANAGEMENT_NPRO
+0E988
 SP =>00000000.7FF95CF0 00000000.00000000
 00000000.7FF95CF8 00000000.006080C1
 00000000.7FF95D00 FFFFFFFF.80501FDC
 00000000.7FF95D08 FFFFFFFF.81A5B720
 .
 .
 .

SDA> READ/IMAGE SYS$LOADABLE_IMAGES:PROCESS_MANAGEMENT/LOG
%SDA-I-READSYM, 767 symbols read from SYS$COMMON:[SYS
$LDR]PROCESS_MANAGEMENT.STB;1
SDA> SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

 00000000.7FF95CD0 FFFFFFFF.80430CE0 SCH$FIND_NEXT_PROC
 00000000.7FF95CD8 00000000.00000000
 00000000.7FF95CE0 FFFFFFFF.81E9CB04 LNM$SEARCH_ONE_C+000E4
 00000000.7FF95CE8 FFFFFFFF.8007A988 SCH$INTERRUPT+00068
 SP =>00000000.7FF95CF0 00000000.00000000
 00000000.7FF95CF8 00000000.006080C1
 00000000.7FF95D00 FFFFFFFF.80501FDC
 00000000.7FF95D08 FFFFFFFF.81A5B720
 .
 .
 .

The initial SHOW STACK command contains an address that SDA resolves into an offset from
the PROCESS_MANAGEMENT executive image. The READ command loads the corresponding
symbols into the SDA symbol table such that the reissue of the SHOW STACK command
subsequently identifies the same location as an offset within a specific process management routine.

4.16. REPEAT
Repeats execution of the last command issued. On terminal devices, the KP0 key performs the same
function as the REPEAT command with no parameter or qualifier.

Format
REPEAT [count | /UNTIL=condition]

Parameter
count

Number of times the previous command is to be repeated. The default is a single repeat.

103

Chapter 4. SDA Commands

Qualifier
/UNTIL=condition

Defines a condition that terminates the REPEAT command. By default, there is no terminating
condition.

Description
The REPEAT command is useful for stepping through a linked list of data structures, or for examining a
sequence of memory locations. When used with ANALYZE/SYSTEM, it allows the changing state of a
system location or data structure to be monitored.

You can also use the REPEAT command to provide a convenient method of either displaying a series of
data structures in a linked list or examining a sequence of locations. For example:

FORMAT @IOC$GL_DEVLIST ! Start at first DDB in system
FORMAT @. ! Skip to next entry in list
<KP0> ! Repeat FORMAT @. command
.
.
.

Examples
1. SDA> SPAWN CREATE SDATEMP.COM

SEARCH 0:3FFFFFFF 12345678
SET PROCESS/NEXT
^Z
SDA> SET PROCESS NULL
SDA> @SDATEMP
SDA> REPEAT/UNTIL = BADPROC

This example demonstrates how to search the address space of each process in a system or dump a
given pattern.

2. SDA> SPAWN CREATE SDATEMP2.COM
FORMAT CPUDB
SET CPU /NEXT
^Z
SDA> READ SYSDEF
SDA> SET CPU /FIRST
SDA> @SDATEMP2
SDA> REPEAT/UNTIL = BADCPU

This example demonstrates how to format the CPU database for every CPU in a dump.

3. SDA> SHOW CALL_FRAME
Call Frame Information

 Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native
 Procedure Entry: FFFFFFFF.80080CE0 MMG$RETRANGE_C
+00180
 Return address on stack = FFFFFFFF.8004CF30 EXCEPTION_NPRO
+00F30

104

Chapter 4. SDA Commands

Registers saved on stack

7FF95E80 FFFFFFFF.FFFFFFFD Saved R2
7FF95E88 FFFFFFFF.8042DBC0 Saved R3 EXCEPTION_NPRW+03DC0
7FF95E90 FFFFFFFF.80537240 Saved R4
7FF95E98 00000000.00000000 Saved R5
7FF95EA0 FFFFFFFF.80030960 Saved R6 MMG$IMGRESET_C+00200
7FF95EA8 00000000.7FF95EC0 Saved R7
7FF95EB0 FFFFFFFF.80420E68 Saved R13 MMG$ULKGBLWSL E
7FF95EB8 00000000.7FF95F70 Saved R29
.
.
.
SDA> SHOW CALL_FRAME/NEXT_FRAME

Call Frame Information

 Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native
 Procedure Entry: FFFFFFFF.80F018D0
 IMAGE_MANAGEMENT_PRO+078D0
 Return address on stack = FFFFFFFF.8004CF30 EXCEPTION_NPRO
+00F30

Registers saved on stack

7FF95F90 FFFFFFFF.FFFFFFFB Saved R2
7FF95F98 FFFFFFFF.8042DBC0 Saved R3 EXCEPTION_ NPRW+03DC0
7FF95FA0 00000000.00000000 Saved R5
7FF95FA8 00000000.7FF95FC0 Saved R7
7FF95FB0 FFFFFFFF.80EF8D20 Saved R13 ERL$DEVINF O+00C20
7FF95FB8 00000000.7FFA0450 Saved R29
.
.
.
SDA> REPEAT
Call Frame Information

 Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native
 Procedure Entry: FFFFFFFF.80F016A0
 IMAGE_MANAGEMENT_PRO+076A0
 Return address on stack = 00000000.7FF2451C

Registers saved on stack

7FFA0470 00000000.7FEEA890 Saved R13
7FFA0478 00000000.7FFA0480 Saved R29
.
.
.

The first SHOW CALL_FRAME displays the call frame indicated by the current FP value. Because
the /NEXT_FRAME qualifier to the instruction displays the call frame indicated by the saved frame
in the current call frame, you can use the REPEAT command to repeat the SHOW CALL_FRAME/
NEXT_FRAME command and follow a chain of call frames.

105

Chapter 4. SDA Commands

4.17. SEARCH
Scans a range of memory locations for all occurrences of a specified value or string.

Format
SEARCH [/qualifier] range [=] {expression | string}

Parameters
range

Location in memory to be searched. A location can be represented by any valid SDA expression. To
search a range of locations, use the following syntax:

m:n Range of locations to be searched, from m to n
m;n Range of locations to be searched, starting at m

and continuing for n bytes

You must use either an equals sign or a blank to separate range from expression or string.

expression

Value for which SDA is to search. SDA evaluates the expression and searches the specified range of
memory for the resulting value. For a description of SDA expressions, see Section 2.6.1.

string

Character sequence for which SDA is to search. If all characters in the sequence are printable
characters, the string is enclosed in quotes, for example, "My_String". If the character sequence
contains non-printable characters, it must be specified as a comma-separated list composed of
quoted strings and hexadecimal numbers; for example,("My_String",0C00,"More") would specify
a search for"My_String<NUL><FF>More". Each hexadecimal number can be no more than 8
digits (4 bytes) in length. Non-printable sequences of more than 4 bytes must be split into multiple
hexadecimal numbers. The maximum length of a search string is 127 bytes. Note that the quote
character itself cannot be included in a quoted string and must be specified as a hexadecimal number.

Qualifiers
/IGNORE_CASE

Specifies that searches for strings are not to be case-specific. (By default, searches look for an exact
match.) This qualifier is ignored for value searches.

/LENGTH={QUADWORD | LONGWORD | WORD | BYTE}

Specifies the size of the expression value that the SEARCH command uses for matching. If you do
not specify the /LENGTH qualifier, the SEARCH command uses a longword length by default. This
qualifier is ignored for string searches.

/MASK=n

Allows the SEARCH command finer granularity in its matches. It compares only the given bits of a
byte, word, longword, or quadword. To compare bits when matching, you set the bits in the mask;

106

Chapter 4. SDA Commands

to ignore bits when matching, you clear the bits in the mask. This qualifier is ignored for string
searches.

/PHYSICAL

Specifies that the addresses used to define the range of locations to be searched are physical
addresses.

/STEPS = {QUADWORD | LONGWORD | WORD | BYTE | value}

Specifies the step factor of the search through the specified memory range. After the SEARCH
command has performed the comparison between the value of expression or the given string
and memory location, it adds the specified step factor to the address of the memory location. The
resulting location is the next location to undergo the comparison. If you do not specify the /STEPS
qualifier, the SEARCH command uses a step factor of a longword for value searches, and a step
factor of a byte for string searches.

Description
SEARCH displays each location as each value or string is found. If you press Ctrl/T while using the
SEARCH command, the system displays how far the search has progressed. The progress display is
always output to the terminal even if a SET OUTPUT <file> command has previously been entered.

Examples
1. SDA> SEARCH GB81F0;500 B41B0000

Searching from FFFFFFFF.800B81F0 to FFFFFFFF.800B86EF in LONGWORD steps
 for B41B0000...
Match at FFFFFFFF.800B86E4 B41B0000

This SEARCH command finds the value B41B0000 in the longword at FFFFFFFF.800B86E4.

2. SDA> SEARCH 80000000;200/STEPS=BYTE 82
Searching from FFFFFFFF.80000000 to FFFFFFFF.800001FF in BYTE steps for
 00000082...
Match at FFFFFFFF.8000012C 00000082

This SEARCH command finds the value 00000082 in the longword at FFFFFFFF.8000012C.

3. SDA> SEARCH/LENGTH=WORD 80000000;100 10
Match at FFFFFFFF.80000030 0010
Match at FFFFFFFF.80000040 0010
Match at FFFFFFFF.80000090 0010
Match at FFFFFFFF.800000A0 0010
Match at FFFFFFFF.800000C0 0010
5 matches found

This SEARCH command finds the value 0010 in the words at FFFFFFFF.80000030,
FFFFFFFF.80000040, FFFFFFFF.80000090, FFFFFFFF.800000A0, FFFFFFFF.800000C0.

4. SDA> SEARCH/MASK=FF000000 80000000;40 20000000
Searching from FFFFFFFF.80000000 to FFFFFFFF.8000003F in LONGWORD steps
 for 20000000...
(Using search mask of FF000000)
Match at FFFFFFFF.80000000 201F0104
Match at FFFFFFFF.80000010 201F0001

107

Chapter 4. SDA Commands

2 matches found

This SEARCH command finds the value 20 in the upper byte of the longwords at
FFFFFFFF.80000000 and FFFFFFFF.80000010, regardless of the contents of the lower 3 bytes.

5. SDA> SEARCH g:i ("test",01020304,"this",05060708,"again")
 Searching from FFFFFFFF.80000000 to FFFFFFFF.FFFFFFFF in byte steps for
 "test....this....again"...
 (74,65,73,74,04,03,02,01,74,68 ,69,73,08,07,06,05,61,67,61,69,6E)
 No matches found

This example combines quoted strings and hexadecimal values to form a character sequence to be
used in a search. Note the order in which the bytes within each hexadecimal number are inserted into
the search sequence: the least significant byte of the hexadecimal number is the first byte added to
the search sequence.

4.18. SET CPU
When analyzing a system dump, selects a processor to become the current CPU for SDA. When invoked
under ANALYZE/SYSTEM, SET CPU lists the database address for the specified CPU before exiting
with the message: %SDA-E-CMDNOTVLD command not valid on the running system

Format
SET CPU {cpu-id | /FIRST | /NEXT | /PRIMARY } [/NOLOG]

Parameter
cpu-id

Numeric value indicating the identity of the processor to be made the current CPU. If you specify
the cpu-id of a processor that was not active at the time of the system failure, SDA displays the
following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

Qualifiers
/FIRST

The lowest numbered CPU (not necessarily the primary CPU) is set as the current CPU.

/NEXT

The next higher numbered CPU is set as the current CPU. SDA skips CPUs not in the configuration
at the time of the system failure. If there are no further CPUs, SDA returns an error.

/NOLOG

Use the /NOLOG qualifier to inhibit output of the database address for the CPU being set.

/PRIMARY

The primary CPU is set as the current CPU.

108

Chapter 4. SDA Commands

Description
When you invoke SDA to examine a system dump, the current CPU context for SDA defaults to that
of the processor that caused the system to fail. When analyzing a system failure from a multiprocessing
system, you may find it useful to examine the context of another processor in the configuration.

The SET CPU command changes the current CPU context for SDA to that of the processor indicated
by cpu-id. The CPU specified by this command becomes the current CPU for SDA until you either exit
from SDA or change the CPU context for SDA by issuing one of the following commands:

SET CPU cpu-id

SET CPU /FIRST

SET CPU /NEXT

SET CPU /PRIMARY

SHOW CPU cpu-id

SHOW CPU /FIRST

SHOW CPU /NEXT

SHOW CPU /PRIMARY

SHOW CRASH

SHOW MACHINE_CHECK cpu-id

Changing CPU context can cause an implicit change in process context under the following
circumstances:

• If there is a current process on the CPU made current, SDA changes its process context to that of
that CPU's current process.

• If there is no current process on the CPU made current, the SDA process context is undefined and
no process-specific information is available until you set the SDA process context to that of a specific
process.

The following commands also change the CPU context for SDA to that of the CPU on which the process
was most recently current:

SET PROCESS process-name

SET PROCESS/ADDRESS=pcb-address

SET PROCESS/INDEX=nn

SET PROCESS/NEXT

SHOW PROCESS process-name

SHOW PROCESS/ADDRESS=pcb-address

SHOW PROCESS/INDEX=nn

SHOW PROCESS/NEXT

109

Chapter 4. SDA Commands

VALIDATE PROCESS/POOL process-name

VALIDATE PROCESS/POOL/ADDRESS=pcb-address

VALIDATE PROCESS/POOL/INDEX=nn

VALIDATE PROCESS/POOL/NEXT

See Section 2.5 for further discussion of the way in which SDA maintains its context information.

See the description of the REPEAT command for an example of the use of SET CPU/NEXT command.

4.19. SET ERASE_SCREEN
Enables or disables the automatic clearing of the screen before each new page of SDA output.

Format
SET ERASE_SCREEN {ON | OFF}

Parameters
ON

Enables the screen to be erased before SDA outputs a new heading. This setting is the default.

OFF

Disables the erasing of the screen.

Description
SDA's usual behavior is to erase the screen and then show the data. By setting the OFF parameter, the
clear screen action is replaced by a blank line. This action does not affect what is written to a file when
the SET LOG or SET OUTPUT commands are used.

Examples
1. SDA> SET ERASE_SCREEN ON

The clear screen action is now enabled.

2. SDA> SET ERASE_SCREEN OFF

The clear screen action is disabled.

4.20. SET FETCH
Sets the default size and access method of address data used when SDA evaluates an expression that
includes the @ unary operator.

Format
SET FETCH [{QUADWORD | LONGWORD | WORD | BYTE}]

110

Chapter 4. SDA Commands

[, {PHYSICAL | VIRTUAL}]

Parameters
QUADWORD

Sets the default size to 8 bytes.

LONGWORD

Sets the default size to 4 bytes.

WORD

Sets the default size to 2 bytes.

BYTE

Sets the default size to 1 byte.

PHYSICAL

Sets the default access method to physical addresses.

VIRTUAL

Sets the default access method to virtual addresses.

You can specify only one parameter out of each group. If you are changing both size and access
method, separate the two parameters by spaces or a comma. Include a comma only if you are
specifying a parameter from both groups. See Example 6.

Qualifiers
None.

Description
Sets the default size and/or default access method of address data used by the @ unary operator
in commands such as EXAMINE and EVALUATE. SDA uses the current default size unless it is
overridden by the ^Q, ^L, ^W, or ^B qualifier on the @ unary operator in an expression. SDA uses the
current default access method unless it is overridden by the ^P or ^V qualifier on the @ unary operator
in an expression.

Examples
1. SDA> EXAMINE MMG$GQ_SHARED_VA_PTES

MMG$GQ_SHARED_VA_PTES: FFFFFFFD.FF7FE000 ".`a....."

This example shows the location's contents of a 64-bit virtual address.

2. SDA> SET FETCH LONG
SDA> EXAMINE @MMG$GQ_SHARED_VA_PTES
%SDA-E-NOTINPHYS, FFFFFFFF.FF7FE000 : virtual data not in physical
 memory

111

Chapter 4. SDA Commands

This example shows a failure because the SET FETCH LONG causes SDA to assume that it should
take the lower 32 bits of the location's contents as a longword value, sign-extend them, and use that
value as an address.

3. SDA> EXAMINE @^QMMG$GQ_SHARED_VA_PTES
FFFFFFFD.FF7FE000: 000001D0.40001119 "...@..."

This example shows the correct results by overriding the SET FETCH LONG with the ^Q qualifier
on the @ operator. SDA takes the full 64 bits of the location's contents and uses that value as an
address.

4. SDA> SET FETCH QUAD
SDA> EXAMINE @MMG$GQ_SHARED_VA_PTES
FFFFFFFD.FF7FE000: 000001D0.40001119 "...@..."

This example shows the correct results by changing the default fetch size to a quadword.

5. SDA> SET FETCH PHYSICAL
SDA> EXAMINE /PHYSICAL @0

This command uses the contents of the physical location 0 as the physical address of the location to
be examined.

6. SDA> SET FETCH QUADWORD, PHYSICAL

This command sets the default fetch size and default access method at the same time.

4.21. SET LOG
Initiates or discontinues the recording of an SDA session in a text file.

Format
SET [NO]LOG filespec

Parameter
filespec

Name of the file in which you want SDA to log your commands and their output. The default
filespec is SYS$DISK:[default_dir]filename.LOG, where SYS$DISK and [default-dir] represent the
disk and directory specified in your last DCL command SET DEFAULT. If you specify SET LOG
without a filename or specify SET NOLOG, SDA stops recording the session and directs all output
to SYS$OUTPUT.

Qualifier
None.

Description
The SET LOG command echoes the commands and output of an SDA session to a log file. The SET
NOLOG command terminates this behavior.

112

Chapter 4. SDA Commands

The following differences exist between the SET LOG command and the SET OUTPUT command:

• When logging is in effect, your commands and their results are still displayed on your terminal. The
SET OUTPUT command causes the displays to be redirected to the output file and they no longer
appear on the screen.

• If an SDA command requires that you press Return to produce successive screens of display, the log
file produced by SET LOG will record only those screens that are actually displayed. SET OUTPUT,
however, sends the entire output of any SDA commands to its listing file.

• The SET LOG command produces a log file with a default file type of .LOG; the SET OUTPUT
command produces a listing file whose default file type is .LIS.

• The SET OUTPUT command can generate a table of contents, each item of which refers to a display
written to its listing file. SET OUTPUT also produces running heads for each page of output. The
SET LOG command does not produce these items in its log file.

If you use the SET OUTPUT command to redirect output to a listing file, a SET LOG command to
direct the same output to a log file is ineffective until output is restored to the terminal.

4.22. SET OUTPUT
Redirects output from SDA to the specified file or device.

Format
SET OUTPUT [/[NO]INDEX | /[NO]HEADER | /PERMANENT | /SINGLE_COMMAND] filespec

Parameter
filespec

Name of the file to which SDA is to send the output generated by its commands. The default
filespec is SYS$DISK:[default_dir] filename.LIS, where SYS$DISK and [default-dir] represent the
disk and directory specified in your last DCL command SET DEFAULT. You must specify a file
name except when /PERMANENT is specified.

Qualifiers
/INDEX

/NOINDEX

The /INDEX qualifier causes SDA to include an index page at the beginning of the output file.
This is the default unless you specify /NOHEADER or modify the default with a SET OUTPUT/
PERMANENT command. The /NOINDEX qualifier causes SDA to omit the index page from the
output file.

/HEADER

113

Chapter 4. SDA Commands

/NOHEADER

The /HEADER qualifier causes SDA to include a heading at the top of each page of the output file.
This is the default unless you modify it with a SET OUTPUT/PERMANENT command. The /
NOHEADER qualifier causes SDA to omit the page headings. Use of /NOHEADER implies /
NOINDEX.

/PERMANENT

Modifies the defaults for /[NO]HEADER and /[NO]INDEX. Specify either or both qualifiers with
or without a NO prefix to set new defaults. Setting the default to /NOHEADER implies a default
of /NOINDEX. The new defaults remain in effect until another SET OUTPUT/PERMANENT
command is entered or the SDA session is ended.

You cannot combine /PERMANENT and /SINGLE_COMMAND in one command, and you cannot
provide a filespec with /PERMANENT.

/SINGLE_COMMAND

Indicates to SDA that the output for a single command is to be written to the specified file and that
subsequent output should be written to the terminal. /SINGLE_COMMAND cannot be combined
with /PERMANENT.

Description
When you use the SET OUTPUT command to send the SDA output to a file or device, SDA continues
displaying the SDA commands that you enter but sends the output generated by those commands to
the file or device you specify. (See the description of the SET LOG command for a list of differences
between the SET LOG and SET OUTPUT commands.)

When you finish directing SDA commands to an output file and want to return to interactive display,
issue the following command:

SDA> SET OUTPUT SYS$OUTPUT

You do not need this command when you specify the /SINGLE_COMMAND qualifier on the original
SET OUTPUT command.

If you use the SET OUTPUT command to send the SDA output to a listing file and do not specify /
NOINDEX or /NOHEADER, SDA builds a table of contents that identifies the displays you selected and
places the table of contents at the beginning of the output file. The SET OUTPUT command formats the
output into pages and produces a running head at the top of each page, unless you specify /NOHEADER.

If the table of contents does not fit on a single index page at the beginning of the listing file, SDA will
insert additional index pages as necessary. These are inserted into the listing file immediately preceding
the pages that are listed in each index page. Each index page includes the page number for the adjacent
index pages.

Note

See the description of the DUMP command for use of SET OUTPUT/NOHEADER.

4.23. SET PROCESS
Selects a process to become the SDA current process.

114

Chapter 4. SDA Commands

Format
SET PROCESS {/ADDRESS=pcb-address | process-name | /ID=nn | /INDEX=nn | /NEXT | /SYSTEM}

Parameter
process-name

Name of the process to become the SDA current process. The process-name can contain up to 15
uppercase letters, numerals, the underscore (_), dollar sign ($), colon (:), and some other printable
characters. If it contains any other characters (including lowercase letters), you may need to enclose
the process-name in quotation marks (" ").

Qualifiers
/ADDRESS = pcb-address

Specifies the process control block (PCB) address of a process in order to display information about
the process.

/ID=nn

/INDEX=nn

Specifies the process for which information is to be displayed either by its index into the system's
list of software process control blocks (PCBs), or by its process identification. /ID and /INDEX are
functionally equivalent. You can supply the following values for nn:

• The process index itself.

• The process identification (PID) or extended PID longword, from which SDA extracts the
correct index. The PID or extended PID of any thread of a process with multiple kernel threads
may be specified. Any thread-specific data displayed by further commands will be for the given
thread.

To obtain these values for any given process, issue the SDA command SHOW SUMMARY/
THREADS. The /ID=nn and /INDEX=nn qualifiers can be used interchangeably.

/NEXT

Causes SDA to locate the next valid process in the process list and select that process. If there are no
further valid processes in the process list, SDA returns an error.

/SYSTEM

Specifies the new current process by the system process control block (PCB). The system PCB and
process header (PHD) parallel the data structures that describe processes. They contain the system
working set list, global section table, and other systemwide data.

Description
When you issue an SDA command such as EXAMINE, SDA displays the contents of memory locations
in its current process. To display any information about another process, you must change the current
process with the SET PROCESS command.

115

Chapter 4. SDA Commands

When you invoke SDA to analyze a crash dump, the process context defaults to that of the process that
was current at the time of the system failure. If the failure occurred on a multiprocessing system, SDA
sets the CPU context to that of the processor that caused the system to fail. The process context is set to
that of the process that was current on that processor.

When you invoke SDA to analyze a running system, its process context defaults to that of the current
process, that is, the one executing SDA.

The SET PROCESS command changes the current SDA process context to that of the process indicated
by process-name, pcb-address, or /INDEX=nn. The process specified by this command becomes the
current process for SDA until you either exit from SDA or change SDA process context by issuing one of
the following commands:

SET PROCESS process-name

SET PROCESS/ADDRESS=pcb-address

SET PROCESS/INDEX=nn

SET PROCESS/NEXT

SET PROCESS/SYSTEM

SHOW PROCESS process-name

SHOW PROCESS/ADDRESS=pcb-address

SHOW PROCESS/INDEX=nn

SHOW PROCESS/NEXT

SHOW PROCESS/SYSTEM

VALIDATE PROCESS/POOL process-name

VALIDATE PROCESS/POOL/ADDRESS=pcb-address

VALIDATE PROCESS/POOL/INDEX=nn

VALIDATE PROCESS/POOL/NEXT

VALIDATE PROCESS/POOL/SYSTEM

When you analyze a crash dump from a multiprocessing system, changing process context causes a
switch of CPU context as well. When you issue a SET PROCESS command, SDA automatically changes
its CPU context to that of the CPU on which that process was most recently current.

The following commands will also switch process context when analyzing a system dump, if there was a
current process on the target CPU at the time of the crash:

SET CPU cpu-id

SET CPU /FIRST

SET CPU /NEXT

116

Chapter 4. SDA Commands

SET CPU /PRIMARY

SHOW CPU cpu-id

SHOW CPU /FIRST

SHOW CPU /NEXT

SHOW CPU /PRIMARY

SHOW CRASH

SHOW MACHINE_CHECK cpu-id

See Section 2.5 for further discussion of the way in which SDA maintains its context information.

Examples
1. SDA> SET PROCESS/ADDRESS=80D772C0

SDA> SHOW PROCESS
Process index: 0012 Name: ERRFMT Extended PID: 00000052

Process status: 02040001 RES,PHDRES,INTER
 status2: 00000001 QUANTUM_RESCHED

PCB address 80D772CO JIB address 80556600
PHD address 80477200 Swapfile disk address 01000F01
KTB vector address 80D775AC HWPCB address 81260080
Callback vector address 00000000 Termination mailbox 0000
Master internal PID 00010004 Subprocess count 0
Creator extended PID 00000000 Creator internal PID 00000000
Previous CPU Id 00000000 Current CPU Id 00000000
Previous ASNSEQ 0000000000000001 Previous ASN 000000000000002E
Initial process priority 4 Delete pending count 0
open files allowed left 100 Direct I/O count/limit
 150/150
UIC [00001,000004] Buffered I/O count/limit
 149/150
Abs time of last event 0069D34E BUFIO byte count/limit
 99424/99808
ASTs remaining 247 # of threads 1
Swapped copy of LEFC0 00000000 Timer entries allowed left 63
Swapped copy of LEFC1 00000000 Active page table count 4
Global cluster 2 pointer 00000000 Process WS page count 32
Global cluster 3 pointer 00000000 Global WS page count 31

The SET PROCESS command switches SDA's current process context to the process whose PCB is
at address 80D772C0. The SHOW PROCESS command shows that the process is ERRFMT, and
displays information from its PCB and job information block (JIB).

See the description of the REPEAT command for an example of the use of the SET PROCESS/
NEXT command.

4.24. SET RMS
Changes the options shown by the SHOW PROCESS/RMS command.

117

Chapter 4. SDA Commands

Format
SET RMS = (option[,...])

Parameter
option

Data structure or other information to be displayed by the SHOW PROCESS/RMS command. The
table below lists those keywords that can be used as options.

Table 4.2. SET RMS Command Keywords for Displaying Process RMS Information

Keyword Meaning

[NO]ALL[: ifi] 1 All control blocks (default)
[NO]ASB Asynchronous save block
[NO]BDB Buffer descriptor block
[NO]BDBSUM BDB summary page
[NO]BLB Buffer lock block
[NO]BLBSUM Buffer lock summary page
[NO]CCB Channel control block
[NO]DRC Directory cache
[NO]FAB File access block
[NO]FCB File control block
NO]FSB File statistics block
[NO]FWA File work area
[NO]GBD Global buffer descriptor
[NO]GBDSUM GBD summary page
[NO]GBH Global buffer header
[NO]GBHSH Global buffer hash table
[NO]GBSB Global buffer synchronization block
[NO]IDX Index descriptor
[NO]IFAB[: ifi] 1 Internal FAB. The optional parameter ifi is an

internal file identifier. The default ifi (ALL) is all
the files the current process has opened.

[NO]IFB[: ifi] 1 Internal FAB
[NO]IRAB Internal RAB
[NO]IRB Internal RAB
[NO]JFB Journaling file block
[NO]KLTB Key-less-than block
[NO]NAM Name block
[NO]NWA Network work area
[NO]PIO Image I/O (NOPIO), the default, or process I/O

(PIO)

118

Chapter 4. SDA Commands

Keyword Meaning

[NO]RAB Record access block
[NO]RLB Record lock block
[NO]RU Recovery unit structures, including the recovery

unit block (RUB), recovery unit stream block
(RUSB), and recovery unit file block (RUFB)

[NO]SFSB Shared file synchronization block
[NO]WCB Window control block
[NO]XAB Extended attribute block
[NO]* Current list of options displayed by the SHOW

RMS command

The default option is (ALL,NOPIO), which designates that the SHOW PROCESS/RMS command
display all structures for all files related to the process image I/O.

If only a single option is specified, you can omit the parentheses. You can add a given data structure
to those displayed by ensuring that the list of keywords begins with the asterisk (*) symbol. You can
delete a given data structure from the current display by preceding its keyword with NO.

Qualifier
None.

Description
The SET RMS command determines the data structures to be displayed by the SHOW PROCESS/
RMS command. (See the examples included in the discussion of the SHOW PROCESS command for
information provided by various displays.) You can examine the options that are currently selected by
issuing a SHOW RMS command.

Examples
1. SDA> SHOW RMS

RMS Display Options:
 IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,XAB,RLB,
BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB

Display RMS structures for all IFI values.

SDA> SET RMS=IFB
SDA> SHOW RMS

RMS Display Options: IFB

Display RMS structures for all IFI values.

The first SHOW RMS command shows the default selection of data structures that are displayed in
response to a SHOW PROCESS/RMS command. The SET RMS command selects only the IFB to
be displayed by subsequent SET/PROCESS commands.

2. SDA> SET RMS=(*,BLB,BLBSUM,RLB)
SDA> SHOW RMS

119

Chapter 4. SDA Commands

RMS Display Options: IFB,RLB,BLB,BLBSUM

Display RMS structures for all IFI values.

The SET RMS command adds the BLB, BLBSUM, and RLB to the list of data structures currently
displayed by the SHOW PROCESS/RMS command.

3. SDA> SET RMS=(*,NORLB,IFB:05)
SDA> SHOW RMS

RMS Display Options: IFB,BLB,BLBSUM
Display RMS structures only for IFI=5.

The SET RMS command removes the RLB from those data structures displayed by the SHOW
PROCESS/RMS command and causes only information about the file with the ifi of 5 to be
displayed.

4. SDA> SET RMS=(*,PIO)

The SET RMS command indicates that the data structures designated for display by SHOW
PROCESS/RMS be associated with process-permanent I/O instead of image I/O.

4.25. SET SIGN_EXTEND
Enables or disables the sign extension of 32-bit addresses.

Format
SET SIGN_EXTEND {ON | OFF}

Parameters
ON

Enables automatic sign extension of 32-bit addresses with bit 31 set. This is the default.

OFF

Disables automatic sign extension of 32-bit addresses with bit 31 set.

Qualifiers
None.

Description
The 32-bit S0/S1 addresses need to be sign-extended to access 64-bit S0/S1 space. To do this, specify
explicitly sign-extended addresses, or set the sign-extend command to ON, which is the default.

However, to access addresses in P2 space, addresses must not be sign-extended. To do this, specify a zero
in front of the address, or set the sign-extend command to OFF.

Examples
1. SDA> SET SIGN_EXTEND ON

120

Chapter 4. SDA Commands

SDA> examine 80400000
FFFFFFFF.80400000: 23DEFF90.4A607621

This shows the SET SIGN_EXTEND command as ON.

2. SDA> SET SIGN_EXTEND OFF
SDA> EXAMINE 80400000
%SDA-E-NOTINPHYS, 00000000.80400000: virtual data not in physical memory

This shows the SET SIGN_EXTEND command as OFF.

4.26. SET SYMBOLIZE
Enables or disables symbolization of addresses in the display from an EXAMINE command.

Format
SET SYMBOLIZE {ON | OFF}

Parameters
ON

Enables symbolization of addresses.

OFF

Disables symbolization of addresses.

Qualifier
None.

Examples
1. SDA> SET SYMBOLIZE ON

 SDA> examine g1234
 SYS$PUBLIC_VECTORS+01234: 47DF041C "..ßG"

2. SDA> SET SYMBOLIZE OFF
 SDA> examine g1234
 FFFFFFFF.80001234: 47DF041C "..ßG"

These examples show the effect of enabling (default) or disabling symbolization of addresses.

4.27. SHOW ACPI (Integrity servers only)
Displays the contents of Advanced Configuration and Power Interface (ACPI) tables and namespace
structures.

Format
SHOW ACPI {/NAMESPACE |/TABLE} [/ADDRESS = address | /ALL | /CHILDREN] [ident]

121

Chapter 4. SDA Commands

Parameter
ident

The name of the table or the namespace structure to be displayed. If an ident is given, /ADDRESS
cannot be specified.

Qualifiers
/ADDRESS = address

The physical address of the table entry or virtual address of a namespace structure to be displayed.
If /ADDRESS is used, no ident may be specified.

/ALL

Specifies that detailed information on each entity is to be displayed. By default, only a brief
summary of each entity is given, except when a specific table is displayed.

/CHILDREN

Specifies that all the child namespace structures for a specified namespace entry are to be
displayed. /CHILDREN cannot be used with /TABLES.

/NAMESPACE

Specifies that ACPI namespace structures are to be displayed. Either /NAMESPACE or /TABLES
must be specified.

/TABLES

Specifies that ACPI tables are to be displayed. Either /NAMESPACE or /TABLES must be
specified.

Description
The SHOW ACPI command displays the Advanced Configuration and Power Interface (ACPI) Tables
and Namespace structures, either as a one line summary for each entity or in detail. The amount of detail
varies for each structure. The structures most interesting to OpenVMS are formatted; others are output
as a hexadecimal dump.

Examples
1. SDA> SHOW ACPI /TABLES

ACPI Tables

 OEM ASL
Signature Physical Address Length OEM Id Table Id Vendor Id
 Rev
--------- ----------------- -------- ------ -------- ---------

RSDP 00000000.3FB2E000 00000028 HP - -
 02
XSDT 00000000.3FB2E02C 0000007C HP zx2000 HP
 01

122

Chapter 4. SDA Commands

FACP 00000000.3FB373E0 000000F4 HP zx2000 HP
 03
SPCR 00000000.3FB37518 00000050 HP zx2000 HP
 01
DBGP 00000000.3FB37568 00000034 HP zx2000 HP
 01
APIC 00000000.3FB37628 00000084 HP zx2000 HP
 01
SPMI 00000000.3FB375A0 00000050 HP zx2000 HP
 04
CPEP 00000000.3FB375F0 00000034 HP zx2000 HP
 01
SSDT 00000000.3FB33870 00000A14 HP zx2000 INTL
 01
SSDT 00000000.3FB34290 000022E2 HP zx2000 INTL
 01
SSDT 00000000.3FB36580 00000342 HP zx2000 INTL
 01
SSDT 00000000.3FB368D0 00000A16 HP zx2000 INTL
 01
SSDT 00000000.3FB372F0 000000EB HP zx2000 INTL
 01
FACS 00000000.3FB374D8 00000040 - - -
 01
DSDT 00000000.3FB2E0E0 00005781 HP zx2000 INTL
 01
HCDP 00000000.3FB2C000 00000088 HP zx1 HP
 00

This example shows the default display for the ACPI tables.

2. SDA> SHOW ACPI /TABLES RSDP

ACPI Tables

RSDP

 Physical Address: 00000000.3FB2E000 Length:
 00000028
 OEM Identification: "HP" XSDT PA:
 00000000.3FB2E02C
 Revision: 02

This example shows the contents of the Root System Description Pointer (RSDP) table.

3. SDA> SHOW ACPI /NAMESPACE
ACPI Namespace

 Node ACPI Owner Object Operand
 Address Name Id Type Object
 Flags
----------------- ---------------- -- --------------- -----------------

FFFFFFFF.88253028 ___ 00 Device FFFFFFFF.89523158
 End_Of_Peer_List Subtree_Has_Ini
FFFFFFFF.89521BD8 _GPE 00 Local_Scope 00000000.00000000
FFFFFFFF.89523F58 _L14 01 Method FFFFFFFF.89523F98
 End_Of_Peer_List

123

Chapter 4. SDA Commands

FFFFFFFF.89521C18 _PR_ 00 Local_Scope 00000000.00000000
FFFFFFFF.89521C58 _SB_ 00 Device 00000000.00000000
 Subtree_Has_Ini
FFFFFFFF.89529098 SBA0 01 Device 00000000.00000000
 Subtree_Has_Ini
FFFFFFFF.895290D8 _HID 01 Method FFFFFFFF.89529118
FFFFFFFF.89529198 _CID 01 Integer FFFFFFFF.8952AD18

This example shows the default display for the ACPI namespace structures.

4. SDA> SHOW ACPI/NAMESPACE/CHILDREN _GPE
ACPI Namespace

 Node ACPI Owner Object Operand
 Address Name Id Type Object
 Flags
----------------- ---------------- -- --------------- -----------------

FFFFFFFF.89521BD8 _GPE 00 Local_Scope 00000000.00000000
FFFFFFFF.89523F58 _GPE._L14 01 Method FFFFFFFF.89523F98
 End_Of_Peer_List

This example shows the summary display for the _GPE (General Purpose Event) package in the
ACPI namespace, plus its child node.

4.28. SHOW ADDRESS
Displays the page table related information about a memory address.

Format
SHOW ADDRESS address [/PHYSICAL]

Parameter
address

The requested address.

Qualifier
/PHYSICAL

Indicates that a physical address has been given. The SHOW ADDRESS command displays the
virtual address that maps to the given physical address.

Description
The SHOW ADDRESS command displays the region of memory that contains the memory address.
It also shows all the page table entries (PTEs) that map the page and can show the range of addresses
mapped by the given address if it is the address of a PTE. If the virtual address is in physical memory,
the corresponding physical address is displayed.

When the /PHYSICAL qualifier is given, the SHOW ADDRESS command displays the virtual address
that maps to the given physical address. This provides you with a way to use SDA commands that do not
have a /PHYSICAL qualifier when only the physical address of a memory location is known.

124

Chapter 4. SDA Commands

Examples
1. SDA> SHOW ADDRESS 80000000

FFFFFFFF.80000000 is an S0/S1 address
Mapped by Level-3 PTE at: FFFFFFFD.FFE00000
Mapped by Level-2 PTE at: FFFFFFFD.FF7FF800
Mapped by Level-1 PTE at: FFFFFFFD.FF7FDFF8
Mapped by Selfmap PTE at: FFFFFFFD.FF7FDFF0
Also mapped in SPT window at: FFFFFFFF.FFDF0000
Mapped to physical address 00000000.00400000

The SHOW ADDRESS command in this example shows where the address 80000000 is mapped at
different page table entry levels.

2. SDA> SHOW ADDRESS 0
00000000.00000000 is a P0 address
Mapped by Level-3 PTE at: FFFFFFFC.00000000
Mapped by Level-2 PTE at: FFFFFFFD.FF000000
Mapped by Level-1 PTE at: FFFFFFFD.FF7FC000
Mapped by Selfmap PTE at: FFFFFFFD.FF7FDFF0
Not mapped to a physical address

The SHOW ADDRESS command in this example shows where the address 0 is mapped at different
page table entry levels.

3. SDA> SHOW ADDRESS FFFFFFFD.FF000000
FFFFFFFD.FF000000 is the address of a process-private Level-2 PTE
Mapped by Level-1 PTE at: FFFFFFFD.FF7FC000
Mapped by Selfmap PTE at: FFFFFFFD.FF7FDFF0
Range mapped at level 2: FFFFFFFC.00000000 to FFFFFFFC.00001FFF (1 page)
Range mapped at level 3: 00000000.00000000 to 00000000.007FFFFF (1024
 pages)
Mapped to physical address 00000000.01230000

The SHOW ADDRESS command in this example shows where the address FFFFFFFD.FF7FC000
is mapped at page table entry and the range mapped by the PTE at this address.

4. SDA> SHOW ADDRESS/PHYSICAL 0
Physical address 00000000.00000000 is mapped to system-space address
 FFFFFFFF.828FC000

The SHOW ADDRESS command in this example shows physical address 00000000.00000000
mapped to system-space address FFFFFFFF.828FC000.

5. SDA> SHOW ADDRESS/PHYSICAL 029A6000
Physical address 00000000.029A6000 is mapped to process-space address
 00000000.00030000
(process index 0024)

The SHOW ADDRESS command in this example shows physical address 00000000.029A6000
mapped to process-space address 00000000.00030000 (process index 0024).

4.29. SHOW BUGCHECK
Displays the value, name, and text associated with one or all bugcheck codes.

125

Chapter 4. SDA Commands

Format
SHOW BUGCHECK {/ALL (d) | name | number}

Parameters
name

The name of the requested bugcheck code.

number

The value of the requested bugcheck code. The severity bits in the value are ignored.

The parameters name and number and the qualifier /ALL are all mutually exclusive.

Qualifier
/ALL

Displays complete list of all the bugcheck codes, giving their value, name, and text. It is the default.

Description
The SHOW BUGCHECK command displays the value, name, and text associated with bugcheck codes.

Examples
1. SDA> SHOW BUGCHECK 104

0100 DIRENTRY ACP failed to find same directory entry

The SHOW BUGCHECK command in this example shows the requested bugcheck by number,
ignoring the severity (FATAL).

2. SDA> SHOW BUGCHECK DECNET
08D0 DECNET DECnet detected a fatal error

The SHOW BUGCHECK command in this example shows the requested bugcheck by name.

3. SDA> SHOW BUGCHECK
BUGCHECK codes and texts

0008 ACPMBFAIL ACP failure to read mailbox
0010 ACPVAFAIL ACP failure to return virtual address space
0018 ALCPHD Allocate process header error
0020 ALCSMBCLR ACP tried to allocate space already allocated
 .
 .
 .

The SHOW BUGCHECK command in this example shows the requested bugcheck by displaying all
codes.

4.30. SHOW CALL_FRAME
Displays the locations and contents of the quadwords representing a procedure call frame.

126

Chapter 4. SDA Commands

Format
SHOW CALL_FRAME { [starting-address]

| /EXCEPTION_FRAME = intstk-address

| /NEXT_FRAME | /SUMMARY | /ALL}

Parameter
starting-address

For Alpha, an expression representing the starting address of the procedure call frame to be
displayed. If no starting-address is given, the default starting address is the contents of the frame
pointer (FP) register of the SDA current process. For a process that uses pthreads, the following SDA
command can be used to display the starting addresses for all pthreads:

SDA> pthread thread -o u

For Integrity servers, the starting address is an expression representing one of the following:

• The invocation context handle of a frame.

• The address of an exception frame. This is equivalent to the following SDA command:

SDA> SHOW CALL_FRAME /EXCEPTION_FRAME=intstk-address

• The address of a Thread Environment Block (TEB).

For a list of all TEBs for the process, use the following SDA command:

SDA> pthread thread -o u

If no starting address is given, the default starting address is the invocation context handle of the
current procedure in the SDA current process.

Qualifier
/ALL

Displays details of all call frames beginning at the current frame and continuing until bottom of stack
(equivalent to SHOW CALL and repeated execution of a SHOW CALL/NEXT command).

/EXCEPTION_FRAME=intstk-address

(Integrity servers only) Provides an alternate starting address for SHOW CALL_FRAME. intstk-
address is the address of an exception frame from which SDA creates an initial invocation context
and displays the procedure call frame.

/NEXT_FRAME

Displays the procedure call frame starting at the address stored in the frame longword of the
last call frame displayed by this command. You must have issued a SHOW CALL_FRAME
command previously in the current SDA session in order to use the /NEXT_FRAME qualifier to the
command.

127

Chapter 4. SDA Commands

/SUMMARY

Provides a one-line summary for each call frame, including exception frames, system-service entry
frames, ASTs, KPBs, and so on, until reaching the bottom of the stack.

Description
Whenever a procedure is called, information is stored on the stack of the calling routine in the form of
a procedure call frame. The SHOW CALL_FRAME command displays the locations and contents of
the call frame. The starting address of the call frame is determined from the specified starting address,
the /NEXT_FRAME qualifier, or the address contained in the SDA current process frame register (the
default action).

When using the SHOW CALL_FRAME/NEXT_FRAME command to follow a chain of call frames,
SDA signals the end of the chain by the following message:

Cannot display further call frames (bottom of stack)

This message indicates that the saved frame in the previous call frame has a zero value (for Alpha) or
that the current frame is marked Bottom of Stack (for Integrity servers).

Examples
1. SDA> SHOW CALL_FRAME

Call Frame Information

 Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native
 Procedure Entry: FFFFFFFF.837E9F10 EXCEPTION_PRO
+01F10
 Return address on stack = FFFFFFFF.837E8A1C EXE$CONTSIGNAL_C
+0019C
Registers saved on stack

7FF95F98 FFFFFFFF.FFFFFFFB Saved R2
7FF95FA0 FFFFFFFF.8042AEA0 Saved R3 EXCEPTION_NPRW+040A0
7FF95FA8 00000000.00000002 Saved R5
7FF95FB0 FFFFFFFF.804344A0 Saved R13 SCH$CLREF+00188
7FF95FB8 00000000.7FF9FC00 Saved R29
.
.
.
SDA> SHOW CALL_FRAME/NEXT_FRAME
Call Frame Information

 Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native
 Procedure Entry: FFFFFFFF.800FA388 RMS_NPRO+04388
 Return address on stack = FFFFFFFF.80040BFC EXCEPTION_NPRO
+00BFC
Registers saved on stack

7FF99F60 FFFFFFFF.FFFFFFFD Saved R2
7FF99F68 FFFFFFFF.80425BA0 Saved R3 EXCEPTION_NPRW+03DA0
7FF99F70 FFFFFFFF.80422020 Saved R4 EXCEPTION_NPRW+00220
7FF99F78 00000000.00000000 Saved R5

128

Chapter 4. SDA Commands

7FF99F80 FFFFFFFF.835C24A8 Saved R6 RMS_PRO+004A8
7FF99F88 00000000.7FF99FC0 Saved R7
7FF99F90 00000000.7FF9FDE8 Saved R8
7FF99F98 00000000.7FF9FDF0 Saved R9
7FF99FA0 00000000.7FF9FE78 Saved R10
7FF99FA8 00000000.7FF9FEBC Saved R11
7FF99FB0 FFFFFFFF.837626E0 Saved R13 EXE$OPEN_MESSAGE+00088
7FF99FB8 00000000.7FF9FD70 Saved R29
.
.
.
SDA> SHOW CALL_FRAME/NEXT_FRAME
Call Frame Information

 Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native
 Procedure Entry: FFFFFFFF.835C2438 RMS_PRO+00438
 Return address on stack = FFFFFFFF.83766020 EXE
$OPEN_MESSAGE_C+00740
Registers saved on stack

7FF9FD88 00000000.7FF9FDA4 Saved R2
7FF9FD90 00000000.7FF9FF00 Saved R3
7FF9FD98 00000000.7FFA0050 Saved R29

The SHOW CALL_FRAME commands in this SDA session follow a chain of call frames from that
specified in the frame of the SDA current process.

2. SDA> SHOW CALL/SUMMARY
Call Frame Summary

 Frame Type Handle Current PC
-------------------- ----------------- -----------------
Exception Dispatcher 00000000.7FF43EB0 FFFFFFFF.8049E160 EXCEPTION_MON
+5E360
Register Stack Frame 00000000.7FF12180 00000000.000122C0 KP_SAMPLE
+122C0
Memory Stack Frame 00000000.7FF43ED0 FFFFFFFF.8066B440 EXE$CMKRNL_C
+00330
Memory Stack Frame 00000000.7FF43F20 FFFFFFFF.80194890 EXE$SS_DISP_C
+00400
SS Dispatcher 00000000.3FFFDFC0 FFFFFFFF.8018D240 SWIS
$ENTER_KERNEL_SERVICE_C+003E0
Register Stack Frame 000007FD.BFF58000 00000000.000124C0 KP_SAMPLE
+124C0
KP Start Frame 00000000.7AC95A20 FFFFFFFF.80161670 EXE
$KP_START_C+003C0
Memory Stack Frame 00000000.7AC95B50 00000000.00012CE0 KP_SAMPLE
+12CE0
Memory Stack Frame 00000000.7AC95BC0 00000000.000126F0 KP_SAMPLE
+126F0
Base Frame 00000000.7AC95BE0 00000000.7ADE0BB0 DCL+82BB0
Bottom of stack

This example of SHOW CALL/SUMMARY on an Integrity server system shows the call frame
summary of a process that has triggered an exception. The exception occurred while running a
program called KP_SAMPLE which has invoked the $CMKRNL system service.

129

Chapter 4. SDA Commands

4.31. SHOW CBB
Displays contents of a Common Bitmask Block.

Format
SHOW CBB address

Parameter
address

The address of the Common Bitmask Block. This is required.

Qualifiers
None.

Description
The contents of the specified common bitmask block are displayed: the number of valid bits, the
interlock state, the unit size and count, and the current settings for the bits in the bitmask.

Example
1. SDA> SHOW CBB SMP$GS_CBB_ACTIVE_SET

Common Bitmask Block at FFFFFFFF.8180CA00

 Valid bits: 00000040 State:
 00000000.00000000
 Unit count: 0001 Unit size:
 QUADWORD

 Unit bitmask:
 00000000 00000001 00000000

This example shows the active-CPU common bitmask block for a single-CPU system.

4.32. SHOW CEB
Displays information about Common Event flag Blocks, also known as Common Event flag clusters.

Format
SHOW CEB [address | /ALL]

Parameter
address

The address of a common event flag block. Detailed information is displayed for the specified
common event flag block.

130

Chapter 4. SDA Commands

Qualifier
/ALL

Specifies that detailed information is to be displayed for each common event flag block. By default, a
one-line summary is output for each common event flag block.

Description
The contents of one or all common event flag blocks is displayed. In one-line summary format, the
address, name, creator process, reference count, current settings for the 32 event flags in the cluster, and
the UIC of the cluster are displayed. In detailed format, the address of the cluster's Object Rights Block
(ORB) and the count of waiting threads are also displayed, with lists of all associated processes and
waiting threads.

You cannot specify both an address and /ALL; they are mutually exclusive.

SHOW COMMON_EVENT_BLOCK is a synonym for SHOW CEB.

Examples
1. SDA> SHOW CEB

Common Event Flags

Address Name Creator RefCount EvtFlags
 UIC Flags
-------- -------------- --------------------- -------- --------
 -------------- -----
81E1D340 clus6 0000009B Test1 00000001 00000000
 [11,1] Permanent
81E294C0 clus5 0000009B Test2 00000001 00000000
 [11,1] Permanent
8213A280 IPCACP_FLAGS 00000086 IPCACP 00000001 00000000
 [1,*]

This example shows the one-line summary of all common event flag blocks.

2. SDA> SHOW CEB 81E294C0
Common Event Flags

CEB Address: 81E294C0 Name:
 clus5
Creator process EPID: 0000009B Name:
 Test2
Event flag vector: 00000000 Reference count:
 00000001
ORB address: 829F75B0 Wait count:
 00000001
UIC: [11,1] Flags:
 00000002 Permanent

 Associated Processes Waiting Threads
 ----------------------------------- ------------------------
 PCB EPID Name KTB Indx WaitMask

131

Chapter 4. SDA Commands

 -------- -------- --------------- -------- ---- --------
 81E1C740 000000A4 BISHOP_47 81E1C740 0000 FFFFFF84

This example shows the details for the CEB at the given address.

4.33. SHOW CLASS
Displays information about scheduling classes that are active in the system or dump being analyzed.

Format
SHOW CLASS [class-name | /ALL]

Parameter
class-name

Name of the class to be displayed.

Qualifier
/ALL

Indicates that details of all active classes are to be displayed.

Description
SDA displays information about active scheduling classes in the system. By default, a summary of the
classes is displayed.

Examples
1. SDA> SHOW CLASS

Scheduling Classes

 Original Current Time Process
 Class Name Quantum Quantum Restrict Count
---------------- -------- -------- -------- --------
BISH 000000C6 000000C6 00FE0000 00000001

This example shows the summary display of the SHOW CLASS command.

2. SDA> SHOW CLASS bish
Class name: "BISH"
Original quantum: 000000C6 (99%)
Current quantum: 000000C6 (99%)
Time restrictions: 00FE0000 (until 23:59)

Processes currently in class:

 PCB EPID Name
 -------- -------- ---------------
 83617D40 00000225 Milord_RTA1:

This example shows the detailed display of the SHOW CLASS command.

132

Chapter 4. SDA Commands

4.34. SHOW CLUSTER
Displays connection manager and system communications services (SCS) information for all nodes in a
cluster.

Format
SHOW CLUSTER { [{/ADDRESS=n | /CIRCUIT=pb-addr | /CSID=csid | /NODE=name}] | /SCS }

Parameters
None

Qualifier
/ADDRESS=n

Displays only the OpenVMS Cluster system information for a specific OpenVMS Cluster member
node, given the address of the cluster system block (CSB) for the node. This is mutually exclusive
with the /CIRCUIT=pb-addr, /CSID=csid, and /NODE=name qualifiers.

/CIRCUIT=pb-addr

Displays only the OpenVMS Cluster system information for a specific path, where pb-addr is the
address of its path block. This qualifier is mutually exclusive with the /ADDRESS=n, /CSID=csid,
and /NODE=name qualifiers.

/CSID=csid

Displays only the OpenVMS Cluster system information for a specific OpenVMS Cluster member
node. The value csid is the cluster system identification number (CSID) of the node to be displayed.
You can find the CSID for a specific node in a cluster by examining the CSB list display of the
SHOW CLUSTER command. Other SDA displays refer to a system's CSID. For instance, the SHOW
LOCKS command indicates where a lock is mastered or held by CSID. This is mutually exclusive
with the /ADDRESS=n, /CIRCUIT=pb-addr, and /NODE=name qualifiers.

/NODE=name

Displays only the OpenVMS Cluster system information for a specific OpenVMS Cluster member
node, given its SCS node name. This is mutually exclusive with the /ADDRESS=n, /CIRCUIT=pb-
addr, and /CSID=csid qualifiers.

/SCS

Displays a view of the cluster as seen by SCS.

Description
The SHOW CLUSTER command provides a view of the OpenVMS Cluster system from either the
perspective of the connection manager (the default behavior), or from the perspective of the port driver
or drivers (if the /SCS qualifier is used).

OpenVMS Cluster as Seen by the Connection Manager

The SHOW CLUSTER command provides a series of displays.

133

Chapter 4. SDA Commands

The OpenVMS Cluster summary display supplies the following information:

• Number of votes required for a quorum

• Number of votes currently available

• Number of votes allocated to the quorum disk

• Status summary indicating whether or not a quorum is present

The CSB list displays information about the OpenVMS Cluster system blocks (CSBs) currently in
operation; one CSB is assigned to each node of the cluster. For each CSB, the CSB list displays the
following information:

• Address of the CSB

• Name of the OpenVMS Cluster node it describes

• CSID associated with the node

• Number of votes (if any) provided by the node

• State of the CSB

• Status of the CSB

For information about the state and status of nodes, see the description of the ADD CLUSTER
command of the SHOW CLUSTER utility in the VSI OpenVMS System Management Utilities Reference
Manual.

The cluster block display includes information recorded in the cluster block (CLUB), including a list
of activated flags, a summary of quorum and vote information, and other data that applies to the cluster
from the perspective of the node for which the SDA is being run.

The cluster failover control block display provides detailed information concerning the cluster failover
control block (CLUFCB). The cluster quorum disk control block display provides detailed information
from the cluster quorum disk control block (CLUDCB).

Subsequent displays provide information for each CSB listed previously in the CSB list display. Each
display shows the state and flags of a CSB, as well as other specific node information. (See the ADD
MEMBER command of the SHOW CLUSTER utility in the VSI OpenVMS System Management Utilities
Reference Manual for information about the flags for OpenVMS Cluster nodes.)

If any of the qualifiers /ADDRESS=n, /CSID=csid, or /NODE=name are specified, then the SHOW
CLUSTER command displays only the information from the CSB of the specified node.

OpenVMS Cluster as Seen by the Port Driver

The SHOW CLUSTER/SCS command provides a series of displays.

The SCS listening process directory lists those processes that are listening for incoming SCS connect
requests. For each of these processes, this display records the following information:

• Address of its directory entry

• Connection ID

• Name

• Explanatory information, if available

134

Chapter 4. SDA Commands

The SCS systems summary display provides the system block (SB) address, node name, system
type, system ID, and the number of connection paths for each SCS system. An SCS system can be a
OpenVMS Cluster member, storage controller, or other such device.

Subsequent displays provide detailed information for each of the system blocks and the associated path
blocks. The system block displays include the maximum message and datagram sizes, local hardware and
software data, and SCS poller information. Path block displays include information that describes the
connection, including remote functions and other path-related data.

If the qualifier /CIRCUIT=pb-addr is specified, the SHOW CLUSTER command displays only the
information from the specified path block.

Examples
1. SDA> SHOW CLUSTER

OpenVMS Cluster data structures
 --- OpenVMS Cluster Summary ---
 Quorum Votes Quorum Disk Votes Status Summary
 ------ ----- ----------------- --------------
 2 2 1 qf_dynvote,qf_vote,quorum
 --- CSB list ---
Address Node CSID Votes State Status
------- ---- ---- ----- ----- ------
805FA780 FLAM5 00010006 0 local member,qf_same,qf_noaccess
8062C400 ROMRDR 000100ED 1 open
 member,qf_same,qf_watcher,qf_active
8062C780 VANDQ1 000100EF 0 open member,qf_same,qf_noaccess
 --- Cluster Block (CLUB) 805FA380 ---
Flags: 16080005 cluster,qf_dynvote,init,qf_vote,qf_newvote,quorum
Quorum/Votes 2/2 Last transaction code 02
Quorum Disk Votes 1 Last trans. number 596
Nodes 3 Last coordinator CSID 000100EF
Quorum Disk 1DIA0 Last time stamp 31-DEC-1992
Found Node SYSID 00000000FC03 17:26:35
Founding Time 3-JAN-1993 Largest trans. id 00000254
 21:04:21 Resource Alloc. retry 0
Index of next CSID 0007 Figure of Merit 00000000
Quorum Disk Cntrl Block 805FADC0 Member State Seq. Num 0203
Timer Entry Address 00000000 Foreign Cluster 00000000
CSP Queue empty
 --- Cluster Failover Control Block (CLUFCB) 805FA4C0 ---
Flags: 00000000
Failover Step Index 00000037 CSB of Synchr. System 8062C780
Failover Instance ID 00000254
 --- Cluster Quorum Disk Control Block (CLUDCB) 805FADC0 ---
State : 0002 qs_rem_act
Flags : 0100 qf_noaccess
CSP Flags : 0000
Iteration Counter 0 UCB address 00000000
Activity Counter 0 TQE address 805FAE00
Quorum file LBN 00000000 IRP address 00000000
 Watcher CSID 000100ED
 --- FLAM5 Cluster System Block (CSB) 805FA780 ---
State: 0B local
Flags: 070260AA
 member,qf_same,qf_noaccess,selected,local,status_rcvd,send_status
Cpblty: 00000000

135

Chapter 4. SDA Commands

SWVers: 7.0
HWName: DEC 3000 Model 400
Quorum/Votes 1/0 Next seq. number 0000 Send queue
 00000000
Quor. Disk Vote 1 Last seq num rcvd 0000 Resend queue
 00000000
CSID 00010006 Last ack. seq num 0000 Block xfer Q.
 805FA7D8
Eco/Version 0/23 Unacked messages 0 CDT address
 00000000
Reconn. time 00000000 Ack limit 0 PDT address
 00000000
Ref. count 2 Incarnation 1-JAN-1993 TQE address
 00000000
Ref. time 31-AUG-1992 00:00:00 SB address
 80421580
 17:26:35 Lock mgr dir wgt 0 Current CDRP
 00000001
 --- ROMRDR Cluster System Block (CSB) 8062C400 ---
State: 01 open
Flags: 0202039A member,qf_same,cluster,qf_active,selected,status_rcvd
Cpblty: 00000000
SWVers: 7.0
HWName: DEC 3000 Model 400

Quorum/Votes 2/1 Next seq. number B350 Send queue
 00000000
Quor. Disk Vote 1 Last seq num rcvd E786 Resend queue
 00000000
CSID 000100ED Last ack. seq num B350 Block xfer Q.
 8062C458
Eco/Version 0/22 Unacked messages 1 CDT address
 805E8870
Reconn. time 00000000 Ack limit 3 PDT address
 80618400
Ref. count 2 Incarnation 19-AUG-1992 TQE address
 00000000
Ref. time 19-AUG-1992 16:15:00 SB address
 8062C140
 16:17:08 Lock mgr dir wgt 0 Current CDRP
 00000000
 --- VANDQ1 Cluster System Block (CSB) 8062C780 ---
State: 01 open
Flags: 020261AA member,qf_same,qf_noaccess,cluster,selected,status_rcvd
Cpblty: 00000000
SWVers: 7.0
HWName: DEC 3000 Model 400
Quorum/Votes 1/0 Next seq. number 32B6 Send queue
 00000000
Quor. Disk Vote 1 Last seq num rcvd A908 Resend queue
 00000000
CSID 000100EF Last ack. seq num 32B6 Block xfer Q.
 8062C7D8
Eco/Version 0/23 Unacked messages 1 CDT address
 805E8710
Reconn. time 00000000 Ack limit 3 PDT address
 80618400

136

Chapter 4. SDA Commands

Ref. count 2 Incarnation 17-AUG-1992 TQE address
 00000000
Ref. time 19-AUG-1992 15:37:06 SB address
 8062BCC0
 16:21:22 Lock mgr dir wgt 0 Current CDRP
 00000000
 --- SWPCTX Cluster System Block (CSB) 80D3B1C0 ---
State: 0B local
Flags: 030A60AA
 member,qf_same,qf_noaccess,selected,send_ext_status,local,status_rcvd
Cpblty: 00000037 rm8sec,vcc,dts,cwcreprc,threads
SWVers: V7.0
HWName: DEC 3000 Model 400
Quorum/Votes 1/1 Next seq. number 0000 Send queue
 00000000
Quor. Disk Vote 1 Last seq num rcvd 0000 Resend queue
 00000000
CSID 00010001 Last ack. seq num 0000 Block xfer Q.
 80D3B218
Eco/Version 0/26 Unacked messages 0 CDT address
 00000000
Reconn. time 00000000 Ack limit 0 PDT address
 00000000
Ref. count 2 Incarnation 12-JUL-1996 TQE address
 00000000
Ref. time 16-JUL-1996 15:36:17 SB address
 80C50800
 16:15:48 Lock mgr dir wgt 0 Current CDRP
 00000001

This example illustrates the default output of the SHOW CLUSTER command.

2. SDA> SHOW CLUSTER/SCS
OpenVMS Cluster data structures

 --- SCS Listening Process Directory ---

Entry Address Connection ID Process Name Information
------------- ------------- ------------ -----------

 80C71EC0 74D20000 SCS$DIRECTORY Directory
 Server
 80C72100 74D20001 MSCP$TAPE NOT PRESENT
 HERE
 80E16940 74D20002 MSCP$DISK MSCP$DISK
 80E23B40 74D20003 VMS$SDA_AXP Remote SDA
 80E23B40 74D20003 VMS$SDA_AXP Remote SDA
 80E25540 74D20004 VMS$VAXcluster

 80E29E80 74D20005 SCA$TRANSPORT
 813020C0 74D20053 PATHWORKScluster
 TurboServer

 --- SCS Systems Summary ---

 SB Address Node Type System ID Paths
 ---------- ---- ---- --------- -----

137

Chapter 4. SDA Commands

 8493BC00 ARUSHA VMS 000000004CA1 2
 80E23800 HSJ201 HSJ 4200101A1B20 1
 80E3FF40 ORNOT VMS 000000004CA7 2
 80E43F40 LOADQ VMS 000000004C31 2
 80E473C0 HSJ300 HSJ 420010051D20 1
 80E47CC0 HSJ101 HSJ 420010081720 1
 80E47D40 HSJ100 HSJ 4200100B1520 1
 80E478C0 HSJ600 HSJ 420010070920 1
 80E49180 HSJ401 HSJ 4200100D0320 1
 80E47DC0 HSJ301 HSJ 420010091F20 1
 80E47E40 HSJ601 HSJ 4200100A0B20 1
 80E49500 HSJ400 HSJ 4200100C0120 1
 80E5BF80 CHOBE VMS 000000004CD6 2
 80E5F080 ETOSHA VMS 000000004CF3 2
 80E5FC00 VMS VMS 000000004C7A 2
 80E4FF80 HSJ501 HSJ 4200101C0720 1
 80E5FD80 HSJ200 HSJ 420010191920 1
 80E5FE80 HSJ500 HSJ 4200101B0520 1
 80E5FE00 IPL31 VMS 000000004F52 2
 80E59F80 ZAPNOT VMS 000000004CBB 2
 80E61F80 ALTOS VMS 000000004D0F 2
 80E72000 TSAVO VMS 000000004CFE 2
 80ED5D00 SLYTHE VMS 000000004DD1 1
 80EDDD00 AZSUN VMS 000000004D56 1
 80EDDE00 CALSUN VMS 000000004EA4 1
 80EDFC00 4X4TRK VMS 00000000FF26 1
 80EE93C0 GNRS VMS 00000000FC2B 1
 80EE94C0 IXIVIV VMS 000000004E56 1
 80EF1A80 CLAIR VMS 000000004CDF 1
 80EF1C00 INT4 VMS 00000000FD70 1
 80EFDF80 SCOP VMS 00000000FC87 1
 80EFFAC0 MOCKUP VMS 00000000FCD5 1

 --- ARUSHA System Block (SB) 8493BC00 ---

System ID 000000004CA1 Local software type VMS
Max message size 216 Local software vers. V7.2
Max datagram size 576 Local software incarn. DF4AC300
Local hardware type ALPH 009F7570
Local hardware vers. 000000000003 SCS poller timeout 5AD3
 040400000000 SCS poller enable mask 27
Status: 00000000

 --- Path Block (PB) 80E55F80 ---

 Status: 0020 credit

Remote sta. addr. 000000000016 Remote port type 00000010
Remote state ENAB Number of data paths 2
Remote hardware rev. 00000008 Cables state A-OK B-OK
Remote func. mask ABFF0D00 Local state OPEN
Reseting port 16 Port dev. name PNA0
Handshake retry cnt. 2 SCS MSGBUF address 80E4C528
Msg. buf. wait queue 80E55FB8 PDT address 80E2A180

 --- Path Block (PB) 80ED0900 ---

138

Chapter 4. SDA Commands

 Status: 0020 credit

Remote sta. addr. 0000000000DF Remote port type NI
Remote state ENAB Number of data paths 2
Remote hardware rev. 00000104 Cables state A-OK B-OK
Remote func. mask 83FF0180 Local state OPEN
Reseting port 00 Port dev. name PEA0
Handshake retry cnt. 3 SCS MSGBUF address 80ED19A0
Msg. buf. wait queue 80ED0938 PDT address 80EC3C70

 .
 .
 .

This example illustrates the output of the SHOW CLUSTER /SCS command.

4.35. SHOW CONNECTIONS
Displays information about all active connections between System Communications Services (SCS)
processes or a single connection.

Format
SHOW CONNECTIONS [{/ADDRESS=cdt-address | /NODE=name | /SYSAP=name }]

Parameters
None.

Qualifiers
/ADDRESS=cdt-address

Displays information contained in the connection descriptor table (CDT) for a specific connection.
You can find the cdt-address for any active connection on the system in the CDT summary page
display of the SHOW CONNECTIONS command. In addition, CDT addresses are stored in many
individual data structures related to SCS connections. These data structures include class driver
request packets (CDRPs) and unit control blocks (UCBs) for class drivers that use SCS, and cluster
system blocks (CSBs) for the connection manager.

/NODE=name

Displays all CDTs associated with the specified remote SCS node name.

/SYSAP=name

Displays all CDTs associated with the specified local SYSAP.

Description
The SHOW CONNECTIONS command provides a series of displays.

The CDT summary page lists information regarding each connection on the local system, including the
following:

139

Chapter 4. SDA Commands

• CDT address

• Name of the local process with which the CDT is associated

• Connection ID

• Current state

• Name of the remote node (if any) to which it is currently connected

The CDT summary page concludes with a count of CDTs that are free and available to the system.

SHOW CONNECTIONS next displays a page of detailed information for each active CDT listed
previously.

Example
1. SDA> SHOW CONNECTIONS

 --- CDT Summary Page ---
CDT Address Local Process Connection ID State Remote
 Node
----------- ------------- ------------- -----

 805E7ED0 SCS$DIRECTORY FF120000 listen
 805E8030 MSCP$TAPE FF120001 listen
 805E8190 VMS$VMScluster FF120002 listen
 805E82F0 MSCP$DISK FF120003 listen
 805E8450 SCA$TRANSPORT FF120004 listen
 805E85B0 MSCP$DISK FF150005 open VANDQ1
 805E8710 VMS$VMScluster FF120006 open VANDQ1
 805E8870 VMS$VMScluster FF120007 open ROMRDR
 805E89D0 MSCP$DISK FF120008 open ROMRDR
 805E8C90 VMS$DISK_CL_DRVR FF12000A open ROMRDR
 805E8DF0 VMS$DISK_CL_DRVR FF12000B open VANDQ1
 805E8F50 VMS$TAPE_CL_DRVR FF12000C open VANDQ1
Number of free CDT's: 188
 --- Connection Descriptor Table (CDT) 80C44850 ---
State: 0001 listen Local Process: MSCP$TAPE
Blocked State: 0000
Local Con. ID 899F0003 Datagrams sent 0 Message queue
 80C4488C
Remote Con. ID 00000000 Datagrams rcvd 0 Send Credit Q.
 80C44894
Receive Credit 0 Datagram discard 0 PB address
 00000000
Send Credit 0 Message Sends 0 PDT address
 00000000
Min. Rec. Credit 0 Message Recvs 0 Error Notify
 822FFCC0
Pend Rec. Credit 0 Mess Sends NoFP 0 Receive Buffer
 00000000
Initial Rec. Credit 0 Mess Recvs NoFP 0 Connect Data
 00000000
Rem. Sta. 000000000000 Send Data Init. 0 Aux. Structure
 00000000
Rej/Disconn Reason 0 Req Data Init. 0 Fast Recvmsg Rq
 00000000

140

Chapter 4. SDA Commands

Queued for BDLT 0 Bytes Sent 0 Fast Recvmsg PM
 00000000
Queued Send Credit 0 Bytes rcvd 0 Change Affinity
 00000000
 Total bytes map 0
 --- Connection Descriptor Table (CDT) 805E8030 ---
State: 0001 listen Local Process: MSCP$TAPE
Blocked State: 0000
Local Con. ID FF120001 Datagrams sent 0 Message queue
 805E8060
Remote Con. ID 00000000 Datagrams rcvd 0 Send Credit Q.
 805E8068
Receive Credit 0 Datagram discard 0 PB address
 00000000
Send Credit 0 Messages Sent 0 PDT address
 00000000
Min. Rec. Credit 0 Messages Rcvd. 0 Error Notify
 804540D0
Pend Rec. Credit 0 Send Data Init. 0 Receive Buffer
 00000000
Initial Rec. Credit 0 Req Data Init. 0 Connect Data
 00000000
Rem. Sta. 000000000000 Bytes Sent 0 Aux. Structure
 00000000
Rej/Disconn Reason 0 Bytes rcvd 0
Queued for BDLT 0 Total bytes map 0
Queued Send Credit 0
 .
 .
 .

This example shows the default output of the SHOW CONNECTIONS command.

4.36. SHOW CPU
When analyzing a dump, displays information about the state of a CPU at the time of the system failure.
SHOW CPU is only valid when you are analyzing a crash dump. It is not a valid command when you are
analyzing the running system, because all the CPU-specific information may not be available. If invoked
when you are analyzing a running system, SHOW CPU will only list the CPU database address(es) for
the specified CPU or all CPUs.

Format
SHOW CPU [cpu-id | /FIRST | /NEXT | /PRIMARY]

Parameter
cpu-id

Numeric value indicating the identity of the CPU for which context information is to be displayed.
If you specify the cpu-id parameter, the SHOW CPU command performs an implicit SET CPU
command, making the CPU indicated by cpu-id the current CPU for subsequent SDA commands.

If you do not specify a cpu-id, the state of the SDA current CPU is displayed.

141

Chapter 4. SDA Commands

If you specify the cpu-id of a CPU that was not active at the time of the system failure, SDA
displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

See the description of the SET CPU command and Section 2.5 for information on how this can
affect the CPU context---and process context---in which SDA commands execute.

Qualifiers
/FIRST

The state of the lowest numbered CPU (not necessarily the primary CPU) is displayed.

/NEXT

The state of the next higher numbered CPU is displayed. SDA skips CPUs not in the configuration at
the time of system failure. If there are no further CPUs, SDA returns an error.

/PRIMARY

The state of the primary CPU is displayed.

Description
The SHOW CPU command displays system failure information about the CPU specified by cpu-id or,
by default, the SDA current CPU, as defined in Section 2.5.

The SHOW CPU command produces several displays. The first display is a brief description of the
system failure and its environment that includes the following:

• Reason for the bugcheck.

• Name of the currently executing process. If no process has been scheduled on this CPU, SDA
displays the following message:

Process currently executing: no processes currently scheduled on the
 processor

• File specification of the image executing within the current process (if there is a current process).

• Interrupt priority level (IPL) of the CPU at the time of the system failure.

• The CPU database address.

• The CPU's capability set.

• On Integrity server systems, the Exception Frame Summary.

On Alpha, the register display follows. First the general registers are output, showing the contents of
the CPU's integer registers (R0 to R30), and the AI, RA, PV, FP, PC, and PS at the time of the system
failure.

The Alpha processor registers display consists of the following parts:

• Common processor registers

142

Chapter 4. SDA Commands

• Processor-specific registers

• Stack pointers

The first part of the processor registers display includes registers common to all Alpha processors, which
are used by the operating system to maintain the current process virtual address space, system space, or
other system functions. This part of the display includes the following registers:

• Hardware privileged context block base register (PCBB)

• System control block base register (SCBB)

• Software interrupt summary register (SISR)

• Address space number register (ASN)

• AST summary register (ASTSR)

• AST enable register (ASTEN)

• Interrupt priority level register (IPL)

• Processor priority level register (PRBR)

• Page table base register (PTBR)

• Virtual page table base register (VPTB)

• Floating-point control register (FPCR)

• Machine check error summary register (MCES)

On Integrity server systems, the register display is in the form of the contents of the exception frame
generated by the bugcheck. See SHOW CRASH for more details.

The last part of the display includes the four stack pointers: the pointers of the kernel, executive,
supervisor, and user stacks (KSP, ESP, SSP, and USP, respectively). In addition, on Integrity servers, the
four register stack pointers are displayed: KBSP, EBSP, SBSP, UBSP.

The SHOW CPU command concludes with a listing of the spinlocks, if any, owned by the CPU at the
time of the system failure, reproducing some of the information given by the SHOW SPINLOCKS
command. The spinlock display includes the following information:

• Name of the spinlock.

• Address of the spinlock data structure (SPL).

• The owning CPU's CPU ID.

• IPL of the spinlock.

• Indication of the depth of this CPU's ownership of the spinlock. A number greater than 1 indicates
that this CPU has nested acquisitions of the spinlock.

• Rank of the spinlock.

143

Chapter 4. SDA Commands

• Timeout interval for spinlock acquisition (in terms of 10 milliseconds).

• Shared array (shared spinlock context block pointers)

Examples
1. SDA> SHOW CPU 0

CPU 00 Processor crash information

CPU 00 reason for Bugcheck: CPUEXIT, Shutdown requested by another CPU

Process currently executing on this CPU: None

Current IPL: 31 (decimal)

CPU database address: 81414000

CPUs Capabilities: PRIMARY,QUORUM,RUN

General registers:

R0 = FFFFFFFF.81414000 R1 = FFFFFFFF.81414000 R2 =
 00000000.00000000
R3 = FFFFFFFF.810AD960 R4 = 00000000.01668E90 R5 =
 00000000.00000001
R6 = 66666666.66666666 R7 = 77777777.77777777 R8 =
 FFFFFFFF.814FB040
R9 = 99999999.99999999 R10 = FFFFFFFF.814FB0C0 R11 =
 BBBBBBBB.BBBBBBBB
R12 = CCCCCCCC.CCCCCCCC R13 = FFFFFFFF.810AD960 R14 =
 FFFFFFFF.81414018
R15 = 00000000.00000004 R16 = 00000000.000006AC R17 =
 00000000.00000047
R18 = 00000000.00000000 R19 = 00000000.00000000 R20 =
 FFFFFFFF.8051A494
R21 = 00000000.00000000 R22 = 00000000.00000001 R23 =
 00000000.00000010
R24 = FFFFFFFF.81414000 AI = FFFFFFFF.81414000 RA =
 FFFFFFFF.81006000
PV = 00000001.FFFFFFFF R28 = 00000000.00000000 FP =
 FFFFFFFF.88ABDFD0
PC = FFFFFFFF.8009C95C PS = 18000000.00001F04

Processor Internal Registers:

ASN = 00000000.00000000 ASTSR/ASTEN =
 00000000
IPL = 0000001F PCBB = 00000000.01014080 PRBR =
 FFFFFFFF.81414000
PTBR = 00000000.0000FFBF SCBB = 00000000.000001E8 SISR =
 00000000.00000100
VPTB = FFFFFEFC.00000000 FPCR = 00000000.00000000 MCES =
 00000000.00000000

 KSP = FFFFFFFF.88ABDCD8
 ESP = FFFFFFFF.88ABF000
 SSP = FFFFFFFF.88AB9000
 USP = FFFFFFFF.88AB9000

144

Chapter 4. SDA Commands

 Spinlocks currently owned by CPU 00

SCS Address 810AF300
Owner CPU ID 00000000 IPL 00000008
Ownership Depth 00000000 Rank 0000001A
Timeout Interval 002DC6C0 Share Array 00000000

This example shows the default output of the SHOW CPU command on an Alpha system.

4.37. SHOW CRASH
Provides system information identifying a running system, or displays information about the state of the
system at the time of a system failure.

Format
SHOW CRASH [/ALL | /CPU=n]

Parameters
None.

Qualifiers
/ALL

Displays exception data for all CPUs. By default, the registers (on Alpha) or exception frame
contents (on Integrity servers) are omitted from the display for any CPUs with CPUEXIT or
DBGCPUEXIT bugchecks.

/CPU=n

Allows exception data to be displayed from CPUs other than the one considered as the crash CPU
when more than one CPU crashes simultaneously.

Description
The SHOW CRASH command has two different functions, depending on whether you use it to analyze a
running system or a system failure.

When used during the analysis of a running system, the SHOW CRASH command produces a display
that describes the system and the version of OpenVMS that it is running. The system crash information
display contains the following information:

• Name and version number of the operating system

• Major and minor IDs of the operating system

• Identity of the OpenVMS system, including an indication of its cluster membership

• CPU ID of the primary CPU

• Address of all CPU databases

When used during the analysis of a system failure, the SHOW CRASH command produces several
displays that identify the system and describe its state at the time of the failure.

145

Chapter 4. SDA Commands

If the current CPU context for SDA is not that of the processor that signaled the bugcheck, or the CPU
specified with the /CPU=n qualifier, the SHOW CRASH command first performs an implicit SET
CPU command to make that processor the current CPU for SDA. (See the description of the SET
CPU command and Section 2.5 for a discussion of how this can affect the CPU context---and process
context---in which SDA commands execute.)

The system crash information display in this context provides the following information:

• Date and time of the system failure.

• Name and version number of the operating system.

• Major and minor IDs of the operating system.

• Identity of the system.

• CPU IDs of both the primary CPU and the CPU that initiated the bugcheck. In a uniprocessor
system, these IDs are identical.

• Bitmask of the active and available CPUs in the system.

• For each active processor in the system, the address of its CPU database and the name of the
bugcheck that caused the system failure. Generally, there will be only one significant bugcheck in the
system. All other processors typically display the following as their reason for taking a bugcheck:

CPUEXIT, Shutdown requested by another CPU

Subsequent screens of the SHOW CRASH command display information about the state of each active
processor on the system at the time of the system failure. The information in these screens is identical
to that produced by the SHOW CPU command, including the registers (on Alpha), exception frame
(on Integrity servers), stack pointers, and records of spinlock ownership. The first such screen presents
information about the processor that caused the failure; others follow according to the numeric order
of their CPU IDs. For the processor that caused the failure, if an exception bugcheck (INVEXCEPTN,
SSRVEXCEPT, FATALEXCEPT, UNXSIGNAL) or, for Integrity servers only, also a KRNLSTAKNV
or DEBUGCRASH bugcheck has occurred, SHOW CRASH first displays the exception frame from
the original exception. If /ALL is not specified, the registers (on Alpha) or exception frame contents
(on Integrity servers) are omitted from the display for any CPUs with CPUEXIT or DBGCPUEXIT
bugchecks.

SHOW CRASH displays the original exception in process dumps.

Examples
1. SDA> SHOW CRASH

Version of system: OpenVMS (TM) Alpha Operating System, Version X901-SSB

System Version Major ID/Minor ID: 3/0

VMScluster node: VMSTS6, a

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

CPU bugcheck codes:
 CPU 00 -- INVEXCEPTN, Exception while above ASTDEL

146

Chapter 4. SDA Commands

System State at Time of Exception

Exception Frame:

 R2 = FFFFFFFF.810416C0 SCS$GA_LOCALSB+005C0
 R3 = FFFFFFFF.81007E60 EXE$GPL_HWRPB_L
 R4 = FFFFFFFF.850AEB80
 R5 = FFFFFFFF.81041330 SCS$GA_LOCALSB+00230
 R6 = FFFFFFFF.81038868 CON$INITLINE
 R7 = FFFFFFFF.81041330 SCS$GA_LOCALSB+00230
 PC = FFFFFFFF.803EF81C SYS$TTDRIVER+0F81C
 PS = 30000000.00001F04

 FFFFFFFF.803EF80C: STL R24,#X0060(R5)
 FFFFFFFF.803EF810: LDL R28,#X0138(R5)
 FFFFFFFF.803EF814: BIC R28,R27,R28
 FFFFFFFF.803EF818: 00000138
 PC => FFFFFFFF.803EF81C: HALT
 FFFFFFFF.803EF820: HALT
 FFFFFFFF.803EF824: BR R31,#XFF0000
 FFFFFFFF.803EF828: LDL R24,#X0138(R5)
 FFFFFFFF.803EF82C: BIC R24,#X40,R24

 PS =>
 MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD de
 0 30 00000000000 1F 0 0 KERN 1 KERN

Signal Array

 Length = 00000003
 Type = 0000043C
 Arg = FFFFFFFF.803EF81C SYS$TTDRIVER+0F81C
 Arg = 30000000.00001F04
%SYSTEM-F-OPCDEC, opcode reserved to Digital fault at
 PC=FFFFFFFF803EF81C, PS=00001F04

Saved Scratch Registers in Mechanism Array
--
R0 = 00000000.00000000 R1 = FFFFFFFF.811998B8 R16 =
 00000000.00001000
R17 = FFFFFFFF.8119B1F0 R18 = 00000000.00000010 R19 =
 FFFFFFFF.810194F0
R20 = 00000000.00000000 R21 = 0000000F.00000000 R22 =
 00000000.00000000
R23 = 00000000.00004000 R24 = 00000000.00001000 R25 =
 00000000.00000000
R26 = FFFFFFFF.81041474 R27 = 00000000.00004000 R28 =
 00000000.00001000

 .
 .
 .
 (CPU-specific display omitted)
 .
 .
 .

147

Chapter 4. SDA Commands

This long display reflects the output of the SHOW CRASH command within the analysis of a system
failure on an OpenVMS Alpha system.

2. SDA> SHOW CRASH
System crash information

Time of system crash: 12-OCT-2000 11:27:58.02

Version of system: OpenVMS (TM) Alpha Operating System, Version X74B-FT2

System Version Major ID/Minor ID: 3/0

System type: DEC 3000 Model 400

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

CPU bugcheck codes:
 CPU 00 -- PGFIPLHI, Pagefault with IPL too high

System State at Time of Page Fault:

Page fault for address 00000000.00046000 occurred at IPL: 8
Memory management flags: 00000000.00000001 (instruction fetch)

Exception Frame:

 R2 = 00000000.00000003
 R3 = FFFFFFFF.810B9280 EXCEPTION_MON+39C80
 R4 = FFFFFFFF.81564540 PCB
 R5 = 00000000.00000088
 R6 = 00000000.000458B0
 R7 = 00000000.7FFA1FC0
 PC = 00000000.00046000
 PS = 20000000.00000803

 00000000.00045FF0: LDQ R2,#X0050(FP)
 00000000.00045FF4: LDQ R12,#X0058(FP)
 00000000.00045FF8: LDQ R13,#X0060(FP)
 00000000.00045FFC: LDQ R14,#X0068(FP)
 PC => 00000000.00046000: BIS R1,R17,R1
 00000000.00046004: BIS R31,#X01,R25
 00000000.00046008: STQ_U R1,#X0002(R10)
 00000000.0004600C: BSR R26,#X00738C
 00000000.00046010: LDQ_U R16,#X0002(R10)

 PS =>
 MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD de
 0 20 00000000000 08 0 0 KERN 0 USER

 .
 .
 .
 (CPU-specific display omitted)
 .

148

Chapter 4. SDA Commands

 .
 .

This display reflects the output of a SHOW CRASH command within the analysis of a PGFIPLHI
bugcheck on an OpenVMS Alpha system.

3. SDA> SHOW CRASH /ALL
System crash information

Time of system crash: 1-DEC-2003 13:31:10.50

Version of system: OpenVMS I64 Operating System, Version XA2T-J2S

System Version Major ID/Minor ID: 3/0

System type: HP rx2600 (900MHz/1.5MB)

Crash CPU ID/Primary CPU ID: 01/00

Bitmask of CPUs active/available: 00000003/00000003

CPU bugcheck codes:
 CPU 01 -- database address 8396DD80 -- SSRVEXCEPT, Unexpected
 system se

 1 other -- CPUEXIT, Shutdown requested by another CPU
 CPU 00 -- database address 83864000

System State at Time of Original Exception
--

Exception Frame at 00000000.7FF43BD0

 IPL = 00
 TRAP_TYPE = 00000008 Access control violation fault
 IVT_OFFSET = 00000800 Data TLB Fault
 IIP = 00000000.00020120 SYS$K_VERSION_08+00100
 IIPA = 00000000.00020110 SYS$K_VERSION_08+000F0
 IFA = 00000000.00000000

 IPSR = 00001010.0A0A6010

 RT TB LP DB SI DI PP SP DFH DFL DT PK I
 IC MFH MFL AC BE UP
 1 0 1 0 0 0 0 0 1 0 1 0 1
 1 0 1 0 0 0
 IA BN ED RI SS DD DA ID IT MC IS CPL
 0 1 0 0 0 0 0 0 1 0 0 0

 PREVSTACK = 00
 BSP = 00000000.7FF12240

149

Chapter 4. SDA Commands

 BSPSTORE = 00000000.7FF120C0
 BSPBASE = 00000000.7FF120C0
 RNAT = 00000000.00000000

 RSC = 00000000.00000003 LOADRS BE PL MODE
 0000 0 0 Eager

 PFS = 00000000.00000B9F

 PPL PEC RRB.PR RRB.FR RRB.GR SOR
 SOL SOF
 0 0. 0. 0. 0. 0.
 23. (32-54) 31. (32-62)

 FLAGS = 00
 STKALIGN = 000002D0
 PREDS = 00000000.FF562AA3
 IHA = FFFFFFFF.7FF3E120
 INTERRUPT_DEPTH = 00

 ISR = 00000804.00000000

 ED EI SO NI IR RS SP NA R W X CODE
 1 0 0 0 0 0 0 0 1 0 0 0000

 ITIR = 00000000.FFFF0934 KEY PS
 FFFF09 0D

 IFS = 80000000.00000593

 Valid RRB.PR RRB.FR RRB.GR SOR
 SOL SOF
 1 0. 0. 0. 0.
 11. (32-42) 19. (32-50)

 B0 = FFFFFFFF.80241AE0 AMAC$EMUL_CALL_NATIVE_C+00340
 B1 = 80000000.FFD643B0
 B2 = 00000000.00000000
 B3 = 00000000.00000000
 B4 = 00000000.00000000
 B5 = 00000000.7FF43E38
 B6 = 00000000.00020110 SYS$K_VERSION_08+000F0
 B7 = FFFFFFFF.80A28170 NSA$CHECK_PRIVILEGE_C

 GP = 00000000.00240000
 R2 = FFFFFFFF.839B8098 PSB+00058
 R3 = E0000000.00000068
 R4 = FFFFFFFF.839731C0 PCB
 R5 = 00000000.00000008
 R6 = 00000000.7FF43F40
 R7 = 00000000.00000002
 R8 = 00000000.00010000 SYS$K_VERSION_07
 R9 = 00000000.00000020
 R10 = 00000000.0000003E

150

Chapter 4. SDA Commands

 R11 = 00000000.00000001

 KSP = 00000000.7FF43EA0

 R13 = 00000000.00000000
 R14 = 00000000.00040008 UCB$M_SUPMVMSG+00008
 R15 = 00000000.00020110 SYS$K_VERSION_08+000F0
 R16 = FFFFFFFF.802417A0 AMAC$EMUL_CALL_NATIVE_C
 R17 = 00000000.00010004 UCB$M_DELETEUCB+00004
 R18 = 00000000.00040000 UCB$M_CHAN_TEAR_DOWN
 R19 = 00000000.00040000 UCB$M_CHAN_TEAR_DOWN
 R20 = 00000000.7FF43F38
 R21 = 00000000.7FF43F80
 R22 = 00000000.00040000 UCB$M_CHAN_TEAR_DOWN
 R23 = 00000000.00000000
 R24 = 00000000.00000000
 R25 = 00000000.00000000
 R26 = 00000000.00000000
 R27 = 00000000.FF565663
 R28 = 00000000.00000003
 R29 = 00000000.7FF43EA0
 R30 = 000007FD.C0000300
 R31 = FFFFFFFF.806549D0 PROCESS_MANAGEMENT_MON+677D0

 R32 = 00000000.7AC9DBC0
 R33 = 00000000.00000001
 R34 = 00000000.7FFCF88C MMG$IMGHDRBUF+0008C
 R35 = FFFFFFFF.83973528 ARB+00230
 R36 = 00000000.00000000
 R37 = 00000000.00000000
 R38 = FFFFFFFF.80A28410 NSA$CHECK_PRIVILEGE_C+002A0
 R39 = 00000000.00000915
 R40 = FFFFFFFF.82D01640 SYSTEM_PRIMITIVES+00221440
 R41 = 00000000.00000B9F
 R42 = 00000000.7FF43EA0

 R43/OUT0 = 00000000.7FFCF87C MMG$IMGHDRBUF+0007C
 R44/OUT1 = E0000000.00000068
 R45/OUT2 = 00000000.00000000
 R46/OUT3 = 00000000.FF561663
 R47/OUT4 = 00000000.7FFCDA68 CTL$AG_CLIDATA
 R48/OUT5 = 00000000.7FFCDBE8 CTL$AG_CLIDATA+00180
 R49/OUT6 = 00000000.00000003
 R50/OUT7 = FFFFFFFF.839731C0 PCB

 NATMASK = 003A
 NATS = 00000000.00000000
 CSD = CFFFFFFF.00000000
 SSD = CCCC0BAD.BAD0CCCC
 LC = 00000000.00000000
 EC = 00000000.00000000

 FPSR = 0009804C.0270033F SF3 SF2 SF1 SF0 TRAPS
 004C 004C 004E 000C 3F

 F6 = 0FFC9.C0000000.00000000
 F7 = 1003E.00000000.00000018
 F8 = 1000B.FF000000.00000000

151

Chapter 4. SDA Commands

 F9 = 10007.A8000000.00000000
 F10 = 10003.C2492492.49249249
 F11 = 0FFF6.C30C30C3.0C30C30C

 PPREVMODE = 03

Instruction Stream:

 { .mfb
 SYS$K_VERSION_08+000E0: nop.m 000000
 nop.f 000000
 br.ret.sptk.many b0 ;;
 }
 { .mii
 SYS$K_VERSION_08+000F0: alloc r41 =
 ar.pfs, 0B, 08, 00
 mov r29 = r12
 mov r42 = r12
 }
 { .mmi
 PC => SYS$K_VERSION_08+00100: ld4 r24 =
 [r0] ;;
 nop.m 000000
 sxt4 r24 = r24 ;;
 }
 { .mii
 SYS$K_VERSION_08+00110: nop.m 000000

 sxt4 r14 = r24 ;;
 cmp.eq p6, p7 =
 r14, r0
 }
 { .mfb
 SYS$K_VERSION_08+00120: nop.m 000000
 nop.f 000000
 (p6) br.cond.dpnt.few 0000060
 }

Signal Array

 Length = 00000005
 Type = 0000000C
 Arg = 00000000.00000000
 Arg = 00000000.00000000
 Arg = 00000000.00020120
 Arg = 00000000.00000003
%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual
 address=0000000000000000,
 PC=0000000000020120,
 PS=00000003

CPU 01 Processor state at time of SSRVEXCEPT bugcheck

CPU 01 reason for Bugcheck: SSRVEXCEPT, Unexpected system service
 exception

152

Chapter 4. SDA Commands

Process currently executing on this CPU: SYSTEM

Current image file: IPFEX3$DKB200:[SYS0.][SYSMGR]X.EXE;2

Current IPL: 0 (decimal)

CPU database address: 8396DD80

CPUs Capabilities: QUORUM,RUN

Exception Frame at 00000000.7FF435B0

 IPL = 00
 TRAP_TYPE = 00000041 Bugcheck Breakpoint Trap
 IVT_OFFSET = 00002C00 Break Instruction
 IIP = FFFFFFFF.80491E90 EXCEPTION_MON+5E690
 IIPA = FFFFFFFF.80491E80 EXCEPTION_MON+5E680
 IFA = 00000000.00030000 SYS$K_VERSION_01

.

.

.

 IIM = 00000000.00100002 BREAK$C_SYS_BUGCHECK

 PPREVMODE = 00

 KR0 = 00000000.00000000
 KR1 = 00000000.00000000
 KR2 = 00000000.00000000
 KR3 = 00000000.00000003
 KR4 = 00000000.00000000
 KR5 (Next Timer) = 000000BC.DEA95C24
 KR6 (CPUdb VA) = FFFFFFFF.8396DD80
 KR7 (Slot VA) = FFFFFFFF.86910000

 KSP = 00000000.7FF43880
 ESP = 00000000.7FF68000
 SSP = 00000000.7FFAC000
 USP = 00000000.7AC9DB60

 No spinlocks currently owned by CPU 01

CPU 00 Processor state at time of CPUEXIT bugcheck
--

CPU 00 reason for Bugcheck: CPUEXIT, Shutdown requested by another CPU

153

Chapter 4. SDA Commands

Process currently executing on this CPU: None

Current IPL: 31 (decimal)

CPU database address: 83864000

CPUs Capabilities: PRIMARY,QUORUM,RUN

Exception Frame at FFFFFFFF.8696F9F0

 IPL = 1F
 TRAP_TYPE = 00000041 Bugcheck Breakpoint Trap
 IVT_OFFSET = 00002C00 Break Instruction
 IIP = FFFFFFFF.802F62F0 SYSTEM_SYNCHRONIZATION
+43BF0
 IIPA = FFFFFFFF.802F62F0 SYSTEM_SYNCHRONIZATION
+43BF0
 IFA = FFFFFFFF.86A280C0

.

.

.

 IIM = 00000000.00100002 BREAK$C_SYS_BUGCHECK

 PPREVMODE = 00

 KR0 = 00000000.203D0000
 KR1 = 00000000.60000000
 KR2 = 00000000.00000000
 KR3 = 00000000.0001001F
 KR4 = 00000000.00000000
 KR5 (Next Timer) = 000000C4.FDFE03C8
 KR6 (CPUdb VA) = FFFFFFFF.83864000
 KR7 (Slot VA) = FFFFFFFF.8690F000

 KSP = FFFFFFFF.8696FCC0
 ESP = FFFFFFFF.86971000
 SSP = FFFFFFFF.86957000
 USP = FFFFFFFF.86957000

 No spinlocks currently owned by CPU 00

This example from an OpenVMS Integrity server system shows summary information on the crash:
the time it occurred, its OpenVMS version, hardware type, and bugcheck codes. This is followed by
the exception frame from the exception that triggered the crash, the instruction stream active at the
time of the exception, and the signal array that describes the exception. The exception frame from
the bugcheck triggered by the original exception is then displayed (that is, the bugcheck on the crash
CPU) followed by the bugcheck exception frame for the other CPU in the system.

