
VSI OpenVMS

VSI TCP/IP Services for OpenVMS
SNMP Programming and Reference

Document Number: DO-SNMPPR-01A

Publication Date: March 2024

Operating System and Version: VSI OpenVMS Integrity Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

Software Version: VSI TCP/IP Services Version 5.7

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

VSI TCP/IP Services for OpenVMS SNMP Programming and Reference

Copyright © 2024 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group.

ii

VSI TCP/IP Services for OpenVMS SNMP Programming and Reference

Preface ... v
1. About VSI .. v
2. Intended Audience ... v
3. Document Structure ... v
4. Related Documents .. v
5. OpenVMS Documentation ... vii
6. VSI Encourages Your Comments .. vii
7. Conventions .. vii

Chapter 1. Overview .. 1
1.1. SNMP Architecture ... 1
1.2. Request Handling .. 2
1.3. TCP/IP Services Components for SNMP .. 4
1.4. Writing an eSNMP Subagent ... 5
1.5. The eSNMP API .. 6

1.5.1. The SNMP Utilities ... 7
1.6. The MIB Compiler ... 7
1.7. SNMP Versions .. 7

1.7.1. Using Existing (SNMP Version 1) MIB Modules .. 8
1.8. For More Information ... 9

Chapter 2. MIBs Provided with TCP/IP Services .. 11
2.1. Overview of the Host Resources MIB .. 11

2.1.1. Defining Host Resources MIB Implemented Objects ... 11
2.1.2. Restrictions to Host Resources MIB ... 13

2.2. Overview of MIB II .. 15
2.2.1. MIB II Implemented Groups ... 16
2.2.2. Restrictions to MIB II Implementation ... 16

Chapter 3. Creating a Subagent Using the eSNMP API ... 19
3.1. Creating a MIB Specification ... 19
3.2. The Structure of Management Information .. 19

3.2.1. Assigning Object Identification Codes .. 19
3.2.2. MIB Subtrees .. 20

3.3. Creating a MIB Source File ... 22
3.3.1. Writing the ASN.1 Input File .. 22
3.3.2. Processing the Input File with the MIB Compiler .. 23

3.3.2.1. UNIX Utilities Supplied with TCP/IP Services ... 25
3.3.2.2. Object Tables .. 25
3.3.2.3. The subtree_TBL.H Output File ... 25
3.3.2.4. The subtree_TBL.C Output Files .. 27

3.4. Including the Routines and Building the Subagent .. 29
3.5. Including Extension Subagents in the Startup and Shutdown Procedures 30

Chapter 4. Using the SNMP Utilities .. 33
4.1. Using the MIB Browser .. 33

4.1.1. MIB Browser Parameters .. 33
4.1.2. MIB Browser Flags .. 34
4.1.3. MIB Browser Data Types ... 37
4.1.4. Command Examples for snmp_request ... 38

4.2. Using the Trap Sender and Trap Receiver Programs .. 41
4.2.1. Entering Commands for the Trap Sender Program .. 41

4.2.1.1. Trap Sender Parameters ... 42
4.2.1.2. Trap Sender Flags ... 43

iii

VSI TCP/IP Services for OpenVMS SNMP Programming and Reference

4.2.1.3. Trap Sender Examples ... 44
4.2.2. Entering Commands for the Trap Receiver Program .. 45

4.2.2.1. Trap Receiver Flags ... 45
4.2.2.2. Setting Up an SNMP Trap Service .. 45
4.2.2.3. Trap Receiver Examples ... 46

Chapter 5. eSNMP API Routines ... 47
5.1. Interface Routines ... 47
5.2. Method Routines ... 60
5.3. Processing *_set Routines .. 63
5.4. Method Routine Applications Programming .. 65
5.5. Value Representation ... 66
5.6. Support Routines .. 68

Chapter 6. Troubleshooting eSNMP Problems .. 93
6.1. Modifying the Subagent Error Limit ... 93
6.2. Modifying the Subagent Timeout ... 93
6.3. Log Files .. 94

iv

Preface
The VSI TCP/IP Services for OpenVMS product is the VSI implementation of the TCP/IP networking
protocol suite and internet services for OpenVMS Alpha and OpenVMS VAX systems.

A layered software product, TCP/IP Services provides a comprehensive suite of functions and
applications that support industry-standard protocols for heterogeneous network communications and
resource sharing.

This manual describes the features of the Simple Network Management Protocol (SNMP) provided with
TCP/IP Services. It also describes the extensible SNMP (eSNMP) application programming interface
(API)and development environment.

See the VSI TCP/IP Services for OpenVMS Installation and Configuration manual for information about
installing, configuring, and starting this product.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This manual is for experienced OpenVMS and UNIX system managers and assumes a working
knowledge of TCP/IP networking, TCP/IP terminology, and some familiarity with the TCP/IP Services
product.

3. Document Structure
This manual contains the following chapters:

• Chapter 1 describes the implementation of eSNMP provided with TCP/IP Services.

• Chapter 2 describes the groups and objects implemented with the Host Resources MIB and MIB II
that are provided with the eSNMP software.

• Chapter 3 describes how to use the eSNMP API to create a MIB subagent to manage entities or
applications.

• Chapter 4 describes the trap sender, trap receiver,and MIB browser utilities provided with TCP/IP
Services.

• Chapter 5 provides reference information about the eSNMP API routines.

• Chapter 6 describes some troubleshooting aids provided with TCP/IP Services.

4. Related Documents
The table below lists the documents available with this version of TCP/IP Services.

v

Preface

Table 1. TCP/IP Services Documentation

Manual Contents

VSI TCP/IP Services for OpenVMS Concepts and
Planning

This manual provides conceptual information
about TCP/IP networking on OpenVMS
systems,including general planning issues to
consider before configuring your system to use the
TCP/IP Services software.

This manual also describes the manuals in the
documentation set,and provides a glossary of terms
and acronyms for the TCP/IP Services software
product.

VSI TCP/IP Services for OpenVMS Installation and
Configuration

This manual explains how to install and configure
the TCP/IP Services product.

VSI TCP/IP Services for OpenVMS User's Guide This manual describes how to use the applications
available with TCP/IP Services such as remote file
operations, email, TELNET, TN3270, and network
printing.

VSI TCP/IP Services for OpenVMS Management This manual describes how to configure and
manage the TCP/IP Services product.

VSI TCP/IP Services for OpenVMS Management
Command Reference

This manual describes the TCP/IP Services
management commands.

VSI TCP/IP Services for OpenVMS ONC RPC
Programming

This manual presents an overview of high-level
programming using open network computing
remote procedure calls (ONC RPC). This manual
also describes the RPC programming interface
and how to use the RPCGEN protocol compiler to
create applications.

VSI TCP/IP Services for OpenVMS Sockets API and
System Services Programming

This manual describes how to use the Sockets API
and OpenVMS system services to develop network
applications.

VSI TCP/IP Services for OpenVMS SNMP
Programming and Reference

This manual describes the Simple Network
Management Protocol (SNMP) and the SNMP
application programming interface (eSNMP). It
describes the subagents provided with TCP/IP
Services, utilities provided for managing subagents,
and how to build your own subagents.

VSI TCP/IP Services for OpenVMS Guide to IPv6 This manual describes the IPv6 environment, the
roles of systems in this environment, the types and
function of the different IPv6addresses, and how
to configure TCP/IP Services to access the IPv6
network.

For a comprehensive overview of the TCP/IP protocol suite, refer to the book Internetworking with TCP/
IP:Principles, Protocols, and Architecture, by Douglas Comer.

vi

Preface

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Conventions
The following conventions may be used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

... A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

vii

https://docs.vmssoftware.com

Preface

Convention Meaning

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

Other conventions are:

• All numbers are decimal unless otherwise noted.

• All Ethernet addresses are hexadecimal.

viii

Chapter 1. Overview
The Simple Network Management Protocol (SNMP) is the de facto industry standard for managing TCP/
IP networks. The protocol defines the role of a network management station (NMS) and the SNMP
agent. SNMP allows remote users on an NMS to monitor and manage network entities such as hosts,
routers, X terminals, and terminal servers.

TCP/IP Services provides support for SNMP Version 2, using the Extensible Simple Network
Management Protocol (eSNMP) architecture, under which a single master agent can support any number
of subagents. The TCP/IP Services implementation of eSNMP includes a master agent, two subagents, an
application programming interface (API), tools used to build additional subagents, startup and shutdown
procedures, and text-based configuration files.

This chapter provides an overview of the VSI OpenVMS implementation of eSNMP. Topics include:

• eSNMP master agent and subagent architecture (Section 1.1)

• The procedure for handling SNMP requests (Section 1.2)

• The components of the TCP/IP Services software kit that implement SNMP (Section 1.3)

• The files useful in developing your own subagent (Section 1.4)

• The eSNMP API (Section 1.5)

• The management information base (MIB) compiler (Section 1.6)

• The impact of running SNMP Version 1 subagents against the SNMP Version 2 implementation
provided with TCP/IP Services (Section 1.7)

• Sources of additional information about implementing subagents (Section 1.8)

1.1. SNMP Architecture
Figure 1.1 illustrates the SNMP architecture.

Figure 1.1. SNMP Architecture

1

Chapter 1. Overview

The SNMP environment consists of the following elements:

• The master agent, a process that runs on the host and handles SNMP requests from clients over the
standard SNMP well-known port 161.

• One or more subagents, each of which provides access to the MIB data specified in client requests.
In the TCP/IP Services implementation, the master agent contains two resident subagents, one that
handles a subset of MIB II variables, and another that handles the Host Resources MIB. These MIBs
are described in Chapter 2.

• The SNMP ASN.1 library, used by the master agent to interpret ASN.1 messages.

• The eSNMP API, the application programming interface that provides routines for programming
your own subagents. This API runs on the AgentX routines, which are internal to the SNMP
architecture.

• The TCP/IP kernel running on the OpenVMS operating system.

The master agent and subagents communicate by means of the AgentX protocol, which is based on
RFC 2741.

For information about configuring and managing the SNMP service, refer to the VSI TCP/IP Services for
OpenVMS Management guide.

1.2. Request Handling
The eSNMP software manages network communication by having the master agent listen for requests
and then passes the requests to the appropriate subagent.

Figure 1.2 illustrates communication between the master agent and subagents.

Figure 1.2. eSNMP Data Flow

2

Chapter 1. Overview

The process of communication for a request is illustrated with dashed lines and includes the following
steps:

1. The network management station (NMS) (sometimes called the client), originates SNMP requests to
obtain and set information.

Note

The client component is not provided with TCP/IP Services.

To provide access to MIBs and to test SNMP communication, TCP/IP Services provides the
following utilities:

• MIB browser

• Trap sender

• Trap receiver

These utilities are described in Chapter 4.

The network management station sends an SNMP request to the master agent running on the host,
using port 161. An SNMP request is made using one of the following commands:

• Get

• GetNext

• GetBulk

• Set

Note

TCP/IP Services does not support the standard SNMP Inform command.

The request specifies the object identifier (OID) of the data to be accessed. For information about
formatting get and set requests, refer to Section 5.2. Request formats are specified in RFC 1905.

2. The master agent sends the request to the subagent that registered the subtree containing the OID.

The subagent receives communications from the master agent over the socket that was assigned when
the subagent registered the subtree.

3. The appropriate subagent processes the request.

4. The subagent sends the response message to the master agent using the port that was assigned when
the subagent registered the MIB.

When they are idle, subagents periodically send a message to port 705 to ensure that the master agent is
still running. In Figure 1.2, subagent 1 is sending the esnmp_are_you_there message.

A trap is generated by the subagent and sent to the client. In Figure 1.2, subagent n is generating a trap
for the trap client on NMS 2.

3

Chapter 1. Overview

The trap and esnmp_are_you_there routines are described in Section 5.1.

1.3. TCP/IP Services Components for SNMP
Table 1.1 lists the components of SNMP and the command procedures for managing SNMP that are
supplied with TCP/IP Services.

Table 1.1. SNMP Component Files

File Location Function

TCPIP$ESNMP_SERVER.EXE SYS$SYSTEM Master agent image.
TCPIP$OS_MIBS.EXE SYS$SYSTEM MIB II subagent image.
TCPIP$HR_MIB.EXE SYS$SYSTEM Host Resources MIB subagent

image.
TCPIP$SNMP_REQUEST.EXE SYS$SYSTEM Simple MIB browser.
TCPIP$SNMP_TRAPSND.EXE SYS$SYSTEM Utility for sending trap messages.
TCPIP$SNMP_TRAPRCV.EXE SYS$SYSTEM Utility for receiving trap

messages.
TCPIP$ESNMP_SHR.EXE SYS$SHARE Image file containing eSNMP

application programming
interface (API) routines.

TCPIP$SNMP_STARTUP.COM SYS$STARTUP Command procedure that installs
master and subagent images and
runs TCPIP$SNMP_RUN.COM.

TCPIP
$SNMP_SYSTARTUP.COM

SYS$STARTUP Command procedure initiated by
TCPIP$SNMP_STARTUP.COM.
Provided for site-specific
customizations, such as parameter
settings.

TCPIP$SNMP_RUN.COM TCPIP$SYSTEM Command procedure that starts
the master agent and subagents.

TCPIP
$SNMP_SHUTDOWN.COM

SYS$STARTUP Command procedure that stops
the master agent and subagents.

TCPIP
$SNMP_SYSHUTDOWN.COM

SYS$STARTUP Command procedure
initiated by TCPIP
$SNMP_SHUTDOWN.COM.
Provided for site-specific
customization, such as parameter
settings.

TCPIP$EXTENSION_MIB

_STARTUP.COM

SYS$SYSDEVICE:[TCPIP
$SNMP]

Command procedure
invoked by TCPIP
$SNMP_SYSTARTUP.COM to
start custom subagents.

TCPIP$EXTENSION_MIB SYS$SYSDEVICE:[TCPIP
$SNMP]

4

Chapter 1. Overview

File Location Function
_SHUTDOWN.COM

Command procedure
invoked by TCPIP
$SNMP_SYSHUTDOWN.COM
to stop custom subagents.

TCPIP$EXTENSION

_MIB_RUN.COM

SYS$SYSDEVICE:[TCPIP
$SNMP]

Command procedure
invoked by TCPIP
$SNMP_SYSTARTUP.COM
when the service is enabled and
starts detached processes to run
subagents.

1.4. Writing an eSNMP Subagent
Table 1.2 lists the files that are available to help you develop MIBs and subagents. Except where noted,
the files are located in the directory pointed to by TCPIP$SNMP_EXAMPLES.

Table 1.2. Files for Building a Subagent

File Description

ESNMP.H Header file used to create a subagent. Located in
TCPIP$ESNMP.

GAWK.EXE Interpreter for MIB converter.
MIB-CONVERTER.AWK A UNIX based awk shell script that takes a MIB

definition in ASN.1 notation and converts it to
an .MY file.

RFC1213.MY MIB II definitions.
RFC1231.MY IEEE 802.5 Token Ring MIB definitions.
RFC1285.MY FDDI MIB definitions.
RFC1442.MY SNMP Version 2 Structure of Management

Information (SMI) definitions.
SNMP-SMI.MY SNMP Version 2 SMI definitions from RFC 1902

(replaces RFC 1442).
SNMP-TC.MY SNMP Version 2 SMI definitions from RFC 1903

(replaces RFC 1443).
V2-TC.MY SNMP Version 2 SMI definitions from RFC 1903

(superset of those in SNMP-TC.MY).
TCPIP$BUILD_CHESS.COM Command file that builds the sample chess

subagent.
TCPIP$CHESS_SUBAGENT.OPT Options file for use in building the sample chess

subagent.

5

Chapter 1. Overview

File Description

*.C and *.H Source code for chess example. Contains detailed
documentation that explains how the code
functions.

TCPIP$CHESS_SUBAGENT.EXE Functioning chess example image.
TCPIP$ESNMP.OLB Object library file containing routines used to

create a subagent. Located in the directory pointed
to by TCPIP$SNMP.

TCPIP$ESNMP_SHR.EXE Shareable image containing routines used to create
a subagent. Located in the directory pointed to by
SYS$SHARE.

UCX$ESNMP_SHR.EXE Copy of TCPIP$ESNMP_SHR.EXE, provided
for compatibility with existing customer subagents
linked under TCP/IP Services V4. x. Located in
the directory pointed to by SYS$SHARE.

TCPIP$MIBCOMP.EXE

TCPIP$MOSY.EXE

TCPIP$SNMPI.EXE

Images associated with the MIB compiler. Located
in SYS$SYSTEM.

For information about building a subagent on an OpenVMS system, see Chapter 3.

1.5. The eSNMP API
The TCP/IP Services implementation of the eSNMP architecture includes an API that provides
programmers with many eSNMP routines they would otherwise have to develop themselves.

The eSNMP API includes interface routines, method routines, and support routines.

Interface routines handle the basic subagent operations, such as:

• Subagent initialization and termination

• Registration

• Polling of the master agent

• Trap sending

• UNIX system time conversion

• Adding and removing subagent capabilities registered with the master agent

The support routines allow the subagent to manipulate the data in the response to the request, and
include the following:

• Basic protocol data unit (PDU) handling

• Authentication handling

• Octet string handling

• Variable binding (VARBIND) handling

6

Chapter 1. Overview

• Object identifier (OID) handling

• Buffer handling

Chapter 5 describes the API routines in more detail.

To create a subagent, the programmer must provide modules to implement the method routines, as
described in Chapter 3.

1.5.1. The SNMP Utilities
To provide quick access to information in the MIBs, and to test SNMP operation, TCP/IP Services
provides the following utilities:

• TCPIP$SNMP_REQUEST.EXE, a MIB browser that allows you to retrieve and update objects from
the MIBs.

• TCPIP$SNMP_TRPSND.EXE, a trap sender that generates traps (messages that require no
response).

• TCPIP$SNMP_TRPRCV.EXE, a trap receiver (or “listener”) that is used to detect trap messages.

For information about using the SNMP utilities, see Chapter 4.

1.6. The MIB Compiler
The MIB compiler processes the statements in an ASN.1 file and generates modules that are used by
the developer to create subagent routines. For every ASN.1 input file that is processed using the MIB
compiler, two output files, a subtree_TBL.H file and a subtree_TBL.C file, are generated, where subtree
is the name from the original MIB definition file (for example, chess). The output files are described in
more detail in Chapter 3.

The subtree_TBL.H file is a header file that contains the following:

• A declaration of the subtree structure

• Index definitions for each MIB variable in the subtree

• Enumeration definitions for MIB variables with enumerated values

• MIB group data structure definitions

• Method routine function prototypes

The subtree_TBL.C file is an object file that contains the following:

• An array of integers representing the OIDs for each MIB variable

• An array of OBJECT structures

• An initialized SUBTREE structure

1.7. SNMP Versions
The extensible SNMP software supports SNMP Version 2, based on RFCs 1901 through 1908,
including:

7

Chapter 1. Overview

• The SNMP Version 2 structure of management information for SNMP Version 2 (SMI Version 2)
and textual conventions.

• The eSNMP library API (SNMP Version 2), variable binding exceptions, and error codes.

• SNMP Version 1 and SNMP Version 2 requests. Both versions are handled by the master agent.
SNMP Version 2 specific information from the subagent is mapped, when necessary, to SNMP
Version 1 adherent data (according to RFC 2089). For example, if a management application makes
a request using SNMP Version 1 PDUs, the master agent replies using SNMP Version 1 PDUs,
mapping any SNMP Version 2 SMI items received from subagents. In most cases, subagents created
with a previous version of the eSNMP API do not require any code changes and do not have to be
recompiled. The circumstances under which recoding or recompiling are required are described in
Section 1.7.1.

1.7.1. Using Existing (SNMP Version 1) MIB Modules
Existing SNMP Version 1 MIB subagent executable files should be compatible with the current SNMP
Version 2 master agent without the need to recompile and relink, with the following exceptions:

• Any program that relies on TCP/IP Services Version 4.1 or 4.2 kernel data structures or access
functions may run but may not return valid data. Such programs should be rewritten.

• Programs linked against UCX$ACCESS_SHR.EXE, UCX$IPC_SHR.EXE, or other older shareable
images (except for UCX$ESNMP_SHR.EXE, which is described in the next list item) may not run
even when relinked. You may need to either rewrite or both rewrite and recompile such programs.
Note that the Chess example image (UCX$CHESS_SUBAGENT.EXE) has been updated and
renamed TCPIP$CHESS_SUBAGENT.EXE.

• For programs linked against certain versions of UCX$ESNMP_SHR.EXE:

• Images associated with the following versions of TCP/IP Services will run correctly without the
need to relink them:

Version 4.1 ECO 9 and later
Version 4.2 ECO 1 and later

The installation of TCP/IP Services provides a backward-compatible version of UCX
$ESNMP_SHR.EXE in the SYS$SHARE directory. Do not delete this image.

If you have problems running images linked against an older version of UCX
$ESNMP_SHR.EXE, verify that the version in SYS$SHARE is the latest by entering the
following DCL command:

$ DIRECTORY/DATE SYS$SHARE:*$ESNMP_SHR.EXE

The creation dates of the files with the prefix TCPIP$ and UCX$ should be within a few seconds
of each other, and only one version of each file should exist. Make sure both images include the
file protection W:RE.

• You should relink and perhaps recompile images associated with ECOs for Version 4.1 or 4.2
other than those discussed in the previous list item.

Images linked against object library (.OLB) files may not need to be relinked, although you can relink
them against the shareable images in this version of the product to decrease the image size. Relinking
against the shareable image allows you to take advantage of updated versions of the eSNMP API without

8

Chapter 1. Overview

the need to relink. Some images linked against the current version of TCP/IP Services may run under
Versions 4.1 and 4.2, but this backward compatibility is not supported and may not work in future
versions of TCP/IP Services.

If an existing subagent does not execute properly, relink it against this version of TCP/IP Services to
produce a working image. Some subagents (such as the OpenVMS Server MIB) require a minimum
version of OpenVMS as well as a minimum version of TCP/IP Services.

1.8. For More Information
This manual provides the OpenVMS information required for implementing eSNMP subagents and
ensuring their proper operation in that environment.

For information about prototypes and definitions for the routines in the eSNMP API, see the TCPIP
$SNMP:ESNMP.H file.

Table 1.2 lists files that contain additional comments and documentation.

9

Chapter 1. Overview

10

Chapter 2. MIBs Provided with TCP/IP
Services
This chapter describes how MIBs are implemented on OpenVMS. The MIBs provided with TCP/IP
Services are:

• The Host Resources MIB, which manages operating system objects (Section 2.1)

• MIB II, which manages TCP/IP kernel objects (Section 2.2)

2.1. Overview of the Host Resources MIB
The Host Resources MIB defines a uniform set of objects useful for the management of host computers.
The Host Resources MIB, described by RFC 1514, defines objects that are common across many
computer system architectures. The TCP/IP Services implementation of SNMP includes many of these
defined objects. In addition, some objects in MIB II provide host management functionality.

2.1.1. Defining Host Resources MIB Implemented
Objects
This section defines each of the implemented eSNMP objects. Table 2.1 provides a general RFC
description and a specific OpenVMS description for each implemented object.

Table 2.1. Host Resources MIB Objects

Object Name RFC Description OpenVMS Description

hrSystemUptime The amount of time since this
host was last initialized.

Time since system boot (in
hundredths of a second).

hrSystemDate The host's notion of the local
date and time of day.

Date and time character string
with Coordinated Universal Time
(UTC) information if available.

hrSystemIntialLoadDevice Index of the hrDeviceEntry
for configured initial operating
system load.

Index of SYS$SYSDEVICE in
the device table.

hrSystemIntialLoadParameters Parameters supplied to the load
device when requesting initial
operating system configuration.

A string of boot parameters from
the console (Alpha only).

hrSystemNumUsers Number of user sessions for
which the host is storing state
information.

Number of processes that are
neither owned by another process
nor running detached.

hrSystemProcesses Number of process contexts
currently loaded or running on
the system.

Number of processes listed using
the SHOW SYSTEM command.

hrSystemMaxProcesses Maximum number of process
contexts the system can support,
or 0 if not applicable.

SYSGEN parameter
MAXPROCESSCNT.

hrMemorySize The amount of physical main
memory contained in the host.

The amount of physical main
memory contained in the host.

11

Chapter 2. MIBs Provided with TCP/IP Services

Object Name RFC Description OpenVMS Description

hrStorageIndex A unique value for each logical
storage area contained in the
host.

Index of entry in hrStorageTable.

hrStorageType The type of storage represented
by this entry.

A numeric representation of the
device class and type displayed
by the SHOW DEVICE/FULL
command.

hrStorageDescr A description of the type and
instance of the storage described
by this entry.

Character string device type
displayed by the SHOW
DEVICE/FULL command.

hrStorageAllocationUnits The size of the data objects
allocated from this pool (in
bytes).

Always 512 (the size of an
OpenVMS disk block).

hrStorageSize The size of storage in this entry
in hrStorageAllocationUnits.

The total number of blocks on a
device displayed by the SHOW
DEVICE/FULL command.

hrStorageUsed The allocated amount
of storage in this entry
inhrStorageAllocationUnits.

The total number of used
blocks on a device displayed
by the SHOW DEVICE/FULL
command.

hrDeviceIndex A unique value for each host or
device constant between agent
reinitialization.

Index of entry in hrDeviceTable.

hrDeviceType An indication of the type of
device. Some of these devices
have corresponding entries in
other tables.

In object identifier format, a
numeric representation of the
device class and type displayed
by the SHOW DEVICE/FULL
command.

hrDeviceDesc A text description of the device,
including manufacturer and
version number (service,
optional).

Character string of the device
type displayed by the SHOW
DEVICE/FULL command.

hrDeviceStatus The current operational state of
the device.

A numeric indication of the
status of the device.

hrDeviceErrors The number of errors detected
on the device. The recommended
initial value is zero.

The number of errors indicated
by the SHOW DEVICE
command. This value is
initialized to zero when the
device is recognized by the
system instead of when the
master agent is initialized.

hrProcessorFrwID The product ID of the firmware
associated with the processor.

An object identifier that
corresponds to the console or
PALcode version (Alpha only).

hrNetworkIfIndex The value of the if Index that
corresponds to this network
device.

The value of the index in the
interface table in the standard

12

Chapter 2. MIBs Provided with TCP/IP Services

Object Name RFC Description OpenVMS Description
MIB that corresponds to this
network device.

hrDiskStorageAccess Indicates whether the storage
device is read/write or read only.

This value is set to 2 if the device
is read only; otherwise, it is set to
1. (The SHOW DEVICE/FULL
command displays “software
write-locked.”)

hrDiskStorageMedia Indicates the storage device
media type.

Indicates device type.

hrDiskStorageRemovable Indicates whether the disk can be
removed from the drive.

Indicates whether the disk can be
removed from the drive.

hrDiskStorageCapacity The total size of this long-term
storage device.

Half of the value for total
blocks displayed by the SHOW
DEVICE/FULL command.

hrSWRunIndex A unique value for each software
product running on the host.

Process ID.

hrSWRunPath A description of the location
where this software was loaded.

Fully qualified name of
executable image.

hrSWRunStatus The status of the software that is
running.

The values and the associated
status of each are:

• 1 indicates that the current
process is running (CUR)

• 2 indicates that the process is
computable (COM)

• 3 indicates that you cannot
run the process.

hrSWRunPerfCPU The number (in hundredths of
a second) of the total system's
CPU resources consumed by this
process.

Process elapsed CPU time (in
hundredths of a second).

hrSWRunPerfMem The total amount of real system
memory allocated to this process.

Process current working set (in
kilobytes).

2.1.2. Restrictions to Host Resources MIB
SNMP requests are not implemented for the following Host Resources MIB objects:

hrPartitionTablehrPrinterTablehrSWInstalledhrSWInstalledTable

SNMP set requests are not implemented for the following Host Resources MIB objects:

hrFSLastFullBackupDate
hrFSLastPartialBackupDate
hrStorageSize
hrSWRunStatus
hrSystemDate
hrSystemInitialLoadDevice

13

Chapter 2. MIBs Provided with TCP/IP Services

hrSystemInitialLoadParameters

Note

For objects that are not implemented, the Host Resources MIB returns a NoSuchObject error status.

TCP/IP Services supports the objects in the Host Resources MIB as follows:

• The hrDeviceTable includes all the devices known to the OpenVMS host except those with the
following characteristics:

• Off line

• Remote

• UCB marked delete-on-zero-reference-count

• Mailbox device

• Device with remote terminal (DEV$M_RTT characteristic)

• Template terminal-class device

• LAT device (begins with _LT)

• Virtual terminal device (begins with _VT)

• Pseudoterminal device (begins with _FT)

Data items in the hrDeviceTable group have the following restrictions:

• hrDeviceID is always null OID (0.0).

• hrDeviceErrors is coded as follows:

Code Condition

warning (3) Error logging is in progress (OpenVMS UCB
value UCB$M_ERLOGIP).

running (2) Software is valid and no error logging is
in progress (OpenVMS UCB value UCB
$M_VALID).

unknown (1) Any other OpenVMS status.

The hrDeviceTable now includes template devices (for example, DNFS0 for NFS and DAD0
for virtual devices).

For network devices, only the template devices (those with unit number 0) are displayed.

• hrFSMountPoint (1.3.6.1.2.1.25.3.8.1.2) is DNFS n. The device may change between restarts or
after a dismount/mount procedure.

• In the hrFSTable group, if no file systems are mounted through NFS or no information is
accessible, a "no such instance" status is returned for a get request. Browsers respond
differently to this message. For example, TCPIP$SNMP_REQUEST.EXE responds with no output
and returns directly to the DCL prompt.

14

Chapter 2. MIBs Provided with TCP/IP Services

After an NFS mount, the following information is returned in response to a Getrequest. The data
items implemented for OpenVMS (refer to RFC 1514) are:

• hrFSIndex.

• hrFSMountPoint is the local DNFS device name.

• hrFSRemoteMountPoint is the remote file system.

• hrFSType is implemented as:

• OID 1.3.6.1.2.1.25.3.9.1, for OpenVMS if the file system is not a UNIX style container file
system.

• hrFSNFS, OID 1.3.6.1.2.1.25.3.9.14, if the file system is a TCP/IP Services container file
system or a UNIX host.

• hrFSAccess, as defined in RFC 1514.

• hrFSBootable is always HRM_FALSE (integer 2).

• hrFSStorageIndex is always 0.

• hrFSLastFullBackupDate is unknown time. This entry is encoded according to RFC
1514 as a hexadecimal value 00-00-01-01-00-00-00-00 (January 1, 0000).

• hrFSLastPartialBackupDate is unknown time. This information is not available for
OpenVMS systems. Instead, hexadecimal value 00-00-01-01-00-00-00-00 (January 1, 0000)
applies.

• hrProcessorFrwID (OID prefix 1.3.6.1.2.1.25.3.3.1.1) is not implemented on OpenVMS
VAX. On this type of system, it returns standard null OID (0.0). For example:

1.3.6.1.2.1.25.3.3.1.1.1 = 0.0

For OpenVMS Alpha (firmware version 5.56-7), the response is shown in the following example:

1.3.6.1.2.1.25.3.3.1.1.1 = 1.3.6.1.2.1.25.3.3.1.1.1.5.56.7

• Data items in the hrDiskStorage table have the following restrictions:

• hrDiskStorageMediais always “unknown” (2).

• hrDiskStorageRemoveble is always “false” (2). Note the incorrect spelling of
“removable” in hrDiskStorageRemoveble (from RFC 1514).

• hrStorageType always contains the value of hrStorageFixedDisk (1.3.6.1.2.1.25.2.1.4).

2.2. Overview of MIB II
The Standard MIB (MIB II) described in RFC 1213 defines a set of objects useful for managing TCP/
IP Internet entities. MIB II supports network monitoring and managing from the Transport layer down to
the Physical layer of the TCP/IP internet stack. This MIB also provides information on how connections
are established and how packets are routed through the Internet. For more information about MIB
architecture, see Section 3.2.

15

Chapter 2. MIBs Provided with TCP/IP Services

2.2.1. MIB II Implemented Groups
A group is a subdivision of a MIB that defines a subtree. SNMP as implemented by TCP/IP Services
supports the following groups:

• system (1)

• interfaces (2)

• Internet Protocol (4)

• ICMP (5)

• TCP (6)

• UDP (7)

• SNMP (11)

In the SNMP group (1.3.6.1.2.1.11), data elements with the status noted as obsolete in RFC 1907
are not implemented.

Note

The TCP/IP Services implementation of SNMP does not support the following defined MIB II groups:

• at (address translation) group

• EGP (External Gateway Protocol) group

• transmission group

2.2.2. Restrictions to MIB II Implementation
SNMP requests are not implemented for the following MIB II objects:

ipRouteMetric1 - ipRouteMetric5tcpMaxConn

SNMP set requests are not implemented for the following MIB II group objects:

ipDefaultTTL
ipRouteAge
ipRouteDest
ipRouteIfIndex
ipRouteMaskipRouteNextHop
ipRouteType

The TCP/IP Services implementation of SNMP includes the following MIB II objects:

• sysObjectID is returned in the following format:

1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.36.2.15.13.22.1

where 1.3.6.1.4.1.36.2.15.13.22.1 corresponds to:

16

Chapter 2. MIBs Provided with TCP/IP Services

iso.org.dod.internet.private.enterprises.dec.ema.SysObjectIds.DEC-
OpenVMS.eSNMP

• The sysORTable elements are under OID prefix 1.3.6.1.2.1.1.9.1. See RFC 1907 for details.

When both the TCPIP$OS_MIBS and TCPIP$HR_MIB subagents are running, a get request on
the sysORTable is as follows. Except where noted, the OIDs conform to RFC 1907.

1.3.6.1.2.1.1.9.1.2.1 = 1.3.6.1.4.1.36.15.3.3.1.1
1.3.6.1.2.1.1.9.1.2.2 = 1.3.6.1.4.1.36.15.3.3.1.2
1.3.6.1.2.1.1.9.1.3.1 = Base o/s agent (OS_MIBS) capabilities
1.3.6.1.2.1.1.9.1.3.2 = Base o/s agent (HR_MIB) capabilities
1.3.6.1.2.1.1.9.1.4.1 = 31 = 0 d 0:0:0
1.3.6.1.2.1.1.9.1.4.2 = 36 = 0 d 0:0:0

This example is from the MIB browser (TCPIP$SNMP_REQUEST.EXE).

• Under certain conditions, a subagent makes a duplicate entry in sysORTable when it restarts. For
example:

1.3.6.1.2.1.1.9.1.2.1 = 1.3.6.1.4.1.36.15.3.3.1.1
1.3.6.1.2.1.1.9.1.2.2 = 1.3.6.1.4.1.36.15.3.3.1.2
1.3.6.1.2.1.1.9.1.2.1 = Base o/s agent (OS_MIBS) capabilities
1.3.6.1.2.1.1.9.1.2.2 = Base o/s agent (OS_MIBS) capabilities
1.3.6.1.2.1.1.9.1.4.1 = 3256 = 0 d 0:0:32
1.3.6.1.2.1.1.9.1.4.2 = 3256 = 0 d 0:0:32

In this example, the TCPIP$OS_MIBS subagent made two entries with different ID numbers (OIDs
with the prefix 1.3.6.1.2.1.1.9.1.2) that may show different sysORUpTime (1.3.6.1.2.1.1.9.1.4).
The snmp_request program translates the value received (in hundredths of a second) to the
following, dropping any fractions of seconds:

d n hh:mm:ss

In this format, n represents the number of days, hh represents the number of hours, mm represents
the number of minutes, and ss represents the number of seconds.

The HR_MIB subagent has not yet successfully started and registered its capabilities. If it starts, its
entries in this example would use the next available index number.

• On systems running versions of the operating system prior to OpenVMS 7.1-2, counters for the MIB
II ifTable do not wrap back to 9 after reaching the maximum value (2 32 −1), as defined in RFC
1155. Instead, they behave like the gauge type and remain at the maximum value until cleared by an
external event, such as a system reboot. The following counters are affected:

ifInDiscardsifInErrors
ifInNUcastPkts
ifInOctets
ifInUcastPkts
ifInUnknownProtos
ifOutErrors
ifOutNUcastPkts
ifOutOctets
ifOutUcastPkts

Note that for SNMP Version 2, these counters are data type Counter32. The following ifTable
members are always -1 for OpenVMS:

17

Chapter 2. MIBs Provided with TCP/IP Services

ifOutDiscards (Counter32)
ifOutQLen (Gauge32)

18

Chapter 3. Creating a Subagent Using
the eSNMP API
This chapter describes how to use the eSNMP API to create a MIB subagent that manages entities or
applications. Topics included in this chapter are:

• Creating a MIB specification (Section 3.1)

• The structure of management information (Section 3.2)

• Creating a MIB source file (Section 3.3)

• Including the routines and building the subagent (Section 3.4)

• Including your subagents in startup and shutdown procedures (Section 3.5)

Note

To use this eSNMP API to create a subagent, you must have a C compiler running in your development
environment.

3.1. Creating a MIB Specification
The creation of a management information base (MIB) begins with data gathering. During this phase,
the developer identifies the information to manage, based on the entities that the network manager
needs to examine and manipulate. Each resource that a MIB manages is represented by an object. After
gathering the data, the developer uses Abstract Syntax Notation 1 (ASN.1) to specify the objects in the
MIB.

3.2. The Structure of Management Information
The structure of management information (SMI), which is specified in RFCs 1155 and 1902, describes
the general framework within which a MIB can be defined and constructed. The SMI framework
identifies the data types that can be used in the MIB and how resources within the MIB are represented
and named.

SMI avoids complex data types to simplify the task of implementation and to enhance interoperability.
To provide a standard representation of management information, the SMI specifies standard techniques
for the following:

• Defining the structure of a particular MIB

• Defining individual objects, including the syntax and value of each object

• Encoding object values

3.2.1. Assigning Object Identification Codes
Each object in a MIB is associated with an identifier of the ASN.1 type, called an object identifier
(OID). OIDs are unique integers that follow a hierarchical naming convention.

19

Chapter 3. Creating a Subagent Using the eSNMP API

Each OID has two parts:

• A preassigned portion that is always represented on the SMI tree as 1.3.6.1 or iso (1), org (3), dod
(6), Internet (1).

• A developer-assigned portion for the private development of MIBs.

Note

Your organization may require you to register all newly assigned OIDs.

In addition to an OID, you should also assign a name to each object to help with human interpretation.

3.2.2. MIB Subtrees
Understanding MIB subtrees is crucial to understanding the eSNMP API and how your subagent will
work.

Note

This manual assumes that you understand the OID naming structure used in SNMP. If not, refer to RFC
1902: Structure of Management Information for Version 2 of the Simple Network Management Protocol
(SNMP Version 2).

The information in SNMP is structured hierarchically like an inverted tree. Each node has a name and a
number. Each node can also be identified by an OID, which is a concatenation of the subidentifiers (non-
negative numbers). These numbers are on the path from the root node down to that node in the tree. In
this hierarchy, data is associated only with leaf nodes. (A leaf node represents a MIB variable that can
have an instance and an associated value.)

An OID must be at least two subidentifiers and at most 128 subidentifiers in length. The subidentifier
ranges are:

• Subidentifier 1 values range from 0 to 2, inclusive.

• Subidentifier 2 values range from 0 to 39, inclusive.

• The remaining subidentifier values can be any non-negative number.

Figure 3.1 illustrates the SMI hierarchical tree arrangement as specified in RFCs 1155 and 1902.

20

Chapter 3. Creating a Subagent Using the eSNMP API

Figure 3.1. MIB II in SMI Tree Structure

For example, the chess MIB provided with the sample code in the [TCPIP$EXAMPLES.SNMP]
directory has an element with the name “chess.” The OID for the element chess is
1.3.6.1.4.1.36.2.15.2.99, which is derived from its position in the hierarchy of the tree:

iso(1)
 org(3)
 dod(6)
 internet(1)
 private(4)
 enterprise(1)
 digital(36)
 ema(2)
 sysobjects(15)
 decosf(2)
 chess(99)

Any node in the MIB hierarchy can define a MIB subtree. All elements in the subtree have an OID that
starts with the OID of the subtree base. For example, if you define chess to be a MIB subtree base, the
elements with the same prefix as the chess OID are all in the MIB subtree:

chess 1.3.6.1.4.1.36.2.15.2.99
 chessProductID 1.3.6.1.4.1.36.2.15.2.99.1
 chessMaxGames 1.3.6.1.4.1.36.2.15.2.99.2
 chessNumGames 1.3.6.1.4.1.36.2.15.2.99.3
 gameTable 1.3.6.1.4.1.36.2.15.2.99.4
 gameEntry 1.3.6.1.4.1.36.2.15.2.99.4.1
 gameIndex 1.3.6.1.4.1.36.2.15.2.99.4.1.1
 gameDescr 1.3.6.1.4.1.36.2.15.2.99.4.1.2
gameNumMoves 1.3.6.1.4.1.36.2.15.2.99.4.1.3
 gameStatus 1.3.6.1.4.1.36.2.15.2.99.4.1.4
 moveTable 1.3.6.1.4.1.36.2.15.2.99.5
 moveEntry 1.3.6.1.4.1.36.2.15.2.99.5.1

21

Chapter 3. Creating a Subagent Using the eSNMP API

 moveIndex 1.3.6.1.4.1.36.2.15.2.99.5.1.1
 moveByWhite 1.3.6.1.4.1.36.2.15.2.99.5.1.2
 moveByBlack 1.3.6.1.4.1.36.2.15.2.99.5.1.3
 moveStatus 1.3.6.1.4.1.36.2.15.2.99.5.1.4
 chessTraps 1.3.6.1.4.1.36.2.15.2.99.6
 moveTrap 1.3.6.1.4.1.36.2.15.2.99.6.1

The base of this MIB subtree is registered with the master agent to tell it that this subagent handles all
requests related to the elements in the subtree.

The master agent expects a subagent to handle all objects subordinate to the registered MIB subtree. This
principle guides your choice of MIB subtrees. For example, registering a subtree of chess is reasonable
because it is realistic to assume that the subagent could handle all requests for elements in this subtree.
Registering an entire application-specific MIB usually makes sense because the particular application
expects to handle all objects defined in the application-specific MIB.

However, registering a subtree of SNMP (under MIB II) would be a mistake, because it is unlikely that
the subagent is prepared to handle every defined MIB object subordinate to SNMP (packet counts,
errors, trapping, and so on).