154

Chapter 4. SDA Commands

4.38. SHOW DEVICE
Displays a list of all devices in the system and their associated data structures, or displays the data
structures associated with a given device or devices.

Format
SHOW DEVICE [device-name[:] | /ADDRESS=ucb-address | /BITMAP | /CDT=cdt_address | /CHANNELS | /HOMEPAGE | /PDT | /UCB=ucb-address]

Parameters
device-name

Device or devices for which data structures are to be displayed. The following table lists several uses
of the device-name parameter:

To display the structures for: Take the following action:

All devices in the system Do not specify a device-name (for example,
SHOW DEVICE).

A single device Specify an entire device-name (for example,
SHOW DEVICE VTA20).

All devices of a certain type on a single
controller

Specify only the device type and controller
designation (for example, SHOW DEVICE RTA
or SHOW DEVICE RTB).

All devices of a certain type on any controller Specify only the devicetype (for example, SHOW
DEVICE RT).

All devices whose names begin with a certain
character or character string

Specify the character or character string (for
example, SHOW DEVICE D).

All devices on a single node or HSC Specify only the node name or HSC name (for
example, SHOW DEVICE GREEN$).

All devices with a certain allocation class Specify the allocation class including leading and
trailing $, for example, SHOW DEVICE 63.

A colon (:) at the end of a device name is optional.

Note

All qualifiers specific to Memory Channel (CHANNELS, HOMEPAGE, and PDT) are disabled for
OpenVMS Integrity server systems.

Qualifiers
/ADDRESS=ucb-address

Indicates the device for which data structure information is to be displayed by the address of its unit
control block (UCB). The /ADDRESS qualifier is an alternate method of supplying a device name
to the SHOW DEVICE command. If both the device-name parameter and the /ADDRESS qualifier

155

Chapter 4. SDA Commands

appear in a single SHOW DEVICE command, SDA responds only to the parameter or qualifier that
appears first. /ADDRESS is functionally equivalent to /UCB.

/BITMAP

Displays information about data structures related to Write Bitmap (WBM). Bitmaps are used
by Host-Base Volume Shadowing (HBVS) for the implementation of Mini Copy and Host-Based
Minimerge (HBMM). If the /BITMAP qualifier is specified with a device that is not an HBVS
virtual unit, the error NOSUCHDEV is returned

A device name must be specified. If SHOW DEVICE/BITMAP DSis entered, bitmaps for all HBVS
virtual units are displayed.

/CDT=cdt_address

Identifies the device by the address of its Connector Descriptor Table (CDT). This applies to cluster
port devices only.

/CHANNELS

Displays information on active Memory Channel channel blocks. This qualifier is ignored for devices
other than Memory Channel.

/HOMEPAGE

Displays fields from the Memory Channel Home Page. This qualifier is ignored for devices other
than Memory Channel.

/PDT

Displays the Memory Channel Port Descriptor Table. This qualifier is ignored for devices other than
Memory Channel.

/UCB=ucb-address

See the description of /ADDRESS, which is functionally equivalent to /UCB.

Description
The SHOW DEVICE command produces several displays taken from system data structures that
describe the devices in the system configuration.

If you use the SHOW DEVICE command to display information for more than one device or one or
more controllers, it initially produces the device data block (DDB) list to provide a brief summary of
the devices for which it renders information in subsequent screens.

Information in the DDB list appears in five columns, the contents of which are as follows:

• Address of the device data block (DDB)

• Controller name

• Name of the ancillary control process (ACP) associated with the device

156

Chapter 4. SDA Commands

• Name of the device driver

• Address of the driver prologue table (DPT)

The SHOW DEVICE command then produces a display of information pertinent to the device controller.
This display includes information gathered from the following structures:

• Device data block (DDB)

• Primary channel request block (CRB)

• Interrupt dispatch block (IDB)

• Driver dispatch table (DDT)

If the controller is an HSC controller, SHOW DEVICE also displays information from its system block
(SB) and each path block (PB).

Many of these structures contain pointers to other structures and driver routines. Most notably, the
DDT display points to various routines located within driver code, such as the start I/O routine, unit
initialization routine, and cancel I/O routine.

For each device unit subject to the SHOW DEVICE command, SDA displays information taken from its
unit control block, including a list of all I/O request packets (IRPs) in its I/O request queue. For certain
mass storage devices, SHOW DEVICE also displays information from the primary class driver data block
(CDDB), the volume control block (VCB), and the ACP queue block (AQB). For units that are part of a
shadow set, SDA displays a summary of shadow set membership.

As it displays information for a given device unit, SHOW DEVICE defines the symbols of the table
below as appropriate:

Symbol Meaning

UCB Address of unit control block
SB Address of system block
ORB Address of object rights block
DDB Address of device data block
DDT Address of driver dispatch table
CRB Address of channel request block
SUD Address of supplementary VCB data
SHAD Address of host-based shadowing data structure
AMB Associated mailbox UCB pointer
IRP Address of I/O request packet
2P_UCB Address of alternate UCB for dual-pathed device
LNM Address of logical name block for mailbox
PDT Address of port descriptor table
CDDB Address of class driver descriptor block for MSCP

served device
2P_CDDB Address of alternate CDDB for MSCP served

device

157

Chapter 4. SDA Commands

Symbol Meaning

RWAITCNT Resource wait count for MSCP served device
VCB Address of volume control block for mounted

device
2P_DDB Address of secondary DDB
VP_IRP Address of volume processing IRP
MMB Address of merge management block
CPYLOCK ID of copier lock
VU_TO Virtual Unit Timeout (seconds)
VU_UCB UCB address of Virtual Unit
MPDEV Address of multipath data structure
PRIMARY_UCB UCB address for primary path
CURRENT_UCB UCB address for current path

If you are examining a driver-related system failure, you may find it helpful to issue a SHOW STACK
command after the appropriate SHOW DEVICE command, to examine the stack for any of these
symbols. Note, however, that although the SHOW DEVICE command defines those symbols relevant
to the last device unit it has displayed, and redefines symbols relevant to any subsequently displayed
device unit, it does not undefine symbols. (For instance, SHOW DEVICE DUA0 defines the symbol
PDT, but SHOW DEVICE MBA0 does not undefine it, even though the PDT structure is not associated
with a mailbox device.) To maintain the accuracy of such symbols that appear in the stack listing, use the
DEFINE command to modify the symbol name. For example:

SDA> DEFINE DUA0_PDT PDT
SDA> DEFINE MBA0_UCB UCB

See the descriptions of the READ and FORMAT commands for additional information on defining and
examining the contents of device data structures.

Examples
1. SDA> SHOW DEVICE/ADDRESS=8041E540

OPA0 VT300_Series UCB address
 8041E540

Device status: 00000010 online
Characteristics: 0C040007 rec,ccl,trm,avl,idv,odv
 00000200 nnm
Owner UIC [000001 ,000004] Operation count 160 ORB address
 8041E4E8
 PID 00010008 Error count 0 DDB address
 8041E3F8
Class/Type 42/70 Reference count 2 DDT address
 8041E438
Def. buf. size 80 BOFF 00000001 CRB address
 8041E740
DEVDEPEND 180093A0 Byte count 0000012C I/O wait queue
 8041E5AC
DEVDEPND2 FB101000 SVAPTE 80537B80
DEVDEPND3 00000000 DEVSTS 00000001
FLCK index 3A

158

Chapter 4. SDA Commands

DLCK address 8041E880
*** I/O request queue is empty ***

This example reproduces the SHOW DEVICE display for a single device unit, OPA0. Whereas this
display lists information from the UCB for OPA0, including some addresses of key data structures
and a list of pending I/O requests for the unit, it does not display information about the controller
or its device driver. To display the latter information, specify the device-name as OPA (for example,
SHOW DEVICE OPA).

2. SDA> SHOW DEVICE DU
I/O data structures

 DDB list

 Address Controller ACP Driver DPT
 ------- ---------- -------- ------------ ---

 80D0B3C0 BLUES$DUA F11XQP SYS$DKDRIVER 807735B0
 8000B2B8 RED$DUA F11XQP SYS$DKDRIVER 807735B0
 80D08BA0 BIGTOP$DUA F11XQP SYS$DKDRIVER 807735B0
 80D08AE0 TIMEIN$DUA F11XQP SYS$DKDRIVER 807735B0
 .
 .
 .
Press RETURN for more.
 .
 .
 .

This excerpt from the output of the SHOW DEVICE DU command illustrates the format of the
DDB list. In this case, the DDB list concerns itself with those devices whose device type begins with
DU. It displays devices of these types attached to various HSCs (RED$ and BLUES$) and systems in
a cluster (BIGTOP$ and TIMEIN$).

4.39. SHOW DUMP
Displays formatted information from the header, error log buffers, logical memory blocks (LMBs),
memory map, compression data, and a summary of the dump. Also displays hexadecimal information of
individual blocks.

Format
SHOW DUMP [/ALL

| /BLOCK[=m [{:|;}n]]

| /COLLECTION [= {ALL|n}]

| /COMPRESSION_MAP [=m [:n[:p[{:|;}q]]]]

| /ERROR_LOGS

| /FILE = {COLLECTION | DUMP [=n]}

159

Chapter 4. SDA Commands

| /HEADER

| /LMB [= {ALL|n}]

| /MEMORY_MAP

| /SUMMARY]

Parameters
None.

Qualifiers
/ALL

Displays the equivalent to specifying all the /SUMMARY, /HEADER, /ERROR_LOGS, /
COMPRESSION_MAP, /LMB=ALL, /MEMORY_MAP, and /COLLECTION qualifiers.

/BLOCK [=m [{:|;}n]]

Displays a hexadecimal dump of one or more blocks. You can specify ranges by using the following
syntax:

no value Displays next block
m Displays single block
m:n Displays a range of blocks from m to n, inclusive
m;n Displays a range of blocks starting at m and

continuing for n blocks

/COLLECTION [= {ALL|n}]

Displays the contents of the file identification or unwind data collection (on Integrity servers only)
appended to a copy of the dump using COPY/COLLECT or written to a separate collection file
using COLLECT/SAVE. By default, a summary of the collection is displayed. You can specify
that the details of a single entry or all entries are to be displayed. n is the start block number of the
collection entry, as displayed in the collection summary.

/COMPRESSION_MAP [=m [:n[:p[{:|;}q]]]]

In a compressed dump, displays details of the compression data. You can specify levels of detail by
using the following syntax, where m,n,p,q may each be wildcarded (*):

no value Displays a summary of all compression map
blocks.

m Displays contents of a single compression map
block.

m:n Displays details of single compression map entry.
m:n:p Displays compressed and raw data for the

specified compression section (item p in section

160

Chapter 4. SDA Commands

m:n). Note that m:n:p may contain wildcards
(*).

m:n:p:q Displays compressed and raw data for the
specified range of compression sections (items p
to q inclusive in section m:n).

m:n:p;q Displays compressed and raw data for the
specified range of compression sections (q items
starting from item p in section m:n).

/ERROR_LOGS

Displays a summary of the error log buffers.

/FILE = {COLLECTION | DUMP [=n]}

If analyzing multiple dump files from a partial dump copy, or if a separate collection file is in use,
the /FILE qualifier indicates whether the SHOW DUMP command applies to one of the dump files
or to the collection file.

If /FILE is not specified, by default, the SHOW DUMP/SUMMARY, SHOW DUMP/HEADER,
SHOW DUMP/COLLECTION, and SHOW DUMP/ALL commands apply to all open files, and
the SHOW DUMP/LMB=ALL and SHOW DUMP/COMPRESSION commands apply to all open
dump files. If /FILE=DUMP is specified without a file number, then these commands apply to the
primary dump file.

By default, SHOW DUMP/BLOCK applies to the primary dump file. By default, SHOW DUMP/
LMB=n and SHOW DUMP/COMPRESSION=n apply to the primary dump file or to the dump file
for which the command was last used.

All other qualifiers are applicable only to the primary dump file.

/HEADER

Displays the formatted contents of the dump header.

/LMB[= {ALL|n}]

In a selective dump, displays the formatted contents of logical memory block (LMB) headers and the
virtual address (VA) ranges within the LMB. You can specify the LMBs to be displayed by using the
following syntax:

no value Displays next LMB
n Displays LMB at block n of the dump
ALL Displays all LMBs

/MEMORY_MAP

In a full dump, displays the contents of the memory map.

/SUMMARY

Displays a summary of the dump. This is the default.

161

Chapter 4. SDA Commands

Description
The SHOW DUMP command displays information about the structure of the dump file. It displays the
header, the error log buffers, and, if appropriate, the compression map, the logical memory block (LMB)
headers, the memory map, the file identification collection, and the unwind data collection (on Integrity
server systems only). Use this command when troubleshooting dump analysis problems.

Examples
1. SDA> SHOW DUMP/SUMMARY

Summary of dump file DKA300:[SYS0.SYSEXE]SYSDUMP.DMP;8
--
Dump type: Compressed selective
Size of dump file: 000203A0/000203A0 (132000./132000.)
Highest VBN written: 0000D407 (54279.)
Uncompressed equivalent: 0001AF1C (110364.)
Compression ratio: 2.03:1 (49.2%)

 Uncomp Uncomp
 Dump file section VBN Blocks
 VBN blocks
-- ---------- --------
 ------- --------
Dump header 00000001 00000002
Error log buffers 00000003 00000020
Compression map 00000023 00000010
LMB 0000 (PT space) 00000033 00000038
 00000033 000000D2
LMB 0001 (S0/S1 space) 0000006B 0000621B
 00000105 000095A5
LMB 0002 (S2 space) 00006286 000001A3
 000096AA 00000352
LMB 0003 (Page tables of key process "SYSTEM") 00006429 00000005
 000099FC 00000062
LMB 0004 (Memory of key process "SYSTEM") 0000642E 00000071
 00009A5E 00000342
 .
 .
 .
LMB 0003 (Page tables of key process "NETACP") 0000697B 00000009
 0000AE14 00000052
LMB 0004 (Memory of key process "NETACP") 00006984 000013F7
 0000AE66 00001F42
LMB 0005 (Key global pages) 00007D7B 000002BA
 0000CDA8 00000312
LMB 0006 (Page tables of process "DTWM") 00008035 00000013
 0000D0BA 00000082
LMB 0007 (Memory of process "DTWM") 00008048 000013A3
 0000D13C 000022E4
 .
 .
 .
LMB 0006 (Page tables of process "Milord_FTA1:") 0000C5E3 00000005
 00019A44 00000062

162

Chapter 4. SDA Commands

LMB 0007 (Memory of process "Milord_FTA1:") 0000C5E8 00000074
 00019AA6 00000222
LMB 0008 (Remaining global pages) 0000C65C 00000DAC
 00019CC8 00001255

This example of the SHOW DUMP/SUMMARY command gives a summary of a selective dump.

2. SDA> SHOW DUMP/HEADER
Dump header

 Header field Meaning
 Value
-------------------- ---------------------------------------

DMP$W_FLAGS Flags
 0FC1
 DMP$V_OLDDUMP: Dump has been analyzed
 DMP$V_WRITECOMP: Dump write was completed
 DMP$V_ERRLOGCOMP: Error log buffers written
 DMP$V_DUMP_STYLE: Selective dump
 Verbose messages
 Dump off system disk
 Compressed
DMP$B_FLAGS2 Additional flags
 09
 DMP$V_COMPRESSED: Dump is compressed
 DMP$V_ALPHADUMP: This is an OpenVMS Alpha dump
DMP$Q_SYSIDENT System version
 "X69G-FT1"
DMP$Q_LINKTIME Base image link date/time " 8-JUN-1996
 02:07:27.31"
DMP$L_SYSVER Base image version
 03000000
DMP$W_DUMPVER Dump version
 0704
DMP$L_DUMPBLOCKCNT Count of blocks dumped for memory
 0000D3D5
DMP$L_NOCOMPBLOCKCNT Uncompressed blocks dumped for memory
 0001AEEA
DMP$L_SAVEPRCCNT Number of processes saved
 00000014
 .
 .
 .
EMB$Q_CR_TIME Crash date/time " 3-JUL-1996
 09:30:13.36"
EMB$L_CR_CODE Bugcheck code
 "SSRVEXCEPT"
EMB$B_CR_SCS_NAME Node name
 "SWPCTX "
EMB$T_CR_HW_NAME Model name "DEC 3000
 Model 400"
EMB$T_CR_LNAME Process name
 "SYSTEM"
DMP$L_CHECKSUM Dump header checksum
 439E5E91

This example of the SHOW DUMP/HEADER command shows the information in the header.

163

Chapter 4. SDA Commands

3. SDA> SHOW DUMP/COLLECTION

File and unwind data collection

Collection start VBN: 0002155B
Collection end VBN: 00022071
Collection block count: 00000B17

 VBN Blocks Contents
-------- -------- ------------------------------
0002155B 000000C1 Unwind data segment 00000001 of _30DKB200:[VMS
$COMMON.SYSEXE]DCL.EXE;1
0002161C 00000001 Unwind data segment 00000001 of _30DKB200:[VMS
$COMMON.SYSEXE]USB$UC...
0002161D 0000000C Unwind data segment 00000008 of _30DKB200:[VMS
$COMMON.SYSEXE]USB$UC...
.
.
.
0002200F 0000001F Unwind data segment 00000007 of _30DKB200:[VMS
$COMMON.SYSEXE]LATACP...
0002202E 00000006 Unwind data segment 0000000B of _30DKB200:[VMS
$COMMON.SYSEXE]LATACP...
00022034 00000001 Unwind data segment 00000002 of _30DKB200:
[BISHOP]CMEXEC_LOOP.EXE;1
00022035 00000001 File data for _30DKA0:
00022036 0000003B File data for _30DKB200:
00022071 00000001 Disk data

This example of the SHOW DUMP/COLLECTION command shows the contents of the file
identification and unwind data collection appended to a system dump when it was copied using the
SDA command COPY/COLLECT. Note that unwind data segments are found only in system dumps
taken on OpenVMS Integrity server systems.

4.40. SHOW EFI (Integrity servers Only)
Displays information from the Extensible Firmware Interface (EFI) data structures. Currently, the only
display provided by SDA is the EFI memory map.

Format
SHOW EFI /MEMMAP [=ALL] [range]

Parameters
range

The entry or range of entries to be displayed, expressed using the following syntax:

m Displays entry m
m:n Displays the entries from m to n
m;n Displays n entries starting at m

164

Chapter 4. SDA Commands

You cannot specify a range with /MEMMAP=ALL.

Qualifiers
/MEMMAP [=ALL]

Displays the EFI memory map. This qualifier is required. By default, only entries in the EFI memory
map with the RUNTIME attribute are displayed. If /MEMMAP=ALL is specified, all entries are
displayed.

You cannot specify /MEMMAP=ALL and also supply a range of entries to be displayed.

Description
SDA locates the EFI memory map in the system or dump and displays the contents. If no range is given,
SDA also displays information about the location and size of the memory map.

Examples
1. SDA> SHOW EFI/MEMMAP

EFI Memory Map

Memory map address: FFFFF802.06402000
Entry count: 00000025
Size of entry: 00000030

Entry Memory Type Physical Address Virtual Address
 Pages (4KB) Attributes
----- ---------------------- ----------------- -----------------
 ----------------- -----------------
 0003 Runtime_Services_Code 00000000.000C0000 FFFFF802.00000000
 00000000.00000040 80000000.00000001 UC Runtime
 0016 Runtime_Services_Data 00000000.3F048000 FFFFF802.00040000
 00000000.00000304 80000000.00000008 UCE Runtime
 0017 Runtime_Services_Code 00000000.3F34C000 FFFFF802.00344000
 00000000.0000003C 80000000.00000008 UCE Runtime
 0019 Runtime_Services_Data 00000000.3F3E2000 FFFFF802.00380000
 00000000.00000012 80000000.00000008 UCE Runtime
 001A Runtime_Services_Code 00000000.3F3F4000 FFFFF802.00392000
 00000000.0000006E 80000000.00000008 UCE Runtime
 001B Runtime_Services_Data 00000000.3F462000 FFFFF802.00400000
 00000000.00000182 80000000.00000008 UCE Runtime
 001C Runtime_Services_Code 00000000.3F5E4000 FFFFF802.00582000
 00000000.000004DC 80000000.00000008 UCE Runtime
 001D PAL_Code 00000000.3FAC0000 FFFFF802.00A80000
 00000000.00000040 80000000.00000008 UCE Runtime
 0020 Runtime_Services_Data 00000000.3FB38000 FFFFF802.00AC0000
 00000000.000004C8 80000000.00000008 UCE Runtime
 0022 Memory_Mapped_IO 00000000.FED00000 FFFFF802.01000000
 00000000.00001300 80000000.00000001 UC Runtime
 0024 Mem_Map_IO_Port_Space 0003FFFF.FC000000 FFFFF802.02400000
 00000000.00004000 80000000.00000001 UC Runtime

This example shows a typical display from the SHOW EFI/MEMMAP command.

165

Chapter 4. SDA Commands

4.41. SHOW EXCEPTION_FRAME
Displays the contents of the exception frame at the given address or searches to display a one-line
summary of all exception frames found on all applicable stacks.

Format
SHOW EXCEPTION_FRAME {address | [/SUMMARY] [range]}

Parameter
address

Address of the exception frame.

range

Range of addresses specifiable as start:end or start;length.

Qualifier
/SUMMARY (D)

• The /SUMMARY qualifier is the default.

• SHOW EXCEPTION and SHOW EXCEPTION range imply /SUMMARY.

• If a range, either start:end or start;length, is given, then that range is searched instead of the
stacks.

Description
Displays the contents of the exception frame at the given address (which is rounded down to an
octaword-aligned address), or searches to display a one-line summary of all exception frames found on
all applicable stacks.

Under some circumstances, the exception frame of the actual bugcheck is copied (by BUGCHECK) to
the system stack for the CPU. Since this stack is also searched, multiple hits may occur for this exception
frame.

On Alpha, the search for exception frames relies on valid processor status (PS) values in the PS offset
from each possible 64-byte-aligned start address for an exception frame. Since only some of the bits in
the PS can be validated, there may be frames displayed that are not exception frames (false positives).
Do not assume that each frame displayed is actually an exception frame without further investigation.

On Integrity servers, the search for exception frames is focused on the type/subtype offsets from each
possible octaword-aligned start address for an exception frame. Thus, it is likely that frames displayed are
exception frames.

Examples
1. SDA> SHOW EXCEPTION

Exception Frame Summary

166

Chapter 4. SDA Commands

 Exception Frame Type Stack IIP / Ret_Addr Trap_Type /
 Service_Number
----------------- ---- ----- -----------------

00000000.7FF43540 ORIGINAL_INTSTK Kernel FFFFFFFF.8048DB70 00000041
 Bugcheck Breakpoint Trap
00000000.7FF43BA0 INTSTK Kernel 00000000.00020200 00000008
 Access control violation fault
00000000.7FF43F40 SSENTRY Kernel 00000000.00020090 01000019 SYS
$CMKRNL

The SHOW EXCEPTION_FRAME command example displays the summary.

Examples of the display of the contents of an exception frame are available in the SHOW CRASH
description.

4.42. SHOW EXECUTIVE
Displays the location and size of each loadable image that makes up the executive.

Format
SHOW EXECUTIVE [execlet-name | /ALL | /SUMMARY (D)]

Parameter
execlet-name

Displays detailed data for the specified loadable image only. If you use wildcards in execlet-name,
SDA displays detailed data for all matching loadable images.

If the command is specified with no parameter or qualifier, the default is to display one line of data
for each loadable image.

Qualifiers
/ALL

Displays detailed data for all loadable images.

/SUMMARY

Displays a single line of data for all loadable images. This is the default.

Description
The executive consists of two base images and a number of other executive images.

The base image called SYS$BASE_IMAGE.EXE contains:

• Symbol vectors for universal executive routines and data cells

• Procedure descriptors for universal executive routines

• Globally referenced data cells

167

Chapter 4. SDA Commands

The base image called SYS$PUBLIC_VECTORS.EXE contains:

• Symbol vectors for system service procedures

• Procedure descriptors for system services

• Transfer routines for system services

The base images are the pathways to routines and system service procedures in the other executive
images.

The SHOW EXECUTIVE command lists the location and size of each executive image with other
information such as link date and time. It can enable you to determine whether a given memory address
falls within the range occupied by a particular image. (Table 4.1 describes the contents of each executive
image.)

SHOW EXECUTIVE also displays the base address and length for each nonzero length image section.

On OpenVMS Alpha the execlets can be sliced; on OpenVMS Integrity servers all execlets are sliced.
This means each different image section can be relocated in system memory so that the sections are no
longer contiguous. The SHOW EXECUTIVE display contains information on where each image section
resides.

The difference between a sliced image and a non-sliced image in the display is that the base, the end, and
the length of a sliced image are blank. Only the image section base, end, and length are valid.

On Alpha, there are six different image section types: nonpaged read only, nonpaged read-write, paged
read only, paged read-write, init, and fixup. Each section type can occur only once. Only the image
sections loaded into system memory are displayed.

On Integrity servers, there are six different image section types: code, short data, read-only data, read-
write data, init, and fixup. Some section types can occur more than once. Only the image sections loaded
into system memory are displayed.

The MAP command makes it easier to find out in which execlet an address resides. See the description
of the MAP command for details.

By default, SDA displays each location within an executive image as an offset from the beginning of the
image, for instance, EXCEPTION+00282. Similarly, those symbols that represent system services point
to the transfer routine in SYS$PUBLIC_VECTORS.EXE and not to the actual system service procedure.
When tracing the course of a system failure through the listings of modules contained within a given
executive image, you may find it useful to load into the SDA symbol table all global symbols and global
entry points defined within one or all executive images. See the description of the READ command for
additional information.

The SHOW EXECUTIVE command usually shows all components of the executive, as illustrated in
the following example. In rare circumstances, you may obtain a partial listing. For instance, after it has
loaded the EXCEPTION module (in the INIT phase of system initialization), the system can successfully
post a bugcheck exception and save a crash dump before loading all the executive images that are
normally loaded.

Examples
1. SDA> SHOW EXECUTIVE

VMS Executive layout summary

168

Chapter 4. SDA Commands

Image LDRIMG SeqNum Base End
 Length SymVec
-------------- -------- -------- ----------------- -----------------
 ----------------- --------
SYS$MADDRIVER 8161BCC0 00000094 FFFFFFFF.837C2000 FFFFFFFF.837DDFFF
 00000000.0001C000
SYS$DADDRIVER 8161AB80 00000092 FFFFFFFF.82238000 FFFFFFFF.82247FFF
 00000000.00010000
SYS$LASTDRIVER 81617540 00000090 FFFFFFFF.813DA000 FFFFFFFF.813F5FFF
 00000000.0001C000
SYS$LTDRIVER 81611B40 0000008E FFFFFFFF.813A2000 FFFFFFFF.813D9FFF
 00000000.00038000
LAT$RATING 81611440 0000008C FFFFFFFF.8139A000 FFFFFFFF.813A1FFF
 00000000.00008000
PWIPDRIVER 8160B440 0000008A FFFFFFFF.81386000 FFFFFFFF.81399FFF
 00000000.00014000
 .
 .
 .
ERRORLOG 814195C0 00000014 --< sliced >--
SYSTEM_SYNCHRONIZATION 81418840 00000012 --< sliced >--
SYSTEM_PRIMITIVES 81417AC0 00000010 --< sliced >--
SYSTEM_DEBUG 81416D40 0000000E FFFFFFFF.83382000
 FFFFFFFF.833E5FFF 00000000.00064000
SYS$OPDRIVER 81415FC0 0000000C --< sliced >--
SYS$ESBTDRIVER 81415240 0000000A --< sliced >--

The SHOW EXECUTIVE command displays a summary list of the executive images. The display
has been moved left to fit within the page boundaries of the manual.

2. SDA> SHOW EXECUTIVE EX*
VMS Executive layout

Image Base End Length
 ImageOff SymVec
------------------ ----------------- -----------------
 ----------------- -------- --------
EXCEPTION_MON
 Data (read/write) FFFFFFFF.841BAC00 FFFFFFFF.841BAC13
 00000000.00000014 00010000
 Data (read/write) FFFFFFFF.841BAE00 FFFFFFFF.841BAE03
 00000000.00000004 00014000
 Code FFFFFFFF.8041E600 FFFFFFFF.80508D5F
 00000000.000EA760 00018000
 Data (read only) FFFFFFFF.841BB000 FFFFFFFF.841C278F
 00000000.00007790 00104000
 Data (read/write) FFFFFFFF.841C2800 FFFFFFFF.841D049F
 00000000.0000DCA0 0010C000
 Data (read/write) FFFFFFFF.841D0600 FFFFFFFF.841D0613
 00000000.00000014 0011C000
 Data (read only) FFFFFFFF.841D0800 FFFFFFFF.841D7D93
 00000000.00007594 00120000
 Short data FFFFFFFF.841D7E00 FFFFFFFF.841DF247
 00000000.00007448 00130000

169

Chapter 4. SDA Commands

 Linked 2-APR-2004 13:08 LDRIMG 84891900 SeqNum 00000022 GP
 FFFFFFFF.843D7E00

EXEC_INIT
 Code FFFFFFFF.80327700 FFFFFFFF.803B304F
 00000000.0008B950 00010000
 Data (read only) FFFFFFFF.84196C00 FFFFFFFF.8419D62F
 00000000.00006A30 0009C000
 Data (read/write) FFFFFFFF.8419D800 FFFFFFFF.841A7987
 00000000.0000A188 000A4000
 Short data FFFFFFFF.841A7A00 FFFFFFFF.841AA2DF
 00000000.000028E0 000B0000
 Linked 23-MAR-2004 15:02 LDRIMG 84889040 SeqNum 0000001E GP
 FFFFFFFF.843A7A00

This example from Integrity servers displays the use of the wildcard with the SHOW EXECUTIVE
command. The display has been moved left to fit within the page boundaries of the manual.

4.43. SHOW GALAXY
Displays a brief one-page summary of the state of the Galaxy and all the instances in the Galaxy.

Format
SHOW GALAXY

Parameters
None.

Qualifiers
None.

Examples
SDA> SHOW GALAXY
Galaxy summary

 GMDB address Creator node ID Revision Creation time
----------------- --------------- -------- -----------------------

FFFFFFFF.7F234000 00000001 1.0 31-MAR-1999 13:15:08.08
 O

Node ID NODEB address Name Version Join time
-------- ----------------- -------- -------- -----------------------

00000000 FFFFFFFF.7F236000 ANDA1A 1.0 31-MAR-1999 14:11:09.08
00000001 FFFFFFFF.7F236200 ANDA2A 1.0 31-MAR-1999 14:10:49.06
00000002 FFFFFFFF.7F236400 ANDA3A 1.0 31-MAR-1999 14:13:26.16
00000003 FFFFFFFF.7F236600 - Node block is empty -

This SHOW GALAXY example shows the summary of the state of the Galaxy.

170

Chapter 4. SDA Commands

4.44. SHOW GCT
Displays the contents of the Galaxy configuration tree either in summary (hierarchical format) or in
detail, node by node.

Format
SHOW GCT [/ADDRESS=n | /ALL | /HANDLE | /OWNER=n

| /SUMMARY (D) | /TYPE=type]

[/CHILDREN] | [/FULL]

Parameters
None.

Qualifiers
/ADDRESS=n

Displays the Galaxy configuration tree (GCT) node at the given address.

/ALL

Provides a detailed display of all nodes in the tree.

/CHILDREN

When used with /ADDRESS=n or /HANDLE=n, the /CHILDREN qualifier causes SDA to display
all nodes in the configuration tree that are children of the specified node.

/FULL

When used with /CHILDREN, /OWNER=n, or /TYPE=type, the /FULL qualifier causes SDA to
provide a detailed display of each node.

/HANDLE=n

Provides a detailed display of the Galaxy configuration tree (GCT) node with the given handle.

/OWNER=n

Displays all nodes in the tree currently owned by the node with the given handle.

/SUMMARY

Provides a summary display of the Galaxy configuration tree (GCT) in hierarchical form. This
qualifier is the default.

/TYPE=type

Displays all nodes in the tree of the given type, which can be one of the following:

BUS CAB COMMUNITY

171

Chapter 4. SDA Commands

CORE CPU CPU_MODULE
EXP_CHASSIS FRU_DESC FRU_ROOT
HARD_PARTITION HOSE HW_ROOT
IO_CTRL IOP MEMORY_CTRL
MEMORY_DESC MEMORY_SUB PARTITION
POWER_ENVIR PSEUDO RISER
ROOT SBB SLOT
SMB SOC SOCKET
SW_ROOT SYS_CHASSIS SYS_INTER_SWITCH
TEMPLATE_ROOT THREAD

The type given may be an exact match, in which case just that type is displayed (for example, a
CPU); or a partial match, in which case all matching types are displayed (for example, /TYPE=CP
displays both CPU and CPU_MODULE nodes).

Description

Examples
1. SDA> SHOW GCT

Galaxy Configuration Tree summary

Base address of Config Tree: FFFFFFFF.83694040 (2 pages)
Initial Current Name/Min PA/ OS type/Max PA/
Handle Hierarchy Id Owner Owner Base PA Size (bytes) Flags
-------- ------------------- ----------------- -------- --------
 ----------------- ----------------- ------------------------
00000000 Root 00000000.00000000 414C4147-5958-0030-0000-......
|
00000240 |_HW_Root 00000000.00000000
00000280 | |_IOP 00000000.00000006 00001800 000000A0.00000000
 000000AF.FFFFFFFF
00000300 | |_IOP 00000000.00000007 00001700 000000B0.00000000
 000000BF.FFFFFFFF
00000380 | |_IOP 00000000.00000008 00001600 000000C0.00000000
 000000CF.FFFFFFFF
00000400 | |_CPU_Module 00000000.00000000 00001580
00000440 | | |_CPU 00000000.09000000 00001600 Primary
00000480 | | |_CPU 00000000.1B000001 00001600 00001800
000004C0 | |_CPU_Module 00000000.00000001 00001580
00000500 | | |_CPU 00000000.1B000002 00001600 00001800
00000540 | | |_CPU 00000000.10000003 00001600 00001700
00000580 | |_CPU_Module 00000000.00000002 00001580
000005C0 | | |_CPU 00000000.07000004 00001700 Primary
00000600 | | |_CPU 00000000.0A000005 00001700 00001800
00000640 | |_CPU_Module 00000000.00000003 00001580
00000680 | | |_CPU 00000000.07000006 00001800 Primary
000006C0 | | |_CPU 00000000.0C000007 00001800 00001600
00000700 | |_Memory_Sub 00000000.00000000 00001580 00000000.00000000
 00000000.FFFFFFFF
00000780 | |_Memory_Ctrl 00000000.00000005 00001600

172

Chapter 4. SDA Commands

000007C0 | |_Memory_Desc 00000000.00000000 00001600 00000000.00000000
 00000000.40000000
| | |_Fragment 00001600 00000000.00000000 00000000.00200000 Console
 Private Base
| | |_Fragment 00001600 00000000.00200000 00000000.3FD7E000 Private Base
| | |_Fragment 00001600 00000000.3FF7E000 00000000.00082000 Console
 Private Base
00000A40 | |_Memory_Desc 00000000.40000000 00001700 00000000.40000000
 00000000.40000000
| | |_Fragment 00001700 00000000.40000000 00000000.00200000 Console
 Private Base
| | |_Fragment 00001700 00000000.40200000 00000000.3FD7E000 Private Base
| | |_Fragment 00001700 00000000.7FF7E000 00000000.00082000 Console
 Private Base
00000CC0 | |_Memory_Desc 00000000.80000000 00001800 00000000.80000000
 00000000.40000000
| | |_Fragment 00001800 00000000.80000000 00000000.00200000 Console
 Private Base
| | |_Fragment 00001800 00000000.80200000 00000000.3FD7E000 Private Base
| | |_Fragment 00001800 00000000.BFF7E000 00000000.00082000 Console
 Private Base
00000F40 | |_Memory_Desc 00000000.C0000000 00001580 00000000.C0000000
 00000000.40000000
| |_Fragment 00001580 00000000.C0000000 00000000.40000000 Shared
|
000011C0 |_SW_Root 00000000.00000000
00001580 | |_Community 00000000.00000000 000011C0
00001600 | |_Partition 00000000.00000000 00001580 ANDA1A OpenVMS Alpha
00001700 | |_Partition 00000000.00000001 00001580 ANDA2A OpenVMS Alpha
00001800 | |_Partition 00000000.00000002 00001580 ANDA3A OpenVMS Alpha
|
00001200 |_Template_Root 00000000.00000000
00001240 |_IOP 00000000.00000000
000012C0 |_CPU 00000000.00000000
00001300 |_Memory_Desc 00000000.00000000 00000000.02000000

This command shows the summary (hierarchical) display of the configuration tree.

2. SDA> SHOW GCT/HANDLE=00000700

Galaxy Configuration Tree

Handle: 00000700 Address:
 FFFFFFFF.83694740
Node type: Memory_Sub Size:
 0080
Id: 00000000.00000000 Flags:
 00000000.00000001 Hardware

Related nodes:

 Node relationship Handle Type Id
 --------------------- -------- ---------------------

 Initial owner 00001580 Community
 00000000.00000000

173

Chapter 4. SDA Commands

 Current owner -<Same>-
 Parent 00000240 HW_Root
 00000000.00000000
 Previous sibling 00000640 CPU_Module
 00000000.00000003
 Next sibling -<None>-
 Child 00000780 Memory_Ctrl
 00000000.00000005
 Configuration binding 00000240 HW_Root
 00000000.00000000
 Affinity binding 00000240 HW_Root
 00000000.00000000

Min. physical address: 00000000.00000000
Max. physical address: 00000000.FFFFFFFF

This command shows the detailed display of the specified node.

4.45. SHOW GLOBAL_SECTION_TABLE
Displays information contained in the global section table, including pageable sections of loadable
images. Functionally equivalent to SHOW GST.

Format
SHOW GLOBAL_SECTION_TABLE [/SECTION_INDEX=n]

SHOW GST [/SECTION_INDEX=n]

Parameters
None.

Qualifiers
/SECTION_INDEX=n

Displays only the global section table entry for the specified section.

Description
Displays the entire contents of the global section table, unless you specify the qualifier /
SECTION_INDEX. This command is equivalent to SHOW PROCESS/PROCESS_SECTION_TABLE/
SYSTEM. SDA displays the information in the table below for each GST entry.

Part Definition

INDEX Index number of the entry. Entries in the global
section table begin at the highest location in
the table, and the table expands toward lower
addresses.

ADDRESS Address of the global section table entry.
SECT/GPTE Virtual address that marks the beginning of the

first page of the section described by this entry,

174

Chapter 4. SDA Commands

Part Definition
if a loadable image; or the virtual address of the
global page table entry for the first page, if a global
section.

GSD Address of the corresponding Global Section
Descriptor. This field is zero for loadable images.

PAGELETS Length of the global section. This is in units of
pagelets, except for a PFN-mapped section in
which the units are pages.

VBN Virtual block number. The number of the file's
virtual block that is mapped into the section's first
page.

WINDOW Address of the window control block on which the
section file is open.

REFCNT Number of pages of this section that are currently
mapped.

FLINK Forward link. The pointer to the next entry in the
GST list.

BLINK Backward link. The pointer to the previous entry in
the GST list.

FLAGS Flags that describe the access that the system and
processes have to the global section.

Examples
1. SDA> SHOW GST

Global Section Table

Global section table information

Last entry allocated 00000238
First free entry 00000000
Global section table

 Index Address Sect/GPTE Addr CCB/GSD Pagelets VBN Window Refcnt Flink
 Blink Flags
 -------- -------- ----------------- -------- -------- -------- --------
 -------- ----- ----- --------------------
00000001 81409FD8 FFFFFFFF.83384000 00000000 00000025 00000003 81419E40
 00000003 0000 0000 AMOD=KRNL
00000002 81409FB0 FFFFFFFF.833AE000 00000000 00000064 00000220 8141A040
 00000007 0000 0000 AMOD=KRNL
00000003 81409F88 FFFFFFFF.83312000 00000000 00000001 0000063A 81450BC0
 00000001 0000 0000 CRF WRT AMOD=KRNL
00000004 81409F60 FFFFFFFF.833C0000 00000000 00000003 00000003 814233C0
 00000001 0000 0000 AMOD=KRNL
00000005 81409F38 FFFFFEFE.00058890 82065C70 00000002 0000000D 814F9AC0
 00000003 0005 0005 WRTMOD=EXEC AMOD=USER PERM
Name = INS$82065BC0_003 SYSGBL
File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]DECW$TRANSPORT_COMMON.EXE;1
00000006 81409F10 FFFFFFFF.833E6000 00000000 00000011 00000023 8142E480
 00000002 0000 0000 AMOD=KRNL

175

Chapter 4. SDA Commands

00000007 81409EE8 FFFFFEFE.00052010 82025CA0 0000000C 00000004 814C0600
 00000000 0007 0007 WRTMOD=EXEC AMOD=USER PERM
File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]SYS$SSISHR.EXE;1 SYSGBL
00000008 81409EC0 FFFFFFFF.83400000 00000000 000000B4 00000003 81446340
 0000000C 0000 0000 AMOD=KRNL
00000009 81409E98 FFFFFFFF.83418000 00000000 00000038 000000B7 81446340
 00000001 0000 0000 CRF WRT AMOD=KRNL
0000000A 81409E70 FFFFFEFE.00052028 820261B0 00000027 00000019 814C0AC0
 00000003 000A 000A WRTMOD=EXEC AMOD=USER PERM
Name = INS$82026130_006 SYSGBL
File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]DISMNTSHR.EXE;1
0000000B 81409E48 FFFFFEFE.00052050 82026630 0000007A 00000004 814C0D00
 00000008 000B 000B WRTMOD=EXEC AMOD=USER PERM
Name = INS$82026540_002 SYSGBL
File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]DTI$SHARE.EXE;1
.
.
.

4.46. SHOW GLOCK
Displays the Galaxy locks for the Galaxy Management Database (GMDB), process tables, and/or system
tables.

Format
SHOW GLOCK [/ADDRESS=n [/PHYSICAL]

| /ALL

| /GMDB_TABLE

| /HANDLE=n [/LINKED]

| /PROCESS_TABLE [=n]

| /SYSTEM_TABLE [=n]]

[/BRIEF]

Parameters
None.

Qualifiers
/ALL

Displays information provided by the /GMDB_TABLE, /PROCESS_TABLE, and /
SYSTEM_TABLE qualifiers. The /ALL qualifier also displays information from the base GMDB
Galaxy lock.

/BRIEF

Displays a single line for each Galaxy lock, regardless of any other qualifiers.

176

Chapter 4. SDA Commands

/GMDB_TABLE

Displays the Galaxy lock table for the Galaxy Management Database (GMDB) including the
embedded and attached Galaxy locks.

/PROCESS_TABLE [=n]

Displays all the process Galaxy lock tables with the embedded and attached Galaxy locks, as well as
a summary table. The /PROCESS_TABLE=n qualifier displays the single Galaxy lock table without
a summary page.

/SYSTEM_TABLE [=n]

Displays all the system Galaxy lock tables with the embedded and attached Galaxy locks, as well as
a summary table. The /SYSTEM_TABLE=n qualifier displays the single Galaxy lock table without a
summary page.

/ADDRESS=n [/PHYSICAL]

Displays the single Galaxy lock at address n. Because process Galaxy locks are located by their
physical address, you must use the /PHYSICAL qualifier to enter such an address.

/HANDLE=n [/LINKED]

Displays the single Galaxy lock whose handle is n. The optional qualifier /LINKED causes SDA to
display all Galaxy locks linked to the one specified.

Examples
1. SDA> SHOW GLOCK

Galaxy Lock Database

Base address of GLock segment of GMDB: FFFFFFFF.7F238000
Length: 00000000.00082000

 Nodes: 00000000.00000007 Flags:
 00000000.00000000

Process tables: 00000000.00000400 System tables:
 00000000.00000400
 First free: 00000002
 00000001
 First used: 00000001
 00000000

Embedded GLocks:

GLock address: FFFFFFFF.7F238020 Handle:
 80000000.00000805

 GLock name: GMDB_GLOCK_LOCK Flags:
 00
 Owner count: 00 Owner node:
 00
 Node sequence: 0000 Owner:
 000000

177

Chapter 4. SDA Commands

 IPL: 08 Previous IPL:
 00
 Wait bitmask: 00000000.00000000 Timeout:
 00000000
 Thread ID: 00000000.00000000

GLock address: FFFFFFFF.7F238190 Handle:
 80000000.00000833

 GLock name: PRC_LCKTBL_LOCK Flags:
 00
 Owner count: 00 Owner node:
 00
 Node sequence: 0000 Owner:
 000000
 IPL: 08 Previous IPL:
 00
 Wait bitmask: 00000000.00000000 Timeout:
 00000000
 Thread ID: 00000000.00000000

GLock address: FFFFFFFF.7F2381D0 Handle:
 80000000.0000083B

 GLock name: SYS_LCKTBL_LOCK Flags:
 00
 Owner count: 00 Owner node:
 00
 Node sequence: 0000 Owner:
 000000
 IPL: 08 Previous IPL:
 00
 Wait bitmask: 00000000.00000000 Timeout:
 00000000
 Thread ID: 00000000.00000000

This example shows the summary of the Galaxy lock database.

2. SDA> SHOW GLOCK/PROCESS_TABLE
Galaxy Lock Database: Process Lock Table #0001
--

Base address of Process Lock Table #0001: FFFFFFFF.7F23A000

 Lock size: 0040 Flags:
 01 VALID
 Region Index/Sequence: 0008/00000001 Access mode:
 03
 Region physical size: 00000000.00002000 Virtual size:
 00000000.00002000
 Number of locks: 00000000.00000080 Nodes:
 00000000.00000007

Per-node reference counts:

 Node Count
 ---- -----
 0000 0001

178

Chapter 4. SDA Commands

 0001 0001
 0002 0001

Embedded GLock:

GLock address: FFFFFFFF.7F23A040 Handle:
 80000000.00000C09

 GLock name: PLCKTBL_LOCK001 Flags:
 00
 Owner count: 00 Owner node:
 00
 Node sequence: 0000 Owner:
 000000
 IPL: 00 Previous IPL:
 00
 Wait bitmask: 00000000.00000000 Timeout:
 00000000
 Thread ID: 00000000.00000000

Attached GLocks:

GLock address: P00000000.C05EC7C0 Handle:
 00000001.000000F9

 GLock name: CPU_BAL_LOCK Flags:
 00
 Owner count: 00 Owner node:
 00
 Node sequence: 0000 Owner:
 000000
 IPL: 00 Previous IPL:
 00
 Wait bitmask: 00000000.00000000 Timeout:
 00000000
 Thread ID: 00000000.00000000

 .
 .
 .

GLock address: P00000000.C05EC000 Handle:
 00000001.00000001

 GLock name: CPU_BAL_LOCK Flags:
 00
 Owner count: 00 Owner node:
 00
 Node sequence: 0000 Owner:
 000000
 IPL: 00 Previous IPL:
 00
 Wait bitmask: 00000000.00000000 Timeout:
 00000000
 Thread ID: 00000000.00000000

Used GLock count = 0020

179

Chapter 4. SDA Commands

Free GLock count = 0060

Galaxy Lock Database: Process Lock Table Summary
--

Total used Process Lock Tables: 00000001
Total free Process Lock Tables: 000003FF

This example shows the Galaxy locks for all processes.

4.47. SHOW GMDB
Displays the contents of the Galaxy Management Database (GMDB) and/or the node blocks of the
instances in the Galaxy system.

Format
SHOW GMDB [/ALL]

[/NODE [=name | =n | /ADDRESS=n] [/SUMMARY]

Parameters
None.

Qualifiers
/ADDRESS

Specifies the address of a single node block to be displayed when used with the /NODE qualifier.
See the description of the /NODE qualifier.

/ALL

Displays the contents of the Galaxy Management Database and all node blocks that have ever been
used (contents nonzero).

/NODE [=name | =n | /ADDRESS=n]

Displays the contents of the specified node block, given by either the name of the instance, the
partition number, or the address of the node block. If you specify only the /NODE qualifier, the node
block for the current instance is displayed.

/SUMMARY

Displays a one-page summary of the GMDB and all node blocks.

Note

The default action displays the contents of the Galaxy Management Database.

Examples
1. SDA> SHOW GMDB

Galaxy Management Database

180

Chapter 4. SDA Commands

Base address of GMDB: FFFFFFFF.7F234000
Base address of NODEB for this instance: FFFFFFFF.7F236000

 Revision: 1.0 Maximum node ID:
 00000003
 Creation time: 31-MAR-1999 13:15:08.08 Incarnation:
 00000000.00000003
 State: OPERATIONAL Creator node:
 00000001
 Base size: 00000000.00004000 Total size:
 00000000.000A6000
 Last joiner ID: 00000002 Remover node ID:
 FFFFFFFF
 Last leaver ID: 00000002 Node timeout (msec)
 5000.
 Lock owner 00000002 Lock flags:
 0000
 Break owner: FFFFFFFF Breaker ID:
 FFFFFFFF

Version Information:

 Min Version Operational 1.0 Min Version Allowed
 1.0
 Max Version Operational 1.0

Membership bitmask: FFFFFFFF.7F236800

 Valid bits: 00000004 State:
 00000000.0000001E AUTO_LOCK TIMEOUT_CRASH....
 Unit count: 0001 Unit size:
 QUADWORD
 Lock IPL: 16 Saved IPL:
 00000008
 Count of bits set: 00000003
 Timeout count: 000186A0
 Summary bitmask: 00000000.00000001

 Unit bitmask:
 7 00000000

Remove node bitmask: FFFFFFFF.7F236880

 Valid bits: 00000004 State:
 00000000.00000018 SUMMARY_BITS SET_COUNT
 Unit count: 0001 Unit size:
 QUADWORD
 Count of bits set: 00000000
 Summary bitmask: 00000000.00000000

 Unit bitmask:
 0 00000000

Subfacility validation flags: 00000000

181

Chapter 4. SDA Commands

 Galaxy locks segment: FFFFFFFF.7F238000 Length:
 00000000.00082000
 Shared memory segment: FFFFFFFF.7F2BA000 Length:
 00000000.0000A000
 CPU comms segment: FFFFFFFF.7F2C4000 Length:
 00000000.00014000
 CPU info segment: FFFFFFFF.7F2D8000 Length:
 00000000.00002000
 Membership segment: FFFFFFFF.7F2DA000 Length: (empty)

MMAP address: FFFFFFFF.7F234200

 Level count: 0000 Flags:
 0001 VALID
 Top page count: 00000053 Virtual size:
 00000000.000A6000
 PFN list page count: 00000000 First PFN:
 00060000
 Data page count: 00000053

This example shows the overall summary of the Galaxy Management Database.

2. SDA> SHOW GMDB/NODE=0

GMDB: Node ID 00000000 (current instance)

Base address of node block: FFFFFFFF.7F236000

 Version: 1.0 Node name:
 ANDA1A
 Join time: 31-MAR-1999 14:11:09.08 Incarnation:
 00000000.00000005
 State: MEMBER Crash_all acknowledge:
 00000000
 Validation done: 00000000 Reform done:
 00000000

 IP interrupt mask: 00000000.00000000

Little brother: 00000002 Heartbeat:
 00000000.0019EAD1
Big brother: 00000001 Last watched_node:
 00000000

 Watched_node #0: FFFFFFFF.7F236078 Node watched:
 00000002
 Last heartbeat: 00000000.0017C1AD Miss count:
 00000000

This example shows Galaxy Management Database information for the specified instance.

4.48. SHOW GSD
Displays information contained in the global section descriptors.

182

Chapter 4. SDA Commands

Format
SHOW GSD [/ADDRESS=n | /ALL | /DELETED | /GLXGRP

| /GLXSYS | /GROUP | /SYSTEM]

Parameters
None.

Qualifiers
/ADDRESS=n

Displays a specific global section descriptor entry, given its address.

/ALL

Displays information in all the global section descriptors, that is, the system, group, and deleted
global section descriptors, plus the Galaxy group and Galaxy system global section descriptors, if the
system or dump being analyzed is a member of an OpenVMS Galaxy system. This qualifier is the
default.

/DELETED

Displays information in the deleted (that is, delete pending) global section descriptors.

/GLXGRP

Displays information in the group global section descriptors of a Galaxy system.

/GLXSYS

Displays information in the system global section descriptors of a Galaxy system.

/GROUP

Displays information in the group global section descriptors.

/SYSTEM

Displays information in the system global section descriptors.

Description
The SHOW GSD command displays information that resides in the global section descriptors. The table
below shows the fields and their meaning.

Field Meaning

ADDRESS Gives the address of the global section descriptor.
NAME Gives the name of the global section.

183

Chapter 4. SDA Commands

Field Meaning

GSTX Gives the global section table index.
FLAGS Gives the settings of flags for specified global

section, as a hexadecimal number; also displays key
flag bits by name.

BASEPFN 1 Gives physical page frame number at which the
section starts. This field applies only to PFN
mapped global sections.

PAGES 1 Gives number of pages (not pagelets) in section.
This field applies only to PFN mapped global
sections.

REFCNT 1 Gives number of times this global section is
mapped. This field applies only to PFN mapped
global sections.

Examples

4.49. SHOW GST
See SHOW GLOBAL_SECTION_TABLE.

4.50. SHOW HEADER
Displays the header of the dump file.

Format
SHOW HEADER

Parameters
None.

Qualifiers
None.

184

Chapter 4. SDA Commands

Description
The SHOW HEADER command produces a 10-column display, each line of which displays both the
hexadecimal and ASCII representation of the contents of the dump file header in 32-byte intervals. Thus,
the first eight columns, when read right to left, represent the hexadecimal contents of 32 bytes of the
header; the ninth column, when read left to right, records the ASCII equivalent of the contents. (The
period [.] in this column indicates an ASCII character that cannot be displayed.)

After it displays the contents of the header blocks, the SHOW HEADER command displays the
hexadecimal contents of the saved error log buffers.

See the OpenVMS AXP Internals and Data Structures manual for a discussion of the information
contained in the dump file header. See also the SHOW DUMP and CLUE ERRLOG commands, which
you can use to obtain formatted displays of the dump header and error log buffers.

See also the SHOW DUMP command, which will output a formatted display of the contents of the
dump header.

Examples

4.51. SHOW IMAGE
Displays information about an image, regardless of the type of image (executive, activated, or installed).

Format
SHOW IMAGE image-name

Parameters
image-name

Name of the image to be displayed. This is a required parameter that may include wildcards.

Qualifiers
None.

185

Chapter 4. SDA Commands

Description
Searches the executive image list for the image name, and, if a match is found, displays the loaded
image information. Next, searches the activated image list for the process (if SDA has a current process
context). If a match is found, displays the activated image information. Finally, searches the installed
image lists, directory by directory. If a match is found, displays the installed image (known file entry)
information.

SHOW IMAGE x is equivalent to SHOW EXECUTIVE x followed by SHOW PROCESS/IMAGE=x
followed by SHOW KFE x .

Examples
1. SDA> show image sys$public_vectors

Image SYS$PUBLIC_VECTORS

 VMS Executive image layout

Image Base End
 Length ImageOff SymVec
--------------------------------- ----------------- -----------------
 ----------------- -------- --------
SYS$PUBLIC_VECTORS
 81804B18
 Nonpaged read only FFFFFFFF.80000000 FFFFFFFF.800025FF
 00000000.00002600 00000000
 Nonpaged read/write FFFFFFFF.81800000 FFFFFFFF.81807FFF
 00000000.00008000 00004000
 Linked 30-AUG-2004 09:36 LDRIMG 81C17480 SeqNum 00000000 --<
 sliced >--

 Process activated images

 Image Name/Link Time/Section Type Start End Type/File Id
--------------------------------------- -------- -------- ------------
SYS$PUBLIC_VECTORS 81804B18 818071B7 GLBL

 IMCB Sym Vect Maj,Minor ID Base End
 ImageOff
 -------- -------- ------------ -------- --------

 7FF6A250 81804B18 113,16596271

 Known File Entries

KFD Device/Directory/Type: 31DKB100:<SYS0.SYSCOMMON.SYSLIB>.EXE

186

Chapter 4. SDA Commands

 KFE Image Name/ KFERES Address/
 File ID/ Flags/
 Address Section Type Base
 End ImageOff
 -------- --------------------------------------- -----------------
 ----------------- --------
 82984C50 SYS$PUBLIC_VECTORS;1
 (3923,194,0)

This example shows the output from SHOW IMAGE for SYS$PUBLIC_VECTORS. Part of the
example has been moved left to stay within page boundaries of the manual.

4.52. SHOW KFE
Displays information about known file entries (installed images).

Format
SHOW KFE [image_name | /ADDRESS=kfe_address | /ALL]

SHOW KNOWN_FILE_ENTRY [image_name | /ADDRESS=kfe_address | /ALL]

Parameters
image-name

Name of the image to be displayed. This may include wildcards, but cannot include device or
directory information.

Qualifiers
/ADDRESS=kfe_address

Specifies the address of a single KFE of interest. The details are displayed for this KFE with device/
directory information from the corresponding KFD (Known File Directory).

/ALL

Displays details for all KFEs, including device/directory information from the corresponding KFDs,
with the contents of the Known File Pointer Block (KFPB).

Description
The SHOW KFE command displays information about known files (installed images). By default, a
summary line without image-section information is given for each image. Use the /ALL qualifier to
obtain detailed information for all images. For a single image, specify the image name or KFE address.

The image_name parameter, the /ADDRESS, and /ALL qualifiers cannot be used together. SHOW
KNOWN_FILE_ENTRY is a synonym for SHOW KFE.

Examples
1. SDA> SHOW KFE

187

Chapter 4. SDA Commands

Known File Entries

KFPB address: 8292D860
Hash table address: 82975360
Hash table size: 0080
Entry count: 016F

KFD Device/Directory/Type: 31DKB100:<SYS0.SYSCOMMON.CDE
$DEFAULTS.SYSTEM.BIN>.EXE

 KFD address: 829E8D60
 Reference count: 0002

 KFE Image Name KFERES Address File ID Flags
 -------- ------------------- ----------------- -------------

 829E8290 DECW$LOGINOUT;1 (7204,49,0) LIM Open HdrRes Shared
 829E8DB0 DTGREET;1 (5651,19,0) Open HdrRes Shared

KFD Device/Directory/Type: 31DKB100:<SYS0.SYSCOMMON.SYSEXE>.EXE

 KFD address: 8299C140
 Reference count: 0066

 KFE Image Name KFERES Address File ID
 Flags
 -------- ------------------------ ----------------- -----------------

 8299C210 AUTHORIZE;1 (72,176,0)
 ProcPriv AuthPriv
 829ACE10 BACKUP;1 (73,176,0)
 8299C2A0 CDU;1 (75,176,0)
 ProcPriv Open HdrRes AuthPriv
 8299C660 CIA;1 (510,176,0)
 ProcPriv AuthPriv
 829ACE90 CONVERT;1 (77,176,0)
 829A3AD0 COPY;1 829A3E70 (78,176,0)
 Open HdrRes Shared
 829ACF10 CREATE;1 (79,176,0)
 .
 .
 .

This example shows the first page of summary output for all known images.

2. SDA> show kfe decc*

Known File Entries

KFD Device/Directory/Type: 31DKB100:<SYS0.SYSCOMMON.SYSLIB>.EXE

 KFE Image Name/ KFERES Address/ File
 ID/ Flags/

188

Chapter 4. SDA Commands

 Address Section Type Base End
 ImageOff
 -------- ----------------------------- -----------------
 ----------------- --------
 829900B0 DECC$SHR;1 82990960 (2431,189,0)
 LIM Open HdrRes

 Shared ResCode

 Paged read only FFFFFFFF.80A70000
 FFFFFFFF.80C815FF 00000000
 Initialization 00000000.7BEC0000
 00000000.7BF00DFF 00220000
 Fixup 00000000.7BF10000
 00000000.7BF1B1FF 00270000
 Nonpaged read/write 00000000.7BF20000
 00000000.7BF2FBFF 00280000
 Nonpaged read/write 00000000.7BF30000
 00000000.7BF309FF 00290000

 Fixup 00000000.7BF40000
 00000000.7BF401FF 002A0000
 Paged read/write 00000000.7BF50000
 00000000.7BF56FFF 002B0000

KFD Device/Directory/Type: 31DKB100:<SYS0.SYSCOMMON.SYSMSG>.EXE

 KFE Image Name/ KFERES Address/ File ID/
 Flags/
 Address Section Type Base End
 ImageOff
 -------- --------------------------------------- ------------ ---

 829AE4F0 DECC$MSG;1 (257,176,0)
 LIM Open HdrRes Shared

This example shows the details for all images that match the wildcard DECC*.

4.53. SHOW KNOWN_FILE_ENTRY
See SHOW KFE.

4.54. SHOW LAN
Displays information contained in various local area network (LAN) data structures.

Format
SHOW LAN [/qualifier[,...]]

Parameters
None.

189

Chapter 4. SDA Commands

Qualifiers
/ATM

Specifies that asynchronous transfer mode (ATM) information for the LAN be displayed.

/CLIENT=name

Specifies that information be displayed for the specified client. Valid client designators are SCA,
DECNET, LAT, MOPRC, TCPIP, DIAG, ELN, BIOS, LAST, USER, ARP, MOPDL, LOOP,
BRIDGE, DNAME, ENCRY, DTIME, and LTM. The /CLIENT, /DEVICE, and /UNIT qualifiers
are synonymous and mutually exclusive.

/COUNTERS

Specifies that the LAN station block (LSB) and unit control block (UCB) counters be displayed.

/CSMACD

Specifies that Carrier Sense Multiple Access with Collision Detect (CSMA/CD) information for
the LAN be displayed. By default, both CSMA/CD and Fiber Distributed Data Interface (FDDI)
information is displayed.

/DEVICE=name

Specifies that information be displayed for the specified device, unit, or client. For each LAN
adapter on the system, there is one device and multiple users of that device called, units or clients.
Device designators are specified in the format XXdn, where XX is the type of device, d is the
device letter, and n is the unit number. The device letter and unit number are optional. The first unit,
which is always present, is the template unit. These are specified as indicated in this example for a
DEMNA called EX:

/DEVICE=EX---display all EX devices on the system

/DEVICE=EXA---display the first EX device only

/DEVICE=EXA0---display the first EXA unit

/DEVICE=SCA---display SCA unit

/DEVICE=LAT---display LAT units

Valid client names are listed in the /CLIENT=name qualifier. The /CLIENT, /DEVICE, and /UNIT
qualifiers are synonymous and mutually exclusive.

/ELAN

Specifies information from an Emulated LAN (ELAN) that runs over an asynchronous transfer
mode (ATM) network. The /ELAN qualifier displays the LAN Station Block (LSB) address,
device state, and the LSB fields pertinent to an ELAN for both the parent ATM device and the
ELAN pseudo-device drivers. It also specifies the name, description, parent device, state, and LAN
emulation client (LEC) attributes of the ELAN.

The qualifier /ELAN used with the device qualifier (/ELAN/DEVICE=ELA) will only display
information for the specified device or pseudo-device.

190

Chapter 4. SDA Commands

/ERRORS

Specifies that the LSB and UCB error counters be displayed.

/FDDI

Specifies that Fiber Distributed Data Interface (FDDI) information for the LAN be displayed. By
default, both CSMA/CD and FDDI information is displayed.

/FULL

Specifies that all information from the LAN, LSB, and UCB data structures be displayed.

/INTERNAL

Specifies internal counters of the drivers by displaying the internal counters. If the /INTERNAL
qualifier is used with the /DEVICE qualifier, the /INTERNAL specifies the internal counters of a
specific driver.

/QUEUES

Specifies a listing of all queues, whether their status is valid or invalid, and all elements of the
queues. If the /QUEUES qualifier is used with the /DEVICE qualifier, the /QUEUES specifies a
specific queue.

/SOURCEROUTING

Specifies that the information in the source routing table maintained by the Token Ring driver be
displayed.

/SUMMARY

Specifies that only a summary of LAN information (a list of flags, LSBs, UCBs, and base addresses)
be printed. This is the default.

/TIMESTAMPS

Specifies that time information (such as start and stop times and error times) from the device and
unit data structures be printed. SDA displays the data in chronological order.

/TR

Specifies that Token Ring information for the LAN be displayed.

/UNIT=name

Specifies that information be displayed for the specified unit. See the descriptions for /
CLIENT=name and /DEVICE=name qualifiers.

/VCI

Specifies that information be displayed for the VMS Communication Interface Block (VCIB) for
each LAN device with an active VCI user. If you use the /VCI qualifier with the /DEVICE qualifier,
the VCIB is only displayed for the specified device.

Description
The SHOW LAN command displays information contained in various local area network (LAN) data
structures. By default, or when the /SUMMARY qualifier is specified, SHOW LAN displays a list of

191

Chapter 4. SDA Commands

flags, LSBs, UCBs, and base addresses. When the /FULL qualifier is specified, SHOW LAN displays all
information found in the LAN, LSB, and UCB data structures.

Examples
1. SDA> SHOW LAN/FULL

LAN Data Structures

 -- LAN Information Summary 23-MAY-1996 13:07:52 --
LAN flags: 00000004 LAN_INIT
LAN block address 80DB7140 Timer DELTA time
 10000000
Number of stations 2 DAT sequence number
 1
LAN module version 1 First SVAPTE
 FFDF60F0
LANIDEF version 51 Number of PTEs
 3
LANUDEF version 26 SVA of first page
 8183C000
First LSB address 80DCA980

 -- LAN CSMACD Network Management 23-MAY-1996 13:07:52 --
Creation time None Times created
 0
Deletion time None Times deleted
 0
Module EAB 00000000 Latest EIB
 00000000
Port EAB 00000000
Station EAB 00000000
NM flags: 00000000
 -- LAN FDDI Network Management 23-MAY-1996 13:07:52 --
Creation time None Times created
 0
Deletion time None Times deleted
 0
Module EAB 00000000 Link EAB
 00000000
Port EAB 00000000 PHY port EAB
 00000000
Station EAB 00000000 Module EIB
 00000000
NM flags: 00000000
LAN Data Structures

 -- ESA Device Information 23-MAY-1996 13:07:52 --
LSB address 80DCA980 Driver code address
 80CAE838
Driver version 00000001.07010037 Device1 code address
 00000000
Device1 version 00000000.00000000 Device2 code address
 00000000
Device2 version 00000000.00000000 LAN code address
 80CAFA00
LAN version 00000001.07010112 DLL type
 CSMACD

192

Chapter 4. SDA Commands

Device name EY_NITC2 MOP name
 MXE
MOP ID 94 HW serial Not
 supplied
HW version 00000000 Promiscuous mode
 OFF
Controller mode NORMAL Promiscuous UCB
 00000000
Internal loopback OFF All multicast state
 OFF
Hardware address 08-00-03-DE-00-12 CRC generation mode
 ON
Physical address AA-00-04-00-88-FE Full Duplex Enable
 OFF
Active unit count 1 Full Duplex State
 OFF
Line speed 10
Flags: 00000000
Char: 00000000
Status: 00000003 RUN,INITED

LAN Data Structures

 -- ESA Device Information (cont) 23-MAY-1996 13:07:52 --
Put rcv ptr/index 00000000 Get rcv ptr/index
 00000015
Put xmt ptr/index 80DCB620 Get xmt ptr/index
 80DCB620
Put cmd ptr/index 00000000 Get cmd ptr/index
 00000000
Put uns ptr/index 00000000 Get uns ptr/index
 00000000
Put smt ptr/index 00000000 Get smt ptr/index
 00000000
RBufs owned by dev 0 Rcv packet limit
 32
XEnts owned by dev 0 XEnts owned by host
 4
CEnts owned by dev 0 Transmit timer
 0
UEnts owned by dev 0 Control timer
 0
SEnts owned by dev 0 Periodic SYSID timer
 599
Current rcv buffers 17 Ring unavail timer
 0
Rqst MAX rcv buffers 32 USB timer
 26
Rqst MIN rcv buffers 16 Receive alignment
 0
Curr MAX rcv buffers 32 Receive buffer size
 1518
Curr MIN rcv buffers 16 Min 1st chain segment
 0

193

Chapter 4. SDA Commands

FILL rcv buffers 16 Min transmit length
 0
ADD rcv buffers 32 Dev xmt header size
 0
LAN Data Structures

 -- ESA Device Information (cont) 23-MAY-1996 13:07:52 --
Last receive 23-MAY 13:07:51 Last transmit 23-MAY
 13:07:50
ADP address 80D4B280 IDB address
 80DCA880
DAT stage 00000000 DAT xmt status
 0000003C.003C0001
DAT number started 1 DAT xmt complete 23-MAY
 13:07:19
DAT number failed 0 DAT rcv found
 None
DAT VCRP 80DCBB80 DAT UCB
 00000000
Mailbox enable flag 0 CRAM read comman
 00000000
CSR base phys addr 00000000.00000000 CRAM write comma
 00000000
Mailboxes in use 0 Media
 UNDF
2nd LW status flags 00000000
LAN Data Structures

 -- ESA Network Management Information 23-MAY-1996 13:07:52 --
Creation time None Create count
 0
Deletion time None Enable count
 0
Enabled time None Number of ports
 0
Disabled time None Events logged
 0
EIB address 00000000 NMgmt assigned addr
 None
LLB address 00000000 Station name itmlst
 00000000
LHB address 00000000 Station itmlst len
 0
First LPB address 00000000
LAN Data Structures

 -- ESA Fork Information 23-MAY-1996 13:07:52 --
ISR FKB sched 23-MAY 13:07:51 ISR FKB in use flag
 FREE
ISR FKB time 23-MAY 13:07:51 ISR FKB count
 200
IPL8 FKB sched 23-MAY 13:07:20 IPL8 FKB in use flag
 FREE
IPL8 FKB time 23-MAY 13:07:20 IPL8 FKB count
 1
RESET FKB sched None RESET FKB in use flag
 FREE

194

Chapter 4. SDA Commands

RESET FKB time None RESET FKB count
 0
NM FKB sched None NM FKB in use flag
 FREE
NM FKB time None NM FKB count
 0
Fork status code 0

LAN Data Structures

 -- ESA Queue Information 23-MAY-1996 13:07:52 --
Control hold queue 80DCACF0 Status: Valid, empty
Control request queue 80DCACF8 Status: Valid, empty
Control pending queue 80DCAD00 Status: Valid, empty
Transmit request queue 80DCACE8 Status: Valid, empty
Transmit pending queue 80DCAD18 Status: Valid, empty
Receive buffer list 80DCAD38 Status: Valid, 17 elements
Receive pending queue 80DCAD20 Status: Valid, empty
Post process queue 80DCAD08 Status: Valid, empty
Delay queue 80DCAD10 Status: Valid, empty
Auto restart queue 80DCAD28 Status: Valid, empty
Netwrk mgmt hold queue 80DCAD30 Status: Valid, empty
 -- ESA Multicast Address Information 23-MAY-1996 13:07:52 --
AB-00-00-04-00-00
 -- ESA Unit Summary 23-MAY-1996 13:07:52 --
UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
ESA0 80D4F6C0
ESA1 80E35400 Eth 60-03 DECNET 0017
 STRTN,LEN,UNIQ,STRTD
LAN Data Structures

 -- ESA Counters Information 23-MAY-1996 13:07:52 --
Octets received 596 Octets sent
 230
PDUs received 8 PDUs sent
 5
Mcast octets received 596 Mcast octets sent
 138
Mcast PDUs received 8 Mcast PDUs sent
 3
Unrec indiv dest PDUs 0 PDUs sent, deferred
 0
Unrec mcast dest PDUs 1 PDUs sent, one coll
 0
Data overruns 0 PDUs sent, mul coll
 0
Unavail station buffs 0 Excessive collisions
 0
Unavail user buffers 0 Late collisions
 0
CRC errors 0 Carrier check failure
 0
Alignment errors 0 Last carrier failure
 None

195

Chapter 4. SDA Commands

Rcv data length err 0 Coll detect chk fail
 5
Frame size errors 0 Short circuit failure
 0
Frames too long 0 Open circuit failure
 0
Seconds since zeroed 34 Transmits too long
 0
Station failures 0 Send data length err
 0

LAN Data Structures

 -- ESA Counters Information (cont) 23-MAY-1996 13:07:52 --
No work transmits 0 Ring avail transitions
 0
Buffer_Addr transmits 0 Ring unavail transitions
 0
SVAPTE/BOFF transmits 0 Loopback sent
 0
Global page transmits 0 System ID sent
 0
Bad PTE transmits 0 ReqCounters sent
 0
Restart pending counter 0 Internal counters size
 40
+00 MCA not enabled 187 +2C Generic (or unused)
 00000000
+04 Xmt underflows 0 +30 Generic (or unused)
 00000000
+08 Rcv overflows 0 +34 Generic (or unused)
 00000000
+0C Memory errors 0 +38 Generic (or unused)
 80DCAD18
+10 Babbling errors 0 +3C Generic (or unused)
 80DCAD18
+14 Local buffer errors 0 +40 Generic (or unused)
 004E0840
+18 LANCE interrupts 202 +44 Generic (or unused)
 61616161
+1C Xmt ring <31:0> 00000000 +48 Generic (or unused)
 61616161
+20 Xmt ring <63:32> 00000000 +4C Generic (or unused)
 61616161
+24 Soft errors handled 0 +50 Generic (or unused)
 61616161
+28 Generic (or unused) 00000000 +54 Generic (or unused)
 61616161
LAN Data Structures

 -- ESA Error Information 23-MAY-1996 13:07:52 --
Fatal error count 0 Last error CSR
 00000000
Fatal error code None Last fatal error
 None

196

Chapter 4. SDA Commands

Prev error code None Prev fatal error
 None
Transmit timeouts 0 Last USB time
 None
Control timeouts 0 Last UUB time
 None
Restart failures 0 Last CRC time
 None
Power failures 0 Last CRC srcadr
 None
Bad PTE transmits 0 Last length erro
 None
Loopback failures 0 Last exc collisi
 None
System ID failures 0 Last carrier fai
 None
ReqCounters failures 0 Last late collis
 None
LAN Data Structures

 -- ESA0 Template Unit Information 23-MAY-1996 13:07:52 --
LSB address 80DCA980 Error count
 0
VCIB address 00000000 Parameter mask
 00000000
Stop IRP address 00000000 Promiscuous mode
 OFF
Restart IRP address 00000000 All multicast mode
 OFF
LAN medium CSMACD Source Routing mode
 TRANSPARENT
Packet format Ethernet Access mode
 EXCLUSIVE
Eth protocol type 00-00 Shared user DES
 None
802E protocol ID 00-00-00-00-00 Padding mode
 ON
802.2 SAP 00 Automatic restart
 DISABLED
802.2 Group SAPs 00,00,00,00 Allow prom client
 ON
Controller mode NORMAL Can change address
 OFF
Internal loopback OFF 802.2 service
 User
CRC generation mode ON Rcv buffers to save
 1
Functional Addr mod ON Minimum rcv buffers
 4
Hardware address 08-00-03-DE-00-12 User transmit FC/AC
 ON
Physical address FF-FF-FF-FF-FF-FF User receive FC/AC
 OFF

LAN Data Structures

197

Chapter 4. SDA Commands

 -- ESA1 60-03 (DECNET) Unit Information 23-MAY-1996 13:07:52
 --
LSB address 80DCA980 Error count
 0
VCIB address 00000000 Parameter mask
 00DA8695
Stop IRP address 80E047C0 Promiscuous mode
 OFF
Restart IRP address 00000000 All multicast mode
 OFF
LAN medium CSMACD Source Routing mode
 TRANSPARENT
Packet format Ethernet Access mode
 EXCLUSIVE
Eth protocol type 60-03 Shared user DES
 None
802E protocol ID 00-00-00-00-00 Padding mode
 ON
802.2 SAP 00 Automatic restart
 DISABLED
802.2 Group SAPs 00,00,00,00 Allow prom client
 ON
Controller mode NORMAL Can change address
 OFF
Internal loopback OFF 802.2 service
 User
CRC generation mode ON Rcv buffers to save
 10
Functional Addr mod ON Minimum rcv buffers
 4
Hardware address 08-00-03-DE-00-12 User transmit FC/AC
 ON
Physical address AA-00-04-00-88-FE User receive FC/AC
 OFF
LAN Data Structures

 -- ESA1 60-03 (DECNET) Unit Information (cont) 23-MAY-1996
 13:07:52 --
Last receive 23-MAY 13:07:47 Starter's PID
 0001000F
Last transmit 23-MAY 13:07:50 Maximum header size
 16
Last start attempt 23-MAY 13:07:20 Maximum buffer size
 1498
Last start done 23-MAY 13:07:20 Rcv quota charged
 15040
Last start failed None Default FC value
 00
MCA match enabled 01 Default AC value
 00
Last MCA filtered AB-00-00-04-00-00 Maintenance state
 ON
UCB status: 00000017 STRTN,LEN,UNIQ,STRTD
Receive IRP queue 80E356E8 Status: Valid, 1 element
Receive pending queue 80E356E0 Status: Valid, empty
Multicast address table, embedded:
 AB-00-00-04-00-00

198

Chapter 4. SDA Commands

LAN Data Structures

 -- ESA1 60-03 (DECNET) Counters Information 23-MAY-1996 13:07:52
 --
Octets received 483 Octets sent
 180
PDUs received 7 PDUs sent
 3
Mcast octets received 483 Mcast octets sent
 180
Mcast PDUs received 7 Mcast PDUs sent
 3
Unavail user buffer 0 Multicast not enabled
 0
Last UUB time None User buffer too small
 0

The SHOW LAN/FULL command displays information for all LAN, LSB, and UCB data structures.

2. SDA> SHOW LAN/TIME
 -- LAN History Information 12-FEB-1995 11:08:48 --
12-FEB 11:08:47.92 ESA Last receive
12-FEB 11:08:47.92 ESA Last fork scheduled
12-FEB 11:08:47.92 ESA Last fork time
12-FEB 11:08:47.77 ESA5 LAST Last receive
12-FEB 11:08:47.72 ESA3 LAT Last receive
12-FEB 11:08:41.25 ESA Last transmit
12-FEB 11:08:41.25 ESA5 LAST Last transmit
12-FEB 11:08:40.02 ESA2 DECnet Last receive
12-FEB 11:08:39.14 ESA2 DECnet Last transmit
12-FEB 11:08:37.39 ESA3 LAT Last transmit
12-FEB 10:19:25.31 ESA Last unavail user buffer
12-FEB 10:19:25.31 ESA2 DECnet Last unavail user buffer
11-FEB 14:10:20.09 ESA5 LAST Last start completed
11-FEB 14:10:02.16 ESA3 LAT Last start completed
11-FEB 14:09:58.44 ESA2 DECnet Last start completed
11-FEB 14:09:57.44 ESA Last DAT transmit

The SHOW LAN/TIME command displays print time information from device and unit data
structures.

3. SDA> SHOW LAN/VCI/DEVICE=ICB
 -- ICB VCI Information 17-APR-1996 14:22:07 --
LSB address = 80A1D580
Device state = 00000003 RUN,INITED
 -- ICB2 80-41 (LAST) VCI Information 17-APR-1996 14:22:07 --
VCIB address = 8096F238
CLIENT flags: 00000001 RCV_DCB
LAN flags: 00000004 LAN_INIT
DLL flags: 00000005 XMT_CHAIN,PORT_STATUS
UCB status: 00000015 STRTN,UNIQ,STRTD
VCI ID LAST VCI version
 00010001
UCB address 80A4C5C0 DP VCRP address
 00000000
Hardware address 00-00-93-08-52-CF LDC address
 80A1D720

199

Chapter 4. SDA Commands

Physical address 00-00-93-08-52-CF LAN medium
 TR
Transmit available 80A1D670 Outstanding operations
 0
Maximum receives 0 Outstanding receives
 0
Max xmt size 4444 Header size
 52
Build header rtn 808BF230 Report event rtn
 86327130
XMT initiate rtn 808BF200 Transmit complete rtn
 86326D80
XMT frame rtn 808BF210 Receive complete rtn
 86326A80
 -- ICB2 80-41 (LAST) VCI Information (cont) 17-APR-1996 14:22:07
 --
Portmgmt initiate rtn 808BF0C0 Portmgmt complete rtn
 86327100
Monitor request rtn 00000000 Monitor transmit rtn
 00000000
Monitor flags 00000000 Monitor receive rtn
 00000000
Port usable 00000000 Port unusable
 00000000

The SHOW LAN/VCI/DEVICE=ICB command displays the VCIB for a Token Ring device (ICB)
that has an active VCI user (LAST).

4. SDA> SHOW LAN/ELAN
 -- HCA Emulated LAN LSB Information 17-APR-1996 14:08:02 --
LSB address = 8098D200
Device state = 00000101 RUN,RING_AVAIL
Driver CM VC setup adr 808986A0 Driver CM VC teardown adr
 80898668
NIPG CM handle adr 8096C30C NIPG CM SVC handle
 00000000
NIPG CM agent handle adr 809B364C NIPG CM mgr lineup handle
 809B394C
NIPG CM ILMI IO handle 809B378C MIB II handle adr
 809B94CC
MIB handle adr 809B3ACC Queue header for EL LSBs
 00000000
DEC MIB handle adr 809BBD8C NIPG current TQEs used
 00000000
Count of allocated TQEs 0000000D NIPG current pool used
 0000D2C0
NIPG pool allocations 00075730
 -- ELA Emulated LAN LSB Information 17-APR-1996 14:08:02 --
LSB address = 80AB08C0
Device state = 00000001 RUN
ELAN name = ELAN 1
ELAN description = ATM ELAN
ELAN parent = HCA0
ELAN state = 00000001 ACTIVE
MAX transmit size MTU_1516 ELAN media type LAN_802_3
LEC attr buff adr 80AB1FC0 LEC attr buff size 00000328
Event mask 00000000 PVC identifer 00000000
Extended sense 00000000

200

Chapter 4. SDA Commands

 -- ELA Emulated LAN LEC Attributes 17-APR-1996 14:08:02 --
LAN type 00000000 LAN MTU 00000001
Proxy flag 00000000 Control timeout 0000000A
Max UF count 00000001 Max UF time 00000001
VCC timeout 000004B0 Max retry count 00000002
LEC id 00000002 Forw delay time 0000000F
Flush timeout 00000004 Path switch delay 00000006
SM state 00000070 Illegal CTRL frames 00000000
CTRL xmt failures 00000000 CTRL frames sent 0000000C
CTRL frames_rcvd 00000012 LEARPs sent 00000000
LEARPS rcvd 00000000 UCASTs sent direct 00000000
UCASTs flooded 00000006 UCASTs discarded 00000001
NUCASTs sent 00000000
Local ESI 00000000.00000000
BUS ATM addr 3999990000000008002BA57E80.AA000302FF12.00
LES ATM addr 3999990000000008002BA57E80.AA000302FF14.00
My ATM addr 3999990000000008002BA57E80.08002B2240A0.00

The SHOW LAN/ELAN command displays information for the parent ATM device (HCA) driver
and the ELAN pseudo-device (ELA) driver.

5. SDA> SHOW LAN/ELAN/DEV=ELA
 -- ELA Emulated LAN LSB Information 17-APR-1996 14:08:22 --
LSB address = 80AB08C0
Device state = 00000001 RUN
ELAN name = ELAN 1
ELAN description = ATM ELAN
ELAN parent = HCA0
ELAN state = 00000001 ACTIVE
MAX transmit size MTU_1516 ELAN media type LAN_802_3
LEC attr buff adr 80AB1FC0 LEC attr buff size 00000328
Event mask 00000000 PVC identifer 00000000
Extended sense 00000000
 -- ELA Emulated LAN LEC Attributes 17-APR-1996 14:08:22 --
LAN type 00000000 LAN MTU 00000001
Proxy flag 00000000 Control timeout 0000000A
Max UF count 00000001 Max UF time 00000001
VCC timeout 000004B0 Max retry count 00000002
LEC id 00000002 Forw delay time 0000000F
Flush timeout 00000004 Path switch delay 00000006
SM state 00000070 Illegal CTRL frames 00000000
CTRL xmt failures 00000000 CTRL frames sent 0000000C
CTRL frames_rcvd 00000012 LEARPs sent 00000000
LEARPS rcvd 00000000 UCASTs sent direct 00000000
UCASTs flooded 00000006 UCASTs discarded 00000001
NUCASTs sent 00000000
Local ESI 00000000.00000000
BUS ATM addr 3999990000000008002BA57E80.AA000302FF12.00
LES ATM addr 3999990000000008002BA57E80.AA000302FF14.00
My ATM addr 3999990000000008002BA57E80.08002B2240A0.00

The SHOW LAN/ELAN/DEVICE=ELA command displays information for the ELAN pseudo-
device (ELA) driver only.

6. SDA> SHOW LAN/ELAN/DEVICE=HCA
 -- HCA Emulated LAN LSB Information 17-APR-1996 14:08:25 --
LSB address = 8098D200
Device state = 00000101 RUN,RING_AVAIL

201

Chapter 4. SDA Commands

Driver CM VC setup adr 808986A0 Driver CM VC teardown adr
 80898668
NIPG CM handle adr 8096C30C NIPG CM SVC handle
 00000000
NIPG CM agent handle adr 809B364C NIPG CM mgr lineup handle
 809B394C
NIPG CM ILMI IO handle 809B378C MIB II handle adr
 809B94CC
MIB handle adr 809B3ACC Queue header for EL LSBs
 00000000
DEC MIB handle adr 809BBD8C NIPG current TQEs used
 00000000
Count of allocated TQEs 0000000D NIPG current pool used
 0000D2C0
NIPG pool allocations 000757B2

The SHOW LAN/ELAN/DEVICE=HCA command displays information for the ATM device (HCA)
driver only.

4.55. SHOW LOCKS
Displays information about all lock management locks in the system, or about a specified lock.

Format
SHOW LOCKS [lock-id

| /ADDRESS=n

| /ALL (d)

| /BRIEF

| /BLOCKING

| /CACHED

| /CONVERT

| /GRANTED

| /NAME=name

| /STATUS=(keyword[,...])

| /WAITING] or SHOW LOCKS {/POOL | /SUMMARY}

Parameters
lock-id

Name of a specific lock.

Qualifiers
/ADDRESS=n

Displays a specific lock, given the address of the lock block.

202

Chapter 4. SDA Commands

/ALL

Lists all locks that exist in the system. This is the default behavior of the SHOW LOCKS command.

/BLOCKING

Displays only the locks that have a blocking AST specified or attached.

/BRIEF

Displays a single line of information for each lock.

/CACHED

Displays locks that are no longer valid. The memory for these locks is saved so that later requests for
locks can use them. Cached locks are not displayed in the other SHOW LOCKS commands.

/CONVERT

Displays only the locks that are on the conversion queue.

/GRANTED

Displays only the locks that are on the granted queue.

/NAME=name

Displays all locks on the specified resource. Name can be the actual name of the resource, if it
only contains uppercase letters, numerals, the underscore (_), dollar sign, colon (:), and some other
printable characters, as for example, /NAME=MY_LOCK. If it contains other printable characters
(including lowercase letters), you may need to enclose the name in quotation marks (""), as for
example, /NAME="My_Lock/47". If it contains nonprintable characters, you can specify the
name as a comma-separated list comprised of strings and hexadecimal numbers. For example, /
NAME=("My_Lock",0C00,"/47") would specify the name "My_Lock<NUL><FF>/47". The
hexadecimal number can be no more than 8 digits (4 bytes) in length. Nonprintable sequences of
more than 4 bytes must be split into multiple hexadecimal numbers. The maximum length of a
resource name is 32 characters.

/POOL

Displays the lock manager's poolzone information, which contains the lock blocks (LKB) and
resource blocks (RSB).

/STATUS=(keyword[,...])

Displays only the locks that have the specified status bits set in the LKB$L_STATUS field. If you
specify only one keyword, you can omit the parentheses. Status keywords are as follows:

Keyword Meaning

2PC_IP Indicates a two-phase operation in progress
2PC_PEND Indicates a two-phase operation pending
ASYNC Completes request asynchronously
BLKASTFLG Specifies a blocking AST
BLKASTQED Indicates a blocking AST is queued
BRL Indicates a byte range lock
CACHED Indicates a lock block in cache

203

Chapter 4. SDA Commands

Keyword Meaning

CVTSUBRNG Indicates a sub-range convert request
CVTTOSYS Converts back to system-owned lock
DBLKAST Delivers a blocking AST
DCPLAST Delivers a completion AST
DPC Indicates a delete pending cache lock
FLOCK Indicates a fork lock
GRSUBRNG Grants sub-range lock
IP Indicates operation in process
MSTCPY Indicates a lock block is a master copy
NEWSUBRNG Indicates a new sub-range request
NOQUOTA Does not charge quota
PCACHED Indicates lock block needs to be cached
PROTECT Indicates a protected lock
RESEND Resends during failover
RM_RBRQD Requires remaster rebuild
RNGBLK Specifies a range block
RNGCHG Indicates a changing range
TIMOUTQ Indicates lock block is on timeout queue
VALBLKRD Indicates read access to lock value block
VALBLKWRT Indicates write access to lock value block
WASSYSOWN Indicates was system-owned lock

/SUMMARY

Displays summary data and performance counters.

/WAITING

Displays only the waiting locks.

Description
The SHOW LOCKS command displays the information described in the table below for each lock
management lock in the system, or for the lock indicated by lock-id, an address or name. (Use the
SHOW SPINLOCKS command to display information about spinlocks.) You can obtain a similar
display for the locks owned by a specific process by issuing the appropriate SHOW PROCESS/LOCKS
command. See the VSI OpenVMS Programming Concepts Manual for additional information.

You can display information about the resource to which a lock is queued by issuing the SHOW
RESOURCES command specifying the resource's lock-id.

Table 4.3. Contents of the SHOW LOCKS and SHOW PROCESS/LOCKS Displays

Display Element Description

Process Index Index in the PCB array to a pointer to the process
control block (PCB) of the process that owns the

204

Chapter 4. SDA Commands

Display Element Description
lock. This display element is produced only by the
SHOW PROCESS/LOCKS command.

Name Name of the process that owns the lock. This
display element is produced only by the SHOW
PROCESS/LOCKS command.

Extended PID Clusterwide identification of the process that owns
the lock. This display element is produced only by
the SHOW PROCESS/LOCKS command.

Lock ID Identification of the lock.
PID Systemwide identification of the lock.
Flags Information specified in the request for the lock.
Par. ID Identification of the lock's parent lock.
Sublocks Count of the locks that the lock owns.
LKB Address of the lock block (LKB). If a blocking

AST has been enabled for this lock, the notation
"BLKAST" appears next to the LKB address.

Priority The lock priority.
Granted at Lock mode at which the lock was granted.
RSB Address of the resource block.
Resource Dump of the resource name. The two leftmost

columns of the dump show its contents as
hexadecimal values, the least significant byte
being represented by the rightmost two digits. The
rightmost column represents its contents as ASCII
text, the least significant byte being represented by
the leftmost character.

Status Status of the lock, information used internally by
the lock manager.

Length Length of the resource name.
Mode Processor access mode of the namespace in which

the resource block (RSB) associated with the lock
resides.

Owner Owner of the resource. Certain resources owned
by the operating system list "System" as the owner.
Resources owned by a group have the number (in
octal) of the owning group in this field.

Copy Indication of whether the lock is mastered on the
local system or is a process copy.

Examples
1. SDA> SHOW LOCKS

Lock Database

205

Chapter 4. SDA Commands

Lock id: 3E000002 PID: 00000000 Flags: CONVERT NOQUEUE
 SYNCSTS
Par. id: 00000000 SUBLCKs: 0 NOQUOTA CVTSYS
LKB: FFFFFFFF.7DF48150 BLKAST: 81107278
Priority: 0000

Granted at CR 00000000-FFFFFFFF

RSB: FFFFFFFF.7DF68D50
Resource: 494D6224 42313146 F11B$bMI Status: NOQUOTA VALBLKR
 VALBLKW
 Length 18 4D55445F 5944414C LADY_DUM
 Kernel mode 00000000 00005350 PS......
 System 00000000 00000000

Local copy

Lock Database

Lock id: 3F000003 PID: 00000000 Flags: VALBLK CONVERT
 SYNCSTS
Par. id: 0100007A SUBLCKs: 0 CVTSYS
LKB: FFFFFFFF.7DF48250 BLKAST: 00000000
Priority: 0000

Granted at NL 00000000-FFFFFFFF

RSB: FFFFFFFF.7DF51D50
Resource: 01F77324 42313146 F11B$s÷. Status: NOQUOTA VALBLKR
 VALBLKW
 Length 10 00000000 00000000
 Kernel mode 00000000 00000000
 System 00000000 00000000

Local copy

Lock Database

Lock id: 0A000004 PID: 0001000F Flags: VALBLK CONVERT
 SYNCSTS
Par. id: 00000000 SUBLCKs: 0 SYSTEM NODLCKW
 NODLCKB
LKB: FFFFFFFF.7DF48350 BLKAST: 81190420 QUECVT
Priority: 0000

Granted at EX 00000000-FFFFFFFF

RSB: FFFFFFFF.7DF50850
Resource: 004F0FDF 24534D52 RMS$ß.O. Status: VALBLKR VALBLKW
 Length 26 5F313039 58020000 ...X901_
 Exec. mode 00202020 204C354B K5L .
 System 00000000 00000000

Local copy

 .

206

Chapter 4. SDA Commands

 .
 .

2. SDA> SHOW RESOURCES/LOCKID=0A000004
Resource Database

RSB: FFFFFFFF.7DF50850 GGMODE: EX Status: DIRENTR VALID
Parent RSB: 00000000.00000000 CGMODE: EX
Sub-RSB count: 0 FGMODE: EX
Lock Count: 1 RQSEQNM: 0000
BLKAST count: 1 CSID: 00000000 (MILADY)

Resource: 004F0FDF 24534D52 RMS$ß.O. Valblk: 00000000
 00000000
 Length 26 5F313039 58020000 ...X901_ 00000000
 00000000
 Exec. mode 00202020 204C354B K5L .
 System 00000000 00000000 Seqnum: 00000000

Granted queue (Lock ID / Gr mode / Range):
 0A000004 EX 00000000-FFFFFFFF

Conversion queue (Lock ID / Gr mode / Range -> Rq mode / Range):
 *** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode / Range):
 *** EMPTY QUEUE ***

This SDA session shows the output of the SHOW LOCKS command for several locks. The SHOW
RESOURCES command, executed for the last displayed lock, verifies that the lock is in the
resource's granted queue. (See Table 4-26 for a full explanation of the contents of the display of the
SHOW RESOURCES command.)

3.

This example shows the brief display for all locks with a blocking AST.

4.56. SHOW MACHINE_CHECK
Displays the contents of the stored machine check frame. This command is valid for the DEC 4000
Alpha, DEC 7000 Alpha, and DEC 10000 Alpha computers only.

207

Chapter 4. SDA Commands

Format
SHOW MACHINE_CHECK [/FULL] [cpu-id]

Parameters
cpu-id

Numeric value indicating the identity of the CPU for which context information is to be displayed.
This parameter changes the SDA current CPU (the default) to the CPU specified with cpu-id. If you
specify the cpu-id of a processor that was not active at the time of the system failure, SDA displays
the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

If you use the cpu-id parameter, the SHOW MACHINE_CHECK command performs an implicit
SET CPU command, making the CPU indicated by cpu-id the current CPU for subsequent SDA
commands. (See the description of the SET CPU command and Section 2.5 for information on how
this can affect the CPU context---and process context---in which SDA commands execute.)

Qualifiers
/FULL

Specifies that a detailed version of the machine check information be displayed. This is currently
identical to the default summary display.

Description
The SHOW MACHINE_CHECK command displays the contents of the stored machine check frame. A
separate frame is allocated at boot time for every CPU in a multiple-CPU system. This command is valid
for the DEC 4000 Alpha, DEC 7000 Alpha, and DEC 10000 Alpha computers only.

If you do not specify a qualifier, a summary version of the machine check frame is displayed.

The default cpu-id is the SDA current CPU.