A subagent can register as many MIB subtrees as it wants. It can register OIDs that overlap with other
registrations by itself or with other subagents; however, it cannot register the same OID more than once.
Subagents can register and unregister MIB subtrees at any time after communication with the master
agent is established.

Normally, it is the nonleaf nodes that are registered as a subtree with the master agent. However, leaf
nodes, or even specific instances, can be registered as a subtree.

The master agent delivers requests to the subagent that has the MIB subtree with the longest prefix and
the highest priority.

3.3. Creating a MIB Source File
Creating the MIB source file requires the following four-step process:

1. Write the ASN.1 input files, as described in Section 3.3.1.

2. Process the input files with the MIB compiler, as described in Section 3.3.2.

3. Compile and link the routines, as described in Section 3.4.

4. Include the subagent, as described in Section 3.5.

3.3.1. Writing the ASN.1 Input File
After you have assigned names and OIDs to all of the objects in the MIB, create an ASN.1 source file
using ASCII statements.

Note

Providing information about ASN.1 syntax and programming is beyond the scope of this guide. For
more information about ASN.1 programming, refer to one or more of the documents on this subject
provided by the International Organization for Standardization (ISO).

Instead of creating ASN.1 files yourself, you can create .MY files from existing ASCII files (for example,
from RFCs) by using the MIB-converter facility provided with TCP/IP Services. This facility uses a

22

Chapter 3. Creating a Subagent Using the eSNMP API

UNIX awk script, which runs on OpenVMS as well as on appropriately configured UNIX systems.
For details about the facility, see the MIB-CONVERTER.AWK file, which is located in the [.SNMP]
subdirectory of TCPIP$EXAMPLES. Standard .MY files are also provided for your convenience.

The custom MIB definition files have the default extension .MY.

3.3.2. Processing the Input File with the MIB Compiler
Process your ASN.1 source files with the MIB compiler using the DCL command MIBCOMP.

Note

If you are familiar with processing on UNIX systems, you can use the UNIX utilities snmpi and mosy.
See Section 3.3.2.1 for more information.

The compilation process produces two template C programming modules that are used in building the
executable subagent code. When you run the compiler, specify all the ASN.1 source files for a given
subagent. Whenever any of these source files are updated, you must repeat the compilation process.

The syntax for the MIBCOMP command is as follows:

MIBCOMP MIB-source-file "subtree" [/PREFIX=prefix-name] [/PRINT_TREE] [/
SNMPV2]

The parameters and qualifiers for the MIBCOMP command are as follows:

Parameter or Qualifier Definition

MIB-source-file A comma-separated list of MIB definition files.
The standard extension is .MY, but you can specify
any valid OpenVMS file name. You must specify
the full filename.

subtree The text name for the root of your MIB
definitions. This parameter must be enclosed in
quotation marks. This name is used in generating
names for template C modules and also for the
names of the files themselves: subtree_tbl.c and
subtree_tbl.h.

/PREFIX= prefix-name The MIB compiler attaches the prefix-namestring
to the beginning of all generated names.

/PRINT_TREE Displays the entire MIB subtree.
/SNMPV2 Specifies the use of SNMP Version 2 parsing rules.

The following is an example of processing the chess example files using the /PRINT_TREE qualifier:

$ MIBCOMP RFC1442.MY, CHESS_MIB.MY "chess" /PRINT_TREE
Processing RFC1442.MY
Processing CHESS_MIB.MY
Dump of objects in lexical order
 – This file created by program 'snmpi -p'
ccitt 0
iso 1
 internet 1.3.6.1
 directory 1.3.6.1.1
 mgmt 1.3.6.1.2

23

Chapter 3. Creating a Subagent Using the eSNMP API

 experimental 1.3.6.1.3
 private 1.3.6.1.4
 enterprises 1.3.6.1.4.1
 dec 1.3.6.1.4.1.36
 ema 1.3.6.1.4.1.36.2
 sysobjectids 1.3.6.1.4.1.36.2.15
 decosf 1.3.6.1.4.1.36.2.15.2
 chess 1.3.6.1.4.1.36.2.15.2.99
 chessProductID 1.3.6.1.4.1.36.2.15.2.99.1
ObjectID read-only
 chessMaxGames 1.3.6.1.4.1.36.2.15.2.99.2
INTEGER read-only
 chessNumGames 1.3.6.1.4.1.36.2.15.2.99.3
INTEGER read-only
 gameTable 1.3.6.1.4.1.36.2.15.2.99.4
 gameEntry 1.3.6.1.4.1.36.2.15.2.99.4.1
indexes: gameIndex
 gameIndex
1.3.6.1.4.1.36.2.15.2.99.4.1.1
INTEGER read-write
 gameDescr
1.3.6.1.4.1.36.2.15.2.99.4.1.2
DisplayString read-write range: 0 to 255
 gameNumMoves
1.3.6.1.4.1.36.2.15.2.99.4.1.3
INTEGER read-write
 gameStatus
1.3.6.1.4.1.36.2.15.2.99.4.1.4
INTEGER read-write
 enum: complete 1
 enum: underway 2
 enum: delete 3
 moveTable 1.3.6.1.4.1.36.2.15.2.99.5
 moveEntry 1.3.6.1.4.1.36.2.15.2.99.5.1
indexes: gameIndex moveIndex
 moveIndex
1.3.6.1.4.1.36.2.15.2.99.5.1.1
INTEGER read-write
 moveByWhite
1.3.6.1.4.1.36.2.15.2.99.5.1.2
DisplayString read-write
 range: 0 to 255
 moveByBlack
1.3.6.1.4.1.36.2.15.2.99.5.1.3
DisplayString read-write
 range: 0 to 255
 moveStatus
1.3.6.1.4.1.36.2.15.2.99.5.1.4
INTEGER read-write
 enum: ok 1
 enum: delete 2
 security 1.3.6.1.5
 snmpV2 1.3.6.1.6
 snmpDomains 1.3.6.1.6.1
 snmpProxys 1.3.6.1.6.2
 snmpModules 1.3.6.1.6.3
joint_iso_ccitt 2

24

Chapter 3. Creating a Subagent Using the eSNMP API

11 objects written to chess_tbl.c
11 objects written to chess_tbl.h

3.3.2.1. UNIX Utilities Supplied with TCP/IP Services
For compatibility with UNIX, the mosy and snmpi utilities are provided with TCP/IP Services for
generating the C language code that defines the object tables. These UNIX utilities are supported on
OpenVMS for compatibility with UNIX-developed procedures. For information about using these
utilities, refer to the VSI UNIX Network Programmer's Guide.

3.3.2.2. Object Tables
The MIBCOMP command is used to generate the C language code that defines the object tables from
the MIBs. The object tables are defined in the emitted files subtree_TBL.H and subtree_TBL.C, which
are compiled into your subagent.

These modules are created by the MIBCOMP command or the UNIX utilities. VSI recommends that
you do not edit them. If the MIBs change or if a future version of the SNMP development utilities
requires your object tables to be rebuilt, it is easier to rebuild and recompile the files if you did not edit
them.

3.3.2.3. The subtree_TBL.H Output File
The subtree_TBL.H file contains the following sections:

1. A declaration of the subtree structure

2. Index definitions for each MIB variable in the subtree

3. Enumeration definitions for MIB variables with enumerated values

4. MIB group data structure definitions

5. Method routine function prototypes

The following sections describe each section of the subtree_TBL.H file.

1. Declaration Section

The first section of the subtree_TBL.H file is a declaration of the subtree structure. The subtree is
automatically initialized by code in the subtree_TBL.C file. A pointer to this structure is passed to the
esnmp_register routine to register a subtree with the master agent. All access to the object table for
this subtree is through this pointer. The declaration has the following form:

extern SUBTREE subtree_subtree;

2. Index Definitions Section

The second section of the subtree_TBL.H file contains index definitions for each MIB variable in the
subtree of the form:

#define I_mib-variable nnn

These values are unique for each MIB variable in a subtree and are the index into the object table
for this MIB variable. These values are also generally used to differentiate between variables that are
implemented in the same method routine so they can be used in a switch operation.

25

Chapter 3. Creating a Subagent Using the eSNMP API

3. Enumeration Definitions Section

The third section of the subtree_TBL.H file contains enumeration definitions for those integer MIB
variables that are defined with enumerated values, as follows:

#define D_mib-variable_enumeration-name value

These definitions are useful because they describe the value that enumerated integer MIB variables may
take on. For example:

/* enumerations for gameEntry group */
 #define D_gameStatus_complete 1
 #define D_gameStatus_underway 2
 #define D_gameStatus_delete 3

4. MIB Group Data Structure Definitions Section

The fourth section of the subtree_TBL.H file contains data structure definitions of the following form:

typedef structxxx {
 type mib-variable;
 .
 .
 .
 char mib-variable_mark;
 .
 .
 .
 } mib-group_type

The MIB compiler generates one of these data structures for each MIB group in the subtree. Each
structure definition contains a field representing each MIB variable in the group. In addition to the MIB
variable fields, the structure includes a 1-byte mib-variable-mark field for each variable. You can use
these for maintaining status of a MIB variable. For example, the following is the group structure for the
chess MIB:

typedef struct _chess_type {
 OID ches;
 int chessMaxGames;
 int chessNumGames;
 char chessProductID_mark;
 char chessMaxGames_mark;
 char chessNumGames_mark;
} chess_type;

Although MIB group structures are provided for your use, you are not required to use them. You can use
the structure that works best with your method routines.

5. Method Routine Prototypes Section

The fifth section of the subtree_TBL.H file describes the method routine prototypes. Each MIB group
within the subtree has a method routine prototype defined. A MIB group is a collection of MIB
variables that are leaf nodes and that share a common parent node.

There is always a function prototype for the method routine that handles the Get, GetNext, and
GetBulk operations. If the group contains any writable variables, there is also a function prototype
for the method routine that handles Set operations. Pointers to these routines appear in the subtree's

26

Chapter 3. Creating a Subagent Using the eSNMP API

object table which is initialized in the subtree_TBL.C module. You must write method routines for each
prototype that is defined, as follows:

extern int mib-group get(METHOD *method);

extern int mib-group set(METHOD *method);

For example:

extern int chess_get(METHOD *method)

extern int chess_set(METHOD *method);

3.3.2.4. The subtree_TBL.C Output Files
The subtree_TBL.C file contains the following sections:

1. An array of integers representing the OIDs for each MIB variable

2. An array of OBJECT structures

3. An initialized SUBTREE structure

4. Routines for allocating and freeing the mib_group_type

The following sections describe each section of the subtree_TBL.C file.

1. Array of Integers Section

The first section of the subtree_TBL.C file is an array of integers used to represent the OID of each MIB
variable in the subtree. For example:

static unsigned int elems[] = {
 1, 3, 6, 1, 4, 1, 36, 2, 15, 2, 99, /* chess */
 1, 3, 6, 1, 4, 1, 36, 2, 15, 2, 99, 1, 0, /* chessProductID */
 . . .
 1, 3, 6, 1, 4, 1, 36, 2, 15, 2, 99, 5, 1, 4, 0, /* moveStatus */
};

The first line represents the root of the tree; the other lines represent specific variables. The latter groups
are all terminated by a zero, a programming convenience in internal implementations of API routines.

2. Array of OBJECT Structures Section

The second section of the subtree_TBL.C file is an array of OBJECT structures. Each MIB variable
within the subtree has one OBJECT. The chess example produces the following:

static OBJECT objects[] = {
 {I_chessProductID , {12, &elems[11]}, ESNMP_TYPE_ObjectId
 , chess_get, NULL},
 . . .

An OBJECT structure represents a MIB variable and has the following fields:

• object_index — The constant I_ mib-variable from the subtree_TBL.H file, which identifies
this variable (in the chess example, I_chessProductID.)

27

Chapter 3. Creating a Subagent Using the eSNMP API

• oid — The variable's OID (points to a part of elems[]).

This variable is of type OID, which is a structure containing two elements: the number of elements in
the OID and a pointer to the correct starting place in the array of elements (elems[] in the chess
example).

In the chess example, oidis designated by {12, &elemens[11]}. This indicates that:

• The OID has 12 integers separated by dots in the ASCII text representation
("1.3.6.1.4.1.36.2.15.2.99.2")

• The integer with index 11 in the array elems[] is the first element.

• type — The variable's eSNMP data type.

• getfunc — The address of the method routine to call for Get requests (null if no routine exists).

• setfunc — The address of the method routine to call for Set requests (null if no routine exists).

The master agent does not access object tables or MIB variables directly. It only maintains a registry of
subtrees. When a request for a particular MIB variable arrives, it is processed as shown in the following
steps (where the MIB variable is mib_var and the subtree is subtree_1):

1. The master agent finds subtree_1 as the authoritative region for the mib_var in the register of
subtrees. The authoritative region is determined as the registered MIB subtree that has the longest
prefix and the highest priority.

2. The master agent sends a message to the subagent that registered subtree_1.

3. The subagent consults its list of registered subtrees and locates subtree_1.

It searches the object table of subtree_1 and locates the following:

• mib_var (for Get and Set routines)

• The first object lexicographically after mib_var (for Next or Bulk routines)

4. The appropriate method routine is called. If the method routine completes successfully, the data
is returned to the master agent. If the method routine fails when doing a Get or Set, an error is
returned. If the method routine fails when doing a GetNext, the code keeps trying subsequent
objects in the object table of subtree_1 until either a method routine returns successfully or the
table is exhausted. In either case, a response is returned.

5. If the master agent detects that subtree_1 could not return data on a Next routine, it recursively
tries the subtree lexicographically after subtree_1 until a subagent returns a value or the registry
of subtrees is exhausted.

3. Initialized Subtree Structure Section

The third section of the subtree_TBL.C file is the SUBTREE structure itself. A pointer to this structure
is passed to the eSNMP library routine esnmp_register to register the subtree. It is through this
pointer that the library routines find the object structures. The following is an example of the chess
subtree structure:

SUBTREE chess_subtree = { "chess", "1.3.6.1.4.1.36.2.15.2.99",

28

Chapter 3. Creating a Subagent Using the eSNMP API

 { 11, &elems[0] }, objects, I_moveStatus};

The following table describes the elements of the SUBTREE structure, the definition of each element in
the header file (subtree_TBL.H)), and the element in the chess example:

Description Header File
Representation

Example

The name of the subtree's base element. name "chess"

The ASCII string representation of the
subtree's OID. This is what actually gets
registered.

dots "1.3.6.1.4.1.36.2.15.2.99"

The OID structure for the base node of
the subtree. This points back to the array
of integers.

oid 11, &elems[0] }

A pointer to the array of objects in
the object table. It is indexed by the
I_xxxxdefinitions found in the
subtree_TBL.H file.

object_oid objects

The index of the last object in the
object_TBL file. This is used to
determine when the end of the table has
been reached.

last I_moveStatus

4. Routines Section

The final section of the subtree_TBL.C file. Contains short routines for allocating and freeing the
mib_group_type. These are provided as a convenience and are not a required part of the API.

3.4. Including the Routines and Building the
Subagent
The MIB compiler does not generate code for implementing the method routines for your subagent. This
includes code for processing get, set, and other SNMP requests as well as for generating traps. You
must write this code yourself. See the CHESS_MIB.C module for an example.

To produce executable subagent code, follow these steps:

1. Compile the C modules generated by the MIB compiler, along with your implementation code. Use a
command in the following format (derived from the sample provided for building the chess example
in TCPIP$BUILD_CHESS.COM):

$ CC /INCLUDE=TCPIP$SNMP /PREFIX=ALL /STANDARD=VAX CHESS_METHOD.C, -
_$ CHESS_MIB.C, CHESS_TBL.C

Depending on the version of the C compiler you are using, you might see warnings that you can
ignore. Portions of these warnings are as follows:

%CC-I-SIGNEDKNOWN In this declaration, DEC C recognizes the ANSI
 keyword "signed". This differs from the VAX C
 behavior.

%CC-I-INTRINSICINT In this statement, the return type for intrinsic

29

Chapter 3. Creating a Subagent Using the eSNMP API

 "strlen" is being changed from "size_t" to "int".

2. Link the object modules using a command and options in the following format (derived from the
chess example):

$ LINK SYS$INPUT/OPTIONS
CHESS_METHOD.OBJ
CHESS_MIB.OBJ
CHESS_TBL.OBJ
SYS$SHARE:TCPIP$ESNMP_SHR.EXE/SHARE

To link with the eSNMP object library, enter the following command:

$ LINK SYS$INPUT/OPTIONS
CHESS_METHOD.OBJ
CHESS_MIB.OBJ
CHESS_TBL.OBJ
TCPIP$SNMP:TCPIP$ESNMP.OLB/LIBRARY
TCPIP$LIBRARY:TCPIP$LIB.OLB/LIBRARY

Alternatively, you can link your subagent with the eSNMP API shareable image (TCPIP
$ESNMP_SHR.EXE). The resulting executable image is smaller and can be run without relinking
against any future versions of the shareable image. To link the example object with the shareable
image, enter the following command:

$ LINK SYS$INPUT/OPTIONS
CHESS_METHOD.OBJ
CHESS_MIB.OBJ
CHESS_TBL.OBJ
SYS$SHARE:TCPIP$ESNMP_SHR.EXE/SHARE

3.5. Including Extension Subagents in the
Startup and Shutdown Procedures
You can add your custom subagents to the SNMP startup and shutdown procedures by editing the
following files:

File Name Edit Required

TCPIP$EXTENSION_MIB_STARTUP.COM Edit the example lines to include an INSTALL
CREATE command for custom images that need to
be installed, possibly with privileges. Remove extra
example lines, and adjust the GOTO statement.

TCPIP$EXTENSION_MIB_RUN.COM Edit the example lines to include a RUN command
for custom images. Remove extra example lines,
and adjust the GOTO statement.

TCPIP$EXTENSION_MIB_SHUTDOWN.COM Edit the example lines to:

• Include symbols for the detached processes
that are running custom images. Use the
same process names specified in TCPIP
$EXTENSION_MIB_RUN.COM.

• Modify the IF and THEN statements to include
the new symbols.

30

Chapter 3. Creating a Subagent Using the eSNMP API

File Name Edit Required
• Include an INSTALL DELETE

command for images installed in TCPIP
$EXTENSION_MIB_STARTUP.COM.

• Remove extra example lines, and adjust the
GOTO statement.

31

Chapter 3. Creating a Subagent Using the eSNMP API

32

Chapter 4. Using the SNMP Utilities
TCP/IP Services includes the following programs, which are useful for testing applications and for
analyzing SNMP problems:

• TCPIP$SNMP_REQUEST (MIB browser) (Section 4.1)

• TCPIP$SNMP_TRPSND (trap sender) (Section 4.2)

• TCPIP$SNMP_TRPRCV (trap receiver) (Section 4.2)

These programs can be invoked by commands that are defined by the SYS$STARTUP:TCPIP
$DEFINE_COMMANDS.COM command procedure.

This chapter describes how to use the supplied SNMP utilities.

4.1. Using the MIB Browser
TCP/IP Services provides the snmp_request MIB browser that acts as a simple client to handle
single SNMP requests for reading and writing to a MIB. The browser sends SNMP Version 1 and SNMP
Version 2 request PDUs to an agent and displays the agent's response.

To run the MIB browser, follow these steps:

1. Define a foreign command for the program:

$ snmp_request == "SYSSYSTEM:TCPIP$SNMP_REQUEST"

Alternatively, you can run the SYS$MANAGER:TCPIP$DEFINE_COMMANDS.COM procedure
to define all the foreign commands available with TCP/IP Services.

2. Enter the command using the following format.

snmp_request agent "community" request_type [flags] variable [data-type
 value]

Section 4.1.1 describes the parameters. Section 4.1.2 describes the flags.

4.1.1. MIB Browser Parameters
Table 4.1 describes the snmp_request parameters.

Table 4.1. snmp_request Command Parameters

Parameter Function

agent The host name or IP address (in dot notation) of the managed node
to query.

If you specify 0, 0.0.0.0., 127.0.0.1, or “localhost, ”the server on the
browser's host is queried.

"community" The community string to be used in the query. This parameter is
case sensitive. Typically, agents are configured to permit read access
to the community string "public". For accurate interpretation, be
sure to enclose the name in quotation marks (" "). Note that if you
do not use quotation marks, the name is changed to lowercase.

33

Chapter 4. Using the SNMP Utilities

Parameter Function

PDU type to send. Can be one of the following SNMP requests:
Get Sends a Get-Request PDU.
GetNext Sends a GetNext-Request PDU.
GetBulk Sends a GetBulk-Request PDU

(SNMP Version 2 only).

request-type

Set Sends a Set-Request PDU.
variable An object identifier (OID) in ASN.1 notation that is associated with

an object in a MIB. For example:

$ snmp_request host1 "public" getnext -d
 1.3.6.1.6.3.1.1.6

data-type Data type of the value. This parameter can be specified for
Setrequests. The data types are described in Section 4.1.3.

value The value to which to set the contents of the OID. This parameter is
used for set requests.

For Set requests, you can specify more than one group of the following:

• variable-name

• data-type

• value

For other requests, you can specify more than one variable name, except when you specify the -l or
-t flag; these flags are valid only with a GetNext or GetBulk request, for which only one OID is
permitted.