Examples
1. SDA> SHOW MACHINE_CHECK

CPU 00 Stored Machine Check Crash Data

Processor specific information:

Exception address: FFFFFFFF.800B0250 Exception Summary:
 00000000.00000000
Pal base address: 00000000.00008000 Exception Mask:
 00000000.00000000
HW Interrupt Request: 00000000.00000342 HW Interrupt Ena:
 00000001.FFC01CE0
MM_CSR 00000000.00003640 ICCSR:
 00000002.381F0000
D-cache address: 00000007.FFFFFFFF D-cache status:
 00000000.000002E0

208

Chapter 4. SDA Commands

BIU status: 00000000.00000050 BIU address [7..0]:
 00000000.000060E0
BIU control: 00000008.50006447 Fill Address:
 00000000.00006120
Single-bit syndrome: 00000000.00000000 Processor mchck VA:
 00000000.00006190
A-box control: 00000000.0000040E B-cache TAG:
 00106100.83008828
System specific information:

Garbage bus info: 00200009 00000038 Device type:
 000B8001
LCNR: 00000001 Memory error:
 00000000
LBER: 00000009 Bus error synd 0,1: 00000000
 00000000
Bus error cmd: 00048858 00AB1C88 Bus error synd 2,3: 00000000
 0000002C
LEP mode: 00010010 LEP lock address:
 00041108

The SHOW MACHINE_CHECK command in this SDA display shows the contents of the stored
machine check frame.

2. SDA> SHOW MACHINE_CHECK 1
CPU 01 Stored Machine Check Crash Data

Processor specific information:

Exception address: FFFFFFFF.800868A0 Exception Summary:
 00000000.00000000
Pal base address: 00000000.00008000 Exception Mask:
 00000000.00000000
HW Interrupt Request: 00000000.00000342 HW Interrupt Ena:
 00000000.1FFE1CE0
MM_CSR 00000000.00005BF1 ICCSR:
 00000000.081F0000
D-cache address: 00000007.FFFFFFFF D-cache status:
 00000000.000002E0
BIU status: 00000000.00000050 BIU address [7..0]:
 00000000.000063E0
BIU control: 00000008.50006447 Fill Address:
 00000000.00006420
Single-bit syndrome: 00000000.00000000 Processor mchck VA:
 00000000.00006490
A-box control: 00000000.0000040E B-cache TAG:
 35028EA0.50833828
System specific information:

Garbage bus info: 00210001 00000038 Device type:
 000B8001
LCNR: 00000001 Memory error:
 00000080
LBER: 00040209 Bus error synd 0,1: 00000000
 00000000
Bus error cmd: 00048858 00AB1C88 Bus error synd 2,3: 00000000
 0000002C

209

Chapter 4. SDA Commands

LEP mode: 00010010 LEP lock address:
 00041108

The SHOW MACHINE_CHECK command in this SDA display shows the contents of the stored
machine check frame for cpu-id 01.

4.57. SHOW MEMORY
Displays the availability and usage of memory resources.

Format
SHOW MEMORY [/ALL][/BUFFER_OBJECTS][/CACHE][/FILES]

[/FULL][/GH_REGIONS][/PHYSICAL_PAGES][/POOL]

[/RESERVED][/SLOTS]

Parameters
None.

Qualifiers
/ALL

Displays all available information, that is, information displayed by the following qualifiers:

• /BUFFER_OBJECTS

• /CACHE

• /FILES

• /GH_REGIONS

• /PHYSICAL_PAGES

• /POOL

• /RESERVED

• /SLOTS

This is the default display.

/BUFFER_OBJECTS

Displays information about system resources used by buffer objects.

/CACHE

Displays information about either the Virtual I/O Cache facility or the Extended File Cache facility.
The system parameter VCC_FLAGS determines which is used. The cache facility information is
displayed as part of the SHOW MEMORY and SHOW MEMORY/CACHE/FULL commands.

210

Chapter 4. SDA Commands

/FILES

Displays information about the use of each paging and swapping file currently installed.

/FULL

When used with the /POOL and /CACHE qualifiers, displays additional information. This qualifier
is ignored otherwise. For /CACHE, the additional information is only displayed when the Virtual I/
O Cache facility is in use (Alpha only); /FULL is ignored if the Extended File Cache facility is in
use. Additional information on how memory is being used by the Extended File Cache facility can
be obtained using the XFC extension described in Chapter 9.

/GH_REGIONS

Displays information about the granularity hint regions (GHR) that have been established. For each
of these regions, information is displayed about the size of the region, the amount of free memory,
the amount of memory in use, and the amount of memory released to OpenVMS from the region.
The granularity hint regions information is also displayed as part of SHOW MEMORY and SHOW
MEMORY/ALL commands.

/PHYSICAL_PAGES

Displays information about the amount of physical memory and the number of free and modified
pages.

/POOL

Displays information about the usage of each dynamic memory (pool) area, including the amount of
free space and the size of the largest contiguous block in each area.

/RESERVED

Displays information about memory reservations.

/SLOTS

Displays information about the availability of process control block (PCB) vector slots and balance
slots.

Description
For more information about the SHOW MEMORY command, see the description in the VSI OpenVMS
DCL Dictionary or online help.

4.58. SHOW PAGE_TABLE
Displays a range of system page table entries, the entire system page table, or the entire global page table.

Format
SHOW PAGE_TABLE [range | /FREE [/HEADER=address]

| /GLOBAL | /GPT | /PT

211

Chapter 4. SDA Commands

| /INVALID_PFN [=option]

| /NONMEMORY_PFN [=option]

| /PTE_ADDRESS | /SECTION_INDEX=n

| /S0S1 (d) | /S2 | /SPTW | /ALL]

[/L1 | /L2 | /L3 (d)]

Parameters
range

Range of virtual addresses or PTE addresses for which SDA displays page table entries. If the
qualifier /PTE_ADDRESS is given, then the range is of PTE addresses; otherwise, the range is of
virtual addresses. The range given can be of process-space addresses.

If /PTE_ADDRESS is given, the range is expressed using the following syntax:

m Displays the single page table entry at address m
m:n Displays the page table entries from address m to

address n
m;n Displays n bytes of page table entries starting at

address m

If /PTE_ADDRESS is not given, then range is expressed using the following syntax:

m Displays the single page table entry that
corresponds to virtual address m

m:n Displays the page table entries that correspond to
the range of virtual addresses from m to n

m;n Displays the page table entries that correspond to
a range of n bytes starting at virtual address m

Note that OpenVMS Alpha and Integrity servers page protections are slightly different. For
additional information, see Section 2.8.

Qualifiers
/FREE

Causes the starting addresses and sizes of blocks of pages in the free PTE list to be displayed. The
qualifiers /S0S1 (default), /S2, /GLOBAL, and /HEADER determine which free PTE list is to be
displayed. A range cannot be specified, and no other qualifiers can be combined with /FREE.

/GLOBAL

Lists the global page table. When used with the /FREE qualifier, /GLOBAL indicates the free PTE
list to be displayed.

212

Chapter 4. SDA Commands

/HEADER=address

When used with the /FREE qualifier, the /HEADER=address qualifier displays the free PTE list for
the specified private page table.

/GPT

Specifies the portion of page table space that maps the global page table as the address range.

/INVALID_PFN [=option]

The /INVALID_PFN qualifier, which is valid only on platforms that supply an I/O memory map,
causes SDA to display only page table entries that map to PFNs that are not in the system's private
memory or in Galaxy-shared memory, and which are not I/O access pages.

/INVALID_PFN has two optional keywords, READONLY and WRITABLE. If neither keyword is
specified, all relevant pages are displayed.

If READONLY is specified, only pages marked for no write access are displayed. If WRITABLE
is specified, only pages that allow write access are displayed. For example, SHOW PAGE_TABLE/
ALL/INVALID_PFN=WRITABLE would display all system pages whose protection allows write,
but which map to PFNs that do not belong to this system.

/L1

/L2

/L3 (D)

Specifies the level for which page table entries are to be displayed for the specified portion of
memory. You can specify only one level. /L3 is the default.

/NONMEMORY_PFN [=option]

The /NONMEMORY_PFN qualifier causes SDA to display only page table entries that are not in
the system's private memory or in Galaxy-shared memory.

/NONMEMORY_PFN has two optional keywords, READONLY and WRITABLE. If neither
keyword is specified, all relevant pages are displayed.

If READONLY is specified, only pages marked for no write access are displayed. If WRITABLE
is specified, only pages that allow write access are displayed. For example, SHOW PAGE_TABLE/
ALL/NONMEMORY_PFN=WRITABLE would display all system pages whose protection allows
write, but which map to PFNs that do not belong to this system.

/PT

Specifies that the page table entries for the page table region of system space are to be displayed.

/PTE_ADDRESS

Specifies that the range given is of PTE addresses instead of the virtual addresses mapped by the
PTEs.

213

Chapter 4. SDA Commands

/SECTION_INDEX=n

Displays the page table for the range of pages in the global section or pageable part of a loaded
image. For pageable portions of loaded images, one of the qualifiers /L1, /L2, or /L3 can also be
specified.

/S0S1 (D)

/S2

Specifies the region whose page table entries are to be displayed. When used with the /FREE
qualifier, indicates the free PTE list to be displayed. By default, the page table entries or the free list
for S0 & S1 space is displayed.

/SPTW

Displays the contents of the system page table window.

/ALL

Displays the page table entries for all shared (system) addresses. It is equivalent to specifying all of /
S0S1, /S2, and /PT.

Description
If the /FREE qualifier is not specified, this command displays page table entries for the specified range
of addresses or section of memory. For each virtual address displayed by the SHOW PAGE_TABLE
command, the first eight columns of the listing provide the associated page table entry and describe its
location, characteristics, and contents. SDA obtains this information from the system page table or from
the process page table if a process_space address is given. The table below desand IMGACT process
pools. cribes the information displayed by the SHOW PAGE_TABLE command.

If the /FREE qualifier is specified, this command displays the free PTE list for the specified section of
memory.

The /L1, /L2, and /L3 qualifiers are ignored when used with the /FREE, /GLOBAL, and /SPTW
qualifiers.

Table 4.4. Virtual Page Information in the SHOW PAGE_TABLE Display

Value Meaning

MAPPED ADDRESS Virtual address that marks the base of the virtual
page(s) mapped by the PTE.

PTE ADDRESS Virtual address of the page table entry that maps
the virtual page(s).

PTE Contents of the page table entry, a quadword that
describes a system virtual page.

TYPE Type of virtual page. Table 4.5 shows the eight
types and their meanings.

READ (Alpha only.) A code, derived from bits in the
PTE, that designates the processor access modes
(kernel, executive, supervisor, or user) for which
read access is granted.

214

Chapter 4. SDA Commands

Value Meaning

WRIT (Alpha only.) A code, derived from bits in the PTE,
that designates the processor access modes (kernel,
executive, supervisor, or user) for which write
access is granted.

MLOA (Alpha only.) Letters that represent the setting of a
bit or a combination of bits in the PTE. These bits
indicate attributes of a page. Table 4.6 shows the
codes and their meanings.

AR/PL (Integrity servers only) The access rights and
privilege level of the page. Consists of a number
(0-7) and a letter (K, E, S, or U) that determines
access to a page in each mode.

KESU (Integrity servers only) The access allowed to the
page in each mode. This is an interpretation of
the AR/PL values in the previous column. For an
explanation of the access codes, see Section 2.8.

MLO (Integrity servers only) Letters that represent the
setting of a bit or a combination of bits in the PTE.
These bits indicate attributes of a page. Table 4.6
shows the codes and their meanings.

GH Contents of granularity hint bits.

Table 4.5. Types of Virtual Pages

Type Meaning

VALID Valid page (in main memory).
TRANS Transitional page (on free or modified page list).
DZERO Demand-allocated, zero-filled page.
PGFIL Page within a paging file.
STX Section table's index page.
GPTX Index page for a global page table.
IOPAG Page in I/O address space.
NXMEM Page not represented in physical memory.

The page frame number (PFN) of this page is
not mapped by any of the system's memory
controllers. This indicates an error condition.

Table 4.6. Bits In the PTE

Column Name Code Meaning

M M Page has been modified.
L L Page is locked into a working set.
L P Page is locked in physical

memory.
O K Owner is kernel mode.

215

Chapter 4. SDA Commands

Column Name Code Meaning

O E Owner is executive mode.
O S Owner is supervisor mode.
O U Owner is user mode.
A A Address space match is set

(Alpha only).

If the virtual page has been mapped to a physical page, the last five columns of the listing include
information from the page frame number (PFN) database; otherwise, the section is left blank. Table 4.7
describes the physical page information displayed by the SHOW PAGE_TABLE command.

Table 4.7. Physical Page Information in the SHOW PAGE_TABLE Display

Category Meaning

PGTYP Type of physical page. Table 4.8 shows the types of
physical pages.

LOC Location of the page within the system. Table 4.9
shows the possible locations with their meaning.

BAK Place to find information on this page when all
links to this PTE are broken: either an index into
a process section table or the number of a virtual
block in the paging file.

REFCNT Number of references being made to this page.
WSLX Working Set List Index. This shows as zero for

resident and global pages, and is left blank for
transition pages.

Table 4.8. Types of Physical Pages

Page Type Meaning

PROCESS Page is part of process space.
SYSTEM Page is part of system space.
GLOBAL Page is part of a global section.
GBLWRT Page is part of a global, writable section.
PPGTBL Page is part of a process page table.
GPGTBL Page is part of a global page table.
PHD Page is part of a process PHD. These page types

are variants of the PPGTBL page type.
PPT(Ln) Page is a process page table page at level n. These

page types are variants of the PPGTBL page type.
WSL Page is part of a process's working list. These page

types are variants of the PPGTBL page type.
SPT(Ln) Page is a system page table page at level n. These

page types are variants of the SYSTEM page type.
SHPT Page is part of a shared page table. These page

types are variants of the GBLWRT page type.

216

Chapter 4. SDA Commands

Page Type Meaning

PFNLST Page is in a Shared Memory Common Property
Partition PFN database. These page types are
variants of the SYSTEM page type.

SHM_REG Page is in a Shared Memory Region. These page
types are variants of the GBLWRT page type.

UNKNOWN Unknown.

Table 4.9. Locations of Physical Pages

Location Meaning

ACTIVE Page is in a working set.
MFYLST Page is in the modified page list.
FRELST Page is in the free page list.
BADLST Page is in the bad page list.
RELPND Release of the page is pending.
RDERR Page has had an error during an attempted read

operation.
PAGOUT Page is being written into a paging file.
PAGIN Page is being brought into memory from a paging

file.
ZROLST Page is in the zeroed-page list.
UNKNWN Location of page is unknown.

SDA indicates pages are inaccessible by displaying one of the following messages:

------- 1 null page: VA FFFFFFFE.00064000 PTE
 FFFFFFFD.FF800190

------- 974 null pages: VA FFFFFFFE.00064000 PTE
 FFFFFFFD.FF800190
 -to- FFFFFFFE.007FDFFF -to-
 FFFFFFFD.FF801FF8

In this case, the page table entries are not in use (page referenced is inaccessible).

------- 1 entry not in memory: VA FFFFFFFE.00800000 PTE
 FFFFFFFD.FF802000

------- 784384 entries not in memory: VA FFFFFFFE.00800000 PTE
 FFFFFFFD.FF802000
 -to- FFFFFFFF.7F7FDFFF -to-
 FFFFFFFD.FFDFDFF8

In this case, the page table entries do not exist (PTE itself is inaccessible).

------- 1 free PTE: VA FFFFFFFF.7F800000 PTE FFFFFFFD.FFDFEOOO

------- 1000 free PTEs: VA FFFFFFFF.7F800000 PTE FFFFFFFD.FFDFE000

217

Chapter 4. SDA Commands

 -to- FFFFFFFF.7FFCDFFF -to- FFFFFFFD.FFDFFF38

In this case, the page table entries are in the list of free system pages.

In each case, VA is the MAPPED ADDRESS of the skipped entry, and PTE is the PTE ADDRESS of
the skipped entry.

Examples
1. For an example of SHOW PAGE_TABLE output when the qualifier /FREE has not been given, see

the SHOW PROCESS/PAGE_TABLES command.

2. SDA> SHOW PAGE_TABLE/FREE
S0/S1 Space Free PTEs

 MAPPED ADDRESS PTE ADDRESS PTE COUNT

FFFFFFFF.82A08000 FFFFFFFD.FFE0A820 0001FFE0.A8580000 00000003
FFFFFFFF.82A16000 FFFFFFFD.FFE0A858 0001FFE0.A8900000 00000003
FFFFFFFF.82A24000 FFFFFFFD.FFE0A890 0001FFE0.B3C00000 00000003
FFFFFFFF.82CF0000 FFFFFFFD.FFE0B3C0 0001FFE0.B4010000 00000001
FFFFFFFF.82D00000 FFFFFFFD.FFE0B400 0001FFE0.B4680000 00000002
 .
 .
 .
FFFFFFFF.82E48000 FFFFFFFD.FFE0B920 0001FFE0.B9390000 00000001
FFFFFFFF.82E4E000 FFFFFFFD.FFE0B938 0001FFE0.BA200000 00000002
FFFFFFFF.82E88000 FFFFFFFD.FFE0BA20 0001FFE0.C9780000 00000003
FFFFFFFF.8325E000 FFFFFFFD.FFE0C978 0001FFE0.CC980000 00000003
FFFFFFFF.83326000 FFFFFFFD.FFE0CC98 00000000.00000000 0000066D

This example shows the output when you invoke the SHOW PAGE_TABLE/FREE command.

4.59. SHOW PARAMETER
Displays the name, location, and value of one or more SYSGEN parameters currently in use or at the
time that the system dump was taken.

Format
SHOW PARAMETER [sysgen_parameter]

[/ACP] [/ALL] [/CLUSTER] [/DYNAMIC] [/GALAXY] [/GEN] [/JOB] [/LGI] [/MAJOR] [/MULTIPROCESSING] [/OBSOLETE] [/PQL] [/RMS] [/SCS] [/SPECIAL] [/SYS] [/STARTUP] [/TTY]

Parameter
sysgen_parameter

The name of a specific parameter to be displayed. The name can include wildcards. However, a
truncated name is not recognized, unlike with the equivalent SYSGEN and SYSMAN commands.

Qualifiers
/ACP

Displays all Files-11 ACP parameters.

218

Chapter 4. SDA Commands

/ALL

Displays the values of all parameters except the special control parameters.

/CLUSTER

Displays all parameters specific to clusters.

/DYNAMIC

Displays all parameters that can be changed on a running system.

/GALAXY

Displays all parameters specific to Galaxy systems.

/GEN

Displays all general parameters.

/JOB

Displays all Job Controller parameters.

/LGI

Displays all LOGIN security control parameters.

/MAJOR

Displays the most important parameters.

/MULTIPROCESSING

Displays parameters specific to multiprocessing.

/OBSOLETE

Displays all obsolete system parameters. SDA displays obsolete parameters only if they are named
explicitly (no wildcards) or if /OBSOLETE is given.

/PQL

Displays the parameters for all default and minimum process quotas.

/RMS

Displays all parameters specific to OpenVMS Record Management Services (RMS).

/SCS

Displays all parameters specific to OpenVMS Cluster System Communications Services.

/SPECIAL

Displays all special control parameters.

/STARTUP

Displays the name of the site-independent startup procedure.

219

Chapter 4. SDA Commands

/SYS

Displays all active system parameters.

/TTY

Displays all parameters for terminal drivers.

Description
The SHOW PARAMETER command displays the name, location, and value of one or more SYSGEN
parameters at the time that the system dump is taken. You can specify either a parameter name, or one or
more qualifiers, but not both a parameter and qualifiers. If you do not specify a parameter or qualifiers,
then the last parameter displayed is displayed again.

The qualifiers are the equivalent to those available for the SHOW [parameter] command in the SYSGEN
utility and the PARAMETERS SHOW command in the SYSMAN utility. See the VSI OpenVMS System
Management Utilities Reference Manual for more information about these two commands. You can
combine qualifiers, and all appropriate SYSGEN parameters are displayed.

Note

To see the entire set of parameters, use the SDA command SHOW PARAMETER /ALL /SPECIAL /
STARTUP /OBSOLETE.

Examples

This example shows all parameters that have the string "SCS" in their name. For parameters defined as a
single bit, the name and value of the bit offset within the location used for the parameter are also given.

This example shows all parameters whose names begin with the string "WS". For parameters that have
both an external value (pagelets) and an internal value (pages), both are displayed.

220

Chapter 4. SDA Commands

This example shows all the parameters specific to multiprocessing, plus the name of the site-independent
startup command procedure.

4.60. SHOW PFN_DATA
Displays information that is contained in the page lists and PFN database.

Format
SHOW PFN_DATA { [/qualifier] | pfn [{:end-pfn|;length}] }

or

SHOW PFN_DATA/MAP

Parameters
pfn

Page frame number (PFN) of the physical page for which information is to be displayed.

end-pfn

Last PFN to be displayed. When you specify the end-pfn parameter, a range of PFNs is displayed.
This range starts at the PFN specified by the pfn parameter and ends with the PFN specified by the
end-pfn parameter.

length

Length of the PFN list to be displayed. When you specify the length parameter, a range of PFNs is
displayed. This range starts at the PFN specified by the pfn parameter and contains the number of
entries specified by the length parameter.

Qualifiers
/ADDRESS=PFN-entry-address

Displays the PFN database entry at the address specified. The address specified is rounded to the
nearest entry address, so if you have an address that points to one of the fields of the entry, the
correct database entry will still be found.

/ALL

Displays the following lists:

221

Chapter 4. SDA Commands

Free page list

Zeroed free page list

Modified page list

Bad page list

Untested page list

Private page lists, if any

Per-color or per-RAD free and zeroed free page lists

Entire database in order by page frame number

This is the default behavior of the SHOW PFN_DATA command. SDA precedes each list with a
count of the pages it contains and its low and high limits.

/BAD

Displays the bad page list. SDA precedes the list with a count of the pages it contains, its low limit,
and its high limit.

/COLOR [= {n|ALL}]

Displays data on page coloring. The table below shows the command options available with the
COLOR and RAD qualifiers, which are functionally equivalent.

Table 4.10. Command Options with the /COLOR and /RAD Qualifiers

Options Meaning

/COLOR 1 with no value Displays a summary of the lengths of the color 1
page lists for both free pages and zeroed pages.

/COLOR= n where n is a color number Displays the data in the PFN lists (for the
specified color) for both free and zeroed pages.

/COLOR=ALL Displays the data in the PFN lists (for all colors),
for both free and zeroed free pages.

/COLOR= n or /COLOR=ALL with /FREE or /
ZERO

Displays only the data in the PFN list (for the
specified color or all colors), for either free or
zeroed free pages as appropriate. The qualifiers /
BAD and /MODIFIED are ignored with /
COLOR= n and /COLOR=ALL.

/COLOR without an option specified together
with one or more of /FREE, /ZERO, /BAD, or /
MODIFIED

Displays the color summary in addition to the
display of the requested list.

Wherever COLOR is used in this table, RAD is equally applicable, both in the qualifier name and
the meaning.

For more information on page coloring, see VSI OpenVMS System Management Utilities Reference
Manual: M--Z.

222

Chapter 4. SDA Commands

/FREE

Displays the free page list. SDA precedes the list with a count of the pages it contains, its low limit,
and its high limit.

/MAP

Displays the contents of the PFN memory map. On platforms that support it, the I/O space map is
also displayed. You cannot combine the /MAP qualifier with any parameters or other qualifiers.

/MODIFIED

Displays the modified page list. SDA precedes the list with a count of the pages it contains, its low
limit, and its high limit.

/PRIVATE [=address]

Displays private PFN lists. If no address is given, all private PFN lists are displayed; if an address is
given, only the PFN list whose head is at the given address is displayed.

/RAD [= {n|ALL}]

Displays data on the disposition of pages among the Resource Affinity Domains (RADs) on
applicable systems. /RAD is functionally equivalent to /COLOR. See Table 4.10 for the command
options available with /RAD.

/SUMMARY[=(option,...)]

By default, displays a summary of all pages in the system, totaling pages by page location (Free
List, Modified List, Active, and so on) and by page type (Process, System, Global, and so on). Also,
provides a breakdown of active system pages by their virtual address (S0/S1, S2, and so on).

Additional information is displayed if one or more options are given. If multiple options are given,
they must be separated by commas and enclosed in parentheses. Available options are:

• /SUMMARY=PROCESS

Displays a breakdown of active process pages for each process by virtual address (P0, P1, and so
on), and of non-active process pages by page location.

• /SUMMARY=GLOBAL

Displays a breakdown for each global section of its in-memory pages by page location.

• /SUMMARY=RAD

If RADs are enabled on the system, displays a breakdown for each RAD of its in-memory pages
by location and type.

• /SUMMARY=ALL

Equivalent to /SUMMARY=(PROCESS,GLOBAL,RAD)

You cannot combine the /SUMMARY qualifier with any other qualifiers, but you can specify a
range.

/SYSTEM

Displays the entire PFN database in order by page frame number, starting at PFN 0000.

223

Chapter 4. SDA Commands

/UNTESTED

Displays the state of the untested PFN list that was set up for deferred memory testing.

/ZERO

Displays the contents of the zeroed free page list.

Description
For each page frame number it displays, the SHOW PFN_DATA command lists information used in
translating physical page addresses to virtual page addresses.

The display contains two or three lines: Table 4.11 shows the fields in line one, Table 4.12 shows the
fields in line two, and Table 4.13 shows the fields in line three, displayed only if relevant (page table page
or non-zero flags).

Table 4.11. PFN Data---Fields in Line One

Item Contents

PFN Page frame number.
DB ADDRESS Address of PFN structure for this page.
PT PFN PFN of the page table page that maps this page.
BAK Place to find information on this page when all

links to this PTE are broken: either an index into
a process section table or the number of a virtual
block in the paging file.

FLINK Forward link within PFN database that points to
the next physical page (if the page is on one of the
lists: FREE, MODIFIED, BAD, or ZEROED); this
longword also acts as the count of the number of
processes that are sharing this global section.

BLINK Backward link within PFN database (if the page is
on one of the lists: FREE, MODIFIED, BAD, or
ZEROED); also acts as an index into the working
set list.

SWP/BO Either a swap file page number or a buffer object
reference count, depending on a flag set in the
page state field.

LOC Location of the page within the system. Table 4.9
shows the possible locations with their meaning.

Table 4.12. PFN Data---Fields in Line Two

Item Contents

(Blank) First field of line two is left blank.
PTE ADDRESS Virtual address of the page table entry that

describes the virtual page mapped into this
physical page. If no virtual page is mapped into
this physical page then "<no backpointer>" is
displayed, and the next three fields are left blank.

224

Chapter 4. SDA Commands

Item Contents

PTE Type If a virtual page is mapped into this physical page,
a description of the type of PTE is provided across
the next three fields: one of "System-space PTE",
"Global PTE (section index nnnn)", "Process PTE
(process index nnnn)". If no virtual page is mapped
into this physical page, these fields are left blank.

REFCNT Number of references being made to this page.
PAGETYP Type of physical page. See Table 4.8 for the types

of physical pages and their meanings.

Table 4.13. PFN Data---Fields in Line Three

Item Contents

COUNTS If the page is a page table page, then the
contents of the PRN$W_PT_VAL_CNT, PFN
$W_PT_LCK_CNT, and PFN$W_PT_WIN_CNT
fields are displayed. The format is as follows:
VALCNT = nnnn LCKCNT = nnnn WINCNT =
nnnn

FLAGS The flags in text form that are set in page state.
Table 4.14 shows the possible flags and their
meaning.

Table 4.14. Flags Set in Page State

Flag Meaning

BUFOBJ Set if any buffer objects reference this page
COLLISION Indicates an empty collision queue when page read

is complete
BADPAG Indicates a bad page
RPTEVT Indicates a report event on I/O completion
DELCON Indicates a delete PFN when REFCNT=0
MODIFY Indicates a dirty page (modified)
UNAVAILABLE Indicates PFN is unavailable; most likely a console

page
SWPPAG_VALID Indicated swap file page number is valid
TOP_LEVEL_PT Level one (1) page table
SLOT Page is part of process's balance set
SHARED Shared memory page
ZEROED Shared memory page that has been zeroed

Examples
1. SDA> SHOW PFN_DATA/MAP

System Memory Map

225

Chapter 4. SDA Commands

Start PFN PFN count Flags
--------- --------- -----
00000000 000000FA 0009 Console Base
000000FA 00003306 000A OpenVMS Base
00003C00 000003FF 000A OpenVMS Base
00003FFF 00000001 0009 Console Base
00003400 00000800 0010 Galaxy_Shared

This example shows the output when you invoke the SHOW PFN/MAP command.

2. SDA> SHOW PFN 598:59f

PFN data base for PFN range

 PFN DB ADDRESS PT PFN BAK
 FLINK BLINK SWP/BO LOC
 PTE ADDRESS
 REFCNT PAGETYP
----------------- ----------------- ----------------- -----------------
 ----------------- ----------------- ------ -------
00000000.00000598 FFFFF802.06C16600 00000000.000001D7 FFFFFFFF.84D6F700
 00000000.00000000 00000000.00000000 ---- ACTIVE
 FFFFF801.FFD072A0 System-space PTE
 0001 SYSTEM

00000000.00000599 FFFFF802.06C16640 00000000.00000000 00000000.0001DBD9
 00000000.0001DBD9 00000000.000081B6 ---- FRELST
 <no backpointer>
 0000 SYSTEM

00000000.0000059A FFFFF802.06C16680 00000000.00000565 FF000000.00000000
 00000000.00000000 00000000.000000D4 ---- ACTIVE
 000007FF.FF700000 Process PTE (process index 001A)
 0001 PROCESS
 FLAGS = Modify

00000000.0000059B FFFFF802.06C166C0 00000000.0000493A 000000FD.00010000
 00000000.00000003 00000000.00000000 ---- ACTIVE
 FFFFF802.0F641680 Global PTE (section index 00FD)
 0001 GLOBAL

00000000.0000059C FFFFF802.06C16700 00000000.000005E3 FF000000.00000000
 00000000.00000000 00000000.00000136 ---- ACTIVE
 000007FE.00001C30 Process PTE (process index 000F)
 0001 PROCESS

00000000.0000059D FFFFF802.06C16740 00000000.0000059D 00000000.8705A000
 00000000.00000002 00000000.00000001 ---- ACTIVE
 000007FF.FFFFFFF8 Process PTE (process index 0005)
 0001 PPT(L1)
 VALCNT = 0002 LCKCNT = FFFF WINCNT = FFFF
 FLAGS = Modify,Top_Level_PT

00000000.0000059E FFFFF802.06C16780 00000000.000001D7 FFFFFFFF.84D6F700
 00000000.00000000 00000000.00000000 ---- ACTIVE

226

Chapter 4. SDA Commands

 FFFFF801.FFD07420 System-space PTE
 0001 SYSTEM

00000000.0000059F FFFFF802.06C167C0 00000000.000001D7 FFFFFFFF.84D6F700
 00000000.00000000 00000000.00000000 ---- ACTIVE
 FFFFF801.FFD07428 System-space PTE
 0001 SYSTEM

This example shows the output from SHOW PFN for a range of pages.

4.61. SHOW POOL
Displays the contents of the nonpaged dynamic storage pool, the bus-addressable pool, and the paged
dynamic storage pool. You can display part or all of each pool. If you do not specify a range or
qualifiers, the default is SHOW POOL/ALL. Optionally, you can display the pool history ring buffer and
pool statistics.

Format
SHOW POOL [range | /ALL (d)| /BAP | /NONPAGED | /PAGED]

[/BRIEF | /CHECK | /FREE | /HEADER | /MAXIMUM_BYTES [=n] | /SUMMARY | /TYPE=packet-type | /SUBTYPE=packet-type | /UNUSED]

[/RING_BUFFER[=address]]

[/STATISTICS [=ALL] [/NONPAGED | /BAP | /PAGED]

Parameter
range

Range of virtual addresses in pool that SDA is to examine. You can express a range using the
following syntax:

m:n Range of virtual addresses in pool from m to n
m;n Range of virtual addresses in pool starting at m

and continuing for n bytes

Qualifiers
/ALL

Displays the entire contents of the dynamic storage pool, except for those portions that are free
(available). This is the default behavior of the SHOW POOL command.

/BAP

Displays the contents of the bus-addressable dynamic storage pool currently in use.

/BRIEF

Displays only general information about the dynamic storage pool and its addresses.

/CHECK

Checks all free packets for POOLCHECK-style corruption, in exactly the same way that the system
does when generating a POOLCHECK crash dump.

227

Chapter 4. SDA Commands

/FREE

Displays the entire contents, both allocated and free, of the specified region or regions of pool. Use
the /FREE qualifier with a range to show all of the used and free pool in the given range.

/HEADER

Displays only the first 16 bytes of each data packet found within the specified region or regions of
pool.

/MAXIMUM_BYTES [=n]

Displays only the first n bytes of a pool packet; if you specify /MAXIMUM_BYTES without a
value, the default is 64 bytes.

/NONPAGED

Displays the contents of the nonpaged dynamic storage pool currently in use.

/PAGED

Displays the contents of the paged dynamic storage pool currently in use.

/RING_BUFFER [=address]

Displays the contents of the pool history ring buffer if pool checking has been enabled. Entries are
displayed in reverse chronological order, that is, most to least recent. If address is specified, the only
entries in the ring buffer displayed are for pool blocks that address lies within.

/STATISTICS [= ALL]

Displays usage statistics about each lookaside list and the variable free list. For each lookaside list,
its queue header address, packet size, the number of packets, attempts, fails, and deallocations are
displayed. (If pool checking is disabled, the attempts, fails, and deallocations are not displayed.) For
the variable free list, its queue header address, the number of packets and the size of the smallest and
largest packets are displayed. You can further qualify /STATISTICS by using either /NONPAGED, /
BAP, or /PAGED to display statistics for a specified pool area. Paged pool only has lookaside lists
if the system parameter PAGED_LAL_SIZE has been set to a nonzero value; therefore paged pool
lookaside list statistics are only displayed if there has been activity on a list.

If you specify /STATISTICS without the ALL keyword, only active lookaside lists are displayed.
Use /STATISTICS = ALL to display all lookaside lists.

/SUBTYPE=packet-type

Displays the packets within the specified region or regions of pool that are of the indicated packet-
type. For information on packet-type, see packet-type in the Description section.

/SUMMARY

Displays only an allocation summary for each specified region of pool.

/TYPE=packet-type

Displays the packets within the specified region or regions of pool that are of the indicated packet-
type. For information on packet-type, see packet-type in the Description section.

/UNUSED

Displays only variable free packets and lookaside list packets, not used packets.

228

Chapter 4. SDA Commands

Description
The SHOW POOL command displays information about the contents of any specified region of dynamic
storage pool. There are several distinct display formats, as follows:

• Pool layout display. This display includes the addresses of the pool structures and lookaside lists, and
the ranges of memory used for pool.

• Full pool packet display. This display has a section for each packet, consisting of a summary line (the
packet type, its start address and size, and, on systems that have multiple Resource Affinity Domains
(RADs), the RAD number), followed by a dump of the contents of the packet in hexadecimal and
ASCII.

• Header pool packet display. This display has a single line for each packet. This line contains the
packet type, its start address and size, and, on systems that have multiple RADs, the RAD number,
followed by the first 16 bytes of the packet, in hexadecimal and ASCII.

• Pool summary display. This display consists of a single line for each packet type, and includes the
type, the number of occurrences and the total size, and the percentage of used pool consumed by this
packet type.

• Pool statistics display. This display consists of statistics for variable free pool and for each lookaside
list. For variable free pool, it includes the number of packets, the total bytes available, and the sizes
of the smallest and largest packets. In addition, if pool checking is enabled, the total bytes allocated
from the variable list and the number of times pool has been expanded are also displayed.

For lookaside lists, the display includes the listhead address and size, the number of packets (both the
maintained count and the actual count), the operation sequence number for the list, the allocation
attempts and failures, and the number of deallocations.

On systems with multiple RADs, statistics for on-RAD deallocations are included in the display for
the first RAD.

• Ring buffer display. This display is only available when pool checking is enabled. It consists of one
line for each packet in the ring buffer and includes the address and size of the pool packet being
allocated or deallocated, its type, the PC of the caller and the pool routine called, the CPU and IPL
of the call, and the system time.

Optionally, the ring buffer display can be limited to only the entries that contain a given address.

The qualifiers used on the SHOW POOL command determine which displays are generated. The default
is the pool layout display, followed by the full pool packet display, followed by the pool summary display,
these being generated in turn for Nonpaged Pool, Bus-Addressable Pool (if it exists in the system or
dump being analyzed), and then Paged Pool.

If you specify a range, type, or subtype, then the pool layout display is not generated, and the pool
summary display is a summary only for the range, type, or subtype, and not for the entire pool.

Not all displays are relevant for all pool types. For example, Paged Pool may have no lookaside lists,
in which case the Paged Pool statistics display will consist only of variable free pool information. And
because there is a single ring buffer for all pools, only one ring buffer display is generated even if all
pools are being displayed.

Packet-type

229

Chapter 4. SDA Commands

Each packet of pool has a type field (a byte containing a value in the range of 0-255). Many of these
type values have names associated that are defined in $DYNDEF in SYS$LIBRARY:LIB.MLB. The
packet-type specified in the /TYPE qualifier of the SHOW POOL command can either be the value of
the pool type or its associated name.

Some pool packet types have an additional subtype field (also a byte containing a value in the range
of 0--255), many of which also have associated names. The packet-type specified in the /SUBTYPE
qualifier of the SHOW POOL command can either be the value of the pool type or its associated name.
However, if given as a value, a /TYPE qualifier (giving a value or name) must also be specified. Note
also that /TYPE and /SUBTYPE are interchangeable if packet-type is given by name. The table below
shows several examples.

Table 4.15. /TYPE and /SUBTYPE Qualifier Examples

/TYPE and /SUBTYPE Qualifiers Meaning

/TYPE = CI All CI packets regardless of subtype
/TYPE = CI_MSG All CI packets with subtype CI_MSG
/TYPE = MISC/SUBTYPE = 120 All MISC packets with subtype 120
/TYPE = 0 or /TYPE = UNKNOWN All packets with an unknown TYPE/SUBTYPE

combination

230

Chapter 4. SDA Commands

Examples
1.

231

Chapter 4. SDA Commands

This example shows the Nonpaged Pool portion of the default SHOW POOL display.

2. SDA> SHOW POOL/TYPE=IPC/HEADER 8156E140:815912C0

Non-Paged Dynamic Storage Pool

Dump of packets allocated from Non-Paged Pool

 Packet type/subtype Start Length RAD
 Header contents
------------------------- -------- -------- ---

IPC_TDB 8156E140 00000040 00 81591180 057B0040
 00000040 81591180 ..Y.@...@.{...Y.
IPC_LIST 815838C0 00009840 00 004C0200 087B9840
 0057A740 8158D100 .ÑX.@§W.@.{...L.
IPC_LIST 8158D100 00001840 00 00040400 087B1840
 00570F00 8158E940 @éX...W.@.{.....
IPC_LIST 8158E940 00002840 00 00140200 087B2840
 0056F6C0 81591180 ..Y.ÀöV.@({.....
IPC_TPCB 81591180 00000080 00 00000000 067B0080
 0056CE80 81591200 ..Y..ÎV...{.....
IPC 81591200 000000C0 00 00000000 007B00C0
 0056CE00 815912C0 À.Y..ÎV.À.{.....

Summary of Non-Paged Pool contents

 Packet type/subtype Packet count Packet bytes Percent
--------------------------- ---------------- ----------------

IPC 00000006 0000DA40
 (100.0%)
 IPC 00000001 000000C0
 (0.3%)
 IPC_TDB 00000001 00000040
 (0.1%)
 IPC_TPCB 00000001 00000080
 (0.2%)
 IPC_LIST 00000003 0000D8C0
 (99.3%)

Total space used: 0000DA40 (55872.) bytes out of 00023180 (143744.)
 bytes
 in 00000006 (6.) packets

Total space utilization: 38.9%

This example shows how you can specify a pool packet type and a range of addresses.

3. SDA> SHOW POOL/STATISTICS

Non-Paged Pool statistics for RAD 00

232

Chapter 4. SDA Commands

 On-RAD deallocations (all RADs): 1221036
 Total deallocations (all RADs): 1347991
 Percentage of on-RAD deallocations: 90.6%

Variable list statistics

 Number of packets on variable list: 7
 Total bytes on variable list: 3613376
 Smallest packet on variable list: 256
 Largest packet on variable list: 3598016
 Bytes allocated from variable list: 2140480
 Times pool expanded: 0

Lookaside list statistics

 List Packets Packets Operation
 Allocation Allocation
 Listhead address size (approx) (actual) sequence #
 attempts failures Deallocs
 ----------------- ---- ---------- ---------- ----------
 ---------- ---------- ----------
 FFFFFFFF.81008870 64 5 5 10057
 10549 492 10062
 FFFFFFFF.81008878 128 21 21 366
 4881 4515 387
 FFFFFFFF.81008880 192 33 33 27376
 27542 166 27409
 FFFFFFFF.81008888 256 4 4 8367
 8476 118 8362

 .
 .
 .

This example shows the Nonpaged Pool portion of the SHOW POOL/STATISTICS display.

4.

This example shows the output of the SHOW POOL/RING_BUFFER display.

5. SDA> SHOW POOL/PAGED/STATISTICS

Paged Pool statistics

Variable list statistics

233

Chapter 4. SDA Commands

 Number of packets on variable list: 30
 Total bytes on variable list: 4778288
 Smallest packet on variable list: 16
 Largest packet on variable list: 4777440

Lookaside list statistics

 List Operation
 Listhead address size Packets sequence #
 ----------------- ---- ---------- ----------
 ...
 FFFFFFFF.882119D0 80 0 1
 ...

This example shows the output of paged pool statistics when the system parameter
PAGED_LAL_SIZE has been set to a nonzero value.

4.62. SHOW PORTS
Displays those portions of the port descriptor table (PDT) that are port independent.

Format
SHOW PORTS [/qualifier[,...]]

Parameters
None.

Qualifiers
/ADDRESS=pdt-address

Displays the specified port descriptor table (PDT). You can find the pdt-address for any active
connection on the system in the PDT summary page display of the SHOW PORTS command. This
command also defines the symbol PE_PDT. The connection descriptor table (CDT) addresses are
also stored in many individual data structures related to System Communications Services (SCS)
connections, for instance, in the path block displays of the SHOW CLUSTER/SCS command.

/BUS=bus-address

Displays bus (LAN device) structure data.

/CHANNEL=channel-address

Displays channel (CH) data.

/DEVICE

Displays the network path description for a channel.

/MESSAGE

Displays the message data associated with a virtual circuit (VC).

234

Chapter 4. SDA Commands

/NODE=node

Shows only the virtual circuit block associated with the specific node. When you use the /NODE
qualifier, you must also specify the address of the PDT using the /ADDRESS qualifier.

/VC=vc-address

Displays the virtual circuit data.

Description
The SHOW PORTS command provides port-independent information from the port descriptor
table (PDT) for those CI ports with full System Communications Services (SCS) connections. This
information is used by all SCS port drivers.

The SHOW PORTS command also defines symbols for PEDRIVER based on the cluster configuration.
These symbols include the following information:

• Virtual circuit (VC) control blocks for each of the remote systems

• Bus data structure for each of the local LAN adapters

• Some of the data structures used by both PEDRIVER and the LAN drivers

The following symbols are defined automatically:

• VC_nodename---Example: VC_NODE1, address of the local node's virtual circuit to node NODE1.

• CH_nodename---The preferred channel for the virtual circuit. For example, CH_NODE1, address of
the local node's preferred channel to node NODE1.

• BUS_busname---Example: BUS_ETA, address of the local node's bus structure associated with LAN
adapter ETA0.

• PE_PDT---Address of PEDRIVER's port descriptor table.

• MGMT_VCRP_busname---Example: MGMT_VCRP_ETA, address of the management VCRP for
bus ETA.

• HELLO_VCRP_busname---Example: HELLO_VCRP_ETA, address of the HELLO message VCRP
for bus ETA.

• VCIB_busname---Example: VCIB_ETA, address of the VCIB for bus ETA.

• UCB_LAVC_busname---Example: UCB_LAVC_ETA, address of the LAN device's UCB used for
the local-area OpenVMS Cluster protocol.

• UCB0_LAVC_busname---Example: UCB0_LAVC_ETA, address of the LAN device's template
UCB.

• LDC_LAVC_busname---Example: LDC_LAVC_ETA, address of the LDC structure associated with
LAN device ETA.

• LSB_LAVC_busname---Example: LSB_LAVC_ETA, address of the LSB structure associated with
LAN device ETA.

These symbols equate to system addresses for the corresponding data structures. You can use these
symbols, or an address, in SHOW PORTS qualifiers that require an address, as in the following:

235

Chapter 4. SDA Commands

SDA> SHOW PORTS/BUS=BUS_ETA

The SHOW PORTS command produces several displays. The initial display, the PDT summary page,
lists the PDT address, port type, device name, and driver name for each PDT. Subsequent displays
provide information taken from each PDT listed on the summary page.

You can use the /ADDRESS qualifier to the SHOW PORTS command to produce more detailed
information about a specific port. The first display of the SHOW PORTS/ADDRESS command
duplicates the last display of the SHOW PORTS command, listing information stored in the port's PDT.
Subsequent displays list information about the port blocks and virtual circuits associated with the port.

Examples
1. SDA> SHOW PORTS

OpenVMS Cluster data structures

 --- PDT Summary Page ---

 PDT Address Type Device Driver Name
 ----------- ---- ------- -----------

 80E2A180 pn PNA0 SYS$PNDRIVER
 80EC3C70 pe PEA0 SYS$PEDRIVER

 --- Port Descriptor Table (PDT) 80E2A180 ---

Type: 09 pn
Characteristics: 0000

Msg Header Size 104 Flags 0000 Message Sends
 3648575
Max Xfer Bcnt 00100000 Counter CDRP 00000000 Message Recvs
 4026887
Poller Sweep 21 Load Vector 80E2DFCC Mess Sends NoFP
 3020422
Fork Block W.Q. 80E2A270 Load Class 60 Mess Recvs NoFP
 3398732
UCB Address 80E23380 Connection W.Q. 80E4BF94 Datagram Sends
 0
ADP Address 80E1BF00 Yellow Q. 80E2A2E0 Datagram Recvs
 0
Max VC timeout 16 Red Q. 80E2A2E8 Portlock
 80E1ED80
SCS Version 2 Disabled Q. 80FABB74 Res Bundle Size
 208
 Port Map 00000001

 --- Port Descriptor Table (PDT) 80EC3C70 ---

Type: 03 pe
Characteristics: 0000

Msg Header Size 32 Flags 0000 Message Sends
 863497
Max Xfer Bcnt FFFFFFFF Counter CDRP 00000000 Message Recvs
 886284

236

Chapter 4. SDA Commands

Poller Sweep 30 Load Vector 80EDBF8C Mess Sends NoFP
 863497
Fork Block W.Q. 80EC3D60 Load Class 10 Mess Recvs NoFP
 886284
UCB Address 80EC33C0 Connection W.Q. 80EFF5D4 Datagram Sends
 0
ADP Address 00000000 Yellow Q. 80EC3DD0 Datagram Recvs
 0
Max VC timeout 16 Red Q. 80EC3DD8 Portlock
 00000000
SCS Version 2 Disabled Q. 812E72B4 Res Bundle Size
 0
 Port Map 00000000

This example illustrates the default output of the SHOW PORTS command.

2. SDA> SHOW PORTS/ADDRESS=80EC3C70
OpenVMS Cluster data structures

 --- Port Descriptor Table (PDT) 80EC3C70 ---

Type: 03 pe
Characteristics: 0000

Msg Header Size 32 Flags 0000 Message Sends
 864796
Max Xfer Bcnt FFFFFFFF Counter CDRP 00000000 Message Recvs
 887086
Poller Sweep 30 Load Vector 80EDBF8C Mess Sends NoFP
 864796
Fork Block W.Q. 80EC3D60 Load Class 10 Mess Recvs NoFP
 887086
UCB Address 80EC33C0 Connection W.Q. 80EFF5D4 Datagram Sends
 0
ADP Address 00000000 Yellow Q. 80EC3DD0 Datagram Recvs
 0
Max VC timeout 16 Red Q. 80EC3DD8 Portlock
 00000000
SCS Version 2 Disabled Q. 812E72B4 Res Bundle Size
 0
 Port Map 00000000
 Port Map 00000000

 --- Port Block 80EC4540 ---

Status: 0001 authorize
VC Count: 20
Secs Since Last Zeroed: 77020

SBUF Size 824 LBUF Size 5042 Fork Count
 1943885
SBUF Count 28 LBUF Count 1 Refork Count
 0
SBUF Max 768 LBUF Max 384 Last Refork
 00000000
SBUF Quo 28 LBUF Quo 1 SCS Messages
 1154378

237

Chapter 4. SDA Commands

SBUF Miss 1871 LBUF Miss 3408 VC Queue Cnt
 361349
SBUF Allocs 1676801 LBUF Allocs 28596 TQE Received
 770201
SBUFs In Use 2 LBUFs In Use 0 Timer Done
 770201
Peak SBUF In Use 101 Peak LBUF In Use 10 RWAITQ Count
 30288
SBUF Queue Empty 0 LBUF Queue Empty 0 LDL Buf/Msg
 32868
TR SBUF Queue Empty 0 Ticks/Second 10 ACK Delay
 1000000
No SBUF for ACK 0 Listen Timeout 8 Hello Interval
 30

Bus Addr Bus LAN Address Error Count Last Error Time of Last
 Error
-------- --- ----------------- ----------- ----------

80EC4C00 LCL 00-00-00-00-00-00 0
80EC5400 EXA 08-00-2B-17-CF-92 0
80EC5F40 FXA 08-00-2B-29-E1-40 0

 --- Virtual Circuit (VC) Summary ---

VC Addr Node SCS ID Lcl ID Status Summary Last Event
 Time
-------- -------- ------ ------ -----------------

80E566C0 ARUSHA 19617 223/DF open,path 8-FEB-2001
 16:01:57.58
80E98840 ETOSHA 19699 222/DE open,path 8-FEB-2001
 16:01:58.41
80E98A80 VMS 19578 221/DD open,path 8-FEB-2001
 16:01:58.11
 .
 .
 .

This example illustrates the output produced by the SHOW PORTS command for the PDT at address
80EC3C70.

4.63. SHOW PROCESS
Displays the software and hardware context of any process in the system. If the process is suspended
(ANALYZE/SYSTEM), then some displays may be incomplete or unavailable. If the process was
outswapped at the time of the system crash, or not included in a selective dump (ANALYZE/
CRASH_DUMP), then some displays may be incomplete or unavailable. Please see descriptions of the
individual qualifiers for details not included in the syntax definition.

Format
SHOW PROCESS

238

Chapter 4. SDA Commands

Parameters
ALL

Information is to be displayed about all processes that exist in the system.

process-name

Name of the process for which information is to be displayed. Use of the process-name parameter
or one of the /ADDRESS, /ID, /INDEX, /NEXT, or /SYSTEM qualifiers causes the SHOW
PROCESS command to perform an implicit SET PROCESS command, making the indicated
process the current process for subsequent SDA commands.

When you analyze a crash dump from a multiprocessing system, changing process context may
require a switch of CPU context as well. When you issue a SET PROCESS command, SDA
automatically changes its CPU context to that of the CPU on which that process is, or was most
recently, current. You can determine the names of the processes in the system by issuing a SHOW
SUMMARY command.

239

Chapter 4. SDA Commands

The process-name can contain up to 15 uppercase letters, numerals, the underscore (_), dollar
sign, colon (:), and some other printable characters. If it contains any other characters (including
lowercase letters), you may need to enclose the process-name in quotation marks (" ").

Qualifiers
/ADDRESS=pcb-address

Specifies the process control block (PCB) address of a process in order to display information about
the process.

/ALL

Displays all information shown by the following qualifiers:

/BUFFER_OBJECTS

/CHANNELS

/FANDLES

/IMAGES=ALL

/LOCKS

/PAGE_TABLES=ALL

/PCB

/PERSONA/RIGHTS

/PHD

/POOL/HEADER/RING_BUFFER/STATISTICS

/PROCESS_SECTION_TABLE

/REGIONS

/REGISTERS

/RMS

/SEMAPHORE

/THREADS

/TQE

/UNWIND_TABLE (Integrity servers only.)

/WORKING_SET_LIST

/AUTHORIZED

Used with the /PERSONA/RIGHTS qualifiers. See the /PERSONA/RIGHTS/AUTHORIZED
description for the use of the /AUTHORIZED qualifier.

240

Chapter 4. SDA Commands

/BRIEF

When used with the /LOCKS qualifier, causes SDA to display each lock owned by the current
process in brief format, that is, one line for each lock. When used with the /POOL qualifier, causes
SDA to display only general information about process pool and its addresses.

/BUFFER_OBJECTS

Displays all the buffer objects that a process has created.

/CHANNELS

Displays information about the I/O channels assigned to the process.

/CHECK

Checks all free process pool packets for POOLCHECK-style corruption in exactly the same way that
the system does when generating a POOLCHECK crash dump.

/FANDLES

Displays the data on the process' fast I/O handles.

/FID_ONLY

When used with /CHANNEL or /PROCESS_SECTION_TABLE (/PST), causes SDA to not attempt
to translate the FID (File ID) to a file name when invoked with ANALYZE/SYSTEM.

/FREE

When used with /POOL, displays the entire contents, both allocated and free, of the specified region
or regions of pool. Use the /FREE qualifier with a range to show all of the used and free pool in the
given range.

/GSTX=index

When used with the /PAGE_TABLES qualifier, displays only page table entries for the specific
global section.

/HEADER

When used with /POOL, displays only the first 16 bytes of each data packet found within the
specified region or regions of pool.

/IMAGES [= {name|ALL}]

For all images in use by this process, displays the address of the image control block, the start
and end addresses of the image, the activation code, the protected and shareable flags, the image
name, and the major and minor IDs of the image. The /IMAGES=ALL qualifier also displays the
base, end, image offset, section type, and global pointer for all images (Integrity servers) or for all
installed resident images (Alpha) in use by this process. The /IMAGE=name qualifier displays this
information for just the specified images; name may contain wildcards.

See the VSI OpenVMS Linker Utility Manual and the Install utility chapter in the VSI OpenVMS
System Management Utilities Reference Manual for more information on images installed using the /
RESIDENT qualifier.

/ID=nn

241

Chapter 4. SDA Commands

/INDEX=nn

Specifies the process for which information is to be displayed by its index into the system's list of
software process control blocks (PCBs), or by its process identification (ID). /ID and /INDEX can
be used interchangeably. You can supply the following values for nn:

• The process index itself.

• The process identification (PID) or extended PID longword, from which SDA extracts the
correct index. You can specify the PID or extended PID of any thread of a process with multiple
kernel threads. Any thread-specific data displayed by SHOW PROCESS will be for the given
thread.

To obtain these values for any given process, issue the SDA command SHOW SUMMARY/
THREADS.

/INVALID_PFN [=option]

The /INVALID_PFN qualifier, which is valid only on platforms that supply an I/O memory map,
causes SDA to display only page table entries that map to PFNs that are not in the system's private
memory or in Galaxy-shared memory, and which are not I/O access pages. Use of /INVALID_PFN
implies /PAGE_TABLES.

The /INVALID_PFN qualifier allows two optional keywords, READONLY and WRITABLE.
If neither keyword is given, all relevant pages are displayed. If you specify READONLY, only
pages marked for no write access are displayed. If you specify WRITABLE, only pages that
allow write access are displayed. For example, SHOW PROCESS ALL/PAGE_TABLE=ALL/
INVALID_PFN=WRITABLE would display all process pages (for all processes) whose protection
allows write, but which map to PFNs that do not belong to this system.

/L1

/L2

/L3 (D)

Used with the /PAGE_TABLES qualifier to specify the level for which page table entries are to be
displayed. You can specify only one level. /L3 is the default.

/LOCKS [/BRIEF]

Displays the lock management locks owned by the current process.

When specified with /BRIEF, produces a display similar in format to that produced by the SHOW
LOCKS command; that is, it causes SDA to display each lock owned by the current process in brief
format with one line for each lock. Table 4.3 contains additional information.

/MAXIMUM_BYTES [=n]

When used with /POOL, displays only the first n bytes of a pool packet; if you specify /
MAXIMUM_BYTES without a value, the default is 64 bytes.

/NEXT

Locates the next valid process in the system's process list and selects that process. If there are no
further valid processes in the system's process list, SDA returns an error.

242

Chapter 4. SDA Commands

/NONMEMORY_PFN [=option]

The /NONMEMORY_PFN qualifier causes SDA to display only page table entries that are in neither
the system's private memory nor in Galaxy-shared memory. Use of /NONMEMORY_PFN implies /
PAGE_TABLES.

The /NONMEMORY_PFN qualifier allows two optional keywords, READONLY and WRITABLE.
If neither keyword is given, all relevant pages are displayed. If you specify READONLY, only
pages marked for no write access are displayed. If you specify WRITABLE, only pages that
allow write access are displayed. For example, SHOW PROCESS ALL/PAGE_TABLE=ALL/
NONMEMORY_PFN=WRITABLE would display all process pages (for all processes) whose
protection allows write, but which map to PFNs that are in neither the system's private memory nor
Galaxy-shared memory.

/P0 (D)

/P1

/P2

/PT

When used with the /PAGE_TABLES qualifier, /P0, /P1, /P2, and /PT specify one or more regions
for which page table entries should be displayed. You can specify any or none of these values. The
default is /P0.

/PAGE_TABLES

Displays the page tables of the process P0 (process), P1 (control), P2, or PT (page table) region,
or, optionally, page table entries for a range of addresses. You can use /PAGE_TABLES=ALL to
display page tables of all four regions. With /Ln, the page table entries at the level specified by /L1, /
L2, or /L3 (the default) are displayed.

With /RDE=id or /REGIONS=id, SDA displays the page tables for the address range of the specified
address region. When you do not specify an ID, the page tables are displayed for all the process-
permanent and user-defined regions.

If /PTE_ADDRESS is given, the range is expressed using the following syntax:

m Displays the single page table entry at address m
m:n Displays the page table entries from address m to

address n
m;n Displays n bytes of page table entries starting at

address m

If /PTE_ADDRESS is not given, then range is expressed using the following syntax:

m Displays the single page table entry that
corresponds to virtual address m

m:n Displays the page table entries that correspond to
the range of virtual addresses from m to n

m;n Displays the page table entries that correspond to
a range of n bytes starting at virtual address m

243

Chapter 4. SDA Commands

See Section 2.8 for information on page protections and access.

The /GSTX=index qualifier causes SDA to display only the page table entries for the pages in the
specified global section.

The /SECTION_INDEX=n qualifier causes SDA to display only the page table entries for the pages
in the specified process section.

/PCB

Displays the information contained in the process control block (PCB). This is the default behavior
of the SHOW PROCESS command.

/PERSONA [=address]

Displays all persona security blocks (PSBs) held in the PERSONA ARRAY of the process, and then
lists selected information contained in each initially listed PSB. The selected information includes the
contents of the following cells inside the PSB:

Flags

Reference count

Execution mode

Audit status

Account name

UIC

Privileges

Rights enabled mask

If you specify a PSB address, this information is provided for that specific PSB only.

If you also specify /RIGHTS, SDA expands the display to provide additional selected information,
including all the rights and their attributes currently held and active for each persona security block
(PSB) specified with the /PERSONA qualifier.

If you specify /RIGHTS/AUTHORIZED, SDA also displays additional selected information,
including all the rights and their attributes authorized for each persona security block (PSB)
specified with the /PERSONA qualifier.

/PHD

Lists the information included in the process header (PHD).

/POOL [= {P0 | P1 | IMGACT | ALL (D)} | range]

Displays the dynamic storage pool in the process' P0 (process) region, the P1 (control) region, or the
image activator's reserved pages, or optionally, a range of addresses. The default action is to display
all dynamic storage pools.

You can express a range using the following syntax:

m:n Displays the process pool in the range of virtual
addresses from m to n.

244

Chapter 4. SDA Commands

m;n Displays process pool in a range of n bytes,
starting at virtual address m.

/PPT

See the description of /PAGE_TABLES, which is functionally equivalent to /PPT.

/PROCESS_SECTION_TABLE [/SECTION_INDEX=id][/FID_ONLY]

Lists the information contained in the process section table (PST). The /SECTION_INDEX=id
qualifier used with /PROCESS_SECTION_TABLE displays the process section table entry for the
specified section.

/PST

Is a synonym for /PROCESS_SECTION_TABLE.

/PT

When used with the /PAGE_TABLES qualifier, displays the page table entries for the page table
space of the process. By default, P0 space is displayed.

/PTE_ADDRESS

When used with the /PAGE_TABLES qualifier, specifies that the range is of PTE addresses instead
of the virtual addresses mapped by the PTE.

/RDE [=id]

/REGIONS [=id]

Lists the information contained in the process region table for the specified region. If you do not
specify a region, the entire table is displayed, including the process-permanent regions. /RDE and /
REGIONS are functionally equivalent. When used with /PAGE_TABLES, this qualifier causes SDA
to display the page tables for only the specified region or, by default, for all regions.

/REGISTERS

Lists the hardware context of the process, as reflected in the process registers stored in the hardware
privileged context block (HWPCB), in its kernel stack, and possibly, in its PHD.

/RIGHTS

Used with the /PERSONA qualifier. See the /PERSONA/RIGHTS description for use of the /
RIGHTS qualifier.

/RING_BUFFER [={ALL | address}]

Displays the contents of the process-pool history ring buffer. Entries are displayed in reverse
chronological order (most recent to least recent). If you specify /RING_BUFFER without the
ALL keyword or an address, SDA displays all unmatched current allocations and deallocations.
Use /RING_BUFFER=ALL to display matched allocations and deallocations and any non-current
entries not yet overwritten. Use /RING_BUFFER=address to limit the display to only allocations
and deallocations of blocks that contain the given address (including matched allocations and
deallocations).

245

Chapter 4. SDA Commands

/RMS [= (option[,...])]

Displays certain specified RMS data structures for each image I/O or process-permanent I/O file
the process has open. To display RMS data structures for process-permanent files, specify the PIO
option to this qualifier. Other guidelines for specifying this qualifier include the following:

• If you specify only one option, you can omit the parentheses.

• You can add additional structures to those already set by the SET RMS command by beginning
the list of options with an asterisk (*).

• You can exclude a structure from those set by the SET RMS command by specifying its
keyword option preceded by NO (for example, NOPIO).

SDA determines the structures to be displayed according to either of the following methods:

• If you provide the name of a structure or structures in the option parameter, SHOW PROCESS/
RMS displays information from only the specified structures. (See Table 4.2 in the SET RMS
command description for a list of keywords that you can supply as options.)

• If you do not specify an option, SHOW PROCESS/RMS displays the current list of options as
shown by the SHOW RMS command and set by the SET RMS command.

/SECTION_INDEX=n

When used with the /PAGE_TABLES qualifier, displays the page table for the range of pages in the
specified process section. You can also specify one of the qualifiers /L1, /L2, or /L3.

When used with the /PROCESS_SECTION_TABLE qualifier, displays the PST for the specified
process section.

The /SECTION_INDEX=n qualifier is ignored if you do not specify either the /PAGE_TABLES or
the /PROCESS_SECTION_TABLE qualifier.

/SEMAPHORE

Displays the Inner Mode Semaphore for a multithreaded process.

/STATISTICS

When used with /POOL, displays statistics on the free list(s) in process pool.

/SUBTYPE=packet-type

When used with /POOL, displays only packets of the specified subtype. Pool packet types found in
the process pool can include logical names (LNM) and image control blocks (IMCB). /SUBTYPE is
functionally equivalent to /TYPE.

/SUMMARY

When used with /POOL, displays only an allocation summary for each packet type.

/SYSTEM

Displays the system's process control block. The system PCB and process header (PHD) parallel the
data structures that describe processes. They contain the system working set, global section table,
global page table, and other systemwide data.

246

Chapter 4. SDA Commands

/THREADS

Displays the software and hardware context of all the threads associated with the current process.

/TQE [=ALL]

Displays all timer queue entries associated with the current process. If specified as /TQE, a one-
line summary is output for each TQE. If specified as /TQE=ALL, a detailed display of each TQE is
output. See Table 4-32 for an explanation of TQE types in the one-line summary.

/TYPE=packet-type

When used with /POOL, displays only packets of the specified type. Pool packet types found in
the process pool can include logical names (LNM) and image control blocks (IMCB). /TYPE is
functionally equivalent to /SUBTYPE.

/UNUSED

When used with /POOL, displays only free packets.

/UNWIND_TABLE [= {ALL | name}]

Valid for Intergrity server systems only.

If specified without a keyword, displays the master unwind table for the process. SHOW PROCESS/
UNWIND=ALL displays the details of every process unwind descriptor. SHOW PROCESS/
UNWIND=name displays the details of every unwind descriptor for the named image or images
implied by a wildcard. To look at unwind data for a specific PC in process space, use SHOW
UNWIND address.

If some or all unwind data for an image is not included in the system dump (for example, if it
was not in the working set of the process at the time of the system crash), a SHOW PROCESS/
UNWIND command can fail with a %SDA-W-NOREAD error because the unwind data is
inaccessible. Collecting unwind data using the SDA commands COLLECT and COPY/COLLECT
will not correct this because the collected unwind data is used only by SHOW UNWIND address
and SHOW CALL.

/WORKING_SET_LIST [={PPT|PROCESS|LOCKED|GLOBAL|MODIFIED|n}]

Displays the contents of the requested entries of the working set list for the process. If you do not
specify an option, all working set list entries are displayed. This qualifier is functionally equivalent
to /WSL.

The table shows the options available with SHOW PROCESS/WORKING_SET_LIST.

Table 4.16. Options for the /WORKING_SET_LIST Qualifier

Options Results

PPT Displays process page table pages
PROCESS Displays process-private pages
LOCKED Displays pages locked into the process' working

set
GLOBAL Displays global pages currently in the working

set of the process

247

Chapter 4. SDA Commands

Options Results

MODIFIED Displays working set list entries marked
modified

n Displays a specific working set list entry, where n
is the working set list index (WSLX) of the entry
of interest

/WSL

See /WORKING_SET_LIST, which is functionally equivalent to /WSL.

Description
The SHOW PROCESS command displays information about the process specified by process-name,
the process specified in the /ID or /INDEX qualifier, the next process in the system's process list, the
system process, or all processes. The SHOW PROCESS command performs an implicit SET PROCESS
command under certain uses of its qualifiers and parameters, as noted previously. By default, the SHOW
PROCESS command produces information about the SDA current process, as defined in Section 2.5.

The default of the SHOW PROCESS command provides information taken from the software process
control block (PCB) and the kernel threads block (KTB) of the SDA current thread. This is the first
display provided by the /ALL qualifier and the only display provided by the /PCB qualifier. This
information describes the following characteristics of the process:

• Software context

• Condition-handling information

• Information on interprocess communication

• Information on counts, quotas, and resource usage

Among the displayed information are the process PID, EPID, priority, job information block (JIB)
address, and process header (PHD) address. SHOW PROCESS also describes the resources owned by
the process, such as event flags and mutexes. The "State" field records the current scheduling state for
the thread, and indicates the CPU ID of any thread whose state is CUR. See Table 4.26 for a list of all
possible states.

The /THREADS qualifier (also part of SHOW PROCESS/ALL), displays information from the KTBs of
all threads in the process, instead of only the SDA current thread.

The SHOW PROCESS/ALL command displays additional process-specific information, also provided
by several of the individual qualifiers to the command.

The process registers display, also produced by the /REGISTERS qualifier, describes the process
hardware context, as reflected in its registers. The registers displayed are those of the SDA current
thread, or of all threads if either the /THREADS or the /ALL qualifier have been specified.

A process hardware context is stored in the following locations:

• If the process is currently executing on a processor in the system (that is, in the CUR scheduling
state), its hardware context is contained in that processor's registers. (That is, the process registers
and the processor's registers contain identical values, as illustrated by a SHOW CPU command for
that processor or a SHOW CRASH command, if the process was current at the time of the system
failure.)

248

Chapter 4. SDA Commands

• If the process is not executing, its privileged hardware context is stored in the part of the PHD
known as the HWPCB. Its integer register context is stored on its kernel stack. Its floating-point
registers are stored in its PHD.

The process registers display first lists those registers stored in the HWPCB, kernel stack, and PHD
("Saved process registers"). If the process to be displayed is currently executing on a processor in the
system, the display then lists the processor's registers ("Active registers for the current process"). In each
section, the display lists the registers in groups.

For Alpha:

• Integer registers (R0 through R29)

• Special-purpose registers (PC and PS)

• Stack pointers (KSP, ESP, SSP, and USP)

• Page table base register (PTBR)

• AST enable and summary registers (ASTEN and ASTSR)

• Address space number register (ASN)

For Integrity servers:

• Integer registers (R1 through R11, R13 through R31). Note that R1 is displayed as GP (Global
Pointer) and R12 is omitted.

• Special-purpose registers (PC, PSR, ISR). Note: The PC is the combination of the IP and the slot
number from the PSR.

• Stack pointers (KSP, ESP, SSP, and USP)

• Register stack pointers (KBSP, EBSP, SBSP, and UBSP)

• Page table base register (PTBR0)

• AST enable and summary registers (ASTEN and ASTSR)

• Address space number registers (ASN0)

• Floating point registers (F2 through F31, possibly F32 through F127)

The semaphore display, also produced by the /SEMAPHORE qualifier, provides information on the
inner-mode semaphore used to synchronize kernel threads. The PC history log, recorded if the system
parameter SYSTEM_CHECK is enabled, is also displayed.

The process header display, also produced by the /PHD qualifier, provides information taken from the
PHD, which is swapped into memory when the process becomes part of the balance set. Each item listed
in the display reflects a quantity, count, or limit for the process use of the following resources:

• Process memory

• The pager

• The scheduler

• Asynchronous system traps

• I/O activity

249

Chapter 4. SDA Commands

• CPU activity

The working set information and working set list displays, also produced by the /
WORKING_SET_LIST qualifier, describe those virtual pages that the process can access without a page
fault. After a brief description of the size, scope, and characteristics of the working set list itself, SDA
displays information for each entry in the working set list as shown in the table below.

Table 4.17. Working Set List Entry Information in the SHOW PROCESS Display

Column Contents

INDEX Index into the working set list at which
information for this entry can be found

ADDRESS Virtual address of the page that this entry describes
STATUS Four columns that list the following status

information:

• Page status of VALID

• Type of physical page (See Table 4.8)

• Indication of whether the page has been
modified

• Indication of whether the page is locked into
the working set

When SDA locates either one or more unused working set entries, or entries that do not match the
specified option, it issues the following message:

---- n entries not displayed

The process section table information and process section table displays, also produced by the /
PROCESS_SECTION_TABLE or /PST qualifier, list each entry in the process section table (PST) and
display the offsets to, and the indexes of, the first free entry and last used entry.

SDA displays the information listed in the table below for each PST entry.

Table 4.18. Process Section Table Entry Information in the SHOW PROCESS Display

Part Definition

INDEX Index number of the entry. Entries in the process
section table begin at the highest location in
the table, and the table expands toward lower
addresses.

ADDRESS Address of the process section table entry.
SECTION ADDRESS Virtual address that marks the beginning of the

first page of the section described by this entry.
CCB Address of the channel control block on which the

section file is open.
PAGELETS Length of the process section. This is in units

of pagelets, except for a PFN-mapped section in
which the units are pages.

250

Chapter 4. SDA Commands

Part Definition

VBN Virtual block number. The number of the file's
virtual block that is mapped into the section's first
page.

WINDOW Address of the window control block on which the
section file is open.

REFCNT Number of pages of this section that are currently
mapped.

FLINK Forward link. The pointer to the next entry in the
PST list.

BLINK Backward link. The pointer to the previous entry in
the PST list.

FLAGS Flags that describe the access that processes have
to the process section.

In addition, for each process section that has an associated file, the device and/or file name is displayed.
For details of this display, see Table 4.20.

The regions display, also produced by the either of the /RDE or /REGIONS qualifiers, shows the
contents of the region descriptors. This includes the three default regions (P0, P1, P2), plus any others
created by the process. A single region will be displayed if you specify its identifier. The information
displayed for each region includes the RDE address, the address range of the region, its identifiers and
protection, and links to other RDEs.

If you use the /PAGE_TABLE or /PPT qualifier with /RDE or /REGION, the page table for the region is
also displayed, as described below.

The P0 page table, P1 page table, P2 page table, and PT page table displays, also produced by the /
PAGE_TABLES qualifier, display listings of the process page table entries in the same format as that
produced by the SHOW PAGE_TABLE command (see Tables Table 4.4 through Table 4.9).

The RMS display, also produced by the /RMS qualifier, provides information on the RMS internal data
structures for all RMS-accessed open files. The data structures displayed depend on the current setting of
RMS options, as described under the SET RMS command and Table 4.2.

The locks display, also produced by the /LOCKS qualifier, provides information on the locks held by
the process. For a full description of the information displayed for process locks, see the SHOW LOCKS
command and Table 4.3. You can also specify the /BRIEF qualifier, which provides single-line summary
of each process lock; however, no other qualifiers from SHOW LOCKS apply to SHOW PROCESS/
LOCKS.

The process active channels display, also produced by the /CHANNEL qualifier, displays the
information in Table 4.19 for each I/O channel assigned to the process.

Table 4.19. Process Active Channels in the SHOW PROCESS Display

Column Contents

Channel Number of the channel.
CCB The address of the channel control block (CCB).
Window Address of the window control block (WCB) for

the file if the device is a file-oriented device; zero
otherwise.

251

Chapter 4. SDA Commands

Column Contents

Status Status of the device: "Busy" if the device has an I/
O operation outstanding; "Dpnd" if the device is
deaccess pending; blank otherwise.

Device/file accessed Name of the device and, if applicable, name of the
file being accessed on that device.

The information listed under the heading "Device/file accessed" varies from channel to channel and
from process to process. SDA displays certain information according to the conditions listed in the table
below.

Table 4.20. Process I/O Channel Information in the SHOW PROCESS Display

Information Displayed1 Type of Channel

dcuu: SDA displays this information for devices that
are not file structured, such as terminals, and for
processes that do not open files in the normal way.

dcuu: filespec SDA displays this information only if you are
examining a running system, and only if your
process has enough privilege to translate the file-
id into the filespec, or if you are examining a
dump for which file identification data 2 has been
collected.

dcuu:(file-id) The file-id no longer points to a valid filespec, as
when you look at a dump that does not have file
identification data 2; or the process in which you
are running SDA does not have enough privilege to
translate the file-id into the corresponding filespec.

(section file) The file in question is mapped into the process'
memory.

The images display, also produced by the /IMAGES qualifier, describes the activated images in the
process. SDA displays the information listed in the table below for each image, plus a summary line
giving the total image and total page counts.

Table 4.21. Image Information in the SHOW PROCESS Display

Item Description

Image Name The name of the image.
Link Time The date and time the image was linked. These

items are only displayed with SHOW PROCESS/
IMAGE=ALL or SHOW PROCESS/ALL.

Section Type For shareable images, the data for each image
section is displayed on a separate line. For
privileged shareable images, data for the change
mode vector is also displayed on a separate line.
These items are only displayed with SHOW
PROCESS/IMAGE=ALL or SHOW PROCESS/
ALL.

252

Chapter 4. SDA Commands

Item Description

Start Start address of the image in process memory. For
resident shareable images, this is the start address
of the process-space portion of the image. Alpha
only.

End End address of the image in process memory. For
resident shareable images, this is the end address of
the process-space portion of the image. Alpha only.

Type The image type and/or activation method, plus
"PROT" for protected images and "SHR" for
shareable images.

File ID The File ID for the image file. No attempt is made
to translate this to a filename. These items are only
displayed with SHOW PROCESS/IMAGE=ALL
or SHOW PROCESS/ALL.

IMCB The address of the Image Management Control
Block.

GP The Global Pointer for the image. Integrity servers
only.

Sym Vect The address of the image's symbol vector, if
any. These items are only displayed with SHOW
PROCESS/IMAGE=ALL or SHOW PROCESS/
ALL.

Maj, Minor ID The major and minor revision IDs for the image.
These items are only displayed with SHOW
PROCESS/IMAGE=ALL or SHOW PROCESS/
ALL. Alpha only.

Maj, Min ID, Match The major and minor revision IDs for the image,
plus the match control bits. These items are only
displayed with SHOW PROCESS/IMAGE=ALL
or SHOW PROCESS/ALL. Integrity servers only.

Base For Alpha shareable images and all Integrity
server images, the base address of each image
section and/or the change mode vector. These
items are only displayed with SHOW PROCESS/
IMAGE=ALL or SHOW PROCESS/ALL.

End For Alpha shareable images and all Integrity server
images, the end address of each image section and/
or the change mode vector. These items are only
displayed with SHOW PROCESS/IMAGE=ALL
or SHOW PROCESS/ALL.

ImageOff For Alpha shareable images and all Integrity server
images, the virtual offset within the image file for
each image section. These items are only displayed
with SHOW PROCESS/IMAGE=ALL or SHOW
PROCESS/ALL.

253

Chapter 4. SDA Commands

The buffer objects display, also produced by the /BUFFER_OBJECTS qualifier, describes the buffer
objects in use by the process. Information displayed by SDA for each buffer object includes its address,
access mode, size, flags, plus the base virtual address of the object in process space and system space.

The fast I/O handles display, also produced by the /FANDLES qualifier, describes the fast I/O handles
used by the process. Information displayed by SDA includes the address and size of the fast I/O handle
vector header, then the address, corresponding IRP, state, and buffer object handles for each fast I/O
handle, plus information on free vector entries.

The persona display, also produced by the /PERSONA qualifier, describes the Persona status block data
structures. The default output of /PERSONA consists of summary information for all personae in use
by the process (the PSB address, flags, user name) and information for each persona (privilege masks,
UIC, and so on). When you specify /PERSONA/RIGHTS (as in SHOW PROCESS/ALL), all the rights
currently held and active for each persona are also displayed. When you specify /PERSONA/RIGHTS/
AUTHORIZED, all the rights authorized for each persona are displayed instead.

The pool display, also produced by the /POOL qualifier, describes the P0, P1 and IMGACT process
pools. The default output of /POOL is the entire contents of each used block of pool. When you specify /
POOL/HEADER (as in SHOW PROCESS/ALL), only the first 16 bytes of each used pool block is
displayed. By default, all process pools are displayed. You can limit this using /POOL=P0, /POOL=P1
or /POOL=IMGACT. See the description of the SHOW POOL command for explanations of other
qualifiers.

The Timer Queue Entry (TQE) display, also produced by the /TQE qualifier, describes all timer queue
entries that affect the process. The default display (as in SHOW PROCESS/ALL) is a one-line summary
of each TQE. If you specify /TQE=ALL, a detailed display of each TQE is given. No other qualifiers
from the SHOW TQE command apply to SHOW PROCESS/TQE.

Examples
SDA> SHOW PROCESS
Process index: 0028 Name: SYSTEM Extended PID: 000000E8

Process status: 02040001 RES,PHDRES,INTER
 status2: 00000000

PCB address 81444A40 JIB address 81443600
PHD address 821AA000 Swapfile disk address 00000000
KTB vector address 81444D2C HWPCB address 821AA080
Callback vector address 00000000 Termination mailbox 0000
Master internal PID 00030028 Subprocess count 0
Creator extended PID 00000000 Creator internal PID 00000000
Previous CPU Id 00000000 Current CPU Id 00000000
Previous ASNSEQ 0000000000000003 Previous ASN 0000000000000017
Initial process priority 4 # open files remaining 100/100
Delete pending count 0 Direct I/O count/limit 150/150
UIC [00001,000004] Buffered I/O count/limit 149/150
Abs time of last event 01F1A51D BUFIO byte count/limit
 99424/99808
of threads 1 ASTs remaining 248/250
Swapped copy of LEFC0 00000000 Timer entries remaining 20/20
Swapped copy of LEFC1 00000000 Active page table count 0
Global cluster 2 pointer 00000000 Process WS page count 43
Global cluster 3 pointer 00000000 Global WS page count 28

Thread index: 0000

254

Chapter 4. SDA Commands

Current capabilities: System: 0000000C QUORUM,RUN
 User: 00000000
Permanent capabilities: System: 0000000C QUORUM,RUN
 User: 00000000
Current affinities: 00000000
Permanent affinities: 00000000
Thread status: 02040001
 status2: 00000000

KTB address 81444A40 HWPCB address 821AA080
PKTA address 7FFEFF98 Callback vector address 00000000
Internal PID 00030028 Callback error 00000000
Extended PID 000000E8 Current CPU id 00000000
State LEF Flags 00000000
Base priority 4 Current priority 5
Waiting EF cluster 0 Event flag wait mask DFFFFFFF
CPU since last quantum FFF8 Mutex count 0
ASTs active NONE

The SHOW PROCESS command displays information taken from the software PCB of SYSTEM, the
SDA current process. According to the State field in the display, process SYSTEM is in Local Event Flag
Wait.

SDA> SHOW PROCESS/BUFFER_OBJECTS/FANDLES

Process index: 0022 Name: NODEA_RTA1: Extended PID: 00000062

 Process Buffer Objects

ADDRESS ACMODE SEQUENCE REFCNT PID PAGCNT BASE PVA
 BASE SVA
-------- ------ -------- -------- -------- -------- -----------------

8151AE00 User 00000011 00000031 00010022 00000001 00000000.00084000
 FFFFFFFF.7DE68000 S2_WINDOW
814A6CC0 User 00000012 00000009 00010022 00000001 00000000.80000000
 FFFFFFFF.7DE66000 S2_WINDOW
814FBA00 User 00000013 00000009 00010022 00000001 00000000.80000000
 FFFFFFFF.FFFFFFFF NOSVA
81512200 User 00000014 00000009 00010022 00000001 00000000.80028000
 FFFFFFFF.7DE64000 S2_WINDOW
8151A8C0 User 00000015 00000009 00010022 00000001 00000000.80028000
 FFFFFFFF.FFFFFFFF NOSVA
81438580 User 00000016 00000009 00010022 00000001 FFFFFEFB.FF800000
 FFFFFFFF.7DE62000 S2_WINDOW
81464480 User 00000017 00000009 00010022 00000001 FFFFFEFB.FF800000
 FFFFFFFF.FFFFFFFF NOSVA
81416F00 Kernel 00000018 00000001 00010022 00000001 00000000.7FF76000
 FFFFFFFF.8120C000 NOQUOTA

 Fandle Vector Header

255

Chapter 4. SDA Commands

Address Maxfix Real_Size CCB buffer handle
-------- -------- --------- -----------------
7FF68290 00000043 00000880 00000018.81416F00

 Fandles

Address IRP fastio_done Orgfun Data bo handle IOSA bo handle
 DBYLEN
-------- -------- ----------- -------- ----------------- -----------------

7FF682B0 815CEF40 set 00020031 00000016.81438580 00000011.8151AE00
 00000000.00002000
7FF682D0 815CE4C0 set 00020030 00000016.81438580 00000011.8151AE00
 00000000.00002000
7FF682F0 815CE200 set 00000031 00000016.81438580 00000011.8151AE00
 00000000.00002000
7FF68310 815D4B80 set 00000030 00000016.81438580 00000011.8151AE00
 00000000.00002000
7FF68330 815D65C0 set 00020031 00000015.8151A8C0 00000011.8151AE00
 00000000.00002000
7FF68350 815D6880 set 00020030 00000015.8151A8C0 00000011.8151AE00
 00000000.00002000

 .
 .
 .

7FF68810 815D6B40 set 00020031 00000013.814FBA00 00000011.8151AE00
 00000000.00002000
7FF68830 815D5880 set 00020030 00000013.814FBA00 00000011.8151AE00
 00000000.00002000

 ----- 00000013 free FVEs (IRP = 00000000)
 VA 7FF68850

 -to- 7FF68A90

7FF68AB0 815D9840 set 00020031 00000017.81464480 00000011.8151AE00
 00000000.00002000
7FF68AD0 815CD040 set 00020030 00000017.81464480 00000011.8151AE00
 00000000.00002000
7FF68AF0 815CB480 set 00000031 00000017.81464480 00000011.8151AE00
 00000000.00002000)

The SHOW PROCESS/BUFFER_OBJECTS/FANDLES command displays all the buffered objects and
fast I/O handles that a process has created.

SDA> SHOW PROCESS JOB_CONTROL/TQE
Process index: 000C Name: JOB_CONTROL Extended PID: 0000004C
--

 Timer queue entries

256

Chapter 4. SDA Commands

 TQE
address Expiration Time Type
-------- --- ------
81504080 00A05ABD.895F93C5 27-NOV-2001 11:17:17.37 TSD---
815026C0 00A05AC3.80D0E000 27-NOV-2001 12:00:00.00 TSA---
81502180 00A0C160.635594EF 7-APR-2002 02:00:00.12 TSA---

This example shows the timer queue entries for the process JOB_CONTROL. See Table 4.27 for an
explanation of the Type codes.

SDA> SHOW PROCESS /IMAGE

Process index: 0005 Name: SA_STARTUP_DCL Extended PID: 00000025
---)

 Process activated images

 Image Name Type IMCB GP
--------------------------- ------------ -------- -----------------
SDA MAIN 7FE86EB0 00000000.00230000
SDA$SHARE GLBL 7FE86190 00000000.00636000
SMGSHR GLBL 7FE87830 00000000.00706000
...

Total images = 17 Pages allocated = 2165

This example includes the GP (global pointer) for all images in the process.

SDA> SHOW PROCESS/IMAGE=SDA

Process index: 0005 Name: SA_STARTUP_DCL Extended PID: 00000025
--

 Process activated images

 Image Name/Link Time/Section Type Type/File Id IMCB Sym Vect
 Maj,Min ID,Match
--------------------------------------- ------------ -------- --------
 ---------------- *** see below ***
SDA MAIN 7FE86EB0
 231F,85F10A8C,01
 17-MAY-2004 10:55:33.89 (1346,1,0)
 Code
 Data (read only)
 Short data
 Fixup

*** Rightmost columns from above output moved here ***

 Base End ImageOff
----------------- ----------------- --------
 GP = 00000000.00230000

257

Chapter 4. SDA Commands

00000000.00010000 00000000.0001022F 00010000
00000000.00020000 00000000.000200EF 00020000
00000000.00030000 00000000.00030077 00030000
00000000.80000000 00000000.800003FF 80000000

This example includes the GP (global pointer) for the SDA image.

4.64. SHOW RAD
Displays the settings and explanations of the RAD_SUPPORT system parameter fields, and the
assignment of CPUs and memory to the Resource Affinity Domains (RADs). This command is only
useful on platforms that support RADs. By default, the SHOW RAD command displays the settings of
the RAD_SUPPORT system parameter fields.

Format
SHOW RAD [number | /ALL | /PXML]

Parameter
number

Displays information on CPUs and memory for the specified RAD.

Qualifiers
/ALL

Displays settings of the RAD_SUPPORT parameter fields and the CPU and memory assignments
for all RADs.

/PXML (Integrity servers only)

SDA displays the proximity database derived from the Advanced Configuration and Power Interface
(ACPI) tables. The proximity database is used to set up the RAD data structures.

Examples
1. SDA> SHOW RAD

Resource Affinity Domains

 RAD information header address: FFFFFFFF.81032340
 Maximum RAD count: 00000008
 RAD containing SYS$BASE_IMAGE: 00000000
 RAD support flags: 0000004F

 3 2 2 1 1
 1 4 3 6 5 8 7 0
 +-----------+-----------+-----------+-----------+
 |..|..| skip|ss|gg|ww|pp|..|..|..|..|.p|fs|cr|ae|
 +-----------+-----------+-----------+-----------+
 |..|..| 0| 0| 0| 0| 0|..|..|..|..|.1|00|11|11|
 +-----------+-----------+-----------+-----------+

 Bit 0 = 1: RAD support is enabled

258

Chapter 4. SDA Commands

 Bit 1 = 1: Soft RAD affinity support is enabled
 (Default scheduler skip count of 16 attempts)

 Bit 2 = 1: System-space replication support is enabled

 Bit 3 = 1: Copy on soft fault is enabled

 Bit 4 = 0: Default RAD-based page allocation in use

 Allocation Type RAD choice
 --------------- ----------
 Process-private pagefault Home
 Process creation or inswap Random
 Global pagefault Random
 System-space page allocation Current

 Bit 5 = 0: RAD debug feature is disabled

 Bit 6 = 1: Per-RAD non-paged pool is enabled

This example shows the settings of the RAD_SUPPORT system parameter fields.

2. SDA> SHOW RAD 2
Resource Affinity Domain 0002

CPU sets:

 Active 08 10 11
 Active 08 10 11
 Configure 08 09 10 11
 Potential 08 10 11

PFN ranges:

 Start PFN End PFN PFN count Flags
 --------- -------- --------- -----
 01000000 0107FFE7 0007FFE8 000A OpenVMS Base
 0107FFE8 0107FFFF 00000018 0009 Console Base

SYSPTBR: 01002A01

RAD data: B817C000

This example shows information on the CPUs and memory for RAD 2.

4.65. SHOW RESOURCES
Displays information about all resources in the system or about a resource associated with a specific
lock.

Format
SHOW RESOURCES [/ADDRESS=n

| /ALL (d)

259

Chapter 4. SDA Commands

| /BRIEF

| /CACHED

| /CONTENTION [=ALL][/FULL]

| /LOCKID=lock-id

| /LIST

| /NAME=name

| /OWNED

| /STATUS=(keyword[,...])]

Parameters
None.

Qualifiers
/ADDRESS=n

Displays information from the resource block at the specified address.

/ALL

Displays information from all resource blocks (RSBs) in the system. This is the default behavior of
the SHOW RESOURCES command.

/BRIEF

Displays a single line of information for each resource.

/CACHED

Displays resource blocks that are no longer valid. The memory for these resources is saved so that
later requests for resources can use them.

/CONTENTION [=ALL]

Displays only resources that have at least one lock on either the waiting or conversion queue. Unless
you specify the ALL keyword, resources with locks on the waiting or conversion queues that are
not participating in deadlock searches are ignored. (Locks not participating in deadlock searches are
requested with either the LCK$M_NODLCKWT or LCK$M_NODLCKBLK flags.) By default, a
single line summary is displayed for each resource, followed by a single line summary for each lock
on the resource. Use /FULL to obtain a detailed display for each resource that is in contention.

/FULL

When used with /CONTENTION [=ALL], causes SDA to display details of each resource that is in
contention instead of a single line summary.

/LIST

Displays summary information for each resource, followed by a list of all locks associated with the
resource.

260

Chapter 4. SDA Commands

/LOCKID=lock-id

Displays information on the resource associated with the lock with the specified lock-id.

/NAME=name

Displays information about the specific resource. Name may be the actual name of the resource,
if it only contains uppercase letters, numerals, the underscore (_), dollar sign, colon (:), and some
other printable characters, as for example, /NAME=MY_LOCK. If it contains other printable
characters (including lowercase letters), you may need to enclose the name in quotation marks (""),
as for example, /NAME="My_Lock/47". If it contains nonprintable characters, the name may be
specified as a comma-separated list comprised of strings and hexadecimal numbers, as for example, /
NAME=("My_Lock",0C00,"/47") would specify the name "My_Lock<NUL><FF>/47". The
hexadecimal number can be no more than 8 digits (4 bytes) in length. Nonprintable sequences or
more than 4 bytes must be split into multiple hexadecimal numbers. The maximum length of a
resource name is 32 characters.

/OWNED

Displays only owned resources.

/STATUS=(keyword[,...])

Displays only resources that have the specified status bits set in the RSB$L_STATUS field. If you
specify only one keyword, you can omit the parentheses. Status keywords are as follows:

Keyword Meaning

2PC_IP Indicates a two-phase convert operation in
progress

BRL Indicates byte range resource
CHK_BTR Checks for better master
CVTFULRNG Indicates full-range requests in convert queue
CVTSUBRNG Indicates sub-range requests in convert queue
DIRENTRY Indicates directory entry during failover
DIR_IP Creates directory entry
DIR_RQD Indicates directory entry required
INVPEND Checks for value block invalidation
RBLD_ACT Indicates lock rebuild active for this tree
RBLD_IP Indicates rebuild operation in progress
RBLD_RQD Indicates rebuild required for this resource tree
RM_ACCEPT Accepts new master
RM_DEFLECT Deflects remote interest
RM_FORCE Forces tree move
RM_FREEZE Freeze resource tree on this node
RM_INTEREST Remaster due to master having no interest
RM_IP Indicates resource remaster in progress
RM_PEND Indicates a pending resource remaster operation

261

Chapter 4. SDA Commands

Keyword Meaning

RM_RBLD Indicates to always rebuild resource tree
RM_WAIT Blocks local activity
VALCUR Indicates value block is current
VALINVLD Indicates value block invalid
WTFULRNG Indicates full-range requests in wait queue
WTSUBRNG Indicates a sub-range requests in wait queue
XVAL_VALID Indicates last value block was long block

Description
The SHOW RESOURCES command displays the information listed in Table 4.22 either for each
resource in the system or for the specific resource associated with the specified lock-id, address, or name.

Table 4.22. Resource Information in the SHOW RESOURCES Display

Field (in order of display) Contents

RSB Address of the resource block (RSB) that describes
this resource.

GGMODE Indication of the most restrictive mode in
which a lock on this resource has been granted.
Table 4.23 shows the values and their meanings.
For information on conflicting and incompatible
lock modes, see the VSI OpenVMS System Services
Reference Manual.

Status The contents of the resource block status field.
Parent RSB Address of the RSB that is the parent of this RSB.

This field is 00000000 if the RSB itself is a parent
block.

CGMODE Indication of the most restrictive lock mode to
which a lock on this resource is waiting to be
converted. This does not include the mode for
which the lock at the head of the conversion queue
is waiting. See Table 4.23.

Sub-RSB count Number of RSBs of which this RSB is the parent.
This field is 0 if the RSB has no sub-RSBs.

FGMODE Indication of the full-range grant mode. See
Table 4.23.

Lock Count The total count of all locks on the resource.
RQSEQNM Sequence number of the request.
BLKAST count Number of locks on this resource that have

requested a blocking AST.
CSID Cluster system identification number (CSID) and

name of the node that owns the resource.
Resource Dump of the name of this resource, as stored at

the end of the RSB. The first two columns are the

262

Chapter 4. SDA Commands

Field (in order of display) Contents
hexadecimal representation of the name, with the
least significant byte represented by the rightmost
two digits in the rightmost column. The third
column contains the ASCII representation of the
name, the least significant byte being represented
by the leftmost character in the column. Periods
in this column represent values that correspond to
nonprinting ASCII characters.

Valblk Hexadecimal and ASCII dump of the first 16 bytes
of the value block associated with this resource.
See Extended Value Block later in this table for the
display of the rest of the value block.

Length Length in bytes of the resource name.
x mode Processor mode of the namespace in which this

RSB resides (Group, Kernel, User).
owner Owner of the resource. Certain resources, owned

by the operating system, list "System" as the
owner. Locks owned by a group have the number
(in octal) of the owning group in this field.

Seqnum Sequence number associated with the resource's
value block. If the number indicates that the value
block is not valid, the words "Not valid" appear to
the right of the number.

Extended Valblk If any of the last 48 bytes of the value block (see
Valblk earlier in this table) are non-zero, then
the entire 64-byte value block is displayed as
hexadecimal and ASCII dumps. Otherwise this
display is omitted. The display appears only when
value block contents are non-zero, without regard
to the state of the RSB$M_XVAL_VALID flag.

Granted queue List of locks on this resource that have been
granted. For each lock in the list, SDA displays the
number of the lock and the lock mode in which the
lock was granted.

Conversion queue List of locks waiting to be converted from one
mode to another. For each lock in the list, SDA
displays the number of the lock, the mode in which
the lock was granted, and the mode to which the
lock is to be converted.

Waiting queue List of locks waiting to be granted. For each lock
in the list, SDA displays the number of the lock
and the mode requested for that lock.

Table 4.23. Lock Modes on Resources

Value1 Meaning

NL Null mode
CR Concurrent-read mode

263

Chapter 4. SDA Commands

Value1 Meaning

CW Concurrent-write mode
PR Protected-read mode
PW Protected-write mode
EX Exclusive mode

Values are shown in order from the least restrictive mode to the most restrictive.