4.1.2. MIB Browser Flags
Flags are specified in UNIX format.

Because flags and data types are case sensitive, you should always enter them in the case that is
specified. If a letter or value is specified as uppercase, you must enclose it in quotation marks. In general,
if you use uppercase letters where lowercase is specified, the results are unpredictable. For example, the
flag "-v2C" functions correctly but the flag "-V2c" does not, because the flag character (v) must be
lowercase.

If you do not specify a flag, or if you specify an invalid flag, a usage message is displayed. You must
place the flags after the request-type parameter.

Table 4.2 describes the flags for the snmp_request command.

Table 4.2. Flags for the snmp_request Command

Flag Description

-d Specifies hexadecimal dump mode. Before displaying a return value,
displays a hexadecimal dump of SNMP packets sent and received.
For example:

$ snmp_request host1 "public" getnext -d -v 2c
 1.3.6.1.6.3.1.1.6

34

Chapter 4. Using the SNMP Utilities

Flag Description

Sent:

30290201 01040670 75626C69 63A11C02
 0).....public...
047BE9C1 BD020100 02010030 0E300C06 .
{.........0.0..
082B0601 06030101 060500 .+.........

Received:

30820033 02010104 06707562 6C6963A2
 0..3.....public.
2602047B E9C1BD02 01000201 00308200 &..
{.........0..
16308200 12060A2B 06010603 01010601 .0.....
+........
00020478 D917FC ...x...
1.3.6.1.6.3.1.1.6.1.0 = 2027493372

-i max_ignores Specifies the number of times the MIB browser listens for a reply
packet to a request if it receives an invalid packet (caused by an
invalid packet identifier, version, or SNMP version and command
combination). Specify a positive integer for the value (max_ignores).
If you specify a negative value, it will be converted to an unsigned
positive integer. If you specify 0, no retries are attempted.

If, after an invalid reply packet is received, a valid reply packet is
received, the ignore counter is reset to the value of max_ignores.

If a timeout occurs after an invalid packet is received, the packet is
resent, the resend counter is decremented, and the ignore counter is
reset to the value of max_ignores.

You cannot use the -i flag when you perform a query with the -l
or -t flags to automatically increment the input OID and continue
querying a server after a general SNMP error has occurred, as may
happen with a faulty server. In this case, the query is terminated even
though the end of the MIB selection has not been reached. You must
manually increment the input OID to skip the error and continue
with the query.

-l Specifies loop mode. Note that this flag is the letter l, not the
number 1.

Valid only if request-type is GetNext or GetBulk (where
flag n is set to 0, and flag m is set to a number greater than 0).

Causes the master agent to traverse all the MIBs registered with
the master agent, starting at the first OID after the one specified in
the command. (Note that you can specify only one variable-
name[OID].) Responses are received one at a time, and for each
one, the OID returned by the master agent is used in a subsequent
request. Corresponds to the behavior of standard mibwalk
programs.

35

Chapter 4. Using the SNMP Utilities

Flag Description
The MIB browser reads and displays responses, and issues requests
until the master agent has no more data, times out, or you press Ctrl/
Y or Ctrl/C.

If specified with the GetBulk request, the -n and -m flags and
associated values are ignored, and the behavior is identical to that of
GetNext.

When the last OID handled by the master agent is reached, you
receive a response similar to the following for a query on OID
1.3.6.1.6.3.1.1.6.1 using SNMP Version 1:

1.3.6.1.6.3.1.1.6.1.0 = 693056825
- no such name - returned for variable 1

For a query using SNMP Version 2, the example response is:

1.3.6.1.6.3.1.1.6.1.0 = 693056825
1.3.6.1.6.3.1.1.6.1.0 = - end of mib view -

These examples assume that:

• OID 1.3.6.1.6.3.1.1.6.1.0 is the last OID supported on the target
host.

• The target host is running an SNMP Version 2 agent.

The statement end of mib view refers to OIDs for all MIBs
registered with the master agent.

-m max_repetitions Specifies the number of repetitions requested for repeating variables.
Applies only to the GetBulk and GetNextrequests.

Note that the resulting display can be confusing because the results
for the repeater OIDs are interleaved. That is, the OIDs are displayed
in alternate progression for faster memory throughput. If you specify
GetBulk without specifying both the -m and -n flags, the results
are unpredictable.

-n non_repeaters Specifies the number of variables for which no repetition is
requested. Applies only to the GetBulk request. If you specify
GetBulk without specifying both the -m and -n flags, the results
are unpredictable.

-p port Specifies the port where the request is to be sent. If not specified,
the request is sent to well-known SNMP port 161.

-r max_retries Specifies the number of times the MIB browser resends a request
packet if it times out before receiving a reply. Specify a positive
integer for the value (max_retries). If you specify a negative value, it
will be converted to an unsigned positive integer. If you specify 0, no
retries are tried.

If, after a timeout and a resend, a reply packet is received, the resend
counter is reset. After another timeout, the specified number of
max_retries is sent.

36

Chapter 4. Using the SNMP Utilities

Flag Description

-s sleep_interval Specifies the number of seconds between iterations of sending a
request (for the -r flag) and listening for a reply (for the -i) flag.
The default is 1 second. This flag is ignored if neither the -r flag
nor the -i flag are specified.

The -s flag is useful for specifying a time to wait between resends,
which might be necessary when a server agent is starting up.

-t Specifies tree mode. Valid only if request-type is GetNext
or GetBulk (where flag n is set to 0 and flag m is set to a number
greater than 0).

Similar to the -l flag. Directs the agent to perform a MIB walk for
the subtree with the variable_name as its root. The program
reads and prints responses and issues requests until the agent has no
more data for the specified subtree, times out, or is interrupted by a
user.

-v version Specifies the SNMP version to use for sending the PDU. The
versions are: 2c or 1 (default). Not case sensitive. You can specify
the flag without a space (-v2c and -v1).

If request_type is getbulk, the version defaults to SNMP
Version 2. If you specify -v 2c to send a message to an SNMP
Version 1 agent or subagent, it is unlikely to respond.

-w max_wait Specifies the maximum seconds the snmp_request program
waits for a reply before timing out. Cannot be 0. The default is 3.

The -i, -r, and -s flags apply to individual queries. If you specify the -l or -t flags also, the values
for the -i, -r, and -s flags are applied to each iteration.

4.1.3. MIB Browser Data Types
The snmp_request and snmp_trapsnd commands support the data types listed in Table 4.3.
These values apply to Set requests only.

Table 4.3. Data Types for the snmp_request and snmp_trapsnd Commands

Data Type Value

Counter -c

Counter64 1 -l

Display string -D

Gauge -g

Integer -i

IP address -a

NULL -N

Object identifier -d

Octet -o

Opaque string -q

37

Chapter 4. Using the SNMP Utilities

Data Type Value

Time ticks -t
1For support of trap sender program (TCPIP$SNMP_TRAPSND.EXE) only. Properly defined, MIB variables of type Counter64 are not
writable.

Note

Except for -l (Counter64), the data types are case sensitive. To preserve uppercase for display strings
and NULL, enclose the value in double quotation marks. For example, “--D” or “--N”.

On OpenVMS Alpha systems, you must specify the value of the -l data type as a 64-bit integer. For
example:

$ snmp_trapsnd 0.0 mynode 6 33 100 -h mynode -v2c -
_$ 1.3.6.1.2.1.1.4.0 "l" 1311768467294899695

On OpenVMS VAX systems, you must specify the value of the -l data type as a 16-digit hexadecimal
value. For example:

$ snmp_trapsnd 0.0 mynode 6 33 100 -h mynode -v2c -
_$ 1.3.6.1.2.1.1.4.0 "l" 0x1234567890ABCDEF

Note that alphabetic characters are not case sensitive when used with the -l data type.

For more information about the data types, see RFCs 1155 and 1902.

4.1.4. Command Examples for snmp_request
This section presents several examples of using the snmp_request utility. In the following
snmp_request command examples:

• The valid host name is marley.dec.com.

• The "public" community is type Read, address 0.0.0.0.

• The "address_list" community is type Read and Write, with write access for the host on
which the snmp_request program is running.

• The location has been specified as shown in the following command:

TCPIP> SET CONFIGURATION SNMP -
_TCPIP> /LOCATION=(FIRST="Falcon Building", SECOND="Los Angeles, CA")

• The command responses have been edited for readability.

Examples

1. The following example shows how to retrieve the value of the MIB II variable sysDescr.0
(1.3.6.1.2.1.1.1.0). The request is successful because the OID (variable_name)
provided in the command line exists and is readable. This OID is returned by the subagent code that
resides in the master agent.

$ snmp_request marley.dec.com "public" get 1.3.6.1.2.1.1.1.0

38

Chapter 4. Using the SNMP Utilities

1.3.6.1.2.1.1.1.0 = marley.dec.com AlphaServer 2100 4/200 OpenVMS
 V7.1 Digital TCP/IP Services for OpenVMS

2. The following example shows how to retrieve two MIB II variables. This example is identical to the
previous example, except that two OID values are input and two returned: instance 1 of ifDescr
and hrSystemUptime. Note that the first value comes from the MIB II subagent (TCPIP
$OS_MIBS) and the second comes from the Host Resources MIB subagent (TCPIP$HR_MIB).

$ snmp_request marley.dec.com "public" get 1.3.6.1.2.1.2.2.1.2.1 -
_$ 1.3.6.1.2.1.25.1.1.0

1.3.6.1.2.1.2.2.1.2.1 = LO IP Interface: LO0, OpenVMS Adapter: <none>,
 Loopback Port
1.3.6.1.2.1.25.1.1.0 = 6024942 = 0 d 16:44:9

3. The following example shows how to retrieve the next MIB II variable. This is similar to the
command in example 1, except that a GetNext request is issued and sysObjectID.0
(1.3.6.1.2.1.1.2.0) is returned.

$ snmp_request marley.dec.com "public" getnext 1.3.6.1.2.1.1.1.0

1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.36.2.15.13.7.1

4. The following example shows how to use the SNMP Version 2 GetBulk request to retrieve the
MIB II variables sysUpTime.0 (1.3.6.1.2.1.1.1.0) and sysDescr.0 (1.3.6.1.2.1.1.2.0), and
for the first three interfaces, the values of ifDescr (OIDs with the prefix1.3.6.1.2.1.2.2.1.2) and
ifType (OIDs with the prefix 1.3.6.1.2.1.2.2.1.3).

$ snmp_request marley.dec.com "public" getbulk -n 2 -m 3 -

_$ 1.3.6.1.2.1.1.1 1.3.6.1.2.1.1.2 -
_$ 1.3.6.1.2.1.2.2.1.1 1.3.6.1.2.1.2.2.1.2 1.3.6.1.2.1.2.2.1.3

Warning: using version SNMPv2 for getbulk command.
1.3.6.1.2.1.1.1.0 = marley.dec.com AlphaStation 255/300
 OpenVMS V7.1 Digital TCP/IP Services for OpenVMS
1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.36.2.15.13.7.1
1.3.6.1.2.1.2.2.1.1.1 = 1
1.3.6.1.2.1.2.2.1.2.1 = LO IP Interface: LO0, OpenVMS Adapter: <none>,
 Loopback Port1.3.6.1.2.1.2.2.1.3.1 = 24
1.3.6.1.2.1.2.2.1.1.3 = 3
1.3.6.1.2.1.2.2.1.2.3 = WE IP Interface: WE0, OpenVMS Adapter: EWA0:,
 PCI bus Ethernet Adapter
1.3.6.1.2.1.2.2.1.3.3 = 6
1.3.6.1.2.1.2.2.1.1.4 = 4
1.3.6.1.2.1.2.2.1.2.4 = WF IP Interface: WF0, OpenVMS Adapter: FWA0:,
 DEFPA PCI bus FDDI Adapter
1.3.6.1.2.1.2.2.1.3.4 = 15

5. The following example shows how to use the GetNext request with the -l (loop) flag to retrieve
all OIDs starting at the first instance after the OID input and finishing at the end of the MIB view.
Note that if an SNMP Version 2 agent is the server, the results using getbulk are identical (in
general, SNMP Version 1 agents do not support getbulk requests).

$ snmp_request marley.dec.com "public" getnext -l 1.3.6.1.2.1.1.1.0
1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.36.2.15.13.7.1
1.3.6.1.2.1.1.3.0 = 1280260 = 0 d 3:33:22

39

Chapter 4. Using the SNMP Utilities

1.3.6.1.2.1.1.4.0 = Sam Spade
1.3.6.1.2.1.1.5.0 = marley.dec.com
1.3.6.1.2.1.1.6.0 = Falcon Building Los Angeles, CA
1.3.6.1.2.1.1.7.0 = 721.3.6.1.2.1.1.8.0 = 0 = 0 d 0:0:0
.
.
.
1.3.6.1.2.1.25.5.1.1.2.294 = 560
1.3.6.1.2.1.25.5.1.1.2.295 = 472
1.3.6.1.6.3.1.1.6.1.0 = 1296505215
- no such name - returned for variable 1

6. The following example uses the same command as in example 5, but it specifies the -t flag instead
of the -l flag. Only OIDs with the prefix matching the input OID are returned. Note that as with
other getnext request examples, the value for the input OID is not returned. If an SNMP Version
2 agent is the server, the results using getbulk are identical.

$ snmp_request marley.dec.com "public" getnext -t 1.3.6.1.2.1.1

1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.36.2.15.13.7.1
1.3.6.1.2.1.1.3.0 = 1302232 = 0 d 3:37:2
1.3.6.1.2.1.1.4.0 = Sam Spade1.3.6.1.2.1.1.5.0 = marley.dec.com
1.3.6.1.2.1.1.6.0 = Falcon Building Los Angeles, CA
1.3.6.1.2.1.1.7.0 = 721.3.6.1.2.1.1.8.0 = 0 = 0 d 0:0:0
1.3.6.1.2.1.1.9.1.2.1 = 1.3.6.1.4.1.36.15.3.3.1.1
1.3.6.1.2.1.1.9.1.2.2 = 1.3.6.1.4.1.36.15.3.3.1.2
1.3.6.1.2.1.1.9.1.3.1 = Base o/s agent (OS_MIBS) capabilities
1.3.6.1.2.1.1.9.1.3.2 = Base o/s agent (HR_MIB) capabilities
1.3.6.1.2.1.1.9.1.4.1 = 0 = 0 d 0:0:0
1.3.6.1.2.1.1.9.1.4.2 = 0 = 0 d 0:0:0

7. The following example shows how to send a Set request. The request succeeds because the
command line specifies the correct type for the variable, and all the conditions for enabling Set
requests are met on the server.

$ snmp_request marley.dec.com "address_list" -
_$ set 1.3.6.1.2.1.1.4.0 "D" "Richard Blaine"
1.3.6.1.2.1.1.4.0 = Richard Blaine

8. The following example shows how to display the contents of packets that are sent and received. Note
that only the SNMP-specific portion of the UDP packets is displayed.

$ snmp_request marley.dec.com "public" get -d 1.3.6.1.2.1.1.4.0

Sent:

 3082002D 02010004 06707562 6C6963A0 0..-.....public.
 2002047B E9C1BD02 01000201 00308200 ..{.........0..
 10308200 0C06082B 06010201 01040005 .0.....+........
 00 .

Received:

 3082003B 02010004 06707562 6C6963A2 0..;.....public.
 2E02047B E9C1BD02 01000201 00308200 ...{.........0..
 1E308200 1A06082B 06010201 01040004 .0.....+........
 0E526963 68617264 20426C61 696E65 .Richard Blaine
1.3.6.1.2.1.1.4.0 = Richard Blaine

40

Chapter 4. Using the SNMP Utilities

4.2. Using the Trap Sender and Trap Receiver
Programs
TCP/IP Services provides the following programs that allow you to set up a simple client on your system
to send and receive trap messages:

• snmp_trapsnd (TCPIP$SNMP_TRAPSND.EXE)

Sends SNMP Version 1 and SNMP Version 2 trap messages. Use only for testing or to send
significant state changes that occur on the managed node.

• snmp_traprcv (TCPIP$SNMP_TRAPRCV.EXE)

Listens for SNMP trap messages and displays any it receives.

By default, these programs use UDP port 162. However, you can specify another port with the -p flag
or set up an SNMP-trap service that specifies the port you want to use. Note, however, that the use of
UDP port 162 is coded into standard MIBs.

Both programs support the use of the UDP (default) and TCP transports. However, the standard TCP/
IP subagents and the Chess example use UDP only. Therefore, if you specify the -tcp flag when you
enter the snmp_traprcv command, the program uses TCP to process traps only from the trap sender
program or from a user application written to use TCP.

The following sections explain how to enter commands for both programs. Because flags and data
types are case sensitive, you should always enter them in the case that is specified. If a letter or value
is specified as uppercase, you must enclose it in quotation marks. In general, if you use uppercase
letters where lowercase is specified, the results are unpredictable. For example, flag "-v2C" functions
correctly but flag "-V2c" does not, because the flag character (v) must be lowercase.

The trap receiver does not use the trap communities specified using the TCPIP$CONFIG.COM
command procedure or any configuration file. You set the trap communities using the trap sender
program. Use the c flag to specify the community name, and the -h flag to set the host name. For more
information about using these flags, see Section 4.2.1.2.

4.2.1. Entering Commands for the Trap Sender Program
The trap sender program lets you send SNMP Version 1and SNMP Version 2 trap messages. You should
use this program only when you want to test the client or when significant state changes occur on the
managed node.

The trap sender program encodes an SNMP Version 1 trap PDU (see RFCs 1155, 1156, 1157, and
1215) or an SNMP Version 2 trap PDU (see RFCs 1905 and 1908) into an SNMP message and sends it
to the specified hosts. You use parameters and flags to specify the data fields in the trap PDU.

Traps are uniquely identified in the PDU, as follows:

• SNMP Version 1 is identified by a combination of parameters.

• SNMP Version 2 is identified by the value of snmpTrapOID.

To run the trap sender program, do the following:

41

Chapter 4. Using the SNMP Utilities

1. Define a foreign command for the program:

$ snmp_trapsnd == "SYSSYSTEM:TCPIP$SNMP_TRAPSND"

Alternatively, you can run the SYS$MANAGER:TCPIP$DEFINE_COMMANDS.COM procedure
to define all the foreign commands available with TCP/IP Services.

2. Enter a command using the following format:

snmp_trapsnd enterprise agent generic-trap specific-trap timeticks
[-v version] [-c community] [-d] [-h host] [-p port] [-tcp]
[variable_name [data-type value]]

4.2.1.1. Trap Sender Parameters
Table 4.4 describes the snmp_trapsnd parameters. Each parameter is required, but you can specify
zero, as appropriate.

Table 4.4. Parameters for the snmp_trapsnd Command

Parameter Description

enterprise For SNMP Version 1, specifies the enterprise object identifier (OID)
on whose behalf the trap is being sent. For example, 1.3.6.1.4.1.1. If
you specify 0 or 0.0, the null OID (0.0) is sent. Make sure that any
OID you specify conforms to the OID rules.

For SNMP Version 2, when specified with the -v2c flag, represents
the value of snmpTrapOID.0.

agent For SNMP Version 1 traps. Specifies the host name or IP address of
the entity on whose behalf the trap is being generated.

The value for the agent field is that of the primary interface for
the host on which the master agent (TCPIP$ESNMP_SERVER)
is running. You can obtain this address using the following DCL
command:

$ SHOW LOGICAL TCPIP$INET_HOSTADDR

You can specify the name local, which is the same as specifying
0, 0.0, 0.0.0, or 0.0.0.0. In these cases, the address 0.0.0.0 is sent as
the agent address in the SNMP Version 1 trap PDU.

To obtain the value of the local host, enter the following TCP/IP
management command:

TCPIP> SHOW CONFIGURATION COMMUNICATION

If the information is not in address format, enter the following
command:

TCPIP> SHOW HOST/LOCAL

If the -v2c flag is specified, this parameter is ignored.
generic-trap For SNMP Version 1, specifies the generic trap identifier in the

form of a number. Must be one of the following values:

42

Chapter 4. Using the SNMP Utilities

Parameter Description

SNMP Version 1 Value Object

0 coldStart

1 warmStart

c linkDown

3 linkUp

4 authenticationFailure

5 egpNeighborLoss

6 enterpriseSpecific

For SNMP Version 2, when the -v2c flag is specified, this
parameter must contain a valid OID or 0 as the value of
snmpTrapOID.

specific-trap For SNMP Version 1, specifies the enterprise-specific trap number.
A numeric value greater than 0 must be present but is ignored if the
-v2c flag is present or if generic-trap is a value other than 6
(enterpriseSpecific).

timeticks Specifies the timestamp value associated with the generation of the
trap message. The timestamp value is the current time in units of
TIMETICKS (1/100 of a second) since the sending SNMP entity
started. A value of 0 causes snmp_trapsnd to send the time in
hundredths of a second since the operating system was last booted.

variable_name | data-
type value

Specifies a list of MIB variables to be included in the trap message.
For a list of supported values, including a value for the Counter64
data type, see Table 4.3.

4.2.1.2. Trap Sender Flags
Table 4.5 describes the snmp_trapsnd flags.

Table 4.5. Flags for the snmp_trapsnd Command

Flag Description

-c community Specifies a community string to be used when
sending the trap. The default is public.