Examples
1. SDA> SHOW RESOURCES

Resource Database

RSB: FFFFFFFF.7FEECE40 GGMODE: PW Status: VALID XVALID
Parent RSB: 00000000.00000000 CGMODE: PW
Sub-RSB count: 0 FGMODE: PW
Lock Count: 1 RQSEQNM: 0000
BLKAST count: 0 CSID: 00000000 (SAND41)

Resource: 00000000 0043524A JRC..... Valblk: 5F73695F
 73696854
 Length 3 00000000 00000000 6F5F7473
 65745F61
 User mode 00000000 00000000 This_is_a_test_o
 Group 001 00000000 00000000 Seqnum: 00000001

Extended Valblk: 6F5F7473 65745F61 5F73695F 73696854 This_is_a_test_o
 565F6465 646E6574 78455F65 68745F66 f_the_Extended_V
 00000000 00006B63 6F6C425F 65756C61 alue_Block......
 00000000 00000000 00000000 00000000

Granted queue (Lock ID / Gr mode / Range):
 1500082F PW 00000000-FFFFFFFF

Conversion queue (Lock ID / Gr mode / Range -> Rq mode / Range):
 *** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode / Range):
 *** EMPTY QUEUE ***

SDA> SHOW RESOURCES
Resource Database

RSB: FFFFFFFF.7FEECE40 GGMODE: PW Status: VALID
Parent RSB: 00000000.00000000 CGMODE: PW
Sub-RSB count: 0 FGMODE: PW
Lock Count: 1 RQSEQNM: 0002
BLKAST count: 0 CSID: 00000000 (SAND41)

Resource: 00000000 0043524A JRC..... Valblk: 5F74726F
 68735F41
 Length 3 00000000 00000000 00000000
 00656E6F
 User mode 00000000 00000000 A_short_one.....

264

Chapter 4. SDA Commands

 Group 001 00000000 00000000 Seqnum: 00000003

Extended Valblk: 00000000 00656E6F 5F74726F 68735F41 A_short_one.....
 565F6465 646E6574 78455F65 68745F66 f_the_Extended_V
 00000000 00006B63 6F6C425F 65756C61 alue_Block......
 00000000 00000000 00000000 00000000

Granted queue (Lock ID / Gr mode / Range):
 3900080C PW 00000000-FFFFFFFF

Conversion queue (Lock ID / Gr mode / Range -> Rq mode / Range):
 *** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode / Range):
 *** EMPTY QUEUE ***

These examples for Alpha and Integrity server systems show two cases:

• output from a program writing a longer block

• output where the last writer wrote a short value block (XVALID not set), but because a previous
writer wrote non-zero data to the high portion of the block and these data are still present, the
data in the Extended Value Block are shown.

2.

This example of the SHOW RESOURCES/CONTENTION command shows all the resources for
which there is contention, and which are to be included in deadlock searches.

265

Chapter 4. SDA Commands

3.

This example shows the output from the SHOW RESOURCES/LIST command.

4.66. SHOW RMD
Displays information contained in the reserved memory descriptors. Reserved memory is used within the
system by memory-resident global sections.

Format
SHOW RMD [/qualifiers]

Parameters
None.

Qualifiers
/ADDRESS=n

Displays a specific reserved memory descriptor entry, given its address.

/ALL

Displays information in all the reserved memory descriptors. This qualifier is the default.

Description
The SHOW RMD command displays information that resides in the reserved memory descriptors. The
table below shows the fields and their meanings.

266

Chapter 4. SDA Commands

Table 4.24. RMD Fields

Field Meaning

Address Gives the address of the reserved memory
descriptor.

Name Gives the name of the reserved memory descriptor.
Group Gives the UIC group that owns the reserved

memory. This is given as -S- for system global
reserved memory.

RAD Gives the required RAD for the reserved memory.
Displays "Any" if no RAD specified.

PFN Gives starting page number of the reserved
memory.

Count Gives the number of pages reserved.
In_Use (Error) Gives the number of pages in use. If an error

occurred when the reserved memory was being
allocated, the error condition code is displayed in
parentheses. A second line, giving the text of the
error, is also displayed in this case.

Zero_PFN Gives the next page number to be zeroed.
Flags Gives the settings of flags for specified reserved

memory descriptor as a hexadecimal number, then
displays key flag bits by name. The names may use
multiple lines in the display.

Examples
1. SDA> SHOW RMD

Reserved Memory Descriptor List

 In_Use
Address Name Group RAD PFN Count (Error)
 Zero_PFN Flags
-------- ------------------- ----- ---- -------- -------- --------
 -------- ------------------------------
814199C0 LARGE 00022 Any 00000000 000004E2 00000000
 00000000 000000E0 Group Page_Tables

 GBLSec
81419940 LARGE 00022 Any 00000000 00138800 (0000244C)
 00000000 000001A0 Error Group GBLSec
 Error = %SYSTEM-F-INSFLPGS, insufficient Fluid Pages available
81419AC0 SMALL 00011 0001 00000180 00000001 00000000
 00000180 000000E1 Alloc Group

 Page_Tables GBLSec
81419A40 SMALL 00011 0001 00000E00 00000080 00000000
 00000E00 000000A1 Alloc Group GBLSec

This example shows the default output of a SHOW RMD command.

267

Chapter 4. SDA Commands

4.67. SHOW RMS
Displays the RMS data structures selected by the SET RMS command to be included in the default
display of the SHOW PROCESS/RMS command.

Format
SHOW RMS

Parameters
None.

Qualifiers
None.

Description
The SHOW RMS command lists the names of the data structures selected for the default display of the
SHOW PROCESS/RMS command.

For a description of the significance of the options listed in the SHOW RMS display, see the description
of the SET RMS command and Table 4.2.

For an illustration of the information displayed by the SHOW PROCESS/RMS command, see the
examples included in the description of the SHOW PROCESS command.

Examples
1. SDA> SHOW RMS

RMS Display Options:
 IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,
XAB,RLB,BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB
Display RMS structures for all IFI values.

The SHOW RMS command displays the full set of options available for display by the SHOW
PROCESS/RMS command. SDA, by default, selects the full set of RMS options at the beginning of
an analysis.

2. SDA> SET RMS=(IFAB=1,CCB,WCB)
SDA> SHOW RMS

RMS Display Options: IFB,CCB,WCB
Display RMS structures only for IFI = 0001

The SET RMS command establishes the IFB, CCB, and WCB as the structures to be displayed, and
only for the file whose internal File Identifer has the value 1, when the SHOW PROCESS/RMS
command is issued. The SHOW RMS command verifies this selection of RMS options.

268

Chapter 4. SDA Commands

4.68. SHOW RSPID
Displays information about response IDs (RSPIDs) of all System Communications Services (SCS)
connections or, optionally, about a specific SCS connection.

Format
SHOW RSPID [/CONNECTION=cdt-address]

Parameters
None.

Qualifier
/CONNECTION=cdt-address

Displays RSPID information for the specific SCS connection whose connection descriptor table
(CDT) address is provided in cdt-address. You can find the cdt-address for any active connection
on the system in the CDT summary page display of the SHOW CONNECTIONS command. CDT
addresses are also stored in many individual data structures related to SCS connections. These data
structures include class driver request packets (CDRPs) and unit control blocks (UCBs) for class
drivers that use SCS and cluster system blocks (CSBs) for the connection manager.

Description
Whenever a local system application (SYSAP) requires a response from a remote SYSAP, a unique
number, called an RSPID, is assigned to the response by the local system. The RSPID is transmitted in
the original request (as a means of identification), and the remote SYSAP returns the same RSPID in its
response to the original request.

The SHOW RSPID command displays information taken from the response descriptor table (RDT),
which lists the currently open local requests that require responses from SYSAPs at a remote node. For
each RSPID, SDA displays the following information:

• RSPID value

• Address of the class driver request packet (CDRP), which generally represents the original request

• Address of the CDT that is using the RSPID

• Name of the local process using the RSPID

• Remote node from which a response is required (and has not yet been received)

Examples
1. SDA> SHOW RSPID

 --- Summary of Response Descriptor Table (RDT) 805E6F18 ---
RSPID CDRP Address CDT Address Local Process Name
 Remote Node
----- ------------ ----------- ------------------

269

Chapter 4. SDA Commands

39D00000 8062CC80 805E8710 VMS$VMScluster
 VANDQ1
EE210001 80637260 805E8C90 VMS$DISK_CL_DRVR
 ROMRDR
EE240002 806382E0 805E8DF0 VMS$DISK_CL_DRVR
 VANDQ1
EE440003 806393E0 805E8F50 VMS$TAPE_CL_DRVR
 VANDQ1
5DB90004 80636BC0 805E8870 VMS$VMScluster
 ROMRDR
5C260005 80664040 805E8870 VMS$VMScluster
 ROMRDR
38F80006 80664A80 805E8710 VMS$VMScluster
 VANDQ1

This example shows the default output for the SHOW RSPID command.

2. SDA> SHOW RSPID/CONNECTION=805E8F50
 --- Summary of Response Descriptor Table (RDT) 805E6F18 ---
RSPID CDRP Address CDT Address Local Process Name
 Remote Node
----- ------------ ----------- ------------------

EE440003 806393E0 805E8F50 VMS$TAPE_CL_DRVR
 VANDQ1

This example shows the output for a SHOW RSPID/CONNECTION command.

4.69. SHOW SHM_CPP
Displays information about the shared memory common property partitions (CPPs). The default display
shows a single-page summary that includes a single line for each CPP.

Format
SHOW SHM_CPP [/qualifiers]

Parameters
None.

Qualifiers
/ADDRESS=n

Displays a detailed page of information about an individual shared memory CPP given the address of
the SHM_CPP structure.

/ALL

Displays a detailed page of information about each shared memory CPP.

/IDENT=n

Displays a detailed page of information about an individual shared memory CPP.

270

Chapter 4. SDA Commands

/PFN [=(option[,option,...])]

Displays PFN data in addition to the basic SHM_CPP. The default is to display all lists (free, bad,
untested), plus the PFN database pages and the complete range of PFNs in the CPP.

You can limit which lists are displayed by specifying one or more keywords from the following table.
If you specify multiple keywords, enclose them in parentheses and separate keywords with a comma.

ALL_FRAGMENTS Displays the complete range of PFNs in the CPP.
BAD Displays only the bad page list.
FREE Displays only the free page list.
PFNDB Displays the PFNs containing the PFN database.
UNTESTED Displays only the untested page list.

If you specify /PFN without /ALL, /IDENT, or /ADDRESS, the system displays the PFN lists from
the last shared memory CPP accessed.

Examples
1. SDA> SHOW SHM_CPP

Summary of Shared Memory Common Property Partitions

Base address of SHM_CPP array: FFFFFFFF.7F2BA140
Maximum number of SHM_CPP entries: 00000007
Size of each SHM_CPP: 00000240
Maximum fragment count per SHM_CPP: 00000010

Valid CPP count: 00000001

 ID SHM_CPP address MinPFN MaxPFN Page count Free pages
 Flags
---- ----------------- -------- -------- -------- --------

 -- SHM_CPP IDs 0000 to 0002: VALID flag clear --

0003 FFFFFFFF.7F2BA800 00060000 0007FFFF 00020000 0001FCF7
 00000001 VALID

 -- SHM_CPP IDs 0004 to 0006: VALID flag clear --

This example shows the default output for the SHOW SHM_CPP command.

2. SDA> SHOW SHM_CPP/IDENT=3
Shared Memory CPP 0003

SHM_CPP address: FFFFFFFF.7F2BA800

 Version: 00000001 Flags:
 00000001 VALID
 Size: 00000000.000000C0 Page count:
 00020000
 Actual fragment count: 00000001 Minimum PFN:
 00060000

271

Chapter 4. SDA Commands

 Maximum fragment count: 00000010 Maximum PFN:
 0007FFFF

 Length of free page list: 0001FCF7
 Length of bad page list: 00000000
 Length of untested page list: 00000000

PMAP array for PFN database pages

 PMAP Start PFN PFN count
 ----- -------- --------
 0. 00060053 00000280

PMAP array for all fragments

 PMAP Start PFN PFN count
 ----- -------- --------
 0. 00060000 00020000

GLock address: FFFFFFFF.7F2BA8C0 Handle:
 80000000.00010D19

 GLock name: SHM_CPP00000003 Flags:
 00
 Owner count: 00 Owner node:
 00
 Node sequence: 0000 Owner:
 000000
 IPL: 08 Previous IPL:
 00
 Wait bitmask: 00000000.00000000 Timeout:
 00249F00
 Thread ID: 00000000.00000000

Connected GNode bitmask: FFFFFFFF.7F2BA900

 Valid bits: 00000004 State:
 00000000.00000000
 Unit count: 0001 Unit size:
 QUADWORD

 Unit bitmask:
 7 00000000
Ranges of free pages

 Range Start PFN PFN count
 ----- -------- --------
 1. 000602F6 00000002
 2. 0006030B 0001FCF5

This example shows the details for a single SHM_CPP.

4.70. SHOW SHM_REG
Displays information about shared memory regions. The default display shows a single page summary
that includes a single line for each region.

272

Chapter 4. SDA Commands

Format
SHOW SHM_REG [/qualifiers] [name]

Parameter
name

Detailed page of information about the named region.

Qualifiers
/ADDRESS=n

Displays a detailed page of information about an individual region given the address of the
SHM_REG structure.

/ALL

Displays a detailed page of information about each region.

/IDENT=n

Displays a detailed page of information about the specified region.

Examples
1. SDA> SHOW SHM_REG

 Summary of Shared Memory Regions

Base address of SHM_REG array: FFFFFFFF.7F2BB140
Maximum number of SHM_REG entries: 00000040
Size of each SHM_REG: 00000208
Base address of SHM_DESC array: FFFFFFFF.7F2DC000

Valid region count: 00000009

 ID SHM_REG address Region Tag SysVA / GSTX
 Flags
---- ----------------- ------------------------------ -----------------

0000 FFFFFFFF.7F2BB140 SYS$GALAXY_MANAGEMENT_DATABASE FFFFFFFF.7F234000
 00000001 VALID
0001 FFFFFFFF.7F2BB348 SYS$SHARED_MEMORY_PFN_DATABASE FFFFFFFE.00000000
 00000001 VALID
0002 FFFFFFFF.7F2BB550 SMCI$SECTION_PBA_04001 -<None>-
 00000001 VALID
0003 FFFFFFFF.7F2BB758 GLXCPUBALANCER$SYSGBL 0000013F
 00000005 VALID SHARED_CONTEXT_VALID
0004 FFFFFFFF.7F2BB960 SMCI$CHANNEL_PBA_0_1 FFFFFFFF.8F3AE000
 00000001 VALID
0005 FFFFFFFF.7F2BBB68 SMCI$CHANNEL_PBA_0_2 FFFFFFFF.8FAEE000
 00000001 VALID
0006 FFFFFFFF.7F2BBD70 SMCI$CHANNEL_PBA_1_2 -<Not Attached>-
 00000001 VALID

273

Chapter 4. SDA Commands

0007 FFFFFFFF.7F2BBF78 LAN$SHM_REG FFFFFFFF.7F20C000
 00000009 VALID ATTACH_DETACH
0008 FFFFFFFF.7F2BC180 GLX$CPU_BAL_GLOCK $000006 00000140
 00000005 VALID SHARED_CONTEXT_VALID

 -- SHM_REG IDs 0009 to 003F: never used --

This example shows the summary of all shared memory regions in the system.

2. SDA> SHOW SHM_REG SMCI$CHANNEL_PBA_0_1

SHM_REG address: FFFFFFFF.7F2BB960

 Version: 00000001 Flags:
 00000001 VALID
 Index/Sequence: 0004/00000003 Size:
 00000000.00000120

 Region tag: SMCI$CHANNEL_PBA_0_1
 Creation time: 31-MAR-1999 14:11:11.37

SHM_DESC address: FFFFFFFF.7F2DC200

 Version: 00000001 Flags:
 00000005 ATTACHED SYS_VA_VALID
 System VA: FFFFFFFF.8F3AE000 Virtual size:
 00000000.00274000
 I/O ref count: 00000000.00000000
 Index/Sequence: 0004/00000003 Context:
 FFFFFFFF.80F42480
 Callback: FFFFFFFF.8F38E5C0 SYS$PBDRIVER+185C0

MMAP address: FFFFFFFF.7F2BB9E0

 Level count: 0001 Flags:
 0001 VALID
 Top page count: 00000001 Virtual size:
 00000000.00274000
 PFN list page count: 00000001 First PFN:
 000602D4
 Data page count: 00000009

GLock address: FFFFFFFF.7F2BBA80 Handle:
 80000000.00010F51

 GLock name: SHM_REG00000004 Flags:
 00
 Owner count: 00 Owner node:
 00
 Node sequence: 0000 Owner:
 000000
 IPL: 08 Previous IPL:
 00
 Wait bitmask: 00000000.00000000 Timeout:
 002DC6C0
 Thread ID: 00000000.00000000

274

Chapter 4. SDA Commands

Attached GNode bitmask: FFFFFFFF.7F2BBAC0

 Valid bits: 00000004 State:
 00000000.00000012 AUTO_LOCK SET_COUNT
 Unit count: 0001 Unit size:
 QUADWORD
 Lock IPL: 08 Saved IPL:
 00000008
 Count of bits set: 00000002

 Unit bitmask:
 3 00000000

I/O in progress bitmask: FFFFFFFF.7F2BBAF8

 Valid bits: 00000004 State:
 00000000.00000012 AUTO_LOCK SET_COUNT
 Unit count: 0001 Unit size:
 QUADWORD
 Lock IPL: 08 Saved IPL:
 00000000
 Count of bits set: 00000000

 Unit bitmask:
 0 00000000

SHM_CPP bitmask: FFFFFFFF.7F2BBB30

 Valid bits: 00000007 State:
 00000000.00000000
 Unit count: 0001 Unit size:
 QUADWORD

 Unit bitmask:
 08 00000000)

This example shows the details for a single shared memory region.

4.71. SHOW SPINLOCKS
Displays the multiprocessing synchronization data structures.

Format
SHOW SPINLOCKS {[name]|/ADDRESS=expression|/INDEX=expression}

[{/BRIEF | /COUNTS | /FULL}]

[/CACHED_PCB | /DEVICE | /DYNAMIC | /MAILBOX

| /MISCELLANEOUS | /OWNED | /PCB | /PORT

| /PSHARED | /STATIC]

275

Chapter 4. SDA Commands

Parameters
name

Name of the spinlock to be displayed. Device spinlock names are of the form node$lock, where
node indicates the OpenVMS Cluster node name and lock indicates the device and controller
identification (for example, HAETAR$DUA). If there is no OpenVMS Cluster node name, the
dollar sign ($) is also skipped (for example, DUA).

Qualifiers
/ADDRESS=expression

Displays the spinlock at the address specified in expression. You can use the /ADDRESS qualifier to
display a specific device, mailbox, PCB, cached PCB, or process-shared spinlock; however, the name
of the spinlock may be listed as "Unknown" in the display.

/BRIEF

Produces a condensed display of the spinlock information displayed by default by the SHOW
SPINLOCKS command, including the following: address, spinlock name or device name, IPL
or device IPL, rank, ownership depth, and CPU ID of the owner CPU. If the system under
analysis was executing with full-checking multiprocessing enabled (according to the setting of the
MULTIPROCESSING or SYSTEM_CHECK system parameter), then the number of waiting CPUs
and interlock status are also displayed.

/CACHED_PCB

Displays all PCB-specific spinlocks associated with PCBs of deleted processes.

/COUNTS

Produces a display of Spin, Wait, and Acquire counts for each spinlock (only if full-checking
multiprocessing is enabled).

/DYNAMIC

Displays information for all dynamic spinlocks in the system (device, port, mailbox, PCB, cached
PCB, process-shared, and miscellaneous spinlocks).

/FULL

Displays full descriptive and diagnostic information for each displayed spinlock.

/INDEX=expression

Displays the static spinlock whose index is specified in expression. You can only use the /INDEX
qualifier to display a named static spinlock.

/MAILBOX

Displays all mailbox-specific spinlocks.

/MISCELLANEOUS

Display all spinlocks that are not included in existing groups such as mailbox and PCB spinlocks.
Miscellaneous spinlocks include the XFC, PEDRIVER, TCP/IP, and various other spinlocks. The list
of miscellaneous spinlocks varies from system to system.

276

Chapter 4. SDA Commands

/OWNED

Displays information for all spinlocks owned by a CPU. If no processors own any spinlocks, SDA
displays the following message:

%SDA-I-NOSPLOWNED, all requested spinlocks are unowned

/PCB

Displays all PCB-specific spinlocks.

/PORT

Displays all port spinlocks.

/PSHARED

Displays all process-shared (Pthreads) spinlocks.

/STATIC

Displays information for all static spinlocks in the system.

Description
The SHOW SPINLOCKS command displays status and diagnostic information about the multiprocessing
synchronization structures known as spinlocks.

A static spinlock is a spinlock whose data structure is permanently assembled into the system. Static
spinlocks are accessed as indexes into a vector of longword addresses called the spinlock vector, the
address of which is contained in SMP$AR_SPNLKVEC. The table below lists the static spinlocks.

A dynamic spinlock is a spinlock that is created based on the configuration of a particular system. One
such dynamic spinlock is the device lock SYSMAN creates when configuring a particular device. This
device lock synchronizes access to the device's registers and certain UCB fields. The system creates
a dynamic spinlock by allocating space from nonpaged pool, rather than assembling the lock into the
system as it does in creating a static spinlock. Other types of dynamic spinlocks are: port spinlocks,
mailbox spinlocks, PCB, cached PCB, process-shared, and miscellaneous spinlocks.

See the Writing OpenVMS Alpha Device Drivers in C for a full discussion of the role of spinlocks in
maintaining synchronization of kernel-mode activities in a multiprocessing environment.

Name Description

QUEUEAST Spinlock for queuing ASTs at IPL 6
FILSYS Spinlock on file system structures
LCKMGR Spinlock on all lock manager structures
IOLOCK8/SCS Spinlock for executing a driver fork process at IPL

8
TX_SYNCH Transaction processing spinlock
TIMER Spinlock for adding and deleting timer queue

entries and searching the timer queue
PORT Template structure for dynamic spinlocks for ports

with multiple devices

277

Chapter 4. SDA Commands

Name Description

IO_MISC Miscellaneous short-term I/O spinlocks
MMG Spinlock on memory management, PFN database,

swapper, modified page writer, and creation of per-
CPU database structures

SCHED Spinlock on some process data structures and the
scheduler database.

IOLOCK9 Spinlock for executing a driver fork process at IPL
9

IOLOCK10 Spinlock for executing a driver fork process at IPL
10

IOLOCK11 Spinlock for executing a driver fork process at IPL
11

MAILBOX Spinlock for sending messages to the permanent
system (OPCOM, JOBCTL, and so on) mailboxes

POOL Spinlock on nonpaged pool database
PERFMON Spinlock for I/O performance monitoring
INVALIDATE Spinlock for system space translation buffer (TB)

invalidation
HWCLK Spinlock on hardware clock database, including

the quadword containing the due time of the first
timer queue entry (EXE$GQ_1ST_TIME) and
the quadword containing the system time (EXE
$GQ_SYSTIME)

MEGA Spinlock for serializing access to fork-wait queue
EMB/MCHECK Spinlock for allocating and releasing error-logging

buffers and synchronizing certain machine error
handling

For each spinlock in the system, SHOW SPINLOCKS provides the following information:

• Name of the spinlock (or device name for the device lock)

• Address of the spinlock data structure (SPL)

• The owning CPU's CPU ID

• IPL at which allocation of the lock is synchronized on a local processor

• Number of nested acquisitions of the spinlock by the processor owning the spinlock (Ownership
Depth)

• Rank of the spinlock

• Timeout interval for spinlock acquisition (in terms of 10 milliseconds)

• Shared array (shared spinlock context block pointer)

• Number of processors waiting to obtain the spinlock

278

Chapter 4. SDA Commands

• Interlock (synchronization mutex used when full-checking multiprocessing is enabled)

The last two items (CPUs waiting and Interlock) are only displayed if full-checking multiprocessing is
enabled.

SHOW SPINLOCKS/BRIEF produces a condensed display of this same information, excluding the share
array and timeout interval.

SHOW SPINLOCKS/COUNTS displays only the Spin, Wait, and Acquire counts for each spinlock.

If the system under analysis was executing with full-checking multiprocessing enabled, SHOW
SPINLOCKS/FULL adds to the spinlock display the Spin, Wait, and Acquire counts and the last sixteen
PCs at which the lock was acquired or released. If applicable, SDA also displays the PC of the last
release of multiple, nested acquisitions of the lock.

If no spinlock name, address, or index is given, then information is displayed for all applicable spinlocks.

Examples
1. SDA> SHOW SPINLOCKS

System static spinlock structures

EMB Address 810AE300
Owner CPU ID None IPL 0000001F
Ownership Depth FFFFFFFF Rank 00000000
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

MCHECK Address 810AE300
Owner CPU ID None IPL 0000001F
Ownership Depth FFFFFFFF Rank 00000000
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

MEGA Address 810AE400
Owner CPU ID None IPL 0000001F
Ownership Depth FFFFFFFF Rank 00000002
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

HWCLK Address 810AE500
Owner CPU ID None IPL 00000016
Ownership Depth FFFFFFFF Rank 00000004
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

 .
 .
 .

System dynamic spinlock structures

QTV14$OPA Address 8103FB00
Owner CPU ID None DIPL 00000015
Ownership Depth FFFFFFFF Rank FFFFFFFF
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

279

Chapter 4. SDA Commands

QTV14$MBA Address 810AE900
Owner CPU ID None IPL 0000000B
Ownership Depth FFFFFFFF Rank 0000000C
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

QTV14$NLA Address 810AE900
Owner CPU ID None IPL 0000000B
Ownership Depth FFFFFFFF Rank 0000000C
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

QTV14$PKA Address 814AA100
Owner CPU ID None DIPL 00000015
Ownership Depth FFFFFFFF Rank FFFFFFFF
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free
 .
 .
 .

This excerpt illustrates the default output of the SHOW SPINLOCKS command.

2. SDA> SHOW SPINLOCKS/BRIEF
System static spinlock structures

 Spinlock Owner CPUs
Address Name IPL Rank Depth CPU Waiting Interlock
-------- ------------ ---- -------- -------- -------- -------- ---------
810AE300 EMB 001F 00000000 FFFFFFFF None 00000000 Free
810AE300 MCHECK 001F 00000000 FFFFFFFF None 00000000 Free
810AE400 MEGA 001F 00000002 FFFFFFFF None 00000000 Free
810AE500 HWCLK 0016 00000004 FFFFFFFF None 00000000 Free
810AE600 INVALIDATE 0015 00000006 FFFFFFFF None 00000000 Free
810AE700 PERFMON 000F 00000008 FFFFFFFF None 00000000 Free
810AE800 POOL 000B 0000000A FFFFFFFF None 00000000 Free
810AE900 MAILBOX 000B 0000000C FFFFFFFF None 00000000 Free
810AEA00 IOLOCK11 000B 0000000E FFFFFFFF None 00000000 Free
810AEB00 IOLOCK10 000A 0000000F FFFFFFFF None 00000000 Free
810AEC00 IOLOCK9 0009 00000010 FFFFFFFF None 00000000 Free
810AED00 SCHED 0008 00000012 00000000 00000000 00000001 Free
810AEE00 MMG 0008 00000014 FFFFFFFF None 00000000 Free
810AEF00 IO_MISC 0008 00000016 FFFFFFFF None 00000000 Free
810AF000 PORT 0008 00000017 FFFFFFFF None 00000000 Free
810AF100 TIMER 0008 00000018 00000000 00000000 00000000 Free
810AF200 TX_SYNCH 0008 00000019 FFFFFFFF None 00000000 Free
810AF300 SCS 0008 0000001A FFFFFFFF None 00000000 Free
810AF400 LCKMGR 0008 0000001B FFFFFFFF None 00000000 Free
810AF500 FILSYS 0008 0000001C FFFFFFFF None 00000000 Free
810AF600 QUEUEAST 0006 0000001E FFFFFFFF None 00000000 Free

System dynamic spinlock structures

280

Chapter 4. SDA Commands

 Device Owner CPUs
Address Name DIPL Rank Depth CPU Waiting Interlock
-------- ------------ ---- -------- -------- -------- -------- ---------
8103FB00 QTV14$OPA 0015 FFFFFFFF FFFFFFFF None 00000000 Free
810AE900 QTV14$MBA 000B 0000000C FFFFFFFF None 00000000 Free
810AE900 QTV14$NLA 000B 0000000C FFFFFFFF None 00000000 Free
814AA100 QTV14$PKA 0015 FFFFFFFF FFFFFFFF None 00000000 Free

 .
 .
 .

This excerpt illustrates the condensed form of the display produced in the first example.

3. SDA> SHOW SPINLOCKS/FULL SCHED
System static spinlock structures

SCHED Address 810AED00
Owner CPU ID 00000000 IPL 00000008
Ownership Depth 00000000 Rank 00000012
Timeout Interval 002DC6C0 Share Array 00000000
CPUs Waiting 00000001 Interlock Free

Spins 00000000.0458E8DC Busy waits 00252E8D
Acquires 00000000.01279BE0

Spinlock SPL$C_SCHED was last acquired or released from:
(Most recently) 8004AD00 EXE$SWTIMER_FORK_C+00170
 . 8004B1D4 EXE$SWTIMER_FORK_C+00644
 . 8004AD00 EXE$SWTIMER_FORK_C+00170
 . 8004B1D4 EXE$SWTIMER_FORK_C+00644
 . 8004AD00 EXE$SWTIMER_FORK_C+00170
 . 8004B1D4 EXE$SWTIMER_FORK_C+00644
 . 8004AD00 EXE$SWTIMER_FORK_C+00170
 . 8004B1D4 EXE$SWTIMER_FORK_C+00644
 . 8004AD00 EXE$SWTIMER_FORK_C+00170
 . 80136A2C SCH$INTERRUPT+0070C
 . 80117580 SCH$IDLE_C+002A0
 . 8004B230 EXE$SWTIMER_FORK_C+006A0
 . 8004AFC4 EXE$SWTIMER_FORK_C+00434
 . 80117360 SCH$IDLE_C+00080
 . 8012E5F4 EXE$HIBER_INT_C+00074
(Least recently) 80132150 EXE$SCHDWK_C+00110

Last release of multiple acquisitions occurred at:
 80262A54 EXE$CHECK_VERSION_C+009F4

This display shows the detailed information on the SCHED spinlock, including the PC history.

4.72. SHOW STACK
Displays the location and contents of the process stacks (of the SDA current process) and the system
stack.

Format
SHOW STACK {range | /ALL | [/EXECUTIVE | /INTERRUPT | /KERNEL | /PHYSICAL | /SUMMARY | /SUPERVISOR | /SYSTEM | /USER]}

281

Chapter 4. SDA Commands

{/LONG | /QUAD (d)}

Parameters
range

Range of memory locations you want to display in stack format. You can express a range using the
following syntax:

m:n Range of addresses from m to n
m;n Range of addresses starting at m and continuing

for n bytes

Qualifiers
/ALL

Displays the locations and contents of the four process stacks for the SDA current process and the
system stack.

/EXECUTIVE

Shows the executive stack for the SDA current process.

/INTERRUPT

Shows the system stack and is retained for compatibility with OpenVMS VAX. The interrupt stack
does not exist on OpenVMS Alpha and OpenVMS Integrity servers.

/KERNEL

Shows the kernel stack for the SDA current process.

/LONG

Displays longword width stacks. If you do not specify this qualifier, SDA by default displays
quadword width stacks.

/PHYSICAL

Treats the start and end addresses in the given range as physical addresses. This qualifier is only
relevant when a range is specified. By default, SDA treats range addresses as virtual addresses.

/QUAD

Displays quadword width stacks. This is the default.

/SUMMARY

Displays a list of all known stack ranges and the current stack pointer for each range.

/SUPERVISOR

Shows the supervisor stack for the SDA current process.

/SYSTEM

Shows the system stack.

282

Chapter 4. SDA Commands

/USER

Shows the user stack for the SDA current process.

Description
The SHOW STACK command, by default, displays the stack that was in use when the system failed,
or, in the analysis of a running system, the current operating stack. For a process that became the SDA
current process as the result of a SET PROCESS command, the SHOW STACK command by default
shows its current operating stack.

The various qualifiers to the command allow display of any of the four per-process stacks for the SDA
current process, as well as the system stack for the SDA current CPU. In addition, any given range can be
displayed in stack format.

You can define SDA process and CPU context by using the SET CPU, SHOW CPU, SHOW CRASH,
SET PROCESS, and SHOW PROCESS commands as indicated in their command descriptions. A
complete discussion of SDA context control appears in Section 2.5.

SDA provides the following information in each stack display:

Section Contents

Identity of stack SDA indicates whether the stack is a process
stack (user, supervisor, executive, or kernel) or the
system stack.

Stack pointer The stack pointer identifies the top of the stack.
The display indicates the stack pointer by the
symbol SP =>.

Stack address SDA lists all the addresses that the operating
system has allocated to the stack. The stack
addresses are listed in a column that increases
in increments of 8 bytes (one quadword) unless
you specify the /LONG qualifier, in which case
addresses are listed in increments of 4 (one
longword).

Stack contents SDA lists the contents of the stack in a column to
the right of the stack addresses.

Symbols SDA attempts to display the contents of a location
symbolically, using a symbol and an offset. If the
stack is being displayed in quadword width and
the location cannot be symbolized as a quadword,
SDA attempts to symbolize the least significant
longword and then the most significant longword.
If the address cannot be symbolized, this column is
left blank.

Canonical stack When displaying the kernel stack of a noncurrent
process in a crash dump, SDA identifies the stack
locations used by the scheduler to store the register
contents of the process.

Mechanism array Signal array Exception frame When displaying the current stack in a
FATALEXCPT, INVEXCEPTN, SSRVEXCEPT,
or UNXSIGNAL bugcheck, SDA identifies the

283

Chapter 4. SDA Commands

Section Contents
stack locations used to store registers and other key
data for these structures.

If a stack is empty, the display shows the following:

SP => (STACK IS EMPTY)

Examples
1. SDA> SHOW STACK

Current Operating Stack (SYSTEM):
 FFFFFFFF.8244BD08 FFFFFFFF.800600FC SCH
$REPORT_EVENT_C+000FC
 FFFFFFFF.8244BD10 00000000.00000002
 FFFFFFFF.8244BD18 00000000.00000005
 FFFFFFFF.8244BD20 FFFFFFFF.8060C7C0
 SP => FFFFFFFF.8244BD28 FFFFFFFF.8244BEE8
 FFFFFFFF.8244BD30 FFFFFFFF.80018960 EXE
$HWCLKINT_C+00260
 FFFFFFFF.8244BD38 00000000.000001B8
 FFFFFFFF.8244BD40 00000000.00000050
 FFFFFFFF.8244BD48 00000000.00000210 UCB$N_RSID
+00002
 FFFFFFFF.8244BD50 00000000.00000000
 FFFFFFFF.8244BD58 00000000.00000000
 FFFFFFFF.8244BD60 FFFFFFFF.804045D0 SCH
$GQ_IDLE_CPUS
 FFFFFFFF.8244BD68 FFFFFFFF.8041A340 EXE
$GL_FKWAITFL+00020
 FFFFFFFF.8244BD70 00000000.00000250 UCB
$T_MSGDATA+00034
 FFFFFFFF.8244BD78 00000000.00000001
CHF$IS_MCH_ARGS FFFFFFFF.8244BD80 00000000.0000002B
CHF$PH_MCH_FRAME FFFFFFFF.8244BD88 FFFFFFFF.8244BFB0
CHF$IS_MCH_DEPTH FFFFFFFF.8244BD90 80000000.FFFFFFFD G
CHF$PH_MCH_DADDR FFFFFFFF.8244BD98 00000000.00001600 CTL
$C_CLIDATASZ+00060
CHF$PH_MCH_ESF_ADDR FFFFFFFF.8244BDA0 FFFFFFFF.8244BF40
CHF$PH_MCH_SIG_ADDR FFFFFFFF.8244BDA8 FFFFFFFF.8244BEE8
CHF$IH_MCH_SAVR0 FFFFFFFF.8244BDB0 FFFFFFFF.8041FB00 SMP
$RELEASEL+00640
CHF$IH_MCH_SAVR1 FFFFFFFF.8244BDB8 00000000.00000000
CHF$IH_MCH_SAVR16 FFFFFFFF.8244BDC0 00000000.0000000D
CHF$IH_MCH_SAVR17 FFFFFFFF.8244BDC8 0000FFF0.00007E04
CHF$IH_MCH_SAVR18 FFFFFFFF.8244BDD0 00000000.00000000
CHF$IH_MCH_SAVR19 FFFFFFFF.8244BDD8 00000000.00000001
CHF$IH_MCH_SAVR20 FFFFFFFF.8244BDE0 00000000.00000000
CHF$IH_MCH_SAVR21 FFFFFFFF.8244BDE8 FFFFFFFF.805AE4B6 SISR+0006E
CHF$IH_MCH_SAVR22 FFFFFFFF.8244BDF0 00000000.00000001
CHF$IH_MCH_SAVR23 FFFFFFFF.8244BDF8 00000000.00000010
CHF$IH_MCH_SAVR24 FFFFFFFF.8244BE00 00000000.00000008
CHF$IH_MCH_SAVR25 FFFFFFFF.8244BE08 00000000.00000010
CHF$IH_MCH_SAVR26 FFFFFFFF.8244BE10 00000000.00000001
CHF$IH_MCH_SAVR27 FFFFFFFF.8244BE18 00000000.00000000
CHF$IH_MCH_SAVR28 FFFFFFFF.8244BE20 FFFFFFFF.804045D0 SCH
$GQ_IDLE_CPUS

284

Chapter 4. SDA Commands

 FFFFFFFF.8244BE28 30000000.00000300 UCB
$L_PI_SVA
 FFFFFFFF.8244BE30 FFFFFFFF.80040F6C EXE
$REFLECT_C+00950
 FFFFFFFF.8244BE38 18000000.00000300 UCB
$L_PI_SVA
 FFFFFFFF.8244BE40 FFFFFFFF.804267A0 EXE
$CONTSIGNAL+00228
 FFFFFFFF.8244BE48 00000000.7FFD00A8 PIO
$GW_IIOIMPA
 FFFFFFFF.8244BE50 00000003.00000000
 FFFFFFFF.8244BE58 FFFFFFFF.8003FC20 EXE
$CONNECT_SERVICES_C+00920
 FFFFFFFF.8244BE60 FFFFFFFF.8041FB00 SMP
$RELEASEL+00640
 FFFFFFFF.8244BE68 00000000.00000000
 FFFFFFFF.8244BE70 FFFFFFFF.8042CD50 SCH
$WAIT_PROC+00060
 FFFFFFFF.8244BE78 00000000.0000000D
 FFFFFFFF.8244BE80 0000FFF0.00007E04
 FFFFFFFF.8244BE88 00000000.00000000
 FFFFFFFF.8244BE90 00000000.00000001
 FFFFFFFF.8244BE98 00000000.00000000
 FFFFFFFF.8244BEA0 FFFFFFFF.805AE4B6 SISR+0006E
 FFFFFFFF.8244BEA8 00000000.00000001
 FFFFFFFF.8244BEB0 00000000.00000010
 FFFFFFFF.8244BEB8 00000000.00000008
 FFFFFFFF.8244BEC0 00000000.00000010
 FFFFFFFF.8244BEC8 00000000.00000001
 FFFFFFFF.8244BED0 00000000.00000000
 FFFFFFFF.8244BED8 FFFFFFFF.804045D0 SCH
$GQ_IDLE_CPUS
 FFFFFFFF.8244BEE0 00000000.00000001
CHF$L_SIG_ARGS FFFFFFFF.8244BEE8 0000000C.00000005
CHF$L_SIG_ARG1 FFFFFFFF.8244BEF0 FFFFFFFC.00010000 SYS
$K_VERSION_08
 FFFFFFFF.8244BEF8 00000300.FFFFFFFC UCB
$L_PI_SVA
 FFFFFFFF.8244BF00 00000002.00000001
 FFFFFFFF.8244BF08 00000000.0000000C
 FFFFFFFF.8244BF10 00000000.00000000
 FFFFFFFF.8244BF18 00000000.FFFFFFFC
 FFFFFFFF.8244BF20 00000008.00000000
 FFFFFFFF.8244BF28 00000000.00000001
 FFFFFFFF.8244BF30 00000008.00000000
 FFFFFFFF.8244BF38 00000000.FFFFFFFC
INTSTK$Q_R2 FFFFFFFF.8244BF40 FFFFFFFF.80404668 SCH
$GL_ACTIVE_PRIORITY
INTSTK$Q_R3 FFFFFFFF.8244BF48 FFFFFFFF.8042F280 SCH
$WAIT_KERNEL_MODE
INTSTK$Q_R4 FFFFFFFF.8244BF50 FFFFFFFF.80615F00
INTSTK$Q_R5 FFFFFFFF.8244BF58 00000000.00000000
INTSTK$Q_R6 FFFFFFFF.8244BF60 FFFFFFFF.805AE000
INTSTK$Q_R7 FFFFFFFF.8244BF68 00000000.00000000
INTSTK$Q_PC FFFFFFFF.8244BF70 00000000.FFFFFFFC
INTSTK$Q_PS FFFFFFFF.8244BF78 30000000.00000300 UCB
$L_PI_SVA

285

Chapter 4. SDA Commands

 FFFFFFFF.8244BF80 FFFFFFFF.80404668 SCH
$GL_ACTIVE_PRIORITY
 FFFFFFFF.8244BF88 00000000.7FFD00A8 PIO
$GW_IIOIMPA
 FFFFFFFF.8244BF90 00000000.00000000
 FFFFFFFF.8244BF98 FFFFFFFF.8042CD50 SCH
$WAIT_PROC+00060
 FFFFFFFF.8244BFA0 00000000.00000044
 FFFFFFFF.8244BFA8 FFFFFFFF.80403C30 SMP
$GL_FLAGS
Prev SP (8244BFB0) => FFFFFFFF.8244BFB0 FFFFFFFF.8042CD50 SCH
$WAIT_PROC+00060
 FFFFFFFF.8244BFB8 00000000.00000000
 FFFFFFFF.8244BFC0 FFFFFFFF.805EE040
 FFFFFFFF.8244BFC8 FFFFFFFF.8006DB54
 PROCESS_MANAGEMENT_NPRO+0DB54
 FFFFFFFF.8244BFD0 FFFFFFFF.80404668 SCH
$GL_ACTIVE_PRIORITY
 FFFFFFFF.8244BFD8 FFFFFFFF.80615F00
 FFFFFFFF.8244BFE0 FFFFFFFF.8041B220 SCH
$RESOURCE_WAIT
 FFFFFFFF.8244BFE8 00000000.00000044
 FFFFFFFF.8244BFF0 FFFFFFFF.80403C30 SMP
$GL_FLAGS
 FFFFFFFF.8244BFF8 00000000.7FF95E00

The SHOW STACK command displays a system stack on an OpenVMS Alpha system. The data
shown before the stack pointer may not be valid. The mechanism array, signal array, and exception
frame symbols displayed on the left appear only for INVEXCEPTN, FATALEXCPT, UNXSIGNAL,
and SSRVEXCEPT bugchecks.

2. SDA> SHOW STACK/SUMMARY
Stack Ranges

Memory Stack:

 Stack Stack Base Stack Limit Stack Pointer
 Notes
 ----------- ----------------- -----------------
 ----------------- ---------
 Kernel 00000000.7FF44000 00000000.7FF2C000
 00000000.7FF43EB0 Current
 Executive 00000000.7FF68000 00000000.7FF58000
 00000000.7FF68000
 Supervisor 00000000.7FFAC000 00000000.7FFA8000
 00000000.7FFAC000
 User 00000000.3FFE2000 00000000.3FFCA000
 00000000.3FFE1FB0 KPstack
 User 00000000.3FFFE000 00000000.3FFE6000
 00000000.3FFFDDB0 KPstack
 User 00000000.7AC9E000 00000000.7AC9A000
 00000000.7AC9D830
 System FFFFFFFF.86970000 FFFFFFFF.86958000
 FFFFFFFF.8696FFC0

Register Stack:

286

Chapter 4. SDA Commands

 Stack Stack Base Stack Limit Stack Pointer
 Notes
 ----------- ----------------- -----------------
 ----------------- ---------
 Kernel 00000000.7FF12000 00000000.7FF2A000
 00000000.7FF12250 Current
 Executive 00000000.7FF46000 00000000.7FF56000
 00000000.7FF46000
 Supervisor 00000000.7FF6A000 00000000.7FF8A000
 00000000.7FF6A000
 User 000007FD.BFF3C000 000007FD.BFF54000
 000007FD.BFF3C160 KPstack
 User 000007FD.BFF58000 000007FD.BFF70000
 000007FD.BFF58108 KPstack
 User 000007FD.C0000000 000007FD.C0002000
 000007FD.C0000268
 System FFFFF802.0F236000 FFFFF802.0F24E000
 FFFFF802.0F236278

This example shows the stack ranges for a process on an OpenVMS Integrity server system.

4.73. SHOW SUMMARY
Displays a list of all active processes and the values of the parameters used in swapping and scheduling
these processes.

Format
SHOW SUMMARY [/IMAGE | /PAGES | /PROCESS_NAME=process_name

| /TOTALS | /THREAD | /USER=username]

Parameters
None.

Qualifiers
/IMAGE

Causes SDA to display, if possible, the name of the image being executed within each process.

/PAGES

Outputs an additional line for each process, displaying the number of process-private pages and the
number of global pages in the process's working set.

/PROCESS_NAME=process_name

Displays only processes with the specified process name. You can use wildcards in process_name, in
which case SDA displays all matching processes. The default action is for SDA to display data for all
processes, regardless of process name.

/TOTALS

At the end of the list of active processes, SDA will output two sets of totals:

287

Chapter 4. SDA Commands

• The total number of process-private and global pages in the working sets of all processes. The
totals for resident and non-resident processes are displayed separately.

• The total number of processes (or, if /THREADS was also specified, the total number of kernel
threads) in each scheduling state. The totals for resident and non-resident processes or kernel
threads are displayed separately.

/THREAD

Displays information on all the kernel threads associated with the current process.

/USER=username

Displays only the processes of the specified user. You can use wildcards in username, in which case
SDA displays processes of all matching users. The default action is for SDA to display data for all
processes, regardless of user name.

Description
The SHOW SUMMARY command displays the information in the table below for each active process in
the system.

Table 4.25. Process Information in the SHOW SUMMARY Display

Column Contents

Extended PID The 32-bit number that uniquely identifies the
process or thread.

Indx Index of this process into the PCB array. When
SHOW SUMMARY/THREAD is used, for all
threads of a process other than the initial thread,
displays the thread number.

Process name Name assigned to the process. When SHOW
SUMMARY/THREAD is used, this column is
blank for all threads other than the initial thread.

Username Name of the user who created the process. When
SHOW SUMMARY/THREAD is used, this
column is blank for all threads other than the initial
thread.

State Current state of the process. Table 4.26 shows the
14 states and their meanings.

Pri Current scheduling priority of the process.
PCB/KTB Address of the process control block or address of

the kernel thread block.
PHD Address of the process header. When SHOW

SUMMARY/THREAD is used, this column is
blank for all threads other than the initial thread.

Wkset Number (in decimal) of pages currently in the
process working set. When SHOW SUMMARY/
THREAD is used, this column is blank for all
threads other than the initial thread.

288

Chapter 4. SDA Commands

Table 4.26. Current State Information

State Meaning

COM Computable and resident in memory
COMO Computable, but outswapped
CUR nnn Currently executing on CPU ID nnn
CEF Waiting for a common event flag
LEF Waiting for a local event flag
LEFO Outswapped and waiting for a local event flag
HIB Hibernating
HIBO Hibernating and outswapped
SUSP Suspended
SUSPO Suspended and outswapped
PFW Waiting for a page that is not in memory (page-

fault wait)
FPG Waiting to add a page to its working set (free-page

wait)
COLPG Waiting for a page collision to be resolved

(collided-page wait); this usually occurs when
several processes cause page faults on the same
shared page

MWAIT Miscellaneous wait
RWxxx Waiting for system resource xxx. These states

represent additional interpretation by SDA of one
of the 14 scheduler states.

TBS Waiting "To Be Scheduled" by class scheduler.
These states represent additional interpretation by
SDA of one of the 14 scheduler states.

TBSO Waiting "To Be Scheduled" and outswapped.
These states represent additional interpretation by
SDA of one of the 14 scheduler states.

TBSP "To Be Scheduled" state is pending. These states
represent additional interpretation by SDA of one
of the 14 scheduler states.

TBSPO "To Be Scheduled" state is pending and
outswapped. These states represent additional
interpretation by SDA of one of the 14 scheduler
states.

WTBYT Waiting for BYTCNT quota. These states represent
additional interpretation by SDA of one of the 14
scheduler states.

WTTQE Waiting for TQCNT quota. These states represent
additional interpretation by SDA of one of the 14
scheduler states.

289

Chapter 4. SDA Commands

Examples
1. SDA> SHOW SUMMARY

Current process summary

 Extended Indx Process name Username State Pri PCB/KTB PHD
 Wkset
-- PID -- ---- --------------- ----------- ------- --- -------- --------

 00000041 0001 SWAPPER HIB 16 80C641D0 80C63E00
 0
 00000045 0005 IPCACP SYSTEM HIB 10 80DC0780 81266000
 39
 00000046 0006 ERRFMT SYSTEM HIB 8 80DC2240 8126C000
 57
 00000047 0007 OPCOM SYSTEM HIB 8 80DC3340 81272000
 31
 00000048 0008 AUDIT_SERVER AUDIT$SERVER HIB 10 80D61280 81278000
 152
 00000049 0009 JOB_CONTROL SYSTEM HIB 10 80D620C0 8127E000
 50
 0000004A 000A SECURITY_SERVER SYSTEM HIB 10 80DC58C0 81284000
 253
 0000004B 000B TP_SERVER SYSTEM HIB 10 80DC8900 8128A000
 75
 0000004C 000C NETACP DECNET HIB 10 80DBFE00 8125A000
 78
 0000004D 000D EVL DECNET HIB 6 80DCA080 81290000
 76
 0000004E 000E REMACP SYSTEM HIB 8 80DE4E00 81296000
 14
 00000050 0010 DECW$SERVER_0 SYSTEM HIB 8 80DEF940 812A2000
 739
 00000051 0011 DECW$LOGINOUT <login> LEF 4 80DF0F00 812A8000
 273
 00000052 0012 SYSTEM SYSTEM LEF 9 80D772C0 81260000
 75

The SHOW SUMMARY command describes all active processes in the system at the time of the
system failure. Note that there was no process in the CUR state at the time of the failure.

2. SDA> SHOW SUMMARY /IMAGE/PAGES/THREADS/TOTALS
Current process summary

Extended Indx Process name Username State Pri PCB/KTB PHD
 Wkset
-- PID -- ---- --------------- ----------- ------- --- -------- --------

00000201 0001 SWAPPER SYSTEM HIB 16 8230CD48 8230C000
 4
 Process pages: 4 Global pages: 0
.
.
.
00000212 0012 ACME_SERVER SYSTEM HIB 8 83673540 87740000
 553
 Process pages: 505 Global pages: 48

290

Chapter 4. SDA Commands

 30DKB400:[SYS0.SYSCOMMON.][SYSEXE]ACME_SERVER.EXE
00000412 1 HIB 10 83684DC0
.
.
.
00000224 0024 LATACP SYSTEM HIB 14 83760BC0 8775C000
 170
 Process pages: 170 Global pages: 0
 30DKB400:[SYS0.SYSCOMMON.][SYSEXE]LATACP.EXE
 Total Pages Process Global
 --------------------- -------------

 Resident Processes 4490
 842
 Nonresident Processes 0
 0

 Scheduling Resident Nonresident
 State Threads Threads Total
 ------- ----------- ----------- -----------
 LEF 1 0 1
 HIB 20 0 20
 CUR 1 0 1
 ------- ----------- ----------- -----------
 Total 22 0 22

This example shows the output from SHOW SUMMARY when all the qualifiers (/image /pages /
threads /totals) that display additional data are used.

4.74. SHOW SWIS (Integrity servers Only)
Displays the SWIS (SoftWare Interrupt Services) data structure addresses or the SWIS ring buffer.

Format
SHOW SWIS [/RING_BUFFER [/CPU=(m,n,...)]]

Qualifiers
/CPU=(m,n,...)

When used with /RING_BUFFER, displays only the entries for the specified CPUs. If you specify
only one CPU, you can omit the parentheses.

/RING_BUFFER

Displays the SWIS ring buffer (also known as the SWIS log), with the most recent entry first, and
assigns meaning to certain values, such as trap type and system service invoked. For best results,
execute READ/EXEC or READ/IMAGE SYS$PUBLIC_VECTORS first so that the system service
codes are recognized.

Examples
SDA> read/exec

291

Chapter 4. SDA Commands

SDA> define ssentry 8692B8F0
SDA> define intstk 8692B9F0
SDA> show swis/ring_buffer

SWIS ring buffer for all CPUs

 8192. entries: Most recent first

 Clock Data 1 Data 2 Data 3 CPU Ident *** See below.

-------- -------- -------- ----------------- --- --------
2CEDAD3C 82D66400a 83814080 FFFFFFFF.86B04000 00 SWPCXout
2CEDA929 82D66400a 83814080 FFFFF802.0EE370A8 00 SWPCTXin
2CED9F16 0000001F 0000001F FFFFFFFF.8046C270a 00 RaisIPL
2CED928F 8692B8F0a 00000000 FFFFFFFF.8046B760b 00 SSSwRet
2CED8FED 8692B8E0 00000000 0000002C.DC0351F2 00 RetKSrvc
2CED8B2E 8692B8F0a 06900660b FFFFFFFF.8046B760c 00 EntKSrvc
 EntKSrvc
2CED72C1 8692B9F0a 00000000 FFFFFFFF.8692BFC0b 00 ExcpDsp2
2CED70B4 8692B9F0a 00000041b FFFFFFFF.80322F50c 00 ExcpDisp
 ExcpDisp
2CED6E84 00000001 00000000 00000000.0001001Fa 00 GetDpth
2CED6822 00000016 0000001F FFFFFFFF.80322EB0a 00 RSetIPL
2CED62F0 8692BCF0a 00000003 FFFFFFFF.8066C000b 00 IPDisp

 Symbolized value 'a' Symbolized value
 'b' & 'c'

 BUG$GQ_HWPCB
 BUG$GQ_HWPCB
 EXE$BUGCHECK_SWAPPED_C+000E0
 SSENTRY EXE
$BUGCHECK_CONTINUE_C+003C0

 SSENTRY SYS$RPCC_64_C
 EXE
$BUGCHECK_CONTINUE_C+003C0
 INTSTK INTSTK+005D
 INTSTK Bugcheck
 Breakpoint Trap

 SYSTEM_SYNCHRONIZATION_MIN+42F50
 LNM$C_DEL_OVERLAY+0001B
 SYSTEM_SYNCHRONIZATION_MIN+42EB0
 INTSTK+00300 SCH$IDLE_C+00290
 .
 .
 .

The SHOW SWIS example displays the most recent entries in the SWIS log at the time of a system
crash. Note the a, b, c alongside the data values. These indicate which column contains the symbolization
for the value. 'a' is always in the first column; 'b' is in the second column, and 'c' is also in the second

292

Chapter 4. SDA Commands

column on the next line. If some or all data values cannot be symbolized, the columns are left blank or
there is no continuation line.

4.75. SHOW SYMBOL
Displays the hexadecimal value of a symbol and, if the value is equal to an address location, the contents
of that location.

Format
SHOW SYMBOL [/ALL [/ALPHA|/VALUE]] [/BASE_ADDRESS=n] symbol-name

Parameter
symbol-name

Name of the symbol to be displayed. You must provide a symbol-name, unless you specify the /
ALL qualifier. Symbols that include lowercase letters must be enclosed in quotation marks. symbol-
name may include wildcards unless /ALL is also specified.

Qualifiers
/ALL

Displays information on all symbols whose names begin with the characters specified in symbol-
name. If no symbol name is given, all symbols are displayed.

/ALPHA

When used with the /ALL qualifier, displays the symbols sorted only in alphabetical order. The
default is to display the symbols twice, sorted alphabetically and then by value.

When used with a wildcard symbol name, displays the symbols in alphabetical order. This is the
default action.

/BASE_ADDRESS=n

The given address is added to the value of each matching symbol to construct the address used when
obtaining the contents of the symbol's location. By default, SDA uses the actual value of the symbol
as the address to be used. See the description of SHOW SYMBOL for more information.

/VALUE

When used with the /ALL qualifier, displays the symbols sorted only in value order. The default is to
display the symbols twice, sorted alphabetically and then by value.

When used with a wildcard symbol name, displays the symbols in value order.

Description
The SHOW SYMBOL command with the /ALL qualifier outputs all symbols whose names begin with
the characters specified in symbol-name in both alphabetical order and in value order. If no symbol-
name is given, all symbols are output.

The SHOW SYMBOL/ALL command is useful for determining the values of symbols that belong to a
symbol set, as illustrated in the second example below.

293

Chapter 4. SDA Commands

The SHOW SYMBOL command without the /ALL qualifier allows for standard wildcards in the
symbol-name parameter. By default, matching symbols are displayed only in alphabetical order. If you
specify SHOW SYMBOL/VALUE, then matching symbols are output sorted by value. If you specify
SHOW SYMBOL/ALPHA/VALUE, then matching symbols are displayed twice, sorted alphabetically
and then by value.

The SHOW SYMBOL command without the /ALL qualifier and no wildcards in the symbol-name
parameter outputs the value associated with the given symbol.

When displaying any symbol value, SDA also treats the value as an address (having added the value
from /BASE_ADDRESS if specified) and attempts to obtain the contents of the location. If successful,
the contents are also displayed.

Examples
1. SDA> SHOW SYMBOL G

G = FFFFFFFF.80000000 : 6BFA8001.201F0104

The SHOW SYMBOL command evaluates the symbol G as FFFFFFFF.8000000016 and displays
the contents of address FFFFFFFF.8000000016 as 6BFA8001.201F010416.

2. SDA> SHOW SYMBOL/ALL BUG
Symbols sorted by name

BUG$L_BUGCHK_FLAGS = FFFFFFFF.804031E8 : 00000000.00000001
BUG$L_FATAL_SPSAV = FFFFFFFF.804031F0 : 00000000.00000001
BUG$REBOOT = FFFFFFFF.8042E320 : 00000000.00001808
BUG$REBOOT_C = FFFFFFFF.8004F4D0 : 47FB041D.47FD0600
 .
 .
 .
Symbols sorted by value

BUG$REBOOT_C = FFFFFFFF.8004F4D0 :47FB041D.47FD0600
BUG$L_BUGCHK_FLAGS = FFFFFFFF.804031E8 :00000000.00000001
BUG$L_FATAL_SPSAV = FFFFFFFF.804031F0 :00000000.00000001
BUG$REBOOT = FFFFFFFF.8042E320 :00000000.00001808
 .
 .
 .

This example shows the display produced by the SHOW SYMBOL/ALL command. SDA searches
its symbol table for all symbols that begin with the string "BUG" and displays the symbols and their
values. Although certain values equate to memory addresses, it is doubtful that the contents of those
addresses are actually relevant to the symbol definitions in this instance.

4.76. SHOW TQE
Displays the entries in the timer queue. The default output is a summary display of all timer queue entries
(TQEs) in chronological order.

Format
SHOW TQE [/ADDRESS=n] [/ALL] [/BACKLINK] [/PID=n] [/ROUTINE=n]

294

Chapter 4. SDA Commands

Parameters
None.

Qualifiers
/ADDRESS=n

Outputs a detailed display of the TQE at the specified address.

/ALL

Outputs a detailed display of all TQEs.

/BACKLINK

Outputs the display of TQEs, either detailed (/ALL) or brief (default), in reverse order, starting at the
entry furthest into the future.

/PID=n

Limits the display to the TQEs that affect the process with the specified internal PID. The PID
format required is the entire internal PID, including both the process index and the sequence
number, and not the extended PID or process index alone, as used elsewhere in SDA. You can also
display TQEs specific to a process using SHOW PROCESS/TQE.

/ROUTINE=n

Limits the display to the TQEs for which the specified address is the fork PC.

Description
The SHOW TQE command allows the timer queue to be displayed. By default a summary display of all
TQEs is output in chronological order, beginning with the next entry to become current.

The /ADDRESS, /PID, and /ROUTINE qualifiers are mutually exclusive. The /ADDRESS and /
BACKLINK qualifiers are mutually exclusive.

In the summary display, the TQE type is given as a six-character code, as shown in the table below.

Table 4.27. TQE Types in Summary TQE Display

Column Symbol Meaning

1 T Timer ($SETIMR) entry
 S System subroutine entry
 W Scheduled wakeup ($SCHDWK)

entry
2 S Single-shot entry
 R Repeated entry
3 D Delta time
 A Absolute time

295

Chapter 4. SDA Commands

Column Symbol Meaning

4 C CPU time
 -- Elapsed time
5 E Extended format (64-bit TQE)
 -- 32-bit TQE
6 N TQE not to be deallocated at AST

completion
 -- TQE to be deallocated at AST

completion

Examples
1. SDA> SHOW TQE

 Timer queue entries

 System time: 15-NOV-2001 15:09:06.92
 First TQE time: 15-NOV-2001 15:09:06.92

 TQE PID/
address Expiration Time Type routine
-------- --- ------ --------
815AB8C0 00A0516F.EF279B0F 15-NOV-2001 15:09:06.92 SSD--- 835FCC48
 TCPIP$INTERNET_SERVICES+9EC48
812CB3C0 00A0516F.EF279B0F 15-NOV-2001 15:09:06.92 SRD--- 812CCEC8
 SYS$PPPDRIVER+0EEC8
81514140 00A0516F.EF29FD5F 15-NOV-2001 15:09:06.94 TSD--- 0001000F
 SECUURITY_SERVER
815C8040 00A0516F.EF2B2E87 15-NOV-2001 15:09:06.95 SRD--- 81361BA0
 SYS$LTDRIVER+31BA0
8148CF98 00A0516F.EF2C52AD 15-NOV-2001 15:09:06.95 SRD--- 812786B0
 LAN$CREATE_LAN+000B0
81318290 00A0516F.EF2FDC84 15-NOV-2001 15:09:06.98 SRD--- 813187B8
 PWIPDRIVER+047B8
814FB080 00A0516F.EF3238D0 15-NOV-2001 15:09:06.99 TSD--- 0001000F
 SECURITY_SERVER
8140FF40 00A0516F.EF32851A 15-NOV-2001 15:09:06.99 TSD--- 0001000F
 SECURITY_SERVER
...

81503100 00A05177.0AED8000 15-NOV-2001 16:00:00.00 TSA--- 0001000C
 JOB_CONTROL
815030C0 00A0C160.63CD14D9 7-APR-2002 02:00:00.91 TSA--- 0001000C
 JOB_CONTROL

This example shows the summary display of all TQEs.

2. SDA> SHOW TQE/ADDRESS=898DA1A8

Timer queue entry 898DA1A8

TQE address: 898DA1A8 Type:
 00000005 SYSTEM_SUBROUTINE REPEAT

296

Chapter 4. SDA Commands

 Requestor process ID: 00000000 Access mode:
 00000000

 Expiration time: 00A97229.C9E5FF60 6-JAN-2010 07:24:47.06
 +20000
 Delta repeat time: 00000000.00030D40 0 00:00:00.02

 Fork PC: 88520460 SYS$GHDRIVER+50260
 Fork R3: 898D9540.00000000
 Fork R4: 00000000.00000000

This example shows the detailed display for a single TQE.

4.77. SHOW TQEIDX
Displays the contents of the timer queue entry index (TQEIDX) structures. The default display is a
summary of all TQEIDX structures.

Format
SHOW TQEIDX [/ADDRESS=address | /ALL]

Parameters
None.

Qualifiers
/ADDRESS=address

Causes SDA to output a detailed display of the contents of the TQEIDX at the specified address.
Cannot be specified with /ALL.

/ALL

Causes SDA to output a detailed display of the contents of all TQEIDX structures. Cannot be
specified with /ADDRESS.

Description
The SHOW TQEIDX command allows the timer queue entry index structures to be displayed. The
default display is a summary of all TQEIDX structures. The /ADDRESS and /ALL qualifiers are
mutually exclusive.

Examples
1. SDA> show tqeidx

Timer queue index buckets

Time index buckets

297

Chapter 4. SDA Commands

 TQEIDX Free
 address Level Parent count Maximum key
-------- -------- -------- -------- -----------------
872B6700 00000001 00000000 0000003C FFFFFFFF.FFFFFFFF
875ED640 00000000 872B6700 00000005 00A39404.827C01CF
87312E80 00000000 872B6700 00000032 00A39A11.9DABF957
8726A300 00000000 872B6700 0000003D FFFFFFFF.FFFFFFFF

Time index overflow list is empty

ID index buckets

 TQEIDX Free
 address Level Parent count Maximum key
-------- -------- -------- -------- -----------------
872AF900 00000001 00000000 0000003D FFFFFFFF.FFFFFFFF
86C29C80 00000000 872AF900 00000016 0002C000.83374030
872FD780 00000000 872AF900 0000001F FFFFFFFF.FFFFFFFF

ID index overflow list is empty

This example shows the summary TQEIDX display.

4.78. SHOW UNWIND (Integrity servers Only)
Displays the master unwind table for system space (by default) or for a specified target.

Format
SHOW UNWIND [address | /ALL | /IMAGE=name]

Parameters
address

Address of the program counter (PC) (IIP) whose unwind data is to be displayed. The address can
be in system space or process space.

Qualifiers
/ALL

Displays the details of every system unwind descriptor.

/IMAGE

Displays the details of every unwind descriptor for the specified system images (wildcards allowed).

Description
Displays the master unwind table for system space. This is the default. If /ALL is given, the details
of every system unwind descriptor are displayed. If an address is given, the unwind descriptor for the

298

Chapter 4. SDA Commands

program counter (PC) (IIP) is located and displayed. The address can be in system space or process
space.

Also see SHOW PROCESS/UNWIND.

Examples
1. SDA> show unwind

 System Unwind Table

 Page Header VA Entries Region ID
 ----------------- ----------------- -----------------
 FFFFFFFF.7FFFC000 00000000.00000018 00000000.00000000
 FFFFFFFF.7FFFA000 00000000.00000018 00000000.00000000
 FFFFFFFF.7FFF8000 00000000.00000018 00000000.00000000
 FFFFFFFF.7FF44000 00000000.00000018 00000000.00000000
 FFFFFFFF.7F7A0000 00000000.00000018 00000000.00000000
 FFFFFFFF.7F56C000 00000000.00000006 00000000.00000000

 Image name Code Base VA UT Base
 VA Unwind Info Base Flags
 MUTE VA Mode Code End VA UT
 Size GP
 ------------------------------------- -----------------
 ----------------- ----------------- ----------

 EXCEPTION_MON FFFFFFFF.80480000
 FFFFFFFF.82D53800 FFFFFFFF.82D53800
 FFFFFFFF.7FFFC020 00000000 FFFFFFFF.8055CDCF
 00000000.00002AD8 FFFFFFFF.82F6F400

 EXCEPTION_MON FFFFFFFF.86AB0000
 FFFFFFFF.86AB4000 FFFFFFFF.86AB4000 Obsolete
 FFFFFFFF.7FFFC170 00000000 FFFFFFFF.86AB207F
 00000000.00000060 FFFFFFFF.82F6F400

 IO_ROUTINES_MON FFFFFFFF.80560000
 FFFFFFFF.82D78600 FFFFFFFF.82D78600
 FFFFFFFF.7FFFC2C0 00000000 FFFFFFFF.8064A7AF
 00000000.00004B00 FFFFFFFF.82FA2800

 IO_ROUTINES_MON FFFFFFFF.86AB6000
 FFFFFFFF.86AB8000 FFFFFFFF.86AB8000 Obsolete
 FFFFFFFF.7FFFC410 00000000 FFFFFFFF.86AB73AF
 00000000.000000A8 FFFFFFFF.82FA2800

 SYSDEVICE FFFFFFFF.80650000
 FFFFFFFF.82DA7A00 FFFFFFFF.82DA7A00
 FFFFFFFF.7FFFC560 00000000 FFFFFFFF.8065E90F
 00000000.00000240 FFFFFFFF.82FA9400

This example shows the master unwind table for the system, the pages that are being read and the
images whose unwind data is present.

2. SDA> show unwind 00000000.00020130

299

Chapter 4. SDA Commands

Unwind Table Entry for 00000000.00020130

Image name: X

MUTE VA: 000007FD.BFFC62C0 Mode:
 00000001
Code Base VA: 00000000.00020000 Code End VA:
 00000000.000201FF
UT Base VA: 00000000.00030000 UT Size:
 00000000.00000030
Unwind Info Base: 00000000.00030000 GP:
 00000000.00240000
Flags: 0000

Unwind Descriptor: 00000000.00030090 PC range =
 00000000.00020130:00000000.000201DF

 Unwind Descriptor flags: No handler present, No OSSD present

 Unwind descriptor records: R1 Region Header: Short Prologue, PC range
 = 00000000.00020130:00000000.00020131
 P7: MEM_STACK_V PC=00000000.00020131
 P3: PSP_GR R41
 P3: PFS_GR R40

 R1 Region Header: Short Body, PC range =
 00000000.00020132:00000000.000201B0
 B1: Short Label_State LABEL=00000001
 B2: Short Epilogue ECOUNT=00000000
 PC=00000000.000201A0

 R1 Region Header: Short Body, PC range =
 00000000.000201B1:00000000.000201D1
 B1: Short Copy_State LABEL=00000001

This example shows the unwind data for PC 20130, giving image name, location of unwind data and
all unwind descriptors. For an explanation of the unwind descriptors, see the appendixes in the VSI
OpenVMS Calling Standard.

4.79. SHOW VHPT (Integrity servers Only)
Displays data from the Virtual Hash Page Table.

Format
SHOW VHPT [/CPU = {n|*} [/ALL] [range]]

Parameters
range

The entry or range of entries to be displayed, expressed using the following syntax:

300

Chapter 4. SDA Commands

m Displays the VHPT entry m
m:n Displays the VHPT entries from m to n
m;n Displays n VHPT entries starting at m

A range can be provided only if a single CPU is specified with the /CPU qualifier.

Qualifiers
/CPU = {n|*}

Indicates that the detailed contents of the VHPT for one or all CPUs is to be displayed. The default
action is for a summary of VHPT information to be displayed.

/ALL

Displays all VHPTs for the specified CPUs. Without /ALL, only entries that have a valid tag are
displayed.

Description
Displays contents of the Virtual Hash Page Table on an OpenVMS Integrity server system. By default, a
summary of the VHPT entries is displayed. If CPUs are specified, details of individual VHPT entries are
displayed for the CPUs. If a single CPU is specified, specific VHPT entries for that CPU are displayed.

In the detailed display, the columns are as follows:

Table 4.28. VHPT Fields

Column Contents

Entry VHPT Entry Number
Bits One or more of the following flags:

P---Present

A---Accessed

D---Dirty

E---Exception deferral

I---Tag invalid (only seen if /ALL is specified)
MA One of the following memory attributes:

WB---Write Back

UC---Uncacheable

UCE---Uncacheable Exported

WC---Write Coalescing

NaT---NaTPage
AR/PL The access rights and privilege level of the page.

Consists of a number (0-7) and a letter (K, E, S,

301

Chapter 4. SDA Commands

Column Contents
or U) that determines access to the page in each
mode.

KESU The access allowed to the page in each mode. This
is an interpretation of the AR/PL values in the
previous column. For an explanation of the access
codes, refer to Section 2.8.

Physical address The starting physical address for this VHPT entry.
Page size The size of the page represented by this VHPT

entry. Page sizes for VHPT entries range from
4KB to 4GB. Not all possible pages sizes are used
by OpenVMS for Integrity servers.

Tag The translation tag for the VHPT entry.
Quad4 Information recorded by OpenVMS for Integrity

servers for debugging purposes. The contents of
this quadword are subject to change.

Examples
1. SDA> SHOW VHPT

Virtual Hash Page Table Summary

CPU 0000

VHPT address: FFFFFFFF.7FFF0000
Translation registers: 00000002
VHPT page size: 0000000E

CPU 0001

VHPT address: FFFFFFFF.7FF88000
Translation registers: 00000002
VHPT page size: 0000000E

This example shows the default behavior of the SHOW VHPT command.

2. SDA> SHOW VHPT /CPU=0
Virtual Hash Page Table for CPU 0000

VHPT address: FFFFFFFF.7FFF0000
Translation registers: 00000002
VHPT page size: 0000000E

 Page
 Entry Bits MA AR/PL KESU Physical Address Size Tag
 Quad4
-------- ---- -- ----- ---- ----------------- ---- -----------------

00000000 PADE WB 4 E wr-- 00000000.09806000 4MB 0000FE7F.FFFC2C03
 FF000003.85806004

302

Chapter 4. SDA Commands

00000001 PADE WB 4 E wr-- 00000000.09804000 4MB 0000FE7F.FFFC2C02
 FF000003.85805184
00000002 PADE WB 4 E wr-- 00000000.09802000 4MB 0000FE7F.FFFC2C01
 FF000003.85803184
00000003 PADE WB 4 E wr-- 00000000.09800000 4MB 0000FE7F.FFFC2C00
 FF000003.858008C4
00000004 PADE WB 2 K w--- 00000000.03726000 8KB 0000FE7F.FFFA0007
 FF000003.4000FAB8
00000005 PADE WB 2 K w--- 00000000.03724000 8KB 0000FE7F.FFFA0006
 FF000003.4000C478
00000006 PADE WB 2 K w--- 00000000.03722000 8KB 0000FE7F.FFFA0005
 FF000003.4000A988
00000007 PADE WB 2 K w--- 00000000.071DA000 8KB 0000FE7F.FFFA1804
 FF000003.43008000
00000008 PADE WB 2 K w--- 00000000.0372E000 8KB 0000FE7F.FFFA000B
 FF000003.40017C30
00000009 PADE WB 4 E wr-- 00000000.03356000 8KB 0000FE7F.FFFBFC0A
 FF000003.7F814CCC
0000000E PADE WB 3 U WWWW 00000000.10E78000 8KB 7FFD7C80.000002F7
 00FFFAF9.005EE004
00000012 PADE WB 4 E wr-- 00000000.03348000 8KB 0000FE7F.FFFBFC11
 FF000003.7F823B28
...
000003FD PADE WB 5 U WRRR 00000000.00004000 8KB 0000FE7F.FFFBFFFE
 FF000003.7FFFC020
000003FE PADE WB 5 U WRRR 00000000.00078000 8KB 0000FE7F.FFFBFFFD
 FF000003.7FFFA020
000003FF PADE WB 2 K w--- 00000000.0717C000 8KB 0000FE7F.FFFA17FC
 FF000003.42FF8000

This example shows the detailed contents of all the VHPT entries for CPU 0 that have a valid tag.

4.80. SHOW WORKING_SET_LIST
Displays the system working set list without changing the current process context. You can specify
SHOW WORKING_SET_LIST or SHOW WSL. The two commands are equivalent.

Format
SHOW WORKING_SET_LIST [/ALL (d) | /ENTRY=n | /GPT

| /LOCKED | /MODIFIED | /SYSTEM]

SHOW WSL [/ALL (d) | /ENTRY=n | /GPT

| /LOCKED | /MODIFIED | /SYSTEM]

Parameters
None.

Qualifiers
/ALL

Displays all working set list entries. This is the default.

303

Chapter 4. SDA Commands

/ENTRY=n

Displays a specific working set entry, where n is the working set list index (WSLX) of the entry of
interest.

/GPT

Displays working set list entries only for global page table pages.

/LOCKED

Displays working set list entries only for pageable system pages that are locked in the system
working set.

/MODIFIED

Displays working set list entries only for pageable system pages that are marked modified.

/SYSTEM

Displays working set list entries only for pageable system pages.

Description
The SHOW WORKING_SET_LIST command displays the contents of requested entries in the system
working set list. The SHOW WORKING_SET_LIST command is equivalent to the SHOW PROCESS/
SYSTEM/WORKING_SET_LIST command, but the SDA current process context returns to the prior
process upon completion. See the SHOW PROCESS command and Table 4.17 for more information.

4.81. SHOW WSL
See SHOW WORKING_SET_LIST.

4.82. SPAWN
Creates a subprocess of the process currently running SDA, copying the context of the current process to
the subprocess and, optionally, executing a specified command within the subprocess.

Format
SPAWN [/qualifier[,...]] [command]

Parameter
command

Name of the command that you want the subprocess to execute.

Qualifiers
/INPUT=filespec

Specifies an input file containing one or more command strings to be executed by the spawned
subprocess. If you specify a command string with an input file, the command string is processed
before the commands in the input file. When processing is complete, the subprocess is terminated.

304

Chapter 4. SDA Commands

/NOLOGICAL_NAMES

Specifies that the logical names of the parent process are not to be copied to the subprocess. The
default behavior is that the logical names of the parent process are copied to the subprocess.

/NOSYMBOLS

Specifies that the DCL global and local symbols of the parent process are not to be passed to the
subprocess. The default behavior is that these symbols are passed to the subprocess.

/NOTIFY

Specifies that a message is to be broadcast to SYS$OUTPUT when the subprocess either completes
processing or aborts. The default behavior is that such a message is not sent to SYS$OUTPUT.

/NOWAIT

Specifies that the system is not to wait until the subprocess is completed before allowing more
commands to be entered. This qualifier allows you to input new SDA commands while the
spawned subprocess is running. If you specify /NOWAIT, use /OUTPUT to direct the output of the
subprocess to a file to prevent more than one process from simultaneously using your terminal.

The default behavior is that the system waits until the subprocess is completed before allowing more
SDA commands to be entered.

/OUTPUT=filespec

Specifies an output file to which the results of the SPAWN operation are written. To prevent output
from the spawned subprocess from being displayed while you are specifying new commands, specify
an output other than SYS$OUTPUT whenever you specify /NOWAIT. If you omit the /OUTPUT
qualifier, output is written to the current SYS$OUTPUT device.

/PROCESS=process-name

Specifies the name of the subprocess to be created. The default name of the subprocess is
USERNAME_n, where USERNAME is the user name of the parent process. The variable n represents
the subprocess number.

Examples
1. SDA> SPAWN

$ MAIL
 .
 .
 .
$ DIR
 .
 .
 .
$ LO
 Process SYSTEM_1 logged out at 5-JAN-1993 15:42:23.59
SDA>

This example uses the SPAWN command to create a subprocess that issues DCL commands to
invoke the Mail utility. The subprocess then lists the contents of a directory before logging out to
return to the parent process executing SDA.

305

Chapter 4. SDA Commands

4.83. UNDEFINE
Removes the specified symbol from SDA's symbol table.

Format
UNDEFINE symbol

Parameter
symbol

The name of the symbol to be deleted from SDA's symbol table. A symbol name is required.
Symbols that include lowercase letters must be enclosed in quotation marks.

Qualifiers
None.

4.84. VALIDATE PFN_LIST
Validates that the page counts on lists are correct.

Format
VALIDATE PFN_LIST {/ALL (d) | [/BAD | /FREE | /MODIFIED | /PRIVATE | /UNTESTED | /ZERO]}

Parameters
None.

Qualifiers
/ALL

Validates all the PFN lists: bad, free, modified, untested, zeroed free pages, and private pages.

/BAD

Validates the bad page list.

/FREE

Validates the free page list.

/MODIFIED

Validates the modified page list.

/PRIVATE

Validates all private page lists.

306

Chapter 4. SDA Commands

/UNTESTED

Validates the untested page list that was set up for deferred memory testing.

/ZERO

Validates the zeroed free page list.

Description
The VALIDATE PFN_LIST command validates the specified PFN list by counting the number of entries
in the list and comparing that to the running count of entries for each list maintained by the system.

Examples
1. SDA> VALIDATE PFN_LIST

Free page list validated: 1433 pages
 (excluding zeroed free page list with expected size 103 pages)
Zeroed free page list validated: 103 pages
Modified page list validated: 55 pages
Bad page list validated: 0 pages
Untested page list validated: 0 pages
Private page list at 81486340 validated: 2 pages

This example shows the default behavior of VALIDATE PFN_LIST, checking all lists.

2. SDA> VALIDATE PFN_LIST/FREE
Free page list validated: 1433 pages
 (excluding zeroed free page list with expected size 103 pages)

This example shows the validation of only the free list.

4.85. VALIDATE POOL
Checks all free pool packets for POOLCHECK-style corruption, using the same algorithm as the system
pool allocation routines when generating a POOLCHECK bugcheck and system dump.

Format
VALIDATE POOL { /ALL (d) | /BAP | /NONPAGED | /PAGED } [/HEADER | /MAXIMUM_BYTES [=n] /SUMMARY]

Parameters
None.

Qualifiers
/ALL

Checks free packets for all pool types (nonpaged pool, paged pool, and bus addressable pool). This
is the default.

/BAP

Checks free packets in bus addressable pool.

307

Chapter 4. SDA Commands

/HEADER

Displays only the first 16 bytes of any corrupted free packets found.

/MAXIMUM_BYTES[=n]

Displays only the first n bytes of any corrupted free packets found. If you specify /
MAXIMUM_BYTES without a value, the default is 64 bytes.

/NONPAGED

Checks free packets in nonpaged pool.

/PAGED

Checks free packets in paged pool.

/SUMMARY

Displays only a summary of corrupted pool packets found.

Description
The VALIDATE POOL command displays information about corrupted free pool packets. It is useful
only if pool checking has been enabled using either the POOLCHECK or the SYSTEM_CHECK system
parameters. (For information on these system parameters, refer to the VSI OpenVMS System Management
Utilities Reference Manual or to the Sys_Parameters online help topic.)

Examples
1. SDA> VALIDATE POOL

Non-Paged Dynamic Storage Pool: no free packet corruption detected
Paged Dynamic Storage Pool: no free packet corruption detected

This example shows the default behavior of VALIDATE POOL, checking all dynamic storage pools.

2.

This example shows the validation of nonpaged pool only, and displays the header of the corrupted
block found.

4.86. VALIDATE PROCESS
Performs validation of process data structures. Currently, the only validation available is to check free
process pool packets for POOLCHECK-style corruption, using the same algorithm as the system pool
allocation routines when generating a POOLCHECK bugcheck and system dump.

308

Chapter 4. SDA Commands

Format
VALIDATE PROCESS/POOL [= {P0 | P1 | IMGACT | ALL (d)}] [/ADDRESS=pcb-address | process-name | ALL | /ID=nn | /INDEX=nn | /NEXT | /SYSTEM]

[/HEADER | /MAXIMUM_BYTES[=n] | /SUMMARY]

Parameters
ALL

Indicates that all processes in the system are to be validated.

process name

Name of the process to be validated. The process name can contain up to 15 uppercase letters,
numerals, underscore (_), dollar sign ($), colon (:), and some other printable characters. If it contains
any other characters (including lowercase letters), you might need to enclose the process name in
quotation marks (" ").

Qualifiers
/ADDRESS = pcb address

Specifies the process control block (PCB) address of the process to be validated.

/HEADER

Displays only the first 16 bytes of any corrupted free packets found.

/ID = nn/INDEX = nn

Specifies the process to be validated by its index into the system's list of software process control
blocks (PCBs), or by its process identification. You can supply the following values for nn:

• The process index itself.

• A process identification (PID) or extended PID longword, from which SDA extracts the correct
index. The PID or extended PID of any thread of a process with multiple kernel threads can be
specified. Any thread-specific data displayed by further commands is for the given thread.

To obtain these values for any given process, issue the SDA command SHOW SUMMARY/
THREADS. The /ID=nn and /INDEX=nn qualifiers can be used interchangeably.

/MAXIMUM_BYTES[=n]

Displays only the first n bytes of any corrupted free packets found. If you specify /
MAXIMUM_BYTES without a value, the default is 64 bytes.

/NEXT

Causes SDA to locate the next process in the process list and validate that process. If there are no
further processes in the process list, SDA returns an error.

/POOL [= {P0 | P1 | IMGACT | ALL (d)}]

(Required) Causes process pool validation to be performed. Use of a keyword on the /POOL
qualifier allows the user to specify which process pool is to be validated (P0, P1, Image Activator
Pool, or ALL). Default: ALL

309

Chapter 4. SDA Commands

/SUMMARY

Displays only a summary of the corrupted pool packets found.

/SYSTEM

This qualifier is provided for compatibility with SET PROCESS/SYSTEM and SHOW PROCESS/
SYSTEM. There is no pool associated with the system process that can be validated. SDA sets its
current process context to the system process and outputs the text:

Options ignored for System process: POOL

Description
The VALIDATE PROCESS command validates the process indicated by one of the following: process-
name, the process specified in the /ID or /INDEX qualifier, the next process in the system's process
list, the system process, or all processes. The VALIDATE PROCESS command performs an implicit
SET PROCESS command under certain uses of its qualifiers and parameters, as noted in Section 2.5.
By default, the VALIDATE PROCESS command validates the SDA current process, as defined in
Section 2.5.

Currently, the only validation available is to check free pool packets for POOLCHECK-style corruption.
The command is useful only if pool checking has been enabled using either the POOLCHECK or the
SYSTEM_CHECK system parameters. (For information on these system parameters, refer to the VSI
OpenVMS System Management Utilities Reference Manual or to the Sys_Parameters online help topic.)

If a process is specified using process-name, /ADDRESS, /ID, /INDEX, /NEXT, or /SYSTEM, that
process becomes the SDA current process for future commands.

Examples

This example shows the default behavior of VALIDATE PROCESS/POOL, checking all process storage
pools, and displaying only the header of the corrupted block found.

4.87. VALIDATE QUEUE
Validates the integrity of the specified queue by checking the pointers in the queue.

Format
VALIDATE QUEUE [address]

310

Chapter 4. SDA Commands

[/BACKLINK | /LIST | /PHYSICAL

| /QUADWORD | /SELF_RELATIVE | /SINGLY_LINKED]

Parameter
address

Address of an element in a queue.

If you specify the period (.) as the address, SDA uses the last evaluated expression as the queue
element's address.

If you do not specify an address, the VALIDATE QUEUE command determines the address from
the last issued VALIDATE QUEUE command in the current SDA session.

If you do not specify an address, and no queue has previously been specified, SDA displays the
following error message:

%SDA-E-NOQUEUE, no queue has been specified for validation

Qualifiers
/BACKLINK

Allows doubly linked lists to be validated from the tail of the queue. If the queue is found to be
broken when validated from the head of the queue, you can use /BACKLINK to narrow the list of
corrupted entries.

/LIST

Displays the address of each element in the queue.

/PHYSICAL

Allows validation of queues whose header and links are physical addresses.

/QUADWORD

Allows the validate operation to occur on queues with linked lists of quadword addresses.

/SELF_RELATIVE

Specifies that the selected queue is a self-relative queue.

/SINGLY_LINKED

Allows validation of queues that have no backward pointers.

Description
The VALIDATE QUEUE command uses the forward and, optionally, backward pointers in each element
of the queue to make sure that all such pointers are valid and that the integrity of the queue is intact. If
the queue is intact, SDA displays the following message:

311

Chapter 4. SDA Commands

Queue is complete, total of n elements in the queue

In these messages, n represents the number of entries the VALIDATE QUEUE command has found in
the queue.

If SDA discovers an error in the queue, it displays one of the following error messages:

Error in forward queue linkage at address nnnnnnnn after tracing x elements
Error comparing backward link to previous structure address (nnnnnnnn)
Error occurred in queue element at address oooooooo after tracing pppp
 elements

These messages can appear frequently when you use the VALIDATE QUEUE command within an SDA
session that is analyzing a running system. In a running system, the composition of a queue can change
while the command is tracing its links, thus producing an error message.

If there are no entries in the queue, SDA displays this message:

The queue is empty

Examples
1. SDA> VALIDATE QUEUE/SELF_RELATIVE IOC$GQ_POSTIQ

Queue is complete, total of 159 elements in the queue

This example validates the self-relative queue IOC$GQ_POSTIQ. The validation is successful and
the system determines that there are 159 IRPs in the list.

2. SDA> VALIDATE QUEUE/QUADWORD FFFFFFFF80D0E6CO/LIST
Entry Address Flink Blink
----- ------- ------ -----
Header FFFFFFFF80D0E6CO FFFFFFFF80D03780
 FFFFFFFF80D0E800
 1. FFFFFFFF80D0E790 FFFFFFFF80D0E7CO
 FFFFFFFF80D0E6C0
 2. FFFFFFFF80D0E800 FFFFFFFF80D0E6C0
 FFFFFFFF80D0E7C0
Queue is complete, total of 3 elements in the queue

This example shows the validation of quadword elements in a list.

3. SDA> VALIDATE QUEUE/SINGLY_LINKED EXE$GL_NONPAGED+4
Queue is zero-terminated, total of 95 elements in the queue

This example shows the validation of singly linked elements in the queue. The forward link of the
final element is zero instead of being a pointer back to the queue header.

4.88. VALIDATE SHM_CPP
Validates all the shared memory common property partitions (CPPs) and the counts and ranges of
attached PFNs; optionally, it can validate the contents of the database for each PFN.

Format
VALIDATE SHM_CPP [/qualifiers]

312

Chapter 4. SDA Commands

Parameters
None.

Qualifiers
/ADDRESS=n

Validates the counts and ranges for a single shared memory CPP given the address of the SHM_CPP
structure.

/ALL

Validates all the shared memory CPPs. This is the default.

/IDENT=n

Validates the counts and ranges for a single shared memory CPP.

/PFN

Validates the PFN database contents for each attached PFN. The default is all lists (free, bad,
untested) plus the PFN database pages and the complete range of PFNs in the CPP.

You can limit which lists are validated by specifying one or more keywords from the following table.
If you specify multiple keywords, enclose them in parentheses and separate keywords with a comma.

ALL_FRAGMENTS Validates the complete range of PFNs in the
CPP.

BAD Validates only the bad page list.
FREE Validates only the free page list.
PFNDB Validates the PFNs containing the PFN database.
UNTESTED Validates only the untested page list.

If you specify the /PFN without /ALL, /IDENT, or /ADDRESS, the system validates the PFN lists
from the last shared memory CPP.

Examples
SDA> VALIDATE SHM_CPP
Not validating SHM_CPP 0000 at FFFFFFFF.7F2BA140, VALID flag clear

Not validating SHM_CPP 0001 at FFFFFFFF.7F2BA380, VALID flag clear

Not validating SHM_CPP 0002 at FFFFFFFF.7F2BA5C0, VALID flag clear

Validating SHM_CPP 0003 at FFFFFFFF.7F2BA800 ...

 Validating counts and ranges in the free page list ...
 ... o.k.

 Not validating the bad page list, list is empty

313

Chapter 4. SDA Commands

 Not validating the untested page list, list is empty

Not validating SHM_CPP 0004 at FFFFFFFF.7F2BAA40, VALID flag clear

Not validating SHM_CPP 0005 at FFFFFFFF.7F2BAC80, VALID flag clear

Not validating SHM_CPP 0006 at FFFFFFFF.7F2BAEC0, VALID flag clear

This example shows the default output for the VALIDATE SHM_CPP command.

4.89. VALIDATE TQEIDX
Validates all the data structures associated with timer queue entry index (TQEIDX) structures.

Format
VALIDATE TQEIDX

Parameters
None.

Qualifiers
None.

Description
TQEs are linked together with index blocks that point to TQEs or to another level of index block.
VALIDATE TQEIDX checks that all the index blocks are correctly linked together.

Examples
SDA> VALIDATE TQEIDX
Validating time index buckets...
 ... o.k.
Validating ID index buckets...
 ... o.k.
Validating 1st time...
 ... o.k.
Validating counts...
 ... o.k.

This example shows the output from a successful VALIDATE TQEIDX command.

4.90. WAIT
Causes SDA to wait for the specified length of time.

Format
WAIT [wait-time]

314

Chapter 4. SDA Commands

Parameter
wait-time

The wait time is given as a delta time: [[hh:]mm:]ss[.t[h]]. If omitted, the default wait time is one
second.

Qualifiers
None.

Description
The WAIT command can be used in command procedures such as scripts collecting performance data.
See Chapter 8 for a sample procedure.

Examples
SDA> WAIT 00:00:15

SDA waits 15 seconds before accepting the next command.

315

Chapter 4. SDA Commands

316

Chapter 5. SDA CLUE Extension
The SDA CLUE command invokes the Crash Log Utility Extractor, which captures specific crash dump
information and, upon system reboot, preserves it in a file with the following naming scheme:

 CLUE$nodename_ddmmyy_hhmm.LIS

You enter CLUE extension commands at the SDA prompt. For example:

 SDA> CLUE CONFIG

You can get full help on CLUE by entering HELP CLUE at the SDA> prompt.

5.1. Overview of SDA CLUE Extension
SDA CLUE (Crash Log Utility Extractor) commands automate the analysis of crash dumps and
maintain a history of all fatal bugchecks on either a standalone or cluster system. You can use SDA
CLUE commands in conjunction with SDA to collect and decode additional dump file information not
readily accessible through standard SDA commands. SDA CLUE extension commands can summarize
information provided by certain standard SDA commands and provide additional detail for some SDA
commands. For example, SDA CLUE extension commands can quickly provide detailed extended QIO
processor (XQP) summaries. You can also use SDA CLUE commands interactively on a running system
to help identify performance problems.

You can use all CLUE commands when analyzing crash dumps; the only CLUE commands that are not
allowed when analyzing a running system are CLUE CRASH, CLUE ERRLOG, CLUE HISTORY, and
CLUE STACK.

When you reboot the system after a system failure, you automatically invoke SDA by default. To
facilitate better crash dump analysis, SDA CLUE commands automatically capture and archive summary
dump file information in a CLUE listing file.

A startup command procedure initiates commands that do the following:

• Invoke SDA

• Issue an SDA CLUE HISTORY command

• Create a listing file called CLUE$nodename_ddmmyy_hhmm.LIS

The CLUE HISTORY command adds a one-line summary entry to a history file and saves the following
output from SDA CLUE commands in the listing file:

• Crash dump summary information

• System configuration

• Stack decoder

• Page and swap files

• Memory management statistics

• Process DCL recall buffer

317

Chapter 5. SDA CLUE Extension

• Active XQP processes

• XQP cache header

The contents of this CLUE list file can help you analyze a system failure. If these files accumulate more
space than the threshold allows (default is 5000 blocks), the oldest files are deleted until the threshold
limit is reached. You can also customize this threshold using the CLUE$MAX_BLOCKS logical name.

For additional information on the contents of the CLUE listing file, see the reference section on CLUE
HISTORY.

It is important to remember that CLUE$nodename_ddmmyy_hhmm.LIS contains only an overview of the
crash dump and does not always contain enough information to determine the cause of the crash. The
dump itself should always be saved using the procedures described in Section 2.2.2 and Section 2.2.4.

To inhibit the running of CLUE at system startup, define the logical CLUE$INHIBIT in the
SYLOGICALS.COM file as /SYS TRUE.

5.2. Displaying Data with CLUE
To invoke a CLUE command, enter the command at the SDA prompt. For example:

SDA> CLUE CONFIG

5.3. Using CLUE with DOSD
DOSD (Dump Off System Disk) allows you to write the system dump file to a device other than the
system disk. For SDA CLUE to be able to correctly find the dump file to be analyzed after a system
crash, you need to perform the following steps:

1. Modify the command procedure SYS$MANAGER:SYCONFIG.COM to add the system logical
name CLUE$DOSD_DEVICE to point to the device where the dump file resides. You need to
supply only the physical or logical device name without a file specification.

2. Modify the command procedure SYS$MANAGER:SYCONFIG.COM to mount systemwide the
device where the dump file resides. Otherwise, SDA CLUE cannot access and analyze the dump file.

In the following example, the dump file has been placed on device 3DUA25, which has the label DMP
$DEV. You need to add the following commands to SYS$MANAGER:SYCONFIG.COM:

$ MOUNT/SYSTEM/NOASSIST 3DUA25: DMP$DEV DMP$DEV
$ DEFINE/SYSTEM CLUE$DOSD_DEVICE DMP$DEV

5.4. SDA CLUE Extension Commands
The following pages describe the SDA CLUE extension commands.

5.4.1. CLUE CALL_FRAME (Alpha Only)
Displays key information, such as the PC of the caller, from the active call frames at the time of the
crash.