-d Displays a hexadecimal dump of the encoded
packet.

-h host Specifies the host name or IP address (in ASN.1
dot notation format) of the destination host
to receive the trap message. The default is
localhost (127.0.0.1).

-p port Specifies a port number on the destination host
where the message is to be sent. The default is
UDP 162.

-tcp Specifies that the TCP transport be used instead of
the default UDP transport. If a connection cannot
be established, the program displays the warning
connect - : connection refused.

43

Chapter 4. Using the SNMP Utilities

Flag Description

-v version Specifies the SNMP version to use for sending the
PDU. The valid versions are 2c or 1 (default). You
can specify the flag and value without including a
space (for example, -v2c and -v1).

4.2.1.3. Trap Sender Examples
In the following snmp_trapsnd command examples:

• The first line is the snmp_trapsnd command.

• The remainder is the display received when running the trap receiver program (snmp_traprcv)
without flags included.

1. The following example generates a trap that originated on the localhost (specified by the
agent parameter) using the default SNMP version (SNMP Version 1). The -h host parameter is
not specified, so the trap will be sent to the local host.

$ snmp_trapsnd 0.0 local 0 0 0

Message received from 127.0.0.1

SNMPv1-Trap-PDU:

community - 7075626C 6963 public
enterprise - 0.0
agent address - 0.0.0.0
trap type - Cold Start (0)
timeticks - 51938978

2. The following example generates the same trap as in example 1, except that it specifies the use of
SNMP Version 2.

$ snmp_trapsnd 0.0 local 0 0 0 "-v2c"
Message received from 127.0.0.1
SNMPv2-Trap-PDU:community - 7075626C 6963
 public

sysUpTime.0 - 51938968 = 6 d 0:16:29
snmpTrapOID.0 - 0.0

3. The following example sends values to the node mynode with the community name special.

$ snmp_trapsnd 1.2.3 marley.dec.com 6 33 100 -c special -h mynode

Message received from 16.20.208.68

SNMPv1-Trap-PDU:
community - 73706563 69616c special

enterprise - 1.2.3
agent address - 6.20.208.53
trap type - Enterprise-specific (6)
enterprise-specific value - (33)
timeticks - 100

44

Chapter 4. Using the SNMP Utilities

4.2.2. Entering Commands for the Trap Receiver
Program
The trap receiver program lets you listen for, receive, and display SNMP trap messages. Until
interrupted, the program continues to listen on the specified port.

If you enter commands using the default port number or another privileged port number, you must run
the program from a privileged account.

To run the trap receiver program, do the following:

1. Define a foreign command for the program:

$ snmp_traprcv == "SYSSYSTEM:TCPIP$SNMP_TRAPRCV"

Alternatively, you can run SYS$MANAGER:TCPIP$DEFINE_COMMANDS.COM to define all the
foreign commands available with TCP/IP Services.

2. Enter a command using the following format:

snmp_traprcv [-d] [-tcp] [-p port]

4.2.2.1. Trap Receiver Flags
Table 4.6 describes the snmp_traprcv flags.

Table 4.6. snmp_traprcv Command Flags

Flag Description

-d Displays a hexadecimal and formatted dump of the
received packet.

-p port Specifies the port number on the local host on
which to listen for trap messages. The default is
162.

-tcp Listens on the TCP port instead of the UDP
(default) port. Reads only a single PDU on an
established connection, which is similar to the
behavior using UDP.

4.2.2.2. Setting Up an SNMP Trap Service
To set up an SNMP trap service for use with the trap receiver program, enter a management command
in the following format:

SET SERVICE SNMP-TRAP /PROTOCOL=UDP /USER_NAME=TCPIP$SNMP
/PROCESS_NAME=TCPIP$SNMP-TRAP /FILE=TCPIP$SYSTEM:TCPIP$SNMP-TRAP.COM

In this command, port 170 is used as an alternative for port 162, and traps that are received on port 162
are ignored.

If you omit the /PROTOCOL qualifier or you use /PROTOCOL=TCP, the service uses the TCP
transport. In this case, when you enter a command to run the trap receiver program, you must include the
-tcp flag.

45

Chapter 4. Using the SNMP Utilities

With the SNMP trap service in place, the trap receiver program queries the service for the port number
instead of using the default port 162. If you specify a privileged port number (less than 1024) with the /
PORT qualifier, make sure you install the trap receiver program with privileges, or run the program from
an account that has SYSPRV privilege. Note that the port number must be greater than zero.

4.2.2.3. Trap Receiver Examples
1. The following example requests trap information on a system that does not have traps configured and

does not have SYSPRV privilege or sufficient privilege.

$ snmp_traprcv
No snmp-trap service entry, using default port 162.
bind - : permission denied

2. The example, supplied from a non-privileged account, requests trap information in hexadecimal
dump format on port 1026.

$ snmp_traprcv -d -p 1026

Message received from 127.0.0.1

3082002A 02010004 06707562 6C6963A4 0..*.....public.
1D060547 81AD4D01 40040000 00000201 ...G..M.@.......
00020100 4304032D AED23082 0000 C..-..0...
SNMPv1-Trap-PDU:

community - 7075626C 6963 public

enterprise - 0.0
agent address - 0.0.0.0
trap type - Cold Start (0)
timeticks - 53325522

46

Chapter 5. eSNMP API Routines
This chapter provides reference information about the following types of application programming
interface (API) routines in the eSNMP developer's kit:

• Interface routines (Section 5.1)

• Method routines (Section 5.2)

• Support routines (Section 5.6)

5.1. Interface Routines
The interface routines are for developers writing the portion of the application programming interface
(API) that handles the connection between the agent and the subagent. The interface routines are listed
Table 5.1 and described in the following pages.

Table 5.1. Interface Routines

Routine Function

esnmp_init Initializes the subagent and initiates
communication with the master agent.

esnmp_register Requests local registration of a MIB subtree.
esnmp_unregister Cancels local registration of a MIB subtree.
esnmp_register2 Requests cluster registration of a MIB subtree.
esnmp_unregister2 Cancels cluster registration of a MIB subtree.
esnmp_capabilities Adds a subagent's capabilities to the master agent's

sysORTable.
esnmp_uncapabilities Removes a subagent's capabilities from the master

agent's sysORTable.
esnmp_poll Processes a pending request from the master agent.
esnmp_are_you_there Requests a report from the master agent to indicate

it is up and running.
esnmp_trap Sends a trap message to the master agent.
esnmp_term Sends a close message to the master agent.
esnmp_sysuptime Converts UNIX system time into a value with the

same time base as sysUpTime.

esnmp_init
esnmp_init — Initializes the Extensible SNMP (eSNMP) subagent and initiates communication with the
master agent.

Syntax
int esnmp_init (int *socket, char *subagent_identifier) ;

47

Chapter 5. eSNMP API Routines

Arguments
socket

The address of the integer that receives the socket descriptor used by eSNMP.

subagent_identifier

The address of a null-terminated string that uniquely identifies this subagent (usually a program name).

Description
Call this routine during program initialization or to restart the eSNMP protocol. If you are restarting, the
esnmp_initroutine clears all registrations so each subtree must be registered again.

You should attempt to create a unique subagent identifier, perhaps using the program name argv[0]
and additional descriptive text. The master agent does not open communications with a subagent whose
subagent identifier is already in use.

This routine does not block waiting for a response from the master agent. After calling the
esnmp_init routine, call the esnmp_register routine for each subtree that is to be handled by
the subagent.

Return Values

ESNMP_LIB_NO_CONNECTION Could not initialize or communicate with the
master agent. Try again after a delay.

ESNMP_LIB_OK The esnmp_init routine has completed
successfully.

ESNMP_LIB_NOTOK Could not allocate memory for the subagent.

Example
#include <esnmp_h>
int socket;
status = esnmp_init(&socket, "gated");

esnmp_register
esnmp_register — Requests local registration of a single MIB subtree. This indicates to the master agent
that the subagent instantiates MIB variables within the registered MIB subtree.

Syntax
int esnmp_register (subtree *subtree, int timeout, int priority);

Arguments
subtree

A pointer to a subtree structure corresponding to the subtree to be handled. The code emitted by the
MIB compiler files (subtree_TBL.C and subtree_TBL.H) externally declare and initialize the subtree
structures. Refer to Chapter 3 for more information about these files.

48

Chapter 5. eSNMP API Routines

Note

All memory pointed to by the subtree fields must have permanent storage since it is referenced by
libesnmp for the duration of the program. You should use the data declarations emitted by the
MIBCOMP program.

timeout

The number of seconds the master agent should wait for responses when requesting data in this subtree.
This value must be between 0 (zero) and 300. If the value is 0, the default timeout is 3 seconds.

VSI recommends that you use the default. For information about modifying the default subagent timeout
value, refer to Section 6.2.

priority

The registration priority. The priority argument allows you to coordinate cooperating subagents to handle
different configurations. The range is 1 to 255.

The entry with the largest number has the highest priority. The subagent that registers a subtree with the
highest priority over a range of object identifiers gets all requests for that range of OIDs.

Subtrees registered with the same priority are considered duplicate, and the registration is rejected by the
master agent.

Description
Call the initialization routine esnmp_init prior to calling the esnmp_register. Call the
esnmp_register function for each subtree structure corresponding to each subtree to be handled.
At any time, subtrees can be unregistered by calling esnmp_unregister and then be reregistered by
calling the esnmp_register.

When restarting the eSNMP protocol by calling esnmp_init, all registrations are cleared. All subtrees
must be reregistered.

A subtree is identified by the base MIB name and the corresponding OID number of the node that is the
parent of all MIB variables contained in the subtree. For example: The MIB II tcp subtree has an OID
of 1.3.6.1.2.1.6. All elements subordinate to this have the same first seven digits and are included
in the subtree's object table. The subtree can also be a single MIB object (a leaf node) or even a specific
instance.

By registering a subtree, the subagent indicates that it will process eSNMP requests for all MIB variables
(or OIDs) within that subtree's range. Therefore, a subagent should register the most fully qualified
(longest) subtree that still contains its instrumented MIB variables.

The master agent does not permit a subagent to register the same subtree more than once. However,
subagents can register subtrees with ranges that overlap the OID ranges of subtrees previously registered,
and subagents can also register subtrees registered by other subagents.

For example, TCP/IP Services supports MIB II. In the eSNMP environment, the os_mibs subagent
registers the MIB II subtree ip (OID 1.3.6.1.2.1.4).

TCP/IP Services also provides the gated subagent, which registers the ipRouteEntry MIB subtree
(OID1.3.6.1.2.1.4.21.1).

49

Chapter 5. eSNMP API Routines

These MIBs are registered at priority 1. Any subagent that registers at a higher priority (greater than 1)
overrides these registrations.

A request for IpRouteIfIndex (OID1.3.5.1.2.1.4.21.1.2) is passed to the gated subagent.
Requests for other ip variables, such as ipNetToMediaIfIndex (OID 1.3.5.1.2.1.4.22.1.1)
are passed to the os_mibs subagent. If the gated subagent terminates or unregisters the
ipRouteEntry subtree, subsequent requests for ipRouteIfIndex will go to the os_mibs
subagent. This occurs because the ip subtree, which includes all ipRouteEntry variables, is now the
authoritative region of requests for ipRouteIfIndex.

Return Values
SNMP_LIB_OK The esnmp_register routine has completed

successfully.
ESNMP_LIB_BAD_REG The esnmp_init routine has not been called,

the timeout parameter is invalid, or the subtree has
already been queued for registration.

ESNMP_LIB_LOST_CONNECTION The subagent has lost communications with the
master agent.

Note that the return value indicates only the initiation of the request. The actual status returned in the
master agent's response will be returned in a subsequent call to the esnmp_poll routine in the state
field.

Example
#include <esnmp.h>
#define RESPONSE_TIMEOUT 0 /* use the default time set
 in OPEN message */
#define REGISTRATION_PRIORITY 10 /* priority at which subtrees
 will register */

int status;

extern SUBTREE ipRouteEntry_subtree;

status = esnmp_register(&ipRouteEntry_subtree,
 RESPONSE_TIMEOUT,
 REGISTRATION_PRIORITY);
if (status != ESNMP_LIB_OK) {
 printf ("Could not queue the 'ipRouteEntry' \n");
 printf ("subtree for registration\n");
}

esnmp_unregister
esnmp_unregister — Cancels registration of a MIB subtree previously registered with the master agent.

Syntax
int esnmp_unregister (SUBTREE *subtree) ;

Arguments
subtree

50

Chapter 5. eSNMP API Routines

A pointer to a subtree structure corresponding to the subtree to be handled. The code emitted by the
MIB compiler files (subtree_TBL.C and subtree_TBL.H) externally declare and initialize the subtree
structures. Refer to Chapter 3 for more information about these files.

Description

This routine can be called by the application code to tell the eSNMP subagent not to process requests for
variables in this MIB subtree anymore. You can later reregister a MIB subtree, if needed, by calling the
esnmp_register routine.

Return Values

SNMP_LIB_OK The esnmp_unregister routine has
completed successfully.

ESNMP_LIB_BAD_REG The MIB subtree was not registered.
ESNMP_LIB_LOST_CONNECTION The request to unregister the MIB subtree could

not be sent. You should restart the protocol.

Example
#include <esnmp.h>
int status

extern SUBTREE ipRouteEntry_subtree;

status = esnmp_unregister (&ipRouteEntry_subtree);

switch (status) {
case ESNMP_LIB_OK:
 printf ("The esnmp_unregister routine completed successfully.\n");
 break;

case ESNMP_LIB_BAD_REG:
 printf ("The MIB subtree was not registered.\n");

case ESNMP_LIB_LOST_CONNECTION:
 printf ("%s%s%s\n", "The request to unregister the ",
 "MIB subtree could not be sent. ",
 "You should restart the protocol.\n");

break;
}

esnmp_register2
esnmp_register2 — Requests registration of a single MIB subtree. This indicates to the master agent that
the subagent instantiates MIB variables within the registered MIB subtree. The esnmp_register2
routine offers extensions to the esnmp_register routine.

Syntax
int esnmp_register2 (ESNMP_REG *reg) ;

51

Chapter 5. eSNMP API Routines

Arguments

reg

A pointer to an ESNMP_REG structure that contains the following fields:

Field Name Description

subtree A pointer to a subtree structure corresponding to the MIB subtree
to be handled. The subtree structures are externally declared
and initialized in the code emitted by the MIBCOMP command
(subtree_TBL.C and subtree_TBL.H, where subtree is the name
of the MIB subtree). This code is taken directly from the MIB
document.

All memory pointed to by this field must have permanent storage
since it is referenced by libesnmp for the duration of the program.
You should use the data declarations emitted by the MIBCOMP
command.

priority The registration priority. The entry with the largest number has
the highest priority. The range is 1 to 255. The subagent that has
registered a MIB subtree with the highest priority over a range of
object identifiers gets all requests for that range of OIDs.

MIB subtrees that are registered with the same priority are
considered duplicates, and the registration is rejected by the master
agent.

The priority field is a mechanism for cooperating subagents to
handle different configurations.

timeout The number of seconds the master agent should wait for responses
when requesting data in this MIB subtree. This value must be
between zero and 300. If the value is zero, the default timeout (3
seconds) is used. You should use the default. For information about
modifying the default timeout value, refer to Section 6.2.

range_subid An integer value that, when nonzero, together with the
range_upper_bound field specifies a range instead of one of the MIB
subtree's OID subidentifiers. The range_subid field specifies the
OID subidentifier modified by the range_upper_bound field.

range_upper_bound An integer value that, with a nonzero range_subid field, specifies a
range instead of one of the MIB subtree's OID subidentifiers. The
range_upper_bound field provides the upper bound of the range and
the range_subid field provides the lower bound of the range, which
is the MIB subtree's OID subidentifier.

options An integer value that, when set to ESNMP_REG_OPT_CLUSTER,
indicates that the registration is valid clusterwide. When the value is
set to zero, it indicates that the registration is valid for the local node.

state One of the following integer values that provides the caller with
asynchronous updates of the state of registration of this MIB subtree.
After the return of the esnmp_poll routine, the caller can inspect
this parameter.

52

Chapter 5. eSNMP API Routines

Field Name Description

ESNMP_REG_STATE

_PENDING

The registration is currently
held locally while waiting for
connection to the master agent.

ESNMP_REG_STATE_SENT The registration was sent to the
master agent.

ESNMP_REG_STATE_DONE The registration was successfully
acknowledged by the master
agent.

ESNMP_REG_STATE

_REGDUP

The registration was rejected by
the master agent because it was a
duplicate.

ESNMP_REG_STATE

_REGNOCLU

The master agent does not
support cluster registrations.

ESNMP_REG_STATE_REJ The master agent rejected the
registration for other reasons.

reserved This field is reserved for exclusive use by the eSNMP library. The
caller should not modify it.

Description
The initialization routine (esnmp_init) must be called prior to calling the esnmp_register2
routine. The esnmp_register2 function must be called for each subtree structure corresponding
to each MIB subtree that it will be handling. At any time, MIB subtrees can be unregistered by calling
esnmp_unregister2 and then can be reregistered by calling esnmp_register2.

When restarting the eSNMP protocol by calling esnmp_init, all MIB subtree registrations are
cleared. All MIB subtrees must be reregistered.

A MIB subtree is identified by the base MIB variable name and its corresponding OID. This tuple
represents the parent of all MIB variables that are contained in the MIB subtree; for example, the MIB II
tcp subtree has an OID of 1.3.6.1.2.1.6. All elements subordinate to this (those that have the same first
7 identifiers) are included in the subtree's object table. A MIB subtree can also be a single MIB object (a
leaf node) or even a specific instance.

By registering a MIB subtree, the subagent indicates that it will process SNMP requests for all MIB
variables (or OIDs) within that MIB subtree's region. Therefore, a subagent should register the most fully
qualified (longest) MIB subtree that still contains its instrumented MIB variables.

A subagent using the esnmp_register2 routine can register the same MIB subtree for the local
node and for a cluster. To register the MIB subtree for both, you must call the esnmp_register2
routine twice: once with the ESNMP_REG_OPT_CLUSTER bit set in the options field and once
with the ESNMP_REG_OPT_CLUSTER bit clear in the options field. Alternatively, you can
register a MIB subtree for the cluster only or for the local node only, by setting or clearing the
ESNMP_REG_OPT_CLUSTER bit, respectively, in the options field.

A subagent can also register MIB subtrees that overlap the OID range of MIB subtrees that it previously
registered or the OID ranges of MIB subtrees registered by other subagents.

For example, consider the two subagents os_mibs and gated. The os_mibs subagent registers the
ip MIB subtree (1.3.6.1.2.1.4), and the gated subagent registers the ipRouteEntry MIB subtree

53

Chapter 5. eSNMP API Routines

(1.3.6.1.2.1.4.21.1). Both of these registrations are made with the ESNMP_REG_OPT_CLUSTER
bit set in the options field. Requests for ip MIB variables within ipRouteEntry, such as
ipRouteIfIndex (1.3.6.1.2.1.4.21.1.2), are passed to the gated subagent. Requests for other
ip variables, such as ipNetToMediaIfIndex (1.3.6.1.2.1.4.22.1.1), are passed to the os_mibs
subagent. If the gated subagent terminates or unregisters the ipRouteEntry MIB subtree,
subsequent requests for ipRouteIfIndex go to the os_mibs subagent. This occurs because the
ip MIB subtree, which includes all ipRouteEntry MIB variables, is now the authoritative region of
requests for ipRouteIfIndex.

Return Values
SNMP_LIB_OK The esnmp_register2 routine has completed

successfully.
ESNMP_LIB_BAD_REG The esnmp_init routine has not been called,

the timeout parameter is invalid, a registration
slot is not available, or this MIB subtree has
already been queued for registration. A message is
also in the log file.

ESNMP_LIB_LOST_CONNECTION The subagent lost communication with the master
agent.

Note that the return value indicates only the initiation of the request. The actual status returned in the
master agent's response will be returned in a subsequent call to the esnmp_poll routine in the state
field.

Example
#include <esnmp.h>
#define RESPONSE_TIMEOUT 0 /* use the default time set
 in OPEN message */
#define REGISTRATION_PRIORITY 10 /* priority at which subtrees
 will register */

int status;

extern SUBTREE ipRouteEntry_subtree;

status = esnmp_register(&ipRouteEntry_subtree,
 RESPONSE_TIMEOUT,
 REGISTRATION_PRIORITY);
if (status != ESNMP_LIB_OK) {
 printf ("Could not queue the 'ipRouteEntry' \n");
 printf ("subtree for registration\n");
}

esnmp_unregister2
esnmp_unregister2 — Cancels registration of a MIB subtree previously established with the master
agent. Use this routine only when the MIB subtree was registered using the esnmp_register2
routine.

Syntax
int esnmp_unregister2 (ESNMP_REG *reg) ;

54

Chapter 5. eSNMP API Routines

Arguments
reg

A pointer to the ESNMP_REG structure that was used when the esnmp_register2 routine was
called.

Description
This routine can be called by the application code to tell the eSNMP subagent to no longer process
requests for variables in this MIB subtree. You can later reregister a MIB subtree, if needed, by calling
the esnmp_register2 routine.

Return Values
ESNMP_LIB_OK The routine completed successfully.
ESNMP_LIB_BAD_REG The MIB subtree was not registered.
ESNMP_LIB_LOST_CONNECTION The request to unregister the MIB subtree could

not be sent. You should restart the protocol.