318

Chapter 5. SDA CLUE Extension

Format
CLUE CALL_FRAME [/CPU [cpu-id|ALL]

|/PROCESS [/ADDRESS=n|INDEX=n

|/IDENTIFICATION=n|process-name|ALL]]

Parameters
ALL

When used with /CPU, it requests information about all CPUs in the system. When used with /
PROCESS, it requests information about all processes that exist in the system.

cpu-id

When used with /CPU, it gives the number of the CPU for which information is to be displayed. Use
of the cpu-id parameter causes the CLUE CALL_FRAME command to perform an implicit SET
CPU command, making the indicated CPU the current CPU for subsequent SDA commands.

process-name

When used with /PROCESS, it gives the name of the process for which information is to be
displayed. Use of the process-name parameter, the /ADDRESS qualifier, the /INDEX qualifier,
or the /IDENTIFICATION qualifier causes the CLUE CALL_FRAME command to perform an
implicit SET PROCESS command, making the indicated process the current process for subsequent
SDA commands. You can determine the names of the processes in the system by issuing a SHOW
SUMMARY command.

The process-name can contain up to 15 letters and numerals, including the underscore (_) and
dollar sign ($). If it contains any other characters, you must enclose the process-name in quotation
marks (" ").

Qualifiers
/ADDRESS=n

Specifies the PCB address of the desired process when used with CLUE CALL_FRAME/
PROCESS.

/CPU [cpu-id|ALL]

Indicates that the call frame for a CPU is required. Specify the CPU by its number or use ALL to
indicate all CPUs.

/IDENTIFICATION=n

Specifies the identification of the desired process when used with CLUE CALL_FRAME/
PROCESS.

/INDEX=n

Specifies the index of the desired process when used with CLUE CALL_FRAME/PROCESS.

319

Chapter 5. SDA CLUE Extension

/PROCESS [process-name|ALL]

Indicates that the call frame for a process is required. The process should be specified with either
one of the qualifiers /ADDRESS, /IDENTIFICATION, or /INDEX, or by its name, or by using ALL
to indicate all processes.

Description
The CLUE CALL_FRAME command displays call chain information for a process or a CPU. The
process context calls work on both the running system and dump file; the CPU context calls only on
dump files.

If neither /CPU nor /PROCESS is specified, the parameter (CPU-id or process-name) is ignored and the
call frame for the SDA current process is displayed.

Examples
1. SDA> CLUE CALL/PROCESS IPCACP

Call Chain: Process index: 000B Process name: IPCACP PCB: 8136EF00

Procedure Frame Procedure Entry Return Address
--------------- ----------------------------------

7FFA1CA0 Null 800C8C90 SCH$WAIT_PROC_C
7FFA1D00 Stack 800D9250 SYS$HIBER_C 0003045C
 IPCACP+0003045C
7FFA1D50 Stack 00030050 IPCACP+00030050 800D11C8 EXE
$CMKRNL_C+000D8
7FFA1E60 Null 800B6120 EXE$BLDPKTSWPR_C
7FFA1E78 Null 800B6120 EXE$BLDPKTSWPR_C
7FFA1EC0 Null 80248120 NSA$CHECK_PRIVILEGE_C
7FFA1F00 Null 80084640 EXE$CMODEXECX_C
7FFA1F70 Stack 800D10F0 EXE$CMKRNL_C 80084CC8 EXE
$CMODKRNL_C+00198
7B01FAB0 Stack 00030010 IPCACP+00030010 83EA3454 SYS
$IMGSTA_C+00154
7B01FB10 Stack 83EA3300 SYS$IMGSTA_C 83D99CC4 EXE
$PROC_IMGACT_C+00384
7B01FBA0 Stack 83D99BA0 EXE$PROC_IMGACT_C+00260 83D99B9C EXE
$PROC_IMGACT_C+0025C

In this example, the CLUE CALL_FRAME command displays the call frame from the process
IPCACP.

2. SDA> CLUE CALL/CPU ALL
Call Chain: Process index: 0000 Process name: NULL PCB: 827377C0
 (CPU 0)

Procedure Frame Procedure Entry Return Address
--------------- ----------------------------------

8F629D28 Null 80205E00 SYS$SCS+05E00
8F629D68 Null 8020A850 SCS$REC_MSGREC_C
8F629D98 Null 914A5340 SYS$PBDRIVER+07340
8F629DB8 Null 914A4FD0 SYS$PBDRIVER+06FD0
8F629DE0 Stack 914AACF0 SYS$PBDRIVER+0CCF0 914AE5CC SYS
$PBDRIVER+105CC

320

Chapter 5. SDA CLUE Extension

8F629E50 Stack 914AE418 SYS$PBDRIVER+10418 800503B0
 EXE_STD$QUEUE_FORK_C+00350
8F629F88 Null 800E95F4 SCH$WAIT_ANY_MODE_C
8F629FD0 Stack 800D0F80 SCH$IDLE_C 800E92D0 SCH
$INTERRUPT+00BB0
Call Chain: Process index: 0000 Process name: NULL PCB: 827377C0
 (CPU 2)

Procedure Frame Procedure Entry Return Address
--------------- -------------------------------- ---------
90FCBF88 Null 800E95F4 SCH$WAIT_ANY_MODE_C
90FCBFC8 Null 800E95F4 SCH$WAIT_ANY_MODE_C
90FCBFD0 Stack 800D0F80 SCH$IDLE_C 800E92D0 SCH
$INTERRUPT+00BB0
Call Chain: Process index: 0000 Process name: NULL PCB: 827377C0
 (CPU 6)

Procedure Frame Procedure Entry Return Address
--------------- ------------------------------

90FCBF88 Null 800E95FA SCH$WAIT_ANY_MORE_c
90FD9F88 Null 800E95F4 SCH$WAIT_ANY_MODE_C
90FD9FD0 Stack 800D0F80 SCH$IDLE_C 800E92D0 SCH
$INTERRUPT+00BB0

In this example, CLUE/CPU ALL shows the call frame for all CPUs.

5.4.2. CLUE CLEANUP
Performs housekeeping operations to conserve disk space.

Format
CLUE CLEANUP

Parameters
None.

Qualifiers
None.

Description
CLUE CLEANUP performs housekeeping operations to conserve disk space. To avoid filling up the
system disk with listing files generated by CLUE, CLUE CLEANUP is run during system startup to
check the overall disk space used by all CLUE$*.LIS files.

If the CLUE$COLLECT:CLUE$*.LIS files occupy more space than the logical CLUE$MAX_BLOCKS
allows, then the oldest files are deleted until the threshold is reached. If this logical name is not defined,
a default value of 5,000 disk blocks is assumed. A value of zero disables housekeeping and no check on
the disk space is performed.

Examples
1. SDA> CLUE CLEANUP

321

Chapter 5. SDA CLUE Extension

%CLUE-I-CLEANUP, housekeeping started...
%CLUE-I-MAXBLOCK, maximum blocks allowed 5000 blocks
%CLUE-I-STAT, total of 4 CLUE files, 192 blocks.

In this example, the CLUE CLEANUP command displays that the total number of blocks of disk
space used by CLUE files does not exceed the maximum number of blocks allowed. No files are
deleted.

5.4.3. CLUE CONFIG
Displays the system, memory, and device configurations.

Format
CLUE CONFIG

Parameters
None.

Qualifiers
/ADAPTER

Displays only the part of the system configuration that contains information about the adapters and
devices on the system.

/CPU

Displays only the part of the system configuration that contains information about the CPUs.

/MEMORY

Displays only the part of the system configuration that contains information about the layout of
physical memory.

Description
CLUE CONFIG displays the system, memory, and device configurations. If no qualifier is specified, the
entire system configuration is displayed (memory, CPUs, adapters, and devices), plus additional system
information.

5.4.4. CLUE CRASH
Displays a crash dump summary.

Format
CLUE CRASH

Parameters
None.

Qualifiers
None.

322

Chapter 5. SDA CLUE Extension

Description
CLUE CRASH displays a crash dump summary, which includes the following items:

• Bugcheck type

• Current process and image

• Failing PC and PS

• Executive image section name and offset

• General registers

• Failing instructions

• Exception frame, signal and mechanism arrays (if available)

• CPU state information (spinlock related bugchecks only)

Examples
SDA> CLUE CRASH
Crash Time: 30-AUG-1996 13:13:46.83
Bugcheck Type: SSRVEXCEPT, Unexpected system service exception
Node: SWPCTX (Standalone)
CPU Type: DEC 3000 Model 400
VMS Version: X6AF-FT2
Current Process: SYSTEM
Current Image: 31DKB0:[SYS0.][SYSMGR]X.EXE;1
Failing PC: 00000000.00030078 SYS$K_VERSION_01+00078
Failing PS: 00000000.00000003
Module: X
Offset: 00030078

Boot Time: 30-AUG-1996 09:06:22.00
System Uptime: 0 04:07:24.83
Crash/Primary CPU: 00/00
System/CPU Type: 0402
Saved Processes: 18
Pagesize: 8 KByte (8192 bytes)
Physical Memory: 64 MByte (8192 PFNs, contiguous memory)
Dumpfile Pagelets: 98861 blocks
Dump Flags: olddump,writecomp,errlogcomp,dump_style
Dump Type: raw,selective
EXE$GL_FLAGS: poolpging,init,bugdump
Paging Files: 1 Pagefile and 1 Swapfile installed

Stack Pointers:
KSP = 00000000.7FFA1C98 ESP = 00000000.7FFA6000 SSP = 00000000.7FFAC100
USP = 00000000.7AFFBAD0

General Registers:
R0 = 00000000.00000000 R1 = 00000000.7FFA1EB8 R2 = FFFFFFFF.80D0E6C0
R3 = FFFFFFFF.80C63460 R4 = FFFFFFFF.80D12740 R5 = 00000000.000000C8
R6 = 00000000.00030038 R7 = 00000000.7FFA1FC0 R8 = 00000000.7FFAC208
R9 = 00000000.7FFAC410 R10 = 00000000.7FFAD238 R11 = 00000000.7FFCE3E0
R12 = 00000000.00000000 R13 = FFFFFFFF.80C6EB60 R14 = 00000000.00000000
R15 = 00000000.009A79FD R16 = 00000000.000003C4 R17 = 00000000.7FFA1D40

323

Chapter 5. SDA CLUE Extension

R18 = FFFFFFFF.80C05C38 R19 = 00000000.00000000 R20 = 00000000.7FFA1F50
R21 = 00000000.00000000 R22 = 00000000.00000001 R23 = 00000000.7FFF03C8
R24 = 00000000.7FFF0040 AI = 00000000.00000003 RA = FFFFFFFF.82A21080
PV = FFFFFFFF.829CF010 R28 = FFFFFFFF.8004B6DC FP = 00000000.7FFA1CA0
PC = FFFFFFFF.82A210B4 PS = 18000000.00000000

Exception Frame:
R2 = 00000000.00000003 R3 = FFFFFFFF.80C63460 R4 = FFFFFFFF.80D12740
R5 = 00000000.000000C8 R6 = 00000000.00030038 R7 = 00000000.7FFA1FC0
PC = 00000000.00030078 PS = 00000000.00000003

Signal Array: 64-bit Signal Array:
Arg Count = 00000005 Arg Count = 00000005
Condition = 0000000C Condition = 00000000.0000000C
Argument #2 = 00010000 Argument #2 = 00000000.00010000
Argument #3 = 00000000 Argument #3 = 00000000.00000000
Argument #4 = 00030078 Argument #4 = 00000000.00030078
Argument #5 = 00000003 Argument #5 = 00000000.00000003

Mechanism Array:
Arguments = 0000002C Establisher FP = 00000000.7AFFBAD0
Flags = 00000000 Exception FP = 00000000.7FFA1F00
Depth = FFFFFFFD Signal Array = 00000000.7FFA1EB8
Handler Data = 00000000.00000000 Signal64 Array = 00000000.7FFA1ED0
R0 = 00000000.00020000 R1 = 00000000.00000000 R16 = 00000000.00020004
R17 = 00000000.00010050 R18 = FFFFFFFF.FFFFFFFF R19 = 00000000.00000000
R20 = 00000000.7FFA1F50 R21 = 00000000.00000000 R22 = 00000000.00010050
R23 = 00000000.00000000 R24 = 00000000.00010051 R25 = 00000000.00000000
R26 = FFFFFFFF.8010ACA4 R27 = 00000000.00010050 R28 = 00000000.00000000

System Registers:
Page Table Base Register (PTBR) 00000000.00001136
Processor Base Register (PRBR) FFFFFFFF.80D0E000
Privileged Context Block Base (PCBB) 00000000.003FE080
System Control Block Base (SCBB) 00000000.000001DC
Software Interrupt Summary Register (SISR) 00000000.00000000
Address Space Number (ASN) 00000000.0000002F
AST Summary / AST Enable (ASTSR_ASTEN) 00000000.0000000F
Floating-Point Enable (FEN) 00000000.00000000
Interrupt Priority Level (IPL) 00000000.00000000
Machine Check Error Summary (MCES) 00000000.00000000
Virtual Page Table Base Register (VPTB) FFFFFFFC.00000000

Failing Instruction:
SYS$K_VERSION_01+00078: LDL R28,(R28)

Instruction Stream (last 20 instructions):
SYS$K_VERSION_01+00028: LDQ R16,#X0030(R13)
SYS$K_VERSION_01+0002C: LDQ R27,#X0048(R13)
SYS$K_VERSION_01+00030: LDA R17,(R28)
SYS$K_VERSION_01+00034: JSR R26,(R26)
SYS$K_VERSION_01+00038: LDQ R26,#X0038(R13)
SYS$K_VERSION_01+0003C: BIS R31,SP,SP
SYS$K_VERSION_01+00040: BIS R31,R26,R0
SYS$K_VERSION_01+00044: BIS R31,FP,SP
SYS$K_VERSION_01+00048: LDQ R28,#X0008(SP)
SYS$K_VERSION_01+0004C: LDQ R13,#X0010(SP)
SYS$K_VERSION_01+00050: LDQ FP,#X0018(SP)

324

Chapter 5. SDA CLUE Extension

SYS$K_VERSION_01+00054: LDA SP,#X0020(SP)
SYS$K_VERSION_01+00058: RET R31,(R28)
SYS$K_VERSION_01+0005C: BIS R31,R31,R31
SYS$K_VERSION_01+00060: LDA SP,#XFFE0(SP)
SYS$K_VERSION_01+00064: STQ FP,#X0018(SP)
SYS$K_VERSION_01+00068: STQ R27,(SP)
SYS$K_VERSION_01+0006C: BIS R31,SP,FP
SYS$K_VERSION_01+00070: STQ R26,#X0010(SP)
SYS$K_VERSION_01+00074: LDA R28,(R31)
SYS$K_VERSION_01+00078: LDL R28,(R28)
SYS$K_VERSION_01+0007C: BEQ R28,#X000007
SYS$K_VERSION_01+00080: LDQ R26,#XFFE8(R27)
SYS$K_VERSION_01+00084: BIS R31,R26,R0
SYS$K_VERSION_01+00088: BIS R31,FP,SP

5.4.5. CLUE ERRLOG
Extracts the error log buffers from the dump file and places them into the binary file called CLUE
$ERRLOG.SYS.

Format
CLUE ERRLOG [/OLD]

Parameters
None.

Qualifier
/OLD

Dumps the errorlog buffers into a file using the old errorlog format. The default action, if /OLD is
not specified, is to dump the errorlog buffers in the common event header format.

Description
CLUE ERRLOG extracts the error log buffers from the dump file and places them into the binary file
called CLUE$ERRLOG.SYS.

These buffers contain messages not yet written to the error log file at the time of the failure. When you
analyze a failure on the same system on which it occurred, you can run the Error Log utility on the
actual error log file to see these error log messages. When analyzing a failure from another system, use
the CLUE ERRLOG command to create a file containing the failing system's error log messages just
prior to the failure. System failures are often triggered by hardware problems, so determining what, if
any, hardware errors occurred prior to the failure can help you troubleshoot a failure.

You can define the logical CLUE$ERRLOG to any file specification if you want error log information
written to a file other than CLUE$ERRLOG.SYS.

Note

You need at least DECevent V2.9 to analyze the new common event header (CEH) format file. The old
format file can be analyzed by ANALYZE/ERROR or any version of DECevent.

325

Chapter 5. SDA CLUE Extension

Examples
SDA> CLUE ERRLOG

Sequence Date Time
-------- ----------- -----------
 128 11-MAY-1994 00:39:31.30
 129 11-MAY-1994 00:39:32.12
 130 11-MAY-1994 00:39:44.83
 131 11-MAY-1994 00:44:38.97 * Crash Entry

In addition to writing the error log buffers into CLUE$ERRLOG.SYS, the CLUE ERRLOG command
displays the sequence, date, and time of each error log buffer extracted from the dump file.

5.4.6. CLUE FRU
Outputs the Field Replacement Unit (FRU) table to a file for display by DECevent.

Format
CLUE FRU

Parameters
None.

Qualifiers
None.

Description
The FRU command extracts the FRU table into an output file (CLUE$FRU.SYS), which can then be
displayed by DECevent. This command works on the running system, as well as on dump files.

5.4.7. CLUE HISTORY
Updates history file and generates crash dump summary output.

Format
CLUE HISTORY [/qualifier]

Parameters
None.

Qualifier
/OVERDRIVE

Allows execution of this command even if the dump file has already been analyzed (DMP
$V_OLDDUMP bit set).

326

Chapter 5. SDA CLUE Extension

Description
This command updates the history file pointed to by the logical name CLUE$HISTORY with a one-line
entry and the major crash dump summary information. If CLUE$HISTORY is not defined, a file CLUE
$HISTORY.DAT in your default directory will be created.

In addition, a listing file with summary information about the system failure is created in the directory
pointed to by CLUE$COLLECT. The file name is of the form CLUE$node_ddmmyy_hhmm.LIS where
the timestamp (hhmm) corresponds to the system failure time and not the time when the file was created.

The listing file contains summary information collected from the following SDA commands:

• CLUE CRASH

• CLUE CONFIG

• CLUE MEMORY/FILES

• CLUE MEMORY/STATISTIC

• CLUE PROCESS/RECALL

• CLUE XQP/ACTIVE

Refer to the reference section for each of these commands to see examples of the displayed information.

The logical name CLUE$FLAG controls how much information is written to the listing file.

• Bit 0---Include crash dump summary

• Bit 1---Include system configuration

• Bit 2---Include stack decoding information

• Bit 3---Include page and swap file usage

• Bit 4---Include memory management statistics

• Bit 5---Include process DCL recall buffer

• Bit 6---Include active XQP process information

• Bit 7---Include XQP cache header

If this logical name is undefined, all bits are set by default internally and all information is written to the
listing file. If the value is zero, no listing file is generated. The value has to be supplied in hexadecimal
form (for example, DEFINE CLUE$FLAG 81 will include the crash dump summary and the XQP cache
header information).

If the logical name CLUE$SITE_PROC points to a valid and existing file, it will be executed as the final
step of the CLUE HISTORY command (for example, automatic saving of the dump file during system
startup). If used, this file should contain only valid SDA commands.

Refer to Section 2.2.4 for more information on site-specific command files.

5.4.8. CLUE MCHK
This command is obsolete.

327

Chapter 5. SDA CLUE Extension

Format
CLUE MCHK

Parameters
None.

Qualifiers
None.

Description
The CLUE MCMK command has been withdrawn. Issuing the command produces the following output,
explaining the correct way to obtain MACHINECHECK information from a crash dump.

Please use the following commands in order to extract the errorlog buffers
from the dumpfile header and analyze the machine check entry:

$ analyze/crash sys$system:sysdump.dmp
SDA> clue errlog
SDA> exit
$ diagnose clue$errlog

5.4.9. CLUE MEMORY
Displays memory- and pool-related information.

Format
CLUE MEMORY [/qualifier[,...]]

Parameters
None.

Qualifiers
/FILES

Displays information about page and swap file usage.

/FREE

Validates and displays dynamic nonpaged free packet list queue. (See also /FULL.)

/FULL

Ignored except when used with /FREE or /GH. When used with /FREE, the first 16 bytes of each
entry on the free packet list is displayed. When used with /GH, a list of the images that use each
granularity hint region is displayed.

/GH

Displays information about the granularity hint regions. (See also /FULL.)

328

Chapter 5. SDA CLUE Extension

/LAYOUT

Decodes and displays much of the system virtual address space layout.

/LOOKASIDE

Validates the lookaside list queue heads and counts the elements for each list.

/STATISTIC

Displays systemwide performance data such as page fault, I/O, pool, lock manager, MSCP, and file
system cache.

Description

The CLUE MEMORY command displays memory- and pool-related information.

Examples

1. SDA> CLUE MEMORY/FILES
Paging File Usage (blocks):

Swapfile (Index 1) Device DKA0:
 PFL Address FFFFFFFF.81531340 UCB Address
 FFFFFFFF.814AAF00
 Free Blocks 44288 Bitmap
 FFFFFFFF.815313E0
 Total Size (blocks) 44288 Flags
 inited,swap_file
 Total Write Count 0 Total Read Count
 0
 Smallest Chunk (pages) 2768 Largest Chunk (pages)
 2768
 Chunks GEQ 64 Pages 1 Chunks LT 64 Pages
 0

Pagefile (Index 254) Device DKA0:
 PFL Address FFFFFFFF.8152E440 UCB Address
 FFFFFFFF.814AAF00
 Free Blocks 1056768 Bitmap
 FFFFFFFF.6FB16008
 Total Size (blocks) 1056768 Flags
 inited
 Total Write Count 0 Total Read Count
 0
 Smallest Chunk (pages) 66048 Largest Chunk (pages)
 66048
 Chunks GEQ 64 Pages 1 Chunks LT 64 Pages
 0

 Summary: 1 Pagefile and 1 Swapfile installed

 Total Size of all Swap Files: 44288 blocks
 Total Size of all Paging Files: 1056768 blocks
 Total Committed Paging File Usage: 344576 blocks

329

Chapter 5. SDA CLUE Extension

This example shows the display produced by the CLUE MEMORY/FILES command.

2. SDA> CLUE MEMORY/FREE/FULL
Non-Paged Dynamic Storage Pool - Variable Free Packet Queue:
--
CLASSDR FFFFFFFF.80D157C0 : 64646464 64646464 00000040 80D164C0
 ÀdÑ.@...dddddddd
CLASSDR FFFFFFFF.80D164C0 : 64646464 64646464 00000080 80D17200
 .rÑ.....dddddddd
CLASSDR FFFFFFFF.80D17200 : 64646464 64646464 00000080 80D21AC0
 À.Ò.....dddddddd
CLASSDR FFFFFFFF.80D21AC0 : 64646464 64646464 00000080 80D228C0
 À(Ò.....dddddddd
VCC FFFFFFFF.80D228C0 : 801CA5E8 026F0040 00000040 80D23E40
 @>Ò.@...@.o.è¥..
CLASSDR FFFFFFFF.80D23E40 : 64646464 64646464 00000040 80D24040
 @@Ò.@...dddddddd
CLASSDR FFFFFFFF.80D24040 : 64646464 64646464 00000040 80D26FC0
 ÀoÒ.@...dddddddd
CLASSDR FFFFFFFF.80D26FC0 : 64646464 64646464 00000080 80D274C0
 ÀtÒ.....dddddddd
CLASSDR FFFFFFFF.80D274C0 : 64646464 64646464 00000040 80D2E200
 .âÒ.@...dddddddd
CLASSDR FFFFFFFF.80D2E200 : 64646464 64646464 00000080 80D2E440
 @äÒ.....dddddddd
CLASSDR FFFFFFFF.80D2E440 : 64646464 64646464 00000040 80D2F000
 .Ò.@...dddddddd
CLASSDR FFFFFFFF.80D2F000 : 64646464 64646464 00000080 80D2F400
 .ôÒ.....dddddddd
 .
 .
 .
CLASSDR FFFFFFFF.80E91D40 : 64646464 64646464 00000500 80E983C0
 À.é.....dddddddd
CLASSDR FFFFFFFF.80E983C0 : 64646464 64646464 00031C40 00000000
 @...dddddddd
Free Packet Queue, Status: Valid, 174 elements
 Largest free chunk: 00031C40 (hex) 203840 (dec) bytes
 Total free dynamic space: 0003D740 (hex) 251712 (dec) bytes

The CLUE MEMORY/FREE/FULL command validates and displays dynamic nonpaged free packet
list queue.

3. SDA> CLUE MEMORY/GH/FULL
Granularity Hint Regions - Huge Pages:

Execlet Code Region
 Pages/Slices
 Base/End VA FFFFFFFF.80000000 FFFFFFFF.80356000 Current Size
 427/ 427
 Base/End PA 00000000.00400000 00000000.00756000 Free
 / 0
 Total Size 00000000.00356000 3.3 MB In Use
 / 427
 Bitmap VA/Size FFFFFFFF.80D17CC0 00000000.00000040 Initial Size
 512/ 512

330

Chapter 5. SDA CLUE Extension

 Slice Size 00000000.00002000 Released
 85/ 85
 Next free Slice 00000000.000001AB

 Image Base End
 Length
 SYS$PUBLIC_VECTORS FFFFFFFF.80000000 FFFFFFFF.80001A00
 00001A00
 SYS$BASE_IMAGE FFFFFFFF.80002000 FFFFFFFF.8000D400
 0000B400
 SYS$CNBTDRIVER FFFFFFFF.8000E000 FFFFFFFF.8000F000
 00001000
 SYS$NISCA_BTDRIVER FFFFFFFF.80010000 FFFFFFFF.8001FA00
 0000FA00
 SYS$ESBTDRIVER FFFFFFFF.80020000 FFFFFFFF.80022400
 00002400
 SYS$OPDRIVER FFFFFFFF.80024000 FFFFFFFF.80027C00
 00003C00
 SYSTEM_DEBUG FFFFFFFF.80028000 FFFFFFFF.80050200
 00028200
 SYSTEM_PRIMITIVES FFFFFFFF.80052000 FFFFFFFF.80089000
 00037000
 SYSTEM_SYNCHRONIZATION FFFFFFFF.8008A000 FFFFFFFF.80095400
 0000B400
 ERRORLOG FFFFFFFF.80096000 FFFFFFFF.80099200
 00003200
 SYS$CPU_ROUTINES_0402 FFFFFFFF.8009A000 FFFFFFFF.800A3A00
 00009A00
 EXCEPTION_MON FFFFFFFF.800A4000 FFFFFFFF.800BC800
 00018800
 IO_ROUTINES_MON FFFFFFFF.800BE000 FFFFFFFF.800E2000
 00024000
 SYSDEVICE FFFFFFFF.800E2000 FFFFFFFF.800E5C00
 00003C00
 PROCESS_MANAGEMENT_MON FFFFFFFF.800E6000 FFFFFFFF.8010B000
 00025000
 SYS$VM FFFFFFFF.8010C000 FFFFFFFF.80167200
 0005B200
 SHELL8K FFFFFFFF.80168000 FFFFFFFF.80169200
 00001200
 LOCKING FFFFFFFF.8016A000 FFFFFFFF.8017BE00
 00011E00
 MESSAGE_ROUTINES FFFFFFFF.8017C000 FFFFFFFF.80182A00
 00006A00
 LOGICAL_NAMES FFFFFFFF.80184000 FFFFFFFF.80186C00
 00002C00
 F11BXQP FFFFFFFF.80188000 FFFFFFFF.80190400
 00008400
 SYSLICENSE FFFFFFFF.80192000 FFFFFFFF.80192400
 00000400
 IMAGE_MANAGEMENT FFFFFFFF.80194000 FFFFFFFF.80197A00
 00003A00
 SECURITY FFFFFFFF.80198000 FFFFFFFF.801A0E00
 00008E00
 SYSGETSYI FFFFFFFF.801A2000 FFFFFFFF.801A3A00
 00001A00
 SYS$TRANSACTION_SERVICES FFFFFFFF.801A4000 FFFFFFFF.801C5000
 00021000

331

Chapter 5. SDA CLUE Extension

 SYS$UTC_SERVICES FFFFFFFF.801C6000 FFFFFFFF.801C7000
 00001000
 SYS$VCC_MON FFFFFFFF.801C8000 FFFFFFFF.801D4E00
 0000CE00
 SYS$IPC_SERVICES FFFFFFFF.801D6000 FFFFFFFF.80214A00
 0003EA00
 SYSLDR_DYN FFFFFFFF.80216000 FFFFFFFF.80219200
 00003200
 SYS$MME_SERVICES FFFFFFFF.8021A000 FFFFFFFF.8021B000
 00001000
 SYS$TTDRIVER FFFFFFFF.8021C000 FFFFFFFF.8022FE00
 00013E00
 SYS$PKCDRIVER FFFFFFFF.80230000 FFFFFFFF.80240400
 00010400
 SYS$DKDRIVER FFFFFFFF.80242000 FFFFFFFF.80251600
 0000F600
 RMS FFFFFFFF.80252000 FFFFFFFF.802C5E00
 00073E00
 SYS$GXADRIVER FFFFFFFF.802C6000 FFFFFFFF.802CE000
 00008000
 SYS$ECDRIVER FFFFFFFF.802CE000 FFFFFFFF.802D1000
 00003000
 SYS$LAN FFFFFFFF.802D2000 FFFFFFFF.802D8E00
 00006E00
 SYS$LAN_CSMACD FFFFFFFF.802DA000 FFFFFFFF.802E6600
 0000C600
 SYS$MKDRIVER FFFFFFFF.802E8000 FFFFFFFF.802F1C00
 00009C00
 SYS$YRDRIVER FFFFFFFF.802F2000 FFFFFFFF.802F9600
 00007600
 SYS$SODRIVER FFFFFFFF.802FA000 FFFFFFFF.802FF000
 00005000
 SYS$INDRIVER FFFFFFFF.80300000 FFFFFFFF.8030EA00
 0000EA00
 NETDRIVER FFFFFFFF.80310000 FFFFFFFF.80310200
 00000200
 NETDRIVER FFFFFFFF.80312000 FFFFFFFF.80329E00
 00017E00
 SYS$IMDRIVER FFFFFFFF.8032A000 FFFFFFFF.8032EA00
 00004A00
 SYS$IKDRIVER FFFFFFFF.80330000 FFFFFFFF.8033AC00
 0000AC00
 NDDRIVER FFFFFFFF.8033C000 FFFFFFFF.8033F800
 00003800
 SYS$WSDRIVER FFFFFFFF.80340000 FFFFFFFF.80341600
 00001600
 SYS$CTDRIVER FFFFFFFF.80342000 FFFFFFFF.8034D200
 0000B200
 SYS$RTTDRIVER FFFFFFFF.8034E000 FFFFFFFF.80351800
 00003800
 SYS$FTDRIVER FFFFFFFF.80352000 FFFFFFFF.80354200
 00002200

Execlet Data Region
 Pages/Slices
 Base/End VA FFFFFFFF.80C00000 FFFFFFFF.80CC0000 Current Size
 96/ 1536

332

Chapter 5. SDA CLUE Extension

 Base/End PA 00000000.00800000 00000000.008C0000 Free
 / 11
 Total Size 00000000.000C0000 0.7 MB In Use
 / 1525
 Bitmap VA/Size FFFFFFFF.80D17D00 00000000.00000100 Initial Size
 128/ 2048
 Slice Size 00000000.00000200 Released
 32/ 512
 Next free Slice 00000000.000005F5

 Image Base End
 Length
 SYS$PUBLIC_VECTORS FFFFFFFF.80C00000 FFFFFFFF.80C05000
 00005000
 SYS$BASE_IMAGE FFFFFFFF.80C05000 FFFFFFFF.80C25E00
 00020E00
 SYS$CNBTDRIVER FFFFFFFF.80C25E00 FFFFFFFF.80C26200
 00000400
 SYS$NISCA_BTDRIVER FFFFFFFF.80C26200 FFFFFFFF.80C29400
 00003200
 SYS$ESBTDRIVER FFFFFFFF.80C29400 FFFFFFFF.80C29800
 00000400
 SYS$OPDRIVER FFFFFFFF.80C29800 FFFFFFFF.80C2A200
 00000A00
 SYSTEM_DEBUG FFFFFFFF.80C2A200 FFFFFFFF.80C4E400
 00024200
 SYSTEM_PRIMITIVES FFFFFFFF.80C4E400 FFFFFFFF.80C58200
 00009E00
 SYSTEM_SYNCHRONIZATION FFFFFFFF.80C58200 FFFFFFFF.80C5A000
 00001E00
 ERRORLOG FFFFFFFF.80C5A000 FFFFFFFF.80C5A600
 00000600
 SYS$CPU_ROUTINES_0402 FFFFFFFF.80C5A600 FFFFFFFF.80C5CA00
 00002400
 EXCEPTION_MON FFFFFFFF.80C5CA00 FFFFFFFF.80C64C00
 00008200
 IO_ROUTINES_MON FFFFFFFF.80C64C00 FFFFFFFF.80C6AA00
 00005E00
 SYSDEVICE FFFFFFFF.80C6AA00 FFFFFFFF.80C6B600
 00000C00
 PROCESS_MANAGEMENT_MON FFFFFFFF.80C6B600 FFFFFFFF.80C72600
 00007000
 SYS$VM FFFFFFFF.80C72600 FFFFFFFF.80C79000
 00006A00
 SHELL8K FFFFFFFF.80C79000 FFFFFFFF.80C7A000
 00001000
 LOCKING FFFFFFFF.80C7A000 FFFFFFFF.80C7BA00
 00001A00
 MESSAGE_ROUTINES FFFFFFFF.80C7BA00 FFFFFFFF.80C7D000
 00001600
 LOGICAL_NAMES FFFFFFFF.80C7D000 FFFFFFFF.80C7E200
 00001200
 F11BXQP FFFFFFFF.80C7E200 FFFFFFFF.80C7FA00
 00001800
 SYSLICENSE FFFFFFFF.80C7FA00 FFFFFFFF.80C7FE00
 00000400
 IMAGE_MANAGEMENT FFFFFFFF.80C7FE00 FFFFFFFF.80C80600
 00000800

333

Chapter 5. SDA CLUE Extension

 SECURITY FFFFFFFF.80C80600 FFFFFFFF.80C83000
 00002A00
 SYSGETSYI FFFFFFFF.80C83000 FFFFFFFF.80C83200
 00000200
 SYS$TRANSACTION_SERVICES FFFFFFFF.80C83200 FFFFFFFF.80C89E00
 00006C00
 SYS$UTC_SERVICES FFFFFFFF.80C89E00 FFFFFFFF.80C8A200
 00000400
 SYS$VCC_MON FFFFFFFF.80C8A200 FFFFFFFF.80C8BC00
 00001A00
 SYS$IPC_SERVICES FFFFFFFF.80C8BC00 FFFFFFFF.80C91000
 00005400
 SYSLDR_DYN FFFFFFFF.80C91000 FFFFFFFF.80C92200
 00001200
 SYS$MME_SERVICES FFFFFFFF.80C92200 FFFFFFFF.80C92600
 00000400
 SYS$TTDRIVER FFFFFFFF.80C92600 FFFFFFFF.80C94C00
 00002600
 SYS$PKCDRIVER FFFFFFFF.80C94C00 FFFFFFFF.80C96A00
 00001E00
 SYS$DKDRIVER FFFFFFFF.80C96A00 FFFFFFFF.80C99800
 00002E00
 RMS FFFFFFFF.80C99800 FFFFFFFF.80CAAC00
 00011400
 RECOVERY_UNIT_SERVICES FFFFFFFF.80CAAC00 FFFFFFFF.80CAB000
 00000400
 SYS$GXADRIVER FFFFFFFF.80CAB000 FFFFFFFF.80CAF000
 00004000
 SYS$ECDRIVER FFFFFFFF.80CAF000 FFFFFFFF.80CAFC00
 00000C00
 SYS$LAN FFFFFFFF.80CAFC00 FFFFFFFF.80CB0800
 00000C00
 SYS$LAN_CSMACD FFFFFFFF.80CB0800 FFFFFFFF.80CB1800
 00001000
 SYS$MKDRIVER FFFFFFFF.80CB1800 FFFFFFFF.80CB3000
 00001800
 SYS$YRDRIVER FFFFFFFF.80CB3000 FFFFFFFF.80CB3C00
 00000C00
 SYS$SODRIVER FFFFFFFF.80CB3C00 FFFFFFFF.80CB4E00
 00001200
 SYS$INDRIVER FFFFFFFF.80CB4E00 FFFFFFFF.80CB5E00
 00001000
 NETDRIVER FFFFFFFF.80CB5E00 FFFFFFFF.80CB8800
 00002A00
 SYS$IMDRIVER FFFFFFFF.80CB8800 FFFFFFFF.80CB9400
 00000C00
 SYS$IKDRIVER FFFFFFFF.80CB9400 FFFFFFFF.80CBAA00
 00001600
 NDDRIVER FFFFFFFF.80CBAA00 FFFFFFFF.80CBB400
 00000A00
 SYS$WSDRIVER FFFFFFFF.80CBB400 FFFFFFFF.80CBBC00
 00000800
 SYS$CTDRIVER FFFFFFFF.80CBBC00 FFFFFFFF.80CBD800
 00001C00
 SYS$RTTDRIVER FFFFFFFF.80CBD800 FFFFFFFF.80CBE200
 00000A00
 SYS$FTDRIVER FFFFFFFF.80CBE200 FFFFFFFF.80CBEA00
 00000800

334

Chapter 5. SDA CLUE Extension

 11 free Slices FFFFFFFF.80CBEA00 FFFFFFFF.80CC0000
 00001600

S0/S1 Executive Data Region
 Pages/Slices
 Base/End VA FFFFFFFF.80D00000 FFFFFFFF.80ECA000 Current Size
 229/ 229
 Base/End PA 00000000.00900000 00000000.00ACA000 Free
 / 0
 Total Size 00000000.001CA000 1.7 MB In Use
 / 229
 Bitmap VA/Size FFFFFFFF.80D17E00 00000000.00000020 Initial Size
 229/ 229
 Slice Size 00000000.00002000 Released
 0/ 0
 Next free Slice 00000000.00000007

 Item Base End
 Length
 System Header FFFFFFFF.80D00000 FFFFFFFF.80D0A000
 0000A000
 Error Log Allocation Buffers FFFFFFFF.80D0A000 FFFFFFFF.80D0C000
 00002000
 Nonpaged Pool (initial size) FFFFFFFF.80D0E000 FFFFFFFF.80ECA000
 001BC000

Resident Image Code Region
 Pages/Slices
 Base/End VA FFFFFFFF.80400000 FFFFFFFF.80C00000 Current Size
 1024/ 1024
 Base/End PA 00000000.00C00000 00000000.01400000 Free
 / 223
 Total Size 00000000.00800000 8.0 MB In Use
 / 801
 Bitmap VA/Size FFFFFFFF.80D17E20 00000000.00000080 Initial Size
 1024/ 1024
 Slice Size 00000000.00002000 Released
 0/ 0
 Next free Slice 00000000.00000321

 Image Base End
 Length
 LIBRTL FFFFFFFF.80400000 FFFFFFFF.8049EA00
 0009EA00
 LIBOTS FFFFFFFF.804A0000 FFFFFFFF.804AEC00
 0000EC00
 CMA$TIS_SHR FFFFFFFF.804B0000 FFFFFFFF.804B2600
 00002600
 DPML$SHR FFFFFFFF.804B4000 FFFFFFFF.8050B600
 00057600
 DECC$SHR FFFFFFFF.8050C000 FFFFFFFF.80657000
 0014B000
 SECURESHRP FFFFFFFF.80658000 FFFFFFFF.80676000
 0001E000
 SECURESHR FFFFFFFF.80676000 FFFFFFFF.8068C000
 00016000
 SECURESHR FFFFFFFF.8068C000 FFFFFFFF.8068C200
 00000200

335

Chapter 5. SDA CLUE Extension

 LBRSHR FFFFFFFF.8068E000 FFFFFFFF.806A3E00
 00015E00
 DECW$TRANSPORT_COMMON FFFFFFFF.806A4000 FFFFFFFF.806B0C00
 0000CC00
 CDE$UNIX_ROUTINES FFFFFFFF.806B2000 FFFFFFFF.806C1E00
 0000FE00
 DECW$XLIBSHR FFFFFFFF.806C2000 FFFFFFFF.80781C00
 000BFC00
 DECW$XTLIBSHRR5 FFFFFFFF.80782000 FFFFFFFF.807C7600
 00045600
 DECW$XMLIBSHR12 FFFFFFFF.807C8000 FFFFFFFF.8096AE00
 001A2E00
 DECW$MRMLIBSHR12 FFFFFFFF.8096C000 FFFFFFFF.80994200
 00028200
 DECW$DXMLIBSHR12 FFFFFFFF.80996000 FFFFFFFF.80A40400
 000AA400
 223 free Slices FFFFFFFF.80A42000 FFFFFFFF.80C00000
 001BE000

S2 Executive Data Region
 Pages/Slices
 Base/End VA FFFFFFFE.00000000 FFFFFFFE.00050000 Current Size
 40/ 8
 Base/End PA 00000000.00350000 00000000.003A0000 Free
 / 0
 Total Size 00000000.00050000 0.3 MB In Use
 / 8
 Bitmap VA/Size FFFFFFFF.80D17EA0 00000000.00000008 Initial Size
 40/ 8
 Slice Size 00000000.0000A000 Released
 0/ 0
 Next free Slice 00000000.00000008

 Item Base End
 Length
 PFN Database FFFFFFFE.00000000 FFFFFFFE.00050000
 00050000

The CLUE MEMORY/GH/FULL command displays data structures that describe granularity hint
regions and huge pages.

4. SDA> CLUE MEMORY/LAYOUT
System Virtual Address Space Layout:

 Item Base End
 Length
System Virtual Base Address FFFFFEFE.00000000
PFN Database FFFFFEFE.00000000 FFFFFEFE.00280000
 00280000
Permanent Mapping of System L1PT FFFFFEFE.00280000 FFFFFEFE.00282000
 00002000
Global Page Table (GPT) FFFFFEFE.00282000 FFFFFEFE.0089CD38
 0061AD38
Resource Hash Table FFFFFFFF.6FC1A000 FFFFFFFF.6FC22000
 00008000
Lock ID Table FFFFFFFF.6FC22000 FFFFFFFF.70000000
 003DE000

336

Chapter 5. SDA CLUE Extension

Execlet Code Region FFFFFFFF.80000000 FFFFFFFF.80800000
 00800000
Resident Image Code Region FFFFFFFF.80800000 FFFFFFFF.81000000
 00800000
System Header FFFFFFFF.81400000 FFFFFFFF.8140E000
 0000E000
Error Log Allocation Buffers FFFFFFFF.8140E000 FFFFFFFF.81414000
 00006000
Nonpaged Pool (initial size) FFFFFFFF.81414000 FFFFFFFF.817C8000
 003B4000
Nonpaged Pool Expansion Area FFFFFFFF.817C8000 FFFFFFFF.82664000
 00E9C000
Execlet Data Region FFFFFFFF.81000000 FFFFFFFF.81400000
 00400000
Fork Buffers Secondary to Primary FFFFFFFF.8268C000 FFFFFFFF.8268E000
 00002000
Erase Pattern Buffer Page FFFFFFFF.8268E000 FFFFFFFF.82690000
 00002000
363 Balance Slots, 33 pages each FFFFFFFF.826A0000 FFFFFFFF.88436000
 05D96000
Paged Pool FFFFFFFF.88436000 FFFFFFFF.887E4000
 003AE000
System Control Block (SCB) FFFFFFFF.887E4000 FFFFFFFF.887EC000
 00008000
Restart Parameter Block (HWRPB) FFFFFFFF.88832000 FFFFFFFF.88832B48
 00000B48
Erase Pattern Page Table Page FFFFFFFF.82690000 FFFFFFFF.82692000
 00002000
Posix Cloning Parent Page Mapping FFFFFFFF.88B1E000 FFFFFFFF.88B20000
 00002000
Posix Cloning Child Page Mapping FFFFFFFF.88B20000 FFFFFFFF.88B22000
 00002000
Swapper Process Kernel Stack FFFFFFFF.88B56000 FFFFFFFF.88B5A000
 00004000
Swapper Map FFFFFFFF.88B60000 FFFFFFFF.88B82000
 00022000
Idle Loop's Mapping of Zero Pages FFFFFFFF.88C5E000 FFFFFFFF.88C60000
 00002000
PrimCPU Machine Check Logout Area FFFFFFFF.88C60400 FFFFFFFF.88C60800
 00000400
PrimCPU Sys Context Kernel Stack FFFFFFFF.88C58000 FFFFFFFF.88C5C000
 00004000
Tape Mount Verification Buffer FFFFFFFF.88C62000 FFFFFFFF.88C66000
 00004000
Mount Verification Buffer FFFFFFFF.88C66000 FFFFFFFF.88C68000
 00002000
Demand Zero Optimization Page FFFFFFFF.88E68000 FFFFFFFF.88E6A000
 00002000
Executive Mode Data Page FFFFFFFF.88E6A000 FFFFFFFF.88E6C000
 00002000
System Space Expansion Region FFFFFFFF.8C000000 FFFFFFFF.FFDF0000
 73DF0000
System Page Table Window FFFFFFFF.FFDF0000 FFFFFFFF.FFFF0000
 00200000
N/A Space FFFFFFFF.FFFF0000 FFFFFFFF.FFFFFFFF
 00010000

337

Chapter 5. SDA CLUE Extension

The CLUE MEMORY/LAYOUT command decodes and displays the sytem virtual address space
layout.

5. SDA> CLUE MEMORY/LOOKASIDE
Non-Paged Dynamic Storage Pool - Lookaside List Queue Information:
--
Listhead Addr: FFFFFFFF.80C50400 Size: 64 Status: Valid, 11
 elements
Listhead Addr: FFFFFFFF.80C50408 Size: 128 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50410 Size: 192 Status: Valid, 29
 elements
Listhead Addr: FFFFFFFF.80C50418 Size: 256 Status: Valid, 3
 elements
Listhead Addr: FFFFFFFF.80C50420 Size: 320 Status: Valid, 7
 elements
Listhead Addr: FFFFFFFF.80C50428 Size: 384 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50430 Size: 448 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50438 Size: 512 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50440 Size: 576 Status: Valid, 6
 elements
Listhead Addr: FFFFFFFF.80C50448 Size: 640 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50450 Size: 704 Status: Valid, 5
 elements
Listhead Addr: FFFFFFFF.80C50458 Size: 768 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50460 Size: 832 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C50468 Size: 896 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50470 Size: 960 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50478 Size: 1024 Status: Valid, 6
 elements
Listhead Addr: FFFFFFFF.80C50480 Size: 1088 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50488 Size: 1152 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50490 Size: 1216 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50498 Size: 1280 Status: Valid, 2
 elements
Listhead Addr: FFFFFFFF.80C504A0 Size: 1344 Status: Valid, 2
 elements
Listhead Addr: FFFFFFFF.80C504A8 Size: 1408 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504B0 Size: 1472 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504B8 Size: 1536 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504C0 Size: 1600 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504C8 Size: 1664 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504D0 Size: 1728 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504D8 Size: 1792 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504E0 Size: 1856 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C504E8 Size: 1920 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C504F0 Size: 1984 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504F8 Size: 2048 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50500 Size: 2112 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50508 Size: 2176 Status: Valid, 15
 elements
Listhead Addr: FFFFFFFF.80C50510 Size: 2240 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C50518 Size: 2304 Status: Valid, 1 element
 .
 .
 .

 Total free space: 00016440 (hex) 91200 (dec) bytes

338

Chapter 5. SDA CLUE Extension

The CLUE MEMORY/LOOKASIDE command summarizes the state of nonpageable lookaside
lists. For each list, an indication of whether the queue is well formed is given. If a queue is not well
formed or is invalid, messages indicating what is wrong with the queue are displayed. This command
is analogous to the SDA command VALIDATE QUEUE.

These messages can also appear frequently when you use the VALIDATE QUEUE command within
an SDA session that is analyzing a running system. In a running system, the composition of a queue
can change while the command is tracing its links, thus producing an error message.

6. SDA> CLUE MEMORY/STATISTIC
Memory Management Statistics:

Pagefaults: Non-Paged Pool:
Total Page Faults 1060897 Successful Expansions
 32
Total Page Reads 393414 Unsuccessful Expansions
 0
I/O's to read Pages 163341 Failed Pages Accumulator
 0
Modified Pages Written 121 Total Alloc Requests
 55596
I/O's to write Mod Pages 19 Failed Alloc Requests
 0
Demand Zero Faults 281519
Global Valid Faults 378701 Paged Pool:
Modified Faults 236189 Total Failures
 0
Read Faults 0 Failed Pages Accumulator
 0
Execute Faults 28647 Total Alloc Requests
 10229
 Failed Alloc Requests
 0

Direct I/O 591365 Cur Mapped Gbl Sections
 653
Buffered I/O 589652 Max Mapped Gbl Sections
 654
Split I/O 213 Cur Mapped Gbl Pages
 12193
Hits 83523 Max Mapped Gbl Pages
 12196
Logical Name Transl 1805476 Maximum Processes
 46
Dead Page Table Scans 0 Sched Zero Pages Created
 0

Distributed Lock Manager: Local Incoming
 Outgoing
$ENQ New Lock Requests 674059 0
 0
$ENQ Conversion Requests 497982 0
 0
$DEQ Dequeue Requests 671626 0
 0

339

Chapter 5. SDA CLUE Extension

Blocking ASTs 26 0
 0
Directory Functions 0
 0
Deadlock Messages 0
 0

$ENQ Requests that Wait 822 Deadlock Searches Performed
 0
$ENQ Requests not Queued 3 Deadlocks Found
 0

MSCP Statistics: Total IOs
 0
Count of VC Failures 0 Split IOs
 0
Count of Hosts Served 0 IOs that had to Wait (Buf)
 0
Count of Disks Served 10 Requests in MemWait Queue
 0
MSCP_BUFFER (SYSGEN) 128 Max Req ever in MemWait
 0
MSCP_CREDITS (SYSGEN) 8

File System Cache: Current SYSGEN Param Hits Misses
 Hitrate
File Header Cache (ACP_HDRCACHE = 726) 196207 1214
 99.3%
Storage Bitmap Cache (ACP_MAPCACHE = 181) 38 9
 80.8%
Directory Data Cache (ACP_DIRCACHE = 726) 153415 199
 99.8%
Directory LRU (ACP_DINDXCACHE= 181) 138543 106
 99.9%
FID Cache (ACP_FIDCACHE = 64) 119 6
 95.2%
Extent Cache (ACP_EXTCACHE = 64) 229 9
 96.2%
Quota Cache (ACP_QUOCACHE = 365) 0 0
 0.0%

Volume Synch Locks 958 Window Turns
 1464
Volume Synch Locks Wait 0 Currently Open Files
 630
Dir/File Synch Locks 432071 Total Count of OPENs
 52903
Dir/file Synch Locks Wait 746 Total Count of ERASE QIOs
 186
Access Locks 151648
Free Space Cache Wait 12608

Global Pagefile Quota 785957 GBLPAGFIL (SYSGEN) Limit
 786688

The CLUE MEMORY/STATISTIC command displays systemwide performance data such as page
fault, I/O, pool, lock manager, MSCP, and file system cache statistics.

340

Chapter 5. SDA CLUE Extension

5.4.10. CLUE PROCESS
Displays process-related information from the current process context.

Format
CLUE PROCESS [/qualifier[,...]]

Parameters
None.

Qualifiers
/ALL

Ignored except when specified with /BUFFER. Displays the buffer objects for all processes (that is,
all existing buffer objects).

/BUFFER

Displays the buffer objects for the current process or for all processes if /ALL is specified.

/LAYOUT

Displays the process P1 virtual address space layout.

/LOGICAL

Displays the process logical names and equivalence names, if they can be accessed.

/RECALL

Displays the DCL recall buffer, if it can be accessed.

Description
The CLUE PROCESS command displays process-related information from the current process context.
Much of this information is in pageable address space and thus may not be present in a dump file.

Examples
1. SDA> CLUE PROCESS/LOGICAL

Process Logical Names:

 "SYS$OUTPUT" = "_CLAWS$LTA5004:"
 "SYS$OUTPUT" = "_CLAWS$LTA5004:"
 "SYS$DISK" = "WORK1:"
 "BACKUP_FILE" = "_65DUA6"
 "SYS$PUTMSG" = "...À...À.."
 "SYS$COMMAND" = "_CLAWS$LTA5004:"
 "TAPE_LOGICAL_NAME" = "_1MUA3:"
 "TT" = "LTA5004:"
 "SYS$INPUT" = "_$65$DUA6:"
 "SYS$INPUT" = "_CLAWS$LTA5004:"
 "SYS$ERROR" = "21C00303.LOG"
 "SYS$ERROR" = "_CLAWS$LTA5004:"

341

Chapter 5. SDA CLUE Extension

 "ERROR_FILE" = "_65DUA6"

The CLUE PROCESS/LOGICAL command displays logical names for each running process.

2. SDA> CLUE PROCESS/RECALL
Process DCL Recall Buffer:

Index Command
 1 ana/sys
 2 @login
 3 mc sysman io auto /log
 4 show device d
 5 sea <.x>*.lis clue$
 6 tpu <.x>*0914.lis
 7 sh log *hsj*
 8 xd <.x>.lis
 9 mc ess$ladcp show serv
 10 tpu clue_cmd.cld
 11 ana/sys

The CLUE PROCESS/RECALL command displays a listing of the DCL commands that have been
executed most recently.

5.4.11. CLUE REGISTER
Displays the active register set for the crash CPU. The CLUE REGISTER command is valid only when
analyzing crash dumps.

Format
CLUE REGISTER [/CPU [cpu-id|ALL]

|/PROCESS [/ADDRESS=n|INDEX=n

|/IDENTIFICATION=n|process-name|ALL]]

Parameters
ALL

When used with /CPU, it requests information about all CPUs in the system. When used with /
PROCESS, it requests information about all processes that exist in the system.

cpu-id

When used with /CPU, it gives the number of the CPU for which information is to be displayed. Use
of the cpu-id parameter causes the CLUE REGISTER command to perform an implicit SET CPU
command, making the indicated CPU the current CPU for subsequent SDA commands.

progress-name

When used with /PROCESS, it gives the name of the process for which information is to be
displayed. Use of the process-name parameter, the /ADDRESS qualifier, the /INDEX qualifier, or
the /IDENTIFICATION qualifier causes the CLUE REGISTER command to perform an implicit
SET PROCESS command, making the indicated process the current process for subsequent SDA
commands. You can determine the names of the processes in the system by issuing a SHOW
SUMMARY command.

342

Chapter 5. SDA CLUE Extension

The process-name can contain up to 15 letters and numerals, including the underscore (_) and
dollar sign ($). If it contains any other characters, you must enclose the process-name in quotation
marks (" ").

Qualifiers
/ADDRESS=n

Specifies the PCB address of the desired process when used with CLUE REGISTER/PROCESS.

/CPU [cpu-id|ALL]

Indicates that the registers for a CPU are required. Specify the CPU by its number or use ALL to
indicate all CPUs.

/IDENTIFICATION=n

Specifies the identification of the desired process when used with CLUE REGISTER/PROCESS.

/INDEX=n

Specifies the index of the desired process when used with CLUE REGISTER/PROCESS.

/PROCESS [process-name|ALL]

Indicates that the registers for a process are required. The process should be specified with either
one of the qualifiers /ADDRESS, /IDENTIFICATION, or /INDEX, or by its name, or by using ALL
to indicate all processes.

Description
The CLUE REGISTER command displays the active register set of the crash CPU. It also identifies any
known data structures, symbolizes any system virtual addresses, interprets the processor status (PS), and
attempts to interpret R0 as a condition code.

If neither /CPU nor /PROCESS is specified, the parameter (cpu-id or process-name) is ignored and the
registers for the SDA current process are displayed.

Examples
SDA> CLUE REGISTER
Current Registers: Process index: 0042 Process name: BATCH_3 PCB:
 817660C0 (CPU 1)

 R0 = 00000000.00000000
 R1 = FFFFFFFF.814A2C80 MP_CPU (CPU Id 1)
 R2 = 00000000.00000000
 R3 = 00000000.23D6BBEE
 R4 = 00000000.00000064
 R5 = FFFFFFFF.831F8000 PHD
 R6 = 00000000.12F75475
 R7 = 00000000.010C7A70
 R8 = 00000000.00000001
 R9 = 00000000.00000000
 R10 = 00000000.00000000
 R11 = FFFFFFFF.814A2C80 MP_CPU (CPU Id 1)
 R12 = FFFFFFFF.810AA5E0 SYSTEM_SYNCHRONIZATION+293E0
 R13 = FFFFFFFF.810AC408 SMP$TIMEOUT

343

Chapter 5. SDA CLUE Extension

 R14 = FFFFFFFF.810AED00 SMP$GL_SCHED
 R15 = 00000000.7FFA1DD8
 R16 = 00000000.0000078C
 R17 = 00000000.00000000
 R18 = FFFFFFFF.810356C0 SYS$CPU_ROUTINES_2208+1D6C0
 R19 = FFFFFFFF.81006000 EXE$GR_SYSTEM_DATA_CELLS
 R20 = FFFFFFFF.80120F00 SCH$QEND_C+00080
 R21 = 00000000.00000000
 R22 = FFFFFFFF.00000000
 R23 = 00000000.00000000
 R24 = 00000000.00000000
 AI = FFFFFFFF.81006000 EXE$GR_SYSTEM_DATA_CELLS
 RA = 00000000.00000000
 PV = 00000000.00000000
 R28 = FFFFFFFF.810194A0 EXE$GL_TIME_CONTROL
 FP = 00000000.7FFA1F90
 PC = FFFFFFFF.800863A8 SMP$TIMEOUT_C+00068
 PS = 18000000.00000804 Kernel Mode, IPL 8, Interrupt

5.4.12. CLUE SCSI
Displays information related to SCSI and Fibre Channel.

Format
CLUE SCSI {/CONNECTION=n |/PORT=n|/REQUEST=n|/SUMMARY}

Qualifiers
/CONNECTION=scdt-address

Displays information about SCSI connections and decodes the SCSI connection descriptor data
structure identified by the SCDT address.

/PORT=spdt-address

Displays all or a specific port descriptor identified by its SPDT address.

/REQUEST=scdrp-address

Displays information about SCSI requests and decodes the SCSI class driver request packet
identified by the SCDRP address.

/SUMMARY

Displays a summary of all SCSI and FC ports and devices and their type and revisions.

Description
The CLUE SCSI command displays information about SCSI and Fibre Channel.

Examples
1. SDA> CLUE SCSI/SUMMARY

SCSI Summary Configuration:

SPDT Port STDT SCSI-Id SCDT SCSI-Lun Device UCB
 Type Rev

344

Chapter 5. SDA CLUE Extension

-------------- -------------- -------------- -------- --------
 ------ ---
854EB840 PKB0
8549B000 PKA0
 8549D880 0
 8549DA80 0 DKA0 854C2B00
 36.4G HPC5
85250040 FGB0
 8549CC80 1
 8549D500 0 GGA41 8569EDC0
 MSA100
 85537A40 2 DGA10 85537C00
 MSA100 4.48
 85538F00 3 DGA20 855390C0
 MSA100 4.48
 8553A040 4 DGA30 8553A200
 MSA100 4.48
 8553B340 6 DGA31 8553B500
 MSA100 4.48
 8553C480 7 DGA21 8553C640
 MSA100 4.48
 8553D140 11 DGA50 8553D300
 MSA100 4.48
 8553DE00 12 DGA51 8553DFC0
 MSA100 4.48
 8553EF40 21 DGA40 8553F100
 MSA100 4.48
851BED80 FGA0
 851BBE00 1
 851BFA80 0 GGA40 8569E780
 MSA100
 851C2040 7 DGA21 851A9740
 MSA100 4.48
 85512840 2 DGA10 85512CC0
 MSA100 4.48
 85513380 3 DGA20 85513540
 MSA100 4.48
 85513D80 4 DGA30 85529EC0
 MSA100 4.48
 8552CA40 6 DGA31 8552CC00
 MSA100 4.48
 8552F640 11 DGA50 8552F800
 MSA100 4.48
 85532240 12 DGA51 85532400
 MSA100 4.48
 85534E40 21 DGA40 85535000
 MSA100 4.48

This example shows a full summary report, which includes all SCSI and FC ports and devices and
their type and revisions.

2. SDA> CLUE SCSI/PORT=851BED80
SCSI Port Descriptor (SPDT):

FGA0: Driver SYS$PGQDRIVER
SPDT Address 851BED80 Port Type QLogic
 ISP23xx FibreChannel
ADP Address 85189E00 Adapter PCI

345

Chapter 5. SDA CLUE Extension

UCB Address 8519B4C0 Device
 00000000.00000000 ()
Busarray Address 8518A180 Port Host SCSI Id
 0
Port Flags
 mapping_reg,dir_dma,luns,cmdq,port_autosense,smart_port
Port Device Status online
Port Dev Status at DIPL stdt_scdt
Target inited Bus Resets 0 Number of Events
 0
Retry Attempts 0 Curr I/Os on all Ports
 0
Stray Interrupts 0 Curr I/Os on all Devices
 0
Unexpected Interrupts 0 Total Outstanding I/Os
 0
Reselections 0
CRAB Address 8515DD00 Port Wait Queue empty
Port CRAM Address 00000000 Nonpg Pool FKB Que empty
Port IDB Address 85151340 Bus Reset Waiters empty

This example shows a report for the PORT with SPDT address 851BED80.

3. SDA> CLUE SCSI/CONNECTION=85512840
SCSI Connection Descriptor (SCDT):

SCDT Connection Descriptor 85512840 Device
 DGA10
STDT Target Descriptor 851BBE00 Type
 MSA1000 VOLUME
SPDT Port Descriptor 851BED80 Revision 4.48
Port UCB Address 8519B4C0 Target SCSI Id
 1
Device UCB Address 85512CC0 Device SCSI Lun
 512
Connection State open
Capability Mask scsi_2,cmdq
Connection Flags ena_discon
Queue Flags -
DIPL Queue Flags -
Total Outstanding I/Os 0 Number of Commands sent
 0
Outstanding Port I/Os 0 Number of Messages sent
 0
Outstanding Device I/Os 0 Number of Bytes sent
 0
Arbitration Failures 0 Parity Errors
 0
Selection Failures 0 Missing Phase Errors
 0
Count of Controller Errors 0 Bad Phase Errors
 0
Count of Bus Errors 0 Count of Retries
 0

This report includes information about SCSI connections and decodes the SCSI connection
descriptor data structure identified by the SCDT address 85512840.

346

Chapter 5. SDA CLUE Extension

5.4.13. CLUE SG
Displays the scatter-gather map.

Format
CLUE SG [/CRAB=address]

Parameters
None.

Qualifiers
/CRAB=address

Displays the ringbuffer for the specified Counted Resource Allocation Block (CRAB). The default
action is to display the ringbuffer for all CRABs.

Description
CLUE SG decodes and displays the scatter/gather ringbuffer entries.

Examples
1.

In this example, the scatter-gather ring buffer for the CRAB at address 81224740 is displayed.

2.

In this example, the scatter-gather ring buffer for the CRAB address 8120D600 is displayed.

5.4.14. CLUE STACK
On Alpha, CLUE STACK identifies and displays the current stack. On Integrity servers, CLUE STACK
only identifies the current stack without displaying it. Use the SDA command SHOW STACK on both
Alpha and Integrity servers to display and decode the whole stack for the more common bugcheck types.

347

Chapter 5. SDA CLUE Extension

Format
CLUE STACK

Parameters
None.

Qualifiers
None.

Description
The CLUE STACK command identifies and displays the current stack together with the upper and lower
stack limits. In case of a FATALEXCPT, INVEXCEPTN, SSRVEXCEPT, UNXSIGNAL, or PGFIPLHI
bugcheck, CLUE STACK tries to decode the whole stack.

Examples
SDA> CLUE STACK
Stack Decoder:

Normal Process Kernel Stack:
Stack Pointer 00000000.7FFA1C98
Stack Limits (low) 00000000.7FFA0000
 (high) 00000000.7FFA2000

SSRVEXCEPT Stack:

Stack Pointer SP => 00000000.7FFA1C98

Information saved by Bugcheck:
a(Signal Array) 00000000.7FFA1C98 00000000.00000000

EXE$EXCPTN[E] Temporary Storage:
EXE$EXCPTN[E] Stack Frame:
PV 00000000.7FFA1CA0 FFFFFFFF.829CF010 EXE$EXCPTN
 Entry Point FFFFFFFF.82A21000 EXE$EXCPTN_C
return PC 00000000.7FFA1CA8 FFFFFFFF.82A2059C SYS
$CALL_HANDL_C+0002C
saved R2 00000000.7FFA1CB0 00000000.00000000
saved FP 00000000.7FFA1CB8 00000000.7FFA1CD0

SYS$CALL_HANDL Temporary Storage:
 00000000.7FFA1CC0 FFFFFFFF.829CEDA8 SYS$CALL_HANDL
 00000000.7FFA1CC8 00000000.00000000
SYS$CALL_HANDL Stack Frame:
PV 00000000.7FFA1CD0 FFFFFFFF.829CEDA8 SYS$CALL_HANDL
 Entry Point FFFFFFFF.82A20570 SYS
$CALL_HANDL_C
 00000000.7FFA1CD8 00000000.00000000
return PC 00000000.7FFA1CE0 FFFFFFFF.82A1E930 CHF_REI+000DC
saved FP 00000000.7FFA1CE8 00000000.7FFA1F40

Fixed Exception Context Area:

348

Chapter 5. SDA CLUE Extension

Linkage Pointer 00000000.7FFA1CF0 FFFFFFFF.80C63780
 EXCEPTION_MON_NPRW+06D80
a(Signal Array) 00000000.7FFA1CF8 00000000.7FFA1EB8
a(Mechanism Array) 00000000.7FFA1D00 00000000.7FFA1D40
a(Exception Frame) 00000000.7FFA1D08 00000000.7FFA1F00
Exception FP 00000000.7FFA1D10 00000000.7FFA1F40
Unwind SP 00000000.7FFA1D18 00000000.00000000
Reinvokable FP 00000000.7FFA1D20 00000000.00000000
Unwind Target 00000000.7FFA1D28 00000000.00020000 SYS
$K_VERSION_04
#Sig Args/Byte Cnt 00000000.7FFA1D30 00000005.00000250 BUG$_NETRCVPKT
a(Msg)/Final Status 00000000.7FFA1D38 829CE050.000008F8 BUG
$_SEQ_NUM_OVF

Mechanism Array:
Flags/Arguments 00000000.7FFA1D40 00000000.0000002C
a(Establisher FP) 00000000.7FFA1D48 00000000.7AFFBAD0
reserved/Depth 00000000.7FFA1D50 FFFFFFFF.FFFFFFFD
a(Handler Data) 00000000.7FFA1D58 00000000.00000000
a(Exception Frame) 00000000.7FFA1D60 00000000.7FFA1F00
a(Signal Array) 00000000.7FFA1D68 00000000.7FFA1EB8
saved R0 00000000.7FFA1D70 00000000.00020000 SYS
$K_VERSION_04
saved R1 00000000.7FFA1D78 00000000.00000000
saved R16 00000000.7FFA1D80 00000000.00020004 UCB
$M_NI_PRM_MLT+00004
saved R17 00000000.7FFA1D88 00000000.00010050 SYS
$K_VERSION_16+00010
saved R18 00000000.7FFA1D90 FFFFFFFF.FFFFFFFF
saved R19 00000000.7FFA1D98 00000000.00000000
saved R20 00000000.7FFA1DA0 00000000.7FFA1F50
saved R21 00000000.7FFA1DA8 00000000.00000000
saved R22 00000000.7FFA1DB0 00000000.00010050 SYS
$K_VERSION_16+00010
saved R23 00000000.7FFA1DB8 00000000.00000000
saved R24 00000000.7FFA1DC0 00000000.00010051 SYS
$K_VERSION_16+00011
saved R25 00000000.7FFA1DC8 00000000.00000000
saved R26 00000000.7FFA1DD0 FFFFFFFF.8010ACA4 AMAC
$EMUL_CALL_NATIVE_C+000A4
saved R27 00000000.7FFA1DD8 00000000.00010050 SYS
$K_VERSION_16+00010
saved R28 00000000.7FFA1DE0 00000000.00000000
FP Regs not valid [...............]
a(Signal64 Array) 00000000.7FFA1EA0 00000000.7FFA1ED0
SP Align = 10(hex) [...............]

Signal Array:
Arguments 00000000.7FFA1EB8 00000005
Condition 00000000.7FFA1EBC 0000000C
Argument #2 00000000.7FFA1EC0 00010000 LDRIMG
$M_NPAGED_LOAD
Argument #3 00000000.7FFA1EC4 00000000
Argument #4 00000000.7FFA1EC8 00030078 SYS
$K_VERSION_01+00078
Argument #5 00000000.7FFA1ECC 00000003

64-bit Signal Array:

349

Chapter 5. SDA CLUE Extension

Arguments 00000000.7FFA1ED0 00002604.00000005
Condition 00000000.7FFA1ED8 00000000.0000000C
Argument #2 00000000.7FFA1EE0 00000000.00010000 LDRIMG
$M_NPAGED_LOAD
Argument #3 00000000.7FFA1EE8 00000000.00000000
Argument #4 00000000.7FFA1EF0 00000000.00030078 SYS
$K_VERSION_01+00078
Argument #5 00000000.7FFA1EF8 00000000.00000003

Interrupt/Exception Frame:
saved R2 00000000.7FFA1F00 00000000.00000003
saved R3 00000000.7FFA1F08 FFFFFFFF.80C63460
 EXCEPTION_MON_NPRW+06A60
saved R4 00000000.7FFA1F10 FFFFFFFF.80D12740 PCB
saved R5 00000000.7FFA1F18 00000000.000000C8
saved R6 00000000.7FFA1F20 00000000.00030038 SYS
$K_VERSION_01+00038
saved R7 00000000.7FFA1F28 00000000.7FFA1FC0
saved PC 00000000.7FFA1F30 00000000.00030078 SYS
$K_VERSION_01+00078
saved PS 00000000.7FFA1F38 00000000.00000003 IPL INT CURR
 PREV
SP Align = 00(hex) [...............] 00 0 Kern
 User

Stack Frame:
PV 00000000.7FFA1F40 00000000.00010050 SYS
$K_VERSION_16+00010
 Entry Point 00000000.00030060 SYS
$K_VERSION_01+00060
 00000000.7FFA1F48 00000000.00010000 LDRIMG
$M_NPAGED_LOAD
return PC 00000000.7FFA1F50 FFFFFFFF.8010ACA4 AMAC
$EMUL_CALL_NATIVE_C+000A4
saved FP 00000000.7FFA1F58 00000000.7FFA1F70

Stack (not decoded):
 00000000.7FFA1F60 00000000.00000001
 00000000.7FFA1F68 FFFFFFFF.800EE81C RM_STD
$DIRCACHE_BLKAST_C+005AC

Stack Frame:
PV 00000000.7FFA1F70 FFFFFFFF.80C6EBA0 EXE$CMKRNL
 Entry Point FFFFFFFF.800EE6C0 EXE$CMKRNL_C
 00000000.7FFA1F78 00000000.829CEDE8 EXE$SIGTORET
 00000000.7FFA1F80 00010050.00000002
 00000000.7FFA1F88 00000000.00020000 SYS
$K_VERSION_04
 00000000.7FFA1F90 00000000.00030000 SYS
$K_VERSION_01
return PC 00000000.7FFA1F98 FFFFFFFF.800A4D64
 __RELEASE_LDBL_EXEC_SERVICE+00284
saved R2 00000000.7FFA1FA0 00000000.00000003
saved R4 00000000.7FFA1FA8 FFFFFFFF.80D12740 PCB
saved R13 00000000.7FFA1FB0 00000000.00010000 LDRIMG
$M_NPAGED_LOAD
saved FP 00000000.7FFA1FB8 00000000.7AFFBAD0

350

Chapter 5. SDA CLUE Extension

Interrupt/Exception Frame:
saved R2 00000000.7FFA1FC0 00000000.7FFCF880 MMG$IMGHDRBUF
+00080
saved R3 00000000.7FFA1FC8 00000000.7B0E9851
saved R4 00000000.7FFA1FD0 00000000.7FFCF818 MMG$IMGHDRBUF
+00018
saved R5 00000000.7FFA1FD8 00000000.7FFCF938 MMG$IMGHDRBUF
+00138
saved R6 00000000.7FFA1FE0 00000000.7FFAC9F0
saved R7 00000000.7FFA1FE8 00000000.7FFAC9F0
saved PC 00000000.7FFA1FF0 FFFFFFFF.80000140 SYS$CLREF_C
saved PS 00000000.7FFA1FF8 00000000.0000001B IPL INT CURR
 PREV
SP Align = 00(hex) [...............] 00 0 User
 User

CLUE STACK identifies and displays the current stack and its upper and lower limit. It then decodes
the current stack if it is one of the more common bugcheck types. In this case, CLUE STACK tries to
decode the entire INVEXCEPTN stack.

5.4.15. CLUE SYSTEM
Displays the contents of the shared logical name tables in the system.

Format
CLUE SYSTEM /LOGICAL

Parameters
None.

Qualifiers
/LOGICAL

Displays all the shared logical names.

Description
The CLUE SYSTEM/LOGICAL command displays the contents of the shared logical name tables in the
system.

Examples
SDA> CLUE SYSTEM/LOGICAL
Shareable Logical Names:

 "XMICONBMSEARCHPATH" = "CDE$HOME_DEFAULTS:[ICONS]%B%M.BM"
 "MTHRTL_TV" = "MTHRTL_D53_TV"
 "SMGSHR_TV" = "SMGSHR"
 "DECW$DEFAULT_KEYBOARD_MAP" = "NORTH_AMERICAN_LK401AA"
 "CONVSHR_TV" = "CONVSHR"
 "XDPS$INCLUDE" = "SYS$SYSROOT:[XDPS$INCLUDE]"
 "DECW$SYSTEM_DEFAULTS" = "SYS$SYSROOT:[DECW$DEFAULTS.USER]"
 "SYS$PS_FONT_METRICS" = "SYS$SYSROOT:[SYSFONT.PS_FONT_METRICS.USER]"
 "SYS$TIMEZONE_NAME" = "???"

351

Chapter 5. SDA CLUE Extension

 "STARTUP$STARTUP_VMS" = "SYS$STARTUP:VMS$VMS.DAT"
 "PASMSG" = "PAS$MSG"
 "UCX$HOST" = "SYS$COMMON:[SYSEXE]UCX$HOST.DAT;1"
 "SYS$SYLOGIN" = "SYS$MANAGER:SYLOGIN"
 "DNS$SYSTEM" = "DNS$SYSTEM_TABLE"
 "IPC$ACP_ERRMBX" = "d.Ú."
 "CDE$DETACHED_LOGICALS" = "DECW$DISPLAY,LANG"
 "DECW$SERVER_SCREENS" = "GXA0"
 "DNS$_COTOAD_MBX" = "ä<â."
 "DNS$LOGICAL" = "DNS$SYSTEM"
 "OSIT$MAILBOX" = "äAë."
 "XNL$SHR_TV" = "XNL$SHR_TV_SUPPORT.EXE"
 "MOM$SYSTEM" = "SYS$SYSROOT:[MOM$SYSTEM]"
 "MOP$LOAD" = "SYS$SYSROOT:<MOM$SYSTEM>"
 .
 .
 .

5.4.16. CLUE VCC
Displays virtual I/O cache-related information. If extended file cache (XFC) is enabled, the CLUE VCC
command is disabled.

Format
CLUE VCC [/qualifier[,...]]

Parameters
None.

Qualifiers
/CACHE

Decodes and displays the cache lines that are used to correlate the file virtual block numbers (VBNs)
with the memory used for caching. Note that the cache itself is not dumped in a selective dump. Use
of this qualifier with a selective dump produces the following message:

%CLUE-I-VCCNOCAC, Cache space not dumped because DUMPSTYLE is selective

/LIMBO

Walks through the limbo queue (LRU order) and displays information for the cached file header
control blocks (FCBs).

/STATISTIC

Displays statistical and performance information related to the virtual I/O cache.

/VOLUME

Decodes and displays the cache volume control blocks (CVCB).

Examples
1. SDA> CLUE VCC/STATISTIC

352

Chapter 5. SDA CLUE Extension

Virtual I/O Cache Statistics:

Cache State pak,on,img,data,enabled
Cache Flags on,protocol_only
Cache Data Area 80855200
Total Size (pages) 400 Total Size (MBytes)
 3.1 MB
Free Size (pages) 0 Free Size (MBytes)
 0.0 MB
Read I/O Count 34243 Read I/O Bypassing Cache
 3149
Read Hit Count 15910 Read Hit Rate
 46.4%
Write I/O Count 4040 Write I/O Bypassing Cache
 856
IOpost PID Action Rtns 40829 IOpost Physical I/O Count
 28
IOpost Virtual I/O Count 0 IOpost Logical I/O Count
 7
Read I/O past File HWM 124 Cache Id Mismatches
 44
Count of Cache Block Hits 170 Files Retained
 100
Cache Line LRU 82B11220 82B11620 Oldest Cache Line Time
 00001B6E
Limbo LRU Queue 80A97E3C 80A98B3C Oldest Limbo Queue Time
 00001B6F
Cache VCB Queue 8094DE80 809AA000 System Uptime (seconds)
 00001BB0

2. SDA> CLUE VCC/VOLUME
Virtual I/O Cache - Cache VCB Queue:

CacheVCB RealVCB LockID IRP Queue CID LKSB Ocnt State
-------- -------- -------- ----------------- ---- ---- ----

8094DE80 80A7E440 020007B2 8094DEBC 8094DEBC 0000 0001 0002 on
809F3FC0 809F97C0 0100022D 809F3FFC 809F3FFC 0000 0001 0002 on
809D0240 809F7A40 01000227 809D027C 809D027C 0000 0001 0002 on
80978B80 809F6C00 01000221 80978BBC 80978BBC 0000 0001 0002 on
809AA000 809A9780 01000005 809AA83C 809AA03C 0007 0001 0002 on

3. SDA> CLUE VCC/LIMBO
Virtual I/O Cache - Limbo Queue:

 CFCB CVCB FCB CFCB IOerrors FID (hex)
-------- -------- -------- -Status- -------- --------------
80A97DC0 809AA000 80A45100 00000200 00000000 (076B,0001,00)
80A4E440 809AA000 809CD040 00000200 00000000 (0767,0001,00)
80A63640 809AA000 809FAE80 00000200 00000000 (0138,0001,00)
80AA2540 80978B80 80A48140 00000200 00000000 (0AA5,0014,00)
80A45600 809AA000 80A3AC00 00000200 00000000 (0C50,0001,00)
80A085C0 809AA000 809FA140 00000200 00000000 (0C51,0001,00)
80A69800 809AA000 809FBA00 00000200 00000000 (0C52,0001,00)
80951000 809AA000 80A3F140 00000200 00000000 (0C53,0001,00)
80A3E580 809AA000 80A11A40 00000200 00000000 (0C54,0001,00)
80A67F80 809AA000 80978F00 00000200 00000000 (0C55,0001,00)
809D30C0 809AA000 809F4CC0 00000200 00000000 (0C56,0001,00)

353

Chapter 5. SDA CLUE Extension

809D4B80 809AA000 8093E540 00000200 00000000 (0C57,0001,00)
[......]
80A81600 809AA000 8094B2C0 00000200 00000000 (0C5D,0001,00)
80AA3FC0 809AA000 80A2DEC0 00000200 00000000 (07EA,000A,00)
80A98AC0 809AA000 8093C640 00000200 00000000 (0C63,0001,00)

4. SDA> CLUE VCC/CACHE

Virtual I/O Cache - Cache Lines:

 CL VA CVCB CFCB FCB CFCB IOerrors FID
 (hex)
-------- -------- -------- -------- -------- -Status- --------

82B11200 82880000 809D0240 809D7000 80A01100 00000200 00000000
 (006E,0003,00)
82B15740 82AAA000 809AA000 80A07A00 80A24240 00000000 00000000
 (0765,0001,00)
82B14EC0 82A66000 809AA000 80A45600 80A3AC00 00000200 00000000
 (0C50,0001,00)
82B12640 82922000 809D0240 809D7000 80A01100 00000200 00000000
 (006E,0003,00)
82B123C0 8290E000 809AA000 80A45600 80A3AC00 00000200 00000000
 (0C50,0001,00)
82B13380 8298C000 809D0240 809D7000 80A01100 00000200 00000000
 (006E,0003,00)
82B15A40 82AC2000 809AA000 80A45600 80A3AC00 00000200 00000000
 (0C50,0001,00)
82B15F40 82AEA000 809D0240 809D7000 80A01100 00000200 00000000
 (006E,0003,00)
82B12AC0 82946000 809D0240 809D7000 80A01100 00000200 00000000
 (006E,0003,00)
82B12900 82938000 809D0240 809D7000 80A01100 00000200 00000000
 (006E,0003,00)
82B10280 82804000 809AA000 80A45600 80A3AC00 00000200 00000000
 (0C50,0001,00)
82B122C0 82906000 809AA000 80A1AC00 80A48000 00000000 00000000
 (0164,0001,00)
82B14700 82A28000 809AA000 809FFEC0 809F8DC0 00000004 00000000
 (07B8,0001,00)
82B11400 82890000 809AA000 80A113C0 80A11840 00000000 00000000
 (00AF,0001,00)
[......]
82B11380 8288C000 809AA000 809DA0C0 809C99C0 00002000 00000000
 (00AB,0001,00)
82B130C0 82976000 809AA000 809DA0C0 809C99C0 00002000 00000000
 (00AB,0001,00)
82B11600 828A0000 809AA000 809DA0C0 809C99C0 00002000 00000000
 (00AB,0001,00)

5.4.17. CLUE XQP
Displays XQP-related information.

Format
CLUE XQP [/qualifier[,...]]

354

Chapter 5. SDA CLUE Extension

Parameters
None.

Qualifiers
/ACTIVE

Displays all active XQP processes. (See also /FULL.)

/AQB

Displays any current I/O request packets (IRPs) waiting at the interlocked queue.

/BFRD=index

Displays the buffer descriptor (BFRD) referenced by the index specified. The index is identical to
the hash value.

/BFRL=index

Displays the buffer lock block descriptor (BFRL) referenced by the index specified. The index is
identical to the hash value.

/BUFFER=(n,m)

Displays the BFRDs for a given pool. Specify either 0, 1, 2 or 3, or a combination of these in the
parameter list. (See also /FULL.)

/CACHE_HEADER

Displays the block buffer cache header.

/FCB=address

Displays all file header control blocks (FCBs) with a nonzero DIRINDX for a given volume. If no
address is specified, the current volume of the current process is used. (See also /FULL.)

The address specified can also be either a valid volume control block (VCB), unit control block
(UCB), or window control block (WCB) address.

/FILE=address

Decodes and displays file header (FCB), window (WCB), and cache information for a given file. The
file can be identified by either its FCB or WCB address.

/FULL

Ignored except when used with certain other qualifiers. When used with /ACTIVE, CLUE displays
additional data on the XQP's caller (for Alpha only). When used with /BUFFER or /VALIDATE,
CLUE displays additional data on each buffer descriptor. When used with /FCB, CLUE displays all
FCBs, including any that are unused.

/GLOBAL

Displays the global XQP area for a given process.

355

Chapter 5. SDA CLUE Extension

/LBN_HASH=lbn

Calculates and displays the hash value for a given logical block number (LBN).

/LIMBO

Searches through the limbo queue and displays FCB information from available, but unused file
headers.

/LOCK=lockbasis

Displays all file system serialization, arbitration, and cache locks found for the specified lockbasis.

/THREAD=n

Displays the XQP thread area for a given process. The specified thread number is checked for
validity. If no thread number is specified, the current thread is displayed. If no current thread, but
only one single thread is in use, then that thread is displayed. If more than one thread exists or an
invalid thread number is specified, then a list of currently used threads is displayed.

/VALIDATE=(n,m)

Performs certain validation checks on the block buffer cache to detect corruption. Specify 1, 2, 3, 4,
or a combination of these in the parameter list. If an inconsistency is found, a minimal error message
is displayed. (See also /FULL.)

Description
The CLUE XQP command displays XQP information. XQP is part of the I/O subsystem.

Examples
1. SDA> CLUE XQP/CACHE_HEADER

Block Buffer Cache Header:

Cache_Header 8437DF90 BFRcnt 000005D2 FreeBFRL
 843916A0
Bufbase 8439B400 BFRDbase 8437E080 BFRLbase
 8438F7E0
Bufsize 000BA400 LBNhashtbl 84398390 BFRLhashtbl
 84399BC8
Realsize 000D78A0 LBNhashcnt 0000060E BFRLhashcnt
 0000060E

Pool #0 #1 #2 #3
Pool_LRU 8437E5C0 84385F40 84387E90 8438EEB0
 8437F400 84385D60 8438AC80 8438EE20
Pool_WAITQ 8437DFE0 8437DFE8 8437DFF0 8437DFF8
 8437DFE0 8437DFE8 8437DFF0 8437DFF8
Waitcnt 00000000 00000000 00000000 00000000
Poolavail 00000094 00000252 00000251 00000094
Poolcnt 00000095 00000254 00000254 00000095

AmbigQFL 00000000 Process_Hits 00000000 Cache_Serial
 00000000
AmbigQBL 00000000 Valid_Hits 00000000 Cache_Stalls
 00000000

356

Chapter 5. SDA CLUE Extension

Disk_Reads 00000000 Invalid_Hits 00000000 Buffer_Stalls
 00000000
Disk_Writes 00000000 Misses 00000000

The SDA command CLUE XQP/CACHE_HEADER displays the block buffer cache header.

2. SDA> CLUE XQP/VALIDATE=(1,4)
Searching BFRD Array for possible Corruption...
Searching Lock Basis Hashtable for possible Corruption...

In this example, executing the CLUE XQP/VALIDATE=(1,4) command indicated that no corruption
was detected in either the BFRD Array or the Lock Basis Hashtable.

357

Chapter 5. SDA CLUE Extension

358

Chapter 6. SDA FLT Extension
The Alignment Fault Utility (FLT) finds alignment faults and records them in a ring buffer, which can
be sized when starting alignment fault tracing. The summary screen displays the results sorted by the
program counter (PC) that has incurred the most alignment faults. The detailed trace output also shows
the process identification (PID) of the process that caused the alignment fault, with the virtual address
that triggered the fault.

Output can be directed to a file using the SDA SET OUTPUT command.

FLT can be started and stopped as required without the need for a system reboot.

6.1. FLT Commands
The table below summarizes the commands for the FLT utility.

Table 6.1. Commands for the Alignment Fault Utility

Commands Description

FLT LOAD Loads the FLT$DEBUG execlet.
FLT UNLOAD Unloads the FLT$DEBUG execlet.
FLT START TRACE Starts alignment fault tracing.
FLT Lists the FLT commands.
FLT STOP TRACE Stops tracing.
FLT SHOW TRACE Displays detailed information about the trace.

The end of this chapter has an example of how you might use these FLT commands.

6.1.1. FLT
When entered with no keywords, lists the FLT commands.

Format
FLT

Parameters
None.

Qualifiers
None.

6.1.2. FLT LOAD
Loads the FLT$DEBUG execlet. Do this before starting alignment fault tracing.

Format
FLT LOAD

359

Chapter 6. SDA FLT Extension

Parameters

None.

Qualifiers

None.

6.1.3. FLT SHOW TRACE
Displays detail about the trace.

Format

FLT SHOW TRACE [/SUMMARY [/RATES (d) | /TOTALS]]

Parameters

None.

Qualifiers

/RATES

When used with /SUMMARY, the alignment fault rate per second for each PC during the collection
interval is displayed. This is the default.

/SUMMARY

Displays the results sorted by the program counter (PC) that has incurred the most alignment faults.

/TOTALS

When used with /SUMMARY, the total number of alignment faults for each PC during the
collection interval is displayed.

6.1.4. FLT START TRACE
Starts alignment fault tracing. By default, all PCs are traced.

Format

START TRACE [/BUFFER=pages] [/BEGIN=pc_range_low]

[/CALLER] [/END=pc_range_high]

[/INDEX=pid] [MODE=(mode,...)]

Parameters

None.

360

Chapter 6. SDA FLT Extension

Qualifiers
/BUFFER=pages

The number of pages to size the trace buffer. The default is 128 pages or 1MB.

/BEGIN=pc_range_low

Start of range of PCs to trace.

/CALLER

For each alignment fault, in addition to recording the PC that incurred the fault, FLT also records the
PCs of the caller, the callers caller, and so on, for up to 10 call frames.

/END=pc_range_high

End of range of PCs to trace.

/INDEX=pid

Only trace alignment faults for the specified process. You can specify the process index itself, or the
process identification or extended process identification, from which the process index is extracted.

/MODE=(mode,...)

Only trace alignment faults that occur in the specified modes. Allowed modes are KERNEL, EXEC,
SUPER and USER. If you specify only one mode, you can omit the parentheses.

6.1.5. FLT STOP TRACE
Stops tracing.

Format
FLT STOP TRACE

Parameters
None.

Qualifiers
None.

6.1.6.
Unloads the FLT$DEBUG execlet.

Format
FLT UNLOAD

Parameters
None.

361

Chapter 6. SDA FLT Extension

Qualifiers
None.

Example
SDA> flt load
SDA> flt start trace
 .
 .
 .
SDA> flt show trace /summary

Fault Trace Information: (at 12-OCT-2004 16:09:29.43, trace time 00:00:55.145335)

Exception PC Count Exception PC Module Offset
----------------- ------------ -------------------------------------- ----------------------------------
FFFFFFFF.86214790 973 RDMSHRP72+0019E790 RDMSHRP72 0019E790
FFFFFFFF.86214791 871 RDMSHRP72+0019E791 RDMSHRP72 0019E791
FFFFFFFF.8620B261 700 RDMSHRP72+00195261 RDMSHRP72 00195261
FFFFFFFF.8620B260 700 RDMSHRP72+00195260 RDMSHRP72 00195260
FFFFFFFF.841C3451 208 LIBRTL+00195451 LIBRTL 00195451
FFFFFFFF.818E43E0 193 NET$TRANSPORT_NSP+303E0 NET$TRANSPORT_NSP 000303E0
FFFFFFFF.818E4400 193 NET$TRANSPORT_NSP+30400 NET$TRANSPORT_NSP 00030400
FFFFFFFF.818E4430 193 NET$TRANSPORT_NSP+30430 NET$TRANSPORT_NSP 00030430
FFFFFFFF.818E4450 193 NET$TRANSPORT_NSP+30450 NET$TRANSPORT_NSP 00030450
FFFFFFFF.818E44B1 193 NET$TRANSPORT_NSP+304B1 NET$TRANSPORT_NSP 000304B1
FFFFFFFF.818E44D0 193 NET$TRANSPORT_NSP+304D0 NET$TRANSPORT_NSP 000304D0
FFFFFFFF.818E6720 186 NET$TRANSPORT_NSP+32720 NET$TRANSPORT_NSP 00032720
FFFFFFFF.818E64C0 179 NET$TRANSPORT_NSP+324C0 NET$TRANSPORT_NSP 000324C0
FFFFFFFF.818E6520 179 NET$TRANSPORT_NSP+32520 NET$TRANSPORT_NSP 00032520
FFFFFFFF.86DE9480 166 RDMSHRP72+00D73480 RDMSHRP72 00D73480
FFFFFFFF.807814A1 162 EXE$SETOPR_C+00841 MESSAGE_ROUTINES 0001D7A1
FFFFFFFF.86DE8C90 146 RDMSHRP72+00D72C90 RDMSHRP72 00D72C90
FFFFFFFF.86DE8EC0 146 RDMSHRP72+00D72EC0 RDMSHRP72 00D72EC0
FFFFFFFF.8701C340 146 RDMSHRP72+00FA6340 RDMSHRP72 00FA6340
FFFFFFFF.862026E1 100 RDMSHRP72+0018C6E1 RDMSHRP72 0018C6E1
FFFFFFFF.86202580 100 RDMSHRP72+0018C580 RDMSHRP72 0018C580
FFFFFFFF.862025B0 100 RDMSHRP72+0018C5B0 RDMSHRP72 0018C5B0
FFFFFFFF.8701B900 83 RDMSHRP72+00FA5900 RDMSHRP72 00FA5900
00000000.000EE990 37
00000000.000EEA51 37
00000000.000EE8D1 37
FFFFFFFF.807359C1 28 LOCKING+253C1 LOCKING 000253C1
FFFFFFFF.807359F1 28 LOCKING+253F1 LOCKING 000253F1
FFFFFFFF.80732EE0 27 LCK$FILL_RSB_CACHE_C+008F0 LOCKING 000228E0
FFFFFFFF.86DE8690 18 RDMSHRP72+00D72690 RDMSHRP72 00D72690
FFFFFFFF.80B388A0 15 SECURITY+461A0 SECURITY 000461A0
FFFFFFFF.80B213F0 13 NSA$SIZE_NSAB_C+00840 SECURITY 0002ECF0
FFFFFFFF.86DFE9E0 12 RDMSHRP72+00D889E0 RDMSHRP72 00D889E0
[...............]

SDA> flt show trace

Unaligned Data Fault Trace Information:

Timestamp CPU Unaligned VA Exception PC Access EPID Trace Buffer
---------------------- --- ----------------- -------------------------------------- -------- -------- -----------------
12-OCT 16:09:56.439499 02 00000000.014A4F8A 86214791 RDMSHRP72+0019E791 Exec 39C004DC FFFFFFFF.74921610
12-OCT 16:09:56.439493 02 00000000.023DFFD4 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.749215E8
12-OCT 16:09:56.439486 02 00000000.014A4F42 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.749215C0
12-OCT 16:09:56.439480 02 00000000.014A4F8A 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921598
12-OCT 16:09:56.439254 02 00000000.0154F1DC 807814A1 EXE$SETOPR_C+00841 Exec 39C004DC FFFFFFFF.74921570
12-OCT 16:09:56.431606 02 00000000.014A4F5A 86214791 RDMSHRP72+0019E791 Exec 39C004DC FFFFFFFF.74921548
12-OCT 16:09:56.431601 02 00000000.022DEE44 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921520
12-OCT 16:09:56.431594 02 00000000.014A4F42 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.749214F8
12-OCT 16:09:56.431588 02 00000000.014A4F5A 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.749214D0
12-OCT 16:09:56.430255 02 00000000.0155BDDC 807814A1 EXE$SETOPR_C+00841 Exec 39C004DC FFFFFFFF.749214A8
12-OCT 16:09:56.426878 02 00000000.014A4F72 86214791 RDMSHRP72+0019E791 Exec 39C004DC FFFFFFFF.74921480
12-OCT 16:09:56.426872 02 00000000.02394ED4 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921458
12-OCT 16:09:56.426865 02 00000000.014A4F42 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921430
12-OCT 16:09:56.426859 02 00000000.014A4F72 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921408
12-OCT 16:09:56.426583 02 00000000.0154A97C 807814A1 EXE$SETOPR_C+00841 Exec 39C004DC FFFFFFFF.749213E0
12-OCT 16:09:56.421244 02 00000000.014A4F52 86214791 RDMSHRP72+0019E791 Exec 39C004DC FFFFFFFF.749213B8
12-OCT 16:09:56.421238 02 00000000.02296824 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921390
12-OCT 16:09:56.421232 02 00000000.014A4F42 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921368
12-OCT 16:09:56.421226 02 00000000.014A4F52 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921340
12-OCT 16:09:56.420916 02 00000000.0156405C 807814A1 EXE$SETOPR_C+00841 Exec 39C004DC FFFFFFFF.74921318
12-OCT 16:09:56.413932 02 00000000.014A4F52 86214791 RDMSHRP72+0019E791 Exec 39C004DC FFFFFFFF.749212F0
12-OCT 16:09:56.413926 02 00000000.023C10D4 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.749212C8
12-OCT 16:09:56.413918 02 00000000.014A4F42 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.749212A0
12-OCT 16:09:56.413913 02 00000000.014A4F52 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921278
12-OCT 16:09:56.413645 02 00000000.01564E9C 807814A1 EXE$SETOPR_C+00841 Exec 39C004DC FFFFFFFF.74921250
12-OCT 16:09:56.403972 02 00000000.014A4F52 86214791 RDMSHRP72+0019E791 Exec 39C004DC FFFFFFFF.74921228
12-OCT 16:09:56.403966 02 00000000.023036C4 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921200
12-OCT 16:09:56.403960 02 00000000.014A4F42 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.749211D8
12-OCT 16:09:56.403954 02 00000000.014A4F52 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.749211B0
12-OCT 16:09:56.403689 02 00000000.0155E47C 807814A1 EXE$SETOPR_C+00841 Exec 39C004DC FFFFFFFF.74921188
12-OCT 16:09:56.395575 02 00000000.014A4F8A 86214791 RDMSHRP72+0019E791 Exec 39C004DC FFFFFFFF.74921160
12-OCT 16:09:56.395569 02 00000000.02448D24 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921138
12-OCT 16:09:56.395562 02 00000000.014A4F42 86214790 RDMSHRP72+0019E790 Exec 39C004DC FFFFFFFF.74921110

362

Chapter 6. SDA FLT Extension

[....................]

363

Chapter 6. SDA FLT Extension

364

Chapter 7. SDA OCLA Extension
(Alpha Only)
The Alpha EV7 On-Chip Logic Analyzer (OCLA) utility collects Program Counter (PC) traces in a
portion of the Alpha EV7 cache. This data enables the user to tell which instructions each Alpha EV7
CPU on the system has executed.

7.1. Overview of OCLA
OCLA enables the user to tell which instructions each Alpha EV7 CPU has executed by setting aside one
seventh of the Alpha EV7 cache as acquisition memory which stores the virtual addresses of instructions
executed by the Alpha EV7 CPU. The acquisition memory in the cache can later be analyzed with an
SDA extension.

The acquisition of instructions can be enabled or disabled while the system is running, thereby allowing
the acquisition of instruction streams for a given period of time without the need to restart the system.

If the OCLA is enabled and started, and your system subsequently fails due to a crash, the current
acquisition memory is automatically saved to the system dump file. The instructions executed by
each CPU prior to the system failure can then be analyzed with SDA. Upon restart of the system, the
acquisition memory in the EV7 is still there and can be copied into system memory using the OCLA
ENABLE and OCLA DUMP commands.

If the STOP/CPU command is issued on a CPU for which OCLA has been enabled, OCLA is
automatically disabled if the CPU is allowed to leave the active set. When a CPU is started with the
START/CPU command, OCLA is not automatically enabled; rather, it must be enabled using SDA.

Table 7.1 summarizes the SDA commands and qualifiers for the OCLA utility.

7.2. SDA OCLA Commands
Table 7.1. SDA Commands for the OCLA Utility

Commands Description

OCLA ENABLE Enables the OCLA. The command reserves one
seventh of the EV7 cache as acquisition memory
for instructions.

OCLA DISABLE Disables the OCLA and returns the cache set to the
Alpha EV7 CPU.

OCLA DUMP Copies the acquisition memory in the Alpha EV7
cache to a region in system space for later analysis
by SDA.

OCLA HELP Provides online help about OCLA commands.
OCLA LOAD Loads the OCLA$PCTRACE execlet. This must

be done prior to enabling any OCLA.
OCLA SET REGISTER/RESET Resets OCLA registers to the default values.
OCLA SHOW REGISTER Displays detailed information about the OCLA

registers.

365

Chapter 7. SDA OCLA Extension (Alpha Only)

Commands Description

OCLA SHOW STATUS Displays the status of an OCLA.
OCLA SHOW TRACE Decodes the acquired compressed instruction

stream and displays it.
OCLA START Starts the acquisition of instructions into the

acquisition memory.
OCLA STOP Stops the acquisition of instructions.
OCLA UNLOAD Unloads the OCLA$PCTRACE execlet and returns

the acquisition buffers to the system.

7.2.1. OCLA DISABLE
Disables the OCLA and returns the cache set to the Alpha EV7 CPU.

Format

OCLA DISABLE [/CPU=n]

Parameters

None.

Qualifier

/CPU=n

Specifies the CPU on which OCLA should be disabled. If this qualifier is omitted, OCLA is disabled
on every CPU in the system.

7.2.2. OCLA DUMP
Copies the acquisition memory in the Alpha EV7 cache to a region in system space for later analysis by
SDA. When a system fails, data collected in the EV7 cache is automatically saved in the system dump
file for each enabled CPU. (See the OCLA SHOW TRACE command for more information.)

Format

OCLA DUMP [/CPU=n]

Parameters

None.

Qualifier

/CPU=n

Specifies the CPU for which to dump the acquisition memory. If this qualifier is omitted, the
acquisition memory is dumped for all CPUs.

366

Chapter 7. SDA OCLA Extension (Alpha Only)

7.2.3. OCLA ENABLE
Enables the OCLA. Reserves one-seventh of the EV7 cache as acquisition memory for instructions.

Format
OCLA ENABLE [/CPU=n] [/RESET]

Parameters
None.

Qualifiers
/CPU=n

Specifies the CPU on which to enable OCLA. If this qualifier is omitted, OCLA is enabled on every
CPU in the system.

/RESET

Initializes the OCLA to default values.

Under certain circumstances, the OCLA might not be initialized properly when the system is
powered on. For more information, see the OCLA SHOW REGISTER command.

If you wish to reset only certain registers to default values, use the OCLA SET REGISTER/RESET
command.

7.2.4. OCLA HELP
Provides online help on OCLA commands.

Format
OCLA HELP

Parameters
None.

Qualifiers
None.

7.2.5. OCLA LOAD
Loads the OCLA$PCTRACE execlet. This must be done before enabling any OCLA.

Format
OCLA LOAD

367

Chapter 7. SDA OCLA Extension (Alpha Only)

Parameters
None.

Qualifiers
None.

7.2.6. OCLA SET REGISTER
Resets a specified OCLA register to its default value. The /RESET qualifier is required for this operation.

Format
OCLA SET REGISTER /RESET keyword

Parameter
keyword

Specifies which OCLA register to reset to its default value. The valid keywords are as follows:

MISC OCLA 1 miscellaneous register
OCLA1_CTL OCLA 1 control register
PC_CTL OCLA 1 PC control register
SMASK OCLA 1 select mask register
SMATCH OCLA 1 select match register
TMASK OCLA 1 trigger mask register
TMATCH OCLA 1 trigger match register

Note

You cannot reset all registers using a single command if OCLA has already been enabled. You must
first disable OCLA using the OCLA DISABLE command. You can then reset all the registers by
performing an OCLA ENABLE/RESET command.

Qualifier
/RESET

This qualifier is required to reset the specified register to its default value.

7.2.7. OCLA SHOW REGISTER
Displays detailed information about OCLA registers.

Format
OCLA SHOW REGISTER [/CPU=n]

368

Chapter 7. SDA OCLA Extension (Alpha Only)

Parameter

None.

Qualifier

/CPU=n

Specifies the CPU for which to display registers. If this qualifier is omitted, registers are displayed
for all CPUs.

Example
SDA> SHOW REGISTER/CPU=7
OCLA EV7 CPU Registers for CPU: 07

ZBOX control register for CPU 07: 00000000ffffffff

CBOX control register for CPU 07: 078000001024a807

OCLA 1 MISC register for CPU 07: 0000000000000000

OCLA 1 TMATCH: 40000002ffffffff
OCLA 1 SMATCH: 0000000000000000
OCLA 1 PC_TMATCH: 0000000000000000
OCLA 1 PC_SMATCH: 0000000000000000

OCLA 1 TMASK: 4000000000000000
OCLA 1 SMASK: 0000000000000000
OCLA 1 PC_TMASK: 0000000000000000
OCLA 1 PC_SMASK: 0000000000000000

OCLA 1 control register for CPU 07: 8000210000000000
Enab Run RDRST ITRIG IFULL TAG_EN TS_EN PDAT_EN SFILT TMODE IRQF IRQT
 TIHANG
 1 0 0 0 0 0 0 0 00 00 0 0
 0
TAG_SRC EXT_SRC TS_FORCE EIO WRAP SREL AMATCH AADDR
 000 004 0 0 1 0 00000 00000

OCLA 1 PC Control register for CPU 07: 000000000000003f
STGSEL TRGSEL OUTSEL CDEPTH CMASK CAMEN
 03 03 03 00 00000 0

This command displays all OCLA-related registers on the EV7 CPU. This particular CPU was enabled
with the /RESET qualifier, so the values have default settings.

7.2.8. OCLA SHOW STATUS
Displays the status of an OCLA.

Format

OCLA SHOW STATUS [/CPU=n]

369

Chapter 7. SDA OCLA Extension (Alpha Only)

Parameters
None.

Qualifiers
/CPU=n

Specifies the CPU for which to show OCLA status. If this qualifier is omitted, status is displayed for
all CPUs.

Example
SDA> OCLA SHOW STATUS
EV7 OCLA status

CPU 00 is enabled, no entries, no dump done
CPU 01 is enabled, no entries, no dump done
CPU 02 is enabled, no entries, no dump done
CPU 03 is enabled, no entries, no dump done
CPU 04 is enabled, no entries, no dump done
CPU 05 is enabled, no entries, no dump done
CPU 06 is enabled, no entries, no dump done
CPU 07 is enabled, running, no entries, no dump done

7.2.9. OCLA SHOW TRACE
Decodes the acquired compressed instruction stream and displays it.

Format
OCLA SHOW TRACE [/CPU=n] [/LAST=n][/NOPAL][/REVERSE][/SUMMARY][/SYMBOLIZE]

Parameters
None.

Qualifiers
/CPU=n

Specifies the CPU for which to show data. If this qualifier is omitted, trace data is displayed for all
CPUs.

/LAST=n

Displays the last n instructions. If this qualifier is omitted, trace data is displayed for all instructions.

/NOPAL

Do not include PAL code when displaying instructions.

/REVERSE

Displays the instructions in reverse order.

370

Chapter 7. SDA OCLA Extension (Alpha Only)

/SUMMARY

Displays the last 42 instructions.

/SYMBOLIZE

Attempts to symbolize each instruction.

Example
SDA> OCLA SHOW TRACE/CPU=7/SUMMARY/SYMBOLIZE
OCLA PC trace information for CPU 07

CPU 07 has 16384 valid entries
42 PC values displayed
0000002c00030358 ,PAL Code
0000002c0003035c ,PAL Code
ffffffff81244c94 OCLA$DEBUG+00C94
ffffffff81244c98 OCLA$DEBUG+00C98
ffffffff81244c9c OCLA$DEBUG+00C9C
ffffffff81244ca0 OCLA$DEBUG+00CA0
ffffffff81244ca4 OCLA$DEBUG+00CA4
ffffffff81244ca8 OCLA$DEBUG+00CA8
ffffffff81244cac OCLA$DEBUG+00CAC
ffffffff81244cb0 OCLA$DEBUG+00CB0
ffffffff81244cd0 OCLA$DEBUG+00CD0
ffffffff81244cd4 OCLA$DEBUG+00CD4
ffffffff81244cd8 OCLA$DEBUG+00CD8
ffffffff81244cdc OCLA$DEBUG+00CDC
ffffffff81244ce0 OCLA$DEBUG+00CE0
 ...

This example shows a summary of the last PC instructions executed by CPU 7 and symbolizes the PC
values.

In this example, lines of PAL code are identified by ",PAL Code".

7.2.10. OCLA START
Starts the acquisition of instructions into acquisition memory.

Format
OCLA START [/CPU=n]

Parameters
None.

Qualifiers
/CPU=n

The CPU on which to start instruction acquisition. If this qualifier is omitted, instruction acquisition
is started on all CPUs.

371

Chapter 7. SDA OCLA Extension (Alpha Only)

7.2.11. OCLA STOP
Stops the acquisition of instructions.

Format
OCLA STOP [/CPU=n]

Parameters
None.

Qualifiers
/CPU=n

Specifies the CPU on which to stop acquisition. If this qualifier is omitted, acquisition is stopped on
all CPUs.

7.2.12. OCLA UNLOAD
Unloads the OCLA$PCTRACE execlet and returns the acquisition buffers to the system.

Format
OCLA UNLOAD

Parameters
None.

Qualifiers
None.

Examples
1. SDA> OCLA DUMP

OCLA PC trace performed for 8 CPUs
SDA> OCLA SHOW TRACE/SUMMARY/SYMBOLIZE/CPU=0
OCLA PC trace information for CPU 00

CPU 00 has 16384 valid entries
The overhead per allocation is 1208
42 PC values displayed
ffffffff8012d3ac SCH$CALC_CPU_LOAD_C+0030C
ffffffff8012d3b0 SCH$CALC_CPU_LOAD_C+00310
ffffffff8012d3b4 SCH$CALC_CPU_LOAD_C+00314
ffffffff8012d3b8 SCH$CALC_CPU_LOAD_C+00318
ffffffff8012d3bc SCH$CALC_CPU_LOAD_C+0031C
ffffffff8012d3c0 SCH$CALC_CPU_LOAD_C+00320
ffffffff8012d4d8 SCH$CALC_CPU_LOAD_C+00438
...

372

Chapter 7. SDA OCLA Extension (Alpha Only)

This series of commands demonstrates how you can use the OCLA SDA extension to interactively
inspect a running system by reading the EV7 acquisition memory. The second command copies the
EV7 acquisition cache memory into system memory and displays the collected values for CPU 0.

2. SDA> OCLA LOAD
OCLA$PCTRACE load status = 00000001

SDA> OCLA ENABLE/RESET
OCLA PC tracing enabled for 8 CPUs

SDA> OCLA START
OCLA PC tracing started for 8 CPUs

The series of commands in this example demonstrates how to load the OCLA execlet, enable the
OCLA SDA extensions on each CPU in the system, and start each OCLA. Once started, the EV7
OCLA extensions collect data for each PC instruction executed by the active CPUs in the system.

In the unlikely event of a system failure, PC values recorded by the OCLA extensions are stored in
the system dump file and can later be retrieved by using the System Dump Analyzer (SDA).

3. SDA> OCLA STOP
OCLA PC tracing stopped for 8 CPUs

SDA> OCLA DISABLE
OCLA PC tracing disabled for 8 CPUs

SDA> OCLA UNLOAD
OCLA$PCTRACE unload status = 00000001

This series of commands stops all running OCLA extensions, disables and frees up system memory
associated with each OCLA, and unloads the OCLA execlet from system memory.

373

Chapter 7. SDA OCLA Extension (Alpha Only)

374

Chapter 8. SDA SPL Extension
This chapter presents an overview of the SDA Spinlock Tracing (SPL) Utility and describes the SDA
Spinlock Tracing commands.

8.1. Overview of the SDA Spinlock Tracing
Utility
To synchronize access to data structures, the OpenVMS operating system uses a set of static and
dynamic spinlocks, such as IOLOCK8 and SCHED. The operating system acquires a spinlock to
synchronize data, and at the end of the critical code path the spinlock is then released. If a CPU attempts
to acquire a spinlock while another CPU is holding it, the CPU attempting to acquire the spinlock has to
spin, waiting until the spinlock is released. Any lost CPU cycles within such a spinwait loop are charged
as MPsynch time.

By using the MONITOR utility, you can monitor the time in process modes, for example, with the
command $ MONITOR MODES. A high rate of MP synchronization indicates contention for spinlocks.
However, until the implementation of the Spinlock Tracing utility, there was no way to tell which
spinlock was heavily used, and who was acquiring and releasing the contended spinlocks. The Spinlock
Tracing utility allows a characterization of spinlock usage. It can also collect performance data for a
given spinlock on a per-CPU basis.

This tracing ability is built into the system synchronization execlet, which contains the spinlock code, and
can be enabled or disabled while the system is running. There is no need to reboot the system to load a
separate debug image. The images that provide spinlock tracing functionality are as follows:

SYS$LOADABLE_IMAGES:SPL$DEBUG.EXE

SYS$SHARE:SPL$SDA.EXE

The SDA> prompt provides the command interface. From this command interface, you can load and
unload the spinlock debug execlet using SPL LOAD and SPL UNLOAD, and start, stop and display
spinlock trace data. This allows you to collect spinlock data for a given period of time without system
interruption. Once information is collected, the trace buffer can be deallocated and the execlet can be
unloaded to free up system resources. The spinlock trace buffer is allocated from S2 space and pages are
taken from the free page list.

Should the system crash while spinlock tracing is enabled, the trace buffer is dumped into the system
dump file, and it can later be analyzed using the spinlock trace utility. This is very useful in tracking
down CPUSPINWAIT bugcheck problems.

Note that by enabling spinlock tracing, there is a performance impact. The amount of the impact depends
on the amount of spinlock usage.

8.2. How to Use the SDA Spinlock Tracing
Utility
The following steps will enable you to collect spinlock statistics using the Spinlock Tracing Utility.

1. Load the Spinlock Tracing Utility execlet.

375

Chapter 8. SDA SPL Extension

SDA> SPL LOAD

2. Allocate a trace buffer and start tracing.

SDA> SPL START TRACE

3. Wait a few seconds to allow some tracing to be done, then find out which spinlocks are incurring the
most acquisitions and the most spinwaits.

SDA> SPL SHOW TRACE/SUMMARY

For example, you might see contention for the SCHED and IOLOCK8 spinlocks (a high acquisition
count, with a significant proportion of the acquisitions being forced to wait).

4. Look to see if the spinlocks with a high proportion of spinwaits caused a significant delay in the
acquisition of the spinlock. You must now collect more detailed statistics on a specific spinlock.

SDA> SPL START COLLECT/SPINLOCK=SCHED

This command accumulates additional data for the specified spinlock. As long as tracing is not
stopped, collection will continue to accumulate spinlock-specific data from the trace buffer.

5. Display the additional data collected for the specified spinlock.

SDA> SPL SHOW COLLECT

This display includes the average hold time of the spinlock and the average spinwait time while
acquiring the spinlock.

6. Repeat steps 4 and 5 for each spinlock that has contention. A START COLLECT cancels the
previous collection.

7. Disable spinlock tracing when you have collected all the needed spinlock statistics and release all the
memory used by the Spinlock Tracing utility with the following commands.

SDA> SPL STOP COLLECT
SDA> SPL STOP TRACE
SDA> SPL UNLOAD

8.3. Example Command Procedure for
Collection of Spinlock Statistics
The following example shows a command procedure that can be used for gathering spinlock statistics:

$ analyze/system
 spl load
 spl start trace/buffer=1000
 wait 00:00:15
 spl stop trace
 read/executive/nolog
 set output spl_trace.lis
 spl analyze
 spl show trace/summary
 spl start collect/spin=sched
 wait 00:00:05

376

Chapter 8. SDA SPL Extension

 spl show collect
 spl start collect/spin=iolock8
 wait 00:00:05
 spl show collect
 spl start collect/spin=lckmgr
 wait 00:00:05
 spl show collect
 spl start collect/spin=mmg
 wait 00:00:05
 spl show collect
 spl start collect/spin=timer
 wait 00:00:05
 spl show collect
 spl start collect/spin=mailbox
 wait 00:00:05
 spl show collect
 spl start collect/spin=perfmon
 wait 00:00:05
 spl show collect
 spl stop collect
 spl unload
 exit
$ exit

A more comprehensive procedure is provided as SYS$EXAMPLES:SPL.COM.

8.4. SDA Spinlock Tracing Commands
The SPL commands are described below.

8.4.1. SPL
Invokes the Spinlock Tracing Utility.

When entered by itself with no command keyword, the SPL command lists the SPL command options.

SDA> SPL

8.4.2. SPL ANALYZE
Analyzes collected spinlock data and presents the most relevant data.

Format
SPL ANALYZE [/[NO]CPU_STATISTICS |/[NO]PLATFORM | /[NO]HOLD_TIMES=n/[NO]WAIT_TIMES=n |/[NO]USAGE=(HOLD=n,SPIN=n,TOP_PCS=n)]

Parameters
None.

Qualifiers
/CPU_STATISTICS (default)

377

Chapter 8. SDA SPL Extension

/NOCPU_STATISTICS

Displays per-CPU statistics.

/HOLD_TIMES=n

/NOHOLD_TIMES=n

Displays occurrences of spinlocks held longer than n microseconds. The default is 1000
microseconds.

/PLATFORM (default)

/NOPLATFORM

Displays system platform information.

/USAGE=(HOLD=n,SPIN=n, TOP_PCS=n)

Specifies thresholds for displaying information on a spinlock. If the percentage of time a spinlock
is held exceeds the value of HOLD=n, where n is a value from 0 to 100, displays the information
on the spinlock. The default is 10%. If the percentage of time a spinlock is spinning exceeds the
value of SPIN=n, displays the information on the spinlock. The default is 10%. If either the HOLD
or SPIN thresholds are exceeded, displays information on a spinlock. The TOP_PCS=n keyword
displays the top n unique callers to lock a spinlock. The default is to display the top five unique
callers.

By specifying either /USAGE=(HOLD=0) or /USAGE=(SPIN=0), SPL displays information on all
spinlock usage from the trace buffer.

/WAIT_TIMES=n

/NOWAIT_TIMES=n

Displays occurrences of spinlocks held longer than n microseconds. The default is 1000
microseconds.

Description
The SPL ANALYZE command analyzes collected spinlock data and displays the most relevant data.

The SPL ANALYZE command provides an overview of SPINLOCK usage on a system. Data are
provided by CPU and by spinlock. When looking at a system with high MP_Synch time, this is a good
command to start with. Stop spinlock tracing before using this command.

Example
SDA> SPL ANALYZE/HOLD=50/WAIT=50/USAGE=HOLD=5

Spinlock Analysis (1)

 Platform
 --
 Node: CLU21
 Hardware: AlphaServer ES45 Model 2
 Active CPUs: 4
 Memory: 16.00 GB
 CPU Frequency: 1.000 GHz

378

Chapter 8. SDA SPL Extension

 Trace Buffer: 1280 pages (10.00 MB)
 Trace Time: 0.48 seconds
 Trace Start: 15-OCT 10:51:53.427386

CPU statistics (2)
 % Time in % Time % Time All Spinlocks All Spinlocks
CPU ID Fork Dispatcher Spinlocks Held MP_Synch Acquires/sec Waits/sec
------ --------------- -------------- ---------- ------------- -------------
 00 0.1 16.2 1.1 82210.4 1434.7
 01 0.1 15.8 1.2 79551.5 1548.3
 02 0.0 16.4 1.2 85690.9 1511.1
 03 1.7 17.7 1.1 86601.3 1451.2
------ --------------- -------------- ---------- ------------- -------------
 Total 1.9 66.1 4.6 334054.1 5945.3

Spinlock Usage (3)
 Spin to
Spinlock % Time Held Acquires/sec Average Hold % Time Spinning Waits/sec Average Spin Hold Ratio
------------ ----------- ------------ ------------ --------------- ------------ ------------ -----------
FILSYS 15.6 33776.8 4609 2.6 2314.1 11379 0.2
LCKMGR 9.3 26198.6 3560 1.2 2208.8 5494 0.1
PCB$00000426 7.2 49420.4 1451 0.0 35.1 6342 0.0
PCB$00000428 7.1 49125.2 1437 0.0 14.5 7532 0.0

Spinlock (4) % Time Acquires Spinwaits Average
 Caller's PC Held /sec Average /sec Spinwait
 -- ------ --------- --------- --------- ---------
FILSYS
 8022CA44 SEARCH_FCB_C+00604 12.0 4021.3 29793 303.5 11985
 80222E10 SET_DIRINDX_C+00030 0.5 4194.7 1163 247.7 11477
 8021B06C START_REQUEST_C+0006C 0.4 2438.0 1607 384.0 15838
 8021B208 FINISH_REQUEST_C+00058 0.4 2440.1 1510 206.4 15862
 800FC508 IOC_STD$MAPVBLK_C+000C8 0.3 2014.8 1713 402.5 9518
LCKMGR
 801DEB14 EXE$ENQ_C+00A44 3.5 12984.7 2657 988.8 5727
 801E3B94 EXE$DEQ_C+00114 3.0 5943.2 5109 538.8 4849
 801E03BC LOCKING+023BC 2.6 5941.2 4315 392.2 5682
 801E5C84 LCK$DEQLOCK_C+00F54 0.3 1323.2 2091 289.0 5642
PCB$00000426
 801782F8 SCH$ASTDEL_C+00078 1.9 15525.9 1256 0.0 0
 80179AC4 SCH$QAST_C+00094 1.7 8907.6 1935 0.0 0
 8017A780 SCH$QUEUE_AST_CURRENT_C+00070 1.2 7859.0 1532 0.0 0
 80178FE0 SCH$ASTDEL_K_C+00090 1.2 8895.3 1320 8.3 2346
 80179124 SCH$ASTDEL_K_C+001D4 1.1 7780.5 1355 0.0 0
PCB$00000428
 801782F8 SCH$ASTDEL_C+00078 2.0 15606.4 1308 0.0 0
 80179AC4 SCH$QAST_C+00094 1.6 8810.6 1794 0.0 0
 80178FE0 SCH$ASTDEL_K_C+00090 1.2 8810.6 1344 6.2 2589
 8017A780 SCH$QUEUE_AST_CURRENT_C+00070 1.2 7904.4 1492 0.0 0
 80179124 SCH$ASTDEL_K_C+001D4 1.0 7728.9 1340 0.0 0
 8017A780 SCH$QUEUE_AST_CURRENT_C+00070 1.1 8655.8 1298 0.0 0
 80179124 SCH$ASTDEL_K_C+001D4 1.1 8598.0 1225 0.0 0
 80178FE0 SCH$ASTDEL_K_C+00090 1.1 9192.5 1144 2.1 2326

Long Spinlock Hold Times (> 50 microseconds) (5)

Timestamp CPU Spinlock | Forklock Calling PC | Forking PC EPID Hold (us)
---------------------- --- --------------------- -------------------------------------- -------- ---------
15-OCT 10:51:53.801244 00 81D6A200 81D6A200 8051B380 LAN$COMPLETE_VCRP_CSMACD_C+00 00000000 64
15-OCT 10:51:53.538665 00 818BBE00 POOL 8004B334 EXE$ALONPAGVAR_C+002F4 00000000 59
15-OCT 10:51:53.538331 03 81F75980 PCB$00000429 8017A808 SCH$QUEUE_AST_CURRENT_C+000F8 00000000 56
15-OCT 10:51:53.597448 03 818BBE00 POOL 8004B334 EXE$ALONPAGVAR_C+002F4 00000000 52
15-OCT 10:51:53.670228 03 818BBE00 POOL 8004B334 EXE$ALONPAGVAR_C+002F4 00000000 51

Long Spinlock Wait Times (> 50 microseconds) (6)

Timestamp CPU Spinlock | Forklock Calling PC | Forking PC EPID Wait (us)
---------------------- --- --------------------- -------------------------------------- -------- ---------
15-OCT 10:51:53.454082 03 818BCB00 FILSYS 800FC508 IOC_STD$MAPVBLK_C+000C8 00000000 79
15-OCT 10:51:53.661343 02 818BCB00 FILSYS 8021B208 FINISH_REQUEST_C+00058 00000000 76
15-OCT 10:51:53.661256 00 818BCB00 FILSYS 8021EDD0 F11BXQP+08DD0 00000000 66
15-OCT 10:51:53.898618 00 818BCB00 FILSYS 8021B06C START_REQUEST_C+0006C 00000000 53

This example shows the output of the SPL ANALYZE command, which is divided into several sections:

1. Spinlock Analysis:

Shows information on the platform such as the hardware type, the number of CPUs and the speed of
the CPUs.

2. CPU Statistics:

379

Chapter 8. SDA SPL Extension

Shows spinlock information on a per CPU basis. The percentage of time the CPU owns spinlock
is displayed along with a percentage of time the CPU was executing from the fork dispatcher. This
information can be very useful in determining the amount of time a CPU is in use for processing I/O.

3. Spinlock Usage:

Shows information on the spinlock usage by the system. This data is sorted by the percentage of time
the spinlocks are held. The average hold time displayed is in system cycles. The display also includes
the percent of time that CPUs are waiting on this spinlock along with the average number of cycles a
CPU needed to wait before it was able to acquire the spinlock.

4. Spinlock:

For each spinlock displayed in section 3, the top callers are displayed sorted by the number of
acquires per second that occurred. In addition, the average hold and wait time for each caller is
displayed in system cycles.

5. Long Spinlock Hold Times:

The section on Long Spinlock Hold Times shows occurrences of spinlocks whose hold time
exceeded a threshold. In the above report, the threshold was specified as 50 microseconds. The EPID
at the time of the acquire is also displayed. An EPID of 0 indicates that the spinlock acquire did not
occur in process context.

6. Long Spinlock Wait Times:

The section on Long Spinlock Wait Times shows occurrences of spinlocks whose wait time exceeded
a threshold. In the above report, the threshold was specified as 50 microseconds. The EPID at the
time of the acquire is also displayed. An EPID of 0 indicates that the spinlock acquire did not occur
in process context.

8.4.3. SPL LOAD
Loads the SPL$DEBUG execlet. This must be done prior to starting spinlock tracing.

Format
SPL LOAD

Parameters
None.

Qualifiers
None.

Description
The SPL LOAD command loads the SPL$DEBUG execlet, which contains the tracing routines.

Example
SDA> SPL LOAD

380

Chapter 8. SDA SPL Extension

SPL$DEBUG load status = 00000001

8.4.4. SPL SHOW COLLECT
Displays the collected spinlock data.

Format
SPL SHOW COLLECT [/RATES|/TOTALS]

Parameters
None.

Qualifiers
/RATES

Reports activity as a rate per second and hold/spin time as a percentage of time. This is the default.

/TOTALS

Reports activity as a count and hold/spin time as cycles.

Description
The SPL SHOW COLLECT command displays the collected spinlock data. It displays first a summary
on a per-CPU basis, followed by the callers of the specific spinlock. This second list is sorted by the
top consumers of the spinlock (in percent of time held). These displays show average spinlock hold and
spinlock wait time in system cycles.

Example

8.4.5. SPL SHOW TRACE
Displays spinlock tracing information.

381

Chapter 8. SDA SPL Extension

Format
SPL SHOW TRACE [/[NO]ACQUIRE | /CPU=n

| /[NO]FORKLOCK=forklock | /[NO]FRKDSPTH

| /[NO]FRKEND | /RATES | /[NO]RELEASE

| /[NO]SPINLOCK=spinlock | /SUMMARY

| /TOP=n | /TOTALS | /[NO]WAIT]

Parameters
None.

Qualifiers
/ACQUIRE

/NOACQUIRE

The /ACQUIRE qualifier displays any spinlock acquisitions.

The /NOACQUIRE qualifier ignores any spinlock acquisitions.

/CPU=n

Specifies the display of information for a specific CPU only, for example, /CPU=5 or /
CPU=PRIMARY. By default, all trace entries for all CPUs are displayed.

/FORKLOCK=forklock

/NOFORKLOCK

The /FORKLOCK=forklock qualifier specifies the display of a specific forklock, for example, /
FORKLOCK=IOLOCK8 or /FORKLOCK=IPL8.

The /NOFORKLOCK qualifier specifies that no forklock trace information be displayed. By default,
all fork trace entries are decoded and displayed.

/FRKDSPTH

/NOFRKDSPTH

The /FRKDSPTH qualifier displays all invocations of fork routines within the fork dispatcher. This
is the default.

The /NOFRKDSPTH qualifier ignores all of the operations of the /FRKDSPTH qualifier.

/FRKEND

382

Chapter 8. SDA SPL Extension

/NOFRKEND

The /FRKEND qualifier displays all returns from fork routines within the fork dispatcher. This is the
default.

The /NOFRKEND qualifier ignores all operations of the /FRKEND qualifier.

/RATES

Reports activity as a rate per second and hold/spin time as a percentage of time. This is the default.

/RELEASE

/NORELEASE

The /RELEASE qualifier displays any spinlock releases.

The /NORELEASE qualifier ignores any spinlock releases.

/SPINLOCK=spinlock

/NOSPINLOCK

The /SPINLOCK=n qualifier specifies the display of a specific spinlock, for example, /
SPINLOCK=LCKMGR or /SPINLOCK=SCHED.

/NOSPINLOCK specifies that no spinlock trace information be displayed. By default, all spinlock
trace entries are decoded and displayed.

/SUMMARY

Steps through the entire trace buffer and displays a summary of all spinlock and forklock activity. It
also displays the top ten callers.

/TOP=n

Displays a different number other than the top ten callers or fork PCs. By default, the top ten are
displayed. This qualifier is useful only when you also specify /SUMMARY.

/TOTALS

Reports activity as a count and hold/spin time as cycles.

/WAIT

/NOWAIT

The /WAIT qualifier displays any spinwait operations.

The /NOWAIT qualifier ignores any spinwait operations.

Description
The SPL SHOW TRACE command displays spinlock tracing information. The latest acquired or released
spinlock is displayed first, and then the trace buffer is stepped backwards in time.

383

Chapter 8. SDA SPL Extension

By default, all trace entries will be displayed, but you can use qualifiers to select only certain entries.

Since this is not a time critical activity and a table lookup has to be done anyway to translate the SPL
address to a spinlock name, commands like /SPINLOCK=(SCHED,IOLOCK8) do work. /SUMMARY
will step the entire trace buffer and display a summary of all spinlock activity, along with the top-ten
callers' PCs. You can use /TOP=n to display a different number of the top ranked callers.

Examples

Callout Meaning

1 Shows timestamps that are collected as system
cycle counters (SCC) and then displayed with an
accuracy down to microseconds. Each CPU is
incrementing its own SCC as soon as it is started,
so there is some difference between different
CPUs' system cycle counters. The standard system
time is incremented only every 10 Msec and as
such is not exact enough. Adjusting the SCC to the
specific CPU's system time and translating it into
an accurate timestamp will thus sometimes display
times out of order for different CPUs. However, for
the same CPU ID, the timestamps are accurate.

2 Shows the physical CPU ID of the CPU logging
the trace entry.

3 Shows the address of the spinlock fork. If it is a
static one, its name is displayed; otherwise, it is
marked as ???.

4 Shows the caller's PC address that acquired or
released the spinlock, or the fork PC if the trace
entry is a forklock. Symbolization is attempted,
so a READ/EXECUTIVE might help to display
a routine name, instead of simply a module and
offset.

5 Shows the EPID, which is the external PID of the
process generating the trace entry. If an interrupt
or fork was responsible for the entry, then a zero
EPID is displayed.

6 Shows the trace operation. For a spinlock, which
was acquired without going through a spinwait,

384

Chapter 8. SDA SPL Extension

Callout Meaning
there is a matching acquire/release pair of trace
entries for the same CPU ID for a given spinlock.
If a spinlock is held, it cannot be acquired
immediately, so there is also a spinwait trace entry
for this pair. The different variations of the acquire
and release operations are distinguished, as are
the same spinlocks if they are acquired recursively
multiple times.

7 Shows the address of the trace buffer entry, in case
there is a need to access the raw and undecoded
trace data.

Callout Meaning

8 Shows the summary information by stepping
through the whole trace buffer, and displaying a
single line of information for each spinlock. If the
percent of spin wait is very high, then a spinlock is
a candidate for high contention.

9 For each spinlock in the summary display, the
top ten callers' PCs are displayed along with the
number of spinlock acquisitions and releases, as

385

Chapter 8. SDA SPL Extension

Callout Meaning
well as spinwait counts and the number of multiple
acquisitions of the same spinlock.

Callout Meaning

10 The forklock summary displays the number of fork
operations on a specific CPU for each forklock.
For each forklock, the top ten fork PC addresses
are displayed, along with the minimum, maximum
and average duration of the fork operation in
system cycles. The percent of time spent in a given
fork routine is displayed along with the percent of
time for the forklock.

8.4.6. SPL START COLLECT
Starts to collect spinlock information a longer period of time than will fit into the trace buffer.

Format
SPL START COLLECT [/SPINLOCK=spinlock|/ADDRESS=n]

Parameters
None.

386

Chapter 8. SDA SPL Extension

Qualifiers
/ADDRESS=n

Specifies the tracing of a specific spinlock by address.

/SPINLOCK=spinlock

Specifies the tracing of a specific spinlock, for example, /SPINLOCK=LCKMGR or /
SPINLOCK=SCHED.

Description
The SPL START COLLECT command starts a collection of spinlock information for a longer period of
time than will fit into the trace buffer. You need to enable spinlock tracing before a spinlock collection
can be started. On a system with heavy activity, the trace buffer typically can only hold a relatively small
time window of spinlock information. In order to collect spinlock information over a longer time period,
a collection can be started. The collection tries to catch up with the running trace index and save the
spinlock information into a balanced tree within the virtual address space of the process performing the
spinlock collection. Either use the name of a static spinlock, or supply the address of a dynamic spinlock,
for which information should be gathered.

The trace entries are kept in the trace buffer, which is allocated from S2 space, hence there is no
disruption, if tracing is started from within SDA and then the user exits from SDA. However, for the
longer period data collection, the information is kept in process-specific memory, thus a user needs to
stay within SDA; otherwise the data collection is automatically terminated by SDA's image rundown.
You can collect data for two or more spinlocks simultaneously, by using a separate process for each
collection.

Example
1. SDA> SPL START COLLECT

Use /SPINLOCK=name or /ADDRESS=n to specify which spinlock info needs to
 be collected...

This example shows that you need to supply either a spinlock name of a static spinlock, or the
address of a dynamic spinlock, if you want to collect information over a long period of time.

2. SDA> SPL START COLLECT/SPINLOCK=LCKMGR

This example shows the command line to start to collect information on the usage of the LCKMGR
spinlock.

8.4.7. SPL START TRACE
Enables spinlock tracing.

Format
SPL START TRACE [/[NO]ACQUIRE | /BUFFER=pages | /CPU=n

| /[NO]FORKLOCK=forklock | /[NO]FRKDSPTH

| /[NO]FRKEND | /[NO]RELEASE

387

Chapter 8. SDA SPL Extension

| /[NO]SPINLOCK=spinlock | /[NO]WAIT]

Parameters
None.

Qualifiers
/ACQUIRE

/NOACQUIRE

The /ACQUIRE qualifier traces any spinlock acquisitions. This is the default.

The /NOACQUIRE qualifier ignores any spinlock acquisitions.

/BUFFER=pages

Specifies the size of the trace buffer (in page units). It defaults to 128 pages, which is equivalent to
1MB, if omitted.

/CPU=n

Specifies the tracing of a specific CPU only, for example, /CPU=5 or /CPU=PRIMARY. By default,
all CPUs are traced.

/FORKLOCK=forklock

/NOFORKLOCK

The /FORKLOCK=forklock qualifier specifies the tracing of a specific forklock, for example, /
FORKLOCK=IOLOCK8 or /FORKLOCK=IPL8.

The /NOFORKLOCK qualifier disables forklock tracing and does not collect any forklock data. By
default, all forks are traced.

/FRKDSPTH

/NOFRKDSPTH

The /FRKDSPTH qualifier traces all invocations of fork routines within the fork dispatcher. This is
the default.

The /NOFRKDSPTH qualifier ignores all of the /FRKDSPTH operations.

/FRKEND

/NOFRKEND

The /FRKEND qualifier traces all returns from fork routines within the fork dispatcher. This is the
default.

388

Chapter 8. SDA SPL Extension

The /NOFRKEND qualifier ignores all of the operations of the /FRKEND qualifier.

/RELEASE

/NORELEASE

The /RELEASE qualifier traces any spinlock releases. This is the default.

The /NORELEASE qualifier ignores any spinlock releases.

/SPINLOCK=spinlock

/NOSPINLOCK

The /SPINLOCK=spinlock qualifier specifies the tracing of a specific spinlock, for example, /
SPINLOCK=LCKMGR or /SPINLOCK=SCHED.

The /NOSPINLOCK qualifier disables spinlock tracing and does not collect any spinlock data. By
default, all spinlocks are traced.

/WAIT

/NOWAIT

The /WAIT qualifier traces any spinwait operations. This is the default.

The /NOWAIT qualifier ignores any spinwait operations.

Description
The SPL START TRACE command enables spinlock and fork tracing. By default all spinlocks and
forklocks are traced and a 128 page (1MByte) trace buffer is allocated and used as a ring buffer.

Example
1. SDA> SPL START TRACE/BUFFER=1000

Tracing started... (Spinlock = 00000000, Forklock = 00000000)

This example shows how to enable a tracing for all spinlock and forklock operations into a 8 MByte
trace buffer.

2. SDA> SPL START TRACE/CPU=PRIMARY/SPINLOCK=SCHED /NOFORKLOCK
Tracing started... (Spinlock = 810AF600, Forklock = 00000000)

This example shows how to trace only SCHED spinlock operations on the primary CPU.

3. SDA> SPL START TRACE /NOSPINLOCK /FORKLOCK=IPL8
Tracing started... (Spinlock = 00000000, Forklock = 863A4C00)

This example shows how to trace only fork operations to IPL8.

8.4.8. SPL STOP COLLECT
Stops the spinlock collection, but does not stop spinlock tracing.

389

Chapter 8. SDA SPL Extension

Format
SPL STOP COLLECT

Parameters
None.

Qualifiers
None.

Description
The SPL STOP COLLECT command stops the data collection, but does not affect tracing. This allows
the user to start another collection for a different spinlock during the same trace run.

Example
SDA> SPL STOP COLLECT

8.4.9. SPL STOP TRACE
Disables spinlock tracing, but it does not deallocate the trace buffer.

Format
SPL STOP TRACE

Parameters
None.

Qualifiers
None.

Description
The SPL STOP TRACE command stops tracing, but leaves the trace buffer allocated for further analysis.

Example
SDA> SPL STOP TRACE
Tracing stopped...

8.4.10. SPL UNLOAD
Unloads the SPL$DEBUG execlet and performs cleanup. Tracing is automatically disabled and the trace
buffer deallocated.

Format
SPL UNLOAD

390

Chapter 8. SDA SPL Extension

Parameters
None.

Qualifiers
None.

Description
The SPL UNLOAD command disables the tracing or collection functionality with a delay to a state
of quiescence. This ensures that all pending trace operations in progress have finished before the trace
buffer is deallocated. Finally the SPL UNLOAD command unloads the SPL$DEBUG execlet.

Example
SDA> SPL UNLOAD
SPL$DEBUG unload status = 00000001

391

Chapter 8. SDA SPL Extension

392

Chapter 9. SDA XFC Extension
The SDA extension commands for Extended File Cache (XFC) enable you to display the following
information in a convenient and readable format:

• Various XFC data structures

• Statistics that aid in tuning the extended file cache

You can also control the types of events that are recorded by XFC's tracing feature.

9.1. SDA XFC Commands
The following pages describe the SDA XFC extension commands.

You can enter XFC commands at the SDA prompt or you can access online help, as follows:

SDA> XFC HELP

9.1.1. XFC SET TRACE
Controls the types of events to be recorded by XFC's trace facility and initializes the trace structures (to
eliminate events that have already been recorded).

Format
XFC SET TRACE [/SELECT=LEVEL:level] [/RESET]

Parameters

Qualifiers
/SELECT=LEVEL:level

Specifies the level of tracing in XFC on a live system. The possible values for level are as follows:

1 (Default) Traces only major, unusual events.
2 Traces file access, deacess, truncate, read start

and complete, and write start and complete
operations. Results are displayed using the
SHOW TRACE command. Setting this trace
level has only a minor performance impact.

3 Performs more detailed tracing, which can
be viewed using the SHOW TRACE/RAW
command. Has some performance impact.

4 Performs very detailed tracing with a noticeable
performance impact.

/RESET

Initializes the trace buffer to eliminate all events that have already been traced.

393

Chapter 9. SDA XFC Extension

Description
Traceable events within the XFC facility are organized by level of importance, from level 1 for rare,
unusual events only, through level 4, which is a very detailed trace of events within the I/O flow through
XFC. The trace buffer can be reset to clear older trace points.

9.2. XFC SHOW CONTEXT
Displays the contents of an XFC context block (CTX).

Format
XFC SHOW CONTEXT [address][/STALLING|/FULL|/BRIEF]

Parameters
address

The address of the CTX. If no address is supplied, then all the context structures are displayed.

Qualifiers
/BRIEF

Displays a brief summary for each context; for example, the I/O type, start virtual block number
(VBN), and length of I/O.

/FULL

Displays the complete context structure. This is the default.

/STALLING

Displays only contexts that are stalling; for example, those that have a stall reason code other than
estrNotStalling.

Description
The SHOW CONTEXT command displays the contents of an active context block. The state of each
active operation within XFC is maintained in a data structure called a context block.

Examples
1.

This example shows the address of the context block, I/O type (the type of operation), I/O phase
(what phase the operation is in), I/O stall (reason for its stalling), volume ID (address of the control

394

Chapter 9. SDA XFC Extension

volume block), start VBN (starting VBN of the I/O), length of the I/O, and I/O request packet (the
address of the IRP).

2. SDA> XFC SHOW CONTEXT FFFFFFFF8190D690
List of All XFC Active Contexts (CTX)

Context (CTX) Address: FFFFFFFF8190D690
I/O Phase: eiopFillContext
I/O Type: eiotReadThrough
Operation started: 17-APR-2002 11:23:29.00
Stall Reason: estrWindowTurn
Stall Extent: 0000000000000000
Stall Op (IRP): FFFFFFFF81267A40
Saved AST Parameter: 0000000000000000
Restart Routine: 0000000000000000
Context state flags 00000000
 Cache Hit: False
 HWM Checked: False
 Fork Restarted False
 AST Required (flush) False
 Buffer locked False
 Stalled converting False
 Fork Block in use False
 Override resource checks False
 Restart cluster trans False
 Restart cluster flush False
 MV volumes skipped False
 Depose pending False
 Ignore CFB Quiesce False
 Delete CFB False
 Read-ahead hit False
ECB Count: 0
Index: 00000000 (0)
Start VBN: 000107C1 (67521)
Length in Blocks: 00000020 (32)
Next VBN: 000107C1 (67521)
I/O Extent Count: 0
Disk I/O Length: 00000020 (32)
Bytes Copied: 0
Bytes Zeroed: 0
Bytes Requested: 16384
Volume (CVB): 0000000000000000
Volume Id: FFFFFFFD8311BD00
File Id: 0000000000000C54
Cache File Block: FFFFFFFD82CEA2A0
Process (PCB): FFFFFFFF818FA500

This example shows output of a full display of a context block for a read I/O.

9.3. XFC SHOW EXTENT
Displays the contents of an extent control block (ECB).

Format
XFC SHOW EXTENT address

395

Chapter 9. SDA XFC Extension

Parameters
address

The address of the ECB.

Qualifiers
None.

Description
The SHOW EXTENT command diplays the contents of an extent control block (ECB). The data in the
cache is divided into groups of VBNs called extents. Each extent is maintained in a data structure called
an extent control block.

Example
SDA> XFC SHOW EXTENT FFFFFFFD82A58A20
Cache Extent Address: FFFFFFFD82A58A20
Type: Primary
Flink: FFFFFFFF7F880350
Blink: FFFFFFFF7F880350
Start VBN: 00000001 (1)
Start LBN: 00BA711C (12218652)
Length in Blocks: 00000006 (6)
Data State: Clean
Pin: None
Buffer Address: FFFFFFFDB0996000
Secondary ECB Queue: FFFFFFFD82A58A60
 Flink: FFFFFFFD83199A20
 Blink: FFFFFFFD83199A20
Primary ECB: 0000000000000000
LRU Queue: FFFFFFFD82A58AAC
 Flink: FFFFFFFD82A5A26C
 Blink: FFFFFFFD82A5344C
Waiters Queue: FFFFFFFD82A58A50
 Flink: FFFFFFFD82A58A50
 Blink: FFFFFFFD82A58A50
Lock Id: 00000000
Parent CFB: FFFFFFFD82A61180
ECB delete pending False
ECB on LRU queue True
ECB depose pending False
ECB read ahead False
LRU priority: 1

This example shows the contents of an extent control block.

9.4. XFC SHOW FILE
Displays the contents of the cache file block (CFB).

Format
XFC SHOW FILE [address] [/EXTENTS|/ID=file-id

396

Chapter 9. SDA XFC Extension

|/CVB=address |/OPEN|/CLOSED|/STATISTICS |/FULL

|/BRIEF]

Parameters
address

The address of the CFB. The /OPEN and /CLOSED qualifiers, if present, are ignored. If no address
is supplied, then all the CFBs are displayed.

Qualifiers
/BRIEF

Displays the following summary information for each cache file block (CFB): CFB address, cache
volume block (CVB) address, access count, active I/O count, and file ID.

/BRIEF is incompatible with /EXTENTS, /FULL, and /STATISTICS.

If the file specification is available in LIB$FID_TO_NAME(), it is displayed; otherwise, the file ID
is displayed.

Note

Because the volume is accessed through its logical name, if two volumes are mounted that have
the same logical name (for example, one mounted /SYSTEM and one mounted privately, which
results in the same logical name in two different access-mode logical name tables), the incorrect file
specification might be displayed.

/CLOSED

Displays only CFBs whose access count is zero.

/CVB=address

Displays information only for files matching the given cache volume block address.

/DISPLAY_NAME (default)

/NODISPLAY_NAME

Controls whether the file specification is displayed.

/EXTENTS

Displays the cache extents held in cache for any displayed files. This shows the primary and
secondary cache extents along with their data state, virtual block numbers (VBNs), and logical block
numbers (LBNs). It also shows a summary of memory usage (pagelets used and pagelets valid) for
any displayed files. The /EXTENTS qualifier is incompatible with the /BRIEF qualifier.

/FULL

Displays all fields for each cache file block. This is the default.

If the file specification is available in LIB$FID_TO_NAME(), it is displayed; otherwise, the file ID
is displayed.

397

Chapter 9. SDA XFC Extension

Note

Because the volume is accessed through its logical name, if two volumes are mounted that have
the same logical name (for example, one mounted /SYSTEM and one mounted privately, which
results in the same logical name in two different access-mode logical name tables), the incorrect file
specification might be displayed.

/ID=file-id

Displays only information about any files matching the given file-identification (FID). The file
identification (FID) is the hexadecimal file number component in a format file ID (file number,
sequence number, relative volume number).

/OPEN

Displays only CFBs whose access count is greater than zero.

/STATISTICS

Displays more statistics about the specified file. The /STATISTICS qualifier is incompatible with
the /BRIEF qualifier.

Description
The SHOW FILE command displays the contents of the XFC cache file block. The state of any file in
the cache is maintained in a data structure called a cache file block (CFB). There is a CFB for every
open file on a system and a CFB for each closed file that is still being cached.

Examples
1.

This example shows the brief output from this command.

2. SDA> XFC SHOW FILE/STATISTICS FFFFFFFD831A24C0
Full Cache File Block (CFB) Details

CFB Address: FFFFFFFD831A24C0
CFB Address: FFFFFFFD831A24C0
Flink: FFFFFFFD831A22C0
Blink: FFFFFFFD831A2700
Access Count: 1
Write Access Count: 0
Volume (CVB): FFFFFFFD831FE080
Quiescing: False
File (FCB): FFFFFFFF81943D80
Volume Id: FFFFFFFD831FE080

398

Chapter 9. SDA XFC Extension

File Id: 0000000000000383
External FID: (899,4,0)
Predicted Next VBN: 000000FB (251)
Active Caching Mode: Write Through
Active I/O count: 0
Flush Fail Status: 00000000 (0)
No Readahead Reasons: 0
Active Readaheads: 0
File Bad: False
Caching disabled: False
File deleted on close: False
File Quiescing: False
File Deposing: False
File Deleting: False
File BlkASTInProg: False
File IgnoreBlkAST False
File Readahead EOF False
PECBs Allocated: 13 (13 pages)
PECBs Deallocated: 0
PECBs Deallocated: 0
SECBs Allocated: 3
SECBs Deallocated: 19
Lock Id: 0C00037F
 Granted Lock mode: PRMode
 Conversion phase: Illegal
Conversion phase count: 1
Hash Bucket Queue: FFFFFFFD831A2520
 Flink: FFFFFFFF7FF819B0
 Blink: FFFFFFFF7FF819B0
PECB Queue: FFFFFFFD831A2530
 Flink: FFFFFFFD8311888C
 Blink: FFFFFFFD831A072C
Stalled IOs Queue: FFFFFFFD831A24F0
 Flink: FFFFFFFD831A24F0
 Blink: FFFFFFFD831A24F0
FAL transition Queue: FFFFFFFD831A2500
 Flink: FFFFFFFD831A2500
 Blink: FFFFFFFD831A2500
Contexts Waiting: FFFFFFFD831A2510
 Flink: FFFFFFFD831A2510
 Blink: FFFFFFFD831A2510
BlkASTs Waiting: FFFFFFFD831A2540
 Flink: FFFFFFFD831A2540
 Blink: FFFFFFFD831A2540
Deaccess Wait List: FFFFFFFD831A2600
 Flink: 0000000000000000
Quiesce context: 0000000000000000
Up convert context: 0000000000000000
File IO Statistics - all in decimal

Statistics Valid From: 19-APR-2002 07:10:32.77

Total QIOs to this file: 14
Read IOs to this file: 14
Write IOs to this file: 0
Write IOs to this file: 0
Read Hits: 6
Hit Rate: 42.86 %

399

Chapter 9. SDA XFC Extension

Average Overall I/O response time to this file
 in milliseconds: 0.9525
Average Cache Hit I/O response time to this file
 in milliseconds: 0.0702
Average Disk I/O response time to this file
 in milliseconds: 1.6141
Accuracy of I/O resp time: 65 %
Read Ahead Count: 0
Read Through Count: 14
Write Through Count: 0
Read Around Count: 0
Write Around Count: 0
CFB FAL stalls: 1
CFB Operation stalls: 0
FAL Blocking ASTs: 0
Quiesce Depose: 0
Quiesce depose Stalls: 0

(I/O size statistics not collected for this file)

Files found: 1

This example shows a collection of performance statistics for a file.

9.5. XFC SHOW HISTORY
Displays approximately three days of XFC activity in 10-minute intervals.

Format
XFC SHOW HISTORY

Parameters
None.

Qualifiers
None.

9.6. XFC SHOW IRP
Displays a subset of the fields of an I/O Request Packet that has relevance for XFC debugging.

Format
XFC SHOW IRP address

Parameters
address

The address of the IRP structure whose relevant fields are to be decoded and displayed.

400

Chapter 9. SDA XFC Extension

Qualifiers
None.

9.7. XFC SHOW MEMORY
Displays information about memory used by the cache.

Format
XFC SHOW MEMORY [/BRIEF|/FULL]

Parameters
None.

Qualifiers
/BRIEF

Displays summary statistics on XFC memory use.

/FULL

Displays full statistics on XFC memory use. This is the default.

Examples
1. SDA> XFC SHOW MEMORY

XFC Memory Statistics

Pool allocation calls : 430
Pool allocation failures : 0
Pool deallocation calls : 0

Page allocation calls : 2745
Page deallocation calls : 6

Cache VA Regions and Limits

Cache VA region from FFFFFFFD80000000 to FFFFFFFF80000000 (1048576
 pages)

 permanent area : FFFFFFFD80000000 to FFFFFFFDBE800000 (128000
 pages)
 pool : FFFFFFFD80000000 to FFFFFFFD83200000 (6400
 pages)
 data : FFFFFFFD83200000 to FFFFFFFDBE800000 (121600
 pages)

 dynamic area : FFFFFFFDBE800000 to FFFFFFFF7F780000 (919488
 pages)
 pool : FFFFFFFDBE800000 to FFFFFFFDD4F2C000 (45974
 pages)
 data : FFFFFFFDD4F2C000 to FFFFFFFF7F780000 (873514
 pages)

401

Chapter 9. SDA XFC Extension

 extent hash table: FFFFFFFF7F780000 to FFFFFFFF7FF80000 (1024
 pages)
 file hash table : FFFFFFFF7FF80000 to FFFFFFFF80000000 (64
 pages)
 file hash table : FFFFFFFF7FF80000 to FFFFFFFF80000000 (64
 pages)

qhdPermanentPoolFreePages : FFFFFFFF80D305B8
qhdPermanentDataFreePages : FFFFFFFF80D305C8
Non-Paged Pool allocated : 45248 (44.1 KB)
Non-Paged Pool number of - FKBs : 403
Non-Paged Pool number of - DBMs : 3
Non-Paged Pool number of - CTXs : 10
Current Maximum Cache Size : 8589934592 (8.0 GB)
Boottime Maximum Cache Size : -1

Permanent Data Pages: Allocated : 121600
 In use : 2739
 Pool Pages: Allocated : 6400
 In use : 128

Dynamic Pages: Max Allowed : 919488
 Allocated : 0
 In use : 0
 Min Allowed : 20971
 Data Pages: Allowed : 873514
 In use : 0
 Pool Pages: Allowed : 45974
 In use : 0
 PFN List : 0
 Non PFN List : 0

Total Cache Memory (bytes) : 1048621248 (1000.0 MB)

Private PFN List Stats

Dynamic Area PFN List : FFFFFFFF818EB340
Free physical pages on list : 0
Pages attributed to this list : 0
Pages being requested for return: 0
List priority : 0
Callback routine : 80DF8A40
Free PFN queue head : FFFFFFFF818EB350
 First free page : 0000000000000000
 Last free page : 0000000000000000

MMG Callback Counters

MMG callback active : 0
MMG callback count : 0
MMG callback requeues : 0
MMG callback requeue again : 0
Expand attempts callback active : 0
Pages reclaimed : 0
Trim reclaim attempts : 0
LRU depose calls TrimWorkingSet : 0

402

Chapter 9. SDA XFC Extension

Zone Purges: Permanent : 0
 Dynamic PFNLST : 0
 Dynamic No PFNLST : 0

Pool Zone Stats (S2 Space) Permanent Dynamic
SECB: Size 112, PerPage 71
 Pages / MaxPages 12 / 6400 ||| 0 / 45974
 FreePkts / TotalPkts 64 / 852 ||| 0 / 0
 Hits 5499 ||| 0
 Not first page 0 ||| 0
 Misses (expns/fails) 12 (12 /0) ||| 0 (0 /
 0)

PECB: Size 176, PerPage 45
 Pages / MaxPages 85 / 6400 ||| 0 / 45974
 FreePkts / TotalPkts 6 / 3825 ||| 0 / 0
 Hits 3740 ||| 0
 Not first page 0 ||| 0
 Misses (expns/fails) 85 (85 /0) ||| 0 (0 /
 0)

CFB: Size 544, PerPage 14
 Pages / MaxPages 29 / 6400 ||| 0 / 45974
 FreePkts / TotalPkts 3 / 406 ||| 0 / 0
 Hits 488 ||| 0
 Not first page 0 ||| 0
 Misses (expns/fails) 29 (29 /0) ||| 0 (0 /
 0)

CVB: Size 608, PerPage 13
 Pages / MaxPages 2 / 6400 ||| 0 / 45974
 FreePkts / TotalPkts 12 / 26 ||| 0 / 0
 Hits 12 ||| 0
 Not first page 0 ||| 0
 Misses (expns/fails) 2 (2 /0) ||| 0 (0 /
 0)

IOSIZE: Size 3120, PerPage 2
 Pages / MaxPages 0 / 6400 ||| 0 / 45974
 FreePkts / TotalPkts 0 / 0 ||| 0 / 0
 Hits 0 ||| 0
 Not first page 0 ||| 0
 Misses (expns/fails) 0 (0 /0) ||| 0 (0 /
 0)

This example shows the full output from this command.

2. SDA> XFC SHOW MEMORY/BRIEF
XFC Memory Summary

Current Maximum Cache Size : 8589934592 (8.0 GB)
Boottime Maximum Cache Size : -1

Permanent Data Pages: Allocated : 121600
 In use : 2739
 Pool Pages: Allocated : 6400
 In use : 128

403

Chapter 9. SDA XFC Extension

Dynamic Pages: Max Allowed : 919488
 Allocated : 0
 In use : 0
 Min Allowed : 20971
 Data Pages: Allowed : 873514
 In use : 0
 Pool Pages: Allowed : 45974
 In use : 0
 PFN List : 0
 Non PFN List : 0

Total Cache Memory (bytes) : 1048621248 (1000.0 MB)

This example shows the brief output from this command.

9.8. XFC SHOW SUMMARY
Displays general information about the Extended File Cache.

Format
XFC SHOW SUMMARY [/STATISTICS]

Parameters
None.

Qualifiers
/STATISTICS

Additionally, displays read and write activity arranged by I/O size.

Example
SDA> XFC SHOW SUMMARY
XFC Summary

Extended File Cache V1.0 Let unk I/Os through (Apr 18 2002 15:01:16)
Anchor Block Address: FFFFFFFF80D30210
Build Id:
Cache State: 0000A010
Cache in no-cache state: False
MaxAllowedCacheMode: eNodeFullXFC
Minimum cache size in Pages: 0001F400 (128000)

General

Extent Hash Table Address: FFFFFFFF7F780000
Extent Hash Table Buckets: 524287
File Hash Table Address: FFFFFFFF7FF80000
File Hash Table Buckets: 32767
Count of private CTXs: 10
Count of private FKBs: 403
Count of private DIOBMs: 3

404

Chapter 9. SDA XFC Extension

LRU

LRU Priority 0 Queue Address: FFFFFFFF80D30288
 Queue Length: 00000446 (1094)
LRU Priority 1 Queue Address: FFFFFFFF80D30298
 Queue Length: 00000AA5 (2725)
qhdContexts Address FFFFFFFF80D302B0
qhdIRPs Address FFFFFFFF80D302C0

Spinlock

Cache Spinlock: 8125E780
 Last Acquiring Module: ROOT$:[XFC.TMPSRC]XFC_SYS.C;4
 Acquiring Line: 2887
 Acquiring IPL: 0

Cache Tracing

Number of trace entries: 10000
Size of trace buffer: 800000
Current trace level: 4
Lost trace entrys: 0
Current trace sequence number: 318768

System Wide I/O Statistics since last reset

Time of Last System-Wide Reset: 19-APR-2002 07:10:23.43

Total cache calls: 4505
Total cache calls: 4505
 - Sum of Paging I/Os: 2493
 - and other QIOs: 2012
 - and NoCVB or PermNoCache QIOs: 0

Total Virtual Reads: 4197
Total Virtual Writes: 112
Total PageIOs not cached: 196
Total Logical I/Os: 0
Total Physical I/Os: 0
Total bypass write I/Os: 0

Synchronous I/O completions: 598
Physical I/O completions: 0
Total PID completion I/Os: 0

Total num IOs on reserved files: 1606
Total num IOs on global sections: 247
Count of stalls performed: 13

System Wide Read Percentage: 97.40 %
System Wide Cache Hit ratio: 57.90 %

System-Wide Read Statistics since last reset
--
Virtual Reads: 4197
 Sum of Read Around Count: 179
 and Read Through Count: 4018

405

Chapter 9. SDA XFC Extension

Reads Completed: 4197
Read Hits: 2495
Read Cache Hit Percentage: 59.45 %
Total Synch Completion Count: 598
Read Around due to Het. Cluster: 0
Read Around due to Modifiers: 0
Read Around due to Size: 16
Total reads past EOF: 1
Total I/Os with read-ahead: 239
Read Hits due to read-ahead: 307
Paging I/Os: 2493

System-Wide Write Statistics since last reset

Virtual Writes: 112
 Sum of Write Around Count: 0
 and Write Through Count: 112
Write Around due to Het. Cluster: 0
Writes Completed: 112
Write Around due to Modifiers: 0
Write Around due to Size: 0
Total writes past EOF: 0

File/Volume Statistics

Open Files: 239
Closed Files in the Cache: 164
Number of files truncated: 3
Volumes in Full XFC Mode: 0
Volumes in VIOC Compatible Mode: 13
Volumes in No Caching Mode: 1
Volumes in Perm. No Caching Mode: 0
Volume Queue: FFFFFFFF80D30238

File/Volume Statistics

FAL locks currently held: 370
FAL locks chosen to skip: 0
FAL locks acquired since boot: 374
FAL locks released since boot: 4
FAL locks converted: 55

I/Os that have stalled for FAL 0
CACHE$ACCESS stalls for CFB 0
ulStallOpQStalls 1
Read-thro->Read-around conv. 0
Writes converted to write-around 0
ulLockResourceExhaustionRetries: 0
ulFALLocksEverInContention: 3
ulFALUpConversionRequests: 3
ulFALLocksConvertedToPR: 0
ulFALLocksConvertedToNL: 0
FAL BlkASTs received: 1
FAL BlkASTs ignored: 0
ECBs Split Right: 2229
ECBs Split Left: 1710
ECBs Split Three Ways: 786
ECBs Requiring no splits: 5802

406

Chapter 9. SDA XFC Extension

Volume Lock Statistics

VIL Blocking ASTs received 0
VIL Blocking ASTs stalled 0
VIL Blocking ASTs started 0
VIL Blocking ASTs completed 0
VIL Up-conversion requests made 0
VIL Up-conversion grants 0
VCML Blocking ASTs received 0
VCML Blocking ASTs stalled 0
VCML Blocking ASTs started 0
VCML Blocking ASTs completed 0
VCML Up-conversion requests made 0
VCML Up-conversion grants 0
Stalls on VCML up-conversion 0
Restarts on VCML up-conversion 0

Quiesce and Depose Statistics

Quiesce and Depose files Stalled: 0
File Quiesce and Deposes Started: 114
File Quiesce and Deposes Cmpltd: 114
File Quiesce and Deposes Cmpltd: 114
Q&D CTX used count: 0
Q&D CTX in use: False

Most recent Depose time 0.0005 msec.
Most recent Depose ECB count 0
Maximum Depose time 0.1125 msec.
Maximum ECBs deposed 3
Total Depose time 0.0002 seconds
Total ECBs deposed 6

Pending Lock Up-conversion Statistics

Up-conversions stalled: 0
Up-conversions started: 0

This example shows the output of detailed statistics and status for the cache.

9.9. XFC SHOW TABLES
Displays both the extent hash table (EHT) and the file hash table (FHT).

Format
XFC SHOW TABLES [/ALL][/EXTENT][/FILE][/SUMMARY]

Parameters
None.

407

Chapter 9. SDA XFC Extension

Qualifiers
/ALL

Displays the contents of the extent hash table (EHT) and file hash table (FHT). This is the default.

/EXTENT

Displays only the contents of the EHT.

/FILE

Displays only the contents of the FHT.

/SUMMARY

Displays summary information about EHT and FHT.

Description
The SHOW TABLES command outputs information about the two hash tables used by XFC to locate
key data structures.

Example
SDA> XFC SHOW TABLES/SUMMARY
Full Map of CFB HashTable

FHT: Contents of 32768 buckets

 0(32366)
 1(401)
 2(1)
Total number of CFBs: 403
Longest chain length: 2
Shortest chain length: 0
Shortest chain length: 0
Average chain length: 0.01

Full Map of PECB HashTable

EHT: verifying 524288 buckets

 0(520501)
 1(3755)
 2(32)
Total number of PECBs: 3819
Longest chain length: 2
Shortest chain length: 0
Average chain length: 0.01

This example shows summary output about each of the hash tables.

408

Chapter 9. SDA XFC Extension

9.10. XFC SHOW TRACE
Displays all or selected portions of the XFC trace buffer, starting with the most recent entry and moving
backward in time.

Format
XFC SHOW TRACE [/ALL]/CONTAINING=value |/CPU=cpu-num

|/LINENUMBER=linenumber

|/MATCH [=[AND|OR]] |/Px=value |/RAW]

Parameters
None.

Qualifiers
/ALL

Displays the entire trace buffer. This is the default.

/CONTAINING=value

Displays only records where any of the traced parameters is equal to value.

/CPU=cpu-num

Displays only records from threads executing on CPU cpu-num.

/LINENUMBER=linenumber

Displays only records from tracepoints at line linenumber in the relevant source files.

/MATCH [= AND|OR]

Alters the sense of the match condition when more than one of the filter qualifiers /CPU, /
LINENUMBER, /FILENAME, /Px, or /CONTAINING are specified.

/Px=value

Displays only records where one of the traced parameters P1, P2, P3, or P4 is equal to value.

/RAW

Displays contents of trace records in hexadecimal format without interpretation. By default, the
values are displayed in human readable format with filenames.

Description
The SHOW TRACE command outputs the contents of each entry in the XFC trace buffer. Currently,
detailed XFC tracing is enabled only for debug versions of XFC.

409

Chapter 9. SDA XFC Extension

Example

This example shows the output of XFC trace information.

9.11. XFC SHOW VOLUME
Displays the contents of a cache volume block (CVB).

Format
XFC SHOW VOLUME [address]/BRIEF|/FULL| /NAME=DISK $volume_label| /STATISTICS

Parameters
address

The address of a CVB. If no address is supplied, then all volumes are displayed.

Qualifiers
/BRIEF

Displays summary information for each volume.

/FULL

Displays a complete list of information about each volume. This is the default.

/NAME=DISK$volume_label

Displays information for the volume with the specified name.

/STATISTICS

Displays the read and write I/O activity for this volume. The /STATISTICS qualifier is incompatible
with the /BRIEF qualifier.

Description
The SHOW VOLUME command shows state information and statistics about all volumes mounted on
the system.

410

Chapter 9. SDA XFC Extension

Examples
1.

The above example shows the output derived from invoking the /BRIEF qualifier.

2. SDA> XFC SHOW VOLUME FFFFFFFD831FE080
Cache Volume Block (CVB)

Statistics Valid From: 19-APR-2002 07:10:23.54

Name: DISK$FRROOG_RUBY
CVB Address: FFFFFFFD831FE080
Flink: FFFFFFFF80D30238
Blink: FFFFFFFD831FE300
Volume (VCB): FFFFFFFF81905100
Unit (UCB): FFFFFFFF8150F200
Files Queue: FFFFFFFD831FE0C0
 Flink: FFFFFFFD83111800
 Blink: FFFFFFFD831FC0A0
Cached Open Files: 236
Cached Closed Files: 157
Files Ever Opened: 502
Files Ever Deposed: 109
Pages Allocated: 2726
Total QIOs: 4195
Read Hit Count: 2408
Virtual Read Count: 4085
Virtual Write Count: 110
Read Percentage: 97 %
Hit Rate: 57 %
Average Overall I/O response time to this Volume
 in milliseconds: 2.1186
Average Cache Hit I/O response time to this Volume
 in milliseconds: 0.0789
Average Disk I/O response time to this Volume
 in milliseconds: 4.8671
Accuracy of I/O resp time: 83 %
Readahead Count: 233
Volume Caching Mode: evcmVIOCCompatible
Mounted /NOCACHE: False VCML Allows Caching: True
Quiescing: False Quiesce in Progress: False
No Cache from Logio: False VIL Blk AST Stall: False
Flush Pending: False VCML Blk AST Stall: False
VCML Blk CTX Stall: False VIL Blk CTX Stall: False
Dismount Stall: False Logio Stall: False

411

Chapter 9. SDA XFC Extension

Flush in Progress: False Cluster Trans Stall: False
Dismount Pending: False VIL Up Needed: False
Tqe In Use: False VCML Up Needed: False
VIL blocking AST CTX: 0000000000000000
VCML blocking AST CTX: 0000000000000000
Dismount Stall CTX: 0000000000000000
LogIO Stall CTX: 0000000000000000
Up conversion CTX: 0000000000000000
VIL lock id: 0100007A
VIL LogIO lock id: 00000000
VCML lock id: 010000FF
VCML LogIO lock id: 00000000
Logical IO safety: elogioNotSafe
LogIOMutex: 00000000818EB610
Last LogIO time: 00000000
Active I/O count: 0
Stalled Ops Queue: FFFFFFFD831FE0B0
 Flink: FFFFFFFD831FE0B0
 Blink: FFFFFFFD831FE0B0

Volumes found: 1

This example shows the output for a specific cache volume block (CVB).

412

Chapter 10. SDA Extensions and
Callable Routines
This chapter describes how to write, debug, and invoke an SDA Extension. This chapter also describes
the routines available to an SDA Extension.

10.1. Introduction
When analysis of a dump file or a running system requires intimate knowledge of data structures that
are not known to the System Dump Analyzer, the functionality of SDA can be extended by the addition
of new commands into which the necessary knowledge has been built. Note that in this description,
whenever a reference is made to accessing a dump file (ANALYZE/CRASH_DUMP), this also includes
accessing memory in the running system (ANALYZE/SYSTEM).

For example, a user-written device driver allocates nonpaged pool and records additional data about the
device there (logging different types of I/O, perhaps), and a pointer to the new structure is saved in the
device-specific extension of the UCB. After a system crash, the only way to look at the data from SDA is
to do the following:

• Invoke the SDA command DEFINE to define a new symbol (for example, UCB$L_FOOBAR)
whose value is the offset in the UCB of the pointer to the new structure.

• Invoke the SDA commands "SHOW DEVICE <device>" and "FORMAT UCB" to obtain the
address of the nonpaged pool structure.

• Invoke the SDA command "EXAMINE <address>;<length>" to display the contents of the data in
the new nonpaged pool structure as a series of hexadecimal longwords.

• Decode manually the contents of the data structure from this hexadecimal dump.

An SDA extension that knows the layout of the nonpaged pool structure, and where to find the pointer
to it in the UCB, could output the data in a formatted display that alerts the user to unexpected data
patterns.

10.2. Description
The following discussion uses an example of an SDA extension that invokes the MBX command to
output a formatted display of the status of the mailbox devices in the system. The source file, MBX
$SDA.C, is provided in SYS$EXAMPLES.

An SDA extension consists of a shareable image, in this case MBX$SDA.EXE, either located in
the directory SYS$LIBRARY or found by translating the logical name MBX$SDA. It contains two
universal symbols: SDA$EXTEND, the entry point; and SDA$EXTEND_VERSION, the address
of a longword that contains the version of the interface used (in the format of major/minor ident),
which allows SDA to confirm it has activated a compatible extension. The image contains at least
two modules: MBX$SDA, the user-written module that defines the two symbols and provides the
code and data necessary to produce the desired formatted output; and SDA_EXTEND_VECTOR,
which provides jackets for all of the callable SDA routines, and is found in SYS$LIBRARY:VMS
$VOLATILE_PRIVATE_INTERFACES.OLB. The user-written portion can be split into multiple
modules.

413

Chapter 10. SDA Extensions and Callable Routines

Whenever SDA receives an unrecognized command, like "SDA> MBX", it attempts to activate the
shareable image MBX$SDA at the SDA$EXTEND entry point. If you choose a command name that
matches the abbreviation of an existing command, SDA can be forced to activate the extension using the
"DO" command. For example, if you had an SDA extension called VAL$SDA, you could not activate it
with a command like "SDA> VAL" as SDA would interpret that as an abbreviation of its VALIDATE
command. But VAL$SDA can be activated by issuing "SDA> DO VAL".

With or without the "DO" prefix, the rest of the command line is passed to the extension; it is up to
the extension to parse it. The example extension MBX$SDA includes support for commands of the
form "SDA> MBX SUMMARY" and "SDA> MBX <address>" to demonstrate this. If the extension
is invoked with no arguments, it should do no more than display a simple announcement message, or
prompt for input. This assists in the debugging of the extension, as described in Section 10.3.

Section 10.2.1 describes how to compile, link, and invoke an SDA extension, and describes what an
SDA extension should contain.

10.2.1. Compiling and Linking an SDA Extension
The user-written module is only supported when written in HP C (minimum Version 5.2), following the
pattern of the example extension, MBX$SDA.C. It should be compiled and linked using commands of
the following form:

$cc mbx$sda + sys$library:sys$lib_c /library
$link /share -
 mbx$sda.obj, -
 sys$library:vms$volatile_private_interfaces /library, -
 sys$input /option
 symbol_vector = (sda$extend=procedure)
 symbol_vector = (sda$extend_version=data)

Note

1. You can include the qualifier /INSTRUCTION=NOFLOAT on the compile command line if floating-
point instructions are not needed.

2. The + SYS$LIBRARY:SYS$LIB_C /LIBRARY is not needed on the compile command line
if the logical name DECC$TEXT_LIBRARY is defined and translates to SYS$LIBRARY:SYS
$LIB_C.TLB.

3. If the user-written extension needs to signal SDA condition codes, or output their text with
$PUTMSG, you should add the qualifier /INCLUDE=SDAMSG to the parameter SYS
$LIBRARY:VMS$VOLATILE_PRIVATE_INTERFACES /LIBRARY.

10.2.2. Invoking an SDA Extension
You can invoke the SDA extension as follows:

$define mbx$sda sys$disk:[]mbx$sda
$analyze /system
SDA>mbx summary
SDA>mbx <address>

10.2.3. Contents of an SDA Extension
At a minimum, the user-written module must contain:

414

Chapter 10. SDA Extensions and Callable Routines

• #include statements for DESCRIP.H and SDA_ROUTINES.H

• The global variable SDA$EXTEND_VERSION, initialized as follows:

 int sda$extend_version = SDA_FLAGS$K_VERSION;

• The routine SDA$EXTEND (prototype follows)

Optionally, the user-written module may also contain the statement:

 #define __NEW_STARLET

You should use this option because it provides type checking of function arguments and gives
consistency in casing and naming conventions.

The entry point in the user-written module, SDA$EXTEND, is called as a routine with three arguments
and no return value. The declaration is as follows:

 void sda$extend (
 int *transfer_table,
 struct dsc$descriptor_s *cmd_line,
 SDA_FLAGS sda_flags)

The arguments in this code example have the following meanings:

Table 10.1. SDA$EXTEND Arguments

Line of Code Meaning

transfer_table Address of the vector table in the base image. The user-written
routine SDA$EXTEND must copy this to SDA$VECTOR_TABLE
(declared in SDA_ROUTINES.H) before any SDA routines can be
called.

cmd_line Address of the descriptor of the command line as entered by the
user, less the name of the extension. So, if you enter "SDA> MBX"
or "SDA> DO MBX", the command line is a zero length string. If
you enter the command "SDA> MBX 80102030", the command
line is " 80102030" (the separating space is not stripped).
Definition for the following four bits in this structure:
Bit Meaning

sda_flags.sda_flags$v_override Indicates SDA has been
activated with the ANALYZE/
CRASH_DUMP/OVERRIDE
command

sda_flags.sda_flags$v_current Indicates SDA has been activated
with the ANALYZE/SYSTEM
command or was invoked from
the kept debugger during an SCD
session

sda_flags

sda_flags.sda_flags$v_target Indicates that SDA was invoked
from the kept debugger during
an SCD or SDD session or when
analyzing a process dump

415

Chapter 10. SDA Extensions and Callable Routines

Line of Code Meaning

sda_flags.sda_flags$v_process Indicates SDA was activated with
the ANALYZE/CRASH_DUMP
command to analyze a process
dump

sda_flags.sda_flags$v_ia64 Indicates that SDA is analyzing
an Integrity server system or
dump

None of the above bits set Indicates SDA was activated with
the ANALYZE/CRASH_DUMP
command to analyze an Alpha
system dump

Other bits Reserved to VSI:may be nonzero

The first executable statement of the routine must be to copy TRANSFER_TABLE to SDA
$VECTOR_TABLE (which is declared in SDA_ROUTINES.H):

 sda$vector_table = transfer_table;

If this is not done, you cannot call any of the routines described below. Any attempts to call the routines
receive a status return of SDA$_VECNOTINIT. (For routines defined not to return a status, this value
can be found only by examining the return value directly.)

The next statement should be one to establish a condition handler, as it is often difficult to track down
errors in extensions such as access violations because the extension is activated dynamically with LIB
$FIND_IMAGE_SYMBOL. A default condition handler, SDA$COND_HANDLER, is provided that
outputs the following information in the event of an error:

• The error condition

• The VMS version

• A list of activated images, with start and end virtual addresses

• The signal array and register dump

• The current call frame chain

You can establish this condition handler as follows:

 lib$establish (sda$cond_handler);

Note

The error condition, signal array, and register dump are output directly to SYS$OUTPUT and/or SYS
$ERROR, and are not affected by the use of the SDA commands SET OUTPUT and SET LOG.

Thus, a minimal extension would be:

 #define __NEW_STARLET 1
 #include <descrip.h>
 #include <sda_routines.h>

416

Chapter 10. SDA Extensions and Callable Routines

 int sda$extend_version = SDA_FLAGS$K_VERSION;

 void sda$extend (int *transfer_table,
 struct dsc$descriptor_s *cmd_line,
 SDA_FLAGS sda_flags)
 {
 sda$vector_table = transfer_table;
 lib$establish (sda$cond_handler);

 sda$print ("hello, world");
 return;
 }

10.3. Debugging an Extension
In addition to the "after-the-fact" information provided by the condition handler, you can debug SDA
extensions using the OpenVMS Debugger. A second copy of the SDA image, SDA_DEBUG.EXE, is
provided in SYS$SYSTEM. By defining the logical name SDA to reference this image, you can debug
SDA extensions as follows:

• Compile your extension /DEBUG/NOOPT and link it /DEBUG or /DSF.

• Define logical names for SDA and the extension, and invoke SDA.

• Type SET BREAK START_EXTENSION at the initial DBG> prompt, and then type GO.

• Invoke the extension at the SDA> prompt.

• When Debug prompts again, use Debug commands to set breakpoints, and so on, in the extension
and then type GO.

• Invoke the extension, providing the necessary arguments.

An example of the preceding steps is as follows:

 $ cc /debug /noopt mbx$sda + sys$library:sys$lib_c /library
 $ link /debug /share -
 mbx$sda.obj, -
 sys$library:vms$volatile_private_interfaces /library, -
 sys$input /option
 symbol_vector = (sda$extend=procedure)
 symbol_vector = (sda$extend_version=data)
 $!
 $ define mbx$sda sys$disk:[]mbx$sda
 $ define sda sda_debug
 $ analyze /system
 ...
 DBG> set break start_extension
 DBG> go
 ...
 SDA> mbx
 break at routine START\START_EXTENSION
 ...
 DBG> set image mbx$sda
 DBG> set language c
 DBG> set break /exception

417

Chapter 10. SDA Extensions and Callable Routines

 DBG> go
 MBX commands: 'MBX SUMMARY' and 'MBX <address>'
 SDA> mbx summary
 ...
 SDA> mbx <address>
 ...
 %DEBUG-I-DYNMODSET, setting module MBX$SDA
 %SYSTEM-E-INVARG, invalid argument
 ...
 DBG>

10.4. Callable Routines Overview
The user-written routine may call SDA routines to accomplish any of the following tasks:

• Read the contents of memory locations in the dump.

• Translate symbol names to values and vice-versa, define new symbols, and read symbol table files.

• Map an address to the activated image or executive image that contains that address.

• Output text to the terminal, with page breaks, page headings, and so on (or output to a file if the
SDA commands SET OUTPUT or SET LOG have been used).

• Allocate and deallocate dynamic memory.

• Validate queues/lists.

• Format data structures.

• Issue any SDA command.

Note the following points before using the callable routines described here:

• The following three routines are used to read the contents of memory locations in the dump:

• SDA$TRYMEM is called from both SDA$GETMEM and SDA$REQMEM as the lower-level
routine that actually does the work. SDA$TRYMEM returns success/failure status in R0, but
does not signal any errors. Use it directly when you expect that the location being read might be
inaccessible. The caller of SDA$TRYMEM handles this situation by checking the status returned
by SDA$TRYMEM.

• SDA$GETMEM signals a warning when any error status is returned from SDA$TRYMEM.
Signaling a warning prints out a warning message, but does not abort the SDA command in
progress. You should use this routine when you expect the location to be read to be accessible.
This routine does not prevent the command currently being executed from continuing. The caller
of SDA$GETMEM must allow for this by checking the status returned by SDA$GETMEM.

• SDA$REQMEM signals an error when any error status is returned from SDA$TRYMEM.
Signaling an error prints out an error message, aborts the SDA command in progress, and returns
to the "SDA>" prompt. You should use this routine when you expect the location to be read to
be accessible. This routine prevents the command currently being executed from continuing. The
caller of SDA$REQMEM does not resume if an error occurs.

• You should use only the routines provided to output text. Do not use printf() or any other standard
routine. If you do, the SDA commands SET OUTPUT and SET LOG will not produce the

418

Chapter 10. SDA Extensions and Callable Routines

expected results. Do not include control characters in output (except tab); in particular, avoid <CR>,
<LF>,<FF>, and the FAO directives that create them. Use the FAO directive !AF when contents of
memory returned by SDA$TRYMEM, and so on, are being displayed directly, because embedded
control characters will cause undesirable results. For example, displaying process names or resource
names that contain particular control characters or escape sequences can lock up the terminal.

• You should use only the routines provided to allocate and deallocate dynamic memory. Do not use
malloc() and free(). Where possible, allocate dynamic memory once, the first time the extension
is activated, and deallocate it only if it needs to be replaced by a larger allocation. Because SDA
commands can be interrupted by invoking another command at the "Press return for more" prompt,
it is very easy to cause memory leaks.

• Some routines expect 32-bit pointers, and others expect 64-bit pointers. At first this not may appear
to be logical, but in fact it is. All code and data used by SDA and any extensions must be in P0 or
P1 space, as SDA does not need to (and does not) use P2 space for local data storage. However,
addresses in the system dump (or running system, in the case of ANALYZE/SYSTEM) are 64-bit
addresses, and SDA must provide access to all locations in the dump.

So, for example, the first two arguments to the routine SDA$TRYMEM are:

 VOID_PQ start /* 64-bit pointer */

 void *dest /* 32-bit pointer */

They specify the address of interest in the dump and the address in local storage to which the dump
contents are to be copied.

• Common Bitmask Block (CBB) routines, SDA$CBB_xxx, are designed for use with local copies of
the CBB structures that describe the CPUs in use in a system. The CBB structures are assumed to
be at least CBB$K_STATIC_BLOCK bytes in length. The definitions of the various CBB constants
and field names used by these routines can be found in CBBDEF.H in SYS$LIBRARY:SYS
$LIB_C.TLB.

The set of routines is not intended to be an exhaustive set of all possible CBB-related operations, but
it provides those operations known to be needed. The routines might not work as expected with CBB
structures that are set up for any purpose other than to describe CPUs.

10.5. Routines
The following sections describe the SDA extension callable routines.

10.5.1. SDA$ADD_SYMBOL
Adds a symbol to SDA's local symbol table.

Format

void sda$add_symbol (char *symbol_name, uint64 symbol_value);

Arguments

symbol_name

419

Chapter 10. SDA Extensions and Callable Routines

OpenVMS usage char_string

type character string

access read only

mechanism by reference

Address of symbol name string (zero-terminated).

symbol_value

OpenVMS usage quadword_unsigned

type quadword (unsigned)

access read only

mechanism by value

The symbol value.

Description
SDA maintains a list of symbols and the corresponding values. SDA$ADD_SYMBOL is used to insert
additional symbols into this list, so that they can be used in expressions and during symbolization.

Condition Values Returned
None.

Example
sda$add_symbol ("MBX", 0xFFFFFFFF80102030);

This call defines the symbol MBX to the hexadecimal valueFFFFFFFF80102030.

10.5.2. SDA$ALLOCATE
Allocates dynamic memory.

Format
void sda$allocate (uint32 size, void **ptr_block);

Arguments
size

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Size of block to allocate (in bytes).

420

Chapter 10. SDA Extensions and Callable Routines

ptr_block

OpenVMS usage address

type longword (unsigned)

access write only

mechanism by reference

Address of longword to receive address of block.

Description
The requested memory is allocated and the address returned. Note that this is the only supported
mechanism for allocation of dynamic memory.

Related Routine

SDA$DEALLOCATE

Condition Values Returned
None.

If no memory is available, the error is signaled and the SDA session aborted.

Example
PCB *local_pcb;
...
sda$allocate (PCB$C_LENGTH, (void *)&local_pcb);

This call allocates a block of heap storage for a copy of a PCB, andstores its address in the pointer
LOCAL_PCB.

10.5.3. SDA$CBB_BOOLEAN_OPER
Performs a Boolean operation on a pair of CBBs.

Format
int sda$cbb_boolean_oper (CBB_PQ input_cbb, CBB_PQ output_cbb, int operation);

Arguments
input_cbb

OpenVMS usage address

type CBB structure

access read only

mechanism by reference

The address of the first (input) CBB structure.

421

Chapter 10. SDA Extensions and Callable Routines

output_cbb

OpenVMS usage address

type CBB structure

access read/write

mechanism by reference

The address of the second (output) CBB structure.

operation

OpenVMS usage longword

type longword (unsigned)

access read only

mechanism by value

The desired operation from the following list:

CBB$C_OR The logical sum of the two CBBs is performed and
the result (B = A | B) is written to the output CBB.

CBB$C_BIC The logical product with complement of the two
CBBs is performed and the result (B = B & ~A) is
written to the output CBB.

Description
The desired Boolean operation is performed on the two CBB structures, and the result is written to the
second (output) structure.

Condition Values Returned

SS$_BADPARAM The number of valid bits in the input and output
CBBs is different.

SS$_WASCLR All bits in the resulting output CBB are clear.
SS$_WASSET At least one bit in the resulting output CBB is set.

Example
int status;
extern CBB active_set,
 configure_set;
CBB inactive_set;
sda$cbb_copy (&configure_set, &inactive_set);
status = sda$cbb_boolean_oper (&active_set, &inactive_set, CBB$C_BIC);
if (status == SS$_WASSET)
 sda$print ("There are inactive CPUs in the system");

This example shows how the set of active CPUs and the set of configured CPUs can be manipulated to
create a set of inactive CPUs.

422

Chapter 10. SDA Extensions and Callable Routines

10.5.4. SDA$CBB_CLEAR_BIT
Clears the specified bit in a CBB.

Format
int sda$cbb_clear_bit (CBB_PQ cbb, int bit);

Arguments
cbb

OpenVMS usage address

type CBB structure

access read/write

mechanism by reference

The address of the CBB structure to be modified.

bit

OpenVMS usage longword

type longword (unsigned)

access read only

mechanism by value

The bit in the CBB to be cleared. If the bit number is -1, clears all bits.

Description
The specified bit (or all bits) in the CBB is cleared.

Condition Values Returned

SS$NORMAL Successful completion
SS$BADPARAM The bit number is out of range

Example
int status;
extern int next;
extern CBB active_set;
status = sda$cbb_clear_bit (&active_set, next);
if (!(status & 1))
 sda$print ("Bad CPU specified: !XL", next);

This example shows how a bit in a CBB is cleared.

10.5.5. SDA$CBB_COPY
Copies the contents of one CBB to another.

423

Chapter 10. SDA Extensions and Callable Routines

Format
int sda$cbb_copy (CBB_PQ input_cbb, CBB_PQ output_cbb);

Arguments
input_cbb

OpenVMS usage address

type CBB structure

access read only

mechanism by reference

The address of the CBB structure to be copied.

output_cbb

OpenVMS usage address

type CBB structure

access write only

mechanism by reference

The address of the CBB structure to receive the copy.

Description
The specified CBB is copied.

Condition Values Returned
None.

10.5.6. SDA$CBB_FFC
Locates the first clear bit in a CBB.

Format
int sda$cbb_ffc (CBB_PQ cbb, int start_bit);

Arguments
cbb

OpenVMS usage address

type CBB structure

access read only

mechanism by reference

The address of the CBB structure to be searched.

424

Chapter 10. SDA Extensions and Callable Routines

start_bit

OpenVMS usage longword

type longword (unsigned)

access read only

mechanism by value

The first bit in the CBB to be checked.

Description
The CBB structure is searched, starting at the specified bit, for a clear bit.

Condition Values Returned

bit_number If a clear bit is found, its bit number is returned.
If no clear bit is found (all bits from start_bit to
cbb->cbb$l_valid_bits are set), then the number of
valid bits is returned.

Example
int bit;
extern int start;
extern CBB active_set;
bit = sda$cbb_ffc (&active_set, start);
if (bit >= active_set.cbb$l_valid_bits)
 sda$print ("No clear bits in active set");
else
 sda$print ("First clear bit in active set = !XL", bit);

This example shows how the next clear bit in a CBB can be located.

10.5.7. SDA$CBB_FFS
Locates the first set bit in a CBB.

Format
int sda$cbb_ffs (CBB_PQ cbb, int start_bit);

Arguments
cbb

OpenVMS usage address

type CBB structure

access read only

mechanism by reference

The address of the CBB structure to be searched.

425

Chapter 10. SDA Extensions and Callable Routines

start_bit

OpenVMS usage longword

type longword (unsigned)

access read only

mechanism by value

The first bit in the CBB to be checked.

Description
The CBB structure is searched for a set bit, starting at the specified bit.

Condition Values Returned

bit_number If a set bit is found, its bit number is returned. If no
set bit is found (all bits from start_bit to cbb->cbb
$l_valid_bits are clear), then the number of valid
bits is returned.

Example
int bit;
extern int start;
extern CBB active_set;
bit = sda$cbb_ffs (&active_set, start);
if (bit >= active_set.cbb$l_valid_bits)
 sda$print ("No set bits in active set");
else
 sda$print ("First set bit in active set = !XL", bit);

This example shows how the next set bit in a CBB can be located.

10.5.8. SDA$CBB_INIT
Initializes a CBB structure to a known state.

Format
void sda$cbb_init (CBB_PQ cbb);

Arguments
cbb

OpenVMS usage address

type CBB structure

access read only

mechanism by reference

The address of the CBB structure to be initialized.

426

Chapter 10. SDA Extensions and Callable Routines

Description
The fields of the CBB that describe its layout are initialized as necessary for a CPU CBB. The actual
bitmask is zeroed.

Condition Values Returned
None.

10.5.9. SDA$CBB_SET_BIT
Sets the specified bit in a CBB.

Format
int sda$cbb_set_bit (CBB_PQ cbb,int bit);

Arguments
cbb

OpenVMS usage address

type CBB structure

access read/write

mechanism by reference

The address of the CBB structure to be modified.

bit

OpenVMS usage longword

type longword (unsigned)

access read only

mechanism by value

The bit in the CBB to be set. If the bit number is -1, set all bits.

Description
The specified bit (or all bits) in the CBB is set.

Condition Values Returned

SS$NORMAL Successful completion.
SS$BADPARAM The bit number is out of range.

Example
int status;

427

Chapter 10. SDA Extensions and Callable Routines

extern int next;
extern CBB active_set;
status = sda$cbb_set_bit (&active_set, next);
if (!(status & 1))
 sda$print ("Bad CPU specified: !XL", next);

This example shows how a bit in a CBB is set.

10.5.10. SDA$CBB_TEST_BIT
Tests the specified bit in a CBB.

Format
int sda$cbb_test_bit (CBB_PQ cbb,int bit);

Arguments
cbb

OpenVMS usage address

type CBB structure

access read only

mechanism by reference

The address of the CBB structure to be tested.

bit

OpenVMS usage longword

type longword (unsigned)

access read only

mechanism by value

The bit in the CBB to be tested.

Description
The specified bit in the CBB is tested and its value returned.

Condition Values Returned

SS$_WASSET The specified bit was set.
SS$_WASCLR The specified bit was clear.
SS$_BADPARAM The bit number is out of range.

Example
int status;
extern int next;

428

Chapter 10. SDA Extensions and Callable Routines

extern CBB active_set;
status = sda$cbb_test_bit (&active_set, next);
if (!(status & 1))
 sda$print ("Bad CPU specified: !XL", next);
else if (status == SS$_WASSET)
 sda$print ("CPU !XL was set", next);
else
 sda$print ("CPU !XL was clear", next);

This example shows how a bit in a CBB is tested.

10.5.11. SDA$DBG_IMAGE_INFO
Displays a list of activated images together with their virtual addressranges for debugging purposes.

Format
void sda$dbg_image_info ();

Arguments
None.

Description
A list of the images currently activated, with their start and endaddresses, is displayed. This is provided
as a debugging aid for SDAextensions.

Condition Values Returned
None.

Example
sda$dbg_image_info ();

SDA outputs the list of images in the following format:

Current VMS Version: "X6DX-FT1"

 Process Activated Images:

 Start VA End VA Image Name
 00010000 000301FF SDA
 00032000 00177FFF SDA$SHARE
 7B508000 7B58BFFF DECC$SHR
 7B2D8000 7B399FFF DPML$SHR
 7B288000 7B2C9FFF CMA$TIS_SHR
 7B698000 7B6D9FFF LBRSHR
 0021A000 0025A3FF SCRSHR
 00178000 002187FF SMGSHR
 7B1E8000 7B239FFF LIBRTL
 7B248000 7B279FFF LIBOTS
 80C140D0 80C23120 SYS$BASE_IMAGE
 80C036B8 80C05288 SYS$PUBLIC_VECTORS
 002C6000 002D31FF PRGDEVMSG

429

Chapter 10. SDA Extensions and Callable Routines

 002D4000 002DA9FF SHRIMGMSG
 002DC000 002DFFFF DECC$MSG
 00380000 003E03FF MBX$SDA

10.5.12. SDA$DEALLOCATE
Deallocates and frees dynamic memory.

Format
void sda$deallocate (void *ptr_block, uint32 size);

Arguments
ptr_block

OpenVMS usage address

type longword (unsigned)

access read only

mechanism by value

Starting address of block to be freed.

size

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Size of block to deallocate (in bytes).