Example
#include <esnmp.h>
int status

extern ESNMP_REG esnmp_reg_for_ip2egp;

status = esnmp_unregister2(&esnmp_reg_for_ip2egp);

switch(status) {
 case ESNMP_LIB_OK:
 printf("The esnmp_unregister2 routine completed successfully.\n");
 break;

 case ESNMP_LIB_BAD_REG:
 printf("The MIB subtree was not registered.\n");
 break;

 case ESNMP_LIB_LOST_CONNECTION:
 printf("%s%s%s\n", "The request to unregister the ",
 "MIB subtree could not be sent. ",
 "You should restart the protocol.\n");
 break;
}

esnmp_capabilities
esnmp_capabilities — Adds a subagent's capabilities to the master agent's sysORTable. The
sysORTable is a conceptual table that contains an agent's object resources, and is described in RFC
1907.

Syntax
void esnmp_capabilities (OID *agent_cap_id,
 char *agent_cap_descr) ;

55

Chapter 5. eSNMP API Routines

Arguments
agent_cap_id

A pointer to an object identifier that represents an authoritative agent capabilities identifier. This value is
used for the sysORID object in the sysORTable for the managed node.

agent_cap_descr

A pointer to a null-terminated character string describing agent_cap_id. This value is used for the
sysORDescr object in the sysORTable for the managed node.

Description
This routine is called at any point after initializing eSNMP by a call to the esnmp_init routine.

esnmp_uncapabilities
esnmp_uncapabilities — Removes a subagent's capabilities from the master agent's sysORTable.

Syntax
void esnmp_uncapabilities (OID *agent_cap_id) ;

Arguments
agent_cap_id

A pointer to an object identifier that represents an authoritative agent capabilities identifier. This value is
used for the sysORID object in the sysORTable for the managed node.

Description
This routine is called if a subagent alters its capabilities dynamically. When a logical connection for a
subagent is closed, the master agent automatically removes the related entries in sysORTable.

esnmp_poll
esnmp_poll — Processes a pending message that was sent by the master agent.

Syntax
int esnmp_poll ()

Description
This routine is called after the select() call has indicated data is ready on the eSNMP socket. (This
socket was returned from the call to the esnmp_init routine.)

If a received message indicates a problem, an entry is made to the SNMP log file and an error status is
returned.

If the received message is a request for SNMP data, the object table is checked and the appropriate
method routines are called, as defined by the developer of the subagent.

56

Chapter 5. eSNMP API Routines

Return Values

ESNMP_LIB_OK The esnmp_poll routine completed
successfully.

ESNMP_LIB_BAD_REG The master agent failed in a previous registration
attempt. See the log file.

ESNMP_LIB_DUPLICATE A duplicate subagent identifier has already been
received by the master agent.

ESNMP_LIB_NO_CONNECTION The master agent's OPEN request failed. Restart the
connection after a delay. See the log file.

ESNMP_LIB_CLOSE A CLOSE message was received.
ESNMP_LIB_NOTOK An eSNMP protocol error occurred and the packet

was discarded.
ESNMP_LIB_LOST_CONNECTION Communication with the master agent was lost.

Restart the connection.

esnmp_are_you_there
esnmp_are_you_there — Requests the master agent to report immediately that it is up and functioning.

Syntax
int esnmp_are_you_there () ;

Description
The esnmp_are_you_there routine does not block waiting for a response. The routine is intended
to cause the master agent to reply immediately. The response should be processed by calling the
esnmp_poll routine.

If a response is not received within the timeout period, the application code should restart the eSNMP
protocol by calling the esnmp_init routine. No timers are maintained by the eSNMP library.

Return Values

ESNMP_LIB_OK The request was sent.
ESNMP_LIB_LOST_CONNECTION The request cannot be sent because the master

agent is down.

esnmp_trap
esnmp_trap — Sends a trap message to the master agent.

Syntax
int esnmp_trap (int *generic_trap,
 int specific_trap,
 char *enterprise,
 varbind *vb) 2 ;

57

Chapter 5. eSNMP API Routines

Arguments
generic_trap

A generic trap code. Set this argument value to 0 (zero) for SNMPv2 traps.

specific_trap

A specific trap code. Set this argument value to 0 (zero) for SNMPv2 traps.

enterprise

An enterprise OID string in dot notation. Set to the object identifier defined by the NOTIFICATION-
TYPE macro in the defining MIB specification. This value is passed as the value of SnmpTrapOID.0 in
the SNMPv2-Trap-PDU.

vb

A VARBIND list of data (a null pointer indicates no data).

Description
This function can be called any time. If the master agent is not running, traps are queued and sent when
communication is possible.

The trap message is actually sent to the master agent after it responds to the esnmp_init routine. This
occurs with every API call and for most esnmp_register routines. The quickest process to send
traps to the master agent is to call the esnmp_init, esnmp_poll, and esnmp_trap routines.

The master agent formats the trap into an SNMP trap message and sends it to management stations
based on its current configuration.

The master agent does not respond to the content of the trap. However, the master agent does return a
value that indicates whether the trap was received successfully.

Return Values
ESNMP_LIB_OK The routine has completed successfully.
ESNMP_LIB_LOST_CONNECTION Could not send the trap message to master agent.
ESNMP_LIB_NOTOK Something failed and the message could not be

generated.

esnmp_term
esnmp_term — Sends a close message to the master agent and shuts down the subagent.

Syntax
void esnmp_term (void) ;

Description
Subagents must call this routine when terminating so that the master agent can update its MIB registry
quickly and so that resources used by eSNMP on behalf of the subagent can be released.

58

Chapter 5. eSNMP API Routines

Return Values

ESNMP_LIB_OK The esnmp_term routine always returns
ESNMP_LIB_OK, even if the packet could not be
sent.

esnmp_sysuptime
esnmp_sysuptime — Converts UNIX system time obtained from gettimeofday into a value with the
same time base as sysUpTime.

Syntax
unsigned int esnmp_sysuptime (struct timeval *timestamp) ;

Argument

timestamp

A pointer to struct timeval, which contains a value obtained from the gettimeofday system
call. The structure is defined in include/sys/time.h.

A null pointer means return the current sysUpTime.

Description

This routine provides a mechanism to convert UNIX timestamps into eSNMP TimeTicks. The
function returns the value that sysUpTime held when the passed timestamp was now.

This routine can be used as a TimeTicks data type (the time since the eSNMP master agent
started) in hundredths of a second. The time base is obtained from the master agent in response to
esnmp_init, so calls to this function before that time will not be accurate.

Return Values

0 An error occurred because a gettimeofday
function failed. Otherwise, timestamp contains
the time in hundredths of a second since the master
agent started.

Example
#include <sys/time.h>
#include <esnmp.h>
struct timeval timestamp;

gettimeofday(×tamp, NULL);
 .
 .
 .
o_integer(vb, object, esnmp_sysuptime(×tamp));

59

Chapter 5. eSNMP API Routines

5.2. Method Routines
SNMP requests may contain many encoded MIB variables. The libsnmp code executing in a subagent
matches each VariableBinding with an object table entry. The object table's method routine is
then called. Therefore, a method routine is called to service a single MIB variable. Since a single method
routine can handle a number of MIB variables, the same method routine may be called several times
during a single SNMP request.

The method routine calling interface contains the following functions:

• *_get – respond to Get, GetNext, and GetBulk requests

• *_set – respond to Set requests

*_get Routine
*_get Routine — The *_get routine is a method routine for the specified MIB item, which is typically a
MIB group (for example, system in MIB II) or a table entry (for example, ifEntry in MIB II).

Syntax
int mib-group_get (METHOD *method) ;

Arguments
method

A pointer to a METHOD structure that contains the following fields:

Field Name Description

action One of ESNMP_ACT_GET,
ESNMP_ACT_GETNEXT, or
ESNMP_ACT_GETBULK.

serial_num An integer number that is unique to this SNMP
request. Each method routine called while
servicing a single SNMP request receives the same
value of serial_num. New SNMP requests are
indicated by a new value of serial_num.

repeat_cnt Used for GetBulk only. This value indicates the
current iteration number of a repeating VARBIND.
This number increments from1 to max_repetitions
and is 0 (zero) for non repeating VARBIND
structures.

max_repetitions The maximum number of repetitions to perform.
Used for GetBulk only. This will be 0 (zero)
for non-repeating VARBIND structures. You can
optimize subsequent processing by knowing the
maximum number repeat calls will be made.

varbind A pointer to the VARBIND structure for which
you must fill in the OID and data fields. Upon
entry of the method routine, the method->varbind-
>name field is the OID that was requested.

60

Chapter 5. eSNMP API Routines

Field Name Description
Upon exit of the method routine, the method-
>varbind field contains the requested data, and
the method->varbind->name field is updated to
reflect the actual instance OID for the returned
VARBIND structure.

The support routines (o_integer, o_string,
o_oid, and o_octet) are generally used to load
data. The libsnmp instance2oid routine is
used to update the OID in the method->varbind-
>name field.

object A pointer to the object table entry for the MIB
variable being referenced. The method->object-
>object_index field is this object's unique index
within the object table (useful when one method
routine services many objects).

The method->object->oid field is the OID defined
for this object in the MIB. The instance requested
is derived by comparing this OID with the OID in
the request found in the method->varbind->name
field. The oid2instance function is useful for
this.

Description
These types of routines call whatever routine is specified for Get operations in the object table identified
by the registered subtree.

This function is pointed to by some number of elements of the subagent object table. When a request
arrives for an object, its method routine is called. The *_get method routine is called in response to a
Get request.

Return Values

ESNMP_MTHD_noError The routine completed successfully.
ESNMP_MTHD_noSuchObject The requested object cannot be returned or does

not exist.
ESNMP_MTHD_noSuchInstance The requested instance of an object cannot be

returned or does not exist.
ESNMP_MTHD_genErr A general processing error.

*_set Routine
*_set Routine — The *_set method routine for a specified MIB item, which is typically a MIB group
(for example, system in MIB II) or a table entry (for example, ifEntry in MIB II).

Syntax
int mib-group_set (METHOD *method) ;

61

Chapter 5. eSNMP API Routines

Arguments
method

A pointer to a METHOD structure that contains the following fields:

Field Name Description

action One of ESNMP_ACT_SET, ESNMP_ACT_UNDO, or
ESNMP_ACT_CLEANUP.

serial_num An integer number that is unique to this SNMP request. Each
method routine called while servicing a single SNMP request
receives the same value as serial_num. New SNMP requests are
indicated by a new value of serial_num.

varbind A pointer to the VARBIND structure that contains the MIB
variable's supplied data value and name (OID). The instance
information has already been extracted from the OID and placed in
the method->row->instance field.

object A pointer to the object table entry for the MIB variable being
referenced. The method->object->object-index field is this object's
unique index within the object table (useful when one method
routine services many objects).

The method->object->oid field is the OID defined for this object in
the MIB.

flags A read-only integer bitmask set by the libesnmp routine. If set,
the ESNMP_FIRST_IN_ROW bit indicates that this call is the first
object to be set in the row. If set, the ESNMP_LAST_IN_ROW bit
indicates that this call is the last object to be set in the row. Only
METHOD structures with the ESNMP_LAST_IN_ROW bit set are
passed to the method routines for commit, undo, and cleanup phases.
A pointer to a ROW_CONTEXT structure (defined in the
ESNMP.H header file). All Set requests to the method routine that
refer to the same group and that have the same instance number will
be presented with the same row structure. The method routines can
accumulate information in the row structures during Set requests
for use during the commit and undo phases. The accumulated data
can be released by the method routines during the cleanup phase.

The ROW_CONTEXT structure contains the following fields:
instance An address of an array containing

the instance OID for this
conceptual row. The libesnmp
routine builds this array by
subtracting the object OID from
the requested variable binding
OID.

instance_len The size of the method->row-
>instance field.

row

context A pointer to be used privately by
the method routine to reference

62

Chapter 5. eSNMP API Routines

Field Name Description
data needed for processing this
request.

save A pointer to be used privately by
the method routine to reference
data needed for undoing this
request.

state An integer to be used privately by
the method routine for holding
any state information it requires.

Description
The libesnmp routines call whatever routine is specified for Set operations in the object table
identified by the registered subtree.

This function is pointed to by some number of elements of the subagent object table. When a request
arrives for an object, its method routine is called. The *_set method routine is called in response to a
Set request.

Return Values
ESNMP_MTHD_noError The routine completed successfully.
ESNMP_MTHD_notWritable The requested object cannot be set or was not

implemented.
ESNMP_MTHD_wrongType The data type for the requested value is the wrong

type.
ESNMP_MTHD_wrongLength The requested value is the wrong length.
ESNMP_MTHD_wrongEncoding The requested value is represented incorrectly.
ESNMP_MTHD_wrongValue The requested value is out of range.
ESNMP_MTHD_noCreation The requested instance can never be created.
ESNMP_MTHD_inconsistentName The requested instance cannot currently be created.
ESNMP_MTHD_inconsistentValue The requested value is not consistent.
ESNMP_MTHD_resourceUnavailable A failure due to some resource constraint.
ESNMP_MTHD_genErr A general processing error.
ESNMP_MTHD_commitFailed The commit phase failed.
ESNMP_MTHD_undoFailed The undo phase failed.

5.3. Processing *_set Routines
This following is the sequence of operations performed for *_set routines:

1. Every variable binding is parsed and its object is located in the object table. A METHOD structure
is created for each VARBIND structure. These METHOD structures point to a ROW_CONTEXT
structure, which is useful for handling these phases. Objects in the same conceptual row all point to
the same ROW_CONTEXT structure. This determination is made by checking the following:

• The referenced objects are in the same MIB group.

63

Chapter 5. eSNMP API Routines

• The VARBIND structures have the same instance OIDs.

2. Each ROW_CONTEXT structure is loaded with the instance information for that conceptual row.
The ROW_CONTEXT structure context and save fields are set to NULL, and the state field is set to
ESNMP_SET_UNKNOWN structure.

3. The method routine for each object is called and is passed its METHOD structure with an action
code of ESNMP_ACT_SET.

If all method routines return success, a single method routine (the last one called for the row) is
called for each row, with method->action equal to ESNMP_ACT_COMMIT.

If any row reports failure, all rows that were successfully committed are told to undo the phase. This
is accomplished by calling a single method routine for each row (the same one that was called for the
commit phase), with a method->action equal to ESNMP_ACT_UNDO.

4. Each row is released. The same single method routine for each row is called with a method->action
equal to ESNMP_ACT_CLEANUP. This occurs for every row, regardless of the results of previous
processing.

The action codes are processed as follows:

• ESNMP_ACT_SET

Each object's method routine is called during the SET phase, until all objects are processed or a
method routine returns an error status value. (This is the only phase during which each object's
method routine is called.) For variable bindings in the same conceptual row, method->row points to a
common ROW_CONTEXT.

The method->flags bitmask has the ESNMP_LAST_IN_ROW bit set, if this is the last object being
called for this ROW_CONTEXT. This enables you to do a final consistency check, because you have
seen every variable binding for this conceptual row.

The method routine's job in this phase is to determine whether the Set request will work, to return
the correct SNMP error code if it does not, and to prepare any context data it needs to actually
perform the Set request during the COMMIT phase.

The method->row->context field is private to the method routine; libesnmp does not use it. A
typical use is to store the address of an emitted structure that has been loaded with the data from the
VARBIND for the conceptual row.

• ESNMP_ACT_COMMIT

Even though several variable bindings may be in a conceptual row, only the last one in order of
the Set request is processed. Of all the method routines that point to a common row, only the last
method routine is called.

This method routine must have available to it all necessary data and context to perform the
operation. It must also save a snapshot of current data or whatever it needs to undo the Set
operation, if required. The method->row->save field is intended to hold a pointer to whatever
data is needed to accomplish this. A typical use is to store the address of a structure that has been
loaded with the current data for the conceptual row. The structure is one that has been automatically
generated by the MIBCOMP command.

The method->row->save field is also private to the method routine; libesnmp does not use it.

64

Chapter 5. eSNMP API Routines

If this operation succeeds, return ESNMP_MTHD_noError; otherwise, return a value of
ESNMP_MTHD_commitFailed.

If any errors were returned during the COMMIT phase, libesnmp enters the UNDO phase; if not,
it enters the CLEANUP phase.

Note

If the Set request spans multiple subagents and another subagent fails, the UNDO phase may occur
even if the Set operation is successful

• ESNMP_ACT_UNDO

For each conceptual row that was successfully committed, the same method routine is called with
method->action equal to ESNMP_ACT_UNDO. The ROW_CONTEXT structures that have not
yet been called for the COMMIT phase are not called for the UNDO phase; they are called for
CLEANUP phase.

The method routine should attempt to restore conditions to what they were before it executed the
COMMIT phase. (This is typically done using the data pointed to by the method->row->save field.)

If successful, return ESNMP_MTHD_noError; otherwise, return ESNMP_MTHD_undoFail.

• ESNMP_ACT_CLEANUP

Regardless of what else has happened, at this point each ROW_CONTEXT participates in cleanup
phase. The same method routine that was called for in the COMMIT phase is called with method-
>action equal to ESNMP_ACT_CLEANUP.

This indicates the end of processing for the set request. The method routine should perform
whatever cleanup is required; for instance, freeing dynamic memory that might have been allocated
and stored in method->row->context and method->row->save fields, and so on.

The function return status value is ignored for the CLEANUP phase.

5.4. Method Routine Applications
Programming
You must write the code for the method routines declared in the subtree_TBL.H file. Each method
routine has one argument, which is a pointer to the METHOD structure, as follows:

int mib_group_get(
 METHOD *method int mib_group_set(
 METHOD *method);

The Get method routines are used to perform Get, GetNext, and GetBulk operations.

The Get method routines perform the following tasks:

• Extract the instance portion of the requested OID. You can do this manually by comparing the
method->object->oid field (the object's base OID) to the method-> varbind->name field (the
requested OID). You can use the oid2instance support routine to do this.

65

Chapter 5. eSNMP API Routines

• Determine the instance validity. The instance OID can be null or any length, depending on what was
requested and how your object was selected. You may be able to reject the request immediately by
checking on the instance OID.

• Extract the data. Based on the instance OID and method->action field, determine what data, if any, is
to be returned.

• Load the response OID back into the method routine's VARBIND structure. Set the method-
>varbind field with the OID of the actual MIB variable instance you are returning. This is usually
accomplished by loading an array of integers with the instance OID you wish to return and calling
the instance2OID support routine.

• Load the response data back into the method routine's VARBIND structure.

Use one of the support routines with the corresponding datatype to load the method->varbind field
with the data to return:

• o_integer

• o_string

• o_octet

• o_oid

These routines make a copy of the data you specify. The libesnmp function manages any memory
associated with copied data. The method routine must manage the original data's memory.

The routine does any necessary conversions to the type defined in the object table for the MIB
variable and copies the converted data into the method->varbind field. See Section 5.5 for
information on data value representation.

• Return the correct status value, as follows:

ESNMP_MTHD_noError The routine completed successfully or no errors
were found.

ESNMP_MTHD_noSuchInstance There is no such instance of the requested object.
ESNMP_MTHD_noSuchObject No such object exists.
ESNMP_MTHD_ genErr An error occurred and the routine did not

complete successfully.

5.5. Value Representation
The values in a VARBIND structure for each data type are represented as follows. (Refer to the
ESNMP.H file for a definition of the OCT and OID structures.)

• ESNMP_TYPE_Integer32 (varbind->value.sl field)

This is a 32-bit signed integer. Use the o_integer routine to insert an integer value into the
VARBIND structure. Note that the prototype for the value argument is unsigned long; therefore, you
may need to cast this to a signed integer.

• ESNMP_TYPE_DisplayString, ESNMP_TYPE_Opaque

66

Chapter 5. eSNMP API Routines

ESNMP_TYPE_OctetString (varbind->value.oct field)

This is an octet string. It is contained in the VARBIND structure as an OCT structure that contains a
length and a pointer to a dynamically allocated character array.

The displaystring is different only in that the character array can be interpreted as ASCII text, but the
octetstring can be anything. If the octetstring contains bits or a bit string, the OCT structure contains
the following:

• A length equal to the number of bytes needed to contain the value that is ((qty-bits - 1)/8 + 1)

• A pointer to a buffer containing the bits of the bitstring in the form bbbbb..bb, where the bb
octets represent the bitstring itself, bit 0 comes first, and so on. Any unused bits in the last octet
are set to zero.

Use the o_string support routine to insert a value into the VARBIND structure, which is a buffer
and a length. New space is allocated and the buffer is copied into the new space.

Use the o_octet routine to insert a value into the VARBIND structure, which is a pointer to an
OCT structure. New space is allocated and the buffer pointed to by the OCT structure is copied.

• ESNMP_TYPE_ObjectId (varbind->value.oid and the varbind->name fields)

This is an object identifier. It is contained in the VARBIND structure as an OID structure that
contains the number of elements and a pointer to a dynamically allocated array of unsigned integers,
one for each element.

The varbind->name field is used to hold the object identifier and the instance information that
identifies the MIB variable. Use the OID2Instance function to extract the instance elements from
an incoming OID on a request. Use the instance2oid function to combine the instance elements
with the MIB variable's base OID to set the VARBIND structure's name field when building a
response.