Description
The specified memory is deallocated. Note that this is the only supported mechanism for deallocation of
dynamic memory.

Related Routine

SDA$ALLOCATE

Condition Values Returned
None.

If an error occurs, it is signaled and the SDA session aborted.

Example
PCB *local_pcb;
...

430

Chapter 10. SDA Extensions and Callable Routines

sda$deallocate ((void *)local_pcb, PCB$C_LENGTH;

This call deallocates the block of length PCB$C_LENGTH whose address isstored in the pointer
LOCAL_PCB.

10.5.13. SDA$DELETE_PREFIX
Deletes all symbols with the specified prefix.

Format
void sda$delete_prefix (char *prefix);

Arguments
prefix

OpenVMS usage char_string

type character string

access read only

mechanism by reference

The address of the prefix string.

Description
This routine searches the SDA symbol table and deletes all symbols that begin with the specified string.

Condition Values Returned
None.

10.5.14. SDA$DISPLAY_HELP
Displays online help.

Format
void sda$display_help (char *library_desc, char *topic_desc);

Arguments
library

OpenVMS usage char_string

type character string

access read only

mechanism by reference

Address of library filespec. Specify as zero-terminated ASCII string.

431

Chapter 10. SDA Extensions and Callable Routines

topic

OpenVMS usage char_string

type character string

access read only

mechanism by reference

Address of topic name. Specify as zero-terminated ASCII string.

Description
Help from the specified library is displayed on the given topic.

Condition Values Returned
None.

Example
sda$display_help ("SYS$HELP:SDA", "HELP");

This call produces the following output at the terminal:

HELP

 The System Dump Analyzer (SDA) allows you to inspect the contents
 of memory as saved in the dump taken at crash time or as exists
 in a running system. You can use SDA interactively or in batch
 mode. You can send the output from SDA to a listing file. You can
 use SDA to perform the following operations:

 Assign a value to a symbol
 Examine memory of any process
 Format instructions and blocks of data
 Display device data structures
 Display memory management data structures
 Display a summary of all processes on the system
 Display the SDA symbol table
 Copy the system dump file
 Send output to a file or device
 Read global symbols from any object module
 Send output to a file or device
 Read global symbols from any object module
 Search memory for a given value

 For help on performing these functions, use the HELP command and
 specify a topic.

 Format

 HELP [topic-name]

 Additional information available:

432

Chapter 10. SDA Extensions and Callable Routines

 Parameter

HELP Subtopic?

10.5.15. SDA$ENSURE
Ensures sufficient space on the current output page.

Format
void sda$ensure (uint32 lines);

Arguments
lines

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Number of lines to fit on a page.

Description
This routine checks and makes sure that the number of lines specifiedfit on the current page; otherwise,
it issues a page break.

Condition Values Returned
None.

Example
sda$ensure (5);

This call ensures that there are five lines left on the current page,and it outputs a page break if there are
not.

10.5.16. SDA$FAO
Formats data into a buffer.

Format
char * sda$fao (char * ctrstr, char * buffer, int buflen,__optional_params);

Arguments
ctrstr

OpenVMS usage char_string

433

Chapter 10. SDA Extensions and Callable Routines

type character-coded text string

access read only

mechanism by reference

Address of a zero-terminated FAO control string.

buffer

OpenVMS usage char_string

type character string

access write only

mechanism by reference

Address of a string buffer into which to store the formatted string.

buflen

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Maximum size of the string buffer.

prmlst

OpenVMS usage varying_arg

type quadword (signed or unsigned)

access read only

mechanism by value

Optional FAO parameters. All arguments after buflen are copied into a quadword parameter list, as used
by $FAOL_64.

Description
Formats data into a buffer as a zero-terminated string.

Condition Values Returned

Address of terminating zero SDA$FAO returns the address of the terminating
zero in the output buffer. This allows successive
calls to SDA$FAO to append strings.

Example
char faobuf [16];
char *faoptr;
faoptr = sda$fao ("!XL",

434

Chapter 10. SDA Extensions and Callable Routines

 faobuf, sizeof (faobuf),
 0xffffffff);
sda$fao (".!XL",
 faoptr, sizeof (faobuf) - strlen (faobuf),
 0x80102030);

This example shows the use of SDA$FAO to append a formatted string to another formatted string.

10.5.17. SDA$FID_TO_NAME
Translates a file identification (FID) into the equivalent file name.

Format
int sda$fid_to_name (char *devptr, unsigned short *fidptr, char *bufptr, int buflen);

Arguments
devptr

OpenVMS usage char_string

type character string

access read only

mechanism by reference

The address of the device name string. The device name must be supplied in allocation-class device
name (ALLDEVNAM) format, but any leading underscore or trailing colon are ignored.

fidptr

OpenVMS usage address

type file identification

access read only

mechanism by reference

The address of the three-word file identification.

bufptr

OpenVMS usage char_string

type character string

access write only

mechanism by reference

The address of a string buffer into which to store the file name string.

buflen

OpenVMS usage longword

type longword (unsigned)

435

Chapter 10. SDA Extensions and Callable Routines

access read only

mechanism by value

The maximum length of the string buffer.

Description
When analyzing the current system, this routine calls LIB$FID_TO_NAME to translate the file
identification into a file name. When analyzing a dump, if there is a file data collection available and the
specified disk and file identification is included in the collection, the recorded file name will be returned.
Return the error condition SDA$_NOCOLLECT if there is no collection (for the entire system, this disk,
or just this file).

Condition Values Returned

SDA$_SUCCESS File identification successfully translated.
SDA$_NOCOLLECT No collection available for the system, the specified

disk, or the file identification.
Others An error occurred when LIB$FID_TO_NAME

was called.

Example
int status;
char buffer [132];
char *device = 1DKA0;
unsigned short fid [3] = {1, 1, 0};
status = sda$fid_to_name (device, &fid [0], buffer, 132);
if (status & 1)
 sda$print ("Filename is !AZ", buffer);
else
 sda$print ("File ID could not be translated");

This example shows the translation of file ID (1,1,0) on 1DKA0:, which is 1DKA0:
[000000]INDEXF.SYS;1.

10.5.18. SDA$FORMAT
Displays the formatted contents of a data structure.

Format
void sda$format (VOID_PQ struct_addr, __optional_params);

Arguments
struct_addr

OpenVMS usage address

type quadword (unsigned)

access read only

436

Chapter 10. SDA Extensions and Callable Routines

mechanism by value

The address in the system dump of the data structure to be formatted.

options

OpenVMS usage mask_longword

type longword (unsigned)

access read only

mechanism by value

The following provides more information on options:

Option Meaning

None Uses structure type from the xxx$B_TYPE and/
or xxx$B_SUBTYPE field of the structure. This is
the default.

SDA_OPT$M_FORMAT_TYPE Uses the structure type given in struct_prefix.
SDA_OPT$M_FORMAT_PHYSICAL Indicates that struct_addr is a physical address

instead of a virtual address.

struct_prefix

OpenVMS usage char_string

type character string

access read only

mechanism by reference

Address of structure name string (zero-terminated).

Description
This routine displays the formatted content of a data structure thatbegins at the address specified. If no
symbol prefix is passed, then SDA tries to find the symbols associated with the block type specifiedin the
block-type byte of the data structure.

Condition Values Returned
None.

Example
PCB *local_pcb;
PHD *local_phd;
...
sda$format (local_pcb);
sda$format (local_phd, SDA_OPT$M_FORMAT_TYPE, "PHD");

The first call formats the structure whose system address is held in the variable LOCAL_PCB,
determining the type from the type and/or subtype byte of the structure. The second call formats the
structure whose system address is held in the variable LOCAL_PHD, using PHD symbols.

437

Chapter 10. SDA Extensions and Callable Routines

10.5.19. SDA$FORMAT_HEADING
Formats a new page heading.

Format
void sda$format_heading (char *ctrstr, __optional_params);

Arguments
ctrstr

OpenVMS usage char_string

type character-coded text string

access read only

mechanism by reference

Address of control string (zero-terminated ASCII string).

prmlst

OpenVMS usage varying_arg

type quadword (signed or unsigned)

access read only

mechanism by value

FAO parameters that are optional. All arguments after the control string are copied into a quadword
parameter list as used by $FAOL_64.

Description
This routine prepares and saves the page heading to be used whenever SDA$NEW_PAGE is called.
Nothing is output either until SDA$NEW_PAGE is next called, or a page break is necessary because the
current page is full.

Condition Values Returned
None.

If the $FAOL_64 call issued by SDA$FORMAT_HEADING fails, the control string is used as the page
heading.

Example
char hw_name[64];
...
sda$get_hw_name (hw_name, sizeof(hw_name));
sda$format_heading (
 "SDA Extension Commands, system type !AZ",
 &hw_name);
sda$new_page ();

438

Chapter 10. SDA Extensions and Callable Routines

This example produces the following heading:

SDA Extension Commands, system type DEC 3000 Model 400
--

10.5.20. SDA$GET_ADDRESS
Gets the address value of the current memory location.

Format
void sda$get_address (VOID_PQ *address);

Arguments
address

OpenVMS usage quadword_unsigned

type quadword (unsigned)

access write only

mechanism by reference

Location to store the current 64-bit memory address.

Description
Returns the current address being referenced by SDA (location ".").

Condition Values Returned
None.

Example
VOID_PQ current_address;
...
sda$get_address (¤t_address);

This call stores SDA's current memory location in the long pointerCURRENT_ADDRESS.

10.5.21. SDA$GET_BLOCK_NAME
Returns the name of a structure, given its type and/or subtype.

Format
void sda$get_block_name (uint32 block_type, uint32 block_subtype, char *buffer_ptr, uint32 buffer_len);

Arguments
block_type

439

Chapter 10. SDA Extensions and Callable Routines

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Block type in range 0 - 255 (usually extracted from xxx$b_type field).

block_subtype

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Block subtype in range 0 - 255 (ignored if the given block type has no subtypes).

buffer_ptr

OpenVMS usage char_string

type character string

access write only

mechanism by reference

Address of buffer to save block name, which is returned as a zero-terminated string.

buffer_len

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Length of buffer to receive block name.

Description
Given the block type and/or subtype of a structure, this routine returns the name of the structure. If the
structure type is one that has no subtypes, the given subtype is ignored. If the structure type is one that
has subtypes, and the subtype is given as zero, the name of the block type itself is returned. If an invalid
type or subtype (out of range) is given, an empty string is returned.

Note

The buffer should be large enough to accommodate the largest possible block name (25 bytes plus the
termination byte). The block name is truncated if it is too long for the supplied buffer.

Condition Values Returned
None.

440

Chapter 10. SDA Extensions and Callable Routines

Example
char buffer[32];
...
sda$get_block_name (0x6F, 0x20,
 buffer,
 sizeof (buffer));
if (strlen (buffer) == 0)
 sda$print ("Block type: no named type/subtype");
else
 sda$print ("Block type: !AZ", buffer);

This example produces the following output:

 Block type: VCC_CFCB

10.5.22. SDA$GET_BUGCHECK_MSG
Gets the text associated with a bugcheck code.

Format
void sda$get_bugcheck_msg (uint32 bugcheck_code, char *buffer_ptr,uint32 buffer_size);

Arguments
bugcheck_code

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

The bugcheck code to look up.

buffer_ptr

OpenVMS usage char_string

type character string

access write only

mechanism by reference

Address of buffer to save bugcheck message.

buffer_len

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

441

Chapter 10. SDA Extensions and Callable Routines

Length of buffer to receive message.

Description
Gets the string representing the bugcheck code passed as the argument. The bugcheck message string is
passed in the buffer (represented as a pointer and length) as a zero-terminated ASCII string.

Note

The buffer should be large enough to accommodate the largest possible bugcheck message (128 bytes
including the termination byte). The text is terminated if it is too long for the supplied buffer.

Condition Values Returned
None.

Example
char buffer[128];
...
sda$get_bugcheck_msg (0x108, buffer, sizeof(buffer));
sda$print ("Bugcheck code 108 (hex) =");
sda$print ("!_\"!AZ\"", buffer);

This example produces the following output:

 Bugcheck code 108 (hex) =
 "DOUBLDALOC, Double deallocation of swap file space"

10.5.23. SDA$GET_CURRENT_CPU
Gets the CPU database address of the currently selected CPU.

Format
void sda$get_current_cpu (CPU **cpudb);

Arguments
cpudb

OpenVMS usage address

type longword (unsigned)

access write only

mechanism by reference

Location to which the address of the CPU database is to be returned.

Description
This routine causes SDA to return the address of the database for the currently selected CPU.

442

Chapter 10. SDA Extensions and Callable Routines

Condition Values Returned
None.

Example
#include <cpudef>
CPU *current_cpu;
sda$get_current_cpu (¤t_cpu);

In this example, the system address of the database for the current CPU is returned in variable
current_cpu.

10.5.24. SDA$GET_CURRENT_PCB
Gets the PCB address of the "SDA current process" currently selected.

Format
void sda$get_current_pcb (PCB **pcbadr);

Arguments
pcbadr

OpenVMS usage quadword_unsigned

type quadword (unsigned)

access write only

mechanism by reference

Location in which to store the current PCB address.

Description
The PCB address of the process currently selected by SDA is returned inthe specified location.

Condition Values Returned
None.

Example
PCB *current_pcb;
...
sda$get_current_pcb (¤t_pcb);

This call stores the system address of the PCB of the process currentlybeing referenced by SDA in the
pointer CURRENT_PCB.

10.5.25. SDA$GET_DEVICE_NAME
Gets the device name, given the UCB address of the device.

443

Chapter 10. SDA Extensions and Callable Routines

Format
int sda$get_device_name (VOID_PQ ucb_addr, char *name_buf, intname_len);

Arguments
ucb_addr

OpenVMS usage address

type quadword (unsigned)

access read only

mechanism by value

System address of the Unit Control Block of the device.

name_buf

OpenVMS usage char_string

type character string

access write only

mechanism by reference

Address of buffer to receive device name.

name_len

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Length of buffer to receive device name.

Description
This routine creates and returns the name for the device described by the given UCB. The device name
is returned as a zero-terminated ASCII string.

Note

The buffer should be large enough to accommodate the largest possible device name (32 bytes including
the termination byte). The text is terminated if it is too long for the supplied buffer.

Condition Values Returned

SDA$_SUCCESS Successful completion
SDA$_NOTAUCB The address given is not the address of a UCB

444

Chapter 10. SDA Extensions and Callable Routines

SDA$_NOREAD The data is inaccessible for some reason
Others The data is inaccessible for some reason

Example
VOID_PQ address;
 char buffer[32];
 ...
 sda$parse_command ("SHOW DEVICE DKB0:");
 sda$symbol_value ("UCB", (uint64 *)&address);
 sda$get_device_name (address, buffer, 32);
 sda$print ("UCB address: !XL = \"!AZ:\"", address, buffer);

This example produces the following output:

 UCB address: 814A9A40 = "31DKB0:"

10.5.26. SDA$GET_FLAGS
Obtain environment flags that indicate how SDA is being used.

Format
int sda$get_flags (SDA_FLAGS *flagaddr);

Arguments
flagaddr

OpenVMS usage address

type SDA_FLAGS structure

access write only

mechanism by reference

The address of the location where the environment flags are to be returned.

Description
SDA provides a set of flag bits that indicate if it is being used to analyze the current system, a system
dump, a process dump, and so on. The flag bits that can be returned are described in Table 10.1 and are
defined in SDA_FLAGSDEF.H in SYS$LIBRARY:SYS$LIB_C.TLB.

Condition Values Returned
None.

Example
SDA_FLAGS flags;
sda$get_flags (&flags);
if (flags.sda_flags$v_current)

445

Chapter 10. SDA Extensions and Callable Routines

 sda$print (Analyzing the current system);

This example shows the use of SDA$GET_FLAGS.

10.5.27. SDA$GET_HEADER
Returns pointers to local copies of the dump file header and the error log buffer together with the sizes
of those data structures; optionally returns pointers and sizes for the crash error log entry and trap data(if
any).

Format
void sda$get_header (DMP **dmp_header, uint32 *dmp_header_size, void**errlog_buf, uint32 *errlog_buf_size,__optional_params);

Arguments
dmp_header

OpenVMS usage address

type longword (unsigned)

access write only

mechanism by reference

Location in which to store the address of the copy of the dump file header held by SDA.

dmp_header_size

OpenVMS usage longword_unsigned

type longword (unsigned)

access write only

mechanism by reference

Location in which to store the size of the dump file header.

errlog_buf

OpenVMS usage address

type longword (unsigned)

access write only

mechanism by reference

Location in which to store the address of the copy of the error log buffer held by SDA.

errlog_buf_size

OpenVMS usage longword_unsigned

type longword (unsigned)

access write only

446

Chapter 10. SDA Extensions and Callable Routines

mechanism by reference

Location in which to store the size of the error log buffer.

crasherl_buf

OpenVMS usage address

type longword (unsigned)

access write only

mechanism by reference

Location in which to store the address of the copy of the crash error log entry held by SDA.

crasherl_buf_size

OpenVMS usage longword_unsigned

type longword (unsigned)

access write only

mechanism by reference

Location in which to store the size of the crash error log entry.

trapinfo_buf

OpenVMS usage address

type longword (unsigned)

access write only

mechanism by reference

Location in which to store the address of the copy of the trap info, if any, held by SDA.

trapinfo_buf_size

OpenVMS usage longword_unsigned

type longword (unsigned)

access write only

mechanism by reference

Location in which to store the size of the trap data, if any.

Description
This routine returns the addresses and sizes of the dump header, error logs, and optionally the crash error
log entry and trap data read by SDA when the dump file is opened. If this routine is called when the
running system is being analyzed with ANALYZE/SYSTEM, then the following occurs:

• Returns the address and size of SDA's dump header buffer, but the header contains zeroes

• Returns zeroes for the address and size of SDA's error log buffer, the crash error log entry and trap
data

447

Chapter 10. SDA Extensions and Callable Routines

Trap data only exists if an access violation occurs while the dump is being written. Usually, the returned
trapinfo_buf and trapinfo_buf_size will be zero.

Condition Values Returned
None.

Example
DMP *dmp_header;
uint32 dmp_header_size;
char *errlog_buffer;
uint32 errlog_buffer_size;
...
sda$get_header (&dmp_header,
 &dmp_header_size,
 (void **)&errlog_buffer,
 &errlog_buffer_size);

This call stores the address and size of SDA's copy of the dump file header in DMP_HEADER and
DMP_HEADER_SIZE, and stores the address and size of SDA's copy of the error log buffers in
ERRLOG_BUFFER and ERRLOG_BUFFER_SIZE, respectively.

10.5.28. SDA$GET_HW_NAME
Returns the full name of the hardware platform where the dump was written.

Format
void sda$get_hw_name (char *buffer_ptr, uint32 buffer_len);

Arguments
buffer_ptr

OpenVMS usage char_string

type character string

access write only

mechanism by reference

Address of buffer to save HW name.

buffer_len

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Length of buffer to receive HW name.

448

Chapter 10. SDA Extensions and Callable Routines

Description
Returns a zero-terminated ASCII string representing the platform hardware name and puts it in the
buffer passed as the argument.

Note

The buffer should be large enough to accommodate the largest possible hardware platform name (120
bytes including the termination byte). The name is truncated if it is too long for the supplied buffer.

Condition Values Returned
None.

Example
char hw_name[64];
...
sda$get_hw_name (hw_name, sizeof(hw_name));
sda$print ("Platform name: \"!AZ\"", hw_name);

This example produces output of the form:

 Platform name: "DEC 3000 Model 400"

10.5.29. SDA$GET_IMAGE_OFFSET
Maps a given virtual address onto an image or execlet.

Format
COMP_IMG_OFF sda$get_image_offset (VOID_PQ va, VOID_PQ img_info,VOID_PQ subimg_info, VOID_PQ offset);

Arguments
va

OpenVMS usage address

type quadword (unsigned)

access read only

mechanism by value

Virtual address of interest.

img_info

OpenVMS usage address

type quadword (unsigned)

access write only

mechanism by reference

449

Chapter 10. SDA Extensions and Callable Routines

Pointer to return addr of LDRIMG or IMCB block.

subimg_info

OpenVMS usage address

type quadword (unsigned)

access write only

mechanism by reference

Pointer to return addr of ISD_OVERLAY or KFERES.

offset

OpenVMS usage quadword_unsigned

type quadword (unsigned)

access write only

mechanism by reference

Pointer to address to return offset from image.

Description
Given a virtual address, this routine finds in which image it falls and returns the image information
and offset. The loaded image list is traversed first to find this information. If it is not found, then the
activated image list of the currently selected process is traversed. If still unsuccessful, then the resident
installed images are checked.

Condition Values Returned

SDA_CIO$V_VALID Set if image offset is found
SDA_CIO$V_PROCESS Set if image is an activated image
SDA_CIO$V_SLICED Set if the image is sliced
SDA_CIO$V_COMPRESSED Set if activated image contains compressed data

sections
SDA_CIO$V_ISD_INDEX Index into ISD_LABELS table (on Alpha, only for

LDRIMG execlets)

The status returned indicates the type of image if a match was found.

SDA_CIO$V_xxx flags set: img_info type: subimg_info type:

VALID LDRIMG n/a
VALID && SLICED LDRIMG ISD_OVERLAY
VALID && PROCESS IMCB n/a
VALID && PROCESS &&
SLICED

IMCB KFERES_SECTION

On Integrity servers, SDA_CIO$V_SLICED will always be set if SDA_CIO$V_VALID is set.

Table 10.2 and Table 10.3 describe the ISD_LABELS index on Alpha and Integrity server systems.

450

Chapter 10. SDA Extensions and Callable Routines

Table 10.2. Alpha ISD_LABELS Index

Index Name Meaning

0 SDA_CIO$K_NPRO Nonpaged read only
1 SDA_CIO$K_NPRW Nonpaged read/write
2 SDA_CIO$K_PRO Paged read only
3 SDA_CIO$K_PRW Paged read/write
4 SDA_CIO$K_FIX Fixup
5 SDA_CIO$K_INIT Initialization

Table 10.3. Integrity server ISD_Labels Index

Index Name Meaning

0 SDA_CIO$K_FIX Fixup
1 SDA_CIO$K_PROMO_CODE Promote (code)
2 SDA_CIO$K_PROMO_DATA Promote (data)
3 SDA_CIO$K_INIT_CODE Initialization (code)
4 SDA_CIO$K_INIT_DATA Initialization (data)
5 SDA_CIO$K_CODE Code
6 SDA_CIO$K_SHORT_RW Short data (read/write)
7 SDA_CIO$K_SHORT_RO Short data (read only)
8 SDA_CIO$K_RW Data (read/write)
9 SDA_CIO$K_RO Data (read only)
10 SDA_CIO$K_SHORT_DZ Short data (demand zero)
11 SDA_CIO$K_SHORT_TDZ Short data (trailing demand zero)
12 SDA_CIO$K_DZERO Demand zero
13 SDA_CIO$K_TR_DZERO Trailing demand zero

Example
VOID_PQ va = (VOID_PQ)0xFFFFFFFF80102030;
COMP_IMG_OFF sda_cio;
int64 img_info;
int64 subimg_info;
int64 offset;
...
sda_cio = sda$get_image_offset (va,
 &img_info,
 &subimg_info,
 &offset);

For an example of code that interprets the returned COMP_IMG_OFFstructure, see the supplied
example program, SYS$EXAMPLES:MBX$SDA.C.

10.5.30. SDA$GET_INPUT
Reads input commands.

451

Chapter 10. SDA Extensions and Callable Routines

Format
int sda$get_input (char *prompt, char *buffer, uint32 buflen);

Arguments
prompt

OpenVMS usage char_string

type character string

access read only

mechanism by reference

Address of prompt string (zero-terminated ASCII string).

buffer

OpenVMS usage char_string

type character string

access write only

mechanism by reference

Address of buffer to store command.

buflen

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Maximum length of buffer.

Description
The command entered is returned as a zero-terminated string. The string is not uppercased. If you do not
enter input but simply press<return> or <ctrl/Z>, the routine returns a null string.

Condition Values Returned

SS$_NORMAL Successful completion.
RMS$_EOF User pressed <ctrl/Z>

Example
int status;
char buffer[128];
...
status = sda$get_input ("MBX> ", buffer, sizeof (buffer));

452

Chapter 10. SDA Extensions and Callable Routines

This call prompts you for input with "MBX> " and stores the responsein the buffer.

10.5.31. SDA$GET_LINE_COUNT
Obtains the number of lines currently printed on the current page.

Format
void sda$get_line_count (uint32 *line_count);

Arguments
line_count

OpenVMS usage longword_unsigned

type longword (unsigned)

access write only

mechanism by reference

The number of lines printed on current page.

Description
Returns the number of lines that have been printed so far on thecurrent page.

Condition Values Returned
None.

Example
uint32 line_count;
...
sda$get_line_count (&line_count);

This call copies the current line count on the current page of outputto the location LINE_COUNT.

10.5.32. SDA$GETMEM
Reads dump or system memory and signals a warning if inaccessible.

Format
int sda$getmem (VOID_PQ start, void *dest, int length,__optional_params);

Arguments
start

OpenVMS usage address

type quadword (unsigned)

453

Chapter 10. SDA Extensions and Callable Routines

access read only

mechanism by value

Starting virtual address in dump or system.

dest

OpenVMS usage address

type varies

access write only

mechanism by reference

Return buffer address.

length

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Length of transfer.

physical

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

0: <start> is a virtual address. This is the default.

1: <start> is a physical address.

Description
This routine transfers an area from the memory in the dump file or the running system to the caller's
return buffer. It performs the necessary address translation to locate the data in the dump file. SDA
$GETMEM signals a warning and returns an error status if the data is inaccessible.

Related Routines

SDA$REQMEM and SDA$TRYMEM

Condition Values Returned

SDA$_SUCCESS Successful completion
SDA$_NOREAD The data is inaccessible for some reason.

454

Chapter 10. SDA Extensions and Callable Routines

SDA$_NOTINPHYS The data is inaccessible for some reason.
Others The data is inaccessible for some reason.

If a failure status code is returned, it has already been signaled as a warning.

Example
int status;
PCB *current_pcb;
PHD *current_phd;
 ...
status = sda$getmem ((VOID_PQ)¤t_pcb->pcb$l_phd, ¤t_phd, 4);

This call returns the contents of the PCB$L_PHD field of the PCB, whosesystem address is in the
pointer CURRENT_PCB, to the pointerCURRENT_PHD.

10.5.33. SDA$INSTRUCTION_DECODE
Translates one machine instruction into the assembler string equivalent.

Format
int sda$instruction_decode (void *istream_ptr, char *buffer, uint32buflen,__optional_params);

Arguments
istream_ptr

OpenVMS usage address

type longword (unsigned)

access read/write

mechanism by reference

Address of the pointer that points to a copy of the i-stream in a local buffer.

buffer

OpenVMS usage char_string

type character string

access write only

mechanism by reference

Address of a string buffer into which to store the output assembler string.

buflen

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

455

Chapter 10. SDA Extensions and Callable Routines

mechanism by value

Maximum size of the string buffer.

template_buffer

OpenVMS usage char_string

type character string

access write only

mechanism by reference

(Integrity servers only.) Address of a string buffer into which to store the template string.

template_buflen

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

(Integrity servers only.) Maximum size of the template buffer.

Description
Translates a machine instruction into the assembler string equivalent. Alpha instructions are always 4
bytes long; Integrity server instructions are always in bundles that are 16 bytes long. The instruction
stream must first be read into local memory and then the address of a pointer to the local copy of the
instruction stream is passed to the routine. For every successful translated instruction, the pointer is
automatically updated to point to the next instruction on Alpha or slot on Integrity servers.

The output assembler string and optionally the template string is zero-terminated and in case of a failure
a null string is returned.

The template_buffer and template_buflen arguments only apply to Integrity servers and are optional.

Condition Values Returned

SS$_NORMAL Successful completion.
SS$_BADPARAM Any of the following failures:
 Output buffer too small Invalid register Invalid

opcode class/format Could not translate instruction

Examples
1. Alpha servers

int status;
VOID_PQ va = (VOID_PQ)0xFFFFFFFF80102030;
uint32 instruction;
uint32 *istream = &instruction;
char buffer[64];

456

Chapter 10. SDA Extensions and Callable Routines

...
sda$reqmem (va, &instruction, 4);
status = sda$instruction_decode (&istream, buffer, sizeof (buffer));
if (!$VMS_STATUS_SUCCESS (status))
 sda$print ("SDA$INSTRUCTION_DECODE failed, status = !XL", status);
else
 sda$print ("VA: !AZ", buffer);)

This example on an Alpha system reads the instruction at dump locationVA and decodes it, putting
the result into BUFFER, and displays theinstruction. Pointer ISTREAM is incremented (to the next
longword).

2. Integrity servers

int status;
VOID_PQ va = (VOID_PQ)0xFFFFFFFF80102030;
uint64 instruction [2];
uint64 *istream = &instruction;
char buffer [64];
char template [16];
sda$reqmem (va, &instruction, 16);
status = sda$instruction_decode (&istream, buffer, sizeof (buffer),
 template, sizeof (template));
if (!$VMS_STATUS_SUCCESS (status))
 sda$print ("SDA$INSTRUCTION_DECODE failed, status = !XL", status);
else
 {
 sda$print (" { !AZ", template);
 sda$print ("VA: !AZ", buffer);
 while (((int)istream & 7) != 0)// local buffer only has to be quadword
 aligned
 {
 status = sda$instruction_decode (&istream, buffer, sizeof
 (buffer));
 if (!$VMS_STATUS_SUCCESS (status))
 {
 sda$print ("SDA$INSTRUCTION_DECODE failed, status = !XL",
 status);
 break;
 }
 else
 sda$print (" !AZ", buffer);
 }
 sda$print (" }");
 }

This example for Integrity servers reads the instruction bundle at dump location VA and decodes
it, displaying each of the instructions in the bundle. Pointer ISTREAM is incremented (to the next
octaword bundle).

10.5.34. SDA$NEW_PAGE
Begins a new page of output.

Format
void sda$new_page ();

457

Chapter 10. SDA Extensions and Callable Routines

Arguments
None.

Description
This routine causes a new page to be written and outputs the page heading (established
with SDA$FORMAT_HEADING) and the current subheading (established with SDA
$SET_HEADING_ROUTINE).

Condition Values Returned
None.

Example
sda$new_page ();

This call outputs a page break and displays the current page heading and subheading (if any).

10.5.35. SDA$PARSE_COMMAND
Parses and executes an SDA command line.

Format
void sda$parse_command (char *cmd_line, __optional_params);

Arguments
cmd_line

OpenVMS usage char_string

type character string

access read only

mechanism by reference

Address of a valid SDA command line (zero-terminated).

options

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

The options argument has the following values:

Value Meaning

SDA_OPT$K_PARSE_DONT_SAVE Indicates "do not save this command." This is the
default.

458

Chapter 10. SDA Extensions and Callable Routines

Value Meaning

SDA_OPT$K_PARSE_SAVE Indicates "save this command." That is, it can be
recalled with KP0 or REPEAT.

Description
Not every SDA command has a callable extension interface. For example,to redirect SDA's output,
you would pass the command string "SET OUTPUTMBX.LIS" to this parse command routine.
Abbreviations are allowed.

Condition Values Returned
None.

Example
sda$parse_command ("SHOW ADDRESS 80102030");

This call produces the following output:

 FFFFFFFF.80102030 is an S0/S1 address

 Mapped by Level-3 PTE at: FFFFFFFD.FFE00408
 Mapped by Level-2 PTE at: FFFFFFFD.FF7FF800
 Mapped by Level-1 PTE at: FFFFFFFD.FF7FDFF8
 Mapped by Selfmap PTE at: FFFFFFFD.FF7FDFF0

 Also mapped in SPT window at: FFFFFFFF.FFDF0408

The "SHOW ADDRESS" command is not recorded as the most recent command for use with the KP0
key or the REPEAT command.

10.5.36. SDA$PRINT
Formats and prints a single line.

Format
int sda$print (char *ctrstr, __optional_params);

Arguments
ctrstr

OpenVMS usage char_string

type character-coded text string

access read only

mechanism by reference

Address of a zero-terminated FAO control string.

prmlst

459

Chapter 10. SDA Extensions and Callable Routines

OpenVMS usage varying_arg

type quadword (signed or unsigned)

access read only

mechanism by value

Optional FAO parameters. All arguments after the control string are copied into a quadword parameter
list, as used by $FAOL_64.

Description
Formats and prints a single line. This is normally output to the terminal, unless you used the SDA
commands SET OUTPUT or SET LOG to redirect or copy the output to a file.

Condition Values Returned

SDA$_SUCCESS Indicates a successful completion.
SDA$_CNFLTARGS Indicates more than twenty FAO parameters given.
Other Returns from the $PUT issued by SDA$PRINT

(the error is also signaled). If the $FAOL_64 call
issued by SDA$PRINT fails, the control string is
output.

Example
char buffer[32];
...
sda$get_block_name (0x6F, 0x20,
 buffer,
 sizeof (buffer));
sda$print ("Block type: !AZ", buffer);

This example outputs the following line:

Block type: VCC_CFCB

10.5.37. SDA$READ_SYMFILE
Reads symbols from a given file.

Format
int sda$read_symfile (char *filespec, uint32 options,__optional_params);

Arguments
filespec

OpenVMS usage char_string

type character string

access read only

460

Chapter 10. SDA Extensions and Callable Routines

mechanism by reference

Address of file or directory specification from which to read the symbols (zero-terminated ASCII string).

options

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Indicates type of symbol file and flags, as shown in the following:

Flags Effect

SDA_OPT$M_READ_FORCE read/force <file>
SDA_OPT$M_READ_IMAGE read/image <file>
SDA_OPT$M_READ_SYMVA read/symva <file>
SDA_OPT$M_READ_RELO read/relo <file>
SDA_OPT$M_READ_EXEC read/exec [<dir>]
SDA_OPT$M_READ_NOLOG /nolog, suppress count of symbols read
SDA_OPT$M_READ_FILESPEC <file> or <dir> given
SDA_OPT$M_READ_NOSIGNAL return status, without signaling errors

relocate_base

OpenVMS usage address

type longword (unsigned)

access read only

mechanism by value

Base address for symbols (nonsliced symbols).

symvect_va

OpenVMS usage address

type longword (unsigned)

access read only

mechanism by value

The symbol vector address (symbols are offsets into the symbol vector).

symvect_size

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

461

Chapter 10. SDA Extensions and Callable Routines

mechanism by value

Size of symbol vector.

loaded_img_info

OpenVMS usage address

type longword (unsigned)

access read only

mechanism by reference

The address of $LDRIMG data structure with execlet information.

Description
This command reads symbols from a given file to add symbol definitions to the working symbol table
by reading GST entries. The file is usually a symbol file (.STB) or an image (.EXE). If SDA_OPT
$M_READ_EXEC is specified in the options, then the filespec is treated as a directory specification,
where symbol files and/or image files for all execlets may be found (as with READ/EXECUTIVE). If no
directory specification is given, the logical name SDA$READ_DIR is used.

Note that when SDA reads symbol files and finds routine names, the symbol name that matches the
routine name is set to the address of the procedure or function descriptor. A second symbol name, the
routine name with "_C" appended, is set to the start of the routine's prologue.

Condition Values Returned

SDA$_SUCCESS Successful completion.
SDA$_CNFLTARGS No filename given and SDA_OPT

$M_READ_EXEC not set.

Other errors are signaled and/or returned, exactly as though the equivalent SDA READ command had
been used. Use HELP/MESSAGE for explanations.

Example
sda$read_symfile ("SDA$READ_DIR:SYSDEF", SDA_OPT$M_READ_NOLOG);

The symbols in SYSDEF.STB are added to SDA's internal symbol table, and the number of symbols
found is not output to the terminal.

10.5.38. SDA$REQMEM
Reads dump or system memory and signals an error if inaccessible.

Format
int sda$reqmem (VOID_PQ start, void *dest, int length,__optional_params);

Arguments
start

462

Chapter 10. SDA Extensions and Callable Routines

OpenVMS usage address

type quadword (unsigned)

access read only

mechanism by value

Starting virtual address in dump or system.

dest

OpenVMS usage address

type varies

access write only

mechanism by reference

Return buffer address.

length

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Length of transfer.

physical

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

0: <start> is a virtual address. This is the default.

1: <start> is a physical address.

Description
This routine transfers an area from the memory in the dump file or the running system to the caller's
return buffer. It performs the necessary address translation to locate the data in the dump file. SDA
$REQMEM signals an error and aborts the current command if the data is inaccessible.

Related Routines

SDA$GETMEM and SDA$TRYMEM

Condition Values Returned

SDA$_SUCCESS Successful completion.

463

Chapter 10. SDA Extensions and Callable Routines

Any failure is signaled as an error and the current command aborts.

Example
VOID_PQ address;
uint32 instruction;
...
sda$symbol_value ("EXE_STD$ALLOCATE_C", (uint64 *)&address);
sda$reqmem (address, &instruction, 4);

This example reads the first instruction of the routine EXE_STD$ALLOCATE into the location
INSTRUCTION.

10.5.39. SDA$SET_ADDRESS
Stores a new address value as the current memory address (".").

Format
void sda$set_address (VOID_PQ address);

Arguments
address

OpenVMS usage quadword_unsigned

type quadword (unsigned)

access read only

mechanism by value

Address value to store in current memory location.

Description
The specified address becomes SDA's current memory address (the predefined SDA symbol ".").

Condition Values Returned
None.

Example
sda$set_address ((VOID_PQ)0xFFFFFFFF80102030);

This call sets SDA's current address to FFFFFFFF.80102030.

10.5.40. SDA$SET_CPU
Sets a new SDA CPU context.

Format
int sda$set_cpu (int cpu_id);

464

Chapter 10. SDA Extensions and Callable Routines

Arguments
cpu_id

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

The desired CPU ID.

Description
This routine causes SDA to set the specified CPU as the currently selected CPU.

Condition Values Returned
SDA$_SUCCESS Successful completion.

Any failure is signaled as an error and the current command aborts.

Example
int cpu_id = 2;
status = sda$set_cpu (cpu_id);

In this example, SDA's current CPU context is set to the CPU whose number is held in the variable
CPU_ID.

10.5.41. SDA$SET_HEADING_ROUTINE
Sets the current heading routine to be called after each page break.

Format
void sda$set_heading_routine (void (*heading_rtn) ());

Arguments
heading_rtn

OpenVMS usage procedure

type procedure value

access read only

mechanism by value

Address of routine to be called after each new page.

Description
When SDA begins a new page of output (either because SDA$NEW_PAGE was called, or because the
current page is full), it outputs two types of headings. The first is the page title, and is set by calling the

465

Chapter 10. SDA Extensions and Callable Routines

routine SDA$FORMAT_HEADING. This is the title that is included in the index page of a listing file
when you issue a SET OUTPUT command. The second heading is typically for column headings, and as
this can vary from display to display, you must write a routine for each separate heading. When you call
SDA$SET_HEADING_ROUTINE to specify a user-written routine, the routine is called each time SDA
begins a new page.

To stop the routine from being invoked each time SDA begins a new page, call either SDA
$FORMAT_HEADING to set a new page title, or SDA$SET_HEADING_ROUTINE and specify the
routine address as NULL.

If the column headings need to be output during a display (that is, in the middle of a page), and then be
re-output each time SDA begins a new page, call the user-written routine directly the first time, then call
SDA$SET_HEADING_ROUTINE to have it be called automatically thereafter.

Condition Values Returned
None.

Example
void mbx$title (void)
 {
 sda$print ("Mailbox UCB ...");
 sda$print (" Unit Address ...");
 sda$print ("------------------------");
 return;
 }
...
sda$set_heading_routine (mbx$title);
...
sda$set_heading_routine (NULL);

This example sets the heading routine to the routine MBX$TITLE, and later clears it. The routine is
called if any page breaks are generated by the intervening code.

10.5.42. SDA$SET_LINE_COUNT
Sets the number of lines printed so far on the current page.

Format
void sda$set_line_count (uint32 line_count);

Arguments
line_count

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

The number of lines printed on current page.

466

Chapter 10. SDA Extensions and Callable Routines

Description
The number of lines that have been printed so far on the current pageis set to the given value.

Condition Values Returned
None.

Example
sda$set_line_count (5);

This call sets SDA's current line count on the current page of output to 5.

10.5.43. SDA$SET_PROCESS
Sets a new SDA process context.

Format
int sda$set_process (const char *proc_name, int proc_index, intproc_addr);

Arguments
proc_name

OpenVMS usage character_string

type character string

access read only

mechanism by reference

Address of the process name string (zero-terminated).

proc_index

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

The index of the desired process.

proc_addr

OpenVMS usage address

type longword (unsigned)

access read only

mechanism by value

The address of the PCB for the desired process.

467

Chapter 10. SDA Extensions and Callable Routines

Description
This routine causes SDA to set the specified process as the currently selected process.

Note

The proc_name, proc_index, and proc_addr are mutually exclusive.

Condition Values Returned

SDA$_SUCCESS Successful completion.

Any failure is signaled as an error and the current command aborts.

Example
status = sda$set_process ("JOB_CONTROL", 0, 0);

In this example, SDA's current process context is set to the JOB_CONTROL process.

10.5.44. SDA$SKIP_LINES
This routine outputs a specified number of blank lines.

Format
void sda$skip_lines (uint32 lines);

Arguments
lines

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Number of lines to skip.

Description
The specified number of blank lines are output.

Condition Values Returned
None.

Example
sda$skip_lines (2);

468

Chapter 10. SDA Extensions and Callable Routines

This call causes two blank lines to be output.

10.5.45. SDA$SYMBOL_VALUE
Obtains the 64-bit value of a specified symbol.

Format
int sda$symbol_value (char *symb_name, uint64 *symb_value);

Arguments
symb_name

OpenVMS usage char_string

type character string

access read only

mechanism by reference

Zero-terminated string containing symbol name.

symb_value

OpenVMS usage quadword_unsigned

type quadword (unsigned)

access write only

mechanism by reference

Address to receive symbol value.

Description
A search through SDA's symbol table is made for the specified symbol.If found, its 64-bit value is
returned.

Condition Values Returned

SDA$_SUCCESS Symbol found.
SDA$_BADSYM Symbol not found.

Example
int status;
VOID_PQ address;
...
status = sda$symbol_value ("EXE_STD$ALLOCATE_C", (uint64 *)&address);

This call returns the start address of the prologue of routine

EXE_STD$ALLOCATE to location ADDRESS.

469

Chapter 10. SDA Extensions and Callable Routines

10.5.46. SDA$SYMBOLIZE
Converts a value to a symbol name and offset.

Format
int sda$symbolize (uint64 value, char *symbol_buf, uint32 symbol_len);

Arguments
value

OpenVMS usage quadword_unsigned

type quadword (unsigned)

access read only

mechanism by value

Value to be translated.

symbol_buf

OpenVMS usage char_string

type character string

access write only

mechanism by reference

Address of buffer to which to return string.

symbol_len

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Maximum length of string buffer.

Description
This routine accepts a value and returns a string that contains a symbol and offset corresponding to that
value. First the value is checked in the symbol table. If no symbol can be found (either exact match or
up to 0XFFF less than the specified value), the value is then checked to see if it falls within one of the
loaded or activated images.

Condition Values Returned

SS$_NORMAL Successful completion.
SS$_BUFFEROVF Buffer too small, string truncated.

470

Chapter 10. SDA Extensions and Callable Routines

SS$_NOTRAN No symbolization for this value (null string
returned).

Example
VOID_PQ va = VOID_PQ(0xFFFFFFFF80102030);
char buffer [64]
status = sda$symbolize (va, buffer, sizeof(buffer));
sda$print ("FFFFFFFF.80102030 = \"!AZ\"", buffer);

This example outputs the following:

FFFFFFFF.80102030 = "EXE$WRITE_PROCESS_C+00CD0"

10.5.47. SDA$TRYMEM
Reads dump or system memory and returns the error status (without signaling) if inaccessible.

Format
int sda$trymem (VOID_PQ start, void *dest, int length,__optional_params);

Arguments
start

OpenVMS usage address

type quadword (unsigned)

access read only

mechanism by value

Starting virtual address in dump or system.

dest

OpenVMS usage address

type varies

access write only

mechanism by reference

Return buffer address.

length

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

Length of transfer.

471

Chapter 10. SDA Extensions and Callable Routines

physical

OpenVMS usage longword_unsigned

type longword (unsigned)

access read only

mechanism by value

0: <start> is a virtual address. This is the default.

1: <start> is a physical address.

Description
This routine transfers an area from the memory in the dump file or the running system to the caller's
return buffer. It performs the necessary address translation to locate the data in the dump file. SDA
$TRYMEM does not signal any warning or errors. It returns the error status if the data is inaccessible.

Related Routines

SDA$GETMEM and SDA$REQMEM

Condition Values Returned

SDA$_SUCCESS Successful completion.
SDA$_NOREAD The data is inaccessible for some reason.
SDA$_NOTINPHYS The data is inaccessible for some reason.
Others The data is inaccessible for some reason.

Example
int status;
DDB *ddb;
...
status = sda$trymem (ddb->ddb$ps_link, ddb, DDB$K_LENGTH);
if ($VMS_STATUS_SUCCESS (status))
 sda$print ("Next DDB is successfully read from dump");
else
 sda$print ("Next DDB is inaccessible");

This example attempts to read the next DDB in the DDB list from thedump.

10.5.48. SDA$TYPE
Formats and types a single line to SYS$OUTPUT.

Format
int sda$type (char *ctrstr, __optional_params);

Arguments
ctrstr

472

Chapter 10. SDA Extensions and Callable Routines

OpenVMS usage char_string

type character-coded text string

access read only

mechanism by reference

Address of a zero-terminated FAO control string.

prmlst

OpenVMS usage varying_arg

type quadword (signed or unsigned)

access read only

mechanism by value

Optional FAO parameters. All arguments after the control string are copied into a quadword parameter
list, as used by $FAOL_64.

Description
Formats and prints a single line to the terminal. This is unaffected by the use of the SDA commands
SET OUTPUT or SET LOG.

Condition Values Returned
SDA$_SUCCESS Indicates a successful completion.
SDA$_CNFLTARGS Indicates more than twenty FAO parameters given.
Other Returns from the $PUT issued by SDA$TYPE (the

error is also signaled). If the $FAOL_64 call issued
by SDA$TYPE fails, the control string is output.

Example
int status;
...
status = sda$type ("Invoking SHOW SUMMARY to output file...");

This example displays the message "Invoking SHOW SUMMARY to output file..." to the terminal.

10.5.49. SDA$VALIDATE_QUEUE
Validates queue structures.

Format
void sda$validate_queue (VOID_PQ queue_header, __optional_params);

Arguments
queue_header

OpenVMS usage address

473

Chapter 10. SDA Extensions and Callable Routines

type quadword (unsigned)

access read only

mechanism by value

Address from which to start search.

options

OpenVMS usage mask_longword

type longword (unsigned)

access read only

mechanism by value

The following table shows the flags that indicate the type of queue:

Flag Meaning

None Defaults to doubly-linked longword queue
SDA_OPT$M_QUEUE_BACKLINK Validates the integrity of a doubly-linked queue

using the back links instead of the forward links
SDA_OPT$M_QUEUE_LISTQUEUE Displays queue elements for debugging
SDA_OPT$M_QUEUE_QUADLINK Indicates a quadword queue
SDA_OPT$M_QUEUE_SELF Indicates a self-relative queue
SDA_OPT$M_QUEUE_SINGLINK Indicates a singly-linked queue

Description
You can use this routine to validate the integrity of doubly-linked,singly-linked or self-
relative queues either with longword or quadword links. If you specify the option SDA_OPT
$M_QUEUE_LISTQUEUE, the queue elements are displayed for debugging. Otherwise a one-line
summary indicates how many elements were found and whether the queue is intact.

Condition Values Returned
None.

If an error occurs, it is signaled by SDA$VALIDATE_QUEUE.

Example
int64 temp;
int64 *queue;
...
sda$symbol_value ("EXE$GL_NONPAGED", &temp);
temp += 4;
sda$reqmem ((VOID_PQ)temp, &queue, 4);
sda$validate_queue (queue, SDA_OPT$M_QUEUE_SINGLINK);

This sequence validates the nonpaged pool free list, and outputs a message of the form:

Queue is zero-terminated, total of 204 elements in the queue

474

Part II. OpenVMS System
Code Debugger and

System Dump Debugger
This part describes the System Code Debugger (SCD) and the System Dump Debugger (SDD). It
presents how to use SCD and SDD by doing the following:

• Building a system image to be debugged

• Setting up the target system for connections

• Setting up the host system

• Starting SCD

• Troubleshooting connections and network failures

• Looking at a sample SCD session

• Analyzing memory as recorded in a system dump

• Looking at a sample SDD session

475

476

Chapter 11. OpenVMS System Code
Debugger
This chapter describes the OpenVMS System Code Debugger (SCD) and how it can be used to debug
nonpageable system code and device drivers running at any interrupt priority level (IPL).

You can use SCD to perform the following tasks:

• Control the system software's execution----stop at points of interest, resume execution, intercept fatal
exceptions, and so on

• Trace the execution path of the system software

• Monitor exception conditions

• Examine and modify the values of variables

• Test the effect of modifications, in some cases, without having to edit the source code, recompile,
and relink

The use of SCD requires two systems:

• The host system, probably also the system where the image to be debugged has been built

• The target system, usually a standalone test system, where the image being debugged is executed

• Host and target systems must be the same architecture, that is, both must be Alpha systems or
Integrity server systems.

SCD is a symbolic debugger. You can specify variable names, routine names, and so on, precisely as they
appear in your source code. SCD can also display the source code where the software is executing, and
allow you to step by source line.

SCD recognizes the syntax, data typing, operators, expressions, scoping rules, and other constructs
of a given language. If your code or driver is written in more than one language, you can change the
debugging context from one language to another during a debugging session.

To use SCD, you must do the following:

• Build a system image or device driver to be debugged.

• Set up the target kernel on a standalone system.

The target kernel is the part of SCD that resides on the system that is being debugged. It is
integrated with XDELTA and is part of the SYSTEM_DEBUG execlet.

• Set up the host system environment, which is integrated with the OpenVMS Debugger.

The following sections cover these tasks in more detail, describe the available user-interface options,
summarize applicable OpenVMS Debugger commands, and provide a sample SCD session.

11.1. User-Interface Options
SCD has the following user-interface options:

477

Chapter 11. OpenVMS System Code Debugger

• A DECwindows Motif interface for workstations

When using this interface, you interact with SCD by using a mouse and pointer to choose items from
menus, click on buttons, select names in windows, and so on.

Note that you can also use OpenVMS Debugger commands with the DECwindows Motif interface.

• A character cell interface for terminals and workstations

When using this interface, you interact with SCD by entering commands at a prompt. The sections in
this chapter describe how to use the system code debugger with the character cell interface.

For more information about using the OpenVMS DECwindows Motif interface and OpenVMS
Debugger commands with SCD, see the VSI OpenVMS Debugger Manual.

11.2. Building a System Image to Be
Debugged
1. Compile the sources you want to debug, and be sure to use the /DEBUG and /NOOPT qualifiers.

Note

Debugging optimized code is much more difficult and is not recommended unless you know the
Alpha or Integrity server architecture well. The instructions are reordered so much that single-
stepping by source line will look like you are randomly jumping all over the code. Also note that you
cannot access all variables. SCD reports that they are optimized away.

2. Link your image using the /DSF (debug symbol file) qualifier. Do not use the /DEBUG qualifier,
which is for debugging user programs. The /DSF qualifier takes an optional filename argument
similar to the /EXE qualifier. For more information, see the VSI OpenVMS Linker Utility Manual.
If you specify a name in the /EXE qualifier, you will need to specify the same name for the /DSF
qualifier. For example, you would use the following command:

$ LINK/EXE=EXE$:MY_EXECLET/DSF=EXE$:MY_EXECLET OPTIONS_FILE/OPT

The .DSF and .EXE file names must be the same. Only the extensions will be different, that is .DSF
and .EXE.

The contents of the .EXE file should be exactly the same as if you had linked without the /DSF
qualifier. The .DSF file will contain the image header and all the debug symbol tables for .EXE file.
It is not an executable file, and cannot be run or loaded.

3. Put the .EXE file on your target system.

4. Put the .DSF file on your host system, because when you use SCD to debug code in your image, it
will try to look for a .DSF file first and then look for an .EXE file. The .DSF file is better because it
has symbols in it. Section 11.4 describes how to tell SCD where to find your .DSF and .EXE files.

478

Chapter 11. OpenVMS System Code Debugger

11.3. Setting Up the Target System for
Connections
The target kernel is controlled by flags and devices specified when the system is booted, by XDELTA
commands, by a configuration file, and by several system parameters. The following sections contain
more information about these items.

Boot Flags

You can specify flags on the boot command line. Boot flags are specified as a hex number; each bit of
the number represents a true or false value for a flag. The following flag values are relevant to the system
code debugger.

• 8000

This is the SCD boot flag. It enables operation of the target kernel. If this SCD boot flag is not
set, not only will it be impossible to use SCD to debug the system, but the additional XDELTA
commands related to the target kernel will generate an XDELTA error message. If this boot flag is
set, SYSTEM_DEBUG is loaded, and SCD is enabled.

• 0004

This is the initial breakpoint boot flag. It controls whether the system calls INI$BRK at the
beginning and end of EXEC_INIT. Notice that if SCD is the default debugger, the first breakpoint is
not as early as it is for XDELTA. It is delayed until immediately after the PFN database is set up.

• 0002

This is the XDELTA boot flag, which controls whether XDELTA is loaded. It behaves slightly
differently when the SCD boot flag is also set.

If the SCD boot flag is clear, this flag simply determines if XDELTA is loaded. If the SCD boot flag
is set, this flag determines whether XDELTA or the system code debugger is the default debugger.
If the XDELTA flag is set, XDELTA will be the default debugger. In this state, the initial system
breakpoints and any calls to INI$BRK trigger XDELTA, and you must enter an XDELTA command
to start using SCD. If the XDELTA boot flag is clear, the initial breakpoints and calls to INI$BRK
go to SCD. You cannot use XDELTA if the XDELTA boot flag is clear.

Boot Command

The form of the boot command varies depending on the platform and type OpenVMS system. However,
all SCD boot commands have the concept of boot flags, boot device, and dedicated Ethernet device. In
all environments, you must specify an Ethernet device on the target system to use to communicate with
the host debugger. It is currently a restriction that this device must not be used for anything else (either
for booting or network software such as DECnet, TCP/IP products, and LAT products).

To use Alpha SCD, you must specify the Ethernet device with the boot command. In this example, we
are using DEC 3000 Model 400 Alpha Workstation syntax. We are booting from the DKB100 disk and
using the ESA0 Ethernet device. We are also setting the SCD, XDELTA, and initial (earliest) breakpoint
flags:

 >>> show device
 .

479

Chapter 11. OpenVMS System Code Debugger

 .
 .
 >>> boot dkb100,esa0 -fl 0,8006

You can set these devices and flags to be the default values so that you will not have to specify them
each time you boot:

 >>> set bootdef_dev dkb100,esa0
 >>> set boot_osflags 0,8006

To use Integrity server SCD, you can specify an Ethernet device (debug_dev) BEFORE loading the
Operating System and AFTER you have selected the device/partition. Setting debug_dev is sticky. That
is, you only need to set it once. Using a VSI rx2600 syntax:

A sample Integrity server Boot Menu follows.

 Please select a boot option

 EFI Shell [Built-in]
 PESOS - X8.2-AHI (Topaz BL2) on 1DGA3890:[SYS2.]
 PESOS - X8.2-AHI (Topaz BL2) on 1DGA3890:[SYS2.] sysboot
 PESOS - E8.2-ADH (Topaz BL1) on 1DGA3891:[SYS2.]
 PESOS - E8.2-ADH (Topaz BL1) on 1DGA3891:[SYS2.] sysboot
 Boot Option Maintenance Menu
 System Configuration Menu

Select the EFI Shell [Built-in].

 Loading.: EFI Shell [Built-in]
 EFI Shell version 1.10 [14.61]
 Device mapping table

 fs0 : Acpi(HWP0002,100)/Pci(1|0)/Scsi(Pun0,Lun0)/
HD(Part1,SigA02952
 fs1 : Acpi(HWP0002,300)/Pci(1|0)/
Fibre(WWN50001FE10011B15D,Lun2200)
 fs2 : Acpi(HWP0002,300)/Pci(1|0)/
Fibre(WWN50001FE10011B15D,Lun2200)
 fs3 : Acpi(HWP0002,300)/Pci(1|0)/
Fibre(WWN50001FE10011B15D,Lun2300)
 .
 .
 .

 Shell>

Select the desired device/partition:

 Shell> fs1:
 fs1:\>

Use the utilities in \efi\vms. Use vms_show to list the devices and vms_set to set Ethernet device
(debug_dev), if necessary.

fs1:\> \efi\vms\vms_show device
VMS: EIA0
EFI: Acpi(000222F0,0)/Pci(3|0)/Mac(00306E39F77B)

480

Chapter 11. OpenVMS System Code Debugger

VMS: DKB200
EFI: fs1: Acpi(000222F0,100)/Pci(1|1)/Scsi(Pun2,Lun0)

VMS: DKB0
EFI: fs0: Acpi(000222F0,100)/Pci(1|1)/Scsi(Pun0,Lun0)

VMS: EWA0
EFI: Acpi(000222F0,100)/Pci(2|0)/Mac(00306E3977C5)
.
.
.

Set the Ethernet device.

fs1:\> \efi\vms\vms_set debug_dev eia0
VMS: EIA0 0-30-6E-39-F7-CF
EFI: Acpi(000222F0,0)/Pci(3|0)/Mac(00306E39F7CF)

Finally, load the OS. In this example, the boot is with the SCD and initial (earliest) breakpoint flags
using root 2 (SYS2), that will vary with system setups.

 fs1:\> \efi\vms\vms_loader -flags "2,8004"

You can set the flags to be the default value instead of specifying them for each and every OS load:

 fs1:\> set vms_flags "2,8004"

You can also build the entire boot device, OS load command with flags setting as a Boot Option. See the
"Boot Option Maintenance Menu", described in the VSI OpenVMS System Manager's Manual, Volume 1:
Essentials.

SCD Configuration File

The SCD target system reads a configuration file in SYS$SYSTEM named DBGTK$CONFIG.SYS. The
first line of this file contains a default password, which must be specified by the host debug system to
connect to the target. The default password may be the null string; in this case the host must supply the
null string as the password (/PASSWORD="") on the connect command as described in Section 11.5, or
no password at all. Other lines in this file are reserved by VSI. Note that you must create this file because
VSI does not supply it. If this file does not exist prior to booting with SCD enabled, you can only run
SCD by specifying a default password with the XDELTA ;R command described in the following
section.

XDELTA Commands

When the system is booted with both the XDELTA boot flag and the SCD boot flag, the following two
additional XDELTA commands are enabled:

• n\xxxx\;R ContRol SCD connection

You can use this command to do the following:

• Change the password which the SCD host must present

• Disconnect the current session from SCD

• Give control to SCD by simulating a call to INI$BRK

481

Chapter 11. OpenVMS System Code Debugger

• Any combination of these

Optional string argument xxxx specifies the password that the system code debugger must present for
its connection to be accepted. If this argument is left out, the required password is unchanged. The
initial password is taken from the first line of the SYS$SYSTEM:DBGTK$CONFIG.SYS file. The
new password does not remain in effect across a boot of the target system.

The optional integer argument n controls the behavior of the ;R command as follows:

Value of N Action

+1 Gives control to SCD by simulating a call to INI
$BRK

+2 Returns to XDELTA after changing the
password. 2;R without a password is a no-op

0 Performs the default action
-1 Changes the password, breaks any existing

connection to SCD, and then simulates a call to
INI$BRK (which will wait for a new connection
to be established and then give control to SCD)

-2 Returns to XDELTA after changing the password
and breaking an existing connection

Currently, the default action is the same action as +1.

If SCD is already connected, the ;R command transfers control to SCD, and optionally changes the
password that must be presented the next time a system code debugger tries to make a connection.
This new password does not last across a boot of the target system.

• n;K Change inibrK behavior

If optional argument n is 1, future calls to INI$BRK will result in a breakpoint being taken by SCD.
If the argument is 0, or no argument is specified, future calls to INI$BRK will result in a breakpoint
being taken by XDELTA.

SYSTEM Parameters
• BREAKPOINTS

This parameter is a bitmask, enabling existing INI$BRK calls within OpenVMS in the following
situations:

Bit 0 At the start of INIT
Bit 1 At the end of INIT
Bit 2 At the point in INIT just prior to starting

secondary CPUs
Bit 3 If INI$BRK is called from an outer mode
Bit 4 Before calling the initialization routine of a

newly-loaded executive image
Bits 5-31 Reserved by VSI

482

Chapter 11. OpenVMS System Code Debugger

Notes on the use of BREAKPOINTS parameter:

1. Calling INI$BRK from executive mode when bit 3 of BREAKPOINTS is not set will result in
process exit, or a SSRVEXCEPT bugcheck (if SYSTEM_CHECK or BUGCHECKFATAL is
also set).

2. Changing BREAKPOINTS from its default value of 3 may allow the security of the system to be
compromised, and should only be used with caution.

• DBGTK_SCRATCH

Bits 0 through 7 specify how many pages of memory are allocated for SCD. This memory is
allocated only if system code debugging is enabled with the SCD boot flag (described earlier in
this section). Usually, the default value of 1 is adequate; however, if SCD displays an error message,
increase this value.

Bits 8 through 31 are reserved by VSI.

• SCSNODE

Identifies the target kernel node name for SCD. See Section 11.3.1 for more information.

• S0_PAGING

If the image you are debugging includes pageable code or data, set S0_PAGING to 3 to ensure that
such code and data are always resident in memory. SCD cannot examine, deposit to, set breakpoints
at, and so on, any locations in pageable sections that are not currently valid. [This applies only to
Alpha. Integrity server executive images and drivers do not contain pageable code or data.]

• POOLPAGING

If the image you are debugging uses paged pool, set POOLPAGING to zero to ensure that paged
pool is always resident in memory. SCD cannot examine or deposit to any locations in paged pool
that are not currently valid.

• TIME_CONTROL This parameter is a bitmask, disabling certain time control functions within
VMS:

Bit 0 Disables system clock
Bit 1 Disables CPU sanity timeouts
Bit 2 Disables CPU spinwait timeouts

When XDELTA or SCD is loaded (bit 1 or bit 15 of boot flags is set), the value of
TIME_CONTROL is changed from its default of zero to 6 (disable CPU sanity and CPU spinwait
timeouts). This is to prevent these timeouts from occurring when the system is waiting at a
breakpoint. If necessary, these settings can be altered, using the SYSGEN utility or a Deposit
command within XDELTA or SCD. Bit 0 should never be set.

11.3.1. Making Connections Between the Target Kernel
and the System Code Debugger
It is always SCD on the host system that initiates a connection to the target kernel. When SCD initiates
this connection, the target kernel accepts or rejects the connection based on whether the remote debugger

483

Chapter 11. OpenVMS System Code Debugger

presents it with a node name and password that matches the password in the target system (either the
default password from the SYS$SYSTEM:DBGTK$CONFIG.SYS file, or a different password specified
via XDELTA). SCD obtains the node name from the SCSNODE system parameter.

The target kernel can accept a connection from SCD any time the system is running below IPL 22, or if
XDELTA is in control (at IPL 31). However, the target kernel actually waits at IPL 31 for a connection
from the SCD host in two cases: when it has no existing connection to an SCD host and (1) it receives
a breakpoint caused by a call to INI$BRK (including either of the initial breakpoints), or (2) when you
enter a 1;R or -1;R command to XDELTA.

11.3.2. Interactions Between XDELTA and the Target
Kernel/System Code Debugger
XDELTA and the target kernel are integrated into the same system. Normally, you choose to use one or
the other. However, XDELTA and the target kernel can be used together. This section explains how they
interoperate.

The XDELTA boot flag controls which debugger (XDELTA or the SCD target kernel) gets control
first. If it is not set, the target kernel gets control first, and it is not possible to use XDELTA without
rebooting. If it is set, XDELTA gets control first, but you can use XDELTA commands to switch to the
target kernel and to switch INI$BRK behavior such that the target kernel gets control when INI$BRK is
called.

Breakpoints always stick to the debugger that set them; for example, if you set a breakpoint at location
"A" with XDELTA, and then you enter the commands 1;K (switch INI$BRK to the system code
debugger) and ;R (start using the system code debugger) then, from SCD, you can set a breakpoint at
location "B". If the system executes the breakpoint at A, XDELTA reports a breakpoint, and SCD will
see nothing (though you could switch to SCD by issuing the XDELTA ;R command). If the system
executes the breakpoint at B, SCD will get control and report a breakpoint (you cannot switch to
XDELTA from SCD).

Notice that if you examine location A with SCD, or location B with XDELTA, you will see a BPT
instruction, not the instruction that was originally there. This is because neither debugger has any
information about the breakpoints set by the other debugger.

One useful way to use both debuggers together is when you have a system that exhibits a failure only
after hours or days of heavy use. In this case, you can boot the system with SCD enabled (8000), but
with XDELTA the default (0002) and with initial breakpoints enabled (0004). When you reach the initial
breakpoint, set an XDELTA breakpoint at a location that will only be reached when the error occurs.
Then proceed. When the error breakpoint is reached, possibly days later, then you can set up a remote
system to debug it and enter the ;R command to XDELTA to switch control to SCD.

Here is another technique to use on Alpha when you do not know where to put an error breakpoint as
previously mentioned. Boot the system with only the SCD boot flag set. When you see that the error
has occurred, halt the system and initiate an IPL 14 interrupt, as you would to start XDELTA. The target
kernel will get control and wait for a connection for SCD.

The equivalent technique on Integrity servers is as follows:

Boot the system with only the SCD flag set (bit 15). When you see that the error has occurred, type
Ctrl/P at the console. This will give control to XDELTA (even though the XDELTA boot flag is not set)
and you can now type 1;R. The target kernel will get control and wait for a connection for SCD.

484

Chapter 11. OpenVMS System Code Debugger

11.3.3. Interactions between the Target Kernel, the
System Code Debugger, and other system components
The target kernel must have exclusive use of its Ethernet device. Some system components, such as
DECnet, will not start if the System Code Debugger is loaded. If there are multiple Ethernet devices,
and the system is configured to give exclusive access of the SCD Ethernet device to the target kernel,
the logical name DBGTK$OVERRIDE must be defined, indicating that the affected system components
should start up as normal. The logical name can either be defined systemwide, or in the process where
the startup command for the system component will be executed.

11.4. Setting Up the Host System
To set up the host system, you need access to all system images and drivers that are loaded (or can be
loaded) on the target system. You should have access to a source listings kit or a copy of the following
directories:

SYS$LOADABLE_IMAGES:
SYS$LIBRARY:
SYS$MESSAGE:

You need all the .EXE files in those directories. The .DSF files are available with the OpenVMS source
listings kit.

Optionally, you need access to the source files for the images to be debugged. SCD will look for
the source files in the directory where they were compiled. If your build system and host system are
different, you must use the SET SOURCE command to point SCD to the location of the source code
files. For an example of the SET SOURCE command, see Section 11.12.

Before making a connection to the target system, you must set up the logical name DBGHK
$IMAGE_PATH, which must be set up as a search list to the area where the system images or .DSF files
are kept. For example, if the copies are in the following directories:

DEVICE:[SYS$LDR]
DEVICE:[SYSLIB]
DEVICE:[SYSMSG]

you would define DBGHK$IMAGE_PATH as follows:

$ define dbghk$image_path DEVICE:[SYS$LDR],DEVICE:[SYSLIB],DEVICE:[SYSMSG]

This works well for debugging using all the images normally loaded on a given system. However, you
might be using the debugger to test new code in an execlet or a new driver. Because that image is most
likely in your default directory, you must define the logical name as follows:

$ define dbghk$image_path [],DEVICE:[SYS$LDR],DEVICE:[SYSLIB],DEVICE:
[SYSMSG]

If SCD cannot find one of the images through this search path, a warning message is displayed.
SCD will continue initialization as long as it finds at least two images. If SCD cannot find the SYS
$BASE_IMAGE and SYS$PUBLIC_VECTORS files, which are the OpenVMS operating system's main
image files, an error message is displayed and the debugger exits.

If and when this happens, check the directory for the image files and compare it to what is loaded on the
target system.

485

Chapter 11. OpenVMS System Code Debugger

11.5. Starting the System Code Debugger
To start SCD on the host side, enter the following command:

$ DEBUG/KEEP

SCD displays the DBG> prompt. With the DBGHK$IMAGE_PATH logical name defined, you can
invoke the CONNECT command and the optional qualifiers /PASSWORD and /IMAGE_PATH.

To use the CONNECT command and the optional qualifiers (/PASSWORD and /IMAGE_PATH) to
connect to the node with name nodename, enter the following command:

DBG> CONNECT %NODE_NAME nodename /PASSWORD="password"

If a password has been set up on the target system, you must use the /PASSWORD qualifier. If a
password is not specified, a zero length string is passed to the target system as the password.

The /IMAGE_PATH qualifier is also optional. If you do not use this qualifier, SCD uses the DBGHK
$IMAGE_PATH logical name as the default. The /IMAGE_PATH qualifier is a quick way to change
the logical name. However, when you use it, you cannot specify a search list. You can use only a logical
name or a device and directory, although the logical name can be a search list.

Usually, SCD obtains the source file name from the object file. This is put there by the compiler when
the source is compiled with the /DEBUG qualifier. The SET SOURCE command can take a list of paths
as a parameter. It treats them as a search list.

11.6. Summary of System Code Debugger
Commands
In general, any OpenVMS debugger command can be used in SCD. For a complete list, refer to the VSI
OpenVMS Debugger Manual. The following are a few examples:

• Commands to manipulate the source display, such as TYPE and SCROLL.

• Commands used in OpenVMS debugger command programs, such as DO and IF.

• Commands that affect output formats, such as SET RADIX.

• Commands that manipulate symbols and scope, such as EVALUATE, SET LANGUAGE,
and CANCEL SCOPE. Note that the debugger SHOW IMAGE command is equivalent to the
XDELTA ;L command, and the debugger DEFINE command is equivalent to the XDELTA ;X
command.

• Commands that cause code to be executed, such as STEP and GO. Note that the debugger STEP
command is equivalent to the XDELTA S and O commands, and the debugger GO command is
equivalent to the XDELTA ;P and ;G commands.

• Commands that manipulate breakpoints, such as SET BREAK and CANCEL BREAK. These
commands are equivalent to the XDELTA ;B command. However, unlike XDELTA, there is no
limit on the number of breakpoints in SCD.

• Commands that affect memory, such as DEPOSIT and EXAMINE. These commands are
equivalent to the XDELTA /,!,[,",' commands.

486

Chapter 11. OpenVMS System Code Debugger

You can also use the OpenVMS debugger command SDA to examine the target system with System
Dump Analyzer semantics. This command, which is not available when debugging user programs, is
described in the next section.

11.7. Using System Dump Analyzer
Commands
Once a connection has been established to the target system, you can use the commands listed in
the previous section to examine the target system. You can also use some System Dump Analyzer
(SDA) commands, such as SHOW SUMMARY and SHOW DEVICE. This feature allows the system
programmer to take advantage of the strengths of both the OpenVMS Debugger and SDA to examine
the state of the target system and to debug system programs such as device drivers.

To obtain access to SDA commands, you simply type "SDA" at the OpenVMS Debugger prompt
("DBG>") at any time after a connection has been established to the target system. SDA initializes
itself and then outputs the "SDA>" prompt. Enter SDA commands as required. (See Chapter 4 for
more information.) To return to the OpenVMS Debugger, you enter "EXIT" at the "SDA>" prompt.
Optionally, you may invoke SDA to perform a single command and then return immediately to the
OpenVMS Debugger, as in the following example:

DBG>SDA SHOW SUMMARY

You may reenter SDA at any time, with or without the optional SDA command. Once SDA has been
initialized, the SDA> prompt is output more quickly on subsequent occasions.

Note that there are some limitations on the use of SDA from within SCD.

• You cannot switch between processes, whether requested explicitly (SET PROCESS <name>) or
implicitly (SHOW PROCESS <name>). The exception to this is that access to the system process is
possible.

• You cannot switch between CPUs.

• SDA has no knowledge of the OpenVMS debugger's Motif or Windows interfaces. Therefore,
all SDA input and output occurs at the terminal or window where the OpenVMS debugger was
originally invoked. Also, while using SDA, the OpenVMS debugger window is not refreshed; you
must exit SDA to allow the OpenVMS debugger window to be refreshed.

• When you invoke SDA from SCD with an immediate command, and that command produces
a full screen of output, SDA displays the message "Press RETURN for more." followed by the
"SDA>" prompt before continuing. If you enter another SDA command at this prompt, SDA does
not automatically return to SCD upon completion. To do this, you must enter an EXIT command.

11.8. System Code Debugger Network
Information
The SCD host and the target kernel use a private Ethernet protocol to communicate. The best way to
ensure that the two systems can see each other is for them both to be on the same Ethernet segment.
Otherwise, your network and its bridges must be set up to pass through the packets with the protocol
08-00-2B-80-4B and multicast address 09-00-2B-02-01-0F.

487

Chapter 11. OpenVMS System Code Debugger

The network portion of the target system uses the specified Ethernet device and communicates through
it. The network portion of the host system finds the first Ethernet device and communicates through it.
If the host SCD picks the wrong device for your needs, then you can force it to use the correct device by
defining the logical DBGHK$ADAPTOR as the template device name for the appropriate adaptor.

11.9. Troubleshooting Checklist
If you have trouble starting a connection, perform the following tasks to correct the problem:

• Check SCSNODE on the target system.

It must match the name you are using in the host CONNECT command.

• Make sure that both the Ethernet and boot device have been specified correctly.

• Make sure that the host system is using the correct Ethernet device, and that the host and target
systems are connected to the same Ethernet segment.

• Check the version of the operating system and make sure that both the host and target systems are
running the same version of the OpenVMS operating system.

11.10. Troubleshooting Network Failures
There are three possible network errors:

• NETRETRY

Indicates the system code debugger connection is lost

• SENDRETRY

Indicates a message send failure

• NETFAIL

Results from the two previous errors

The netfail error message has a status code that can be one of the following values:

Value Status

2, 4, 6 Internal network error, submit a problem report to
VSI.

8,10,14,16,18,20,26,28,34,38 Network protocol error, submit a problem report to
VSI.

22,24 Too many errors on the network device most likely
due to congestion. Reduce the network traffic or
switch to another network backbone.

30 Target system scratch memory not available. Check
DBGTK_SCRATCH. If increasing this value does
not help, submit a problem report to VSI.

488

Chapter 11. OpenVMS System Code Debugger

Value Status

32 Ran out of target system scratch memory. Increase
value of DBGTK_SCRATCH.

All others There should not be any other network error codes
printed. If one occurs that does not match the
previous ones, submit a problem report to VSI.

11.11. Access to Symbols in OpenVMS
Executive Images
Accessing OpenVMS executive images' symbols is not always straightforward with SCD. Only a subset
of the symbols may be accessible at one time and in some cases, the symbol value the debugger currently
has may be stale. To understand these problems and their solutions, you must understand how the
debugger maintains its symbol tables and what symbols exist in the OpenVMS executive images. The
following sections briefly summarize these topics.

11.11.1. Overview of How the OpenVMS Debugger
Maintains Symbols
The debugger can access symbols from any image in the OpenVMS loaded system image list by reading
in either the .DSF or .EXE file for that particular image. The .EXE file contains information only about
symbols that are part of the symbol vector for that image. The current image symbols for any set module
are defined. (You can tell if you have the .DSF or .EXE file by doing a SHOW MODULE. If there
are no modules, you have the .EXE file.) This includes any symbols in the SYS$BASE_IMAGE.EXE
symbol vector for which the code or data resides in the current image. However, you cannot access a
symbol that is part of the SYS$BASE_IMAGE.EXE symbol vector that resides in another image.

In general, at any one point in time, the debugger can access only the symbols from one image. It does
this to reduce the time it takes to search for a symbol in a table. To load the symbols for a particular
image, use the SET IMAGE command. When you set an image, the debugger loads all the symbols from
the new image and makes that image the current image. The symbols from the previous image are in
memory, but the debugger will not look through them to translate symbols.

There is a set of modules for each image the debugger accesses. The symbol tables in the image that are
part of these modules are not loaded with the SET IMAGE command. Instead they can be loaded with
the SET MODULE <module-name> or SET MODULE/ALL commands. As they are loaded, a new
symbol table is created in memory under the symbol table for the image. The figure below shows what
this looks like.

489

Chapter 11. OpenVMS System Code Debugger

When the debugger needs to look up a symbol name, it first looks at the current image to find the
information. If it does not find it there, it then looks into the appropriate module. It determines which
module is appropriate by looking at the module range symbols which are part of the image symbol table.

To see the symbols that are currently loaded, use the debugger's SHOW SYMBOL command. This
command has a few options to obtain more than just the symbol name and value. (See the VSI OpenVMS
Debugger Manual for more details.)

11.11.2. Overview of OpenVMS Executive Image
Symbols
Depending on whether the debugger has access to the .DSF or .EXE file, different kinds of symbols
could be loaded. Most users will have the .EXE file for the OpenVMS executive images and a .DSF file
for their private images---that is, the images they are debugging.

The OpenVMS executive consists of two base images, SYS$BASE_IMAGE.EXE and SYS
$PUBLIC_VECTORS.EXE, and a number of separately loadable executive images.

The two base images contain symbol vectors. For SYS$BASE_IMAGE.EXE, the symbol vector is
used to define symbols accessible by all the separately loadable images. This allows these images to
communicate with each other through cross-image routine calls and memory references. For SYS
$PUBLIC_VECTORS.EXE, the symbol vector is used to define the OpenVMS system services. Because
these symbol vectors are in the .EXE and the .DSF files, the debugger can load these symbols no matter
which one you have.

All images in the OpenVMS executive also contain global and local symbols. However, none of these
symbols ever gets into the .EXE file for the image. These symbols are put in the specific module's
section of the .DSF file if that module was compiled using /DEBUG and the image was linked using /
DSF.

11.11.3. Possible Problems You May Encounter
Access to All Executive Image Symbols

When the current image is not SYS$BASE_IMAGE, but one of the separately loaded images, the
debugger does not have access to any of the symbols in the SYS$BASE_IMAGE symbol vector. This
means you cannot access (set breakpoints, and so on) any of the cross-image routines or data cells. The
only symbols you have access to are the ones defined by the current image.

If the debugger has access only to the .EXE file, then only symbols that have vectors in the base image
are accessible. For .DSF files, the current image symbols for any set module are defined. (You can tell
if you have the .DSF or .EXE by using the SHOW MODULE command---if there are no modules you
have the .EXE). This includes any symbols in the SYS$BASE_IMAGE.EXE symbol vector for which
the code or data resides in the current image. However, the user cannot access a symbol that is part of the
SYS$BASE_IMAGE.EXE symbol vector that resides in another image. For example, if you are in one
image and you want to set a breakpoint in a cross-image routine from another image, you do not have
access to the symbol. Of course, if you know in which image it is defined, you can do a SET IMAGE,
SET MODULE/ALL, and then a SET BREAK.

There is a debugger workaround for this problem. The debugger and SCD let you use the SET
MODULE command on an image by prefixing the image name with SHARE$ (SHARE$SYS
$BASE_IMAGE, for example). This treats that image as a module which is part of the current image.
In the previous figure, think of it as another module in the module list for an image. Note, however, that

490

Chapter 11. OpenVMS System Code Debugger

only the symbols for the symbol vector are loaded. None of the symbols for the modules of the SHARE
$xxx image are loaded. Therefore, this command is only useful for base images.

So, in other words, by doing SET MODULE SHARESYSBASE_IMAGE, the debugger gives you
access to all cross-image symbols for the OpenVMS executive.

11.12. Sample System Code Debugging
Session
This section provides a sample session that shows the use of some OpenVMS debugger commands as
they apply to SCD. The examples in this session show how to work with C code that has been linked
into the SYSTEM_DEBUG execlet. It is called as an initialization routine for SYSTEM_DEBUG.

To reproduce this sample session, the host system needs access to the SYSTEM_DEBUG.DSF matching
the SYSTEM_DEBUG.EXE file on your target system, and to the source file C_TEST_ROUTINES.C,
which is available in SYS$EXAMPLES. The target system is booted with the boot flags 0, 8004, so it
stops at an initial breakpoint. The system disk is DKB200, and the network device is ESA0 in the Alpha
examples and EIA0 in the Integrity server examples.

Note that the example displays from Example 11-5 onwards are all taken from an OpenVMS Integrity
server system. On an OpenVMS Alpha system, some of the output is different, but the commands
entered are the same on both platforms, except in one case, as noted in the accompanying text.

Example 11.1. Booting an Alpha Target System

>>> b -fl 0,8004 dkb200,esa0
INIT-S-CPU...
INIT-S-RESET_TC...
INIT-S-ASIC...
INIT-S-MEM...
INIT-S-NVR...
INIT-S-SCC...
INIT-S-NI...
INIT-S-SCSI...
INIT-S-ISDN...
INIT-S-TC0...
AUDIT_BOOT_STARTS ...
AUDIT_CHECKSUM_GOOD
AUDIT_LOAD_BEGINS
AUDIT_LOAD_DONE

%SYSBOOT-I-GCTFIL, Using a configuration file to boot as a Galaxy instance.

 OpenVMS (TM) Alpha Operating System, Version V8.3
 © Copyright 1976-2006 Hewlett-Packard Development Company, L.P.

DBGTK: Initialization succeeded. Remote system debugging is now possible.

DBGTK: Waiting at breakpoint for connection from remote host.

A sample Integrity server Boot Menu follows (long lines wrapped for clarity).

Example 11.2. Booting an Integrity server Target System

Please select a boot option

491

Chapter 11. OpenVMS System Code Debugger

 EFI Shell [Built-in]
 PESOS - X8.2-AHI (Topaz BL2) on 1DGA3890:[SYS2.]
 PESOS - X8.2-AHI (Topaz BL2) on 1DGA3890:[SYS2.] sysboot
 PESOS - E8.2-ADH (Topaz BL1) on 1DGA3891:[SYS2.]
 PESOS - E8.2-ADH (Topaz BL1) on 1DGA3891:[SYS2.] sysboot
 Boot Option Maintenance Menu
 System Configuration Menu

 Select the "EFI Shell [Built-in]"

 Loading.: EFI Shell [Built-in]
 EFI Shell version 1.10 [14.61]
 Device mapping table

 fs0 : Acpi(HWP0002,100)/Pci(1|1)/Scsi(Pun0,Lun0)/HD(Part2,
 SigB3A4A931-1F2A-11D8-9EA1-AA000400FEFF)
 fs1 : Acpi(HWP0002,100)/Pci(1|1)/Scsi(Pun2,Lun0)/HD(Part1,
 SigF7B864C3)
 fs2 : Acpi(HWP0002,300)/Pci(1|0)/Fibre(WWN50001FE10011B15D,
 Lun2200)/HD(Part1,Sig51C7BEE1-070B-11D9-8099-AA000400FEFF)
 fs3 : Acpi(HWP0002,300)/Pci(1|0)/Fibre(WWN50001FE10011B15D,
 Lun2200)/HD(Part4,Sig51C7BEE0-070B-11D9-809A-AA000400FEFF)
 .
 .
 .

 Shell>

 Select the desired device/partion:

 Shell> fs1:
 fs1:\>

Use the utilities in \efi\vms. Use vms_show to list the devices and vms_set to set Ethernet device
(debug_dev), if necessary. Note that this set is sticky so it only needs to be done once. Then load the
operating system with the desired flags. Note that Alpha and Integrity servers use the same flags with the
same meanings.

 fs1:\> dir \efi\vms
 Directory of: fs1:\efi\vms

 09/13/04 10:13a <DIR> 2,048 .
 09/13/04 10:13a <DIR> 2,048 ..
 09/13/04 10:13a <DIR> 2,048 tools
 09/13/04 10:13a 3,101,184 ipb.exe
 09/13/04 10:13a <DIR> 2,048 update
 09/13/04 10:13a 846,336 vms_loader.efi
 09/13/04 10:13a 244,224 vms_bcfg.efi
 09/13/04 10:13a 218,112 vms_set.efi
 09/13/04 10:13a 215,040 vms_show.efi
 5 File(s) 4,624,896 bytes
 4 Dir(s)

 fs1:\> \efi\vms\vms_show device
 VMS: EIA0
 EFI: Acpi(000222F0,0)/Pci(3|0)/Mac(00306E39F77B)

492

Chapter 11. OpenVMS System Code Debugger

 VMS: DKB200
 EFI: fs1: Acpi(000222F0,100)/Pci(1|1)/Scsi(Pun2,Lun0)

 VMS: DKB0
 EFI: fs0: Acpi(000222F0,100)/Pci(1|1)/Scsi(Pun0,Lun0)

 VMS: EWA0
 EFI: Acpi(000222F0,100)/Pci(2|0)/Mac(00306E3977C5)
 .
 .
 .

Set the debug_dev to one of the connected Ethernet devices:

 fs1:\> \efi\vms\vms_set debug_dev eia0
 VMS: EIA0 0-30-6E-39-F7-CF
 EFI: Acpi(000222F0,0)/Pci(3|0)/Mac(00306E39F7CF)
 fs1:\> \efi\vms\vms_show debug_dev
 VMS: EIA0 0-30-6E-39-F7-CF
 EFI: Acpi(000222F0,0)/Pci(3|0)/Mac(00306E39F7CF)

Boot up the OS. In this example, the boot is with the SCD and initial (early) breakpoint flags, using root
2 (SYS2), that will vary with system setups:

 fs1:\> \efi\vms\vms_loader -flags "2,8004"

 HP OpenVMS Industry Standard 64 Operating System, V8.3
 © Copyright 1976-2006 Hewlett-Packard Development Company, L.P.

 %EIA-I-BOOTDRIVER, Starting auto-negotiation
 %EIA-I-BOOTDRIVER, Auto-negotiation selected 100BaseTX FDX

 DBGTK: Initialization succeeded. Remote system debugging is now
 possible.

 DBGTK: Waiting at breakpoint for connection from remote host.

Example 11.3. Invoking the Alpha System Code Debugger

$ define dbg$decw$display " "
$ debug/keep

 OpenVMS Alpha Debug64 Version V8.3-003

DBG>

Example 11.4. Invoking the Integrity server System Code Debugger

$ define dbg$decw$display " "
$ debug/keep

 OpenVMS I64 Debug64 Version V8.3-003

493

Chapter 11. OpenVMS System Code Debugger

DBG>

Use the CONNECT command to connect to the target system. In this example, the target system's default
password is the null string, and the logical name DBGHK$IMAGE_PATH is used for the image path;
so the command qualifiers /PASSWORD and /IMAGE_PATH are not being used. You may need to use
them.

When you have connected to the target system, the DBG> prompt is displayed. Enter the SHOW
IMAGE command to see what has been loaded. Because you are reaching a breakpoint early in the boot
process, there are very few images. See the example below. Notice that SYS$BASE_IMAGE has an
asterisk next to it. This is the currently set image, and all symbols currently loaded in the debugger come
from that image.

Example 11.5. Connecting to the Target System

DBG> connect %node_name TSTSYS
%DEBUG-I-INIBRK, target system interrupted
DBG> show image
 image name set base address end address

 ERRORLOG no 0000000000000000
 FFFFFFFFFFFFFFFF
 EXEC_INIT no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$ACPI no 0000000000000000
 FFFFFFFFFFFFFFFF
*SYS$BASE_IMAGE yes 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$DKBTDRIVER no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$DKBTDRIVER no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$DKBTDRIVER no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$EGBTDRIVER no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$OPDRIVER no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$PKMBTDRIVER no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$PKMBTDRIVER no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$PKMBTDRIVER no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$PLATFORM_SUPPORT no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$PUBLIC_VECTORS no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$SRBTDRIVER no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYSTEM_DEBUG no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYSTEM_PRIMITIVES no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYSTEM_SYNCHRONIZATION no 0000000000000000
 FFFFFFFFFFFFFFFF

494

Chapter 11. OpenVMS System Code Debugger

 total images: 18
DBG>

The example below shows the target system's console display during the connect sequence. Note that for
security reasons, the name of the host system, the user's name, and process ID are displayed.

Example 11.6. Target System Connection Display

DBGTK: Connection attempt from host HSTSYS user GUEST process
 2E801C2F
DBGTK: Connection attempt succeeded

To set a breakpoint at the first routine in the C_TEST_ROUTINES module of the
SYSTEM_DEBUG.EXE execlet, do the following:

1. Load the symbols for the SYSTEM_DEBUG image with the DEBUG SET IMAGE command.

2. Use the SET MODULE command to obtain the symbols for the module.

3. Set the language to be C and set a breakpoint at the routine test_c_code.

The language must be set because C is case sensitive and test_c_code needs to be specified in
lowercase. The language is normally set to the language of the main image, in this example SYS
$BASE_IMAGE.EXE. Currently that is not C.

Example 11.7. Setting a Breakpoint

DBG> set image system_debug
%DEBUG-I-DYNLNGSET, setting language IMACRO
DBG> show module
module name symbols language size

AUX_TARGET no C 0
BUFSRV_TARGET no C 0
BUGCHECK_CODES no BLISS 0
C_TEST_ROUTINES no C 0
LIB$$UNWIND_WEAK no BLISS 0
LIB$EF no IMACRO 0
LIB$MALLOC no C 0
LIB$MALLOC_64 no C 0
LINMGR_TARGET no C 0
OBJMGR no C 0
PLUMGR no C 0
POOL no C 0
PROTOMGR_TARGET no C 0
SOCMGR no C 0
SYS$DOINIT yes IMACRO 122526
TMRMGR_TARGET no C 0

total modules: 16

DBG> set module c_test_routines
DBG> show module c_test_routines
module name symbols size

C_TEST_ROUTINES yes 5672

total C modules: 1

495

Chapter 11. OpenVMS System Code Debugger

DBG> set language c
DBG> show symbol test_c_code*
routine C_TEST_ROUTINES\test_c_code
routine C_TEST_ROUTINES\test_c_code2
routine C_TEST_ROUTINES\test_c_code3
routine C_TEST_ROUTINES\test_c_code4
routine C_TEST_ROUTINES\test_c_code5
DBG> set break test_c_code

Now that the breakpoint is set, you can proceed and activate the breakpoint. When that occurs, the
debugger tries to open the source code for that location in the same place as where the module was
compiled. Because that is not the same place as on your system, you need to tell the debugger where to
find the source code. This is done with the debugger's SET SOURCE command, which takes a search
list as a parameter so you can make it point to many places.

Example 11.8. Finding the Source Code

DBG> set source/latest sys$examples,sys$library
DBG> go
break at routine C_TEST_ROUTINES\test_c_code
 113: x = c_test_array[0];

Now that the debugger has access to the source, you can put the debugger into screen mode to see
exactly where you are and the code surrounding it.

Example 11.9. Using the Set Mode Screen Command

DBG> Set Mode Screen; Set Step Nosource

- SRC: module C_TEST_ROUTINES -scroll-
source------------------------------------
 98: c_test_array[5] = in64;
 99: c_test_array[6] = in32;
 100: if (c_test_array[9] > 0)
 101: *pVar = (*pVar + c_test_array[17]) & c_test_array[9];
 102: else
 103: *pVar = (*pVar + c_test_array[17]);
 104: c_test_array[7] = test_c_code3(10);
 105: c_test_array[3] = test;
 106: return c_test_array[23];
 107: }
 108: void test_c_code(void)
 109: {
 110: int x,y;
 111: __int64 x64,y64;
 112:
-> 113: x = c_test_array[0];
 114: y = c_test_array[1];
 115: x64 = c_test_array[2];
 116: y64 = c_test_array[3];
 117: c_test_array[14] = test_c_code2(x64+y64,x+y,x64+x,&y64);
 118: test_c_code4();
 119: return;
 120: }
- OUT -
output---

496

Chapter 11. OpenVMS System Code Debugger

- PROMPT -error-program-
prompt--

DBG>

Now, you want to set another breakpoint inside the test_c_code3 routine. You use the debugger's
SCROLL/UP command (8 on the keypad) to move to that routine and see that line 93 would be a good
place to set the breakpoint. It is at a recursive call. Then you proceed to that breakpoint with the GO
command.

Example 11.10. Using the SCROLL/UP DEBUG Command

- SRC: module C_TEST_ROUTINES -scroll-
source------------------------------------
 80: void test_c_code4(void)
 81: {
 82: int i,k;
 83: for(k=0;k<1000;k++)
 84: {
 85: test_c_code5(&i);
 86: }
 87: return;
 88: }
 89: int test_c_code3(int subrtnCount)
 90: {
 91: subrtnCount = subrtnCount - 1;
 92: if (subrtnCount != 0)
 93: subrtnCount = test_c_code3(subrtnCount);
 94: return subrtnCount;
 95: }
 96: int test_c_code2(__int64 in64,int in32, __int64 test, __int64*
 pVar)
 97: {
 98: c_test_array[5] = in64;
 99: c_test_array[6] = in32;
 100: if (c_test_array[9] > 0)
 101: *pVar = (*pVar + c_test_array[17]) & c_test_array[9];
 102: else
- OUT -
output---

497

Chapter 11. OpenVMS System Code Debugger

- PROMPT -error-program-
prompt--

DBG> Scroll/Up
DBG> set break %line 93
DBG> go
DBG>

When you reach that breakpoint, the source code display is updated to show where you currently are,
which is indicated by an arrow. A message also appears in the OUT display indicating you reach the
breakpoint at that line.

Example 11.11. Breakpoint Display

- SRC: module C_TEST_ROUTINES -scroll-
source------------------------------------
 82: int i,k;
 83: for(k=0;k<1000;k++)
 84: {
 85: test_c_code5(&i);
 86: }
 87: return;
 88: }
 89: int test_c_code3(int subrtnCount)
 90: {
 91: subrtnCount = subrtnCount - 1;
 92: if (subrtnCount != 0)
-> 93: subrtnCount = test_c_code3(subrtnCount);
 94: return subrtnCount;
 95: }
 96: int test_c_code2(__int64 in64,int in32, __int64 test, __int64*
 pVar)
 97: {
 98: c_test_array[5] = in64;
 99: c_test_array[6] = in32;
 100: if (c_test_array[9] > 0)
 101: *pVar = (*pVar + c_test_array[17]) & c_test_array[9];
 102: else
 103: *pVar = (*pVar + c_test_array[17]);
 104: c_test_array[7] = test_c_code3(10);
- OUT -
output---
break at C_TEST_ROUTINES\test_c_code3\%LINE 93

498

Chapter 11. OpenVMS System Code Debugger

- PROMPT -error-program-
prompt--

DBG> Scroll/Up
DBG> set break %line 93
DBG> go
DBG>

Now you try the debugger's STEP command. The default behavior for STEP is STEP/OVER, unlike
XDELTA and DELTA, which is STEP/INTO, so, normally you would expect to step to line 94 in the
code. However, because you have a breakpoint inside test_c_code3 that is called at line 93, you will
reach that event first.

Example 11.12. Using the Debug Step Command

- SRC: module C_TEST_ROUTINES -scroll-
source------------------------------------
 82: int i,k;
 83: for(k=0;k<1000;k++)
 84: {
 85: test_c_code5(&i);
 86: }
 87: return;
 88: }
 89: int test_c_code3(int subrtnCount)
 90: {
 91: subrtnCount = subrtnCount - 1;
 92: if (subrtnCount != 0)
-> 93: subrtnCount = test_c_code3(subrtnCount);
 94: return subrtnCount;
 95: }
 96: int test_c_code2(__int64 in64,int in32, __int64 test, __int64*
 pVar)
 97: {
 98: c_test_array[5] = in64;
 99: c_test_array[6] = in32;
 100: if (c_test_array[9] > 0)
 101: *pVar = (*pVar + c_test_array[17]) & c_test_array[9];
 102: else
 103: *pVar = (*pVar + c_test_array[17]);
 104: c_test_array[7] = test_c_code3(10);
- OUT -
output---
break at C_TEST_ROUTINES\test_c_code3\%LINE 93
break at C_TEST_ROUTINES\test_c_code3\%LINE 93

499

Chapter 11. OpenVMS System Code Debugger

- PROMPT -error-program-
prompt--

DBG>
DBG> set break %line 93
DBG> go
DBG> Step
DBG>

Now, you try a couple of other commands, EXAMINE and SHOW CALLS. The EXAMINE command
allows you to look at all the C variables. Note that the C_TEST_ROUTINES module is compiled
with the /NOOPTIMIZE switch which allows access to all variables. The SHOW CALLS command
shows you the call sequence from the beginning of the stack. In this case, you started out in the image
EXEC_INIT. (The debugger prefixes all images other than the main image with SHARE$ so it shows up
as SHARE$EXEC_INIT. The suffix _CODE0 is appended if the executive image is sliced.)

Example 11.13. Using the Examine and Show Calls Commands

- SRC: module C_TEST_ROUTINES -scroll-
source------------------------------------
 82: int i,k;
 83: for(k=0;k<1000;k++)
 84: {
 85: test_c_code5(&i);
 86: }
 87: return;
 88: }
 89: int test_c_code3(int subrtnCount)
 90: {
 91: subrtnCount = subrtnCount - 1;
 92: if (subrtnCount != 0)
-> 93: subrtnCount = test_c_code3(subrtnCount);
 94: return subrtnCount;
 95: }
 96: int test_c_code2(__int64 in64,int in32, __int64 test, __int64*
 pVar)
 97: {
 98: c_test_array[5] = in64;
 99: c_test_array[6] = in32;
 100: if (c_test_array[9] > 0)
 101: *pVar = (*pVar + c_test_array[17]) & c_test_array[9];
 102: else
 103: *pVar = (*pVar + c_test_array[17]);
 104: c_test_array[7] = test_c_code3(10);
- OUT -
output---

500

Chapter 11. OpenVMS System Code Debugger

C_TEST_ROUTINES\test_c_code3\subrtnCount: 8
 module name routine name line rel PC abs PC
*C_TEST_ROUTINES test_c_code3 93 0000000000000DC0
 FFFFFFFF800BAFC0
*C_TEST_ROUTINES test_c_code3 93 0000000000000DE0
 FFFFFFFF800BAFE0
*C_TEST_ROUTINES test_c_code2 104 0000000000000F40
 FFFFFFFF800BB140
*C_TEST_ROUTINES test_c_code 117 00000000000010B0
 FFFFFFFF800BB2B0
 XDT$INIT 00000000000015C0
 FFFFFFFF880955C0
*SYS$DOINIT EXE$INITIALIZE 1973 0000000000000360
 FFFFFFFF88094360
 SHARE$EXEC_INIT_CODE0 000000000005C240
 FFFFFFFF803BB640
 SHARE$EXEC_INIT_CODE0 0000000000057F20
 FFFFFFFF803B7320
 SHARE$EXEC_INIT_CODE0 0000000000047850
 FFFFFFFF803A6C50
 SHARE$EXEC_INIT_CODE0 0000000000042E90
 FFFFFFFF803A2290
- PROMPT -error-program-
prompt--
DBG> set break %line 93
DBG> go
DBG> Step
DBG> examine subrtnCount
DBG> show calls
DBG>

If you want to proceed because you are done debugging this code, first cancel all the breakpoints and
then enter the GO command. Notice, however, that you do not keep running but receive a message that
you have stepped to line 94. This happens because the STEP command used earlier never completed. It
was interrupted by the breakpoint on line 93.

Note that the debugger remembers all step events and only removes them once they have completed.

Example 11.14. Canceling the Breakpoints

- SRC: module C_TEST_ROUTINES -scroll-
source------------------------------------
 83: for(k=0;k<1000;k++)
 84: {
 85: test_c_code5(&i);
 86: }
 87: return;
 88: }
 89: int test_c_code3(int subrtnCount)
 90: {
 91: subrtnCount = subrtnCount - 1;
 92: if (subrtnCount != 0)
 93: subrtnCount = test_c_code3(subrtnCount);
-> 94: return subrtnCount;
 95: }
 96: int test_c_code2(__int64 in64,int in32, __int64 test, __int64*
 pVar)
 97: {

501

Chapter 11. OpenVMS System Code Debugger

 98: c_test_array[5] = in64;
 99: c_test_array[6] = in32;
 100: if (c_test_array[9] > 0)
 101: *pVar = (*pVar + c_test_array[17]) & c_test_array[9];
 102: else
 103: *pVar = (*pVar + c_test_array[17]);
 104: c_test_array[7] = test_c_code3(10);
 105: c_test_array[3] = test;
- OUT -
output---
 module name routine name line rel PC abs PC
*C_TEST_ROUTINES test_c_code3 93 0000000000000DC0
 FFFFFFFF800BAFC0
*C_TEST_ROUTINES test_c_code3 93 0000000000000DE0
 FFFFFFFF800BAFE0
*C_TEST_ROUTINES test_c_code2 104 0000000000000F40
 FFFFFFFF800BB140
*C_TEST_ROUTINES test_c_code 117 00000000000010B0
 FFFFFFFF800BB2B0
 XDT$INIT 00000000000015C0
 FFFFFFFF880955C0
*SYS$DOINIT EXE$INITIALIZE 1973 0000000000000360
 FFFFFFFF88094360
 SHARE$EXEC_INIT_CODE0 000000000005C240
 FFFFFFFF803BB640
 SHARE$EXEC_INIT_CODE0 0000000000057F20
 FFFFFFFF803B7320
 SHARE$EXEC_INIT_CODE0 0000000000047850
 FFFFFFFF803A6C50
 SHARE$EXEC_INIT_CODE0 0000000000042E90
 FFFFFFFF803A2290
stepped to C_TEST_ROUTINES\test_c_code3\%LINE 94
- PROMPT -error-program-
prompt--
DBG> Step
DBG> examine subrtnCount
DBG> show calls
DBG> cancel break/all
DBG> go
DBG>

The STEP/RETURN command, a different type of step command, single steps assembly code until it
finds a return instruction. This command is useful if you want to see the return value for the routine,
which is done here by examining the R0 register on Alpha, or the R8 register on Integrity servers.

For more information about using other STEP command qualifiers, see the VSI OpenVMS Debugger
Manual.

Example 11.15. Using the Step/Return Command

- SRC: module C_TEST_ROUTINES -scroll-
source------------------------------------
 83: for(k=0;k<1000;k++)
 84: {
 85: test_c_code5(&i);
 86: }
 87: return;
 88: }

502

Chapter 11. OpenVMS System Code Debugger

 89: int test_c_code3(int subrtnCount)
 90: {
 91: subrtnCount = subrtnCount - 1;
 92: if (subrtnCount != 0)
 93: subrtnCount = test_c_code3(subrtnCount);
-> 94: return subrtnCount;
 95: }
 96: int test_c_code2(__int64 in64,int in32, __int64 test, __int64*
 pVar)
 97: {
 98: c_test_array[5] = in64;
 99: c_test_array[6] = in32;
 100: if (c_test_array[9] > 0)
 101: *pVar = (*pVar + c_test_array[17]) & c_test_array[9];
 102: else
 103: *pVar = (*pVar + c_test_array[17]);
 104: c_test_array[7] = test_c_code3(10);
 105: c_test_array[3] = test;
- OUT -
output---
*C_TEST_ROUTINES test_c_code3 93 0000000000000DE0
 FFFFFFFF800BAFE0
*C_TEST_ROUTINES test_c_code2 104 0000000000000F40
 FFFFFFFF800BB140
*C_TEST_ROUTINES test_c_code 117 00000000000010B0
 FFFFFFFF800BB2B0
 XDT$INIT 00000000000015C0
 FFFFFFFF880955C0
*SYS$DOINIT EXE$INITIALIZE 1973 0000000000000360
 FFFFFFFF88094360
 SHARE$EXEC_INIT_CODE0 000000000005C240
 FFFFFFFF803BB640
 SHARE$EXEC_INIT_CODE0 0000000000057F20
 FFFFFFFF803B7320
 SHARE$EXEC_INIT_CODE0 0000000000047850
 FFFFFFFF803A6C50
 SHARE$EXEC_INIT_CODE0 0000000000042E90
 FFFFFFFF803A2290
stepped to C_TEST_ROUTINES\test_c_code3\%LINE 94
stepped on return from C_TEST_ROUTINES\test_c_code3\%LINE 94 to
 C_TEST_ROUTINES\test_c_code3\%LINE 94+17
C_TEST_ROUTINES\test_c_code3\%R8: 0
- PROMPT -error-program-
prompt--
DBG> show calls
DBG> cancel break/all
DBG> go
DBG> step/return
DBG> examine r8
DBG>

After you finish the SCD session, enter the GO command to leave this module. You will encounter
another INI$BRK breakpoint at the end of EXEC_INIT. An error message is displayed indicating there
are no source lines, because debug information on INI$BRK is not available.

Also notice that there is no message in the OUT display for this event. That is because INI$BRKs are
special breakpoints that are handled as SS$_DEBUG signals. They are a method for the system code to
break into the debugger and there is no real breakpoint in the code.

503

Chapter 11. OpenVMS System Code Debugger

Enter the SHOW IMAGE command. You will see more images displayed as the boot path has
progressed further.

Finally, enter GO, allowing the target system to boot completely, because there are no more breakpoints
in the boot path. The debugger will wait for another event to occur.

Example 11.16. Using the Show Image Command

- SRC: module C_TEST_ROUTINES -scroll-
source------------------------------------
 83: for(k=0;k<1000;k++)
 84: {
 85: test_c_code5(&i);
 86: }
 87: return;
 88: }
 89: int test_c_code3(int subrtnCount)
 90: {
 91: subrtnCount = subrtnCount - 1;
 92: if (subrtnCount != 0)
 93: subrtnCount = test_c_code3(subrtnCount);
-> 94: return subrtnCount;
 95: }
 96: int test_c_code2(__int64 in64,int in32, __int64 test, __int64*
 pVar)
 97: {
 98: c_test_array[5] = in64;
 99: c_test_array[6] = in32;
 100: if (c_test_array[9] > 0)
 101: *pVar = (*pVar + c_test_array[17]) & c_test_array[9];
 102: else
 103: *pVar = (*pVar + c_test_array[17]);
 104: c_test_array[7] = test_c_code3(10);
 105: c_test_array[3] = test;
- OUT -
output---
 SYS$UTC_SERVICES no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$VM no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYS$XFCACHE_MON no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYSDEVICE no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYSGETSYI no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYSLDR_DYN no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYSLICENSE no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYSTEM_DEBUG yes 0000000000000000
 FFFFFFFFFFFFFFFF
 SYSTEM_PRIMITIVES no 0000000000000000
 FFFFFFFFFFFFFFFF
 SYSTEM_SYNCHRONIZATION no 0000000000000000
 FFFFFFFFFFFFFFFF

 total images: 53

504

Chapter 11. OpenVMS System Code Debugger

- PROMPT -error-program-
prompt--
DBG> go
%DEBUG-I-INIBRK, target system interrupted
%DEBUG-I-DYNIMGSET, setting image SYS$BASE_IMAGE
%DEBUG-W-SCRNOSRCLIN, No source line for address: FFFFFFFF80000310
DBG> show image
DBG> go

505

Chapter 11. OpenVMS System Code Debugger

506

Chapter 12. OpenVMS System Dump
Debugger
This chapter describes the OpenVMS System Dump Debugger (SDD) and how you can use it to analyze
system crash dumps.

SDD is similar in concept to SCD as described in Chapter 11. Where SCD allows connection to a
running system with control of the system's execution and the examination and modification of variables,
SDD allows analysis of memory as recorded in a system dump.

Use of the SDD usually involves two systems, although all the required environment can be set up on a
single system. The description that follows assumes that two systems are being used:

• The build system, where the image that causes the system crash has been built

• The test system, where the image is executed and the system crash occurs

In common with SCD, the OpenVMS debugger's user interface allows you to specify variable names,
routine names, and so on, precisely as they appear in your source code. Also, SDD can display the source
code where the software was executing at the time of the system crash.

SDD recognizes the syntax, data typing, operators, expressions, scoping rules, and other constructs
of a given language. If your code or driver is written in more than one language, you can change the
debugging context from one language to another during a debugging session.

To use SDD, you must do the following:

• Build the system image or device driver that is causing the system crash.

• Boot a system, including the system image or device driver, and perform the necessary steps to cause
the system crash.

• Reboot the system and save the dump file.

• Invoke SDD, which is integrated with the OpenVMS debugger.

The following sections cover these tasks in more detail, describe the available user-interface options,
summarize applicable OpenVMS Debugger commands, and provide a sample SDD session.

12.1. User-Interface Options
SDD has the following user-interface options.

• A DECwindows Motif interface for workstations.

When using this interface, you interact with SDD by using a mouse and pointer to choose items from
menus, click on buttons, select names in windows, and so on.

Note that you can also use OpenVMS Debugger commands with the DECwindows Motif interface.

• A character cell interface for terminals and workstations.

507

Chapter 12. OpenVMS System Dump Debugger

When using this interface, you interact with SDD by entering commands at a prompt. The sections in
this chapter describe how to use the system dump debugger with the character cell interface.

For more information about using the OpenVMS DECwindows Motif interface and OpenVMS
Debugger commands with SDD, see the VSI OpenVMS Debugger Manual.

12.2. Preparing a System Dump to Be
Analyzed
To prepare a system dump for analysis, perform the following steps:

1. Compile the sources you will want to analyze, and use the /DEBUG (mandatory) and /NOOPT
(preferred) qualifiers.

Note

Because you are analyzing a snapshot of the system, it is not as vital to use unoptimized code as it is
with the system code debugger. But note that you cannot access all variables. SDD may report that
they are optimized away.

2. Link your image using the /DSF (debug symbol file) qualifier. Do not use the /DEBUG qualifier,
which is for debugging user programs. The /DSF qualifier takes an optional filename argument
similar to the /EXE qualifier. For more information, see the VSI OpenVMS Linker Utility Manual.
If you specify a name in the /EXE qualifier, you will need to specify the same name for the /DSF
qualifier. For example, you would use the following command:

$ LINK/EXE=EXE$:MY_EXECLET/DSF=EXE$:MY_EXECLET OPTIONS_FILE/OPT

The .DSF and .EXE file names must be the same. Only the extensions will be different, that is, .DSF
and .EXE.

The contents of the .EXE file should be exactly the same as if you had linked without the /DSF
qualifier. The .DSF file will contain the image header and all the debug symbol tables for .EXE file.
It is not an executable file, and cannot be run or loaded.

3. Put the .EXE file on your test system.

4. Boot the test system and perform the necessary steps to cause the system crash.

5. Reboot the test system and copy the dump to the build system using the System Dump Analyzer
(SDA) command COPY. See Chapter 4.

12.3. Setting Up the Test System
The only requirement for the test system is that the .DSF file matching the .EXE file that causes the
crash is available on the build system.

There are no other steps necessary in the setup of the test system. With the system image copied to
the test system, it can be booted in any way necessary to produce the system crash. Since SDD can
analyze most system crash dumps, any system can be used, from a standalone system to a member of a
production cluster.

508

Chapter 12. OpenVMS System Dump Debugger

Note

It is assumed that the test system has a dump file large enough for the system dump to be recorded. Any
dump style may be used (full or selective, compressed or uncompressed). A properly AUTOGENed
system will meet these requirements.

12.4. Setting Up the Build System
To set up the build system, you need access to all system images and drivers that were loaded on the test
system. You should have access to a source listings kit or a copy of the following directories:

 SYS$LOADABLE_IMAGES:
 SYS$LIBRARY:
 SYS$MESSAGE:

You need all the .EXE files in those directories. The .DSF files are available with the OpenVMS source
listings kits.

Optionally, you need access to the source files for the images to be debugged. SDD will look for the
source files in the directory where they were compiled. You must use the SET SOURCE command to
point SDD to the location of the source code files if they are not in the directories used when the image
was built. For an example of the SET SOURCE command, see Section 12.9.

Before you can analyze a system dump with SDD, you must set up the logical name DBGHK
$IMAGE_PATH, which must be set up as a search list to the area where the system images or .DSF files
are kept. For example, if the copies are in the following directories:

 DEVICE:[SYS$LDR]
 DEVICE:[SYSLIB]
 DEVICE:[SYSMSG]

you would define DBGHK$IMAGE_PATH as follows:

$ define dbghk$image_path DEVICE:[SYS$LDR],DEVICE:[SYSLIB],DEVICE:[SYSMSG]

This works well for analyzing a system dump using all the images normally loaded on a given system.
However, you might be using SDD to analyze new code either in an execlet or a new driver. Because that
image is most likely in your default directory, you must define the logical name as follows:

$ define dbghk$image_path [],DEVICE:[SYS$LDR],DEVICE:[SYSLIB],DEVICE:
[SYSMSG]

If SDD cannot find one of the images through this search path, a warning message is displayed.
SDD will continue initialization as long as it finds at least two images. If SDD cannot find the SYS
$BASE_IMAGE and SYS$PUBLIC_VECTORS files, which are the OpenVMS operating system's main
image files, an error message is displayed and the debugger exits.

If and when this happens, check the directory for the image files and compare it to what was loaded on
the test system.

12.5. Starting the System Dump Debugger
To start SDD on the build system, enter the following command.

$ DEBUG/KEEP

509

Chapter 12. OpenVMS System Dump Debugger

SDD displays the DBG> prompt. With the DBGHK$IMAGE_PATH logical name defined, you can
invoke the ANALYZE/CRASH_DUMP command and optional qualifier /IMAGE_PATH.

To use the ANALYZE/CRASH_DUMP command and optional qualifier (/IMAGE_PATH) to analyze
the dump in file <file-name> enter the following command:

DBG> ANALYZE/CRASH_DUMP file-name

The /IMAGE_PATH qualifier is optional. If you do not use this qualifier, SDD uses the DBGHK
$IMAGE_PATH logical name as the default. The /IMAGE_PATH qualifier is a quick way to change
the logical name. However, when you use it, you cannot specify a search list. You can use only a logical
name or a device and directory, although the logical name can be a search list.

Usually, SDD obtains the source file name from the object file. This is put there by the compiler when
the source is compiled with the /DEBUG qualifier. The SET SOURCE command can take a list of paths
as a parameter. It treats them as a search list.

12.6. Summary of System Dump Debugger
Commands
Only a subset of OpenVMS debugger commands can be used in SDD. The following are a few examples
of commands that you can use in SDD:

• Commands to manipulate the source display, such as TYPE and SCROLL

• Commands used in OpenVMS debugger command programs, such as DO and IF

• Commands that affect output formats, such as SET RADIX

• Commands that manipulate symbols and scope, such as EVALUATE, SET LANGUAGE, and
CANCEL SCOPE

• Commands that read the contents of memory and registers, such as EXAMINE

Examples of commands that cannot be used in SDD are as follows:

• Commands that cause code to be executed, such as STEP and GO

• Commands that manipulate breakpoints, such as SET BREAK and CANCEL BREAK

• Commands that modify memory or registers, such as DEPOSIT

You can also use the OpenVMS debugger command SDA to examine the system dump with System
Dump Analyzer semantics. This command, which is not available when debugging user programs, is
described in the next section.

12.7. Using System Dump Analyzer
Commands
Once a dump file has been opened, you can use the commands listed in the previous section to examine
the system dump. You can also use some System Dump Analyzer (SDA) commands, such as SHOW
SUMMARY and SHOW DEVICE. This feature allows the system programmer to take advantage of
the strengths of both the OpenVMS Debugger and SDA to examine the system dump and to debug
system programs such as device drivers, without having to invoke both the OpenVMS debugger and
SDA separately.

510

Chapter 12. OpenVMS System Dump Debugger

To obtain access to SDA commands, you simply type "SDA" at the OpenVMS Debugger prompt
("DBG>") at any time after the dump file has been opened. SDA initializes itself and then outputs the
"SDA>" prompt. Enter SDA commands as required. (See Chapter 4 for more information.) To return to
the OpenVMS Debugger, you enter "EXIT" at the "SDA>" prompt. Optionally, you may invoke SDA to
perform a single command and then return immediately to the OpenVMS Debugger, as in the following
example:

DBG> SDA SHOW SUMMARY

SDA may be reentered at any time, with or without the optional SDA command. Once SDA has been
initialized, the SDA> prompt is output more quickly on subsequent occasions.

Note that there are some limitations on the use of SDA from within SDD:

• You cannot switch between processes, whether requested explicitly (SET PROCESS <name>) or
implicitly (SHOW PROCESS <name>). The exception to this is that access to the system process is
possible.

• You cannot switch between CPUs.

• SDA has no knowledge of the OpenVMS debugger's Motif or Windows interfaces. Therefore,
all SDA input and output occurs at the terminal or window where the OpenVMS debugger was
originally invoked. Also, while using SDA, the OpenVMS debugger window is not refreshed; you
must exit SDA to allow the OpenVMS debugger window to be refreshed.

• When you invoke SDA from SDD with an immediate command, and that command produces a full
screen of output, SDA displays the message "Press RETURN for more." followed by the "SDA>"
prompt before continuing. At this prompt, if you enter another SDA command, SDA does not
automatically return to SDD upon completion. To do this, you must enter an EXIT command.

If the need arises to switch between processes or CPUs in the system dump, then you must invoke SDA
separately using the DCL command ANALYZE/CRASH_DUMP.

12.8. Limitations of the System Dump
Debugger
SDD provides a narrow window into the context of the system that was current at the time that the
system crashed (stack, process, CPU, and so on). It does not provide full access to every part of the
system as is provided by SDA. However, it does provide a view of the failed system using the semantics
of the OpenVMS debugger---source correlation and display, call frame traversal, examination of
variables by name, language constructs, and so on.

SDD therefore provides an additional approach to analyzing system dumps that is difficult to realize with
SDA, often allowing quicker resolution of system crashes than is possible with SDA alone. When SDD
cannot provide the needed data from the system dump, you should use SDA instead.

12.9. Access to Symbols in OpenVMS
Executive Images
For a discussion and explanation of how the OpenVMS debugger accesses symbols in OpenVMS
executive images, see Section 11.11.

511

Chapter 12. OpenVMS System Dump Debugger

12.10. Sample System Dump Debugging
Session
This section provides a sample session that shows the use of some OpenVMS debugger commands as
they apply to the system dump debugger. The examples in this section show how to work with a dump
created as follows:

1. Follow the steps in Section 11.12, up to and including Example 11.9 (Using the Set Mode Screen
Command).

2. Enter the following OpenVMS Debugger commands:

DBG> SET BREAK TEST_C_CODE5
DBG> GO
DBG> DEPOSIT K=0
DBG> GO

3. The system then crashes and a dump is written.

4. When the system reboots, copy the contents of SYS$SYSTEM:SYSDUMP.DMP to the build system
with SDA:

$ analyze/crash sys$system:sysdump.dmp

 OpenVMS (TM) system dump analyzer
 ...analyzing a selective memory dump...

 %SDA-W-NOTSAVED, global pages not saved in the dump file
 Dump taken on 1-JAN-1998 00:00:00.00
 INVEXCEPTN, Exception while above ASTDEL

 SDA> copy hstsys::sysdump.dmp
 SDA>

To reproduce this sample session, you need access to the SYSTEM_DEBUG.DSF matching the
SYSTEM_DEBUG.EXE file on your test system and to the source file C_TEST_ROUTINES.C, which
is available in SYS$EXAMPLES.

The example begins by invoking the system dump debugger's character cell interface on the build system.

Note that the example displays from Example 12-1 onwards are all taken from an OpenVMS Integrity
server system. On an OpenVMS Alpha system, some of the output is different, but the commands
entered are the same on both platforms.

Example 12.1. Invoking the System DumpDebugger

$ define dbg$decw$display " "
$ debug/keep

 OpenVMS I64 Debug64 Version V8.3-003

DBG>

Use the ANALYZE/CRASH_DUMP command to open the system dump. In this example, the logical
name DBGHK$IMAGE_PATH is used for the image path, so the command qualifier /IMAGE_PATH is
not being used. You may need to use it.

512

Chapter 12. OpenVMS System Dump Debugger

When you have opened the dump file, the DBG> prompt is displayed. You should now do the following:

1. Set the language to be C, the language of the module that was active at the time of the system crash.

2. Set the source directory to the location of the source of the module. Use the debugger's SET
SOURCE command, which takes a search list as a parameter so you can make it point to many
places.

Example 12.2. Accessing the System Dump

DBG> analyze/crash_dump sysdump.dmp
%SDA-W-NOTSAVED, global pages not saved in the dump file
%DEBUG-I-INIBRK, target system interrupted
%DEBUG-I-DYNIMGSET, setting image SYSTEM_DEBUG
%DEBUG-I-DYNMODSET, setting module C_TEST_ROUTINES
DBG> set language c
DBG> set source/latest sys$examples,sys$library
DBG>

Now that the debugger has access to the source, you can put the debugger into screen mode to see
exactly where you are and the code surrounding it.

Example 12.3. Displaying the Source Code

DBG> Set Mode Screen; Set Step Nosource

- SRC: module C_TEST_ROUTINES -scroll-
source------------------------------------
 67:
 68: /* We want some global data cells */
 69: volatile __int64 c_test_array[34];
 70:
 71: void test_c_code5(int *k)
 72: {
 73: int i;
 74: char str[100];
 75: for(i=0;i<100;i++)
 76: str[i]= 'a';
 77: str[99]=0;
-> 78: *k = 9;
 79: }
 80: void test_c_code4(void)
 81: {
 82: int i,k;
 83: for(k=0;k<1000;k++)
 84: {
 85: test_c_code5(&i);
 86: }
 87: return;
 88: }
 89: int test_c_code3(int subrtnCount)
- OUT -
output---

513

Chapter 12. OpenVMS System Dump Debugger

- PROMPT -error-program-
prompt--

%DEBUG-I-SCRNOTORIGSRC, original version of source file not found for
 display in SRC
 file used is SYS$COMMON:[SYSHLP.EXAMPLES]C_TEST_ROUTINES.C;1
DBG>

Now, you try a couple of other commands, EXAMINE and SHOW CALLS. The EXAMINE command
allows you to look at all the C variables. Note that the C_TEST_ROUTINES module is compiled
with the /NOOPTIMIZE switch which allows access to all variables. The SHOW CALLS command
shows you the call sequence from the beginning of the stack. In this case, you started out in the image
EXEC_INIT. (The debugger prefixes all images other than the main image with SHARE$ so it shows up
as SHARE$EXEC_INIT.)

Example 12.4. Using the Examine and Show CallsCommands

DBG> Set Mode Screen; Set Step Nosource

- SRC: module C_TEST_ROUTINES -scroll-
source------------------------------------
 67:
 68: /* We want some global data cells */
 69: volatile __int64 c_test_array[34];
 70:
 71: void test_c_code5(int *k)
 72: {
 73: int i;
 74: char str[100];
 75: for(i=0;i<100;i++)
 76: str[i]= 'a';
 77: str[99]=0;
-> 78: *k = 9;
 79: }
 80: void test_c_code4(void)
 81: {
 82: int i,k;
 83: for(k=0;k<1000;k++)
 84: {
 85: test_c_code5(&i);
 86: }
 87: return;
 88: }
 89: int test_c_code3(int subrtnCount)

514

Chapter 12. OpenVMS System Dump Debugger

- OUT -
output---
C_TEST_ROUTINES\test_c_code5\i: 100
C_TEST_ROUTINES\test_c_code5\k: 0
 module name routine name line rel PC abs PC
*C_TEST_ROUTINES test_c_code5 78 0000000000000CD0
 FFFFFFFF800BAED0
*C_TEST_ROUTINES test_c_code4 85 0000000000000D60
 FFFFFFFF800BAF60
*C_TEST_ROUTINES test_c_code 118 00000000000010D0
 FFFFFFFF800BB2D0
 XDT$INIT 00000000000015C0
 FFFFFFFF880955C0
*SYS$DOINIT EXE$INITIALIZE 1973 0000000000000360
 FFFFFFFF88094360
 SHARE$EXEC_INIT_CODE0 000000000005C240
 FFFFFFFF803BB640
 SHARE$EXEC_INIT_CODE0 0000000000057F20
 FFFFFFFF803B7320
 SHARE$EXEC_INIT_CODE0 0000000000047850
 FFFFFFFF803A6C50
 SHARE$EXEC_INIT_CODE0 0000000000042E90
 FFFFFFFF803A2290
- PROMPT -error-program-
prompt--

%DEBUG-I-SCRNOTORIGSRC, original version of source file not found for
 display in SRC
 file used is SYS$COMMON:[SYSHLP.EXAMPLES]C_TEST_ROUTINES.C;1
DBG> examine i,k
DBG> show calls
DBG>

515

Chapter 12. OpenVMS System Dump Debugger

516

Part III. OpenVMS Alpha
Watchpoint Utility

This part describes the Alpha Watchpoint utility. It presents how to use the Watchpoint utility by doing
the following:

• Loading the watchpoint driver

• Creating and deleting watchpoints

• Looking at watchpoint driver data

• Acquiring collected watchpoint data

• Looking at the protection attributes and access fault mechanism

• Looking at some watchpoint restrictions

517

518

Chapter 13. Watchpoint Utility (Alpha
Only)
The Alpha Watchpoint utility (WP) enables you to monitor write access to user-specified locations. The
chapter contains the following sections:

Section 13.1 presents an introduction of the Watchpoint utility.

Section 13.2 describes how to load the watchpoint driver.

Section 13.3 describes the creation and deletion of watchpoints and the constraints upon watchpoint
locations.

Section 13.4 contains detailed descriptions of the watchpoint driver data structures, which you might
need to know to analyze collected watchpoint data.

Section 13.5 discusses acquiring collected watchpoint data.

Section 13.6 describes the watchpoint protection facility.

Section 13.7 describes the utility's restrictions.

13.1. Introduction
A watchpoint is a data field to which write access is monitored. The field is from 1 to 8 bytes long and
must be contained within a single page. Typically, watchpoints are in nonpaged pool. However, subject
to certain constraints (see Section 13.3.1), they can be defined in other areas of system space. The
Watchpoint facility can simultaneously monitor a large number (50 or more) watchpoints.

The utility is implemented in the WPDRIVER device driver and the utility program WP. This document
concentrates on the device driver, which can be invoked directly or through the WP utility.

For information on the WP utility, see its help files, which can be displayed with the following DCL
command:

 $ HELP/LIBRARY=SYS$HELP:WP

Once the driver has been loaded, a suitably privileged user can designate a watchpoint in system space.
Any write to a location designated as a watchpoint is trapped. Information is recorded about the write,
including its time, the register contents, and the program counter (PC) and processor status longword
(PSL) of the writing instruction. Optionally, one or both of the following user-specified actions can be
taken:

• An XDELTA breakpoint (see the note below) or SCD breakpoint which occurs just after the write to
the watchpoint

• A fatal watchpoint bugcheck which occurs just after the write to the watchpoint

You define a watchpoint by issuing QIO requests to the watchpoint driver; entering commands to the
WP utility, which issues requests to the driver; or, from kernel mode code, invoking a routine within the
watchpoint driver.

519

Chapter 13. Watchpoint Utility (Alpha Only)

The WPDRIVER data structures store information about writes to a watchpoint. This information can
be obtained either through QIO requests to the WPDRIVER, commands to the WP utility, XDELTA
commands issued during a requested breakpoint, or SDA commands issued during the analysis of a
requested crashdump.

Note

For simplicity, this chapter only mentions XDELTA. Any reference to XDELTA breakpoints also implies
SCD breakpoints.

13.2. Initializing the Watchpoint Utility
From a process with CMKRNL privilege, run the SYSMAN utility to load the watchpoint driver, SYS
$WPDRIVER.EXE. Enter the following commands:

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> IO CONNECT WPA0:/NOADAPTER/DRIVER=SYS$WPDRIVER
SYSMAN> EXIT

SYSMAN creates system I/O data structures for the pseudo-device WPA0, loads WPDRIVER, and
invokes its initialization routines. WPDRIVER initialization includes the following actions:

• Allocating nonpaged pool and physical memory for WPDRIVER data structures

• Appropriating the SCB vector specific to access violations

• Recording in system space the addresses of the WPDRIVER routines invoked by kernel mode code
to create and delete watchpoints

Memory requirements for WPDRIVER and its data structures are:

• Device driver and UCB---approximately 3K bytes of nonpaged pool

• Trace table and a related array---36 bytes for each of system parameter WPTTE_SIZE trace table
entries

• Watchpoint restore entries---system parameter WPRE_SIZE pages of physically contiguous memory

• Each watchpoint---176 bytes of nonpaged pool

It is advisable to load the watchpoint driver relatively soon after system initialization to ensure its
allocation of physically contiguous memory. If the driver cannot allocate enough physically contiguous
memory, it does not set WPA0: online. If the unit is offline, you will not be able to use the watchpoint
utility.

13.3. Creating and Deleting Watchpoints
There are three different ways to create and delete watchpoints:

• An image can assign a channel to device WPA0: and then request the Queue I/O Request ($QIO)
system service to create or delete a watchpoint.

• Code running in kernel mode can dispatch directly to routines within the WPDRIVER to create and
delete watchpoints.

520

Chapter 13. Watchpoint Utility (Alpha Only)

• You can enter commands to the WP utility.

The first two methods are described in detail in the sections that follow.

13.3.1. Using the $QIO Interface
An image first assigns a channel to the pseudo-device WPA0: and then issues a $QIO request on that
channel. The process must have the privilege PHY_IO; otherwise, the $QIO request is rejected with the
error SS$_NOPRIV.

The table below shows the functions that the driver supports.

Table 13.1. Driver Supported Functions

Function Activity

IO$_ACCESS Creates a watchpoint
IO$_DEACCESS Deletes a watchpoint
IO$_RDSTATS Receives trace information on a watchpoint

The IO$_ACCESS function requires the following device/function dependent arguments:

• P2---Length of the watchpoint. A number larger than 8 is reduced to 8.

• P3---Starting address of the watchpoint area.

The following are the constraints on the watchpoint area. It must be:

• Nonpageable system space.

• Write-accessible from kernel mode.

• Within one page. If it is not, the requested length is reduced to what will fit within the page
containing the starting address.

• Within a page accessed only from kernel mode and by instructions that incur no pagefaults.

• Within a page whose protection is not altered while the watchpoint is in place.

• Outside of certain address ranges. These are the WPDRIVER code, its data structures, and the
system page table.

Because of the current behavior of the driver, there is an additional requirement that there be no
"unexpected" access violations referencing a page containing a watchpoint. See Section 13.7 for further
details.

To specify that an XDELTA breakpoint or a fatal bugcheck occur if the watchpoint is written, use the
following I/O function code modifiers:

• IO$M_CTRL to request an XDELTA breakpoint

• IO$M_ABORT to request a fatal bugcheck

For an XDELTA breakpoint to be taken, OpenVMS must have been booted specifying that XDELTA
and/or the SCD be resident (bit 1 or bit 15 in the boot flags must be set). If both watchpoint options

521

Chapter 13. Watchpoint Utility (Alpha Only)

are requested, the XDELTA breakpoint is taken first. At exit from the breakpoint, the driver crashes the
system.

A request to create a watchpoint can succeed completely, succeed partially, or fail. The table below
shows the status codes that can be returned in the I/O status block.

Table 13.2. Returned Status Codes

Status Code Meaning

SS$_NORMAL Success.
SS$_BUFFEROVF A watchpoint was established, but its length is

less than was requested because the requested
watchpoint would have straddled a page boundary.

SS$_EXQUOTA The watchpoint could not be created because too
many watchpoints already exist.

SS$_INSFMEM The watchpoint could not be created because there
was insufficient nonpaged pool to create data
structures specific to this watchpoint.

SS$_IVADDR The requested watchpoint resides in one of the
areas in which the WPDRIVER is unable to create
watchpoints.

SS$_WASSET An existing watchpoint either coincides or overlaps
with the requested watchpoint.

The following example MACRO program assigns a channel to the WPA0 device and creates a
watchpoint of 4 bytes, at starting address 80001068. The program requests neither an XDELTA
breakpoint nor a system crash for that watchpoint.

 $IODEF
 .PSECT RWDATA,NOEXE,RD,WRT,LONG
 ;
 WP_IOSB: .BLKL 2 ; I/O status block.
 WP_ADDR: .LONG ^X80001068 ; Address of watchpoint to
 create.
 WP_NAM: .ASCID /WPA0:/ ; Device to which to assign
 channel.
 WP_CHAN: .BLKW 1 ; Channel number.
 .PSECT PROG,EXE,NOWRT
 ;
 START: .CALL_ENTRY

 $ASSIGN_S DEVNAM=WP_NAM,CHAN=WP_CHAN
 BLBC R0,RETURN

 $QIOW_S CHAN=WP_CHAN,-
 FUNC=#IO$_ACCESS,-
 IOSB=WP_IOSB,-
 P2=#4,-
 P3=WP_ADDR
 BLBC R0,RETURN
 MOVL WP_IOSB,R0 ; Move status to R0.
 RETURN: RET ; Return to caller.
 .END START

522

Chapter 13. Watchpoint Utility (Alpha Only)

A watchpoint remains in effect until it is explicitly deleted. (Note, however, that watchpoint definitions
do not persist across system reboots.) To delete an existing watchpoint, issue an IO$_DEACCESS QIO
request.

The IO$_DEACCESS function requires the following device/function dependent argument: P3 - Starting
address of the watchpoint to be deleted.

The table below shows the status values that are returned in the I/O status block.

Table 13.3. Returned Status Values

Status Value Meaning

SS$_NORMAL Success.
SS$_IVADDR The specified watchpoint does not exist.

Section 13.5 describes the use of the IO$_RDSTATS QIO request.

13.3.2. Invoking WPDRIVER Entry Points from System
Routines
When the WPDRIVER is loaded, it initializes two locations in system space with the addresses
of routines within the driver. These locations, WP$CREATE_WATCHPOINT and WP
$DELETE_WATCHPOINT, enable dispatch to create and delete watchpoint routines within the loaded
driver. Input arguments for both routines are passed in registers.

Code running in kernel mode can execute the following instructions:

 JSB @G^WP$CREATE_WATCHPOINT ; create a watchpoint

and

 JSB @G^WP$DELETE_WATCHPOINT ; delete a watchpoint

Both these routines save IPL at entry and set it to the fork IPL of the WPDRIVER, IPL 11. Thus, they
should not be invoked by code threads running above IPL 11. At exit, the routines restore the entry IPL.

These two locations contain an RSB instruction prior to the loading of the driver. As a result, if a system
routine tries to create or delete a watchpoint before the WPDRIVER is loaded, control immediately
returns.

WP$CREATE_WATCHPOINT has the following register arguments:

• R0---User-specified watchpoint options

• Bit 1 equal to 1 specifies that a fatal OPERCRASH bugcheck should occur after a write to the
watchpoint area.

• Bit 2 equal to 1 specifies that an XDELTA breakpoint should occur after a write to the
watchpoint area.

• R1---Length of the watchpoint area

• R2---Starting address of the watchpoint area

Status is returned in R0. The status values and their interpretations are identical to those for the QIO
interface to create a watchpoint. The only difference is that the SS$_NOPRIV status cannot be returned
with this interface.

523

Chapter 13. Watchpoint Utility (Alpha Only)

WPS$DELETE_WATCHPOINT has the following register argument:

• R2---Starting address of the watchpoint area

Status is returned in R0. The status values and their interpretations are identical to those for the QIO
interface.

13.4. Data Structures
The WPDRIVER uses three different kinds of data structures:

• One watchpoint restore entry (WPRE) for each page of system space in which one or more active
watchpoints are located

• One watchpoint control block (WPCB) for each active watchpoint

• Trace table entries (WPTTEs) in a circular trace buffer which maintains a history of watchpoint
writes

These data structures are described in detail and illustrated in the sections that follow.

13.4.1. Watchpoint Restore Entry (WPRE)
There is one WPRE for each system page that contains a watchpoint. That is, if nine watchpoints are
defined which are in four different system pages, four WPREs are required to describe those pages.
When WPDRIVER is loaded, its initialization routine allocates physically contiguous memory for the
maximum number of WPREs. The number of pages to be allocated is specified by system parameter
WPRE_SIZE.

The WPDRIVER allocates WPREs starting at the beginning of the table and maintains a tightly packed
list. That is, when a WPRE in the middle of those in use is "deallocated," its current contents are
replaced with the contents of the last WPRE in use. The number in use at any given time is in the driver
variable WP$L_WP_COUNT. The system global EXE$GA_WP_WPRE points to the beginning of the
WPRE table.

The WPRE for a page contains information useful for:

• Determining whether a given access violation refers to an address in the page associated with this
WPRE

• Restoring the original SPTE value for the associated page

• Reestablishing the modified SPTE value when watchpoints are reenabled

• Invalidating the translation buffer when the SPTE is modified

• Locating the data structures associated with individual watchpoints defined in this system page

13.4.2. Watchpoint Control Blocks (WPCB)
The WPCBs associated with a given system page are singly-linked to a list header in the associated
WPRE. A WPCB is allocated from a nonpaged pool when a watchpoint is created. A WPCB contains
static information about the watchpoint such as the following:

524

Chapter 13. Watchpoint Utility (Alpha Only)

• Its starting address and length

• Original contents of the watchpoint at the time it was established

• User-specified options for this watchpoint

In addition, the WPCB contains dynamic data associated with the most recent write reference to the
watchpoint. This data includes the following:

• Number of times that the watchpoint has been written.

• Address of the first byte within the watchpoint that was modified at the last write reference.

• PC-PSL pair that made the last write reference.

• System time at the last write reference.

• Contents of the general registers at the time of the last write reference.

• A copy of up to 15 bytes of instruction stream data beginning at the program counter (PC) of the
instruction that made the last write reference. The amount of instruction stream data that is copied
here is the lesser of 15 bytes and the remaining bytes on the page containing the PC.

• Contents of the watchpoint before the last write reference.

• Contents of the watchpoint after the last write reference. This value is presumably the current
contents of the watchpoint.

• A pointer to an entry in the global circular trace buffer where all recent references to watchpoints are
traced.

13.4.3. Trace Table Entries (WPTTEs)
Whenever a watchpoint is written, all the relevant data is recorded in the WPCB associated with the
watchpoint. In addition, to maintain a history, the WPDRIVER copies a subset of the data to the oldest
WPTTE in the circular trace buffer. Thus, the circular trace buffer contains a history of the last N
references to watchpoints. The driver allocates nonpaged pool to accommodate the number of trace table
entries specified by the system parameter WPTTE_SIZE. The WPTTEs for all watchpoints are together
in the table, but the ones for a particular watchpoint are chained together.

The subset of data in a WPTTE includes the following:

• Starting address of the watchpoint

• Relative offset of the first byte modified on this reference

• Opcode of the instruction that modified the watchpoint

• A relative backpointer to the previous WPTTE of this watchpoint

• PC-PSL of the write reference

• System time of the write reference

• Contents of the watchpoint before this reference

525

Chapter 13. Watchpoint Utility (Alpha Only)

13.5. Analyzing Watchpoint Results
Analyzing watchpoint results is a function of the mode in which the WPDRIVER is used. For example,
if you have only one watchpoint and have specified that an XDELTA breakpoint and/or a bugcheck
occur on a write to the watchpoint, then when the reference occurs, simply find the program counter
(PC) that caused the reference.

This PC (actually the PC of the next instruction) and its processor status longword (PSL) are on the
stack at the time of the breakpoint and/or bugcheck. The layout that follows is the stack as it appears
within an XDELTA breakpoint. Examined from a crash dump, the stack is similar but does not contain
the return address from the JSB to INI$BRK.

 +--------------------------------------+
 |address in WPDRIVER from JSB G^INI$BRK| :SP
 |PC of next instruction |
 |PSL at watchpoint access |
 +--------------------------------------+

Furthermore, R0 contains the address of the WPCB associated with that watchpoint. You can examine
the WPCB to determine the original contents of the watchpoint area and the registers at the time of the
write.

Definitions for the watchpoint data structures are in SYS$LIBRARY:LIB.MLB. Build an object module
with its symbol definitions by entering the following DCL commands:

$ MACRO/OBJ=SYS$LOGIN:WPDEFS SYS$INPUT: + SYS$LIBRARY:LIB/LIB
 $WPCBDEF GLOBAL !n.b. GLOBAL must be capitalized
 $WPREDEF GLOBAL
 $WPTTEDEF GLOBAL
 .END
CTRL/Z

Then, within SDA, you can format watchpoint data structures. For example, enter the following SDA
commands:

SDA>READ SYS$LOGIN:WPDEFS.OBJ
SDA>FORMAT @R0 /TYPE=WPCB !type definition is required
SDA>DEF WPTTE = @R0 + WPCB$L_TTE
SDA>FORMAT WPTTE /TYPE=WPTTE

An alternative to crashing the system or using XDELTA to get watchpoint information is the QIO
function IO$_RDSTAT. This function returns watchpoint control block contents and trace table entries
for a particular watchpoint.

It requires the following device/function dependent arguments:

• P1---Address of buffer to receive watchpoint data.

• P2---Length of the buffer. The minimum size buffer of 188 bytes is only large enough for WPCB
contents.

• P3---Watchpoint address.

The data returned in the buffer has the format shown in the figure below.

526

Chapter 13. Watchpoint Utility (Alpha Only)

Figure 13.1. Format of Data Returned in Buffer

13.6. Watchpoint Protection Overview
The overall design of the watchpoint facility uses protection attributes on system pages and the access
violation fault mechanism. To establish a watchpoint within a page of system space, the WPDRIVER
changes the protection of the page to disallow writes. The WPDRIVER modifies the access violation
vector to point to its own routine, WP$ACCVIO.

Any subsequent write to this page causes an access violation and dispatch to WP$ACCVIO. Thus, the
WPDRIVER gains control on all write references to watchpoints and can monitor such accesses.

When WP$ACCVIO is entered, it raises IPL to 31 to block all other threads of execution. It first must
determine whether the faulting address (whose reference caused the access violation) is within a page
containing a watchpoint. However, any major amount of CPU processing at this point might access
an area in system space whose protection has been altered to establish watchpoints. As a result, such
processing might cause a reentry into WP$ACCVIO. To avoid recursive reentry, WP$ACCVIO first
restores all SPTEs that it had modified to their values prior to the establishment of any watchpoints.
From this point until this set of SPTEs are remodified, no watchpoints are in effect. Now WP$ACCVIO
can determine whether the reference was to a page containing a watchpoint.

To determine whether the reference is to a watchpoint page, WP$ACCVIO compares the faulting
address to addresses of pages whose protection has been altered by WPDRIVER. If the faulting address
is not in one of these pages, then WP$ACCVIO passes the access violation to the usual OpenVMS
service routine, EXE$ACVIOLAT. If the faulting address is within a page containing a watchpoint, more
extensive processing is required.

As a temporary measure, WP$ACCVIO first records all data related to the reference in its UCB. It
cannot immediately associate the access violation with a particular watchpoint. This ambiguity arises
from imprecision in the faulting virtual address recorded at the access violation. The CPU need merely
place on the stack "some virtual address in the faulting page."

As a result, when a reference to a page with a watchpoint results in an access violation, the watchpoint
driver first merely captures the data in its UCB. The data captured at this point includes the following:

• PC and PSL of the faulting instruction

527

Chapter 13. Watchpoint Utility (Alpha Only)

• Current system time

• Values of all the general registers from R0 through SP

• A copy of up to 15 bytes of the instruction stream, beginning at the PC previously captured

If the reference later turns out not to be one to a watchpoint, the captured data is discarded. If the
reference is to a watchpoint, the data is copied to the WPCB and circular trace buffer.

The watchpoint driver distinguishes between these two possibilities by reexecuting the faulting instruction
under a controlled set of circumstances.

Once the instruction has reexecuted, WP$TBIT can determine whether watchpoint data has been
modified by comparing the current contents of all watchpoints within the page of interest to the contents
that they had prior to this reference. Because the driver has run at IPL 31 since the write access that
caused an access violation, any change in the contents is attributable to the reexecuted instruction. If the
contents of a watchpoint are different, WP$TBIT copies the data temporarily saved in its UCB to the
WPCB associated with this watchpoint and records a subset of this data in a WPTTE.

The driver can cause either or both an XDELTA breakpoint or a bugcheck, depending on what action
was requested with the watchpoint definition. If an XDELTA breakpoint was requested, the driver
invokes XDELTA. After the user proceeds from the XDELTA breakpoint, if a bugcheck was not
requested, the driver restores the SPTEs of pages containing watchpoints, the saved registers and IPL,
and REIs to dismiss the exception.

13.7. Restrictions
The WPDRIVER can monitor only those write references to system space addresses that arise in a CPU.
I/O devices can write to memory and thereby modify watchpoints without the WPDRIVER's becoming
aware of the write.

Because a write access to a watchpoint is determined by comparing the contents of the watchpoint
before and after the write, a write of data identical to the original contents is undetectable.

Because the WPDRIVER modifies SPTEs, a device page that directly interprets tables may experience
access violations when it attempts to write into a memory page whose protection has been modified to
monitor watchpoints. In other words, a page containing a watchpoint should not also contain a buffer for
such a controller.

When you create a watchpoint, you should ensure that the system is quiet with respect to activity
affecting the watchpoint area. Otherwise, an inconsistent copy of the original contents of the watchpoint
area may be saved. WPDRIVER raises IPL to 11 to copy the watchpoint area's original contents. This
means that if the area is modified from a thread of execution running as the result of an interrupt above
11, WPDRIVER can copy inconsistent contents. An inconsistent copy of the original contents may result
in spuriously detected writes and missed writes.

If the page containing the watchpoint area is written by an instruction that incurs a page fault, the system
can crash with a fatal PGFIPLHI bugcheck. As described in the previous section, after detecting an
attempt to write to a page with a watchpoint, the WPDRIVER re-executes the writing instruction at IPL
31. Page faults at IPL 31 are not allowed.

If an outer access mode reference to a watchpointed page causes an access violation, the system will
likely crash. When an access violation occurs on a page with a watchpoint, the current driver does
not probe the intended access and faulting mode against the page's original protection code. Instead,

528

Chapter 13. Watchpoint Utility (Alpha Only)

it assumes that any access violation to that page represents a kernel mode instruction that can be
reexecuted at IPL 31. The driver's subsequent attempt to REI, restoring a program status longword (PSL)
with an outer mode and IPL 31, causes a reserved operand fault and, generally, a fatal INVEXCEPTN
bugcheck.

You must be knowledgeable about the accesses to the page with the watchpoint and careful in using the
driver. You should test the watchpoint creation on a standalone system. You should leave the watchpoint
in effect long enough to have some confidence that pagefaults in instructions accessing that page are
unlikely.

An attempt to CONNECT a WPA unit other than zero results in a fatal WPDRVRERR bugcheck.

The WPDRIVER is suitable for use only on a single CPU system. That is, it should not be used on a
symmetric multiprocessing system. There are no plans to remove this restriction in the near future.

529

Chapter 13. Watchpoint Utility (Alpha Only)

530

Part IV. OpenVMS System
Service Logging Utility

This part describes the System Service Logging utility. It explains how to:

• Start logging

• Stop logging

• Display logged information

531

532

Chapter 14. System Service Logging
This chapter presents an overview of the System Service Logging utility and describes the System
Service Logging commands.

14.1. Overview
System service logging (SSLOG) is used to record system service activity in a process. Its primary
purpose is to troubleshoot process failure or misbehavior. This utility is available on OpenVMS Alpha
and Integrity server platforms.

Once enabled, the SSLOG mechanism records information about system services requested by code
running in the context of that process. The system services logged are:

• Executive and kernel-mode services

• Within privileged shareable image services

• Within the OpenVMS executive

SSLOG does not log the mode of caller services.

SSLOG information is initially recorded in process space buffers. When a buffer is full, it is written to a
disk file in the process's default disk and directory. After the disk file is closed, you can analyze it with
the ANALYZE/SSLOG utility.

Recorded Information

SSLOG records the following information for each service:

• Service identification

• Location of service request - image and offset

• Access mode of requester

• Service arguments (passed by value; only the addresses of arguments passed by reference)

• Timestamp

• Completion status

• Kernel thread, POSIX thread (PTHREAD), and CPU identifiers

The information is recorded as follows:

• It is initially recorded in a ring of P2 space buffers with each process having its own P2 space
buffers.

• A full buffer is written to a disk file. By default, the file is SSLOG.DAT in the current default disk
and directory. However, if the logical name SSLOG is defined, its equivalence string is used to form
the log file name.

533

Chapter 14. System Service Logging

14.2. Enabling Logging
To enable any system service logging, check that the dynamic system parameter SYSSER_LOGGING
is 1. If not, set it to a value of 1. Once logging is enabled, you can start system service logging for a
particular process by DCL command, as shown in the following example.

$ SET PROCESS /SSLOG=(STATE=ON,COUNT=4)

By default, execution of this command affects the current process. To target another process, use the /ID
qualifier or specify the process by name.

Use the COUNT keyword to specify the number of P2 space buffers to allocate for the process you are
logging.

Buffers are pageable and therefore are charged against PGFLQUOTA. They are not deallocated until the
process is deleted.

For additional information on this command, see the full description of the the section called “SET
PROCESS/SSLOG” command.

14.3. Disabling Logging
There are two ways to disable logging, depending on whether you want the option to enable logging
again on the same process.

• If you might want to re-enable logging on this process, use the following command to disable
logging:

$ SET PROCESS /SSLOG=(STATE=OFF)

You can then re-enable logging later by executing the same command with STATE=ON.

• If you want to permanently end logging on this process, use the following command to close and
truncate the log file:

$ SET PROCESS /SSLOG=(STATE=UNLOAD)

After you execute this command, you cannot enable logging on this process again.

14.4. Displaying Logged Information
You display logged information with the DCL command ANALYZE/SSLOG filename , where the
default filename is SSLOG.DAT. For additional information on this command and examples, see the
command the section called “ANALYZE/SSLOG”.

ANALYZE/SSLOG
Displays the collected data.

Format
ANALYZE/SSLOG [/BRIEF | /FULL | /NORMAL | /STATISTICS] [/OUTPUT=filename] [/SELECT=(option[,...])] [/WIDE] [filespec]

534

Chapter 14. System Service Logging

Parameters
filespec

Optional name of the log file to be analyzed. The default filename is SSLOG.DAT.

Qualifiers
/BRIEF

Displays abbreviated logged information.

/FULL

Displays logged information, error status messages and sequence numbers.

/NORMAL (Default)

Displays basic logged information.

/STATISTICS[=BY_STATUS]

Displays statistics on system services usage; accepts BY_STATUS keyword. Outputs a summary of
the services logged with a breakdown by access mode. Output is ordered with the most frequently
requested services first. If BY_STATUS is included, the summary is further separated by completion
status. Output is displayed up to 132 columns wide.

/OUTPUT=filename

Identifies the output file for storing the results of the log analysis. An asterisk (*) and percent sign
(%) are not allowed as wildcards in the file specification. There is no default file type or filename. If
you omit the qualifier, results are output to the current SYS$OUTPUT device.

/SELECT=([option[,...]])

Selects entries based on your choice of options. You must specify at least one of the following:

Keyword Meaning

ACCESS_MODE= mode Selects data by access mode.
IMAGE= image-name Selects data by image name.
STATUS[= n] Selects data by status. n is optional. /

SELECT=STATUS displays all entries that have
an error status.

SYSSER= service-name Selects data by service name.

/WIDE

Provides for a display of logged information up to 132 columns wide.

Description
The ANALYZE/SSLOG command displays the collected logged data. Note that a system service log
must be analyzed on the same platform type as the one on which it was created; for example, a log
created on an OpenVMS Alpha system must be analyzed on an OpenVMS Alpha system.

535

Chapter 14. System Service Logging

Examples
The following examples demonstrate usage of the ANALYZE/SSLOG command.

1. $ ANALYZE /SSLOG /BRIEF
START 1.1 00000414 HERE IA64 !25-MAY-2004
 14:55:17.77
 NAK ::SYSTEM 4 65024

SYS$EXIT_INT sts: -------- acmode: U !
14:55:17.80
 image: IMAGE_MANAGEMENT+00047ed0 argct:
 01
SYS$RMSRUNDWN sts: 00010001 acmode: S !
14:55:17.80
 image: DCL+00070370 argct:
 02
SYS$DCLAST sts: 00000001 acmode: E !
14:55:17.80
 image: RMS+000e5840 argct:
 03
SYS$RMS_CLOSE sts: 00010001 acmode: E !
14:55:17.80
 image: RMS+000d66c0 argct:
 03
SYS$SETEF sts: 00000009 acmode: E !
14:55:17.80
 image: RMS+00125df0 argct:
 01
SYS$RMS_CLOSE sts: 00010001 acmode: E !
14:55:17.80
 image: RMS+000d66c0 argct:
 03
SYS$SETEF sts: 00000009 acmode: E !
14:55:17.80
 image: RMS+00125df0 argct:
 01
SYS$ERNDWN sts: 00000001 acmode: S !
14:55:17.80
 image: IMAGE_MANAGEMENT+000274d0 argct:
 01
SYS$CMKRNL sts: 8318ae00 acmode: E !
14:55:17.80
 image: IMAGE_MANAGEMENT+00027890 argct:
 02
[...]

The above example shows abbreviated SSLOG output.

The first entry displayed is a START message that describes the enabling of system service logging.
The major and minor version numbers associated with this log file are both 1. Logging was initiated
by process ID 0000041416 whose username was SYSTEM. This log file is from an OpenVMS
Integrity server platform. The timestamp shows when logging was started. The process whose
services were logged was named HERE and ran on node NAK. Logging was done into four buffers
of 65024 bytes each.

536

Chapter 14. System Service Logging

Each subsequent entry describes a system service request. The leftmost column is the service name.
The next item displayed is the hexadecimal completion status from that service request. If the status
is displayed as "--------", one of the following circumstances occurred:

• The buffer filled and was written to disk before the service completed.

• The service returned to the system service dispatcher at an interrupt priority level (IPL) above
2. Because the process space buffers are pageable and page faults are not allowed above IPL 2,
completion status cannot be logged when a service returns above IPL 2.

The next item displayed is the access mode from which the service was requested, followed by the
time at which the service was requested. The next line shows the image and offset within the image
of the service request and the number of arguments with which the service was requested. Service
arguments are not displayed when you enter the command ANALYZE/SSLOG/BRIEF.

2. $ ANALYZE /SSLOG /FULL

START version: 1.2 process: 0000042f ! 5-JUN-2006
 14:03:20.07
 username: SYSTEM node: XK150S
 platform: ALPHA
 buffer count: 6 size: 65024 start_flags: 00000003

SYS$SETEXV acmode: U !
14:03:20.20
 sts: %SYSTEM-S-NORMAL, normal successful completion

 image: PROCESS_MANAGEMENT_MON+00008f3c argct:
 04
 arg 1:0000000000000002 2:ffffffff818e8510 3:0000000000000000
 arg 4:0000000000000000
 entry number: 00000002 number at completion: 00000002
 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 0
[...]
SYS$GETDVI acmode: U !
14:03:20.28
 sts: %SYSTEM-S-NORMAL, normal successful completion

 image: SYSTEM_PRIMITIVES+00054dec argct:
 08
 arg 1:0000000000000000 2:0000000000000000 3:000000000004000c
 arg 4:000000007ae59e10 5:000000007ae59e08 6:0000000000000000
 arg 7:0000000000000000 8:0000000000000000
 entry number: 00000193 number at completion: 00000193
 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 1

MOUNTSHR :00010000 acmode: U !
14:03:20.28
 sts: %SYSTEM-S-NORMAL, normal successful completion

 image: MOUNTSHR+0009008c argct:
 02
 arg 1:0000000000000003 2:0000000000000000
 entry number: 00000194 number at completion: 00000195

537

Chapter 14. System Service Logging

 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 1

SYS$SETPRT acmode: E !
14:03:20.28
 sts: %SYSTEM-S-NORMAL, normal successful completion

 image: MOUNTSHR+00091d94 argct:
 05
 arg 1:000000007ff8bf88 2:0000000000000000 3:0000000000000000
 arg 4:0000000000000004 5:0000000000000000
 entry number: 00000195 number at completion: 00000195
 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 1

SYS$SETSFM acmode: U !
14:03:20.28
 sts: %SYSTEM-S-NORMAL, normal successful completion

 image: MOUNTSHR+000900a8 argct:
 01
 arg 1:0000000000000000
 entry number: 00000196 number at completion: 00000196
 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 1

MOUNTSHR :00010000 acmode: U !
14:03:20.28
 sts: %SYSTEM-S-NORMAL, normal successful completion

 image: MOUNTSHR+000901ac argct:
 02
 arg 1:0000000000000001 2:000000007ae5a080
 entry number: 00000197 number at completion: 0000019B
 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 1

[...]

The above example shows full SSLOG output.

In the /FULL display, the START entry also shows the flags with which logging was initiated:

• Bit 0, when set, means that service arguments were logged.

• Bit 1, which is always set, means that the P2 space buffers are being written to a file.

The /FULL display shows the arguments for each system service request, as well as its entry number,
and interprets the completion status. The display includes kernel thread and POSIX thread identifiers
in addition to the identifier of the CPU on which the system service began.

The system service name is not available for services implemented in privileged shareable images.
Instead the image name and an internally generated service number are displayed.

When logging is initiated for a particular service, an entry sequence number is associated with that
entry. The sequence number is incremented with each attempt to log a system service. The /FULL
display shows the sequence number associated with each service request and the number current at

538

Chapter 14. System Service Logging

the time the service completed. If the service requests no other loggable system services, the two
numbers are identical; otherwise, the two numbers differ.

Note that the number at completion is 0 for a service whose completion status could not be logged.

In this example, the number when the second MOUNTSHR system service request is issued is
19716, and the number at completion is 19B16. From this you can infer that four other services were
requested as part of processing MOUNTSHR system service request, namely, the services whose
entry numbers are 19816 through 19B16.

3. $ ANALYZE /SSLOG /BRIEF /WIDE

START 1.2 0000042e XK150S ::USER ALPHA 2 65024 ! 5-
JUN-2006 10:52:51.95
service status mode imagename+offset
 time
------- ------ ---- ----------------

SYS$SETEXV 00000001 U
 PROCESS_MANAGEMENT_MON+00008f3c !10:52:52.06
SYS$SETPRT 00000001 U
 PROCESS_MANAGEMENT_MON+0005274c !10:52:52.06
SYS$SETPRT 00000024 U
 PROCESS_MANAGEMENT_MON+0005274c !10:52:52.06
SYS$SETPRT 00000024 U
 PROCESS_MANAGEMENT_MON+0005274c !10:52:52.06
SYS$IMGACT 00000001 U
 IMAGE_MANAGEMENT+000163b8 !10:52:52.06
SYS$CMKRNL 00000001 U
 LOGINOUT+00030174 !10:52:52.06
SYS$GETJPI 00000001 U
 PROCESS_MANAGEMENT_MON+000527e4 !10:52:52.06
SYS$GETDVI 00000001 U
 SYSTEM_PRIMITIVES+00054dec !10:52:52.06
SYS$SETPRV 00000001 U
 LOGINOUT+0003323c !10:52:52.06
SYS$SETPRV 00000001 U
 LOGINOUT+00033278 !10:52:52.06
SYS$PERSONA_EXPORT_ARB 00000001 K
 PROCESS_MANAGEMENT_MON+0004e9e8 !10:52:52.06
SYS$TRNLNM 000001bc U
 LOGINOUT+000365f8 !10:52:52.06
SYS$SETPRV 00000001 U
 LOGINOUT+00030a08 !10:52:52.06
[...]
SYS$ASSIGN_LOCAL 00000154 E
 IO_ROUTINES_MON+0001a544 !10:52:52.14
SYS$CMKRNL 8180e100 E
 MOUNTSHR+000964a8 !10:52:52.14
missing entry numbers: curr:1082 prev: 721

SYS$SYNCH_INT -------- S
 PROCESS_MANAGEMENT_MON+00035634 !10:52:52.15
SYS$SYNCH_INT -------- S
 PROCESS_MANAGEMENT_MON+00035634 !10:52:52.15
SYS$RMS_FLUSH 00018001 S
 RMS+00056808 !10:53:52.10

539

Chapter 14. System Service Logging

SYS$QIO 00000001 E
 RMS+000742bc !10:53:52.10
[...]

The above example shows abbreviated SSLOG output in a wide format.

Sometimes system services are requested too quickly for logging to keep up. When a buffer fills, it
is written asynchronously to the log file. If there are only two buffers, as in this example, the second
can fill while the first is still being written and thus not yet available. In that case, entries are lost.

Because each attempt to log a service request has an entry number associated with it, the
ANALYZE/SSLOG utility can detect gaps in entry numbers. In this example, the line that begins
"missing entry numbers" indicates a gap of 361 entries.

4. $ ANALYZE /SSLOG /NORMAL

START version: 1.1 process: 00000414 HERE !25-MAY-2004
 14:55:17.77
 username: SYSTEM node: NAK
 platform: IA64

 buffer count: 4 size: 65024 start_flags: 00000003
SYS$EXIT_INT sts: -------- acmode: U !
14:55:17.80
 image: IMAGE_MANAGEMENT+00047ed0 argct:
 01
 arg 1:0000000010000001
 entry number: 00000002 number at completion: 00000000

SYS$RMSRUNDWN sts: 00010001 acmode: S !
14:55:17.80
 image: DCL+00070370 argct:
 02
 arg 1:000000007ffabf14 2:0000000000000000
 entry number: 00000003 number at completion: 00000008

SYS$DCLAST sts: 00000001 acmode: E !
14:55:17.80
 image: RMS+000e5840 argct:
 03
 arg 1:ffffffff832f70b0 2:0000000000000002 3:0000000000000000
 entry number: 00000004 number at completion: 00000004

SYS$RMS_CLOSE sts: 00010001 acmode: E !
14:55:17.80
 image: RMS+000d66c0 argct:
 03
 arg 1:000000007ff67e20 2:0000000000000000 3:0000000000000000
 entry number: 00000005 number at completion: 00000006

SYS$SETEF sts: 00000009 acmode: E !
14:55:17.80
 image: RMS+00125df0 argct:
 01
 arg 1:000000000000001e
 entry number: 00000006 number at completion: 00000006

540

Chapter 14. System Service Logging

SYS$RMS_CLOSE sts: 00010001 acmode: E !
14:55:17.80
 image: RMS+000d66c0 argct:
 03
 arg 1:000000007ff67e20 2:0000000000000000 3:0000000000000000
 entry number: 00000007 number at completion: 00000008

[...]

The above example shows normal SSLOG output in narrow format.

The difference between the /NORMAL and /FULL displays is that the service completion status is
interpreted in a /FULL display.

5. $ ANALYZE /SSLOG /WIDE

START version: 1.1 process: 20200224 HERE2 !28-APR-2004 14:17:58.54
 username: USER node: NODEAZ platform:
 ALPHA

SYS$EXIT_INT sts: -------- acmode: U image:
 IMAGE_MANAGEMENT+00010838 !14:17:58.82
argct:01 1:0000000010000001

SYS$RMSRUNDWN sts: 00010001 acmode: S image:
 DCL.EXE+000804b0 !14:17:58.82
argct:02 1:000000007ff9cb34 2:0000000000000000

SYS$DCLAST sts: 00000001 acmode: E image: RMS
+0004e200 !14:17:58.82
argct:03 1:00000000811338b0 2:0000000000000002 3:0000000000000000

SYS$RMS_CLOSE sts: 00010001 acmode: E image: RMS
+000484b8 !14:17:58.82
argct:03 1:000000007ff8beb0 2:0000000000000000 3:0000000000000000

SYS$SETEF sts: 00000009 acmode: E image: RMS
+0005fe70 !14:17:58.82
argct:01 1:000000000000001e

SYS$RMS_CLOSE sts: 00010001 acmode: E image: RMS
+000484b8 !14:17:58.82
argct:03 1:000000007ff8beb0 2:0000000000000000 3:0000000000000000

SYS$SETEF sts: 00000009 acmode: E image: RMS
+0005fe70 !14:17:58.82
argct:01 1:000000000000001e

541

Chapter 14. System Service Logging

[...]

The above example shows normal (default) SSLOG output in a wide format.

6. $ ANALYZE /SSLOG /WIDE /FULL

START version: 1.1 process: 00000415 HERE !11-
MAY-2006 10:41:38.82
 username: SYSTEM node: NAK
 platform: IA64

SYS$EXIT_INT sts: -------- acmode: U image:
 IMAGE_MANAGEMENT+00047600 !10:41:38.85
argct:01 1:0000000010000001 entry number: 00000002 number at
 completion: 00000000
 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 0

SYS$RMSRUNDWN acmode: S image: DCL
+0006fdb0 !10:41:38.85
 sts: %RMS-S-NORMAL, normal successful completion
argct:02 1:000000007ffabf14 2:0000000000000000
 entry number: 00000003 number at completion: 00000008
 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 0

SYS$DCLAST acmode: E image: RMS
+000e3ca0 !10:41:38.85
 sts: %SYSTEM-S-NORMAL, normal successful completion
argct:03 1:ffffffff842f68b0 2:0000000000000002 3:0000000000000000
 entry number: 00000004 number at completion: 00000004
 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 0

SYS$RMS_CLOSE acmode: E image: RMS
+000d4d90 !10:41:38.85
 sts: %RMS-S-NORMAL, normal successful completion
argct:03 1:000000007ff67e20 2:0000000000000000 3:0000000000000000
 entry number: 00000005 number at completion: 00000006
 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 0

SYS$SETEF acmode: E image: RMS
+00123740 !10:41:38.85
 sts: %SYSTEM-S-ACCVIO, access violation, reason mask=!XB, virtual
 address=!XH, PC=!XH, PS=!XL
argct:01 1:000000000000001e
 entry number: 00000006 number at completion: 00000006
 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 0

SYS$RMS_CLOSE acmode: E image: RMS
+000d4d90 !10:41:38.85
 sts: %RMS-S-NORMAL, normal successful completion
argct:03 1:000000007ff67e20 2:0000000000000000 3:0000000000000000
 entry number: 00000007 number at completion: 00000008
 cpu id: 000 kernel thread ID: 0000 Pthread ID:
 0

542

Chapter 14. System Service Logging

)

The above example shows full SSLOG output in a wide format.

7. $ ANALYZE /SSLOG /WIDE /SELECT=(IMAGE=DCL,SYSSER=SYS$IMGACT)-
_$ /OUTPUT=SSL_SEL2.LOG SSLOG.DAT

START version: 1.1 process: 2020041b SYSTEM
 !30-AUG-2004 18:30:28.79
 username: SYSTEM node: WFGLX4
 platform: ALPHA

SYS$IMGACT sts: 00000001 acmode: S image:
 DCL+0007eb40 !18:30:44.26
argct:08 1:000000007ff9cd58 2:000000007ff9cd50 3:000000007ffcf800
 4:0000000000000000
 5:0000000000000000 6:0000000000000000 7:0000000000000000
 8:0000000000000000
 entry number: 0000002E number at completion: 000000B7

SYS$IMGACT sts: 00000001 acmode: S image:
 DCL+0007eb40 !18:30:49.81
argct:08 1:000000007ff9cd58 2:000000007ff9cd50 3:000000007ffcf800
 4:0000000000000000
 5:0000000000000000 6:0000000000000000 7:0000000000000000
 8:0000000000000000
 entry number: 00000195 number at completion: 00000203

SYS$IMGACT sts: 00000001 acmode: S image:
 DCL+0007eb40 !18:31:06.19
argct:08 1:000000007ff9cd58 2:000000007ff9cd50 3:000000007ffcf800
 4:0000000000000000
 5:0000000000000000 6:0000000000000000 7:0000000000000000
 8:0000000000000000
 entry number: 000003FB number at completion: 0000046A

STOP
 !30-AUG-2004 18:31:06.19

The above example selects only those entries that describe SYS$IMGACT requests made from DCL
and writes the analysis to file SSL_SEL2.LOG. (Parts of the display have been moved left to fit
within manual page boundaries.)

8. $ ANALYZE /SSLOG /STATISTICS /OUTPUT=SSL_STAT.LOG SSLOG.DAT

START version: 1.1 process: 2020041b SYSTEM !30-AUG-2004
 18:30:28.79
 username: SYSTEM node: WFGLX4
 platform: ALPHA

 buffer count: 2 size: 65024 start_flags: 00000003

Service Count User Super
 Exec Kernel Rate/sec
-------- ------ ------ ------
 ------ ------ --------
SYS$TRNLNM 168 4 0
 164 0 4.5

543

Chapter 14. System Service Logging

SYS$RMS_SEARCH 129 129 0
 0 0 3.4
SYS$QIO 121 0 0
 94 27 3.2
SYS$SYNCH_INT 92 88 4
 0 0 2.5
SYS$RMS_PUT 85 85 0
 0 0 2.3
SYS$CMKRNL 55 0 0
 55 0 1.5
SYS$SETPRT 51 36 0
 15 0 1.4
SYS$DASSGN 49 0 0
 24 25 1.3
SYS$GETDVI 46 2 0
 44 0 1.2
SYS$ASSIGN_LOCAL 44 0 0
 44 0 1.2
SYS$MGBLSC 40 0 0
 40 0 1.1
SYS$CRMPSC 27 0 0
 27 0 0.7
SYS$GETJPI 22 22 0
 0 0 0.6
SYS$RMS_OPEN 21 0 0
 21 0 0.6
SYS$DEQ 19 0 0
 8 11 0.5
SYS$IMGACT 18 15 3
 0 0 0.5
SYS$CRETVA 16 0 0
 16 0 0.4
SYS$ENQ 15 0 0
 8 7 0.4
SYS$SETRWM 12 0 0
 6 6 0.3
SYS$DELTVA 12 0 0
 0 12 0.3
SYS$PERSONA_ASSUME 12 0 0
 12 0 0.3
SYS$EXPREG 12 9 0
 3 0 0.3
SYS$RMS_CLOSE 7 1 0
 6 0 0.2
SYS$CLRCLUEVT 6 0 0
 0 6 0.2
SYS$SETEF 6 0 0
 6 0 0.2
SYS$DACEFC 6 0 0
 0 6 0.2
SYS$PERSONA_EXTENSION_LOOKUP 6 0 0
 0 6 0.2
SYS$GETSYI 5 5 0
 0 0 0.1
SYS$DCLAST 5 0 0
 5 0 0.1
SYS$RMSRUNDWN 3 0 3
 0 0 0.1

544

Chapter 14. System Service Logging

SYS$ERNDWN 3 0 3
 0 0 0.1
SYS$SETEXV 3 3 0
 0 0 0.1
SYS$KRNDWN 3 0 3
 0 0 0.1
SYS$EXIT_INT 3 3 0
 0 0 0.1
SYS$RMS_GET 3 0 3
 0 0 0.1
SYS$DCLEXH 3 0 3
 0 0 0.1
SYS$PERSONA_EXPORT_ARB 3 0 0
 0 3 0.1
SYS$DALLOC 3 0 0
 0 3 0.1
SYS$SETPFM 3 0 0
 0 3 0.1
SYS$PERSONA_CLONE 2 0 0
 2 0 0.1
SYS$PERSONA_DELETE 2 0 0
 2 0 0.1
SYS$RMS_CREATE 2 2 0
 0 0 0.1
SYS$RMS_CONNECT 2 2 0
 0 0 0.1
SYS$SET_PROCESS_PROPERTIESW 1 1 0
 0 0 0.0
SYS$RMS_PARSE 1 1 0
 0 0 0.0
SYS$PROCESS_SCAN 1 1 0
 0 0 0.0
SYS$SETPRV 1 1 0
 0 0 0.0

The above example shows the use of the /STATISTICS qualifier. The output lists the most frequently
requested service first. Each entry shows the total number of requests for that service, a breakdown
by access mode, and the rate per second.

Note that only OpenVMS executive services are listed in a /STATISTICS display; services in
privileged shareable images are omitted.

9. $ ANALYZE /SSLOG /STATISTICS=BY_STATUS

START version: 1.1 process: 2020041b SYSTEM !30-AUG-2004
 18:30:28.79
 username: SYSTEM node: WFGLX4
 platform: ALPHA

 buffer count: 2 size: 65024 start_flags: 00000003

Service Count User Super
 Exec Kernel Status Rate/sec
-------- ------ ------ ------
 ------ ------ ------- --------
SYS$TRNLNM 168 4 0
 164 0 All 4.5

545

Chapter 14. System Service Logging

 46 0 0
 46 0 000001BC 1.2
 122 4 0
 118 0 00000001 3.3
SYS$RMS_SEARCH 129 129 0
 0 0 All 3.4
 2 2 0
 0 0 00018001 0.1
 126 126 0
 0 0 00010001 3.4
 1 1 0
 0 0 000182CA 0.0
SYS$QIO 121 0 0
 94 27 All 3.2
 4 0 0
 0 4 0000026C 0.1
 117 0 0
 94 23 00000001 3.1
SYS$SYNCH_INT 92 88 4
 0 0 All 2.5
 92 88 4
 0 0 00000000 2.5
SYS$RMS_PUT 85 85 0
 0 0 All 2.3
 84 84 0
 0 0 00018001 2.2
 1 1 0
 0 0 00000000 0.0
[...]

The above example shows the use of /STATISTICS = BY_STATUS. Similar to the previous example,
it also has an additional line for each status returned by a system service.

RUN/SSLOG_ENABLE
Creates a process with system service logging enabled.

Requires CMEXEC, CMKRNL, or SETPRV privilege to log argument values. The SYSGEN
parameter SYSSER_LOGGING must be enabled or the command will fail.

Refer to online help or the VSI OpenVMS DCL Dictionary for other qualifiers that can be used with the
RUN command when creating a process.

Format
RUN /SSLOG_ENABLE[=(COUNT=n [,FLAGS=[NO]ARG])]

Parameters
COUNT=n

Specifies how many P2-space buffers to log. The default is 2.

FLAGS=[NO]ARG

Specifies whether or not service argument values are to be logged. The default is ARG, which
requires privileges. If the value is ARG but you lack privilege, no argument values are logged.

546

Chapter 14. System Service Logging

If both COUNT and FLAGS are specified, they must be separated by a comma. If only one is
specified, the parentheses may be omitted.

Qualifiers
None.

Description
The RUN/SSLOG_ENABLE command creates a process with system service logging enabled.

When enabling SSLOG for a process, you can specify the number of buffers to be used for logging.
Buffers are allocated in P2 space and are charged against the process's paging file quota. Each buffer is
65,02410 bytes or FE0016 bytes. The buffer space remains allocated and the quota charged until the
process is deleted.

Before you delete the process, stop the logging and close the log file by executing the SET PROCESS/
SSLOG=STATE=UNLOAD command. The log file does not close automatically.

To analyze the log file, use the DCL command ANALYZE/SSLOG.

Examples
1. $ RUN /SSLOG_ENABLE SSLOG_TEST.EXE

This command creates a new process to run the image SSLOG_TEST.EXE and log the results.

2. $ RUN /SSLOG_ENABLE SSLOG_TEST.EXE /PROCESS_NAME=SUBA

This command creates a new process named SUBA to run the image SSLOG_TEST.EXE and log
the results.

SET PROCESS/SSLOG
Enables or disables system service logging on the current process or on a specified process.

Requires GROUP privilege to change other processes in your group. Requires WORLD privilege
to change processes outside your group. Requires CMEXEC, CMKRNL, or SETPRV privilege to
log argument values. SYSGEN parameter SYSSER_LOGGING must be enabled or the command
will fail.

Refer to online help or the VSI OpenVMS DCL Dictionary for other SET PROCESS command qualifiers.

Format
SET PROCESS/SSLOG=(STATE={ON|OFF|UNLOAD} [,COUNT=n] [,FLAGS=[NO]ARGUMENTS]) [/ID=id_number] [process-name]

Parameters
process-name

Specifies the name of the process for which logging is to be enabled or disabled.

547

Chapter 14. System Service Logging

COUNT=n

Specifies how many P2-space buffers to log. The default is 2.

FLAGS=[NO]ARG

Specifies whether or not service argument values are to be logged. The default is ARG, which
requires privileges. If the value is ARG but you lack privilege, no argument values are logged.

STATE=state

Turns system service logging on or off. Possible states are:

ON Enables system service logging.
OFF Disables (turns off) system service logging;

logging can still be reenabled.
UNLOAD Stops logging and closes the log file, which is

named SSLOG.DAT by default.

Qualifiers
/IDENTIFICATION=identification_number

Specify to target a specific process by number.

Description
The SET PROCESS/SSLOG command:

• Enables or disables system service logging

• Opens the log file used to log data

• Can specify a specific process by name or ID (identification number)

• Can stop logging and close the file of logged data

When enabling SSLOG for a process, you specify the number of buffers to be used for logging. The
buffers are allocated in P2 space and are charged against the process's paging file quota. Each buffer is
65,02410 bytes or FE0016 bytes. The buffer space remains allocated and the quota charged until the
process is deleted.

Between the time when SSLOG is first enabled and when the log file is closed, logging can be stopped
and resumed.

Before you delete the process, stop the logging and close the log file. The log file does not close
automatically.

To analyze the log file, use the DCL command ANALYZE/SSLOG.

Examples
1. $ SET PROCESS /SSLOG=(STATE=ON,COUNT=4)

548

Chapter 14. System Service Logging

This command turns on system service logging with four P2 space buffers, each having a size of
FE0016 bytes. If the process has SETPRV, CMKRNL, or CMEXEC privilege, argument values are
logged.

2. $ SET PROCESS /SSLOG=(STATE=UNLOAD)

This command stops logging and closes the log file.

549

Chapter 14. System Service Logging

550

	VSI OpenVMS System Analysis Tools Manual
	Table of Contents
	Preface
	1. About VSI
	2. About This Manual
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Overview of System Analysis Tools
	1.1. System Dump Analyzer (SDA)
	1.2. System Code Debugger (SCD)
	1.3. System Dump Debugger (SDD)
	1.4. Watchpoint Utility (Alpha Only)
	1.5. System Service Logging
	1.6. Delta/XDelta Debugger
	1.7. Dump-Off-System-Disk (DOSD)
	1.8. On-Chip Logic Analyzer (OCLA)

	Part I. OpenVMS System Dump Analyzer (SDA)
	Chapter 2. SDA Description
	2.1. Capabilities of SDA
	2.2. System Management and SDA
	2.2.1. Writing System Dumps
	2.2.1.1. Dump File Style
	2.2.1.2. Comparison of Full and Selective Dumps
	2.2.1.3. Controlling the Size of Page Files and Dump Files
	2.2.1.4. Writing to the System Dump File
	2.2.1.5. Writing to a Dump File off the System Disk
	2.2.1.6. Writing to the System Page File

	2.2.2. Saving System Dumps
	2.2.3. Partial Dump Copies
	2.2.3.1. Example - Use of Partial Dump Copies
	2.2.3.2. Additional notes on Partial Dump Copies

	2.2.4. Invoking SDA When Rebooting the System

	2.3. Analyzing a System Dump
	2.3.1. Requirements
	2.3.2. Invoking SDA
	2.3.3. Mapping the Contents of the Dump File
	2.3.4. Building the SDA Symbol Table
	2.3.5. Executing the SDA Initialization File (SDA$INIT)

	2.4. Analyzing a Running System
	2.5. SDA Context
	2.6. SDA Command Format
	2.6.1. Using Expressions and Operators
	2.6.1.1. Radix Operators
	2.6.1.2. Arithmetic and Logical Operators
	2.6.1.3. Precedence Operators
	2.6.1.4. SDA Symbols

	2.6.2. SDA Display Mode

	2.7. Investigating System Failures
	2.7.1. Procedure for Analyzing System Failures
	2.7.2. Fatal Bugcheck Conditions
	2.7.2.1. Alpha Mechanism Array
	2.7.2.2. Integrity server Mechanism Array
	2.7.2.3. Signal Array
	2.7.2.4. 64-Bit Signal Array
	2.7.2.5. Alpha Exception Stack Frame
	2.7.2.6. Integrity server Exception Stack Frame
	2.7.2.7. SSRVEXCEPT Example
	2.7.2.8. Illegal Page Faults

	2.8. Page Protections and Access Rights
	2.9. Inducing a System Failure
	2.9.1. Meeting Crash Dump Requirements
	2.9.2. Procedure for Causing a System Failure

	Chapter 3. ANALYZE Usage
	3.1. ANALYZE
	ANALYZE

	3.2. /COLLECTION
	/COLLECTION

	3.3. /CRASH_DUMP
	/CRASH_DUMP

	3.4. /LOG
	/LOG

	3.5. /OVERRIDE
	/OVERRIDE

	3.6. /RELEASE
	/RELEASE

	3.7. /SHADOW_MEMBER
	/SHADOW_MEMBER

	3.8. /SSLOG
	/SSLOG

	3.9. /SYMBOL
	/SYMBOL

	3.10. /SYSTEM
	/SYSTEM

	Chapter 4. SDA Commands
	4.1. @(Execute Command)
	4.2. ATTACH
	4.3. COLLECT
	4.4. COPY
	4.5. DEFINE
	4.6. DEFINE/KEY
	4.7. DUMP
	4.8. EVALUATE
	4.9. EXAMINE
	4.10. EXIT
	4.11. FORMAT
	4.12. HELP
	4.13. MAP
	4.14. MODIFY DUMP
	4.15. READ
	4.16. REPEAT
	4.17. SEARCH
	4.18. SET CPU
	4.19. SET ERASE_SCREEN
	4.20. SET FETCH
	4.21. SET LOG
	4.22. SET OUTPUT
	4.23. SET PROCESS
	4.24. SET RMS
	4.25. SET SIGN_EXTEND
	4.26. SET SYMBOLIZE
	4.27. SHOW ACPI (Integrity servers only)
	4.28. SHOW ADDRESS
	4.29. SHOW BUGCHECK
	4.30. SHOW CALL_FRAME
	4.31. SHOW CBB
	4.32. SHOW CEB
	4.33. SHOW CLASS
	4.34. SHOW CLUSTER
	4.35. SHOW CONNECTIONS
	4.36. SHOW CPU
	4.37. SHOW CRASH
	4.38. SHOW DEVICE
	4.39. SHOW DUMP
	4.40. SHOW EFI (Integrity servers Only)
	4.41. SHOW EXCEPTION_FRAME
	4.42. SHOW EXECUTIVE
	4.43. SHOW GALAXY
	4.44. SHOW GCT
	4.45. SHOW GLOBAL_SECTION_TABLE
	4.46. SHOW GLOCK
	4.47. SHOW GMDB
	4.48. SHOW GSD
	4.49. SHOW GST
	4.50. SHOW HEADER
	4.51. SHOW IMAGE
	4.52. SHOW KFE
	4.53. SHOW KNOWN_FILE_ENTRY
	4.54. SHOW LAN
	4.55. SHOW LOCKS
	4.56. SHOW MACHINE_CHECK
	4.57. SHOW MEMORY
	4.58. SHOW PAGE_TABLE
	4.59. SHOW PARAMETER
	4.60. SHOW PFN_DATA
	4.61. SHOW POOL
	4.62. SHOW PORTS
	4.63. SHOW PROCESS
	4.64. SHOW RAD
	4.65. SHOW RESOURCES
	4.66. SHOW RMD
	4.67. SHOW RMS
	4.68. SHOW RSPID
	4.69. SHOW SHM_CPP
	4.70. SHOW SHM_REG
	4.71. SHOW SPINLOCKS
	4.72. SHOW STACK
	4.73. SHOW SUMMARY
	4.74. SHOW SWIS (Integrity servers Only)
	4.75. SHOW SYMBOL
	4.76. SHOW TQE
	4.77. SHOW TQEIDX
	4.78. SHOW UNWIND (Integrity servers Only)
	4.79. SHOW VHPT (Integrity servers Only)
	4.80. SHOW WORKING_SET_LIST
	4.81. SHOW WSL
	4.82. SPAWN
	4.83. UNDEFINE
	4.84. VALIDATE PFN_LIST
	4.85. VALIDATE POOL
	4.86. VALIDATE PROCESS
	4.87. VALIDATE QUEUE
	4.88. VALIDATE SHM_CPP
	4.89. VALIDATE TQEIDX
	4.90. WAIT

	Chapter 5. SDA CLUE Extension
	5.1. Overview of SDA CLUE Extension
	5.2. Displaying Data with CLUE
	5.3. Using CLUE with DOSD
	5.4. SDA CLUE Extension Commands
	5.4.1. CLUE CALL_FRAME (Alpha Only)
	5.4.2. CLUE CLEANUP
	5.4.3. CLUE CONFIG
	5.4.4. CLUE CRASH
	5.4.5. CLUE ERRLOG
	5.4.6. CLUE FRU
	5.4.7. CLUE HISTORY
	5.4.8. CLUE MCHK
	5.4.9. CLUE MEMORY
	5.4.10. CLUE PROCESS
	5.4.11. CLUE REGISTER
	5.4.12. CLUE SCSI
	5.4.13. CLUE SG
	5.4.14. CLUE STACK
	5.4.15. CLUE SYSTEM
	5.4.16. CLUE VCC
	5.4.17. CLUE XQP

	Chapter 6. SDA FLT Extension
	6.1. FLT Commands
	6.1.1. FLT
	6.1.2. FLT LOAD
	6.1.3. FLT SHOW TRACE
	6.1.4. FLT START TRACE
	6.1.5. FLT STOP TRACE
	6.1.6.

	Chapter 7. SDA OCLA Extension (Alpha Only)
	7.1. Overview of OCLA
	7.2. SDA OCLA Commands
	7.2.1. OCLA DISABLE
	7.2.2. OCLA DUMP
	7.2.3. OCLA ENABLE
	7.2.4. OCLA HELP
	7.2.5. OCLA LOAD
	7.2.6. OCLA SET REGISTER
	7.2.7. OCLA SHOW REGISTER
	7.2.8. OCLA SHOW STATUS
	7.2.9. OCLA SHOW TRACE
	7.2.10. OCLA START
	7.2.11. OCLA STOP
	7.2.12. OCLA UNLOAD

	Chapter 8. SDA SPL Extension
	8.1. Overview of the SDA Spinlock Tracing Utility
	8.2. How to Use the SDA Spinlock Tracing Utility
	8.3. Example Command Procedure for Collection of Spinlock Statistics
	8.4. SDA Spinlock Tracing Commands
	8.4.1. SPL
	8.4.2. SPL ANALYZE
	8.4.3. SPL LOAD
	8.4.4. SPL SHOW COLLECT
	8.4.5. SPL SHOW TRACE
	8.4.6. SPL START COLLECT
	8.4.7. SPL START TRACE
	8.4.8. SPL STOP COLLECT
	8.4.9. SPL STOP TRACE
	8.4.10. SPL UNLOAD

	Chapter 9. SDA XFC Extension
	9.1. SDA XFC Commands
	9.1.1. XFC SET TRACE

	9.2. XFC SHOW CONTEXT
	9.3. XFC SHOW EXTENT
	9.4. XFC SHOW FILE
	9.5. XFC SHOW HISTORY
	9.6. XFC SHOW IRP
	9.7. XFC SHOW MEMORY
	9.8. XFC SHOW SUMMARY
	9.9. XFC SHOW TABLES
	9.10. XFC SHOW TRACE
	9.11. XFC SHOW VOLUME

	Chapter 10. SDA Extensions and Callable Routines
	10.1. Introduction
	10.2. Description
	10.2.1. Compiling and Linking an SDA Extension
	10.2.2. Invoking an SDA Extension
	10.2.3. Contents of an SDA Extension

	10.3. Debugging an Extension
	10.4. Callable Routines Overview
	10.5. Routines
	10.5.1. SDA$ADD_SYMBOL
	10.5.2. SDA$ALLOCATE
	10.5.3. SDA$CBB_BOOLEAN_OPER
	10.5.4. SDA$CBB_CLEAR_BIT
	10.5.5. SDA$CBB_COPY
	10.5.6. SDA$CBB_FFC
	10.5.7. SDA$CBB_FFS
	10.5.8. SDA$CBB_INIT
	10.5.9. SDA$CBB_SET_BIT
	10.5.10. SDA$CBB_TEST_BIT
	10.5.11. SDA$DBG_IMAGE_INFO
	10.5.12. SDA$DEALLOCATE
	10.5.13. SDA$DELETE_PREFIX
	10.5.14. SDA$DISPLAY_HELP
	10.5.15. SDA$ENSURE
	10.5.16. SDA$FAO
	10.5.17. SDA$FID_TO_NAME
	10.5.18. SDA$FORMAT
	10.5.19. SDA$FORMAT_HEADING
	10.5.20. SDA$GET_ADDRESS
	10.5.21. SDA$GET_BLOCK_NAME
	10.5.22. SDA$GET_BUGCHECK_MSG
	10.5.23. SDA$GET_CURRENT_CPU
	10.5.24. SDA$GET_CURRENT_PCB
	10.5.25. SDA$GET_DEVICE_NAME
	10.5.26. SDA$GET_FLAGS
	10.5.27. SDA$GET_HEADER
	10.5.28. SDA$GET_HW_NAME
	10.5.29. SDA$GET_IMAGE_OFFSET
	10.5.30. SDA$GET_INPUT
	10.5.31. SDA$GET_LINE_COUNT
	10.5.32. SDA$GETMEM
	10.5.33. SDA$INSTRUCTION_DECODE
	10.5.34. SDA$NEW_PAGE
	10.5.35. SDA$PARSE_COMMAND
	10.5.36. SDA$PRINT
	10.5.37. SDA$READ_SYMFILE
	10.5.38. SDA$REQMEM
	10.5.39. SDA$SET_ADDRESS
	10.5.40. SDA$SET_CPU
	10.5.41. SDA$SET_HEADING_ROUTINE
	10.5.42. SDA$SET_LINE_COUNT
	10.5.43. SDA$SET_PROCESS
	10.5.44. SDA$SKIP_LINES
	10.5.45. SDA$SYMBOL_VALUE
	10.5.46. SDA$SYMBOLIZE
	10.5.47. SDA$TRYMEM
	10.5.48. SDA$TYPE
	10.5.49. SDA$VALIDATE_QUEUE

	Part II. OpenVMS System Code Debugger and System Dump Debugger
	Chapter 11. OpenVMS System Code Debugger
	11.1. User-Interface Options
	11.2. Building a System Image to Be Debugged
	11.3. Setting Up the Target System for Connections
	11.3.1. Making Connections Between the Target Kernel and the System Code Debugger
	11.3.2. Interactions Between XDELTA and the Target Kernel/System Code Debugger
	11.3.3. Interactions between the Target Kernel, the System Code Debugger, and other system components

	11.4. Setting Up the Host System
	11.5. Starting the System Code Debugger
	11.6. Summary of System Code Debugger Commands
	11.7. Using System Dump Analyzer Commands
	11.8. System Code Debugger Network Information
	11.9. Troubleshooting Checklist
	11.10. Troubleshooting Network Failures
	11.11. Access to Symbols in OpenVMS Executive Images
	11.11.1. Overview of How the OpenVMS Debugger Maintains Symbols
	11.11.2. Overview of OpenVMS Executive Image Symbols
	11.11.3. Possible Problems You May Encounter

	11.12. Sample System Code Debugging Session

	Chapter 12. OpenVMS System Dump Debugger
	12.1. User-Interface Options
	12.2. Preparing a System Dump to Be Analyzed
	12.3. Setting Up the Test System
	12.4. Setting Up the Build System
	12.5. Starting the System Dump Debugger
	12.6. Summary of System Dump Debugger Commands
	12.7. Using System Dump Analyzer Commands
	12.8. Limitations of the System Dump Debugger
	12.9. Access to Symbols in OpenVMS Executive Images
	12.10. Sample System Dump Debugging Session

	Part III. OpenVMS Alpha Watchpoint Utility
	Chapter 13. Watchpoint Utility (Alpha Only)
	13.1. Introduction
	13.2. Initializing the Watchpoint Utility
	13.3. Creating and Deleting Watchpoints
	13.3.1. Using the $QIO Interface
	13.3.2. Invoking WPDRIVER Entry Points from System Routines

	13.4. Data Structures
	13.4.1. Watchpoint Restore Entry (WPRE)
	13.4.2. Watchpoint Control Blocks (WPCB)
	13.4.3. Trace Table Entries (WPTTEs)

	13.5. Analyzing Watchpoint Results
	13.6. Watchpoint Protection Overview
	13.7. Restrictions

	Part IV. OpenVMS System Service Logging Utility
	Chapter 14. System Service Logging
	14.1. Overview
	14.2. Enabling Logging
	14.3. Disabling Logging
	14.4. Displaying Logged Information