Use the o_oid function to insert an object identifier into the VARBIND structure when the OID
value to be returned as data is in the form of a pointer to an OID structure.

Use the o_string function to insert an OID into the VARBIND structure when the OID value to
be returned as data is in the form of a pointer to an ASCII string containing the OID in dot format;
for example: 1.3.6.1.2.1.3.1.1.2.0.

• ESNMP_TYPE_NULL

This is the NULL, or empty, type. This is used to indicate that there is no value. The length is zero
and the value in the VARBIND structure is zero filled.

The incoming VARBIND structures on a Get, GetNext, and GetBulk will have this data type.
A method routine should never return this value. An incoming Set request never has this value in a
VARBIND structure.

• ESNMP_TYPE_IpAddress (varbind->value.oct field)

This is an IP address. It is contained in the VARBIND structure in an OCT structure that has a
length of 4 and a pointer to a dynamically allocated buffer containing the 4 bytes of the IP address in
network byte order.

67

Chapter 5. eSNMP API Routines

Use the o_integer function to insert an IP address into the VARBIND structure when the value
is an unsigned integer in network byte order.

Use the o_string function to insert an IP address into the VARBIND structure when the value is
a byte array (in network byte order). Use a length of 4.

• ESNMP_TYPE_Integer32

ESNMP_TYPE_Counter32

ESNMP_TYPE_<Gauge32 (varbind->value.ul field)

The 32-bit counter and 32-bit gauge data types are stored in the VARBIND structure as an unsigned
integer.

Use the o_integer function to insert an unsigned value into the VARBIND structure.

• ESNMP_TYPE_TimeTicks (varbind->value.ul field)

The 32-bit timeticks type values are stored in the VARBIND structure as an unsigned integer.

Use the o_integer function to insert an unsigned value into the VARBIND structure.

• ESNMP_TYPE_Counter64 (varbind->value.ul64 field)

The 64-bit counter is stored in a VARBIND structure as an unsigned longword, which, on an
OpenVMS Alpha system, has a 64-bit value.

Use the o_integer function to insert an unsigned longword (64 bits) into the VARBIND
structure.

5.6. Support Routines
The support routines are provided as a convenience for developers writing method routines that handle
specific MIB elements. The following support routines are provided:

Routine Function

o_integer Loads an integer value.
o_octet Loads an octet value.
o_oid Loads an OID value.
o_string Loads a string value.
o_counter64 Loads a Counter64 variable into the varbind.
str2oid Converts a string OID to dot notation.
sprintoid Converts an OID into a string.
instance2oid Creates a full OID for a value.
oid2instance Extracts an instance and loads an array.
inst2ip Returns an IP address for an OID.
cmp_oid Compares two OIDs.
cmp_oid_prefix Compares an OID's prefix.

68

Chapter 5. eSNMP API Routines

Routine Function

clone_oid Makes a copy of an OID.
free_oid Frees a buffer.
clone_buf Duplicates a buffer.
mem2oct Converts a string to an oct structure.
cmp_oct Compares two octets.
clone_oct Makes a copy of an oct structure.
free_oct Frees a buffer attached to an oct structure.
free_varbind_date Frees the fields in the VARBIND structure.
set_debug_level Sets the logging level.
is_debug_level Tests the logging level.
ESNMP_LOG Directs log messages.
print_varbind Displays the varbind and its structure.
set_select_limit Sets the error limit for SNMP client requests.
__set_progname Sets the program name to be displayed in log

messages.
__restore_progname Resets the program name back to the previous

name.
__parse_progname Parses the application file name to determine the

program name.
esnmp_cleanup Closes a socket that is used by a subagent for

communicating with the master agent.

o_integer
o_integer — Loads an integer value into the VARBIND structure with the appropriate type. This
function does not allocate the VARBIND structure.

Syntax
int o_integer (VARBIND *vb,
 OBJECT *obj,
 unsigned long value);

Arguments
vb

A pointer to the VARBIND structure that is supposed to receive the data.

obj

A pointer to the OBJECT structure for the MIB variable associated with the OID in the VARBIND
structure.

value

The value to be inserted into the VARBIND structure.

69

Chapter 5. eSNMP API Routines

The real type as defined in the object structure must be one of the following; otherwise, an error is
returned.

ESNMP_TYPE_Integer32 32-bit integer
ESNMP_TYPE_Counter32 32-bit counter (unsigned)
ESNMP_TYPE_Gauge32 32-bit gauge (unsigned)
ESNMP_TYPE_TimeTicks 32-bit timeticks (unsigned)
ESNMP_TYPE_UInteger32 32-bit integer (unsigned)
ESNMP_TYPE_Counter64 64-bit counter (unsigned)
ESNMP_TYPE_IpAddress Implicit octet string (4)

Note

If the real type is IpAddress, then eSNMP assumes that the 4-byte integer is in network byte order
and packages it into an octet string.

Return Values

ESNMP_MTHD_noError The routine completed successfully.
ESNMP_MTHD_genErr An error has occurred.

Example
#include <esnmp.h>
#include "ip_tbl.h" <-- for ipNetToMediaEntry_type definition
VARBIND *vb = method->varbind;
OBJECT *object = method->object;
ipNetToMediaEntry_type *data;
:
: assume buffer and structure member assignments occur here
:
switch(arg) {
case I_atIfIndex:
return o_integer(vb, object, data->ipNetToMediaIfIndex);

o_octet
o_octet — Loads an octet value into the VARBIND structure with the appropriate type. This function
does not allocate the VARBIND structure.

Syntax
int o_octet (VARBIND *vb,
 OBJECT *obj,
 unsigned long value);

Arguments
vb

70

Chapter 5. eSNMP API Routines

A pointer to the VARBIND structure that is supposed to receive the data.

If the original value in the vb field is not null, this routine attempts to free it. So if you dynamically
allocate memory or issue the malloc command to allocate your own VARBIND structure, fill the
structure with zeros before using it.

obj

A pointer to the OBJECT structure for the MIB variable associated with the OID in the VARBIND
structure.

value

The value to be inserted into the VARBIND structure.

The real type as defined in the object structure must be one of the following; otherwise, an error is
returned.

ESNMP_TYPE_OCTET_STRING Octet string (ASN.1)
ESNMP_TYPE_IpAddress Implicit octet string (4) (in octet form, network

byte order)
ESNMP_TYPE_DisplayString DisplayString (textual convention)
ESNMP_TYPE_Opaque Implicit octet string

Return Values

ESNMP_MTHD_noError The routine completed successfully.
ESNMP_MTHD_genErr An error occurred.

Example
#include <esnmp.h>
#include "ip_tbl.h" <-- for ipNetToMediaEntry_type definition
VARBIND *vb = method->varbind;
OBJECT *object = method->object;
ipNetToMediaEntry_type *data;
:
: assume buffer and structure member assignments occur here
:
switch(arg) {
 case I_atPhysAddress:
 return o_octet(vb, object, &data->ipNetToMediaPhysAddress);

o_oid
o_oid — Loads an OID value into the VARBIND structure with the appropriate type. This function does
not allocate the VARBIND structure.

Syntax
int o_oid (VARBIND *vb,
 OBJECT *obj,
 OID *oid);

71

Chapter 5. eSNMP API Routines

Arguments
vb

A pointer to the VARBIND structure that is supposed to receive the data.

If the original value in the VARBIND structure is not null, this routine attempts to free it. So if you
dynamically allocate memory or issue the malloc command to allocate your own VARBIND structure,
fill the structure with zeros before using it.

obj

A pointer to the OBJECT structure for the MIB variable associated with the OID in the VARBIND
structure.

oid

The value to be inserted into the VARBIND structure as data. For more information about OID length
and values, see Chapter 3.

The real type as defined in the object structure must be ESNMP_TYPE_OBJECT_IDENTIFIER.

Return Values
ESNMP_MTHD_noError The routine completed successfully.
ESNMP_MTHD_genErr An error occurred.

Example
#include <esnmp.h>
#include "ip_tbl.h" <-- for ipNetToMediaEntry_type definition
VARBIND *vb = method->varbind;
OBJECT *object = method->object;
ipNetToMediaEntry_type *data;
:
: assume buffer and structure member assignments occur here
:
switch(arg) {
 case I_atObjectID:
 return o_oid(vb, object, &data->ipNetToMediaObjectID);

o_string
o_string — Loads a string value into the VARBIND structure with the appropriate type. This function
does not allocate the VARBIND structure.

Syntax
int o_string (VARBIND *vb,
 OBJECT *obj,
 unsigned character *ptr,
 int len);

Arguments
vb

72

Chapter 5. eSNMP API Routines

A pointer to the VARBIND structure that is supposed to receive the data.

If the original value in the VARBIND structure is not null, this routine attempts to free it. So if you
dynamically allocate memory or issue the malloc command to allocate your own VARBIND structure,
fill the structure with zeros before using it.

obj

A pointer to the OBJECT structure for the MIB variable associated with the OID in the VARBIND
structure.

ptr

The pointer to the buffer containing data to be inserted into the VARBIND structure as data.

len

The length of the data in buffer pointed to by ptr.

The real type as defined in the object structure must be one of the following; otherwise, an error is
returned.

ESNMP_TYPE_OCTET_STRING Octet string (ASN.1)
ESNMP_TYPE_IpAddress Implicit octet string (4) (in octet form, network

byte order)
ESNMP_TYPE_DisplayString DisplayString (textual convention)
ESNMP_TYPE_NsapAddress Implicit octet string
ESNMP_TYPE_Opaque Implicit octet string
ESNMP_TYPE_OBJECT_IDENTIFIER Object identifier (ASN.1) (in dot notation, for

example: 1.3.4.6.3)

Return Values
ESNMP_MTHD_noError The routine completed successfully.
ESNMP_MTHD_genErr An error occurred.

Example
#include <esnmp.h>
#include "ip_tbl.h" <-- for ipNetToMediaEntry_type definition
VARBIND *vb = method->varbind;
OBJECT *object = method->object;
ipNetToMediaEntry_type *data;
:
: assume buffer and structure member assignments occur here
:
switch(arg) {
 case I_atPhysAddress:
 return o_string(vb, object, data->ipNetToMediaPhysAddress.ptr,
 data->ipNetToMediaPhysAddress.len);

o_counter64
o_counter64 — Loads a counter64 value into the VARBIND structure.

73

Chapter 5. eSNMP API Routines

Syntax
int o_counter64 (VARBIND *vb,
 OBJECT *obj,
 uint64 value); (for Alpha)
 uint64_vax value ; (for VAX))

Arguments
vb

A pointer to the VARBIND structure that is supposed to receive the data.

obj

A pointer to the OBJECT structure for the MIB variable associated with the OID in the VARBIND
structure.

value

The 8-byte value to be inserted into the VARBIND structure, passed as an array of two integers.

The real type as defined in the object structure must be ESNMP_TYPE_Counter64. Otherwise, an error
is returned.

Example
See the example for the o_integer routine.

Return Values

ESNMP_MTHD_noError No error was generated.
ESNMP_MTHD_genErr An error was generated.

str2oid
str2oid — Converts a null-terminated string OID in dot notation to an OID structure. The str2oid
routine does not allocate an OID structure.

Syntax
oid *str2oid (oid *oid,
 char *s);

Arguments
oid

The value to be inserted as data into the VARBIND structure. For more information about OID length
and values, see Chapter 3.

s

A null string or empty string returns an OID structure that has one element of zero.

74

Chapter 5. eSNMP API Routines

Description
The routine dynamically allocates the buffer and inserts its pointer into the OID structure passed in the
call. The caller must explicitly free this buffer. The OID can have a maximum of 128 elements.

Return Values
null An error occurred. Otherwise, the pointer to the

OID structure (its first argument) is returned.

Example
include <esnmp.h>
OID abc;
if (stroid (&abc, "1.2.5.4.3.6") == NULL
 DPRINTF((WARNING, "It did not work...\n");

sprintoid
sprintoid — Converts an OID into a null-terminated string.

Syntax
char *sprintoid (char *buffer, oid *oid);

Description
An OID can have up to 128 elements. A full-sized OID can require a large buffer.

Return Values
The return value points to its first argument.

Example
#include <esnmp.h>
#define SOMETHING_BIG 1024
OID abc;
char buffer[SOMETHING_BIG];
:
: assume abc gets initialized with some value
:
printf("dots=%s\n", sprintoid(buffer, &abc));

instance2oid
instance2oid — Copies the object's base OID and appends a copy of the instance array to make a
complete OID for a value. This routine does not allocate an OID structure. It only allocates the array
containing the elements.

Syntax
oid instance2oid (oid *new,
 object *obj,

75

Chapter 5. eSNMP API Routines

 unsigned int *instance,
 int *len);

Arguments
new

A pointer to the OID that is to receive the new OID value.

obj

A pointer to the object table entry for the MIB variable being obtained. The first part of the new OID is
the OID from this MIB object table entry.

instance

A pointer to an array of instance values. These values are appended to the base OID obtained from
the MIB object table entry to construct the new OID.

len

The number of elements in the instance array.

Description
The instance array may be created by oid2instance or constructed from key values as a result of a
GetNext command (see Chapter 1).

This routine dynamically allocates the buffer and inserts its pointer into the OID structure passed in the
call. The caller must explicitly free the buffer.

You should point to the OID structure receiving the new values and then call the instance2oid
routine. Previous values in the OID structure are freed (that is, free_oid is called first), and then the
new values are dynamically allocated and inserted. Be sure the initial value of the new OID is all zeros.
If you do not want the initial value freed, make sure the new OID structure is all zeros.

Return Values

null An error occurred. Otherwise, the pointer to the
OID structure (new) is returned.

Example
#include <esnmp.h>
VARBIND *vb; <-- filled in
OBJECT *object; <-- filled in
unsigned int instance[6];

-- Construct the outgoing OID in a GETNEXT --
-- Instance is N.1.A.A.A.A where A's are IP address --
instance[0] = data->ipNetToMediaIfIndex;
instance[1] = 1;
for (i = 0; i < 4; i++) {
instance[i+2]=((unsigned char *)(&data->ipNetToMediaNetAddress))[i];
}
instance2oid(&vb->name, object, instance, 6);

76

Chapter 5. eSNMP API Routines

oid2instance
oid2instance — Extracts the instance values from an OID structure and copies them to the specified
array of integers. The routine then returns the number of elements in the array.

Syntax
int oid2instance (oid *oid,
 object *obj,
 unsigned int *instance,
 int *max_len);

Arguments
oid

A pointer to an incoming OID containing an instance or part of an instance.

obj

A pointer to the object table entry for the MIB variable.

instance

A pointer to an array of unsigned integers where the index is placed.

max_len

The number of elements in the instance array.

Description
The instance values are the elements of an OID beyond those that identify the MIB variable. These
elements identify a specific instance of a MIB value.

If there are more elements in the OID structure than specified by the max_len parameter, the function
copies the number of elements specified by max_len only and returns the total number of elements that
would have been copied had there been space.

Return Values
Less than zero An error occurred. This is not returned if the

object was obtained by looking at this OID.
Zero No instance elements.
Greater than zero The returned value indicates the number of

elements in the index. This could be larger than the
max_len parameter.

Example
#include <esnmp.h>
OID *incoming = &method->varbind->name;
OBJECT *object = method->object;
int instLength;
unsigned int instance[6];

77

Chapter 5. eSNMP API Routines

-- in a GET operation --
-- Expected Instance is N.1.A.A.A.A where A's are IP address --
instLength = oid2instance(incoming, object, instance, 6);
if (instLength != 6)
 return ESNMP_MTHD_noSuchInstance;

The N will be in instance[0] and the IP address will be in instance[2], instance[3],
instance[4], and instance[5].

inst2ip
inst2ip — Returns an IP address derived from an OID instance.

Syntax
int inst2ip (unsigned int *instance,
 int *length,
 unsigned int *ipaddr,
 int *exact,
 int *carry);

Arguments
instance

A pointer to an array of unsigned int containing the instance numbers returned by the
oid2instance routine to be converted to an IP address.

The range for elements is between zero and 255. Using the EXACT mode, the routine returns 1 if an
element is out of range. Using the NEXT mode, a value greater than 255 causes that element to overflow.
In this case, the value is set to 0 and the next most significant element is incremented; therefore, it
returns a lexically equivalent value of the next possible ipaddr.

length

The number of elements in the instance array. Instances beyond the fourth are ignored. If the length is
less than four, the missing values are assumed to be zero. A negative length results in an ipaddr value of
zero. For an exact match (such as Get), there must be exactly four elements.

ipAddr

A pointer indicating where to return the IP address value. This routine is in network byte order (the most
significant element is first).

exact

Can either be TRUE or FALSE.

TRUE means do an EXACT match. If any element is greater than 255 or if there are not exactly four
elements, a value of 1 is returned. The carry argument is ignored.

FALSE means do a NEXT match. That is, the lexically next IP address is returned, if the carry value is
set and the length is at least four. If there are fewer than four elements, this function assumes the missing
values are zero. If any one element contains a value greater than 255, the value is zeroed and the next
most significant element is incremented. Returns a 1 (one) only when there is a carry from the most
significant (the first) value.

78

Chapter 5. eSNMP API Routines

carry

Adds to the IP address on a NEXT match. If you are trying to determine the next possible IP address,
pass in a one. Otherwise, pass in a zero. A length of less than 4 cancels the carry.

Description

Use the EXACT mode for evaluating an instance for Get and Set operations. For GetNext and
GetBulk operations, use the NEXT mode. When using NEXT mode, this routine assumes that the
search for data will be performed using greater than or equal to matches.

Return Values

Carry value is 0 The routine completed successfully.
Carry value is 1 For EXACT match, an error occurred. For NEXT

match, there was a carry. If there was a carry, the
returned ipaddr is 0.

Examples

1. The following example converts an instance to an IP address for a Get operation, which is an
EXACT match.

#include <esnmp.h>
OID *incoming = &method->varbind->name;
OBJECT *object = method->object;
int instLength;
unsigned int instance[6];
unsigned int ip_addr;
int iface;

-- The instance is N.1.A.A.A.A where the A's are the IP address--
instLength = oid2instance(incoming, object, instance, 6);
if (instLength == 6 && !inst2ip(&instance[2], 4, &ip_addr, TRUE, 0)) {
 iface = (int) instance[0];
}
else
 return ESNMP_MTHD_noSuchInstance;

2. The following example shows a GetNext operation in which there is only one key or in which the
ipaddr value is the least significant part of the key. This is a NEXT match; therefore, a value of 1 is
passed back for the carry value.

#include <esnmp.h>
OID *incoming = &method->varbind->name;
OBJECT *object = method->object;
int instLength;
unsigned int instance[6];
unsigned int ip_addr;
int iface;

-- The instance is N.1.A.A.A.A where the A's are the IP address--
instLength = oid2instance(incoming, object, instance, 6);
iface = (instLength < 1) ? 0 :(int) instance[0];

79

Chapter 5. eSNMP API Routines

iface += inst2ip(&instance[2], instLength - 2, &ip_addr, FALSE, 1);

3. In the following example, the search key consists of multiple parts. If you are doing a GetNext
operation, you must find the next possible value for the search key, so that you can perform a
cascaded greater-than or equal-to search.

The search key consists of a number and two ipaddr values. These are represented in the instance
part of the OID as n.A.A.A.A.B.B.B.B, where:

• n is a single value integer.

• The A.A.A.A portion makes up one IP address.

• The B.B.B.B portion makes up a second IP address.

If all elements are given, the total length of the search key is 9. In this case, you perform the
operation as follows:

• Convert the least significant part of the key (that is, the B.B.B.B portion), by calling the
inst2ip routine, passing it a 1for the carry and (length - 5) for the length.

• If the conversion of the B.B.B.B portion generates a carry (that is, returns 1), you pass it to the
next most significant part of the key.

• Convert the A.A.A.A portion by calling the inst2ip routine, passing it (length - 1) for the
length and the carry returned from the conversion of the B.B.B.B portion.

• The most significant element n is a number; therefore, add the carry from the A.A.A.A
conversion to the number. If the result overflows, then the search key is not valid.

#include <esnmp.h>
OID *incoming = &method->varbind->name;
OBJECT *object = method->object;
int instLength;
unsigned int instance[9];
unsigned int ip_addrA;
unsigned int ip_addrB;
int iface;
int carry;

-- The instance is N.A.A.A.A.B.B.B.B --
instLength = oid2instance(incoming, object, instance, 9);
iface = (instLength < 1) ? 0 :(int) instance[0];
carry = inst2ip(&instance[1], instLength - 1, &ip_addrB, FALSE, 1);
carry = inst2ip(&instance[5], instLength - 5, &ip_addrA, FALSE, carry);
iface += carry;
if (iface > carry) {

-- a carry caused an overflow in the most significant element
return ESNMP_MTHD_noSuchInstance;
}

cmp_oid
cmp_oid — Compares two OID structures.

80

Chapter 5. eSNMP API Routines

Syntax
int cmp_oid (oid *q, oid *p);

Description
This routine does an element-by-element comparison, from the most significant element (element 0) to
the least significant element. If all other elements are equal, the OID with the least number of elements is
considered less.

Return Values
-1 The OID q is less than OID p.
0 The OID q is in OID p.
1 The OID q is greater than OID p.

cmp_oid_prefix
cmp_oid_prefix — Compares an OID against a prefix.

Syntax
int cmp_oid_prefix (oid *q, oid *prefix);

Description
A prefix could be the OID on an object in the object table. The elements beyond the prefix are the
instance information.

This routine does an element-by-element comparison, from the most significant element (element 0) to
the least significant element. If all elements of the prefix OID match exactly with corresponding elements
of the OID q structure, it is considered an even match if the OID q structure contains additional
elements. The OID q structure is considered greater than the prefix if the first nonmatching element is
larger. It is considered smaller if the first nonmatching element is less.

Return Values
-1 The OID is less than the prefix.
0 The OID is in prefix.
1 The OID is greater than the prefix.

Example
#include <esnmp.h>
OID *q;
OBJECT *object;
if (cmp_oid_prefix(q, &object->oid) == 0)
 printf("matches prefix\n");

clone_oid
clone_oid — Makes a copy of the OID. This routine does not allocate an OID structure.

81

Chapter 5. eSNMP API Routines

Syntax
oid clone_oid (oid *new, oid *oid);

Arguments
new

A pointer to the OID structure that is to receive the copy.

oid

A pointer to the OID structure where the data is to be obtained.

Description
This routine dynamically allocates the buffer and inserts its pointer into the OID structure received. The
caller must explicitly free this buffer.

Point to the OID structure that is to receive the new OID values and call this routine. Any previous value
in the new OID structure is freed (using the free_oid routine) and the new values are dynamically
allocated and inserted. To preserve an existing OID structure, initialize the new OID structure with zeros.

If the old OID structure is null or contains a null pointer to its element buffer, a new OID of [0.0] is
generated.

Return Values
Null An error or the pointer to the OID is returned.

Example
#include <esnmp.h>
OID oid1;
OID oid2;
:
: assume oid1 gets assigned a value
:
memset(&oid2, 0, sizeof(OID));
if (clone_oid(&oid2, &oid1) == NULL)
 DPRINTF((WARNING, "It did not work\n"));

free_oid
free_oid — Frees the OID structure's buffer. This routine does not deallocate the OID structure itself; it
deallocates the elements buffer attached to the structure.

Syntax
void free_oid (oid *oid);

Description
This routine frees the buffer pointed to by the OID->elements field and zeros the field and the NELEM
structure.

82

Chapter 5. eSNMP API Routines

Example
include <esnmp.h>
OID oid;
:
: assume oid was assigned a value (perhaps with clone_oid()
: and we are now finished with it.
:
free_oid(&oid);

clone_buf
clone_buf — Duplicates a buffer in a dynamically allocated space.

Syntax
char clone_buf (char *str, int *len);

Arguments
str

A pointer to the buffer to be duplicated.

len

The number of bytes to be copied.

Description
One extra byte is always allocated at the end and is filled with zeros. If the length is less than zero, the
duplicate buffer length is set to zero. A buffer pointer is always returned, unless there is a malloc error.

Return Values

Null A malloc error. Otherwise, the pointer to the
allocated buffer that contains a copy of the original
buffer is returned.

Example
#include <esnmp.h>
char *str = "something nice";
char *copy;
copy = clone_buf(str, strlen(str));

mem2oct
mem2oct — Converts a string (a buffer and length) to an oct structure with the new buffer's address
and length.

Syntax
oct *mem2oct (oct *new, char *buffer, int *len);

83

Chapter 5. eSNMP API Routines

Argument
new

A pointer to the oct structure receiving the data.

buffer

Pointer to the buffer to be converted.

len

Length of buffer to be converted.

Description
The mem2oct routine dynamically allocates the buffer and inserts its pointer into the oct structure.
The caller must explicitly free this buffer.

This routine does not allocate an oct structure and does not free data previously pointed to in the oct
structure before making the assignment.

Return Values

Null An error occurred. Otherwise, the pointer to the
oct structure (the first argument) is returned.

Example
#include <esnmp.h>
char buffer;
int len;
OCT abc;

...buffer and len are initialized to something...

memset(&abc, 0, sizeof(OCT));
if (mem2oct(&abc, buffer, len) == NULL)
 DPRINTF((WARNING, "It did not work...\n"));

cmp_oct
cmp_oct — Compares two octet strings.

Syntax
int cmp_oct (oct *oct1, oct *oct2);

Arguments
oct1

Pointer to the first octet string.

oct2

84

Chapter 5. eSNMP API Routines

Pointer to the second octet string.

Description
The two octet strings are compared byte-by-byte to determine the length of the shortest octet string. If all
bytes are equal, the lengths are compared. An octet with a null pointer is considered the same as a zero-
length octet.

Return Values

-1 The string pointed to by the first oct is less than
the second.

0 The string pointed to by the first oct is equal to
the second.

1 The string pointed to by the first oct is greater
than the second.

Example
#include <esnmp.h>
OCT abc, efg;

...abc and efg are initialized to something...

if (cmp_oct(&abc, &efg) > 0)
 DPRINTF((WARNING, "octet abc is larger than efg...\n"));

clone_oct
clone_oct — Makes a copy of the data in an oct structure. This routine does not allocate an oct
structure; it allocates the buffer pointed to by the oct structure.

Syntax
oct clone_oct (oct *new, oct *old);

Arguments
new

A pointer to the oct structure receiving the data.

old

A pointer to the oct structure where the data is to be obtained.

Description
The clone_oct routine dynamically allocates the buffer, copies the data, and updates the oct
structure with the buffer's address and length. The caller must free this buffer.

The previous value of the buffer on the new oct structure is freed prior to the new buffer being
allocated. If you do not want the old value freed, initialize the new oct structure before cloning.

85

Chapter 5. eSNMP API Routines

Return Values

Null An error occurred. Otherwise, the pointer to the
oct structure (the first argument) is returned.

Example
#include <esnmp.h>
OCT octet1;
OCT octet2;
:
: assume octet1 gets assigned a value
:
memset(&octet2, 0, sizeof(OCT));
if (clone_oct(&octet2, &octet1) == NULL)
 DPRINTF((WARNING, "It did not work\n"));

free_oct
free_oct — Frees the buffer attached to an oct structure. This routine does not deallocate the oct
structure; it deallocates the buffer to which the oct structure points.

Syntax
void free_oct (oct *oct);

Description
This routine frees the dynamically allocated buffer to which the oct structure points, and zeros the
pointer and length on the oct structure. If the oct structure is already null, this routine does nothing.

If the buffer attached to the oct structure is already null, this routine sets the length field of the oct
structure to zero.

Example
#include <esnmp.h>
OCT octet;
:
: assume octet was assigned a value (perhaps with mem2oct()
: and we are now finished with it.
:
free_oct(&octet);

free_varbind_data
free_varbind_data — Frees the dynamically allocated fields in the VARBIND structure. However, this
routine does not deallocate the VARBIND structure itself; it deallocates the name and data buffers to
which the VARBIND structure points.

Syntax
void free_varbind_data (varbind *vb);

86

Chapter 5. eSNMP API Routines

Description
This routine performs a free_oid (vb->name) operation. If indicated by the vb->type field, it then
frees the vb->value data using either the free_oct or the free_oid routine.

Example
#include <esnmp.h>
VARBIND *vb;

vb = (VARBIND*)malloc(sizeof(VARBIND));
clone_oid(&vb->name, oid);
clone_oct(&vb->value.oct, data);
:
: some processing that uses vb occurs here
:
free_varbind_data(vb);
free(vb);

set_debug_level
set_debug_level — Sets the logging level, which dictates what log messages are generated. The program
or module calls the routine during program initialization in response to run-time options.

Syntax
void set_debug_level (int stat, unsigned integer null);

Arguments
stat

The logging level. The following values can be set individually or in combination:

Level Meaning

ERROR Used when a bad error occurred; requires a restart.
WARNING Used when a packet cannot be handled; also

implies ERROR. This is the default.
TRACE Used when tracing all packets; also implies

ERROR and WARNING.

null

This parameter is not used by OpenVMS. It is supplied for compatibility with UNIX.

Description
The logging level will be ERROR, WARNING, or TRACE.

If you specify TRACE, all three types of errors are generated. If you specify ERROR, only error
messages are generated. If you specify WARNING, both error and warning messages are generated.

To specify logging levels for the messages in your subagent, use the ESNMP_LOG routine.

87

Chapter 5. eSNMP API Routines

Example
#include <esnmp.h>

if (strcmp("-t", argv[1] {
 set_debug_level(TRACE, NULL);
} else {
 set_debug_level(WARNING, NULL);
}

is_debug_level
is_debug_level — Tests the logging level to see whether the specified logging level is set.

Additional Information
You can test the logging levels as follows:

Level Meaning

ERROR Used when a bad error occurs, requiring restart.
WARNING Used when a packet cannot be handled; this also

implies ERROR.
TRACE Used when tracing all packets; this also implies

ERROR and WARNING.

Syntax
int is_debug_level (int type);

Return Values

TRUE The requested level is set and the ESNMP_LOG
will generate output, or output will go to the
specified destination.

FALSE The logging level is not set.

Example
#include <esnmp.h>

if (is_debug_level(TRACE))
 dump_packet()

ESNMP_LOG
ESNMP_LOG — This is an error declaration C macro defined in the ESNMP.H header file. It gathers
the information that it can obtain and sends it to the log.

Syntax
ESNMP_LOG (level, format, ...);

88

Chapter 5. eSNMP API Routines

Description
The esnmp_log routine is called using the ESNMP_LOG macro, which uses the helper routine
esnmp_logs to format part of the text. Do not use these functions without the ESNMP_LOG macro.
For example:

#define ESNMP_LOG(level, x) if (is_debug_level(level)) { \
 esnmp_log(level, esnmp_logs x, __LINE__, __FILE__);}

Where:

• x is a text string; for example, a printf statement.

• level is one of the following:

ERROR Declares an error condition.
WARNING Declares a warning.
TRACE Puts a message in the log file if trace is active.

For more information about configuration options for logging and tracing, refer to the VSI TCP/IP
Services for OpenVMS Management guide.

Example
#include <esnmp.h>
ESNMP_LOG(ERROR, ("Cannot open file %s\n", file));

__print_varbind
__print_varbind — Displays the VARBIND and its contents. This routine is used for debugging
purposes. To use this routine, you must set the debug level to TRACE. Output is sent to the specified file.

Syntax
__print_varbind (VARBIND *vb, int indent);

Arguments
vb

The pointer to the VARBIND structure to be displayed. If the vb pointer is NULL, no output is
generated.

indent

The number of bytes of white space to place before each line of output.

set_select_limit
set_select_limit — Sets the eSNMP select error limit. For more information, see Section 6.1.

Syntax
set_select_limit (char *progname);

89

Chapter 5. eSNMP API Routines

Arguments
progname

The subagent name. This argument is valid with DPI versions only. With AgentX, the argument is
NULL because subagents do not get names.

Return Values

ESNMP_MTHD_noError No error was generated.
ESNMP_MTHD_genErr An error was generated.

__set_progname
__set_progname — Specifies the program name that will be displayed in log messages. This routine
should be called from the main during program initialization. It needs to be called only once.

Syntax
__set_progname (char *prog);

Arguments
prog

The program name as taken from argv[0], or some other identification for entity-calling logging
routines.

Example
#include "esnmp.h"
__set_progname(argv[0]);

__restore_progname
__restore_progname — Restores the program name from the second application of the set. This routine
should be called only after the __set_progname routine has been called. You can use this to restore
the most recent program name only.

Syntax
__restore_progname ();

Example
#include "esnmp.h"
__restore_progname();

__parse_progname
__parse_progname — Parses the full file specification to extract only the file name and file extension.

90

Chapter 5. eSNMP API Routines

Syntax
__parse_progname (file-specification);

Arguments
file-specification

The full file specification for the subagent.

Example
#include "esnmp.h"
static char Progname[100];
sprintf (Progname, "%s%.8X", __parse_progname(prog), getpid());

esnmp_cleanup
esnmp_cleanup — Closes open sockets that are used by the subagent for communicating with the master
agent.

Syntax
esnmp_cleanup ();

Example
#include "esnmp.h"
int rc = ESNMP_LIB_OK;
rc = esnmp_cleanup();

Return Values

ESNMP_LIB_NOTOK There was no socket.
ESNMP_LIB_OK Success.

91

Chapter 5. eSNMP API Routines

92

Chapter 6. Troubleshooting eSNMP
Problems
The eSNMP modules provided with TCP/IP Services include troubleshooting features that are useful in
controlling the way your subagent works.

This chapter describes:

• How to modify the subagent error limit (Section 6.1)

• How to modify the default subagent timeout value (Section 6.2)

• Log files (Section 6.3)

For additional information about troubleshooting SNMP problems, see the VSI TCP/IP Services for
OpenVMS Management guide.

6.1. Modifying the Subagent Error Limit
In certain circumstances, some subagent programs might enter a loop where a select() call
repeatedly returns a -1 error value. (Note that standard SNMP subagents and the Chess example
provided in TCPIP$EXAMPLES should not exhibit this behavior.)

You can define the logical name TCPIP$SNMP_SELECT_ERROR_LIMIT to modify the number of
times a -1 error value can be returned from a select() call.

The valid TCPIP$SNMP_SELECT_ERROR_LIMIT values range from 1 to less than 2 32 −1 (default
100). When defining the error limit, remember:

• Do not use commas when defining the number.

• If you defined the limit as 0, no limit is set.

• A defined value greater than or equal to 4000000000 triggers warning messages.

For example, to define TCPIP$SNMP_SELECT_ERROR_LIMIT to limit the number of times a -1 error
value is returned to 1, 000, enter the following command:

$ DEFINE/SYSTEM TCPIP$SNMP_SELECT_ERROR_LIMIT 1000

6.2. Modifying the Subagent Timeout
You can define the logical name TCPIP$ESNMP_DEFAULT_TIMEOUT to modify the default time
allowed (3 seconds) before timeout occurs because of the lack of response by the subagent to the master
agent. The ability to define the timeout is especially useful for slower systems and systems with heavy
network traffic. The logical name is translated at startup time.

The TCPIP$ESNMP_DEFAULT_TIMEOUT value is from 0 to 60 seconds. (You should use 0 only
for testing purposes, such as simulating problems on a heavily loaded host or network.) If the value you
specify contains non-numeric digits or is outside the allowed range, the default value of 3 seconds is
used.

93

Chapter 6. Troubleshooting eSNMP Problems

For example, to define TCPIP$ESNMP_DEFAULT_TIMEOUT to time out after 6 seconds of inactivity
between the master agent and subagents, enter the following command:

$ DEFINE/SYSTEM TCPIP$ESNMP_DEFAULT_TIMEOUT 6

When a subagent registers with the master agent, it can specify a value that overrides the value you set
with logical name TCPIP$ESNMP_DEFAULT_TIMEOUT. The standard MIB II and Host Resources
MIB subagents use the default value of 3 seconds. Refer to the description of the esnmp_register
routine for more information.

6.3. Log Files
All output redirected from SYS$OUTPUT for the SNMP agent process is logged to *.LOG files in the
SYS$SYSDEVICE:[TCPIP$SNMP] directory. Output redirected from SYS$ERROR is logged to *.ERR
files in the same directory.

Output redirected from SYS$OUTPUT for the agent process is logged to the following files:

• TCPIP$ESNMP.LOG (for the master agent)

• TCPIP$OS_MIBS.LOG (for the MIB II)

• TCPIP$HR_MIB.LOG (for the Host Resources MIB)

Output redirected from SYS$ERROR is logged to the following files:

• TCPIP$ESNMP.ERR (for the master agent)

• TCPIP$OS_MIBS.ERR (for the MIB II)

• TCPIP$HR_MIB.ERR (for the Host Resources MIB)

Data is flushed to the log files when the corresponding process terminates. Each invocation of the TCPIP
$SNMP_RUN.COM procedure purges these files, retaining at least the last seven versions (the exact
number depends on the value of the CLUSTER_NODES system parameter).

The log files are located in the SYS$SYSDEVICE:[TCPIP$SNMP] directory along with the TCPIP
$SNMP_CONF.DAT file, which is a text representation of the SNMP configuration data generated by
the master agent during startup.

The contents of the SNMP log files are written to SYS$SYSDEVICE:[TCPIP$SNMP] when the process
stops or when you stop it (for example, by entering the STOP/ID= xxx command). After a process
restarts, it creates a new version of the files. If a process executes without errors, *.ERR files might not
be created.

Writing to SYS$OUTPUT and SYS$ERROR from custom subagents is controlled by qualifiers on
the RUN command in the TCPIP$EXTENSION_MIB_RUN.COM procedure. See Chapter 3 for
information about including extension subagent commands in the startup procedure.

Custom subagents that do not write to SYS$OUTPUT and SYS$ERROR might not produce a .LOG
or .ERR file.

TCP/IP Services does not support writing log files to locations other than the SYS$SYSDEVICE:[TCPIP
$SNMP] directory.

94

Chapter 6. Troubleshooting eSNMP Problems

The log files contain startup and event information and additional messages, depending on the logging
level specified for an agent. The SNMP logging facility uses three logging levels:

• TRACE (logs trace, warning, and error messages)

• WARNING (logs warning and error messages)

• ERROR

For the master agent and standard subagents, the logging level is WARNING. Log files for these
processes include messages for WARNING and ERROR events. The chess example does not have a
default log level. Therefore, no log messages appear. To specify a default log level for custom subagents,
you can use the standard API call set_debug_level (see Chapter 5 for more information). Because
the chess example subagent does not use a default, messages are captured only if you specify tracing. For
information about getting trace logs, refer to the VSI TCP/IP Services for OpenVMS Management guide.

95

Chapter 6. Troubleshooting eSNMP Problems

96

	VSI TCP/IP Services for OpenVMS SNMP Programming and Reference
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. OpenVMS Documentation
	6. VSI Encourages Your Comments
	7. Conventions

	Chapter 1. Overview
	1.1. SNMP Architecture
	1.2. Request Handling
	1.3. TCP/IP Services Components for SNMP
	1.4. Writing an eSNMP Subagent
	1.5. The eSNMP API
	1.5.1. The SNMP Utilities

	1.6. The MIB Compiler
	1.7. SNMP Versions
	1.7.1. Using Existing (SNMP Version 1) MIB Modules

	1.8. For More Information

	Chapter 2. MIBs Provided with TCP/IP Services
	2.1. Overview of the Host Resources MIB
	2.1.1. Defining Host Resources MIB Implemented Objects
	2.1.2. Restrictions to Host Resources MIB

	2.2. Overview of MIB II
	2.2.1. MIB II Implemented Groups
	2.2.2. Restrictions to MIB II Implementation

	Chapter 3. Creating a Subagent Using the eSNMP API
	3.1. Creating a MIB Specification
	3.2. The Structure of Management Information
	3.2.1. Assigning Object Identification Codes
	3.2.2. MIB Subtrees

	3.3. Creating a MIB Source File
	3.3.1. Writing the ASN.1 Input File
	3.3.2. Processing the Input File with the MIB Compiler
	3.3.2.1. UNIX Utilities Supplied with TCP/IP Services
	3.3.2.2. Object Tables
	3.3.2.3. The subtree_TBL.H Output File
	3.3.2.4. The subtree_TBL.C Output Files

	3.4. Including the Routines and Building the Subagent
	3.5. Including Extension Subagents in the Startup and Shutdown Procedures

	Chapter 4. Using the SNMP Utilities
	4.1. Using the MIB Browser
	4.1.1. MIB Browser Parameters
	4.1.2. MIB Browser Flags
	4.1.3. MIB Browser Data Types
	4.1.4. Command Examples for snmp_request

	4.2. Using the Trap Sender and Trap Receiver Programs
	4.2.1. Entering Commands for the Trap Sender Program
	4.2.1.1. Trap Sender Parameters
	4.2.1.2. Trap Sender Flags
	4.2.1.3. Trap Sender Examples

	4.2.2. Entering Commands for the Trap Receiver Program
	4.2.2.1. Trap Receiver Flags
	4.2.2.2. Setting Up an SNMP Trap Service
	4.2.2.3. Trap Receiver Examples

	Chapter 5. eSNMP API Routines
	5.1. Interface Routines
	esnmp_init
	esnmp_register
	esnmp_unregister
	esnmp_register2
	esnmp_unregister2
	esnmp_capabilities
	esnmp_uncapabilities
	esnmp_poll
	esnmp_are_you_there
	esnmp_trap
	esnmp_term
	esnmp_sysuptime

	5.2. Method Routines
	*_get Routine
	*_set Routine

	5.3. Processing *_set Routines
	5.4. Method Routine Applications Programming
	5.5. Value Representation
	5.6. Support Routines
	o_integer
	o_octet
	o_oid
	o_string
	o_counter64
	str2oid
	sprintoid
	instance2oid
	oid2instance
	inst2ip
	cmp_oid
	cmp_oid_prefix
	clone_oid
	free_oid
	clone_buf
	mem2oct
	cmp_oct
	clone_oct
	free_oct
	free_varbind_data
	set_debug_level
	is_debug_level
	ESNMP_LOG
	__print_varbind
	set_select_limit
	__set_progname
	__restore_progname
	__parse_progname
	esnmp_cleanup

	Chapter 6. Troubleshooting eSNMP Problems
	6.1. Modifying the Subagent Error Limit
	6.2. Modifying the Subagent Timeout
	6.3. Log Files

